Abstract

Farrah Jackson. Characterization of Involutions o8P(2n, k) (Under the direction of
Aloysius Helminck). In this thesis, we discuss the relationship between involutions of
the two matrix groups S2n, k) and SR2n, k). Involutions determine symmetric spaces
hence a complete classification of involutions of both(iglk) and SR2n, k) will in turn
classify the symmetric spaces coming from these involutions. We begin by giving a com-
plete classification of involutions of the group 81, k) over the algebraically closed fields,

the real numbers, the rational numbers, and the finite fields. As a method of classify-
ing a particular type of involution of S(n, k) we focus on how they may be obtained
from a non-degenerate symmetric or skew-symmetric bilinear form. With the classification
of involutions of SL(n, k) in hand we focus our attention on the subgroug 3Pk) of
SL(2n, k). We first show that all involutions of SBn, k) are the restriction of an invo-
lution of SL(2n, k) to SA2n, k). We determine that an automorphigh= Inna leaves
SP(2n, k) invariant if and only if A = pM for somep € k and M € SP(2n, k). Next

we give specific criteria to characterize which involutions of &, k) remain involutions
when restricted to Sn, k). Lastly, we determine that if two involutions of &, k) are

isomorphic under Sn, k) then they are isomorphic under &n, k).
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Chapter 1

Introduction

1.1 Motivation

This thesis involves symmetric spaces and how they are obtained from Lie groups, algebraic
groups. Symmetric spaces describe various symmetries in nature. One way to visualize a
symmetric space is by viewing the group of symmetries or motions acting on the space.
For example, you can think of the symmetric space as the plane and the group as the set of
translations in the plane. The study of symmetric spaces combines group theory, geometry,
field theory, Lie theory and linear algebra. Symmetric spaces have been studied for over
100 years and have played an important role in mathematical physics, representation theory
and differential geometry. Although initially symmetric spaces were only studied over the
real numbers, more recently the area has expanded to include the study over various fields.
In fact, in the last 15 to 20 years symmetric spaces have become of importance in many
other areas of mathematics and have been studied by many mathematicians.

1.2 Overview

We are interested in classifying symmetric spaces. G&k a reductive linear algebraic
group over a fiel&k andG its set ofk-rational points. An automorphisis an involution
if & # 1d and#? = Id. Hence, given an involutiofi on our groupG, the symmetric space
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X is defined ass/H whereG? = H is the fixed-point group of the involutiofi As you

can see the sheer definition of a symmetric space relies heavily on the fixed point group
of the involution. Because of this reliance we focus exclusively on classifying the invo-
lutions which define the symmetric space up to isomorphy as a method of classifying the
symmetric space itself. We begin by considering involutions on the groum@&al. In this

case we are able to see that one method of classifying such involutions can be realized by
looking at their relationship with bilinear forms. We first observe that given a bilinear form
B(x,y) = xI My and a matrixA the adjoint ofA, denotedd’, is the matrix satisfying

B(AX Y) = B(x, Aly) forall x,ye V.

In particular we see that’ = M~ AT M. More importantly if5 represents a non-degenerate
symmetric or skew-symmetric bilinear form (i.e. dst) #0andM = MT orM = —MT)

then we are able to define an involutiég (X) = (X’)~! based on that bilinear form. This
invokes interest on the connection between isomorphy classes of such involutions and con-
gruence classes of symmetric and skew-symmetric bilinear forms. It is at this point that we
formally give this relationship via

The Classification Theoremtf 6y, anddw, are involutions on GIn, k) which come from

a symmetric or skew-symmetric bilinear form as stated before, then
M; =°My over k < 0Oy, ~ Owm,.

(where semi-congruence is simply congruence up to a seafathe algebraic closure of
the field).

It is then shown that these results carry over to the subgroups, 8).and SKn, k) of
GL(n, k). Finally we provide a classification of the involutions on(8Lk) up to isomor-
phy and give a characterization of the involutions of &R k). A detailed summary of all
the results are provided in the next section.



Chapter 1. Introduction 3

1.3 Summary of Results

We begin Chapter 2 with the definition of symmetric spaces an the concept of isomorphic
involutions. We give a detailed analysis of the congruence classes of symmetric and skew-
symmetric bilinear forms which will prove extremely useful in later chapters. The most
significant result in this chapter is the Classification Theorem which links the congruence
classes (truly semi-congruence classes) of symmetric and skew-symmetric bilinear forms
to the isomorphism classes of involutions.

In Chapter 3 we turn our attention to the subgroug&Lk) of GL(2, k). For SL(2, k)
we observe that all involutions are of type inner. In addition, we give the result that all
involutions of SL(2, k) come from a symmetric bilinear form, however no involution of
SL(2, k) is obtained from the skew-symmetric bilinear form. We go on to give a classifi-
cation of the involutions over the algebraically closed fields, the real numbers, the rational
numbers, and the finite fields.

We move on to the subgroup &b, k) of GL(n, k) in Chapter 4. We first observe that
unlike SL(2, k), there are two types of involutions on 81, k), both inner and outer. We
show that all the outer involutions of $h, k) come from bilinear forms. Because of this
we are able to use the Classification Theorem to determine the isomorphy classes of in-
volutions on Sl(n, k) over the algebraically closed fields, the real numbers, the rational
numbers, and the finite fields. We then focus on the inner involutions @i, %)) and state
that they do not come from bilinear forms. Since the Classification Theorem is not appli-
cable in this case we give a new set of criteria for the classification of inner involutions and
provide such a classification.

We begin Chapter 5 by discussing the skew-symmetric bilinear forms in detail. Here
we are able to see that there is in fact only one skew-symmetric bilinear form up to a change
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of basis. We then review the orthogonal groum®k, /) discussed in Chapter 2 and con-
clude that SPm, k) = O(m, k, ) where § represents the sole skew-symmetric bilinear
form. In addition,m must be even so we switch to the notation(3k k).

Since we are truly interested in characterizing involutions ofZ8Pk) we show that
every involution of SIP2n, k) is the restriction of an involution of Si2n, k) to SA2n, k).
Hence to classify the involutions on &, k) we investigate the involutions of $2n, k).

We start off by looking at involutions when = 1, that is on SP2, k). In this sit-
uation we show that SR, k) = SL(2, k). Thererfore we are able to conclude that the
isomorphism classes of involutions of &Pk) are given by the isomorphism classes of
involutions of SL(2, k) which leave SI2, k) invariant.

Next we look at the more complicated situation of involuting®& SP(2n, k) with
n > 1. We begin by focusing on the fact thatkiis algebraically closed then all the auto-
morphisms ofG are of type inner. We use this fact to give the result that an automorpism
Inna | = Id for someA e SL(2n, k) if and only if A= pl for somep € k. Although it
will initially appear that we have slightly deviated from our objective the above result will
play an integral part in our next theorem, The Characterization Theorem.

Continuing to focus on Sn, k) we now state what is called the Characterization The-
orem. The first part of this theorem answers the question, which inner automorphisgns Inn
with A € GL(2n, k) keepG = SP(2n, k) invariant. What we determine is that Inkeeps
G invariant if and only ifA = pM with p € kandM e G. Now part 2 of the Characteri-
zation Theorem states that the inner automorphismg Wwith B € G keepsG invariant if
and only if B = gN for someq € k andN € G. Hence we are able to conclude that any
automorphisn®, and more importantly any involutiofy which leaves SEn, k) invariant
has the property th@= Inny where A = pM for somep € kandM e SP(2n, k). Since
the proof of the second part of the Characterization Theorem is quite complex we first
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demonstrate the procedure of the proof via an examplerfet B, followed by a complete
proof in the general case.

We then turn our attention to the outer involutions of(3h, k). We first redefine the
outer involutions of Si2n, k) by redefining the fixed outer automorphism used in Chapter
2. By redefining the fixed outer automorphism we are able to give the result that the outer
involutions of SL(2n, k) become inner involutions when restricted to(3®, k). This will
follow directly from the fact that S@n, k) is the fixed point group of our new fixed outer
automorphism.

Since we focus on involutions of §Pn, k) restricted to SF2n, k) we now begin to
characterize which involutions of $Bn, k) remain involutions when restricted to &9, k).
We give the result that an involutianof SL(2n, k) keepsG invariant if and only ift¢ = ¢t
whereg = Innj 6 whered(X) = (XT)~1. Moreover, we determine specific criteria in or-
der for an involutions of S[2n, k) to remain an involution when restricted to &, k).
With the aforementioned criteria in hand we are able to state exactly which involutions of
SL(2n, k) will not remain involutions when restricted to &, k).

Finally, we give the result that the isomorphy class of outer involutions qR81K)
coming from the skew-symmetric matim = Jo, does not exist when restricted to &, k).
In addition, we show that if two involutions; and > on G come from the restriction
of outer involutions of Sk2n, k) then if 73 ~ 7> over G then the outer involutions of
SL(2n, k) from which they came must be isomorphic over(3i, k).



Chapter 2

Symmetric Spaces and Bilinear Forms

2.1 Notation

Throughout this thesis our terminology and notation for reductive groups will come from
the books of Borel [Bor91], Humphreys [Hum72] and Springer [Spr81]. We will also use
information provided in the papers of Borel and Tits [BT65], [BT72]. All algebraic groups
and algebraic varieties are taken over an arbitrary kelith the characteristik not equal

to 2 and all algebraic groups considered are linear algebraic groups. In addition, throughout
this thesis some standard notation is used. With an attempt to limit the introduction of new
notation we provide the following list.

k — denotes a field of characteristic not equal to 2
ky — an extension field of

k — the algebraic closure &

V = k"- afinite dimensional vector space over the field
vV =Kk"

k* — the product group of all nonzero elementsof
(k*)? = {&? |ac k*)

Mn(K) = M(n, k) ={n x n matrices with entries in}k

6
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GL(V) = GL(n,k) = GLp(k) = {A € Mp(k) | det(A) # 0}
SL(V) = SL(n, k) = SLy(k) = {A € Mp(K) | det(A) = 1}
Id - denotes the identity automorphism

Aut(G) - the set of all automorphisms @B

2.2 Symmetric Spaces

In this section we begin by giving the necessary background material required to give a
complete definition of a symmetric space and conclude with said definition. We note here
that an alternative definition of a symmetric space will be given later on in this chapter.

Throughout this thesis we will defin® to be a reductive linear algebraic group over
a fieldk. G will denote its set ok-rational points. We will assum& is a subgroup of
GL(n.k).

2.2.1 Definition of Symmetric Space

Definition 1. Let# be an automorphism. Tharder of 8, denoted or), is defined to be
the smallest integey such that¥ = Id.

Definition 2. Let§ € Aut(G) then@ is aninvolution of G if 8 # Id and ord#) = 2, (i.e.
6% = 1d).

Definition 3. Given an involutior? on our groupG, thesymmetric space Xs defined as
G/H whereG? = H is the fixed-point group of the involutioh One can also characterize
this symmetric space as the subXet {(x9(x)~! | x € G} of G. ThenX ~ G/H.

Remarkl. Two symmetric spaceX; and X, are isomorphic if and only if their correspond-
ing fixed-point groupdH; andH, are isomorphic.
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The above remark will allow us to give criteria for the classification of symmetric
spaces. In essence we will classify the fixed-point group of an involution and then use

the above remark to give a characterization of the symmetric space.

2.3 Isomorphic Involutions

As stated in the previous section determining the fixed point group of an involution will
prove to be extremely significant in classifying symmetric spaces. That being said, it will
be necessary for us to define what is meant by isomorphic involutions. Some notation is

first needed.

For A € GL(n.k)

(1) Inna denote thenner automorphismsefined by

Inna(X) = A~1XA VX € GL(n, k).

(2) Inn(G) ={Innp | Ae G}

(3) Inn(G) = {Inna | Ae G, Inna(G) C G}.

Definition 4. (1) Let#, r € Aut(G). We say that) andr are Inn(G)-isomorphicde-
noted,d ~'"« z, if there exist ap € Innk(G) such thatr = ¢~ 10¢.

(2) Letd, r € Aut(G). We say tha® andr are Inn(G)-isomorphic denotedd ~'"" ¢,
if there exists ap € Inn(G) such thatr = ¢~16¢.

(3) We say tha® andr are Aut(G)-isomorphicdenotedp ~AUt 7, if there exists ap €
Aut(G) such thatr = ¢~16¢.

When trying to determine the isomorphy classes of an automorphism one must be spe-
cific as to which type of isomorphism they are referring. It should be clear that the set
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of Innk(G)-isomorphism classes are contained in the(f&yrisomorphism classes, that
is @ ~" ; — @ ~I"" ¢ In addition, it is also easily seen that the set of (G-
isomorphism classes are contained in the (@)tisomorphism classes, that fs~'""

t = 0 ~AU ¢ Throughout this thesis we will only investigate If@®)-isomorphism
classes hencé) ~ 7 will always indicate an InfG)-isomorphism. The cases of classi-
fying automorphisms, specifically involutions, using the J¢®)-isomorphic or AufG)-
isomorphic criteria still remain open problems.

2.4 Bilinear Forms

The existence of this section may initially seem unusual. As you will see in the next section
there is a clear and precise relationship between bilinear forms and involutions. In fact, the
wealth of knowledge already known about Bilinear Algebra will be the cornerstone in our
ability to classify involuitons. Before we proceed we first must give some background in-
formation on bilinear forms.

2.4.1 Definition

Definition 5 ([Art91]). Let V = k" be a vector space, wheteis any field such that
char(k) # 2. A bilinear form on V is a function of two variables ol with values in
the fieldk, g : V x V — Kk, satisfying the bilinear axioms below.

(1) 1+ 02, w) = f(v1, w) + f(v2, )
(2) f(v, w1+ w2) = f(v, w1) + S(v, w2)
(3) p(cv, w) = (v, w)
(4) B(v, cw) = cB(v, w)

for all v, w, vi, w; € V andc € k
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Definition 6. The matrix associated with the fornB on a vector spac¥ is the matrix
M = (m; j) with m; j = (&, €j), where{e } is any ordered basis for.

Hence our bilinear fornf can be viewed as
pxy) =x"My Vx,yeV

Note: The matrix of the formy is dependent upon the choice of basisYor

In Section 2.5 we will see that the relationship between involutions and bilinear forms
center specifically around symmetric and skew-symmetric non-degenerate bilinear forms.
Therefore we define such terms and their relationship with matrices of the form.

Theorem 2.1([Art91]). The properties of the bilinear forgfi carry over to the matrix of
the form M. Using this fact we list 3 well know properties

(1) pis a symmetric bilinear formrk— M is a symmetric matrix.
(BOY) =B, X) VX, yeV = M=MT)

(2) pis askew-symmetric bilinear forre—> M is a skew-symmetric matrix
(B y) = —B(Y,X) ¥X, Y€ V)&= M=—-MT)

(3) pisnon-degenerate (i.(X, y) =0 Vy e V only if x= 0) <= nullspacéM) = 0.
(f is non-degenerate— det(M) # 0 <= M is invertible)

In this thesis all of the bilinear forms that we will use will be non-degenerate. Hence all

the matrices representing these bilinear forms will be invertible.

2.4.2 Congruence

The idea of determining when two involutions are isomorphic will rely on the congruence
classes of matrices of symmetric and skew-symmetric bilinear forms. Throughout this
thesis we will consistently refer to the theorems in this subsection which characterize such

congruence classes.
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Definition 7. Let My andM> be the matrices of two bilinear forms &= k". ThenMy is
congruentto Mo, denotedVl; = My, over the fieldk if there exists a matriXQ € GL(n, k)
such thatM, = Q™M1 Q.

Theorem 2.2. Two matrices M and M, represent the same bilinear form with respect to
different bases if and only if M= M.

Remark2. If M; represents the matrix of the forfhwith respect to the basi8 and M
represents the matrix of the forghwith respect to the baskg, then the matrixQ that
gives the congruence relation is the change of basis matrix g 5 .

Lemma 1([Szy97]) If M is the matrix of a non-degenerate symmetric bilinear form, then:

(1) M is congruent to a diagonal matrix with non-zero diagonal entries.

(2) Any rearrangement of the diagonal matrix M results in another matrix in the same
congruence class, congruent via an orthogonal permutation matrix P.

In addition, we state the following theorem about congruence classes of symmetric and
skew-symmetric matrices.

