
Abstract

Farrah Jackson. Characterization of Involutions ofSP(2n, k) (Under the direction of

Aloysius Helminck). In this thesis, we discuss the relationship between involutions of

the two matrix groups SL(2n, k) and SP(2n, k). Involutions determine symmetric spaces

hence a complete classification of involutions of both SL(n, k) and SP(2n, k) will in turn

classify the symmetric spaces coming from these involutions. We begin by giving a com-

plete classification of involutions of the group SL(n, k) over the algebraically closed fields,

the real numbers, the rational numbers, and the finite fields. As a method of classify-

ing a particular type of involution of SL(n, k) we focus on how they may be obtained

from a non-degenerate symmetric or skew-symmetric bilinear form. With the classification

of involutions of SL(n, k) in hand we focus our attention on the subgroup SP(2n, k) of

SL(2n, k). We first show that all involutions of SP(2n, k) are the restriction of an invo-

lution of SL(2n, k) to SP(2n, k). We determine that an automorphismθ = InnA leaves

SP(2n, k) invariant if and only if A = pM for some p ∈ k̄ and M ∈ SP(2n, k). Next

we give specific criteria to characterize which involutions of SL(2n, k) remain involutions

when restricted to SP(2n, k). Lastly, we determine that if two involutions of SP(2n, k) are

isomorphic under SP(2n, k) then they are isomorphic under SL(2n, k).
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Chapter 1

Introduction

1.1 Motivation

This thesis involves symmetric spaces and how they are obtained from Lie groups, algebraic

groups. Symmetric spaces describe various symmetries in nature. One way to visualize a

symmetric space is by viewing the group of symmetries or motions acting on the space.

For example, you can think of the symmetric space as the plane and the group as the set of

translations in the plane. The study of symmetric spaces combines group theory, geometry,

field theory, Lie theory and linear algebra. Symmetric spaces have been studied for over

100 years and have played an important role in mathematical physics, representation theory

and differential geometry. Although initially symmetric spaces were only studied over the

real numbers, more recently the area has expanded to include the study over various fields.

In fact, in the last 15 to 20 years symmetric spaces have become of importance in many

other areas of mathematics and have been studied by many mathematicians.

1.2 Overview

We are interested in classifying symmetric spaces. LetḠ be a reductive linear algebraic

group over a fieldk andG its set ofk-rational points. An automorphismθ is an involution

if θ 6= Id andθ2
= Id. Hence, given an involutionθ on our groupG, the symmetric space

1



Chapter 1. Introduction 2

X is defined asG/H whereGθ
= H is the fixed-point group of the involutionθ. As you

can see the sheer definition of a symmetric space relies heavily on the fixed point group

of the involution. Because of this reliance we focus exclusively on classifying the invo-

lutions which define the symmetric space up to isomorphy as a method of classifying the

symmetric space itself. We begin by considering involutions on the group GL(n, k). In this

case we are able to see that one method of classifying such involutions can be realized by

looking at their relationship with bilinear forms. We first observe that given a bilinear form

β(x, y) = xT My and a matrixA the adjoint ofA, denotedA′, is the matrix satisfying

β(Ax, y) = β(x, A′y) for all x, y ∈ V.

In particular we see thatA′
= M−1AT M. More importantly ifβ represents a non-degenerate

symmetric or skew-symmetric bilinear form (i.e. det(M) 6= 0 andM = MT or M = −MT)

then we are able to define an involutionθM (X) = (X′)−1 based on that bilinear form. This

invokes interest on the connection between isomorphy classes of such involutions and con-

gruence classes of symmetric and skew-symmetric bilinear forms. It is at this point that we

formally give this relationship via

The Classification Theorem:If θM1 andθM2 are involutions on GL(n, k) which come from

a symmetric or skew-symmetric bilinear form as stated before, then

M1
∼=

s M2 over k ⇐⇒ θM1 ≈ θM2.

(where semi-congruence is simply congruence up to a scalarα in the algebraic closure of

the field).

It is then shown that these results carry over to the subgroups SL(n, k) and SP(n, k) of

GL(n, k). Finally we provide a classification of the involutions on SL(n, k) up to isomor-

phy and give a characterization of the involutions of SP(2n, k). A detailed summary of all

the results are provided in the next section.
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1.3 Summary of Results

We begin Chapter 2 with the definition of symmetric spaces an the concept of isomorphic

involutions. We give a detailed analysis of the congruence classes of symmetric and skew-

symmetric bilinear forms which will prove extremely useful in later chapters. The most

significant result in this chapter is the Classification Theorem which links the congruence

classes (truly semi-congruence classes) of symmetric and skew-symmetric bilinear forms

to the isomorphism classes of involutions.

In Chapter 3 we turn our attention to the subgroup SL(2, k) of GL(2, k). For SL(2, k)

we observe that all involutions are of type inner. In addition, we give the result that all

involutions of SL(2, k) come from a symmetric bilinear form, however no involution of

SL(2, k) is obtained from the skew-symmetric bilinear form. We go on to give a classifi-

cation of the involutions over the algebraically closed fields, the real numbers, the rational

numbers, and the finite fields.

We move on to the subgroup SL(n, k) of GL(n, k) in Chapter 4. We first observe that

unlike SL(2, k), there are two types of involutions on SL(n, k), both inner and outer. We

show that all the outer involutions of SL(n, k) come from bilinear forms. Because of this

we are able to use the Classification Theorem to determine the isomorphy classes of in-

volutions on SL(n, k) over the algebraically closed fields, the real numbers, the rational

numbers, and the finite fields. We then focus on the inner involutions of SL(n, k) and state

that they do not come from bilinear forms. Since the Classification Theorem is not appli-

cable in this case we give a new set of criteria for the classification of inner involutions and

provide such a classification.

We begin Chapter 5 by discussing the skew-symmetric bilinear forms in detail. Here

we are able to see that there is in fact only one skew-symmetric bilinear form up to a change
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of basis. We then review the orthogonal group O(m, k, β) discussed in Chapter 2 and con-

clude that SP(m, k) = O(m, k, β) whereβ represents the sole skew-symmetric bilinear

form. In addition,m must be even so we switch to the notation SP(2n, k).

Since we are truly interested in characterizing involutions of SP(2n, k) we show that

every involution of SP(2n, k) is the restriction of an involution of SL(2n, k) to SP(2n, k).

Hence to classify the involutions on SP(2n, k) we investigate the involutions of SL(2n, k).

We start off by looking at involutions whenn = 1, that is on SP(2, k). In this sit-

uation we show that SP(2, k) = SL(2, k). Thererfore we are able to conclude that the

isomorphism classes of involutions of SP(2, k) are given by the isomorphism classes of

involutions of SL(2, k) which leave SP(2, k) invariant.

Next we look at the more complicated situation of involutins ofG = SP(2n, k) with

n> 1. We begin by focusing on the fact that ifk is algebraically closed then all the auto-

morphisms ofG are of type inner. We use this fact to give the result that an automorpism

InnA |G = Id for someA ∈ SL(2n, k̄) if and only if A = pI for somep ∈ k̄. Although it

will initially appear that we have slightly deviated from our objective the above result will

play an integral part in our next theorem, The Characterization Theorem.

Continuing to focus on SP(2n, k) we now state what is called the Characterization The-

orem. The first part of this theorem answers the question, which inner automorphisms InnA

with A ∈ GL(2n, k̄) keepḠ = SP(2n, k̄) invariant. What we determine is that InnA keeps

Ḡ invariant if and only ifA = pM with p ∈ k̄ andM ∈ Ḡ. Now part 2 of the Characteri-

zation Theorem states that the inner automorphisms InnB with B ∈ Ḡ keepsG invariant if

and only if B = qN for someq ∈ k̄ and N ∈ G. Hence we are able to conclude that any

automorphismθ, and more importantly any involutionθ, which leaves SP(2n, k) invariant

has the property thatθ = InnA whereA = pM for somep ∈ k̄ andM ∈ SP(2n, k). Since

the proof of the second part of the Characterization Theorem is quite complex we first



Chapter 1. Introduction 5

demonstrate the procedure of the proof via an example for 2n = 6, followed by a complete

proof in the general case.

We then turn our attention to the outer involutions of SL(2n, k). We first redefine the

outer involutions of SL(2n, k) by redefining the fixed outer automorphism used in Chapter

2. By redefining the fixed outer automorphism we are able to give the result that the outer

involutions of SL(2n, k) become inner involutions when restricted to SP(2n, k). This will

follow directly from the fact that SP(2n, k) is the fixed point group of our new fixed outer

automorphism.

Since we focus on involutions of SL(2n, k) restricted to SP(2n, k) we now begin to

characterize which involutions of SL(2n, k) remain involutions when restricted to SP(2n, k).

We give the result that an involutionτ of SL(2n, k) keepsG invariant if and only ifτφ= φτ

whereφ = InnJ θ whereθ(X) = (XT )−1. Moreover, we determine specific criteria in or-

der for an involutions of SL(2n, k) to remain an involution when restricted to SP(2n, k).

With the aforementioned criteria in hand we are able to state exactly which involutions of

SL(2n, k) will not remain involutions when restricted to SP(2n, k).

Finally, we give the result that the isomorphy class of outer involutions of SL(2n, k)

coming from the skew-symmetric matrixM = J2n does not exist when restricted to SP(2n, k).

In addition, we show that if two involutionsτ1 and τ2 on G come from the restriction

of outer involutions of SL(2n, k) then if τ1 ≈ τ2 over G then the outer involutions of

SL(2n, k) from which they came must be isomorphic over SL(2n, k).



Chapter 2

Symmetric Spaces and Bilinear Forms

2.1 Notation

Throughout this thesis our terminology and notation for reductive groups will come from

the books of Borel [Bor91], Humphreys [Hum72] and Springer [Spr81]. We will also use

information provided in the papers of Borel and Tits [BT65], [BT72]. All algebraic groups

and algebraic varieties are taken over an arbitrary fieldk with the characteristick not equal

to 2 and all algebraic groups considered are linear algebraic groups. In addition, throughout

this thesis some standard notation is used. With an attempt to limit the introduction of new

notation we provide the following list.

k − denotes a field of characteristic not equal to 2

k1 − an extension field ofk

k̄ − the algebraic closure ofk

V = kn- a finite dimensional vector space over the fieldk

V̄ = k̄n

k∗
− the product group of all nonzero elements ofk

(k∗)2 = {a2
| a ∈ k∗

}

Mn(k) = M(n, k) ={n × n matrices with entries in k}

6
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GL(V) = GL(n, k) = GLn(k) = {A ∈ Mn(k) | det(A) 6= 0}

SL(V) = SL(n, k) = SLn(k) = {A ∈ Mn(k) | det(A) = 1}

Id - denotes the identity automorphism

Aut(G) - the set of all automorphisms onG

2.2 Symmetric Spaces

In this section we begin by giving the necessary background material required to give a

complete definition of a symmetric space and conclude with said definition. We note here

that an alternative definition of a symmetric space will be given later on in this chapter.

Throughout this thesis we will definēG to be a reductive linear algebraic group over

a field k. G will denote its set ofk-rational points. We will assumeG is a subgroup of

GL(n.k).

2.2.1 Definition of Symmetric Space

Definition 1. Let θ be an automorphism. Theorder of θ, denoted ord(θ), is defined to be

the smallest integery such thatθy
= Id.

Definition 2. Let θ ∈ Aut(G) thenθ is aninvolution of G if θ 6= Id and ord(θ) = 2, (i.e.

θ2
= Id).

Definition 3. Given an involutionθ on our groupG, thesymmetric space Xis defined as

G/H whereGθ
= H is the fixed-point group of the involutionθ. One can also characterize

this symmetric space as the subsetX = {xθ(x)−1
| x ∈ G} of G. ThenX ≈ G/H.

Remark1. Two symmetric spacesX1 andX2 are isomorphic if and only if their correspond-

ing fixed-point groupsH1 andH2 are isomorphic.
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The above remark will allow us to give criteria for the classification of symmetric

spaces. In essence we will classify the fixed-point group of an involution and then use

the above remark to give a characterization of the symmetric space.

2.3 Isomorphic Involutions

As stated in the previous section determining the fixed point group of an involution will

prove to be extremely significant in classifying symmetric spaces. That being said, it will

be necessary for us to define what is meant by isomorphic involutions. Some notation is

first needed.

For A ∈ GL(n.k)

(1) InnA denote theinner automorphismsdefined by

InnA(X) = A−1X A ∀X ∈ GL(n, k).

(2) Innk(G) = {InnA | A ∈ G}

(3) Inn(G) = {InnA | A ∈ Ḡ, InnA(G) ⊆ G}.

Definition 4. (1) Let θ, τ ∈ Aut(G). We say thatθ andτ are Innk(G)-isomorphicde-

noted,θ ≈
Innk τ, if there exist aφ ∈ Innk(G) such thatτ = φ−1θφ.

(2) Let θ, τ ∈ Aut(G). We say thatθ andτ are Inn(G)-isomorphic, denoted,θ ≈
Inn τ,

if there exists aφ ∈ Inn(G) such thatτ = φ−1θφ.

(3) We say thatθ andτ are Aut(G)-isomorphicdenoted,θ ≈
Aut τ, if there exists aφ ∈

Aut(G) such thatτ = φ−1θφ.

When trying to determine the isomorphy classes of an automorphism one must be spe-

cific as to which type of isomorphism they are referring. It should be clear that the set
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of Innk(G)-isomorphism classes are contained in the Inn(G)-isomorphism classes, that

is θ ≈
Innk τ =⇒ θ ≈

Inn τ. In addition, it is also easily seen that the set of Inn(G)-

isomorphism classes are contained in the Aut(G)-isomorphism classes, that isθ ≈
Inn

τ =⇒ θ ≈
Aut τ. Throughout this thesis we will only investigate Inn(G)-isomorphism

classes hence,θ ≈ τ will always indicate an Inn(G)-isomorphism. The cases of classi-

fying automorphisms, specifically involutions, using the Innk(G)-isomorphic or Aut(G)-

isomorphic criteria still remain open problems.

2.4 Bilinear Forms

The existence of this section may initially seem unusual. As you will see in the next section

there is a clear and precise relationship between bilinear forms and involutions. In fact, the

wealth of knowledge already known about Bilinear Algebra will be the cornerstone in our

ability to classify involuitons. Before we proceed we first must give some background in-

formation on bilinear forms.

2.4.1 Definition

Definition 5 ([Art91]). Let V = kn be a vector space, wherek is any field such that

char(k) 6= 2. A bilinear form on V is a function of two variables onV with values in

the fieldk, β : V × V → k, satisfying the bilinear axioms below.

(1) β(v1 + v2,w) = β(v1,w)+ β(v2,w)

(2) β(v,w1 +w2) = β(v,w1)+ β(v,w2)

(3) β(cv,w) = cβ(v,w)

(4) β(v, cw) = cβ(v,w)

for all v,w, vi ,wi ∈ V andc ∈ k
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Definition 6. The matrix associated with the formβ on a vector spaceV is the matrix

M = (mi, j ) with mi, j = β(ei ,ej ), where{ei} is any ordered basis forV.

Hence our bilinear formβ can be viewed as

β(x, y) = xT My ∀x, y ∈ V

Note: The matrix of the formβ is dependent upon the choice of basis forV.

In Section 2.5 we will see that the relationship between involutions and bilinear forms

center specifically around symmetric and skew-symmetric non-degenerate bilinear forms.

Therefore we define such terms and their relationship with matrices of the form.

Theorem 2.1([Art91]). The properties of the bilinear formβ carry over to the matrix of

the form M. Using this fact we list 3 well know properties

(1) β is a symmetric bilinear form⇐⇒ M is a symmetric matrix.

(β(x, y) = β(y, x) ∀x, y ∈ V ⇐⇒ M = MT)

(2) β is a skew-symmetric bilinear form⇐⇒ M is a skew-symmetric matrix

(β(x, y) = −β(y, x) ∀x, y ∈ V) ⇐⇒ M = −MT)

(3) β is non-degenerate (i.e.β(x, y)= 0 ∀y ∈ V only if x= 0) ⇐⇒ nullspace(M)= 0.

(β is non-degenerate⇐⇒ det(M) 6= 0 ⇐⇒ M is invertible)

In this thesis all of the bilinear forms that we will use will be non-degenerate. Hence all

the matrices representing these bilinear forms will be invertible.

2.4.2 Congruence

The idea of determining when two involutions are isomorphic will rely on the congruence

classes of matrices of symmetric and skew-symmetric bilinear forms. Throughout this

thesis we will consistently refer to the theorems in this subsection which characterize such

congruence classes.
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Definition 7. Let M1 andM2 be the matrices of two bilinear forms onV = kn. ThenM1 is

congruentto M2, denotedM1
∼= M2, over the fieldk if there exists a matrixQ ∈ GL(n, k)

such thatM2 = QT M1Q.

Theorem 2.2. Two matrices M1 and M2 represent the same bilinear form with respect to

different bases if and only if M1 ∼= M2.

Remark2. If M1 represents the matrix of the formβ with respect to the basisB1 andM2

represents the matrix of the formβ with respect to the basisB2, then the matrixQ that

gives the congruence relation is the change of basis matrix fromB2 to B1.

Lemma 1 ([Szy97]). If M is the matrix of a non-degenerate symmetric bilinear form, then:

(1) M is congruent to a diagonal matrix with non-zero diagonal entries.

(2) Any rearrangement of the diagonal matrix M results in another matrix in the same

congruence class, congruent via an orthogonal permutation matrix P.

In addition, we state the following theorem about congruence classes of symmetric and

skew-symmetric matrices.

Theorem 2.3([Sch85]). (1) Symmetric matrices are congruent to diagonal matrices whose

entries are representatives of the square-class group k∗/(k∗)2.

(2) Skew-Symmetric matrices are congruent to the2m× 2m matrix J2m, where n= 2m

and

J2m =

(
0 Im×m

− Im×m 0

)
.

2.5 Induced Involutions of Bilinear Forms

In this section we discuss the connection between bilinear forms and involutions. Specifi-

cally, we will determine the method of constructing an involution from a given symmetric

or skew-symmetric bilinear form.
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2.5.1 Definition of the Adjoint

Definition 8. Let M be the matrix of a non-degenerate bilinear formβ over a vector space

V = kn. Given A ∈ GL(n, k) we define theadjoint of A with respect toβ, denotedA′, as

the matrix that satisfies the relationβ(Ax, y) = β(x, A′y). When the bilinear form we are

using is clear we will simply refer toA′ as the adjoint ofA.

Given a bilinear formβ(x, y) = xT My we note that:

β(Ax, y) = β(x, A′y)

(Ax)T My = xT M(A′y)

xT AT My = xT M A′y

AT M = M A′

M−1AT M = A′

Hence, using the definition of the adjoint we are able to see that

A′
= M−1AT M.

