
Abstract

WAHED, ABDUS SHAKOOR. Efficient Estimation of The Survival Distribution

and Related Quantities of Treatment Policies in Two-Stage Randomization Designs

in Clinical Trials. (Under the supervision of Professor Anastasios A. Tsiatis, Ph.D.)

Two-stage designs are common in therapeutic clinical trials such as Cancer or

AIDS treatments. In a two-stage design, patients are initially treated with one in-

duction (primary) therapy and then depending upon their response and consent, are

treated by a maintenance therapy, sometimes to intensify the effect of the first stage

therapy. The goal is to compare different combinations of primary and maintenance

(intensification) therapies to find the combination that is most beneficial. To achieve

this goal, patients are initially randomized to one of several induction therapies and

then if they are eligible for the second-stage randomization, are offered to be ran-

domized to one of several maintenance therapies. In practice, the analysis is usually

conducted in two separate stages which does not directly address the major objective

of finding the best combination. Recently Lunceford et. al. (2002, Biometrics, 58,

48-57) introduced ad hoc estimators for the survival distribution and mean restricted

survival time under different treatment policies. These estimators are consistent but

not efficient, and do not include information from auxiliary covariates. In this dis-

sertation study we derive estimators that are easy to compute and are more efficient

than previous estimators. We also show how to improve efficiency further by taking

into account additional information from auxiliary variables. Large sample proper-



ties of these estimators are derived and comparisons with other estimators are made

using simulation. We apply our estimators to a leukemia clinical trial data set that

motivated this study.
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Chapter 1

Introduction

In a two-stage design, patients are treated initially with an induction therapy followed

by maintenance therapy at some later time. Depending on the clinical trial, the

maintenance therapy may be offered to a subset of the patients, for example, those

patients who showed some response to the induction treatment. Such designs are

common in cancer and other clinical trials where treatments are usually combinations

of some therapies. To compare different combinations of induction and maintenance

therapies, two-stage randomized studies may be considered where patients are initially

randomized to one of several induction therapies and then patients who are eligible

for maintenance therapy are randomized to one of several maintenance therapies.

The primary goal of such randomized studies is to determine the combination of

induction and maintenance therapies that will result in the best prognosis such as

the longest average survival. However, like the randomization scheme used in these

trials, data analysis typically is separated into two parts: (i) comparing induction
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therapies using all the data ignoring maintenance therapy and (ii) comparing only

those individuals randomized to maintenance therapy. Neither of these two analyses

directly addresses the question of finding the best combination of maintenance and

induction treatments.

As an example, throughout this dissertation we will consider the Cancer and

Leukemia Group B (CALGB) clinical trial which motivated the study. Protocol 8923

was a double-blind, placebo-controlled two-stage trial reported by Stone et. al. (1995)

examining the effects of infusions of granulocyte-macrophage colony-stimulating fac-

tor (GM-CSF) after initial chemotherapy in 388 elderly patients with acute myel-

ogenous lukemia (AML). Patients were randomized initially to GM-CSF or placebo

following standard chemotherapy. Later, patients meeting the criteria for complete

remission were offered a second randomization to one of two intensification treat-

ments. Figure 1 explains the two stages of CALGB 8923 trial. The goal of the study

is to examine the effect on survival of granulocyte-macrophage colony-stimulating-

factor (GM-CSF) in addition to chemotherapy followed by subsequent intensification

treatment.

More examples of two-stage clinical trials can be found in Thall et. al. (2002),

Tummarello et al. (1994), and Joss et al. (1994).

For concreteness, we will consider the two-stage clinical trial where patients are

initially randomized to one of the induction treatments, say A1 or A2, upon entry

into the trial. Among those eligible for maintenance therapy, i.e., meets the criteria

for randomization to the second stage therapy, a second randomization is offered

2



Patients in CALGB Protocol 8923

Placebo + Chemotherapy GM-CSF+ ChemotherapyInduction Therapy

YES NO YES NORemit and Consent?

Intensification I Intensification II Intensification I Intensification II

Figure 1.1: Two stages of Cancer and Lukemia Group B Protocol 8923 clinical trial.

to one of the maintenance therapies B1 or B2. Our objective is to compare the

survival probabilities and related quantities associated with the treatment policies

AjBk, j, k = 1, 2 where AjBk represents the policy “treat with Aj followed by Bk if

the patient is eligible and consents to subsequent maintenance therapy”. The way we

defined the treatment policy suggests that we will be considering an intent-to-treat

approach here. As is common in most survival analysis problem, the survival time is

defined as the time from initial randomization until death.

Because of the randomizations involved, the problem easily fits into a missing

data problem and taking this into account, Lunceford, Davidian and Tsiatis (2002)

(subsequently referred to as LDT) derived the inverse-probability-of-missing-weighted

(IPMW) estimator for the mean restricted survival time and the survival distribution

for treatment policies in a two-stage clinical trial. They also proposed two other

estimators which are more efficient than the IPMW estimator. These estimators
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were defined in an ad hoc basis and did not include the most efficient estimator. By

this we mean there exists estimators that are more efficient than LDT estimators.

In this dissertation study we use the theory of Robins, Rotnitzky and Zhao (1994)

to characterize the most efficient estimator for this problem and show how to derive

estimators which are easily computable and are more efficient than the LDT estimator.

This has been done in steps. In Chapter 2 we derive the most efficient semipara-

metric estimator for the cases where there is no censoring and propose estimators that

will be more efficient than LDT estimators. We applied the proposed estimators to

the CALGB data set and also considered simulation studies to compare them to the

LDT estimator. It turns out that the proposed estimators are always more efficient

than the LDT estimators. In Chapter 3 we considered non-informative right-censored

data and develop efficient procedures for estimating the survival distribution and re-

lated quantities for different treatment policies. Finally, in Chapter 4 we give a brief

discussion.
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Chapter 2

Efficient Estimation of The

Survival Distribution and Related

Quantities for Treatment Policies

in Two-Stage Randomization

Designs in Clinical Trials

The data that arises from a two stage randomization designs has enough complicated

structure to make the derivation of the semiparametric efficient estimators difficult,

even when there is no censoring. In this chapter we develop the methodologies for

the cases where one observes the complete data. The preliminary notation developed

in Chapter 1 will be used throughout this dissertation. The main goal of this chapter

is to define efficient estimators for the survival distributions and related quantities

such as mean survival time, survival probability at a time point t, etc. for policies
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AjBk, j, k = 1, 2. Here is an outline of how this chapter is organized. In Section 2.1,

using potential outcomes, we make explicit the model framework necessary to define

the survival distribution for treatment policy AjBk. Also, in this section we elucidate

all the assumptions made and give a brief review of available methodologies. In

Section 2.2, we derive the class of all regular asymptotically linear estimators and find

the most efficient estimator within this class. Section 2.3 describes the construction

of feasible locally efficient estimators. Another strategy, where we derive efficient

estimators within a restricted class of regular asymptotically linear estimators that

are easy to compute, is described in Section 2.4. In Section 2.5 we apply the different

estimators to estimate and test for differences in the mean survival time for the

different combinations of induction/maintenance treatment regimes in the CALGB

dataset. In Section 2.6 we report on results from several simulation studies comparing

our estimators with the available estimators.

2.1 Model Framework and Notation

Since the data from the patients who receive induction treatment A1 are independent

of the data that are collected from patients with induction treatment A2, it suffices to

consider the two treatment policies that are associated with the induction treatment

A1; namely A1B1 and A1B2. (The methods follow analogously for policies A2B1 and

A2B2). Thus, for the time being, we will only consider the case where each patient
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in our sample received A1 as the initial treatment and B1 or B2 as the subsequent

treatment if they are eligible and consent. We will index individuals in our study by

i, i = 1, 2, . . . , n.

As in Lunceford et al. (2002), we conceptualize this problem through the use

of a set of random variables some of which may not be observed for all individuals.

Assume that each patient i has an associated set of random variables

{Ri, (1 − Ri)T0i, RiT
R
i , RiT

∗
1i, RiT

∗
2i, RiVi},

where,

Ri: the eligible/consent status if patient i were assigned to A1; that is, Ri = 1 if

patient i was eligible and would consent to subsequent maintenance treatment;

Ri = 0, otherwise;

T0i: the survival time of patient i if Ri = 0; that is, the survival time for a

patient that was not eligible or refused subsequent maintenance treatment;

TR
i : the time from initial randomization to the time he/she receives maintenance

therapy and is defined only if Ri = 1;

T ∗
1i: the survival time of patient i if the patient was eligible, willing to receive

maintenance treatment and received treatment B1;

T ∗
2i: the survival time of patient i if the patient was eligible, willing to receive

maintenance treatment and received treatment B2; and

7



Vi: a vector of auxiliary covariates collected on individual i prior to their second

randomization and is defined only if Ri = 1.

The auxiliary covariates Vi may include baseline covariates, as well. In the CALGB

data, some examples of auxiliary covariates include elapsed time between response to

the induction therapy and second randomization, age and white blood cell count. In

actuality, if patient i were eligible and consented to the maintenance randomization

(Ri = 1), we could not observe both T ∗
1i and T ∗

2i which is why these are referred to as

counterfactuals (see Holland, 1986) or potential outcomes.

Continuing with this conceptualization, the survival time for patient i, if assigned

to treatment policy A1B1, would be

T11i = (1 − Ri)T0i + RiT
∗
1i

and

T12i = (1 − Ri)T0i + RiT
∗
2i

if assigned to treatment policy A1B2. The variables (T11i, T12i) are also potential

outcomes since they are not necessarily both observed for each individual, rather, they

represent what might occur under policies, contrary to that to which the individual

might actually be exposed.

Under this setup, the distribution of T1k, k = 1, 2 represents the distribution of

the potential survival time for the population, were all patients to be assigned to

A1Bk, realizing that some patients eligible for maintenance therapy Bk may refuse

additional treatment, so that inference on features of these distributions addresses

8



directly the “intent-to-treat” question of interest. Our goal is to draw inference on

the distribution of variables of interest T1k from the observed data from a two-stage

design described in Section 1.

In contrast to the potential outcomes defined above, the observed data can be

characterized as

(Ri, RiT
R
i , RiVi, RiZi, Ti)

where Ri, T
R
i , Vi are defined exactly as above, but now Zi denotes the B treatment

assignment indicator, defined only if Ri = 1, where Zi = 1, if assigned to treatment

B1, 0, if assigned to B2 and Ti is the observed survival time. We make the reasonable

assumption that the observed survival time for patient i is related to the potential

outcomes by

Ti = (1 − Ri)T0i + Ri {ZiT
∗
1i + (1 − Zi)T

∗
2i} . (2.1)

to reflect the belief that patient’s i survival time would be T0i if he/she didn’t receive

maintenance therapy, T ∗
1i if he/she received B1 as maintenance therapy and T ∗

2i if

he/she received B2 as maintenance therapy.

In addition, we assume that

P (Zi = 1|Ri = 1, TR
i , Vi, T

∗
1i, T

∗
2i) = P (Zi = 1|Ri = 1), (2.2)

to reflect the fact that, by design, the second stage randomization is made indepen-

dently of prognosis (T ∗
1i, T

∗
2i) or any pre-second stage randomization characteristics(

TR
i , Vi

)
of the patient. We define π1 = P (Zi = 1|Ri = 1) and π2 = 1 − π1 = P (Zi =

9



0|Ri = 1) to denote the probability of being randomized to treatments B1 or B2

respectively.

Our primary goal is to estimate parameters involving the distribution of the treat-

ment policy survival times T1k for k = 1, 2. For example, we may want to estimate

µ1k = E{h(T1k)} for some function h(·) of T1k. This allows us to consider the esti-

mation of parameters such as the mean survival time or the survival distribution for

treatment policy A1Bk by taking h(T1k) = T1k, or h(T1k) = I(T1k ≥ t) respectively.

One naive approach in estimating such quantities is to average the function h(Ti)

over those patients whose data are consistent with the treatment policies they are

randomized to. Explicitly, one might use the estimator

µ̂1k
NAIV E =

{
n∑

i=1

(1 − Ri + RiXki)

}−1 n∑
i=1

(1 − Ri + RiXki) h(Ti). (2.3)

where Xk is the assignment indicator for treatment Bk, X1 = Z and X2 = (1 − Z).

This estimator, as we will demonstrate, is biased.

In order to find unbiased and consistent estimators, we first need to show that the

distribution of the potential outcome T1k can be identified from the distribution of

the observed random variables. It was shown in LDT that under assumptions (2.1)

and (2.2) that

µ1k = E{h(T1k)} = E

{(
1 − R +

RXk

πk

)
h(T )

}
, (2.4)

Relationship (2.4) leads to one of the estimators for µ1k given by LDT, namely,

µ̂1k =
1

n

n∑
i=1

(
1 − Ri +

RiXki

πk

)
h(Ti). (2.5)

10



A useful way to think about this problem is as follows: If everyone in our sample

were given treatment according to policy A1Bk, then we would have complete data

that could be used to estimate µ1k in a straightforward fashion. Some individuals,

however, were assigned treatment inconsistent with treatment policy A1Bk, namely,

those individuals randomized to receive the other maintenance therapy B3−k, k = 1, 2.

The data from such individuals can be viewed as missing data for the purpose of

estimating µ1k. However, because of randomization, such individuals are similar

prognostically to those randomized to treatment Bk. Consequently, by weighting the

individuals randomized to treatment Bk by 1
πk

, then, roughly speaking, the response

of an individual randomized to treatment Bk counts for him/herself as well as the

response of ( 1
πk

− 1) similar individuals who have “missing data” with respect to

treatment policy A1Bk; i.e. those individuals randomized to the other treatment

B3−k. This also makes clear why the naive estimator given by (2.3), which does not

weight, results in a biased estimator.

Other ad hoc estimators were also given by LDT. The problem we address in

this paper is how to efficiently estimate parameters involving the distribution of the

treatment policy survival times T1k for k = 1, 2 using the observed data including the

auxiliary covariates. Because this problem can be cast as a missing data problem, we

can use the theory developed by Robins et al. (1994) to characterize the class of all

estimators and find the most efficient estimator.

11



2.2 Efficient Estimator

Most estimators used in practice are regular asymptotically linear estimators (RAL).

That is, the estimator minus the estimand can be approximated asymptotically by a

sum of identically and independently distributed (iid) mean zero random variables.

Specifically, an estimator η̂ of the parameter η is asymptotically linear if

n1/2(η̂ − η) = n−1/2

n∑
i=1

ψi + op(1),

where ψi, i = 1, . . . , n are iid mean zero random variables and op(1) denotes a term

that converges in probability to zero. The random variable ψi is referred to as the i-th

influence function of the estimator η̂. It is clear from the representation above that

the asymptotic variance of an asymptotically linear estimator is equal to the variance

of the influence function. Consequently, the optimal estimator among a class of

asymptotically linear estimators is the one whose influence function has the smallest

variance. The restriction to regular estimators is a technical condition imposed to

exclude estimators that have undesirable local properties. For details, the reader is

referred to Newey (1990).