Theorem 2.3([Sch85]) (1) Symmetric matrices are congruent to diagonal matrices whose
entries are representatives of the square-class groygké)2.

(2) Skew-Symmetric matrices are congruent toimex 2m matrix 3p,, where n= 2m

32m=( 0 Imxm)_
~lmxm O

2.5 Induced Involutions of Bilinear Forms

and

In this section we discuss the connection between bilinear forms and involutions. Specifi-
cally, we will determine the method of constructing an involution from a given symmetric
or skew-symmetric bilinear form.
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2.5.1 Definition of the Adjoint

Definition 8. Let M be the matrix of a non-degenerate bilinear fgfraver a vector space
V = k". Given A € GL(n, k) we define theadjoint of A with respect tos, denotedA’, as
the matrix that satisfies the relatigit Ax, y) = g(x, A'y). When the bilinear form we are
using is clear we will simply refer té\' as the adjoint ofA.

Given a bilinear formg(x, y) = x' My we note that:

B(AX, Y) = B(x, Ay)
(A "My = x"M(A'y)
x'ATMy = x"MA'y
ATM = MA
M~IATM = A

Hence, using the definition of the adjoint we are able to see that

A =M1IATM.

2.5.2 Constructing Involutions via the Adjoint

Definition 9. Given a non-degenerate bilinear formgrwith matrix M, we defined = 0y
by Om(A) = (A)~L.

Using the fact tha®\' = M—1ATM we have
Om(A) = M~ (AT "M

It turns out that the automorphisén= 6y, given in Definition 9 is an involution if the
matrix M is symmetric or skew-symmetric. Before we formally state this result we observe
the following properties of the adjoint of a symmetric or skew-symmetric bilinear form.
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Theorem 2.4. Let A be the adjoint of a symmetric or skew-symmetric matrix. Then
1) (A)Y =A
(2) (A)t= (AT
(3) (AB) = B'A’
Proof. (1)
(A) = (MTATMY

=M IMITATM)TH)M
=M IMTAMMHT™M

If M is symmetric thetM = MT andM~IMTA(M—1)TM = A
Similarly, if M is skew-symmetric them = —MT and agairM *MTA(M~1H)TM =
A. In either case(A’) = A.

(@)

(A) L= (M LATM) L
= M~L(AT)"IM
=M LAHTM™
— (ALY

The 2nd and 3rd steps of the above equality are true since we know the transpose and
inverse operations commute.
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3)

(AB) = M~Y(AB)™M
=M~IBTA™™M
=M 1BT(MM 1) ATM
= (M~ 1BTM)(M~1ATM)
=BA

O
Proposition 1. If g is either symmetric or skew-symmetric tifeg 0y is an involution.

Proof. From Theorem 2.4 it is easy to see thas$ indeed an involution since

0(AB) = ((AB))™*
— (B/A/)—l
= (A7)
= 0(A)0(B)

and
(A = (A D) =AY =A

]

Utilizing the method described above, given an non-degenerate symmetric or skew-
symmetric bilinear form on a vector spabk one can always obtain an involution of a
matrix group over a fiel&. Because of this relationship a natural question arises, can all
involutions be obtained in this manner, (i.e. Do all involutions come from the adjoint of
a bilinear form?). As you will see in the next few chapters the answer to this question is
primarly based on the matrix group and vector space in question. Another question which
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arises is, does there exist any correlation between congruence classes of symmetric and
skew-symmetric bilinear forms and isomorphism classes of their induced involutions? The
next section will explore this question in detail.

2.6 Congruent Bilinear Forms versus Isomorphic Involu-

tions

Given the construction of an involution via the adjoint of a symmetric or skew-symmetric
bilinear form it is natural to explore the relationship between the two ideas. In this section
we will see that congruence of bilinear forms does not exactly correspond to isomorphic
involutions however, by slightly altering the idea of congruence a nice correspondence is
obtained.

2.6.1 Semi-Congruence

Theorem 2.5. Let My and M, be two matrices of symmetric or skew-symmetric bilinear
forms 1 and 2 over V= k" respectively. Lefl, anddy, be their corresponding involu-
tions onGL(n, k). If M1 = My, thenfy, ~ O,.

Proof. SupposeM; = M, over k. Then there exists & € GL(n, k) such thatM, =
QTM1Q. Now using the fact thaty, = M"1(AT)=1M; for i = 1,2 we have tha¥ A €
GL(n, k),
Om, (A) = Innp, (A1) ™1 = Inngry, (A7) 71

= (Q'M1QH(AH)(Q'M1Q)

= Q' (M H((QNH™HAHTIQNHMYQ

= Q tInny, ((Inng-1 (AN 1Q

= Q'0m, (INng-1(A))Q

= Inng61INng-1(A), = Om, = INnQ O, INN(g)-1.
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This mean®y, = (¢) '0m, ¢ With ¢ = Inng-1, anddy, ~ Ou, over GL(n, k). O

A correspondence between congruent symmetric and skew-symmetric bilinear forms
and isomorphisms of the induced involution begins to appear. That is congruence of bilinear
forms implies an isomorphism of their induced involutions. In the reverse direction we get
an "almost” one-to-one correspondence between congruence classes of bilinear forms and

isomorphy classes of involutions.

Theorem 2.6. Supposéy, and 6y, are involutions onGL(n, k) which come from sym-
metric or skew-symmetric bilinear forms over2/k" with associated matrices Mand My
respectively. Dy, ~ Ou, then M = a QT M1 Q for some matrix QG GL(n, k) and some

scalara € k.

Proof. Suppose there existsgtee Inn(GL(n, k)) such thath, = ¢~ 161¢4. Let P € GL(n, k)
such thaty = Innp. Then for allA € GL(n, k),

Om, (A) = ¢~ 0w,
$(A) = Innp_1 Inny, ((INnp(A)) ") ~1
= PM{E(PTH(ADH)L(PT)"Im P
= My (AN ™M,

which imples
Mz2P(M1)*PT(AD)"H(PT) "M P I Myt = (AT) ™
This holds for allAT, so it holds for allA. Which means
(PO MP MDY AP IM P IM h = A

So INNpr)-1p,p-1y 2 = Id, (PT)"IM1P~IM;1 = ylnxn for somey e k¥, and Mz =
1/y(PT)~IM1P~L. The result follows by substituting@ = P~ a = 1/y. O
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The relationshipM, = « Q" M1 Q for some matrixQ € GL(n, k) and some scalar € k
is very similar to the definition of congruent matrices with the exception of the sealar
Hence we define this relationship as semi-congruence in an effort to obtain the equivalence
of Theorem 2.5 and Theorem 2.6.

Definition 10. Two bilinear forms onV = k" with associated matricedl; and M, are
semi-congruent over kdenotedM; =° My, if there exists &Q € GL(n, k) and ana < k
such thatM, = « Q" M1 Q.

It is clear from the above definition of semi-congruence that if two matrices are con-
gruent then they must be semi-congruent. We are now able to rewrite Theorem 2.6.

Theorem 2.7. Supposé), andé, are involutions onGL(n, k) which come from symmet-
ric or skew-symmetric bilinear forms over ¥ k" with associated matrices Mand M
respectively. Thefiy, ~ Oum, = M1 =° My.

2.6.2 Classification Theorem

The two Theorems discussed in Section 2.6.1 can be combined to create precise relationship
between associated matrices of symmetric and skew-symmetric bilinear forms and their

corresponding involutions which is given below.

Theorem 2.8(Classification Theoren). If 6\, andéy, are involutions orGL(n, k) which
come from a symmetric or skew-symmetric bilinear form as stated before, then

M1 =°M; over k<= 0Oy, ~ Owm,.

Proof. <= The proof of the above theorem in this direction follows directly from Theorem
2.7.
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= SupposeM; =° My, then this is equivalent tM; = aM,. Now Theorem 2.5 says
thatfm, =~ O,m,. Now

Oumt, = 1NN, (AT) 72
= (aM2) (AT (aMy)
= (a ta)Mz 1 (AT) Mz = My H(AT) M,
= Inny, (AT) 1

= GMZ
Hencef,m, = Om, which meangy, ~ O, O
Remark3. There is an important concept which is addressed in the proof of the above

Lemma which will be commented upon throughout this thesis. This is the fact that the
scalara does not affect the automorphism, ie. Jg = Inny,.

2.6.3 Alternative Definition of Symmetric Spaces

Since we have been able to create a correspondence between associated matrices of sym-
metric and skew-symmetric bilinear forms and involutions which are defined by these forms
one must question how this relates to symmetric spaces. By redefining our notion of sym-
metric spaces this will become clear.

Definition 11. Given a non-degenerate symmetric or skew-symmetric bilinear foon
V = k", theorthogonal groupO(n, k, B) is defined as

O(n,k, f) = {A € GL(n, k) | B(AX, Ay) = B(X, y)}.

= {AeGL(n,k) | AA =1}

Recall: When we first defined a symmetric spaseve said thatX = G/H whereH = G?,
the fixed point group of the involutiof. In Section 2.5.2, we defined involutions which
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come from a bilinear form via the adjoint 46A) = (A’)~L. Let’s now observe the fixed
point groupH of such an involution

H={A]0(A) = A)
={A|(A) =7
={A| AA =1}
=0(n,k, B)

Therefore, if an involution comes from a symmetric or skew-symmetric bilinear form
then the fixed point group of the involution is precisely the orthogonal group of the form.
With this relationship we can redefine our symmetric space.

Definition 12 (Symmetric Space Let X = {AA | A€ GL(n, k)}. ThenX = {A(O(A)) 1|
A e GL(n,k)} ~ GL(n,k)/0O(n, k, ).

If Gis a subgroup of GIn, k), invariant under taking the adjoint, then
X=XNG~G/(GNO(n,Kk, f)) is exactly the symmetric space defined in the previous
definition.

Recall: Two symmetric spaceX; and X, are isomorphic if and only if their corresponding
fixed-point groupsH, and Hz are isomorphic.

Theorem 2.9([HW93]). Two fixed point groups k§ = O(n, k, A1) and Hz, = O(n, K, 42)
are isomorphic if and only if; ~ 65.

Therefore, if an involution comes from a non-degenerate symmetric or skew-symmetric
bilinear form by using the Classification Theorem we can determine the isomorphy classes
of involutions which will in turn give us a classification of the related symmetric space via
its fixed point group.
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2.7 Results for SL(n, k)

Although all the results in the previous section have been given based on the gréoykgsL
from this point on we will focus strictly on subgroups of @i, k). In particular we will
begin with the subgroup S, k) of GL(n, k). In this section we will show that all of the
results given up to this point for Glp, k) in fact hold for SL(n, k).

Lemma 2. An automorphismd coming from a symmetric or skew-symmetric bilinear form
is an involution onGL(n, k) <= @is an involution orSL(n, k).

Proof. =— Let 0 be an involution on GIn, k) which comes from a bilinear form with
associated matrbM. Thend(A) = M~1(AT)~IM. Since Slkn, k) is a subgroup of
GL(n, k) we can restrict to SL(n, k). W now only need to check & keeps Slkn, k) in-
variant. LetA € SL(n, k) then defd(A)) = dettM~1(AT)"IM) =det(A~1) =1/ det(A) =
1 sinceA € SL(n, k). Hencef is an involution on Skn, k)

<= This direction is trivial since i) is an involution on Skn, k) it is clear that if lifted to
act on GL(n, k), 8 will still remain an involution. O

Since the Classification Theorem focuses on the isomorphism classes of the involu-
tions it is necessary to explore the relationship between these classeqmfk®lersus
SL(n, k). The following theorem addresses this issue.

Theorem 2.10.Two involutiong); andé, are isomorphic ove6GL (n, k) if and only if they
are isomorphic ove6L(n, k).

Proof. «<: This direction is clear.

—: Suppose&)1 andd, are isomorphic over G{n, k) via someP € GL(n, k). Then
we can replac® with P = (1//det(P)) P and still retain Inn-G isomorphism via Ing.
Now

det(P) = (1/5/dei(P)) " (det(P)) = 1
SinceP € SL(n, k) and thus dgtP) = 1. Therefore we may conclude thBte SL(n, k)
and hencé1 ~ 6, over SL(n, k). O



Chapter 3

Involutions on G = SL(2, k)

3.1 Introduction

This chapter focuses on involutions of the subgrougZSk) of GL(2, k). As we will see

in the later chapters the classification of the involutions oK2Sk) will play a vital role in
classifying involutions on S@, k), therefore the development of this classification will be
explored in detail.

In this chapteiG = SL(2, k), G = SL(2,k) , G1 = SL(2, k1) and all bilinear forms
are taken over either the vector spate- kZ or V = k2.

3.2 Involutions and Bilinear Forms

This subsection gives the framework needed in order to determine the isomorphy classes

of involutions on SI(2, k).

Lemma 3 ([Bor91]). If k is an algebraically closed fieldAut(G) = Inn(G).

Remark4. If § € Aut(G) andk is not algebraically closed then there always exists an
extension fielk; and ar € Inn(SL(2, k1)) such thatr|c = 6.

21
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Lemma 4 ([HWO02]). The inner automorphisimna € Inn Gy keep G invariant if and only
if A = aB for somex in ky and some B ifGL(2, k).

We first recall that adding a scalar to a conjugation does not alter the automorphism,
that is Inn,g = Inng as discussed in Remark 3 of Chapter 2. Because of this fact the above
Lemma proves to be extremely useful. We now have that every automorphism, and hence
every involution, of SI(2, k) can be written as Inpwhere B € GL(2, k). Adding the
additional criteria that our automorphism is an involution gives us the following result.

Theorem 3.1([HWO02]). All involutions onSL(2, k) have the forn® = Inng, where B has

Ob
the form and be k.
10

We are now able to link the form of involuitons of §2, k) given in Theorem 3.1 to
involutions derived from bilinear forms as discussed in Chapter 2.

Theorem 3.2. All involutions onSL(2, k) have the formfy where M is the matrix of a
symmetric bilinear form anély, its corresponding involution.

Proof. Consider an involutiorp of SL(2, k). Then by Theorem 3.& = Inng whereB =
0 b
(1 0). Let M’ be the matrix of a non-degenerate symmetric bilinear forri/ eak?. By
Lemma 1 we know thall” is congruent to a diagonal matrix, thatNé' can be viewed as,
m O
M = ( 01 ) Normalizing the(1, 1) entry of M’ does not change the involution since
mp
O (A) = (M) ~HAT) M

= Inny (A7) ™1



Chapter 3. Involutions on G = SL(2, k) 23

10
Hence we can let our symmetric bilinear form be represented by the nMitﬂ>(0 )
m

0 -1 0 —m
wherem = —h. LetY = (1 0 ) thenYM = (1 0 ) Now ¢(A) = Inng(A) =

Innym(A) = Inny Inny (A) = Inny (AT) 1 = 6 (A). Hence Ing comes from a bilinear
form and all involutions of SI2, k) have the forn#,, whereM is the matrix of a symmetric
bilinear form. O

Since the above theorem tells us that all involutions of Zk) come from bilinear
forms we are able to invoke The Classification Theorem 2.8 in order to determine the
isomorphism classes of involutions of &, k).

Theorem 3.3.Let M; and M, be associated matrices of symmetric bilinear forms oa V

5 1 0 1 0 2 i
ks. Then M = =My = < my = a“mp for somea € k* (i.e.
0m 0 m

the semi-congruence classes of symmetric bilinear forms enkV are determined by the

square class group* (k*)2.)

Proof. =—: SupposeM; and M2 are semi-congruent. Then we know there exi€) &
GL(2, k) and a scalac € k* such thatM; = cQ" M, Q. By taking the determinant of both

sides of we see that, = c?(detQ)?m, = (cdetQ)?my. By lettinga = cdetQ we obtain

2

the desired result that; = o< x mp for somea € k.

«: Let M andM be defined as above. Suppase= a?* my. ThenM; = Q" M, Q

10
whereQ = (O ) This of course implies tha¥l; = My. Since congruence implies semi-
(¢4

congruence we have thit; =% Mo.
L]

Theorem 3.4.The number of isomorphism classes of involutions of G is equial tok*)?|,

0
and each representative has the fofra- Inng, where B= ( 0

) and m is a repre-

sentative of k/(k*)2.
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3.3 Skew-Symmetric Bilinear Form onV = k?