2.5.2 Constructing Involutions via the Adjoint

Definition 9. Given a non-degenerate bilinear form onV with matrix M, we defineθ = θM

by θM (A) = (A′)−1.

Using the fact thatA′
= M−1AT M we have

θM (A) = M−1(AT )−1M

It turns out that the automorphismθ = θM given in Definition 9 is an involution if the

matrix M is symmetric or skew-symmetric. Before we formally state this result we observe

the following properties of the adjoint of a symmetric or skew-symmetric bilinear form.
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Theorem 2.4.Let A′ be the adjoint of a symmetric or skew-symmetric matrix. Then

(1) (A′)′ = A

(2) (A′)−1
= (A−1)′

(3) (AB)′ = B′ A′

Proof. (1)

(A′)′ = (M−1AT M)′

= M−1(M−1AT M)T )M

= M−1MT A(M−1)T M

If M is symmetric thenM = MT andM−1MT A(M−1)T M = A

Similarly, if M is skew-symmetric thenM = −MT and againM−1MT A(M−1)T M =

A. In either case,(A′)′ = A.

(2)

(A′)−1
= (M−1AT M)−1

= M−1(AT )−1M

= M−1(A−1)T M

= (A−1)′

The 2nd and 3rd steps of the above equality are true since we know the transpose and

inverse operations commute.
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(3)

(AB)′ = M−1(AB)T M

= M−1BT AT M

= M−1BT(MM−1)AT M

= (M−1BT M)(M−1AT M)

= B′ A′

Proposition 1. If β is either symmetric or skew-symmetric thenθ = θM is an involution.

Proof. From Theorem 2.4 it is easy to see thatθ is indeed an involution since

θ(AB) = ((AB)′)−1

= (B′ A′)−1

= (A′)−1(B′)−1

= θ(A)θ(B)

and

θ2(A) = (((A′)−1)′)−1
= (A′)′ = A.

Utilizing the method described above, given an non-degenerate symmetric or skew-

symmetric bilinear form on a vector spaceV, one can always obtain an involution of a

matrix group over a fieldk. Because of this relationship a natural question arises, can all

involutions be obtained in this manner, (i.e. Do all involutions come from the adjoint of

a bilinear form?). As you will see in the next few chapters the answer to this question is

primarly based on the matrix group and vector space in question. Another question which
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arises is, does there exist any correlation between congruence classes of symmetric and

skew-symmetric bilinear forms and isomorphism classes of their induced involutions? The

next section will explore this question in detail.

2.6 Congruent Bilinear Forms versus Isomorphic Involu-

tions

Given the construction of an involution via the adjoint of a symmetric or skew-symmetric

bilinear form it is natural to explore the relationship between the two ideas. In this section

we will see that congruence of bilinear forms does not exactly correspond to isomorphic

involutions however, by slightly altering the idea of congruence a nice correspondence is

obtained.

2.6.1 Semi-Congruence

Theorem 2.5. Let M1 and M2 be two matrices of symmetric or skew-symmetric bilinear

formsβ1 andβ2 over V= kn respectively. LetθM1 andθM2 be their corresponding involu-

tions onGL(n, k). If M1
∼= M2, thenθM1 ≈ θM2.

Proof. SupposeM1
∼= M2 over k. Then there exists aQ ∈ GL(n, k) such thatM2 =

QT M1Q. Now using the fact thatθMi = M−1
i (AT )−1Mi for i = 1,2 we have that∀A ∈

GL(n, k),

θM2(A) = InnM2(A
T )−1

= InnQT M1Q(A
T )−1

= (QT M1Q)−1(AT )−1(QT M1Q)

= Q−1(M−1
1 ((QT )−1(AT )−1QT )M1)Q

= Q−1 InnM1((InnQ−1(A))T )−1Q

= Q−1θM1(InnQ−1(A))Q

= InnQ θ1 InnQ−1(A),=⇒ θM2 = InnQ θM1 Inn(Q)−1 .
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This meansθM2 = (φ)−1θM1φ with φ = InnQ−1, andθM2 ≈ θM1 over GL(n, k).

A correspondence between congruent symmetric and skew-symmetric bilinear forms

and isomorphisms of the induced involution begins to appear. That is congruence of bilinear

forms implies an isomorphism of their induced involutions. In the reverse direction we get

an ”almost” one-to-one correspondence between congruence classes of bilinear forms and

isomorphy classes of involutions.

Theorem 2.6. SupposeθM1 and θM2 are involutions onGL(n, k) which come from sym-

metric or skew-symmetric bilinear forms over V= kn with associated matrices M1 and M2

respectively. IfθM1 ≈ θM2 then M2 = αQT M1Q for some matrix Q∈ GL(n, k) and some

scalarα ∈ k̄.

Proof. Suppose there exists aφ ∈ Inn(GL(n, k)) such thatθ2 = φ−1θ1φ. Let P ∈ GL(n, k̄)

such thatφ = InnP. Then for allA ∈ GL(n, k),

θM2(A) = φ−1θM1

φ(A) = InnP−1 InnM1((InnP(A))
T )−1

= PM−1
1 (PT )(AT )−1(PT )−1M1P−1

= M−1
2 (AT )−1M2

which imples

M2P(M1)
−1PT(AT )−1(PT )−1M1P−1M−1

2 = (AT )−1

This holds for allAT, so it holds for allA. Which means

((PT )−1M1P−1M−1
2 )−1A((PT )−1M1P−1M−1

2 ) = A.

So Inn(PT )−1M1P−1M−1
2

= Id, (PT )−1M1P−1M−1
2 = γ Inxn for someγ ∈ k∗, and M2 =

1/γ(PT )−1M1P−1. The result follows by substitutingQ = P−1, α = 1/γ.
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The relationshipM2 = αQT M1Q for some matrixQ ∈ GL(n, k) and some scalarα ∈ k̄

is very similar to the definition of congruent matrices with the exception of the scalarα.

Hence we define this relationship as semi-congruence in an effort to obtain the equivalence

of Theorem 2.5 and Theorem 2.6.

Definition 10. Two bilinear forms onV = kn with associated matricesM1 and M2 are

semi-congruent over k, denotedM1
∼=

s M2, if there exists aQ ∈ GL(n, k) and anα ∈ k̄

such thatM2 = αQT M1Q.

It is clear from the above definition of semi-congruence that if two matrices are con-

gruent then they must be semi-congruent. We are now able to rewrite Theorem 2.6.

Theorem 2.7. Supposeθ1 and θ2 are involutions onGL(n, k) which come from symmet-

ric or skew-symmetric bilinear forms over V= kn with associated matrices M1 and M2

respectively. ThenθM1 ≈ θM2 ⇒ M1
∼=

s M2.

2.6.2 Classification Theorem

The two Theorems discussed in Section 2.6.1 can be combined to create precise relationship

between associated matrices of symmetric and skew-symmetric bilinear forms and their

corresponding involutions which is given below.

Theorem 2.8(Classification Theorem). If θM1 andθM2 are involutions onGL(n, k)which

come from a symmetric or skew-symmetric bilinear form as stated before, then

M1
∼=

s M2 over k ⇐⇒ θM1 ≈ θM2.

Proof. ⇐= The proof of the above theorem in this direction follows directly from Theorem

2.7.
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=⇒ SupposeM1
∼=

s M2, then this is equivalent toM1
∼= αM2. Now Theorem 2.5 says

thatθM1 ≈ θαM2. Now

θαM2 = InnαM2(A
T )−1

= (αM2)
−1(AT )−1(αM2)

= (α−1α)M−1
2 (AT )−1M2 = M−1

2 (AT )−1M2

= InnM2(A
T )−1

= θM2

Hence,θαM2 = θM2 which meansθM1 ≈ θM2

Remark3. There is an important concept which is addressed in the proof of the above

Lemma which will be commented upon throughout this thesis. This is the fact that the

scalarα does not affect the automorphism, ie. InnαM2 = InnM2.

2.6.3 Alternative Definition of Symmetric Spaces

Since we have been able to create a correspondence between associated matrices of sym-

metric and skew-symmetric bilinear forms and involutions which are defined by these forms

one must question how this relates to symmetric spaces. By redefining our notion of sym-

metric spaces this will become clear.

Definition 11. Given a non-degenerate symmetric or skew-symmetric bilinear formβ on

V = kn, theorthogonal groupO(n, k, β) is defined as

O(n, k, β) = {A ∈ GL(n, k) | β(Ax, Ay) = β(x, y)}.

= {A ∈ GL(n, k) | AA
′

= I}

Recall: When we first defined a symmetric spaceX we said thatX = G/H whereH = Gθ,

the fixed point group of the involutionθ. In Section 2.5.2, we defined involutions which
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come from a bilinear form via the adjoint asθ(A) = (A′)−1. Let’s now observe the fixed

point groupH of such an involution

H = {A | θ(A) = A}

= {A | (A′)−1
= A}

= {A | AA′
= I}

= O(n, k, β)

Therefore, if an involution comes from a symmetric or skew-symmetric bilinear form

then the fixed point group of the involution is precisely the orthogonal group of the form.

With this relationship we can redefine our symmetric space.

Definition 12 (Symmetric Space). Let X = {AA′
| A ∈ GL(n, k)}. ThenX = {A(θ(A))−1

|

A ∈ GL(n, k)} ' GL(n, k)/O(n, k, β).

If G is a subgroup of GL(n, k), invariant under taking the adjoint, then

X̂ = X ∩ G ' G/(G ∩ O(n, k, β)) is exactly the symmetric space defined in the previous

definition.

Recall: Two symmetric spacesX1 andX2 are isomorphic if and only if their corresponding

fixed-point groupsH1 andH2 are isomorphic.

Theorem 2.9([HW93]). Two fixed point groups Hβ1 = O(n, k, β1) and Hβ2 = O(n, k, β2)

are isomorphic if and only ifθ1 ≈ θ2.

Therefore, if an involution comes from a non-degenerate symmetric or skew-symmetric

bilinear form by using the Classification Theorem we can determine the isomorphy classes

of involutions which will in turn give us a classification of the related symmetric space via

its fixed point group.
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2.7 Results for SL(n, k)

Although all the results in the previous section have been given based on the group GL(n, k)

from this point on we will focus strictly on subgroups of GL(n, k). In particular we will

begin with the subgroup SL(n, k) of GL(n, k). In this section we will show that all of the

results given up to this point for GL(n, k) in fact hold for SL(n, k).

Lemma 2. An automorphismθ coming from a symmetric or skew-symmetric bilinear form

is an involution onGL(n, k) ⇐⇒ θ is an involution onSL(n, k).

Proof. =⇒ Let θ be an involution on GL(n, k) which comes from a bilinear form with

associated matrixM. Then θ(A) = M−1(AT )−1M. Since SL(n, k) is a subgroup of

GL(n, k) we can restrictθ to SL(n, k). W now only need to check ifθ keeps SL(n, k) in-

variant. LetA ∈ SL(n, k) then det(θ(A))= det(M−1(AT )−1M)= det(A−1)= 1/det(A)=

1 sinceA ∈ SL(n, k). Henceθ is an involution on SL(n, k)

⇐= This direction is trivial since ifθ is an involution on SL(n, k) it is clear that if lifted to

act on GL(n, k), θ will still remain an involution.

Since the Classification Theorem focuses on the isomorphism classes of the involu-

tions it is necessary to explore the relationship between these classes of GL(n, k) versus

SL(n, k). The following theorem addresses this issue.

Theorem 2.10.Two involutionsθ1 andθ2 are isomorphic overGL(n, k) if and only if they

are isomorphic overSL(n, k).

Proof. ⇐=: This direction is clear.

=⇒: Supposeθ1 andθ2 are isomorphic over GL(n, k) via someP ∈ GL(n, k). Then

we can replaceP with P̂ =
(
1/ n

√
det(P)

)
P and still retain Inn−G isomorphism via Inn̂P.

Now

det( P̂) =

(
1/ n
√

det(P)
)n
(det(P)) = 1

SinceP ∈ SL(n, k) and thus det(P) = 1. Therefore we may conclude thatP̂ ∈ SL(n, k)

and henceθ1 ≈ θ2 over SL(n, k).
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Involutions on G = SL(2, k)

3.1 Introduction

This chapter focuses on involutions of the subgroup SL(2, k) of GL(2, k). As we will see

in the later chapters the classification of the involutions on SL(2, k) will play a vital role in

classifying involutions on SP(2, k), therefore the development of this classification will be

explored in detail.

In this chapterG = SL(2, k), Ḡ = SL(2, k̄) , G1 = SL(2, k1) and all bilinear forms

are taken over either the vector spaceV = k2 or V̄ = k̄2.

3.2 Involutions and Bilinear Forms

This subsection gives the framework needed in order to determine the isomorphy classes

of involutions on SL(2, k).

Lemma 3 ([Bor91]). If k is an algebraically closed field,Aut(G) = Inn(G).

Remark4. If θ ∈ Aut(G) and k is not algebraically closed then there always exists an

extension fieldk1 and aτ ∈ Inn(SL(2, k1)) such thatτ|G = θ.

21
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Lemma 4 ([HW02]). The inner automorphismInnA ∈ InnG1 keep G invariant if and only

if A = αB for someα in k1 and some B inGL(2, k).

We first recall that adding a scalar to a conjugation does not alter the automorphism,

that is InnαB = InnB as discussed in Remark 3 of Chapter 2. Because of this fact the above

Lemma proves to be extremely useful. We now have that every automorphism, and hence

every involution, of SL(2, k) can be written as InnB where B ∈ GL(2, k). Adding the

additional criteria that our automorphism is an involution gives us the following result.

Theorem 3.1([HW02]). All involutions onSL(2, k) have the formθ = InnB, where B has

the form

(
0 b

1 0

)
and b∈ k.

We are now able to link the form of involuitons of SL(2, k) given in Theorem 3.1 to

involutions derived from bilinear forms as discussed in Chapter 2.

Theorem 3.2. All involutions onSL(2, k) have the formθM where M is the matrix of a

symmetric bilinear form andθM its corresponding involution.

Proof. Consider an involutionφ of SL(2, k). Then by Theorem 3.1φ = InnB whereB =(
0 b

1 0

)
. Let M ′ be the matrix of a non-degenerate symmetric bilinear form onV = k2. By

Lemma 1 we know thatM ′ is congruent to a diagonal matrix, that isM ′ can be viewed as,

M ′
=

(
m1 0

0 m2

)
. Normalizing the(1,1) entry ofM ′ does not change the involution since

θM ′ (A) = (M ′)−1(AT )−1M ′

= InnM ′ (AT )−1

= Inn 1
m1

M ′
(AT )−1

= θ 1
m1

M ′
(A)
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Hence we can let our symmetric bilinear form be represented by the matrixM =

(
1 0

0 m

)
,

wherem = −b. Let Y =

(
0 −1

1 0

)
then Y M =

(
0 −m

1 0

)
. Now φ(A) = InnB(A) =

InnY M(A) = InnM InnY(A) = InnM (AT )−1
= θM (A). Hence InnB comes from a bilinear

form and all involutions of SL(2, k) have the formθM whereM is the matrix of a symmetric

bilinear form.

Since the above theorem tells us that all involutions of SL(2, k) come from bilinear

forms we are able to invoke The Classification Theorem 2.8 in order to determine the

isomorphism classes of involutions of SL(2, k).

Theorem 3.3.Let M1 and M2 be associated matrices of symmetric bilinear forms on V=

k2. Then M1 =

(
1 0

0 m1

)
∼=

s M2 =

(
1 0

0 m2

)
⇐⇒ m1 = α2m2 for someα ∈ k∗ (i.e.

the semi-congruence classes of symmetric bilinear forms on V= kn are determined by the

square class group k∗/(k∗)2.)

Proof. =⇒: SupposeM1 and M2 are semi-congruent. Then we know there exist aQ ∈

GL(2, k) and a scalarc ∈ k∗ such thatM1 = cQT M2Q. By taking the determinant of both

sides of we see thatm1 = c2(detQ)2m2 = (cdetQ)2m2. By lettingα = cdetQ we obtain

the desired result thatm1 = α2
∗ m2 for someα ∈ k.

⇐=: Let M1 andM2 be defined as above. Supposem1 = α2
∗ m2. ThenM1 = QT M2Q

whereQ =

(
1 0

0 α

)
. This of course implies thatM1

∼= M2. Since congruence implies semi-

congruence we have thatM1
∼=

s M2.

Theorem 3.4.The number of isomorphism classes of involutions of G is equal to|k∗/(k∗)2|,

and each representative has the formθ = InnB, where B=

(
0 −m

1 0

)
and m is a repre-

sentative of k∗/(k∗)2.
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3.3 Skew-Symmetric Bilinear Form onV = k2

Before we give a complete classification for the involutions on SL(2, k) we note one im-

portant fact. The Classification Theorem clearly deals with involutions which come from

both symmetric and skew-symmetric bilinear forms onV via the adjoint. However, in the

previous section there is no mention of any involutions coming from a skew-symmetric

bilinear form onV. This case has not accidently been overlooked. ForV = k2 there are no

involutions which come from skew-symmetric bilinear forms. The reason for this is given

in this section.

Lemma 5. (1) All skew-symmetric bilinear forms on k2 are semi-congruent to the form

represented by the matrix

M =

(
0 −1

1 0

)
.

(2) The only induced automorphism from the skew-symmetric form on k2 is therefore

θ(A) = InnM (AT )−1 which is not an involution.

Proof. (1) We know from Theorem 2.1 that a skew-symmetric form is represented by a

skew-symmetric matrixM with M = −MT. SinceM is a 2× 2 matrix M has the form(
0 −α

α 0

)

which is semi-congruent to

(
0 −1

1 0

)
.

(2) From part 1 we know that the only induced automorphism from the skew-symmetric

form onk2 is θ(A) = InnM (AT )−1 whereM =

(
0 −1

1 0

)
. However if A ∈ SL(2, k) then

it is simple to see thatθ(A) = InnM (AT )−1
= A. That isθ(A) = InnM (AT )−1 is the

identity automorphism and is therefore not an involution.
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Hence we can conclude that there are no involutions induced by the skew-symmetric

form on SL(2, k).

3.4 Isomorphy Classes of Involutions of SL(2, k)

In this section we invoke The Classification Theorem 2.8 in order to give a complete clas-

sification of the involutions of SL(2, k). However, because of the sole nature of the Clas-

sification Theorem it is necessary that we also identify the semi-congruence classes of the

symmetric bilinear forms. Theorem 3.3 told us that the semi-congruence classes of sym-

metric bilinear forms are determined by the square class group|(k∗)/(k∗)2|. When we

give the characterization of such classes we will rely on this fact. In addition, we are able

to use Theorem 3.4 which tells us that each involution of SL(2, k) has the form InnB where

B =

(
0 −m

1 0

)
andm ∈ (k∗)/(k∗)2 to give a complete classification of the isomorphy

classes of involutions for various fields as seen below.

