
ABSTRACT

ROBINSON, DOUGLAS MICHAEL. D.R. EVOL: Three Dimensional Realistic

Evolution. (Advisor: Jeffrey Thorne)

Simplifying assumptions are necessary to model complex biological processes.

Although some assumptions may make sense mathematically, they are often im-

plausible when literally translated. This is especially true of the independence

among codons assumption, which states that the evolutionary rate at one codon is

independent of the evolutionary rate at surrounding codons. Sites within proteins

must interact in order to form intricate three-dimensional binding sites and activa-

tion domains. This dissertation details the derivation of a procedure for statistical

inference when independent change is not assumed.

The procedure is implemented in a Bayesian framework where Markov chain

Monte Carlo methods permit approximation of posterior distributions. Analy-

ses with the procedure on data sets with two and three taxa are explored and

biologically plausible values of the solvent accessibility and pairwise interaction

parameters are inferred. Via these analyses, we illustrate the chronological order-

ing of amino acid replacements and the detection of specific events to be positively

selected. We also find spatial clustering of the amino acid replacements that have

most affected sequence-structure compatibility during the evolution of primate

eosinophil-derived neurotoxin proteins.



D.R. EVOL: THREE DIMENSIONAL REALISTIC EVOLUTION

by

Douglas Michael Robinson

A dissertation submitted to the Graduate Faculty of

North Carolina State University

in partial fulfillment of the

requirements for the Degree of

Doctor of Philosophy

BIOINFORMATICS

Raleigh

2003

APPROVED BY:

Chair of Advisory Committee



DEDICATION

To the loving memory of my mom, Heidi D. Robinson. I will always know that

you are proud of me.

ii



PERSONAL HISTORY

Douglas Robinson was born on April 2, 1973, to Donald and Heidi Robinson,

in Newton, Massachusetts. He spent his formative years growing up in Need-

ham, Massachusetts, a small suburb located 10 miles southwest of Boston. While

growing up, Doug enjoyed the outdoors, especially swimming, skiing, camping and

hiking mountains in nearby New Hampshire and Vermont.

After graduating from Needham Highschool in 1991, Doug attended the Uni-

versity of Massachusetts at Amherst majoring in mathematics and pre-med. This

gave him the opportunity to test his academic wings with both difficult math

courses, such as differential and partial differential equations, and challenging sci-

ence courses, such as organic chemistry, human anatomy and physiology and ge-

netics. His desire to enter medical school led him to spend a tremendous amount

of time and money on applications, as well as countless hours studying for the

brutal MCAT exam. After receiving politely worded rejection letters from every

single medical school to which he applied, thoughts concerning his future quickly

changed, and the decision to attend the University of Vermont for graduate work

was made.

It was during this time that two events occurred which would change his life

forever. First was the release of Austin Powers: International Man of Mystery,

in which Doug was introduced to a character known as Dr. Evil. Although the

details of Dr. Evil’s life were quite inconsequential, in a twisted sense of irony it

seemed rather strange how Dr. Evil’s childhood paralleled Doug’s own: Summers

in Rangoon, luge lessons, etc. It was in this vein that Dr. Evil would shape Doug’s

thoughts and make him want to major in World Domination. Because this was

iii



not a recommended graduate level major at UVM, Doug decided to continue along

the mathematics route. The second event was meeting his future wife Heather at a

Halloween party in October of 1997. Rumor has it that it was not until their third

date that they would actually see each others true identity under their respective

Halloween costumes. School was a major focus of Doug’s life, but fortunately

Heather had a large influence on Doug, by teaching him that there was more to

life than just school....and thoughts of world domination, of course.

Doug’s Master’s thesis led him to enter the world of Protein Evolution, and

to the understanding of a little band known as Phish. Between acquiring many

live recordings of the band, as well as many scientific journal articles on protein

evolution, he would decide that his education had to continue. Through the inter-

net, Doug found North Carolina State University and a professor named Dr. Jeff

Thorne who studied just that. Thus, a short 850 mile journey south and 4 + years

later, Doug completed his Ph.D. with the creation of Three Dimensional Realis-

tic Evolution, or D.R. EVOL for short. This phylogenetic software package may

not dominate the entire world, but may at least dominate the world of molecular

evolution.

In the future Doug has two goals: First, find as many ways as possible to

dominate the world. Besides this, Doug also wants to go into the pharmaceutical

industry where he hopes to make powerful drugs that will drive up the cost of

health care. The idea being, that hopefully this cost will inadvertently put an

enormous amount of pressure and strain on the medical schools to do something

about the problem. To complete the vicious circle of life, Doug then dreams of

the day when the medical schools contact him for relief, to which he will only sit

iv



back and laugh in their faces. Then calmly, he will remind them that this situation

could have been avoided if they had only accepted his medical school applications

when they had the chance so many years ago!!!

v



ACKNOWLEDGEMENTS

What a long strange trip its been. This dissertation is the culmination of

effort of many people for which I am most grateful. I am especially grateful to my

advisor Jeff Thorne who had what appeared to be an unending amount of patience,

trust and moral support to guide me through a Ph.D that was enormous in scope.

Also, I want to thank him for his immeasurable amount of confidence that I could

accomplish such a difficult task. Jeff, I will always appreciate the many hours spent

in the intellectual “stratosphere”, discussing the sometimes minute intricacies of

the model, especially those where gigantic leaps were made. I would also like

to thank the other members of my committee, Bruce Weir, Spencer Muse, Bill

Atchley, and Ed Buckler for their helpful comments and support. On a personal

note, I want to thank Ed for his in depth insight into the future directions of my

project, Spencer for his writing ability and for teaching me how to white water

kayak, Bill for his humorous comments to help ease the tension, and Bruce for

entrusting me with the Bioinformatics GSA and for allowing me the honor to

brew beverages for the Bioinformatics Summer Institute. Besides my committee,

none of this would be possible if were not for those who may have not been on

my committee, but whose influence and assistance made this initial idea a reality.

For instance David Jones and Nick Goldman, but also Hirohisa Kishino, whose

statistical ingenuity and infinite generosity made going to, and living in Tokyo

Japan an experience that I will remember and treasure for the rest of my life.

I am indebted to my family, especially my brother Chris, his wife Tara, and

niece Jordan; for my in-laws Stephanie France, and Kevin Tyler and my sister in-

vi



law Heidi Leong for their love and encouragement. I also want to thank my brother

in-law Darryl Leong for his cutting sarcasm and for feigning poor golf skills. Don’t

worry Darryl, I won’t tell anyone that it was not an act. The most important

person however, is my lovely wife Heather. Heather, I could not have done this

without your constant love of me during a time when my thoughts and ramblings

were incomprehensible. I tried to warn you that it would be difficult, but I think

we both learned the hard way that it was more than we bargained for. I promise

you that my next dissertation will be on discovering why you ever said yes to me

in the first place. I love you!

There are some other family members that I must thank and although they

will not be able to read this, I want to thank my two cats, Boobah and Poopoos

for their support during this process. By sleeping on the many stacks of papers

around my office, they ensured that any sudden wind bursts would not negatively

impact my progress. They were also instrumental in reminding me to take time for

the truly important tasks, such as the occasional belly-rub and short snack breaks.

I am grateful to those in the program of Bioinformatics and Statistical Genetics

who put up with my insanity. I will never understand why they listened to me as

I rambled on about whatever N.P.R. was discussing during my ride into school. I

want to especially thank Debbie Hibbard, whose daily discussions motivated me to

get my butt to the gym and work out some of my tension on the rowing machine.

Debbie, thanks for always being available to lend an ear to listen to my problems.

I also want to thank Dahlia Nielsen for letting me interrupt her work on a regular

basis and for being an endless bounty of knowledge.

I want to thank those people who graciously agreed to edit my thesis; my

vii



wife Heather, Terry Stigers, Stephane Aris-Brosou, Tae-kun Seo, Jeff Thorne, and

especially my brother Chris, who patiently endured multiple revisions of my sec-

ond manuscript. I also owe it to the Thorne working group namely, Stephane

Aris-Brosou, Betsy Scholl, Tae-kun Seo and Jiaye Yu, who spent countless hours

listening to me rehearse my presentations. To my many friends at the B.R.C.,

who I would like to collectively refer to as my answering service, I thank you for

taking the time to write those messages and find me, despite my desk being the

furthest from the phone. To Jimmy Doi, Errol Strain, Frank Mannino, Betsy

Scholl, Stephane Aris-Brosou, David Aylor, Sunil Suchindran, Jack Liu and Josh

Starmer, I want to thank you for your friendship and for succeeding to get me

out of the office to play frisbee golf, real golf, or just go out to have a drink. You

have no idea how much I appreciate your efforts. But I can not forget the person

who I consider one of my best friend during this whole process, Andrea Johnson.

Your offbeat comments, stories about ponies and almost constant barrages of my

theories kept me in check and added a great deal of humor to my life. Andrea, we

made it through this and we did it together.

Lastly, I want to thank the band Phish for providing the soundtrack to my

dissertation. Through their endless jams, I was able to concentrate on my work

and focus in on the many intricacies that my model always seemed to present. I

also want to thank the coffee and tea growers around the world for their precious,

precious caffeine rich crops. Furthermore, I have to thank the makers of TUMS, or

any antacid for that matter, for helping my digestive system cope with the stress.

I also want to thank the N.C. State crew team for allowing me valuable time on

the rowing machines. This was especially true when I placed second during their

viii



2000 meter erg time trials. They succeeded in making a 30 year old grad student

feel like he could still compete with the undergrads. In conclusion, I want to thank

my nephew Brandon Minervini, who at age 7 innocently asked me if the reason I

was still in school was if I failed. Well Brandon, I finally passed!

ix



Contents

LIST OF TABLES xiii

LIST OF FIGURES xiv

1 REVIEW 1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Biological Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Statistical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Nucleotide Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Codon Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Amino Acid Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Models That Consider Protein Structure . . . . . . . . . . . . . . . 22

Protein Threading and Pseudo–Energy Potentials . . . . . . . . . . . . . 26

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

x



2 PROTEIN EVOLUTION WITH DEPENDENCE AMONG

CODONS DUE TO TERTIARY STRUCTURE 46

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Modelling Protein Evolution Under Structural Constraints . . . . . . . . 50

Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Stationary Probabilities of Sequences . . . . . . . . . . . . . . . . . 54

Sequence Path Densities . . . . . . . . . . . . . . . . . . . . . . . . 55

Metropolis-Hastings algorithm . . . . . . . . . . . . . . . . . . . . . 57

Proposing θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Proposing Site Paths . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Prior Densities and Implementation . . . . . . . . . . . . . . . . . . 63

Annexin V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Lysozyme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Appendix 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Appendix 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3 STOCHASTIC MAPPING WITH DEPENDENCE AMONG

CODONS 91

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

xi



Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Evolutionary Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Extension to three sequences . . . . . . . . . . . . . . . . . . . . . . 99

Proposing Ancestral Sequences . . . . . . . . . . . . . . . . . . . . 102

Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Lysozyme c protein . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Eosinophil-derived neurotoxin protein . . . . . . . . . . . . . . . . . 113

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4 DISCUSSION 137

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

General Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Frozen Structure Assumption . . . . . . . . . . . . . . . . . . . . . 139

Assumptions with Pseudo-Energy Potentials . . . . . . . . . . . . . 140

Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Extension to General Phylogenies . . . . . . . . . . . . . . . . . . . 144

Gamma Shape Parameter for ω . . . . . . . . . . . . . . . . . . . . 144

Integrating Time Out of a Path . . . . . . . . . . . . . . . . . . . . 145

Transmembrane Proteins . . . . . . . . . . . . . . . . . . . . . . . . 146

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

xii



 
 

 

 

List of Tables  
 

 

1.1   The nearly Universal Genetic Code .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      7 

1.2   Time Reversible Nucleotide Models.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   14 

1.3   Codon Models .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    18     

2.1   Priors and Posteriors for the annexin V sequence comparison .  .  .  .  .  .  .     68 

2.2   Posterior means and 95% credibility intervals for s and p  .  .  .  .  .  .  .  .  .     69 

2.3   Priors and Posteriors for the Lysozyme c sequence comparison .  .  .  .  .  .     74 

3.1 Priors and Posteriors for the Lysozyme c sequence comparison .  .  .  .  .  .   110 

3.2 Event placement and measures of positive selection for Lysozyme c  .  .  .   111 

3.3 Priors and Posteriors for the EDN sequence comparison   .  .  .  .  .  .  .  .  .   114 

3.4 Event placement and measures of positive selection for EDN protein .  .  120-1 

3.5 Substitution event site clusters of both positively selected and negatively .  122 

3.6 Ancestral node reconstruction of EDN protein .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   127 

3.7 Possible substitution event orders for codons 64 and 132 .  .  .  .  .  .  .  .  .  . 127 

 

 

 

xiii 



 

 

 

List of Figures  
 

 

1.1     The four nucleotide bases, Adenine, Guanine, Cytosine and Thymine .  .  .    5 

2.1A  Nonsysnonymous rate variation due to structure in mouse annexin V .  .  .  71 

2.1B  Comparison for mouse annexin V of effects of solvent accessibility and .  . 71  

2.2A  Nonsysnonymous rate variation due to structure in human lysozyme c .  .    72 

2.2B  Nonsysnonymous rate variation due to structure in Rhesus macaque .  .  .    72 

2.2C  Comparison for human lysozyme c of effects of solvent accessibility.  .  .    75 

3.1.    Given observed sequences A, B and outgroup sequence O phylogeny .  .  .106 

3.2A.  Rate across a randomly sampled path when independence is assumed .  .  108  

3.2B.  Rate across a randomly sampled path when dependence is assumed .  .  .  108 

3.2C.  List of codons that interact with codon 61 when site dependencies .  .  .  . 108 

3.3. The posterior density of omega for Lysozyme c when site independence .112 

3.4. The posterior density of omega for EDN protein when site independence 116 

3.5. The values of solvent accessibility and pairwise interactions for ancestral.117 

3.6. The values of solvent accessibility and pairwise interactions for accepted.118 

3.7. Substitution event site clusters from EDN sequence analysis .  .  .  .  .  . 123-4 

 

 

                                                                             xiv 



Chapter 1

REVIEW

1



Introduction

The study of molecular evolution has had a rich history, yet is far from being

completely resolved. While a great deal of progress has been made in recent years,

there are still many facets that warrant explanation and questions that still need

to be answered. With the introduction of high throughput sequencing, genome

shot gunning and accelerated PCR methods, it is now possible to obtain massive

amounts of high quality sequence data at a rapid pace. With the entire genome

of many organisms now complete, in particular the human genome (International

Human Genome Sequencing Consortium, 2001, Venter et al. 2001), interest in the

field of molecular evolution has seen a dramatic increase. To meet this demand,

new and more robust models for comparative sequence analysis and phylogenetic

inference are necessary.

The relationship between geneticists and molecular evolutionists is mutually

beneficial and cyclical in nature. Geneticists uncover minute components of the

process of sequence change using the latest technologies. With this information,

molecular evolutionists try to build robust, statistically founded models that dis-

cern the relationships between biologically motivated parameters to best fit the

model system. Results from these models can then strengthen the support of

currently held theories, or discover relationships that were previously unknown.

Whatever the circumstance, the relationship between genetics and molecular evolu-

tion will provide avenues for future experimentation, as well the means for creating

more realistic models and will inevitably broaden our understanding of sequence

evolution.
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To begin to model this complex phenomenon, researchers greatly simplify the

process of sequence change by making several assumptions and considering only a

few biologically realistic factors (Thorne, 2000). Most widely used models of se-

quence evolution exploit the assumption that individual sites evolve independently

from one another. The independence assumption dictates that a substitution at

one site does not influence the rate of substitution at surrounding sites. From a

computational standpoint this assumption is quite attractive, for it makes statis-

tical inference on evolutionary trees computationally tractable. This calculation

is achieved via Felsenstein’s pruning algorithm (Felsenstein, 1981) where the like-

lihood of an individual site in an alignment can be easily determined. The full

likelihood is subsequently computed simply by taking the product of each individ-

ual site likelihood over all sites in the alignment.

The pruning algorithm requires an amount of computation proportional to the

sequence length N , the number of internal nodes on the phylogeny (for bifurcating

rooted topologies, this equals the number of taxa minus one) and the square of the

number of characters states n that are allowed at each site. Typically, models of

nucleotide substitution (e.g., Jukes and Cantor, 1969, Kimura, 1980, Felsenstein,

1981, Hasegawa et al., 1985, Felsenstein, 1989) have n = 4, whereas models of

amino acid replacement (e.g., Dayhoff et al., 1978, Jones, Taylor and Thornton,

1992b) have n = 20 and models of codon change (e.g., Muse and Gaut, 1994, Gold-

man and Yang, 1994) have n = 61. Unfortunately, the computationally attractive

assumption of evolutionary independence among sites is not biologically plausible

for protein coding sequences. Protein sequences must adopt complex three di-

mensional folds and maintain specific activation sites and binding domains. Thus,
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evolution must occur between compatible residues in order to maintain protein

functionality. In reality, the effect of a substitution might cascade through the

protein, changing the substitution rates at other sites. This is especially true at

sites in the protein core because of the densely packed nature of the folded protein

structure.

Models are built upon assumptions that may be mathematically reasonable,

but are not always considerate of the biological system to which they are applied.

Consequently, relaxing certain assumptions may cause results to be computation-

ally unobtainable. For instance, to relax the independent evolution among sites

assumption, the notion of evolution occurring at individual sites or codons must

be extended to the idea of entire sequence evolution. The form of the explicit rate

matrix necessary to accomplish this is beyond the capabilities of modern day com-

puters. Thus, to calculate likelihoods on phylogenetic trees, alternative methods

have to be derived.

The field of molecular evolution is initially presented in a biological context.

Without a clear understanding of the biological system under investigation, param-

eter estimates and subsequent data analyses have no foundation. A tour through

some of the pioneering work that has driven the field of molecular evolution over

the past forty years is then presented. Relaxing the independence assumption is

a natural step in the long progression of statistical models of evolution and it will

be interesting to observe the insights and ramifications that this work will have on

the field.
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Figure 1.1: The four nucleotide bases, Adenine, Guanine, Cytosine and Thymine, plus the
RNA nucleotide Uracil are shown. Adenine and Guanine are purines, while Cytosine, Thymine
and Uracil are pyrimidines. Because of the structural similarity, purine-purine or pyrimidine-
pyrimidine substitutions are much more likely than substitutions between groups.

Biological Background

The genetic makeup of most organisms is contained within DNA (Deoxyribonu-

cleic acid). DNA is composed of four nucleotides: Adenine, Cytosine, Guanine

and Thymine, abbreviated A, C, G and T, respectively. The nucleotides come in

two varieties, the purines, which includes A and G and the pyrimidines, which in-

cludes C and T. All four nucleotides are unique, yet the structural similarity within

purines or pyrimidines is substantially higher than that between the two groups

(See Figure (1.1)). Just five short decades ago, Watson and Crick, (1953a) pro-

posed the structural configuration of the DNA molecule as two antiparallel strands

of DNA that combine through hydrogen bonding of nucleotide base pairs. The nat-

ural bonding pattern was determined to occur between a purine and a pyrimidine,

namely A to T, with the formation of two hydrogen bonds and C to G, through the
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formation of three hydrogen bonds. This arrangement allows a semi-conservative

mechanism of DNA replication whereby each parental strand would separate from

the unwound double helix and serve as a template for the newly synthesized strand

(Watson and Crick, 1953b; Messelson and Stahl, 1958).

DNA is transcribed to RNA (Ribonucleic acid) which is translated to amino

acids, the building blocks of proteins. This is known as the central dogma of

molecular biology.

DNA
Transcription︷︸︸︷⇒ RNA

Translation︷︸︸︷⇒ PROTEIN

DNA and RNA are very similar to one another except for two points. Both DNA

and RNA share Adenine, Cytosine and Guanine, but instead of the Thymine base,

RNA contains Uracil (U) (See Figure 1). Also, both DNA and RNA bases are

each connected to pentose sugar molecules called ribose, but RNA has a hydroxyl

group bonded to the 2′ carbon of its ribose while DNA has only a single hydrogen

atom bonded at this position, hence the name de-oxy-ribose.

Three letter combinations of RNA nucleotides code for specific amino acids that

are common to all organisms. The sixty-four possible words, or codons, comprise

the (nearly) Universal Genetic Code (see Table 1.1). Exceptions to the universal-

ity of the genetic code are observed in yeast and certain protozoa, however the

most visible is found in mammalian mitochondria. In particular, three noticeable

differences include: UGA encoding tryptophan rather than a stop codon; AUA

defining methionine instead of isoleucine; and AGA and AGG translating stop

codons rather than arginine (e.g., Snustad and Simmons 2000). There are twenty

distinct amino acid types in existence, which means that there is some degeneracy
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The Universal Genetic Code

SECOND

U C A G

UUU Phenylalanine UCU Serine UAU Tyrosine UGU Cysteine U

U UUC Phenylalanine UCC Serine UAC Tyrosine UGC Cysteine C

UUA Leucine UCA Serine UAA STOP UGA STOP A

UUG Leucine UCG Serine UAG STOP UGG Tryptophan G

CUU Leucine CCU Proline CAU Histidine CGU Arginine U

F C CUC Leucine CCC Proline CAC Histidine CGC Arginine C T
I CUA Leucine CCA Proline CAA Glutamine CGA Arginine A H
R CUG Leucine CCG Proline CAG Glutamine CGG Arginine G I
S AUU Isoleucine ACU Threonine AAU Asparagine AGU Serine U R
T A AUC Isoleucine ACC Threonine AAC Asparagine AGC Serine C D

AUA Isoleucine ACA Threonine AAA Lysine AGA Arginine A

AUG Methionine ACG Threonine AAG Lysine AGG Arginine G

GUU Valine GCU Alanine GAU Aspartic Acid GGU Glycine U

G GUC Valine GCC Alanine GAC Aspartic Acid GGC Glycine C

GUA Valine GCA Alanine GAA Glutamic Acid GGA Glycine A

GUG Valine GCG Alanine GAG Glutamic Acid GGG Glycine G

Table 1.1: The nearly Universal Genetic Code is used to decode all possible three nucleotide
combinations into its proper amino acid. The table is set up such that the nucleotide in the left
most column corresponds to the first position of the codon, the nucleotide in the top row of the
table corresponds to the second position in the codon and the right most nucleotide corresponds
to the third position in the codon. Notice the degeneracy of the genetic code as well as the
existence of the three stop codons, namely UAA, UAG and UGA, which signal the ribosomes to
terminate translation.

in the genetic code. For instance, there are six codons that each translate Leucine,

while there are only two codons that translate Histidine. From Table 1.1, one

can observe that there are sixty-one sense codons that translate true amino acids

and three that translate STOP codons, namely UAA, UAG and UGA. When read,

stop codons instruct the ribosomes to terminate the translation process and to sep-

arate into their component halves. In most cases, stop or nonsense codons signal

the release of a fully translated protein sequence. Yet, in the case of a premature

stop codon (i.e. a nonsense mutation), the resultant shortened sequence is most

likely non-functional. In these cases, the protein is targeted by the cellular defense
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mechanisms for destruction. Depending on the role of the affected protein in the

cell, a nonsense mutation may be lethal.

Each of the twenty amino acids share a common backbone, yet all have unique

side chains which emanate from the central carbon atom, denoted Cα. Because

of the composition and arrangement of the atoms within the various side chains,

physical and biochemical properties are conferred on each residue. These proper-

ties include for example, overall size, polarity, hydrophobicity and charge which

have been used by researchers as a basis of comparison (Grantham 1974; Taylor

and Jones 1993; Koshi and Goldstein 1995). Because of the common backbone

structure, any two amino acids can form a peptide bond. In this reaction, the

negatively charged carboxyl terminal of one residue is attracted to the positively

charged amino terminal of the next residue. Both are joined via a dehydration

synthesis reaction with the expulsion of a single water molecule.

The precise sequence of amino acids is called the primary structure of a protein.