Before we give a complete classification for the involutions oS k) we note one im-
portant fact. The Classification Theorem clearly deals with involutions which come from
both symmetric and skew-symmetric bilinear forms\6ria the adjoint. However, in the
previous section there is no mention of any involutions coming from a skew-symmetric
bilinear form onV. This case has not accidently been overlooked.\Fer k? there are no
involutions which come from skew-symmetric bilinear forms. The reason for this is given
in this section.

Lemma5. (1) All skew-symmetric bilinear forms oRf kre semi-congruent to the form

()

(2) The only induced automorphism from the skew-symmetric forn? a tkherefore

represented by the matrix

0(A) = Inny (AT)~1 which is not an involution.

Proof. (1) We know from Theorem 2.1 that a skew-symmetric form is represented by a
skew-symmetric matritvl with M = —MT. SinceM is a 2x 2 matrix M has the form

0 —a

a O
L . 0 -1
which is semi-congruent (1 0 )

(2) From part 1 we know that the only induced automorphism from the skew-symmetric

0
it is simple to see tha#(A) = Inny(AT)"! = A. That is6(A) = Inny (A7) is the
identity automorphism and is therefore not an involution. O

0
form onk? is O(A) = Inny (AT)~! whereM = (1 ) However if A € SL(2, k) then
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Hence we can conclude that there are no involutions induced by the skew-symmetric
form on SL(2, k).

3.4 Isomorphy Classes of Involutions of SI2, k)

In this section we invoke The Classification Theorem 2.8 in order to give a complete clas-
sification of the involutions of S(2, k). However, because of the sole nature of the Clas-
sification Theorem it is necessary that we also identify the semi-congruence classes of the
symmetric bilinear forms. Theorem 3.3 told us that the semi-congruence classes of sym-
metric bilinear forms are determined by the square class gradp/ (k*)?|. When we

give the characterization of such classes we will rely on this fact. In addition, we are able
to use Theorem 3.4 which tells us that each involution of 5 k) has the form Ing where

0 —m
B= ( 0 ) andm e (k*)/(k*)? to give a complete classification of the isomorphy

classes of involutions for various fields as seen below.

(1) k = k: If kis algebraically closed theitk*) / (k*)?| = 1 hence there is only 1 semi-
congruence class of matrices.

0 -1
All involutions are isomorphic t@ = Inng,, whereB; = (1 0 ) with (A) =

Inng(A) = (AT)~L,

(2) k=R: In this case we know thaik*)/(k*)?| = 2 with representatives given by
1 and—1. There are 3 congruence classes of symmetric bilinear forms over the

1 0
real numbers represented by = Id, Mo = — Id andM3 = ( 0 ) However,

-1
when we look at the semi-congruence classesBwee see thaM; andM, represent
the same semi-congruence class.

There are 2 isomorphism classes of involutionsd% Inng, as defined above in
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3)

(4)

3.5

_ 0 1
the case wherk = k and (2)62 = Inng,, whereB, = (1 0). The action of); is:

a2 a1
02(A) = ( )

a2 a1
k = @: Unfortunately|(k*)/(k*)2| = oo and there are infinitely many congruence
classes ove@ therefore there are infinitely many semi-congruence classesver

In addition, we can only conclude that there are infinitely many isomorphism classes

in this case.

k=Fp (p#2):Inthis casd (k*)/(k*)2| = 2. This can be seen as follows. Let
¢ : Fp — Fp be the map defined by(x) = x2. Theng(F}) = Fi¥ is a normal

subgroup of 7}, and|[F>’;)/[F]‘52| = |Ker(¢)| = 2. Hence, the 2 semi-congruence classes

10
are represented byl = (0 ) wherem is either 1 orS, =the “smallest” non-
m

square element dfp.
There are two isomorphism classes of involutios given byd(Z) Inng, as defined

. . 0 -S
in the algebraically closed case and §2)= Inng, whereBz = ) Op).

Resulting Symmetric Space

Since we began this thesis with an interest in viewing symmetric spaces it is natural to

guestion what such a space looks like. The simplest illustration of the resulting symmetric

space can be viewed wh&h = SL(2, R). Recall that a symmetric space is defined as

X = G/H whereH is the fixed point group of the involution. Whén= R we know from

Section 3.4 that there are two isomorphy classes of involutions and hence we are able to

view their two corresponding symmetric spaces.
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(1) As the previous section indicates the action of the first involutios: Inng, where
0 —-1Y\.
B, = IS

The fixed point group of this involution is given by

01(A) = (AT)™!

Hi=G"={AeG|(A) 1= A
={AeG| (A =AY
= SO(2,R)
Hence the fixed point group @k is the well known 2-Dimensional Special Orthogonal

group of length preserving rotations. In additionAite SL(2, k) andAT = A~ thenA =

a
( p p ) wherea? + 2 = 1. That isH; is isomorphic to the unit circle. Moreover,
— o

the resulting symmetric space is
X1 = G/H; = G/SO(2,R) = {AAT | Ae SL(2, R)
which is precisely the set of positive definite symmetric matrices.

(2) For the second symmetric space we consider the other involution (@, 8L, 8, =

A2 azi1 . .
. (i.e. switches
a2 A1

the diagonal and anti-diagonal entriesA)f We examine the fixed point group 64 and

01
Inng, whereB, = L o) which has the given actiai (A) = (

see that

HZ:GHZ:{AEG|A:((Z ﬁ)andaz—ﬂzzl}
p a

Hence,H> is isomorphic to a hyperbola. The resulting symmetric space is sitdph
G/ Has.

3.6 Table of Involutions on SL(2, k)

This section gives a table which summarizes the information given in the two previous
sections. The table includes the Semi-Congruence classes, the isomorphism Classes of
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Involutions as well as the action of the involutions over the algebraically closed field, the
real numbers, the rational numbers and the finite fields. An important thing to note when
looking at the table is the connection between the semi-congruence classses of symmetric
matrices and the the isomorphy classes of their induced involutions. This information is

given below.

10
(1) The semi-congruence classes are giveivby: (0 ) wherem e (k*)/(k*)2.
m

(2) The involutions of SI2, k) can be viewed a8 = Inny (A7)~ where
10
M= .

0 —m
(3) The Involutions of Si2, k) can also be viewed @&= Inng(A) whereB = (1 0 )
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Table 3.1 Involutions of SL(2, k)

Field Semi-Congruence Involution Action of the
ClassM 6 = Inng Involution onG
k =k M = lpyo B= ((1) _01) O(A) = (AT)~1
0 -1 Ty—1
k=R M1 = l2x2 Bi={;, o 01(A) = (A")

1 O 0 1 a a
MZ:(O _1) 52:(1 O) HZ(A):(ai; aiji)

0= (i )

k=0Q (i, # ai,(g?) for B = ((1) _ai) 0,(A) = ( a2 —aia2,1>

anyi =iq,ip e N 0 —ai2/ai a1
qe Q")
k=F 0 —1
p;éZp My = l2x2 Bi=1|, o) 61(A) = (AT)71

(1 0 {0 =S B a2 —Spag,1
MZ_(O Sp) Bz_(l 0) QZ(A)_(—al,z(Sp)_l a1 )




Chapter 4

Involutionson G = SL(n,k),n > 2

4.1 Introduction

As was the case for SR, k) the classification for involutions of S, k), n > 2 plays a
role in characterizing involutions of Pn, k) and therefore must be studied in detail. In
the following chapter a complete classification of involutions orfi§ k) will be given.

In this chapterG = SL(n, k), G = SL(n, k) andn > 2. All bilinear forms are taken
over the vector spacé = k" or V = k".

4.2 Outer Involutions of G = SL(n, k)

In the previous chapter we discovered that all involutions of 5 k) are of type inner and
were determined by a symmetric bilinear form via the adjoint. When we look at involutions
of SL(n, k) wheren > 2 this result does not carry over. The first distinction will appear
in the fact that all the automorphisms, and thus involutions, ofnSk) for n > 2 are not
inner. Secondly, we will see that the involutions of @Lk), n > 2 that are not of type
inner will be the ones which come from a symmetric or skew-symmetric bilinear form. We
begin by defining a non-inner automorphism of(&lk), n > 2.

Definition 13. Any automorphisn® of G such that # Inny for any matrixM € G is an
outer automorphismof G.

30
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Lemma 6 ([Bor91]). (1) If kis algebraically closed, thepAut(G)/Inn(G)| = 2.

(2) Any outer automorphisit of G can be written asnng ¢, where¢ is a fixed outer
automorphism.

As previously stated, it will turn out that the outer involutions of(81k), n > 2 will
come from a symmetric or skew-symmetric bilinear form via the adjoint. Choosing our
fixed outer autormorphism discussed in Lemma 6 as(A) = (AT)~1, enables us to
begin to see this connection.

Let M € G, then usingp as defined above we see that
Innm (¢(A)) = Inny (ATt = MLAT)IM = O (A).

Although this appears to be the method we used to define an involution via the adjoint of a
bilinear form we can not yet draw that conclusion. The reason we must hesitate is because
Proposition 1 said that = 0y is an involution whenM represents a symmetric or skew-
symmetric bilinear form. The next theorem however will give us this result when we add
the criteria that the outer automorphism @ be an involution.

Lemma7. (1) Inny¢isaninvolution <= ¢(M)M € Z(G).
(2) p(M)M € Z(G) < M is symmetric or skew-symmetric.

(3) Inny ¢ is an involution <= M is symmetric or skew-symmetric, and M is only
skew-symmetric if n is even.

Proof. (1) We know that Infy ¢ is an involution <= (Inny ¢)? = Id on G. Then the
following are each equivalent:

(@) Inny plnny H(X) = Xforall X e G
(b) Inny #(M~1H(X)M) = Innm (M~ H($(X))p(M) = X

(€©) M~*p(M~HXp(M)M = X
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(d) X(M)M = p(M)MX forall X € G

(€) #(M)M € Z(G)

(2) <=: If M is symmetric, thetM = MT and¢(M)M = (MT)"IM = M™IM = Iyn,
which is clearly inZ(G). If M is skew-symmetric, the = —MT and p(M)M =
(MT)™IM = (=M)"IM = —lnxn € Z(G).

= If p(M)M = (MT)"IM € Z(G) then

(MH7IMX =X(M")"IM vXeG.

So(MT)"IMXM~IMT = X VX e Gand Inny-1yr = Id. ThereforeM M7 = alpyn
for somea € k, andMT = aM. Taking determinants of both sides we see tiht= 1.
If nis odd, therw = 1 andM = MT. If nis even, therx = 1 or —1, andM = MT or
M=-MT.

The third statement follows immediately from Proposition 1. O

Remark5. This lemma tells us that all outer involutions @are of the form9y, where
M represents a symmetric or skew-symmetric bilinear form. Hence we have the following
application of the Classification Theorem 2.8.

Theorem 4.1(Outer Classification Theorem).et , and 6y, be outer involutions on
SL(n, k), then they come from bilinear symmetric or skew-symmetric forms represented by
M; and Mb. Then

Innp, ¢ ~ INnp, ¢ = M1 =% M

Proof. The proof of the above theorem follows directly from The Classification Theorem
2.8 by simply observing thdty, = Inny, ¢ andéy, = Inny, ¢. O

We are now able to see that in order to classify the outer involutions @f,¥l). we once
again have been reduced to determining the semi-congruence classes of the symmetric and
skew-symmetric bilinear forms. From Theorem 2.3 we know this reduces to focusing on

diagonal matrices with entries ki / (k*)? and the skew-symmetric matrik
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4.3 Classification of Outer Involutions of SL(n, k)

In this section we give a complete classification of both the semi-congruence classes of the
matrices of symmetric bilinear forms as well as the isomorphy classes of outer involutions
of SL(n, k) for various fieldsk. It is important to note that over all of the fields below
there will only be one semi-congruence class of skew symmetric bilinear forms which is
represented by the matrM = Joy, which only occurs when = 2mis even.

Remarke. In each case of the following cases the outer involutions are given by
Om = Inny ¢, whereg(A) = (AT)1
The symmetric/skew-symmetric matricksare given below.

(1) k= k: Fork an algebraically closed field there is only one congruence class of sym-
metric bilinear forms and thus only one semi-congruence class.

(@) nodd: There is one isomorphism class of involutions representeld by 1d.

(b) neven There are two isomorphism classes of involutions represented by ld
andM = Jon.

(2) k=R: Sincelk*/(k*)2| = 2 with representatives 1 andl, we know from The-
orem 2.3 that the congruence classes of symmetric forms are givéh Byl,_j; 1=
In—ixn—i 0

0 — lixi
of symmetric forms. However sindg_i; =° —I; n—j we have a reduced number of semi-

0,1,...,nwherely_j;j = ( ) That is there are + 1 congruence classes

congruence classes which depends on whetli®even or odd.

(&8 n odd: There areﬁz1 isomorphism classes of involutions, representedMby=

i n-1
|n_i,i |:0,1,...,T.

(b) neven There arej + 2 classes of involutions, represented lly= In_i; i=
0,1,...,50r Jom.
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(3) k=@: Asinthe case when = 2, there are infinitely many congruence classes and
therefore infinitely many semi-congruence classes of symmetric forms. Therefore, we can
only conclude that there are infinitely many isomorphism classes of involutions.

Remark7. Before we give the isomorphism classes of involutions over the finite fields we
state the following well known result.
Lemma 8([Sch85]) (1) |F%/(F})?| = 2when p# 2.

(2) Every element of & [, can be written as the sum afsquares irfF .

o 0
(3) Fora € Fp we hav = loyo.
0 a
Therefore we can get either all 1’s on the diagonal or all 1's with the excepti&g,of
the "smallest” representative of a non-square element, left over itnthg entry.
With the following Lemma in hand we can now discuss involutions over the finite fields.

(1) k= TFp: Over the finite fields there are 2 congruence classes of symmetric bilinear
forms and 2 semi-congruence classes.

(@) nodd: There are two isomorphy classes of involutions represented by Id and

l(n— _ 0
M = Mns, :( " 1)(;<(n Y s )
p

(b) neven We have 3 isomorphism classes of involutions, the 2 from abovelus

Remark8. Table 4.1 includes a complete summary of the Outer Involutions ¢gh3¢)
and can be found at the end of Chapter 4.

4.4 Inner Involutions

The inner involutions oG do not come from bilinear forms. We will need the classification
of these involutions when we focus on the subgrou2abPk) of SL(2n, k) therefore it is



Chapter 4. Involutions on G = SL(n, k), n > 2 35

necessary to give an overview of these results. We begin by noting that for any automor-
phismé of inner type, there existax n matrix Y € GL(n, k), such thap = Inny |.

Lemma 9. Let Y € GL(n, k). If Inny |g = Id, then Y= pI for some p< k, i.e.Inny = Id
overGL(V).

Proof. Since Inry |g = Id, we have for allA € SL(n, k), Inny(A) = Y"IAY = A i.e.
YA= AY. SinceA is arbitrary it follows thatY = pl for somep € k. Furthermore

Inny = Innp; = Inn; = Id. ]

Lemma 10([HWDO4]). For any inner automorphisr € Inn(G), suppose ¥ GL(n, k).
Thend = Inny € Inn(G) keeps G invariant if and only if ¥= pB, for some pe k and
B € GL(n, k). In other words, there is a matrix B GL(n, k) such that) = Inng |g.

Remarlk9. LetY € GL(n, k). If we add the additional criteria that our automorphism is an
involution then we get the following result. If Isnis an involution, then Ingx = Id and

Y2 == Clnxn.

Lemma 11. Let Y € GL(n, k) with Y2 = pl. Then

In.i O
(1) If p=c? e (k*)?, then Y is conjugate to gl;; = c( ';) ' )

(i=0,1,..n).

(2) If pis notin(k*)?, then nis even and Y is conjugateltp, =
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Proof. If there is ac € k such thatp = ¢?, then the characteristic polynomial &f is
(x — ¢)"'(x + ¢)', and the minimal polynomial is a factor ¢k + ¢)(x — c). SoY is
conjugate tacl—i i forsomei =0,1,...,n.

If pis notink*2, then the minimal polynomial i&x?> — p), which does not factor over
k, therefore the characteristic polynomial is a power of the minimal polynomial. Hgnce
which is the degree of the characteristic polynomial, is even. Furtheriasegonjugate
to Ly , since they have the same minimal and characteristic polynomials. O

We must now determine which of the above matrices gives us conjugate involutions.

