
ABSTRACT

QASIMOV, HEYDAR R. O. Lacunae-based stabilization of PMLs. (Under the direction of Professor
S. Tsynkov).

Perfectly matched layers (PML) enclose the computational domain for simulating electromagnetic

phenomena defined over unbounded regions. While being overall very successful, this procedure has

sometimes been reported to develop instabilities and exhibit a physically unaccountable growth of

the solution inside the layer over long integration times. In the thesis, we conduct a numerical

as well as analytical study of the PML’s response after a long time of integration. The physical

and mathematical PMLs are implemented with several well-known schemes: Yee, leap-frog, Lax-

Wendroff, and Runge-Kutta in time with central differences in space. Then, the eigen-structure

of each discretization at quiescent state is studied to gain an insight into the nature of instability,

the sources of growth of the solution and the potential contamination of the domain of interest.

The results of this investigation provide useful information regarding the better and worse perform-

ers among the specific combinations of schemes and PMLs, yet they do not precisely identify the

mechanism behind the growth of the solution. Therefore, the main focus of the thesis is to build a

methodology that would inhibit the instability of the PML regardless of its source. The approach is

based on the concept of numerical integration that exploits the presence of lacunae in the solutions.

It applies to hyperbolic partial differential equations and systems that satisfy the Huygens’ principle,

in particular, the Maxwell’s system of equations that governs the propagation of electromagnetic

waves. The methodology does not modify the equations inside the layer and hence, while eliminating

the undesirable growth, it fully preserves all the advantageous properties of a given PML, such as

matching at the interface and the degree of absorption. A practical algorithm is constructed in the

thesis, and a theorem is proved that guarantees a temporally uniform error bound over the domain

of interest. The theoretical findings are corroborated numerically, and the potential for extending

the methodology is discussed.
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Chapter 1

Introduction

1.1 Numerical Solution of Infinite Domain Problems: A Quick

Overview

In a wide variety of scientific applications there is a need to solve problems formulated on unbounded

domains. To obtain numerical solutions of such problems it is necessary to truncate the domain of

computation and set artificial boundary conditions (ABCs). The problems that require ABCs arise

in computing wave phenomena (radiation and/or scattering of electromagnetic and acoustic waves),

geophysics (computations with elastic waves), problems of fluid dynamics (e.g., modeling of internal

flows), petroleum engineering, aerodynamics and many others. Their numerical solution essentially

becomes a simulation of the corresponding phenomena over a finite domain; therefore, the role of

artificial boundary conditions (ABCs) becomes particularly important.

Significant efforts have been expended by many researchers to construct ABCs for a wide variety

of problems and, obviously, there are many different ways of doing it for each particular formulation.

As one should expect, the ABCs will affect the accuracy of the numerical approximation and may also

affect other important characteristics of the algorithm, e.g., the rate of convergence for an iterative

solver. Therefore, a key question is that of the criteria the ABCs must meet. First and foremost,

the ABCs should enable simulation that would approximate the physical reality. Mathematically,

one requires that the treatment on the boundaries ensure solvability and lead to a well-posed mixed

initial boundary value problem. In addition, one should also require that the approximation be

“close” to the solution of the original problem; incidentally, this prompts the formulation of exact

ABCs. The latter are such that by appending the numerically obtained solution to the solution of

the original problem outside the truncated domain one obtains the solution of the original problem

in the whole domain; this definition is useful for the purposes of analysis, [116]. Of course, even
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before building the ABCs one must require of the original problem on the unbounded domain to be

uniquely solvable and well-posed; otherwise, an approximation is meaningless.

The treatment of outer boundaries can be broadly categorized into 2 groups of ABCs - local and

global. Global ABCs provide high accuracy and robustness but are often thought to be impractical

as they couple the values of the solution along the entire boundary in space and, in the case of

unsteady problems, in time as well. Global ABCs typically involve pseudodifferential operators

and as such may be restricted geometrically to the artificial boundaries of a regular shape, such

as linear, circular, etc. Local (in space and/or in time) ABCs, on the other hand, are cheaper to

implement and geometrically universal but in most cases are also less accurate. Historically local

methods were introduced first. Later, it was realized that for a number of problems they can be

interpreted as approximations of global methods. There are also methods that can be thought of

as occupying an intermediate position between the global and local ones (high order local methods,

see below). In practice, one always pursues the best possible balance between the requirements

of accuracy and efficiency. For a number of problems, new methods have also been developed

that merge the advantages of the two existing types of ABCs and help overcome the difficulties

of the global techniques while still providing high accuracy. Those approaches are based on the

difference potentials method by Ryaben’kii [106], a summary can be found in the review article by

Tsynkov, [116].

High order local ABCs are obtained as approximations of nonlocal boundary conditions that in-

volve pseudodifferential operators. Using Fourier representation for the pseudodifferential operator,

one can think of the order as the number of terms left in the truncated expansion. High order local

methods are typically more accurate than the standard (low order) local ABCs. At the same time,

they may be easier and cheaper to implement than the full-fledged nonlocal ABCs. However, they

inherit the same geometric restrictions as those pertinent to the global ABCs, from which a given

high order local method is derived.

As an alternative to the boundary conditions per se, an enclosure of the computational domain

by a perfectly matched layer (PML) was proposed by J.-P. Bérenger in [20,21]. Bérenger’s approach

consists of surrounding the computational domain with a special layer of artificial material designed

to absorb impinging waves without generating reflections and then attenuate them in the layer. Most

of the work described in the subsequent parts of the dissertation will revolve around this method of

treating the outer boundaries.

The existing literature on the subject of ABCs is extensive. In the rest of the introduction

we will present a brief and by no means comprehensive review of some of the more noteworthy

examples for each of the aforementioned categories. We also describe a certain type of “annoying”

numerical difficulties that “haunt” the PMLs which have otherwise proven very efficient. Those
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are the instabilities that manifest themselves over long integration times, see, e.g., [3]. The core

chapters of the dissertation are primarily devoted to the study of PMLs with the aim of suppressing

the aforementioned instabilities. In Chapter 2 we present the results of a study of two popular types

of PMLs implemented with some commonly employed explicit second order discretizations with the

objective of gaining insight into the nature of the long-term instabilities that have been reported in

the literature, e.g., [3]. In Chapter 3, a theorem and an algorithm providing a temporally uniform

error bound (i.e., stabilizing the computation) for linear hyperbolic PDE/systems that satisfy the

Huygens’ principle are presented. This method successfully employs the existence of lacunae for the

integration in time. In Section 3.3 the numerical experiments supporting the theoretical findings are

presented. Chapter 4 provides general conclusions.

1.2 Local Methods

1.2.1 The Engquist and Majda Boundary Conditions

In [27] Engquist and Majda initially develop a theoretical nonlocal perfectly absorbing boundary

conditions and then construct a sequence of highly absorbing local approximations (for general

classes of wave equations). Essentially, they represent the solution as a superposition of waves;

then, interpreting the incoming waves as reflections from the boundary they seek the solution in

the exterior of the domain of interest only in the class of the outgoing waves (resembling the far-

field behavior of the solution) using Fourier transforms. For example, in the Cartesian coordinates

(x, y) with the time t, consider the plane wave solution u(x, y, t) = u(tω + xξ + yη), ω > 0, of the

two-dimensional wave equation
∂2u

∂t2
=
∂2u

∂x2
+
∂2u

∂y2
. (1.1)

The dispersion relation for the solution of this type is ω2 = ξ2 + η2. The constant phase surfaces for

the plane wave are given by tω + xξ + yη = const, therefore the two-dimensional vector (−ξ, −η)
determines the direction of the wave propagation. Let now the computational domain be the half-

plane x ≤ 0. Then, the incoming waves will be those that propagate in the negative x-direction,

i.e., those that have ξ > 0, and the outgoing waves will be those that have ξ < 0. Assuming that

ω2 − η2 > 0, we can derive the one-way dispersion relation

ξ = −
√
ω2 − η2 (1.2a)

for the waves traveling to the right (outgoing) and the one-way dispersion relation
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ξ =
√
ω2 − η2 (1.2b)

for the waves traveling to the left (incoming).

With

u(x, η, ω) =
∫
û(x, η, ω)e−i(η,ω)∗(y,t)dηdω (1.3)

where û(x, η, ω) ≡ ûη,ω(x) is the Fourier transform of u(x, y, t) in the transversal coordinate y and

t only equation (1.1) implies
d2û

dx2
+ ξ2û = 0. (1.4)

Two linearly independent eigensolutions of equation (1.4) are û(1)(x) = e−i|ξ|x and û(2)(x) = ei|ξ|x.

For the waves traveling to the right −|ξ| = ξ because of relation (1.2a) and therefore, the mode

û(1)(x) is outgoing; analogously, formula (1.2b) implies |ξ| = ξ and consequently, the mode û(2)(x) is

incoming. The exact ABC’s at x = 0 should explicitly prohibit all the incoming waves, therefore we

require that the two-dimensional vector
[
û(x), dû(x)

dx

]T
be parallel to the vector

[
û(1)(x), dû(1)(x)

dx

]T
at x = 0, which can be written as the equality of the Wronskian to zero:

det

[
û(x) û(1)(x)
dû(x)

dx
dû(1)(x)

dx

]∣∣∣∣∣
x=0

= 0, (1.5a)

and then reduced to the following first-order homogeneous differential relation:

dû

dx

∣∣∣∣
x=0

+ i
√
ω2 − η2 · û

∣∣∣∣
x=0

= 0, (1.5b)

Then, for a general wave, [27],

u(x, y, t) =
∫
ei(−(ω2−η2)1/2x+ωt+ηy)ρ(ω, η)û(0, η, ω)dωdη, (1.6)

where ρ(ω, η) is a smooth function homogeneous of degree zero for |ω| + |η| large with support in

ω2 > η2 for (ω, η) large and unity on a neighborhood of the support of û (0, ω, η), in analogy to

(1.5b) the necessary boundary condition to cancel the incoming (left-traveling) waves is

du

dx
+
∫
ei(ωt+ηy)i(ω2 + η2)1/2ρ(ω, η)û(0, η, ω)dωdη|x=0 = 0 (1.7)

Next, we employ the following definition

b

(
y, t,

∂

∂y
,
∂

∂t

)
u =

∫
ei(ωt+ηy)i(ω2 − η2)ρ(ω, η)û(0, η, ω)
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of the pseudo-differential operator, see [95], to express the boundary condition (1.7) in the form(
d

dx
+ ρ

(
∂

∂t
,
∂

∂y

)(
∂2

∂t2
− ∂2

∂y2

)1/2
)
· u|x=0 = 0 (1.8)

which is nonlocal in time and space. Hence, its efficacy is overshadowed by its implementability.

Therefore, Engquist and Majda proceed to construct a sequence of highly absorbing approximations

to the (1.8) that are local and, crucially, lead to a well-posed mixed boundary value problem for the

wave equation. The first two are obtained under the assumption of normal incidence (i.e., η = 0)

using first and second order Taylor approximations of
√

1− η2

ω2 :

(
∂

∂t
+

∂

∂x

)
u|x=0 = 0; (1.9a)

and (
∂2

∂t2
− 1

2
∂2

∂y2
+

∂2

∂x∂t

)
u|x=0 = 0 (1.9b)

are well-posed. Subsequent approximations are obtained using, again, Taylor or Padé approximations

to
√

1− η2

ω2 ; each approximation, however, has to be checked for well-posedness. For example, the

boundary condition obtained from the second Taylor approximation of
√

1 + x is proved in the paper

to be strongly ill posed and therefore of no use. However, the corresponding Padé approximation

yields a well posed boundary condition; i.e., the choice of a local approximation can be quite tricky.

The authors also show in [27] that these boundary conditions can be modified to address more

complicated formulations, such as variable coefficient problems, systems, and so on.

A remark about the simplest Engquist-Majda boundary condition (1.9a) is in order. This bound-

ary condition essentially renders the quasi-one-dimensional characteristic decomposition in the di-

rection orthogonal to the boundary. Then, the boundary is made transparent for all the outgoing

waves with normal incidence, whereas the incoming waves with normal incidence are disallowed. For

systems, such as acoustics or Maxwell’s, this can also be interpreted using the language of Riemann

variables; the first order local characteristic boundary condition of type (1.9a) would basically mean

that the incoming Riemann variable is zero. As a matter of fact, we use this approach in our

numerical experiments (Section 3.3.1) to set the boundary conditions at the outer boundary of the

PML for Maxwell’s equations. A very similar approach can also be developed for nonlinear systems,

such as Euler’s equations. This was pioneered by Hedstrom in [81], we provide a brief account of

this development in Section 1.2.4.
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1.2.2 The Higdon Boundary Conditions

Another approach to constructing absorbing boundary conditions is taken by Higdon in [84]; here the

boundary conditions are constructed for the difference approximation rather than for the analytical

formulation. As it turns out, the derived boundary conditions in fact are discretizations of some

perfectly absorbing analytical boundary conditions for waves traveling at certain angles. As in the

previous case, Eq. (1.1) is considered, but now in the domain Ω = {(x, y, t) : x > 0, y ∈ R, t > 0}.
Higdon employs the centered second order difference approximation:

un+1
j,m − 2un

j,m + un−1
j,m

(∆t)2
=
un

j+1,m − 2un
j,m + un

j−1,m

(∆x)2
+
un

j,m+1 − 2un
j,m + un

j,m−1

(∆y)2

where n, j,m are the indices in time, x-direction and y-direction respectively. Consequently, the

values on the boundary, i.e., for x = 0 correspond to the nodes un
0,m. In order to represent the

values on the boundary in terms of the interior nodes and in terms of values at earlier times the

following operators are defined:

Kun
j,m = un

j+1,m

is the shift operator with respect to the x coordinate and

Zun
j,m = un+1

j,m

is the shift operator with respect to t. The boundary condition has the form

B(K,Z−1)un+1
0,m = 0 (1.11)

where B is a polynomial in two variables with a nonzero constant term. The solution of the wave

equation can be written in the form

κjeiηyzn

where

κ = eiξ∆x

z = eiω∆t

To minimize the reflection from the boundary the wave is written as a linear combination of the

incoming and outgoing waves:

un
j,m = c1κ

j
inc(e

iη∆y)mzn + c2κ
j
out(e

iη∆y)mzn (1.13)
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with κinc = eiξinc∆x and κout = eiξout∆x. Plugging (1.13) into (1.11) allows one to obtain the

reflection coefficient

c1 = −B(κout, z
−1)

B(κinc, z−1)
c2 = Ref(η, z)

and to formulate the objectives so that |Ref | is minimized and the subsequent discretization is

stable. The first class of boundary conditions (the author calls it the averaging method) is defined

by (
I +

((
I + Z−1

)
(I +K)

)
∗ (1/2)

)p
un+1

0,m = 0

where p is a positive integer and K and Z the shift operators. For example, p = 1 gives

un+1
0,m = (un+1

1,m +un
0,m+un

1,m)/3. The second class — the space-time extrapolation boundary condition

— is given by (
I − Z−1K

)p
un+1

0,m = 0

For example, p = 2 in this case gives un+1
0,m = 2 · un

1,m − un−1
2,m .

The reflection coefficient for both methods satisfies

Ref(η, z) = −
(
λ− cos(θ)
λ+ cos(θ)

)p

+O(ω∆t),

λ = ∆t
∆x where θ is the angle of incidence measured with respect to normal incidence. The author

proceeds to show that both methods approximate the analytic boundary condition(
λ
∂

∂t
− ∂

∂x

)p

u|x=0 = 0

and λ is the cosine of the angle of best absorption which naturally suggests how that to cancel a

wave traveling at an angle ±α and more generally

∏
j

(
cos(αj)

∂

∂t
− ∂

∂x

)
u|x=0 = 0 (1.14)

which annihilates plane waves of the form u(x, y, t) = u(t+cosαjx±sinαjy) traveling in the direction

(− cosαj ,± sinαj) out of the region x > 0 at angles of incidence ±α.

In fact, Higdon’s work is closely related to that of Engquist and Majda, [27]. Higdon proves

a proposition stating that the pth-order boundary condition of Engquist and Majda is, in fact,

equivalent to (
∂

∂t
− ∂

∂x

)p

u|x=0 = 0, (1.15)
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i.e., αj = 0 for all j and Ω = {(x, y, t) : x > 0, y ∈ R, t > 0}. For example, consider p = 2; then

(
cosαj

∂u

∂t
− ∂u

∂x

)2

=
(
∂u

∂t
− cosαj

∂u

∂x
+ sinαj

∂u

∂y

)
+
(
∂u

∂t
− cosαj

∂u

∂x
− sinαj

∂u

∂y

)
is identical to (1.9a) for αj - normal incidence and once we remember the fact that the computational

domain in the former case is at x ≤ 0.

In his subsequent work, [88], Higdon developed similar boundary conditions for dispersive waves.

Other papers by Higdon on the subject of artificial boundary conditions include [83,85–87].

1.2.3 The Bayliss-Turkel Boundary Conditions

In [12] Bayliss, Gunzburger and Turkel develop boundary conditions for the Laplace equation (which

describes e.g., the potential flow of incompressible fluid around a body and is also important in the

study of electrostatic fields) in 3D

∆u = 0 (1.16a)

subject to

u = O

(
1
ρ

)
, ρ→∞ (1.16b)

and the Helmholtz equation, important to the study of time-harmonic waves exterior to given sur-

faces:

∆u+ k2u = 0 (1.17a)

with the Dirichlet or Neumann data specified on the surfaces of bodies and subject to(
∂

∂ρ
− ik

)
u = o

(
1
ρ

)
, ρ→∞ (1.17b)

The computational domain is given by the bounded region between the body and the sphere ρ = r1.

Therefore, to obtain a numerical approximation Eqs. (1.16) and (1.17) one has to incorporate

into the discretization the radiation condition at infinity. One approach consists of reformulating

the equations in the form of the Fredholm integral equations; this approach, however, yields only

nonlocal boundary. The authors of [12] rather proceed to develop a sequence of operators that serve

as local boundary conditions. These operators are applied at the exterior boundary at ρ = r1.

The outgoing solution of Eq.(1.17a) exterior to the sphere of radius r0 in the spherical coordi-

nates (ρ, θ, φ) can be represented as a uniformly and absolutely convergent and therefore termwise

differentiable sum, see [11]:

u(ρ, θ, φ) =
eikρ

kρ

∞∑
j=0

Fj(θ, φ)
(kρ)j

(1.18)
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The expansion (1.18) means that the solution of problem (1.17) satisfy at(
∂

∂ρ
− ik

)
u = O

(
1
ρ2

)
, ρ→∞

Bayliss, Gunzburger and Turkel define a sequence of linear differential operators Bm that annihilate

the first m terms in the sum (1.18)

Bm =
m∏

j=1

(
∂

∂ρ
− ik +

2j − 1
ρ

)
(1.19)

Clearly, B1

[
eikρ

kρ F (θ, φ)
]

= 0 and Bm

[
ekr

(kr)lF (θ, φ)
]

= 0 for l = 1, . . . ,m. Moreover, for any function

u in the form 1.18 the operator satisfies

Bmu|ρ=r1 = O

(
1

r12m+3

)
In the same vein, the solution of the exterior Laplace equation has a multipole expansion

u(ρ, θ, φ) =
1
ρ

∞∑
j=0

Fj(θ, φ)
ρj

(1.20)

and the corresponding sequence of operators is defined simply by setting k in (1.19) to zero so that

Bm =
m∏

j=0

(
∂

∂ρ
+

2j − 1
ρ

)
(1.21)

and similarly to the Helmholtz case, the operator Bm of the sequence (1.21) annihilates the first m

terms of (1.20) and satisfies

Bmu|ρ=r1 = O

(
1

ρ2m+1

)
(1.22)

Bayliss and Turkel also developed boundary conditions for time-dependent (wave-like) equations

in [14]. For the 3D wave equation utt = ∆u in the spherical coordinates (ρ, θ, φ) the solution is given

by

u(t, ρ, θ, φ) =
∞∑

j=1

uj(t− ρ, θ, φ)
ρj

and

Bm =
m∏

l=1

(
∂

∂t
+

∂

∂ρ
+

2l − 1
ρ

)
(1.23)

satisfying equation (1.22). Other papers by Bayliss, Turkel and co-authors on the subject of artificial



10

boundary conditions include [13,15,16].

The Bayliss-Turkel methodology is employed in the present work to set boundary conditions in

the radial direction for the cylindrically symmetric TE Maxwell’s equations. As these boundary

conditions are set for the components of a vector field rather than scalar quantities, a few wrinkles

had to be smoothed out in their derivation; however, the resulting operators are, in fact, identical

to the first operator of the sequence (1.23) modified for the 2D wave equation. The operator reads

B1 =
(

∂
∂t + ∂

∂ρ + 1
2ρ

)
, see [116]; full details can be found in Section 3.3.

1.2.4 Other Local Methods

To date, there exists a multitude of local methods. Many of these are derived for specific formulations

and often, these derivations build upon and/or adapt existing methodologies to meet the present

needs. We mention briefly some of these methods.

In [60] Guddati and Tassoulas consider the operator in the family of differential relations (1.5b)

parameterized by ω and η. This family of relations allows to represent the solution as a superposition

of waves by using the inverse Fourier transform; however, the inverse transform of the square root

results in a non-local pseudo-differential operator. In an approach closely related to Engquist and

Majda’s of [28], Guddati and Tassoulas suggest more general rational approximations of the square

root and write the boundary conditions as a continued-fraction expansion

iξ + iωfn = 0

where the proposed sequence of approximations of the radical is given by

f1 = cos θ1

fn+1 = cos θn+1 −
cos2(θn+1)− (1− σ2)

cos θn+1 + cos θ

with θn chosen in advance based on the direction of the wave propagation.

