
ABSTRACT

YOON, SUYOUNG. Power Management in Wireless Sensor Networks. (Under the

direction of Assistant Professor Mihail L. Sichitiu.)

One of the unique characteristics of wireless sensor networks (WSNs) is that

sensor nodes have very constrained resources. Typical sensor nodes have lower

computing power, communication bandwidth, and smaller memory than other

wireless devices, and operate on limited capacity batteries. Hence power efficiency

is very important in WSNs because power failure of some sensor nodes may lead to

total network failure. In many cases the WSNs have to operate in harsh environments

without human intervention for expended period time. Thus, much research on

reducing or minimizing the power consumption, and thereby increasing the network

lifetime, has been performed at each layer of the network layers. In this dissertation

we approach three important issues related power management in WSNs: routing,

time synchronization, and medium access control (MAC). We first discuss the effect

of selecting routing protocols on the lifetime of the WSNs. The maximum and

minimum bounds of the lifetime with respect to the routing protocols are derived.

The routing protocols corresponding to the bounds are also presented. The

simulation results show that the choice of the routing protocol has very little impact

on the lifetime of the network and that simple routing protocols such as shortest path

routing perform very close to the the maximum bound of the lifetime of the network.

Next, we propose a simple and accurate time synchronization protocol that can be

used a a fundamental component of other synchronization-based protocols in WSNs.

Analytical bounds on the synchronization errors of proposed protocol are discussed.

The implementation results on Mica2 and Telos motes show that proposed time

synchronization protocol outperforms existing ones in terms of the precision and

required resources. Finally, we model the power consumption of WSN MAC protocols.

We derive analytically the power consumption of well known MAC protocols for

WSNs, and analyze and compare their performance. We validate the models by

measuring the power consumption on Mica 2 motes and comparing those measured

power consumption with the analytical results.

ii

For my parents, my parents-in-law, my dear wife Mijung, and my children Dahyoung, Haejung, and

Junghwan.

iii

Biography

Suyoung Yoon was born in South Korea in 1964. He received the Bachelor of Science de-

gree in Department of Computer Science and Statistics from Seoul National University in 1987 and the

Master of Science degree in Computer Science from the Korea Advanced Institute of Science and Tech-

nology in 1991. In 2002, he started his work as a doctoral student under the guidance of Dr. Sichitiu.

Suyoung Yoon’s research interest includes wireless networking including ad-hoc and wireless sensor

networks.

iv

Acknowledgements

This dissertation would not have been possible without the support of many people. First of all, I

would like to thank my advisor Dr. Mihail L. Sichitiu for his thoughtful directions and affectionate

encouragements. I would like to acknowledge my advisory committee members Dr. Arne A. Nilsson,

Dr. Rudra Dutta, and Dr. Do Young Eun for their enlightening comments and constructive suggestions

on my work. I would like to acknowledge Korea Telecom who supported my graduate study. And

finally, I would like to thank my wife, children, parents, and numerous friends who endured this long

process with me, always offering support and love.

v

Contents

List of Figures vii

List of Tables x

1 Introduction 1
1.1 Wireless Sensor Network . 1
1.2 Power Management in Sensor Networks . 2
1.3 Contributions . 4

2 Power Aware Routing 7
2.1 Introduction . 7
2.2 Related Work . 8
2.3 Definitions, Notations, and Assumptions . 10

2.3.1 Definitions . 10
2.3.2 Assumptions . 10
2.3.3 Model and Notations . 11

2.4 The effect of the routing algorithms on the lifetime of the WSN 13
2.5 Simulation Results . 17
2.6 Conclusion . 20

3 Time Synchronization 21
3.1 Introduction . 21
3.2 Related Work . 23
3.3 Proposed Algorithms . 26

3.3.1 Data Collection . 26
3.3.2 Tiny-sync and Mini-sync - Processing the Data 31
3.3.3 Analysis of the Proposed Algorithms . 34
3.3.4 Synchronizing an Entire Network . 39

3.4 Experimental Setup . 40
3.5 Experimental Results . 44
3.6 Conclusion . 54

vi

4 Analyzing Power Consumption of Wireless Sensor Networks MAC protocols 57
4.1 Introduction . 57
4.2 Analysis of power consumption . 58

4.2.1 Assumptions . 59
4.2.2 Sources of Power Consumptions . 59
4.2.3 Notation . 60
4.2.4 Power Consumption Analysis of 802.11 basic mode (ad-hoc) 64
4.2.5 Power Consumption Analysis of 802.11 PS mode (ad-hoc) 66
4.2.6 Power Consumption Analysis of S-MAC . 69
4.2.7 Power Consumption Analysis of T-MAC . 71
4.2.8 Power Consumption Analysis of B-MAC . 72
4.2.9 Power Consumption Analysis of X-MAC . 74
4.2.10 Power Consumption Analysis of SCP-MAC 77
4.2.11 Power Consumption Analysis of an Ideal MAC 78

4.3 Numerical Results . 80
4.3.1 Simulation Setup . 80
4.3.2 Simulation Results . 82

4.4 Experimental results . 89
4.4.1 Experiment setup . 89
4.4.2 Experimental results . 90

4.5 Related work . 94
4.6 Energy Efficient Scheduling for Wireless Sensor Networks 95

4.6.1 Overview of cross-layer scheduling . 95
4.6.2 Recovery from Scheduling Collisions . 96
4.6.3 Simulation results . 98

4.7 Conclusion . 98

5 Conclusion 100

Bibliography 102

A Proof of Theorem 4 110

vii

List of Figures

1.1 Interactions between the power management modules in this thesis. 4

2.1 Lifetime ratios using LBSPF and BSPF as a function of the ratio between the total
number of nodes and the nodes in tier one. 16

2.2 Variation of the lifetime of the network for a rectangular grid placement as a function of
the networks size . 18

2.3 Variation of the lifetime of the network for random placement as a function of the net-
works size . 18

2.4 Time of death for each node for various routing strategies for an uniform rectangular
grid placement. 19

2.5 Time of death for each node for various routing strategies for a random placement. . . 20

3.1 A probe message from node1 is immediately returned by node2 and time-stamped at
each send/receive point resulting in the data-point (to, tb, tr). 27

3.2 The linear dependence (3.2) and the constraints imposed ona12 andb12 by three data-
points. 28

3.3 A probe message from node1 may be returned by node2 after being time-stamped at
both the send and receive points. 30

3.4 In this situation, after receiving data-pointA3 − B3, tiny-sync will discard constraints
A2 andB2. However, after receivingA4 − B4, it turns out that the most constraining
constraint would have beenA2 −B4. 32

3.5 Setup for the simplified analysis of the algorithms. 35
3.6 Evolution of the uncertainty bound on the relative clock drifts∆a12 as new data-points

are received. 36
3.7 Evolution of the precision of∆t2m as more data-points are received. 38
3.8 Synchronization transitivity: ifs is synchronized with u, and u is synchronized withv,

thens is synchronized withv. 39
3.9 Experimental setup. 41
3.10 Time-stamping in tiny-sync. 42
3.11 Sources of delay in the measurement process error. 43
3.12 Experimental setup for global synchronization. 44
3.13 The evolution of the bound on the relative drift∆a12 and the predicted evolution (3.23)

for the first experiment. 45

viii

3.14 Tiny-sync pairwise synchronization error. 46
3.15 Distribution of the synchronization errors. 46
3.16 Tiny-sync global synchronization error. 47
3.17 Synchronization errors as a function of the number of points considered for the linear fit

and tiny-sync. 48
3.18 Comparison of synchronization errors as a function of the number of hops. 49
3.19 Comparison of synchronization errors as a function of the synchronization interval. . . 50
3.20 Behavior of tiny-sync when the clocks are forced to change their relative clock drift by

sudden changes in the temperature of one of them (by temporary placing it in an ice-
box). During the cool-down and warm-up period, tiny-sync restarts several times. (a)
the evolution of the bound on the relative drift∆a12 and the predicted evolution (3.23);
(b) the evolution of the bounds on the drift. 50

3.21 The synchronization error when nodes were subjected to variation of the relative drift. . 51
3.22 The synchronization error with packet loss. 52
3.23 Synchronization error of tiny-sync and mini-sync as a function of the number of hops. . 52
3.24 Synchronization error of tiny-sync and mini-sync as a function of the synchronization

interval. 53
3.25 Synchronization error of tiny-sync on Mica2 and Telos platforms. 54
3.26 Synchronization errors of tiny-sync without poor initial data. 55
3.27 Synchronization errors of tiny-sync when the best two out of the first ten data-points are

used to initialize the algorithm. 55

4.1 An example of a WSN topology. 63
4.2 Example of data exchange in 802.11 in ad-hoc mode without power saving. 65
4.3 Example of data exchange in 802.11 power saving mode (ad-hoc). 67
4.4 Example of data exchange in S-MAC. 70
4.5 Example of data exchange in T-MAC. 71
4.6 Example of data exchange in B-MAC. 73
4.7 Comparison of the timelines between B-MAC and X-MAC [1]. 75
4.8 SCP-MAC synchronization scheme. 77
4.9 Example of data exchange in I-MAC. 79
4.10 Lifetime of the network as a function of the number of sensor nodes for Mica 2 and

Telos motes (at constant network area). 83
4.11 Components of the power consumption of the first-tier of nodes as a function of the

number of sensor nodes with constant deployment area for Mica2. 84
4.12 Components of the power consumption of the first-tier of nodes as a function of the

number of sensor nodes with constant deployment area for Telos motes. 85
4.13 Lifetime of the network as a function of wake-up (check) interval for Mica 2 and Telos

motes. 86
4.14 Components of the power consumption of the first-tier of nodes as a function of the

wake-up interval for Mica 2. 87
4.15 Components of the power consumption of the first-tier of nodes as a function of the

wake-up interval for Telos 2. 88
4.16 The radio state diagram and log messages. 90
4.17 The experimental topology. 91

ix

4.18 Comparison of time and energy consumption of S-MAC between the analytical and
experimental results. 92

4.19 Comparison of time and energy consumption of 802.11 power-saving mode between the
analytical and experimental results. 92

4.20 Comparison of time and energy consumption of 802.11 basic mode between the analyt-
ical and experimental results. 93

4.21 Comparison of time and energy consumption of B-MAC between the analytical and
experimental results. 93

4.22 An example of DATA packet collision. 97
4.23 Lifetime of the network as a function of the number of sensor nodes for Mica 2 and

Telos motes (at constant network area). 98

A.1 Illustration for Lemma 7. 110
A.2 Aj can be safely discarded asAi or Ak will result in better estimates in all cases. . . . 112

x

List of Tables

4.1 Current consumption and time for Mica2 radio operations 81
4.2 Current consumption and time for Telos radio operations 81
4.3 Parameters used in the experiments . 81

1

Chapter 1

Introduction

In this chapter, we first present the characteristics and applications of wireless sensor net-

works. We then explain why the power management is important in these networks. Finally, we present

our contributions in this area.