Lemma 12 ([HWDO04]). The matrices J_jj and ch_j j are conjugate for some € k if

and only if one of the following is true:
(1) c=1landi=]j.
(2) c=—-1and j=n-—I.

Lemma 13([HWDO4]). Let p, q € k*/(k*)2. The matrices k,p iS conjugate to ck, q for
some o< k if and only if§ € (k*)2.

Theorem 4.2([HWDO04]). Suppose the involutiocthe Aut(G) is of inner type. Then up to
isomorphisnd® is one of the following:

(1) Inny |G, where Y= In_i; € GL(n, k) whereie {1,2,..., [5]}.
(2) Inny |, where Y= Ly , € GL(n, k) where pe k*/k*?, p# 1 modk*2.

Note that(2) can only occur when n is even.

Corollary 1. The number of involutions of inner type ®E(n, k) (n > 2) up to isomor-
phism is equal té‘g—l if nis odd andj + 11(k*)/((K*)?)|| — 1if nis even.
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RemarklO. (1) Table 4.1 contains a list of all the outer involutions of(81k).

(2) Table 4.2 contains a list of all the inner involutions of (&Lk).

37

(3) Table 4.3 provides a summary of both the inner and outer involutions @f, K.

Table 4.1 Outer Involutions of Skn, k)

Field Semi-Congruence Clasé Involution Class orG
k=k
n odd M = Inxn ‘9(A) = (AT)_l
M = lnun 01 (A) = (AD) T
n even M = Jom (n=2m) 62(A) = Inngy, (A1)~
k=R
n odd o M=t 0i(A) = Inny (AT)-1
i=01,2..,%5! ! i
Mj = In_i,; 6i(A) = Inny, (AT) ™1
n even 1=0,1,2,...,3
Moo = Jom Omy ,(A) = Inng,,, (AD)
n odd IlvI1 e 0 O1(A) = (A) !
Mg = ( ("D 02(A) = Inny, (AT)~2
0 Sy 2
M1 =1
I 1 nxn 0 Hl(A) — (AT)—l
neven My = ( (”_1)5(”_1) s ) 62(A) = Inny, (AT)~1
P 63(A) = Innyy (A7)t

M3 = JZm
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Table 4.2 Inner Involutions of SI(n, k)
, Number of Representative MatriX
Field .
Inner Involutions such that = Inny
nodd, n—1 o n—1
k = any field 2 Y=lii 1=12....5"
neven
k=Kk g Y = In-ij i=1,2,...,§
Y=lpj 1=21,2,...,5
— n n—1,1 s & >
k=R 5+1 V=1Ln 1
_ Y = In_iji i:l,2,...,g
k=0Q > Y=Ln, a#1 mod(@Q")?
Y=Ilpj; 1=1,2 1!
k:”: 2 D+1 n—1,l Lt IR )
P P7 2 Y=los,

Table 4.3 Number of Involution Classes of $h, k)
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Number of Outer

Number of Inner

Total Number of

Field  dim(V) Involutions Involutions Involutions
k= R nodd 1 n%l %L
neven 2 3 2+2
k=R n odd %1 n;Zl n
neven 5+2 2+1 n+3
k=0Q n odd o0 n%l
neven 00 00 o0
k = [Fp n—1 n+3
05 n odd 2 v 2
neven 3 5+1 2+4




Chapter 5

Involutions of G = SP(2n, k)

5.1 Introduction

We begin this chapter be giving an introduction to the symplectic grou2rgR). We

give a detailed investigation of the skew-symmetric bilinear form and provide a formal
definition of SR2n, k). Next we state the Characterization Theorem which will give us an
identifiable form for automorphisms of $#h, k). We conclude with a characterization of
involutions of SR2n, k).

5.2 The Skew-Symmetric Form

Since throughout this thesis we have concentrated solely on fields of characteristic not
equal to 2, we have two equivalent definitions for a skew-symmetric bilinear form.

Definition 14. A bilinear formp: V x V — kon a vector spac¥ = k" is skew-symmetric
if
p(x,x) =0 forall xe V.

Equivalently,f : V x V — ks skew-symmetric if
B(x,y) = —=B(y,x) forall x,yeV.

39
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To derive the second definition of a skew-symmetric bilinear form from the first one con-

sider the following,

BXAY, X+Y) = F(X, X) + B, Y) + B(Y, X) + S(Y, Y)

and use the fact th#ti(x 4+ y, X+ y) = (X, X) = B(y, y) = 0.

Conversely, if the second definition holds, thaf(x, y) = — (Y, X) then by settingk=y

we see thap(x, X) = — (X, X) which implies that Z(x, X) = 0 which meang(x, x) = 0.

We note here that the following case of course does not hold if the characterikiis 2f
Theorem 2.1 told us that a bilinear form is skew-symmetric if and only if the matrix

A of the form has the property tha& = —AT. In addition, unlike a symmetric matrix

B, whereB must be congruent to some diagonal matrix, all skew-symmetric matrices are

congruent tal,, wheremis even. This is seen in the following theorem.

Theorem 5.1([Sch85]) Let A be a nonsingular skew-symmetrickom matrix. Then m is
even and there is a matrix @ GL(m, k) such that G AQ = Jn,.

Remarkll (1) Since all skew-symmetric matrices are congruemkithere is only one
skew-symmetric bilinear form, up to a change of basis, representgtihy) =
X" Jy.

(2) If mis odd andA represents a skew-symmetric bilinear fopthen we knowA =
—AT. This means that déf) = (—1)™det(AT), which implies detA) = 0 and
hence,A must be singular. Since all our matrices are non-singular we knowrthat
will never be odd.

5.3 Definition of SA(2n, k)

In Definition 11 we defined the orthogonal grougm@ k, ) as the following.
Given a non-degenerate symmetric or skew-symmetric bilinear foomV = k™

O(m,k, ) = {A e GL(m,Kk) | B(AX, Ay) = B(X, ¥)}
— {Ac|GL(M K)|AA =1}.
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Similarly, one can also define the special orthogonal groupn$®, ) as

SO(m, k, B) = {A € SL(m, k) | B(AX, Ay) = B(X, Y)}
= {Ae SL(m, K)|AA =1}.

Now by considering the sole skew-symmetric bilinear form giverpby, y) = x' Jy
we are able to define the symplectic group(®Fk) as

SP(m, k) = O(m, k, )
{Ae GL(M K)|B(AX Ay) = B(X, ¥)}
= {Ae GL(M,K)|AA =1}
={AeGL(Mk)AJIATI=1}
={AeGL(mk)|ATIA= J}.
Since we knowm must be even from this point on we will use the notation 3Rk)

to represent our symplectic group. The following theorem gives us more insight into
SP(2n, k).

Theorem 5.2([Sch85]) All elements o65P(2n, k) have determinant.

We originally defined SE2n, k) as Q(2n, k, f8), wherep represents the skew-symmetric
bilinear form, however, Theorem 5.2 tells that for aAye SP(2n, k) det(A) = 1. That
being said we may view SBn, k) = SO(2n, k, ). Hence SB2n, k) is a subgroup of
SL(2n, k).

SP(2n, k) is generated by the matrices

A 0 Ih B Inh O
o (AH)t )'\o 1, /'\B I,
where A runs through Sin, k) and B runs through all then x n symmetric matrices

overk, (i.e. B= BT").

We can also view SRn, k) as the space generated by the matrices.
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A 0 Ih B 0 Iy
o (AH ) \o 1,/ \-1, 0
where A andB are as defined above. [Ome78]

The reason for this is that

and

(2050 (0)e b

Throughout this chapte& = SP(2n, k) andG = SP(n, k).

5.4 Involutions of G = SP(2, k)

In Chapter 3 we discussed the results for(3Lk) in detail. The reason for this is demon-
strated by the next theorem.

Theorem 5.3. SP(2, k) = SL(2, k).
Proof. If A € SP(2, k) then by definitionA € SL(2, k) thus, SR2,k) c SL(2, k). Let

a b :
A= ( g ) € SL(2, k). Consider
c

T ac 0 1 a b
A JA=
b d -1 0 c d
_ 0 ad—bc
~\ —ad+bc 0 '
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SinceA € SL(2, k), det(A)=1, ie.ad — bc=1 and—ad + bc= —1. Therefore
0 ad— bc _ 0 1
—ad+bc 0 -1 0
and thusAT JA= J so SL(2, k) c SP(2, k). Hence SI(2, k) = SP(2, k) O

The above theorem tells us that the isomorphism classes of involutiong 2f I§Rare
precisely the isomorphism classes of(8Lk) which leave SIP2, k) invariant.

5.5 Automorphisms of SR2n, k)

Lemma 14([Bor91]). (1) Ifkis an algebraically closed field, thekut(G) = Inn(G).

(2) For anyd € Aut(G) there is a matrix Ae SL(2n, k) such that) = Inna|c.

i.e. All automorphisms of S@n, k) are of type inner.

551 Inna=Id

Our true desire is to determine what happens when we require our inner automorphism
6 = Innp to hold G and G invariant. Before we explore this concept in detail we discuss a
topic which will prove extremely useful in proving numerous results.

Theorem 5.4.1f Inna |g = Id for some Ac GL(2n, k) then A= pl for some pe k.

Proof. Suppose Ina|g = Id for some A € GL(2n,k). Then for all X € G we have
INnna(X) = A~1X A= Xwhich means thaA X = X Afor all X € G. Let

A:(Al Az)
Az A4
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In |
wi={(" ")
0 Iy
SinceW; € G, AW, = W, A which implies
A1 A2 In |n . In In Al A2
As AJ\O 1n) \o 1/\As A
(Al As + Az) B (A1—|- Ay A+ A4)
Az Az+ Aq Az Aq
Hence,Az = 0 andA; = A4. With this information in hand we are now able to rewrite

AL A ) Ih O . .
AasA= o af We now consider the matrib = . Now W is also inG
1

In In
and thusAW, = W, A and thus
A A In O . In O Al A
0 A]_ |n |n In |n O Al
B Aq Ao
Al Ao+ A

44

and consider the matrix

Let

where
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andk =0, 1,...,n— 1. Then X, € G and hence we may utilize the fact thak, = Xy A,

A1 Xy 0 B Xk AL 0
( 0 Alxk) _( 0 xkAl)'
From the above equality we see that Xy = X¢A;. Define Ay = (g j) for i, j =
1,2,..,n. ThenAi Xk = XcA1 implies

to conclude that

/ all a2 - —ai n—k - ain \
az1 ap2 . —a2 n—k .. azn
an—k,1 @n—k2 --- —8pn—kn-k --- 8n—kn
\ an,1 an,2 ... —Ayn-k --- ann )

/ arl a2 - ai n—k - ain \
o1 dp2 R a2 n—k e azn
—8n—k,1 —an—k2 ... —8n—kn-k ... —8n—kn
\ an,1 an,2 . an,n—k e an,n )

Hence, it follows thata,_j = ajnk =0 for j #n—-kandk=0,1..,n-1, j=
1,2, ..,n. Therefore we now obtain the fact thatis a diagonal matrix say,

a7 0 ... 0
0 0O ap ... O

N with Ag=| %
0 Ag : : .0

0 0 ... ann
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Let

o O
= O O
o +— O

In—I—2><n—I—2

Y = where Y| =
0 Yl . .
L0 0 )

andl =0, 1,...,n— 2. ThenY; € SP(2n, k) and againAY, = Y; A which impliesAgY; =
Y| Aq. Therefore, we obtain the following equality

a1 0 0O 0 0 0 0 o)
0 a» O 0 0 0 0 0
0 0 o 0 0 0o 0
0 0 0 a O 0 0 0 0
0 0 0 0 0 apya O O =
0 0 0 0 ayz O 0o 0 o0
0 0 0 0 O 0 ayais O O
0 0 0 0 O 0 0 . 0
\0 0 0 0 O 0 0 0 ann
(an 0 0 0 0 0 0 o)
0 ap O 0 0 0 0 0
0 0 0 0 0 0o 0
0 0 0a O 0 0O 0 0
0O 0 0 0 0 ayz42 O O
0 0 0 0 a0 0O 0 0
0 0 0 0 O 0 aysis 0 O
0 0 0 0 O 0 0 . 0
\0 0 0 0 o0 0 0 0 ann

Henceay11+1 =a42142forl =0,1,...,n—2. ThatisA= pld for somep k. O
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5.5.2 Characterization Theorem

With Theorem 5.4 in hand we now return to the question of which inner automorphisms
Inna with A € GL(2n, k) keepG = SP(2n, k) andG = SP(2n, k) invariant. The following
theorem provides us with the answers.

Theorem 5.5. Suppose A& GL(2n, k) , G = SP(2n, k) and G= SP(2n, k) .

(1) The inner automorphisrinna keepsG invariant if and only if A= pM for some
pekandMe G.

(2) If A e G, theninna keeps G invariant if and only if A= pM for some pe k and
MeG.

The proof of Theorem 5.5 (1) will go through smoothly however the second claim
will require significantly more work. Because of the additional work required to prove
Theorem 5.5 (2) we begin by giving an outline of the procedure used in the proof followed
by an example for the specific case when=26.

Outline of Proof

After proving Theorem 5.5 (1), which will follow through with ease, we now are able
to use the fact that InnkeepsG invariant if and only if A = pM for somep € k and
M e G. In addition, we also use the fact that kir= Innym (see Remark 3, Chapter 2) to
prove Theorem 5.5 (2). Assuming that= pM for somep € k andM e G and deriving
that Inny keepsG invariant is relatively simple. However, the forward direction must be
broken down into several steps. We begin by assuming AhatG and Inm, keepsG
invariant. Our first step is to show thafja;; + asiasj are in our base fiel# of G for all
i, j,r,s=12,..,2nwith r #s. The proof of this is broken into 3 cases depending on
whether(1) r,s<n(2)r,s>n, (3)r < nands> n. We then are able to use the fact
thatayiayj + asiasj € kto show thatyia;j € k. The proof of this portion is broken into two
cases for > nandi < n. Lastly, we will show thagy;as;j € k which will give us our desired
result. The proof of this last fact will be by far the most complex portion and will involve
3 cases each with 3 subcases.
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5.5.3 Notation

The following is a list of notation which will be used in the proof of Theorem 5.5.

Let X, s be then x n diagonal matrix with a-1 in the (r,r) and (s, s) entries and 1’s

everywhere else.

Let X; be then x n diagonal matrix with a-1 in the(r, r) position and 1's everywhere

else.
Let E; s be then x n matrix with a 1 in the(r, S) entry and Os everywhere else.

Let T¢ be thec x ¢ antidiagonal matrix with 1's on the antidiagonal and 0’s everywhere

else.

Let I be thec x c identity matrix. If the size of the identity matrix is understood from

the context thent may be used to represelat
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0 In
(0 o

(&
N
=]

I
<
I

Tris 0
Yr,sz( r+s—1 ) (5.2)
0 In—(r+s—1)
Y, 0
Zr’S:( hs ) (53)
Er,s Yr,s
_ =Y, 0
zr,sz( "s ) (5.4)
Er,s —Yr,s
, Yi—ns-n Er-ns
Zr,s:(r n,s—n r—n,s n) (5.5)
0 Yr—n,s—n
- Yr-ns-n Er—ns_
Zr/,s:( r—n,s—n r—n,s n) (5.6)
0 Yr—n,s—n
Es_ Ys_
Mr,s=( s—n,r S n,r) (5_7)
—Ys—n,r 0
- Es_ —Ys—
Mr,s=( s—n,r S n,r) (5.8)
Ys—n,r 0
I _ 0
Ur,s:( n+(r+s-1) ) (5.9)
0 T2n—(r+s—1)
U 0
Vr’s:( S ) (510)
Er,s Ur,s
_ -U 0
vr,sz( ns ) (5.11)
Er,s —Ur,s

(5.12)
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Ur—ns-n Er—ns-
Vr/,s:( r—n,s—n r—n,s n) (5.13)
0 Ur—n S—n
\7/r,s _ (—Ur—n,s—n Er—n,s—n ) (5.14)
0 —Ur_n,s-n
Esnr Us
Nr,s:( S—n,r S n,r) (5.15)
—Us—n,r 0
_ Esnr —Us_
Nr,s=( Ss—n,r S n,r) (5.16)
Us—n,r 0
Tw O
vvr,s=( " ) (5.17)
Er,s Tn
_ -
Wis =( " ) (5.18)
Er,s _Tn
Tn Erons
er,s _ n r—n,s—n (5.19)
: 0 T
_ —Tn Er_ns-
VVr/s _ n r—n,s—n (5.20)
’ 0 —Tn
Esonr T,
Fr,s=( st “) (5.21)
T O
_ Esnr —T,
Fs=( " " (5.22)
.