Interactions between the side chains of the amino acids cause the linear sequence

to contort and adopt unique conformations necessary for the protein to function

properly. Changes in the identity of residues in a folded protein may negatively

impact surrounding residues, which in a worst case scenario may force a change in

the overall structure resulting in a complete loss of function (Purves, Orians and

Heller 1992). The fact that any two amino acids can bond complicates the analysis

of protein sequences, for in theory an amino acid sequence of length N has 20N

unique possible residue combinations. However, because of negative interactions

only a minute fraction of the 20N possible sequences ever encode viable proteins.

Certain sub-structures have been repeatedly observed in many proteins and
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have been classified as local secondary structures. Some examples include α-helices,

β-pleated sheets, turns and loops. These secondary structures have been of great

interest to molecular evolutionists for it has been proposed that the rate of amino

acid replacement depends partly on local secondary structure (Overington et al.,

1992; Koshi and Goldstein 1995). The amino acids themselves have differing affini-

ties for each of the various secondary structures (e.g., Thorne, Goldman and Jones

1996) and certain amino acids, in particular Proline and Glycine, actually prevent

the formation of the α-helix (Purves, Orians and Heller 1992). Secondary struc-

tures can stably interact with one another through hydrogen bonds, salt bridges,

and Cysteine-Cysteine di-sulfide bonds, forming unique tertiary structures that

confer functional specificity to the proteins enabling them to bind other proteins

and DNA through the formation of activation and catalytic domains.

One way to describe sites within a folded protein structure is by local secondary

structure. Some properties associated with the folded protein are percent solvent

accessibility and pairwise interactions with surrounding residues. Given a highly

resolved protein crystal structure, these quantities can be defined and fixed for

each site in the protein. In general, the percent solvent accessibility is a measure

of the degree to which a site is exposed to the surrounding solvent. Intuitively,

those residues that lie on the surface of a protein have a large percent accessibility

and are generally hydrophilic in nature. Likewise, those sites within the core of the

protein have correspondingly low percent accessibility and are filled typically with

hydrophobic residues. Hydrophobic residues aggregate similar to the behavior of

oil droplets in water. This has led to the proposition that hydrophobicity drives

the process of protein folding (Dill, 1990a, Dill, 1990b). In this hypothesis, the
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hydrophobic core of the protein forms first, while the proper folding of the external

features of the protein takes place shortly thereafter.

Like gravity, the electrostatic force, or potential between residues within a

protein decreases with the square of the three dimensional separation distance.

Hence, pairwise interactions can only be defined between those residues that are in

close proximity in the folded protein state. Interestingly, residues that are distantly

separated along the primary structure of a protein may in fact be located close in

three dimensions because of the complex folding pattern of the tertiary structure.

In general, proteins are densely packed molecules and sites on the surface of the

protein may generally interact with only a few sites, but those in the core inevitably

interact with substantially more sites. Amino acid replacements in the core may

consequently have greater influence on protein functionality, simply because of

their effect on a higher proportion of sites.

It is with this biological background that molecular evolutionists build statis-

tical models that try to mimic closely the complex evolutionary substitution pro-

cess. Through an enormous amount of trial and error statistical assumptions are

relaxed, allowing models to become increasingly more realistic and consequently,

more computationally complex in the process. Over the years evolutionary models

have themselves evolved to capture these observed behaviors, which is described

in the following section.
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Statistical Models

DNA is not a static entity. Over time, all organisms experience mutations in their

DNA that have varying effects on the proteins they encode. The reasons for muta-

tion events are varied and stem from normal cellular processes to interactions with

the environment. Some causes include internal sequencing errors in DNA repli-

cation, repair mechanisms, insertions and deletions or more severe DNA damage

such as the formation of pyrimidine dimers. Unfortunately, the word mutation

conjures up images of freakish genetic experiments gone awry and in some cases,

mutations can be deleterious to the host. Fortunately, over time these mutations

are usually removed from a population through natural selection.

Mutations in which a nucleotide is substituted come in two varieties, namely

transitions and transversions. Transitions occur when a nucleotide is replaced by a

structurally similar nucleotide, that is Purine→ Purine, Pyrimidine→ Pyrimidine,

while transversions occur when a nucleotide is replaced by a structurally dissimilar

nucleotide, that is Purine → Pyrimidine, Pyrimidine → Purine. The ramification

of such an event is realized when the codon containing the substituted nucleotide

is translated to its corresponding amino acid residue.

Synonymous substitution events do not influence the identity of the encoded

amino acid residue in the protein. However, nonsynonymous substitutions cause

the translation of a different amino acid residue, yet because of the location of the

change, or by possessing similar physical and biochemical properties, the protein

may remain fully functional. Whether a substitution is synonymous or nonsynony-

mous depends on the identity of the nucleotides that comprise the codon unit at
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the instant of the substitution event. Unlike synonymous substitutions, nonsyn-

onymous substitutions are not tolerated equally well across the protein and may

be detrimental to overall functionality. In general, researchers have found that the

rate of nonsynonymous substitutions on the surface of globular proteins is about

twice that of residues buried in the core of the structure (Goldman, Thorne and

Jones 1998). In rare instances mutations may impart a selective advantage, allow-

ing an organism to better adapt to their surroundings. These mutations are often

passed on to future generations and become fixed in the population.

The effects of nucleotide substitutions can be reflected in the creation of statis-

tical models. Most models of molecular evolution rely upon theories of stochastic

processes and Markov chains. By definition, a stochastic process is a collection of

random variables governed by probabilistic laws defined on a common probability

space, while a first order Markov chain is a specific type of stochastic process with

the property that the next state of the system depends only on the current value

(see Karlin, 1966). In this way, all states of the Markov chain prior to the current

value have no influence on the probability of future events.

Nucleotide Models

In 1962, Zuckerkandl and Pauling recognized the fact that DNA sequence infor-

mation could be used to classify species. Although at this time, not many se-

quences were available for analysis, homologous sequences from different species

were aligned by hand, and the number of sites that differed were tabulated. This

idea was formalized in the theory of parsimony (Edwards and Cavalli-Sforza 1963)
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which, like the notion of Occam’s razor, proposed that the most likely explanation

of sequence evolution was the one that minimized the total number of substitution

events. In 1965, Zuckerkandl and Pauling proposed the concept of the molecular

clock that stated the rate of evolution was constant over time. Consequently, the

relationship of any two sequences could then be measured by simply counting the

number of differences between them.

Using the statistical theories discussed above, Jukes and Cantor in 1969 altered

the field by creating the first stochastic rate matrix, the JC69, which framed molec-

ular evolution in the context of a stochastic process. Under this model, the rate of

change to any nucleotide is equal to that of any other nucleotide. Consequently,

not only is the probability of replacement the same, but the steady state, or lim-

iting distribution of the four nucleotides is also equivalent and fixed at 0.25. In

general, when building a model of molecular evolution, determining which sequence

is ancestral is nearly impossible. For this reason, models are typically constructed

with the statistical assumption of time reversibility which makes the ancestral se-

quence choice arbitrary. With this assumption, the probability of starting from

nucleotide type i and changing to nucleotide type j in a time interval is the same

as the probability of starting from j and going backwards to i in the same time

duration. The models discussed herein (see Table 1.2) are all time reversible and

contain between 1-9 parameters to estimate from the data.

Technological advances increased the availability of DNA sequences and limi-

tations of Jukes and Cantor’s JC69 model were more readily apparent. Through

greater biological understanding, statisticians and geneticists used the JC69 method-

ology as a launch pad for their own models. For instance, researchers noticed that
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JC69




· 1 1 1
1 · 1 1
1 1 · 1
1 1 1 ·




K2P




· 1 κ 1
1 · 1 κ

κ 1 · 1
1 κ 1 ·




F81




· πC πG πT

πA · πG πT

πA πC · πT

πA πC πG ·




F84




· πC πG(1 + κ
πH(G)

) πT

πA · πG πT (1 + κ
πH(T )

)

πA(1 + κ
πH(A)

) πC · πT

πA πC(1 + κ
πH(C)

) πG ·




Where πH(C) = πH(T ) = πC + πT

and πH(A) = πH(G) = πA + πG

HKY85




· πC κ πG πT

πA · πG κ πT

κ πA πC · πT

πA κ πC πG ·




GTR




· a πC b πG c πT

a πA · d πG e πT

b πA d πC · f πT

c πA e πC f πG ·




Table 1.2: This table lists many of the time reversible models of nucleotide evolution. As one
descends the table, the number of free parameters steadily increases from JC69 having one free
parameter, to the most general time reversible model, GTR, which has nine free parameters. See
the accompanying text for a full description of the models and the various parameters that are
incorporated (see also Yang 1997).
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transitions occurred more often than transversions which was incorporated into a

model in 1980 called the K2P (Kimura 1980), and subsequently verified with an

extensive empirical study (Brown and Simpson 1982). The K2P model is identi-

cal to the JC69 except for a new parameter κ, the transition / transversion rate

parameter, which affords researchers the ability to estimate how much more likely

transitions are in their dataset.

Shortly thereafter, Felsenstein proposed a pair of stochastic models, commonly

referred to as the F81 (Felsenstein, 1981), and the F84 (see Felsenstein, 1989).

Contradictory to the uniform steady state distribution hypothesized previously

(Jukes and Cantor, 1969) Felsenstein recognized that in most cases there exists

a nucleotide base composition bias in DNA sequence data. To alleviate this re-

striction three degrees of freedom were added to the F81 model by allowing the

relative frequency of the nucleotides to vary. The instantaneous rate in this model

is proportional to πj, the relative frequency of nucleotide type j. Frequently, good

estimates of the relative frequencies of the four nucleotides are easily derived from

counts of the individual nucleotides in the dataset under investigation and used for

the remainder of the likelihood calculation. It is reassuring to note that under the

independence assumption, the estimates derived by this counting method are very

similar to those obtained by estimation through likelihood procedures. The F84

model is an integral part of the evolutionary procedure presented in later chapters

of this work, and thus will not be discussed now.

The idea of combining a model that allows the relative frequency of the nu-

cleotides to vary with a transition-transversion rate parameter resulted in the for-

mation of two models, namely the HKY85 (Hasegawa, Kishino and Yano, 1985)
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and what is commonly referred to as the F84 (Felsenstein, 1989). Only minute

differences in how each measures a transition substitution distinguish these mod-

els. Similar to the K2P model of Kimura (1980), the HKY85 model captures this

behavior using the transition-transversion rate parameter κ. However, the F84

model uses:

κπj

πH(j)

where πH(j) =





πA + πG if j is a purine

πC + πT if j is a pyrimidine
(1.1)

which allows the rate of a change for transitions to be conditional on nucleotide

group membership. The parameters in both models are estimated through maxi-

mum likelihood techniques.

The most general time reversible model contains at most nine parameters to

estimate from the data; three for the relative nucleotide frequencies and up to six

for each possible pairwise nucleotide substitutions. For this reason it is referred

to as the General Time Reversible (GTR) model (e.g., Tavaré 1986; Yang 1994a;

Zharkikh 1994). In order to obtain reasonable estimates for the large number of

parameters considered, this model should not be used to analyze datasets with

only a few, relatively short sequences. Thus for a particular dataset, in order to

choose the optimal model two thoughts must be considered. Adding parameters

the model makes it more general and increase its applicability. On the other hand,

although more biologically realistic assumptions can be considered, the computa-

tional complexity of a model increases with extra parameters. This increases the

error variance associated with each parameter estimate (e.g., Zharkikh, 1994). Us-

ing too simplified a model may also lead to biased results (e.g., Huelsenbeck, 1995;
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Huelsenbeck and Rannala, 1997). The real trick then, is to strike the perfect bal-

ance between incorporating many of the rules that govern the process of evolution,

yet still remain general enough to provide wide applicability and provide useful

statistical inference without a tremendous increase in computational complexity.

Codon Models

Whether a substitution is synonymous or nonsynonymous depends on the iden-

tity of the nucleotides that comprise the codon unit. Underlying the process of

nucleotide substitution is the nearly Universal Genetic Code (See Table 1.1), thus

the process of nucleotide substitution in coding regions is inherently not inde-

pendent among sites. By incorporating the dependence structure of the Genetic

Code, models can be built to separate the biases in substitution patterns found at

the nucleotide level, from selective constraints found at the amino acid level (e.g.,

Goldman and Yang 1994; Yang, Nielsen, and Hasegawa 1998).

The codon models that are frequently used are modifications of those originally

proposed by Muse and Gaut (1994) and the Goldman and Yang (1994) (see Ta-

ble 1.3). The explicit form of both matrices are quite sparse, for each disallows

instantaneous changes at more than one codon position, as well as change to pre-

mature stop codons. In these Markov models the state space increases to 61 x

61 for the 61 sense codons of the universal genetic code. To model the evolution

between two aligned codons that differ in more than one position, both models

behave as though there are multiple distinct substitution events that evolve the

codon in the given amount of time.
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(a) Muse and Gaut, 1994

Qx,y =





πβ χ If event is synonymous
πβ φ If event is nonsynonymous
0 If codons differ at more than one posisiton

(b) Goldman and Yang, 1994

Qx,y =





u πc(y) κ e−d(aax,aay)/V If codons differ by a transition
u πc(y) e−d(aax,aay)/V If codons differ by a transversion
0 If codons differ at more than one posisiton

(c) Goldman and Yang, 1994 (Simplified)

Qx,y =





u πc(y) If event is a synonymous transversion
u πc(y) κ If event is a synonymous transition
u πc(y) ω If event is a nonsynonymous transversion
u πc(y) κ ω If event is a nonsynonymous transition
0 If codons differ at more than one position

Table 1.3: Models of codon evolution. The Muse and Gaut codon model (1.3a) uses only 5
parameters. The dual parameterization of the parameter-rich Goldman and Yang codon rate
matrix is also given in 1.3b,c. Most of the parameters in 1.3b,c are stationary codon frequencies.
Explanation of the parameters used in each model are given in the accompanying text.

The Muse and Gaut model (Table 1.3(a)) accounts for the constraint at the nu-

cleotide level through πβ, the equilibrium frequency of the substituted nucleotide

type in the target codon accounting for stop codons. At the amino acid level, this

model allows for heterogeneity of rates between synonymous and nonsynonymous

substitutions through χ, the synonymous rate parameter and φ, the nonsynony-

mous rate parameter. This model has only five rate parameters which can be easily

resolved from the data through maximum likelihood procedures.

To model the selective constraints at the nucleotide level, instead of using the

equilibrium frequency of the target nucleotide as above, the equilibrium frequency

of the target codon, denoted πc(y), can also be used (Goldman and Yang 1994).

Because of the massive amount of data required to obtain reasonable parameter
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estimates of the codon frequencies, πc(y) is usually derived from the product of the

equilibrium frequencies of the three nucleotides that comprise the codon. These

frequencies are then normalized to account for the relative frequency of the three

stop codons. Like the K2P (Kimura, 1980) and the HKY85 (Hasegawa, Kishino

and Yano, 1985) models of nucleotide substitution, this model also includes the

parameter κ, to account for the observance that transitions occur more often than

transversions (e.g., Brown and Simpson, 1982).

The Goldman and Yang and Muse and Gaut models of codon substitution can

be written to account for differences at the amino acid level using an amino acid

distance matrix (Grantham, 1974) (see Table 1.3(b) for the Goldman and Yang

parameterization). The Grantham matrix was derived by comparing physical and

biochemical properties of the twenty amino acids such as volume, charge, and

hydrophobicity. These values are denoted Daax,aay , where aax denotes the amino

acid that is translated by codon x in the model, and range from as small as 5 for

(ILE - LEU) and as high as 210 for (CYS - PHE). The parameter V is a tuning

parameter to allow the distance matrix to better fit the data. A rate normalization

constant u is inserted to make the relation
∏y=61

y=1 πc(y)Qy,y = 1, possible (see Table

1.3(b)).

Through experimentation, Goldman and Yang found that this parameteriza-

tion did not fit actual data very well, and a simplification involving the assumption

of uniform distance between all amino acid pairs was imposed. This allowed the

complex exponential term to be replaced by the single nonsynonymous / synony-

mous rate parameter ω (see Table 1.3(c)). Unlike the Muse and Gaut model, the

Goldman and Yang model has 63 parameters to estimate from the data; sixty of
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which are the codon equilibrium frequencies. Lately, these methods have been ex-

panded upon to incorporate the behavior seen in lentiviral evolution (Pedersen et

al. 1998). This expanded model accounts for the disparity in relative frequencies

of the four nucleotides at each of the three codon positions as well as selection

against the CpG dinucleotide within codons.

Amino Acid Models

The nucleotide and codon models discussed are all parametric in nature, whereby

various parameters are used to define relationships among pairs of nucleotides or

codons. When considering models of amino acid evolution, the usual parameters

used such as the transition / transversion rate parameter κ, or the nonsynony-

mous / synonymous rate parameter ω, lose meaning. Hence, many researchers

have instead focused on empirical approaches (Dayhoff et al. 1978; Jones et al.

1992; Gonnet, 1992; Hennikoff and Hennikoff, 1992). Empirical models require

a reference data set which, if small, will not provide a good fit to a given data

set under investigation (Liò and Goldman, 1998). However, the advantage to us-

ing empirically derived matrices is that they may more realistically capture the

unequal transition probabilities among amino acid pairs as seen in true proteins.

Because of the degeneracy of the genetic code, a synonymous substitution may

be the result of several substitutions at the nucleotide level. For example, the

codons AGU and UCC may differ at all three codon positions, yet when translated,

both code for the same amino acid, Serine (see Table 1.1). When analyzing highly

diverged sequences, models of amino acid replacement may be beneficial for they
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act as a filter for the noise of multiple substitutions at the DNA level (e.g., Goldman

and Yang 1994).

An important method for handling protein evolution was that of Dayhoff,

Schwartz and Orcutt in 1978 (see also Dayhoff et al. 1972). In this landmark

work, highly similar sets of protein sequences were aligned by hand and subse-

quent counts of observed amino acid replacements were tabulated. The small

genetic distance between the sequences allowed the assumption of multiple sub-

stitutions at a given site to be negligible. With these counts, the Point Accepted

Mutation (PAM) matrix was derived. Because the counts came from global align-

ments of several protein sequences, the PAM matrix determines the probability for

an amino acid replacement located in an average site within an average protein.

Unfortunately, the definition of an average site within an average protein becomes

difficult to verbalize with any precision, yet despite this apparent drawback, the

Dayhoff method has gained wide acceptance and has been used successfully in

making phylogenetic inference.

The Dayhoff method was duplicated on a more modern database using a sub-

stantially higher amount of sequence information to create the JTT amino acid

substitution matrix (Jones, Taylor and Thornton, 1992b). The increase amount

of data allowed a more robust estimate of the probability of change between rare

amino acid pairs (e.g., Methionine vs. Tryptophan), which were nonexistent in

the dataset used for the creation of the PAM matrices. Because very similar

methodologies were employed to create the Dayhoff model, the JTT model suffers

the same unavoidable consequence of also being defined for an average site in an

average protein.
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Through matrix multiplication, Dayhoff et al. (1978) were able to create amino

acid transition matrices for various PAM distances. In particular, the commonly

used PAM120 and PAM250 matrices were derived by multiplying the PAM matrix

by itself 120 and 250 times, respectively, where larger numbers represent greater

evolutionary distances. By decomposing the Dayhoff instantaneous rate matrix,

the probability of change between amino acid residues can also be calculated for

any amount of evolution T using standard matrix exponentiation procedures (e.g.,

Swofford et al. 1986, Kishino, Miyata and Hasegawa, 1990). This type of model

also allowed phylogenetic inference using maximum likelihood, but for some un-

known reason it has not enjoyed the same widespread use.

Lastly, instead of working with a large amino acid replacement matrix, re-

searchers were able to represent all twenty residues by considering only a finite set

of the most conserved physical and chemical characteristics (Koshi, Mindell and

Goldstein 1997, 1999; Koshi and Goldstein 1998; Halpern and Bruno 1998). Con-

sidering these quantities as fixed, transition matrices based on functions of these

properties were then derived. This significantly reduced the number of parameters

in the model that may have allowed for accurate parameter estimation, yet may

have also oversimplified the true complexities of the evolutionary process, giving

results that are often difficult to interpret.

Models That Consider Protein Structure

Starting from a linear sequence of amino acids, the precise manner in which the

sequence attains its resultant three dimensional structure is still unknown. Fortu-
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nately, there exist methods to discern the precise structures of proteins. In fact,

as of January 1, 2003, the Brookhaven Data Bank (PDB) (Bernstein et al. 1977)

contained the three dimensional coordinates of roughly 20,000 proteins. These co-

ordinates were mainly derived from protein X-ray crystallography, but were also

derived from nuclear magnetic resonance (NMR) techniques. Through precise

protein conformations, functionality is conferred. Thus, any disruption in protein

structure may easily render the protein non-functional. For example, enzymes are

proteins that possess a high degree of specificity and function to catalyze precisely

one reaction, which is why they are commonly referred to as lock-and-key proteins.

For this reason, although it has long been observed that divergence in homologous

protein sequences occurs rapidly, the corresponding change in their associated pro-

tein structure is much less severe because of the strong selective pressure to main-

tain functionality (e.g., Chothia and Lesk 1986; Flores et al. 1993; Russell et al.

1997).

One way in which researchers could explore the ramifications of amino acid

replacements in proteins is with site-directed mutagenesis. However, using this

method would not only be slow and tedious, but would inevitably be unsuccessful

at testing the vast amount of amino acid replacement combinations. It was later

hypothesized that by using the database of known sequences one could compile

lists of protein characteristics in various local site environments to discern what

properties had been conserved through evolutionary time (Koshi and Goldstein

1995). In order to maintain the overall conformation of the protein, it has been

observed that amino acids that share physical and biochemical attributes tend to

replace one another more often on average than those that are more disparate
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(e.g., Zuckerkandl and Pauling, 1965; Dayhoff et al. 1978; Parisi and Echave,

2001). Others have defined an explicit distance between amino acid residues based

on measures of hydrophobicity, charge and side chain volume (e.g., Grantham,

1974; Taylor and Jones, 1993). Yet, it is not clear whether the forces behind

evolutionary change are governed by these properties.

The idea that the rate of amino acid replacement depends on local secondary

structure is not novel (Overington et al. 1992; Koshi and Goldstein, 1995). Fur-

thermore, many researchers have understood the importance of incorporating struc-

tural and functional information into models to improve evolutionary and phylo-

genetic inference (e.g., Koshi and Goldstein, 1995, 1997; Thorne, Goldman and

Jones 1996; Goldman, Thorne and Jones, 1998). Yet, exactly how each group has

achieved this goal has been quite varied. However, researchers have been able to

use large databases to analyze the relationships between amino acid residues and

secondary structural elements with solved tertiary protein structures. For instance,

researchers have analyzed the databases of aligned sequences to create amino acid

transition matrices (Dayhoff et al. 1978, Jones et al. 1992). Unfortunately in these

cases, only a single matrix was produced to explain the evolutionary history of all

sites within a sequence regardless of the local environment of that site. Building

on this idea, the structural databases were later analyzed to construct transition

matrices for various secondary structural environments and surface accessibilities

(Koshi and Goldstein, 1995, 1997; Goldman, Thorne and Jones 1998; Thorne et al.

1996). The results of Thorne et al. (1996) mainly showed that hydrophobicity was

highly conserved, that the volume of a residue was slightly conserved in core re-

gions because of tight internal packing constraints and surprisingly, that secondary
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structural elements were less conserved. Similar to the problems faced by the PAM

and JTT matrices, Koshi and Goldstein (1998) problematically note that within

each environment, amino acids are treated uniformly by the given matrix.

Logically following this idea even further, one may desire site-specific amino

acid transition matrices. In order to obtain reasonable parameter estimates how-

ever, the tremendous amount of data necessary for their creation make this too

daunting a task (Liò and Goldman, 1998). One way to handle this is to assume

that sites can be classified in a limited number of structural classes with which one

can create specific transition matrices by analyzing large databases of sequences

(Thorne, Goldman and Jones, 1996; Goldman, Thorne and Jones, 1998; Liò et al.

1998). However, in most cases it may be unreasonable to assume that only a finite

number of structural classes can accurately account for the vast diversity of sites

found in proteins and their associated structures.