1.1 Wireless Sensor Network

With the technology development of micro electronic mechanical systems (MEMS), wireless

communication, and embedded microprocessors, wireless sensor networks (WSNs) have been deployed

in environment monitoring, military target detection, and commercial areas [2–4]. Wireless sensor

networks usually consist of thousands of sensor nodes that are capable of sensing, processing, and

communicating. In typical sensor network applications, each sensor node obtains data from the physical

environment and transmits in wireless multihop fashion the data to the base station where the data will

be delivered to users through infrastructures such as Internet.

Although more than 90% of sensors are still wired,wired sensor networks have been replaced

by wirelesssensor networks due to the cost and delay of deployment [5]. The dominant factor of con-

structing wired sensor networks is the wiring cost [6]. In addition, wired networks require considerable

time to implement. In case of wireless sensor network, the deployment is rather simple, in many cases,

just dropping off sensor nodes from the airplane into the target area instead of wiring from the target

area to monitoring station.

Wireless sensor networks can be used in variety applications that allow existing information

2

systems to obtain and process data from physical world. In environment monitoring, one of the ear-

liest applications of wireless sensor network, wireless sensors are used to monitor animals and plants

in wildlife habitat such as the Great Duck Island experiment [7]. Other related applications include

monitoring of water pollution, wildfires, and earthquakes. In the military battlefield, where there is

no infrastructure and it is very hard to access and deploy the sensor networks, the wireless sensor net-

works can be rapidly deployed to detect the enemy target and to track their movements in realtime.

Commercial applications include the monitoring and tracking of assets, monitoring of the conditions

of industrial equipment, automated meter reading, and warehouse management using RFID technolo-

gies. Wireless sensor networks can also be used in structural health monitoring of large structures such

as airplanes, buildings, and bridges. With the dedicated short range communication (DSRC) standard,

car-to-car networking with sensors can be available to provide emergency warning, traffic monitoring,

and driver safety assistance. One of the most important area of wireless sensor network applications is

health monitoring of patients in a hospital.

1.2 Power Management in Sensor Networks

Wireless sensor networks are similar to wireless ad hoc network in terms of networking topol-

ogy and multi-hop routing. But, sensor networks are also different from other wireless ad hoc networks

in that they consist of hundreds or thousands of autonomous nodes and the direction of most sensor

traffic is from the sensor nodes to the base station. Another unique characteristics of wireless sensor

networks is that the sensor nodes in WSNs are equipped with batteries of limited capacity and are ex-

pected to operate without human interaction for a long time. Therefore, the power management of each

sensor node plays a very important role in increasing the lifetime of the sensor networks [8]. For ex-

ample, when a Telos mote equipped with 2250mAh batteries idles without any power saving algorithm,

the mote can operate for up to 52 days. With a 1% duty cycle, the lifetime of the node can be extended

to 4076 days [9].

Recently, power management has been extensively studied in each area of sensor networks

such as the transmission power expenditure, medium access control (MAC) layer techniques, power

aware routing algorithms, network architecture, and sensor node deployment. The transmission power

control methods try to reduce the power level of the transmitter while maintaining the network connec-

3

tivity. MAC layer techniques aim to conserve battery power by turning the receiver off whenever it is not

needed. Power aware routing algorithms seek to choose routes in such a way to maximize the lifetime of

the network by minimizing radio power consumption. Scheduling sensor nodes where each node goes

to power saving mode as long as possible can also save power consumption significantly by reducing

idle-listening time. The choice of the network architecture design (homogeneous or heterogeneous; flat

or hierarchical; the number of base stations; static or mobile access point) and node deployment policy

(node connectivity) can also affect the power management schemes.

In this dissertation, we explore the power management in WSNs in the following areas: rout-

ing, time synchronization, and MAC protocols. The most energy consuming part among sensor node

operations is the radio transmission and reception. Therefore, reducing the number of message trans-

missions and receptions for the functions that require message exchanges is imperative to minimize the

power consumption a sensor node. Routing is one of the those functions since the routing algorithms

exchange information with neighboring nodes to find the best route.

The nodes in sensor network are a distributed system. That is, each sensor node has its own

processing unit, memory, transceiver, and clock. In such a system, time synchronization between nodes

in the network is necessary in order for the sensor nodes to perform cooperative jobs such as target

tracking and reporting of time-sensitive data. All time synchronization protocols are based on message

exchanges between sensor nodes(either one or two ways). Thus, time synchronization is also an essential

function for the power management of wireless sensor networks.

Without power efficient MAC protocols, sensor nodes would listen to the network at all time

in order to receive messages from other nodes. This idle listening consumes a large percentage of the

energy of sensor nodes (Tables 4.1 and 4.2). Therefore, in order to minimize the energy consumption,

sensor nodes should be in sleep mode (or lower power mode) as long as possible and to be awake when

only necessary.

Time synchronization, routing, and power efficient MAC protocols are closely related to each

other as shown in Fig. 1.1. Many power efficient MAC protocols require accurate time synchronization.

If the sensor nodes are appropriately scheduled, the MAC contention can be reduced, which leads to a

lower number of message exchanges for routing and time synchronization. Global time synchronization

also needs power efficient routes from sensor nodes to the base station. The number of messages that a

sensor node hears depends on the routing protocol used, therefore, affecting the performance of power

4

�����
���	
����
�����

������
����	��������

������������
�������

�		������
����

�����������������������	���
����

	���������

����	�������	���������

����	�������
������

Figure 1.1: Interactions between the power management modules in this thesis.

efficient MAC protocols.

1.3 Contributions

Power management plays a very important role in wireless sensor networks because most

sensor network applications operate on batteries and the deployment environments can be remote or

hostile. Power management in sensor networks is performed by considering all aspects of these networks

from the physical to the application layers, and even cross-layer. Our contributions in this field focus

on the areas of power aware routing, time synchronization, and analysis of power consumption of WSN

MAC protocols.

Power Aware Routing

In this area, we discuss the effect of power efficient routing algorithms on the lifetime of mul-

tihop wireless sensor networks. We assume that all data and control traffic in the network is flowing be-

tween the sensor nodes and the base station. This assumption results in a considerably simpler problem

and solution than for the more general MANETs. We analytically derive the maximum and minimum

bounds of the lifetime of the sensor network under specific routing algorithms. We also present the

routing algorithms that result in the maximum and minimum lifetime. We observe that the choice of

the routing algorithm has almost no consequence to the lifetime of the network. The simulation results

show that the lifetime of proposed routing algorithms fall in the derived lifetime range.

5

Time Synchronization

In this area, we present two simple and accurate pairwise time synchronization protocols for

wireless sensor networks. The two algorithms have the following features:

• Deterministic bounds on the precision:Most other algorithms provide best estimates for the offset

and drift of the clocks, and possibly probabilistic bounds on these estimates. Our approach deliv-

ers tight,deterministicbounds on these estimates, such that absolute information can be deduced

about ordering and simultaneous events.

• Accuracy:The experimental results show that pairwise time synchronization errors of proposed

algorithms are less than 1.5µs.

• Low computation and storage complexity:Wireless sensor nodes typically feature low computa-

tional power microprocessors with small amounts of RAM. Both algorithms have low computa-

tional and storage complexity.

• Low sensitivity to communication errors:Wireless communications are notoriously error prone,

and thus one cannot rely on correct receipt of all messages. The presented approach works cor-

rectly even if a large percentage of the messages is lost.

We analytically derive deterministic bounds on offset and clock drift. The analytical results

show that the bounds on offset and clock drift only depend on the round trip times of messages between

two nodes.

Based on pairwise synchronization, we propose a method for synchronizing the entire net-

work. Performing global synchronization does not require extra effort on sensor nodes, but is done

implicitly by the pairwise synchronization. Proposed algorithms guarantee that the global synchroniza-

tion errors only depends on the number of hops between two sensor nodes.

We implemented proposed algorithms on Mica2 and Telos motes, measured the time synchro-

nization errors, and compared our results with other typical synchronization protocols.

• To minimize delay uncertainties, we adopted MAC layer time-stamping.

6

• To minimize the measurement errors, we measured the time synchronization errors by wiring the

target sensor nodes into the measuring node and having the nodes report local times-tamps at the

same time by wired interrupts.

• We showed how the synchronization intervals affect the performance of time synchronization

protocols

• We showed that proposed algorithms are robust to unreliable wireless sensor networks.

Analyzing Power Consumption of WSN MAC protocols

We constructed a common power consumption model to be used heterogeneous MAC pro-

tocols. The power consumption model can represent the power consumption behavior of each MAC

protocol at the very detail level. We determined analytically the power consumption of the following

protocols:

• 802.11 basic mode

• 802.11 power-saving mode

• S-MAC

• T-MAC

• B-MAC

• X-MAC

• SCP-MAC

We performed the simulation using the analytical results and compare MAC protocols. With

the simulation results, we conclude that B-MAC and X-MAC are appropriate for the applications that

require short delay while S-MAC, T-MAC, or SCP-MAC should be used for monitoring applications

that tolerate long delays. We validated the analytical results by measuring energy consumptions of the

MAC protocols on a testbed using Mica 2 motes and compare the results. The experimental results show

that the proposed power consumption models closely match the experimental results.

7

Chapter 2

Power Aware Routing

In this chapter, we discuss the effect of power efficient routing algorithms on the lifetime

of wireless sensor networks. We calculate analytically lifetime bounds of the network under specific

routing algorithms. We perform the simulations to verify the analytically derived lifetime bounds.

2.1 Introduction

The power management problem for wireless sensor networks has been studied intensively.

Various approaches for reducing the energy expenditure have been presented in literature. In this work,

we focus on routing strategies that maximize the lifetime of the wireless sensor networks

Several strategies are commonly employed for power aware routing in WSNs [10]:

• Minimizing the energy consumed for each message. This metric might unnecessarily overload

some nodes causing them to die prematurely.

• Minimizing the variance in the power level of each node. This is based on the premise that it is

useless to have battery power remaining at some nodes while others exhaust their battery, since

all nodes are deemed to be equally important.

• Minimizing the cost/packet ratio In this approach, different costs can be assigned to different links,

for example, incorporating the discharge curve of the battery, and thus postponing the moment of

network partition.

8

• Minimizing the maximum energy drain of any node. The basis of this approach is that the network

utility is first impacted when the first node exhausts its battery, and thus it is necessary to minimize

the battery consumption at this node.