5.5.4 Proof of Characterization Theorem Partll,2n =6

Remark12. In the proof of Theorem 5.5 (2) we will make constant use of Theorem 5.5
(1), that is an inner automorphism InkeepsG invariant if and only ifA = pM for some

p € kandM e G. We will begin by assuming thak € G which means thaAT JA= J or
more importantly than—1 = J=1ATJ. By viewing A~1 = J-1ATJ we are able to define
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our inner automorphisms as
Inna(X) = A1XA=J"TATIXA

So every time we apply our inner automorphism@owe will be using the fact that
Inna(X) = J7TATIXA

Theorem 5.6. Suppose A GL(6, k) , G = SP(6, k) and G= SP(6, k).

If A € G, theninnp keeps G invariant if and only if A pM for some pe k and Me G.
Proof. SupposeA = (gjj) G and Inm keepsG invariant. We will first show thady; ayj +
asiasj € kforr #s.

Case I: Suppose, s < 3. Without loss of generality let < s.
We look at the specific case whee= 1 ands = 2 to illustrate this situation.
To isolate the elemerh;a; j + agiay j we need to concentrate on the lower left hand block.
We begin by noting that the matrices

/1 ooooo\
0 1 0000
|1 ) 0 100
J, , and =
0 | X1p | -1 0 010
0 -1 001
\ 0 0 100 1)

.
allliein G. More importantly, since InakeepsG invariant the sum Ing(J) — InnA(o I)+

I 0
InnA(x I) is in G and thus has entries k1 Therefore, since
12

(I |) ( | o)
INna(J) — Innp + Innp =
0 I X12 |
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/ 21421 + 2a48pj \
2a15a;1 ) + 2a5az;
2a1621j + 2a26a2j

—2a1181j — 2a218p;

—2&128.1]' — 2822&2]'

—2ay321j — 2a23ap;
where] corresponds to the column we obtain our desired resuleihah | + azjay j € k.

We note here that in the proof of the general case, this case actually splits into two subcases.
This is hinted upon in this example since you see that for3 the entries are multiplied

by a 2 while fori > 3 the entries are multiplied by-a2. Although this fact is handled in

detail in the general proof we simply mention it during this illustration.

Note: To obtain the results thatja;j + agjazj andagjayj + agjasj are ink, follow the
exact procedure above but replasg with X;3 and X»3 respectively.

Case Il: Suppose, s > 3. Without loss of generality we assume: s.
Let's consider the case where= 4 ands = 5.
Similar to Case | we are able to determine that in order to isolatasthg; + asjasj element
we need to focus on the lower left hand block. We first observe that each of the following

matrices are irG

[100-1 0 0)

010 0 -10

J’(I o) and (I x4_3,5_3): 01 0 0 1
| 0 | 00 1 0 O
000 0O 1 0

\ooo0o 0 0 1)
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Again utilizing the fact that Ing holdsG invariant we know the sum

I O | Xs_35_
InnA(J)—t—InnA(I I)—InnA(O 4::’5 3):

/ 284484] + 285485 \
2a4584) + 285535
2a4684] + 285685

—284184j — 285185

—2ay084) — 235735

—284384 — 285385 )

where| corresponds to the column, lies@with entries in the base fiekl Hence we may

conclude thatyjasj + asjas; € k.

Note: To conclude that the elemenég;asj + agiasj and asiasj + agiagj both lie ink
one must simply follow the above calculation substitutiXig 3 ¢—3 and Xs_3 6_3 in for
X4—3,5_3 respectively.

Case lll: Suppose < 3 ands > 3.
In this case we look at the situation where- 3 ands = 4.
Sincer < 3 ands > 3 in this case we must focus on both the lower left hand block to obtain
entries involvingr = 3 and the upper right hand block to obtain entries invohsrg 4.
We begin by observing that the matrixand the matrices

(100 -100)
010 0 10
| Xa3y | 001 0 0
(IO)_000100
000 0 10
\0 00O 0 0 1)
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and
/100000\
01 0 000
| 0 00 1 00
(x3|)210010
01 0 010
\00-100 1)

all lie in G. We again focus on the sum

I O I X4-3
Inna(J) + INna —Innp =
X3 | I O

/ 2a34a3j + 2a4484; \
2a35agj + 2a4584;
2a36a3j + 224604

—2a3183j — 284184

—2aga3j — 284284

—2a33a3j — 284334

where j corresponds to the column, which must lie@since Inm keepsG invariant.

Therefore, we are able to conclude thgtg;j + asiasj must lie in k.
Note: Below I list the matrices that you need to replaXe 3 and X3 respectively, in the
above procedure to obtain the desired element.

(1) agiagj + asiasj useXs_3 and Xz
(2) agiagj + agiagj useXs_3 and Xz
(3) azia1j + agiayj useXq_3 and Xy
(4) ajayj + asiasj useXs_z and Xy

(5) ajayj + agiagj useXs_3 and Xy
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(6) aziaj + asiauj useXs—z andXx;
(7) aziagj + asjasj useXs_z and X,

(8) agazj + agiasj useXe_3 and Xa

By combining Cases I, I, and Ill we can conclude tlagta;j + asjasj € k for all
i,j=1,2,..6 andr #s.

We are now able to use the fact thmta; ; + asjasj € kforalli, j=1,2,...6 and
r # sto show thaty ja; j € kforalli, j = 1,2, ..., 6. However, we must show this in two
cases. We will first show that |a; j € kfor all | < 3 and then show tha |a; ; € k for all
| > 3. Without loss of generality it shall suffice to shaw a; j € kforalll.

Case I: Assumei > 3
The(i, j) entry of Inna(J) is given by

ay,i—3a1,j —azi—3ad2 ) —azj—3a3 | — A4,i—3A4,j — A5{_335 | — 3g,i—3a6,

which must lie ink since Inmn holds G invariant. Moreover—1 times the(i, j) entry of
Inna(J) lies ink. From our previous argument we know tleatayj + asjasj € k for all
rsi, j=1,2,..6 withr #s. Hence the equality

a1i—3a1,j =

(ay,i—3@1,j — @38 j — 83,j—383,j — A4,j_384,j — 85,385 ] — Ag,i—38 j) + (—1/2) (azi_3a2,j —
agj—3a3,j) + (—1/2)(@gi—383,j — &s,i—3a4,j) + (—1/2)(a4,i—384,j — 8s,i—385 j) +
(—=1/2)(as,i—3as5,j — a6,i—336,j) + (—1/2)(as,i—336,j + A2,i—3a2,j)

must lie ink, i.e. a1 j_3a;, j € k. Since we assumedd> 3 we can conclude thak a; j € k

forl < 3.



Chapter 5. Involutions of G = SP(2n, k) 56

Case Il: Assume < 3.
In this situation thei, j) entry of Inna(J) is given by

a1,i+3a1,j — A2,i+332,j — a3,i+3a3,j — A4,i+34,j — 85i4+385,) — 36,i+336,j

which of course lies irk. In addition,—1 times this entry also lies ik. Again using the
fact thatasia;j + asjasj € kforallr, s,i, j = 1,2, ...6 withr # swe observe the equality

api4+3a1,j =

(1,i+31,j —2,i+382, | — 3,i+333,] — A4,i+384,j — 85,14-385,j — 36,i+336,j) + (—1/2) (az 1332, —
ag,i+3as,j) + (—1/2)(@z,i+383,j — Aa,i+384,j) + (—1/2) (2u,i+324,j — 3s5,i+33s5,) +
(—1/2)(as,i+38s5,j — a6,i+336,j) + (—1/2)(a6,i+336,j + 32,i+332,])-

The above equality enables us to conclude that the elemgnga; j must lie ink. Since

in this case we assumed that 3 we obtain the fact thatya; j € kforl > 3.

Combining Cases | and Il we see tlaataj; € kfori, j=1,2,...,6.
Using a similar argument it is easily verified thata;j € kforr =2,3, .., 6.

| will finally show thatayjasj € k

In each of the following cases the methodology involved in proving the case is the same.
In every case we will use our assumption thatdkeepsG invariant and thus if we choose
any general matriB; € G then Inm(B1) € G. Next, we use the fact that B; and B, are
both in G then the sum Ina(B;1) + Inna(B2) € G to obtain our desired result. We will

explain this in detail in case | subcase 1 only.

CASE I: Suppose, s < 3. Without loss of generality we will assume that s.

The lower left block controls theyasj elements for ands less than 3. Hence in each of
the following subcases we put a 1 in thres) entry of this block to isolate that element.
The diagonal blocks must also have a 1 in thes) entry but require a different form de-
pending on the relationship betweeands. The following subcases illustrates this fact.
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Subcase 1:Suppose + s < 4.
We will look at the specific case where= 1 ands = 2.

. T, 0
Here we first choos¥; » = 0 and

/010000\
100000
Y2 O 00100
21’2: =
Eio Yio 01001
000100
\0 0000 1)

Now Z; » € G and since In@a keepsG invariant Inm(Zz.2) € G. In addition, the matrix

/ 0 -1 0 0 O o\
-1 0 0 0 0 O
_ Y2 O 0O 0 -1 0 0 O
Eio —VYi2 0O 1 0 0 -1 0
0 0 0 -1 0 O
\ o 0 0 0 0 -1)

lies in G and thus In@(Z; 2) € G. The sum INA(Zy,2) + Inna(Zy,2) € G which means
that its entries must lie in the base fidddWe now observe the matrix

INNA(Z12) + INNa(Z12) =

/ —2az181,4 —232814 —283314 —28431,4 —28531,4 —2826314 \
—2ap1a15 —2axpa15 —2a315 —2a243815 —2a5315 —2326a15
—2ap1a16 —2ax2a16 —28236 —2a24316 —225316 —2326316
2ap121,1 232211 2a3d11 2Zap4dy1 285a11  2326d1,1

2ap1212 2appa12 2ap3a12 2apa4d1r 2512 0 2821312

2ap 1214 2322213 2323313 2413 2325313 2612,1611,3)
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Which tells us that the elemeag ja; j € kfori, j =1,2,...6. Sinceay jap, j = ap jayj we
may also conclude that; jay i € k.

It is important to note that in the general proof of Theorem 5.5 (2) the entries of
INNA(Zr.s), INNa(Z;s) and Inm(Zr, s) + Inna(Z;.s) are broken into two cases depend-
ing on whether < nori > n. The reason for this can be seen in the example above for the
sum Inm(Z1, 2) + Inna(Z;2). Fori < 3 we get—2 being multiplied by each entry and
fori > 3 we simply get a 2 multiplied by each entry. Although this difference is addressed
in detail in the general proof we simply illustrate the procedure here.

Subcase 2. Suppose + s > 4.
We look at the case where= 2 ands = 3.

l1

0
We first considetd, 3 = ( ) We then choose

0 T
/100000\
001000
Uys O 1000
Vo= =
Exs Uz 0010
001001
\ 0000 10/
and
/—100 oo\
0 0 -1 0 0 O
_ 0 -1 0 0
Vo 3=
0O 0 0 -1 0
O 0 1 0 o0 1
\ 0o 0 0 0 -10)

SinceV,, 3 and Va3 both lie in G the sum

INNA(V2,3) + INna(Va3) =
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/ —2ag1d24 —2a32824 —2833324 —23343824 —2335324 —2336324 \
—2az135 —2azpdxs5 —2a33%5 —2a34d25 —2a3s5dx5 —2336325
—2a31a26 —2a32326 —2a33d26 —23346 —2a35326 —2336326
2agiap1 2azpap1 2ag3dx1 2a34dx1  2agsdzl  2836d21
2ag1dx2 2a32d22 2az3d22 2a34dp2 2335322 2336322
\ 2az1d23 283283 2a33d23 2434323 2335323  233,632,3 )

has entries itk. We specifically are able to conclude tlata, j = a jas;i € k as desired.

Subcase 3:Suppose +s= 4.
We will look at the case when= 1 ands = 3.
For this case we choose

/001000\
010000
T3 O 0000
Wi 3 = =
Eiz T3 0100
000010
\0 0010 0)
and
/o 0—1000\
0 -1 0 0 0 O
) ~T3 0 1.0 0 O 0 O
W173: =
Eiz —T3 O 0 1 0o 0 -1
0 0 0 0 -1 O
\ 0 0 0 -1 0 0 )

We then consider the sum

Inna(Wa,3) + Inna(Wy 3) =
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/ —2ag1a14 —2a3pa14 —2a33214 —23343814 —2835314 —2336314 \
—2azj1a15 —2azpa15 —2a3315 —2a34d15 —2a3s5a15 —2a36a15
—2a31a16 —2az2d16 —2a33d16 —2a34216 —2a35316 —2336316
2az1a11 2azpa11 2833311 283411 Zagsayy 2836d11
2agi1a12 283212 2az3d12 2ag4dy2  2azs5d12  23836a1,2
\ 2az1a1,3 2832213 2a33d13 2Zag4dy13 2815213 2336313 )

and again observe that it lies and thus must have entrieskn Thus we may conclude

thatagja; j = a1 jag,i € kas desired.

CASE II: Suppose, s> 3. Without loss of generality assumex s.

In this case the upper right hand block controls the elemads;. However, since both

r ands are greater than 3 we must place a 1 in the- 3, s— 3) entry of the upper right

block to isolate the element. As in Case I, the entries on the diagonal blocks vary based on
the relationship betweanands and are given by the following subcases.

Subcase 1 Suppose +s—6 < 4

Let's consider the specific case where 4 ands = 5 for this situation.
We begin by choosing

E

2 (Y4—3,5—3 E4—3,5—3) B (Yl,Z E1,2) B
4,5 = - -
0 Y4 353 0 Y

O r O O O O
O O b O O -

O O O o O Bk
o O O » O O

and
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[0 -1 0 0 0\
-1 0 0 O 0
= —Y12 El’g 0 0 -1 0
245 = =
0  —VYi» O 0 0 0 -1
O 0 0 -1 0 O
\ 0 0 0 0 0 -1)

both of which lie inG. Next we observe that

INNA(Z} 5) + INNA(Z'45) =

[ 2851844 2852844 2353344 2354844 2355844 2356844
2351845 2852345 28535 Z2a54du5 2855845 2356345
2351346 2852846 28536 2854346 2355246 2356346

—2a51841 —2352a41 —2853341 —2854241 —23855341 —285634,1
—2a5 1842 —2a52842 —235334,2 —2354342 —2355342 —285634,2
\ —2a51843 —23852843 —2853343 —2854243 —23855343 —2856343 )
is in G which of course means it has entriekinThereforeas jas | = a4, jas i € k.

Subcase 2:Suppose +s—6 > 4
In this case we will look at the situation whare= 5 ands = 6.
We begin by choosing

[1 000 0 0)
001001
, Us 36-3 Es5-36-3 Uzs Ez3 1000
5’6:( 0 u5_3_6_3):( 0 Uz,g): 0010
0000O01
\0 000 10

and
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/—1 0 0 0 0 0)
O 0 -1 0 0 1
_ —Usz Ezg 0 -1 0 0 O
Vs = =
0 —Uss O 0 0 -1 0
0 0o 0 0 -1
\ 0 0 0 -1 0 )

We then consider the sum
INNA(V, 5) + INNa(V'45) =

/ 2351854 282354 2353854 2854354 2855354
2351855 2852355 233355 2364355 285355
2361856 282356 2863356 23643856 2855356

—28p1851 —23p2851 —2853351 —2364851 —2365351

—28p1852 —23862852 —2853352 —2864852 —2865352

\ —2ag1353 —23862853 —2353a53 —2364353 —2365353

which in in G. Hence, we can conclude thaas j = as jas,i € K.