One way to simplify the study of proteins is to classify individual sites into

categories based on location (internal vs. external), on local secondary structures

(α− helix, β− sheet, loop, etc.), and percent solvent accessibility. Using various

property combinations, large tables have been compiled to analyze the replacement

patterns observed in aligned sequences (Overington et al., 1990, Lüthy et al., 1991,

Topham et al., 1993, Wako and Blundell, 1994). Because these tables were derived

regardless of evolutionary considerations, applications of such matrices to answer

phylogenetic questions becomes difficult. Another way to simplify matters is to

consider codon position and chemical properties of the amino acids themselves such

as charge, acidity and hydrophobicity as surrogates for experimentally determined

protein structures (Naylor and Brown, 1997). Because of the low number and type
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of structures analyzed, the applicability of their method to the broader range of

globular proteins would most certainly be diminished.

Protein Threading and Pseudo–Energy Potentials

A different approach to discovering sequence structure correlations is through pro-

tein threading. The idea is to evaluate the fit of a sequence to a known protein

structure based on what is seen in a structural database. There are many meth-

ods to evaluate sequence structure fit, but some of the more successful are based

on Boltzmann physics. This theory often arises when discussing the energetics

of compatibility of protein sequences and related protein structures. In the past

Boltzmann physics has been used to describe the energetics of protein conforma-

tions (MacArthur and Thornton, 1991, Serrano et al. 1992), with the existence of

internal cavities (Rashin et al. 1986), of ion pairs (Bryant and Lawrence, 1991),

or with amino acid location preferences (Miller et al. 1987, Koshi and Goldstein,

1998, Koshi et al. 1997, 1999).

The components and exact form of the true forces that stabilize protein struc-

ture may never be known explicitly. One approach to calculate protein stability

is to determine the Gibbs free energy associated with a true protein. However,

these methods typically require intense computations that may explain the inter-

est in faster approximation strategies. Creating pseudo-energy potentials is one

way to approximate Gibbs free energy, and it has been successfully applied to pro-

tein threading. For instance, Jones, Taylor and Thornton (1992b) created a set of

pseudo-energy potentials using the Inverse Boltzmann Principle (IBP) as well as

26



the Thermodynamic Hypothesis (Anfinsen, 1973). The Thermodynamic Hypothe-

sis postulates that the native conformation of a particular protein sequence is that

which gives the lowest energy. As it is applied here, the IBP allows the approxi-

mation of the energy associated with solvation and pairwise interactions based on

the frequency of occurrence in a database. Combined, these relations assume that

if a certain conformation is more frequent, it must therefore be stable and thus will

be given a low energy. Furthermore, by evaluating the fit of a particular sequence

on all known conformations, the most likely native state is then assumed to be the

one that gives the lowest energy (Jones, Taylor and Thornton, 1992b).

The potentials derived using the IBP are commonly referred to as knowledge-

based potentials of mean force because they contain the information from the

diverse assortment of crystal structures from which they were derived. Instead

of an exact measure of protein stability, using the IBP determines a measure of

how likely a sequence adopts the given fold based on how similar the interactions

compare to those most often observed in the structural database of real proteins

(Jones and Thornton 1996). To avoid introducing anomalies into the training

set, the rarely crystallized non-globular transmembrane proteins, as well as those

proteins with unusual prosthetic groups were excluded (Hendlich et al., 1990).

More data often translates to parameter estimates with lower variance. In this

vein, the addition of unique crystal structures to the training set should increase the

ability of a model to distinguish incorrect conformations from the true native state

of the protein as well (Hendlich et al., 1990). Unfortunately, the true forces that

stabilize protein structures are not known. Hence, even with an arbitrarily large

database there is no guarantee that the calculated energies converge to the true
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stabilization forces of interaction. For a more complete discussion of the drawbacks

of empirical energy potentials along with a test on a hypothetical lattice model

protein see Thomas and Dill (1996a, 1996b).

One way in which researchers characterize sites within a protein structure is

through measures of solvent accessibility. Because X-ray crystallography is some-

times a tedious and unsuccessful endeavor, many have focused their efforts on pre-

dicting solvent accessibility measures for sites in proteins whose structures have

not been determined (e.g., Pascarella et al. 1998; Pollastri et al. 2002; Rost and

Sander 1994; Thompson and Goldstein 1996, 1997). However, if the structure of

one sequence in a dataset is known, a direct measure of solvent accessibility for

each site can be found using the Dictionary of Secondary Structure of Proteins

(DSSP) program (Kabsch and Sander, 1983). Assuming that alignment columns

contain structurally homologous positions, the solvent accessibility measure can

then be extrapolated across taxa.

To obtain the percent solvation for each site the raw solvation value from DSSP

must be normalized using the associated amino acid’s relative maximum accessi-

bility. The maximum value for each residue is estimated using a fully extended

pentapeptide GG(X)GG as the reference state mimics the configuration for which

the residue attains its highest accessibility in a folded protein (see Appendix A)

(Jones, Taylor and Thornton, 1992b). The normalized values are then subdivided

into five solvation categories ranging from very low values representing sites that

are completely buried in the protein core, to high values representing sites that are

fully exposed (David Jones, personal communication). The cutoff values for each

solvation category, γs, are given in Appendix B.
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Within a protein crystal structure, the solvation category of each site is auto-

matically fixed. When evaluating the fit of an non-native sequence to a structure,

often times the amino acid residue at a site is not equivalent to the reference

residue. Because of differences in side chain volume the exact percent solvation is

likely to be slightly different than the given value. Because the solvation categories

span an interval however, it seems reasonable to assume that the actual solvent

accessibility value of the threaded residue will be contained in the given interval.

When examining protein structures, certain substructures, such as α−helices

and β−pleated sheets, are common occurrences even within diverse protein folds.

Their high frequency corresponds to highly stable energy values as calculated us-

ing the IBP. If protein structure is considered in terms of pairwise inter-atomic

distances, one can encompass all aspects of secondary structure as favorable inter-

actions between pairs of amino acid residues that lie in close proximity in folded

proteins. Several methods accomplish this by defining pairwise interactions among

amino acids using pseudo–energy potentials (e.g., Hendlich et al., 1990, Jones, Tay-

lor and Thornton, 1992b, Kocher et al., 1994, Miyazawa and Jernigan, 1996, Park

et al., 1997). However, Sippl (1990) was the first to derive energy potentials for the

interactions of all amino acid residue pairs as a function of interatomic Euclidean

distance.

By analyzing the set of highly resolved, non-homologous protein crystal struc-

tures in the PDB database, counts of all possible amino acid residue pairwise

interactions were tabulated (Jones, Taylor and Thornton, 1992b). In their proce-

dure, two residues are defined to interact if their Cβ carbon atoms are within 10

Angstroms of one another. Because Glycine is the only amino acid that does not
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have a true Cβ atom, a fictitious Cβ atom can be constructed using the spatial

geometry of the other atoms in its backbone (David Jones personal communica-

tion). The Jones pairwise potentials were derived for five atom pairs, namely, the

Cβ ⇒ Cβ, Cβ ⇒ N, Cβ ⇒ O,O ⇒ Cβ, N ⇒ Cβ.

The behavior of the pairwise energy potential is like that of gravitational force.

If two residues lie in close proximity, there is only one potential defined for their

interaction. The Nitrogen terminus has a slight positive charge, while the Carboxyl

end has a slight negative charge, giving the overall residue an electrostatic gradient

(N+ ⇒ COOH−). Because of this polarity, instead of making symmetric counts

(Dayhoff et al. 1978) only observed counts between two residues if the initial

residue fell prior to the second in the order along the protein chain were tabulated

(Sippl, 1990). The equation used to derive all pairwise energy potentials used in

GenTHREADER (Jones, 1999) is derived in nice detail in Hendlich et al. (1990).

The resultant counts for each atom pair are subdivided into three main cate-

gories according to their sequence separation along the protein chain. Short range

interactions are those for which amino acids are separated by less than 12 residues

along the chain and account for some secondary conformations such as α - he-

lix formation. Medium range interactions are those for which amino acids are

separated by between 12 and 22 residues, and account for substructures such as

amphipathic helices and β - sheet motifs. Finally, long range interactions are those

for which amino acid residue separation is greater than 22 residues, and account

for the overall tertiary structure interaction and final protein conformation (Jones,

Taylor and Thornton, 1992b). Although separated by substantial distances along

the protein chain, long range interactions do occur, because of residues lying in
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close proximity in the final complex protein conformation.

Conclusion

The history given in the introduction chronicles the state of molecular evolution

for protein coding genes as the topic itself has evolved over the years. The models

considered assume independence among sites or codons, which is unfortunately

not biologically plausible. In order to maintain functionality of the folded protein

state, residues must interact. Relaxing the independence assumption comes with

a tremendous increase in computation which in the not so distant past would have

been intractable. Recently, computer processor speed and advances in Bayesian

statistical modelling, such as Markov chain Monte Carlo methods, have increased

to the point where such models can now be contemplated. The following chap-

ters detail the derivation and implementation of one such model, whose general

framework may have broad applicability in the field of molecular evolution.
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Appendix A

Alanine = 113 Leucine = 179

Arginine = 253 Lysine = 215

Asparagine = 167 Methionine = 194

Aspartic Acid = 167 Phenylalanine = 226

Cysteine = 140 Proline = 151

Glutamic Acid = 199 Serine = 134

Glutamine = 198 Threonine = 148

Glysine = 88 Tryptophan = 268

Histidine = 194 Tyrosine = 242

Isoleucine = 178 Valine = 157

The relative solvent accessibility maximum values for each amino acid in a fully folded protein.
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Appendix B

0 ≤ γ1 < 12

12 ≤ γ2 < 36

36 ≤ γ3 < 44

44 ≤ γ4 < 87

87 ≤ γ5

The five solvation categories range from fully buried to fully exposed. The form of the last

solvation category is reflective of the fact that despite normalization, values may at times exceed

100 %, in particular at sites at the beginning and end of the protein sequence.
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Chapter 2

PROTEIN EVOLUTION WITH

DEPENDENCE AMONG

CODONS DUE TO TERTIARY

STRUCTURE

Robinson DM, DT Jones, H Kishino, N Goldman and JL

Thorne (2003) Mol. Biol. Evol. 20(10):1692-1704.
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Abstract

Markovian models of protein evolution that relax the assumption of independent

change among codons are considered. With this comparatively realistic framework,

an evolutionary rate at a site can depend both on the state of the site and on the

states of surrounding sites. By allowing a relatively general dependence structure

among sites, models of evolution can reflect attributes of tertiary structure. To

quantify the impact of protein structure on protein evolution, we analyze protein-

coding DNA sequence pairs with an evolutionary model that incorporates effects

of solvent accessibility and pairwise interactions among amino acid residues. By

explicitly considering the relationship between nonsynonymous substitution rates

and protein structure, this approach can lead to refined detection and charac-

terization of positive selection. Analyses of simulated sequence pairs indicate that

parameters in this evolutionary model can be well estimated. Analyses of lysozyme

c and annexin V sequence pairs yield the biologically reasonable result that amino

acid replacement rates are higher when the replacements lead to energetically fa-

vorable proteins than when they destabilize the proteins. Although the focus here

is evolutionary dependence among codons due to protein structure, the approach

is quite general and could be applied to diverse cases of evolutionary dependence

where surrogates for sequence fitness can be measured or modelled.
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Introduction

Rates of amino acid replacement can vary both among protein positions (e.g.,

Yang, Nielsen and Hasegawa 1998) and among the types of amino acids involved

in the replacement (e.g., Dayhoff, Schwartz and Orcutt 1978). Furthermore, rates

of amino acid replacement at a protein site are likely to depend on the amino

acids found at other positions in the protein. Although it is widely accepted that

positions in a protein sequence do not evolve independently and although methods

for detecting protein sites with correlated patterns of evolution have been proposed

(e.g., Pollock, Taylor and Goldman 1999; Wollenberg and Atchley 2000), little

progress has been made on incorporating dependence among sites into procedures

for evolutionary inferences.

A notable exception to this lack of progress is found in studies by Pedersen

and Jensen on evolutionary dependence among sites due to reading frame over-

lap (Jensen and Pedersen 2000; Pedersen and Jensen 2001). Here, we borrow

ideas from Pedersen and Jensen, but focus on the evolutionary dependence among

codons that is associated with protein tertiary structure. In addition, we build

upon a recently proposed technique for simulating protein evolution (Parisi and

Echave 2001). With this technique, the rate at which a site experiences change can

be modified by substitutions at neighboring sites. Through simulations, Parisi and

Echave convincingly demonstrated that their model incorporates information that

is unobtainable with widely used models of protein evolution. For example, the

simulation studies showed tendencies of certain amino acids to preferentially oc-

cupy certain sites in the left–handed β helix domain of UDP-N-acetylglucosamine
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acyltransferases. When a group of actual sequences with this helix domain was

examined, qualitatively similar tendencies were observed.

Parisi and Echave began their simulations with a reference protein of known

tertiary structure. They then selected a function to assign a distance between a

protein sequence and the reference structure. Underlying the sequence–structure

distance is the idea that protein tertiary structure evolves very slowly (Chothia and

Lesk 1986; Flores et al. 1993). Therefore, the energy associated with the structure

of an ancestral protein (e.g., the reference protein) and the energy associated with

the structure of a descendant protein should be similar. The sequence–structure

distance can be interpreted as a surrogate for the difference in energies between

an ancestral and descendant protein.

When applying the Parisi–Echave procedure, most simulations that begin with

an ancestral sequence will likely result in a descendant that differs from an observed

descendant. Due to this apparent drawback, an alternative strategy is needed.

Our approach differs from Parisi and Echave’s work mainly because our goal is to

perform statistical inference when studying the relationship between two observed

sequences. It would be computationally inefficient to simulate sequence evolution

and then discard all simulated descendant sequences that differ from those observed

(though see Marjoram et al., submitted, for review and development of related

methods).

Here, we explain our technique for statistical inference with evolutionary models

that have dependence due to protein structure. With simulations, we show that

this technique can obtain accurate parameter estimates. With analyses of actual

sequence pairs, we show that our parameter estimates are biologically reasonable.
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Although dependence due to protein structure is the focus here, slight modifications

of our inferential procedure can be applied when the evolutionary dependence

among sequence sites arises in other ways.

Modelling Protein Evolution Under Structural Con-

straints

Parameterization

Following Parisi and Echave (2001), we propose a Markov model to describe the

evolution of proteins under structural constraints. This is accomplished with the

creation of an instantaneous rate matrix, R, where the entry in row i and col-

umn j represents the rate of change from one sequence to another. Because we

abandon the assumption of independent changes among codons, we cannot follow

the conventional practice (e.g., Goldman and Yang 1994; Muse and Gaut 1994)

by usefully expressing our model with a series of 61 x 61 rate matrices that each

describe change at a specific codon location in the protein. For a DNA sequence

of length N nucleotides and ignoring for now the possibility of stop codons, the

dimensions of our rate matrix R are 4N x 4N . Our assumption that each substitu-

tion event changes only a single nucleotide residue reduces the maximum number

of nonzero elements in each row of R to 3N + 1. These 3N + 1 elements comprise

the diagonal entry that represents no change in sequence and one entry for each

of the three possible substitutions at each of the N nucleotide sites.

The key motivation underlying our model is that nonsynonymous substitution

50



rates should partially depend on whether the implied amino acid replacements

would stabilize or destabilize the known and assumed fixed protein tertiary struc-

ture. To assess the effect of an amino acid replacement on protein stability, a

measure is needed for how well the sequence fits the structure both before and af-

ter the replacement. If this measure indicates that the replacement would improve

the sequence-structure fit, then the rate of the nonsynonymous change should be

high. Likewise, if the sequence-structure fit would become more poor due to an

amino acid replacement, then the corresponding nonsynonymous rate should be

low.

Fortunately, systems for assessing the compatibility between sequence and

structure have been developed for the purpose of protein fold recognition (e.g., see

Jones and Thornton 1996). Our evolutionary model relies on a sequence-structure

compatibility criterion that has been successfully applied to protein fold recognition

by Jones, Taylor and Thornton (1992) and Jones (1999). This criterion can be split

into two components, one component assessing solvent accessibility and the other

assessing pairwise interactions between residues near to each other in 3-dimensional

space. In our application we assume that protein tertiary structure is known and

fixed, and consequently the values of these two components can be determined for

a sequence by threading it onto the known structure. The solvent accessibility

and pairwise measures of sequence-structure compatibility, respectively denoted

by Es(i) and Ep(i) for a Sequence i, are intended to be positively correlated with

the free energy the protein has when folded into the known structure. Therefore,

Es(i) and Ep(i) have low (ideally negative) values when sequences and structures

are relatively compatible. Rather than being actual energy potentials, the specific
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values of Es(i) and Ep(i) are derived from statistical analysis of large numbers

of known structures to assess the ‘plausibility’ of observing different amino acids

at different degrees of solvent accessibility and observing different pairs of amino

acids at different physical separations (Jones, Taylor and Thornton 1992; Jones

1999).

Except for the treatment of nonsynonymous rates, our parameterization is sim-

ilar to that of widely used codon models. We include parameters πA, πG, πC and

πT (πA + πG + πC + πT = 1 and all of these parameters are non-negative) so that

mutations to the four nucleotide types need not be equally likely. Alternative

modeling options that we have not yet pursued would have separate sets of these

mutation frequency parameters for each of the three codon positions or separate

parameters for each of the 61 codons (e.g., See Pedersen, Wiuf and Christiansen

1998). Our model contains the parameter κ > 0 because transitions and transver-

sions may occur at different rates and contains the parameter u to scale the overall

rate of change. To handle nonsynonymous rates, there are the parameters ω, s,

and p which will be discussed in more detail below.

The instantaneous rate of change Ri,j from Sequence i to Sequence j is set to

0 if Sequences i and j differ at more than one nucleotide or if Sequence j encodes

a premature stop codon. For the other cases where Sequences i and j differ by

exactly one nucleotide that has type h (h ∈ {A,G, C, T}) in Sequence j, our rate

matrix entries are:
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Ri,j =





uπh for a synonymous transversion

uπhκ for a synonymous transition

uπhωe(Es(i)−Es(j))s+(Ep(i)−Ep(j))p for a nonsynonymous transversion

uπhκωe(Es(i)−Es(j))s+(Ep(i)−Ep(j))p for a nonsynonymous transition

When s = p = 0, our model simplifies to the sort of widely used codon model

that has been studied by others (e.g., Muse and Gaut 1994; Goldman and Yang

1994). Biologically plausible values of both s and p are positive, for positive values

of these parameters favor sequences with good fits to the known structure. The

biologically unreasonable case where s < 0 and p < 0 would have evolution favoring

sequences that do not fit the known structure well.

The s and p parameters reflect the contribution of nonsynonymous rates that

comes from the sequence-structure fit, while the ω parameter is intended to capture

contributions to nonsynonymous rates that are external to the protein of interest.

A variety of external impacts on nonsynonymous rates can be envisioned. For

example, the value of ω may be less than one if the protein being studied is part

of a co-adapted system that might be disrupted when nonsynonymous changes

cause the protein to function less well in the system. The value of ω could exceed

one if, for example, nonsynonymous changes to the protein helped a pathogen

evade the immune system of its host. We view this distinction between effects

on nonsynonymous rates that are external to the protein (represented by ω) and

effects on nonsynonymous rates that are internal to the protein (represented by
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s and p) as being potentially useful for characterizing the process of molecular

evolution. Although our implementation forces all codons to share the same ω

value, it would be straightforward to adopt previously proposed strategies that

allow ω to vary among sites (e.g., Yang et al. 2000).

Stationary Probabilities of Sequences

A nice feature of this model is the explicit form for the equilibrium distribution of

each possible coding sequence of length N . For simplicity of notation, let θ repre-

sent all the parameters in the rate matrix R (i.e., θ = {κ, ω, s, p, u, πA, πC , πG, πT})

and use im to represent the nucleotide at position m in DNA sequence i. Sequence

i has stationary probability

p(i|θ) =
e−2sEs(i)−2pEp(i) ∏N

m=1 πim∑
k e−2sEs(k)−2pEp(k)

∏N
n=1 πkn

, (2.1)

where the sum in the denominator is over all possible sequences k that lack a

premature stop codon. We note that the above formula resembles the Boltzmann

distribution of statistical physics and the denominator resembles what is known in

statistical physics as a partition function. Previously proposed models that have

evolutionary independence among protein locations also take the Boltzmann form

as a stationary distribution (e.g., Koshi, Mindell and Goldstein 1997; Koshi and

Goldstein 1998; Koshi, Mindell and Goldstein 1999)

As with models that have independent evolution of codons (e.g., Goldman

and Yang 1994; Muse and Gaut 1994), the stationary probability p(i|θ) does not

depend on κ, ω, or u. Interestingly, if s and p are not both zero then the expected

frequencies under stationarity of A, C, G, and T need not be close to πA, πC , πG,
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and πT . The model is also time reversible. The time reversibility property,

p(i|θ)Ri,j = p(j|θ)Rj,i for all i and j, (2.2)

is computationally convenient because it allows the likelihood p(i, j|θ) for a data

set with two sequences i and j to be computed with

p(i, j|θ) = p(i|θ)p(j|i, θ) = p(j|θ)p(i|j, θ), (2.3)

rather than by enumerating all possible common ancestral sequences of i and j

(see Felsenstein 1981).

Sequence Path Densities

The relatively general dependence structure of our model does not facilitate cal-

culation of p(j|i, θ). Transition probabilities for conventional models of sequence

evolution are calculated by specifying the rate matrix among 61 codon states (or

4 nucleotide states or 20 amino acid states) and then exponentiating this matrix

(see Swofford et al. 1996). The 4N x 4N dimension of our rate matrix is typi-

cally too large to make matrix exponentiation computationally tractable. Rather

than matrix exponentiation, our strategy is to augment the (observed) sequence

data i and j with a (unobserved) path ρ, or sequence of events, between the two

sequences. Here, we will arbitrarily choose i to be ancestral and j to be the de-

scendant. The sequence path ρ specifies how i is transformed to j on a branch of

the evolutionary tree. The information within ρ includes both the times on the

branch at which sequence changes occur and the nature of each sequence change

event. Because there are actually an infinite number of possible sequence paths
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that could transform one sequence to another, our strategy is to randomly sample

these sequence paths from an appropriate probability density.

Specifically, we adopt a Bayesian inference framework. We specify a prior den-

sity p(θ) for our parameters and then sample θ and ρ from their joint posterior

density p(ρ, θ|i, j). This sampling of θ and ρ allows their joint posterior distribu-

tion to be approximated and thereby serve as the basis for Bayesian parameter

estimation. We can express p(ρ, θ|i, j) as

p(ρ, θ|i, j) =
p(j, ρ|i, θ)p(i|θ)p(θ)

p(i, j)
. (2.4)

The p(i, j) term in the denominator is difficult to explicitly determine. However,

p(i, j) is not a function of θ and need not be calculated with the Markov chain

Monte Carlo procedure described in the next section. The p(j, ρ|i, θ) term is gov-

erned by the rate matrix R. For a specific sequence path ρ from i to j, let q be

the total number of nucleotide substitutions on the path and let t(z) be the time

of the zth substitution where t(0) = 0 is the time at which the branch begins. For

simplicity, the time at which the branch ends will be t(q + 1) = 1. Because the

scaling parameter u in our model can be adjusted, the time at which the branch

ends can always be considered to be 1. The sequence that exists immediately after

the zth substitution will be represented by i(z). Let i(0) = i and i(q+1) = i(q) = j.

Therefore, the sequence path ρ is fully specified by t(0), t(1), . . . , t(q), t(q + 1) and

i(0), i(1), . . . , i(q), i(q + 1).