The authors show that for
√

(1− σ2) = cos θ where σ = η
ω and θ is the angle of incidence of the

impinging wave the reflection coefficient for the nth-order approximation is

Refn =
n∏

k=1

cos θk − cos θ
cos θk + cos θ

which is the reflection coefficient for Higdon’s boundary condition (1.14) with the exception that the

outward normal here is in the positive x-direction.
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In order to emphasize the variety of fields where it is necessary to construct ABCs, we note

Hedstrom’s contribution to solving the equations of gas dynamics with an outflow boundary, see [81].

Consider the nonlinear hyperbolic system

ut +A(u)ux = 0, (x, t) ∈ Ω

u(x, 0) = g(x)

where Ω = {(x, t) : x > 0, t > 0}. Since the system is hyperbolic the eigenvalues are real and distinct

and we assume

δ(A(u)) = {

negative︷ ︸︸ ︷
λ1, . . . , λm,

positive︷ ︸︸ ︷
λm+1, . . . , λn︸ ︷︷ ︸

n eigenvalues

}

Denoting the set of the left eigenvalues by {lj}m
j=1 Hedstrom proves that the condition

lj · ut = 0, j ∈ {m+ 1, . . . , n}, x = 0, t > 0; (1.26)

means that there are no waves coming into Ω from the boundary at x = 0 if there are only simple1,

otherwise known as rarefaction waves, going out. Hedstrom’s approach is based on the Riemann

invariants; for, the condition (1.26) essentially means 0 = ljut = −ljA(u)ux = −λj ljux for j =

m+1, . . . , n on the boundary for t > 0 meaning that the positive velocities {λj}n
j=m+1, corresponding

to the incoming waves, are zero at the boundary. This machinery that basically separates the

incoming waves from the outgoing ones, can be considered a generalization to the nonlinear case of the

approach by Engquist and Majda (Section 1.9) and correctly reminds one of the first approximation

of the pseudo-differential operator (1.9a).

Historically, as the field of scientific computation was reaching maturity (between the 1960s

and 1980s), it was largely dominated by the problems of computational fluid dynamics. In that

context, we note the extensive work of Rudy and Strikwerda, who were among the first to construct

practical ABCs for fluid dynamics problems. They were interested in numerical treatment of outer

boundaries for the computation of compressible viscous flows. In [101, 102], Rudy and Strikwerda

have constructed inviscid inflow and outflow nonreflecting boundary conditions (NRBCs) and sub-

sequently applied those to the solution of the 2D compressible Navier-Stokes equations over a flat

plate. They also optimize the convergence of the transient process to a steady state and demonstrate

the superiority of their NRBCs over the Dirichlet-type boundary conditions for the Navier-Stokes

problems.

Even though the issue of ABCs has been discussed in the literature for at least thirty years, it
1For more information on simple waves see [24,36].
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still remains an active research area. The account of local methods that we have presented here is by

no means comprehensive, we have just mentioned some of the most representative and well-known

developments. For a more detailed review of the field, we refer the reader to the paper [39] and

book [40] by Givoli, the paper by Tsynkov [116], and the paper by Hagstrom [67].

1.3 Global Methods

Global ABCs have also been obtained in the literature for a fairly broad range of problems, although

altogether there are still far fewer publications than those that discuss local methods. Typically,

global boundary conditions offer superior accuracy. As far as the approach to their construction is

concerned, even though a variety of techniques are available that are attributed to different authors,

many of them share the same basic principles of design. First, as the ABCs replace the truncated

exterior part of the domain, it is the properties of the solution in this exterior region (i.e., the

far field) that determine how the ABCs should look like. In most cases, the first assumption that

one makes is that the governing equations in the far field are linear. This can be either a part of

the original formulation or a result of linearization. The second key element of the design is the

separation of variables, e.g., by means of the Fourier transform. To enable it, the artificial boundary

must have a regular shape, say, a circle (sphere) or a straight line (plane), for which the variables will

indeed separate. This is the source of geometric limitations that global ABCs often entail. Finally,

once the variables have separated, the original multi-D problem is reduced to a collection uncoupled

1D problems (ODEs/systems) in the direction normal to the artificial boundary. Then, setting the

ABCs basically reduces to selecting the proper modes among the solutions of each 1D system, for

example, those that decay at infinity, or satisfy the 1D radiation boundary condition, or otherwise

“behave appropriately” in the context of a particular formulation. The reason these ABCs become

nonlocal is that the mode selection operation, an example of which is given by formulae (1.4), (1.5),

is done naturally in the transformed space, but typically does not have a convenient local prototype

in the original physical space.

In subsequent sections (Sections 1.3.1, 1.3.2, 1.3.3, and 1.3.4), we briefly discuss several well-

known global ABCs methodologies. They all share similar principles of design, offer high accuracy,

and require regular artificial boundaries. We also note that even though the aforementioned geo-

metric limitations are prevalent, there are still nonlocal ABCs in the literature that can be set at

the boundaries of a more general shape. One example is given by the perturbation based approach

by Nicholls, Nigam, and co-authors [23,93,94]. Another example, which is perhaps the most notable

methodology of this kind, is the ABCs based on Calderon’s projections and the method of difference

potentials. They were proposed by Ryaben’kii and Tsynkov, and we describe this approach in
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Section 1.3.5.

1.3.1 The Method by Engquist and Majda and Its Generalization by

Gustafsson

In Section 1.2.1, we have mentioned work [27] by Engquist and Majda on the development of

boundary conditions for the wave equation. Even though the authors were ultimately interested in

obtaining local methods, they have first built a full-fledged nonlocal NRBC with a pseudodifferential

operator. Subsequently, Engquist and Majda have generalized their approach to acoustic waves [28]

and transonic flows [29], with the analysis following the same path — first the nonlocal boundary

condition and then its local approximations.

When deriving their boundary conditions, Engquist and Majda have always assumed that while

all the outgoing waves should be able to leave the computational domain freely with no reflections

from the artificial boundary, nothing should come into the computational domain from outside. In

other words, no incoming waves were allowed. A generalization of this approach to the formulation

that does include some incoming waves was given by Gustafsson in [62]. Gustafsson considers a

hyperbolic system in two spatial dimensions with an additional complication that the support of the

initial condition is not compact:

Ut +AUx +BUy = 0, x ∈ [0,∞), y ∈ (−∞,∞), t ≥ 0 (1.27a)

B0U(0, y, t) = g(y, t) (1.27b)

sup
x,y

|U(x, y, t)| <∞, t ≥ 0 (1.27c)

U(x, y, 0) = f(x, y) (1.27d)

where A and B are functions of x, y, t, and U , and the artificial boundary is at x = L.

To construct the exact artificial boundary conditions, Gustafsson assumes that outside the do-

main of interest, i.e., for x ≥ L, the problem reduces to constant coefficients:

Ut + ÃUx + B̃Uy = C, x ∈ [L,∞), y ∈ (−∞,∞), t ≥ 0 (1.28a)

sup
x,y

|U(x, y, t)| <∞, t ≥ 0 (1.28b)

U(x, y, 0) = f(x, y), x ∈ [L,∞), y ∈ (−∞,∞) (1.28c)
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where Ã and B̃ are constant matrices, and Ã is diagonal:

δ(Ã) = {

negative︷ ︸︸ ︷
λ1, . . . , λl,

positive︷ ︸︸ ︷
λl+1, . . . , λl+m︸ ︷︷ ︸

l+m eigenvalues

} (1.29)

The exact boundary condition is obtained by Laplace-transforming system (1.28a) in time and

Fourier-transforming it in y, which results in a system of ODEs for Û(x, ω, s) — the transformed

vector function, where (ω, s) are the duals of (y, t):

Û(x, ω, s) = −sÃ−1

(
I +

iω

s
B̃

)
Û(x, ω, s) + Ã−1f̂(x, ω), (1.30)

and f̂(x, ω) denotes the Fourier transform of the initial function with respect to y. The exact artificial

boundary condition in the Fourier-Laplace space is obtained on the basis of the general solution to

(1.30). The latter is built under the assumption of block-diagonalizability of Ã−1(I + iω
s B̃), which

is true for hyperbolic systems; moreover, the eigenvalues of this matrix have the same signs as those

of Ã. If the initial data happen to be zero outside the computational domain, then the boundary

conditions by Gustafsson [62] become identical to those by Engquist and Majda [27], as expected.

In Section 1.3.3, we describe the work by Ferm and Gustafsson in relation to fluid flow problems.

1.3.2 DtN Maps — the Method by J. Keller and Givoli

In work [89], J. Keller and Givoli present global NRBCs for solving the inhomogeneous Helmholtz

equation in an infinite domain Ω ⊂ Rd, d ∈ {2, 3}, bounded internally by the surface Γ = Γg ∪ Γh,

on which a combination of the Dirichlet and Neumann boundary conditions can be set:

∆u+ k2u+ f = 0, in Ω (1.31a)

u = g, on Γg (1.31b)

uν = h, on Γh (1.31c)

lim
r→∞

r(d−1)/2 (ur − iku) = 0 (1.31d)

The source term f in (1.31a) is assumed compactly supported, and the functions g and h in (1.31b)

and (1.31c) are assumed known; the subscript ν denotes normal differentiation. Boundary condition

(1.31d) is the Sommerfeld radiation condition at infinity. To solve problem (1.31) numerically, a

computational domain Ξ is defined by the truncation of Ω so that Ξ is bounded internally by Γ and

externally by the artificial boundary β. It is required that supp f ⊆ Ξ. The domain outside the
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exterior boundary β is denoted by Υ, i.e., Υ = Ω r Ξ, see Figure 1.1. Over the truncated domain

the problem (1.31) is written as

∆u+ k2u+ f = 0, in Ξ (1.32a)

u = g, on Γg (1.32b)

uν = h, on Γh (1.32c)

while on β an exact boundary condition is defined by the Dirichlet to Neumann map (DtN) relating

the Dirichlet data u to the Neumann data uν :

uν = −Mu, on β (1.32d)

 

Υ

Γh

Γg

 R

Ξ

β

ν

Figure 1.1: Schematic for J. Keller and

Givoli approach of [89].

The map M is obtained by solving the Dirichlet problem

in Υ (recall, f ≡ 0 on Υ) under the assumption that the

artificial boundary β is a sphere of radius R:

∆u+ k2u = 0, in Υ (1.33a)

u = u(R, θ), on β (1.33b)

lim
r→∞

r(d−1)/2 (ur − iku) = 0 (1.33c)

In 3D, the solution of problem (1.33) is obtained in terms

of the Hankel functions of the first kind, the Legendre

functions of the first kind, and the values of the solution

u on the sphere of radius R. Then, the (global) DtN

boundary condition (1.32d) can be explicitly written as

uν(R, θ, φ) = −
∞∑

n=0

∫
β

mn(θ, φ, θ′, φ′)u(R, θ′, φ′)R2 sinφ′dθ′dφ′ (1.34)

where the DtN kernel is given by

mn(θ, φ, θ′, φ′) =
∞∑

j=0

αjnP
j
n(cosφ)P j

n(cosφ′) cos j(θ − θ′)

with

αjn = − (2n+ 1)(n− j)!γn

2πR2(n+ j)!
and γn =

( ∂
∂R )[R−1/2H

(1)
n+1/2(kR)]

R−1/2H
(1)
n+1/2(kR)



16

Problem (1.32) is discretized and solved in [89] using Galerkin finite elements. In the same article,

Keller and Givoli extend their method to a variety of problems such as those over a finite, but

large domain, the Laplace equation, the Poisson equation, and others. Further extensions of the

DtN approach can be found in [41, 46, 47, 54], as well as in the work by a number of other authors.

In particular, an essentially equivalent approach is also referred to as Poincaré-Steklov operators,

see [6].

1.3.3 The Method by Ferm and Gustafsson

In [30], Ferm and Gustafsson solve the steady state Euler’s equations that describe a flow of inviscid

compressible fluid in an unbounded plane parallel duct Ω∞ = {(x, y) : x ∈ (0,∞), y ∈ [0, 1]}:

A(w)wx +B(w)wy = 0 (1.35)

where

w =


ρ

u

v



A(w) =


u ρ 0

c2/ρ u 0

0 0 u


and

B(w) =


v 0 ρ

0/ v 0

c2/ρ 0 v


The computational domain is obtained by truncating Ω∞ in the x-direction at x = L; the boundary

procedure is constructed downstream at x = L. A subsonic flow at the left (incoming) boundary

is assumed, i.e., u ∈ (0, c) at x = 0, where c is the local speed of sound defined through the

presumed relationship between the pressure p and the density ρ expressed in the form p = Aργ and

c =
√

(Aγργ−1).

The boundary procedure is naturally determined by the physical considerations. It is required

that the solution be bounded further downstream: ‖w‖2 <∞ for x > L, and that the mass flux

m =
∫ 1

0

ρudy (1.37)

be independent of x. The exact ABCs at x = L are derived by first linearizing the Euler’s equations
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(1.35) around a constant flow w̄ parallel to the walls of the duct, v̄ = 0:

Āwx + B̄wy = 0

Ā =


ū ρ̄ 0

c̄2/ρ̄ ū 0

0 0 ū


and

B̄ =


0 0 ρ̄

0 0 0

c̄2/ρ̄ 0 0


Then, the perturbations u & ρ are expanded in cosine Fourier series in the cross-stream direction y,

and v is expanded in the sine series (to satisfy the impenetrability condition):

ρ(x, y) =
∞∑

ω=0

ρ̂ω(x) cosπωy

u(x, y) =
∞∑

ω=0

ûω(x) cosπωy

v(x, y) =
∞∑

ω=1

v̂ω(x) sinπωy

This yields:

Ā
∂ŵω

∂x
+ πωB̃ŵ = 0 (1.40a)

where

B̃ =


0 0 ρ̄

0 0 0

−c̄2/ρ̄ 0 0


The general solution of problem (1.40a) has the form ŵω =

∑3
j=1 αjqje

ωπλj(x−L), where {λj , qj} 3
j=1

are the eigenpairs of the generalized eigenvalue problem

(Āλ+ B̃)q = 0

The eigenvalues are λ1 = 0 and λ2,3 = ±c̄(c̄ − ū)−1/2. To satisfy the condition of boundedness

of the solution as x → ∞, we must have α2 = 0; the condition (1.37) is satisfied by setting ρ̂0 =∫ 1

0
ρ(L, y)dy.
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Both authors of [30] have been active in the development of artificial boundaries for a variety of

problems. To find out more, we refer the interested reader to [63] for the discussion of far-field ABCs

for hyperbolic systems, [32] for the discussion of external flow problems, [31] for the discussion of

inviscid flow problems, and to other papers [33–35].

1.3.4 The Method by Hagstrom

In this section we are discussing Hagstrom’s construction of outflow boundary conditions in a model

of transport and diffusion, [79]. The author considers the following formulation:

ut + a(y)ux = D(uxx + uyy), x ∈ [0,∞), y ∈ [−1, 1], t ≥ 0, (1.41a)

u(0, y, t) = u0(y, t) (1.41b)

lim
x→∞

u (x, y, t) = 0 (1.41c)

u(x, y, 0) = 0 (1.41d)

a(y) ≥ 0 (1.41e)

where a(y) is a smooth function. The computational domain Ω is obtained by truncating the

unbounded domain at x = L.

The solution of problem (1.41) is represented in the form of the expansion:

u(x, y, t) =
∑

l

∫ t

0

cl(p)Ql(x, y, t− p)dp (1.42a)

where

Ql(x, y, t) =
1

2iπ

∫ i∞

−i∞
est−λl(s)x · Yl(y, s)ds (1.42b)

The full extent of the corresponding derivation is beyond the scope of this review and we refer the

reader to pages 70–73 of [79]. Here we only mention that Yl(y, s) is the solution of the eigenvalue

problem:

sYl(y, s) + λla(y)Yl(y, s) = D(Y ′′l (y, s) + λ2
l Yl(y, s)), y ∈ (−1, 1) (1.43a)

Y ′l(±1, s) = 0 (1.43b)

that arises once expansion (1.42a) is substituted into (1.41a). In the transformed space, expansion

(1.42) naturally leads to the boundary condition at x = L, which is similar to the one by Engquist
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and Majda (cf. boundary condition (1.4) in Section 1.2.1):

∂Q̂l

∂x
= λl(s)Q̂l

For more on Hagstrom’s work (with collaborators) in the area of nonlocal ABCs we refer the

reader to [73] where downstream boundary conditions for the simulation of incompressible viscous

flows are discussed, [72] where a general theory of boundary conditions for dissipative waves is

presented, as well as to [68,70,71,74,76,78,80].

1.3.5 The Method of Difference Potentials

We have seen that what nonlocal ABCs essentially do is select a proper subspace in the entire space of

solutions. For example, DtN maps or Poincaré-Steklov operators achieve that by imposing a certain

linear relation between the function and its normal derivative at the boundary. More precisely, a

DtN map expresses normal derivative through the function. In doing so, one implicitly assumes

that this can be done, i.e., that there is no degeneration of any kind and the problem is well posed.

While for simple equations, such as Laplace, this is fairly obvious, there may be more complicated

situations as well. Hence, it is natural to try and search for a technique that would be capable of

selecting a proper linear subspace without using the resolved forms of the operators, i.e., without

having to explicitly express some components as a function of the others.

Along these lines, an ultimate generalization of all the methods such as DtN maps or Poincaré-

Steklov operators is offered by the apparatus of Calderon’s potentials and boundary projections, see

[22]. The original constructs by Calderon were further developed by Seeley [112], and also obtained

independently in an even more general form and then put into a discrete context by Ryaben’kii

[103, 104, 106]. The method of building and computing the discrete counterparts of Calderon’s

operators is called the difference potentials method (DPM). The use of Calderon’s operators and the

DPM for setting the ABCs was proposed by Ryaben’kii in [105] and subsequently applied to a variety

of problems. As it turns out, the proposed methodology meets the ambitious goal of applicability in

geometrically universal settings, provides a high degree of accuracy for numerical approximations,

and also appears quite usable in practice, i.e., not too cumbersome in implementation.

In this section, we first illustrate the concept of Calderon’s operators and the corresponding

ABCs using a very simple setting of the Helmholtz equation:

Lu ≡ ∆u+ k2u = 0 (1.44)
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subject to the Sommerfeld radiation boundary condition at infinity:

∂u(x)
∂|x|

+ ik0u(x) = o
(
|x|

1−n
2

)
(1.45)

We then discuss a number of generalizations and show the results of application of the DPM based

ABCs to solving the problems of external aerodynamic configuration analysis. Those problems,

solved by Ryaben’kii and Tsynkov, see [107, 117] and the bibliography thereon, involve three-

dimensional flows of compressible viscous fluid and obviously present a far more sophisticated for-

mulation than the simple settings for second order elliptic operators.

Following the agenda we have just identified, let us first denote by Ω the entire exterior domain

(unbounded) that has to be truncated and replaced with ABCs. By Green’s theorem, the solution

of equation (1.44) on Ω subject to boundary condition (1.45) is a sum of the double-layer potential

with density u|∂Ω and the single-layer potential with density ∂νu|∂Ω:

u(x ) =
∫

∂Ω

(u(y)∂νG(x − y)− ∂νu(y)G(x − y)) dy (1.46)

where ν denotes differentiation in the direction normal to the boundary ∂Ω, and G = −eik|x |/4π|x |
is the fundamental solution of L. This representation is valid if Lu = 0 on Ω. If, however, we

substitute an arbitrary pair of functions as densities into the Green’s formula (1.46), the resulting

function u on Ω will still solve the Helmholtz equation (1.44) and satisfy the radiation condition

(1.45), but the values of u|∂Ω and ∂νu|∂Ω will not necessarily match the densities taken. This leads

to the definition the generalized Calderon’s potential with the vector density ξξξ∂Ω = (ξ0, ξ1)|∂Ω:

PΩξξξ∂Ω =
∫

∂Ω

(ξ0∂νG− ξ1G)dy

Observe, the definition of Calderon’s potential is not conditional upon the requirement that ξξξ∂Ω

coincide the values of a solution of Lu = 0 on ∂Ω; if, however, the vector ξξξ∂Ω happens to match the

densities u|∂Ω and ∂νu|∂Ω of some solution to Lu = 0, then this solution can be reconstructed in the

form:

u(x ) = PΩ(u, ∂νu)|∂Ω, x ∈ Ω

which is merely a way to re-write the Green’s formula (1.46). Next we introduce the notion of the

boundary trace of a (sufficiently smooth) function on ∂Ω:

Tru = (u, ∂νu)|∂Ω



21

and define Calderon’s (pseudodifferential) boundary projection as the composition

P∂Ω = TrPΩ

P∂Ω is indeed a projection; for, let w = PΩξξξ∂Ω =
∫

∂Ω
(ξ0∂νG − ξ1G)dy . Then, by definition

P∂Ωξξξ∂Ω = TrPΩξξξ∂Ω = (w, ∂νw)|∂Ω, while PΩTr(PΩξξξ∂Ω) = PΩTr(w) = w because Lw = 0 on Ω

and w satisfies (1.45). Hence, P∂Ω = P2
∂Ω.

The crucial property of Calderon’s boundary projection is that P∂Ωξξξ∂Ω = ξξξ∂Ω if and only if

ξξξ∂Ω = Tru, where Lu = 0 on Ω and u satisfies (1.45). For, assume P∂Ωξξξ∂Ω = ξξξ∂Ω. Then, the

desired u on Ω can be taken as u = PΩξξξ∂Ω. The opposite implication follows immediately from the

foregoing analysis based on the Green’s formula. The relationship

P∂Ωξξξ∂Ω = ξξξ∂Ω (1.47)

is called the boundary equation with projection (BEP). It facilitates an equivalent reduction of the

differential equation (1.44) subject to boundary condition (1.45) from the entire unbounded domain

Ω to its boundary ∂Ω. Therefore, the BEP (1.47) provides an ideal exact ABC for any combined

interior/exterior problem such that the exterior portion reduces to (1.44), (1.45). The only require-

ment here is that the overall formulation must be uniquely solvable and well posed. Note also that

a DtN map or a Poincaré-Steklov operator can be obtained as a resolved form of the Calderon

projection P∂Ω, i.e., by solving equation (1.47) for ξ1 assuming that ξ0 is given.