(1) k = k̄: If k is algebraically closed then|(k∗)/(k∗)2| = 1 hence there is only 1 semi-

congruence class of matrices.

All involutions are isomorphic toθ = InnB1, whereB1 =

(
0 −1

1 0

)
with θ(A) =

InnB(A) = (AT )−1.

(2) k = R: In this case we know that|(k∗)/(k∗)2| = 2 with representatives given by

1 and−1. There are 3 congruence classes of symmetric bilinear forms over the

real numbers represented byM1 = Id,M2 = − Id andM3 =

(
1 0

0 −1

)
. However,

when we look at the semi-congruence classes overR we see thatM1 andM2 represent

the same semi-congruence class.

There are 2 isomorphism classes of involutions (1)θ = InnB1 as defined above in
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the case wherek = k̄ and (2)θ2 = InnB2, whereB2 =

(
0 1

1 0

)
. The action ofθ2 is:

θ2(A) =

(
a2,2 a2,1

a1,2 a1,1

)
.

(3) k = Q: Unfortunately|(k∗)/(k∗)2| = ∞ and there are infinitely many congruence

classes overQ therefore there are infinitely many semi-congruence classes overQ.

In addition, we can only conclude that there are infinitely many isomorphism classes

in this case.

(4) k = Fp (p 6= 2): In this case|(k∗)/(k∗)2| = 2. This can be seen as follows. Let

φ : Fp → Fp be the map defined byφ(x) = x2. Thenφ(F∗
p) = F∗2

p is a normal

subgroup ofF∗
p and|F∗

p/F∗2
p | = | Ker(φ)| = 2. Hence, the 2 semi-congruence classes

are represented byM =

(
1 0

0 m

)
, wherem is either 1 orSp =the “smallest” non-

square element ofFp.

There are two isomorphism classes of involutios given by (1)θ = InnB1 as defined

in the algebraically closed case and (2)θ3 = InnB3 whereB3 =

(
0 −Sp

1 0

)
.

3.5 Resulting Symmetric Space

Since we began this thesis with an interest in viewing symmetric spaces it is natural to

question what such a space looks like. The simplest illustration of the resulting symmetric

space can be viewed whenG = SL(2,R). Recall that a symmetric space is defined as

X = G/H whereH is the fixed point group of the involution. Whenk = R we know from

Section 3.4 that there are two isomorphy classes of involutions and hence we are able to

view their two corresponding symmetric spaces.
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(1) As the previous section indicates the action of the first involutionθ1 = InnB, where

B1 =

(
0 −1

1 0

)
is

θ1(A) = (AT )−1

The fixed point group of this involution is given by

H1 = Gθ1 = {A ∈ G | (AT )−1
= A}

= {A ∈ G | (AT ) = A−1
}

= SO(2,R)

Hence the fixed point group ofθ1 is the well known 2-Dimensional Special Orthogonal

group of length preserving rotations. In addition, ifA ∈ SL(2, k) andAT
= A−1 thenA =(

α β

−β α

)
, whereα2

+ β2
= 1. That isH1 is isomorphic to the unit circle. Moreover,

the resulting symmetric space is

X1 = G/H1 = G/SO(2,R) ∼= {AAT
| A ∈ SL(2,R)

which is precisely the set of positive definite symmetric matrices.

(2) For the second symmetric space we consider the other involution of SL(2,R), θ2 =

InnB2 whereB2 =

(
0 1

1 0

)
, which has the given actionθ2(A)=

(
a2,2 a2,1

a1,2 a1,1

)
. (i.e. switches

the diagonal and anti-diagonal entries ofA). We examine the fixed point group ofθ2 and

see that

H2 = Gθ2 = {A ∈ G | A =

(
α β

β α

)
and α2

− β2
= 1}

Hence,H2 is isomorphic to a hyperbola. The resulting symmetric space is simplyX2 =

G/H2.

3.6 Table of Involutions on SL(2, k)

This section gives a table which summarizes the information given in the two previous

sections. The table includes the Semi-Congruence classes, the isomorphism Classes of
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Involutions as well as the action of the involutions over the algebraically closed field, the

real numbers, the rational numbers and the finite fields. An important thing to note when

looking at the table is the connection between the semi-congruence classses of symmetric

matrices and the the isomorphy classes of their induced involutions. This information is

given below.

(1) The semi-congruence classes are given byM =

(
1 0

0 m

)
, wherem ∈ (k∗)/(k∗)2.

(2) The involutions of SL(2, k) can be viewed asθ = InnM (AT )−1 where

M =

(
1 0

0 m

)
.

(3) The Involutions of SL(2, k) can also be viewed asθ= InnB(A)whereB =

(
0 −m

1 0

)
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Table 3.1: Involutions of SL(2, k)

Field
Semi-Congruence

ClassM
Involution
θ = InnB

Action of the
Involution onG

k = k̄ M = I2×2 B =

(
0 −1
1 0

)
θ(A) = (AT )−1

k = R M1 = I2×2 B1 =

(
0 −1
1 0

)
θ1(A) = (AT )−1

M2 =

(
1 0
0 −1

)
B2 =

(
0 1
1 0

)
θ2(A) =

(
a2,2 a2,1

a1,2 a1,1

)

k = Q

Mi =

(
1 0
0 αi

)
(αi1 6= αi2(q

2) for
any i = i1, i2 ∈ N

q ∈ Q∗)

Bi =

(
0 −αi

1 0

)
θi (A) =

(
a2,2 −αia2,1

−a1,2/αi a1,1

)

k = Fp

p 6= 2
M1 = I2×2 B1 =

(
0 −1
1 0

)
θ1(A) = (AT )−1

M2 =

(
1 0
0 Sp

)
B2 =

(
0 −Sp

1 0

)
θ2(A) =

(
a2,2 −Spa2,1

−a1,2(Sp)
−1 a1,1

)



Chapter 4

Involutions on G = SL(n, k), n > 2

4.1 Introduction

As was the case for SL(2, k) the classification for involutions of SL(n, k), n > 2 plays a

role in characterizing involutions of SP(2n, k) and therefore must be studied in detail. In

the following chapter a complete classification of involutions on SL(n, k) will be given.

In this chapter,G = SL(n, k), Ḡ = SL(n, k̄) andn > 2. All bilinear forms are taken

over the vector spaceV = kn or V̄ = k̄n.

4.2 Outer Involutions of G = SL(n, k)

In the previous chapter we discovered that all involutions of SL(2, k) are of type inner and

were determined by a symmetric bilinear form via the adjoint. When we look at involutions

of SL(n, k) wheren > 2 this result does not carry over. The first distinction will appear

in the fact that all the automorphisms, and thus involutions, of SL(n, k) for n> 2 are not

inner. Secondly, we will see that the involutions of SL(n, k),n > 2 that are not of type

inner will be the ones which come from a symmetric or skew-symmetric bilinear form. We

begin by defining a non-inner automorphism of SL(n, k),n> 2.

Definition 13. Any automorphismθ of G such thatθ 6= InnM for any matrixM ∈ G is an

outer automorphismof G.

30
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Lemma 6 ([Bor91]). (1) If k is algebraically closed, then| Aut(G)/ Inn(G)| = 2.

(2) Any outer automorphismθ of G can be written asInnBφ, whereφ is a fixed outer

automorphism.

As previously stated, it will turn out that the outer involutions of SL(n, k),n > 2 will

come from a symmetric or skew-symmetric bilinear form via the adjoint. Choosing our

fixed outer autormorphismφ discussed in Lemma 6 asφ(A) = (AT )−1, enables us to

begin to see this connection.

Let M ∈ G, then usingφ as defined above we see that

InnM (φ(A)) = InnM (A
T )−1

= M−1(AT )−1M = θM (A).

Although this appears to be the method we used to define an involution via the adjoint of a

bilinear form we can not yet draw that conclusion. The reason we must hesitate is because

Proposition 1 said thatθ = θM is an involution whenM represents a symmetric or skew-

symmetric bilinear form. The next theorem however will give us this result when we add

the criteria that the outer automorphism InnM φ be an involution.

Lemma 7. (1) InnM φ is an involution ⇐⇒ φ(M)M ∈ Z(G).

(2) φ(M)M ∈ Z(G) ⇐⇒ M is symmetric or skew-symmetric.

(3) InnM φ is an involution ⇐⇒ M is symmetric or skew-symmetric, and M is only

skew-symmetric if n is even.

Proof. (1) We know that InnM φ is an involution ⇐⇒ (InnM φ)
2

= Id on G. Then the

following are each equivalent:

(a) InnM φ InnM φ(X) = X for all X ∈ G

(b) InnM φ(M−1φ(X)M) = InnM φ(M−1)φ(φ(X))φ(M) = X

(c) M−1φ(M−1)Xφ(M)M = X
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(d) Xφ(M)M = φ(M)MX for all X ∈ G

(e) φ(M)M ∈ Z(G)

(2) ⇐=: If M is symmetric, thenM = MT andφ(M)M = (MT )−1M = M−1M = In×n,

which is clearly in Z(G). If M is skew-symmetric, thenM = −MT and φ(M)M =

(MT )−1M = (−M)−1M = − In×n ∈ Z(G).

=⇒: If φ(M)M = (MT )−1M ∈ Z(G) then

(MT )−1MX = X(MT )−1M ∀X ∈ G.

So(MT )−1MXM−1MT
= X ∀X ∈ G and InnM−1MT = Id. ThereforeM−1MT

= α In×n

for someα ∈ k, and MT
= αM. Taking determinants of both sides we see thatαn

= 1.

If n is odd, thenα = 1 andM = MT. If n is even, thenα = 1 or −1, andM = MT or

M = −MT.

The third statement follows immediately from Proposition 1.

Remark5. This lemma tells us that all outer involutions onG are of the formθM where

M represents a symmetric or skew-symmetric bilinear form. Hence we have the following

application of the Classification Theorem 2.8.

Theorem 4.1 (Outer Classification Theorem). Let θM1 and θM2 be outer involutions on

SL(n, k), then they come from bilinear symmetric or skew-symmetric forms represented by

M1 and M2. Then

InnM1 φ ≈ InnM2 φ ⇐⇒ M1
∼=

s M2

Proof. The proof of the above theorem follows directly from The Classification Theorem

2.8 by simply observing thatθM1 = InnM1 φ andθM2 = InnM2 φ.

We are now able to see that in order to classify the outer involutions of SL(n, k)we once

again have been reduced to determining the semi-congruence classes of the symmetric and

skew-symmetric bilinear forms. From Theorem 2.3 we know this reduces to focusing on

diagonal matrices with entries ink∗/(k∗)2 and the skew-symmetric matrixJ.
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4.3 Classification of Outer Involutions of SL(n, k)

In this section we give a complete classification of both the semi-congruence classes of the

matrices of symmetric bilinear forms as well as the isomorphy classes of outer involutions

of SL(n, k) for various fieldsk. It is important to note that over all of the fields below

there will only be one semi-congruence class of skew symmetric bilinear forms which is

represented by the matrixM = J2m which only occurs whenn = 2m is even.

Remark6. In each case of the following cases the outer involutions are given by

θM = InnM φ, whereφ(A) = (AT )−1

The symmetric/skew-symmetric matricesM are given below.

(1) k = k̄: For k an algebraically closed field there is only one congruence class of sym-

metric bilinear forms and thus only one semi-congruence class.

(a) n odd: There is one isomorphism class of involutions represented byM = Id.

(b) n even: There are two isomorphism classes of involutions represented byM = Id

andM = J2m.

(2) k = R: Since|k∗/(k∗)2| = 2 with representatives 1 and−1, we know from The-

orem 2.3 that the congruence classes of symmetric forms are given byM = In−i,i i =

0,1, . . . ,n whereIn−i,i =

(
In−i×n−i 0

0 − Ii×i

)
. That is there aren + 1 congruence classes

of symmetric forms. However sinceIn−i,i
∼=

s
− Ii,n−i we have a reduced number of semi-

congruence classes which depends on whethern is even or odd.

(a) n odd: There aren+1
2 isomorphism classes of involutions, represented byM =

In−i,i i = 0,1, . . . , n−1
2 .

(b) n even: There aren
2 + 2 classes of involutions, represented byM = In−i,i i =

0,1, . . . , n
2 or J2m.
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(3) k = Q: As in the case whenn = 2, there are infinitely many congruence classes and

therefore infinitely many semi-congruence classes of symmetric forms. Therefore, we can

only conclude that there are infinitely many isomorphism classes of involutions.

Remark7. Before we give the isomorphism classes of involutions over the finite fields we

state the following well known result.

Lemma 8 ([Sch85]). (1) |F∗
p/(F

∗
p)

2
| = 2 when p6= 2.

(2) Every element of k= Fp can be written as the sum of2 squares inFp.

(3) For α ∈ Fp we have

(
α 0

0 α

)
∼= I2×2.

Therefore we can get either all 1’s on the diagonal or all 1’s with the exception ofSp,

the ”smallest” representative of a non-square element, left over in the(n,n) entry.

With the following Lemma in hand we can now discuss involutions over the finite fields.

(1) k = Fp: Over the finite fields there are 2 congruence classes of symmetric bilinear

forms and 2 semi-congruence classes.

(a) n odd: There are two isomorphy classes of involutions represented byM = Id and

M = Mn,Sp =

(
I(n−1)x(n−1) 0

0 Sp

)
.

(b) n even: We have 3 isomorphism classes of involutions, the 2 from above plusM =

J2m.

Remark8. Table 4.1 includes a complete summary of the Outer Involutions of SL(n, k)

and can be found at the end of Chapter 4.

4.4 Inner Involutions

The inner involutions ofG do not come from bilinear forms. We will need the classification

of these involutions when we focus on the subgroup SP(2n, k) of SL(2n, k) therefore it is
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necessary to give an overview of these results. We begin by noting that for any automor-

phismθ of inner type, there exist an × n matrix Y ∈ GL(n, k̄), such thatθ = InnY |G.

Lemma 9. Let Y∈ GL(n, k̄). If InnY |G = Id, then Y= pI for some p∈ k̄, i.e. InnY = Id

overGL(V̄).

Proof. Since InnY |G = Id, we have for allA ∈ SL(n, k), InnY(A) = Y−1AY = A, i.e.

Y A = AY. Since A is arbitrary it follows thatY = pI for some p ∈ k̄. Furthermore

InnY = InnpI = InnI = Id.

Lemma 10([HWD04]). For any inner automorphismθ ∈ Inn(G), suppose Y∈ GL(n, k̄).

Thenθ = InnY ∈ Inn(Ḡ) keeps G invariant if and only if Y= pB, for some p∈ k̄ and

B ∈ GL(n, k). In other words, there is a matrix B∈ GL(n, k) such thatθ = InnB |G.

Remark9. Let Y ∈ GL(n, k). If we add the additional criteria that our automorphism is an

involution then we get the following result. If InnY is an involution, then InnY2 = Id and

Y2
= cIn×n.

Lemma 11. Let Y∈ GL(n, k) with Y2
= pI. Then

(1) If p = c2
∈ (k∗)2, then Y is conjugate to cIn−i,i = c

(
In−i 0

0 − Ii

)
(i = 0,1, ...n).

(2) If p is not in(k∗)2, then n is even and Y is conjugate toLn,p =



0 1 . . . 0 0

p 0 . . . 0 0
...

...
...

...
...

0 0 . . . 0 1

0 0 . . . p 0


.
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Proof. If there is ac ∈ k such thatp = c2, then the characteristic polynomial ofY is

(x − c)n−i (x + c)i , and the minimal polynomial is a factor of(x + c)(x − c). So Y is

conjugate tocIn−i,i for somei = 0,1, . . . ,n.

If p is not ink∗2, then the minimal polynomial is(x2
− p), which does not factor over

k, therefore the characteristic polynomial is a power of the minimal polynomial. Hencen,

which is the degree of the characteristic polynomial, is even. Furthermore,Y is conjugate

to L n
2 ,p

since they have the same minimal and characteristic polynomials.

We must now determine which of the above matrices gives us conjugate involutions.

Lemma 12 ([HWD04]). The matrices In−i,i and cIn− j, j are conjugate for some c∈ k if

and only if one of the following is true:

(1) c = 1 and i = j.

(2) c = −1 and j = n − i.

Lemma 13([HWD04]). Let p,q ∈ k̄∗/(k̄∗)2. The matrices Ln,p is conjugate to cLm,q for

some c∈ k if and only if p
q ∈ (k∗)2.

Theorem 4.2([HWD04]). Suppose the involutionθ ∈ Aut(G) is of inner type. Then up to

isomorphismθ is one of the following:

(1) InnY |G, where Y= In−i,i ∈ GL(n, k) where i∈
{
1,2, . . . , bn

2c
}
.

(2) InnY |G, where Y= L n
2 ,p

∈ GL(n, k) where p∈ k∗/k∗2, p 6≡ 1 modk∗2.

Note that(2) can only occur when n is even.

Corollary 1. The number of involutions of inner type ofSL(n, k) (n > 2) up to isomor-

phism is equal ton−1
2 if n is odd andn

2 + ||(k∗)/((k∗)2)|| − 1 if n is even.
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Remark10. (1) Table 4.1 contains a list of all the outer involutions of SL(n, k).

(2) Table 4.2 contains a list of all the inner involutions of SL(n, k).

(3) Table 4.3 provides a summary of both the inner and outer involutions of SL(n, k).