Subcase 3:Suppose +s— 6 = 4.
Let's consider = 4 ands = 6.
We first look at the two matrices I8 given by

[0 010 0 1)
010000
WAG=(T3 E4—3,6—3):(T3 El.g): 0000
’ 0 T 0 T3 0000
000010
\0 0010 0)

236,635,4 \

236,685,5

236,635,6
—28p,635,1
—28 6352

—236,635,3 )

and

62
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[0 0 -1

0 -1 0

W/46:(—T3 El,g): 1 0 0
0 -Ts 0 0 0

0 0 0

\0 0 0

We then observe the sum

0O O
0O O
0O O
0O O
0 -1
-1 0

0 )

INNA(Wj ) + INNA(W4.6) =

/ 2051244 2362344
23g 1845 2823845
2351846 2852346

—285 1241 —23p234,1
—2a8p1842 —23p 2842

\ —23g 1843 —236224,3

2ag,384,4

23 3845

235 324,6
—2a 33,1
—2ap,324,2
—286,334,3

285 434,4
235 4245
235 424,6
—28p 4341
—28p, 4342
—28p 4343

2055844  295,634,4 \
205545 2866945
20546 2866946

—285 5841 —236694,1
—28p 55942 —236634,2

—2355343 —236,634,3 )

63

which has entries iR. Hence, we are able to see that the entaig®s, | = a4,jagj € kas

desired.

CASE Ill: Suppose < 3 ands > 3.

Case Il differs slightly from Case | and Case Il in that the upper left block controls the
elementayjasj, a block on the diagonal. Since in this case 3 ands > 3 we puta 1in

the (s— 3,r) entry of the upper left hand block. In this case the off diagonal blocks vary

depending on the relationship betweeands and divide into the following subcases.

Subcase 1:Suppose +s < 7.

In this situation we will look at the specific case where 1 ands = 5.
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We begin by considering the two matrices

[0 0 0 01 0)
1 0 0 100
Ml’sz(ES—S,l Ys_s,l):(Ez,l Yz,l): 0 0 0 00
~Ys.31 O ~Y21 O 0 -1 0 00
-1 0 0 000
\ 0 0 -1 00 0
and
(000 0 -1 0)
100-1 0 0
_ (Ez,1 —Yz,l) 00 0 0 -1
My s = =
Y1 O 10 0 0 0
100 0 0 O
\0 01 0 0 O0)

We then observe the sum
INNA(M1,5) + INNA (M1 5) =

/ 2a5421,1 2854212 2854813 2a54314 2354315 23854316 \
2as5a1,1 2a55a1,2 2855313 23855314 2355315 2355316
2a5a1,1 2a56d12 2385631,3 2856314 2a56d15 2856316

—2asja11 —2a51d12 —2a51813 —23851814 —2a51315 —2351316

—2aga11 —2aspa12 —285pa13 —2a52a14 —2852a15 —23a52316

\ —2as3ai1 —2as3d1,2 —2a5321,3 —2353a14 —2a53315 —2353316 )

which we know must be iG. We finally are able to conclude thag ja; j = a3 jas ; both

liein k.

_ . . Ei1 Y2 -
Note: To obtainag jas,j = a4,jas; € k simply chooseM; 4 = v 0 andMq 4
—Y11

accordingly and follow the procedure above. To obtajhas j = a4 jap,i € k choose
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Eio Y2 - .
Mo 4 = v 0 and Mz 4 and again follow the procedure above.
—Y12

Subcase 2Suppose + s> 7.
Specifically, ler = 2 ands = 6. Then by selecting

( Es—_3.2 U6—3,2) ( Es2 U3,2)
N2,6 = =
—Ug_32 0 —Uz2 O

and

both of which are inG, we are able to obtain the fact that
INNa(N3 2) + INNa(N32) =

/ 2354821 2854322 284323 2364324 2854325 2364326 \
235821 2855322 235323 2365324 2855325 2365326
23 682,1 2856322 2866323 2366324 286325 236,622,6
—2a8p1821 —23p1322 —2813823 —23p1324 —2361325 —2851326
—2ap 2821 —23p2822 —282323 —28p2824 —2362325 —2852326

\ —2ap 3321 —23p3d22 —2353A23 —233324 —235325 —2363326 )

must lie inG. More importantly its entriegg jay,j = az,jag i € K.

Note: To conclude thabgjas ;| = as jagi andagjas j = as,jaz,i € k simply follow the

. E U E U
procedure above chooseig s = 23 >3 ) and N3 = 33 33 respec-
—-Uzz O —-Uz3z O

tively.

Subcase 3Suppose +s=7.
Let’s look at the situation when= 2 ands = 5. Here we choose
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Es—32 T3 Ezo T3 - Ezo —T3
F2,5 = = and F2,5 =
T3 0 T3 O —-T3 O
As in the other cases we look specifically at the entries oAli$3 5) +
INnA(S;,5) which must lie inG. Now

INNa(F2.5) + INna(Fe5) =

/ 2a5 43821 2854322 2354323 2854324 2a54325 2854326 \
2a55a21 2355822 2355323 2as5ax4 2355325 2355326
2a56a2,1 2a56d22 2856323 2ased24 2356325 2356326

—2ag1ap1 —2a51d22 —28513823 —2a51824 —2351325 —235136

—2as0ap1 —2a8508p2 —2a52823 —2a52824 —2a52a25 —2852a26

\—285,3612,1 —2as 32 —2353323 —2a53,4 —2353325 —235,382,6)

Therefore we may conclude thad jay j = ap, jas j € k as desired.

Note: To obtain the two cases af jas j = g jay,j andag jas, j = a4, jag,; both residing in
k follow the same procedure above but replacig with Ez 1 and E; 3 respectively.

Cases |, Il and 1l show thad, jas j € k and henceA = pM for somep € kandM ¢
SP(6, k). O

5.5.5 General Proof of Characterization Theorem

Theorem 5.7. Suppose A& GL(2n, k) , G = SP(2n, k) and G= SP(2n, k) .

(1) The inner automorphistimna keepsG invariant if and only if A= pM for some
pekand Me G.

(2) If A e G, theninna keeps G invariant if and only if A= pM for some pe k and
M e G.
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Proof. (1) <= SupposeA = pM for somep € kandM € G. Let X € G, then
INNA(X) = INnpm(X) = (pM)"IX(PM) = M~1XM

SinceM, M7, X e G, M~1XM e G and thus In keepsG invariant.

— Suppose Inp keepsG invariant. Then for any e G,

B = Inna(X) = A"1XAe G. SinceB € G, by definitionBT JB= J which implies
that B = J-1(BT)~1J. In addition, sinceB = A"1XA we have tha{BT)"1 =
AT(XT)~1(AT)~1. Thus the following is true

A1XA=B
implies
A tXA=J3"1BNH 1

which implies

A IXA=J1AT(XH LA™
hence

X=AJtAT(X")~tATH)~1iat,
Now sinceX e G, we know(X")~1 = JXJ~! which means

X=AJTATAXIHAHtaal

that is
X = (AJTLATHX(AT AT

|e InnAJ—lATJ(X) = X

Therefore by Lemma5.A4J AT J = qld for someq € k* which impliesg~1AJ1AT) =
Id. Let p € k* such thatp? = g~1. Then forM = pAwe have

MJI7IMTI = pAT 1pATI = PPAT AT =g AT IATI=1.

Therefore MJ~tMTJ = Id which impliesMTIJM = Jie. M € G.
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(2) <= SupposeA = pM for somep € kandM € G. Let X € G, then
INNa(X) = Innpm(X) = p M~ XpM = M~1XM

SinceM~1, X, M € G we know Inm(X) = M~1XM e G and thus Inn keepsG
invariant.

= SupposeA = (ajj) € G and Inm keepsG invariant.
We will first show thatayi arj + asjasj € G.

CASE 1: Suppose, s < n.
Subcase a:Supposeé < n.
The(i, j) entry of Inna(J) is given by

ain+idy,j + a2n+id2,j + ... + 2n,ntiden,j €K

sinceJ € G and Inm keeps G invariant. By the same argument ¢hg) entry of

I
Inn iven b
A(O I)Q y

Arjan+1,n+i + &2jaAn+2,n+i T --- T Anj@2nn+i T An+1n+idn+l,j + Any2,n+idnt2,j +

...+ @nntidzn,j — Auntidntl,j — @2nti@ne2,j — .- — Anntidon,j €K
. " Iy
Hence the(i, j) position of Inm(J) — InnA( given by
0 1
—a1jant+1,n+i — A2j@n+2,n+i — --- — AnjA2n,n+i + AL n+id1, j + A2 n+id2 j + ... +8nntin,j +

ayntidnsl,j + a2 nti@nt2,j + ... + @nnyidon,j € K.

|l O Il 0
We know the matri>( ) is in G and hence thé, ) entry of Inm(xr I)
S

Xis |
given by
a1jan+1,n+i +@2jAn+2,nti oo+ @nj@2nni — A1n4idl, j — A2,n+i2,) — (—& n+idrj) —
A 41,ntidr41,j — .- — (—Agntids j) — Asy1,n+idstl,j — --- — Anntidn, j — AL ntidngl,j —
a,ntidnt2,j — ... — Anntidn,j €K

S

I I O
Now,the(i,j)entryoflnnA(J)—InnA(0 I)+InnA(Xr l)isgivenbyar,n_Harj—{—
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2asn+ias j and hencey a;j + agjasj € kforall | > nand
j=12,..,2n.

Subcase b:Supposeé > n
Fori > nthe(i, j) entry of Inmy(J) yields

—ayi—ndl,j — aA2,i—nd2,j — ... — A2n,i—n2n,j
o " I _ .
and the(i, j) position of Inm fori > nis
0 I

—an+1,i—n@1j — 8n+2,i—nd2,j — ... —A2n,i—n8n,j — An+1,i—n8n+1,j — @n+2,i—ndn+2,j —

e —@2n,i—nd2n,j + A1i—nAn+1,j + A2,i—n@n+2,j + ... + 8n,i—nd2n,j-

1
Hence the(i, j) entry of Inma(J) — InnA(0 I) is given by

Ant1,i—nd1j +an4+2,i—nd2,j + ... +&2ni—ndn,j —a1,i—nd1,j —32,i—nd2,j — ... — An,i—ndn,j —

ayji—nan+1, j —azi_ndny2,j — ... — @nj—ndzn,j.

I 0
Fori > nthe(i, j) entry of InnA( )is
Xrs |

—an+1,i—n@1,j — An+2,i—n@2j — ... —A2n,i—ndn,j +a1,i—nd1,j +32,j—nd2,j + ... +@nji—nan,j+
a1i—nn+1,j + A2i—ndn+2,j + ... + Ani—nd2n,j-

I I O
Therefore thdi, j)entryoflnnA(J)—InnA(O I)+|nnA(Xr I)in"dS—Zar,i_narJ _
S

2asj_nag j and since > n we have thaty aj + agiasj € kforall | <nandj =
1,2, ...,2n. Combining subcases a and b we have #ya;; + asjasj € kK whenever

r,s<n.

CASE 2: Suppose, s > n. Without loss of generality assume< s.

| O
Subcase a:Suppose < n. Now the matri><(I I ) is in G and since Inp keepsG
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| O
invariant the(i, j) entry of InnA(I I)given by

a1, j@n+1,n+i T A2 jAnt2,n+i T --- +@n jA2n,n+i —ALn+iAL, ] —A2,n+iA2,j — ... —An,ntidn,j —
a1,ntidnt1,j — A2,nti@ni2,j — --- — Annyidon,j €K
Now the (i, j) entry of Inna(J) was given in case 1 subcase a, therefore(thg)

I O
entry of Inma(J) + InnA(I I) is

a1, jan+1,n+i + a2 jAn+2,n+i + ... + 8n,jA2n,n+i + Ant+1,n+idn+1,j T nt2 ntidnt2,j +
. F@2nn+id2n,j — ALn+idn+l,j — A2 n+idn42,j — .- — Ann+id2n, j

Xr—n,s—n

I
which must lie ink. We know the matri>(

0 I ) € G and thus the automor-

. | Xr—n,s—n S .
phism Inm 0 I € Gand its(i, j) entry given by

a1, jan+1,n+i + A2jAnt2.n+i + ..o + @nj@2nn+i + 8nt+1,n+idnt+1,j + Ant2,ntidnt2, ) +
o+ (& ntianj) + & tintidry1j + ...+ (—8snyids ) + Astintidsrlj e+

@gn,ntidzen,j — A1,n+i@nel,j — A2ntidnt2,j — ... — @aN+iaznj € k.
: - | O
Finally we observe that th@, j) entry of Inna(J) + InnA( ) —
|1

I Xi_n e
InnA(o ' T’s n) is given by 2 n1iar + 2asnyias | and hencey aj + agias;

kforalll >nandj=1,2,...,2n.

| O
Subcase b:Suppose > n. The(i, j) entry of InnA(I I) isin k and is given by

—an+i,i—ndl,j — @n+2,i—nd2,j — ... — A2n,i—nn,j + ALj—nd1,j + A2j—nd2,j + ... +

ani—n@n,j + a1 i—n@n+1,j T+ A2,i—n@n+2,j + ... + @n,i—nd2n,j-
- " I 0\.
Hence the(i, j) position of Inm(J) + Inna I I)IS

—An+i,i—nd1,j — An4+2,i—n@2,j — ... — &2n,i—ndn,j — An+1,i—n@n+1,j — An+2,i—n8n+2,j —
e —@2ni—nd@2,j + ALi—nAn+1,j T+ A2,i—nd@n+2,j + ... + @ni—nd2n, ]
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I Xi_ns
must reside irk. Fori > nthe(i, j) entry of Innq(0 ' T’S n) is given by

—an+1,i—nd1,j — An+2,i—nd2,j — ... — A2n,i—n8n,j — An+1,i—nn+1,j — @n+2i—nn+2,j —
o — (—&ri—n&j) — &41i-ndr41,j — ... — (—8si_ndsj) — Ast1i—nBst1,j — --- —

an,i—nzn,j + a1i—n@n+1,j + A2i—nd@n+2,j + ... + 8ni—nd2n,j-

| O
Therefore by considering thg, j) entry of Inma(J) + InnA(I I) —

D C ) )
InnA(o ' T’S ”) we see that-2a, i_narj — 2asi_nas j Must be ink. Since we

assumed > nwe have thaty ayj + agjiasj € kforalll <nandj=1,2,...,2n. By
combining subcases a and b we obt@ia + agjasj € k whenever, s > n.

CASE 3: Suppose < nands > n.

Il O | O
Subcase a: Suppose < n. The matri><(xr I) € G and therefore In;sl(xr I) €

I 0
G. Specifically, the(i, j) entry of InnA(Xr I) given by

a1, jan+1,nti + a2 jAny2nti + ... +an jA2nngi — Aungidl j — A2n4id2,j — ... — (—arnyidyj) —

A4+1n+idr+1,j — .- — A n+idnj — ALn+iBn+l,j — A2,n+idn+2,j — --- — n,n+i2n,

I O
lies ink. Now the(i, j) entry of Inna(J) + InnA(xr I)’ which must be irk, is

a1, jans1,n+i + @2 j@nt2,nti + ...+ @njA2nnti + 28n+id, j + Angintidng 1|+
ant2,ntidn+2,j + ... +@2n,n+i@2n,j — AL n+idn+1,j — A2 n+i@n+2,j —--- — An,n+id2n,j-
Xs—n

. . WA
If we now consider the automorphism Igon the matnx(o I

)e G then we

I Xs
see that théi, j) entry of InnA(O S; n) is given by

a1, jan+1,n+i + a2 jAn+2,n+i + ... + 8n,jA2n,n+i + Ant+1,n+idn+1,j T ny2ntidnt2,j +

+ (—as,rH_ias)j) + + a2n’n+ia2n’j — a.l’rH_iarH_]_’j —_ az’n+ian+2’j T an’n+ia2n’j.
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I 0 I Xso
Hence, the(i, j) entry of Inm(J) + InnA(Xr I) — InnA(O SI n) gives us

2ar nyidy, j + 285 nrids j and more importantly since we assumed n we have that
arjaj+agiasj e kforalll >nandj=1,2,...,2n.