The model naturally affords further generalizations. One can, for example, assume the existence

of sources f on Ω; furthermore, there may be an impinging wave uimp coming from infinity. Then,

instead of (1.47), one arrives at the inhomogeneous BEP:

P∂Ωξξξ∂Ω + ξξξimp
∂Ω + Tr

∫
Ω

GΩfdy = ξξξ∂Ω

A very important consideration is that even though the foregoing example was analyzed with the

help of convolution integrals that appear in the classical potential theory, in fact, the computation

of Calderon’s operators requires no fundamental solutions and no evaluation of singular integrals.

Instead, one needs to solve a special auxiliary problem (AP) that can typically be chosen so that

to enable an easy and efficient solution, e.g., by separation of variables or by multigrid [106]. Not

only does it generally simplify the implementation of the method, but also facilitates its application

to those cases when the fundamental solution does not exist (variable coefficients) or not easily

available (e.g., the linearized Navier-Stokes equations in [107,117]).
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The second, equally important, consideration is that the method of difference potentials al-

lows one to construct discrete counterparts of Calderon’s potentials and projections directly for the

scheme, bypassing the “dubious” stage of approximating the pseudodifferential operators on the grid.

In fact, the DPM builds a full-fledged discrete theory completely parallel to the continuous theory of

Calderon, and the approximation properties between the discrete and continuous potentials are later

established independently, using certain relations between the continuous and discrete densities [106].

In the context of ABCs, this allows to set those directly on the grid, which is, again, a very natural

thing to do, especially given that we only need the ABCs in the discrete context, when an infinite

domain problem is to be solved on the computer.

The DPM was successfully employed for solving a variety of applied problems, not only those

related to ABCs, and we refer the reader to the monograph [106] by Ryaben’kii and the references

there for further detail. As far as the ABCs are concerned, perhaps the most well-known application

of the DPM is that to solving external flow problems. Ryaben’kii and Tsynkov in [107] and Tsynkov

in [115] have built the boundary projections for the linearized Navier-Stokes equations and thus

set the ABCs for the computations of compressible viscous flows in two space dimensions. Later,

Tsynkov and Vatsa in [121] and Tsynkov in [117] have extended this approach to the case of three

space dimensions, and subsequently, Tsynkov, et al. have further generalized it and applied to

computing the flows around slender bodies with jet exhaust [120].

issal. 

y

z

x

Γ

Γ1

(a) External flow around a wing, from [117] (b) Flow with jet exhaust, from [120]

Figure 1.2: Typical problem configurations and grid geometries for the DPM-based ABCs as

applied to external configuration analysis.
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In Figure 1.2, we are showing some typical configurations for setting the DPM-based ABCs.

We emphasize that the artificial boundary does not have to have a regular shape. In all the cases

analyzed in [107,115,117,120,121], the DPM-based ABCs have enabled major gains in performance

by greatly improving the accuracy compared to that of the standard local methods used previously,

and also by substantially speeding up the convergence of iterative solvers to steady state. At the

same time, these boundary conditions have proven relatively inexpensive to implement and easy to

combine with the existing NASA-developed production flow solvers.

1.4 High Order Local Methods

Since the mid 90s the so called high order local NRBCs have gained prominence. These methods can

essentially be viewed as sequential localizations of global NRBCs; recall, in Section 1.2.3 we encoun-

tered a somewhat similar example in the case of the Bayliss-Turkel boundary conditions. However,

high order local methods, along with being increasingly accurate, are practically implementable for

arbitrary high order. As such, the expression high order is overloaded with meaning; the first of

these naturally captures the accuracy that the methodology provides and the origin of the others

will be clarified as we go on.

High order local methods are often obtained by truncating and localizing the DtN maps, such as

boundary condition (1.34) in Section 1.3.2. For an example of the truncation of a global DtN map

we turn to Grote and Keller, [55]. Consider a bounded domain Ξ in Rd where d ∈ {2, 3} with Γ

being its piecewise boundary and

∆U + k2U = f, outside Ξ (1.48a)

αU + β∂νU = g on Γ (1.48b)

subject to

lim
r→∞

r(d−1)/2(∂r − ik)U = 0, where k is the wavenumber (1.48c)

with α, β and g defined on Γ and f compactly supported. The computational domain is defined by

enclosing the domain Ξ and suppf by a circular or spherical artificial boundary Ω of radius r = a.

Note, the artificial boundary must necessarily be smooth to enable the separation variables. The

global artificial boundary condition on Ω is

∂rU = MU on Ω (1.49)
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In the 2-dimensional case the boundary condition has the form

∂rU(a, θ) =
1
π

∞∑
n=0

kH
(1)′

n (ka)

H
(1)
n (ka)

∫ 2π

0

cosn(θ − θ
′
)U(a, θ′)dθ′,

where H(1)
n is the Hankel function of the first kind of order n and the primed term with n = 0 is

multiplied by 1
2 . The solution of (1.48a), (1.48b) subject to the condition (1.49) on Ω coincides with

the restriction of the solution of (1.48) to the interior of Ω, see [55]. The map is approximated by

truncating the infinite series at some finite mode N ; the approximation is exact for modes 0 ≤ n ≤ N

but it will be incorrect for all higher modes and may require retaining more nodes to achieve the

desired accuracy. In [55] Grote and Keller supplant the truncation with an additional condition for

the higher modes N + 1, N + 2, . . . in a way that does not affect the lower modes. The general idea

for achieving this is the following: let B be a linear operator such that (1.48a) and (1.48b) subject

to ∂rU = BU on Ω is well-posed. The modified DtN boundary condition then is given by

∂rU = (MN −BN )U +BU on Ω (1.50)

where BN is the truncation of the operator B at mode N . In R2, i.e., Ω-circular, the Bayliss-

Turkel boundary condition (1.19) in Section (1.2.3) can serve in the capacity of the operator B. For

example, in the 2-dimensional case for N = 1 the artificial boundary condition is

∂rU(a, θ) =
(
ik − 1

2a

)
U(a, θ) +

1
π

N∑
n=0

(
kH

(1)′

n (ka)

H
(1)
n (ka)

− ik +
1
2a

)∫ 2π

0

cosn(θ − θ′)U(a, θ′)dθ′

where the primed term n = 0 is multiplied by 1
2 . The authors verified the intuitive assumption that

the the artificial boundary condition (1.50) is more accurate for N = 2. Similar artificial boundary

conditions are derived for the spherical and elliptic cases. This fundamental example sheds light

upon another reason for using the term high order in the context of this methodology; as such, it

reflects the fact that the infinite series (1.49) can be truncated at an arbitrarily high mode.

Even once the DtN map has been truncated, boundary condition (1.50) still remains nonlocal.

For the solutions U composed of a finite number of harmonics (that does not exceedN) this boundary

condition is exact. In [56], Grote and Keller propose an approach to localizing boundary conditions

that are exact for a finite number of harmonics; they conduct their analysis for the spherical geometry

and in a more general time-dependent setting (the d’Alembert equation). Localization is achieved

by recasting the coefficients of the expansion that yields the ABCs in the particular form that allows

to interpret its individual terms as the results of application of one and the same operator (more

precisely, powers of the Beltrami operator on the sphere) that does not depend on the summation
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index. The localized form of the ABCs contains high order derivatives in the radial direction, and

to avoid the potential adverse effects on the numerical algorithm, the authors of [56] propose an

alternative form of the boundary condition that does not contain high order derivatives but requires

the computation of a number of auxiliary quantities at the boundary. Subsequent paper [57] by

Grote and Keller addresses a number of delicate issues related to the numerical implementation of

the localized ABCs.

In [53] Givoli, Patlashenko and Keller also address the crucial question of localizing a DtN map.

Consider an elliptic second-order boundary value problem in 2 dimensions:

(κ̄−1)∇ · κ(x)∇u+ β(x)u+ f(x) = 0 in Ω (1.51a)

∇2u+ βu = 0 in D (1.51b)

u = g on Γg (1.51c)

∂νu = h on Γh (1.51d)

u ≡ 0 on γu and γl (1.51e)

An additional condition at infinity (1.51f)

where the computational domain Ω is bounded in by B and Γ; in turn, Γ = Γg ∪ Γh. D is the

exterior of the computational domain and is itself bounded by the parallel rays γu and γl, see Figure

1.3. The functions f, g, h, κ, β are known and in D, β(x) ≡ β, κ(x) ≡ κ̄ 6= 0. . Incidentally,

depending on the sign of β the equation (1.51b) is Laplace (β = 0), Helmholtz (β ≥ 0), or Yukawa,

i.e., modified Helmholtz (β ≤ 0). To obtain a numerical approximation of the problem (1.51), it is

reformulated over a finite domain by truncating the domain at x = x0; y ∈ [0, b]. The reformulated

problem consists of (1.51a), (1.51c), (1.51d) and a condition on B — the DtN map. The general

form of the DtN map is given by (1.49); its adaptation to the present geometry reads as

∂xu(x) = −Mu(x) ≡
∞∑

n=0

∫
B

mn(x, x′)u(x′)dx′, x ∈ B

To obtain the exact form of the map on B the problem is analyzed in D; the general form of the

solution for the prescribed values on γl and γu is obtained by separating the variables and it reads

u(x, y) =
∞∑

n=1

Ane
imnx sin

nπy

b
(1.52)



26

Β

y

x
Γ

Γ

Γ

Ω

γ

γ

l

u

D b

x=x0

Figure 1.3: Setup for setting the ABCs for the semi-infinite strip, from [53]
.

with

mn =

√
β −

(nπ
b

)2

The DtN map on B is obtained by Fourier expanding the solution at x0 in order to obtain the

constant coefficients An in terms of the Fourier coefficients of u(x0, y); the expression (1.52) then

reads

u(x, y) =
2
b

∞∑
n=1

eimn(x−x0)

∫ b

0

sin
nyπ

b
sin

nπy′

b
u(x0, y

′)dy′

immediately yielding the exact DtN map at x0

∂xu(x0, y) = −Mu(x0, y) ≡ −2π
b2

∞∑
n=1

Zn

∫ b

0

sin
nyπ

b
sin

nπy′

b
u(x0, y

′)dy′ (1.53)

where the values of Zn are determined by the sign of β and the geometric setup; some of these are

tabulated in [53]. Let us now assume that the solution of the problem (1.51) on B is a sum of the

first N harmonics (i.e., the localization in this case will be exact; for an infinite series solution the

localization with the first N harmonics will be inexact, of course)

u(x0, y) =
N∑

n=1

un sin
nyπ

b
(1.54)

where un are the Fourier coefficients. Substituting the general form (1.54) into the DtN condition
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(1.53) and recalling the orthogonality of the sine series one obtains

∂u

∂x
(x0, y) = −π

b

N∑
n=1

Znun sin
nyπ

b
(1.55)

The form of the boundary condition (1.53) necessitates the expression

Zn sin
nyπ

b
= LN

[
sin

nyπ

b

]
, n = 1, . . . , N (1.56)

where LN is a linear differential operator independent of n. The operator in (1.56) allows to rewrite

the boundary condition (1.55) in the form:

∂u

∂x
(x0, y) = −π

b
LN

[
N∑

n=1

un sin
nyπ

b

]
= −π

b
LN [u(x0, y)]

Then, the operator LN itself is found by re-expressing Zn as a solution of a system of N linear

equations:

Zn =
N∑

m=0

α(N)
m n2m, n = 1, . . . , N

where
{
α

(N)
j

}
N−1
j=0 is a constant unknown vector, and using the relationship

n2m sin
nyπ

b
=

(
−
(
b

π

)2
∂2

∂y2

)m

sin
nyπ

b

which yields:

LN =
N−1∑
m=0

α(N)
m

(
−
(
b

π

)2
∂2

∂y2

)m

(1.57)

The definition (1.57) leads to the localized truncated DtN map:

∂xu = −
N−1∑
m=0

(−1)mα(N)
m

(
b

π

)2m−1

∂2m
y u, x = x0, y ∈ [0, b] (1.58)

Certain benefits as well as some disadvantages of such methodologies are evident. The most ob-

vious benefit is the arbitrarily high accuracy, robustness and reliability of the procedure stemming

from the global nature of the DtN maps; also beneficial is the the subsequent localization achieved

through the truncation of the global map. On the other hand, since the methodology is obtained

from a global method, one has to face inflexible geometric restrictions that allow the separation of

variables; note, all examples are constructed for ”manageable” domains. Secondly, DtN maps are
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often written in terms of special functions; as the approximation (1.58) attests to it, derivatives of

high order are required in localizing such a map thus presenting additional computational costs. Fur-

thermore, presence of high order derivatives in a low order problem is usually undesirable while high

order temporal derivatives in time dependent problems exacerbate the matters from the perspective

of numerical time-integration.

Some practical problems that arise with the truncation of the DtN maps have been addressed.

In [52], within the C∞ framework for the class of functions that admit separation of variables, Givoli

and Patlashenko find the best approximation of the DtN map that will guarantee the predetermined

order of accuracy. Givoli and Patlashenko achieve this by approximating the RHS of (1.34) with a

Kth order local operator LK (K here is referring to the order of the NRBCs) whose coefficients are

as of yet unknown. The objective is to find LK with K-low such, that it can essentially replicate

a high order NRBCs up to the desired order N ; that is, the approach increases accuracy without

increasing the order of the approximating operator. Minimizing the Euclidean norm of the difference

of the RHS and its local approximation yields the necessary coefficients. In [42] Givoli reduces the

differential order of the NRBC by introducing new auxiliary variables to avoid approximating the

high order derivatives. This allows the use of a more compact computational stencil (albeit, at the

cost of having to evaluate more unknowns) as well as provides a NRBC of arbitrarily high order

with a symmetric structure. Further references on local high order methods include [7,8,43–45,48–

51,53,58,59,69,75,77,96,122–124].

1.5 Perfectly Matched Layers

1.5.1 Background

φ

y

xH

E

Ey

Ex z

Figure 1.4: The TE problem, [20]

In his seminal work [20], J.P. Berenger has introduced an

efficient technique based on an absorbing layer for com-

puting the propagation of electromagnetic waves over un-

bounded domains. The methodology came to be known

as the perfectly matched layer (PML). Initially developed

for the 2-dimensional case, [20], the technique was subse-

quently expanded to encompass the 3-dimensional case as

well, see [21]. Berenger proposed truncating the domain

of computation and then surrounding it by an artificial

medium with a built-in ability to absorb incident electromagnetic radiation with no reflection. The

PML capabilities are attained by splitting the field components, i.e., introducing additional un-

knowns and equations into the layer, and then using the resulting added degrees of freedom to
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attenuate the waves. For simplicity and without any loss of generality, we present the split field

PML by Berenger for the two-dimensional Maxwell’s equations in the Cartesian coordinates with
∂
∂z (·) ≡ 0. In this case, the equations uncouple into two independent sets known as the transverse

electric (TE) and the transverse magnetic (TM) cases. We will consider the TE case, see Figure 1.4,

that involves the components Ex, Ey, and Hz:

ε0∂tEx + σEx = ∂yHz (1.59a)

ε0∂tEy + σEy = −∂xHz (1.59b)

µ0∂tHz + σ?Hz = ∂yEx − ∂xEy (1.59c)

The quantities σ and σ? in system (1.59) denote the electric and magnetic conductivities, respec-

tively, which are responsible for dissipation (damping). The TM case is analogous. If the condition

σ

ε0
=
σ?

µ0
, (1.60)

holds, the impedance of the material (1.59) is equal to that of vacuum, and no reflection occurs at

the interface for normal incidence. In the Berenger’s split field system that corresponds to (1.59),

the vector component Hz is split into Hzx and Hzy that “live” in the planes zx and zy, respectively.

Accordingly, the new conductivity variables σ?
x and σ?

y are introduced so that

ε0∂tEx + σyEx = ∂y(Hzx +Hzy) (1.61a)

ε0∂tEy + σxEy = −∂x(Hzx +Hzy) (1.61b)

µ0∂tHzx + σ?
xHzx = −∂xEy (1.61c)

µ0∂tHzy + σ?
yHzy = ∂yEx (1.61d)

Observe, if σx = σy = σ?
x = σ?

y = 0, then equations (1.61) reduce the Maxwell’s equations in vacuum;

if σ?
x = σ?

y, then equations (1.61) reduce to the set (1.59). Note that the formulation does not alter

the propagation speed in the medium since this would immediately create a scattering mechanism

for the waves; instead, only the amplitudes of the waves are reduced by appropriately choosing

the conductivities. Typically, the conductivity is equal to zero at the interface and then smoothly

increases into the layer. Special attention is given to vacuum–layer interfaces; in particular, it has

been shown that the theoretical reflection factor of a plane wave striking the interface is null at any

frequency and at any incidence angle, see [20], unlike in the earlier absorption layers proposed in

the literature.
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Figure 1.5: Interface between 2 matched media normal to the x-axis, from [20].

As an example, consider an infinite interface normal to the x-axis and an incident plane wave,

see Figure 1.5. Here the indices i, r, and t correspond to the incident, reflected and transmitted

fields. The angles of the incidence and refraction are θ and φ, respectively. It is proven in [20]

that if the half-plane x < 0 is vacuum, then the media are perfectly matched if the PML, i.e., the

half-plane x ≥ 0, is defined by (σx, σ
?
x, 0, 0). Analogously, in the case of an interface normal to

the y-axis the media would be matched if the PML y ≥ 0 is defined by (0, 0, σy, σ
?
y). Figure 1.6

provides a visualization of the general application of the PML methodology. The computational

domain (vacuum) is surrounded by the PML; observe how the corners match the adjacent regions

rather than the domain of computation. In Chapter 3, we will encounter an analogous setup for

the alternative unsplit formulation formulation of the PML. The reasons for its development are

discussed in the next section.

1.5.2 Concerns about PMLs

Bérenger’s split field formulation has been extensively studied and exploited in the literature. Over-

all, it has demonstrated excellent performance for numerous applications. At the same time, it has

been noticed [1] that the Bérenger’s split transforms the strongly hyperbolic (symmetric) Maxwell’s
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Figure 1.6: The PML technique schematic, from [20].

equations into a weakly hyperbolic system, which, in turn, implies transition from strong well-

posedness to weak well-posedness of the Cauchy problem [90].2 A weakly well-posed system can

become ill-posed under a low order perturbation3, and an example of such a perturbation for the

Bérenger’s equations was given in [1]. Even though it has later been shown [17] that the actual form

of the Bérenger’s system does not lead to ill-posedness, the system still remains only weakly well-

posed, and a linear growth of the split field components inside the PML is possible. This behavior

may also lead to a purely numerical instability of the discretization. In particular, it has been proved

in [1] that the very popular Yee scheme [125] becomes unconditionally unstable in the PML [20,21],

with the powers of the amplification matrices growing linearly as the number of time steps increases.

Concerns about well-posedness and stability of the PMLs have prompted the development of

other types of absorbing layers for computational electromagnetism [2,37,126] and other areas (e.g.,

2In fact, weak well-posedness characterizes all split field PMLs, see, e.g., [26].
3For the general discussion on well-posedness of the Cauchy problem for hyperbolic systems see Appendix 4.A.
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acoustics [82]). These alternative strategies do not require splitting the field components in the PML,

although they still introduce additional unknowns inside the layer. Accordingly, they came to be

known as unsplit PMLs. Later, however, the unsplit PMLs have also been found susceptible to grad-

ually developing instabilities [3]. They have first been predicted theoretically and then corroborated

by actual computations, e.g., for the two-dimensional TE polarized Maxwell’s equations [3]. Two of

the more popular unsplit PMLs, the mathematically derived formulation (2.1) and the physically

derived formulation (2.2), appear in Chapter 2 which is wholly devoted to a systematic study of the

long-time performance of unsplit PMLs with several commonly used explicit second order schemes.

Note that if some components of the solution begin to grow inside the PML, the resulting

numerical artifacts from the layer may or may not contaminate the computational domain, depending

on the particular application and the design of the scheme. As mentioned, e.g., in [18], the Yee scheme

can keep the instability inside the layer, whereas a higher order scheme of [3] propagates it back

into the domain. As, however, has been noticed in [114], for the reason of improving the numerical

performance on parallel platforms, a code that includes a split field PML is often designed in such a

way that the equations solved inside the domain (not in the layer) are also split, although with no

damping factors. In this case, even the Yee scheme appears capable of allowing the contamination

from the layer into the domain.

An approach has been proposed in [3] to cure the long-time instability of unsplit PMLs. This

approach is based on changing the governing equations in the layer. It has been experimentally

shown to work well, but theoretically it is unclear whether the modified layer remains perfectly

matched and absorbing.

Other remedies can also be found in the literature. For example, the nonlinear PML of [4]

guarantees boundedness of the energy integrals and strong well-posedness of the governing equations

in the layer. However, its practical implementation requires a certain regularization to keep the

denominators away from zero. Again, computationally it has been shown to perform well, but the

analysis does not extend to this case. The complex frequency-shifted PML introduced in [38, 100]

and analyzed in detail in [18] also guarantees boundedness of the energy integrals and strong well-

posedness.4 However, the frequency shift in the PML leads to the loss of frequency independent

absorption [18].