Table 4.1: Outer Involutions of SL(n, k)

Field Semi-Congruence ClassM Involution Class onG

k = k̄
n odd M = In×n θ(A) = (AT )−1

n even
M = In×n

M = J2m (n = 2m)
θ1(A) = (AT )−1

θ2(A) = InnJ2m(A
T )−1

k = R

n odd
Mi = In−i,i

i = 0,1,2, . . . , n−1
2

θi (A) = InnMi (A
T )−1

n even
Mi = In−i,i

i = 0,1,2, . . . , n
2

Mn
2+2 = J2m

θi (A) = InnMi (A
T )−1

θM n
2+2
(A) = InnJ2m(A

T )−1

k = Fp p 6= 2

n odd
M1 = In×n

M2 =

(
I(n−1)×(n−1) 0

0 Sp

) θ1(A) = (AT )−1

θ2(A) = InnM2(A
T )−1

n even

M1 = In×n

M2 =

(
I(n−1)×(n−1) 0

0 Sp

)
M3 = J2m

θ1(A) = (AT )−1

θ2(A) = InnM2(A
T )−1

θ3(A) = InnM3(A
T )−1
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Table 4.2: Inner Involutions of SL(n, k)

Field
Number of

Inner Involutions
Representative MatrixY

such thatθ = InnY

n odd,
k = any field

n−1
2 Y = In−i,i i = 1,2, . . . , n−1

2

n even
k = k̄ n

2 Y = In−i,i i = 1,2, . . . , n
2

k = R n
2 + 1

Y = In−i,i i = 1,2, . . . , n
2

Y = Ln,−1

k = Q ∞
Y = In−i,i i = 1,2, . . . , n

2
Y = Ln,α α 6= 1 mod(Q∗)2

k = Fp p 6= 2 n
2 + 1

Y = In−i,i i = 1,2, . . . , n
2

Y = Ln,Sp

Table 4.3: Number of Involution Classes of SL(n, k)

Field dim(V)
Number of Outer

Involutions
Number of Inner

Involutions
Total Number of

Involutions

k = k̄ n odd 1 n−1
2

n+1
2

n even 2 n
2

n
2 + 2

k = R n odd n+1
2

n−1
2 n

n even n
2 + 2 n

2 + 1 n + 3

k = Q n odd ∞
n−1

2 ∞

n even ∞ ∞ ∞

k = Fp

p 6= 2
n odd 2 n−1

2
n+3

2

n even 3 n
2 + 1 n

2 + 4



Chapter 5

Involutions of G = SP(2n, k)

5.1 Introduction

We begin this chapter be giving an introduction to the symplectic group SP(2n, k). We

give a detailed investigation of the skew-symmetric bilinear form and provide a formal

definition of SP(2n, k). Next we state the Characterization Theorem which will give us an

identifiable form for automorphisms of SP(2n, k). We conclude with a characterization of

involutions of SP(2n, k).

5.2 The Skew-Symmetric Form

Since throughout this thesis we have concentrated solely on fields of characteristic not

equal to 2, we have two equivalent definitions for a skew-symmetric bilinear form.

Definition 14. A bilinear formβ : V × V → k on a vector spaceV = kn is skew-symmetric

if

β(x, x) = 0 for all x ∈ V.

Equivalently,β : V × V → k is skew-symmetric if

β(x, y) = −β(y, x) for all x, y ∈ V.

39
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To derive the second definition of a skew-symmetric bilinear form from the first one con-

sider the following,

β(x + y, x + y) = β(x, x)+ β(x, y)+ β(y, x)+ β(y, y)

and use the fact thatβ(x + y, x + y) = β(x, x) = β(y, y) = 0.

Conversely, if the second definition holds, that isβ(x, y) = −β(y, x) then by settingx = y

we see thatβ(x, x) = −β(x, x) which implies that 2β(x, x) = 0 which meansβ(x, x) = 0.

We note here that the following case of course does not hold if the characteristic ofk is 2.

Theorem 2.1 told us that a bilinear form is skew-symmetric if and only if the matrix

A of the form has the property thatA = −AT. In addition, unlike a symmetric matrix

B, whereB must be congruent to some diagonal matrix, all skew-symmetric matrices are

congruent toJm wherem is even. This is seen in the following theorem.

Theorem 5.1([Sch85]). Let A be a nonsingular skew-symmetric m× m matrix. Then m is

even and there is a matrix Q∈ GL(m, k) such that QT AQ = Jm.

Remark11. (1) Since all skew-symmetric matrices are congruent toJm there is only one

skew-symmetric bilinear form, up to a change of basis, represented byβ(x, y) =

xT Jy.

(2) If m is odd andA represents a skew-symmetric bilinear formβ then we knowA =

−AT. This means that det(A) = (−1)mdet(AT ), which implies det(A) = 0 and

hence,A must be singular. Since all our matrices are non-singular we know thatm

will never be odd.

5.3 Definition of SP(2n, k)

In Definition 11 we defined the orthogonal group O(m, k, β) as the following.

Given a non-degenerate symmetric or skew-symmetric bilinear formβ on V = km

O(m, k, β) = {A ∈ GL(m, k) | β(Ax, Ay) = β(x, y)}

= {A ∈ |GL(m, k)|AA
′

= I}.
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Similarly, one can also define the special orthogonal group SO(m, k, β) as

SO(m, k, β) = {A ∈ SL(m, k) | β(Ax, Ay) = β(x, y)}

= {A ∈ SL(m, k)|AA
′

= I}.

Now by considering the sole skew-symmetric bilinear form given byβ(x, y) = xT Jy

we are able to define the symplectic group SP(m, k) as

SP(m, k) = O(m, k, β)

{A ∈ GL(m, k)|β(Ax, Ay) = β(x, y)}

= {A ∈ GL(m, k)|AA
′

= I}

= {A ∈ GL(m, k)|AJ−1AT J = I}

= {A ∈ GL(m, k)|AT JA = J}.

Since we knowm must be even from this point on we will use the notation SP(2n, k)

to represent our symplectic group. The following theorem gives us more insight into

SP(2n, k).

Theorem 5.2([Sch85]). All elements ofSP(2n, k) have determinant1.

We originally defined SP(2n, k) as O(2n, k, β), whereβ represents the skew-symmetric

bilinear form, however, Theorem 5.2 tells that for anyA ∈ SP(2n, k) det(A) = 1. That

being said we may view SP(2n, k) = SO(2n, k, β). Hence SP(2n, k) is a subgroup of

SL(2n, k).

SP(2n, k) is generated by the matrices

(
A 0

0 (AT )−1

)
,

(
In B

0 In

)
,

(
In 0

B In

)

whereA runs through SL(n, k) and B runs through all then × n symmetric matrices

overk, (i.e. B = BT).

We can also view SP(2n, k) as the space generated by the matrices.
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(
A 0

0 (AT )−1

)
,

(
In B

0 In

)
,

(
0 In

− In 0

)
whereA andB are as defined above. [Ome78]

The reason for this is that

(
0 I

− I 0

)
=

(
I I

0 I

)(
I 0

− I I

)(
I I

0 I

)
and

(
I 0

B I

)
=

(
0 I

− I 0

)−1(
I −B

0 I

)(
0 I

− I 0

)

Throughout this chapter,G = SP(2n, k) andḠ = SP(n, k̄).

5.4 Involutions of G = SP(2, k)

In Chapter 3 we discussed the results for SL(2, k) in detail. The reason for this is demon-

strated by the next theorem.

Theorem 5.3. SP(2, k) = SL(2, k).

Proof. If A ∈ SP(2, k) then by definitionA ∈ SL(2, k) thus, SP(2, k) ⊂ SL(2, k). Let

A =

(
a b

c d

)
∈ SL(2, k). Consider

AT JA =

(
a c

b d

)(
0 1

−1 0

)(
a b

c d

)

=

(
0 ad− bc

−ad+ bc 0

)
.
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SinceA ∈ SL(2, k), det(A)=1, ie.ad− bc = 1 and−ad+ bc = −1. Therefore(
0 ad− bc

−ad+ bc 0

)
=

(
0 1

−1 0

)

and thusAT JA = J so SL(2, k) ⊂ SP(2, k). Hence SL(2, k) = SP(2, k)

The above theorem tells us that the isomorphism classes of involutions of SP(2, k) are

precisely the isomorphism classes of SL(2, k) which leave SP(2, k) invariant.

5.5 Automorphisms of SP(2n, k)

Lemma 14([Bor91]). (1) If k is an algebraically closed field, thenAut(G) = Inn(G).

(2) For anyθ ∈ Aut(G) there is a matrix A∈ SL(2n, k̄) such thatθ = InnA |G.

i.e. All automorphisms of SP(2n, k̄) are of type inner.

5.5.1 InnA = Id

Our true desire is to determine what happens when we require our inner automorphism

θ = InnA to hold Ḡ andG invariant. Before we explore this concept in detail we discuss a

topic which will prove extremely useful in proving numerous results.

Theorem 5.4. If InnA |G = Id for some A∈ GL(2n, k̄) then A= pI for some p∈ k̄.

Proof. Suppose InnA |G = Id for some A ∈ GL(2n, k̄). Then for all X ∈ G we have

InnA(X) = A−1X A = X which means thatAX = X A for all X ∈ G. Let

A =

(
A1 A2

A3 A4

)



Chapter 5. Involutions of G = SP(2n, k) 44

and consider the matrix

W1 =

(
In In

0 In

)
.

SinceW1 ∈ G, AW1 = W1A which implies

(
A1 A2

A3 A4

)(
In In

0 In

)
=

(
In In

0 In

)(
A1 A2

A3 A4

)

(
A1 A1 + A2

A3 A3 + A4

)
=

(
A1 + A3 A2 + A4

A3 A4

)
.

Hence,A3 = 0 andA1 = A4. With this information in hand we are now able to rewrite

A as A =

(
A1 A2

0 A1

)
. We now consider the matrixW2 =

(
In 0

In In

)
. Now W2 is also inG

and thusAW2 = W2A and thus(
A1 A2

0 A1

)(
In 0

In In

)
=

(
In 0

In In

)(
A1 A2

0 A1

)
(

A1 + A2 A2

A1 A1

)
=

(
A1 A2

A1 A2 + A1

)
.

Which implies thatA2 = 0 and thusA =

(
A1 0

0 A1

)
.

Let

X̄k =

(
Xk 0

0 Xk

)
where

Xk :=


In−k−1 . . . 0

... −1
...

0 . . . Ik


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andk = 0,1, ...,n − 1. Then X̄k ∈ G and hence we may utilize the fact thatAX̄k = X̄k A,

to conclude that

(
A1Xk 0

0 A1Xk

)
=

(
Xk A1 0

0 Xk A1

)
.

From the above equality we see thatA1Xk = Xk A1. Define A1 = (ai, j ) for i, j =

1,2, ..,n. ThenA1Xk = Xk A1 implies

a11 a12 . . . −a1,n−k . . . a1,n

a21 a22 . . . −a2,n−k . . . a2,n
...

... . . .
... . . .

...

an−k,1 an−k,2 . . . −an−k,n−k . . . an−k,n
...

... . . .
... . . .

...

an,1 an,2 . . . −an,n−k . . . an,n


=



a11 a12 . . . a1,n−k . . . a1,n

a21 a22 . . . a2,n−k . . . a2,n
...

... . . .
... . . .

...

−an−k,1 −an−k,2 . . . −an−k,n−k . . . −an−k,n
...

... . . .
... . . .

...

an,1 an,2 . . . an,n−k . . . an,n


.

Hence, it follows thatan−k, j = a j,n−k = 0 for j 6= n − k and k = 0,1...,n − 1, j =

1,2, ..,n. Therefore we now obtain the fact thatA is a diagonal matrix say,

A =

(
Ad 0

0 Ad

)
with Ad =


a11 0 . . . 0

0 a22 . . . 0
...

...
... 0

0 0 . . . an,n

 .
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Let

Ȳl =

(
Yl 0

0 Yl

)
where Yl =



Il 0 0 . . . 0

0 0 1 . . . 0

0 1 0 . . . 0
...

... In−l−2×n−l−2

0 0


andl = 0,1, ...,n − 2. ThenȲl ∈ SP(2n, k) and againAȲl = Ȳl A which impliesAdYl =

Yl Ad. Therefore, we obtain the following equality

a11 0 0 0 0 0 0 0 0

0 a22 0 0 0 0 0 0 0

0 0
... 0 0 0 0 0

0 0 0 all 0 0 0 0 0

0 0 0 0 0 al+1,l+1 0 0

0 0 0 0 al+2,l+2 0 0 0 0

0 0 0 0 0 0 al+3,l+3 0 0

0 0 0 0 0 0 0
... 0

0 0 0 0 0 0 0 0 an,n



=



a11 0 0 0 0 0 0 0 0

0 a22 0 0 0 0 0 0 0

0 0
... 0 0 0 0 0

0 0 0 all 0 0 0 0 0

0 0 0 0 0 al+2,l+2 0 0

0 0 0 0 al+1,l+1 0 0 0 0

0 0 0 0 0 0 al+3,l+3 0 0

0 0 0 0 0 0 0
... 0

0 0 0 0 0 0 0 0 an,n


Henceal+1,l+1 = al+2,l+2 for l = 0,1, ...,n− 2. That isA = p Id for somep ∈ k̄.
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5.5.2 Characterization Theorem

With Theorem 5.4 in hand we now return to the question of which inner automorphisms

InnA with A ∈ GL(2n, k̄) keepḠ = SP(2n, k̄) andG = SP(2n, k) invariant. The following

theorem provides us with the answers.

Theorem 5.5.Suppose A∈ GL(2n, k̄) , Ḡ = SP(2n, k̄) and G= SP(2n, k) .

(1) The inner automorphismInnA keepsḠ invariant if and only if A= pM for some

p ∈ k̄ and M∈ Ḡ.

(2) If A ∈ Ḡ, thenInnA keeps G invariant if and only if A= pM for some p∈ k̄ and

M ∈ G.

The proof of Theorem 5.5 (1) will go through smoothly however the second claim

will require significantly more work. Because of the additional work required to prove

Theorem 5.5 (2) we begin by giving an outline of the procedure used in the proof followed

by an example for the specific case when 2n = 6.

Outline of Proof

After proving Theorem 5.5 (1), which will follow through with ease, we now are able

to use the fact that InnA keepsḠ invariant if and only if A = pM for some p ∈ k̄ and

M ∈ Ḡ. In addition, we also use the fact that InnM = InnpM (see Remark 3, Chapter 2) to

prove Theorem 5.5 (2). Assuming thatA = pM for somep ∈ k̄ andM ∈ G and deriving

that InnA keepsG invariant is relatively simple. However, the forward direction must be

broken down into several steps. We begin by assuming thatA ∈ Ḡ and InnA keepsG

invariant. Our first step is to show thatari ar j + asiasj are in our base fieldk of G for all

i, j, r, s = 1,2, ...,2n with r 6= s. The proof of this is broken into 3 cases depending on

whether(1) r, s ≤ n (2) r, s> n, (3) r ≤ n ands> n. We then are able to use the fact

thatari ar j + asiasj ∈ k to show thatari ar j ∈ k. The proof of this portion is broken into two

cases fori > n andi ≤ n. Lastly, we will show thatari asj ∈ k which will give us our desired

result. The proof of this last fact will be by far the most complex portion and will involve

3 cases each with 3 subcases.
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5.5.3 Notation

The following is a list of notation which will be used in the proof of Theorem 5.5.

Let Xr.s be then × n diagonal matrix with a−1 in the (r, r ) and (s, s) entries and 1’s

everywhere else.

Let Xr be then × n diagonal matrix with a−1 in the(r, r ) position and 1’s everywhere

else.

Let Er,s be then × n matrix with a 1 in the(r, s) entry and 0′s everywhere else.

Let Tc be thec × c antidiagonal matrix with 1’s on the antidiagonal and 0’s everywhere

else.

Let Ic be thec × c identity matrix. If the size of the identity matrix is understood from

the context thenI may be used to representIc.
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J2n = J =

(
0 In

− In 0

)
(5.1)

Yr,s =

(
Tr+s−1 0

0 In−(r+s−1)

)
(5.2)

Zr,s =

(
Yr,s 0

Er,s Yr,s

)
(5.3)

Z̄r,s =

(
−Yr,s 0

Er,s −Yr,s

)
(5.4)

Z′
r,s =

(
Yr−n,s−n Er−n,s−n

0 Yr−n,s−n

)
(5.5)

Z̄′
r,s =

(
Yr−n,s−n Er−n,s−n

0 Yr−n,s−n

)
(5.6)

Mr,s =

(
Es−n,r Ys−n,r

−Ys−n,r 0

)
(5.7)

M̄r,s =

(
Es−n,r −Ys−n,r

Ys−n,r 0

)
(5.8)

Ur,s =

(
I−n+(r+s−1) 0

0 T2n−(r+s−1)

)
(5.9)

Vr,s =

(
Ur,s 0

Er,s Ur,s

)
(5.10)

V̄r,s =

(
−Ur,s 0

Er,s −Ur,s

)
(5.11)

(5.12)
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V′
r,s =

(
Ur−n,s−n Er−n,s−n

0 Ur−n,s−n

)
(5.13)

V̄′
r,s =

(
−Ur−n,s−n Er−n,s−n

0 −Ur−n,s−n

)
(5.14)

Nr,s =

(
Es−n,r Us−n,r

−Us−n,r 0

)
(5.15)

N̄r,s =

(
Es−n,r −Us−n,r

Us−n,r 0

)
(5.16)

Wr,s =

(
Tn 0

Er,s Tn

)
(5.17)

W̄r,s =

(
−Tn 0

Er,s −Tn

)
(5.18)

W′
r,s =

(
Tn Er−n,s−n

0 Tn

)
(5.19)

W̄′
r,s =

(
−Tn Er−n,s−n

0 −Tn

)
(5.20)

Fr,s =

(
Es−n,r Tn

Tn 0

)
(5.21)

F̄r,s =

(
Es−n,r −Tn

−Tn 0

)
(5.22)

5.5.4 Proof of Characterization Theorem Part II, 2n = 6

Remark12. In the proof of Theorem 5.5 (2) we will make constant use of Theorem 5.5

(1), that is an inner automorphism InnA keepsḠ invariant if and only ifA = pM for some

p ∈ k̄ andM ∈ Ḡ. We will begin by assuming thatA ∈ Ḡ which means thatAT JA = J or

more importantly thatA−1
= J−1AT J. By viewing A−1

= J−1AT J we are able to define
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our inner automorphisms as

InnA(X) = A−1X A = J−1AT J X A.

So every time we apply our inner automorphism toG we will be using the fact that

InnA(X) = J−1AT J X A.

Theorem 5.6.Suppose A∈ GL(6, k̄) , Ḡ = SP(6, k̄) and G= SP(6, k).

If A ∈ Ḡ, thenInnA keeps G invariant if and only if A= pM for some p∈ k̄ and M∈ G.

Proof. SupposeA = (ai j ) ∈ Ḡ and InnA keepsG invariant. We will first show thatari ar j +

asiasj ∈ k for r 6= s.

Case I: Supposer, s ≤ 3. Without loss of generality letr < s.

We look at the specific case wherr = 1 ands = 2 to illustrate this situation.

To isolate the elementa1ia1 j + a2ia2, j we need to concentrate on the lower left hand block.