The above approaches focus on different metrics of energy efficiency. A common character-

istic of these metrics is that they can lead to a disconnected network with a high residual power: once

the critical nodes of the network have depleted their batteries, the network is essentially dead. Indeed

we show that under our assumptions this is inevitable. For a practical sensing application, the network

can be considered to have stopped working when it fails to deliver the sensed readings from a bulk of

the sensors, and the important metric is the time when this occurs. In what follows, we will therefore

use the network lifetime as our main performance measure, which we define in the next section.

While all the above approaches provide benefits in different classes of MANETs, the special

case of WSNs merit closer evaluation since they are practically an important class of MANETs. Gen-

erally, the problem of computing the optimal lifetime of the MANETs is known to be hard due to node

mobility. As a special case of MANETs, the WSNs are (in most sensing applications) stationary and

have a base station sink, where all data traffic ends. In this work, we will derive bounds on the lifetime

of WSNs. We show that the two characteristics mentioned above play a crucial role in these considera-

tions. Somewhat surprisingly, we are able to show that network behavior under these conditions is quite

specific, the maximum benefit obtainable from the batteries is very predictable, and achievable by rather

simple routing strategies.

2.2 Related Work

Sensor Protocols for Information via Negotiation (SPIN) [11] makes good the deficiencies of

classic flooding by negotiation and resource adaptation. Using SPIN routing algorithm, sensor nodes

can conserve energy by sending the metadata that describes the sensor data instead of sending all the

data. SPIN can reduce the power consumption of individual node, but it may decrease the lifetime of

the whole network due to extra messages.

Low-Energy Adaptive Clustering Hierarchy (LEACH) is a clustering-based protocol that min-

imizes energy dissipation in sensor networks [12]. LEACH randomly selects sensor nodes as cluster-

heads, so the high energy dissipation in communicating with the base station is spread to all sensor

9

nodes in the sensor network. LEACH can suffer from the clustering overhead, which may result in extra

power depletion.

The algorithmmax −min zPmin combines the benefits of selecting the path with the min-

imum power consumption and the path that maximizes the minimal residual power in the nodes of the

network [13]. However, this algorithm has the disadvantage of being centralized and requiring knowl-

edge of the power level of each node in the system. Its distributed version also has clock synchronization

problem.

Mhatre et al. [14] obtained the minimum number of sensor nodes, cluster heads, and battery

energy to ensure at least T unit of lifetime. They assume two types of sensor nodes: node 0 is sensor

node and node 1 is cluster head. The main result is that the number of cluster heads should be the order

of square root of the number of sensor nodes. They don’t give exact formula for the maximum lifetime

of the network. And, it is difficult for the assumption that cluster heads directly communicate with the

base station to be applied to general applications. They observed that the nodes close to the cluster heads

have high energy burden due to relaying of packets. But, one of their important observations, the sharp

cutoff effect, to maximize the lifetime does not hold at all time.

Bhardwaj et al. [15] computed the upper bound of active lifetime in terms of the routing

algorithms. But they did not consider that the first tier nodes determine the lifetime of the whole network.

They measured the lifetime of the network as the time of first loss of the coverage. That is, they did not

care the connectivity. [16] elaborated their work in [15] by taking into account the data aggregation and

random topology.

Zhand and Hou [17] presented necessary and sufficient condition for k-coverage. They also

derived the upper bound of the lifetime of all algorithms that select working nodes can achieve. They

included data transmission, reception, idle listening time, sensing, and data processing as the power

consumption of a node. They measured the lifetime of the network as -portion of coverage based on the

assumption that if transmission range is as twice as sensing range, coverage implies the connectivity.

Their work is different from ours because they derived the maximum lifetime of the network in terms of

nodes selection. And they did not consider the properties of the first nodes.

Pan et al. [18] observed the property that the first tier nodes are important for the lifetime of

the whole network. They provided approaches to maximize the topological lifetime of the network in

terms of the base station placement for the two-tiered sensor networks where sensor nodes are deployed

10

in clusters.

Alonso et al. [19] found explicit bounds on the minimal and maximal energy for routing

algorithms and used the bounds to derive the lifetime of the network. But the maximum lifetime of the

network derived by [19] is very similar to the minimum lifetime of the network derived by our approach.

The previous work on power aware routing algorithms focused on how to find the correct route

efficiently or how to enhance the lifetime of the network. In this work, we derive the lower and upper

bounds on the lifetime of the network in terms of the routing algorithms. That is, we give the answer for

the question that what is the maximum lifetime of the WSNs that routing algorithms can achieve. We

will also present the routing algorithms that show the maximum and minimum lifetime.

2.3 Definitions, Notations, and Assumptions

In this section, we define the lifetime of the network (the metric for determining the optimality

of routing algorithms). We also present the assumptions and notations used in the following sections.

2.3.1 Definitions

The lifetime of the networkL is the lifetime of the set of all its initial nodes.

2.3.2 Assumptions

We believe that the following assumptions apply to a large class of sensor network implemen-

tations and applications.

We assume that:

A-1 all network nodes are stationary,

A-2 all sensed data is sent to the base station (i.e. no filtering or other in-network processing is

performed),

A-3 all network nodes generate packets periodically with a common constant period,

A-4 the transmission range and transmission power is constant for all transmissions from all nodes,

A-5 all nodes have the same initial battery level,

11

A-6 there are more nodes in tieri + 1 than in tieri except for the last tier of nodes. (In terms of the

notation we introduce in section 2.3.3Ni+1 ≥ Ni, 1 ≤ i ≤ H − 2.) If this assumption holds at

deployment time, it will continue to hold for the lifetime of the network since the inner tiers carry

more traffic that the outer tiers and, thus, more nodes die in the inner tiers than in the outer tiers.

A-7 the traffic forwarding load from nodes which are more thani hops from the base station is equally

shared by all nodes which arei hops from the base station.

Of the above, the first two are the crucial ones we mentioned before. The next two assumptions

merely represent a realistic case, and also simplify what follows, but do not reduce the scope of our

results. A-5 also represents a quite realistic condition; the removal or relaxation of this assumption is

not considered within the scope of this paper. A-6 is satisfied for most reasonable distribution of sensor

nodes, for example approximately uniform distribution over a large area. The assumption of a uniform

distribution is stronger than A-6 and is not needed for this paper. The main purpose of the minimal

assumption A-6 is to eliminate pathological cases where the WSN becomes prematurely disconnected

due to a bottleneck in the topology. Finally, A-7 is made for explanatory purposes and later we examine

the consequences of removing this assumption.

2.3.3 Model and Notations

We model the power consumptionP of a wireless node as:

P = PaT + Pb, (2.1)

whereT is the number of flows transmitted by the node (comprising its own sensed data and data

forwarded on behalf of other nodes),Pa is the power consumption used to forward the data in each flow,

andPb is the power consumption independent of the forwarded traffic. A sensor node that consumes

the same power independent of the number of flows forwarded is likely a wasteful node. A power

efficient sensor network has a very smallPb (mainly due to routing overhead, synchronization and

other middleware services), practically all its power being expended in useful sensing and forwarding of

information. In WSNs the traffic from the base station to the sensor nodes (queries, control information,

etc.) is usually broadcast and hence contributes toPb rather than toPa. The choice of the MAC layer

clearly influences the power efficiency of the network [20–29] – power efficient MAC layers result in

12

reducedPa andPb. Beyond the particular values ofPa andPb, the choice of the MAC layer is not

relevant for the reminder of this paper.

Regardless of its value, for our purposes,Pb does not play a role in the contribution of routing

to the network lifetimeL: simply by offsetting the initial battery level by a constant quantity (PbL) we

can compute the same lifetimeL by using a simplified model for the power consumption of a node:

P = PaT. (2.2)

We will use the following notation:

β is the energy spent to transmit one packet once.

p is the number of packets generated by each node in every second (thus, the energy spent every

second by each node to generate or forward one flow isβ p).

b is the initial battery level of every node (as discussed only the battery expended for forwarding

and sending its own data is relevant for the network lifetime).

H is the maximum number of hops between the base station and any of the wireless nodes in the

WSN.

N is the set of all sensor nodes.

Ni is the set of sensor nodes that are at a minimum ofi hops away from the base station. We also call

this set of nodes theith tier of nodes. For example, the first tier of nodes consists of the nodes

that can directly reach the base station. With our assumptions, initially all nodes of inNi will also

be exactlyi hops from the base station; however, as nodes inNi−1 die, some nodes inNi may

require more thani hops to reach the base station, and become part of the setNi+1. However,

note that nodes inN1 never migrate to other tiers.

N is the total number of sensor nodes;N = |N |.

Ni is the number of nodes in tieri; Ni = |Ni|.

T r
i (n) is the number of packets transmitted by noden ∈ Ni using the routing algorithmr.

Lr is the lifetime of the network when using routing algorithmr

13

Lr
i is the lifetime of the nodes ofNi when using routing algorithmr.

R is the set of allminimum hoprouting algorithms able to find a path between each sensor node and

the base station if such a path exists. Usually, each node in the setNi has multiple shortest hop

neighbors in the setNi−1; The choice of one of these neighbors (e.g. randomly, or based on the

residual power) differentiates among the algorithms inR.

2.4 The effect of the routing algorithms on the lifetime of the WSN

When the traffic pattern in a network is such that all nodes transmit to anegressnode such as

a base station, the few nodes that can reach the base station directly will be responsible for the highest

amount of traffic forwarding. We have examined this phenomenon in detail in [30], below we present

the result that is relevant to us in the current context. Then we use this result to obtain lower and upper

bounds for the lifetime of the network as a function of the routing protocol.

Lemma1 For any routing algorithmr ∈ R, the lifetime of the nodes inN1 is equal to the lifetime of

the nodes in other tiers (Ni, i > 1). In other words,Lr
1 = Lr

i for all i andr such that1 < i ≤ H and

r ∈ R.

Proof For all r ∈ R andi > 1,
∑

n∈N1

T r
1 (n) >

∑

n∈Ni

T r
i (n) (2.3)

because there are no loops in the paths through the nodes in tieri and, hence, the traffic in the first tier

of nodesincludesthe traffic from any other tier (and adds its own traffic). Using either (2.1) or (2.2) this

implies that the power consumption of nodes in the first tier is higher than that of the nodes in any other

tier. Since all nodes have the same initial battery size (assumption A-5) and there are more nodes in tier

i than in tier 1 (assumption A-6), the nodes in the first tier will deplete their battery strictly sooner than

the nodes in any other tier. However, as soon as the first tier of nodes depletes its batteries, the entire

network becomes disconnected (and by the definition of the lifetime in Section 2.3.1 all tiers reach their

lifetimes).