The estimator given by (2.5) is an example of an inverse-probability-of-missing-

weighted (IPMW) estimator for µ1k. The influence function for this estimator can be

shown to be equal to {
(1 − Ri) +

RiXki

πk

}
h(Ti) − µ1k. (2.6)

Using the semiparametric theory of Robins et al. (1994), all RAL estimators for µ1k

12



have an influence function belonging to the class{
(1 − Ri) +

RiXki

πk

}
{h(Ti) − µ1k} + Ri

(
Xki − πk

πk

)
f(TR

i , Vi), (2.7)

where f(TR
i , Vi) is an arbitrary function of TR

i , the time to response to the induc-

tion therapy, and Vi, the vector of auxiliary covariates measured prior to the second

randomization. Note that both TR
i and Vi are defined only for patients i such that

Ri = 1. The choice of the function f(·) will determine how efficient the corresponding

estimator for µ1k will be. The goal would be to appropriately define the function f(·)

so that we can improve the efficiency of our estimators. The use of auxiliary informa-

tion in gaining efficiency has previously been considered by several authors such as

Robins and Rotnitzky (1992), Laan and Hubbard (1998, 1999), Xu and Zeger (2001),

and Faucett et al. (2002).

The following proposition characterizes the most efficient influence function in the

class of influence functions (2.7).

Proposition 1 Among all influence functions in (2.7), the most efficient one is given

by {
(1 − Ri) +

RiXki

πk

}
h(Ti) − Ri

(
Xki − πk

πk

)
θh(T

R
i , Vi) − µ1k (2.8)

where θh(T
R
i , Vi) = E

{
h(Ti)|TR

i , Vi, Ri = 1, Xki = 1
}
.

The proof of this proposition is given in Appendix A.1. If θh(T
R
i , Vi) were known

(which is not the case in practice), then the estimating equation

n∑
i=1

[{
(1 − Ri) +

RiXki

πk

}
h(Ti) − Ri

(
Xki − πk

πk

)
θh(T

R
i , Vi) − µ1k

]
= 0 (2.9)
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could be used to find the efficient estimator

µ̂ME
1k =

1

n

n∑
i=1

[{
(1 − Ri) +

RiXki

πk

}
h(Ti) − Ri

(
Xki − πk

πk

)
θh(T

R
i , Vi)

]
. (2.10)

Theoretically, µ̂ME
1k is referred to as optimal in the sense that it has the smallest

variance among the class of all RAL estimators and its variance is said to achieve the

semiparametric efficiency bound (Newey, 1990). Since the conditional expectation

θh(T
R
i , Vi) is not known, it must be estimated from the data leading to locally efficient

estimators.

2.3 Locally Efficient Estimators

If we want to use the estimator defined in (2.10), we need to estimate the conditional

expectation θh(T
R
i , Vi) from the data. To do so, one can posit a regression model,

linear or non-linear, of the form

E
{

h(Ti) T |Ri , Vi, Ri = 1, Xki = 1
}

= g(TR
i , Vi,γ) (2.11)

in terms of a finite number of parameters γ which can be estimated using standard

techniques such as least squares using the subset of the data for individuals {i : Ri =

1, Xki = 1}. Then θ̂h(T
R
i , Vi) = g(TR

i , Vi, γ̂) can be substituted in (2.10) to give the

locally efficient estimator of µ1k

µ̂LE
1k =

1

n

n∑
i=1

[{
(1 − Ri) +

RiXki

πk

}
h(Ti) − Ri

(
Xki − πk

πk

)
g(TR

i , Vi, γ̂)

]
. (2.12)

We give a brief argument in Appendix B to show that this estimator is consistent and

asymptotically normal even if the posited regression relationship (2.11) is incorrectly
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specified. In addition, if the posited regression model is correctly specified, then it

will be the most efficient estimator for µ1k. The way this estimator is constructed

suggests that the efficiency gain for this estimator over IPMW or LDT estimators

depends on how correlated the response time and the auxiliary variables are to the

survival time among responders. As will be seen in simulation studies, the higher the

correlation, the larger the gain. The variance of this estimator can be estimated by

the sandwich variance given by

σ̂2
LE =

1

n2

n∑
i=1

[{
(1 − Ri) +

RiXki

πk

}
h(Ti) − Ri

(
Xki − πk

πk

)
g(TR

i , Vi, γ̂) − µ̂LE
1k

]2

.

(2.13)

For instance, if we assume that

g(TR
i , Vi,γ) = γ0 + γ1T

R
i + γT

2 Vi

and estimate γ = (γ0, γ1,γ
T
2 )T by the least squares estimates γ̂ from the subset of

data corresponding to the individuals {i : Ri = 1, Xki = 1}, then we obtain the locally

efficient estimator

µ̂LS
1k =

1

n

n∑
i=1

[{
(1 − Ri) +

RiXki

πk

}
h(Ti) − Ri

(
Xki − πk

πk

)
(γ̂0 + γ̂1T

R
i + γ̂2

T Vi)

]
.

(2.14)

Alternatively, the conditional expectation θh(T
R
i , Vi) can be estimated by local

non(semi)-parametric regression methods such as loess (Cleveland and Devlin, 1988)

for cases with few independent variables or generalized additive models (GAM) (Hastie

and Tibshirani, 1990) when considering many independent variables. Let us denote

this estimator by θ̃h(T
R
i , Vi). Substituting this estimated conditional expectation
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in (2.10) we obtain another estimator for µ1k. In Section 2.5, for the data analysis

using several auxiliary variables, we have used the generalized additive model to es-

timate the conditional expectation and refered to the corresponding estimator of µ1k

as µ̂GAM
1k . In our simulation study, where only a single auxiliary variable is consid-

ered, we used the loess method and the corresponding estimator of µ1k is refered to

as µ̂LOESS
1k . These two estimators do not depend on the choice of a particular model

but the slow convergence rates for local regression methods may have an effect on

overall consistency and asymptotic normality which we investigate numerically in our

simulation study. The variance of these estimators can be easily estimated by (2.13)

by replacing g(TR
i , Vi, γ̂) with θ̃h(T

R
i , Vi) and µ̂LE

1k with µ̂GAM
1k for GAM estimator and

with µ̂LOESS
1k for the LOESS estimator.

2.4 Improved Estimator

The construction of the first set of locally efficient estimators that were derived in

Section 2.3 involves the selection of an appropriate model for the conditional expec-

tation, which may or may not be correct. If the regression relationship (2.11) is

incorrectly specified, then there is no guarantee that the estimator will gain efficiency

over the IPMW estimator. Another approach that guarantees improved efficiency is

to restrict the class of estimators to those whose influence functions are of the form

{
(1 − Ri) +

RiXki

πk

}
{h(Ti) − µ1k} + Ri

(
Xki − πk

πk

)
γT W i, (2.15)
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where W i is a fixed q-dimensional vector of prespecified functions of TR
i and Vi, and

γ is an arbitrary q-dimensional constant vector. The influence functions (2.15), for

γ ∈ Rq, define a linear subspace of the space of influence functions (2.7) and the

goal is to find the optimal estimator within this class; that is, to find the estimator

whose influence function is the one within the class (2.15) with smallest variance.

This entails finding the q-dimensional vector γopt which gives the smallest variance.

Formalizing this as a multiple regression problem, γopt is given by

γopt = − [
E

{
R(Zk − πk)

2W iW
T
i

}]−1
E [RZk(Zk − πk) {h(Ti) − µ1k}W i]

= −γ∗ + γ∗∗µ1k (2.16)

with

γ∗ =
[
E

[
Ri(Xki − πk)

2W iW
T
i

}]−1
E {RiXki(Xki − πk)h(Ti)W i} . (2.17)

and

γ∗∗ =
[
E

{
Ri(Xki − πk)

2W iW
T
i

}]−1
E {RiXki(Xki − πk)W i} . (2.18)

If the coefficient vectors γ∗ and γ∗∗ were known, one could solve the estimating

equation

n∑
i=1

[{
(1 − Ri) +

RiXki

πk

}
{h(Ti) − µ1k} − Ri

(
Xki − πk

πk

)
(γ∗ − µ1kγ

∗∗)T W i

]
= 0

(2.19)

to obtain the optimal restricted estimator

µ̂1k
MEL =

∑n
i=1

[{
(1 − Ri) + RiXki

πk

}
h(Ti) − Ri

(
Xki−πk

πk

)
γ∗T W i

]
∑n

i=1

[{
(1 − Ri) + RiXki

πk

}
− Ri

(
Xki−πk

πk

)
γ∗∗T W i

] . (2.20)
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It can be shown that substituting root-n consistent estimators for γ∗ and γ∗∗ in

(2.19) and (2.20) will yield estimators that are asymptotically equivalent to those

where γ∗ and γ∗∗ are known. Thus, replacing the expectations in (2.17) and (2.18)

by their corresponding empirical averages we obtain estimates γ̂∗ and γ̂∗∗ which can

then be substituted in (2.20) to obtain an improved estimator which we will denote

by µ̂1k
IMP . The variance of this estimator can be estimated by the sandwich variance

given by

σ̂2
IMP =

1

n2

n∑
i=1

[{
(1 − Ri) +

RiXki

πk

}{
h(Ti) − µ̂1k

IMP
}

− Ri

(
Xki − πk

πk

) (
γ̂∗ − µ̂1k

IMP γ̂∗∗
)T

W i

]2

.(2.21)

This estimator is optimal within the restricted class of RAL estimators which have

influence function in the class defined by (2.15). If we take W i to be a scalar constant,

then this reduces to the estimator µ̂′′
1k, one of the LDT estimators. From here on we

will refer to the estimator µ̂′′
1k as the LDT estimator.

It is also argued in Appendix B that the estimator µ̂IMP
1k is consistent and asymp-

totically normal. It is easy to compute and because it is the most efficient estimator

among a class of estimators that include the IPMW estimator and the LDT estima-

tor, it is guaranteed to be at least as efficient as the best of these. Moreover, if the

conditional expectation θh(T
R
i , Vi) given by (2.8) is equal to γT W i for some γ, then

µ̂IMP
1k is the most efficient among all RAL estimators.
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2.5 Analysis of CALGB 8923 data

We apply the methods developed for improving efficiency described in the previous

sections to estimate the survival distribution and mean lifetime for the different com-

binations of induction/maintenance treatment policies using the data from CALGB

8923 described earlier in the Introduction. We also use Wald tests, constructed using

these estimators, to test various treatment policy contrasts. There were 388 patients

that participated in CALGB 8923. Of these, 79 out of 193 patients in the GM-CSF

group and 90 out of 195 in the placebo group achieved remission (responded) and

consented to further randomization to the intensification therapy; and, of these, 37

GM-CSF and 45 placebo patients were randomized to intensification therapy I and

the rest to intensification therapy II. This study has matured and all 388 patients

have been followed for at least 2521 days of whom 356 have died. Since we have

complete data for 2521 days, we consider survival time restricted to 2521 days. Thus,

in the analysis, we will estimate and test the mean restricted survival time for the

different treatment policies.

In our analysis, there were three variables that we considered as auxiliary variables

Vi; namely, time between the response and the second randomization, age and white

blood cell count. For modeling the conditional expectation (2.11), first we used a least

squares linear regression on these auxiliary variables plus the time of response TR
i .

Then we used proc GAM with default options in SAS to fit the generalized additive

model in these four variables to estimate the conditional expectation (2.11). For
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details of how this is implemented, the reader is refered to Chapter 5 of “SAS/STAT

Software: Changes and Enhancements, Release 8.2”. For modeling the conditional

survival probability, logistic distribution was used in the generalized additive model.

Similarly, for the improved estimator, we defined the prespecified vector function W i

as the column vector whose elements are the random variables TR
i , time between the

response and the second randomization, age, white blood cell count and a constant

function identically equal to 1.

Table 2.1 shows the estimates of mean restricted survival time for each of the

four treatment policies using the estimators NAIVE, IPMW, LDT, LS, IMP and

GAM. Most estimators gave similar estimates except for the NAIVE estimator which

underestimates the mean restricted lifetime reflecting the bias of this method. The

IPMW estimator gave the largest estimated standard error as would be expected by

the theory. In most cases the GAM estimator has the smallest estimated standard

error, but, as noted earlier, we cannot be confident of the small sample accuracy of

this estimated standard error because of the slow convergence rate of such smoothing

methods. The other three estimators LDT, LS, and IMP gave very similar results

both in terms of the estimates as well as the standard errors. Among responders, the

time to response and the auxiliary covariates were weakly related to survival time (as

seen in Figure 2.7)which explains why there was not any appreciable gain in efficiency

of the LS and IMP estimators as compared to the LDT estimator. Similar conclusions

follow for the survival probability estimates as is evident from the results in Table 2.2.

Estimated survival curves were computed using these different estimation tech-

20



niques for the four treatment policies. The treatment-policy specific curves using the

IMP method are depicted in Figure 2.7. We also give the estimated survival curves

using the different estimators for the policy GM-CSF/Maintenance I (see Figure 2.7).

As expected by the theory, except for the NAIVE estimator, all other survival curves

were similar. The same conclusion was reached for the other three treatment policies

as well.

A Wald chi-square test of equality of treatment means (H0 : µ11 = µ21 = µ12 =

µ22) did not show any significant differences. Similar conclusions, showing no signifi-

cant difference in mean survival times, follow for comparing main effects of GM-CSF

which is tested by the null hypothesis H1 : (µ11 + µ12)/2 = (µ21 + µ22)/2 and a

comparison of the two intensification therapies which is tested by the null hypothesis

H2 : (µ11 + µ21)/2 = (µ12 + µ22)/2. The conclusion is the same no matter which es-

timator we use except for the NAIVE estimators. Equivalent hypotheses were tested

for survival probabilities and resulted in similar conclusions for survival probability

at 548 days except that the test using the GAM estimator for the main effects of

induction therapies turned out to be statistically significant. The results of all these

tests are summarized in Table 2.3.

Test results for hypotheses related to the survival probability at other time points

also showed no significant differences among the four policies.
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2.6 Simulation Study

To assess the accuracy of the large sample properties of our estimators with moderate

sample sizes and to compare the relative performance of the different estimators, we

conducted several simulation experiments. For simplicity, in our simulation studies,

we only allowed the survival time to depend on the response time TR
i and did not

consider any additional auxiliary variables. Since data from patients assigned to

treatment A1 are independent of data from patients who receive treatment A2, we

only simulate data for “A1-patients”.

We took Ri, the eligible/consent indicator, to be Bernoulli with P (Ri = 1) = πR

and considered two different values of πR, 0.5 and 0.7. When Ri = 0, a survival

time T0i is generated from an exponential distribution with mean λ truncated at b2.

When Ri = 1, treatment B assignment indicator Zi is generated from Bernoulli(.5)

distribution. Also when Ri = 1, a response time TR
i is generated from an exponential

distribution with mean α truncated at b1. To examine the effect that correlation

among responders, between the survival time and the auxiliary variables has on the

relative efficiency of the various estimators, we considered a linear relationship be-

tween the survival time of responders and the auxiliary variable (response time in

this case) generated by

T ∗
1i = TR

i + (β1 + β2T
R
i )U1i (2.22)

T ∗
2i = TR

i + (β1 + β2T
R
i )U2i (2.23)

where Uji, j = 1, 2 is generated from a uniform(0, θj) distribution. The strength of
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the correlation is determined by the choice of β2. Finally we defined

Ti = (1 − Ri)T0i + Ri {ZiT
∗
1i + (1 − Zi)T

∗
2i}

to generate the observed survival time for the ithindividual.