We begin by noting that the matrices

J,

(
I I

0 I

)
, and

(
I 0

X12 I

)
=



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

−1 0 0 1 0 0

0 −1 0 0 1 0

0 0 1 0 0 1



all lie in G. More importantly, since InnA keepsG invariant the sum InnA(J)− InnA

(
I I

0 I

)
+

InnA

(
I 0

X12 I

)
is in G and thus has entries ink. Therefore, since

InnA(J)− InnA

(
I I

0 I

)
+ InnA

(
I 0

X12 I

)
=
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

2a14a1 j + 2a24a2 j

2a15a1 j + 2a25a2 j

2a16a1 j + 2a26a2 j

−2a11a1 j − 2a21a2 j

−2a12a1 j − 2a22a2 j

−2a13a1 j − 2a23a2 j


where j corresponds to the column we obtain our desired result thata1,ia1, j + a2,ia2, j ∈ k.

We note here that in the proof of the general case, this case actually splits into two subcases.

This is hinted upon in this example since you see that fori ≤ 3 the entries are multiplied

by a 2 while fori > 3 the entries are multiplied by a−2. Although this fact is handled in

detail in the general proof we simply mention it during this illustration.

Note: To obtain the results thata1ia1 j + a3ia3 j anda2ia2 j + a3ia3 j are ink, follow the

exact procedure above but replaceX12 with X13 andX23 respectively.

Case II: Supposer, s> 3. Without loss of generality we assumer < s.

Let’s consider the case wherer = 4 ands = 5.

Similar to Case I we are able to determine that in order to isolate thea4ia4 j + a5ia5 j element

we need to focus on the lower left hand block. We first observe that each of the following

matrices are inG

J,

(
I 0

I I

)
and

(
I X4−3,5−3

0 I

)
=



1 0 0 −1 0 0

0 1 0 0 −1 0

0 0 1 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


.
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Again utilizing the fact that InnA holdsG invariant we know the sum

InnA(J)+ InnA

(
I 0

I I

)
− InnA

(
I X4−3,5−3

0 I

)
=



2a44a4 j + 2a54a5 j

2a45a4 j + 2a55a5 j

2a46a4 j + 2a56a5 j

−2a41a4 j − 2a51a5 j

−2a42a4 j − 2a52a5 j

−2a43a4 j − 2a53a5 j


where j corresponds to the column, lies inG with entries in the base fieldk. Hence we may

conclude thata4ia4 j + a5ia5 j ∈ k.

Note: To conclude that the elementsa4ia4 j + a6ia6 j and a5ia5 j + a6ia6 j both lie in k

one must simply follow the above calculation substitutingX4−3,6−3 and X5−3,6−3 in for

X4−3,5−3 respectively.

Case III: Supposer ≤ 3 ands> 3.

In this case we look at the situation wherer = 3 ands = 4.

Sincer ≤ 3 ands> 3 in this case we must focus on both the lower left hand block to obtain

entries involvingr = 3 and the upper right hand block to obtain entries involvings = 4.

We begin by observing that the matrixJ and the matrices

(
I X4−3

I O

)
=



1 0 0 −1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


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and

(
I 0

X3 I

)
=



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 1 0 0

0 1 0 0 1 0

0 0 −1 0 0 1


all lie in G. We again focus on the sum

InnA(J)+ InnA

(
I 0

X3 I

)
− InnA

(
I X4−3

I O

)
=



2a34a3 j + 2a44a4 j

2a35a3 j + 2a45a4 j

2a36a3 j + 2a46a4 j

−2a31a3 j − 2a41a4 j

−2a32a3 j − 2a42a4 j

−2a33a3 j − 2a43a4 j


where j corresponds to the column, which must lie inG since InnA keepsG invariant.

Therefore, we are able to conclude thata3ia3 j + a4ia4 j must lie in k.

Note: Below I list the matrices that you need to replaceX4−3 and X3 respectively, in the

above procedure to obtain the desired element.

(1) a3ia3 j + a5ia5 j useX5−3 andX3

(2) a3ia3 j + a6ia6 j useX6−3 andX3

(3) a1ia1 j + a4ia4 j useX4−3 andX1

(4) a1ia1 j + a5ia5 j useX5−3 andX1

(5) a1ia1 j + a6ia6 j useX6−3 andX1
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(6) a2ia2 j + a4ia4 j useX4−3 andX2

(7) a2ia2 j + a5ia5 j useX5−3 andX2

(8) a2ia2 j + a6ia6 j useX6−3 andX2

By combining Cases I, II, and III we can conclude thatari ar j + asiasj ∈ k for all

i, j = 1,2, ...6 andr 6= s.

We are now able to use the fact thatar,iar, j + as,ias, j ∈ k for all i, j = 1,2, ...6 and

r 6= s to show thatar,iar, j ∈ k for all i, j = 1,2, ...,6. However, we must show this in two

cases. We will first show thatar,lar, j ∈ k for all l ≤ 3 and then show thatar,lar, j ∈ k for all

l > 3. Without loss of generality it shall suffice to showa1,la1, j ∈ k for all l .

Case I:Assumei > 3

The (i, j ) entry of InnA(J) is given by

a1,i−3a1, j − a2,i−3a2, j − a3,i−3a3, j − a4,i−3a4, j − a5,i−3a5, j − a6,i−3a6, j

which must lie ink since InnA holdsG invariant. Moreover,−1 times the(i, j ) entry of

InnA(J) lies in k. From our previous argument we know thatari ar j + asiasj ∈ k for all

r, s, i, j = 1,2, ...6 with r 6= s. Hence the equality

a1,i−3a1, j =

(a1,i−3a1, j − a2,i−3a2, j − a3,i−3a3, j − a4,i−3a4, j − a5,i−3a5, j − a6,i−3a6, j )+ (−1/2)(a2,i−3a2, j −

a3,i−3a3, j )+ (−1/2)(a3,i−3a3, j − a4,i−3a4, j )+ (−1/2)(a4,i−3a4, j − a5,i−3a5, j )+

(−1/2)(a5,i−3a5, j − a6,i−3a6, j )+ (−1/2)(a6,i−3a6, j + a2,i−3a2, j )

must lie ink, i.e. a1,i−3a1, j ∈ k. Since we assumedi > 3 we can conclude thata1la1, j ∈ k

for l ≤ 3.
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Case II: Assumei ≤ 3.

In this situation the(i, j ) entry of InnA(J) is given by

a1,i+3a1, j − a2,i+3a2, j − a3,i+3a3, j − a4,i+3a4, j − a5,i+3a5, j − a6,i+3a6, j

which of course lies ink. In addition,−1 times this entry also lies ink. Again using the

fact thatari ar j + asiasj ∈ k for all r, s, i, j = 1,2, ...6 with r 6= s we observe the equality

a1,i+3a1, j =

(a1,i+3a1, j − a2,i+3a2, j − a3,i+3a3, j − a4,i+3a4, j − a5,i+3a5, j − a6,i+3a6, j )+ (−1/2)(a2,i+3a2, j −

a3,i+3a3, j )+ (−1/2)(a3,i+3a3, j − a4,i+3a4, j )+ (−1/2)(a4,i+3a4, j − a5,i+3a5, j )+

(−1/2)(a5,i+3a5, j − a6,i+3a6, j )+ (−1/2)(a6,i+3a6, j + a2,i+3a2, j ).

The above equality enables us to conclude that the elementa1,i+3a1, j must lie ink. Since

in this case we assumed thati ≤ 3 we obtain the fact thata1la1, j ∈ k for l > 3.

Combining Cases I and II we see thata1iai j ∈ k for i, j = 1,2, ...,6.

Using a similar argument it is easily verified thatari ar j ∈ k for r = 2,3, ..,6.

I will finally show thatari asj ∈ k

In each of the following cases the methodology involved in proving the case is the same.

In every case we will use our assumption that InnA keepsG invariant and thus if we choose

any general matrixB1 ∈ G then InnA(B1) ∈ G. Next, we use the fact that ifB1 andB2 are

both in G then the sum InnA(B1) + InnA(B2) ∈ G to obtain our desired result. We will

explain this in detail in case I subcase 1 only.

CASE I: Supposer, s ≤ 3. Without loss of generality we will assume thatr < s.

The lower left block controls theari asj elements forr ands less than 3. Hence in each of

the following subcases we put a 1 in the(r, s) entry of this block to isolate that element.

The diagonal blocks must also have a 1 in the(r, s) entry but require a different form de-

pending on the relationship betweenr ands. The following subcases illustrates this fact.
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Subcase 1:Supposer + s< 4.

We will look at the specific case wherer = 1 ands = 2.

Here we first chooseY1,2 =

(
T2 0

0 I1

)
and

Z1,2 =

(
Y1,2 0

E1,2 Y1,2

)
=



0 1 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 1 0

0 0 0 1 0 0

0 0 0 0 0 1


.

Now Z1,2 ∈ G and since InnA keepsG invariant InnA(Z1,2) ∈ G. In addition, the matrix

Z̄1,2 =

(
−Y1,2 0

E1,2 −Y1,2

)
=



0 −1 0 0 0 0

−1 0 0 0 0 0

0 0 −1 0 0 0

0 1 0 0 −1 0

0 0 0 −1 0 0

0 0 0 0 0 −1


lies in G and thus InnA( Z̄1,2) ∈ G. The sum InnA(Z1,2)+ InnA( Z̄1,2) ∈ G which means

that its entries must lie in the base fieldk. We now observe the matrix

InnA(Z1,2)+ InnA( Z̄1,2) =

−2a2,1a1,4 −2a2,2a1,4 −2a2,3a1,4 −2a2,4a1,4 −2a2,5a1,4 −2a2,6a1,4

−2a2,1a1,5 −2a2,2a1,5 −2a2,3a1,5 −2a2,4a1,5 −2a2,5a1,5 −2a2,6a1,5

−2a2,1a1,6 −2a2,2a1,6 −2a2,3a1,6 −2a2,4a1,6 −2a2,5a1,6 −2a2,6a1,6

2a2,1a1,1 2a2,2a1,1 2a2,3a1,1 2a2,4a1,1 2a2,5a1,1 2a2,6a1,1

2a2,1a1,2 2a2,2a1,2 2a2,3a1,2 2a2,4a1,2 2a2,5a1,2 2a2,1a1,2

2a2,1a1,4 2a2,2a1,3 2a2,3a1,3 2a2,4a1,3 2a2,5a1,3 2a2,1a1,3


.



Chapter 5. Involutions of G = SP(2n, k) 58

Which tells us that the elementa2,ia1, j ∈ k for i, j = 1,2, ...6. Sincea1,ia2, j = a2, ja1,i we

may also conclude thata1, ja2,i ∈ k.

It is important to note that in the general proof of Theorem 5.5 (2) the entries of

InnA(Zr,s), InnA( Z̄r,s) and InnA(Zr, s) + InnA( Z̄r,s) are broken into two cases depend-

ing on whetheri ≤ n or i > n. The reason for this can be seen in the example above for the

sum InnA(Z1,2)+ InnA( Z̄1,2). For i ≤ 3 we get−2 being multiplied by each entry and

for i > 3 we simply get a 2 multiplied by each entry. Although this difference is addressed

in detail in the general proof we simply illustrate the procedure here.

Subcase 2:Supposer + s> 4.

We look at the case wherer = 2 ands = 3.

We first considerU2,3 =

(
I1 0

0 T2

)
. We then choose

V2,3 =

(
U2,3 0

E2,3 U2,3

)
=



1 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 1

0 0 0 0 1 0


and

V̄2,3 =



−1 0 0 0 0 0

0 0 −1 0 0 0

0 −1 0 0 0 0

0 0 0 −1 0 0

0 0 1 0 0 1

0 0 0 0 −1 0


SinceV2,3 andV̄23 both lie inG the sum

InnA(V2,3)+ InnA(V̄2,3) =
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

−2a3,1a2,4 −2a3,2a2,4 −2a3,3a2,4 −2a3,4a2,4 −2a3,5a2,4 −2a3,6a2,4

−2a3,1a2,5 −2a3,2a2,5 −2a3,3a2,5 −2a3,4a2,5 −2a3,5a2,5 −2a3,6a2,5

−2a3,1a2,6 −2a3,2a2,6 −2a3,3a2,6 −2a3,4a2,6 −2a3,5a2,6 −2a3,6a2,6

2a3,1a2,1 2a3,2a2,1 2a3,3a2,1 2a3,4a2,1 2a3,5a2,1 2a3,6a2,1

2a3,1a2,2 2a3,2a2,2 2a3,3a2,2 2a3,4a2,2 2a3,5a2,2 2a3,6a2,2

2a3,1a2,3 2a3,2a2,3 2a3,3a2,3 2a3,4a2,3 2a3,5a2,3 2a3,6a2,3


has entries ink. We specifically are able to conclude thata3,ia2, j = a2, ja3,i ∈ k as desired.

Subcase 3:Supposer + s = 4.

We will look at the case whenr = 1 ands = 3.

For this case we choose

W1,3 =

(
T3 0

E1,3 T3

)
=



0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0


and

W̄1,3 =

(
−T3 0

E1,3 −T3

)
=



0 0 −1 0 0 0

0 −1 0 0 0 0

−1 0 0 0 0 0

0 0 1 0 0 −1

0 0 0 0 −1 0

0 0 0 −1 0 0


We then consider the sum

InnA(W1,3)+ InnA(W̄1,3) =
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

−2a3,1a1,4 −2a3,2a1,4 −2a3,3a1,4 −2a3,4a1,4 −2a3,5a1,4 −2a3,6a1,4

−2a3,1a1,5 −2a3,2a1,5 −2a3,3a1,5 −2a3,4a1,5 −2a3,5a1,5 −2a3,6a1,5

−2a3,1a1,6 −2a3,2a1,6 −2a3,3a1,6 −2a3,4a1,6 −2a3,5a1,6 −2a3,6a1,6

2a3,1a1,1 2a3,2a1,1 2a3,3a1,1 2a3,4a1,1 2a3,5a1,1 2a3,6a1,1

2a3,1a1,2 2a3,2a1,2 2a3,3a1,2 2a3,4a1,2 2a3,5a1,2 2a3,6a1,2

2a3,1a1,3 2a3,2a1,3 2a3,3a1,3 2a3,4a1,3 2a1,5a1,3 2a3,6a1,3


and again observe that it lies inG and thus must have entries ink. Thus we may conclude

thata3,ia1, j = a1, ja3,i ∈ k as desired.

CASE II: Supposer, s> 3. Without loss of generality assumer < s.

In this case the upper right hand block controls the elementsari asj. However, since both

r ands are greater than 3 we must place a 1 in the(r − 3, s− 3) entry of the upper right

block to isolate the element. As in Case I, the entries on the diagonal blocks vary based on

the relationship betweenr ands and are given by the following subcases.

Subcase 1:Supposer + s− 6< 4

Let’s consider the specific case wherer = 4 ands = 5 for this situation.

We begin by choosing

Z′

4,5 =

(
Y4−3,5−3 E4−3,5−3

0 Y4−3,5−3

)
=

(
Y1,2 E1,2

0 Y1,2

)
=



0 1 0 0 1 0

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 0 0 1


and
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Z̄′
4,5 =

(
−Y1,2 E1,2

0 −Y1,2

)
=



0 −1 0 0 1 0

−1 0 0 0 0 0

0 0 −1 0 0 0

0 0 0 0 −1 0

0 0 0 −1 0 0

0 0 0 0 0 −1


both of which lie inG. Next we observe that

InnA(Z
′

4,5)+ InnA( Z̄′
4,5) =



2a5,1a4,4 2a5,2a4,4 2a5,3a4,4 2a5,4a4,4 2a5,5a4,4 2a5,6a4,4

2a5,1a4,5 2a5,2a4,5 2a5,3a4,5 2a5,4a4,5 2a5,5a4,5 2a5,6a4,5

2a5,1a4,6 2a5,2a4,6 2a5,3a4,6 2a5,4a4,6 2a5,5a4,6 2a5,6a4,6

−2a5,1a4,1 −2a5,2a4,1 −2a5,3a4,1 −2a5,4a4,1 −2a5,5a4,1 −2a5,6a4,1

−2a5,1a4,2 −2a5,2a4,2 −2a5,3a4,2 −2a5,4a4,2 −2a5,5a4,2 −2a5,6a4,2

−2a5,1a4,3 −2a5,2a4,3 −2a5,3a4,3 −2a5,4a4,3 −2a5,5a4,3 −2a5,6a4,3


is in G which of course means it has entries ink. Therefore,a5,ia4, j = a4, ja5,i ∈ k.

Subcase 2:Supposer + s− 6> 4

In this case we will look at the situation wherer = 5 ands = 6.

We begin by choosing

V′

5,6 =

(
U5−3.6−3 E5−3.6−3

0 U5−3.6−3

)
=

(
U2,3 E2,3

0 U2,3

)
=



1 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 1 0


and
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V̄′
5,6 =

(
−U2,3 E2,3

0 −U2,3

)
=



−1 0 0 0 0 0

0 0 −1 0 0 1

0 −1 0 0 0 0

0 0 0 −1 0 0

0 0 0 0 0 −1

0 0 0 0 −1 0


.

We then consider the sum

InnA(V
′

4,5)+ InnA(V̄′
4,5) =

2a6,1a5,4 2a6,2a5,4 2a6,3a5,4 2a6,4a5,4 2a6,5a5,4 2a6,6a5,4

2a6,1a5,5 2a6,2a5,5 2a6,3a5,5 2a6,4a5,5 2a6,5a5,5 2a6,6a5,5

2a6,1a5,6 2a6,2a5,6 2a6,3a5,6 2a6,4a5,6 2a6,5a5,6 2a6,6a5,6

−2a6,1a5,1 −2a6,2a5,1 −2a6,3a5,1 −2a6,4a5,1 −2a6,5a5,1 −2a6,6a5,1

−2a6,1a5,2 −2a6,2a5,2 −2a6,3a5,2 −2a6,4a5,2 −2a6,5a5,2 −2a6,6a5,2

−2a6,1a5,3 −2a6,2a5,3 −2a6,3a5,3 −2a6,4a5,3 −2a6,5a5,3 −2a6,6a5,3


which in in G. Hence, we can conclude thata6,ia5, j = a5, ja6,i ∈ k.

Subcase 3:Supposer + s− 6 = 4.

Let’s considerr = 4 ands = 6.

We first look at the two matrices inG given by

W′

4,6 =

(
T3 E4−3,6−3

0 T3

)
=

(
T3 E1.3

0 T3

)
=



0 0 1 0 0 1

0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0


and
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W̄′
4,6 =

(
−T3 E1,3

0 −T3

)
=



0 0 −1 0 0 1

0 −1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 −1

0 0 0 0 −1 0

0 0 0 −1 0 0


.