14

Theorem2 For a WSN satisfying all assumptions in Section 2.3.2 and using a routing algorithmr ∈ R
the lifetime of the network is

Lmin =
N1b

Nβp
. (2.4)

Proof According to Lemma 1, the lifetime of the network is determined by the lifetime of the first tier

of nodes. Considering assumption A-7, every node in the first tier will expend the battery at the same

(constant - assumption A-3) rate. Further, each flow originating from outside of tier 1 is forwarded by

exactly one first tier node: since tier 1 nodes are the only nodes that can transmit directly to the base

station. Each first tier node also originates exactly one flow of its own. Finally, considering that all

nodes have the same initial battery (assumption A-5), all nodes in the first tier will deplete their battery

at the same time. The moment when the first (and last) battery is depleted coincides with the time of the

death of the network. Thus, the battery expended on the first tier of nodes is used to forward data for all

nodes in the network for the duration of the networks’ lifetime:

N1b = LminNβp. (2.5)

The above is valid if all nodes are alive until the lifetime expires, as will happen if the load

balancing assumption A-7 strictly holds. However, this will not hold in practice because the node

positions may have some asymmetry. We next examine the consequence of removing the assumption.

To distinguish, we shall refer to the ideal routing situation where the assumption A-7 is perfectly met as

Load Balanced Shortest Path First(LBSPF).

We focus on the first tier, since we know the lifetime is defined by these nodes. If assump-

tion A-7 is not satisfied in the first tier, then all nodes of the first tier will not die at the same time. The

lifetime of the network will be defined by the first tier node which dies last. However, before this time,

the number of first tier nodes still alive has declined slowly. The number of nodes that remain alive

in the first tier at any given time affects the total traffic generated by the first tier itself. Initially, the

total battery amount of first tier nodes isN1b. For each period, the first tier consumes an energy equal to

Naliveβp, whereNalive is the number of active nodes in the network. A routing algorithm can maximize

the lifetime of the network if it can reduceNalive as soon as possible. A practical way to quickly reduce

the number of nodes that are alive is to overburden a node until its battery is depleted. Thus, the routing

algorithm should select a nodex1 in the first tier and routeall flows through nodex1 until it depletes its

15

battery. After nodex1 dies, another node from the first tier,x2, is selected to carry all the network flows,

and so on until the last node in the first tier dies (at which time the network becomes disconnected).

We shall refer to this rather curious routing approach asBottleneck Routing(BR). While BR does not

belong in the setR (not all nodes in tier 2 may be able to reachx1 in one hop), it represents the extreme

limit of unbalanced routing protocols inR. Thus all protocols inR will result in a network lifetime

bounded by those achieved by LBSPF and BR, from below and above respectively.

In LBSPF, the base station will receive readings from all nodes for the entire lifetime. This is

no longer true for BR, some nodes will die and stop reporting before lifetime expires. While this may

be a problem from the sensing application’s perspective, we show below that it improves the lifetime of

the network as we defined it earlier.

Theorem3 If we remove assumption A-7, the maximum lifetime of a WSN using a routing algorithm

r ∈ R is bounded byL < Lmax, where

Lmax =
b

βp

[
1−

(
1− 1

N −N1 + 1

)N1
]

(2.6)

Proof As discussed above, the lifetime is composed of different periods when the different nodes of the

first tier will take turns forwarding all traffic from outside the first tier. To compute the lifetime of the

network we simply add the times it takes for all nodes in the first tierx1, x2, . . . , xn1 to die:

• nodex1 will carry the flows on behalf ofN − N1 nodes and its own flow. Thus it will die after

t1 = b
(N−N1+1)βp .

• nodex2 will carry only one flow for timet1 and then the same number of flows as nodex1, and

hence will die aftert2 seconds after the death ofx1: t2 = b−t1βp
(N−N1+1)βp .

...

• nodexN1 will die tN1 seconds after nodexN1−1 died, wheretN1 = b−∑N1−1
i=1 tiβp

(N−N1+1)βp .

Thus,

Lmax =
N1∑

i=1

ti. (2.7)

Equation (2.7) can be further manipulated by noticing thatti = t1(1 − 1
N−N1+1)i−1 for all i

such that2 ≤ i ≤ N1. Then (2.6) follows immediately as the sum of a geometric distribution.

16

Comments:

• LBSPF and BR are the two extreme approaches to routing in WSNs. LBSPF ensures that the time

of the death of the first node is postponed as much as possible. On the other hand, BR postpones

the time of the disconnection of the network as much as possible. Any minimum hop routing will

result in routes that will fall between these two extremes, hence so will the lifetimes.

• Figure 2.1 depicts the difference in the network lifetimes of the two approaches as a function of

the total number of nodesN over the number of nodes in the first tierN1. For this figureN1 was

kept constant at 100 nodes whileN increased from 200 nodes to 2500 nodes. It is interesting to

see that the difference between the two extremes becomes very small as total number of nodes

becomes large in comparison to the number of nodes in tier 1.

• Bottleneck Routing maximizes the lifetime of the network at the expense of purposely deplet-

ing some of the nodes relatively early. For most applications it is unlikely that this is desired,

especially since, for large networks, the savings in the lifetime are insignificant (Fig. 2.1). This

observation makes the definition ofoptimalWSN routing protocols that use only the lifetime as

an optimization criteria questionable.

0 5 10 15 20 25
0.75

0.8

0.85

0.9

0.95

1

N/N
1

L m
in

/L
m

ax

Figure 2.1: Lifetime ratios using LBSPF and BSPF as a function of the ratio between the total number
of nodes and the nodes in tier one.

It is clear that for all possible routing algorithms inR the lifetimeL of the network falls

somewhere between the two extremes:Lmin ≤ L < Lmax. Moreover, the two extremes are very

17

close to each other especially for large networks. Therefore it can be claimed that the choice of the

routing protocol does not make a significant difference in the lifetime of the network. For example, in a

uniformly distributed WSN with five tiers the difference between the two lifetimes is less than 2%.

It is likely that a simple protocol will perform just as well as a more complex protocol. The

only major differentiation between different routing protocols is in their overhead (included inPb in

(2.1)).

2.5 Simulation Results

To validate the results in Section 2.4 we simulated a WSN of variable size with two routing

algorithms.

We have implemented two versions of Shortest Path First (SPF) algorithms to compare the

lifetime of WSN using these algorithms with the theoretical limit:

MSPF The algorithm selects among the neighbors with the same number of minimum hops to the base

station the one with the largest remaining power. Essentially this algorithm behaves very like

Load Balancing SPF ensuring that all nodes in the first tier die at (almost) the same time.

RSPF The algorithm selects randomly among the neighbors with the same number of minimum hops to

the base station.

We reroute (choose new routes for all nodes) periodically (every one time unit) or whenever a

node dies.

We fixed the node density at (0.01nodes/m2) and the transmission radius of the nodes (30m).

The transmission of the data generated by a node each time unit costs one unit of energy. The nodes

initially have 1000 units of energy. All simulations were repeated thirty times with different random

seeds; in what follows, the average of these results is presented.

Figures 2.2 and 2.3 depict the variation of the network lifetime with the network size (constant

density) for uniform (we used a rectangular grid) and random placement respectively. The lifetimes of

network using the two versions of SPF algorithms are very close together and between the theoretical

values given by (2.4) and (2.6). The lifetime are so close that they are hard to tell apart from each other.

There is also no significant difference between the strictly uniform and the random placements beyond

18

100 200 300 400 500 600 700 800 900

10
2

Number of nodes

Li
fe

tim
e

L
max

L
min

MSPF
RSPF

Figure 2.2: Variation of the lifetime of the network for a rectangular grid placement as a function of the
networks size

100 200 300 400 500 600 700 800 900

10
2

Number of nodes

Li
fe

tim
e

L
max

L
min

MSPF
RSPF

Figure 2.3: Variation of the lifetime of the network for random placement as a function of the networks
size

19

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Time

N
um

be
r

of
 d

ea
d

no
de

s

L
max

L
min

MSPF
RSPF

Figure 2.4: Time of death for each node for various routing strategies for an uniform rectangular grid
placement.

the significant variation introduced by the random initial topology. Figure 2.3 also depicts the 95%

confidence interval corresponding to the average lifetimes. The lifetime of the network decreases as the

number of sensor nodes increases: a fixed number of tier one nodes carry increasingly more packets

and, hence, naturally die sooner.

Figures 2.4 and 2.5 show the moment of death of each node in the first tier of the network.

For the two limits corresponding toLmin andLmax we depicted the times when first tier nodes are

expected to die following the LBSPF and BR algorithms. For this simulation we usedN = 400 nodes

in an area190m × 190m. MSPF for the grid network works as expected: practically all nodes of the

networks are alive for the entire lifetime of the network. For the random placement scenario, MSPF

works reasonably well, but less so than in the case of the uniform grid. The main reason behind this

behavior is that in the case of random placement there might not be possible to balance the load, and

inevitably some nodes will die sooner than others. The number of disconnected nodes spikes abruptly

when the network becomes disconnected, i.e. when the network reached its lifetime. As expected, for

both placements, the lifetime of RSPF is slightly larger than for MSPF at the expense of the early deaths

of some tier one nodes.

20

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

Time

N
um

be
r

of
 d

ea
d

no
de

s

L
max

L
min

MSPF
RSPF

Figure 2.5: Time of death for each node for various routing strategies for a random placement.

2.6 Conclusion

In this chapter we presented an analysis of the lifetime of wireless sensor networks that employ

periodic sensing. Lower and upper bounds on the network lifetime are derived, and corresponding

routing algorithms leading to these bounds are presented. For large sensor networks the upper and the

lower bounds on the network lifetime are relatively close (less than a few percents), leading thus to

the conclusion that for such sensor networks the choice of the routing protocol is largely irrelevant for

maximizing the network lifetime, as long as some form of shortest paths are followed. Simulations are

used to validate the theoretical results.

While the setRmay appear to be rather restrictive, in reality our results are likely to continue

to hold for many sensible routing approaches. We are currently working on developing descriptions of

such routing families, and on extending the concept of network lifetime.

21

Chapter 3

Time Synchronization

3.1 Introduction

Recent technological advances in low power radios, sensors and microcontrollers enable a new

monitoring paradigm for large geographical areas. The vision involves a large number of inexpensive

nodes equipped with one or more sensors, a small microcontroller and transceivers capable of short-

range communications. Wireless sensor networks (WSNs) [2–4] have the potential to truly revolutionize

the way we monitor and control our environment.

Many (if not most) WSN applications either benefit from, or require, time synchronization.

Sensed data is typically forwarded over multiple hops to one or more base stations and encounters delays

ranging from a few tens of milliseconds to several minutes [31]. Many energy-efficient algorithms trade

power savings for increased delays. Therefore, without time synchronization, the time that sensed data

reached the base station is often a poor approximation of the time the data was sensed. If the entire sensor

network is time-synchronized (with respect to the base station), meaningful time-stamps can accompany

sensed data. Target tracking, one of the most popular sensor network applications, requires tight time

synchronization for beam-forming. Many WSN protocols (e.g., power-saving sleep schedules [32],

TDMA schedules for maximizing the networks’ capacity, security mechanisms for preventing replay

attacks, etc.) also rely on time synchronization.