Altogether, the aforementioned stabilizing changes inside the PML often show no detrimental

effect of any kind in the experiments, even when the supporting analysis is lacking. Moreover,

according to a number of authors (see, e.g., [26]), the long-time instability of the PMLs may only

have a limited negative effect in practical computations, in particular, because often by the time
4For the analysis of well-posedness see also [97].
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it manifests itself the phase errors would have already killed the solution [114]. We tend to be-

lieve, however, that the deterioration of solution due to the phase errors is not always that rapid

(Section 3.3), and as any potentially adverse phenomenon, the long-term instability of the PMLs

needs to be carefully addressed. Therefore, the objective of this dissertation is to introduce a cure

for the long-time instability of the PMLs while keeping all the advantageous properties of a given

layer unaffected (such as matching, absorption, etc.). It is equally important that the proposed cure

be fully and rigorously justified. The first step towards this goal is understanding the long-time

behavior of the solution inside the PML. In Chapter 2, we report the findings of the analytical and

experimental investigation of the phenomenon of long-time growth inside the layer.
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Chapter 2

Performance of Unsplit PMLs with Explicit

Second Order Schemes

2.1 Motivation and Background

As has been previously mentioned, the undesirable phenomenon of gradual long-time growth of the

solution in PMLs may hamper the performance of the layer. For unsplit PMLs, prior studies [1–3]

have attributed the growth to the presence of multiple eigenvalues in the amplification matrix of

the governing system of differential equations. In the current chapter, we analyze the temporal

behavior of unsplit PMLs for some commonly used second order explicit finite-difference schemes

that approximate the Maxwell’s equations. Our conclusion is that on top of having the PML as a

potential source of long-time growth, the type of the layer and the choice of the scheme play a major

role in how rapidly this growth may manifest itself and whether or not it manifests itself at all.

The analysis in this chapter follows that of our recent paper [5]. In turn, the computational

setup of [5] “borrows” certain components from [3] for the sake of enabling an easier comparison.

Two unsplit PMLs were investigated in [3] for the 2D Cartesian transverse electric (TE) Maxwell’s

equations. For the layer that truncates the domain in the x-direction, the so-called mathematically
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derived PML of [2] is given by:

∂Ex

∂t
=
∂Hz

∂y

∂Ey

∂t
= − ∂Hz

∂x
− 2σEy − σP

∂Hz

∂t
=
∂Ex

∂y
− ∂Ey

∂x
+ σ′Q

∂P

∂t
= σEy

∂Q

∂t
= − σQ− Ey

(2.1)

The additional quantities P and Q are non-zero only in the layer, and the damping of waves is

controlled by the parameter σ(x) = (x−a)3

d3 , where d is the PML thickness and x = a is the interface

between the domain and the layer.

An alternative to (2.1) is the physically motivated unsplit PML of [37] or [126], which can be

written in the following form [2]:

∂Ex

∂t
=
∂Hz

∂y
+ σ(Ex − P )

∂Ey

∂t
= − ∂Hz

∂x
− σEy

∂Hz

∂t
=
∂Ex

∂y
− ∂Ey

∂x
− σHz

∂P

∂t
= σ(Ex − P )

(2.2)

Unlike in (2.1), there is only one additional quantity, P , inside the PML (2.2).

The analysis of [3] focuses on the quiescent solutions inside the PML, long after the initial

perturbation has been absorbed. It is shown that if the spatial derivatives are neglected, then

the system of ODEs that results from either (2.1) or (2.2) would be characterized by multiple

eigenvalues and the degeneracy of eigenvectors. This indicates the possibility of a polynomial growth.

Experimentally, a slow growth originating in the PML was indeed observed in [3] for one specific

choice of the discrete approximation, namely when equations (2.1) or (2.2) were approximated using

fourth order central differences in space accompanied by a fourth order Runge-Kutta method in

time.

On the other hand, there have been reports in the literature that for a given computational setup

the growth may or may not be observable, and that the artifacts generated in the PML, if any, may or

may not propagate back into the computational domain [18]. Hence, in the current paper we set our

goal as to systematically study the long-time behavior of the PMLs (2.1) and (2.2) with a number of
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commonly used explicit second order finite-difference schemes. Specifically, we consider the staggered

Yee scheme [125], the leap-frog scheme, the Lax-Wendroff scheme, and the central difference scheme

supplemented by the Runge-Kutta time integration. Compared to [3], we complement our analysis

by looking at the eigenvalues (amplification factors) of the actual discretizations, as opposed to only

those of the differential problem. Besides, we conduct extensive numerical tests for each of the

aforementioned schemes.

It turns out that the growth can, in fact, be effectively removed by just the discretization itself.

The Yee scheme, the Lax-Wendroff scheme, and the central scheme applied to the PML (2.2) exhibit

no growth at all in our experiments, whereas the Yee scheme and the Lax-Wendroff scheme applied

to the PML (2.1) exhibit a growth which is so slow that can be deemed non-existent for any practical

purpose. On the other hand, the discretization may also greatly exacerbate the growth and make

the computations impossible, which is what happens to the leap-frog scheme with both PMLs.

Finally, the popular family of central schemes with Runge-Kutta smoothers1 remains susceptible to

a moderately slow growth of the solution in the PML (2.1), which indicates that the appropriate

remedies need to be sought for. Altogether, we conclude that the phenomenon of growth of the

numerical solution in the PML proves to depend strongly on both the choice of the PML and the

choice of the scheme.

2.2 Computational Setup

To enable an easier comparison, we take the same setup as in [3]. Our computational domain is a

Cartesian square: {(x, y) | −a ≤ x ≤ a, −a ≤ y ≤ a} with a = 50; it is terminated in the x-direction

by two symmetrically located PMLs: −a − d ≤ x ≤ −a and a ≤ x ≤ a + d, where d = 10. The

Cartesian discretization grid has square cells: hx = hy = 1. At the top and bottom boundaries,

y = a and y = −a, as well as at the outer boundaries of the PML, x = a + d and x = −a − d, we

use classical locally one-dimensional characteristic artificial boundary conditions (ABCs, see [116])

obtained by setting to zero the Riemann invariant that corresponds to the incoming characteristic.

In all forthcoming simulations, we investigate numerically the evolution on the grid of a smooth

initial perturbation of the magnetic field:

H(x, y, 0) =


cos8

(
π
√

x2+y2

2r0

)
, if

√
x2 + y2 ≤ r0

0, if
√
x2 + y2 > r0

where r0 = 10. The initial values of the electric field Ex and Ey are zero.

1It is apparently the most straightforward venue to high order approximations.
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We also emphasize that as we terminate the PML by characteristic ABCs, we can determine

conclusively whether or not the long-term growth, in case it is observed, shall actually be attributed

to the PML. Indeed, we can first run the computation with the PML. Then, we can merely turn off

the PML (by setting σ(x) ≡ 0) while leaving all other components of the algorithm intact and while

still keeping all the boundaries nonreflecting (to the degree permitted by the locally one-dimensional

treatment). If no growth is detected in the second case (no PML), then the previously observed

growth is clearly due to the PML and nothing else. Hereafter, if the growth is reported, it shall be

assumed that it has been verified this way.

Finally, let us quantify the notion of a long time. Introduce the unit of time as the domain

size over the propagation speed: T = 2a/c, where c = 1. We will be investigating the phenomena

that start manifesting themselves no earlier than 10T to 15T and all the way up to hundreds and

thousands of T ’s.

2.3 The Yee Scheme

The staggered Yee scheme [125] as applied to the mathematical PML (2.1) reads

Ex
p+1/2
m,n+1/2 − Ex

p−1/2
m,n+1/2

τ
=
Hp

m,n+1 −Hp
m,n

hy

Ey
p+1/2
m+1/2,n − Ey

p−1/2
m+1/2,n

τ
= −

Hp
m+1,n −Hp

m,n

hx
− 2σm+1/2

Ey
p+1/2
m+1/2,n + Ey

p−1/2
m+1/2,n

2
− σm+1/2P

p
m+1/2,n

Hp+1
m,n −Hp

m,n

τ
=
Ex

p+1/2
m,n+1/2 − Ex

p+1/2
m,n−1/2

hy
−
Ey

p+1/2
m+1/2,n − Ey

p+1/2
m−1/2,n

hx
+ σ′m

Qp+1
m,n +Qp

m,n

2

P p+1
m+1/2,n − P p

m+1/2,n

τ
= σm+1/2Ey

p+1/2
m+1/2,n (2.3)

Qp+1
m,n −Qp

m,n

τ
= − σm

Qp+1
m,n +Qp

m,n

2
−
Ey

p+1/2
m+1/2,n + Ey

p+1/2
m−1/2,n

2
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and for the physical PML (2.2) it is

Ex
p+1/2
m,n+1/2 − Ex

p−1/2
m,n+1/2

τ
=
Hp

m,n+1 −Hp
m,n

hy
+
σm

2
(Ex

p+1/2
m,n+1/2 + Ex

p−1/2
m,n+1/2)− σmP

p
m,n+1/2

Ey
p+1/2
m+1/2,n − Ey

p−1/2
m+1/2,n

τ
= −

Hp
m+1,n −Hp

m,n

hx
− σm+1/2

Ey
p+1/2
m+1/2,n + Ey

p−1/2
m+1/2,n

2

Hp+1
m,n −Hp

m,n

τ
=
Ex

p+1/2
m,n+1/2 − Ex

p+1/2
m,n−1/2

hy
−
Ey

p+1/2
m+1/2,n − Ey

p+1/2
m−1/2,n

hx
− σm

Hp+1
m,n +Hp

m,n

2

P p+1
m,n+1/2 − P p

m,n+1/2

τ
= σmEx

p+1/2
m,n+1/2 − σm

P p+1
m,n+1/2 + P p

m,n+1/2

2

(2.4)

where Hz ≡ H, and the indices m, n, and p correspond to x, y, and t, respectively.
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Figure 2.1: Ex for the Yee scheme (2.3)

at t = 500T ; the contours are equally

spaced between -0.475 and 0.475 with the

increment 0.05.

In the discretization (2.3) the equations for Ey and

Q are approximated semi-implicitly. In the case of

the discretization (2.4), all variables are updated semi-

implicitly. In actual numerical runs, the Yee scheme

exhibits no growth with the physical PML (2.2). More

specifically, the magnitude of the solution decays grad-

ually and does not exceed 10−6 at t = 2500T . From

the standpoint of practice, this value is extremely large,

and hence we can say that the growth does not manifest

itself at all. For the mathematical PML (2.1), scheme

(2.3) still displays some growth but it is very slow; no

artifacts can be seen until several hundred T .

In Figure 2.1, we are showing a typical snapshot of

the solution obtained using scheme (2.3) — the level

lines of Ex(x, y, t) at t = 500T . Other quantities look similar, their magnitude across the domain

does not exceed 0.5. In practice, the time t = 500T is also very large and we therefore believe

that the growth shown in Figure 2.1 can be disregarded in most cases. Moreover, one can see from

Figure 2.1 that the artifacts originate in the PML near its interface with the domain, i.e., in the

region where σ(x) is small. This observation is generally in agreement with the analysis of [3].

It is also interesting to see what happens to the eigenvalues. We adopt an approach similar to

that of [3] and analyze quiescent solutions in the PML, i.e., assume that there is no spatial variation

and neglect all spatial differences. Then, the difference equations for Ey and P decouple from the
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rest of system (2.3), and dropping m and n for convenience, we have (at a given location):

Ey
p+1/2 − Ey

p−1/2

τ
= − σ(Ey

p+1/2 + Ey
p−1/2)− σP p

P p+1 − P p

τ
= σEy

p+1/2

(2.5)

System (2.5) is a second order system of ordinary difference equations. Its eigenvalues can be easily

computed: λ1 = 1/(1+στ) and λ2 = 1−στ . Compared to the continuous case [3], we observe a split

of the eigenvalue, because the differential counterpart of system (2.5) has a degenerate eigenvalue

λ = −σ. The differential physical PML (2.2) in the quiescent state is characterized by a double

eigenvalue λ = 0 with only one eigenvector. For the Yee scheme, however, it translates into a

degenerate double eigenvalue as well, λ = 1, i.e., there is no split. We note that in [3], the growth

of the solution in the PML (2.1) was attributed precisely to the degenerate eigenvalue λ = −σ. Yet

our numerical experiments with the Yee scheme show that this growth, no matter how slow it is,

is present for the PML (2.1), for which the double eigenvalue gets split, and is not present for the

PML (2.2), for which it stays unsplit.

2.4 The Leap Frog Scheme

For the mathematical PML(2.1) the leap-frog scheme reads:

Ex
p+1
m,n − Ex

p−1
m,n

2τ
=
Hp

m,n+1 −Hp
m,n−1

2hy

Ey
p+1
m,n − Ey

p−1
m,n

2τ
= −

Hp
m+1,n −Hp

m−1,n

2hx
− σm

(
2Ey

p
m,n + P p

m,n

)
Hp+1

m,n −Hp−1
m,n

2τ
=
Ex

p
m,n+1 − Ex

p
m,n−1

2hy
−
Ey

p
m+1,n − Ey

p
m−1,n

2hx
− σ′mQ

p
m,n

P p+1
m,n − P p−1

m,n

2τ
= σmEy

p
m,n

Qp+1
m,n −Qp−1

m,n

2τ
= −σmQ

p
m,n − Ey

p
m,n

(2.6)
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Let us also write down the leap-frog scheme as it applies to system (2.2):

Ex
p+1
m,n − Ex

p−1
m,n

2τ
=
Hp

m,n+1 −Hp
m,n−1

2hy
+ σm(Ex

p
m,n − P p

m,n)

Ey
p+1
m,n − Ey

p−1
m,n

2τ
= −

Hp
m+1,n −Hp

m−1,n

2hx
− σmEy

p
m,n (2.7)

Hp+1
m,n −Hp−1

m,n

2τ
=
Ex

p
m,n+1 − Ex

p
m,n−1

2hy
−
Ey

p
m+1,n − Ey

p
m−1,n

2hx
− σmH

p
m,n

P p+1
m,n − P p−1

m,n

2τ
= σm(Ex

p
m,n − P p

m,n)

We will use the principle of frozen coefficients and investigate the von Neumann stability of

scheme (2.7) for a fixed value of σ 6= 0. Substituting the solution qλpei(αm+βn) into (2.7), where q

is a 4-dimensional vector and α and β are the frequencies that correspond to x and y, we require

that the corresponding determinant be zero and obtain (hx = hy = h):

4λ2(λ2 − 1)2τ2 sin2 α+ (−1 + λ2 + 2λστ)2(h2(λ2 − 1)2 + 4λ2τ2 sin2 β) = 0

An algebraic equation of degree 8 is impossible to solve in the general case. However, for the simplest

case of a quiescent solution, α = β = 0, we have:

λ1,2 = −στ −
√

1 + σ2τ2, λ3,4 = −στ +
√

1 + σ2τ2, and λ5,6,7,8 = 1

We see that the eigenvalues λ1,2 get out of the unit disk. Speaking formally it is not fatal, because

for sufficiently small time steps we can always claim that |λ1,2| ≤ 1 + const τ . Hence, the necessary

von Neumann condition of stability may still hold for scheme (2.7), provided that its other eigenvalues

will not “misbehave” for non-zero frequencies. However, the stability constant becomes exponentially

large and obviously cannot be made grow slower than an exponential (in time) even if all α 6= 0 and

β 6= 0 are taken into account. In practice, the computation is completely ruined already at short

times t ∼ T . The results for the mathematical PML (2.1) and scheme (2.6) are virtually identical.

2.5 The Lax-Wendroff Scheme

The Lax-Wendroff scheme for either type of the PML is obtained in the usual way, by re-expressing

the second time derivative of each unknown quantity through the corresponding equation(s) and

subsequently canceling the O(τ) term in the truncation error by subtraction. For PML (2.1), this
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yields:

Ex
p+1
m,n − Ex

p
m,n

τ
=
Hp

m,n+1 −Hp
m,n−1

2hy
+
τ

2

[
∂2Ex

∂y2
− ∂2Ey

∂x∂y
+ σ′

∂Q

∂y︸ ︷︷ ︸
O(h2) by central differences

]p

m,n

Ey
p+1
m,n − Ey

p
m,n

τ
= −

Hp
m+1,n −Hp

m−1,n

2hx
− 2σmEy

p
m,n − σmP

p
m,n

+
τ

2

[
∂2Ey

∂x2
− ∂2Ex

∂y∂x
− σ′

∂Q

∂x︸ ︷︷ ︸
O(h2) by central differences

−σ′′Q− 2σ
∂Ey

∂t
− σ

∂P

∂t︸ ︷︷ ︸
via the equations
then also O(h2)

]p

m,n

Hp+1
m,n −Hp

m,n

τ
=
Ex

p
m,n+1 − Ex

p
m,n−1

2hy
−
Ey

p
m+1,n − Ey

p
m−1,n

2hx
+ σ′mQ

p
m,n (2.8)

+
τ

2

[
∂2H

∂x2
− ∂2H

∂y2
+ 2σ

∂Ey

∂x
+ σ

∂P

∂x︸ ︷︷ ︸
O(h2) by central differences

+2σ′Ey + σ′P − σ′(σQ+ Ey)
]p

m,n

P p+1
m,n − P p

m,n

τ
= σmEy

p
m,n +

τ

2
σ

[
− ∂H

∂x
− 2σEy − σP

]p

m,n

Qp+1
m,n −Qp

m,n

τ
= − σmQ

p
m,n − Ey

p
m,n +

τ

2

[
σ2Q+ 3σEy + σP +

∂H

∂x

]p

m,n

In the quiescent state, equations for Ey and P decouple from system (2.8), cf. equations (2.5).

Then, analysis of the eigenvalues similar to the one conducted in Section 2.3 yields: λ1,2 = 1−στ +
σ2τ2

2 . We see that the multiple eigenvalue from the differential system does not get split by the

discretization.

There is, however, an alternative way of discretizing the ODEs from system (2.1). Namely, one

can use a semi-implicit (Crank-Nicolson type) scheme for these two equations and still maintain

the overall second order accuracy. In this case, the continuous multiple eigenvalue gets split by the

discretization:

λ1,2 = 1− στ +
σ2τ2

2
+
σ3τ3

4
± σ2τ2

4

√
−4 + 4στ + σ2τ2

Yet in our numerical experiments no difference in the long-time behavior has been observed between

scheme (2.8) and the Lax-Wendroff scheme with the ODEs approximated semi-implicitly. Both

schemes develop a very slow growth, with the artifacts becoming noticeable at about 500T , see

Figure 2.2. In accordance with the observations of [3], they originate near the interface between the

domain and the layer.

The Lax-Wendroff scheme for the physical PML (2.2) is built in much the same way as scheme
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(2.8):
Ex

p+1
m,n − Ex

p
m,n

τ
=
Hp

m,n+1 −Hp
m,n−1

2hy
+
τ

2

[
∂2Ex

∂x2
− ∂2Ey

∂x∂y︸ ︷︷ ︸
O(h2) by

central differences

−σ′H
]p

m,n

Ey
p+1
m,n − Ey

p
m,n

τ
= −

Hp
m+1,n −Hp

m−1,n

2hy
+
τ

2

[
∂2Ex

∂x∂y
+
∂2Ey

∂x2︸ ︷︷ ︸
O(h2) by

central differences

−σ′H − σ2Ey

]p

m,n

Hp+1
m,n −Hp

m,n

τ
=
Ex

p
m,n+1 − Ex

p
m,n−1

2hy
−
Ey

p
m+1,n − Ey

p
m−1,n

2hx
+
τ

2
∂2H

∂t2
− σH

P p+1
m,n − P p

m,n

τ
= σm(Ex

p
m,n) +

τ

2
σ · ∂H

∂y

(2.9)

where the second time derivative is expressed via the equation:

∂2H

∂t2
=
[
∂2H

∂y2
+ σ

∂P

∂y
+
∂2H

∂x2
+ 2σ

∂Ey

∂x︸ ︷︷ ︸
O(h2) by central differences

+σ′(Ex − P + Ey) + σ2H

]p

m,n
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Figure 2.2: Ex for the Law-Wendroff

scheme (2.8) at t = 500T ; the contours are

equally spaced between -0.575 and 0.575

with the increment 0.05.

In the experiments, PML (2.2) with scheme (2.9) ex-

hibits no artificial growth at least until t = 2500T . Al-

together, this behavior is very similar to what we have

seen for the Yee scheme in Section 2.3.

It should also be pointed out that the implementa-

tion of scheme (2.8) requires one special consideration.

Originally, it was noticed that the artifacts in the so-

lution could develop much more rapidly than shown in

Figure 2.2, and starting predominantly at the intersec-

tions of the interfaces between the domain and the PML

x = ±a with the lateral boundaries y = ±a. This was

attributed to the presence of the term σ′′Q in the equation for Ey in system (2.8). For the cubic

profile of σ(x), this term has relatively low regularity at the interfaces x = ±a, it is continuous

with discontinuous first derivative. If, however, this term is merely removed, the growth displayed

by scheme (2.8) slows down very considerably and does not noticeably manifest itself until several

hundred T . In doing so, inside the computational domain the scheme still remains a complete second

order Lax-Wendroff.
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2.6 The Central Difference Scheme

Let qp
m,n denote the complete vector of unknowns at the spatial location (m,n) and time level p.

This vector has five components for the PML (2.1) and four components for the PML (2.2). Let

G(q) denote the operator of spatial discretization. It replaces the x and y partial derivatives on

the right-hand side of either (2.1) or (2.2) by the corresponding second order central differences.