Consider the rate of change away from a Sequence v to any other sequence of

length N . This rate of change away from v will be denoted Rv,• where

Rv,• =
∑

k

Rv,k,
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and where the sum is over all sequences k that differ from v. In practice, Rv,• is

feasible to calculate because Rv,k must be zero unless k is one of the 3N sequences

that differ from v at exactly one nucleotide. The time until v experiences a nu-

cleotide substitution is exponentially distributed with parameter Rv,•. Given that

some substitution occurs, the probability that v is transformed to some sequence

k is Rv,k/Rv,•. Therefore,

p(j, ρ|i, θ) = (
q∏

z=1

Ri(z−1),i(z)

Ri(z−1),•
Ri(z−1),•e

−Ri(z−1),•(t(z)−t(z−1)))e−Ri(q),•(t(q+1)−t(q))

= (
q∏

z=1

Ri(z−1),i(z)e
−Ri(z−1),•(t(z)−t(z−1)))e−Ri(q),•(t(q+1)−t(q)), (2.5)

where the final term e−Ri(q),•(t(q+1)−t(q)) represents the probability of no change in

the time interval from the final substitution at t(q) until the time t(q +1) = 1 that

the branch ends.

Metropolis-Hastings algorithm

Via the Metropolis-Hastings algorithm (Metropolis et al. 1953; Hastings 1970),

we construct a Markov chain on the combined θ and ρ state space with stationary

distribution p(ρ, θ|i, j). To implement our Markov chain Monte Carlo (MCMC)

algorithm, we randomly pick initial state (ρ(0), θ(0)) from the set of possibilities

where p(ρ, θ|i, j) exceeds zero. As described below in detail, we then propose ran-

dom new values ρ′ and θ′ conditional on the current values ρ and θ. The proposal

density will be denoted J(ρ′, θ′|ρ, θ). With probability equal to the minimum of 1

and

r =
p(ρ, θ|i, j) J(ρ, θ|ρ′, θ′)
p(ρ′, θ′|i, j) J(ρ′, θ′|ρ, θ)
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=
p(j, ρ′|i, θ′) p(i|θ′) p(θ′) J(ρ, θ|ρ′, θ′)
p(j, ρ|i, θ) p(i|θ) p(θ) J(ρ′, θ′|ρ, θ)

, (2.6)

we set the next state of our Markov chain (ρ(1), θ(1)) equal to the proposed state

(i.e., ρ(1) = ρ′, θ(1) = θ′). Otherwise, ρ(1) = ρ(0) and θ(1) = θ(0). By repeatedly

proposing ρ′ and θ′ and then randomly accepting the proposals with probabili-

ties determined by Equation (2.6), a Markov chain with the desired stationary

distribution p(ρ, θ|i, j) is formed.

Due to the sum over all sequences in the denominator of Equation (2.1), it

is not computationally feasible to explicitly calculate the p(i|θ) or p(i|θ′) terms

in Equation (2.6). Therefore, we approximate the ratio p(i|θ′)/p(i|θ). Our ap-

proximation strategy relies on randomly sampling a group of M sequences of

length N from the stationary distribution of sequences for parameter values θ∗ =

{κ∗, ω∗, s∗, p∗, u∗, π∗A, π∗C , π∗G, π∗T}. The M sequences are effectively independently

sampled from this stationary distribution and will be denoted η(1), η(2), . . ., and

η(M). The sampling of η(h) from p(η(h)|θ∗) is achieved via construction of a Markov

chain with a state space consisting of all sequences of length N . This Gibbs

Sampling approach (Geman and Geman 1984) has the desired p(η(h)|θ∗) as its sta-

tionary distribution and exploits the fact that the numerator of Equation (2.1) is

straightforward to calculate even though the denominator may be computationally

intractable. Consider four DNA sequences of length N that are identical except for

the residue at one specific nucleotide site. The sequence with an A at this sole posi-

tion will be denoted by vA while the sequences with C, G, and T will be respectively

denoted by vC , vG, and vT . Because the denominator of Equation (2.1) need not be
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evaluated, it is easy to determine p(vα|θ∗)/(p(vA|θ∗)+p(vC |θ∗)+p(vG|θ∗)+p(vT |θ∗))

for all α ∈ {A,C, G, T}. Conditional upon N − 1 of the N sequence positions, the

residue at the sole position that is free to vary can therefore be randomly sampled

according to its stationary probability.

The initial state of the Markov chain defined by our Gibbs Sampler is randomly

selected from the set of all DNA sequences of length N that lack a stop codon.

Thereafter, the Gibbs Sampler repeatedly cycles through two steps. The first step

is to randomly select a site at which to propose a change. The second step is to

fix the sequence at all positions except this site and then randomly choose the

nucleotide to occupy the selected site according to the stationary probabilities of

the four sequences that represent the four possible residues at this site. This Gibbs

Sampler allows a sequence η(h) to be sampled with probability p(η(h)|θ∗). Because

we desire the M sequences η(1), η(2), . . . , η(M) to be effectively independent samples,

it is important to simulate the Markov chain for a long time between the sampling

of each of the M sequences.

An importance sampling argument (see Appendix 1) shows that when M is

sufficiently large,

p(i|θ′)
p(i|θ)

.
= e−2(s′−s)Es(i)−2(p′−p)Ep(i)

(
N∏

m=1

π′im
πim

)

X




∑M
h=1 e−2(s−s∗)Es(η(h))−2(p−p∗)Ep(η(h)) ∏N

n=1

π
η
(h)
n

π∗
η
(h)
n

∑M
h=1 e−2(s′−s∗)Es(η(h))−2(p′−p∗)Ep(η(h))

∏N
n=1

π′
η
(h)
n

π∗
η
(h)
n




(2.7)

The quality of this approximation improves if θ∗ is close to both θ′ and θ. For this

reason, the θ∗ chosen for this approximation depends in our implementation on the

values of θ and θ′. The ratio approximated in Equation (2.7) depends on the six
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parameters s, p, πA, πG, πC , and πT . Because πA + πG + πC + πT = 1, the values

of these six parameters can be specified in a 5-dimensional space. We determine

the possible values for θ∗ by partitioning this 5-dimensional space into a grid. For

a particular combination of θ and θ′, we find their midpoint and then choose θ∗

to be the grid point that is nearest this midpoint. Because not all grid points will

be visited in a particular MCMC run, we save computation by not sampling the

M sequences from p(η(h)|θ∗) until a particular θ∗ grid point is visited for the first

time during the MCMC run.

Proposing θ

Our MCMC implementation actually consists of various proposal distributions

J(ρ′, θ′|ρ, θ) and the Markov chain is formed by cycling through these different

proposal distributions. Each proposal can result in only slight differences between

(ρ, θ) and (ρ′, θ′). Most of these proposal distributions lead to slight differences

between θ′ and θ but set ρ′ = ρ. For example, one proposal distribution has

ρ′ = ρ and θ′ = θ except that κ′ 6= κ. We employ similar proposal steps that

propose change to only s, only p, only u, or only ω. All of these proposal steps are

Metropolis-Hastings schemes that involve sampling a proposed parameter value

from a uniform distribution that is determined by the current parameter value, a

prespecified “window” length surrounding the current parameter value, and any

constraints on the parameters.

There is a separate proposal step for each of πA, πG, πC , and πT and these are

also conventional in that the proposed value for πA, πG, πC or πT will involve sam-
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pling from some uniform distribution. However, these steps are slightly different

from those for κ, s, p, u, and ω because the constraint that πA +πG +πC +πT = 1

necessitates that a change in one of these four parameters cannot be made without

an accompanying total change of the opposite sign in the other three. Our imple-

mentation partitions this total change of the opposite sign among the other three

parameters according to the relative size of the three parameters. For example, if

π′A = πA + δ is obtained by sampling from a uniform distribution centered about

πA, then we set π′G = πG − δπG/(πG + πC + πT ), π′C = πC − δπC/(πG + πC + πT ),

and π′T = πT − δπT /(πG + πC + πT ). If the three free parameters had been π′A,

π′C/(π′C + π′G + π′T ), and π′G/(π′C + π′G + π′T ) rather than π′A, π′C , and π′G, then

the proposal density J(ρ′, θ′|ρ, θ) would be the uniform density for δ because only

π′A would be changed with this proposal step. Because our parameterization is

actually in terms of π′A, π′C , and π′G, J(ρ′, θ′|ρ, θ) becomes the uniform density for

δ multiplied by a factor 1/(1 − π′A)2 that represents the Jacobian of the trans-

formation from π′A, π′C/(π′C + π′G + π′T ), and π′G/(π′C + π′G + π′T ) to π′A, π′C , and

π′G.

Proposing Site Paths

When proposing a new path ρ′ different from ρ, all parameter values in θ are held

constant. The sequence paths ρ and ρ′ represent possible ways to transform an

ancestral sequence i to a descendant j. A sequence path is fully specified by a

series of nucleotide substitutions and the specific times at which the substitutions

occur. For each possible sequence path, i must have a residue ir at site r whereas
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j must have a residue jr at this site. A sequence path ρ can also be represented

by a set of site paths ρ1, ρ2, . . ., ρr, . . ., ρN . A particular site path ρr specifies

all nucleotide substitutions that change site r in path ρ, as well as the specific

times of the changes. Our approach for proposing ρ′ is to set ρ′ equal to ρ with

the exception of the site path at one randomly selected site. For this site, we

base the sampling of the proposed site path ρ′r on a simple model of evolution

that assumes independence of nucleotide substitutions among sites. To emphasize

that this simple model may have a parameterization that is quite different from

the dependent sites model, ψ rather than θ will represent the independent sites

model and its parameters. Our goal will be to sample a site path ρr for site r from

p(ρr|ir, jr, ψ).

Because of the relative ease of sampling the site paths ρr, we adopt what is

commonly referred to as the Felsenstein 1984 model (see Felsenstein 1989). Nielsen

(2001) has used a similar algorithm for sampling site paths from this model for a

different application. Nielsen’s algorithm, or an algorithm that simulates site paths

beginning with ir and then discards the paths unless they end with jr, would

be suitable for our application. However, our implementation uses a different

algorithm for sampling site paths ρr from p(ρr|ir, jr, ψ) (see Appendix 2). No

matter what method is selected for sampling from p(ρr|ir, jr, ψ), the resulting

proposal ρ′ should be accepted or rejected according to Equation (2.6).
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Examples

Prior Densities and Implementation

In all analyses, all combinations of non-negative values for πA, πC , πG, and πT that

satisfy πA + πC + πG + πT = 1 were treated as being equally likely a priori. Prior

densities were uniform on the interval (0, 4) for u, uniform on the interval (0, 10) for

κ, and uniform on the interval (0, 10) for ω. Because so little is understood about

the relationship between protein structure and protein evolution, the assignment

of priors to the s and p parameters was somewhat but not completely arbitrary.

Positive values of s and p represent the biologically reasonable scenario where evo-

lution maintains sequence–structure compatibility. Negative values represent the

scenario where evolution favors incompatibility. By centering prior distributions

for s and p about zero, neither the compatibility nor the incompatibility of se-

quences and structures was favored a priori. With priors for s and p centered

about zero, posterior distributions that are concentrated in the quadrant with s

and p both exceeding 0 would be biologically reasonable and would therefore help

to validate our approach. To set the endpoints of our uniform prior distributions

for s and p, some exploration of posteriors was performed. We did not want the

posterior distributions for s and p to be concentrated near the prior interval end-

points and, because the approximation of Equation (2.7) will be best for a finely

meshed grid of θ∗ values, we did not want the uniformly distributed intervals for s

and p to be overly wide. We opted to analyze each pair of sequences with a prior

for s that was uniform on the interval (−2, 2) and a prior for p that was uniform

on the interval (−0.15, 0.15). This prior was chosen because posterior distribu-
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tions of s and p were not concentrated near the endpoints of their respective prior

intervals and because the grid mesh of θ∗ proved fine enough to yield satisfactory

approximations with Equation (2.7).

There is a tradeoff when determining the mesh size for the θ∗ values. A mesh

that is too wide will produce poor approximations with Equation (2.7). A mesh

that is overly fine will be computationally infeasible. By selecting 9 points along

the ranges of each of the s and p uniform priors to define the mesh size separating

successive values of these parameters on the θ∗ grid, we found an acceptable com-

promise between approximation accuracy and computational requirements. We

performed some MCMC runs with a finer mesh and obtained similar results to

those obtained when 9 points defined the grid for each of s and p. Posterior ap-

proximations when only 5 points defined the grid for each of s and p were not

satisfactory. We did some exploratory analyses with a prior for s that was uni-

form on the interval (−4, 4) and a prior for p that was uniform on the interval

(−0.3, 0.3). With this prior for s and p, 17 points were used to define the grid for

each of s and p. We found that this latter prior for s and p yielded very similar

results to those with the (−2, 2) prior for s and (−0.15, 0.15) prior for p (data not

shown). The remaining three dimensions of the five dimensional θ∗ grid represent

π∗A, π∗C , and π∗G. For these parameters, we have twelve points define the mesh along

each of these dimensions. The grid points for these parameters are each evenly

spaced in the interval from 0.14 to 0.36.

To enhance MCMC convergence, we have each MCMC cycle include one pro-

posed update of s, p, u, κ, and ω but five proposed updates of site paths. Each

MCMC cycle also proposes an update to one of πA, πC , πG, and πT so that a
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proposed update to each of these parameters is made once per four cycles. Each

analysis presented here consisted of 100,000 MCMC cycles. The first 5,000 of these

cycles were treated as a “burn-in” period and did not contribute to the posterior

approximations. For all cases, two separate MCMC runs were performed in order

to check for convergence to the desired posterior distribution. Plots of sampled

parameter values versus the cycle number at which samples were taken were also

examined to check for convergence. The value of M , the number of sequences sam-

pled from the stationary distribution represented by a particular grid point, was

1000 for the results presented here. The number of Gibbs iterations between suc-

cessively sampled sequences was set to 10 multiplied by the length in nucleotides

of the sequences.

It is conventional to express the amount of evolution separating two sequences

in terms of the expected number of nucleotide substitutions per site. With our

dependence model, the substitution rate at a site is determined by the residues

occupying other sites, and can change when other sites change. To explore the

prior distribution of the expected number of substitutions per site with our de-

pendence model, we used a simulation procedure. For each simulation, values of

the parameters that comprise θ were sampled from their prior distribution. Based

on the resulting θ, the aforementioned Gibbs Sampling technique was employed

to randomly select a sequence from its stationary distribution. This randomly

sampled sequence was treated as being the ancestral sequence and then evolution

was simulated according to our model to produce a descendant sequence. By com-

puting the average number of changes per site for each simulated sequence path

and by repeating the simulation procedure 10,000 times, the prior distribution for
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the expected number of changes per site was approximated to yield the results

presented here.

Annexin V

We first illustrate our techniques by analysis of two different annexin V sequence

pairs that each consist of 314 aligned codons. One pair includes the chicken and hu-

man annexin V sequences (Genbank Accession numbers M30971 and X12454) and

the other pair consists of the mouse and rat sequences (Genbank Accession num-

bers NM 009673 and NM 013132). The two pairs of sequences represent nonover-

lapping evolutionary lineages and substantially different divergence levels. The

human-chicken pair is 78% identical at the amino acid level and 74% identical at

the nucleotide level whereas the mouse–rat pair is 95% identical at the amino acid

level and 93% identical at the nucleotide level.

Annexin V is a calcium dependent phospholipid binding protein that has po-

tent vascular anticoagulant activity (Andree et al. 1990), is also an inhibitor of

protein kinase C (Schlaepfer, Jones and Haigler 1992), and has been associated

with the apoptotic pathway (Reutelingsperger and van Heerde 1997) and the ini-

tiation of the hepatitis B virus infection process (Neurath and Strick 1994). It

was selected for this study as an unbiased, arbitrary example of a typical protein

of biological interest. The tertiary structure of the chicken annexin V protein has

been experimentally determined (Bewley et al. 1993) and we assume that the na-

tive conformations of all four annexin V sequences are essentially identical to this

structure.
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For these two annexin V sequence pairs, the posterior distributions of s and

p are quite similar (Table 2.1). For both sequence pairs, the posteriors of s and

p are concentrated in the s > 0 and p > 0 quadrant. This is the biologically

plausible quadrant of the parameter space where evolution favors sequences that

fold well into the known structure. The posterior distributions of κ, ω, and u were

relatively unaffected by whether s and p were forced to be zero. This indicates

that the information contributing to the s and p estimates is largely independent

of the information contributing to the estimates of the κ, ω, and u parameters.

For biologically relevant values of s and p, the amino acid composition of se-

quences that are highly compatible with the tertiary structure may differ from the

amino acid composition when s = p = 0. These amino acid composition differences

may induce differences in expected nucleotide composition. This may explain why

the estimates of πA, πC , πG, and πT were affected by whether or not s and p were

forced to zero (Table 2.1).

To evaluate the potential performance of our estimation procedure, we sim-

ulated annexin V evolution using the posterior means of the model parameters

as estimated from the human-chicken pair. For each of five simulated annexin V

pairs, the values of κ, ω, u, πA, πC , πG, πT , were set to their posterior means from

our analysis of the original human-chicken data while the values of s and p var-

ied among simulations. The posterior means of s and p for the human-chicken

pair were approximately s = 0.947 and p = 0.0282. One pair of sequences was

simulated for each of (s = 0.947, p = 0.0282), (s = 0.947, p = −0.0282),

(s = −0.947, p = 0.0282), (s = −0.947, p = −0.0282), and (s = 0, p = 0).

In each simulation, an ancestral sequence was selected via Gibbs Sampling from
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M. musculus vs. R. norvegicus G. gallus vs H. sapien

Param. Priors (s = p = 0) (s 6= 0 , p 6= 0) (s = p = 0) (s 6= 0 , p 6= 0)

κ 5.0 3.414 3.360 1.788 1.587

(0.25 , 9.75) (1.803 , 6.220) (1.803 , 5.779) (1.279 , 2.467) (1.124 , 2.189)

ω 5.0 0.135 0.147 0.0934 0.107

(0.25 , 9.75) (0.0694 , 0.229) (0.0756 , 0.252) (0.0651 , 0.129) (0.0752 , 0.147)

s 0.0 0.0 0.881 0.0 0.947

(-1.9, 1.9) NA (0.612 , 1.156) NA (0.704 , 1.199)

p 0.0 0.0 0.0375 0.0 0.0282

(-0.143, 0.143) NA (0.0255 , 0.0510) NA (0.0156 , 0.0399)

u 2.0 0.148 0.151 1.579 1.604

(0.1, 3.9) (0.079 , 0.238) (0.084 , 0.241) (1.159 , 2.199) (1.164 , 2.089)

πA 0.25 0.272 0.290 0.300 0.310

(0.246 , 0.300) (0.259 , 0.322) (0.274 , 0.325) (0.284 , 0.339)

πC 0.25 0.210 0.220 0.176 0.183

(0.186 , 0.235) (0.193 , 0.247) (0.157 , 0.196) (0.162 , 0.205)

πG 0.25 0.279 0.294 0.250 0.263

(0.252 , 0.306) (0.265 , 0.326) (0.226 , 0.274) (0.239 , 0.290)

πT 0.25 0.239 0.196 0.274 0.244

(0.214 , 0.264) (0.169 , 0.224) (0.250 , 0.299) (0.215 , 0.273)

BL 8.712 0.070 0.071 0.461 0.445

(0.301 , 33.901) (0.053 , 0.090) (0.054, 0.091) (0.371 , 0.566) (0.361 , 0.537)

Table 2.1: Priors and Posteriors for the annexin V sequence comparisons. The second column
shows prior means and 95% prior intervals for all parameters. The rightmost four columns show
estimates of posterior means and 95% credibility intervals. Each sequence pair was analyzed both
when s and p were allowed to vary and when both s and p were forced to be 0. The columns
corresponding to each analysis are indicated. In the final rows of the table, “BL” represents
branch lengths. Branch lengths are the expected number of changes per nucleotide site and were
estimated as described in the text.
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Param. Truth Posterior Mean 95% Credibility Interval

s 0 -0.045 (-0.127 , 0.226)

p 0 -0.002 (-0.00989 , 0.0135)

s 0.947 0.960 (0.718 , 1.205)

p 0.0282 0.0247 (0.0132, 0.0363)

s -0.947 -0.926 (-1.105 , -0.757)

p 0.0282 0.0319 (0.0186 , 0.0449)

s 0.947 1.042 (0.807, 1.276)

p -0.0282 -0.0352 (-0.0477, -0.0233)

s -0.947 -0.908 (-1.079 , -0.740)

p -0.0282 -0.0315 (-0.0445 , -0.0179)

Table 2.2: Posterior means and 95% credibility intervals for s and p with sequence pairs that
were simulated according to our model and the annexin V tertiary structure.

the appropriate stationary distribution of sequences. A descendant sequence was

then evolved according to our model and the resulting sequence pair was analyzed

with the approach described here. For each of the five simulation scenarios, the

posterior densities of s and p are concentrated close to the true values of these

parameters (Table 2.2).

With our parameterization, a nonsynonymous nucleotide substitution that changes

a Sequence i to a Sequence j will occur at the rate this substitution would have if it

were synonymous multiplied by a factor of ωe(Es(i)−Es(j))s+(Ep(i)−Ep(j))p. Therefore,

if e(Es(i)−Es(j))s+(Ep(i)−Ep(j))p > 1/ω, the change from Sequence i to Sequence j could

be interpreted as involving positive selection. Likewise, the change from Sequence i

to j could be interpreted as negatively selected if e(Es(i)−Es(j))s+(Ep(i)−Ep(j))p < 1/ω.

Among the nonsynonymous nucleotide substitutions that could occur at a partic-

ular codon in a particular sequence, some of these nonsynonymous substitutions
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may be positively selected and others may be negatively selected. The fact that

some changes to a particular codon may be positively selected whereas others are

negatively selected is a desirable property of our parameterization of nonsynony-

mous rates.

For both annexin V sequence pairs, we have explored variation due to protein

structure among the possible nonsynonymous changes that could affect a sequence.

For all 2058 possible sequences j that differ by one nonsynonymous substitution

from the observed mouse sequence i, the rate factor associated with sequence–

structure compatibility, e(Es(i)−Es(j))s+(Ep(i)−Ep(j))p, was calculated. To produce the

histogram of these 2058 values shown in Figure 2.1A, the posterior means of s

and p from the mouse-rat comparison were used. A corresponding histogram gen-

erated with the 2069 possible nonsynonymous changes to the chicken sequence is

similar and is not shown. Both histograms indicate that the nonsynonymous rate

variation due to protein structure is substantial but both the mean and median

effect of nonsynonymous substitutions on structural compatibility are deleterious.

Although many of the possible nonsynonymous changes improve the sequence-

structure compatibility (i.e., e(Es(i)−Es(j))s+(Ep(i)−Ep(j))p > 1 ), this improved com-

patibility does not overcome the low posterior mean of ω by making any of these

possible nonsynonymous changes positively selected.

To compare the impact of rates of solvent accessibility and pairwise interac-

tions, Figure 2.1B plots (Es(i)−Es(j))s versus (Ep(i)−Ep(j))p for the 2058 values

summarized in Figure 2.1A. This plot shows that relatively few nonsynonymous

changes to the mouse sequence improve both the pairwise and solvent accessibility

components of sequence–structure compatibility. The plot also indicates that sol-
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Figure 2.1: Figure 2.1A: Nonsynonymous rate variation due to structure in mouse an-
nexin V. Letting mouse annexin V be sequence i, a histogram of the values of the factor
e(Es(i)−Es(j))s+(Ep(i)−Ep(j))p is constructed from the 2058 sequences j that differ from i by exactly
1 nonsynonymous nucleotide substitution. The values of s and p used here are the posterior mean
estimates from the mouse-rat comparison. Of the 2058 factors represented by the histogram, 713
factors exceed one. None of the 2058 factors exceeds 6.803, the inverse of the posterior mean
of the ω parameter, and therefore none of the possible nonsynonymous substitutions is catego-
rized as positive selection. Figure 2.1B: Comparison for mouse annexin V of effects of solvent
accessibility and pairwise interactions on nonsynonymous rates. For each of the 2058 possible
nonsynonymous changes to mouse annexin V that are summarized in Figure 2.1A, the value of
(Es(i)−Es(j))s is plotted versus the value of (Ep(i)−Ep(j))p. The x = y and x = −y lines are
drawn to assist comparison between effects of pairwise interactions and solvent accessibility.

vent accessibility and pairwise interactions can both have substantial impacts on

nonsynonymous rates.