In the first simulation scenario, we considered λ = 365, b2 = 1095, α = 365, b1 =

730, β1 = 1.0, β2 = 1.0, θ1 = 1.5, θ2 = 1 so that when πR = 0.5, µ11 = 510.4 days,

µ12 = 433.4 days and µ11 = 591.5 days, µ12 = 483.6 days when πR = 0.7. We

considered 5000 Monte-Carlo samples of sizes 200 and 500. Under this scenario, the

correlation among responders between TR
i and T ∗

1i is .53, and .70 between TR
i and T ∗

2i

representing moderate to high correlations.

For each of the 5000 simulated data sets, µ1k = E(T1k) and S1k(t) = P (T1k > t)

were estimated for k = 1, 2 and for t = 183 days and t = 548 days representing an

earlier and later time point of the study. All estimators discussed in earlier sections

were considered. For improved and locally efficient estimators, linear regression of

survival time on the response time was used. For the LOESS regression, the smoothing

parameter was set to .4. Other values of the smoothing parameters such as .2, .3, .5, .6

were also considered. These gave similar results and are not presented here.

Tables 2.4 and 2.5 present the coverage probabilities for 95% Wald intervals and

relative efficiencies for all the estimators under consideration with respect to the

LDT estimator. The relative efficiencies are defined in terms of the ratio of the

Monte-Carlo mean squared errors compared to the LDT estimator. The LS, IMP

and LOESS estimators were always more efficient than the LDT estimator. The
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IPMW estimator was by far the least efficient of these five estimators and the LS

estimator was the most efficient. The NAIVE estimator, as expected, performs very

poorly with coverage probability always below 60% (80%, for the survival probability

estimates) and sometimes as low as 8% (13%). The LOESS estimator tended to have

some bias with smaller sample sizes as evidenced by the poor coverage probabilities.

The coverage probabilities for the LOESS estimator improved with increasing sample

sizes. We believe this is due to the slow convergence rate for such local regression

methods. We expect this difficulty would be exacerbated if one considered many

auxiliary variables where we would run into the curse of dimensionality. In such

cases, the use of generalized additive or spline models may be a useful alternative for

estimating high dimensional conditional expectations with sufficient data.

From the above analysis it is clear that when the auxiliary variables are at least

moderately correlated to the survival times among the responders, the locally efficient

estimators gain sufficiently over the LDT or IPMW estimators. A second simulation

scenario was also considered where the correlation between the time to response and

time to death among the responders were weakly correlated (similar to those observed

in the CALGB study). The setup for this simulation is the same as the first one except

that the two equations (2.22) and (2.23) have been replaced by

T ∗
1i = E(TR

i ) +
{
β1 + (2/3)E(TR

i ) + (β2/3)TR
i

}
U1i (2.24)

T ∗
2i = E(TR

i ) +
{
β1 + (2/3)E(TR

i ) + (β2/3)TR
i

}
U2i. (2.25)

This allowed us to preserve the values for µ11 and µ12 from the first scenario, but with
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a low correlation among responders (.17 and .18 respectively) between TR
i and T ∗

1i,

and TR
i and T ∗

2i. The results for estimating the mean survival time for this scenario

are given in Table 2.6. In this case, there is virtually no gain in using the locally

efficient or the improved estimators. In terms of relative mean squared errors, the

LS estimators always performed well while the LOESS and IMP estimators showed

some loss of efficiency with smaller sample sizes. Also for small samples, the LOESS

estimator had the worst coverage. For larger sample sizes, all the four estimators

LDT, LS, IMP, and LOESS gave similar results.
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2.7 Figures and Tables
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Table 2.1: Estimates of mean restricted survival time in days (and corresponding
standard error in the parenthesis) for different treatment policies for CALGB 8923
data.

Policy LS IMP NAIVE IPMW LDT GAM

GM-CSF/Intensification I 472(49) 469(49) 360(−−−) 441(62) 461(50) 423(46)

GM-CSF/Intensification II 487(61) 484(61) 396(−−−) 518(75) 492(62) 482(59)

placebo/Intensification I 562(60) 566(60) 486(−−−) 579(75) 579(61) 553(58)

placebo/Intensification II 587(64) 581(64) 481(−−−) 572(78) 572(65) 553(63)
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Table 2.2: Estimated survival probability (corresponding standard error in the parenthesis) for different treatment policies
in CALGB 8923 data.

Time Policy LS IMP NAIVE IPMW LDT GAM

GM-CSF/Intensification I 0.60(.036) 0.60(.036) 0.49(—) 0.57(.057) 0.59(.036) 0.55(.035)

183 GM-CSF/Intensification II 0.58(.038) 0.57(.038) 0.49(—) 0.60(.059) 0.58(.038) 0.55(.035)

days placebo/Intensification I 0.64(.035) 0.63(.035) 0.53(—) 0.64(.059) 0.64(.035) 0.59(.035)

placebo/Intensification II 0.58(.040) 0.57(.039) 0.49(—) 0.57(.057) 0.57(.040) 0.55(.036)

GM-CSF/Intensification I 0.26(.038) 0.26(.038) 0.18(—) 0.25(.046) 0.26(.038) 0.24(.034)

548 GM-CSF/Intensification II 0.23(.039) 0.22(.039) 0.17(—) 0.24(.045) 0.23(.039) 0.22(.036)

days Placebo/Intensification I 0.31(.041) 0.32(.041) 0.27(—) 0.33(.050) 0.33(.042) 0.32(.038)

Placebo/Intensification II 0.32(.041) 0.32(.041) 0.25(—) 0.31(.048) 0.31(.041) 0.31(.038)
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Table 2.3: P-values for different hypothesis for CALGB 8923 data.

Testing mean restricted survival times Testing survival prob. at t = 548 days

Hyp. LS IMP NAIVE IPMW LDT GAM LS IMP NAIVE IPMW LDT GAM

H0 0.70 0.69 0.19 0.51 0.63 0.40 0.52 0.44 0.22 0.53 0.43 0.33

H1 0.17 0.16 0.03 0.12 0.15 0.13 0.11 0.08 0.02 0.08 0.08 0.04

H2 0.68 0.75 0.59 0.67 0.81 0.51 0.70 0.57 0.66 0.75 0.39 0.62
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Table 2.4: Moderate and high correlation effect. Monte Carlo coverage probability and relative efficiency for estima-
tors of mean survival time based on 5000 data sets: entries in parentheses are relative efficiencies (e.g., for the LS row,
MSE(µ̂LDT

1k )/MSE(µ̂LS
1k )).

µ̂11 µ̂12

n = 200 n = 500 n = 200 n = 500

Estimator πR = 0.5 πR = 0.7 πR = 0.5 πR = 0.7 πR = 0.5 πR = 0.7 πR = 0.5 πR = 0.7

NAIVE 40.5(0.25) 54.3(0.29) 08.2(0.11) 20.4(0.13) 60.9(0.35) 69.5(0.40) 27.1(0.16) 40.2(0.19)

IPMW 93.8(0.51) 93.8(0.48) 93.9(0.51) 94.4(0.48) 94.5(0.53) 94.7(0.48) 95.1(0.52) 95.1(0.47)

LDT 92.6(1.00) 93.6(1.00) 94.1(1.00) 94.4(1.00) 94.3(1.00) 94.3(1.00) 94.7(1.00) 95.1(1.00)

LOESS 89.4(1.09) 91.1(1.17) 92.4(1.18) 93.2(1.26) 90.7(1.15) 92.0(1.23) 93.1(1.22) 93.8(1.30)

IMP 91.5(1.15) 92.7(1.22) 93.4(1.22) 93.6(1.29) 92.2(1.18) 93.0(1.25) 94.1(1.24) 94.2(1.33)

LS 93.7(1.29) 94.4(1.36) 94.0(1.28) 94.4(1.34) 95.9(1.35) 96.1(1.42) 96.2(1.32) 96.5(1.40)
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Table 2.5: Moderate and high correlation effect. Monte Carlo coverage probability and relative efficiency for estima-
tors of survival probability at t = 548 days based on 5000 data sets: entries in parentheses are relative efficiencies (e.g.,

for the LS row, MSE{ŜLDT
1k (548)}/MSE{ŜLS

1k (548)}). The true values are S11(548) = 0.38420, S12(548) = 0.30922 for
50% response and S11(548) = 0.46128, S12(548) = 0.35702 for 70% response.

Ŝ11(548) S12(548)

n = 200 n = 500 n = 200 n = 500

Estimator πR = 0.5 πR = 0.7 πR = 0.5 πR = 0.7 πR = 0.5 πR = 0.7 πR = 0.5 πR = 0.7

NAIVE 53.8(0.29) 65.4(0.34) 18.6(0.14) 12.6(0.17) 74.8(0.53) 80.9(0.61) 50.7(0.27) 37.9(0.34)

IPMW 94.4(0.68) 94.5(0.64) 93.9(0.70) 94.7(0.66) 94.8(0.79) 94.3(0.75) 94.9(0.79) 95.1(0.76)

LDT 94.3(1.00) 94.4(1.00) 94.1(1.00) 94.9(1.00) 94.6(1.00) 94.3(1.00) 94.6(1.00) 95.0(1.00)

LOESS 92.7(1.06) 93.3(1.11) 93.0(1.12) 94.9(1.17) 92.9(1.17) 93.2(1.25) 93.9(1.19) 95.0(1.27)

IMP 93.6(1.07) 93.9(1.12) 93.4(1.10) 94.5(1.16) 93.6(1.17) 93.8(1.24) 94.2(1.18) 94.9(1.25)

LS 94.2(1.15) 94.5(1.17) 94.1(1.15) 94.6(1.18) 94.8(1.23) 94.9(1.28) 94.9(1.22) 95.6(1.26)
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Table 2.6: Low correlation effect.Monte Carlo coverage probability and relative efficiency for estimators of
mean survival time based on 5000 data sets: entries in parentheses are relative efficiencies (e.g., for the LS row,
MSE(µ̂LDT

1k )/MSE(µ̂LS
1k )).

µ̂11 µ̂12

n = 200 n = 500 n = 200 n = 500

Estimator πR = 0.5 πR = 0.7 πR = 0.5 πR = 0.7 πR = 0.5 πR = 0.7 πR = 0.5 πR = 0.7

NAIVE 28.7(0.15) 38.5(0.16) 02.5(0.06) 05.8(0.07) 49.8(0.19) 69.5(0.19) 13.3(0.09) 16.6(0.09)

IPMW 94.5(0.37) 94.1(0.31) 94.1(0.37) 94.5(0.31) 94.9(0.36) 94.7(0.28) 94.8(0.36) 94.7(0.27)

LDT 94.1(1.00) 94.2(1.00) 94.5(1.00) 94.5(1.00) 94.3(1.00) 94.3(1.00) 94.7(1.00) 95.1(1.00)

LOESS 91.9(0.91) 92.1(0.91) 93.1(0.96) 93.8(0.97) 92.1(0.90) 92.0(0.91) 94.0(0.96) 94.2(0.96)

IMP 93.0(0.92) 93.2(0.93) 94.0(0.97) 94.2(0.98) 92.9(0.91) 93.0(0.91) 94.2(0.95) 94.5(0.96)

LS 94.4(1.05) 94.6(1.06) 94.5(1.03) 94.8(1.03) 96.4(1.06) 96.1(1.06) 96.8(1.02) 96.9(1.02)
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Figure 2.1: Scatter plot of survival time vs. various auxiliary variables from CALGB
8923 data.
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Figure 2.2: Estimated survival curves under IMP method.
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Figure 2.3: Estimated survival curves under GM-CSF/Maintenance I.
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Chapter 3

Efficient Estimation of Survival

Distribution and Related

Quantities for Treatment Policies

in Two-Stage Randomization

Designs in Clinical Trials with

Censored Data

So far we have considered issues related to the efficient estimation of survival distribu-

tions in two-Stage randomization designs in clinical trials when the data are observed

completely. In many time-to-event studies, the data are subject to censoring due

to patient drop-out, termination of study, etc. In this Chapter we will investigate

the issue of efficiently estimating the survival distribution and related quantities in

two-stage randomization designs with right-censored data. The problem here is more
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complicated because, not only the survival time, but also the response to the first

stage treatment and the time to response may be censored. We will deal with these

issues in details in this chapter.

The chapter is organized as follows. In section 3.1, we modify our model derived in

Chapter 2 to incorporate the right censoring. Also, additional assumptions are made

related to censoring. In Section 3.2, we derive the class of all regular asymptotically

linear estimators and find the most efficient estimator within this class for censored

data. Efficient estimators within a restricted class of regular asymptotically linear

estimators that are easy to compute, are derived in Section 3.3. In Section 3.4 we

apply the different estimators to estimate and test for differences in the mean survival

time for the different combinations of induction/maintenance treatment regimes in

the CALGB dataset. In Section 3.5 we report on results from several simulation

studies comparing our estimators with the available estimators. In the last section of

this chapter, we present the Figures and Tables that were used in data analysis and

in the simulation.

3.1 Model For Censored Data

Again, for simplicity, we will only consider the two treatment policies that are as-

sociated with the induction treatment A1; namely A1B1 and A1B2. (The methods

follow analogously for policies A2B1 and A2B2). Thus, for the time being, we will

37



only consider the case where each patient in our sample received A1 as the initial

treatment and B1 or B2 as the subsequent treatment if they are eligible and consent.

We will index individuals in our study by i, i = 1, 2, . . . , n.

A slight modification of the counterfactuals will be done to facilitate our purpose.

Assume that each patient i has an associated set of random variables

{Ri, (1 − Ri)T0i, (1 − Ri)G
H(T0i), RiT

R
i , RiT

∗
1i, RiT

∗
2i, RiG

H(T ∗
1i), RiG

H(T ∗
2i)},

where, as in Chapter 2

• Ri = the eligible/consent status if patient i were assigned to A1; that is, Ri = 1 if

patient i was eligible and would consent to subsequent maintenance treatment;

Ri = 0, otherwise;

• T0i = the survival time of patient i if Ri = 0; that is, the survival time for a

patient that was not eligible or refused subsequent maintenance treatment;

• TR
i = the time from initial randomization to the time he/she receives mainte-

nance therapy and is defined only if Ri = 1;

• T ∗
1i = the survival time of patient i if the patient was eligible, willing to receive

maintenance treatment and received treatment B1;

• T ∗
2i = the survival time of patient i if the patient was eligible, willing to receive

maintenance treatment and received treatment B2;

and GH(u) denotes auxiliary information collected on individual i prior to time u.

Specifically, GH(u) may contain covariates related to the patient survival (described
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by Vi in Chapter 2). In the CALGB data, some examples of such auxiliary information

comes through covariates including elapsed time between response to the induction

therapy and second randomization, age and white blood cell count.

The main variables of interest would be the following survival times under policies

A1Bk, k = 1, 2:

T1ki = (1 − Ri)T0i + RiT
∗
ki, k = 1, 2.

As is evident from the expressions, the two variables (T11i, T12i) are not necessarily

both observed for each individual, rather, they represent what might occur under

policies, contrary to that to which the individual might actually be exposed. There-

fore, inference about the distribution of T1k, k = 1, 2 would apply to the population

where all patients are assigned to the policy A1Bk, k = 1, 2. This formulation rec-

ognizes the fact that in practice some patients eligible for maintenance therapy Bk

may refuse additional treatment and hence allows us to consider the problem from

an “intent-to-treat” point of view.