It also replaces the non-differentiated terms by the appropriate nodal values. Then, the central

difference second order scheme for either system (2.1) or system (2.2) with the standard fourth

order Runge-Kutta evolution in time is given by:

qp+1
m,n − qp

m,n

τ
=

1
6
(k1 + 2k2 + 2k3 + k4) (2.10a)

where
k1 = G(qp

m,n), k2 = G(qp
m,n + τk1/2)

k3 = G(qp
m,n + τk2/2), k4 = G(qp

m,n + τk3)
(2.10b)

Alternatively, one can use a third order Runge-Kutta evolution in time, which yields:

qp+1
m,n − qp

m,n

τ
=

1
4
(k1 + 3k3) (2.11a)

where

k1 = G(qp
m,n), k2 = G(qp

m,n + τk1/3), k3 = G(qp
m,n + 2τk2/3) (2.11b)

Note that second order Runge-Kutta methods cannot be applied to the central difference spatial

discretization G(q) because the resulting scheme will be unstable. In doing so, the instability will

not be due to the PML, it will rather be a genuine von Neumann instability. On the other hand,

both schemes (2.10a)–(2.10b) and (2.11a)–(2.11b) are stable, provided that the Courant number

does not exceed 2.8 for scheme (2.10a)–(2.10b) and about 1.7 for scheme (2.11a)–(2.11b).

Analysis of the eigenvalues in the quiescent state (similar to the analysis conducted in Sections 2.3

and 2.5) shows that either scheme, (2.10a)–(2.10b) or (2.11a)–(2.11b), applied to either system, (2.1)

or (2.2), preserves multiple eigenvalues that characterize the differential formulation.

As far as the numerical results, both schemes (2.10a)–(2.10b) and (2.11a)–(2.11b) applied to the

mathematical PML (2.1) produce a moderate growth, with the artifacts clearly observable already

for the times t ranging between 10T and 15T , see Figure 2.3. Furthermore, unlike in the previous

settings (Sections 2.3 and 2.5), we could not see here the artifacts developing in the layer and then

propagating toward the domain. We rather saw them gradually picking up throughout the entire

computational region, as Figure 2.3 shows. We are completely sure though that these artifacts are
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Figure 2.3: H for the central difference scheme (2.10a)–(2.10b) applied to the PML (2.1) at t = 15T ;
the contours are equally spaced between -0.4 and 0.4 with the increment 0.1 and with the exception
of the zero contour.

still due to the layer and nothing else, because it has been verified by switching off the PML while

keeping all other parameters intact, as explained in Section 3.3.1. Moreover, it has also been verified

that these artifacts are not due to any von Neumann type instability. They develop with the same

rate (with respect to the actual time rather than the number of steps) for the Courant number taken

on the borderline of stability region, as well as for the three times smaller Courant number.

For the physical PML (2.2), no growth of the Runge-Kutta solution could be observed at least

until t = 2500T . This is in contrast with the findings of [3], although in [3] the differences in

space were fourth order, and the code was multi-block with characteristics-based treatment of the

interfaces.

2.7 Summary and Intermediate Conclusions

We summarize our observations and results of the analysis in Table 2.1.

Table 2.1: Long-time behavior of unsplit PMLs with second order schemes.

Schemes

Yee leap-frog Lax-Wendroff central difference

expl. ODEs impl. ODEs 4-th RK 3-rd RK

mathemat. growth ∼ 500T rapid ∼ 500T ∼ 500T ∼ 15T ∼ 15T

PML (2.1) eigenvalues split |λ| > 1 multiple split multiple multiple

physical growth no rapid no no

PML (2.2) eigenvalues multiple |λ| > 1 multiple multiple multiple
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Altogether, the physical unsplit PML (2.2) seems somewhat less susceptible to developing the

long-time growth. For the mathematical PML (2.1), when it is used with the Yee scheme or Lax-

Wendroff scheme, the growth can still be disregarded for all practical purposes. This growth, how-

ever, is more rapid for the central difference scheme with Runge-Kutta evolution in time.

We realize, of course, that the analysis in this chapter is somewhat limited in its scope. For

example, we cannot say ahead of time what’s going to happen to the reader’s favorite high order

scheme if applied to one of the PMLs we have considered. On the other hand, we have analyzed the

performance of all commonly used second order explicit finite-difference schemes, and within this

class of methods reliable predictions can be made based on the data from Table 2.1. Otherwise,

analysis of the eigenvalues for a discretization not covered in this chapter can be performed similarly.

To summarize, the growth of the numerical solution inside the PML seems to be strongly af-

fected by both the type of the layer and the type of discretization. In addition, we think that our

observations may justify the development of special methodologies for stabilizing the PMLs over

long propagation times. Chapter 3 of the dissertation addresses precisely this objective.
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Chapter 3

Lacunae-Based Stabilization of PMLs

3.1 Introduction

In this chapter, we propose a fully rigorous cure for the long-time instability of the PMLs that will

preserve all the design properties of a given layer. Our methodology employs the lacunae-based

integration, and the analysis in the chapter follows that of the recent paper [99]. We should addi-

tionally note that even though the lacunae-based integration is presented hereafter as an approach

to mitigating the long-time instability of the PMLs, the analysis of Section 3.2 clearly indicates that

it can also be used for alleviating any other undesirable long-time phenomenon in computation, e.g.,

the deterioration of accuracy of low order local ABCs.

Lacunae-based methods for the numerical integration of hyperbolic equations and systems have

been developed during the past several years [108–110, 118, 119]. They apply to the equations that

satisfy the Huygens’ principle [25, 36]1 and hence have lacunae [98] in their solutions. We briefly

illustrate the phenomenon of lacunae using the example of a three-dimensional wave (d’Alembert)

equation:
1
c2
ϕtt − (ϕxx + ϕyy + ϕzz) = f(x , t), t ≥ 0 (3.1a)

subject to

ϕ|t=0 = ϕt|t=0 = 0 (3.1b)

Let us assume that the RHS of (3.1a) is compactly supported in space-time, that is suppf ∈ Q ⊂
R3 × [0,∞), and note that while the homogeneity of the initial conditions (3.1b) is convenient it is

not required. Solution of problem (3.1) at (x , t) is given by the Kirchhoff integral, see [36]:

ϕ(x , t) =
1
4π

∫∫∫
%≤ct

f(ξξξ, t− %/c)
%

dξξξ (3.2)

1For more detail on the Huygens’ principle, including history of the related developments, see [19,25,61,64–66].
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where x = (x, y, z), ξξξ = (ξ1, ξ2, ξ3), % = |x − ξξξ| =
√

(x− ξ1)2 + (y − ξ2)2 + (z − ξ3)2 and dξξξ =

dξ1dξ2dξ3. Since the RHS of (3.1a) is compactly supported

ϕ(ξξξ, t) ≡ 0 ∀(x , t) ∈
⋂
(ξξξ,t)

{(x , t) : |x − ξξξ| < c(t− τ), t > τ} (3.3)

The region of space-time defined by the formula (3.3) is called lacuna of the solution ϕ(x , t). It

can be interpreted as the intersection of the characteristic cones of equation (3.1a) once the vertex

of the cone sweeps the support of f(x , t). Physically, lacunae correspond to the part of space-time

which the waves generated by the compactly supported RHS have passed and the solution is zero

again. The surfaces of lacunae are trajectories of the aft (trailing) fronts of the waves. The notion

of lacunae was first introduced in [98] and subsequently studied in [9, 10].

The basic idea of lacunae-based methods is that once the domain of interest falls completely

into the lacuna of the solution [98], the integration does not need to be continued any further.

The presence of lacunae can also be efficiently exploited for the construction of exact ABCs2 for

various wave propagation problems [108, 118, 119]. These ABCs have only fixed and limited extent

of temporal nonlocality. For the problem of radiation of waves by a known source, lacunae-based

methods guarantee a temporally uniform grid convergence for any consistent and stable scheme [109].

Hereafter, we apply the concepts of lacunae-based integration to the task of stabilization of

PMLs. Our main result is formulated in Section 3.2, see Theorem 3.1. It says that given a computa-

tional domain of finite size, lacunae-based integration guarantees that the PML-generated errors will

remain uniformly bounded for all times. This results holds for any linear PML, and the governing

equations in the layer do not have to be modified. In Section 3.3, we present the results of our

numerical experiments for Maxwell’s equations that corroborate the theoretical design properties of

the algorithm. In Section 3.4, we describe the decomposition of the original problem into the interior

and auxiliary subproblems, which is the key element of lacunae-based ABCs [108, 118, 119]. As for

the PMLs, this decomposition will also allow us to address a much broader class of formulations than

only the radiation of waves by known sources (e.g., scatterers in the domain). Finally, Section 3.5

contains the conclusions and some general discussion.

3.2 Essentials of the Algorithm and the Main Theorem

A typical problem setup is schematically represented in Figure 3.1, and it is only for the convenience

of plotting that x is shown one-dimensional. In fact, we will always assume that x ∈ R3, because

lacunae exist only if the number of space dimensions is odd [25]. Accordingly, the computational

2ABCs that introduce no error due to the domain truncation.
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domain Ω is assumed to have diameter d in R3. As far as its shape is concerned, from the standpoint

of lacunae-based algorithms it is not important. However, the application of PMLs typically requires

simple computational domains, most often Cartesian rectangles (parallelepipeds) or, sometimes,

cylinders or spheres [97,113,114].

The PML surrounds the computational domain, see Figure 3.1, and for simplicity we first assume

that it has infinite thickness. This means that all the waves entering the PML completely die off in

the layer. In practice, a PML always has finite thickness, such as in our numerical experiments of

Section 3.3.

PML

T=d/c

PML

T1

t
Computational
domain

Source

element
partition

d

0 x

Ω

fm

arbitrary moment
of time

dx
/d

t=
c

Figure 3.1: Schematic.

Let w = w(x , t) denote the vector of unknowns (e.g., components of the electromagnetic field

or parameters of the fluid), and let it be governed by:

∂w

∂t
+ Lw = f (x , t), x ∈ R3, t > 0,

w(x , 0) = ϕϕϕ, x ∈ R3,

(3.4)

where the operator L is supposed to be linear and contain all the appropriate spatial derivatives of

w as well as, maybe, non-differentiated terms. We require that the differential operator ∂/∂t+L of

(3.4) satisfies the Huygens’ principle [19, 25, 61, 64–66]. Mathematically, this means that the waves

due to a compactly supported source (in space-time) have sharp aft fronts. In other words, at any

fixed location of the observer these waves come and go, and the solution becomes identically zero
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after a finite interval of time, see Section 3.1. This interval is no greater than the maximum distance

between the observer and the source divided by the propagation speed c (e.g., the speed of light or

speed of sound).

According to [92], a scalar differential equation in the conventional 3 + 1 dimensional Minkowski

space-time is Huygens’ if and only if it is equivalent to the d’Alembert equation.This is a convenient

criterion for practice; in particular, both Maxwell’s equations [119] and linearized Euler’s equations

(once the entropy waves have been decoupled [118]) reduce to d’Alembert equations for individual

electromagnetic or acoustic variables, and as such are Huygens’.

The right-hand side (RHS) f (x , t) in (3.4) represents the sources of the field; it is supposed to

be compactly supported in space and may operate continuously in time: suppf ⊆ Ω× [0,+∞). The

initial data for problem (3.4) are also assumed compactly supported: suppϕϕϕ ⊆ Ω. For Maxwell’s

equations, f (x , t) contains the extraneous electric currents, and for the acoustics equations it contains

volume velocities and forces that are assumed to be given explicitly.

Let us denote by T = d/c the characteristic time, which is required for the waves to cross the

domain Ω, and let T1 > 0, see Figure 3.1. We can represent the RHS f (x , t) of (3.4), x ∈ Ω, using

the partition:

f (x , t) =
∞∑

m=0

fm(x , t), fm(x , t) =

f (x , t), tm ≤ t < tm+1,

0 , otherwise,
(3.5)

where tm = mT1, m = 0, 1, 2, . . .. Next, consider the Cauchy problems:

∂wm

∂t
+ Lwm = fm(x , t), x ∈ R3, t > tm,

wm(x , tm) =

ϕϕϕ, m = 0,

0 , m > 0,
x ∈ R3.

(3.6)

Solution of problem number m from the set (3.6) is defined for t ≥ tm ≡ mT1, but we can think

that it is defined for all t ≥ 0 and is equal to zero for 0 ≤ t < tm. Then, because of the linear

superposition and causality we have:

w(x , t) =
M∑

m=0

wm(x , t), x ∈ R3, t ≥ 0, (3.7)

where M def= dt/T1e − 1, and dαe is the smallest integer ≥ α (ceiling function).

Moreover, as the operator ∂/∂t+L is Huygens’, the solution of each problem (3.6) has a lacuna

[98]. For the constant propagation speed c, the shape of the lacuna is determined by the Kirchhoff
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integral [25] as explained, e.g., in [109]. It is basically the common interior of all the light cones

generated by a particular source. For a given m ≥ 0, the domain Ω falls into this lacuna at the

moment of time tm +T1 +T ≡ tm+1 +T . In other words, once the source fm(x , t) ceases to operate

(at t = tm+1), it takes another T seconds for the waves it has generated to completely leave the

domain Ω, see Figure 3.1. Consequently,

wm(x , t) = 0 , x ∈ Ω, t ≥ tm+1 + T ≡ tm+1 + d/c, (3.8)

and using (3.8), we can write instead of (3.7):

w(x , t) =
M∑

m=M0

wm(x , t), x ∈ Ω, t ≥ 0, (3.9)

where M0
def= [(t−T )/T1], and [ · ] denotes the integer part. Hence, we conclude that for any moment

of time t, see Figure 3.1, only so many components wm of (3.6) contribute to the solution w(x , t)

of problem (3.4) on the domain Ω. These components are the M −M0 + 1 terms in the sum (3.9),

and their maximum number does not depend on t. Moreover, each term may only differ from zero

on Ω during the interval T1 + T , see (3.8), which does not depend on t either.

Representation of the solution w(x , t) as the sum of a finite non-increasing number of components

wm(x , t) that each has a finite non-increasing “lifespan” on Ω is the key advantage provided by

lacunae-based integration; it will be of fundamental importance for our subsequent analysis. As an

example, consider T1 = T = d/c, see Figure 3.1. Then, clearly, M0 = M − 1 unless t happens to be

an integer multiple of T , in which case M0 = M . Consequently, the number of terms in the sum (3.9)

in the case T1 = T is normally equal to 2 and sometimes reduces to 1. In practice, however, it will

be both feasible and beneficial to take the value of T1 several times larger than T , see Sections 3.3.3

and 3.3.4.

In reality we are not solving problem (3.4) directly. Instead, we are solving a combined formu-

lation that involves the PML outside Ω (see Figure 3.1):

∂w (Ω)

∂t
+ Lw (Ω) = f (x , t), x ∈ Ω, t > 0,

w (Ω)(x , 0) = ϕϕϕ, x ∈ Ω,
(3.10a)

∂w (PML)

∂t
+ L(PML)w (PML) = 0 , x ∈ R3 \ Ω, t > 0,

w (PML)(x , 0) = 0 , x ∈ R3 \ Ω.
(3.10b)

In doing so, problem (3.10a) is identical to (3.4) except that it is formulated on the bounded region



51

Ω rather than on R3. For the second problem, (3.10b), the vector of unknowns w (PML) typically

has more components than w (Ω), and the operator L(PML) has additional terms that render the

damping of waves. It is also required that the continuity be enforced across the interface ∂Ω:

w (Ω)(x , t) = Mw (PML)(x , t), x ∈ ∂Ω. (3.10c)

For unsplit PMLs, the matrix M should simply match the respective components. For split PMLs,

the sum of the split components in w (PML) should be equal to the corresponding component of

w (Ω). Altogether, the ideal PML of infinite thickness (3.10b)-(3.10c) applied to the interior problem

(3.10a) will guarantee:

w (Ω)(x , t) ≡ w(x , t), x ∈ Ω, t ≥ 0. (3.11)

The PML, however, is not ideal, and a convenient way to account for that is to introduce small

perturbations ξξξ of the initial data. In the continuous setting these perturbations are artificial, but in

reality they originate from the small residual terms of the approximation, i.e., from the truncation

error [3]:
∂w̃ (Ω)

∂t
+ Lw̃ (Ω) = f (x , t), x ∈ Ω, t > 0,

w̃ (Ω)(x , 0) = ϕϕϕ+ ξξξ, x ∈ Ω,
(3.12a)

∂w̃ (PML)

∂t
+ L(PML)w̃ (PML) = 0 , x ∈ R3 \ Ω, t > 0,

w̃ (PML)(x , 0) = ξξξ, x ∈ R3 \ Ω.
(3.12b)

System (3.12) is to be supplemented by the same continuity condition (3.10c). It has been shown [1,3]

that for both split and unsplit PMLs the difference between the perturbed and unperturbed solution

can grow as the time elapses:

‖w̃ (Ω)( · , t)−w (Ω)( · , t)‖ ≤ µ(t)‖ξξξ‖′, (3.13a)

‖w̃ (PML)( · , t)−w (PML)( · , t)‖ ≤ µ(t)‖ξξξ‖′. (3.13b)

The rate of growth µ(t) is determined by the particular PML; for standard PMLs it is either linear

or quadratic [1, 3, 17]. The appropriate choice of the norms ‖ · ‖ and ‖ · ‖′ for some specific cases

is discussed in [1, 3, 17]. Note that estimate (3.13b) is always sharp, because the growth of certain

components of the solution inside the PML has actually been demonstrated in [3,17]. As far as the

first estimate, (3.13a), according to [18] numerical artifacts from the PML may or may not propagate

back into the domain Ω. If they don’t, then µ(t) can be replaced by a true constant in (3.13a). We,

however, will still be assuming the worst case scenario (3.13), for it was experimentally shown
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in Chapter 2, see also [3, 5], that the artifacts from the layer can contaminate the computational

domain. Moreover, the implementation strategies that emphasize parallel efficiency may make the

propagation of artifacts from the layer to the domain more likely [114].

Our goal is to show that if the plain integration of system (3.10) is replaced by the lacunae-based

integration, then estimates (3.13) can be improved and made uniform in time. First of all, we need

to see that lacunae-based integration applies to (3.10). In the unperturbed case, formula (3.11)

means that if f (x , t) is partitioned according to (3.5), then the solutions of individual problems with

the PML will still have lacunae on the domain Ω. The only difference is that the waves that leave Ω

after the time T elapses will no longer travel freely but will rather be absorbed by the PML. Hence,

we can write similarly to (3.9):

w (Ω)(x , t) =
M∑

m=M0

w (Ω)
m (x , t), x ∈ Ω, t ≥ 0, (3.14)

where the individual terms w
(Ω)
m (x , t), m = 0, 1, 2, . . ., satisfy [cf. (3.6), (3.10)]:

∂w
(Ω)
m

∂t
+ Lw (Ω)

m = fm(x , t), x ∈ Ω, t > tm,

w (Ω)
m (x , tm) =

ϕϕϕ, m = 0

0 , m > 0,
x ∈ Ω,

(3.15a)

∂w
(PML)
m

∂t
+ L(PML)w (PML)

m = 0 , x ∈ R3 \ Ω, t > tm,

w (PML)
m (x , tm) = 0 , x ∈ R3 \ Ω,

(3.15b)

w (Ω)
m (x , t) = Mw (PML)

m (x , t), x ∈ ∂Ω. (3.15c)

To account for the “misbehavior” of the PML, equations (3.15a), (3.15b) need to be perturbed the

same way as we have perturbed (3.10a), (3.10b) to obtain (3.12):

∂w̃
(Ω)
m

∂t
+ Lw̃ (Ω)

m = fm(x , t), x ∈ Ω, t > tm,

w̃ (Ω)
m (x , tm) =

ϕϕϕ+ ξξξ0, m = 0

ξξξm, m > 0,
x ∈ Ω,

(3.16a)
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∂w̃
(PML)
m

∂t
+ L(PML)w̃ (PML)

m = 0 , x ∈ R3 \ Ω, t > tm,

w̃ (PML)
m (x , tm) = ξξξm, x ∈ R3 \ Ω.

(3.16b)

Solutions of the respective problems (3.15) and (3.16)-(3.15c) will satisfy the same estimates (3.13)

as satisfied by the solutions of (3.10) and (3.12). However, the key advantage of exploiting the

lacunae is that for every m = 0, 1, 2, . . ., the corresponding system only needs to be integrated over

the interval T1 + T . Hence,

‖w̃ (Ω)
m ( · , t)−w (Ω)

m ( · , t)‖ ≤ C‖ξξξm‖′, (3.17a)

‖w̃ (PML)
m ( · , t)−w (PML)

m ( · , t)‖ ≤ C‖ξξξm‖′, (3.17b)

where C = µ(T1 + T ) is a constant. Another key advantage of using lacunae is a finite and non-

increasing number of summation terms in formula (3.14). Combined with estimate (3.17a), formula

(3.14) yields (by the triangle inequality):

‖w̃ (Ω)( · , t)−w (Ω)( · , t)‖ ≤ C0 sup
m
‖ξξξm‖′, (3.18a)

where C0 = C · (M −M0 + 1) and the norms ‖ξξξm‖′ are assumed bounded altogether. In contradis-

tinction to (3.13a), estimate (3.18a) implies that even if the PML errors contaminate Ω, the resulting

error on Ω will remain uniformly bounded for all times. Note that according to (3.11), w (Ω)( · , t)
can be replaced with w( · , t) on the left-hand side of (3.18a), which means that we have proved:

Theorem 3.1 Let Ω ⊂ R3 be a bounded domain, and let problem (3.4) be solved using a PML

around Ω combined with the lacunae-based algorithm, see (3.14) and (3.15). Then, assuming that

supm ‖ξξξm‖′ < ∞, the error on Ω due to the perturbation (3.16) of the PML will remain uniformly

bounded for all times:

‖w̃ (Ω)( · , t)−w( · , t)‖Ω ≤ C0 sup
m
‖ξξξm‖′. (3.18b)

Estimate (3.18b) provides an error bound for the domain Ω. In fact, the error growth inside the

PML is also uniformly bounded, i.e., an estimate similar to (3.18b) holds for the complementary

domain R3 \ Ω as well. It, however, should be written differently:

∥∥∥ M∑
m=M0

w̃ (PML)
m ( · , t)−

M∑
m=M0

w (PML)
m ( · , t)

∥∥∥ ≤ C0 sup
m
‖ξξξm‖′. (3.18c)

The first and second terms on the left-hand side of (3.18c) are solutions in the PML with and without
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perturbations, respectively. They are left in the form of the sums because the lossy equations of the

PML shall not be expected to be Huygens’, and formula (3.14) will not, generally speaking, hold.