In this Chapter, we present two closely-related algorithms suitable forpair-wisetime synchro-

nization. In those algorithms, one node determines (tight) bounds of the relative offset and drift of its

22

clock with respect to the one of the other node. We also present a scheme building on these algorithms,

which is capable of synchronizing the clocks of an entire sensor field. To avoid confusion between

the two algorithms, we will name themmini-syncand tiny-syncas they use limited and very limited

resources, respectively. The two algorithms feature:

• Drift awareness:The algorithms not only take the drift of the clock into account, but also find

tight bounds on the drift.

• Deterministic bounds on the precision:Most other algorithms provide best estimates for the offset

and drift of the clocks, and possibly probabilistic bounds on these estimates. Our approach deliv-

ers tight,deterministicbounds on these estimates, such that absolute information can be deduced

about ordering and simultaneous events.

• Precision: Given small uncertainty bounds on the delays exchanged messages undergo, the pre-

cision of the synchronization can be arbitrarily good.

• Low computation and storage complexity:Wireless sensor nodes typically feature low computa-

tional power microcontrollers with small amounts of RAM. Both algorithms have low computa-

tional and storage complexity.

• Low sensitivity to communication errors:Wireless communications are notoriously error prone,

and thus one cannot rely on correct receipt of all messages. The presented approach works cor-

rectly even if a large percentage of the messages is lost.

The main contribution of the work is the development and performance evaluation of two

simplealgorithms that deliver accurate offset and drift information together withtight bounds on them.

The two algorithms presented in this chapter are not limited to wireless sensor networks. They

can synchronize the nodes on any communication network which allows bidirectional data transmission.

However, the algorithms provide very good precision (microsecond if crafted carefully) and bounds on

the precision while using very limited resources, thus being especially well suited for wireless sensor

networks.

23

3.2 Related Work

Time synchronization is a key service for many applications and operating systems in dis-

tributed computing environments. Many protocols have been proposed and used for time synchroniza-

tion in wired and wireless networks. Mill’s Network Time Protocol (NTP) [33,34] has been widely used

in the Internet for decades. Nodes could also be equipped with a global positioning system (GPS) [35]

to synchronize them. However, traditional synchronization schemes and GPS-equipped systems are not

suitable for use in WSNs due to the specific requirements of those networks:

• Precision:Depending on the considered application, WSNs may require far better precision than

traditional networks. For example, a precision of a few milliseconds is considered satisfactory

for NTP, while in a WSN beam-forming application, microsecond precision can significantly

improve the performance of the application [36]. Furthermore, when coordinating synchronized

time schedules, the higher the precision of the synchronization algorithm, the smaller the guard

times have to be (and, hence, the higher the efficiency of the scheduling approach).

• Cost: Cost is of primary concern in WSNs as, typically, nodes have limited batteries, computa-

tional and storage resources. Most of the protocols designed for wired environments exchange

many messages for statistical processing. Furthermore, the protocols also need to store the mes-

sages to process them.

Recently, a significant amount of research on time synchronization for wireless sensor net-

works has been published [37, 38]. An interesting approach calledpost facto synchronizationwas pro-

posed by Elson and Estrin [39]. In this approach, each node’s clock is normally unsynchronized with

the rest of the network; a beacon node periodically broadcasts beacon messages to the sensor nodes in

its wireless range. When an event is detected, each node records the time of the event (time-stamp with

its own local clock). After the event (hence, the name), upon receiving the reference beacon message,

nodes use it as time reference and adjust their event timestamps with respect to that reference.

The reference broadcast synchronization (RBS) protocol [40], uses a data collection mecha-

nism similar to the one in the post facto synchronization: one node acts as a beacon by broadcasting a

reference packet. All receivers record the packet arrival time. The receiver nodes then exchange their

recorded timestamps and estimate their relative phase offsets. RBS also estimates the clock skew by

24

using a least-squares linear regression. The interesting feature of RBS is that it records the timestamp

only at the receivers. Thus, all timing uncertainties (including MAC medium access time) on the trans-

mitter’s side are eliminated. This characteristic makes it especially suitable for hardware that does not

provide low-level access to the MAC layer (e.g., 802.11). Although RBS synchronization only involves

one hop neighbors, the mechanism can be extended to synchronize a multi-hop network [41]. In such

a system, timestamps in messages can be reconciled as they are being forwarded by the intermediate

nodes (according to their next-hop destination and its time difference to the current node) [42]. The main

disadvantage of RBS is that it does not synchronize the sender with the receiver directly and that, when

the programmers have low-level access at the MAC layer, simpler methods (e.g., TPSN) can achieve a

similar precision to RBS.

Römer [43] presented a synchronization protocol for ad hoc networks. The authors assume

clocks with known upper-bounds on the clock drift. The basic idea of the algorithm is to compute

timestamps using unsynchronized local clocks. When a local time-stamp is transferred between two

nodes, the timestamp is transformed to the local time of the receiving node with guaranteed bounds

based on the assumed maximum clock drift. These protocols focus on temporal relationships between

the events such as ”event X happened before event Y” and ”event X and Y happened within a certain time

interval.” [44] enhanced R̈omer’s algorithm and achieved higher accuracy while reducing computation.

When implementing time synchronization protocols, significant challenge is minimizing times-

tamping uncertainties. RBS reduces these uncertainties by timestamping only at the receivers. The time

synchronization protocol for sensor network (TPSN) [45] reduces the uncertainties by using timestamps

at the medium access control (MAC) layer. This eliminates the (large) uncertainties introduced by the

MAC layer, e.g., retransmissions, backoffs, medium access, etc. TPSN takes advantage of the avail-

ability of the MAC layer code in TinyOS [46]. For a single beacon, TPSN offers a two-fold increase in

precision in comparison to RBS (although, asymptotically, as more beacons are sent, they achieve the

same precision).

The Flooding Time Synchronization Protocol (FTSP) [47] was designed for a sniper localiza-

tion application requiring very high precision [36]. FTSP achieves the required accuracy by utilizing a

customized MAC layer time-stamping and by using calibration to eliminate unknown delays. FTSP is

robust to network failures, as it uses flooding both for pair-wise and for global synchronization. Linear

regression from multiple timestamps is used to estimate the clock drift and offset. The main drawback

25

of FTSP is that it requires calibration on the hardware actually used in the deployment (and thus, it is

not a purely software solution independent of the hardware). FTSP alsorequiresintimate access to the

MAC layer for multiple timestamps. However, if well calibrated, the FTSP’s precision is impressive

(less than 2µs).

Lightweight Time Synchronization (LTS) [48] was proposed for applications where the re-

quired time accuracy is relatively low. The pair-wise synchronization on LTS is similar to TPSN except

for the treatment of the uncertainties (LTS adopts a statistical model for handling the errors). The simu-

lation results show that the accuracy of LTS is about 0.5 seconds.

Li and Rus [49] presented a high-level framework for global synchronization. The authors

proposed three methods for global synchronization in WSNs. The first two methods, all-node-based

and cluster-based synchronization, use global information and are, hence, not suitable for large WSNs.

In the third method (diffusion), each node sets its clock to the average clock time of its neighbors. The

authors showed that the diffusion method converges to a global average value. A drawback of this

approach is the potentially large number of messages exchanged between neighbor nodes, especially in

dense networks.

Dai and Han [50] proposed two time synchronization protocols, Hierarchy Referencing Time

Synchronization (HRTS) and Individual-based Time Request (ITR). HRTS uses an idea similar to RBS

except for the synchronization of the receivers after the beacon synchronization message was sent:

instead of the receivers exchanging messages among themselves, a designated node sends its time to the

beacon node that, in turn, broadcasts this message over the entire network, thus, significantly reducing

the number of message exchanges. Similar to RBS, the beacon node has to be able to broadcast to the

entire sensor network. The ITR protocol is based on NTP. Multichannel support is integrated both in

ITR as well as HRTS to reduce the delay variations.

Delay Measurement Time Synchronization Protocol (DMTS) [51] reduces the number of mes-

sage exchanges in RBS by accurately estimating the delay of the path from the sender to the receiver.

DMTS is similar to RBS on the sender side and TPSN or FTSP on the receiver side.

Adaptive Clock Synchronization [52] is a probabilistic method for clock synchronization that

uses the higher precision of receiver-to-receiver synchronization. The protocol extended the determin-

istic RBS protocol to provide a probabilistic bound on the accuracy of the clock synchronization. The

bound allows a tradeoff between the accuracy and the resource requirement.

26

Su [53] proposed Time-Diffusion Synchronization Protocol (TDP) for network-wide time syn-

chronization. TDP maintains global time synchronization within an adjustable bound (based on the ap-

plication requirements). TDP achieves global synchronization by multi-hop flooding: the base station

initiates the protocol by sending a special timing message to the entire network. Some of the nodes,

upon receiving the message, become masters by using a leader election procedure (that uses a False

Ticker Isolation Algorithm to discard outliers and a Load Distribution Algorithm to balance the energy

consumption of the network). The master nodes start the time diffusion procedure involving electing

diffused leaders (similar to the master election algorithm), multi-hop flooding and iterative weighted

averaging of timing from different master nodes. TDP handles node mobility and failures by using a

Peer Evaluation Procedure. The method achieves a precision of 0.1s.

3.3 Proposed Algorithms

In this section, we present the two proposed algorithms and their expected performance.

3.3.1 Data Collection

For the proposed algorithms, we will use a classical data collection algorithm [33, 43, 45, 54,

55]; however, we will process the data differently.

Consider a wireless nodei with its hardware clockti(t), wheret is the Coordinated Universal

Time (UTC). In general, the hardware clock of nodei is a monotonically non-decreasing function oft.

In practice, a quartz oscillator is often used to generate the real-time clock. The oscillator’s frequency

depends on the ambient conditions, but for relatively extended periods of time (minutes - hours), the

hardware clock can be approximated with good accuracy by an oscillator with fixed frequency:

ti(t) = ait + bi, (3.1)

whereai andbi are the drift and the offset of nodei’s clock. In general,ai andbi will be different for

each node and approximately constant for an extended period of time.

Consider two wireless nodes1 and2 with their hardware clockst1(t) andt2(t), respectively.

From (3.1), it follows thatt1 andt2 are linearly related:

27

t1(t) = a12t2(t) + b12. (3.2)

The parametersa12 andb12 represent therelative driftand therelative offsetbetween the two

clocks, respectively. If the two clocks are perfectly synchronized, the relative drift is equal to one, and

the relative offset is equal to zero.

Assume that node1 would like to be able to determine the relationship betweent1 and t2.