Since in most clinical trials, total follow-up time is limited, in this Chapter we will

consider restricted survival time up to time L. This would mean that the variable

T1k will bear the meaning of min(T1k, L), unless stated otherwise.

The objective of the study is to draw inference on the distribution of variables

of interest T1k, k = 1, 2 or quantities related to the distribution of T1k, k = 1, 2. In

particular, one might be interested in answering the question: If everyone in a popu-

lation were assigned to the policy A1Bk, then how would there survival distribution
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look like? Again, as in Chapter 2, we consider the specific problem of estimating

µ1k = h(T1k), where h(.) can be any real-valued function of T1k. This allows us to

consider the estimation of parameters such as the mean survival time or the survival

distribution for treatment policy A1Bk by taking h(T1k) = T1k, or h(T1k) = I(T1k ≥ t)

respectively.

If there were no censoring, then the observed data would be

(Ri, RiT
R
i , GH(Ti), RiZi, Ti)

as was indicated in Chapter 2. We will assume, once again, that the observed survival

time is related to the counterfactuals by Equation (2.1). To accommodate right

censoring, suppose each patient i has an associated censoring time Ci. We will make

the assumption that the censoring is non-informative. More explicitly, we assume

that the distribution of Ci does not depend on any other variables in the sample or

counterfactuals. That is,

P (Ci > t|Ri, RiT
R
i , GH(Ti), RiZi, T

∗
1i, T

∗
2i) = P (Ci > t). (3.1)

The censoring distribution may differ by the induction treatments A1 and A2, but

since we are only considering data from A1-patients, this difference is inconsequential.

Let K(t) = P (Ci > t) denote the survival distribution for the censoring time Ci. Since

maximum follow-up time is greater than L, throughout the paper we will assume

that there is always a positive probability of being censored at or beyond time L. i.e.

K(L) > 0.
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However, with the introduction of right censoring, the observed data can be writ-

ten as

(Ui, ∆i, G
H(Ui)), i = 1, 2, . . . , n.

where

• Ui = min(Ti, Ci),

• ∆i = I(Ti ≤ Ci)

and GH(u) as defined previously but with the censored data, GH(u) will also include

information on whether the patient responded prior to time u or not; if they had

responded, their time of response TR
i , compliance status and the second treatment

they are randomized to, if they responded and complied plus other auxiliary variables

of interest.

Before we proceed further to construct estimators for µ1k = E {h(T1k}) we note

that by design, the probability of randomization to treatment Bk does not depend on

counterfactuals, neither does it depend on the history of information collected prior

to the randomization time. That is,

P (Zi = 2 − k|Ri = 1, TR
i , GH(TR

i ), T ∗
1i, T

∗
2i) = P (Zi = 2 − k|Ri = 1), k = 1, 2. (3.2)

It may well depend on the induction treatment assignment. Since we are only con-

sidering patients from A1 treatment, we will denote this randomization probability

by πk which is assumed to be known in our case. Define X1i = Zi and X2i = 1 − Zi.
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One naive approach in estimating µ1k one could take is as follows: consider data

from patients consistent with the treatment policy A1Bk, that is individuals in the set

{i : 1 − Ri + RiXki = 1} and use Kaplan-Meier estimator to approximate the survival

distribution of T1k and then use this distribution to estimate µ1k = E {h(T1k)}. Let us

denote this estimator by µ̂1k. This estimator is expected to underestimate µ1k because

it does not account for the missingness due to the randomization to treatment B3−k.

We will investigate this in our simulation study.

In an attempt to derive unbiased estimators for µ1k, in LDT it has been shown

that, under assumptions (2.1) and (3.2),

E

{
∆iQki

K(Ui)
h(Ui)

}
= µ1k, (3.3)

where Qki = 1 − Ri + RiXki/πk. Equation (3.3) shows that the distribution of T1k

is identifiable from the distribution of observed data. This prompts to define the

estimator

µ̂1k =
1

n

n∑
i=1

∆iQki

K̂(Ui)
h(Ui), (3.4)

where

• K̂(.) is the product limit estimator of the censoring survival distribution, namely,

K̂(t) =
∏

u≤t (1 − dN c(u)/Y (u))

• N c(u) =
∑n

i=1 I(Ui ≤ u, ∆i = 0), and

• Y (u) =
∑n

i=1 I(Ui ≥ u).
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The rationale behind this estimator is as follows. For estimating quantities related

to the distribution of T1k the observed data can be treated as coarsened where the

coarsening occurs from two different sources: first, because of the randomization to

B treatment, some patients will be assigned to B3−k treatment and hence data from

such individuals will be missing for the purpose of estimating µ1k; the second form

of missingness occurs due to the fact that some individuals might be right censored.

That is why there are two forms of weighting involved in (3.4). Consider the first

weighting factor Qki = 1 − Ri + RiXki/πk. Those who are randomized to receive the

maintenance therapy B3−k are similar prognostically to those randomized to treat-

ment Bk. Consequently, by weighting the individuals randomized to treatment Bk by

1
πk

, then, roughly speaking, the response of an individual randomized to treatment

Bk counts for him/herself as well as the response of ( 1
πk

− 1) similar individuals who

have “missing data” with respect to treatment policy A1Bk; i.e. those individuals

randomized to the other treatment B3−k. The second weighting factor 1

K̂(Ui)
is the

usual form of weighting complete data by the inverse probability of censoring. We

will refer to the estimator in (3.4) as the incomplete-probability-of-missing-weighted

(IPMW) estimator.

Some other ad hoc estimators were proposed in LDT as well. These estima-

tors, although consistent and asymptotic normal, do not include the most efficient

estimator, in general. In the next section we consider the efficient estimation of

parameters of interest related to the distribution of treatment policy survival times

T1k using the observed data. We make use of the methods developed by Robins et.
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al. (1994) for semiparametric theory to characterize the most efficient estimator for

µ1k = E {h(T1k)}.

3.2 Efficient Estimator

Again, as in Chapter 2, we will restrict ourselves to the class of estimators which

are regular and asymptotically linear. Estimators will be derived by considering

the class of influence functions for RAL estimators. Specifically, if we identify the

influence function Ψi(θ) for estimating θ, one can just set the estimating equation∑n
i=1 Ψi(θ) = 0 and solve for θ to get the corresponding estimator. Asymptotic

properties of such estimators are relatively easy to derive with asymptotic variance,

at the least, estimated using the sandwich estimator.

Had we observed “full” data, i.e. where all patients were treated according to the

policy A1Bk, then the influence function for all RAL estimators would just be Ti−µ1k

leading to the natural estimator µ̂1k =
∑n

i=1 h(Ti)/n. For two-stage randomization

studies, following the procedures shown in Chapter 2, all RAL estimators for µ1k have

an influence function belonging to the class

Ψi(f) = Qki {h(Ti) − µ1k} + (Qki − 1)f(TR
i , GH(TR

i )), (3.5)

where f(TR
i , GH(TR

i )) is an arbitrary function of TR
i , the time to response to the

induction therapy, and other information collected prior to TR
i . Steps analogous to

the ones in Appendix A.1 can be followed to show that among all influence functions
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in (3.5), the most efficient one is obtained when

f(TR
i , GH(TR

i )) = −E
{

h(Ti) − µ1k|TR
i , GH(TR

i ), Ri = 1, Xki = 1
}

.

Now for the case of right censored data, let us consider the data without censoring

as the “full” data and let censoring be the source of missing data. In that case the

class of all full-data influence functions is given by (3.5). Again, use of the theory for

the missing data developed by Robins et. al. (1994) gives the following general form

for the observed data influence functions for all RAL estimators for µ1k:

Ψobs(f, g) =
∆iΨi(f)

K(Ui)
+

∫
g(u,GH

i (u))dM c
i (u)

K(u)
(3.6)

where

• K(.) = the survival function for the censoring time,

• dM c
i (u) = dI(Ui ≤ u, ∆i = 0) − λc(u)Yi(u)du,

• λc(u) = the hazard rate for the censoring distribution,

• Yi(u) = I(Ui ≥ u), and

• g(u,GH(u)) is an arbitrary real-valued functional of defined through the map-

ping

h(u, .) : GH(u) → <1

from GH(u), the collection of data-histories up to time u, to the set of real

numbers.
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The influence function (3.6) is indexed by two arbitrary functions f and g. Choice

of these two arbitrary functions will determine how efficient the corresponding RAL

estimator will be. Therefore, the problem of finding the RAL estimator with minimum

variance is equivalent to finding the optimal f(·, ·) and g(·, ·) for which the variance

of Ψobs(f, g) in (3.6) is minimum. We do this in steps. First we fix f and find the

optimal g, say, gopt. Then, within the class of optimal influence functions Ψobs(f, gopt)

with arbitrary f , search for the one with minimum variance. From the theory of

monotone coarsening [see Robins et al. (1994) and Laan and Hubbard (1998)], we

know that for fixed f , the optimal observed data influence function in the class of

influence functions (3.6) is given by

∆iΨi(f)

K(Ui)
+

∫
dM c

i (u)

K(u)
E

[
Ψi(f)|GH(u)

]
. (3.7)

Using the identity

∆i

K(Ui)
= 1 −

∫ ∞

0

dM c
i (u)

K(u)

from Robins and Rotnitzky (1992) we can also write (3.7) in the form

Ψi(f) −
∫

dM c
i (u)

K(u)

[
Ψi(f) − E

{
Ψi(f)|GH(u)

}]
. (3.8)

Next we find the optimal f for which the variance of (3.8) is minimum. In Ap-

pendix B.1, we have used the theory of Hilbert space and Martingales to show that

the optimal influence function in the class of influence functions (3.8) is given by

Ψi =
∆i

K(Ui)
Qkih(Ui) +

∫
dM c

i (u)

K(u)
eh

{
GH(u)

}
− ∆∗

i (Qki − 1)

K(U∗
i )

E
{

h(Ti)|Ri = 1, Xki = 1, TR
i , GH(TR

i )
} − µ1k, (3.9)
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where

• U∗
i = min(Ci, T

R
i ), and

• ∆∗
i = I(Ci < TR

i )

are defined only if Ri = 1; and eh

{
GH(u)

}
is given by

eh

{
GH(u)

}
(3.10)

= RiI(TR
i < u)

Xki

πk

E
(
h(Ti)|Ri = 1, Xki = 1, GH(u), Ti ≥ u

)
+

{
1 − RiI(TR

i < u)
}

E[Qkih(Ti)|RiI(TR
i < u) = 0, GH(u), Ti ≥ u]. (3.11)

The fact that (3.9) has expectation zero can be shown as follows:

E [Ψi] = E

{
∆i

K(Ui)
Qkih(Ui)

}
+ E

[∫
dM c

i (u)

K(u)
eh

{
GH(u)

}]
− E

[
∆∗

i (Qki − 1)

K(U∗
i )

E
{

h(Ti)|Ri = 1, Xki = 1, TR
i , GH(TR

i )
}]

− µ1k,(3.12)

The first term on the right-hand-side of Equation (3.12) has expectation µ1k by Equa-

tion (3.3). Consider the second term

E

[∫
dM c

i (u)

K(u)
eh

{
GH(u)

}]
=

∫
E

[
dM c

i (u)

K(u)
eh

{
GH(u)

}]
=

∫
E

[
E

{
dM c

i (u)eh

{
GH(u)

}∣∣ Ri, Xki, T
R
i , GH(TR

i )
}]

K(u)

=

∫
E

[
eh

{
GH(u)

}
E

{
dM c

i (u)|Ri, Xki, T
R
i , GH(TR

i )
}]

K(u)

= 0.

where the intermediate step follows because of the independence of Ci and other

quantities and that dM c
i (u), being a martingale difference, has expectation zero. Let
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us denote the third term in the RHS of (3.9) by T3. Then,

E[T3] = E

[
∆∗

i (Qki − 1)

K(U∗
i )

E
{

h(Ti)|Ri = 1, Xki = 1, TR
i , GH(TR

i )
}]

= E

[
∆∗

i

K(U∗
i )

E
{

h(Ti)|Ri = 1, Xki = 1, TR
i , GH(TR

i )
}

× E
{

Qki − 1|Ri, T
R
i , GH(TR

i )
}]

= 0.

where the last line follows because

E
{

Qki|Ri, T
R
i , GH(TR

i )
}

= E

{
1 − Ri +

RiXki

πk

∣∣∣∣ Ri, T
R
i , GH(TR

i )

}
= 1 − Ri +

Ri

πk

E
{

Xki|Ri, T
R
i , GH(TR

i )
}

= 1 − Ri + Riπ
−1
k πk

= 1.

Putting all these together in (3.12), we have, E[Ψi] = 0.

Theoretically, Ψi has the minimum variance among all influence functions of the

RAL estimators of µ1k. But observe that E {h(Ti)|Ri = 1, Xki = 1 , TR
i , GH(TR

i )
}

and eh

{
GH(u)

}
are functions of the population quantities and hence are not known

in practice. Therefore, to construct estimators for µ1k using this influence function,

one needs to estimate them from the observed data. Estimation of the former can

be done by regressing h(Ti) on the auxiliary variables observed prior to time TR
i , in

which case the model selection as well will influence the efficiency of the estimator

which has been discussed in details in Chapter 2 for complete data. On the other

hand, estimating the function eh

{
GH(u)

}
can be a daunting task. Because of this
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consideration, in the following section, we consider a simple problem where we restrict

our search for the optimal estimator in a sub-class of the RAL estimators that contains

the IPMW and the LDT estimators. Although this estimator may not be optimal, it

is relatively easy to compute and is guaranteed to have smaller variance as compared

to the IPMW and the LDT estimators.

3.3 Improved Estimator

Having found the optimal influence function (3.9), and realizing that construction of

estimators based on this influence function is infeasible, we restrict our attention to

estimators whose influence functions belong to the class

∆i

K(Ui)
Qki {h(Ui) − µ1k} +

∆∗
i (Qki − 1)

K(U∗
i )

γT W i

{
GH(TR

i )
}

+

∫
dM c

i (u)

K(u)

[
RiI(TR

i < u)
Xki

πk

ϕ1(u) + (1 − RiI(TR
i < u))ϕ2(u)

]
, (3.13)

where W i

{
GH(TR

i )
}

is a fixed q-dimensional vector of pre-specified functions of TR
i

and the auxiliary information GH(TR
i ) (for simplicity, from now on we will drop the

arguments of W i

{
GH(TR

i )
}

and simply write W i); γ is an arbitrary q-dimensional

real vector; and ϕ1(u) and ϕ2(u) are arbitrary functions of u. It is not hard to verify

that (3.13) is a subspace of the class of influence functions (3.6) and resembles the

optimal one given by (3.9). Also the influence function for IPMW estimator belongs

to this class with γ = ϕ1(u) = ϕ2(u) = 0, and if we take ϕ1(u) = ϕ2(u) = 0 and γ to

be a real constant, we obtain influence function for the LDT estimators. The influence
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functions (3.13), for γ ∈ Rq, ϕ1 : R+ → R, and ϕ2 : R+ → R define a linear subspace

of the space of influence functions (3.6). The goal is to find the optimal estimator

within this class, i.e., to find the estimator whose influence function is the one within

the class (3.13) with smallest variance. This restricted optimal influence function,

will be at least as efficient as the influence functions of IPMW and LDT estimators.