In other words, since the solution is represented as a finite sum of terms with finite lifespan, the

uniform bound (3.18c) is guaranteed. However, unlike on Ω, the solutions obtained in the PML with

and without lacunae will not be the same.

3.3 Numerical Experiments

In this section, we demonstrate the performance of the algorithm introduced in Section 3.2.

3.3.1 Computational Setup

For the purpose of relating to prior work, in our numerical experiments we would like to stay as

close as possible to the setup of Chapter 2, which was also used in our recent paper [5] and which,

in turn, “borrows” certain components from [3]. The two key differences between the simulations

in the current chapter and those conducted in Chapter 2 are that here we are using cylindrically

symmetric geometry so that to be able to take advantage of the three-dimensional effects (lacunae)

in an essentially two-dimensional setting, and also that in Chapter 2 the solution was driven by the

initial conditions whereas here it is driven by a continuously operating source term on the right-hand

side (described in Section 3.3.2).

Governing Equations and Geometry

Let r, z, and θ denote the cylindrical coordinates; the assumption of axial (cylindrical) symmetry

implies that all the derivatives with respect to the polar angle vanish: ∂
∂θ ≡ 0. Then, the full Maxwell

system of equations gets split into two independent subsystems that correspond to the transverse

magnetic (TM) and transverse electric (TE) modes. Following Chapter 2, we will be solving the TE

Maxwell equations in vacuum (c is the speed of light):

1
c

∂Er

∂t
+
∂Hθ

∂z
= − 4π

c
jr,

1
c

∂Ez

∂t
− 1
r

∂(rHθ)
∂r

= − 4π
c
jz,

1
c

∂Hθ

∂t
−
(
∂Ez

∂r
− ∂Er

∂z

)
= 0,

(3.19)

where Er and Ez denote the radial and axial components of the electric field, respectively, and

Hθ denotes the angular component of the magnetic field. The first two equations in system (3.19)

represent the Ampère law and are driven by the extraneous electric current with the components jr
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and jz. The third equation in (3.19) represents the Faraday law and is homogeneous (no magnetic

currents). The unsteady equations (3.19) are supplemented by the steady-state equation

1
r

∂(rEr)
∂r

+
∂Ez

∂z
= 4πρ, (3.20)

where ρ is the electric charge density. Equation (3.20) is the Gauss’ law for electricity, it relates

the flux of the electric field through a given closed surface to the charge contained inside. A nec-

essary solvability condition for system (3.19)–(3.20) is the continuity equation that represents the

conservation of charge:
∂ρ

∂t
+

1
r

∂(rjr)
∂r

+
∂jz
∂z

= 0. (3.21)

As long as condition (3.21) holds for the source terms ρ, jr, and jz, the steady-state equation (3.20)

can be left out of the consideration when time-marching the unsteady equations (3.19).

At the axis of the cylindrical system, Maxwell’s equations require additional attention. Under

the natural assumption that all the physical quantities involved must be continuous and bounded,

one can easily see that the vector components Hθ, Er, and jr can only meet the constraint of axial

symmetry if they vanish at r = 0:

Hθ(t, r, z)
∣∣
r=0

= 0, Er(t, r, z)
∣∣
r=0

= 0, jr(t, r, z)
∣∣
r=0

= 0. (3.22)

The axial components Ez and jz do not have to vanish, although given (3.22), the third equation

of system (3.19) reduces to ∂Ez

∂r

∣∣
r=0

= 0. The first equation of system (3.19) reduces to the identity

0 = 0 on the axis, and the only equation that does not degenerate is the second equation. Taking

into account the first equality from (3.22), we can use the Taylor formula for r � 1 and write:

Hθ(t, r, z) = ∂Hθ

∂r

∣∣
r=0

· r + O(r2). Consequently, 1
r

∂(rHθ)
∂r = 1

r
∂Hθ

∂r

∣∣
r=0

· ∂r2

∂r + O(r), which yields:
1
r

∂(rHθ)
∂r

∣∣
r=0

= 2∂Hθ

∂r

∣∣
r=0

. Therefore, on the axis we have:

1
c

∂Ez

∂t
− 2

∂Hθ

∂r
= −4π

c
jz. (3.23)

The geometry of the problem is schematically shown in Figure 3.2. The computational domain

has a rectangular shape in the (r, z) variables:

Ω = {(r, z) | 0 ≤ r ≤ 5, −5 ≤ z ≤ 5}.

The currents (and charges) that drive the solution, see equations (3.19), (3.20), are assumed to be

compactly supported in space on the ball R ≡ (r2 + z2)1/2 ≤ R0, and we typically choose R0 = 3.

The computational domain is terminated by the PML of width l = 1 in the axial direction, see
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Figure 3.2: Geometric setup in the space.

Figure 3.2. In fact, with the proper choice of damping the width of the layer beyond a certain point

no longer affects the quality of the solution on Ω (see Section 3.3.4).

PML

For our computations we take the mathematically derived unsplit PML of [2]. In the experiments

of Chapter 2, see also [5], this layer has clearly shown to be prone to the undesirable growth of

the solution for long integration times. We note that originally the PML of [2] was constructed

for the two-dimensional Cartesian TE Maxwell equations. As, however, the axial coordinate of the

cylindrical system is essentially Cartesian, the layer of [2] can be exported to the setup shown in
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Figure 3.2 with no change at all:

1
c

∂Er

∂t
+
∂Hθ

∂z
= − 2σEr − σP,

1
c

∂Ez

∂t
− 1
r

∂(rHθ)
∂r

= 0,

1
c

∂Hθ

∂t
−
(
∂Ez

∂r
− ∂Er

∂z

)
= σ′Q,

1
c

∂P

∂t
= σEr,

1
c

∂Q

∂t
= − σQ− Er.

(3.24)

Note that the PML (3.24) is built for the homogeneous Maxwell equations, because the right-hand

sides of system (3.19), i.e., the currents, may only differ from zero for R ≤ R0 and hence vanish near

the outer boundary of Ω, see Figure 3.2. Compared to (3.19), system (3.24) contains two additional

unknown quantities, P = P (t, r, z) and Q = Q(t, r, z). These quantities are identically equal to zero

on Ω, and in the layer they are governed by two additional ordinary differential equations. The

quantity σ = σ(z) in (3.24) is the damping coefficient. It is also identically zero on Ω, whereas in

the PML a certain degree of flexibility exists in choosing σ. In our computations, we will follow the

recommendation of [3] and define:

σ(z) =


σ0

(
5−z

l

)3
, −5− l ≤ z ≤ −5,

0, −5 < z < 5,

σ0

(
z−5

l

)3
, 5 ≤ z ≤ 5 + l.

(3.25)

For the PML of width l = 1, see Figure 3.2, we normally take σ0 = 10 in (3.25).

Boundary Conditions

The PML itself is terminated at z = 5 + l and z = −5 − l either by zero Dirichlet boundary

conditions for all field variables or by locally one-dimensional characteristic boundary conditions.

Again, as indicated in Section 3.3.4, if the damping inside the layer is sufficiently strong, the boundary

conditions at the outer boundaries of the PML make little or no difference as far as the quality of the

solution on Ω. The use of characteristic boundary conditions, however, may bring along an additional

benefit. With these boundary conditions, if the layer is switched off (i.e., if σ ≡ 0 everywhere), the

boundary still has some non-reflecting properties sufficient for computing the solution with a “non-

catastrophic” accuracy over a reasonably long time interval. This computation (see Section 3.3.4)

allows us to unambiguously attribute the undesirable long-term growth to the presence of the PML,
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because having the PML switched on or off appears the only difference between the two otherwise

identical settings. Note that a similar argument was previously used in Chapter 2 for identifying

the roots of the long-time growth of the solution.

The quasi-one-dimensional characteristic boundary conditions are set at the outer boundaries

of the PML by artificially disregarding the r derivatives in system (3.19) and setting to zero the

incoming Riemann variables, see Section 1.2.1. In doing so, we are disregarding the PML (3.24)

near the boundary and setting the boundary conditions for the homogeneous version of Maxwell’s

equations (3.19). In the quasi-one-dimensional z framework, we consider two equations:

1
c

∂Er

∂t
+
∂Hθ

∂z
= 0 and

1
c

∂Hθ

∂t
+
∂Er

∂z
= 0. (3.26)

By adding and subtracting equations (3.26) to/from one another, we realize that the Riemann

variable Hθ − Er is incoming at z = 5 + l and the Riemann variable Hθ + Er is incoming at

z = −5− l, see Figure 3.2. Consequently, the desired characteristic boundary conditions are:

Hθ − Er

∣∣
z=5+l

= 0 and Hθ + Er

∣∣
z=−5−l

= 0. (3.27)

The far field treatment that we adopt for the radial direction differs from the one in the axial

direction. An unsplit PML similar to (3.24) but built for the genuinely cylindrical setting3 is not

readily available. Therefore, we have decided to introduce a large buffer region and terminate it

with the first order Bayliss-Turkel local boundary conditions, see Section 1.2.3 and [12, 14–16]. For

the size of the domain Ω in the radial direction equal to 5, we may take, e.g., r0 = 15, see Figure 3.2.

The motivation is that as the amplitude of the waves generated by the sources inside Ω decays

proportionally to R−1 ≡ (r2 + z2)−1/2, for a sufficiently remote boundary r = r0 the magnitude of

the reflections produced by the Bayliss-Turkel boundary conditions will be small. The computations

of Section 3.3.4 corroborate that the magnitude of those reflections can indeed be driven down below

the truncation error level inside Ω.

The Bayliss-Turkel boundary conditions are standard, but their derivation for system (3.19)

requires a little extra care. As for any quasi-one-dimensional treatment, we disregard tangential

derivatives (i.e., z derivatives) at the boundary r = r0 and from the homogeneous Maxwell equations

3Recall, unlike z, r of the cylindrical system is not a Cartesian variable.
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obtain the following independent second order equations for the filed components Ez and Hθ:

1
c2
∂2Ez

∂t2
=

1
r

∂

∂r

(
r
∂Ez

∂r

)
, (3.28a)

1
c2
∂2Hθ

∂t2
=

∂

∂r

(
1
r

∂(rHθ)
∂r

)
. (3.28b)

Equation (3.28a) is the standard scalar d’Alembert equation, because Ez is a Cartesian vector

component. Equation (3.28b) is a vector d’Alembert equation, because Hθ is a non-Cartesian

component. In the frequency space, equations (3.28a), (3.28b) transform into

∂2Êz

∂r2
+

1
r

∂Êz

∂r
+
ω2

c2
Êz = 0, (3.29a)

∂2Ĥθ

∂r2
+

1
r

∂Ĥθ

∂r
− 1
r2
Ĥθ +

ω2

c2
Ĥθ = 0. (3.29b)

Equation (3.29a) is a Bessel equation of order ν = 0 and equation (3.29b) is a Bessel equation of

order ν = 1 because they can both be reduced to the respective standard forms by the change of

variable y = kr, where k = ω/c. Accordingly, the radiation solutions of these equations are given

by the Hankel functions H(2)
ν (kr), where ν = 0 corresponds to (3.29a) and ν = 1 corresponds to

(3.29b). Therefore, the radiation boundary conditions can be obtained by requiring that the desired

solution be parallel to H(2)
ν (kr) in the sense of the corresponding Wronskian (see [116, Section 1.2]):

∂Êz

∂r
− Êz

∂
∂rH

(2)
0 (kr)

H
(2)
0 (kr)

= 0, (3.30a)

∂Ĥθ

∂r
− Ĥθ

∂
∂rH

(2)
1 (kr)

H
(2)
1 (kr)

= 0. (3.30b)

For large arguments y, the Hankel functions have the following asymptotic:

H(2)
ν (y) =

√
2
πy
e−i(y−πν

2 −
π
4 ) +O(y−

3
2 )

so that for any ν we have:
d

dy
H(2)

ν (y) ≈ − 1
2y
H(2)

ν (y)− iH(2)
ν (y),

and consequently,
d

dr
H(2)

ν (kr) ≈
(
− 1

2r
− ik

)
H(2)

ν (kr).
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Therefore, disregarding the residual terms of the asymptotic, we can write instead of (3.30a), (3.30b):

∂Êz

∂r
+

1
2r
Êz + ikÊz = 0, (3.31a)

∂Ĥθ

∂r
+

1
2r
Ĥθ + ikĤθ = 0. (3.31b)

Back in the time domain, boundary conditions (3.31a), (3.31b) transform into

1
c

∂Ez

∂t
+
∂Ez

∂r
+

1
2r
Ez = 0, (3.32a)

1
c

∂Hθ

∂t
+
∂Hθ

∂r
+

1
2r
Hθ = 0, (3.32b)

and we realize that in the end of the day both field variables, Ez and Hθ, satisfy the same boundary

condition even though the governing equations (3.28a) and (3.28b) are different. The Bayliss-Turkel

boundary conditions (3.32a), (3.32b) are to be set at the far field boundary r = r0, see Figure 3.2.

Discretization

The problem we have described is discretized on the grid with square cells: hz = hr = h. To demon-

strate the convergence, we actually use a sequence of grids in Section 3.3.4 with h = 0.1, 0.05, 0.025,

and 0.0125. The spatial derivatives in system (3.19) (as well as in (3.20)) are approximated by cen-

tral differences with second order accuracy, and the temporal derivatives are approximated by the

conventional fourth order Runge-Kutta method (see, e.g., [111, Section 9.4]). The overall scheme is

standard and we therefore do not write it out explicitly except for the approximation of the radial

derivative:
1
r

∂(rHθ)
∂r

∣∣∣
n

=
1
rn

rn+1Hθn+1 − rn−1Hθn−1

2h
+O(h2),

where rn = nh, n = 0, 1, 2, . . . The same scheme was used in Chapter 2 in the Cartesian case, see

equations (2.10), and it led to the growth of the solution inside the PML.

The spatial derivatives in the on-axis equation (3.20) and in the boundary conditions (3.32a),

(3.32b) are approximated by one-sided differences with second order accuracy, and all temporal

derivatives, including those of P and Q in the PML (3.24) are approximated by the same Runge-

Kutta scheme.

The characteristic boundary conditions (3.27) are approximated in the context of Runge-Kutta

time marching. Let τ be the time step and assume that the right boundary z = 5 + l = 6, see

Figure 3.2, corresponds to m = M on the grid. At the first stage of Runge-Kutta, we write for the

first equation (3.26):

ẼrM = ErM − cτ

2
HθM+1 −HθM−1

2h
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and combine it with the second order approximation of the first equation (3.27):

ErM =
HθM+1 +HθM−1

2
.

Then, eliminating the ghost variable HθM+1, we obtain:

ẼrM = ErM

(
1− cτ

2h

)
+
cτ

2h
HθM−1, (3.33a)

and likewise for the magnetic field with the help of the second equation (3.26):

H̃θM = HθM

(
1− cτ

2h

)
+
cτ

2h
ErM−1. (3.33b)

Relations (3.33a), (3.33b) are the discrete characteristic boundary conditions. Similar relations can

be obtained for other stages of Runge-Kutta and for the opposite boundary z = −5−l ⇔ m = −M .

3.3.2 Test Solution

To study the performance of the algorithm, we would like to be able to compute the actual numerical

error on the grid at different moments of time. As such, we need the exact solution, and we obtain

it by “backward engineering.”

We begin with the standard scalar retarded potential:

φ =
χ(t−R/c)

R
(3.34)

that solves the three-dimensional d’Alembert equation driven by the source term 4πδ(x )·χ(t), where

R = |x |. The modulating function χ(t) is assumed to be sufficiently smooth for −∞ < t < ∞ and

χ(t) ≡ 0 for t < 0.

Along with the cylindrical coordinates (r, θ, z), let us also consider the Cartesian coordinates

(x, y, z), so that x = r cos θ, y = r sin θ, and R2 = r2 + z2 = x2 + y2 + z2. By differentiating the

retarded potential φ of (3.34), we obtain:

φ′x =
[
−χ(t−R/c)

R2
− 1
c

χ′(t−R/c)
R

]
x

R
, (3.35a)

φ′y =
[
−χ(t−R/c)

R2
− 1
c

χ′(t−R/c)
R

]
y

R
. (3.35b)

The derivatives φ′x ≡
∂φ
∂x and φ′y ≡

∂φ
∂y are solutions of the d’Alembert equation driven by the dipoles

4πδ′x(x ) · χ(t) and 4πδ′y(x ) · χ(t), respectively.
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Next, we introduce a new vector field B by defining its Cartesian components:

Bx = −φ′y, By = φ′x, Bz = 0,

where φ′x and φ′y are given by (3.35a) and (3.35b), respectively. For the cylindrical components of

B we therefore have:

Bθ = − sin θBx + cos θBy =
[
−χ(t−R/c)

R2
− 1
c

χ′(t−R/c)
R

]
r

R
, (3.36a)

Br = cos θBx + sin θBy = 0. (3.36b)

By design, the vector field B = B(x , t) is a solution to the three-dimensional vector d’Alembert

equation driven by the following dipole at the origin:

4π(−δ′y(x ), δ′x(x ), 0) · χ(t).

This solution is axially symmetric, because ∂Bθ

∂θ = 0. This solution is also singular at the origin.

Therefore, we introduce a scalar multiplier function ψ = ψ(R) that should have at least p continuous

derivatives for R ≥ 0. We require that ψ(R) ≡ 1 for R ≥ R0, see Figure 3.2, and ψ(0) = ψ′(0) =

. . . = ψ(p)(0) = 0. In practice, we take p = 6 and build ψ(R) on 0 ≤ R ≤ R0 as a polynomial of

degree 13.

Having constructed ψ(R), we introduce a new vector field B̃(x , t) = B(x , t) · ψ(R), which no

longer has a singularity at the origin. Moreover, it even turns into zero at R = 0 along with at least

p − 2 of its derivatives, see formula (3.36a). Note that for R > R0 the vector field B̃(x , t) is still

an axially symmetric solution to the homogeneous three-dimensional d’Alembert equation. The test

solution for Maxwell’s equations (3.19) will be obtained by using B̃(x , t) as a generating function

for the vector potential of the electromagnetic field.

It is well known that even though the three-dimensional electromagnetic field consists of two

vector quantities, the electric field E and the magnetic field H (six scalar components altogether),

there are, in fact, only four independent scalar quantities that determine the field. These four quan-

tities are conveniently represented as the vector potential A and the scalar potential ϕ. Moreover,

the vector and scalar potentials are not defined uniquely either, they may be required to satisfy

additional constraints. Each particular form of A and ϕ under a given set of constraints is known

as a gauge, and the independence of E and H on the specific choice of the gauge is known as gauge

invariance [91, Chapter 3]. The Coulomb gauge corresponds to ϕ ≡ 0, then

E = −1
c

∂A

∂t
and H = curlA. (3.37)
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Let us define the vector potential as A = curlB̃ so that

Ar = −∂B̃θ

∂z
, Az =

1
r

∂(rB̃θ)
∂r

, and Aθ = 0. (3.38)

The vector potential A = A(t, r, z) is also a solution to the three-dimensional d’Alembert equation;

this equation is homogeneous for R > R0 and inhomogeneous for R ≤ R0. The specific form of

inhomogeneity for A can be derived, but it is of no immediate importance, because what we need

is the right-hand sides of the Maxwell equations that drive the fields.

Using the definition of vector potential (3.38) and applying transformation (3.37), we obtain the

following components of electromagnetic field:

Ez(t, r, z) = − 1
c3R6

(
c2χ′(t−R/c)

(
(r2 − 2z2)Rψ(R)− r2R2ψ′(R)

)
+R2

(
− cr2Rψ′(R)χ′′(t−R/c)

+ ψ(R)
(
c(r2 − 2z2)χ′′(t−R/c) + r2Rχ(3)(t−R/c)

)))
,

(3.39a)

Er(t, r, z) = − rz

c3R6

(
c2χ′(t−R/c)

(
−3Rψ(R) +R2ψ′(R)

)
−R2

(
− cRψ′(R)χ′′(t−R/c)

+ ψ(R)
(
3cχ′′(t−R/c) +Rχ(3)(t−R/c)

)))
,

(3.39b)

and
Hθ(t, r, z) =

r

c3R5

(
c3χ(t−R/c)

(
−2Rψ′(R) +R2ψ′′(R)

)
−R2

(
2cRψ′(R)χ′′(t−R/c)

+ c2χ′(t−R/c) (2ψ′(R)−Rψ′′(R))

− ψ(R)
(
cχ′′(t−R/c) +Rχ(3)(t−R/c)

)))
.

(3.39c)

By design, the fields given by (3.39a), (3.39b), (3.39c) solve the Maxwell equations (3.19), and the

resulting currents jr and jz that we calculate below are non-zero only for R ≤ R0. Moreover,

as according to (3.37) divE = − 1
c

∂divA
∂t , and A = curlB̃ , the electric field of (3.39a), (3.39b) is

solenoidal, divE = 0, and consequently, the continuity equation (3.21) is satisfied identically.