Lysozyme

In their pioneering work on adaptation, Stewart and collaborators (e.g., Stewart,

Schilling and Wilson 1987; Messier and Stewart 1997; see also Yang 1998; Yang and

Nielsen 2002) demonstrated that the evolutionary lineage leading to the Colobine

monkeys (e.g., Colobus guereza) has experienced an excess of nonsynonymous sub-
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Figure 2.2: Figure 2.2A: Nonsynonymous rate variation due to structure in human lysozyme c. Letting human

lysozyme c be sequence i, a histogram of the values of the factor e(Es(i)−Es(j))s+(Ep(i)−Ep(j))p is constructed

from the 862 sequences j that differ from i by exactly 1 nonsynonymous nucleotide substitution. The values of s

and p here are the posterior mean estimates from the human-callithrix comparison. Of the 862 factors represented

by the histogram, 276 factors exceed one. The arrow at 1.233 shows the inverse of the posterior mean of the ω

parameter. Therefore, the 115 possible nonsynonymous changes to the human sequence that exceed 1.233 can

be categorized as positive selection. Figure 2.2B: Nonsynonymous rate variation due to structure in the Rhesus

macaque lysozyme c. Letting Rhesus macaque lysozyme c sequence be sequence i, a histogram of the values of

the factor e(Es(i)−Es(j))s+(Ep(i)−Ep(j))p is constructed from the 872 sequences j that differ from i by exactly 1

nonsynonymous nucleotide substitution. The values of s and p here are the posterior mean estimates from the

Colobus-Rhesus comparison. Of the 872 factors represented by the histogram, 264 factors exceed one. The arrow

at 0.377 shows the inverse of the posterior mean of the ω parameter. Therefore, the 754 possible nonsynonymous

changes to the Rhesus macaque sequence that exceed 0.377 can be categorized as positive selection.

stitutions during lysozyme c evolution. The apparent explanation for this excess

is that the Colobine monkeys have acquired a foregut in which bacteria ferment

leaves. In the Colobine monkeys, lysozyme c is active at a lower PH and is more

resistant to pepsin than in other primates. These properties of lysozyme c in

Colobine monkeys may be adaptations that help with lysis of bacteria that pass

from the foregut fermentation chamber into the true stomach (Stewart, Schilling

and Wilson 1987; Messier and Stewart 1997).

To investigate lysozyme c evolution with our approach, we selected two pairs
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of lysozyme c sequences that represent nonoverlapping evolutionary lineages and

that each consist of 130 aligned codons. The phylogenetic path separating the

Rhesus macaque (Macaca mulatta) and Colobus guereza pair (Genbank accession

numbers X60236 and U76916, 96% nucleotide identity and 91% amino acid iden-

tity) includes lineages that have previously been demonstrated (Stewart, Schilling

and Wilson 1987; Messier and Stewart 1997; Yang and Nielsen 2002) to have ex-

perienced a strong excess of nonsynonymous substitutions. The phylogenetic path

separating the marmoset (Callithrix jacchus) and human pair (Genbank accession

numbers M19045 and U76923, 93% nucleotide identity and 87% amino acid iden-

tity) does not seem to have experienced such a strong excess of nonsynonymous

change (Stewart, Schilling and Wilson 1987; Messier and Stewart 1997; Yang and

Nielsen 2002), although our estimates indicate it has a ratio of nonsynonymous to

synonymous rates that is substantially higher than for the annexin V pairs (see

below). The tertiary structure of the human lysozyme c protein has been exper-

imentally determined (Harata, Abe and Muraki 1998) and we assume that the

native conformations of all four lysozyme c sequences are essentially identical to

this structure.

As with the annexin V analyses, the posterior distributions of s and p are

concentrated in the biologically plausible quadrant of the parameter space for

both lysozyme c sequence pairs (Table 2.3). Figure 2.2A shows a histogram that

summarizes the values of e(Es(i)−Es(j))s+(Ep(i)−Ep(j))p for the 862 sequences j that

differ by exactly one nonsynonymous change from the human lysozyme c sequence.

The values of s and p used to construct this histogram were those from the human-

marmoset comparison.
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Human vs. Marmoset Colobus vs. Rhesus macaque

Param. Priors (s = p = 0) (s 6= 0 , p 6= 0) (s = p = 0) (s 6= 0 , p 6= 0)

κ 5.0 4.630 4.274 4.599 3.958

(0.25 , 9.75) (1.998 , 9.027) (1.813 , 8.385) (1.620 , 9.154) (1.351 , 8.622)

ω 5.0 0.741 0.811 2.675 2.653

(0.25 , 9.75) (0.302 , 1.577) (0.349 , 1.683) (0.626 , 8.026) (0.717 , 7.081)

s 0.0 0.0 0.855 0.0 0.877

(-1.9 , 1.9) NA (0.483 , 1.251) NA (0.498 , 1.272)

p 0.0 0.0 0.0495 0.0 0.0520

(-0.1425 , 0.1425) NA (0.0326 , 0.0664) NA (0.0352 , 0.0708)

u 2.0 0.075 0.081 0.021 0.025

(0.1 , 3.9) (0.027 , 0.160) (0.030 , 0.166) (0.004 , 0.064) (0.006 , 0.071)

πA 0.25 0.307 0.340 0.325 0.365

(0.265 , 0.352) (0.286 , 0.405) (0.282 , 0.370) (0.311 , 0.430)

πC 0.25 0.166 0.178 0.162 0.174

(0.134 , 0.202) (0.142 , 0.218) (0.128 , 0.199) (0.138 , 0.213)

πG 0.25 0.279 0.299 0.270 0.289

(0.236 , 0.323) (0.254 , 0.347) (0.230 , 0.312) (0.246 , 0.334)

πT 0.25 0.247 0.183 0.242 0.172

(0.208 , 0.290) (0.134 , 0.231) (0.202 , 0.283) (0.124 , 0.219)

BL 8.609 0.082 0.083 0.048 0.049

(0.262 , 34.564) (0.055 , 0.115) (0.055 , 0.116) (0.028 , 0.073) (0.029 , 0.075)

Table 2.3: Priors and Posteriors for the Lysozyme c sequence comparisons.
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Figure 2.3: Figure 2.2C: Comparison for human lysozyme c of effects of solvent accessibility and pairwise

interactions on nonsynonymous rates. For each of the 862 possible nonsynonymous changes to human lysozyme c

that are summarized in Figure 2.2A, the value of (Es(i)−Es(j))s is plotted versus the value of (Ep(i)−Ep(j))p).

The x = y and x = −y lines are drawn to assist comparison between effects of pairwise interactions and solvent

accessibility.

Figure 2.2B shows a histogram that summarizes the values of e(Es(i)−Es(j))s+(Ep(i)−Ep(j))p

for the 872 sequences j that differ by exactly one nonsynonymous change from the

Rhesus macaque lysozyme c sequence.

The values of s and p used to construct this histogram were those from the

colobus-rhesus sequence comparison. As indicated by the portions of these his-

tograms to the right of the arrows, a substantial number of possible nonsynonymous

substitutions would be positively selected. In comparison, none of the possible non-

synonymous annexin V substitutions represented in the histograms of Figure 2.1

would be positively selected. This disparity in fraction of positively selected non-

synonymous substitutions can be mainly attributed to the higher estimates of ω

for the two lysozyme c sequence pairs than for those obtained from annexin V.

Figure 2.2C plots (Es(i)−Es(j))s versus (Ep(i)−Ep(j))p for the 862 possible
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nonsynonymous changes to human lysozyme c. This plot has a pattern that is

qualitatively similar to the annexin V pattern in Figure 2.1B. The plot for the

872 possible nonsynonymous changes to the Rhesus macaque lysozyme c is also

qualitatively similar to Figure 2.1B and is not shown.

Future Directions

An extension of our inferential procedure to data sets with more than two se-

quences should not be difficult. The main modification will be with how site paths

are proposed. With more than two sequences, a site path will traverse multiple

branches. Pupko et al. (2000) have introduced a fast algorithm for finding the op-

timal joint ancestral sequence reconstruction with simple independent sites models

of evolution. A variation of this algorithm will allow joint ancestral sequence re-

constructions to be sampled according to probabilities defined by the Felsenstein

1984 model. Given a set of reconstructed ancestral nodes for a site, the prob-

lem of proposing site paths for multiple sequences becomes the smaller problem

of proposing site paths for each branch that comprises the tree. We have already

addressed this smaller problem here.

An extension to multiple sequences may lead to improved methods for ancestral

sequence reconstruction. With our approach, ancestral sequences that do not fold

well into a tertiary structure are unlikely to be inferred. In addition, the paths

from ancestral to descendant sequences may allow the order of adaptive nucleotide

substitution events during protein evolution to be inferred.

Other methods for detecting positive selection (e.g., Yang et al. 2000; Yang
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and Nielsen 2002) treat each codon independently and ignore protein structure. In

reality, the question of whether a particular nonsynonymous substitution confers a

selective advantage should depend to some extent on the amino acids encoded by

other codons. Our technique has the advantages of incorporating and quantifying

this dependence.

Although the sequence–structure compatibility criterion employed here (Jones,

Taylor and Thornton 1992; Jones 1999) has demonstrated considerable success

when applied to protein fold recognition, other sequence–structure compatibility

functions have been proposed (e.g., Singh, Tropsha and Vaisman 1996) and it will

be interesting to explore which of these criteria is most appropriate for describing

the process of molecular evolution. Incorporation of alternative criteria would

necessitate few changes to our approach.

The sequence–structure compatibility criterion can be viewed as a surrogate for

fitness. Measures of the fitness of a sequence that are not explicitly derived from

protein structure could be incorporated into our approach without major mod-

ifications of our inference procedure. Such modifications might be of particular

interest for studying bacteriophage or retrovirusses because these quickly evolving

organisms are good systems for experimentally measuring the fitness consequences

of particular nucleotide substitutions (e.g., Bull, Badget and Wichman 2000). For

making inferences regarding history and evolutionary process, our statistical ap-

proaches could supplement more direct experimental information.

77



Acknowledgments

We thank Kevin Scott, Stefan Bekiranov, Reinhard Hopperger, and Elizabeth A.

Thompson for their help. This work was supported by BIRD of the Japan Science

and Technology Co. (H.K. and J.L.T.), J.S.P.S. (H.K.). N.S.F. INT 99-0934

(D.M.R. and J.L.T.), N.S.F. DEB-0120635 (J.L.T.), and a Wellcome Trust Senior

Fellowship in Basic Biomedical Sciences (N.G.).

78



References

Andree, H. A. M., C. P. M. Reutelingsperger, R. Hauptmann, H. C. Hemker, W.

Th. Hermens and G. M. Willems. 1990. Binding of vascular anticoagulant α

(VAC α) to planar phospholipid bilayers. J. Biol. Chem. 265(9):4923-4928

Bewley, M. C., C. M. Boustead, J. H. Walker, D. A. Waller, and R. Huber. 1993.

Structure of chicken annexin V at 2.25-A resolution. Biochemistry 32(15):3923-

9

Bull, J. J., M. R. Badget, and H. A. Wichman. 2000. Big-benefit mutations in a

bacteriophage inhibited with heat. Mol. Biol. Evol. 17:942-950

Chothia, C., and A. M. Lesk. 1986. The relation between the divergence of

sequence and structure in proteins. EMBO. J. 5:519-527

Dayhoff, M. O., R. M. Schwartz, and B. C. Orcutt. 1978. A model of Evolutionary

Changes in Proteins. Pp. 345-352 in Atlas of Protein Sequence and Structure.

vol. 5, Suppl. 3. National Biomedical Research Foundation, Washington, D.C.

Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likeli-

hood approach. J. Mol. Evol. 17:368-376

Felsenstein, J. 1989. Phylogenetic Inference Package (PHYLIP), version 3.2. Uni-

versity of Washington, Seattle. Cladistics 5:164-166

Flores, T. P., C. A. Orengo, D. S. Moss, and J. M. Thornton. 1993. Comparison

79



of conformational characteristics in structurally similar protein pairs. Protein

Sci. 2:1811-1826

Geman S., and D. Geman. 1984. Stochastic relaxation, Gibbs distribution and the

Bayesian restoration of images. IEEE Transactions on Pattern Analysis and

Machine Intelligence 6:721-741.

Goldman, N. and Z. Yang. 1994. A Codon-based Model of Nucleotide Substitution

for Protein-coding DNA Sequences. Mol. Biol. Evol. 11(5):725-736

Harata K., Y. Abe, and M. Muraki. 1998. Full-Matrix least squares refinement of

lysozymes and analysis of anisotropic thermal motion. Proteins 30(3):232-243.

Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains and

their applications. Biometrika 57:97–109.

Jensen, J. L., and A. K. Pedersen. 2000. Probabilistic models of DNA sequence

evolution with context dependent rates of substitution. Adv. Appl. Prob.

32:499-517

Jones, D. T. 1999. GenTHREADER: An efficient and reliable protein fold recog-

nition method for genomic sequences. J. Mol. Biol. 287:797-815

Jones, D. T., W. R. Taylor, and J. M. Thornton. 1992. A new approach to protein

fold recognition. Nature 358:86-89

Jones, D. T., and J. M. Thornton. 1996. Potential energy functions for threading.

Curr. Opin. Struct. Biol. 6:210-216

80



Koshi, J. M., D. P. Mindell and R. A. Goldstein. 1997. Beyond mutation matrices:

physical chemistry based evolutionary models. p.80-89 in S. Miyano and T.

Takagi, eds. Genome Informatics 1997. Universal Academy Press, Tokyo

Koshi, J. M., D. P. Mindell and R. A. Goldstein. 1999. Using physical chemistry

based substitution models in phylogenetic analyses of HIV-1 subtypes. Mol.

Biol. Evol. 16(2):173-179

Koshi, J. M., and R. A. Goldstein. 1998. Mathematical models of natural amino

acid site mutations. Proteins 32:289-295

Marjoram, P., J. Molitor, V. Plagnol, and S. Tavaré. Markov chain Monte Carlo
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Appendix 1

The approximation of Equation (2.7) for p(i|θ′)/p(i|θ) relies on having a random

sample of sequences η(1), η(2), . . . , η(M) from p(η(h)|θ∗). The denominator of Equa-

tion (2.1) is

D(θ) =
∑

k

e−2sEs(k)−2pEp(k)
N∏

n=1

πkn

and

p(i|θ′)
p(i|θ) = e−2(s′−s)Es(i)−2(p′−p)Ep(i)

(
N∏

m=1

π′im
πim

)
D(θ)

D(θ′)
. (2.8)

The ratio of the denominators can be approximated via importance sampling,

D(θ)

D(θ′)
=

∑
k e−2sEs(k)−2pEp(k) ∏N

n=1 πkn∑
k e−2s′Es(k)−2p′Ep(k)

∏N
n=1 π′kn

(2.9)

=

∑
k

p(k|θ∗)
p(k|θ∗)e

−2sEs(k)−2pEp(k) ∏N
n=1 πkn

∑
k

p(k|θ∗)
p(k|θ∗)e

−2s′Es(k)−2p′Ep(k)
∏N

n=1 π′kn

.
=

∑M
h=1

1
p(η(h)|θ∗)e

−2sEs(η(h))−2pEp(η(h)) ∏N
n=1 π

η
(h)
n∑M

h=1
1

p(η(h)|θ∗)e
−2s′Es(η(h))−2p′Ep(η(h))

∏N
n=1 π′

η
(h)
n

=

D(θ∗)
∑M

h=1 e−2(s−s∗)Es(η(h))−2(p−p∗)Ep(η(h)) ∏N
n=1

π
η
(h)
n

π∗
η
(h)
n

D(θ∗)
∑M

h=1 e−2(s′−s∗)Es(η(h))−2(p′−p∗)Ep(η(h))
∏N

n=1

π′
η
(h)
n

π∗
η
(h)
n

=

∑M
h=1 e−2(s−s∗)Es(η(h))−2(p−p∗)Ep(η(h)) ∏N

n=1

π
η
(h)
n

π∗
η
(h)
n

∑M
h=1 e−2(s′−s∗)Es(η(h))−2(p′−p∗)Ep(η(h))

∏N
n=1

π′
η
(h)
n

π∗
η
(h)
n

.

Substitution of this approximation for D(θ)/D(θ′) into Equation (2.8) yields Equa-

tion (2.7).
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Appendix 2

To propose a sequence path ρ′, we modify the current sequence path ρ by re-

placing the site path ρr at site r with a site path ρ′r that is sampled from the

posterior density p(ρ′r|i, j, ψ) as defined by the Felsenstein 1984 nucleotide substi-

tution model (Felsenstein 1989). The Felsenstein 1984 model can be interpreted as

being comprised of two separate processes: the within–group process, and the gen-

eral process. For the general process, events to occur at a rate g. If a general event

occurs, a nucleotide of type i is replaced by a nucleotide of type j with probability

πj. Besides general events, within–group events are also allowed by the Felsenstein

1984 model. These events occur at a rate w and the possible outcomes of a within–

group event depend on whether the nucleotide occupying the site before an event

is a purine or a pyrimidine. Let H(α) be R if nucleotide type α is a purine and Y

if nucleotide type α is a pyrimidine. Also, define πR = πA +πG and πY = πC +πT .

If a within–group event occurs at a site currently occupied by type α, nucleotide

type β replaces α with probability πβ/πH(β) if α and β are both purines or both

pyrimidines and with probability 0 otherwise. In other words, within–group events

either lead to transitions or to no change of nucleotide type.

Due to assumed independence of the within–group and general processes, the

total number of events experienced at a site in time duration T has a Poisson

distribution with parameter (g + w)T . This formulation of the Felsenstein 1984

model actually allows general or within–group events occur that result in the same

nucleotide type occupying a site before and after an event. This sort of “hidden”

event is algebraically convenient for determining how to sample ρr from p(ρr|i, j, ψ)

86



and it is not difficult to normalize so that the rate units are the expected number

of nucleotide changes rather than the expected number of events.

With the Felsenstein 1984 model, the probability that a site is occupied by

nucleotide type β after an amount of evolution T given that the site was originally

occupied by type α is

pαβ(T ) =





(1− e−gT )πβ α 6= β, H(α) 6= H(β)

(1− e−gT )πβ + e−gT (1− e−wT ) πβ

πH(β)
α 6= β, H(α) = H(β)

(1− e−gT )πβ + e−gT (1− e−wT ) πβ

πH(β)
+ e−gT e−wT α = β.

(2.10)

Each of the three terms found in these transition probabilities has an intuitive

explanation. The probability of 0 general and 0 within–group events is e−gT e−wT .

The e−gT (1 − e−wT )πβ/πH(β) term represents the case of 0 general events and at

least one within–group event where the most recent within–group event results in

the nucleotide type β occupying the site. The (1− e−gT )πβ term is the probability

that the site is occupied by type β and at least one general event occurs.

We employ three steps to sample a particular site path from the distribution

p(ρr|i, j, ψ). First, a random sample is obtained from the distribution of the number

of general and within–group changes conditional on ir, jr and ψ. The second step,

conditional upon the number of events that occur at site r, is to randomly sample

the times of these events from a uniform distribution that spans the time period

of length T .

The uniform distribution is used because, conditional upon the number of

events, event times are uniformly distributed for a time–homogeneous Poisson

process such as the one defined by the Felsenstein 1984 model. After the numbers

of general and within–group events have been determined and the event times have

been assigned, the third step is to appropriately assign the specific residue types
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that are yielded by each event.

The form of the transition probabilities facilitates sampling the number of gen-

eral events and the number of within–group events at a site conditional upon

the information that the site was occupied by type ir at the beginning of the

branch and by type jr at the end of the branch. The most complicated situ-

ation is for ir = jr. In this situation, ρr has 0 general events and 0 within–

group events with probability e−gT e−wT /pirjr(T ). The probability of 0 general

events and at least one within–group event at the site for ir = jr is e−gT (1 −

e−wT )πjr/(πH(jr)pirjr(T )). Given that this happens, the probability of exactly nw

within–group events on the path is (wT )nwe−wT /(nw!(1−e−wT )) for nw ∈ {1, 2, . . .}.

Therefore, the probability of 0 general events and nw within–group events given

that ir = jr and nw ∈ {1, 2, . . .} is e−gT (wT )nwe−wT πjr/(nw! πH(jr) pirjr(T )). Like-

wise, the probability of ng > 0 general events and nw within–group events is

e−gT (gT )nge−wT (wT )nwπjr/(ng! nw! pirjr(T )) when ir = jr. Similar reasoning al-

lows sampling from the probability distribution of ng and nw conditional upon the

beginning nucleotide type ir and the ending type jr for the cases where ir 6= jr.

After determining ng and nw, the times for each general or within–group event on

a path can be randomly sampled from a uniform distribution along the branch.

The last step in randomly sampling a site path conditional upon the beginning

type ir and ending type jr is to randomly determine which nucleotide type occupies

a site after each event. The final event on a site path must always be to type jr

because this type occupies the site at the end of the branch. This final event may

be of either the general or within–group variety.

If the last general event is not the final event on a site path then, in order
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to have type jr at the end of the site path, the last general event must be to a

nucleotide type included in group H(jr). Specifically, the last general event results

in type k with probability πk/πH(jr) if k belongs to group H(jr). If k does not

belong to H(jr), then the probability is 0 that type k is assigned to occupy the

site after the last general event. Next, all general events that are not the last

general event on the path at the site are handled. This is accomplished by having

nucleotide type k occupy the site after one of these general events with probability

πk. When all general events have been assigned nucleotide types, the final step is

to treat any remaining unassigned within–group events. Because the within–group

events cannot result in transversions, the time intervals on a branch during which a

site is occupied by a pyrimidine depend solely on whether the site is occupied by a

purine or a pyrimidine at the beginning of the branch and on which general events

result in purines and which result in pyrimidines. If an unassigned within–group

event occurs during a “purine” interval, then the event results in A with probability

πA/πR and G with probability πG/πR. If an unassigned within–group event occurs

during a “pyrimidine” interval then the event results in C with probability πC/πY

and in T with probability πT /πY . The procedure discussed to this point allows

site paths to be sampled conditional upon the residues that begin and end the

path, but some events on the sampled site path may be “hidden” in that the

nucleotides before and after the event are identical. Because the goal is to propose

a site path according to the Felsenstein 1984 model and then evaluate the resulting

sequence path with a model that has dependence among codons and that is not

parameterized so as to consider “hidden” events, all hidden events are pruned from

the site path before it is considered in Equation (2.6). Because the Felsenstein 1984
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model can also be parameterized in the conventional way that has all evolutionary

events result in a changed sequence, the conventional parameterization is adopted

for calculation of J(ρ′, θ′|ρ, θ) and J(ρ, θ|ρ′, θ′).
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Abstract

Mapping substitution events offers a unique view of the evolutionary history along

each branch of a phylogeny. With this procedure, certain aspects of each event

including the nature, timing and measure of its influence on the protein can be

examined. Previous mapping strategies of protein-coding genes ignore constraints

due to protein tertiary structure and instead assume that codons change inde-

pendently. Although the independence assumption facilitates computation, it is

biologically implausible. In earlier work, we introduced a statistical procedure

for making evolutionary inferences from pairs of aligned protein sequences when

one member had an experimentally determined structure. Here, the procedure is

extended to three taxa and is applied to both lysozyme c and eosinophil-derived

neurotoxin (EDN) genes. Substitution events inferred to be under purifying selec-

tion when independence among codons is assumed are estimated to be positively

selected by our method due to the influence of pairwise interactions. When viewed

structurally, spatial clusters of positively or negatively selected events are inferred

for each branch of the EDN topology. The cluster formed by positively selected

events along the human EDN branch is found to correspond with a region of en-

zymatic significance. Lastly, a temporal ordering between a structurally adjacent

residue pair sheds light on possible evolutionary histories of a 13-fold increase in

EDN RNase activity.
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Introduction

When comparing protein-coding DNA sequences from different species, nonsynony-

mous differences are likely to be the result of mutations that occurred and were

subsequently fixed in a population. Because observed nonsynonymous differences

in a sample of homologous sequences are generated by the interaction between mu-

tation, genetic drift, and natural selection, these nonsynonymous differences are

said to be the result of nonsynonymous substitution events. Therefore, the rate

at which a nonsynonymous substitution event occurs will be affected by both the

mutation rate and the fitness of the mutation. Most nonsynonymous mutations are

deleterious and will be removed from a population through purifying selection (see

Li 1997). However, nonsynonymous mutations that impart a selective advantage

are positively selected and may have higher fixation probabilities than if the events

were synonymous.