Il O
Subcase b: Suppose > n. Fori > nthe (i, j) entry of InnA(><r I)yields

—an41,i-ndi,j — An+2,i-nd2,j — ... — A2n,i—ndn,j t ALi-—nd1,jt+az2j-nd2j+..+)—
& i—ndy,j+ ... +8nji—ndn,j + ALi—n8n+1,j + 82,i—n@n+2,j + ... + @n,i—nd2n,j-

Therefore th€i, j) entry of Inna(J) + InnA(>|<r ?) is

—an11,i-ndi,j — An42,i—nd2,j — ... — A2n,i—n@n,j — 28r,i—nd,j — An+1,i—n@n+1,j — Ant2,i—ndnt2, | —
oo — @2n,i—n@2n,ja1,i—ndn+1,j + 82,i—n@n+2,j + ... + @ni—nd2n, .

Lastly we consider théi, j) entry of Inm((l) Xsl—n) which is given by

—an+1,i—ndi,j] —@n+2,i—nd2,j — ... — &2n,i—ndn,j — An+1,i—n@n+1,j — An+2,i—n@n+2,j —

... — (—8sgj_ndgj) — ... — A2n,i—nd2zn,jALi—ndn+1,j +A2,i—n@n+2,j + ... +anji—nd2n,j.

I O I
Sothe(i,j)entryoflnnA(J)—i—InnA(Xr I)—InnA(O

2asj_nds j and sincel > n we have thaty jaar,j + asjasj € k for all | < n and
=12, ..,2n
Combining subcases a and b we have tgd;j 4 agiasj € kK whenever < n and

xs_n) .
gives us—-2ayj_nay,j —
I

S>nN

In conclusion, by combining Cases 1,2,and 3 we can concludesitfatj 4+ asjjas j €
kforalli,j=1,2,...2nandr #s.

We are now able to use the fact tlata,, j + agjas j € kforalli, j = 1,2, ...2nand
r # sto show thata, ja, j € k for all i, j = 1,2, ...,2n. However, we must show
this in two cases. We will first show thata; j € k for all | < n and then show that
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ar1ar,j € kforalll > n. Without loss of generality it shall suffice to shawa; j € k
for all I.

CASE 1: Assumé > n. The(i, j) entry or Inma(J) is given by

—a1j—nd1,j — A2,j_nd2,j — ... — A2n,i—nd2zn,j Which is ink and implies that

ayj—ndy,j + @2,j—nd2,j + ... + @ni—nd2n,j € K. From our previous argument we
know thataja;,j + asjasj € k for all i, j = 1,2, ...,2n, so obviouslya, jar j +
agjag j € kfori > n. Making use of that fact the equality given by

ali—ndy,j =

(a1,i—nay,j +azj_ndz,j + ... + anji—ndzn,j) — (1/2)(agi_nadz,j + azi_nazj) —
(1/2)(az,i—naz,j+a4,i—na4,j) — (1/2)(@4,i—nd4,j+asi—nds j) — ... — (1/2) (@zn,i—ndzn,j +
azi—ndz,j)

must be irk, ie. a; j_nay, j € k. Since we assumed thiat nwe have thaf ja; j € K

for | < n. Furthermore, we can conclude tlegia, j € kfor| <n

CASE 2: Assumei < n. Then the(i, j) entry of Inna(J), which is ink, is given
by ayjiyndy,j + aitnd2 j + ... + @2 i+nd2n,j. We again make use of the fact that
ariarj+asjasj € kfori=1,2,...,2n, and have an equality similar to the one in

case 1i(— nis simply replaced by+ n)
aLi+ndy,j =

(@1,i+nd1,j + @2,itnd2,j + ... + @2njitnazn,j) — (1/2)(@zi+nd2,j + @3,i+nd3,j) —
(1/2)(ag,i+nas,j + &4,i+nd4,j) — (1/2)(a4,i+nd4,j + 3s,i1nds,j) — ... — (1/2) (@zn,i+nd2n,j +
a,i1nd2,j)

which again must be ik. Since we assumeid< n we have thaly ja; j € k for

| > nand furthermorea, |a,j € k for | > n. Combining cases 1 and 2 shows that
arjarjekfori,j=1,2,...,2n.
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| will finally show thatasjasj € kforr # s

CASE I: Suppose, s < n. Without loss of generality we will assume thak s.

(1) Subcase 1Suppose +s < n+ 1.

LetY, s = Tstr-1 0 and
" 0 In—(s+r—1)

Y, 0
Zr,s _ r,s )
Er,s Yr,s
Now Z; s € G and hence Ing must keepZ; s invariant and thus all the entries of
Inna(Zr,s) must lie irk.

(@) Assumé < n. Then the(i, j) entry of Inna(Z;s) is given by
—8r n+i8s j T Antser—1,n+id1 j + Angstr—2,n+id2j + ... +
ant+2,n+istr—2,j + antlntidstr—1,j — AL,n+i8n+str—1,) — 82, ntidntstr—2,j —
coo —8syr—2n+idn+2,j — str—1,n+idn+1,j T Antr+snti@r+s j T Antr4s+lntidr4s+1,j T
.t @nn+idn, | — & 4sn+idntr+sj — A4stintidntr4s+l,j — --- — An,n+id2n,j-

_ -Y, 0 - _
Let Zr,s( S ) Now Z; s € G and thus Ina(Zs) € G. In fact, the

Er,s —Yr,s

(i, j) entry of InnA(Zr,S) is the negative of théi, j) entry of Inna Z; s with
the exception of-a; nijas j which remains negative. Therefore, k(¥ s) +
INna(Z;s) has ar(i, j) entry of—2a, n4ias . Since both INA(Z;s) and IN(Z; )
are both inG their sum is inG and hence-2a; ntjas j € kK. Since we assumed

I < nwe havea, jasj € kforl > n.

(b) Assuma > n. Then the(i, j) entry of Inna(Z;s) is given by
Ari—ndsj — Qntstr—1,i—ndl,j — Antstr—2i—nd2,j — ... — 8n42,i—nBstr—2,j —
An+1,i—nstr—1,j a1 i—ndn+str—1,) — A2 i—ndnts+r—2,j + ... F8syr—2,i—ndn+2,j +

Astr—1,i—nAn+1,j + Antr+si—ndr+s j — Antr4s+1,i—ndr4s+l,j — --- — A2n,i—ndn,j +
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A tsi—ndntr+sj + artst1i—n@ntr4s+1,j + ... + @ni—nd2n,j

Note that the(i, j) entry of Inma(Z;s) for i > nis the negative of théi, |)
entry of Inna(Z s) for i < nwith the simple change that+ i becomes — n.
Again we have that théi, j) entry of Inm(Z.s) is the negative of thei, )
entry of Inna(Z;s) with the exception ofg;j_nas j which remains positive.
Hence as in the previous case ffigj) entry of Inny Z; s + Inna(Z.s), gives
us 2 j_nas,j € k. Since we assumed that nwe can conclude thak as j € K
forl <n.

Combining a and b we have thatjas j € kforr +s <n-+ 1.

(2) Subcase 2Suppose& +s> n+ 1.

Let
Ur,s _ ('—n+(r+s—1) 0 )
0 (Ton—(r4+s-1)

U 0
Vr’s = ( S ).
Er,s Ur,s

Vis € Gso Inm(Vrs) € G since Inm keepsG invariant.

and

(a) Suppose < n. Then the(i, j) entry of Inma(V;s) is given by
—&8r n+ifs,j + @n,n+idstr—n,j + 8n—1 n+i8str—n+1,j + ... + 8str,n+idn,j —
an, jAst+r—n,n+i — 82n—1,j8str—n+1,n+i — --- — 8str,j8nn+i T Bnt1,nridej +
Ant2,n+id2 j ... T Ar4s—1,n+i@(r+s-1)—n,j —ALn+i@n+1,j — A2 ntidnt2,j — -0 —

A(r+s—-1)—n,n+idr4s-1,j-

- -U 0 _ _
LetVis= ( s ) Now V, s € G which implies that Inp (V. s) € G.
Er,s —Ur,s

The(i, j) entry of Inna(V;.s) is the negative of the (i,j) entry of Inx(V;,s) with
the exception of the terma; nias j which remains negative. Hence tfig )
entry of Inma(Vs) + Inna(Vr.s), —28 n+ids j IS INK. Since we assumeéd< n

we havea, as j € kforl > n.
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(b) Assume > n. As in the previous case, the j) entry of Inm(V;s) fori > n
is the negative of thé, j) entry of Inma(Vrs) for i < nwith the simple change
thatn+ i becomes — n. Again we have that th@, j) entry of InnA(\_/r,s) is the
negative of thei, j) entry of Inna(V; s) with the exception o& j_nag j which
remains positive. Hence as in the previous casgithg entry of Inna Z; s +
InnA(Z},S), gives us 2 j_nas j. Since we assumed thiat- n we can conclude
thata, jasj € kforl < n.

Combining a and b we have thatijas j € kforr +s<n+1

T, O
(3) Subcase 3:Suppose +s=n+ 1. Here we choos&\f s = ( A ) Now
Er,s Tn

W s € G and hence, InR(W s) € G since Inm keepsG invariant.

(a) Suppose < nThen the(i, j) entry of Inna(W s) is given by
—& n+ids,j + @2n,n+id1,j T A2n—1,n+id2,j + ... + 8nt+1,n+i8n,j — A2n,jALn+i T+

an—1,j82,n+i + ... + 8nt1 jAn,n+i-

_ -T, 0 - -
Let W s =( n ) W s € G which means that Ing(W s) € G. The

Er,s —Th
(i, j) entry of Inm (W s) is the negative of théi, j) entry of Inna (W, ) with
the exception that the terma, nyiasj which remains negative. Using the
fact that Inm(Ws) + Inna(W.s) € G we have that the term2a, nyias j € k.
However, since we assumed that n we have thag, jasj € kfor | > n.

(b) The case where> n follows exactly as above by simply changing the signs of

each term and replacing+i byi — n.

Combining Subcases 1,2, and 3 givesss j € kforr,s> n.

CASE Il: Suppose, s > n. Without loss of generality assume< s.
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(1) Subcase 1:Suppose +s—2n <n+ 1.
Yr—ns—n Er—ns-
Let Zr/,s:( r-n,s—n r—n,s n)
0 Yr—n,s—n

(@) Supposeé < n, SinceZ/ ¢ € G, Inna(Z/¢) must lie inG and hence itgi, j)

(b)

entry of

& n+i8s j + Antstr—1,n+i81,j + nystr—2,n+id2,j + ... + 8n2,nti8str—2,j +
Ant+1,n+i8str—1,j — AL, n+iBntstr—1,j — A2, nti8nystr—2,j — ... —8syr—2 n+idn4-2,j —
Astr—1,n+in+1,j + antrsntidr+s |+ ntros+inti@r+stl,j+ ... +82nntidn,j —
Artsn+idntr+s, | — X4s+ln+idntr+s+1,j — --- — An,n+id2n, j

is in k. Note that the(i, j) entry of Inna(Z/) is precisely the(i, j) en-
try of Inna(Zs) given in part | with the exception of the first term. Let

0 —Yr—n,s—n
tive of the(i, j) entry of Inna(Z; ) excluding the ternay nias j which remains

- —Yr_ns E_ns- _
Z’r,s=( rons=n s ) The(i, j) entry of Inm(Z’;.5) is the nega-

positive. Hence théi, j) entry of InnA(Zr”s) + InnA(Z_/r,s), givenby’a, nyias
lies ink. Since we assumed< nwe havea, as j € kforl > n.

As in the previous cases, for- n the proof follows exactly as above by simply
changing the signs of each term and replacingi by i — n. You will get that
the (i, j) entry of InnA(Zr/,s) + InnA(Z_/r,s) yields —2a; j_nag j € k. Or more
specifically,a; jas j € kfor | <n.

Combining a and b giveg jasj € kforr +s—2n<n+1

(2) Subcase 2 Suppose +s—2n>n+1

U_nsn E_ns
@) Letvr’,sz( ronsh mens ”). Now Inna(V/s) must lie in G and hence its

0 Ur—n,s—n
(i, j) entry of
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& n+ids j + A2n,n+i8str—n,j + &2n—1,n+i8str—n+1,j T --- + 8str,n+idn,j —

a2n, jAstr—n,n+i — A2n—1,jAs+r—n+1,n+i — --- — Astr,jAn,n+i T Any1ntide,j +

An+2,n+id2 )+ ... T Arys—1,n+i@(r+s-1)—n,j —ALn+i8n+1,j — A2 ntidnt2,j — -0 —

A(r+s—1)—n,n+id+s-1, ]

—Urs Er—nsn
0 —Urs

we see that thei, j) entry of Inma(V';s) is the negative of thdi, j) entry

must lie ink. If we define\7/r,S = ( ) which is in G, then

of InnA(Vr’,s) excluding the terna, n4jas j which remains positive. Hence the
@i, j) entry of Inm (V) + InnA(\7’r,s), 23 nyids j Is ink. Since we assumed
I < nwe havea, jasj € kforl > n.

Again as in the previous cases, for n the proof follows exactly as above
by simply changing the signs of each term and replacirgi by i — n. You
will get that the(i, j) entry of Inm (V) + Inna(V'y.s) yields that the term
—2a;j_nas,j is ink. Or more specificallyg; as j € kforl <n.

Combining a and b gives jasj € kforr +s—2n>n+1

Tn Er—ns—n

.NowW e G
Th ’

and thus Ina(Ws) € G.

(@) Suppose < n, then the(i, j) entry of Inm (W ) is given by

& n+ids j + A2n,n+idl,j + 82n—1,n+id2,j + .. + Ant1,n+i@n,j — @2n jAL,n+i +

An—1,ja2n+i + ... + 8nt1 jAnnti-

_ —Tn E_ns-
If we let W', s = ( On r rjl’_s n), then we see that thg, j) entry is simply
—In

the negative of théi, j) entry of Inna(W/ 5) excluding the ternay njas j which
remains positive. Hence titg j) entry of Inna(W/5) + InnA(VVr,S), 28y s, |
is in k. Since we assumed< nwe havea, jasj € kfor | > n.
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(b) Again as in the previous cases, for n the proof follows exactly as above
by simply changing the signs of each term and replacirgi by i — n. You
will get that the(i, j) entry of Inna(W.s) + Inna(W/s) vields that the term
—28aj_ndg j Is in k. Or more specificallyg; as j € kfor | < n.

Combining a and b gives jasj € kforr +s—2n>n+1

CASE lll: Suppose < nands> n

(1) Subcase 1Suppose + s < 2n+ 1.

Es—n,r Ys—n,r
Let M, s= v 0 . Now M, s € G and thus Ina (M s) € G by assump-
— Is—n,r

tion.

(a) Suppose < n. Now the(i, j) entry of Inna( My s) is given by
& jAsnti T Astr,n+iBstr,j T Bstr+1,n+iBstr+1,j + ... + &2n,n+id2n,j +
Astr—n,n+idst+r—n,j T 8str—n+1,n+i8str—n+1,j + .-+ 8nn+idn,j + Astr—1,n+idn+1,j +
Qstr—2,n+idn+2,j T --- T 8n+1n+idstr—1,j T As—n+r—1,n+il, | + Bs—nr—2,n+id2, j +

o T A1 n+i8s—ntr—1,j-

Es—n,r —Ys—n,r

Now defineM, s = ( ) thenM s € G and therefore Ing(M; s) €

Ys—n.r 0
G. In addition the(i, j) entry of M, 5 is the negative of thei, j) entry of
Inna(My s) with the exception of the terra, jasin Which remains positive.
The sum InA (M s) + InnA(|\7Ir,s) e Gandthusitdi, j) entry of 2, jasjn €
k. Since we assumed thiak n this gives usa; jas| € kfor | > n.

(b) Asinthe previous cases, for- nthe proof follows exactly as above by simply
changing the signs of each term and replacingi by i — n. You will get that
the (i, j) entry of Inna(M;.s) + Inna(Ms) yields that the term-2a, jagj_n is
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in k. Or more specificallygy jas) € kfor| <n.

Combining a and b givea jas| € kforr +s < 2n+ 1.

(2) Subcase 2: Suppose +s> 2n+ 1.