The currents jr and jz are obtained by substituting the fields (3.39a), (3.39b), (3.39c) into the
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first two equations of system (3.19):

−4π
c
jz(t, r, z) =

1
c3R7

(
− c3χ(t−R/c)

(
4(r2 − z2)Rψ′(R)

−R2
(
(3r2 − 2z2)ψ′′(R)− r2Rψ(3)(R)

))
−R2

(
− 3cr2R2χ′′(t−R/c)ψ′′(R) + 2ψ′(R)

×
(
c(r2 − 2z2)Rχ′′(t−R/c) + r2R2χ(3)(t−R/c)

)
+ c2χ′(t−R/c)

(
4(r2 − z2)ψ′(R)

+R(−3r2 + 2z2)ψ′′(R) + r2R2ψ(3)(R)
)))

,

(3.40a)

−4π
c
jr(t, r, z) =

rz

c3R7

(
c3χ(t−R/c)

(
8Rψ′(R)

−R2
(
5ψ′′(R)−Rψ(3)(R)

))
+R2

(
− 3cR2χ′′(t−R/c)ψ′′(R) + 2ψ′(R)

×
(
3cRχ′′(t−R/c) +R2χ(3)(t−R/c)

)
+ c2χ′(t−R/c)

(
8ψ′(R)

− 5Rψ′′(R) +R2ψ(3)(R)
)))

.

(3.40b)

By design, the solution of Maxwell’s equations (3.19) driven by the currents (3.40a), (3.40b) and

subject to the homogeneous initial conditions is given by the fields (3.39a), (3.39b), (3.39c). In

Section 3.3.4, we solve system (3.19) with the right-hand sides (3.40a), (3.40b) numerically and

evaluate the error by comparing the solution computed on the grid with the exact solution (3.39a),

(3.39b), (3.39c).

3.3.3 Implementation Issues

An important consideration to be addressed when implementing the strategy of Section 3.2 in a

computational setting is how to preserve the lacunae in the numerical solution. It is clear that

a straightforward partition of the continuously operating source according to formula (3.5) may

create discontinuities at the splitting points tm, m = 0, 1, 2, . . ., even if the function f (x , t) itself is

smooth. From the standpoint of the original Huygens’ principle, having a discontinuous right-hand

side presents no problem, and the sharp aft fronts will remain sharp aft fronts. In the discrete

context, however, the discontinuities may lead to the deterioration (or loss) of consistency by the

scheme, and the aft fronts will then be “smeared out” by numerical artifacts.

Therefore, following our previous work [108,109,118,119], we introduce an alternative approach

to partitioning the RHS f (x , t). Consider a smooth partition of unity schematically shown in
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∆TT0

0 ∆(t−(T −   T)ζ )(t)ζ

Figure 3.3: Smooth partition of unity.

Figure 3.3. Let T0 be the size (duration) of each partition element, and ∆T be the width (duration)

of the transition zone. Denote by ζ(t) the smooth compactly supported function that renders the

partition so that ζ(t) ≡ 1 for ∆T ≤ t ≤ T0−∆T and ζ(t)+ζ(t−(T0−∆T )) ≡ 1 for T0−∆T < t < T0.

Then, the individual partition elements are obtained by a mere translation: ζ(t − m(T0 − ∆T )),

m = −1, 0, 1, 2, . . . .

Having introduced the partition of unity shown in Figure 3.3, we redefine the partition of the

RHS (3.5) as follows. Let T1
def= T0 −∆T , then

f (x , t) =
∞∑

m=0

fm(x , t),

fm(x , t) =

f (x , t) · ζ(t−mT1), tm ≤ t < tm+1 + ∆T,

0 , otherwise,

(3.41)

where tm = mT1, m = 0, 1, 2, . . . Formula (3.41) applies uniformly to all m = 0, 1, 2, . . . except

that no change of the RHS is needed near t = 0 and f0(x , t) ≡ f (x , t) for 0 ≤ T ≤ ∆T . The key

difference between the new partition (3.41) and the previous partition (3.5) is that as long as f (x , t)

is smooth, all fm(x , t) defined by formula (3.41) are also smooth. Hence, no loss of consistency shall

be expected for any discretization applied to individual subproblems (3.6) or (3.15). Therefore, the

corresponding numerical solutions will have the lacunae approximated on the grid with the accuracy

that pertains to the specific scheme.

The use of the overlapping partition (3.41) instead of (3.5) causes only minor changes in the

algorithm of Section 3.2. In fact, all the formulae stay the same, and only instead of (3.8) we now

write:

wm(x , t) = 0 , x ∈ Ω, t ≥ tm+1 + ∆T + T ≡ tm+1 + ∆T + d/c, (3.42)

because the source fm(x , t) ceases to operate at t = tm+1 + ∆T rather than at t = tm+1, as in
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Section 3.2. Accordingly, in formula (3.9) we need to redefine the lower summation index: M0
def=

[(t−∆T−T )/T1], where [ · ] denotes the integer part, as before. In the computations of Section 3.3.4,

the value of T0 is typically taken much larger than ∆T , see Figure 3.3, and even a few times larger

than T = d/c. This, in particular, means that we always have tm + ∆T + T < tm+1. Consequently,

the number of terms M −M0 + 1 in the sum (3.9) is equal to either 2 or 1. Namely,

M −M0 + 1 =

2, if tm ≤ t ≤ tm + ∆T + T,

1, if tm + ∆T + T < t < tm+1.
(3.43)

It should also be noted that in the context of Maxwell’s equations (3.19), the RHS f (x , t) is given

by the components of the current jr and jz. In the test solution of Section 3.3.2, the current (3.40a),

(3.40b) is constructed solenoidal, and the charge density ρ is zero, so that the continuity equation

(3.21) is satisfied identically. Obviously, the partition (3.41) will keep the current solenoidal, and

hence the necessary solvability condition (3.21) for Maxwell’s equations will automatically hold for

every individual subproblem (3.6).

3.3.4 Results of Computations

The modulating function χ(t) that we take for our experiments is

χ(t) =


j=4∑
j=1

aj sin(ωjt), if t ≥ 0,

0, if t < 0,
(3.44)

where the frequencies ωj , j = 1, . . . , 4, are chosen incommensurate:

ω1 = 1, ω2 =
√

3/2ω1, ω3 =
√

2ω1, ω4 =
√

3ω1,

so that to avoid periodicity, and the coefficients aj , j = 1, . . . , 4, are given by

a1 = − 1
ω1(ω2

1 − ω2
2)(ω2

1 − ω2
3)(ω2

1 − ω2
4)
,

a2 = − 1
ω2(ω2

2 − ω2
1)(ω2

2 − ω2
3)(ω2

2 − ω2
4)
,

a3 = − 1
ω3(ω2

3 − ω2
1)(ω2

3 − ω2
2)(ω2

3 − ω2
4)
,

a4 = − 1
ω4(ω2

4 − ω2
1)(ω2

4 − ω2
2)(ω2

4 − ω2
3)
,
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which guarantees that χ(t) of (3.44) and its derivatives up to order 6 are continuous on the entire

line (−∞,∞), while χ(7)(0 + 0) = 1.

Let us first demonstrate the adverse effect that we would subsequently like to counter. The

geometry of the computation is shown in Figure 3.2, the width of the PML is set to l = 1, and the

magnitude of damping σ0 = 10, see formula (3.25). The PML is terminated with the characteristic

boundary conditions (3.27).
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Figure 3.4: Computation with the PML (3.24). Binary logarithm of the maximum norm error for
Hθ vs. time.

In Figure 3.4, we are showing the profiles of the error (its binary logarithm) for the magnetic

field Hθ evaluated on the domain Ω in the maximum (i.e., L∞) norm. The solutions are computed

on the sequence of four square cell grids with sizes h = 0.1, 0.05, 0.025, and 0.0125. The Hθ error

at every grid node is defined as the difference between the numerical solution and the exact solution

(3.39c). The computations are run until t = 400, which is about forty times the time required for

the waves to cross the computational domain Ω.

Some immediate observations from Figure 3.4 are as follows. At the initial stage of computation

the numerical solution demonstrates the design rate of grid convergence — O(h2); this is most clearly

seen on the zoomed-in plot of Figure 3.4(b). At later stages, however, the error starts to increase,

and the solution deteriorates, see Figure 3.4(a). The rate of deterioration is pretty much the same

for all grids, however, the onset occurs somewhat earlier on finer grids.
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Figure 3.5: Computation with the the characteristic boundary conditions (3.27) only. Binary

logarithm of the maximum norm error for Hθ vs. time.

In Figure 3.5, we are showing two plots similar to those from Figure 3.4. The computational

setup that corresponds to Figure 3.5 is identical to that behind Figure 3.4 with one major exception

— the PML is switched off, i.e., σ(z) ≡ 0. We see that the behavior of the error curves shown in

Figure 3.5 differs from that of Figure 3.4 in two key aspects. On one hand, the grid convergence gets

saturated rather early, there is practically no difference in the absolute value of the error already

between h = 0.05 and h = 0.025. The explanation is straightforward — the error inside Ω is

dominated by the reflections from the boundaries z = 5 + l and z = −5 − l, see Figure 3.2, and

the magnitude of those reflections is not related to the grid size. In other words, the characteristic

boundary conditions (3.27) only allow to get so far down in error. On the other hand, we see that

in Figure 3.5 there is no long-time error growth of the type Figure 3.4 shows. As the PML is the

only difference between the two setups, we conclude that the deterioration of the numerical solution

observed in Figure 3.4 should unambiguously be attributed to the presence of the PML.

To avoid any potential inaccuracies in the foregoing comparison, in Figure 3.6 we are showing the

same error profiles as in Figures 3.4(a) and 3.5(a), but grouped according to the grid. This allows

us to present the PML and no-PML error curves for every grid right next to one another in precisely

the same scale. We conclude that on the coarsest grid h = 0.1, see Figure 3.6(a), the overall error

is dominated by that of the interior discretization, because the two curves coincide in the beginning

and at a later stage the PML solution deteriorates. On finer grids, see Figures 3.6(b)–(d), the

accuracy of the PML solution at the initial stage improves as the grid size decreases, but then the

long-time instability kicks in. At the same time, the error curves for the characteristic boundary
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conditions remain “flat” for all t, but the accuracy does not improve as the grid is refined because

of the reflections from the outer boundary.
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Figure 3.6: Comparison of the case with the PML against that with no PML on four grids. Binary

logarithm of the maximum norm error for Hθ vs. time.

Several comments are in order before we proceed to describing the results of computations with

the lacunae-based method of Section 3.2.

• The error profiles for Er and Ez in all the cases (including those with lacunae) look very

much like those for Hθ, and we do not present them hereafter.

• We have repeated the PML computations with the layer twice as thick, l = 2, and the

results were practically indistinguishable from those shown in Figure 3.4. Hence, we

conclude that already with l = 1 the layer provides enough damping so that the error on
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Ω is dominated by that of the interior discretization. We later corroborate this conclusion

by the computations with genuine lacunae-based termination as in [109].

• We have also repeated the PML computations while terminating the layer with the zero

Dirichlet boundary conditions rather than the characteristic boundary conditions (3.27).

Again, the results were practically indistinguishable from those shown in Figure 3.4.

Hence, we conclude that as long as the layer provides enough damping, the outer bound-

ary condition does not make much of a difference.

• The increase of σ0 does not make any difference in the results either.

• Finally, the log-linear curves shown in Figure 3.4(a) indicate that as the computation

advances, the error increases with a slow yet exponential rate. At the same time, the

continuous analysis of [3] predicts a polynomial growth. On the one hand, we note in

this regard that the problem analyzed in [3] was driven only by the initial conditions and

had zero RHS, whereas in this paper the solution is driven by a continuously operating

source. On the other hand, the polynomial growth was predicted in [3] for a continuous

formulation based on the presence of multiple eigenvalues in the amplification matrix. At

the same time, we have seen in Chapter 2 that sometimes a multiple eigenvalue may get

split by the discretization yet the growth will stay while in some other cases a multiple

continuous eigenvalue will remain multiple for the discretization yet there will be no

growth. Consequently, we can say that the reasons for the long-term deterioration of

solution in the PML may not be fully understood yet, and there is apparently room for

the growth faster than polynomial. (The observed growth is not a numerical instability,

because it is not faster on finer grids.) However, as mentioned in Sections 3.1 and 3.2,

and as subsequent computations clearly show, the lacunae-based integration allows to

correct the long-time growth regardless of its origins and its specific rate (as long as the

latter is not catastrophically fast).

Let us now demonstrate how the lacunae-based integration is combined with the PML (3.24).

For the parameters of the partition, we take T0 = 44 and ∆T = 2, see Figure 3.3. In Figure 3.7, we

are showing the results of computations for exactly the same setup as the one behind Figure 3.4, but

with the lacunae-based correction applied (the vertical scale on Figures 3.4(a) and 3.7(a) is not the

same). We see that the long-time growth completely disappears due to the lacunae-based correction,

and the numerical solution shows the design second order grid convergence for the entire duration

of the integration interval.



71

-12

-10

-8

-6

-4

-2

 0

 0  50  100  150  200  250  300  350  400

h=0.1
h=0.05

h=0.025
h=0.0125

(a) 0 ≤ t ≤ 400

-12

-10

-8

-6

-4

-2

 0

 0  20  40  60  80  100  120

h=0.1
h=0.05

h=0.025
h=0.0125

(b) 0 ≤ t ≤ 120

Figure 3.7: Computation with the PML (3.24) and lacunae-based correction. Binary logarithm of

the maximum norm error for Hθ vs. time.

As before, to avoid any potential inaccuracies in the foregoing comparison, say, due to different

scales on different plots, in Figure 3.8 we are showing the same error profiles as in Figures 3.4(a)

and 3.7(a), but grouped according to the grid. This allows us to present the pure PML error profiles

and the PML+lacunae profiles for every grid right next to one another in precisely the same scale.

We see that at the initial stage the two error curves coincide on every grid, and the actual values of

the error are decreasing with the design rate as the grid is refined. Later, the pure PML solutions

completely lose their accuracy, whereas the solutions with the lacunae-based correction can maintain

it for as long as the computation is run.

We note that the computational overhead associated with the application of lacunae-based al-

gorithm along with the PML is not overwhelming. According to formula (3.43), the fraction of the

overall time when we need to compute two solutions is (T + ∆T )/(tm+1 − tm), and the rest of the

time we compute only one solution. For the domain Ω shown in Figure 3.2, we have T ≈ 11 (recall,

c = 1), and with T0 = 44 and ∆T = 2 we can write:

T + ∆T
tm+1 − tm

≡ T + ∆T
T1

≈ 0.31,

which puts the overhead at approximately 31%. The same series of computations with the PML

and lacunae-based correction was, in fact, repeated for T0 = 64 and ∆T = 2. The results were very

similar to those shown in Figures 3.7 and 3.8, with the overhead of about 21%.
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Figure 3.8: Comparison of the pure PML case against that with the PML and lacunae on four

grids. Binary logarithm of the maximum norm error for Hθ vs. time.

The only question that still needs to be addressed is that of the “optimality” of the proposed

lacunae+PML treatment of the boundaries. In other words, whether or not a different approach

can offer an even better overall accuracy compared to what Figures 3.7 and 3.8 show. To look into

this issue, we compare the results obtained using the combination of lacunae and the PML with

those obtained using the pure lacunae-based termination of the computational domain [109]. The

original method of [109] requires buffer zones to surround Ω wider than the PML, and consequently,

the computations are more expensive. However, the method of [109] provably introduces no error

associated with the domain truncation. Hence, the only source of the error on Ω is the interior
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discretization. In Figure 3.9, we compare the error profiles for the pure lacunae case and for the

lacunae+PML case on four grids.
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Figure 3.9: Comparison of the pure lacunae case against that with the PML and lacunae on four

grids. Binary logarithm of the maximum norm error for Hθ vs. time.

We see that the two curves basically sit on top of one another for every grid. Hence, the error

on Ω obtained using the combined lacunae+PML methodology is the same as that for the pure

lacunae-based approach. As the latter is due to the interior discretization only, we conclude that the

accuracy of the boundary treatment offered by the combined lacunae+PML methodology exceeds

the accuracy of the scheme on Ω and consequently, the overall accuracy cannot be further improved
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by changing the boundary procedure.

3.4 Extensions

In this section, we review the application of lacunae-based methods to setting the ABCs [108, 118,

119], and show that the same approach will allow us to extend the applicability of the proposed

lacunae-based stabilization of PMLs well beyond the simple problems of radiation of waves by

known sources. The following problem formulation that requires unsteady ABCs is typical for many

applications.
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Figure 3.10: Decomposition of the problem.

The wave field of interest is generated inside the bounded domain Ω ⊂ R3 and further propagates

outward. We assume that in the far field, i.e., on the complementary domain R3 \ Ω, the propagation

of waves is governed by the linear homogeneous system [cf. formula (3.4)]:

∂w

∂t
+ Lw = 0 , x ∈ R3 \ Ω, t > 0. (3.45)

For our analysis we need to assume that equation (3.45) is Huygens’. The waves’ generation mech-

anism inside Ω can be sophisticated. It can include actual sources (antennas), scatterers, and other

objects, there can be damping, the waves can undergo multiple scattering, etc. Moreover, the model
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inside Ω does not have to be Huygens’. Our key assumption, however, is that the overall problem

solved both inside and outside Ω has a unique solution.

The goal is to be able to actually solve this problem only in the near field, i.e., on Ω, while

truncating all of its exterior and replacing it with the appropriate closure procedure at the external

boundary ∂Ω, e.g., the ABCs or PML. The assumption on the overall unique solvability will allow

us to focus independently on the design of the closure, i.e., on the proper treatment of the outgoing

waves.

3.5 Discussion

The first step is the decomposition of the original problem into the interior and auxiliary subprob-

lems. The interior problem is formulated on the bounded domain Ω, it is obtained by truncating the

original formulation and as such, it inherits all the features of the latter. It is the interior problem

that requires a closure at ∂Ω. The auxiliary problem is formulated on the entire space R3. This

problem is of the type (3.4), with the homogeneous initial conditions: ϕϕϕ = 0 . Its solution is driven

by the specially constructed auxiliary source terms f (x , t) that are compactly supported in space for

all times on a narrow region Ω \Ωε next to the boundary ∂Ω, see Figure 3.10. All the sophisticated

features of the interior problem (such as scatterers) are supposed to be confined to Ωε.

The two problems are connected to one another. The auxiliary sources depend on the interior

solution right inside Ω, and the solution of the auxiliary problem right outside Ω can provide the

missing data and thus enable a closure for the interior formulation. The construction of the auxiliary

sources is described in [108,118,119]. It guarantees equivalence between the original problem before

the decomposition and the two subproblems after the decomposition considered together. This

means, in particular, that the solution of the auxiliary problem on R3 \ Ω, i.e., the outgoing field,

coincides with the solution of the original problem. The key benefit from employing the decom-

position is that by design, the auxiliary problem satisfies the Huygens’ principle. The unsteady

ABCs of [108, 118, 119] are obtained by solving the auxiliary problem with the help of lacunae and

supplying the missing boundary data to the interior problem.

We emphasize that although the auxiliary sources depend on the interior solution, it does not

imply that the interior problem requires a separate algorithm to be solved. Likewise, the fact that

the closure for the interior problem is provided by the exterior solution does not imply that the

auxiliary problem has to be solved on the extended region far away from Ω. In fact, both problems

are time marched synchronously. Once the interior solution is advanced one time step, the auxiliary

sources can also be advanced one time step. Then, the exterior solution can be obtained on the

next level; it needs to be known only right outside Ω. This solution provides the missing closure for
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the interior problem on the upper time level, after which the interior solution can be advanced yet

one more step, and the procedure cyclically repeats itself. We refer the reader to [108, 118, 119] for

additional detail on lacunae-based ABCs.

The exact same idea of decomposition can be applied in the framework of stabilizing the PMLs.

The PML that surrounds Ω, see Figure 3.1, is designed to absorb all the outgoing waves. The

outgoing waves are the same whether they are due to the original radiation/scattering mechanism

on Ωε or to the auxiliary sources on Ω \Ωε, see Figure 3.10. Hence, the lacunae-based methodology

of Section 3.2 can be applied to the auxiliary problem, which will enable stabilization of the PML

without having to put any restrictions on the model inside Ωε (besides the requirement of the overall

unique solvability).

In Section 3.2, we have proved theoretically, and in Section 3.3 shown experimentally, that

lacunae-based integration indeed provides an efficient tool for removing the long-term instabilities

induced by PMLs. In doing so, the numerical error becomes uniformly bounded in time.

There is actually no contradiction in obtaining temporally uniform error bounds for the problem

that is only weakly well-posed. The explanation is that the lacunae-based algorithm alters the

solution of the combined problem inside the PML, and the overall solution coincides with the solution

of (3.4) only on the domain Ω, where the Huygens’ principle holds. At the same time, unlike in [3],

the PML equations never get modified by lacunae-based integration, and for each problem (3.15)

the layer remains perfectly matched and absorbing.

It is also clear that even though we have only considered the perturbations of the initial data

ξξξ in Section 3.2, we would have obtained similar temporally uniform estimates if the perturbations

of the RHS were included as well. The computations of Section 3.3 corroborate this conclusion

experimentally.

The analysis of Section 3.2 imposes no constraints on the rate of growth µ(t), see (3.13), and C0

in inequality (3.18b) is a constant in any event. The actual value of this constant C0 = µ(T1 + T ) ·
(M −M0 + 1), however, may or may not be acceptable in a particular context. If µ(t) is a slowly

increasing function, such as a low degree polynomial, then C0 will not be large. In Section 3.3.4 we

saw that the PML-induced growth may, in fact, be nonuniform. At the initial stage, there was no

growth at all, and after that it would pick up. Hence, we chose the parameters in such a way so

that to keep T1 + T within the range of no growth and consequently have a low value of µ(T1 + T ).

It is also important to emphasize that the source of the growth inside the PML does not matter

either. It can be the mechanism identified in [3], but by no means does it have to be this mechanism

only. For example, if the corner in the PML leads to long-term instabilities, the lacunae-based

methodology will address those as well. In fact, since the idea of the lacunae-based methodology

that we have introduced is to represent the solution that evolves over long times as the sum of a
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finite number of components that each has a finite fixed “lifespan,” the methodology can be used

for alleviating any other undesirable long-term phenomenon in computation.