Because of the difficulty in separating the effects of mutation and selection on

substitution rates, one convenient practice is to classify a nonsynonymous substi-

tution as being positively selected if and only if the rate of this substitution is

higher than it would be if the change were synonymous rather than nonsynony-

mous. This definition of positive selection has proven valuable for characterizing

evolution with codon-based models of protein sequence change (e.g., Yang 1998;

Yang et al. 2000; Yang and Nielsen 2002; Yang and Swanson 2002). Although the

details of these previously proposed models of codon change vary greatly, the key

idea is to invoke a parameter that is typically referred to as ω. With these codon

models, the rate of a nonsynonymous change is set equal to the product of ω and
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the rate the change would have if it were actually synonymous. Therefore, ω > 1

corresponds to nonsynonymous changes being positively selected whereas ω < 1

represents negative selection.

The ability to characterize positive selection and detect its presence has at-

tracted widespread interest in employing codon-based models of evolution for bet-

ter understanding the history and process of sequence change (e.g., Chang et al.

2002; Bielewski and Yang 2003). A problem with widely used codon-based models

is their assumption that different codons in a sequence change independently. This

independence assumption is not realistic, because translated amino acid residues

must interact to form and stabilize complex tertiary structures such as binding sites

and activation domains. Although most widely used models of sequence evolution

assume independent change among sites or codons (see Felsenstein, 2003), this as-

sumption is clearly violated (e.g., Pollock, Taylor and Goldman 1999; Wollenberg

and Atchley 2000).

The rate of a nonsynonymous change should not depend solely on the codon

that is modified by the change. Instead, the rate of a nonsynonymous change

should also be affected by the compatibility of the resulting amino acid replace-

ment and the amino acids specified by other codons in the protein-coding DNA

sequence. Positive selection is not a property of codon in isolation but is a prop-

erty of the entire ensemble of codons that determine a protein. A more refined and

plausible treatment of positive selection would consider the exact nature of a non-

synonymous change as well as the entire context of the protein. For a given codon,

most nonsynonymous substitutions may have an effectively neutral influence on

the protein, however because of nonsynonymous events at surrounding codons, a
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particular nonsynonymous event may become highly advantageous due to comple-

mentary changes in pairwise interactions in the folded protein. On the other hand,

circumstances may arise in which pairwise interactions cause nonsynonymous sub-

stitutions to be deleterious to the protein. These situations are examples of the

“Dykhuizen – Hartl” effect (Dykhuizen and Hartl 1980) because the influence of

the nonsynonymous substitution depends on the environment of the event (Zhang

and Rosenberg 2002).

Here, we extend the approach of Robinson et al. (2003) and apply it to

the characterization of positive and negative selection. This approach is based

upon a model of protein-coding DNA sequence evolution that permits dependence

among codons due to protein structure. Our procedure is built to account for

the “Dykhuizen – Hartl” effect through our measure of sequence-structure com-

patibility (Jones, Taylor and Thornton 1992; Jones 1999), where we define the an

environment of a site to be the collection of all amino acid residues whose Cβ carbon

atoms lie within ten Angstroms of the site in the folded protein. More importantly,

the model also allows for nonsynonymous substitutions where the determination of

positive or negative selection depends on which sequence is the ancestor and which

sequence is the descendant. We particularly concentrate on mapping nonsynony-

mous changes to particular branches of a phylogeny and to particular portions of

these branches. Methods for inferring the location of evolutionary events on a phy-

logenetic tree can be biologically illuminating and have been previously proposed

(e.g., Swofford and Maddison 1987; Nielsen 2001, 2002; Huelsenbeck, Nielsen and

Bollback 2003). Unlike our approach, the previous methods rely on the assumption

that characters change independently.
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Our method is illustrated with both lysozyme c and EDN genes. Summaries

of event mappings allow the placement of substitution events with high posterior

probability. In the EDN analysis, events that collectively are either positively or

negatively selected, are inferred to form site clusters when viewed structurally. In

particular, the site cluster formed by positively selected events along the human

EDN branch is found to correspond with a region of enzymatic significance. Other

site clusters inferred by our approach in the EDN protein may be shown to have

functional significance if experimentally investigated. Although we measure the

influence of nonsynonymous change according to sequence-structure compatibility,

our approach is written in general and can accommodate other fitness measures.

The next step is the extension of our method to datasets with greater than three

taxa, which is currently being explored.

Evolutionary Model

To incorporate site dependencies, the idea of codon evolution must be extended

to entire sequence evolution. A Markovian model of rate change is constructed,

which defines the instantaneous rate Ri,j from sequence i to sequence j, where i

and j differ at precisely one nucleotide position. It is assumed that if sequence j

has nucleotide type h at this position and does not translate a stop codon, then

the instantaneous rate matrix has the following form:
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Ri,j =





uπh for a synonymous transversion

uπhκ for a synonymous transition

uπh Ψi,j for a nonsynonymous transversion

uπhκ Ψi,j for a nonsynonymous transition

0 if j contains a stop codon, or if i

and j differ in multiple positions

(3.1)

where κ > 0 is the transition-transversion rate ratio and accounting for stop

codons, πh is the relative frequency of nucleotide type h with h ∈ {A,C,G, T}

and with restriction πA + πC + πG + πT = 1. The πh and κ terms can be in-

terpreted as reflecting mutational tendencies. In our procedure, the product of

rate and time results in branch lengths that are measured in expected number of

substitutions per nucleotide site. Because rates and times are confounded, time is

arbitrarily set to one and the overall rate is captured by a parameter u for each

branch.

Nonsynonymous substitution events influence how well a sequence adopts a

particular fold. In our approach (Robinson et al. 2003), we utilize a sequence-

to-structure compatibility function that has been successfully applied to protein

fold recognition (Jones, Taylor and Thornton 1992; Jones 1999). This criterion

approximates the fitness of any Sequence i in terms of solvent accessibility, denoted

Es(i), and pairwise interactions, denoted Ep(i). It is assumed that two amino acid

residues interact if their Cβ atoms are within ten Angstroms of one another in the

folded protein (Jones, Taylor and Thornton 1992; Jones 1999). If Es(i) and Ep(i)

are low, then Sequence i is considered stable when folded onto the given structure.

However, higher values Es(i) and Ep(i) are associated with unstable sequences,
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and consequently have lower sequence-structure compatibility.

With our model, the rate of a nonsynonymous change from sequence i to se-

quence j is the rate the change would have were it synonymous multiplied by a

factor

Ψi,j = ω e(Es(i)−Es(j))s+(Ep(i)−Ep(j))p

When Ψi,j exceeds one, the rate of the nonsynonymous change exceeds the rate

it would have were it synonymous, and therefore, the change from i to j can be

classified as being positively selected. The fitness of a particular protein-coding

DNA sequence depends both on interactions among the amino acids that it en-

codes within the protein and on the external environment. The parameter ω is

intended to capture the contributions to nonsynonymous rates that are external

to the protein of interest. The e(Es(i)−Es(j))s+(Ep(i)−Ep(j))p component represents the

effect on Ri,j due to sequence-structure compatibility. The parameters s and p are

respectively referred to as the solvent accessibility and pairwise interaction param-

eters. When s = p = 0, our model reduces to the standard codon models (e.g.,

Muse and Gaut 1994; Goldman and Yang 1994). Both s and p are expected to

be positive, since positive values of these parameters favor sequences that fit the

known structure well. The biologically unreasonable case where s and p are nega-

tive would have evolution favoring sequences that do not fit the known structure

well.

An attractive feature of our previous work (Robinson et al. 2003) is the explicit

form of the stationary probability of a given coding sequence i of length N . For

simplicity of notation, let θ represent all the parameters in the instantaneous rate
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matrix R (i.e., θ = {κ, ω, s, p, u, πA, πC , πG, πT}) and use im to represent the

nucleotide at position m in DNA sequence i. Sequence i has stationary probability:

p(i|θ) =
e−2sEs(i)−2pEp(i) ∏N

m=1 πim∑
k e−2sEs(k)−2pEp(k)

∏N
n=1 πkn

, (3.2)

where the sum in the denominator is over all possible sequences k of length N that

lack a premature stop codon.

Extension to three sequences

This simple model can be extended to three sequences by slightly modifying our

earlier implementation of the Metropolis-Hastings algorithm (Metropolis et al.

1953; Hastings 1970). Define a topology with three branches, where each branch

b connects the unobserved internal node sequence i to an observed sequence jb

(b ∈ {1, 2, 3}). A conventional way to estimate the transition probability p(jb|i, θ)

for branch b ∈ {1, 2, 3} is through spectral decomposition and matrix exponen-

tiation (see Swofford et al. 1996). For nucleotide sequences of length N , the

dimensions of our instantaneous rate matrix are on the order of 4N × 4N . Even for

small values of N , matrices attain high dimensionality and explicit calculation of

the transition probability p(jb|i, θ) by matrix exponentiation becomes challenging

computationally.

As an alternative to the explicit calculation of transition probabilities, we aug-

ment our data by mapping substitution events onto each branch of the evolutionary

tree consistent with the observed sequences at the tip nodes. The series of events

as well as their associated times are collectively referred to as a path. A path on

branch b, denoted ρb, specifies how i is transformed to an observed descendant se-

quence jb. Because we generally do not know the biologically correct evolutionary
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history or the precise substitution event times and because the number of possi-

ble paths are infinite, we instead sample paths from the appropriate probability

density p(jb, ρb|i, θ) to approximate the path posterior.

We implement this procedure in a Bayesian framework. In particular, we spec-

ify the prior density p(θ) and then sample from the joint posterior density, denoted

p(i, ρ1, ρ2, ρ3, θ|j1, j2, j3). We can break the joint posterior density down further as

follows,

p(i, ρ1, ρ2, ρ3, θ|j1, j2, j3) =
p(i, ρ1, ρ2, ρ3, θ, j1, j2, j3)

p(j1, j2, j3)

=
p(j1, ρ1|i, θ)p(j2, ρ2|i, θ)p(j3, ρ3|i, θ)p(i|θ)p(θ)

p(j1, j2, j3)

=
p(i|θ)p(θ)

∏3
b=1 [p(jb, ρb|i, θ)]

p(j1, j2, j3)
(3.3)

The denominator term p(j1, j2, j3) is difficult to determine explicitly. Fortunately,

this term is not a function of i, ρ1, ρ2, ρ3, or θ and thus does not need to be calcu-

lated with our Markov chain Monte Carlo (MCMC) procedure.

To compute p(jb, ρb|i, θ) for any branch b, we must first define the rate of

change from a sequence v to any other sequence k of length N as Rv,k. This

term is computed using the instantaneous rate matrix in Equation (3.1). The

term Rv,• will denote the rate away from sequence v where Rv,• =
∑

k Rv,k and

where the sum is over all sequences k that differ from v. As with a Poisson

process, the waiting time for a sequence v to experience a nucleotide substitution

is exponentially distributed with parameter Rv,•. The probability density that v

is transformed to some sequence k given that a nucleotide substitution changes v
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is Rv,k/Rv,•. If we now define the rate away from a sequence i after incorporating

substitution event x as Ri(x),•, the probability of a series of q events in a path has

the following form:

p(jb, ρb|i, θ) = (
q∏

x=1

Ri(x−1),i(x)

Ri(x−1),•
Ri(x−1),•e

−Ri(x−1),•(t(x)−t(x−1)))e−Ri(q),•(t(q+1)−t(q))

= (
q∏

x=1

Ri(x−1),i(x)e
−Ri(x−1),•(t(x)−t(x−1)))e−Ri(q),•(t(q+1)−t(q)), (3.4)

where the final term e−Ri(q),•(t(q+1)−t(q)) represents the probability of no change in

the time interval from the final substitution at time t(q) until the time t(q+1) = 1

that the branch ends.

A Markov chain is constructed on the joint i, ρ1, ρ2, ρ3, and θ state space

with stationary distribution p(i, ρ1, ρ2, ρ3, θ|j1, j2, j3). To initialize our MCMC al-

gorithm for each branch, the state (i(0), ρ
(0)
b , θ(0)) is arbitrarily sampled from the

set of possibilities where p(i, ρb, θ|jb) exceeds zero. We then propose new random

values i′, ρ′b and θ′ conditional on the current values i, ρb and θ where the proposal

density is denoted J(i′, ρ′1, ρ
′
2, ρ

′
3, θ

′|i, ρ1, ρ2, ρ3, θ). The Metropolis-Hastings prob-

ability that each branch accepts the proposed state is equal to the minimum of 1

and:

r =
p(i′, ρ′1, ρ

′
2, ρ

′
3, θ

′, j1, j2, j3)

p(i, ρ1, ρ2, ρ3, θ, j1, j2, j3)
x

J(i, ρ1, ρ2, ρ3, θ|i′, ρ′1, ρ′2, ρ′3, θ′)
J(i′, ρ′1, ρ′2, ρ′3, θ′|i, ρ1, ρ2, ρ3, θ)

=
p(i′|θ′)p(θ′)J(i, ρ1, ρ2, ρ3, θ|i′, ρ′1, ρ′2, ρ′3, θ′)
p(i|θ)p(θ)J(i′, ρ′1, ρ′2, ρ′3, θ′|i, ρ1, ρ2, ρ3, θ)

x
3∏

b=1

[
p(jb, ρ

′
b|i′, θ′)

p(jb, ρb|i, θ)

]
(3.5)

where if we accept the proposed state, the next state of the Markov chain, de-

noted (ρ
(1)
1 , ρ

(1)
2 , ρ

(1)
3 , θ(1), i(1)), is set equal to the proposed state (i.e., i(1) =

i′, ρ(1)
1 = ρ′1, ρ

(1)
2 = ρ′2, ρ

(1)
3 = ρ′3, θ

(1) = θ′). Otherwise, i(1) = i(0), ρ
(1)
1 = ρ

(0)
1 , ρ

(1)
2 =

101



ρ
(0)
2 , ρ

(1)
3 = ρ

(0)
3 and θ(1) = θ(0). By repeatedly proposing ρ′1, ρ

′
2, ρ

′
3, θ

′ and i′ and

then randomly accepting the proposals with probabilities determined in Equation

(3.5), a Markov chain with the desired stationary distribution is formed.

Proposing Ancestral Sequences

Our MCMC implementation actually consists of various proposal distributions for

i, ρb and θ, and the Markov chain is formed by cycling through these different

proposal distributions J . The proposal for each component of θ as well as the

proposal of individual paths ρb on one branch have been described previously (see

Robinson et al. 2003). An ancestral sequence proposal step however, is added to

our MCMC routine to contend with uncertainty in the internal node.

We propose a new ancestral node sequence i′ that is identical to i except for

one randomly selected site z. We respectively represent the current and proposed

nucleotides at site z of the ancestral node sequence by i(z) and i′(z). The residues

at site z in the observed sequences are denoted j1(z), j2(z) and j3(z). During this

proposal step, the parameters in θ are held constant, i.e., θ′ = θ, but the path

on each branch must be updated to ensure that ρ′b transforms i′ to each observed

descendant sequence. A sequence path can also be represented by site paths at

each of the N nucleotide positions, namely ρb(1), ρb(2), . . ., ρb(z), . . ., ρb(N). The

particular site path ρb(z) specifies all nucleotide substitutions that change site z

in path ρb, as well as the specific times of these changes.

Each site path is sampled from a model of evolution that assumes independence

among nucleotides and is commonly referred to as the F84 model (see Felsenstein

1989). We use ψ to differentiate the parameters in the F84 model from the pa-
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rameters in θ. Rather than proposing only the most probable nucleotide at site

z, i′(z) is randomly sampled from p(i′(z)|j1(z), j2(z), j3(z), ψ). We then propose

ρ′b(z) by sampling from p(ρ′b(z)|i′(z), jb(z), ψ) for each branch b. These two steps

comprise the proposal for an ancestral node sequence, whose proposal density

J(i′, ρ′1, ρ
′
2, ρ

′
3|i, ρ1, ρ2, ρ3) has the following form:

J(i′, ρ′1, ρ
′
2, ρ

′
3|i, ρ1, ρ2, ρ3) = p(i′(z), ρ′1(z), ρ′2(z), ρ′3(z)|j1(z), j2(z), j3(z), ψ)

= p(i′(z)|j1(z), j2(z), j3(z), ψ)
x p(ρ′1(z), ρ′2(z), ρ′3(z)|i′(r), j1(r), j2(r), j3(r), ψ)

= p(i′(z)|j1(z), j2(z), j3(z), ψ) p(ρ′1(z)|j1(z), i′(z), ψ)
x p(ρ′2(z)|j2(z), i′(z), ψ) p(ρ′3(z)|j3(z), i′(z), ψ)

= p(i′(z)|j1(z), j2(z), j3(z), ψ)
3∏

b=1

p(ρ′b(z)|jb(z), i′(z), ψ) (3.6)

Combining this result with the general form of the Metropolis-Hastings acceptance

probability in Equation (3.5), the MCMC algorithm accepts the proposed ancestral

node and paths on each branch with probability equal to the minimum of 1 and:

r =
p(i′|θ)J(i, ρ1, ρ2, ρ3|i′, ρ′1, ρ′2, ρ′3)
p(i|θ)J(i′, ρ′1, ρ

′
2, ρ

′
3|i, ρ1, ρ2, ρ3)

x
3∏

b=1

[
p(jb, ρ

′
b|i′, θ)

p(jb, ρb|i, θ)
]

=
p(i′|θ)p(i(r)|j1(r), j2(r), j3(r), ψ)
p(i|θ)p(i′(r)|j1(r), j2(r), j3(r), ψ)

x
3∏

b=1

[
p(jb, ρ

′
b|i′, θ)p(ρb(r)|jb(r), i(r), ψ)

p(jb, ρb|i, θ)p(ρ′b(r)|jb(r), i′(r), ψ)

]
(3.7)

One complication in updating the s, p or π parameters contained in θ is calcu-

lating the stationary distribution of the ancestral state, p(i|θ), given in Equation

(3.2). However, when performing an ancestral node update, the computationally

intense grid-based importance sampling approach as outlined in our previous pa-

per (see Robinson et al. 2003) is unnecessary because the parameter values θ′ = θ.
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This significantly simplifies the ratio of the stationary distributions of the proposed

and current sequences:

Pr (i′ | θ′)
Pr (i | θ)

=
Pr (i′ | θ)

Pr (i | θ)
=

πi′(z)

πi(z)

e−2s(Es(i′)−Es(i))−2p(Ep(i′)−Ep(i)) (3.8)

where the pseudo-energy differential according to solvent accessibility and pairwise

interactions between the current and the proposed sequences are multiplied by the

specific parameter values s, p and π taken from the Markov chain at the time the

update is made.

Data Analysis

For the analysis performed here, each MCMC run consists of 5.1 million cycles

through the Markov chain where the first 100,000 cycles are treated as “burn-

in” and are discarded from subsequent analyses. The posterior distribution is

approximated by sampling all parameter values, the ancestral node and paths

along each branch every 500 cycles of the chain, for a total of 10,000 samples.

For each branch and for each nucleotide position, the proportion of sampled

paths that include at least one nonsynonymous substitution event at that position

is computed. We refer to this proportion as the posterior probability of event

placement on a branch. Unless otherwise noted, we discuss only substitutions that

occur in at least 50% of paths sampled. To facilitate our analyses, although the

probabilities are calculated for a particular nucleotide position, we only display the

associated codon location of these events.

When independence among codons is assumed, the determination of whether

a codon is positively selected depends solely on the estimation of the ratio of

nonsynonymous to synonymous rates of change, denoted ω (e.g., Goldman and
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Yang 1994). When viewed in a Bayesian framework, if ω is estimated to exceed one,

these methods will consequently infer all codons that contain a nonsynonymous

substitution event to be positively selected. These codons will also be positively

selected with approximately the same proportion with which ω is estimated to

exceed one despite codon type or branch location. Under our approach, whether

an event is positively selected depends on the proportion that Ψi,j exceeds one,

denoted p(Ψi,j > 1). Although the estimate of this proportion is influenced by

the proportion of samples for which ω exceeds one, p(Ψi,j > 1) also depends on

the value of the sequence-to-structure compatibility criterion evaluated for each

substitution event. Therefore, our treatment allows a range of positive selection

probabilities to be inferred due to the influence of surrounding residues in the

folded protein.

Applications

The evolutionary time direction can be inferred for a pair of sequences with the

addition of an outgroup sequence. In general, the true root node should be po-

sitioned along the outgroup branch, yet its exact location is indeterminable for

time reversible models due to the pulley principle (see Felsenstein 1981). Models

of evolution that assume independence among codons (e.g., Muse and Gaut 1994;

Goldman and Yang 1994) will infer codons to be positively selected despite tempo-

ral direction. By employing Ψi,j however, sequence i is assumed to be the ancestral

sequence and j is assumed to be the descendant. Although events are inferred to

be positively selected under these assumptions, the same events may be negatively

selected when the roles of i and j are reversed. Although this is not always the
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Figure 1: Given observed sequences A, B and outgroup sequence O, the 
phylogeny has a defined internal node sequence I and root node sequence R.  On 
the I-O branch, the temporal direction of evolution changes at the root node R.  
That is, although the R-O component of the I-O branch is traversed forward in 
evolutionary time, the I-R component is traversed in reverse. 
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case, this behavior can be explained by observing the form of Ψj,i:

Ψj,i = ω e(Es(j)−Es(i))s+(Ep(j)−Ep(i))p

In this case, the difference in solvent accessibility (Es(j) − Es(i)) or pairwise

interactions (Ep(j) − Ep(i)) sequence-structure compatibility may have a signifi-

cant impact on Ψj,i which depends on ancestral sequence choice. Although events

simulated along the outgroup branch reverse evolutionary direction at the position

of the true root node (see Figure 3.1), all inferences are made assuming the internal

node is the root.

Lysozyme c protein

Langur monkeys have developed a foregut where leafy material is digested via

bacterial fermentation. Bacteria that escape the foregut are immediately degraded

by the high levels of lysozyme c in the stomach located downstream of the foregut

(Stewart, Schilling and Wilson 1987; Messier and Stewart 1997). We focus on

lysozyme c because it has experienced a large excess of positive selection during its

evolutionary history (e.g., Stewart, Schilling and Wilson 1987; Messier and Stewart

1997; Yang 1998; Yang and Nielsen 2002; Robinson et. al 2003).

We illustrate our method using three lysozyme c sequences that each consist

of 390 aligned nucleotides. These sequences are from the human (Homo sapiens

: Genbank accession number U76923), the Rhesus macaque (Macaca mulatta :

X60236), and Colobus guerza : U76916. The tertiary structure of lysozyme c has

been experimentally determined for the human sequence (PDB Id: 1JSF) (Harata,

Abe and Muraki 1998) and is assumed to be the native state conformation of all

sequences analyzed. To differentiate the three species in our output, we will use
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(C) Interactions with codon 61
Codon Time From AA To AA

40 0.0586 D N
52 0.0619 T A
50 0.2262 K R
52 0.3434 A T
60 0.5698 D N
67 0.7011 N D

Figure 3.2: (A) The rate across a randomly sampled path from the analysis where codons
evolve independently and identically (i.e., s = p = 0). (B) An extreme example of how the rate
across a different randomly selected path from codon 61 can vary when codons are allowed to
interact (i.e., s 6= 0, p 6= 0). (C) The nonsynonymous substitutions that occur on the sampled
path that interact structurally with codon 61. The particular MCMC sampled parameter values
for s and p associated with this path were 0.7746 and 0.0659, respectively.

“Mm” to represent the Macaca mulatta, “Cg” to represent the Colobus guerza and

“Hs” to represent Homo sapiens.