Finding the optimal influence function in the class (3.13) is equivalent to determin-

ing the combination of γ, ϕ1(·), and ϕ2(·) for which the variance of(3.13) is minimum.

Using the projection theorem for vector spaces, we find that the optimal combination

is given by γopt = −γh +γµµ1k, ϕopt
1 (u) = ϕ1h(u)−µ1k, ϕopt

2 (u) = ϕ2h(u)−ϕ2µ(u)µ1k

where

γh =

[
E

{
(Qki − 1)2W iW

T
i

K(TR
i )

}]−1

E

{
Qki(Qki − 1)h(Ti)W i

K(TR
i )

}
, (3.14)

γµ =

[
E

{
(Qki − 1)2W iW

T
i

K(TR
i )

}]−1

E

{
Qki(Qki − 1)W i

K(TR
i )

}
, (3.15)

ϕ1h(u) =
E

{
I(TR

i < u ≤ Ti)RiXkih(Ti)
}

E {I(TR
i < u ≤ Ti)RiXki} , (3.16)

ϕ2h(u) =
E

[{
(1 − Ri)I(TR

i ≥ u) + RiXki

π

}
h(Ti)

]
E [I(Ti ≥ u) {1 − RiI(TR

i < u)}] , (3.17)

and

ϕ2µ(u) =
E

{
(1 − Ri)I(TR

i ≥ u) + RiXki

π

}
E [I(Ti ≥ u) {1 − RiI(TR

i < u)}] . (3.18)

Thus the optimal restricted influence function is given by (3.13) with γ, ϕ1(·),

and ϕ2(·) respectively replaced by γopt, ϕopt
1 (·), and ϕopt

2 (·). If the expectations in

expressions (3.15)-(3.18) were known, then the restricted optimal estimator would be
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obtained by solving the estimating equation

n∑
i=1

[
∆i

K̂(Ui)
Qki {h(Ui) − µ1k} +

∆∗
i (Qki − 1)

K̂(U∗
i )

γoptT W i

{
GH(U∗

i )
}

+

∫
dN c

i (u)

K̂(u)

{
ϕopt

1 (u)Lϕ1i(u) + ϕopt
2 (u)Lϕ2i(u)

}]
= 0, (3.19)

where

Lϕ1i(u) = RiI(U∗
i < u)

Xki

πk

−
∑n

i=1 RiI(U∗
i < u)Xki

πk
I(Ui ≥ u)∑n

i=1 I(Ui ≥ u)
,

and

Lϕ2i(u) = 1 − RiI(U∗
i < u) −

∑n
i=1 {1 − RiI(U∗

i < u)} I(Ui ≥ u)∑n
i=1 I(Ui ≥ u)

.

As these quantities are not known, we propose estimating them by IPMW estimators.

For example, the estimators for γh and γµ are defined by

γ̂h =

[
n∑

i=1

{
∆i(Qki − 1)2W iW

T
i

K̂(Ui)K̂(U∗
i )

}]−1 n∑
i=1

{
∆iQki(Qki − 1)h(Ui)W i

K̂(Ui)K̂(U∗
i )

}
, (3.20)

γ̂µ =

[
n∑

i=1

{
∆i(Qki − 1)2W iW

T
i

K̂(Ui)K̂(U∗
i )

}]−1 n∑
i=1

{
∆iQki(Qki − 1)W i

K̂(Ui)K̂(U∗
i )

}
, (3.21)

and similarly for other parameters.

Substituting these estimators in (3.19) and solving for µ1k, we obtain the restricted

improved estimator, say, µ̂IMP
1k ; namely,

µ̂IMP
1k =

∑n
i=1

[
∆iQki

K̂(Ui)
h(Ui) − ∆∗

i (Qki−1)

K̂(U∗
i )

γ̂T
h W i +

∫ dNc
i (u)

K̂(u)
{ϕ̂1h(u)Lϕ1i(u) + ϕ̂2h(u)Lϕ2i(u)}

]
∑n

i=1

[
∆iQki

K̂(Ui)
− ∆∗

i (Qki−1)

K̂(U∗
i )

γ̂T
µW i +

∫ dNc
i (u)

K̂(u)
{Lϕ1i(u) + ϕ̂2µ(u)Lϕ2i(u)}

]
(3.22)
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The asymptotic variance of µ̂IMP
1k is V ar(µ̂IMP

1k ) = σ2/n, where σ2 is given by

Equation B.35. This variance can then be estimated by

v(µ̂IMP
1k ) =

1

n

[
n−1

n∑
i=1

∆i

K̂(Ui)

{
Qki(h(Ui) − µ̂IMP

1k ) + (Qki − 1)
(
γ̂opt

)T

W i

}2

+

∫ L

0

dN c(u)

K̂(u)Y (u)
Ê {R1ki(u)}2

]
, (3.23)

where

Ê {R1ki(u)}2 = n−1

n∑
i=1

∆i

K̂(Ui)
R̂2

1ki(u), (3.24)

R̂1ki(u) = (Qki − 1)
(
γ̂opt

)T

W iI(U∗
i ≥ u) −

{
ϕ̂opt

1 (u)Lϕ1i(u) + ϕ̂opt
2 (u)Lϕ2i(u)

−Qki(h(Ui) − µ̂IMP
1k ) + Ĝ1k(u)

}
I(Ui ≥ u), (3.25)

and

Ĝ1k(u) =

∑n
i=1 ∆iQki

(
h(Ui) − µ̂IMP

1k

)
I(Ui ≥ u)/K̂(Ui)

nŜ(u)
(3.26)

In Appendix B, we show that the estimator µ̂IMP
1k is consistent and asymptotically

normal. The construction of this estimator guarantees that it is asymptotically more

efficient than the IPMW and the LDT estimators.

In order to test different hypotheses related to the means, we need to estimate the

covariances between µ̂IMP
11 and µ̂IMP

12 as well. The covariance of the estimators µ̂IMP
11

and µ̂IMP
12 , say, cov(µ̂IMP

11 , µ̂IMP
12 ) is given by Equation B.37 which can be estimated
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by

ĉov(µ̂IMP
11 , µ̂IMP

12 ) =
1
n

[
n−1

n∑
i=1

∆i

K̂(Ui)

{
Q1i(h(Ui) − µ̂IMP

11 ) + (Q1i − 1)
(

γ̂opt
1

)T

W i

}

×
{

Q2i(h(Ui) − µ̂IMP
12 ) + (Q2i − 1)

(
γ̂opt

2

)T

W i

}

+
∫ L

0

dN c(u)

K̂(u)Y (u)
Ê {R11i(u)R12i(u)}2

]
, (3.27)

where

Ê {R11i(u)R12i(u)}2 = n−1

n∑
i=1

∆i

K̂(Ui)
R̂11i(u)R̂12i(u), (3.28)

where R̂1ki(u) is given by the Equation 3.25 for k = 1, 2, with the understanding that

any function that is dependent on k will be changed accordingly.

3.4 Analysis of CALGB 8923 data

An application of our proposed methods has been considered by analyzing the CALGB

8923 data which motivated this study. There were 388 patients that participated in

CALGB 8923. Of these, 79 out of 193 patients in the GM-CSF group and 90 out

of 195 in the placebo group achieved remission (responded) and consented to fur-

ther randomization to the intensification therapy; and, of these, 37 GM-CSF and 45

placebo patients were randomized to intensification therapy I and the rest to inten-

sification therapy II. Since at the time of analysis there were only a few censored

observations, we artificially terminated the study at time point T0 to have a reason-

able amount of censoring. We considered two different values of T0: 2.5 (this ending
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point was also considered by Lunceford et al. (2002)) and 1.7 years, respectively

yielding approximately 30% and 50% of the patients censored. The goal is to esti-

mate the mean restricted survival time and the survival probabilities at certain time

points t for the four treatment policies for this clinical trial: GM-CSF/Maintenance

I, GM-CSF/Maintenance II, Placebo/Maintenance I, Placebo/Maintenance II. For

estimating the mean survival time, we restricted ourselves to the time point of 548

days (1.5 years).

In our analysis, there were four variables, namely, time between the response and

the second randomization, age, white blood cell count that were used as auxiliary

variables. For the improved estimator, we defined the prespecified vector function W i

as the column vector whose elements are the random variables TR
i , time between the

response and the second randomization, age, white blood cell count, and a constant

function identically equal to 1.

Table 3.1 shows the estimates of mean restricted survival time for each of the four

treatment policies using the estimators KM, IPMW, LDT, and IMP. The Kaplan-

Meier estimator almost always gave an estimate that is smaller than the estimates

using any other three methods which emphasizes our intuition that this estimator is

biased. We will investigate this issue in details in our simulation study. Although

in terms of estimates and its standard errors, the IMP, IPMW and LDT estimators

provide similar results, the standard error for the IMP estimator seems to be the

smallest. The IPMW estimator gave the largest estimated standard error as would

be expected by the theory. Also we observe by moving from one column to the next
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in Table 3.1 that, for this particular data set, as censoring gets heavier, the gain in

efficiency in terms of standard error for IMP estimator over LDT or IMP estima-

tor becomes larger. Similar conclusions follow for the survival probability estimates

presented in Table 3.2.

Survival curves for different policies under different methods have been constructed.

Figure 3.6 gives the images of survival curves for different policies under the improved

method of estimation. The survival curves do not differ much across treatment poli-

cies.

Although the survival curves do not seem to differ across policies (as is evident

in Table 3.2 and Figure 3.6), it seems, from the results in Table 3.1, that the mean

restricted lifetimes may differ across treatment policies. To see this we have considered

testing hypotheses regarding the treatment means for policies as well as for main

effects and interactions. For this, we have used large sample Wald chi-square tests.

For example, to test the equality of treatment means, we formulated the hypothesis

H0 : µ11 = µ21 = µ12 = µ22 which is equivalent to testing the contrast H0 : CT µ = 0

where µ = (µ11, µ21, µ12, µ22)
T , and C is the matrix of constants

C =


1 −1 0 0

1 1 −2 0

1 1 1 −3

 . (3.29)

Then using the fact that µ̂ = (µ̂11, µ̂21, µ̂12, µ̂22)
T is asymptotically normally dis-

tributed with mean µ = (µ11, µ21, µ12, µ22)
T and with estimated variance, say, v(µ̂),

the large-sample Wald chi-square test statistic is given by µ̂T C
{
CT v(µ̂)C

}−1
CT µ̂
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which has an approximate χ2-distribution with 3 d.f. Similar tests have been consid-

ered for the hypothesis H1 : (µ11 + µ12)/2 = (µ21 + µ22)/2 to test the main effects

of induction therapy, for the null hypothesis H2 : (µ11 + µ21)/2 = (µ12 + µ22)/2

to test whether there is any difference in mean survival times under two inten-

sification therapies. We also tested the equality of maintenance treatment effect

within GM-CSF by the hypothesis H3 : µ11 = µ12 and within chemotherapy by

H4 : µ21 = µ22. The tests have been done using all methods except the Kaplan-Meier

estimator which will be shown to be biased in the next section. A test of interaction

between Induction and Maintenance therapies is considered through the hypothesis

H5 : (µ11 − µ12) = (µ21 − µ22).

The results of all these tests are summarized in Table 3.3.

3.5 Simulation Study

Several simulation experiments have been carried out to assess the accuracy of the

large-sample properties of our proposed improved estimator and also to compare

its relative performance to the IPMW and the LDT estimators. For simplicity, in

our simulation studies, we did not consider any auxiliary variables but allowed the

survival time to depend on the response time TR
i . Since data from patients assigned

to treatment A1 are independent of data from patients who receive treatment A2,

we conduct simulation experiment only with “A1-patients”. The experiment will be
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analogous for “A2-patients”.

We took Ri, the eligible/consent indicator, to be Bernoulli with P (Ri = 1) = πR

and considered two different values of πR, 0.5 and 0.7. When Ri = 0, a survival

time T0i is generated from an exponential distribution with mean λ truncated at b2.

When Ri = 1, treatment B assignment indicator Zi is generated from Bernoulli(.5)

distribution. Also when Ri = 1, a response time TR
i is generated from an exponential

distribution with mean α truncated at b1 and we take

T ∗
1i = TR

i + (β1 + β2T
R
i )U1i

T ∗
2i = TR

i + (β1 + β2T
R
i )U2i

where Uji, j = 1, 2 is generated from a uniform(0, θj) distribution. Finally we defined

Ti = (1 − R)T0i + Ri[ZiT
∗
1i + (1 − Zi)T

∗
2i]

to generate the observed survival time for the ithindividual.

In our simulation scenario, we restricted the lifetime to L = 548 days and consid-

ered λ = 365, b2 = 1095, α = 365, b1 = 548, β1 = 1.0, β2 = 1.0, θ1 = 1.5, θ2 = 1 so that

when πR = 0.5, µ11 = 360 days, µ12 = 337 days and µ1k = 395 days, µ12 = 363 days

when πR = 0.7. We considered 5000 Monte-Carlo samples of sizes 250 and 500.

The censoring variable Ci was generated, independently of all other random vari-

ables, from a uniform(0, θc). We considered two values of θc, θc = 730 and θc = 913

which yielded respectively 38% and 48% censoring for 50% response rate and 42%

and 52% respective censoring for 70% response. This will give us the opportunity to

compare different estimators in the presence of different levels of censoring.
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For each of the 5000 simulated data sets, µ1k = E(T1k), k = 1, 2 were estimated

for k = 1, 2. In addition to estimating the mean restricted survival times, we have

also considered estimating survival probabilities at several points of time. We es-

timated survival probabilities using different methods at time points 183 days (1/2

year), 365 days (1 year). The true values were S11(183) = 0.754(0.822) for πR =

0.5(0.7), S12(183) = 0.735(0.795) for πR = 0.5(0.7), S11(365) = 0.542(0.626) for πR =

0.5(0.7), S12(365) = 0.477(0.535) for πR = 0.5(0.7). The two values of t have been

considered to compare the performance of estimating the survival function at both

earlier and later time point of the study. Tables 3.4, 3.5 and 3.6 present the cov-

erage probabilities for 95% Wald intervals and relative efficiency for each of the

four different estimators under consideration. The relative efficiency has been cal-

culated by using the ratio of Monte-Carlo mean-squared errors. For instance, the

entry 93.6(0.84) in the first LDT row of Table 3.4 refers to the case where in samples

of size 250 from a population where 50% of the patients respond to the initial treat-

ment, and on average 38% patients get censored, (i) the 95% Wald confidence interval

for µ11 shows a coverage probability of 93.6% and (ii) the ratio of the Monte-Carlo

mean-squared error of the improved estimator to the LDT estimator is .84, i.e.,

MSE(µ̂IMP
11 )/MSE(µ̂LDT

11 ) = .84. The latter implies that for this special case, the

IMP estimator gains 16% efficiency over the LDT estimator.

Consider the case of estimating the mean restricted life time. If we look at the

coverage probabilities across the entries in Table 3.4, we find that they are comparable

for the three estimators IPMW, LDT and IMP and does not deviate much from the
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nominal level of 95%. The coverage probability for the Kaplan-Meier estimator is

always smaller than the nominal level, sometimes as low as 42.5%. This is justified

by the large biases we observed for this estimator during the simulation procedure.