Note, however, that while the proposed procedure alleviates the growth of the field inside the

PML, it does not offer a fix for the numerical instability. In other words, if the error estimate for the

scheme deteriorates as the grid is refined, the deterioration will be inherited by the discretization

of every problem (3.15). If, however, the deterioration rate is slow (e.g., linear as in [1]), then the

overall algorithm may still be viable.

The computational overhead of the proposed procedure is ∼ (T + ∆T )/T1, which can be kept at

acceptable levels by choosing sufficiently large T1 = T0 −∆T . Specific values should be determined

by actual numerical experiments.

In Section 3.2, we have only considered a PML of infinite thickness, whereas in real implementa-

tions, such as that of Section 3.3, the thickness is always finite. Termination of the PML at a finite

distance results in reflections from the outer boundary that propagate back through the layer and

then re-enter the computational domain. If, however, the damping inside the PML is sufficiently

strong, the magnitude of these reflections is small. Hence, even though the lacunae-based algorithm

won’t help remove or reduce those reflections, the accuracy of the combined PML+lacunae bound-

ary procedure can still be made sufficiently high so that to have the overall accuracy inside the

computational domain dominated by that of the interior discretization (Section 3.3.4).

For Maxwell’s equations, there is a necessary solvability condition given by the continuity equa-

tion for currents and charges (equation (3.21) in the cylindrically symmetric TE case). Partition

of the RHS (3.41) may break the continuity, that’s why for the numerical tests of Section 3.3 we

have chosen zero charges and solenoidal currents (3.40a), (3.40b) that satisfy the continuity equation

identically. As far as the more general framework outlined in Section 3.4, it has been shown in [119]

that the auxiliary sources on Ω \Ωε, see Figure 3.10, can also be obtained in the form of solenoidal

currents and zero charges. Hence, they can withstand partition (3.41) with no violation of continuity.

Finally, the original problem (3.4) was formulated for a first order system, and numerical simu-

lations of Section 3.3 have also been conducted using the first order system (3.19) as an example.

Instead, we could have had a second order equation or system in (3.4), e.g., the d’Alembert equation

itself. Note, there are examples of systems, as opposed to scalar equations, that do not reduce to

the d’Alembert equation and yet are Huygens’.4

4Because systems are not covered by the result of [92].
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Chapter 4

Conclusions

The stated objective of this dissertation was the study and stabilization of the PML — a method-

ology developed for terminating the computational domain in order to obtain a finite dimensional

numerical approximation of a problem formulated on an unbounded domain. The methodology was

designed to absorb the outgoing waves by first splitting the vector components of the electromagnetic

field, and accordingly, it was called the split-field PML. The added degrees of freedom allowed to

attenuate the field components without changing the velocity of propagation in the layer as this

would immediately cause a reflection from the layer. In the original articles on the PML, see [20,21],

a special emphasis was made on the interface between the computational domain and the layer.

In particular, it was shown that the impinging waves generated no reflection from the interface

regardless of their frequency and the angle of incidence. However, extensive research and numerical

experiments with the split-field PML detected the possibility of a polynomial growth of the solution

inside the layer, as well as of instability and contamination of the computational domain [1] due to

the weak well posedness of the Cauchy problem, see [90]. This led to an alternative formulation

of the PML that is now known as the unsplit PML, see [2, 37, 82, 126]. As the name suggests,

the field components are not split in the layer; rather, the damping of the field components is

achieved due to the new variables introduced in the layer. The unsplit PML has also been shown

to develop instabilities, see [3]; moreover, the contamination of the computational domain by the

artifacts from the layer was experimentally demonstrated to be scheme dependent. A variety of

approaches to curing the instability of the PML, although experimentally successful, have fallen

short of being rigorous as they have relied on changing the governing equations in the layer thus

possibly compromising its matching and/or absorption properties, see [3]. Other techniques, e.g.,

the nonlinear PML of [4], while guaranteeing the strong well posedness of the equations in the layer,

have added implementation complications; while the complex frequency-shifted PML of [38, 100]

leads to the loss of frequency independent absorption. Albeit the long-time instability of the PML
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may have a limited effect on the overall quality and of the computational results, the uncertainties

about the nature of the instability and contamination of the solution over the domain of interest

prompted a closer consideration of the problem at hand.

As a stepping stone of the study, we have investigated both numerically and analytically the

performance of two unsplit PMLs — physical and mathematical, see [3, 5], discretized with the

following well known schemes: Lax-Wendroff, leap-frog, Yee and, Runge-Kutta in time with central

differences in space, see Chapter 2. The numerical component of the study naturally involved

observations of the long-time behavior of the layer; the analytical aspect consists of studying the

eigen-structure of the discretizations at the quiescent state. The idea was to extend the results of [3]

where the eigen-structure of the continuous formulations of the mathematical and physical PML

was studied, and the instability was attributed to the missing eigenvectors and multiple eigenvalues.

Our analytical study coupled with the numerical experiments has been able to clearly identify which

of the combinations “scheme+PML” perform better and which perform worse, but it still could not

definitively pinpoint the sources of the growth of the solution in the layer. Overall, the response of

the layer seems to be strongly affected not only by the type of the PML but also by the choice of

the discretization.

As the sources of growth are not known precisely, we proceeded to develop a stabilizing method-

ology that would not depend on the particular choice of the PML. The key component of the

methodology that we proposed is the lacunae-based integration in time, [108–110, 118, 119]. It ap-

plies to hyperbolic partial differential equations and systems that satisfy the Huygens’ principle; the

equation/system may be driven by a continuously operating RHS compactly supported in space and

by compactly supported initial data, see Chapter 3. The essence of the lacunae-based integration

is that once the computational domain falls into the lacuna of the solution of the original problem,

the integration can be terminated without affecting the solution. The application of lacunae-based

integration first requires that the RHS of the original problem be represented as an infinite series

with each term being compactly supported in space-time. Then, due to linear superposition the

solution itself could be represented as a sum of solutions of the Cauchy problems due to the se-

ries representation of the RHS. However, because of the causality and the Huygens’ principle (the

presence of lacunae) this sum becomes finite with the number of terms that does not depend on

time; this number can be determined ahead of time and set at the design stage of the algorithm.

Moreover, each term in the sum has a finite and non-icreasing “lifespan” over the computational

domain. These two properties translate into temporally uniform stability estimates. They guarantee

that there will be no growth of the solution in the layer no matter how long the overall interval of

integration may be. We reiterate that the methodology is independent of the structure of the layer

and does not hamper its advantageous aspects.
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The theoretical findings of Chapter 3 are corroborated by numerical experiments. To maintain

the game-plan continuity, our experimental setup closely repeats that of Chapter 2, see also [3]

and [5], but with two significant and necessary differences. First, to capture the effects of lacunae

(which only occur in odd-dimensional spaces) we use cylindrically symmetric geometry that allows us

mimic the three-dimensional behavior in an essentially two-dimensional setting. The mathematical

PML (2.1) initially developed for the Cartesian coordinates, [2], lends itself to a smooth translation

to the cylindrical coordinate system by observing that the axial coordinate of the latter is essentially

Cartesian. Second, to observe the long time response of the PML we solve the problem driven

by the sources that operate continuously in time whereas in Chapter 2 the solution was driven

by the initial conditions, see Section 2.2. The numerically obtained approximation is compared

to the exact solution obtained by backward engineering the test problem, see Section 3.3.2, and

additional implementation related issues are successfully resolved in Section 3.3.3. The results

of the numerical tests are presented in Section 3.3.4; these are supplanted with numerous figures

and extensive commentary and observations. Overall, our numerical results fully corroborate the

theoretical design properties of the algorithm.

The dissertation is concluded by a discussion of extending the lacunae-based methodology to

solving more complex problems and formulations.
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aticheskii Sbornik (Recueil Mathématique), 17 (59)(3):289–370, 1945.

[99] H. Qasimov and S. Tsynkov. Lacunae based stabilization of PMLs. J. Comput. Phys.,

227:7322–7345, 2008.

[100] J. A. Roden and S. D. Gedney. Convolution PML(CPML): An efficient FDTD implementation

of the CFS-PML for arbitrary media. Microwave and Optical Technology Letters, 27(5):334–

339, 2000.

[101] David H. Rudy and John C. Strikwerda. A nonreflecting outflow boundary condition for

subsonic Navier-Stokes calculations. J. Comput. Phys., 36(1):55–70, 1980.

[102] David H. Rudy and John C. Strikwerda. Boundary conditions for subsonic compressible

Navier-Stokes calculations. Computers and Fluids, 9:327–338, 1981.

[103] V. S. Ryaben’kii. Boundary equations with projections. Russian Math. Surveys, 40:147–183,

1985.

[104] V. S. Ryaben’kii. Difference Potentials Method for Some Problems of Continuous Media Me-

chanics. Nauka, Moscow, 1987. (In Russian).

[105] V. S. Ryaben’kii. Exact transfer of difference boundary conditions. Functional Anal. Appl.,

24(3):251–253, 1990.

[106] V. S. Ryaben’kii. Method of Difference Potentials and Its Applications, volume 30 of Springer

Series in Computational Mathematics. Springer-Verlag, Berlin, 2002.

[107] V. S. Ryaben’kii and S. V. Tsynkov. Artificial boundary conditions for the numerical solution

of external viscous flow problems. SIAM J. Numer. Anal., 32:1355–1389, 1995.

[108] V. S. Ryaben’kii, S. V. Tsynkov, and V. I. Turchaninov. Global discrete artificial boundary

conditions for time-dependent wave propagation. J. Comput. Phys., 174(2):712–758, 2001.

[109] V. S. Ryaben’kii, S. V. Tsynkov, and V. I. Turchaninov. Long-time numerical computation of

wave-type solutions driven by moving sources. Appl. Numer. Math., 38:187–222, 2001.

[110] V. S. Ryaben’kii and V. I. Turchaninov. The use of lacunae of hyperbolic equations and the

method of difference potentials for computing wave diffraction in a bounded neighborhood of a

scatterer at large time values. Comput. Math. Math. Phys., 45(8):1385–1399, 2005. [Translated

from the Russian: Zh. Vychisl. Mat. Mat. Fiz., 45, No. 8 (2005) pp. 1435–1449.].



90

[111] Victor S. Ryaben’kii and Semyon V. Tsynkov. A Theoretical Introduction to Numerical Anal-

ysis. Chapman & Hall/CRC, Boca Raton, FL, 2007.

[112] R. T. Seeley. Singular integrals and boundary value problems. Amer. J. Math., 88:781–809,

1966.

[113] F. L. Teixeira and W. C. Chew. PML-FDTD in cylindrical and spherical grids. IEEE Mi-

crowave and Guided Wave Letters, 7(9):285–287, 1997.

[114] Fernando L. Teixeira and Weng Cho Chew. Finite-difference computation of transient electro-

magnetic waves for cylindrical geometries in complex media. IEEE Transaction on Geoscience

and Remote Sensing, 38(4):1530–1543, July 2000.

[115] S. V. Tsynkov. An application of nonlocal external conditions to viscous flow computations.

J. Comput. Phys., 116:212–225, 1995.

[116] S. V. Tsynkov. Numerical solution of problems on unbounded domains. A review. Appl.

Numer. Math., 27:465–532, 1998.

[117] S. V. Tsynkov. External boundary conditions for three-dimensional problems of computational

aerodynamics. SIAM J. Sci. Comp., 21:166–206, 1999.

[118] S. V. Tsynkov. Artificial boundary conditions for the numerical simulation of unsteady acoustic

waves. J. Comput. Phys., 189(2):626–650, August 2003.

[119] S. V. Tsynkov. On the application of lacunae-based methods to Maxwell’s equations. J.

Comput. Phys., 199(1):126–149, September 2004.

[120] S. V. Tsynkov, S. Abarbanel, J. Nordström, V. S. Ryaben’kii, and V. N. Vatsa. Global artificial

boundary conditions for computation of external flows with jets. AIAA Journal, 38:2014–2022,

2000.

[121] S. V. Tsynkov and V. N. Vatsa. An improved treatment of external boundary for three-

dimensional flow computations. AIAA Journal, 36:1998–2004, 1998.

[122] V. van Joolen, B. Neta, and D. Givoli. A stratified dispersive wave model with high-order

nonreflecting boundary conditions. Comput. Math. Appl., 48(7-8):1167–1180, 2004.

[123] Vince J. van Joolen, Beny Neta, and Dan Givoli. High-order boundary conditions for linearized

shallow water equations with stratification, dispersion and advection. Internat. J. Numer.

Methods Fluids, 46(4):361–381, 2004.



91

[124] Vince J. van Joolen, Beny Neta, and Dan Givoli. High-order Higdon-like boundary conditions

for exterior transient wave problems. Internat. J. Numer. Methods Engrg., 63(7):1041–1068,

2005.

[125] K. S. Yee. Numerical solution of initial boundary value problem involving Maxwell’s equations

in isotropic media. IEEE Trans. Antennas Propagat., 14:302–307, 1966.

[126] R. W. Ziolkowski. Time-derivative Lorenz material model based absorbing boundary condi-

tions. IEEE Trans. Antennas Propagat., 45(10):1530–1535, 1997.



92

Appendices



93

4.A Well-Posedness of the Cauchy Problem for Hyperbolic

Systems

4.A.1 Introduction

As we have mentioned in Section 1.5.2, transition from the original Maxwell’s equations to PML

affects the well-posedness of the system. This result was established in [1], and the corresponding

analysis is based on the definitions of hyperbolicity and well-posedness given in [90]. In what

follows we present an adaptation of Chapter 2 from [90] where the concepts of well-posedness and

hyperbolicity for the Cauchy problem are transparently and succinctly developed. The main results

below are given without proofs but the interested reader will find them in the original monograph.

4.A.2 Well-Posedness of the Cauchy Problem

We will consider problems in a d-dimensional space; therefore, x = (x1, . . . , xd) ∈ Rd. The multi-

index vector of nonnegative integers ν = (ν1, . . . , νd) is defined to have order |ν| =
∑d

j=1 νj . The

differential operator

Dν =
∂|ν|

∂xν1
x . . . ∂xνs

s

The Euclidean norm ‖u‖2 ≡
√

(u, u)2 is used unless otherwise stated; for A ∈ Cn,n ‖A‖ =

max {‖Au‖, ‖u‖ = 1}. We will consider the following Cauchy problem

ut = P (∂/∂x)u ≡
∑
|ν|≤m

AνD
νu,x ∈ Rd, t ≥ 0 (A-1a)

with the initial condition

u(x, 0) = f(x) (A-1b)

and Aν ∈ Cn,n are constant matrices and the solution, if one exists, is complex-valued and has the

form

u(x, t) =


u1(x, t)

...

un(x, t)


The observation ∂

∂xj
→ iωj leads to the definition of the symbol of the differential operator P (∂/∂x)

by

P (iω) ≡
∑
|ν|≤m

Aν(iω1)ν1 . . . (iωd)νd
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Definition 4.1 The Cauchy problem (A-1) is well-posed if ∃ constants α, K such that

‖eP (iω)t‖ ≤ Keαt ∀ t ≥ 0, ω ∈ Rd (A-2)

The well-posedness of the Cauchy problem is particularly attractive, because an L2 estimate of the

solution at any time t ≥ 0 in terms of the L2 norm of the initial data is then available. One can show

that the Definition 4.1 is equivalent to the following more intuitive definition of well-posedness:

1. for all initial data f in a certain class there is a unique solution in a certain class;

2. the solution depends continuously on the initial data with respect to certain norms;

Definition 4.2 The Cauchy problem (A-1) is weakly well-posed if ∃ constants α, K and q such

that

‖eP (iω)t‖ ≤ K(1 + |ω|q)eαt ∀ t ≥ 0, ω ∈ Rd (A-3)

For a weakly well-posed Cauchy problem the L2 norm of the estimate of the solution at time t ≥ 0

will in general include the derivative terms of the initial data as well. However, weakly well posed

problems can become ill-posed if the operator P (∂/∂x) is perturbed by lower-order terms leading

to an exponential growth.

The solution of the problem (A-1) is obtained by Fourier transforming the initial data

f(x) =
1

(2π)d/2

∫
Rd

ei(ω,x)f̂(ω)dω, x ∈ Rd

where

f̂(ω) =
1

(2π)d/2

∫
Rd

e−i(ω,x)f(x)dx, ω ∈ Rd

In particular, consider the space M0 of functions f = f(x) such that their Fourier transform is a

C∞0 , i.e., compactly supported with derivatives of any order. The solution of the Cauchy problem

(A-1) with the initial data f(x) ∈ M0 and consequently f̂ ∈ C∞0 is given by

u(x, t) =
1

(2π)d/2

∫
Rd

ei(ω,x)eP (iω)tf̂(ω)dω (A-4)

which can be differentiated under the integral sign since f̂ ∈ C∞0 .

Definition 4.3 The M0 solution of the Cauchy problem (A-1) is such that

1. u(?, t) ∈ M0 ∀ t ≥ 0
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2. the function û(ω, t) is continuous and ∃ K independent of t such that ∀ |ω| > K û(ω, t) = 0

3. u is a classical solution of the Cauchy problem (A-1)

We state without proving that any Cauchy problem with an M0 initial data has a unique M0

solution; this solution is given by the formula (A-4) and û(x, t) = eP (iω)tf̂(ω).

Stability of physical phenomena with respect to the initial conditions is a reasonable expectation;

coupling this with the linearity of the Cauchy problem (A-1) one can expect to obtain an estimate

for the solution at a future time in terms of the initial data. In order to obtain such an estimate we

will need Parceval’s relation

(f, g) = (f̂ , ĝ), ‖f‖ = ‖f̂‖

where (f, g) =
∫

Rd f(x)g(x)dx and ‖f‖ =
√

(f, f), f, g ∈ L2. Then, the estimate in Definition 4.1

coupled with Parceval’s relation yields

‖u(?, t)‖ = ‖eP (iω)tf̂(ω)‖ ≤ Keαt‖f̂‖ = Keαt‖f‖

One can show the following

Theorem 4.1 If P (∂/∂x) is a constant-coefficient operator, then for any real K, α the following

are equivalent:

1. The symbols satisfy the estimate in Definition 4.1

2. for all initial date f ∈ M0 the estimate ‖u(?, t)‖ ≤ Keαt‖f‖, t ≥ 0

Next, we provide a characterization of weak well-posedness by allowing derivative terms of the

initial data to factor in obtaining the estimate of the solution at later times. First, define

‖f‖2Hq =
∑
‖ν‖≤q

‖Dνf‖2, f ∈ M0

Parceval’s relation yields ‖Dν‖ = ‖ων1
1 . . . ωνd

d f̂(ω)‖ so that

‖f‖2Hq =
1

(2π)2/d

∫
Rd

∑
|ν|≤q

{
ω2ν1

1 . . . ω2νd

d

}
|f̂(ω)|2dω

Then, the inequality
1
c
(1 + |ω|q)2 ≤

∑
|ν|≤q

ω2ν1
1 . . . ω2νd

d ≤ c(1 + |ω|q)2

holds, c = cq is independent of ω and one can show that for a constant coefficient P (∂/∂x), q ∈
{1, 2, . . . } and α ∈ R the following are equivalent:
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1. ∃ K1 with |eP (iω)t| ≤ K1(1 + |ω|q)eαt, ω ∈ Rd, t ≤ 0

2. ∃ K2 such that‖u(?, t)‖ ≤ K2e
αt‖f‖Hq , t ≥ 0

In contradistinction to the well-posed and the weakly well-posed problems stand the ill-posed in

any sense formulations where the symbol |eP (iω)t| grows faster than any polynomial in ω, i.e., an

exponential explosion occurs.

The well-posed and the weakly well-posed formulations can be solved numerically; weakly well-

posed problems require more care in obtaining their approximations. Ill-posed problems will in

general require additional restrictions to regularize the solution before they can be approached.

Weak well-posedness causes serious difficulties for variable coefficient formulations.

4.A.3 Hyperbolicity of the Cauchy Problem

Next we will describe the notions of hyperbolicity for the constant coefficient Cauchy problems.

Consider the first order system

ut = P (∂/∂x)u ≡
d∑

j=1

Aj
∂u

∂xj
, x ∈ Rd, Aj ∈ Cn,n (A-5)

The symbol P (iω) = i
∑d

j=1 ωjAj = |ω|P (iω′) where ω′ = ω/|ω| and ω ∈ Rd. The characterization

of the first order constant coefficient well posed systems is given by

Theorem 4.2 The first order system (A-5) is well posed if and only if the following two conditions

are satisfied:

1. ∀ ω′ ∈ Rd, |ω′| = 1, all eigenvalues of P (iω′) are pure imaginary.

2. ∃ a constant K31 and for each ω′ ∈ Rd there is a transformation S(ω′) with |S(ω′)|+|S−1(ω′)| ≤
K31 such that the transformation S(ω′)P (iω′)S−1(iω′) is diagonal

The proof of Theorem 4.2 can be found in [90].

Definition 4.4 The first order system (A-5) is

1. strongly hyperbolic if Theorem 4.2 holds

2. weakly hyperbolic if ∀ ω ∈ Rd the eigenvalues of P (iω) are pure imaginary

3. symmetric hyperbolic if Aj = A?
j , j = {1, . . . , d}

4. strictly hyperbolic if ∀ω ∈ Rd, ω 6= 0 , the eigenvalues of P (iω)are pure imaginary and distinct
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The relationship between the well-posedness and the hyperbolicity of the Cauchy problem is sum-

marized by the following:

• the Cauchy problem for a weakly hyperbolic system is generally not well posed.

• the Cauchy problem for strongly hyperbolic, symmetric hyperbolic and strictly hyper-

bolic systems is well-posed.
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