The rate away from a codon equals the sum of the rate to each of the nine pos-

sible codons that differ by exactly one nucleotide, as defined by the instantaneous

rate matrix in Equation (3.1). If no substitution event occurs at a codon, the

rate away will remain constant across a path when independence among codons

is assumed. However when site dependencies are considered, the rate away also

depends on the identity and location of neighboring codons in the folded protein.
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Thus, nonsynonymous substitution events at neighboring codons influence the rate

away due to differences in calculated pairwise interactions. Even though the 61st

aligned codon in our lysozyme c data is identical for all three sequences, Figure 3.2

illustrates how the rate away from codon 61 depends on nonsynonymous events

elsewhere in the protein with our dependence model (see Figures 3.2B and 3.2C),

but not with the corresponding independence model (Figure 3.2A). Although the

contrast in rate away between independence and dependence models is particularly

high for codon 61, other codons experience qualitatively similar behavior.

Although 10 MCMC runs were performed to check for convergence of the

Markov chain, the results that are presented represent a single randomly selected

run from this set. The posterior means and 95% credibility intervals are given for

the model parameters and branch lengths in Table 3.1. Posterior estimates of s

and p are both positive, because they represent the biologically plausible condi-

tion where evolution favors sequences that fold well onto the given structure. If

the 95% credibility intervals of s and p contained zero, that would suggest that

structure is not playing a role in the evolutionary process. The values of s and p

may influence the amino acid composition of sequences that are compatible with

the given structure. This may explain the observed differences in the distribution

of relative frequencies of the four nucleotides (data not shown) as well as in the ω

parameter posteriors (see Figure 3.3) inferred under both model conditions.

By summarizing the lysozyme c path posterior distribution for each branch,

substitution event placement probabilities can be assigned to events when both

site independence and dependencies are assumed. The codons listed in Table 3.2

represent only those positions whose place probabilities exceed 0.5. Except for
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(s = p = 0) (s 6= 0, p 6= 0)
κ 3.6741 3.1603

(1.6836 , 7.0617) (1.4381 , 6.2365)

ω 1.7047 1.8656
(0.6590 , 3.9523) (0.7130 , 4.2493)

uMM 0.0086 0.0095
(0.0016 , 0.0239) (0.0017 , 0.0264)

uCG 0.0223 0.0258
(0.0063 , 0.0536) (0.0074 , 0.0604)

uHS 0.0257 0.0292
(0.0073 , 0.0599) (0.0086 , 0.0684)

s 0 0.8515
NA (0.5036 , 1.2338)

p 0 0.0515
NA (0.0359 , 0.0686)

πA 0.3281 0.3661
(0.2840 , 0.3749) (0.3114 , 0.4280)

πC 0.1660 0.1604
(0.1331 , 0.2008) (0.1243 , 0.2009)

πG 0.2654 0.3011
(0.2253 , 0.3070) (0.2565 , 0.3482)

πT 0.2404 0.1725
(0.2024 , 0.2803) (0.1273 , 0.2191)

BLMm 0.0143 0.0140
(0.0040 , 0.0296) (0.0037 , 0.0297)

BLCg 0.0370 0.0379
(0.0197 , 0.0600) (0.0199 , 0.0621)

BLHs 0.0427 0.0431
(0.0237 , 0.0670) (0.0242 , 0.0678)

Table 3.1: Posterior means and 95% credibility intervals of all parameter values for the lysozyme
c sequence alignment. The site independent (s = p = 0) and site dependent (s 6= 0, p 6= 0) cases
are indicated at the top of each column. Branch Lengths (BL) are measured as expected number
of changes per nucleotide site. Although most parameters are shared by each lineage, the two
letter subscripts, as described in the text, are used as subscripts to indicate to which species the
rate parameter u and branch lengths belong.
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(A) Branch 1: Macaca mulatta (Mm)
Codon Independence Dependence
position Placement Placement p(Ψi,j > 1)

37 98.43 98.15 89.83
50 71.00 69.36 92.24
62 89.27 87.03 88.89
94 89.20 85.05 62.19

(B) Branch 2: Colobus guerza (Cg)
Codon Independence Dependence
position Placement Placement p(Ψi,j > 1)

14 98.56 98.96 95.10
21 98.65 98.36 91.65
23 98.78 97.89 86.07
41 100 100 89.72
50 62.18 62.93 77.26
87 98.84 98.59 88.87
113 98.45 99.21 96.08
114 99.67 99.77 97.98
126 99.54 99.70 84.30

(C) Branch 3: Homo sapiens (Hs)
Codon Independence Dependence
position Placement Placement p(Ψi,j > 1)

2 98.43 98.44 90.24
17 99.72 99.55 67.12
29 98.89 98.70 82.69
41 98.84 98.30 81.42
47 99.89 99.74 69.82
50 99.61 99.18 87.63
67 98.84 98.93 84.19
79 99.57 99.67 84.48
82 98.49 98.21 88.06
101 99.49 99.29 87.58
115 98.85 98.75 87.88
122 99.74 99.20 87.57

Table 3.2: Posterior probabilities of substitution event placement and of being under positive
selection are presented for each branch of the lysozyme c analysis. The site independent and site
dependent cases are indicated at the top of each column. When independence among codons is
assumed, events are positively selected with approximately posterior probability of 0.8294. When
site dependencies are considered, the posterior probability of being positively selected is given
by the p(Ψi,j > 1) column.

111



 

Omega Posterior Distribution

D
en

si
ty

0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Figure 3.3: The posterior density of ω for the lysozyme c protein. The histogram represents
the posterior density when independence is assumed, while the density for the site dependent
approach is given as an overlayed line.

position 50 in the Mm and Cg branches, all events can be placed on their respec-

tive branches with at least 0.85 probability. By assuming independence among

codons, or neglecting the structural component of Ψi,j, posterior probabilities of

being positively selected can be estimated for all events by examining the posterior

distribution of ω in Figure 3.3 for each model condition. The value of ω is esti-

mated to exceed one in 82.94% of sampled values when independence is assumed

and in 88.20% of samples when structure is considered. These posterior probabil-

ities are going to be approximately identical for all nonsynonymous substitutions

despite event type, or branch location.

Compared with the estimated probability of 0.8820, p(Ψi,j > 1) can vary sig-

nificantly due to pairwise interactions when site dependencies are considered (see

Table 3.2, column 4). For instance, events with p(Ψi,j > 1) exceeding 0.8820, such

as residues 37, 50 and 62 in the Mm branch and residues 14, 21, 41, 87, 113 and
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114 in the Cg branch, are positively selected through ω and increase sequence-

structure compatibility. Conversely, events with p(Ψi,j > 1) estimated less than

0.8820, such as residue 94 in the Mm branch, residues 23, 50 and 126 in the Cg

branch and residues 17, 29, 41, 47, 50, 67, 79, 82, 101, 115, and 122 in the Hs

branch may be positively selected through ω, but destabilize sequence-structure

compatibility. The codons estimated to be positively selected along each branch

tend to agree closely with what had been determined previously using alternate

methods (Stewart, Schilling and Wilson 1987; Yang and Nielsen 2002).

Eosinophil-derived neurotoxin protein

Gene duplication has been hypothesized to be an important precursor for the

development of novel gene function (e.g., Ohno 1970; Zhang, Zhang and Rosenberg

2002). In eosinophil leukocytes, duplication of the eosinophil-derived neurotoxin

(EDN) and eosinophil-cationic protein (ECP) genes was estimated to have occurred

31 MYA (e.g. Zhang, Dyer and Rosenberg 2000; Zhang and Rosenberg 2002). In

vitro studies have shown the human EDN protein to possess strong RNA antiviral

properties that functions to decrease the ability of a virus to infect its host as seen

in respiratory syncytial virus and HIV (Domachowske et al. 1998; Lee-Huang et

al. 1999).

The protein sequences analyzed consist of 393 aligned nucleotide positions.

To examine the interaction between codons 64 and 132 observed by Zhang and

Rosenberg (2002), the EDN protein from the Squirrel monkey (Saimiri sciureus

: AF4796321), the EDN protein from humans (Homo sapiens : M28129) and the

ECP protein of the Orangutan (Pongo pygmaeus : U24101) were compared. The
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Param. (s = p = 0) (s 6= 0, p 6= 0)
κ 1.7131 1.7363

(1.0677 , 2.5699) (1.0809 , 2.6100)

ω 0.8615 0.9571
(0.5299 , 1.3588) (0.5839 , 1.5077)

uSs 0.1490 0.1473
(0.0823 , 0.2433) (0.0792 , 0.2419)

uHs 0.1125 0.1129
(0.0584 , 0.1916) (0.05806 , 0.1919)

uPp 0.1258 0.1242
(0.0669 , 0.2072) (0.06615 , 0.2065)

s 0 0.6956
NA (0.3944 , 1.0154)

p 0 0.0379
NA (0.0229 , 0.0533)

πA 0.3152 0.3506
(0.2779 , 0.3569) (0.3050 , 0.4013)

πC 0.2468 0.2479
(0.2038 , 0.2839) (0.2089 , 0.2901)

πG 0.1861 0.1926
(0.1499 , 0.2228) (0.1585 , 0.2258)

πT 0.2518 0.2088
(0.2138 , 0.2950) (0.1639 , 0.2522)

BLSs 0.1122 0.1132
(0.0774 , 0.1532) (0.0768 , 0.1545)

BLHs 0.0840 0.0855
(0.0532 , 0.1212) (0.0546 , 0.1231)

BLPp 0.0952 0.0957
(0.0621 , 0.1334) (0.0632 , 0.1351)

Table 3.3: Posterior means and 95% credibility intervals of all parameter values and Branch
Lengths for the EDN sequence comparison.
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tertiary structure of the human EDN protein (PDB Id: 1HI2) (Mosimann et al.

1996) is assumed to be the native state conformation of all sequences analyzed.

To differentiate the three species in this dataset, we will use “Ss” to represent

the Saimiri sciureus, “Hs” to represent the Homo sapiens, and “Pp” to represent

Pongo pygmaeus.

Homologous regions in each taxa were manually aligned to the structure using

the resolved sequence alignment (Zhang and Rosenberg 2002). Unlike the lysozyme

c sequences however, three gaps had to be introduced into the EDN alignment

at codons 87, 88 and 117 which problematically translate to physical holes in the

structure. Following previous methods (e.g., Swofford et al. 1996), codon positions

containing gaps are removed from the alignment. To maintain accurate energy

calculations, the list of solvent accessibility measures for each site is computed

using the complete structure (Kabsch and Sanders 1983) and manually trimmed

to account for the missing codons. Furthermore, to ensure consistent pairwise-

energy calculations, a space holder is inserted at the position of each gap, which

preserves the appropriate amino acid residue separation along the protein chain.

The posterior means and 95% credibility intervals are given for the model pa-

rameters and branch lengths in Table 3.3. As with the lysozyme c analysis, esti-

mates of s and p both lie in the biologically plausible range and their credibility

intervals do not contain zero. The effect of s and p on the amino acid composition

of sequences selected by the approach appear to have a stronger influence on the

EDN proteins than with the lysozyme c proteins and may explain the larger dispar-

ity in the estimated ω posterior distributions inferred under both model conditions

(see Figure 3.4).
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Figure 3.4: The posterior density of ω for the EDN protein. The histogram represents the pos-
terior density when independence is assumed, while the density for the site dependent approach
is given as an overlayed line.

For each event, solvent accessibility and pairwise interactions influence the non-

synonymous rate of change through the quantities (Es(i) − Es(j))s and (Ep(i) −

Ep(j))p contained in Ψi,j. By randomly selecting a sample, the relationship be-

tween these quantities can be explored for all possible nonsynonymous substitution

events from the associated ancestral node sequence (see Figure 3.5(A)). Negative

values of either (Es(i) − Es(j))s or (Ep(i) − Ep(j))p indicate that the event, if

accepted, would destabilize sequence-structure compatibility. From this plot, a sig-

nificant number of points are observed to lie in the lower left quadrant, thus would

reduce the compatibility measure through both quantities. However when derived

from the events accepted by our approach along each path of the sample number,

a qualitatively different pattern of these quantities is derived (see Figure 3.5(B)).

Because events that are highly destabilizing are improbable under our approach,
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Figure 3.5: The values of (Es(i)−Es(j))s and (Ep(i)−Ep(j))p associated with (A) all possible
nonsynonymous substitutions from the ancestral node sequence, and (B) the nonsynonymous
events simulated on each branch, are shown for a randomly selected path of the EDN analysis
with site dependencies.

this behavior is somewhat expected.

Increased evolutionary distance between taxa often translates to greater ambi-

guity in the ancestral node (e.g., Koshi and Goldstein 1996; Zhang and Nei 1997;

Huelsenbeck and Bollback 2001). However with only a few exceptions, the vast

majority of substitution events have high posterior placement probabilities (see

Table 3.4). When independence among codons is assumed, or when the structural

component of Ψi,j is neglected, the posterior distributions of ω for each model con-

dition can be compared. Estimated posterior probabilities of events to be positively
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selected will be approximately equal to the proportion with which ω is expected to

exceed one (see Figure 3.4). When independence among codons is assumed, this

proportion has estimated probability 0.2227, therefore all events will be inferred

to be under purifying selection. Although when site dependencies are considered

ω is estimated to exceed one in only 37.50% of sampled values, p(Ψi,j > 1) infers

several events to be positively selected due to the influence of surrounding codons

(see Table 3.4, column 4).

When mapped onto the given structure, correlations between positively selected

or negatively selected events can be estimated through the formation of substitu-

tion event site clusters. A site cluster is defined between events whose translated

amino acids have Cβ atoms within ten Angstroms of one another. However, site

clusters are rarely observed when independence among codons is assumed since all

events are positively selected with approximately the same posterior probability.

When site dependencies are allowed, events inferred along the EDN branches can

be categorized as being positively selected if p(Ψi,j > 1) exceeds 0.5 probability.

Yet, if this quantity is inferred with less than 0.375, the event is estimated to be

under negative or purifying selection and to be destabilizing to sequence-structure

compatibility as well.

For each branch, the events in Table 3.4 are parsed into both positively selected

and negatively selected destabilizing categories, and are subsequently mapped onto

the structure using RASMOL (Sayle and Milner-White 1995). For each branch of

the phylogeny, these events are displayed in Figures 3.6(A-F). These events are

also displayed in Table 3.5, which contains the identity of all site clusters shown in

Figure 3.6. The site clusters in the table are displayed as codon positions in paren-
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(A) Branch 1: Saimiri sciureus (Ss)
Codon Independence Dependence
position Placement Placement p(Ψi,j > 1)

6 97.34 96.46 42.48
12 99.12 98.75 58.67
17 99.90 99.96 52.44
19 96.26 99.93 18.28
21 65.36 86.23 6.54
22 95.35 99.81 37.04
25 96.66 95.13 7.38
29 96.18 96.31 29.56
32 97.64 98.26 62.93
34 98.16 97.23 15.26
45 66.20 71.01 65.07
50 95.99 95.91 43.87
58 97.75 97.81 64.60
66 98.84 98.74 27.16
67 97.45 96.35 41.33
76 69.72 71.24 54.76
81 96.62 95.24 7.82
82 96.18 97.01 77.59
91 98.13 96.87 21.97
92 97.89 96.26 15.10
97 98.96 99.16 51.92
99 98.30 99.55 57.97
100 98.74 99.28 67.61
102 97.72 97.49 43.72

(B) Branch 2: Homo sapien (Hs)
Codon Independence Dependence
position Placement Placement p(Ψi,j > 1)

3 97.30 97.15 48.75
12 97.67 97.90 57.03
13 94.09 93.97 16.65
20 94.14 94.38 50.29
21 92.49 92.89 60.73
28 94.82 94.97 39.15
45 71.80 70.65 17.60
64 96.21 96.08 55.51
66 59.27 63.66 78.31
68 96.16 97.20 91.75
69 99.84 99.87 69.75
75 91.94 92.16 64.13
76 98.81 98.87 86.45
89 96.24 94.58 59.11
97 60.53 58.37 42.24
108 95.16 93.96 38.47
116 96.52 97.12 25.38
120 94.86 94.74 28.30
132 99.96 99.76 19.20
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(C) Branch 3: Pongo pygmaeus (Pp)
Codon Independence Dependence
position Placement Placement p(Ψi,j > 1)

7 97.25 98.59 79.01
12 76.17 83.00 92.33
16 93.53 93.49 25.97
17 95.04 93.51 31.27
18 96.61 96.48 62.86
19 97.92 96.25 28.34
21 59.58 85.88 81.49
25 96.72 95.18 25.18
39 94.04 92.86 19.63
45 63.12 59.95 43.76
60 96.18 95.59 53.93
66 65.26 62.91 27.50
73 93.78 99.63 45.41
76 76.16 73.56 25.45
81 96.92 94.59 11.93
90 97.60 96.11 20.69
97 65.82 66.63 49.91
100 99.19 98.54 65.79
101 97.03 96.00 18.41
102 97.82 97.00 82.39
103 96.60 95.76 9.25
104 99.87 99.78 35.69
105 97.33 97.34 23.36
122 94.87 93.37 26.41
133 95.58 94.26 11.28

Table 3.4: Posterior probabilities of substitution event placement and of being under positive
selection are presented for each branch of the EDN protein analysis. The site independent and
site dependent cases are indicated at the top of each column. When independence among codons
is assumed, events are positively selected with approximately 0.2227 posterior probability. When
site dependencies are considered, the posterior probability of being positively selected is given
by the p(Ψi,j > 1) column.
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Species p(Ψi,j > 1) > 0.5 p(Ψi,j > 1) < 0.375

Ss 32, 45, 58, 76, 82, 66,
(12,17), (91,92),

(97,99,100) (19,21,22,25,29,34,81)

Hs 12, 89, 13, 45, 116,
(20, 21), (75, 76), 120, 132
(64, 66, 68, 69)

Pp 60, 39, 66, 90, 122
(7, 12), (16, 17, 19, 25)

(18, 21, 100, 102) (76, 81, 101, 103, 104, 105, 133)

Table 3.5: Site clusters of both positively selected events, given by p(Ψi,j > 1) > 0.5, and
negatively selected destabilizing events, given by p(Ψi,j > 1) < 0.375, formed along the three
branches of the EDN protein sequence analysis. Single numbers represent codons that do not
interact with the other codons in the set, while codons listed in parentheses form site clusters of
various sizes.

theses, yet events that do not form clusters are shown as single codon positions. On

the Ss branch, although two small positively selected site clusters given by (12,17)

and (97,99,100) are formed, these events appear to be dispersed across the pro-

tein (see Figure 3.6(A)). However, the negatively selected destabilizing site cluster

(19,21,22,25,29,34,81) forms a large band-like region on the back side of the EDN

protein (see Figure 3.6(B)). Along the Hs branch, there are no site clusters formed

between negatively selected events (see Figure 3.6(D)). Yet, although our method

measures sequence-structure compatibility, the positively selected site cluster (64,

66, 68, 69) (see Figure 3.6(C)) corresponds precisely with the enzymatic region of

the EDN protein (e.g., Zhang and Rosenberg 2002).

Unlike the behavior observed along the two branches above, substitution events

estimated along the Pp branch form well defined site clusters when both the posi-

tively selected and negatively selected destabilizing events are considered. In

122



(A)     (B) 

 
 
 

 
 
 
 
 
 
 
 
 
(C)         (D) 

 
 
 
 
 

123 



(E)   

 
(F) 

 
 
Figure 3.6:  Using RASMOL (Sayle and Milner-White 1995), site clusters are visualized  
when both positively selected or negatively selected events are separately mapped onto 
the EDN structure.  (A) Positively selected events inferred from Saimiri sciureus.  (B) 
Negatively selected destabilizing events inferred from Saimiri sciureus.  (C) Positively 
selected events from inferred Homo sapiens.  (D) Negatively selected destabilizing events 
inferred from Homo sapiens.  (E) Positively selected events inferred from Pongo 
pygmaeus.  (F) Negatively selected destabilizing events inferred from Pongo pygmaeus. 
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particular, the positively selected site cluster (18, 21, 100, 102) is located in the

upper left hand region of the protein and appears isolated from the other events

selected in this group (see Figure 3.6(E)). However, the two negatively selected

destabilizing site clusters given by (76, 81, 101, 103, 104, 105, 133) and (16, 17,

19, 25) appear as a tight grouping on top of the protein and as a horizontal band

wrapping around the back of the protein, respectively in Figure 3.6(F). The unde-

termined biological significance of the site clusters inferred by this analysis deserve

further experimental investigation.

Zhang and Rosenberg (2002) discovered that a 13-fold increase in EDN enzy-

matic activity could be attributed to the combined influence of nonsynonymous

substitution events at codons 64 and 132, which map to adjacent sites in the pro-

tein structure. To examine this, they reconstructed the ancestral node protein

with 64R and 132T using parsimony. Because the human sequence had 64S and

132R, they then synthesized the two intermediate proteins, namely I1:(64S , 132T)

and I2:(64R , 132R), through site-directed mutagenesis and then tested each for

RNase function (Zhang and Rosenberg 2002). They determined that I1 resulted

in a 46% decrease in activity followed by a 24-fold increase, while I2 resulted in

only a 21% decrease in activity followed by a 17-fold increase.

Reconstruction of the ancestral node using our approach also permits the

derivation of the posterior distribution of paired codons 64 and 132. The most

probable reconstruction is clearly CGT at codon 64 and ACC at codon 132, which

is estimated with 0.8668 probability (see Table 3.6). The next three most proba-

ble reconstructions are also shown, and a category marked “Other” contains the

remaining twenty reconstructions which collectively account for only 0.0195 pos-
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terior probability. One substitution at nucleotide position 190 in codon 64, as well

as substitutions at nucleotides 395 and 396 in codon 132 are required to transform

the ancestral node sequence to the human sequence. Thus, although Zhang and

Rosenberg reconstructed two paths using proteins, by considering the associated

DNA, a total of six unique path orders are determined to exist with our approach

that transform CGT and ACC in the ancestral node to AGT and AGA in the

observed human sequence.

From the 8,668 associated paths sampled, 1,009 contain multiple substitution

events at these positions and are discarded for simplicity. Conditional on the paths

that infer only one substitution event at each nucleotide position, the remaining

paths are then investigated to account for the six possible orders (see Table 3.7).

Using the human EDN sequence as a guide, each intermediate sequence defined

within an order is manually constructed and evaluated for sequence-structure com-

patibility with our criterion. For each order, the pseudo-energy difference between

the sequence before and after each substitution event is computed, where stabi-

lizing substitutions result in negative pseudo-energy differences. This measure, as

well as the estimated conditional posterior probability are shown in Table 3.7.

Orders I, II, III and IV collectively infer the nonsynonymous substitution event

at codon 64 to occur prior to those in codon 132. By summing the conditional

probabilities of these four orders, our approach estimates this result with estimated

0.6628 posterior probability. Conversely, orders V and VI infer the reverse scenario

with combined 0.3372 posterior probability. The intermediate defined by I2 is

formed by the second event along orders V and VI. Compared with the other

intermediate sequences, our approach infers I2 to have the most unstable sequence-

126



Species Codon 64 Codon 132
Human AGT AGA
Squirrel Monkey CGT ACC
Orangutan CGT ACC

Codon 64 Codon 132 Probability
CGT ACC 86.68

Ancestral CGT ACA 4.27
Reconstruction CGT AGC 3.61

AGT ACC 3.49
Other 1.95

Table 3.6: Codons 64 and 132 are given for each taxon in the analysis. Using our dependence
approach, the posterior distribution of the ancestral node is also shown for these positions in
descending order of posterior probability, starting from the most probable. Twenty alternative
reconstructions are included in the “Other” category.