Node1 sends a probe message to node2. The probe message is time-stamped just before it is sent with

to. Upon receipt, node2 time-stamps the probetb and returns it immediately (we will shortly relax this

constraint) to node1 which timestamps it upon receipttr. Figure 3.1 depicts such an exchange.

t1

t2

to

tb

t r

Figure 3.1: A probe message from node1 is immediately returned by node2 and time-stamped at each
send/receive point resulting in the data-point (to, tb, tr).

The three time-stamps (to, tb, tr) form a data-point which effectively limits the possible values

of parametersa12 andb12 in (3.2). Indeed, sinceto happenedbeforetb, andtb happenedbeforetr, the

following inequalities should hold:

to < a12tb + b12, and (3.3)

tr > a12tb + b12. (3.4)

The data collection procedure described above is repeated several times; and each probe that

returns, provides a new data-point and, thus, new constraints on the admissible values ofa12 andb12.

The linear dependence betweent1 andt2 and the constraints imposed by the data-points can

be represented graphically as shown in Fig. 3.2. Each data-point can be represented by two constraints

in the system of coordinates given by the local clocks of the two nodest2 andt1. The double subscript

of the timestampstoi , tbi andtri denotes the timestamps corresponding to data-pointi. Inequality (3.3)

imposes a constraint on the line representing the relationship (3.2): the line has to be over the point of

28

1

data

point 3
data

point 1
data

t1

t2

t r

to

b12

a12

12b
12

a12
12b

a

1

1

tb

point 2

Figure 3.2: The linear dependence (3.2) and the constraints imposed ona12 andb12 by three data-points.

29

coordinates(tb, to). Similarly, corresponding to inequality (3.4), the line has to be under the point of

coordinates(tb, tr) (the second constraint). Satisfying both constraints, requires the line to be positioned

betweenthe two constraints determined by each data-point. The exact values ofa12 andb12 cannot be

accurately determined using this approach (or any other approach) as long as the message delays are

unknown. But,a12 andb12 can be bounded by:

a12 ≤ a12 ≤ a12, and (3.5)

b12 ≤ b12 ≤ b12, (3.6)

wherea12 (a12) is the maximum (minimum) of the slopes of lines that satisfy the constraints, andb12

(b12) is the value on the y-axis at the intersection with the line corresponding toa12 (a12).

Not all combinations ofa12 andb12 satisfying (3.5) and (3.6) are valid, but all valid combina-

tions satisfy (3.5) and (3.6). The real values ofa12 andb12 can be estimated as the midpoint of the range

of possible valueŝa12 andb̂12:

a12 ∈
[
â12 − ∆a12

2
; â12 +

∆a12

2

]
, and (3.7)

b12 ∈
[
b̂12 − ∆b12

2
; b̂12 +

∆b12

2

]
, (3.8)

where

â12 =
a12 + a12

2
, (3.9)

∆a12 = a12 − a12, (3.10)

b̂12 =
b12 + b12

2
, and (3.11)

∆b12 = b12 − b12. (3.12)

The goal of the algorithms is to determinea12, a12, b12 andb12 as tight as possible (such that

it minimizes∆a12 and∆b12). Oncea12 andb12 are estimated, node1 can always correct the reading of

the local clock (using (3.2)) to have it match the readings of the clock at node2.

To decrease the overhead of this data-gathering algorithm, the probes can be piggy-backed on

data messages. Since most MAC protocols in wireless networks employ an acknowledgment (ACK)

scheme, the probes can be piggy-backed on the data and the responses on the ACKs. Elaborate schemes

with optional headers can be devised to reduce the length of the header when probes do not need to

30

be sent. This way, synchronization can be achieved almost “for free” (i.e., with very little overhead in

terms of communication bandwidth).

Relaxing the Immediate Reply Assumption

In Fig. 3.1, we assumed that node2 replies immediately to node1 when it receives a probe.

The correctness of the presented approach is not affected in any way even if node2 does not respond

immediately. Node2 can delay the reply as long as it wants; the relations (3.3) and (3.4), and, thus the

rest of the analysis will still hold.

However, as the delay betweento andtr increases, the precision of the estimates will decrease.

In practice, node2 may have to delay the reply due to any number of reasons (e.g., it has something

more important to send, it has to postpone its transmission due to medium access contention, etc.).

b

1

t2tbr

t rts to

probe probe−reply

t

t

Figure 3.3: A probe message from node1 may be returned by node2 after being time-stamped at both
the send and receive points.

To counteract the possible loss in precision, node2 can time-stamp the probe message upon

receipt (tbr) as well as upon reply (tb) (as depicted in Fig. 3.3). In this case, node 1 can adjustto as

follows:

to = ts + â12 (tb − tbr) , (3.13)

whereto is the latest time at node 1 that is known to have occurred beforetb. The same inequalities

(3.3) and (3.4) hold for this case as well.

Increasing Precision by Considering Minimum Delay

If no information about delays encountered by the probe messages is available, nothing else

can be done to increase the precision. However, if the minimum delay a probe encounters between the

nodes is known, the data-points can be adjusted for an increase in the precision of the results.

31

To determine the minimum delay, one can take into account the minimum length of such a

probe and the time it takes to transmit such a probe (at the transmission rate of the sensor node), and,

eventually, other operations that have to be completed before the probe is sent or upon receiving such a

probe (e.g., encryption/decryption, CRC calculation, etc.).

Assume that we are able to determine the minimum delayδ12 that the probe encounters be-

tweento (ts) at node1 andtb (tbr) at node2. Also, denote withδ21, the minimum delay between the

momenttb at node2 and the momenttr at node1. Then,(to + δ12, tb, tr − δ21) should be used as a

data-point as this will offer increased accuracy over the data-point(to, tb, tr).

If, for two probes, both minimumsδ12 andδ21 are reached, the method presented in this paper

can achieveperfectsynchronization (i.e., there will be no uncertainties for relative offset and relative

drift: ∆a12 = ∆b12 = 0).

3.3.2 Tiny-sync and Mini-sync - Processing the Data

After acquiring a few (at least two) data-points, the offset and the drift can be estimated using

inequalities (3.3) and (3.4). An existing solution for finding the optimal bounds on the drift and offset

involves solving two linear programming problems with twice as many inequalities as data-points [55].

By optimal bounds (and the corresponding optimal solution) we mean the bounds that minimize the

difference between the bounds.

The disadvantage of this approach is that as more and more data samples are collected, the

computational and storage requirements increase (potentially unbounded). Also, one should not limit

the number of collected samples to a fixed window as the best drift estimates are obtained when a large

number of samples are available. The approach in [55] is clearly not suitable for systems with limited

memory and computing resources such as wireless sensor nodes. In this paper, we will pursue another

avenue.

The two proposed algorithms spring from the observation that not all data-points are useful.

In Fig. 3.2, the bounds on the estimates[a12, a12] and [b12, b12] are constrained only by data-points 1

and 3. Therefore, we do not need data-point 2, and we can discard it, as data-point 3 produces better

estimates than data-point 2.

It seems that only four constraints (the ones which define the best bounds on the estimates)

have to be stored at any time. Upon the arrival of a new data-point, the two new constraints are compared

32

with the existing four constraints and two of the six are discarded (i.e., the four constraints which result

in the best estimates are kept). The comparison operation to decide which four constraints to be kept is

very simple, computationally (only 8 additions, 4 divisions and 4 comparisons). At any one time, only

the information for the best four constraints needs to be stored. We will name the algorithm described

in this paragraph “tiny-sync.” The four constraints that are stored at any one time instant may belong

to two, three or four different data-points. With the four constraints, the bounds of the clock offset and

drift are easily computed from the two lines that can be constructed with the two lower bound and two

upper bound constraints: the first line is determined by the first lower bound constraint and the second

upper bound constraint and the other line is determined by the first upper bound constraint and second

lower bound constraint. The values ofa12, b12, a12 andb12 are the slope and offset of those two lines

respectively.

t1

t2

A4

A3

A2

A1

B4

B3

B2

B1

Figure 3.4: In this situation, after receiving data-pointA3 − B3, tiny-sync will discard constraintsA2

andB2. However, after receivingA4−B4, it turns out that the most constraining constraint would have
beenA2 −B4.

Unfortunately, while tiny-sync is very efficient, it does not always produce the optimal solu-

tion. Consider the situation depicted in Fig. 3.4. For clarity, we labeled each constraint individually,

33

that is, for data-pointi, Ai represents constraint(tbi
, toi), andBi represents constraint(tbi , tri). After

the first two data-points (A1-B1) and (A2-B2) are received, the first estimates for the drift and offset

may be computed. After the third data-point (A3-B3) is received, the bounds on the estimates improve

(i.e., ∆a12 and∆b12 are smaller); so, the constraintsA1,B1,A3 andB3 are stored, whileA2 andB2

are discarded. The next data point (A4-B4) could have used constraintA2 to construct a better esti-

mate. Unfortunately,A2 was already discarded at this point; and thus, a less than ideal estimate forb12

will now be imposed byA1 andA4. Thus, while producing correct results, tiny-sync might miss the

optimum result. We will compare the performance of tiny-sync with the optimal solution in Section 3.5.

In Fig. 3.4, the constraintA2 was discarded by tiny-sync because it was not immediately

useful, but rather only potentially useful in the future. By a potentially useful constraint we mean a

constraint that, with the current data points, is not one of the constraints that is determining the values

of a12, a12, b12 andb12, but which may do so given future data points. This does not mean that all the

constraints are potentially useful. In fact, only the constraintsAj (e.g.,A2) that satisfy the condition

m(Ai, Aj) > m(Aj , Ak) (3.14)

for some integers1 ≤ i < j < k are potentially useful in the future (bym(X,Y), we denote the slope

of the line going through the pointsX andY).

Theorem4 Any constraintAj which satisfies

m(Ai, Aj) ≤ m(Aj , Ak) (3.15)

for at least one set of integers1 ≤ i < j < k can be safely discarded as it will never constrain the

boundsa12, a12, b12 andb12 more than any existing constraints.

The proof is presented in the Appendix. Similar conditions for discarding upper-bound con-

straints (Bi) exist.

The resulting algorithm (called “mini-sync”), upon the receipt of a new-data point, will check

if the new constraints can eliminate any of the old constraints. Potentially, many old constraints can be

eliminated with one new data-point. We use all the remaining constraints to obtain the (still optimal)

solution using the same procedure as in [55]. Since we only eliminate constraints (inequalities) that are

irrelevant, we still obtain the optimal solution with only a few points (solving the set of all inequalities

is shown to result in the optimal solution [55]).

34

Storing only four points, as in tiny-sync, does not produce the optimal solution. How many

points have to be stored for the optimal solution? Theoretically, a potentially large number. If the

delay between nodes1 and2 is monotonically increasing, (3.14) can hold for all of the constraintsAj .