Es_ Us
With Nr,s :( s—n,r s—n,r
—Us—n,r 0

InnA(Nr)s) € G

) it is seen thatN; s € G and thus by assumption

(a) Suppose < nthen the(, j) entry of Inla(Ns) is given by
&, jAsn+i + A2nn+ids+r—n,j + A2n—1,n+idstr—n+1,j + .- + Bstr—n,n+id2n,j +
an n+idstr—2n,j + An—1,n+i8s+r—2n+1,j + ... T 8str—2n,n+idn,j + 8n+1,n+idn+1,j +
an+2,ntidnt2,j + -+ Angr4s—1ntiQ-ntr4+s—1,j + AL ntidl, ) + a2 nyid2j +
e FA-2ntr4s—1,n+i@—2n+r+s—1,j

Define Ny s = (

Es—n,r —Us—n,r

0 ) We again can make use of the fact that
s—n,r

Nr.s € G implies that Inm(Nrs) € G. Now the (i, j) entry of Inma(Nr.s)

is the negative of théi, j) entry of Inna(N s) with the exception of the the
terma, jasn+i Which remains positive. Hence tlig j) entry of Inna(Nr.s) +
Inna(Nrs) given by 2 jas nti must lie ink. Furthermore, since we assumed

thati < nwe can conclude tha jas| € kfor | > n.

(b) As in the previous cases,iif> n the proof follows exactly as above by simply
changing the signs of each term and replacingi by i — n. You will get that
the (i, j) entry of Inna(Nr.s) + InnA(N_r,s) yields that the term-2a, jasi_n is
in k. Or more specificallyg; jas) € kfor |l <n.

Combining a and b gives jas) € kforr +s<2n+1
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] Es—n,r Tn
(3) Subcase 3:Suppose +s=2n+1. LetFk s = T o)
n

Now Fr s € G and therefore Ina(Fs) € G since Inm keeps G invariant.

(a) Suppose < n. Then the(i, j) entry of Inna(Fs) is given by

& jAsn+i T &1,ntide, | + A2,ntid2 j + a2,n+i83,j + ... + @2n n+id2n, j

_ Es_ -T - _

LetR/s= st "). Then sincel s € G we have that Ina(F 5) € G.

, T 0 . )
—In

More importantly, the(i, j) entry of Inna(F; ) is the negative of théi, j) en-
try of Inna(Frs) with the exception that the ter@g jasi;n remains positive.
Again using the fact that Inf(F.s) + Inna(Fr.s) € G we have that itg(i, )
entry of 2a; jasn4i € k. Since we assumed< n we have thag, jas| € k for

| > n.

(b) As in the previous cases,iif> n the proof follows exactly as above by simply
changing the signs of each term and replacingi by i — n. You will get that
the(i, j) entry of Inna(F.s) + Inna(Frs) € Gyields that the term-2a; jasi—n
is in k. Or more specificallyg, jas) € kforl <n

Combining subcases a and b givesaysas| € kforr +s=2n+ 1.

Combining cases 1,2, and 3 givesaysas j € kforr < nands> n.

Cases |, Il and Ill show that; jas j € kand henceA = pM. ]

5.6 Involutions of SL(2n, k) on SP(2n, k)

It is easy to see that every automorphism, hence every involution, #SE) is the re-
striction of an automorphism of SBn, k). Therefore, to characterize the involutions of
SP(2n, k) we need to look at the involutions of $2n, k) restricted to SP2n, k).
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5.6.1 Outer Involutions of SL(2n, k) on SP(2n, k)

We begin by investigating what happens when we restrict an outer involution(@nhSk)
to SA2n, k). A few lemmas will prove to be useful in obtaining this result.

Lemma 15. The outer involutions ddL(2n, k) coming from a symmetric or skew-symmetric
matrix M, defined as = Inny @ whered(A) = (A7)~ can be viewed as = Inn;-1y, ¢
whereg is the fixed outer automorphism givendgA) = J~1(AT)~1J = Innj0(A).

Proof. Consider the outer involution= Inny # on SL(2n, k) coming from the symmetric
or skew-symmetric bilinear form with matridM. Then

7(A) = Inny 0 = Inny (AT~ = M~ (AT "M
Letp(A) = J71(AT) LI then
(A) = MY (AT)"IM
=M1 YAH 13 m
= M)t aH i im
= Inny_1y (37HAH 1Y)
= Inny-1y #(A)

Hence the outer involutions of §Pn, k) can be viewed as = Inn ;-1 ¢. O]

Lemma 16. The fixed outer automorphisgn= Innj 8 whered(A) = (AT)~1is the identity
when restricted to G. iep|g = Innj0|c = Id.

Proof. Let$ = Innj6& whered(A) = (AT)~1. SupposeA € G, then

¢(A) = Inny $(A)
= Inny(AT)?
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Now sinceA € G, ATJA = J or more importantly( AT)~1 = JAJ! hence,
H(A) =31 AH I=3tuAaTHi=4
Thereforeg|c = Innj6|c = Id. O

The above Lemma is true sin€eis the fixed point group o = Innjé.

Lemma 17. The outer involutions o6L(2n, k) become inner involutions when restricted
to SP(2n, k).

Proof. Let ¢ be an outer involution of S2n, k). Then from Lemma 15 we can let
t = Innj_1y, ¢ Where, ¢ = Innyd, 6(A) = (AT)~1 and M is a symmetric or skew-
symmetric matrix. Now from Lemma 16 we know théliz = Innj6|g = Id, hence

7l = INNj-1py Pl = INNj-1)

Therefore, the outer involutions of $2n, k) become inner involutions when restricted to
SPA(2n, k). O

5.6.2 Involutions of SL(2n, k) Which Leave SR 2n, k) Invariant

We now turn our attention to trying to characterize which involutions of2Zl.k) leave
SP(2n, k) invariant. That is which involutions of Sn, k) will remain involutions when
restricted to SP2n, k). The following Lemma helps us with this endeavor.

Theorem 5.8. Let ¢ be the involution o5L(2n, k) coming from the skew-symmetric bi-
linear form with matrix representation J. Then its corresponding fixed point group is
G = SP(2n,k). Now sinceg is coming from the skew-symmetric matrix@gdmust be

of type outer and thug = Innj6 whered(X) = (XT)~1. The involutionz of SL(2n, k)
keeps G invariant if and only if¢p = ¢ on SL(2n, k).
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Proof. «—= Supposer¢ = ¢z on SL(2n, k) and letX € G. SinceG is the fixed point
group of ¢, tp(X) = 7(X). By assumptioncg = ¢t S0 p7(X) = 1¢(X) = (X)), ie.
¢t (X) = 7(X), which states that(X) is in the fixed point group o, ie. 7(X) € G
Hence,r keeps G invariant.

= Suppose the involution of SL(2n, k) keepsG invariant. We know that every
automorphism ofG, and thus every involution o can be written ag = Inna where
A e SL(2n, k). In addition, since by assumptiarkeeps G invariant, Theorem 5.5 tells us
thatz = Inna = Innpm Wherep kandM € G. Now

t¢(X) = Inna $(X)
= Innpm ¢ (X)
= Innpm(I~1(XT)71J)
— pM~1373(xT)"13pM

SinceM € G we have thaM—! = J"!MTJandM = J-1(MT)"1J so

tp(X) = M~ xT)~tam
= (I IMTHI LX) L33 Ty Ly)
= J IMT (X)L (MT)~ 1]

On the other hand

$7(X) = ¢(INna(X))
= ¢(Innpm (X))
= ¢(Innm (X))
= p(M™IXM)
=J (M IxmH1y
_ J—lMT(XT)—l(MT)—lJ

Thus,z¢ = ¢z on SL(2n, k). O
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Corollary 2. An involutionlnna of SL(2n, k) leavesSP(2n, k) invariant if and only if
J(AT)~1J71 = cA where ce k*.

Proof. Supposer = Inna is an involution of SI(2n, k) which leaves SE2n, k) invariant.
Theorem 5.8 tells us thatr = 7¢, whereg = Innj 60 andd(X) = (XT)~1. Now

¢t(X) =InnzdInna(X)
= InnjO(A"1XA)
= Inny (A" XA)H ™
= Inny (AT (X")"H(AD) ™)
— JLAT(XT)1(AT)1]
and
tp(X) = Innalnn; O(X) = Innjad(X) = A~ 1371 (X")~1IA
Hence we have the following equivalent statements
JIAT(XNHt(AHta= A1 1 (xTH)~tIA
ITAIXTAQ DT = ATITX L3 1T (AT
ITAIXAQT) L= ATITX(I HT(A DT
(A1) L(AT) 13T A IX AT TATIT = X
INNp(gT)-1a757(X) = X
By Theorem 5.4 we know that this meaAgJ™)~1ATJT = pl for some p € k*. With
minimal rearrangement and utilizing the fact tlldt= J~* one can easily see that this is
equivalent toJ (AT)~1J-1 = cAwherec = 1/p € k*. Now sinceJ, (AT)"1 andJ~1 all
reside in SIP2n, k) we have that A € SP(2n, k) which means that € k*. The above steps

may be reversed to obtain the other direction. ]

Corollary 3. An outer involutioninnj-1y, ¢ of SL(2n, k) coming from a symmetric or
skew-symmetric bilinear form leavB®(2n, k) invariant if and only if JMT)~1J-1 =cM

for some o= k*.
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Proof. From Lemma 17 we know that the outer involution kary, ¢ becomes the inner
involution Inn;y-1), when restricted to Sn, k). Hence, the proof will follow directly

from Corollary 2 by simply replacing\ with J=1M. O

We now have specific criteria to determine whether an involution a8)k) remains
an involution when restricted to $2n, k). To actually obtain which involutions leave
SP(2n, k) invariant we simply need to consider whether the matrices of the foemls;

andA = L, p obey the criteria given in Corollary 2.

Before we analyze this situation we introduce the following notation.

I 0 .
ls,t.m = ( Os I ) wherem represents the size
— It

luw O 0 0
O -1, 0 O

o = v , wheres=2u,t=2p,u+0v=n
’ 0 o Iy, O
O O 0 —I,

Let's consider the inner involutions of $2n, k) which have the form Ing, where

ls O
A=lston= ( OS I ) ands < t. We first rewriteA as
— It

Is 0 0
A= 0 —In_s 0
0 0 —In

wheret = 2n —s. If Inna is an involution on SE2n, k) then Corollary 2 tells us that
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J(AT)~1J71 = cAso let’s consider the right hand side of this equality.

J(AH 11 =gA07t

Is 0 0
0 In 0 —ln
= O —In_s O
-l O Ilh O
0 0 —In
-1, 0
= 0 s
0 0 Ips

which is not equal t@ Afor anyc.

However, whers is even we may reorder the basis elements to obtain an equivalent
form for st 2n, hence we have the following lemma.

Lemma 18. If s is even then the involutiomna where A= Ist on of SL(2n, k) leaves
SP(2n, k) invariant.

I 0
Proof. Supposes is even and the involution Inwith A = Iston = ( OS ) of
t

SL(2n, k) leaves Si2n, k). With a reordering of the basis we may rewrAeas

I, O
wo,n o -1, 0 O lu,o.n 0
A= Is,t,2n = = .
O O I, O 0 lu,0,n
O O 0 —I,

Hence for Inmny to be an involution of SE2n, k) Corollary 2 tells us that we need only
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check to see ifl(AT)~1J~1 = c A We observe that

JAH 13t =gA01

. 0 In Iu,v’n O 0 —|n
B —ln 0 0 |u,u,n |n 0

Iu,u,n
0

A.

O )
lu,0,n

Therefore, by choosing= 1 we can conclude that Inywith A = Is¢ 2n is an involution

on SR 2n, k).

]

We now turn our attention to involutions of $2n, k) with the form Inm with

If we try to apply the Criteria of Corollary 2 directly ta then we would see that 1 (AT) 131 £

[0 1 .. 0 o
p O 00
A=|—n,p—:: .
00..01
\oo...po)

cAfor anyc. However, by rewriting our matriA = L , we are able to obtain the follow-

ing result.

Lemma 19. The involutions oSL(2n, k) given bylnna where A= Ly , keepSP(2n, k)

invariant and remain involutions when restricted3$&(2n, k).

[0 1 .. 0 o
p O 00
Proof. In order for the involution Ing whereA=Lpp=| : : + | to leave
0 0..01
\0 O ... p O)

SP(2n, k) Corollary 2 tells us thatt(AT)"1J~1 = cA Before considering this equality



Chapter 5. Involutions of G = SP(2n, k) 89

we note that with a reordering of the basis elements we may refrtel ,  as

A © ' .
pln O

Therefore,
sanyigiof O 0 )/ 0 -l
—In O p~tlh, O Ih O
f O —pth
-0 '
Hence by choosing = — p we see thatl(AT)~1J~1 = cAwhich tells us that Ing is an
involution on SK2n, k). O

5.7 Isomorphy Classes of Involutions of SE2n, k)

In this section we begin to investigate how the isomorphy classes of involutiong a8h3t)
react when restricted to $Bnh, k). We begin by recalling that Corollary 3 gave us criteria
to determine whether an outer involution of &n, k) left SP(2n, k) invariant. However

the following result let’'s us know that one of the involutions does not remain an involution
when restricted to SEn, k).

Lemma 20. The isomorphy class of outer involution 8E(2n, k) which comes from the
skew-symmetric matrix M= Jo, does not exist o8P(2n, k).

Proof. We begin by recalling that Lemma 15 enables us to view the outer involution
of SL(2n, k) coming from the skew-symmetric matrid = Jo, as the involutiond =
INnj-15¢ = Innig ¢, wheregp = Inny0 andd(A) = (AT)~L. In addition, Lemma 16 tells

us that thatp is the identity when restricted to G. Hende= Innig ¢ = Inng when re-
stricted to SP2n, k) which is not an involution. Thus, we see that there will always be one
less isomorphy class of outer involutions on(3i®, k). O
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Lemma 21. If two involutionsg1 and ¢, of SP(2n, k) are isomorphic oveBP(2n, k) then

they are isomorphic ovesL(2n, k).

Proof. The proof of this theorem is trivial. Assume two involutiapsandg, of SP(2n, k)
are isomorphic over SRn, k) via some automorphism = Inna with A € SP(2n, k). Itis
clear thatA € SL(2n, k) and thusp1 and¢, are isomorphic over S2n, k) via w = Inna
too. O

Lemma 22. Letz1 and 2 be two involutions 0B P(2n, k) which come from the restriction
of outer involutions oSL(2n, k). If 71 ~ 72 over SP(2n, k) then the outer involutions of
SL(2n, k) from which they came are isomorphic o\ (2n, k).

Proof. Let r1 andz;, be two involutions on Sn, k) which come from outer involutions of
SL(2n, k), sayzy = Innj-1p, ¢l = INNy-1py, andzz = INNj-1py, plc = INN;-1y,, Where
M; and M, are symmetric ang(A) = J-1(AT)~1J. Supposer; ~ 7, over SR2n, k),
l.e. Innj-1y, &~ Inny-1), over G. Then there exists an inner automorphism dnmith
Q € SP(2n, k) such that

INN;-1p, = INNg-1INN-1)y, INNQ

= IanJ—lMlQ—l

Therfore, by Theorem 5.4 we have [3nyy,)q(3-1m,)-10-1 = @ | for somea € k*. This
means that

(I7*M2) QI M) 1Qt = «lId
J7 Mz =aQI M)~ 1Q 7t
Mz =aJQ(JI M) ~1Q !
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Now sinceQ € SP(2n, k), Q = J~1(Q")~1J, we see that

Mz = aJQ(JI M) ~1Q !
= aJ(37HQH NI M tQ?
=a(Q") " *M QL.

Which means thal; =° M, overk. By Theorem 4.1 their corresponding outer involutions
are isomorphic, i.ery = Inny-1y, ¢ ~ Otz = INNy-1, ¢. N

The converse of Lemma 21 and Lemma 22 are not true in general. That is two invo-
lutions ¢1 andg- of SP(2n, k) being isomorphic over S2n, k) does not imply that they
remain isomorphic when restricted to &R, k).

5.8 Future Goals

Isomorphy classes of involutions of &, k) have been classified over algebraically closed
fields and the real numbers (see [Hel88]). In the future we wish to classify the isomor-
phy classes of involutions of $Bn, k) over finite fields, the p-adic numbers, and number
fields. We have already determined which involutions of 18Lk) leave SF2n, k) invari-

ant and actually remain involutions when restricted taZPk). Therefore, to give a
complete classification of the involutions of &, k) the next step is to determine how
many SR2n, k)-isomorphism classes each &n, k)-isomorphism class splits.
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