Conditional
Order Event 1 Event 2 Event 3 Probability

Path I 190:A→C, (R→S) 395:C→G, (T→S) 396:C→A, (S→R) 16.24
Compatibility – 2.96 +2.3 +6.26

Path II 190:A→C, (R→S) 396:C→A, (T→T) 395:C→G, (T→R) 16.87
Compatibility – 2.96 0 +8.56

Path III 396:C→A, (T→T) 190:A→C, (R→S) 395:C→G, (T→R) 17.50
Compatibility 0 – 2.96 +8.56

Path IV 395:C→G, (T→S) 190:A→C, (R→S) 396:C→A, (S→R) 15.67
Compatibility +2.41 – 3.07 +6.26

Path V 395:C→G, (T→S) 396:C→A, (S→R) 190:A→C, (R→S) 16.29
Compatibility +2.41 +6.64 – 3.45

Path VI 396:C→A, (T→T) 395:C→G, (T→R) 190:A→C, (R→S) 17.43
Compatibility 0 +9.05 – 3.45

Table 3.7: For each of the three substitution events that comprise the six possible path or-
ders, the nucleotide position, the associated nucleotide change and resultant amino acid change
in parentheses are shown. The approximate influence of each substitution event on sequence-
structure compatibility is also given where negative values represent stabilizing events. Condi-
tional on the paths that infer only one substitution event at each nucleotide position, posterior
probability estimates of each order are also shown.
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structure compatibility measure. Although it appears to be difficult for our method

to choose one of the six order with high posterior probability (see Table 3.7), by

comparing the sum of the posterior probabilities our approach infers the event at

codon 64 to occur before those in 132. In addition, our approach corroborates

this general event order choice in Table 3.4(B), where the event at codon 64 is

positively selected, while codon 132 is negatively selected and destabilizing to the

protein sequence-structure compatibility.

Discussion

As a justification of our approach, estimates of positively selected events in the

lysozyme c are found to agree with what has been determined previously (Stewart,

Schilling and Wilson 1987; Yang and Nielsen 2002). Slight modifications of our

method would allow a unique ω parameter to be estimated for each branch of the

phylogeny. This could possibly isolate the branches in the lysozyme c topology

that contain positively selected events. Similar to previously proposed maximum

likelihood methods (e.g., Yang 1993), other extensions could be implemented to

allow a discrete Gamma rate distribution to be estimated for ω. However, the

benefit gained by these proposed modifications is difficult to determine.

In the EDN analysis, despite the absence of positive selection when indepen-

dence among codons is assumed, several events on each branch were inferred to

be positively selected due to the influence of surrounding codons. When mapped

onto the structure, the formation of site clusters between events whose translated

amino acids have Cβ atoms within ten Angstroms of one another can often be

inferred. In particular, the site cluster formed by positively selected events along
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the human EDN branch corresponds precisely with a region of enzymatic signifi-

cance (e.g., Zhang and Rosenberg 2002). Both positively selected and negatively

selected destabilizing event site clusters inferred by our method deserve further

investigation experimentally.

When the alignment used by Zhang and Rosenberg (2002) is analyzed using

parsimony, CGT and ACC are also inferred at positions 64 and 132, respectively

(data not shown). However, because they worked with protein sequences and

not the associated nucleotides, Zhang and Rosenberg lost some information that

would have led to the discovery of alternative intermediary sequences. Using our

approach, a total of six unique evolutionary path orders are determined. Although

our method is not able to choose one particular order with high posterior proba-

bility, the substitution event at position 64 is estimated to occur prior to those of

position 132 with 0.6628 posterior probability compared with only 0.3372 posterior

probability for the reverse scenario. Furthermore, the event at site 64 is positively

selected, while the events at site 132 are negatively selected and destabilizing to

the protein. Thus, despite the greater decrease in enzymatic activity observed by

Zhang and Rosenberg, our approach infers the event at position 64 prior to those

of position 132.

A sequence-structure compatibility criterion (Jones, Taylor and Thornton 1992;

Jones 1999) is used to approximate the fitness of a sequence, but because the

method is written in general, other measures of sequence fitness can be accommo-

dated. To ensure convergence of the Markov chain for three taxa, 5.1 million cycles

are performed. How this increase will translate when more taxa are analyzed is

difficult to determine. Although computationally intense, extending the capabili-
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ties of our approach to larger datasets is a top priority. To handle uncertainty in

phylogenies with multiple ancestral nodes, algorithms that find the optimal joint

ancestral sequence reconstruction will be explored (see Pupko et al. 2000). To

contend with phylogenetic uncertainty, the phylogeny will most likely be deter-

mined by some external method, such as neighbor-joining (Saitou and Nei 1987),

and assumed correct. Although Bayesian methods have been previously proposed

(Huelsenbeck, Rannala and Masly 2000), significant modifications of our current

implementation as well as improvements in computational speed will be necessary

for this to be tractable.
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Introduction

Incorporating dependencies among sites offers many opportunities to explore the

influence of protein structure on the substitution process. When structure is ig-

nored (i.e., s = p = 0), the rate of change at a codon is not affected by the

rate of change at surrounding codons. However, when structure is considered

(i.e., s 6= 0, p 6= 0) a substantial amount of rate heterogeneity becomes apparent

due to substitution events at codons that are in close physical proximity in the

folded state. Although much insight is gained, certain assumptions required by

our implementation, such as those concerning pseudo-energy potentials, have been

considered drawbacks (see Thomas and Dill 1996). Extending this research to

complex multi-taxa datasets is top priority, yet other possible future directions are

also presented.

General Points

Many researchers have understood the importance of incorporating structural and

functional information into models to improve evolutionary and phylogenetic in-

ference (e.g., Koshi and Goldstein 1995, 1997; Thorne, Goldman and Jones 1996;

Goldman, Thorne and Jones 1998; Liò et al. 1998). In particular, Fornasari,

Parisi and Echave (2002) applied the method of Parisi and Echave (2001) to sim-

ulate amino acid changes on a protein with known structure. In their procedure,

substitutions accepted under structural constraints were tabulated for six assumed

site categories, from which probability matrices tailored to the protein of interest

were constructed.
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Although only six site categories were sufficient to model the protein under

investigation, it seems difficult to assume that similar strategies would achieve

the same level of success when when applied to alternate proteins. For instance,

most proteins would require the creation of site specific rate matrices due to the

existence of sites that do not fit into predefined categories. In addition, because

the matrices are uniquely defined, the procedure must be repeated for each protein

analyzed.

These drawbacks highlight many benefits of incorporating pseudo-energy po-

tentials to measure the influence of nonsynonymous substitutions. Because the

potentials are defined for residue pairs in general, they require no preliminary ma-

trix calculations. This allows our approach to be immediately applicable to almost

any protein of interest. Most importantly, since rates of change are tailored to

each site depending on the location and identity of all residues in close physical

proximity, broad rate category assumptions are never made.

Frozen Structure Assumption

In our approach, the experimentally determined protein structure of one taxon

is assumed correct for the remaining taxa in the dataset. It is common for a

particular dataset to contain only one taxon with a resolved structure because of

the low success rate associated with crystalizing proteins. Despite this, the given

structure may not be perfectly compatible with other sequences in the dataset due

to differences in residue composition. Rather than the precise three dimensional

atomic coordinates, it has been suggested that evolutionary models should use
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secondary structural elements (Mizuguchi and Go 1995). Yet, there is evidence

that even secondary structure may be variable, as observed in different strains of

at least one HIV-1 protein (Hansen et al. 1996). Protein structure evolves very

slowly (e.g., Chothia and Lesk 1986; Flores et al. 1993; Russell et al. 1997), and

although the frozen structure assumption is not perfect, it does allow the definition

of a simple dependence function based on the physical separation of amino acid

residues.

Assumptions with Pseudo-Energy Potentials

The most unique feature of our approach is incorporating pseudo-energy potentials

to measure the influence of nonsynonymous substitution events on surrounding

residues within a protein. These potentials were successfully applied to protein

threading (Jones, Taylor and Thornton 1992; Jones 1999), but were derived using

a variety of assumptions that are not without critics. The arguments stem mainly

from the precise definition of a pairwise interaction and include from which point

the distance between residues should be measured; how close residues must be to

interact; and between which atom pairs should the potentials be defined.

To obtain robust pseudo-energy estimates, the database from which the poten-

tials are derived must be sufficiently large. If not, the error associated with each

energy potential would be substantial. Consequently, this would decrease the over-

all sensitivity of the potentials to discern the difference between valid structures or

which substitution events are considered most plausible. At the time when Sippl

(1990), Hendlich et al. (1990) and Jones, Taylor and Thornton (1992) performed
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their analyses, the number of solved crystal structures was limited. However each

group correctly reasoned that their method would only improve when derived from

a larger, more diverse training set of structures. The pseudo-potentials used in our

procedure were borrowed from the GenTHREADER software package, which were

derived from the unique set of structures available in the 1998-1999 PDB database

(Jones 1999).

The origin from which pairwise interactions should be measured is biologically

not known. This has a large affect on subsequent analyses for it concerns which

residue pairs inevitably interact. Originally, the Cα atom was proposed to be

the center point (Sippl 1990), but it was later determined that the Cβ atom was a

more sensitive probe of conformational preferences of the individual residues within

proteins (Hendlich et al. 1990). Because the biochemical properties of each residue

are derived form the unique side chain conformations, choosing the Cβ atom as

this reference point may agree more with biological considerations. However, the

fact that a fictitious Cβ atom must be fabricated for each glycine residue is an

obvious drawback (David Jones, personal communication).

Once the reference point is chosen, the question of exactly how close two

residues must be to interact can be addressed. In 1993, Sippl proposed that pair-

wise interactions should be defined within a hollow sphere measuring between

four and fifteen Angstroms. This reasonable assumption neglects the possibility

of extremely close contacts, which rarely occur due to the possibility of side chain

overlap, and extremely distant contacts, which are mainly determined by large pro-

teins in the database used to compile the potentials (Sippl 1993). However, due

to the electrostatics of interaction as well as the fear of introducing unforseen side
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effects into the potentials, a more conservative upper bound of ten Angstroms was

used in the creation of the potentials for our analyses (Jones, Taylor and Thornton

1992; Jones 1999).

In general, the potentials are defined between pre-specified atoms within in-

teracting amino acid residue pairs. Compared with utilizing the Cα ⇒ Cα pair

(Sippl 1990) or the Cβ ⇒ Cβ pair (Hendlich et al. 1990), the pseudo-potentials we

incorporate are derived for five atom pairs, namely the Cβ ⇒ Cβ, Cβ ⇒ O, Cβ ⇒

N, O ⇒ Cβ, N ⇒ Cβ (Jones, Taylor and Thornton 1992; Jones 1999). Using five

atom pairs benefits the potentials by clearly defining the location and relation-

ship between interacting residues without a comparable increase in computational

demand.

Although this method makes a significant step towards incorporating depen-

dence among codons, the pseudo-energies of interaction are computed only for

residue pairs, which completely ignores that a third amino acid residue in close

proximity may impart an unforseen influence on the pairwise energy score. How-

ever, the amount of observations necessary to estimate multi-residue effects with

any accuracy is unfortunately prohibitive. Until the number of structures neces-

sary to obtain reasonable estimates, or more realistic energy calculations become

available, we are forced to assume that two residues behave as though in a vacuum,

interacting independent of their surroundings.

Lastly, this type of modelling ignores all contextual effects and environmental

constraints of pairwise interactions. For example, two residues in the same phys-

ical conformation will have identical pairwise-interaction energy score regardless

of their location in the protein structure. The roots of this dilemma are from
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the Inverse Boltzmann Principle which functions to average over a wide range

of interacting conformations as well as environmental conditions to compute the

pseudo–energy potentials. Opponents hone in on these inherent weaknesses as be-

ing too unrealistic to be useful (see Thomas and Dill 1996). Although it is far

from perfect, our procedure is written in general and can quickly approximate how

well amino acid pairs interact no matter the protein under investigation. Lastly,

because our model is adaptable, if a more robust set of pseudo-potentials become

available, they can be easily accommodated by the method.

Future Directions

A number of different extensions to, or applications of, this approach are being

discussed while others are actively being pursued. Rather than use event histories,

one possible direction is to perform inference solely with path order. This can be

achieved by integrating out the time component of a path leaving only the general

event order. Other directions may include applications to serially sampled HIV

sequences (Seo et al. 2002), to divergence times estimation (e.g., Thorne, Kishino

and Painter 1998; Thorne and Kishino 2002; Aris-Brossou and Yang 2002), to

transmembrane proteins (Liò and Goldman, 1999), or to protein families in the

publicly available “Pandit” database (Whelan et al., in press). Before these ideas

can be followed however, the first step is to extend the procedure to complex multi-

taxa phylogenies. Although this improvement may not be of interest statistically,

a dramatic increase in applicability is envisioned once this restriction is lifted. Fur-

thermore, this will also allow our method to be applicable to the general scientific
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community, whose interest lies in the relationship between several taxa.

Extension to General Phylogenies

Datasets with many taxa require the simulation of paths on entire phylogenetic

trees. The current implementation with three taxa treats all branches as indepen-

dent entities who share a common ancestral node. Although it is applied to small

datasets, this same algorithm can analyze greater than three sequences with the

caveat that they evolve according to a star phylogeny. To study bifurcating or

multifurcating tree topologies, internal nodes other than the root must be treated

as descendant sequences as well as ancestral node sequences. To analyze large

datasets, a modified version of the “Pupko algorithm” (Pupko et al. 2000) would

be required to perform the simultaneous update of all ancestral nodes. Rather than

estimate the probability of a single nucleotide at each node, slight modifications

of the algorithm would allow the nucleotide choice to be stochastic.

Gamma Shape Parameter for ω

Our current implementation estimates a single ω parameter that is shared among

all codons. This parameter is intended to capture the forces that affect nonsyn-

onymous change which are external to the protein. However, it is probable that

this force varies among codons. A large improvement in evolutionary models was

achieved by allowing a discrete Gamma rate distribution to be estimated for ω

(Yang 1993). This improvement was not only observed in how well models fit real

sequence data, but also in enhanced reconstruction of more reliable evolutionary
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trees (Yang 1994, 1996). A similar strategy can be incorporated into our procedure,

though how much improvement it will add is difficult to determine.

Integrating Time Out of a Path

A path is defined by a series of substitution events and their associated times.

However, two paths that have the same substitution event order, yet differ only

in event timing will be treated as distinct entities. Because time is a continuous

quantity, there exists an infinite number of paths associated with each unique event

order. A general expression can be obtained by integrating time out of the path

equation, as long as the substitution event order is preserved:

∫ T

t1=0

· · ·
∫ T

tq=tq−1

R1,2 e−R1,• t1 · · ·Rq,q+1 e−Rq,•tq e−Rq+1,•(T−tq)dtq · · · dt1

=

(
q∏

z=1

Rz,z+1

)
q+1∑
ξ=1

e−Rξ,•T

[∏q+1
φ=1
φ 6=ξ

(Rφ,• −Rξ,•)

] (4.1)

where T is the normalized time of the path, q is the number of substitution events,

Rz,z+1 is the instantaneous rate of change from sequence z to sequence z + 1 as

defined by our instantaneous rate matrix, and Rz,• is the rate of change away from

sequence z to any other sequence of length N given by Rz,• =
∑

k Rz,k, where the

sum is over all sequences k that differ from z. (see Robinson et al. 2003). The proof

of Equation (4.1) is given in Appendix A. If all rates Rz,• are equal, this equation

reduces to a general Poisson process with rate parameter Rz,•. Unfortunately,

the formula becomes undefined if the rates Rφ,• and Rξ,• are equal. The general

form of this equation for any number of rate equivalencies however, has yet to be
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determined.

Transmembrane Proteins

The applicability of our approach has been focused solely on globular proteins.

Although hidden Markov models have been previously employed to model trans-

membrane proteins (Liò and Goldman, 1999), the application of our approach to

this unique class of proteins has never been proposed. The functional constraints

within the transmembrane versus globular protein residues appear almost contra-

dictory, as observed in the mutation matrices calculated from membrane spanning

proteins (Jones et al. 1994). Because the energy potentials of our approach were

derived solely from globular proteins, the information coming from the external

residues compared with those that come from residues that span the membrane

would most likely conflict. This would have unforseen consequences on our method

resulting mainly in misleading inference.

Conclusion

Relaxing the independence assumption is a natural step in the long progression of

statistical models of evolution. As computer processor speed and the availability

of protein crystal structures increase, so does the applicability of our approach.

With two and three taxa datasets, biologically plausible parameter estimates are

derived, and observations of the evolutionary history along a branch are inferred.

In particular, events were place with high posterior probability and events inferred

to be under purifying selection when independence among codons is assumed are
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estimated to be positively selected by our method due to the influence of pairwise

interactions. In addition, through mapping either positively selected or negatively

selected events onto the known EDN structure, spatial clusters of positively or

negatively selected events can be inferred. Although extensions to greater than

three sequences is the logical next step, the future directions of this approach are

limitless.
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Appendix A

THEOREM:

Given an ancestral sequence i and descendant sequence j separated by an evo-

lutionary amount of time T, the infinite set of paths that share the same q sub-

stitution events with the same order can be calculated by integrating out time for

each event with the following formula

∫ T

t1=0

· · ·
∫ T

tq=tq−1

R1,2 e−R1,• t1 · · ·Rq,q+1 e−Rq,•tq e−Rq+1,•(T−tq)dtq · · · dt1

=

(
q∏

z=1

Rz,z+1

)
q+1∑
ξ=1

e−Rξ,•T

[∏q+1
φ=1
φ 6=ξ

(Rφ,• −Rξ,•)

] (4.2)

where Rz,z+1 is the instantaneous rate of change from sequence z to sequence z +1

as defined by our instantaneous rate matrix, and Rz,• is the rate of change away

from sequence z to any other sequence of length N given by Rz,• =
∑

k Rz,k, where

the sum is over all sequences k that differ from z. (see Robinson et al. 2003).

PROOF BY INDUCTION:

If the rate away from the ancestral sequence is defined as R1,•, then the path

over time interval T with zero substitution events is calculated as:

Pr (q = 0) = e−R1,•T (4.3)

Notice that with a constant rate over the entire interval, the evolutionary path

follows a simple Poisson process. However due to dependence among sites, this

form does not hold because the rate of change usually differs after each substitution

event. There exists two cases for the addition of one event. The first is for a path
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with a single substitution event:

Pr (q = 1) =
∫ T

t1=0
R1,2e

−R1,•t1 e−R2,•(T−t1)dt1 = R1,2 e−R2,•T

(
e−(R1,•−R2,•)T − 1
−(R1,• −R2,•)

)

= R1,2

(
e−R1,•T

R2,•−R1,•
+ e−R2,•T

R1,•−R2,•

)
= R1,2

2∑

ξ=1

e−Rξ,•T

∏2
q=1
q 6=ξ

(Rq,• −Rξ,•)
(4.4)

Without loss of generality, inserting an event in an interval that already con-

tains q prior substitutions can be thought of as adding an event between the last

substitution and final time T.

Pr(q = q + 1, T̃ = T − tq) =

∫ T

tq+1=tq

Rq+1,q+2e−Rq+1,•tq+1e−Rq+2,•(T−tq+1)dtq+1

= Rq+1,q+2e−Rq+2,•T

[
e−(Rq+1,•−Rq+2,•)tq+1

−(Rq+1,• −Rq+2,•)

]T

tq

= Rq+1,q+2e−Rq+2,•T

(
e−(Rq+1,•−Rq+2,•)T − e−(Rq+1,•−Rq+2,•)tq

)
−(Rq+1,• −Rq+2,•)

= Rq+1,q+2

(
e−Rq+1,•T

Rq+2,• −Rq+1,•
+

e−Rq+2,•T e−(Rq+1,•−Rq+2,•)tq

Rq+1,• −Rq+2,•

)
(4.5)

By using induction, Equation (4.2) is assumed correct for q substitution events

and will now be shown to hold for (q +1) events. Hence, we start with the general

equation for integrating out the time component for q + 1 substitution events.

∫ T

t1=0

· · ·
∫ T

tq=tq−1

∫ T

tq+1=tq

R1,2 e−R1,• t1 · · · Rq,q+1 e−Rq+1,•(tq+2−tq+1) ·

Rq+1,q+2 e−Rq+2,•(T−tq+2) dtq+1 · · · dt1

By pulling all terms that do not have a tq+1 component through the rightmost

integral, we arrive at:

=

(
q∏

z=1

Rz,z+1

) ∫ T

t1=0

· · ·
∫ T

tq=tq−1

e−(R1,•−R2,•)t1 · · · e−(Rq,•−Rq+1,•)tq

(∫ T

tq+1=tq

Rq+1,q+2e
−Rq+1,•tq+1e−Rq+2,•(T−tq+1)dtq+1

)
dtq · · · dt1
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=

(
q+1∏
z=1

Rz,z+1

) ∫ T

t1=0

· · ·
∫ T

tq=tq−1

e−(R1,•−R2,•)t1 · · · e−(Rq,•−Rq+1,·)tq

(
e−Rq+1,•T

Rq+2,• −Rq+1,•
+

e−Rq+2,•T e−(Rq+1,•−Rq+2,•)tq

Rq+1,• −Rq+2,•

)
dtq · · · dt1 (4.6)

where Equation (4.6) is found by applying the result found in Equation (4.5) to

the integral within the parentheses above. By distributing the integration signs

across each term in the parentheses of Equation (4.6), we arrive at Equation (4.7)

=
(∏q+1

z=1
Rz,z+1

)
(Rq+2,•−Rq+1,•)

∫ T

t1=0

∫ T

t2=t1

· · ·
∫ T

tq=tq−1

e−(R1,•−R2,•)t1 · · · e−(Rq,•−Rq+1,•)tqe−Rq+1,•T dtq · · · dt1

+
(∏q+1

z=1
Rz,z+1

)
(Rq+1,•−Rq+2,•)

∫ T

t1=0

∫ T

t2=t1

· · ·
∫ T

tq=tq−1

e−(R1,•−R2,•)t1 · · · e−(Rq−1,•−Rq,•)tq−1

e−(Rq,•−Rq+2,•)tqe−Rq+2,•T dtq · · · dt1 (4.7)

The form of the first integral in Equation (4.7) precisely defines the path with

q events and is thus assumed to follow Equation (4.2). The second integral can

also be integrated using Equation (4.2), except care must be given to properly

account for the subscript (q+2). By combining like terms found in Equation (4.8),

followed by subsequent algebraic simplifications of Equation(4.9), Equation (4.10)

is derived via the calculation of a common denominator:

=

(∏q+1
z=1 Rz,z+1

)

(Rq+2,• −Rq+1,•)







∑q
ξ=1

e−Rξ,•T[∏q

φ=1
φ6=ξ

(Rφ,•−Rξ,•)

]
(Rq+1,•−Rξ,•)


 + e−Rq+1,•T∏q

φ=1
(Rφ,•−Rq+1,•)




−

(∏q+1
z=1 Rz,z+1

)

(Rq+2,• −Rq+1,•)







∑q
ξ=1

e−Rξ,•T[∏q

φ=1
φ6=ξ

(Rφ,•−Rξ,•)

]
(Rq+2,•−Rξ,•)


 + e−Rq+2,•T∏q

φ=1
(Rφ,•−Rq+2,•)


 (4.8)

=

∏q+1

z=1
Rz,z+1

(Rq+2,• −Rq+1,•)

q∑
ξ=1

e−Rξ,•T∏q
φ=1
φ 6=ξ

(Rφ,• −Rξ,•)

[
1

Rq+1,• −Rξ,•
− 1

Rq+2,• −Rξ,•

]

+

(∏q+1

z=1
Rz,z+1

)
(Rq+2,• −Rq+1,•)

[
e−Rq+1,•T∏q

φ=1
(Rφ,• −Rq+1,•)

− e−Rq+2,•T∏q

φ=1
(Rφ,• −Rq+2,•)

]
(4.9)

=

(
q+1∏
z=1

Rz,z+1

)
q∑

ξ=1

e−Rξ,•T

∏q+2
φ=1
φ 6=ξ

(Rφ,• −Rξ,•)
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+

(∏q+1

z=1
Rz,z+1

)
(Rq+2,• −Rq+1,•)

[
e−Rq+1,•T∏q

φ=1
(Rφ,• −Rq+1,•)

− e−Rq+2,•T∏q

φ=1
(Rφ,• −Rq+2,•)

]
(4.10)

Because the pattern associated with the first component of Equation (4.10) is

identical to that observed in the remaining terms, the final form is derived simply

by extending the upper limit of the product in the denominator to include both

the (q + 1)st and (q + 2)nd terms which proves the theorem as desired.

=




q+1∏

z=1

Rz,z+1




q+2∑

r=1

e−Rξ,•T

∏q+2
φ=1

φ6=ξ

(Rφ,• −Rξ,•)
(4.11)
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