We then observe the sum

InnA(W
′

4,6)+ InnA(W̄′
4,6) =

2a6,1a4,4 2a6,2a4,4 2a6,3a4,4 2a6,4a4,4 2a6,5a4,4 2a6,6a4,4

2a6,1a4,5 2a6,2a4,5 2a6,3a4,5 2a6,4a4,5 2a6,5a4,5 2a6,6a4,5

2a6,1a4,6 2a6,2a4,6 2a6,3a4,6 2a6,4a4,6 2a6,5a4,6 2a6,6a4,6

−2a6,1a4,1 −2a6,2a4,1 −2a6,3a4,1 −2a6,4a4,1 −2a6,5a4,1 −2a6,6a4,1

−2a6,1a4,2 −2a6,2a4,2 −2a6,3a4,2 −2a6,4a4,2 −2a6,5a4,2 −2a6,6a4,2

−2a6,1a4,3 −2a6,2a4,3 −2a6,3a4,3 −2a6,4a4,3 −2a6,5a4,3 −2a6,6a4,3


which has entries ink. Hence, we are able to see that the entriesa6,ia4, j = a4, ja6,i ∈ k as

desired.

CASE III: Supposer ≤ 3 ands> 3.

Case III differs slightly from Case I and Case II in that the upper left block controls the

elementari asj, a block on the diagonal. Since in this caser ≤ 3 ands> 3 we put a 1 in

the (s− 3, r ) entry of the upper left hand block. In this case the off diagonal blocks vary

depending on the relationship betweenr ands and divide into the following subcases.

Subcase 1:Supposer + s< 7.

In this situation we will look at the specific case wherer = 1 ands = 5.
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We begin by considering the two matrices

M1,5 =

(
E5−3,1 Y5−3,1

−Y5−3,1 0

)
=

(
E2,1 Y2,1

−Y2,1 0

)
=



0 0 0 0 1 0

1 0 0 1 0 0

0 0 0 0 0 1

0 −1 0 0 0 0

−1 0 0 0 0 0

0 0 −1 0 0 0


and

M̄1,5 =

(
E2,1 −Y2,1

Y2,1 0

)
=



0 0 0 0 −1 0

1 0 0 −1 0 0

0 0 0 0 0 −1

0 1 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0


.

We then observe the sum

InnA(M1,5)+ InnA(M̄1,5) =

2a5,4a1,1 2a5,4a1,2 2a5,4a1,3 2a5,4a1,4 2a5,4a1,5 2a5,4a1,6

2a5,5a1,1 2a5,5a1,2 2a5,5a1,3 2a5,5a1,4 2a5,5a1,5 2a5,5a1,6

2a5,6a1,1 2a5,6a1,2 2a5,6a1,3 2a5,6a1,4 2a5,6a1,5 2a5,6a1,6

−2a5,1a1,1 −2a5,1a1,2 −2a5,1a1,3 −2a5,1a1,4 −2a5,1a1,5 −2a5,1a1,6

−2a5,2a1,1 −2a5,2a1,2 −2a5,2a1,3 −2a5,2a1,4 −2a5,2a1,5 −2a5,2a1,6

−2a5,3a1,1 −2a5,3a1,2 −2a5,3a1,3 −2a5,3a1,4 −2a5,3a1,5 −2a5,3a1,6


which we know must be inG. We finally are able to conclude thata5,ia1, j = a1, ja5,i both

lie in k.

Note: To obtaina1,ia4, j = a4, ja1,i ∈ k simply chooseM1,4 =

(
E1,1 Y1,1

−Y1,1 0

)
and M̄1,4

accordingly and follow the procedure above. To obtaina2,ia4, j = a4, ja2,i ∈ k choose
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M2,4 =

(
E1,2 Y1,2

−Y1,2 0

)
andM̄2,4 and again follow the procedure above.

Subcase 2:Supposer + s> 7.

Specifically, letr = 2 ands = 6. Then by selecting

N2,6 =

(
E6−3,2 U6−3,2

−U6−3,2 0

)
=

(
E3,2 U3,2

−U3,2 0

)

and

N̄2,6 =

(
E3,2 −U3,2

U3,2 0

)

both of which are inG, we are able to obtain the fact that

InnA(N̄3,2)+ InnA(N3,2) =

2a6,4a2,1 2a6,4a2,2 2a6,4a2,3 2a6,4a2,4 2a6,4a2,5 2a6,4a2,6

2a6,5a2,1 2a6,5a2,2 2a6,5a2,3 2a6,5a2,4 2a6,5a2,5 2a6,5a2,6

2a6,6a2,1 2a6,6a2,2 2a6,6a2,3 2a6,6a2,4 2a6,6a2,5 2a6,6a2,6

−2a6,1a2,1 −2a6,1a2,2 −2a6,1a2,3 −2a6,1a2,4 −2a6,1a2,5 −2a6,1a2,6

−2a6,2a2,1 −2a6,2a2,2 −2a6,2a2,3 −2a6,2a2,4 −2a6,2a2,5 −2a6,2a2,6

−2a6,3a2,1 −2a6,3a2,2 −2a6,3a2,3 −2a6,3a2,4 −2a6,3a2,5 −2a6,3a2,6


must lie inG. More importantly its entriesa6,ia2, j = a2, ja6,i ∈ k.

Note: To conclude thata3,ia5, j = a5, ja3,i anda3,ia6, j = a6, ja3,i ∈ k simply follow the

procedure above chooseingN3,5 =

(
E2,3 U2,3

−U2,3 0

)
and N3,6 =

(
E3,3 U3,3

−U3,3 0

)
respec-

tively.

Subcase 3:Supposer + s = 7.

Let’s look at the situation whenr = 2 ands = 5. Here we choose
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F2,5 =

(
E5−3,2 T3

T3 0

)
=

(
E2,2 T3

T3 0

)
and F̄2,5 =

(
E2,2 −T3

−T3 0

)
As in the other cases we look specifically at the entries of InnA(S2,5)+

InnA(S̄2,5) which must lie inG. Now

InnA(F2,5)+ InnA( F̄2,5) =

2a5,4a2,1 2a5,4a2,2 2a5,4a2,3 2a5,4a2,4 2a5,4a2,5 2a5,4a2,6

2a5,5a2,1 2a5,5a2,2 2a5,5a2,3 2a5,5a2,4 2a5,5a2,5 2a5,5a2,6

2a5,6a2,1 2a5,6a2,2 2a5,6a2,3 2a5,6a2,4 2a5,6a2,5 2a5,6a2,6

−2a5,1a2,1 −2a5,1a2,2 −2a5,1a2,3 −2a5,1a2,4 −2a5,1a2,5 −2a5,1a2,6

−2a5,2a2,1 −2a5,2a2,2 −2a5,2a2,3 −2a5,2a2,4 −2a5,2a2,5 −2a5,2a2,6

−2a5,3a2,1 −2a5,3a2,2 −2a5,3a2,3 −2a5,3a2,4 −2a5,3a2,5 −2a5,3a2,6


Therefore we may conclude thata5,ia2, j = a2, ja5,i ∈ k as desired.

Note: To obtain the two cases ofa1,ia6, j = a6, ja1,i anda3,ia4, j = a4, ja3,i both residing in

k follow the same procedure above but replacingE2,2 with E3,1 andE1,3 respectively.

Cases I, II and III show thatar,ias, j ∈ k and henceA = pM for somep ∈ k̄ andM ∈

SP(6, k).

5.5.5 General Proof of Characterization Theorem

Theorem 5.7.Suppose A∈ GL(2n, k̄) , Ḡ = SP(2n, k̄) and G= SP(2n, k) .

(1) The inner automorphismInnA keepsḠ invariant if and only if A= pM for some

p ∈ k̄ and M∈ Ḡ.

(2) If A ∈ Ḡ, thenInnA keeps G invariant if and only if A= pM for some p∈ k̄ and

M ∈ G.
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Proof. (1) ⇐= SupposeA = pM for somep ∈ k̄ andM ∈ Ḡ. Let X ∈ Ḡ, then

InnA(X) = InnpM(X) = (pM)−1X(PM) = M−1XM

SinceM,M−1, X ∈ Ḡ,M−1XM ∈ Ḡ and thus InnA keepsḠ invariant.

=⇒ Suppose InnA keepsḠ invariant. Then for anyX ∈ Ḡ,

B = InnA(X) = A−1X A∈ Ḡ. SinceB ∈ Ḡ, by definitionBT J B= J which implies

that B = J−1(BT )−1J. In addition, sinceB = A−1X A, we have that(BT )−1
=

AT(XT )−1(AT )−1. Thus the following is true

A−1X A = B

implies

A−1X A = J−1(BT )−1J

which implies

A−1X A = J−1(AT(XT )−1(AT )−1)J

hence

X = AJ−1AT(XT )−1(AT )−1JA−1.

Now sinceX ∈ Ḡ, we know(XT )−1
= J X J−1 which means

X = AJ−1AT(J X J−1)(AT )−1JA−1

that is

X = (AJ−1AT J)X(AJ−1AT J)−1

i.e. InnAJ−1 AT J(X) = X.

Therefore by Lemma 5.4AJ−1AT J = q Id for someq ∈ k̄∗ which impliesq−1AJ−1AT J =

Id. Let p ∈ k̄∗ such thatp2
= q−1. Then forM = pA we have

M J−1MT J = pAJ−1 pAT J = p2AJ−1AT J = q−1AJ−1AT J = I .

Therefore,M J−1MT J = Id which impliesMT JM = J ie. M ∈ Ḡ.
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(2) ⇐= SupposeA = pM for somep ∈ k̄ andM ∈ G. Let X ∈ G, then

InnA(X) = InnpM(X) = p−1M−1XpM = M−1XM

SinceM−1, X,M ∈ G we know InnA(X) = M−1XM ∈ G and thus InnA keepsG

invariant.

=⇒ SupposeA = (ai j ) ∈ Ḡ and InnA keepsG invariant.

We will first show thatari ar j + asiasj ∈ G.

CASE 1: Supposer, s ≤ n.

Subcase a:Supposei ≤ n.

The (i, j ) entry of InnA(J) is given by

a1,n+ia1, j + a2,n+ia2, j + ...+ a2n,n+ia2n, j ∈ k

sinceJ ∈ G and InnA keeps G invariant. By the same argument the(i, j ) entry of

InnA

(
I I

0 I

)
given by

a1 jan+1,n+i + a2 jan+2,n+i + ... + anja2n,n+i + an+1,n+ian+1, j + an+2,n+ian+2, j +

...+ a2n,n+ia2n, j − a1,n+ian+1, j − a2,n+ian+2, j − ...− an,n+ia2n, j ∈ k

Hence the(i, j ) position of InnA(J)− InnA

(
I I

0 I

)
given by

−a1 jan+1,n+i − a2 jan+2,n+i − ...− anja2n,n+i + a1,n+ia1, j + a2,n+ia2, j + ...+ an,n+ian, j +

a1,n+ian+1, j + a2,n+ian+2, j + ...+ an,n+ia2n, j ∈ k.

We know the matrix

(
I 0

Xrs I

)
is in G and hence the(i, j ) entry of InnA

(
I 0

Xrs I

)
given by

a1 jan+1,n+i + a2 jan+2,n+i + ...+ anja2n,n+i − a1,n+ia1, j − a2,n+ia2, j − (−ar,n+iar, j )−

ar+1,n+iar+1, j − ...− (−as,n+ias, j )− as+1,n+ias+1, j − ...− an,n+ian, j − a1,n+ian+1, j −

a2,n+ian+2, j − ...− a2n,n+ia2n, j ∈ k

Now, the(i, j ) entry of InnA(J)− InnA

(
I I

0 I

)
+ InnA

(
I 0

Xrs I

)
is given by 2ar,n+iar j +
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2as,n+ias, j and hencearl ar j + aslasj ∈ k for all l > n and

j = 1,2, ...,2n.

Subcase b:Supposei > n

For i > n the (i, j ) entry of InnA(J) yields

−a1,i−na1, j − a2,i−na2, j − ...− a2n,i−na2n, j

and the(i, j ) position of InnA

(
I I

0 I

)
for i > n is

−an+1,i−na1 j − an+2,i−na2, j − ...− a2n,i−nan, j − an+1,i−nan+1, j − an+2,i−nan+2, j −

...− a2n,i−na2n, j + a1,i−nan+1, j + a2,i−nan+2, j + ...+ an,i−na2n, j .

Hence the(i, j ) entry of InnA(J)− InnA

(
I I

0 I

)
is given by

an+1,i−na1 j + an+2,i−na2, j + ...+ a2n,i−nan, j − a1,i−na1, j − a2,i−na2, j − ...− an,i−nan, j −

a1,i−nan+ 1, j − a2,i−nan+2, j − ...− an,i−na2n, j .

For i > n the (i, j ) entry of InnA

(
I 0

Xrs I

)
is

−an+1,i−na1, j − an+2,i−na2 j − ...− a2n,i−nan, j + a1,i−na1, j + a2,i−na2, j + ...+ an,i−nan, j +

a1,i−nan+1, j + a2,i−nan+2, j + ...+ an,i−na2n, j .

Therefore the(i, j ) entry of InnA(J)− InnA

(
I I

0 I

)
+ InnA

(
I 0

Xrs I

)
yields−2ar,i−nar j −

2as,i−nas, j and sincei > n we have thatarl ar j + aslasj ∈ k for all l ≤ n and j =

1,2, ...,2n. Combining subcases a and b we have thatarl ar j + aslasj ∈ k whenever

r, s ≤ n.

CASE 2: Supposer, s> n. Without loss of generality assumer < s.

Subcase a:Supposei ≤ n. Now the matrix

(
I 0

I I

)
is in G and since InnA keepsG
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invariant the(i, j ) entry of InnA

(
I 0

I I

)
given by

a1, jan+1,n+i + a2, jan+2,n+i + ...+ an, ja2n,n+i − a1,n+ia1, j − a2,n+ia2, j − ...− an,n+ian, j −

a1,n+ian+1, j − a2,n+ian+2, j − ...− an,n+ia2n, j ∈ k

Now the (i, j ) entry of InnA(J) was given in case 1 subcase a, therefore the(i, j )

entry of InnA(J)+ InnA

(
I 0

I I

)
is

a1, jan+1,n+i + a2, jan+2,n+i + ...+ an, ja2n,n+i + an+1,n+ian+1, j + an+2,n+ian+2, j +

...+ a2n,n+ia2n, j − a1,n+ian+1, j − a2,n+ian+2, j − ...− an,n+ia2n, j

which must lie ink. We know the matrix

(
I Xr−n,s−n

0 I

)
∈ G and thus the automor-

phism InnA

(
I Xr−n,s−n

0 I

)
∈ G and its(i, j ) entry given by

a1, jan+1,n+i + a2 jan+2,n+i + ...+ an, ja2n,n+i + an+1,n+ian+1, j + an+2,n+ian+2, j +

... + (−ar,n+iar, j ) + ar+1,n+iar+1, j + ... + (−as,n+ias, j ) + as+1,n+ias+1, j + ... +

a2n,n+ia2n, j − a1,n+ian+1, j − a2,n+ian+2, j − ...− ann + ia2n, j ∈ k.

Finally we observe that the(i, j ) entry of InnA(J)+ InnA

(
I 0

I I

)
−

InnA

(
I Xr−n,s−n

0 I

)
is given by 2ar,n+iar j + 2as,n+ias, j and hencearl ar j + aslasj ∈

k for all l > n and j = 1,2, ...,2n.

Subcase b:Supposei > n. The(i, j ) entry of InnA

(
I 0

I I

)
is in k and is given by

−an+i,i−na1, j − an+2,i−na2, j − ... − a2n,i−nan, j + a1,i−na1, j + a2,i−na2, j + ... +

an,i−nan, j + a1,i−nan+1, j + a2,i−nan+2, j + ...+ an,i−na2n, j .

Hence the(i, j ) position of InnA(J)+ InnA

(
I 0

I I

)
is

−an+i,i−na1, j − an+2,i−na2, j − ...− a2n,i−nan, j − an+1,i−nan+1, j − an+2,i−nan+2, j −

...− a2n,i−na2, j + a1,i−nan+1, j + a2,i−nan+2, j + ...+ an,i−na2n, j
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must reside ink. For i > n the (i, j ) entry of InnA

(
I Xr−n,s−n

0 I

)
is given by

−an+1,i−na1, j − an+2,i−na2, j − ...− a2n,i−nan, j − an+1,i−nan+1, j − an+2,i−nan+2, j −

... − (−ar,i−nar j ) − ar+1,i−nar+1, j − ... − (−as,i−nas, j ) − as+1,i−nas+1, j − ... −

a2n,i−na2n, j + a1,i−nan+1, j + a2,i−nan+2, j + ...+ an,i−na2n, j .

Therefore by considering the(i, j ) entry of InnA(J)+ InnA

(
I 0

I I

)
−

InnA

(
I Xr−n,s−n

0 I

)
we see that−2ar,i−nar j − 2as,i−nas, j must be ink. Since we

assumedi > n we have thatarl ar j + aslasj ∈ k for all l ≤ n and j = 1,2, ...,2n. By

combining subcases a and b we obtainarl ar j + aslasj ∈ k wheneverr, s> n.

CASE 3: Supposer ≤ n ands> n.

Subcase a:Supposei ≤ n. The matrix

(
I 0

Xr I

)
∈ G and therefore InnA

(
I 0

Xr I

)
∈

G. Specifically, the(i, j ) entry of InnA

(
I 0

Xr I

)
given by

a1, jan+1,n+i + a2, jan+2,n+i + ...+ an, ja2n,n+i − a1,n+ia1, j − a2,n+ia2, j − ...− (−ar,n+iar, j )−

ar+1,n+iar+1, j − ...− an,n+ian, j − a1,n+ian+1, j − a2,n+ian+2, j − ...− an,n+ia2n, j

lies in k. Now the(i, j ) entry of InnA(J)+ InnA

(
I 0

Xr I

)
, which must be ink, is

a1, jan+1,n+i + a2, jan+2,n+i + ...+ an, ja2n,n+i + 2ar,n+iar, j + an+1,n+ian+1, j +

an+2,n+ian+2, j + ...+ a2n,n+ia2n, j − a1,n+ian+1, j − a2,n+ian+2, j − ...− an,n+ia2n, j .

If we now consider the automorphism InnA on the matrix

(
I Xs−n

0 I

)
∈ G then we

see that the(i, j ) entry of InnA

(
I Xs−n

0 I

)
is given by

a1, jan+1,n+i + a2, jan+2,n+i + ...+ an, ja2n,n+i + an+1,n+ian+1, j + an+2,n+ian+2, j +

...+ (−as,n+ias, j )+ ...+ a2n,n+ia2n, j − a1,n+ian+1, j − a2,n+ian+2, j − ...− an,n+ia2n, j .
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Hence, the(i, j ) entry of InnA(J) + InnA

(
I 0

Xr I

)
− InnA

(
I Xs−n

0 I

)
gives us

2ar,n+iar, j + 2as,n+ias, j and more importantly since we assumedi ≤ n we have that

ar,lar, j + as,las, j ∈ k for all l > n and j = 1,2, ...,2n.