In practice, the delays do not continuously increase monotonically; therefore, only several constraints

need to be stored to obtain the optimal result.

3.3.3 Analysis of the Proposed Algorithms

In this section, we will analyze the expected performance of tiny-sync as a function of the

system parameters (round-trip time, probing period, etc.).

For the analysis, we make the simplifying assumption that the difference betweento andtr is

constant and equal toRTT :

tri − toi = RTT ∀i ≥ 1. (3.16)

In other words, we assume that the sum of all unknown delays between the moment the probe is sent

and the moment the reply is received is always constant and equal toRTT .

We justify this simplifying assumption by considering the following:

• Tiny-sync only stores and uses in its computation thebesttwo data-points collected so far (in

terms of constraining the uncertain relative drift and offset). Data points with small round-trip

times result in the tightest constraints, and, hence, most often, the two stored data-points have

their round-trip times equal to the minimum round trip-time of the connection;

• Thevariation of the round-trip delays is typically very small (microseconds) when compared to

the sampling intervals (seconds to tens of seconds); and

• As shown in Section 3.5, the theoretical analysis matches the experimental results exceedingly

well.

With assumption (3.16), the data points that define the best approximation are always the first

and last data-points collected. All of the other data-points can be safely discarded. Thus, with this as-

sumption, tiny-sync’s performance is identical to the performance of mini-sync (the optimal algorithm).

Denote with(to1 , tb1 , tr1) and(to2 , tb2 , tr2) the first and last collected data-points, respectively.

35

tb

t1

tb

to

t r

a12

to

t r
2

t10

t2

t∆ 20

t20

12b
12

12b

a

2

1

1

1

∆

∆

RTT

RTT

t

t

o

b

2

Figure 3.5: Setup for the simplified analysis of the algorithms.

We use the following notation:

∆to = to2 − to1 and (3.17)

∆tb = tb2 − tb1 . (3.18)

Solving the linear equations for the unknownsa12, a12, b12 andb12, we obtain:

a12 =
∆to −RTT

∆tb
, (3.19)

a12 =
∆to + RTT

∆tb
, (3.20)

b12 = to1 − tb1a12, and (3.21)

b12 = to1 + RTT − tb1a12. (3.22)

Using (3.10) and (3.12), we obtain the following bounds on∆a12 and∆b12:

∆a12 =
2RTT

∆tb
, and (3.23)

∆b12 = RTT + tb1∆a12. (3.24)

36

Equations (3.23) and (3.24) capture the essential behavior of the presented algorithms. Equa-

tion (3.23) implies that the uncertainty bound on the drift decreases continuously as the distance between

the first and the last collected data-points increases:

lim
∆tb→∞

∆a12 = 0. (3.25)

Figure 3.6 depicts the evolution of the uncertainty bound on the relative clock drifts∆a12,

which remains constant between data-points, and improves upon the receipt of a new data-point.

∆ a12

2 3 4 51t t t t t t

1

2RTT
t − t

b

b b

r r r r 1

Figure 3.6: Evolution of the uncertainty bound on the relative clock drifts∆a12 as new data-points are
received.

Theoretically, the precision on the relative drift for the two clocks∆a12 can be made arbi-

trarily small. In practice, assumption (3.1) only holds for limited timeT0, and, thus, the achievable

precision is on the order of2RTT
T0

.

Equation (3.24) implies that the precision on the relative offset∆b12 is limited by the round-

trip timeRTT :

lim
∆tb→∞

∆b12 = RTT. (3.26)

In practice, if assumption (3.16) is eliminated,∆b12 is slightly higher than the minimum

37

RTT . If MAC layer timestamping is possible and/or the minimum deterministic RTT delay is known

(as described in Section 3.3.1), then the value of the RTT in (3.26) reduces accordingly (to account

only for the non-deterministic component of the delay). In turn, this corresponds to an increase in the

precision of the approach.

The second implication of (3.24) is that the performance of the algorithm depends on the

choice of origin: if tb1 is large, the precision of the offset will initially be poor (it will improve as

∆a12 → 0). To avoid the initial loss in precision, the origin can be shifted:

tb1 = 0. (3.27)

This shift can be easily achieved by subtractingtb1 from every component of all data-points and keeping

the rest of the algorithms unchanged.

The goal of the synchronization is to be able to estimate the clock of the remote machinet2

given the local clockt1 after the two clocks have been synchronized. In Fig. 3.5, node 1 estimates the

value of node 2’s clockt2m at the same real time that node 1’s clock is readingt1m .

Using (3.2) and writingt2m as:

t2m = t̂2m ±
∆t2m

2
, (3.28)

we can find:

∆t2m(t1m) = t1m

∆a12

a12 a12
+

a12b12 − a12b12

a12 a12
. (3.29)

Using (3.19)-(3.22), (3.29) becomes:

∆t2m(t1m) =
∆a12(t1m − to1)

a12 a12
+

RTT

a12
. (3.30)

Fig. 3.7 depicts the qualitative evolution of the uncertainty bound∆t2m as more data-points

are received, (i.e. a sketch of∆t2m as a function oft1m as in (3.30)).

Equation (3.30) implies that the uncertainty in computingt2m increases linearly with the in-

crease oft1m . Intuitively, this can be observed in Fig. 3.5: the later the momentt1m is chosen, the larger

∆t2m gets (i.e., the precision degrades). Since the uncertainty of the relative clock drift∆a12 decreases

inversely proportionally with∆tb, the uncertainty in estimatingt2m , ∆t2m returns to an (almost) fixed

base-line with each new data point:

∆t2m(tri) = RTT

(
2∆to

a12 a12∆tb
− 1

a12

)
≈ const, ∀i ≥ 2 (3.31)

38

t10

t20
(t)ri∆

t20∆

2 3 4 5
t t t tr r r r

Figure 3.7: Evolution of the precision of∆t2m as more data-points are received.

(because∆to
∆tb

≈ 1, a12 ≈ 1, a12 ≈ 1).

After each new data-point, the precision on the relative clock drift improves (i.e.,∆a12 de-

creases), and, therefore, the slope of the increase of∆t2m decreases.

Enforcing the Linear Clock Drift Assumption

The assumption of perfectly linear clock drifts (3.1) only holds for limited time, as a number of

factors (temperature, humidity, power source voltage, etc.) may change the oscillator’s frequency over

time. Thus, it is important todetectwhen assumption (3.1) no longer holds since tiny-sync assumes

linear drifts.

The analysis presented in this section can be used to determine when the linear drift assump-

tion (3.1) no longer holds: the expected bound on the relative drift∆a12 should decrease as2RTT
∆tb

(according to (3.23)). If the linearity assumption on the clock drifts does not hold,∆a12 will decrease

faster than2RTT
∆tb

(and, eventually, if nothing is made to correct the situation, it will become negative as

a12 anda12 intersect).

The reason for this decrease in∆a12 can be understood if one imagines the set of constraints

imposed by all data points as a flexible pipe and the two lines that determinea12, a12, b12 andb12 as two

thin rods inside the pipe, spanning the diagonals of the pipe. If the flexible pipe bends (i.e., the clock

drift changes), the two rods will get closer to a parallel position, corresponding to a reduction in∆a12

(with respect to∆a12 for the perfectly straight pipe).

Thus, in practical terms, in the algorithm, after each probe, the computed∆a12 is compared

with 2RTT
∆tb

, whereRTT is the minimumRTT of the stored data-points, and∆tb is the difference

39

between thetb timestamps of the stored data-points. If

∆a12 <
2RTT

∆tb
, (3.32)

the oldest constraint is discarded and a new constraint is acquired. In essence, the algorithm restarts

upon detection of the failure of assumption (3.1).

3.3.4 Synchronizing an Entire Network

Extending apair-wisesynchronization scheme to global network synchronization is relatively

straightforward and has been previously explored [45, 47]. The simplest approach is to construct a tree

using a leader election algorithm [47] and iteratively perform pair-wise synchronization between each

parent node and its children. In this section, we will only present the bounds on the performance of

multi-hop synchronization.

s u v

Figure 3.8: Synchronization transitivity: ifs is synchronized with u, and u is synchronized withv, then
s is synchronized withv.

Consider the situation depicted in Fig. 3.8 where nodes synchronizes with nodeu that, in

turn, synchronizes with nodev. Nodes is able to determine the bounds

asu ≤ asu ≤ asu, and (3.33)

bsu ≤ bsu ≤ bsu, (3.34)

and nodeu is able to determine the bounds

auv ≤ auv ≤ auv, and (3.35)

buv ≤ buv ≤ buv. (3.36)

If nodeu sends its boundsauv, auv, buv, andbuv to nodes, thens can compute the bounds

asv ≤ asv ≤ asv, and (3.37)

bsv ≤ bsv ≤ bsv, (3.38)

40

where

asv = asu auv, (3.39)

asv = asu auv, (3.40)

bsv = min
{
asu buv + bsu, asubuv + bsu

}
, and (3.41)

bsv = max
{
asubuv + bsu, asubuv + bsu

}
. (3.42)

In general, fork nodes in a chain it can be shown that:

t1 =
k−1∏

i=1

ai(i+1)tk +
k−1∑

i=1





i−1∏

j=1

(
ai(i+1)

)
bi(i+1)



 (3.43)

The corresponding bounds are:

a1k =
k−1∏

i=1

ai(i+1), (3.44)

a1k =
k−1∏

i=1

ai(i+1), (3.45)

b1k = min
ai(i+1) ∈ {ai(i+1), ai(i+1)}
bi(i+1) ∈ {bi(i+1), bi(i+1)}





k−1∑

i=1





i−1∏

j=1

(
ai(i+1)

)
bi(i+1)







 , and (3.46)

b1k = max
ai(i+1) ∈ {ai(i+1), ai(i+1)}
bi(i+1) ∈ {bi(i+1), bi(i+1)}





k−1∑

i=1





i−1∏

j=1

(
ai(i+1)

)
bi(i+1)







 . (3.47)

Sinceai(i+1) ≈ ai(i+1) ≈ 1 (∀)i = 1 . . . k−1, from (3.46) and (3.47) it can be inferred that

the precision bounds of the offset degrade linearly with the increase in the number of hops (a somewhat

intuitive result).

3.4 Experimental Setup

In this section, we present the experimental environment we used to measure the performance

of the proposed time synchronization protocol.

41

Figure 3.9: Experimental setup.

For reasons explained in Section 3.3.3, we expect tiny-sync to perform very close to the op-

timal mini-sync, while using fewer resources. The results presented in Section 3.5 confirm our expec-

tation. Thus, in the performance evaluation, we focus on the performance of tiny-sync, which is more

likely to be implemented in practice.