The superiority of the improved estimator over the KM, IPMW and LDT estimators is

seen through the columns of relative efficiencies where the improved estimator achieves

remarkable gain in efficiency over these three estimators. For the simulation scenarios

considered, the gain in efficiency of the improved estimator over LDT estimator for the

mean restricted lifetimes lies between 15%-30%. There are three sources from which

the IMP estimator gains efficiency: (i) by including the auxiliary variables and (ii)

by incorporating information from the censored patients and (iii) by extracting more

information from the patients eligible but randomized to a treatment inconsistent

with the policy in the second stage . (i) suggests that the stronger the correlation

between the auxiliary variables and the survival time the more the gain should be in

efficiency of improved estimator over LDT estimator. The survival time T1i and T2i

has been generated in such a way that T1i(T2i) has a correlation of .53(.70) with the

response time TR
i representing from moderate to high correlations. This is why, we

believe, the improved estimator for mean restricted lifetime for the policy A1B2 gains

more efficiency than that of the policy A1B1 over the LDT estimator (Table 3.4).

Also the results show that our improved estimator is more efficient than other three

estimators, no matter how heavier the level of censoring is as is seen from the relative

efficiencies for different estimators for different censoring percentage. (ii) suggests

that the heavier the censoring, the better our estimator should gain over IPMW
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estimator, which is the case in the simulation scenarios considered. It is also easy to

check (iii) by considering different randomization probability for the second stage.

It is of importance to mention here that the inverse-probability-of-missing-weighted

estimator performs very poorly in terms of relative efficiency. Almost always it is less

efficient than all other estimators, even the naive Kaplan-Meier estimator. This is

due to the fact that this estimator does only incorporate the complete observations

weighted by the censoring survival distribution. One thing we should be cautious

about though, although it seems that the Kaplan-Meier estimator is more efficient

than the IPMW estimator, we would hesitate to recommend it because of its large

bias and very poor coverage probability.

Increasing sample size from 250 to 500 helped improve the coverage probabilities

for most of the estimators, but the relative efficiencies remained unaffected for IPMW,

LDT and the improved estimators. The coverage probability and the efficiency for

the Kaplan-Meier estimator drops down with the increase of sample size.

Now consider the results for the survival probabilities from Tables 3.5 and Ta-

bles 3.6. The pattern is similar to that in the case of mean survival time. Again, with

a comparable coverage probability for a 95% Wald confidence interval, the improved

estimator gains 7%-20% efficiency over the LDT estimator. The Kaplan-Meier esti-

mator has the worst coverage (as expected by the theory) and the IPMW estimator

has the smallest relative efficiency.
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3.6 Figures and Tables
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Table 3.1: Estimates of mean restricted survival time in days (and corresponding
standard error in the parenthesis) for different treatment policies for CALGB 8923
data

30% Censoring 50% Censoring
Policy KM IPMW LDT IMP KM IPMW LDT IMP
GM-CSF/Int. I 219(−−) 282(45) 284(21) 266(20) 241(−−) 251(75) 272(27) 309(23)
GM-CSF/Int. II 227(−−) 280(44) 277(21) 286(20) 255(−−) 297(78) 274(27) 290(24)
placebo/Int. I 270(−−) 275(42) 291(21) 303(20) 275(−−) 293(72) 285(30) 281(27)
placebo/Int. II 272(−−) 319(45) 300(22) 314(21) 297(−−) 308(78) 317(31) 335(28)
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Table 3.2: Estimated survival probability (corresponding standard error in the parenthesis) for different treatment policies
in CALGB 8923 data

30% Censoring 50% Censoring

Time Policy KM IPMW LDT IMP KM IPMW LDT IMP

183 days

(1/2 year)

GM-CSF/Int. I 0.46(−−) 0.59(0.091) 0.60(0.043) 0.56(0.042) 0.52(−−) 0.53(0.143) 0.57(0.054) 0.61(0.048)

GM-CSF/Int. II 0.47(−−) 0.59(0.090) 0.58(0.045) 0.59(0.044) 0.52(−−) 0.59(0.145) 0.55(0.059) 0.52(0.053)

placebo/Int. I 0.55(−−) 0.58(0.088) 0.61(0.044) 0.62(0.041) 0.59(−−) 0.67(0.152) 0.65(0.058) 0.54(0.050)

placebo/Int. II 0.53(−−) 0.62(0.090) 0.59(0.047) 0.61(0.046) 0.58(−−) 0.61(0.151) 0.62(0.062) 0.63(0.058)

365 days

(1 year)

GM-CSF/Int. I 0.32(−−) 0.43(0.087) 0.43(0.052) 0.39(0.051) 0.36(−−) 0.38(0.142) 0.42(0.067) 0.57(0.048)

GM-CSF/Int. II 0.32(−−) 0.40(0.086) 0.39(0.055) 0.41(0.053) 0.39(−−) 0.47(0.147) 0.43(0.062) 0.40(0.054)

placebo/Int. I 0.36(−−) 0.39(0.083) 0.42(0.055) 0.42(0.052) 0.37(−−) 0.40(0.145) 0.39(0.093) 0.31(0.085)

placebo/Int. II 0.37(−−) 0.48(0.089) 0.44(0.055) 0.46(0.054) 0.43(−−) 0.48(0.152) 0.49(0.076) 0.57(0.069)

511 days

(1.4 year)

GM-CSF/Int. I 0.21(−−) 0.31(0.084) 0.32(0.056) 0.30(0.054) 0.22(−−) 0.28(0.143) 0.32(0.073) 0.39(0.050)

GM-CSF/Int. II 0.21(−−) 0.28(0.082) 0.28(0.058) 0.32(0.055) 0.28(−−) 0.38(0.152) 0.34(0.070) 0.31(0.047)

placebo/Int. I 0.28(−−) 0.29(0.075) 0.31(0.061) 0.28(0.056) 0.29(−−) 0.26(0.130) 0.25(0.101) 0.14(0.081)

placebo/Int. II 0.32(−−) 0.40(0.085) 0.37(0.062) 0.37(0.059) 0.39(−−) 0.39(0.147) 0.41(0.098) 0.45(0.091)
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Table 3.3: P-values for different hypothesis test for CALGB 8923 data when 30%
observations are censored. µjk = E[Tjk] for mean survival and µjk = P [Tjk > t] for
survival probabilities at time t, j = 1, 2.

Hypothesis

Testing mean restricted Testing survival prob.

survival times at t = 365 days

IPMW LDT IMP IPMW LDT IMP

H0 : µ11 = µ21 = µ12 = µ22 0.89 0.87 0.33 0.92 0.86 0.84

H1 : (µ11 + µ12)/2 = (µ21 + µ22)/2 0.56 0.59 0.26 0.75 0.77 0.49

H2 : (µ11 + µ21)/2 = (µ12 + µ22)/2 0.71 0.91 0.17 0.79 0.86 0.59

H3 : µ11 = µ12 0.98 0.64 0.17 0.83 0.47 0.85

H4 : µ21 = µ22 0.57 0.63 0.51 0.55 0.68 0.57

H5 : (µ11 − µ12) = (µ21 − µ22) 0.68 0.51 0.73 0.57 0.43 0.78

64



Table 3.4: Monte Carlo coverage probability for 95% Wald confidence intervals and relative efficiency for estimators of
restricted mean survival time based on 5000 data sets: entries in parentheses are relative efficiencies with respect to the
improved estimator.

50% response 70% response

38% Censoring 48% Censoring 42% Censoring 52% Censoring

n Estimator µ̂11 µ̂12 µ̂11 µ̂12 µ̂11 µ̂12 µ̂11 µ̂12

250

IMP 93.5(1.00) 93.2(1.00) 93.2(1.00) 92.7(1.00) 93.9(1.00) 93.6(1.00) 93.4(1.00) 93.4(1.00)

LDT 93.6(0.84) 93.9(0.78) 93.5(0.85) 93.7(0.84) 94.0(0.78) 94.0(0.70) 93.6(0.79) 94.0(0.72)

IPMW 94.5(0.20) 94.1(0.20) 93.8(0.16) 94.0(0.17) 93.9(0.15) 93.8(0.15) 93.6(0.11) 93.6(0.12)

KM 67.0(0.30) 81.8(0.30) 73.8(0.39) 85.7(0.62) 74.9(0.35) 88.1(0.54) 81.2(0.46) 90.7(0.72)

500

IMP 94.2(1.00) 94.7(1.00) 94.1(1.00) 94.5(1.00) 94.4(1.00) 94.7(1.00) 94.1(1.00) 94.6(1.00)

LDT 94.6(0.84) 95.1(0.80) 94.7(0.85) 95.0(0.80) 94.3(0.79) 95.5(0.72) 94.3(0.79) 95.3(0.72)

IPMW 95.1(0.20) 94.5(0.20) 94.6(0.15) 94.5(0.14) 95.1(0.14) 94.4(0.14) 95.0(0.11) 94.3(0.11)

KM 42.5(0.17) 68.8(0.29) 53.0(0.22) 76.6(0.39) 53.8(0.20) 79.9(0.37) 65.7(0.27) 86.7(0.53)
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Table 3.5: Monte Carlo coverage probability for 95% Wald interval and relative efficiency for estimators of survival
probabilities at t = 183 days, based on 5000 data sets: entries in parentheses are relative efficiencies with respect to the
improved estimator.

50% response 70% response

38% Censoring 48% Censoring 42% Censoring 52% Censoring

n Estimator Ŝ11(183) Ŝ12(183) Ŝ11(183) Ŝ12(183) Ŝ11(183) Ŝ12(183) Ŝ11(183) Ŝ12(183)

250

IMP 94.0(1.00) 94.0(1.00) 93.6(1.00) 93.5(1.00) 93.9(1.00) 93.8(1.00) 93.6(1.00) 93.6(1.00)

LDT 94.0(0.91) 94.0(0.89) 93.7(0.92) 93.7(0.93) 94.1(0.86) 94.0(0.84) 94.2(0.87) 94.1(0.86)

IPMW 94.2(0.22) 94.1(0.25) 94.0(0.17) 94.1(0.19) 94.0(0.15) 94.1(0.18) 93.7(0.11) 94.0(0.14)

KM 78.0(0.36) 83.7(0.47) 81.2(0.43) 86.6(0.57) 81.2(0.37) 87.1(0.52) 85.0(0.46) 90.3(0.65)

500

IMP 94.0(1.00) 93.9(1.00) 94.0(1.00) 93.7(1.00) 94.4(1.00) 94.1(1.00) 94.4(1.00) 93.7(1.00)

LDT 94.4(0.91) 94.2(0.91) 94.3(0.92) 94.4(0.92) 94.4(0.86) 94.4(0.87) 94.7(0.87) 94.2(0.88)

IPMW 95.2(0.22) 94.4(0.24) 94.8(0.17) 94.1(0.18) 94.8(0.15) 94.2(0.18) 94.6(0.11) 94.3(0.13)

KM 59.3(0.22) 69.6(0.31) 66.0(0.27) 75.7(0.38) 64.8(0.23) 76.2(0.36) 71.7(0.29) 82.2(0.46)
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Table 3.6: Monte Carlo coverage probability for 95% Wald interval and relative efficiency for estimators of survival
probabilities at t = 365 days, based on 5000 data sets: entries in parentheses are relative efficiencies with respect to the
improved estimator.

50% response 70% response

38% Censoring 48% Censoring 42% Censoring 52% Censoring

n Estimator Ŝ11(365) Ŝ12(365) Ŝ11(365) Ŝ12(365) Ŝ11(365) Ŝ12(365) Ŝ11(365) Ŝ12(365)

250

IMP 93.8(1.00) 93.9(1.00) 93.3(1.00) 93.0(1.00) 93.3(1.00) 94.0(1.00) 93.0(1.00) 93.4(1.00)

LDT 94.1(0.91) 94.4(0.85) 93.8(0.93) 94.5(0.89) 94.2(0.88) 94.6(0.81) 93.9(0.89) 94.3(0.82)

IPMW 94.6(0.40) 94.4(0.42) 93.9(0.33) 94.2(0.36) 94.3(0.33) 94.0(0.35) 93.8(0.26) 93.9(0.29)

KM 74.9(0.40) 88.7(0.70) 80.2(0.51) 91.0(0.87) 82.1(0.47) 92.4(0.80) 87.2(0.61) 93.5(0.96)

500

IMP 94.2(1.00) 94.9(1.00) 94.5(1.00) 94.7(1.00) 94.1(1.00) 94.9(1.00) 94.0(1.00) 94.7(1.00)

LDT 94.5(0.90) 95.2(0.85) 94.7(0.91) 95.4(0.85) 94.4(0.88) 95.6(0.81) 94.6(0.87) 95.5(0.80)

IPMW 95.0(0.40) 94.8(0.41) 95.1(0.31) 94.6(0.32) 95.1(0.33) 94.8(0.34) 94.9(0.25) 94.9(0.27)

KM 55.8(0.24) 82.0(0.50) 65.2(0.31) 87.8(0.64) 67.3(0.30) 89.9(0.64) 76.6(0.40) 93.4(0.82)

67



0 100 200 300 400 500

0.0
0.2

0.4
0.6

0.8
1.0

IMP estimates −− 30% Censoring

Time in Days

Es
tim

ate
d S

ur
viv

al 
Pr

ob
ab

ilit
y

GM−CSF/I
GM−CSF/II
Placebo/I
Placebo/II

0 100 200 300 400 500

0.0
0.2

0.4
0.6

0.8
1.0

IMP estimates −− 50% Censoring

Time in Days

Es
tim

ate
d S

ur
viv

al 
Pr

ob
ab

ilit
y

GM−CSF/I
GM−CSF/II
Placebo/I
Placebo/II

Figure 3.1: Estimated survival probabilities under IMP method for different treatment
policies. 68



Chapter 4

Discussion

In this dissertation we have developed efficient estimation procedures for parameters

related to the survival distribution of tratment policies in two stage randomization

designs in clinical trials. In particular, we have derived the most efficient estimator

for the quantities related to the survival distribution of patients who follows a given

treatment policy. But the difficulty that arises, like in many other situations, is

that the most efficient estimator (the estimator that attains the smallest variance)

may not be feasible to calculate from the observed data. Considering this, for the

case where one observes the complete data, we have proposed several estimators to

approximate the most efficient estimator. These estimators, conditional on the fact

that one can collect auxiliary information which are at least moderately correlated

with the survival data among those eligible for the second randomization, performed

very well as compared to the estimators defined by Lunceford et al. (2002). However,

for a given data set they may not perform as well. Considering this, in a bid to improve
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efficiency, we have proposed an estimator that is guaranteed to be more efficient than

the LDT estimators and IPMW estimators. This improved estimator uses linear

combinations of functionals of auxiliary information from the patients randomized

to the second stage treatments. One versatility of this estimator is that varying the

functionals to be used, one can try to find the best combination of functionals to be

used for a given data set. Also this estimator is easy to compute and does not require

any further model-based computation.