Subcase b: Supposei > n. For i > n the (i, j ) entry of InnA

(
I 0

Xr I

)
yields

−an+1,i−nai, j − an+2,i−na2, j − ...− a2n,i−nan, j + a1,i−na1, j + a2,i−na2, j + ...+)−

ar,i−nar, j + ...+ an,i−nan, j + a1,i−nan+1, j + a2,i−nan+2, j + ...+ an,i−na2n, j .

Therefore the(i, j ) entry of InnA(J)+ InnA

(
I 0

Xr I

)
is

−an+1,i−nai, j − an+2,i−na2, j − ...− a2n,i−nan, j − 2ar,i−nar, j − an+1,i−nan+1, j − an+2,i−nan+2, j −

...− a2n,i−na2n, ja1,i−nan+1, j + a2,i−nan+2, j + ...+ an,i−na2n, j.

Lastly we consider the(i, j ) entry of InnA

(
I Xs−n

0 I

)
which is given by

−an+1,i−nai, j − an+2,i−na2, j − ...− a2n,i−nan, j − an+1,i−nan+1, j − an+2,i−nan+2, j −

...− (−as,i−nas, j )− ...− a2n,i−na2n, ja1,i−nan+1, j + a2,i−nan+2, j + ...+ an,i−na2n, j .

So the(i, j ) entry of InnA(J)+ InnA

(
I 0

Xr I

)
− InnA

(
I Xs−n

0 I

)
gives us−2ar,i−nar, j −

2as,i−nas, j and sincei > n we have thatar,laar, j + as,las, j ∈ k for all l ≤ n and

j = 1,2, ...,2n.

Combining subcases a and b we have thatarl ar j + aslasj ∈ k wheneverr ≤ n and

s> n

In conclusion, by combining Cases 1,2,and 3 we can conclude thatar,iar, j + as,ias, j ∈

k for all i, j = 1,2, ...2n andr 6= s.

We are now able to use the fact thatar,iar, j + as,ias, j ∈ k for all i, j = 1,2, ...2n and

r 6= s to show thatar,iar, j ∈ k for all i, j = 1,2, ...,2n. However, we must show

this in two cases. We will first show thatar,lar, j ∈ k for all l ≤ n and then show that
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ar,lar, j ∈ k for all l > n. Without loss of generality it shall suffice to showa1,la1, j ∈ k

for all l .

CASE 1: Assumei > n. The(i, j ) entry or InnA(J) is given by

−a1,i−na1, j − a2,i−na2, j − ...− a2n,i−na2n, j which is ink and implies that

a1,i−na1, j + a2,i−na2, j + ... + a2n,i−na2n, j ∈ k. From our previous argument we

know that ar,iar, j + as,ias, j ∈ k for all i, j = 1,2, ...,2n, so obviouslyar,iar, j +

as,ias, j ∈ k for i > n. Making use of that fact the equality given by

a1,i−na1, j =

(a1,i−na1, j + a2,i−na2, j + ...+ a2n,i−na2n, j )− (1/2)(a2,i−na2, j + a3,i−na3, j )−

(1/2)(a3,i−na3, j + a4,i−na4, j )− (1/2)(a4,i−na4, j + a5,i−na5, j )− ...− (1/2)(a2n,i−na2n, j +

a2,i−na2, j )

must be ink, ie. a1,i−na1, j ∈ k. Since we assumed thati > n we have thata1,la1, j ∈ k

for l ≤ n. Furthermore, we can conclude thatar,lar, j ∈ k for l ≤ n

CASE 2: Assumei ≤ n. Then the(i, j ) entry of InnA(J), which is ink, is given

by a1,i+na1, j + a2,i+na2, j + ... + a2n,i+na2n, j . We again make use of the fact that

ar,iar, j + as,ias, j ∈ k for i = 1,2, ...,2n, and have an equality similar to the one in

case 1 (i − n is simply replaced byi + n)

a1,i+na1, j =

(a1,i+na1, j + a2,i+na2, j + ...+ a2n,i+na2n, j )− (1/2)(a2,i+na2, j + a3,i+na3, j )−

(1/2)(a3,i+na3, j + a4,i+na4, j )− (1/2)(a4,i+na4, j + a5,i+na5, j )− ...− (1/2)(a2n,i+na2n, j +

a2,i+na2, j )

which again must be ink. Since we assumedi ≤ n we have thata1,la1, j ∈ k for

l > n and furthermore,ar,lar, j ∈ k for l > n. Combining cases 1 and 2 shows that

ar,lar, j ∈ k for i, j = 1,2, ...,2n.
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I will finally show thatari asj ∈ k for r 6= s

CASE I: Supposer, s ≤ n. Without loss of generality we will assume thatr < s.

(1) Subcase 1: Supposer + s< n + 1.

Let Yr,s =

(
Ts+r−1 0

0 In−(s+r−1)

)
and

Zr,s =

(
Yr,s 0

Er,s Yr,s

)
Now Zr,s ∈ G and hence InnA must keepZr,s invariant and thus all the entries of

InnA(Zr,s) must lie ink.

(a) Assumei ≤ n. Then the(i, j ) entry of InnA(Zr,s) is given by

−ar,n+ias, j + an+s+r−1,n+ia1, j + an+s+r−2,n+ia2, j + ...+

an+2,n+ias+r−2, j + an+1,n+ias+r−1, j − a1,n+ian+s+r−1, j − a2,n+ian+s+r−2, j −

...− as+r−2,n+ian+2, j − as+r−1,n+ian+1, j + an+r+s,n+iar+s, j + an+r+s+1,n+iar+s+1, j +

...+ a2n,n+ian, j − ar+s,n+ian+r+s, j − ar+s+1,n+ian+r+s+1, j − ...− an,n+ia2n, j .

Let Z̄r,s

(
−Yr,s 0

Er,s −Yr,s

)
. Now Z̄r,s ∈ G and thus InnA( Z̄r,s) ∈ G. In fact, the

(i, j ) entry of InnA( Z̄r,s) is the negative of the(i, j ) entry of InnA Zr,s with

the exception of−ar,n+ias, j which remains negative. Therefore, InnA(Zr,s)+

InnA( Z̄r,s) has an(i, j ) entry of−2ar,n+ias, j . Since both InnA(Zr,s) and InnA( Z̄r,s)

are both inG their sum is inG and hence−2ar,n+ias, j ∈ k. Since we assumed

i ≤ n we havear,las, j ∈ k for l > n.

(b) Assumei > n. Then the(i, j ) entry of InnA(Zr,s) is given by

ar,i−nas, j − an+s+r−1,i−na1, j − an+s+r−2,i−na2, j − ...− an+2,i−nas+r−2, j −

an+1,i−nas+r−1, j + a1,i−nan+s+r−1, j − a2,i−nan+s+r−2, j + ...+ as+r−2,i−nan+2, j +

as+r−1,i−nan+1, j + an+r+s,i−nar+s, j − an+r+s+1,i−nar+s+1, j − ...− a2n,i−nan, j +
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ar+s,i−nan+r+s, j + ar+s+1,i−nan+r+s+1, j + ...+ an,i−na2n, j

Note that the(i, j ) entry of InnA(Zr,s) for i > n is the negative of the(i, j )

entry of InnA(Zr,s) for i ≤ n with the simple change thatn + i becomesi − n.

Again we have that the(i, j ) entry of InnA( Z̄r,s) is the negative of the(i, j )

entry of InnA(Zr,s) with the exception ofar,i−nas, j which remains positive.

Hence as in the previous case the(i, j ) entry of InnA Zr,s + InnA( Z̄r,s), gives

us 2ar,i−nas, j ∈ k. Since we assumed thati > n we can conclude thatar,las, j ∈ k

for l < n.

Combining a and b we have thatar,ias, j ∈ k for r + s< n + 1.

(2) Subcase 2: Supposer + s> n + 1.

Let

Ur,s =

(
I−n+(r+s−1) 0

0 (T2n−(r+s−1)

)
and

Vr,s =

(
Ur,s 0

Er,s Ur,s

)
.

Vr,s ∈ G so InnA(Vr,s) ∈ G since InnA keepsG invariant.

(a) Supposei ≤ n. Then the(i, j ) entry of InnA(Vr,s) is given by

−ar,n+ias, j + a2n,n+ias+r−n, j + a2n−1,n+ias+r−n+1, j + ...+ as+r,n+ian, j −

a2n, jas+r−n,n+i − a2n−1, jas+r−n+1,n+i − ...− as+r, jan,n+i + an+1,n+ia1, j +

an+2,n+ia2, j + ...+ ar+s−1,n+ia(r+s−1)−n, j − a1,n+ian+1, j − a2,n+ian+2, j − ...−

a(r+s−1)−n,n+iar+s−1, j .

Let V̄r,s =

(
−Ur,s 0

Er,s −Ur,s

)
. Now V̄r,s ∈ G which implies that InnA(V̄r,s) ∈ G.

The(i, j ) entry of InnA(V̄r,s) is the negative of the (i,j) entry of InnA(Vr,s) with

the exception of the term−ar,n+ias, j which remains negative. Hence the(i, j )

entry of InnA(Vr,s)+ InnA(V̄r,s),−2ar,n+ias, j is in k. Since we assumedi ≤ n

we havear,las, j ∈ k for l > n.
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(b) Assumei > n. As in the previous case, the(i, j ) entry of InnA(Vr,s) for i > n

is the negative of the(i, j ) entry of InnA(Vr,s) for i ≤ n with the simple change

thatn+ i becomesi − n. Again we have that the(i, j ) entry of InnA(V̄r,s) is the

negative of the(i, j ) entry of InnA(Vr,s) with the exception ofar,i−nas, j which

remains positive. Hence as in the previous case the(i, j ) entry of InnA Zr,s +

InnA( Z̄r,s), gives us 2ar,i−nas, j . Since we assumed thati > n we can conclude

thatar,las, j ∈ k for l < n.

Combining a and b we have thatar,ias, j ∈ k for r + s< n + 1

(3) Subcase 3: Supposer + s = n + 1. Here we chooseWr,s =

(
Tn 0

Er,s Tn

)
. Now

Wr,s ∈ G and hence, InnA(Wr,s) ∈ G since InnA keepsG invariant.

(a) Supposei ≤ n Then the(i, j ) entry of InnA(Wr,s) is given by

−ar,n+ias, j + a2n,n+ia1, j + a2n−1,n+ia2, j + ...+ an+1,n+ian, j − a2n, ja1,n+i +

a2n−1, ja2,n+i + ...+ an+1, jan,n+i .

Let W̄r,s =

(
−Tn 0

Er,s −Tn

)
. W̄r,s ∈ G which means that InnA(W̄r,s) ∈ G. The

(i, j ) entry of InnA(W̄r,s) is the negative of the(i, j ) entry of InnA(Wr,s) with

the exception that the term−ar,n+ias, j which remains negative. Using the

fact that InnA(Wr,s)+ InnA(W̄r,s) ∈ G we have that the term−2ar,n+ias, j ∈ k.

However, since we assumed thati ≤ n we have thatar,las, j ∈ k for l > n.

(b) The case wherei > n follows exactly as above by simply changing the signs of

each term and replacingn + i by i − n.

Combining Subcases 1,2, and 3 gives usar,ias, j ∈ k for r, s> n.

CASE II: Supposer, s> n. Without loss of generality assumer < s.



Chapter 5. Involutions of G = SP(2n, k) 77

(1) Subcase 1:Supposer + s− 2n< n + 1.

Let Z′
r,s =

(
Yr−n,s−n Er−n,s−n

0 Yr−n,s−n

)

(a) Supposei ≤ n, SinceZ′
r,s ∈ G, InnA(Z′

r,s) must lie in G and hence its(i, j )

entry of

ar,n+ias, j + an+s+r−1,n+ia1, j + an+s+r−2,n+ia2, j + ...+ an+2,n+ias+r−2, j +

an+1,n+ias+r−1, j − a1,n+ian+s+r−1, j − a2,n+ian+s+r−2, j − ...− as+r−2,n+ian+2, j −

as+r−1,n+ian+1, j + an+r+s,n+iar+s, j + an+r+s+1,n+iar+s+1, j + ...+ a2n,n+ian, j −

ar+s,n+ian+r+s, j − ar+s+1,n+ian+r+s+1, j − ...− an,n+ia2n, j

is in k. Note that the(i, j ) entry of InnA(Z′
r,s) is precisely the(i, j ) en-

try of InnA(Zr,s) given in part I with the exception of the first term. Let

Z̄′
r,s =

(
−Yr−n,s−n Er−n,s−n

0 −Yr−n,s−n

)
. The(i, j ) entry of InnA( Z̄′

r,s) is the nega-

tive of the(i, j ) entry of InnA(Z′
r,s) excluding the termar,n+ias, j which remains

positive. Hence the(i, j ) entry of InnA(Z′
r,s)+ InnA( Z̄′

r,s), givenby2ar,n+ias, j

lies in k. Since we assumedi ≤ n we havear,las, j ∈ k for l > n.

(b) As in the previous cases, fori > n the proof follows exactly as above by simply

changing the signs of each term and replacingn + i by i − n. You will get that

the (i, j ) entry of InnA(Z′
r,s) + InnA( Z̄′

r,s) yields−2ar,i−nas, j ∈ k. Or more

specifically,ar,las, j ∈ k for l ≤ n.

Combining a and b givesar,ias, j ∈ k for r + s− 2n< n + 1

(2) Subcase 2:Supposer + s− 2n> n + 1

(a) LetV′
r,s =

(
Ur−n,s−n Er−n,s−n

0 Ur−n,s−n

)
. Now InnA(V′

r,s) must lie in G and hence its

(i, j ) entry of
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ar,n+ias, j + a2n,n+ias+r−n, j + a2n−1,n+ias+r−n+1, j + ...+ as+r,n+ian, j −

a2n, jas+r−n,n+i − a2n−1, jas+r−n+1,n+i − ...− as+r, jan,n+i + an+1,n+ia1, j +

an+2,n+ia2, j + ...+ ar+s−1,n+ia(r+s−1)−n, j − a1,n+ian+1, j − a2,n+ian+2, j − ...−

a(r+s−1)−n,n+iar+s−1, j

must lie ink. If we defineV̄′
r,s =

(
−Ur,s Er−n,s−n

0 −Ur,s

)
, which is in G, then

we see that the(i, j ) entry of InnA(V̄′
r,s) is the negative of the(i, j ) entry

of InnA(V′
r,s) excluding the termar,n+ias, j which remains positive. Hence the

(i, j ) entry of InnA(V′
r,s) + InnA(V̄′

r,s),2ar,n+ias, j is ink. Since we assumed

i ≤ n we havear,las, j ∈ k for l > n.

(b) Again as in the previous cases, fori > n the proof follows exactly as above

by simply changing the signs of each term and replacingn + i by i − n. You

will get that the(i, j ) entry of InnA(V′
r,s) + InnA(V̄′

r,s) yields that the term

−2ar,i−nas, j is in k. Or more specifically,ar,las, j ∈ k for l ≤ n.

Combining a and b givesar,ias, j ∈ k for r + s− 2n> n + 1

(3) Subcase 3: Supposer + s− 2n = n+ 1. Let W′
r,s =

(
Tn Er−n,s−n

0 Tn

)
.Now W′

r,s ∈ G

and thus InnA(W′
r,s) ∈ G.

(a) Supposei ≤ n, then the(i, j ) entry of InnA(W′
r,s) is given by

ar,n+ias, j + a2n,n+ia1, j + a2n−1,n+ia2, j + ...+ an+1,n+ian, j − a2n, ja1,n+i +

a2n−1, ja2,n+i + ...+ an+1, jan,n+i .

If we let W̄′
r,s =

(
−Tn Er−n,s−n

0 −Tn

)
, then we see that the(i, j ) entry is simply

the negative of the(i, j ) entry of InnA(W′
r,s) excluding the termar,n+ias, j which

remains positive. Hence the(i, j ) entry of InnA(W′
r,s)+ InnA(W̄′

r,s),2ar,n+ias, j

is in k. Since we assumedi ≤ n we havear,las, j ∈ k for l > n.
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(b) Again as in the previous cases, fori > n the proof follows exactly as above

by simply changing the signs of each term and replacingn + i by i − n. You

will get that the(i, j ) entry of InnA(W′
r,s) + InnA(W̄′

r,s) yields that the term

−2ar,i−nas, j is in k. Or more specifically,ar,las, j ∈ k for l ≤ n.

Combining a and b givesar,ias, j ∈ k for r + s− 2n> n + 1

CASE III: Supposer ≤ n ands> n

(1) Subcase 1:Supposer + s< 2n + 1.

Let Mr,s =

(
Es−n,r Ys−n,r

−Ys−n,r 0

)
. Now Mr,s ∈ G and thus InnA(Mr,s) ∈ G by assump-

tion.

(a) Supposei ≤ n. Now the(i, j ) entry of InnA(Mr,s) is given by

ar, jas,n+i + as+r,n+ias+r, j + as+r+1,n+ias+r+1, j + ...+ a2n,n+ia2n, j +

as+r−n,n+ias+r−n, j + as+r−n+1,n+ias+r−n+1, j + ...+ an,n+ian, j + as+r−1,n+ian+1, j +

as+r−2,n+ian+2, j + ...+ an+1,n+ias+r−1, j + as−n+r−1,n+ia1, j + as−n+r−2,n+ia2, j +

...+ a1,n+ias−n+r−1, j .

Now defineM̄r,s =

(
Es−n,r −Ys−n,r

Ys−n,r 0

)
, thenM̄r,s ∈ G and therefore InnA(M̄r,s) ∈

G. In addition the(i, j ) entry of M̄r,s is the negative of the(i, j ) entry of

InnA(Mr,s) with the exception of the termar, jas,i+n which remains positive.

The sum InnA(Mr,s)+ InnA(M̄r,s) ∈ G and thus its(i, j ) entry of 2ar, jas,i+n ∈

k. Since we assumed thati ≤ n this gives usar, jas,l ∈ k for l > n.

(b) As in the previous cases, fori > n the proof follows exactly as above by simply

changing the signs of each term and replacingn + i by i − n. You will get that

the(i, j ) entry of InnA(Mr,s)+ InnA(M̄r,s) yields that the term−2ar, jas,i−n is
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in k. Or more specifically,ar, jas,l ∈ k for l ≤ n.

Combining a and b givesar, jas,l ∈ k for r + s< 2n + 1.

(2) Subcase 2: Supposer + s> 2n + 1.