However, for the case with censored data, the most efficient estimator contains

complicated functions of population quantities, and hence no attempt was made to

approximate these complicated quantities. Rather we proposed a class of estima-

tors which is easy to compute and is always more efficient than the LDT or IPMW

estimators.
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Appendix A

A.1 Proof of Proposition 1

As in Robins et al. (1994), we consider the Hilbert space H consisting of all mean

zero random functions of the observed data with finite variance equipped with the

covariance inner product. Within this space we define the closed linear subspace U

consisting of random functions

Ri

(
Xki − πk

πk

)
f(TR

i , Vi),

where f(TR
i , Vi) is an arbitrary function with finite variance. Our aim is to find the

function f(·, ·) which minimizes the variance in (3.5), or equivalently, to find the

element in U which minimizes the distance from
{

(1 − Ri) + RiXki

πk

}
{h(Ti) − µ1k} to

some element in U . By the projection theorem for Hilbert spaces (Luenberger, 1969),

the optimal f(·, ·) is given by the unique f ∗(·, ·), where f ∗ satisfies

E

[{
(1 − Ri) +

RiXki

πk

}
{h(Ti) − µ1k}

+ Ri

(
Xki − πk

πk

)
f ∗(TR

i , Vi)

]{
Ri

(
Xki − πk

πk

)
f(TR

i , Vi)

}
= 0 (A.1)
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for all f(·, ·). Since (1 − Ri)Ri = 0, Equation (A.1) can be simplified to

E

[
RiXki(Xki − πk)

π2
k

{h(Ti) − µ1k} f(TR
i , Vi) + Ri

(
Xki − πk

πk

)2

f∗(TR
i , Vi)f(TR

i , Vi)

]
= 0

(A.2)

We will compute the expectation on the LHS of Equation (A.2) by iterated condi-

tional expectation. By conditioning the second term on TR
i , Vi and Ri, we get,

E

{
Ri

(
Xki − πk

πk

)2

f∗(TR
i , Vi)f(TR

i , Vi)

∣∣∣∣∣ Ri, T
R
i , Vi

}
= Rif

∗(TR
i , Vi)f(TR

i , Vi)
(

1 − πk

πk

)
,

(A.3)

where we have used the fact that conditional on (Ri, T
R
i , Vi), Xki is Bernoulli with

probability πk. Similarly,

E

[
RiXki(Xki − πk)

π2
k

{h(Ti) − µ1k} f(TR
i , Vi)

∣∣ Ri, T
R
i , Vi

]
=

Ri

π2
k

f(TR
i , Vi)E

[
Xki(Xki − πk) {h(Ti) − µ1k}|Ri = 1, TR

i , Vi

]
=

Ri(1 − πk)

πk

f(TR
i , Vi)E h(Ti) − µ1k|Ri = 1, Xki = 1, TR

i , Vi

}
. (A.4)

Using (A.3) and (A.4) we rewrite (A.2) as

E

[
Ri

(
1 − πk

πk

)
E

{
h(Ti) − µ1k|Ri = 1, Xki = 1, TR

i , Vi

}
+ Ri

(
1 − πk

πk

)
f ∗(TR

i , Vi)f(TR
i , Vi)

]
= 0 (A.5)

for all f(TR
i , Vi). Or, equivalently

E
[
Ri

{
E

[
h(Ti) − µ1k|Ri = 1, Xki = 1, TR

i , Vi

]
+ f ∗(TR

i , Vi)
}

f(TR
i , Vi)

]
= 0 (A.6)

for all f(TR
i , Vi). In order for (A.6) to hold for all f(TR

i , Vi), we must have

E
{

h(Ti) − µ1k|Ri = 1, Xki = 1, TR
i , Vi

}
+ f ∗(TR

i , Vi) = 0, (A.7)
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Or, equivalently

f ∗(TR
i , Vi) = −E

{
h(Ti) − µ1k|Ri = 1, Xki = 1, TR

i , Vi

}
= θh(T

R
i , Vi) − µ1k. (A.8)

Substituting f ∗(·, ·) into (3.5) and simplifying further we get the most efficient

influence function (2.8). This completes the proof.

A.2 Consistency and asymptotic normality

Consistency

Under mild regularity conditions, all the estimators µ̂ME
1k , µ̂LE

1k , µ̂LS
1k and µ̂IMP

1k are

consistent. The consistency of µ̂ME
1k follows from the fact that it is a sample average

of iid quantities and hence WLLN applies. Consider µ̂LE
1k . We will assume that γ̂

converges in probability to γ0. We write

µ̂LE
1k =

1

n

n∑
i=1

[{
(1 − Ri) +

RiXki

πk

}
h(Ti) − Ri

(
Xki − πk

πk

)
g(TR

i , Vi,γ0)

]
(A.9)

− 1

n

n∑
i=1

Ri

(
Xki − πk

πk

) {
g(TR

i , Vi, γ̂) − g(TR
i , Vi,γ0)

}
(A.10)

Now the term (A.9) is the sample average of iid quantities having mean µ1k and

constant variance, and hence converges to its mean µ1k in probability. A Taylor’s

series expansion of g(TR
i , Vi, γ̂) in (A.10) shows that we can write the second term as

(γ̂ − γ0)
T n−1

n∑
i=1

Ri

(
Xki − πk

πk

) {
δ

δγ
g(TR

i , Vi,γ)

∣∣∣∣
γ=γ̃

}
(A.11)
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where γ̃ lies between γ̂ and γ0. Now in addition if we assume that

Supγ ∈ Γ(γ̂ ,γ̃)

δ

δγ
g(TR

i , Vi,γ) ≤ H(TR
i , Vi; γ0)

with E
{
H(TR

i , Vi; γ0)
}

< ∞ where Γ(γ̂, γ̃) is the set of all γ that lies between γ̂ and

γ̃, then it follows that (A.11), hence (A.10) is op(1). Combining these results, we see

that µ̂LE
1k

p→ µ1k.

Since least squares estimators are consistent, µ̂LS
1k being a special case of µ̂LE

1k is

also consistent. Similar arguments can be applied to show the consistency of µ̂IMP
1k .

Asymptotic normality

Under mild regularity conditions, all the estimators µ̂ME
1k , µ̂LE

1k , µ̂LS
1k and µ̂IMP

1k are

asymptotically normal. Since µ̂ME
1k is a sample average of iid quantities with finite

variance, the asymptotic normality follows directly from the central limit theorem.

We will sketch the proof for µ̂LE
1k . The rest follows immediately.

If γ̂ is n1/2-consistent, then similar arguments as the ones in the case of consistency

can be used to write

n
1
2 (µ̂LE

1k − µ1k) = n− 1
2

n∑
i=1

(Y1ki − µ1k) + op(1) (A.12)

where, Y1ki =
{

(1 − Ri) + RiXki

πk

}
h(Ti) − Ri

(
Xki−πk

πk

)
g(TR

i , Vi,γ0) are iid with

mean zero and variance σ2 = E(Y 2
1ki). Therefore, by Slutsky’s theorem, n

1
2 (µ̂LE

1k −

µ1k)
d→ N(0, σ2). The asymptotic variance of µ̂LE

1k can be estimated by (2.13).
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Appendix B

B.1 Derivation of Most Efficient Influence Func-

tion for Censored Data

Let us define the filtration Fn(t) as the increasing sequence of sub-σ-algebras

σ{I(Ci ≤ u), u ≤ t; GH
i (t); Ri, Xki, T1ki, k = 1, 2; i = 1, . . . , n}. Unless otherwise

stated, this is the filtration with respect to which all the martingales are defined in

this paper. For example, with respect to this filtration, the stochastic quantity M c
i (t)

defined in Section 2.2 is a martingale process with the intensity function λc(t)Yi(t).

In the following derivation, we exploit the powerful counting process and martingale

theory described in Fleming and Harrington(1991).

For simplicity, let us define h∗(T1k) = h(T1k)−µ1k. Substituting (3.5) in (3.8), we
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get

(3.8) = Qkih
∗(Ti) −

∫
dM c

i (u)

K(u)

[
Qkih

∗(Ti) − E
{
Qkih

∗(Ti)|GH(u)
}]

(B.1)

+ (Qki − 1)f(TR
i , GH(TR

i )) −
∫

dM c
i (u)

K(u)

[
(Qki − 1)f(TR

i , GH(TR
i ))(B.2)

− E
{
(Qki − 1)f(TR

i , GH(TR
i ))|GH(u)

}]
(B.3)

For a fixed u, the collection of information GH(u) for an individual i, will be

different if he/she has responded and consented to second-stage randomization by

time u from that if he/she has not responded. Also for a patient to contribute to

the integral in (B.2-B.3), he/she needs to be at risk at time u. This prompts us to

consider the following two cases.

Case I: Ri = 1, TR
i < u, Ti ≥ u.

In this case, given GH(u), we know Xki, TR
i and GH(TR

i ). Hence,

E
{
(Qki − 1)f(TR

i , GH(TR
i ))|GH(u)

}
= (Qki − 1)f(TR

i , GH(TR
i )). (B.4)

Case II: (Ri = 0, Ti ≥ u) ∪ (Ri = 1, TR
i < u, Ti ≥ u).

In this case, conditioning on TR
i , GH(TR

i ), we find that

E
{
(Qki − 1)f(TR

i , GH(TR
i ))|GH(u)

}
= 0. (B.5)

Cases I and II together gives

E
{
(Qki − 1)f(TR

i , GH(TR
i ))|GH(u)

}
= I(TR

i < u)(Qki − 1)f(TR
i , GH(TR

i )) (B.6)
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, for Ti ≥ u. Consequently the stochastic integral in (B.2-B.3) turns out to be

∫
dM c

i (u)

K(u)

[
(Qki − 1)f(TR

i , GH(TR
i )) − E

{
(Qki − 1)f(TR

i , GH(TR
i ))|GH(u)

}]
=

∫ dM∗c
i (u)I(Ti≥u)

K(u)

[
(Qki − 1)f(TR

i , GH(TR
i )) − I(TR

i < u)(Qki − 1)f(TR
i , GH(TR

i ))
]

=
∫ dM∗c

i (u)I(Ti≥u)I(T R
i ≥u)

K(u)
(Qki − 1)f(TR

i , GH(TR
i )) (B.7)

where M∗c
i (u) is the martingale process defined through the martingale increments

dM∗c
i (u) = d (I(Ci ≤ u)) − λc(u)I(Ci ≥ u)du. Since RiI(Ti ≥ u)I(TR

i ≥ u) =

RiI(TR
i ≥ u), this implies that the stochastic integral in (B.2-B.3) equals to

∫
dM∗c

i (u)

K(u)
I(TR

i ≥ u)(Qki − 1)f(TR
i , GH(TR

i )) (B.8)

This enables us to write the influence function (3.8) in the form

Qkih
∗(Ti) −

∫
dM c

i (u)

K(u)

[
Qkih

∗(Ti) − E
{
Qkih

∗(Ti)|GH(u)
}]

+ (Qki − 1)f(TR
i , GH(TR

i ))

−
∫

dM∗c
i (u)

K(u)
(Qki − 1)I(TR

i ≥ u)f(TR
i , GH(TR

i )). (B.9)

By defining another martingale difference

dMRc
i (u) = dI(U∗

i ≤ u, ∆∗
i = 0) − λc(u)I(U∗

i ≥ u)du,

we can re-write (B.9) as

Qkih
∗(Ti) −

∫
dM c

i (u)

K(u)

[
Qkih

∗(Ti) − E
{
Qkih

∗(Ti)|GH(u)
}]

+ (Qki − 1)f(TR
i , GH(TR

i )) −
∫

dMRc
i (u)

K(u)
(Qki − 1)f(TR

i , GH(TR
i )). (B.10)
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Notice that we have used the relationship RidMRc
i c(u) = RiI(TR

i ≥ u)dM∗c
i (u) to

arrive at the above result. To find the optimal influence function, as in Robins et

al. (1994) , we consider the Hilbert space H consisting of all mean zero random

functions of the observed data with finite variance equipped with the covariance

inner product. Within this space we define the closed linear subspace U consisting of

random functions

(Qki − 1)f(TR
i , GH(TR

i )) −
∫

dMRc
i (u)

K(u)
(Qki − 1)f(TR

i , GH(TR
i ))

= (Qki − 1)f(TR
i , GH(TR

i )) −
∫

dM∗c
i (u)

K(u)
(Qki − 1)I(TR

i ≥ u)f(TR
i , GH(TR

i )),

where f(TR
i , GH(TR

i )) is an arbitrary function, with finite variance. Our aim is to

find the function f(·, ·) which minimizes the variance in (B.10), or equivalently, to

find the element in U which minimizes the distance (square root of variance) from

Qkih
∗(Ti) −

∫
dM c

i (u)

K(u)

[
Qkih

∗(Ti) − E
{
Qkih

∗(Ti)|GH(u)
}]

to some element in U . By the projection theorem for Hilbert spaces (Luenberger,

1969), the optimal f(·, ·) is given by the unique f ∗(·, ·), where f ∗ satisfies

E

{
Qkih

∗(Ti) −
∫

dM c
i (u)

K(u)

[
Qkih

∗(Ti) − E
{
Qkih

∗(Ti)|GH(u)
}]

+ (Qki − 1)f(TR
i , GH(TR

i ))

−
∫

dM∗c
i (u)

K(u)
(Qki − 1)I(TR

i ≥ u)f(TR
i , GH(TR

i ))

}{
(Qki − 1)f(TR

i , GH(TR
i ))

−
∫

dM∗c
i (u)

K(u)
(Qki − 1)I(TR

i ≥ u)f ∗(TR
i , GH(TR

i ))

}
= 0 (B.11)

for all f(·, ·).
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To simplify the LHS of Equation (B.11), let us characterize the general form of

functionals of GH(u). A typical functional of GH(u) can be written as

RiI(TR
i < u)h1(G

H(u)) +
[
(1 − Ri) + RiI(TR

i ≥ u)
]
h2(G

H(u)) (B.12)

for some functions h1(·, ·, ·) and h2(·). Consequently, any such functional, when mul-

tiplied by

I(TR
i ≥ u)(Qki − 1)f(TR

i , GH(TR
i ))

leaves us with

I(TR
i ≥ u)(Qki − 1)f(TR

i , GH(TR
i ))h2(G

H(u)).

In other words,

I(TR
i ≥ u)(Qki − 1)f(TR

i , GH(TR
i )) × functional of GH(u)

= I(TR
i ≥ u)(Qki − 1)f(TR

i , GH(TR
i ))h2(G

H(u)). (B.13)

Note that (B.13) is defined only for individuals whose response time TR
i goes beyond

TR
i and hence GH(u) will be contained in GH(TR

i ). Thus, for a given u, conditioning

on GH(TR
i ), we can show that the RHS of (B.13) has expectation zero. This fact

, along with the identities Ri(1 − Ri) = 0, dM c
i (u) = I(Ti ≥ u)dM∗c

i (u) and other
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standard martingale properties enables us to write (B.11) as

E
[
Qki(Qki − 1)h∗(Ti)f(TR

i , GH(TR
i ))

]
+ E

[
Qki(Qki − 1)h∗(Ti)f(TR

i , GH(TR
i ))

∫
λc(u)du

K(u)
I(Ti ≥ u)I(TR

i ≥ u)

]
+ E

[
Q2

kif
∗(TR

i , GH(TR
i ))f(TR

i , GH(TR
i ))

]
+ E

[
Q2

kif
∗(TR

i , GH(TR
i ))f ∗(TR

i , GH(TR
i )f(TR

i , GH(TR
i ))

∫
λc(u)du

K(u)
I(TR

i ≥ u)

]
= 0

(B.14)

for all f(·, ·).

Using sequential conditional expectations and other model assumptions such as

(3.1) and (2.2), we can show that the above is equivalent to

E

[
Ri

(
1 − πk

πk

)
E(h∗(Ti)|Ri = 1, Xki = 1, GH(TR

i ))f(TR
i , GH(TR

i ))

]
+ E

[
Ri

(
1 − πk

πk

) ∫
λc(u)du

K(u)
I(TR

i ≥ u)

× E(h∗(Ti)|Ri = 1, Xki = 1, GH(TR
i ))f(TR

i , GH(TR
i ))

]
+ E

[
Ri

(
1 − πk

πk

)
f ∗(TR

i , GH(TR
i ))f(TR

i , GH(TR
i ))

]
+ E

[
Ri

(
1 − πk

πk

) ∫
λc(u)du

K(u)
I(TR

i ≥ u)f ∗(TR
i , GH(TR

i ))f(TR
i , GH(TR

i ))

]
= 0.

(B.15)

Or equivalently,

E
[
Ri

{
f∗(TR

i , GH(TR
i )) + E

(
h∗(Ti)|Ri = 1, Xki = 1, GH(TR

i )
)}

×
(

1 +
∫

λc(u)
K(u)

I(TR
i ≥ u)

)]
= 0 (B.16)
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for all f(·, ·)s. The last equation leads us to the optimal solution

f ∗(TR
i , GH(TR

i )) = −E
(
h∗(Ti)|Ri = 1, Xki = 1, GH(TR

i )
)

(B.17)

Therefore, substituting the optimal f in Equation (B.10) and rearranging, the optimal

influence function for estimating µ1k is given by

∆iQkih
∗(Ti)

K(Ui)
+

∫
dM c

i (u)
K(u)

eh∗
{
GH(u)

}− ∆∗
i (Qki − 1)
K(U∗

i )
E

(
h∗(Ti)|Ri = 1, Xki = 1, GH(TR

i )
)
,

(B.18)

where eh∗
{
GH(u)

}
= E

{
Qkih

∗(Ti)|GH(u)
}
. The term eh∗

{
GH(u)

}
in (3.9) needs to

be explained a little bit more to make any sense in reality. Again, we will consider

the two cases separately.

Case I: Ri = 1, TR
i < u, Ti ≥ u. In this case, E

[
(1 − Ri)h

∗(Ti)|GH(u)
]

= 0 and

E
[

RiXki

πk
h∗(Ti)|GH(u)

]
= Xki

πk
E

(
h∗(Ti)|Ri = 1, Xki = 1, GH(u), Ti ≥ u

)
. And hence,

eh∗
{
GH(u)

}
= RiI(TR

i < u)Xki

πk
E

(
h∗(Ti)|Ri = 1, Xki = 1, GH(u), Ti ≥ u

)
.

Case II: (Ri = 0, Ti ≥ u) ∪ (Ri = 1, TR
i ≥ u, Ti ≥ u). In this case,

E
[
Qkih

∗(Ti)|GH(u)
]

=
{
1 − RiI(TR

i < u)
}

E[Qkih
∗(Ti)|RiI(TR

i < u) = 0, GH(u), Ti ≥ u].(B.19)

Cases I and II together gives

eh∗
{
GH(u)

}
(B.20)

= RiI(TR
i < u)

Xki

πk

E
(
h∗(Ti)|Ri = 1, Xki = 1, GH(u), Ti ≥ u

)
+

{
1 − RiI(TR

i < u)
}

E[Qkih
∗(Ti)|RiI(TR

i < u) = 0, GH(u), Ti ≥ u].(B.21)
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Notice that one can write eh∗
{
GH(u)

}
as eh

{
GH(u)

} − e1

{
GH(u)

}
µ1k, where

e1

{
GH(u)

}
=

[
RiI(TR

i < u)
Xki

πk

+ 1 − RiI(TR
i < u)

]
=

[
1 + Ri

(
Xki − πk

πk

)
− RiI(TR

i ≥ u)

(
Xki − πk

πk

)]
(B.22)

and eh

{
GH(u)

}
is given by (??). Therefore, by substituting eh∗

{
GH(u)

}
in (B.18)

and simplifying further by separating out the coefficients of µ1k, we obtain the optimal

influence function (3.9).

B.2 Consistency and Asymptotic Normality for the

Estimators in Censored Data

B.2.1 Consistency

Under mild regularity conditions, the estimator µ̂IMP
1k is consistent. To see that, we

write µ̂IMP
1k as An(h(.), γ̂h, ϕ̂1h, ϕ̂2h)/An(1, γ̂µ, 1, ϕ̂2µ) where An(γ̂h, ϕ̂1h, ϕ̂2h) is defined

as

An(h(.), γ̂h, ϕ̂1h, ϕ̂2h)

=
1

n

n∑
i=1

∆iQki

K̂(Ui)
h(Ui) − n−1

n∑
i=1

∆∗
i (Qki − 1)

K̂(U∗
i )

γ̂T
h W i

+ n−1

n∑
i=1

∫
dN c

i (u)

K̂(u)
{ϕ̂1h(u)Lϕ1i(u) + ϕ̂2h(u)Lϕ2i(u)} (B.23)

The first term on the RHS is the same as the estimator µ̂1k
IPMW , which converges

in probability to µ1k as was argued in the Appendix A of Lunceford et. al.(2002).
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Consider the second term on the RHS of (B.23), which can be written as

γ̂T
h

[
n−1

n∑
i=1

∆∗
i (Qki − 1)W i

K(TR
i )

+ n−1

n∑
i=1

K̂(TR
i ) − K(TR

i )

K̂(TR
i )K(TR

i )
∆∗

i (Qki − 1)W i

]
. (B.24)

The first term in the square bracket is the sample average of iid random variables

having expectation zero and hence is op(1). The second term can be shown to be

bounded by

Supu≤L

∣∣∣K̂(u) − K(u)
∣∣∣

K̂(L)K(L)

∣∣∣∣∣n−1

n∑
i=1

∆∗
i (Qki − 1)W i

∣∣∣∣∣ (B.25)

By the arguments made in Chapter 6 of Fleming and Harrington (1991), K̂(u) con-

verges uniformly to the survival distribution K(u) for u ≤ L and hence
Supu≤L|K̂(u)−K(u)|

K̂(L)K(L)

is op(1). It is easy to show that the other absolute term in (B.25) is also op(1). Ap-

plying these results in combination with the fact that γ̂h is a consistent estimator,

we see that (B.24) is op(1). Using the martingale process M c
i (t) defined previously,

the third term in the RHS of (B.23) can be written as

n−1

n∑
i=1

∫
dM c

i (u)

K̂(u)
{ϕ̂1h(u)Lϕ1i(u) + ϕ̂2h(u)Lϕ2i(u)} . (B.26)

Using the cosistency property of IPMW estimators ϕ̂1h(u) and ϕ̂1h(u) and the prop-

erties of martingales, we can show that the term (B.26) converges in probability to

zero. Thus An(h(.), γ̂h, ϕ̂1h, ϕ̂2h)
p→ µ1k. Similar arguments can be applied to show

that An(1, γ̂µ, 1, ϕ̂2µ)
p→ 1 implying that µ̂IMP

1k is a consistent estimator for µ1k.
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B.2.2 Asymptotic Normality

To derive the asymptotic distribution of µ̂IMP
1k , we write

n1/2(µ̂IMP
1k − µ1k) =

n1/2
{
An(h(.), γ̂h, ϕ̂1h, ϕ̂2h) − An(1, γ̂µ, 1, ϕ̂2µ)µ1k

}
An(1, γ̂µ, 1, ϕ̂2µ)

(B.27)

Since An(1, γ̂µ, 1, ϕ̂2µ)
p→ 1, by Slutsky’s theorem, the asymptotic distribution of

n1/2(µ̂IMP
1k − µ1k) will be the same as the asymptotic distribution of

n1/2
{
An(h(.), γ̂h, ϕ̂1h, ϕ̂2h) − An(1, γ̂µ, 1, ϕ̂2µ)µ1k

}
.

i.e.,

n1/2(µ̂IMP
1k − µ1k)

ad≡ n1/2
{
An(h(.), γ̂h, ϕ̂1h, ϕ̂2h) − An(1, γ̂µ, 1, ϕ̂2µ)µ1k

}
= n1/2An(h∗(.), γ̂opt, ϕ̂opt

1 , ϕ̂opt
2 )

= n−1/2

n∑
i=1

∆iQki

K̂(Ui)
h∗(Ui) + n−1/2

n∑
i=1

∆∗
i (Qki − 1)

K̂(U∗
i )

(
γ̂opt

)T
W i

+ n−1/2

n∑
i=1

∫
dN c

i (u)

K̂(u)

{
ϕ̂opt

1 (u)Lϕ1i(u) + ϕ̂opt
2 (u)Lϕ2i(u)

}
(B.28)

where h∗(u) = h(u) − µ1k, γ̂opt = −γ̂h + γ̂µµ1k, ϕ̂opt
1 (u) = ϕ̂1h(u) − µ1k, ϕ̂opt

2 (u) =

ϕ̂2h(u) − ϕ̂2µ(u)µ1k, and
ad≡ stands for equivalent in asymptotic distribution.

Using Equation (A.5) of Lunceford et al. (2002) the first term in (B.28) can be

written as

n−1/2

n∑
i=1

∆iQki

K̂(Ui)
h∗(Ui)

= n−1/2

n∑
i=1

Qkih
∗(Ti) − n−1/2

n∑
i=1

∫ L

0

Qkih
∗(Ti) − G1k(u)

K(u)
dM c

i (u) + op(1)

(B.29)
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where

G1k(u) =
E {h∗(T1k)I(T1k ≥ u)}

P (T > u)
.

Now consider the second term of (B.28). In a similar fashion, using the martingale

difference sequence
{
dMRc

i (u), i = 1 · · ·n}
, we can have the following result:

n−1/2

n∑
i=1

∆∗
i (Qki − 1)

K̂(U∗
i )

(
γ̂opt

h

)T
W i

= n−1/2

n∑
i=1

(Qki − 1)
(
γopt

)T
W i − n−1/2

n∑
i=1

∫ L

0

(Qki − 1) (γopt)
T

W i

K(u)
dMRc

i (u) + op(1)

(B.30)

The third and final term in (B.28),

n−1/2

n∑
i=1

∫
dN c

i (u)

K̂(u)

{
ϕ̂opt

1 (u)Lϕ1i(u) + ϕ̂opt
2 (u)Lϕ2i(u)

}
= n−1/2

n∑
i=1

∫
dM c

i (u)

K̂(u)

{
ϕ̂opt

1 (u)Lϕ1i(u) + ϕ̂opt
2 (u)Lϕ2i(u)

}
= n−1/2

n∑
i=1

∫
dM c

i (u)

K(u)

{
ϕopt

1 (u)L∗
ϕ1i(u) + ϕopt

2 (u)L∗
ϕ2i(u)

}
+ op(1) (B.31)

where

L∗
ϕ1i(u) = RiI(U∗

i < u)
Xki

πk

− E

{
RiI(TR

i < u)
Xki

πk

}
,

and

L∗
ϕ2i(u) = 1 − RiI(U∗

i < u) − E
{
1 − RiI(TR

i < u)
}

.
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Substituting (B.29)-(B.31) in (B.28), we have ,

n1/2(µ̂IMP
1k − µ1k)

ad≡ n−1/2

n∑
i=1

[{
Qkih

∗(Ti) + (Qki − 1)
(
γopt

)T
W i

}
−

∫ L

0

dMRc
i (u)

K(u)
(Qki − 1)

(
γopt

)T
W i

+

∫ L

0

dM c
i (u)

K(u)

{
ϕopt

1 (u)L∗
ϕ1i(u) + ϕopt

2 (u)L∗
ϕ2i(u) − Qkih

∗(Ti) + G1k(u)
}]

+ op(1)

= n−1/2

n∑
i=1

{
Qkih

∗(Ti) + (Qki − 1)
(
γopt

)T
W i

}
−n−1/2

n∑
i=1

∫ L

0

dM∗c
i (u)

K(u)

[
(Qki − 1)

(
γopt

)T
W iI(TR

i ≥ u)

− {
ϕopt

1 (u)L∗
ϕ1i(u) + ϕopt

2 (u)L∗
ϕ2i(u) − Qkih

∗(Ti) + G1k(u)
}

I(Ti ≥ u)
]
+ op(1)

= n−1/2

n∑
i=1

ΨIMP
ki + op(1) (B.32)

where

ΨIMP
ki =

{
Qkih

∗(Ti) + (Qki − 1)
(
γopt

)T
W i

}
−

∫ L

0

dM∗c
i (u)

K(u)

[
(Qki − 1)

(
γopt

)T
W iI(TR

i ≥ u)

− {
ϕopt

1 (u)L∗
ϕ1i(u) + ϕopt

2 (u)L∗
ϕ2i(u) − Qkih

∗(Ti) + G1k(u)
}

I(Ti ≥ u)
]

(B.33)

is the influence function for the estimator µ̂IMP
1k and has expectation zero. Thus we

have been able to show that n1/2-times the estimator minus the parameter is equal to

n−1/2-times sum of mean-zero i.i.d random variables plus a term of op(1). Therefore

µ̂IMP
1k is asymptotically linear estimator. Accordingly, n1/2(µ̂IMP

1k − µ1k)
d→ N(0, σ2),

where σ2 is given by the variance of the influence function ΨIMP
ki . Namely, by using
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the independence of the first and second term of ΨIMP
ki ,

σ2 = V ar(ΨIMP
ki ) = E

(
ΨIMP

ki

)2

= E
{

Qkih
∗(Ti) + (Qki − 1)

(
γopt

)T
W i

}2

+E

{∫ L

0

dM∗c
i (u)

K(u)

[
(Qki − 1)

(
γopt

)T
W iI(TR

i ≥ u)

− {
ϕopt

1 (u)L∗
ϕ1i(u) + ϕopt

2 (u)L∗
ϕ2i(u) − Qkih

∗(Ti) + G1k(u)
}

I(Ti ≥ u)
]}2

.

(B.34)

Using martingale properties, (B.34) can be simplified to

σ2 = E
{

Qkih
∗(Ti) + (Qki − 1)

(
γopt

)T
W i

}2

+

∫ L

0

λc(u)du

K(u)
E {R1ki(u)}2 , (B.35)

where

R1ki(u) = (Qki − 1)
(
γopt

)T
W iI(TR

i ≥ u) − {
ϕopt

1 (u)L∗
ϕ1i(u) + ϕopt

2 (u)L∗
ϕ2i(u)

−Qkih
∗(Ti) + G1k(u)} I(Ti ≥ u). (B.36)

The covariance of the two estimators µ̂IMP
11 and µ̂IMP

12 might be of importance for

the testing purposes. Entirely similar argument can be applied to show that

cov(µ̂IMP
11 , µ̂IMP

12 ) = n−1cov(ΨIMP
1i , ΨIMP

1i ) = n−1E
(
ΨIMP

1i ΨIMP
2i

)
= E

[{
Q1i (h(Ti) − µ11) + (Q1i − 1)

(
γopt

1

)T
W i

}
×

{
Q2i (h(Ti) − µ12) + (Q2i − 1)

(
γopt

2

)T
W i

}]
∫ L

0

λc(u)du

K(u)
E {R11i(u)R12i(u)} . (B.37)

where γopt
1 and γopt

2 are versions of γopt for k = 1, 2, and R11i and R12i are obtained
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from Equation B.36 respectively replacing k by 1 and 2 understanding that quantities

dependent on µ1k will be changed accordingly.
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