With Nr,s =

(
Es−n,r Us−n,r

−Us−n,r 0

)
it is seen thatNr,s ∈ G and thus by assumption

InnA(Nr,s) ∈ G

(a) Supposei ≤ n then the(i, j ) entry of InnA(Nr,s) is given by

ar, jas,n+i + a2n,n+ias+r−n, j + a2n−1,n+ias+r−n+1, j + ...+ as+r−n,n+ia2n, j +

an,n+ias+r−2n, j + an−1,n+ias+r−2n+1, j + ...+ as+r−2n,n+ian, j + an+1,n+ian+1, j +

an+2,n+ian+2, j + ...+ a−n+r+s−1,n+ia−n+r+s−1, j + a1,n+ia1, j + a2,n+ia2, j +

...+ a−2n+r+s−1,n+ia−2n+r+s−1, j

Define N̄r,s =

(
Es−n,r −Us−n,r

Us−n,r 0

)
. We again can make use of the fact that

N̄r,s ∈ G implies that InnA(N̄r,s) ∈ G. Now the (i, j ) entry of InnA(N̄r,s)

is the negative of the(i, j ) entry of InnA(Nr,s) with the exception of the the

termar, jas,n+i which remains positive. Hence the(i, j ) entry of InnA(N̄r,s)+

InnA(Nr,s) given by 2ar, jas,n+i must lie ink. Furthermore, since we assumed

that i ≤ n we can conclude thatar, jas,l ∈ k for l > n.

(b) As in the previous cases, ifi > n the proof follows exactly as above by simply

changing the signs of each term and replacingn + i by i − n. You will get that

the (i, j ) entry of InnA(Nr,s)+ InnA(N̄r,s) yields that the term−2ar, jas,i−n is

in k. Or more specifically,ar, jas,l ∈ k for l ≤ n.

Combining a and b givesar, jas,l ∈ k for r + s< 2n + 1
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(3) Subcase 3:Supposer + s = 2n + 1. Let Fr,s =

(
Es−n,r Tn

Tn 0

)
.

Now Fr,s ∈ G and therefore InnA(Fr,s) ∈ G since InnA keeps G invariant.

(a) Supposei ≤ n. Then the(i, j ) entry of InnA(Fr,s) is given by

ar, jas,n+i + a1,n+ia1, j + a2,n+ia2, j + a2,n+ia3, j + ...+ a2n,n+ia2n, j

Let F̄r,s =

(
Es−n,r −Tn

−Tn 0

)
. Then sinceF̄r,s ∈ G we have that InnA( F̄r,s) ∈ G.

More importantly, the(i, j ) entry of InnA( F̄r,s) is the negative of the(i, j ) en-

try of InnA(Fr,s) with the exception that the termar, jas,i+n remains positive.

Again using the fact that InnA( F̄r,s) + InnA(Fr,s) ∈ G we have that its(i, j )

entry of 2ar, jas,n+i ∈ k. Since we assumedi ≤ n we have thatar, jas,l ∈ k for

l > n.

(b) As in the previous cases, ifi > n the proof follows exactly as above by simply

changing the signs of each term and replacingn + i by i − n. You will get that

the(i, j ) entry of InnA( F̄r,s)+ InnA(Fr,s) ∈ G yields that the term−2ar, jas,i−n

is in k. Or more specifically,ar, jas,l ∈ k for l ≤ n

Combining subcases a and b gives usar, jas,l ∈ k for r + s = 2n + 1.

Combining cases 1,2, and 3 gives usar,ias, j ∈ k for r ≤ n ands> n.

Cases I, II and III show thatar,ias, j ∈ k and henceA = pM.

5.6 Involutions of SL(2n, k) on SP(2n, k)

It is easy to see that every automorphism, hence every involution, of SP(2n, k) is the re-

striction of an automorphism of SL(2n, k). Therefore, to characterize the involutions of

SP(2n, k) we need to look at the involutions of SL(2n, k) restricted to SP(2n, k).
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5.6.1 Outer Involutions of SL(2n, k) on SP(2n, k)

We begin by investigating what happens when we restrict an outer involution of SL(2n, k)

to SP(2n, k). A few lemmas will prove to be useful in obtaining this result.

Lemma 15.The outer involutions ofSL(2n, k) coming from a symmetric or skew-symmetric

matrix M, defined asτ = InnM θ whereθ(A) = (AT )−1 can be viewed asτ = InnJ−1M φ

whereφ is the fixed outer automorphism given byφ(A) = J−1(AT )−1J = InnJ θ(A).

Proof. Consider the outer involutionτ = InnM θ on SL(2n, k) coming from the symmetric

or skew-symmetric bilinear form with matrixM. Then

τ(A) = InnM θ = InnM (A
T )−1

= M−1(AT )−1M

Let φ(A) = J−1(AT )−1J then

τ(A) = M−1(AT )−1M

= M−1J J−1(AT )−1J J−1M

= (J−1M)−1(J−1(AT )−1J)J−1M

= InnJ−1M ((J
−1(AT )−1J)

= InnJ−1M φ(A)

Hence the outer involutions of SL(2n, k) can be viewed asτ = InnJ−1M φ.

Lemma 16. The fixed outer automorphismφ= InnJ θwhereθ(A)= (AT )−1 is the identity

when restricted to G. ie.φ|G = InnJ θ|G = Id.

Proof. Let φ = InnJ θ whereθ(A) = (AT )−1. SupposeA ∈ G, then

φ(A) = InnJ φ(A)

= InnJ(A
T )−1

= J−1(AT )−1J
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Now sinceA ∈ G, AT JA = J or more importantly(AT )−1
= JAJ−1 hence,

φ(A) = J−1(AT )−1J = J−1(JAJ−1)J = J.

Therefore,φ|G = InnJ θ|G = Id.

The above Lemma is true sinceG is the fixed point group ofφ = InnJ θ.

Lemma 17. The outer involutions ofSL(2n, k) become inner involutions when restricted

to SP(2n, k).

Proof. Let τ be an outer involution of SL(2n, k). Then from Lemma 15 we can let

τ = InnJ−1M φ where, φ = InnJ θ, θ(A) = (AT )−1 and M is a symmetric or skew-

symmetric matrix. Now from Lemma 16 we know thatφ|G = InnJ θ|G = Id, hence

τ|G = InnJ−1M φ|G = InnJ−1M

Therefore, the outer involutions of SL(2n, k) become inner involutions when restricted to

SP(2n, k).

5.6.2 Involutions of SL(2n, k) Which Leave SP(2n, k) Invariant

We now turn our attention to trying to characterize which involutions of SL(2n, k) leave

SP(2n, k) invariant. That is which involutions of SL(2n, k) will remain involutions when

restricted to SP(2n, k). The following Lemma helps us with this endeavor.

Theorem 5.8. Let φ be the involution ofSL(2n, k) coming from the skew-symmetric bi-

linear form with matrix representation J. Then its corresponding fixed point group is

G = SP(2n, k). Now sinceφ is coming from the skew-symmetric matrix J,φ must be

of type outer and thusφ = InnJ θ whereθ(X) = (XT )−1. The involutionτ of SL(2n, k)

keeps G invariant if and only ifτφ = φτ on SL(2n, k).
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Proof. ⇐= Supposeτφ = φτ on SL(2n, k) and let X ∈ G. SinceG is the fixed point

group ofφ, τφ(X) = τ(X). By assumptionτφ = φτ so φτ(X) = τφ(X) = τ(X), ie.

φτ(X) = τ(X), which states thatτ(X) is in the fixed point group ofφ, ie. τ(X) ∈ G

Hence,τ keeps G invariant.

=⇒ Suppose the involutionτ of SL(2n, k) keepsG invariant. We know that every

automorphism ofG, and thus every involution ofG can be written asτ = InnA where

A ∈ SL(2n, k̄). In addition, since by assumptionτ keeps G invariant, Theorem 5.5 tells us

thatτ = InnA = InnpM wherep ∈ k̄ andM ∈ G. Now

τφ(X) = InnAφ(X)

= InnpM φ(X)

= InnpM(J
−1(XT )−1J)

= pM−1J−1(XT )−1J pM

SinceM ∈ G we have thatM−1
= J−1MT J andM = J−1(MT )−1J so

τφ(X) = M−1J−1(XT )−1JM

= (J−1MT J)J−1(XT )−1J J−1(MT )−1J)

= J−1MT(XT )−1(MT )−1J

On the other hand

φτ(X) = φ(InnA(X))

= φ(InnpM(X))

= φ(InnM (X))

= φ(M−1XM)

= J−1((M−1XM)T )−1J

= J−1MT(XT )−1(MT )−1J

Thus,τφ = φτ on SL(2n, k).
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Corollary 2. An involution InnA of SL(2n, k) leavesSP(2n, k) invariant if and only if

J(AT )−1J−1
= cA where c∈ k∗.

Proof. Supposeτ = InnA is an involution of SL(2n, k) which leaves SP(2n, k) invariant.

Theorem 5.8 tells us thatφτ = τφ, whereφ = InnJ θ andθ(X) = (XT )−1. Now

φτ(X) = InnJ θ InnA(X)

= InnJ θ(A
−1X A)

= InnJ((A
−1X A)T )−1)

= InnJ(A
T(XT )−1(AT )−1)

= J−1AT(XT )−1(AT )−1J

and

τφ(X) = InnA InnJ θ(X) = InnJAθ(X) = A−1J−1(XT )−1JA

Hence we have the following equivalent statements

J−1AT(XT )−1(AT )−1J = A−1J−1(XT )−1JA

JT A−1X−1A(J−1)T = AT JT X−1(J−1)T(A−1)T

JT A−1X A(JT )−1
= AT JT X(J−1)T(A−1)T

(JT )−1(AT )−1JT A−1X A(JT )−1AT JT
= X

InnA(JT )−1 AT JT (X) = X

By Theorem 5.4 we know that this meansA(JT )−1AT JT
= p I for some p ∈ k̄∗. With

minimal rearrangement and utilizing the fact thatJT
= J−1 one can easily see that this is

equivalent toJ(AT )−1J−1
= cA wherec = 1/p ∈ k̄∗. Now sinceJ, (AT )−1 and J−1 all

reside in SP(2n, k) we have thatcA∈ SP(2n, k) which means thatc ∈ k∗. The above steps

may be reversed to obtain the other direction.

Corollary 3. An outer involutionInnJ−1M φ of SL(2n, k) coming from a symmetric or

skew-symmetric bilinear form leavesSP(2n, k) invariant if and only if J(MT )−1J−1
= cM

for some c∈ k∗.
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Proof. From Lemma 17 we know that the outer involution InnJ−1M φ becomes the inner

involution InnJ−1M when restricted to SP(2n, k). Hence, the proof will follow directly

from Corollary 2 by simply replacingA with J−1M.

We now have specific criteria to determine whether an involution of SL(2n, k) remains

an involution when restricted to SP(2n, k). To actually obtain which involutions leave

SP(2n, k) invariant we simply need to consider whether the matrices of the formA = Is,t

andA = Ln,p obey the criteria given in Corollary 2.

Before we analyze this situation we introduce the following notation.

Is,t,m =

(
Is 0

0 − It

)
wherem represents the size

I u,v,n
s,t,2n =


Iu 0 0 0

0 − Iv 0 0

0 0 Iu 0

0 0 0 − Iv

 , wheres = 2u, t = 2v,u + v = n

Let’s consider the inner involutions of SL(2n, k) which have the form InnA, where

A = Is,t,2n =

(
Is 0

0 − It

)
ands< t. We first rewriteA as

A =


Is 0 0

0 − In−s 0

0 0 − In


where t = 2n − s. If InnA is an involution on SP(2n, k) then Corollary 2 tells us that
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J(AT )−1J−1
= cA so let’s consider the right hand side of this equality.

J(AT )−1J−1
= JAJ−1

=

(
0 In

− In 0

)
Is 0 0

0 − In−s 0

0 0 − In


(

0 − In

In 0

)

=


− In 0 0

0 Is 0

0 0 In−s


which is not equal tocA for anyc.

However, whens is even we may reorder the basis elements to obtain an equivalent

form for Is,t,2n, hence we have the following lemma.

Lemma 18. If s is even then the involutionInnA where A= Is,t,2n of SL(2n, k) leaves

SP(2n, k) invariant.

Proof. Supposes is even and the involution InnA with A = Is,t,2n =

(
Is 0

0 − It

)
of

SL(2n, k) leaves SP(2n, k). With a reordering of the basis we may rewriteA as

A = I u,v,n
s,t,2n =


Iu 0 0 0

0 − Iv 0 0

0 0 Iu 0

0 0 0 − Iv

 =

(
Iu,v,n 0

0 Iu,v,n

)
.

Hence for InnA to be an involution of SP(2n, k) Corollary 2 tells us that we need only
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check to see ifJ(AT )−1J−1
= cA. We observe that

J(AT )−1J−1
= JAJ−1

=

(
0 In

− In 0

)(
Iu,v,n 0

0 Iu,v,n

)(
0 − In

In 0

)

=

(
Iu,v,n 0

0 Iu,v,n

)
= A.

Therefore, by choosingc = 1 we can conclude that InnA with A = Is,t,2n is an involution

on SP(2n, k).

We now turn our attention to involutions of SL(2n, k) with the form InnA with

A = Ln,p =



0 1 . . . 0 0

p 0 . . . 0 0
...

...
...

...
...

0 0 . . . 0 1

0 0 . . . p 0


If we try to apply the Criteria of Corollary 2 directly toA then we would see thatJ−1(AT )−1J−1

6=

cA for anyc. However, by rewriting our matrixA = Ln,p we are able to obtain the follow-

ing result.

Lemma 19. The involutions ofSL(2n, k) given byInnA where A= Ln,p keepSP(2n, k)

invariant and remain involutions when restricted toSP(2n, k).

Proof. In order for the involution InnA where A = Ln,p =



0 1 . . . 0 0

p 0 . . . 0 0
...

...
...

...
...

0 0 . . . 0 1

0 0 . . . p 0


to leave

SP(2n, k) Corollary 2 tells us thatJ(AT )−1J−1
= cA. Before considering this equality
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we note that with a reordering of the basis elements we may rewriteA = Ln,p as

A =

(
0 In

pIn 0

)
.

Therefore,

J(AT )−1J−1
=

(
0 In

− In 0

)(
0 In

p−1 In 0

)(
0 − In

In 0

)

=

(
0 −p−1 In

− In 0

)
.

Hence by choosingc = −p we see thatJ(AT )−1J−1
= cA which tells us that InnA is an

involution on SP(2n, k).

5.7 Isomorphy Classes of Involutions of SP(2n, k)

In this section we begin to investigate how the isomorphy classes of involutions of SL(2n, k)

react when restricted to SP(2n, k). We begin by recalling that Corollary 3 gave us criteria

to determine whether an outer involution of SL(2n, k) left SP(2n, k) invariant. However

the following result let’s us know that one of the involutions does not remain an involution

when restricted to SP(2n, k).

Lemma 20. The isomorphy class of outer involution ofSL(2n, k) which comes from the

skew-symmetric matrix M= J2n does not exist onSP(2n, k).

Proof. We begin by recalling that Lemma 15 enables us to view the outer involution

of SL(2n, k) coming from the skew-symmetric matrixM = J2n as the involutionθ =

InnJ−1 J φ = InnId φ, whereφ = InnJ θ andθ(A) = (AT )−1. In addition, Lemma 16 tells

us that thatφ is the identity when restricted to G. Hence,θ = InnId φ = InnId when re-

stricted to SP(2n, k) which is not an involution. Thus, we see that there will always be one

less isomorphy class of outer involutions on SP(2n, k).
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Lemma 21. If two involutionsφ1 andφ2 of SP(2n, k) are isomorphic overSP(2n, k) then

they are isomorphic overSL(2n, k).

Proof. The proof of this theorem is trivial. Assume two involutionsφ1 andφ2 of SP(2n, k)

are isomorphic over SP(2n, k) via some automorphismψ = InnA with A ∈ SP(2n, k). It is

clear thatA ∈ SL(2n, k) and thusφ1 andφ2 are isomorphic over SL(2n, k) viaψ = InnA

too.

Lemma 22. Letτ1 andτ2 be two involutions onSP(2n, k) which come from the restriction

of outer involutions ofSL(2n, k). If τ1 ≈ τ2 overSP(2n, k) then the outer involutions of

SL(2n, k) from which they came are isomorphic overSL(2n, k).

Proof. Let τ1 andτ2 be two involutions on SP(2n, k)which come from outer involutions of

SL(2n, k), sayτ1 = InnJ−1M1
φ|G = InnJ−1M1

andτ2 = InnJ−1M2
φ|G = InnJ−1M2

, where

M1 and M2 are symmetric andφ(A) = J−1(AT )−1J. Supposeτ1 ≈ τ2 over SP(2n, k),

i.e. InnJ−1M1
≈ InnJ−1M2

over G. Then there exists an inner automorphism InnQ with

Q ∈ SP(2n, k) such that

InnJ−1M2
= InnQ−1 InnJ−1M1

InnQ

= InnQJ−1M1Q−1

Therfore, by Theorem 5.4 we have Inn(J−1M2)Q(J−1M1)−1Q−1 = α I for someα ∈ k̄∗. This

means that

(J−1M2)Q(J
−1M1)

−1Q−1
= α Id

J−1M2 = αQ(J−1M1)
−1Q−1

M2 = αJQ(J−1M1)
−1Q−1
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Now sinceQ ∈ SP(2n, k), Q = J−1(QT )−1J, we see that

M2 = αJQ(J−1M1)
−1Q−1

= αJ(J−1(QT )−1J)(J−1M1)
−1Q−1

= α(QT )−1M1Q−1.

Which means thatM1
∼=

s M2 overk. By Theorem 4.1 their corresponding outer involutions

are isomorphic, i.e.τ1 = InnJ−1M1
φ ≈ 0τ2 = InnJ−1M2

φ.

The converse of Lemma 21 and Lemma 22 are not true in general. That is two invo-

lutionsφ1 andφ2 of SP(2n, k) being isomorphic over SL(2n, k) does not imply that they

remain isomorphic when restricted to SP(2n, k).

5.8 Future Goals

Isomorphy classes of involutions of SP(2n, k) have been classified over algebraically closed

fields and the real numbers (see [Hel88]). In the future we wish to classify the isomor-

phy classes of involutions of SP(2n, k) over finite fields, the p-adic numbers, and number

fields. We have already determined which involutions of SL(n, k) leave SP(2n, k) invari-

ant and actually remain involutions when restricted to SP(2n, k). Therefore, to give a

complete classification of the involutions of SP(2n, k) the next step is to determine how

many SP(2n, k)-isomorphism classes each SL(2n, k)-isomorphism class splits.
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