We implemented tiny-sync on the Telos platform [9], using TinyOS [46] version 1.1.12 (that

allows MAC layer time-stamping and byte alignment correction, thus reducing the uncertainties in the

delays). In the experiment, we used the external 32kHz crystal clock to obtain current time-stamps. We

also implemented tiny-sync on the Mica2 platform [56] (using the 7.4 MHz internal clock).

Sensor Nodes Configuration

Consistent with the goal of the proposed synchronization protocols, the experimental setup is

primarily designed to test the performance of pair-wise synchronization.

Three Telos motes were used to implement the algorithms and measure the synchronization

errors. Figure 3.9 depicts the experimental setup: nodes1 and2 run the tiny-sync algorithm. In our

experiment, node1 estimates the time at node2. The third mote (the base station (BS)) is responsible

for querying and collecting clock readings. The base station generates an interrupt periodically (with

a period of four seconds). The interrupt issimultaneouslytransmitted to nodes1 and2 (through two

wires). Upon receiving the interrupt, node2 sends its local time, and node1 sends its estimation of the

time at node2 to the base station. After collecting time readings from two nodes, the BS sends them to

the host machine for analysis.

42

Figure 3.10: Time-stamping in tiny-sync.

Tiny-sync Implementation

Figure 3.10 illustrates the moments we record the four time-stamps in Section 3.3.1. We used

the hooks provided by TinyOS to time-stamp the packet just before the first byte of the packet is trans-

mitted and immediately after the last byte of the packet is received. Thus, all of the non-deterministic

delays (RTT in Section 3.3.3) are due to the transceiver and scheduling of TinyOS. Our measurements

showed that the one-way delay is approximately 1.419ms (2.838ms round-trip time).

Synchronization Errors Measurements

We define the time synchronization error as the time difference between the real clock reading

of a sensor node and the estimated clock value by the other sensor node. There are two distinct sources

of errors when measuring the synchronization error:

• the synchronization algorithm and

• the measurement procedure itself.

As previously mentioned, in the experimental setup, the base station triggers simultaneous in-

terrupts at the two nodes running tiny-sync. This measurement method eliminates the radio transceiver

delay uncertainties from the measurement process. However, it introduces other sources of non-deterministic

delays that may result in erroneous measurements. Figure 3.11 shows the possible sources of delays af-

fecting the measurements. When an interrupt occurs, unless interrupts are suspended, the processor

first completes the current executing instruction, saves the program counter (PC) and the status register

(SR), then jumps to the corresponding interrupt service routine (ISR). In our case, the ISR reads the

current clock. Unfortunately, if the processor is in the middle of a non-interruptible operation at the

43

time the interrupt arrives (i.e., the interrupts were suspended), or there are other pending interrupts, the

measurement interrupt will be delayed for an unknown time (in our experiments, we found it to be up

to 61µs).

There can be several ways to define the measurement error. Assume we measure the synchro-

nization error for each interruptj, wherej = 1, 2, 3, We define the measurement errorEj of the

synchronization error between noden1 andn2 at measurementj as

Ej = xn1,j − xn1,j−1 − â12(xn2,j − xn2,j−1), (3.48)

where noden1 estimates the clock of noden2, andxni,j is the time-stamp of nodeni at measurement

j, andâ12 is defined in (3.9). That is, the measurement error is the inter-measurement time difference

between participating nodes. The measurement errors can be reduced by discarding the data-points

whose measurement errors are greater than a threshold valueτ . In this experiment, we set the parameter

τ to 33µs (i.e., we discarded all measurements with an error higher than33µs). We observed that

94.42% of the measurements have their errors of smaller than the threshold value.

Figure 3.11: Sources of delay in the measurement process error.

Global Synchronization

In order to evaluate global synchronization errors, we added three more Telos motes to the

existing two, thus forming a chain of five nodes. Each nodei + 1 estimates the clock of its parent (node

i). The query node periodically generates a measurement interrupt. Upon the receipt of each interrupt,

44

each nodei reports the value of its local clock as well as its estimate of the clock at nodei−1 (obviously,

with the exception of node 1 that only sends its local clock). The multihop configuration was enforced

by static routing.

Figure 3.12: Experimental setup for global synchronization.

3.5 Experimental Results

In this section, we present the results of the experiments. We focused on the performance of

tiny-sync as well as on comparing its performance with mini-sync and other existing time synchroniza-

tion protocols.

Time Synchronization Error of Tiny-sync

Using the setup described in Section 3.4, we ran the first experiment for 2.1 hours. Figure 3.13

shows the bound on the relative drift of the two clocks∆a12 and the theoretical bound2RTT
∆tb

in (3.23).

It is clear that the relation (3.23) holds exceedingly well, implying that the assumption of linear drift

(3.1) holds within the bounds of our accuracy for this first experiment. In Section 3.5, we present the

results of another experiment where this assumption is purposely broken.

Figure 3.14 shows the synchronization error of tiny-sync as a function of time. The average

synchronization error achieved by tiny-sync is 12.075µs. The synchronization error is smaller than the

quantization error: for the 32 kHz external clock oscillator, each unit of time is equal to 31.21µs.

The algorithm converges quickly to the nominal precision: it achieves the average precision

with the first few probes. Considering that the entire network can be synchronized as fast as a pair of

45

0 1000 2000 3000 4000 5000 6000 7000 8000
10

−7

10
−6

10
−5

10
−4

10
−3

Time (s)

∆a
12

∆a
12

2.0*MIN(RTT)/(sample times)

Figure 3.13: The evolution of the bound on the relative drift∆a12 and the predicted evolution (3.23) for
the first experiment.

nodes (Section 3.3.4), only a few seconds are necessary to synchronize an entire network.

Figure 3.15 shows the distribution of the synchronization errors. The graph indicates that most

(about99.48%) of the time synchronization errors are smaller than 30µs. Thus, tiny-sync is suitable

for applications that require good accuracy and consistency.

Figure 3.16 shows the synchronization errors of tiny-sync algorithm as a function of the num-

ber of hops as well as the synchronization interval. The synchronization interval is the time between

two consecutive probe messages. The synchronization error increases both with the number of hops

between two nodes as well as with the synchronization interval.

Comparison with Other Approaches

In this section, we compare the performance of tiny-sync with two other time synchronization

approaches for WSN: TPSN [45] and FTSP [47] as well as a simple linear fit on the collected data. In

order to make the comparison as fair as possible, we did not filter out the measurement errors for any

synchronization protocol (i.e., all measurement data were included in comparison).

TPSN uses a similar probing method as tiny-sync to estimate the clock of the target sensor

node. It also exploits the MAC layer time-stamping to reduce the timing uncertainties. Thus, we used

the same data collection to determine the time synchronization error of tiny-sync and TPSN. For FTSP,

we downloaded the latest version of FTSP source code from [57] and implemented it on the same Telos

46

0 1000 2000 3000 4000 5000 6000 7000 8000
−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−4

Avg(abs(sync. error)):1.2075e−005

Time (s)

S
yn

ch
ro

ni
za

tio
n

E
rr

or
 (

s)

synchronization error
moving average of synchronization error in magnitude

Figure 3.14: Tiny-sync pairwise synchronization error.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Synchronization error (s)

P
ro

ba
bi

lit
y

Figure 3.15: Distribution of the synchronization errors.

47

1 1.5 2 2.5 3 3.5 4
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
x 10

−5

Hops

P
re

ci
si

on
 (

s)

Sync_interval=4
Sync_interval=8
Sync_interval=16
Sync_interval=32
Sync_interval=64
Sync_interval=128

Figure 3.16: Tiny-sync global synchronization error.

motes. We used a test program provided by FTSP to evaluate time synchronization errors of the sensor

nodes running FTSP.

For the linear fit we used least square to minimize the error between a linear fit and the data

points (both (to, tb) and (tb, tr)). We also tested the performance of a one-way linear fit (that only

considers forward probes (to, tb)) and the results were nearly identical. However, while a one-way

linear fit only requires one probe packet, it also requires hardware-dependent calibration. Thus, in what

follows, we present the results of the two-way fit (again, practically identical with the one-way fit), as

the two way fit match the properties of the proposed scheme (in terms of need for calibration).

Since the results of the linear fit are sensitive to the number of data points considered, we

plotted synchronization error of the linear fit as a function of the number of data points considered for

the fit. The results are shown in Fig. 3.17. The graph shows that the linear fit has a an optimum number

of points - both a lower and a higher number of points lead to a decrease in accuracy. Intuitively, if

only a small number of points are used, the accuracy of the linear fit is limited by the quality of the data

provided by these points. However, if the drift is non-linear, as the number of data-points considered

for the linear fit increases, the fit necessarily becomes an increasingly poor approximation of the current

relationship between the two clocks (as it minimizes the error toall considered points). In the following

comparisons we use both 128 points that optimizes the performance of the fit for our experimental setup

as well as a 2 point fit that has a comparable computational and storage complexity with tiny-sync.

48

10
0

10
1

10
2

10
3

10
−5

10
−4

of data−points

A
ve

ra
ge

 S
yn

ch
ro

ni
za

tin
 E

rr
or

 (
s)

Linear fit(1 hop)
Linear fit(2 hops)
Linear fit(3 hops)
Linear fit(4 hops)

Figure 3.17: Synchronization errors as a function of the number of points considered for the linear fit
and tiny-sync.

Figure 3.18 shows the comparison of the synchronization errors as a function of the number

of hops between sensor nodes. When the synchronization interval is 4 s, tiny-sync and TPSN show

similar results. However, when the synchronization interval is 128 s, tiny-sync clearly outperforms

TPSN and FTSP. Furthermore, the synchronization error of FTSP increases faster than tiny-sync and

TPSN with the number of hops. The linear fit that uses 128 points (optimal for this data-set) at four

second synchronization interval, slightly outperforms tiny-sync for all number of hops. This slight

improvement is attained at a price of higher computational and storage resources as well as at a loss of

generality: the linear fit has to be optimized for the particular degree of the non-linearity of the clock

drift. When only two points are used for the linear fit or when the synchronization interval is higher

(128 seconds), tiny-sync outperforms the linear fit.

Figure 3.19 shows the comparison of the synchronization errors as a function of the synchro-

nization intervals. Tiny-sync outperforms TPSN and FTSP in terms of synchronization error, and it

shows reduced variation with the increase in the synchronization interval. Synchronization error of

TPSN increases faster than others as the synchronization interval increases because TPSN does not

compensate for the clock drift. The synchronization error of FTSP increases slowly as the number of

hops increases, as FTSP uses the linear regression to compensate for the drift. The accuracy of the

linear fit decreases slightly with the increase in the synchronization interval, as the number of points is

also correspondingly reduced. The 128 points linear fit outperforms all synchronization algorithms for

49

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Hops

A
ve

ra
ge

 S
yn

ch
ro

ni
za

tio
n

E
rr

or
 (

s)

Linear−fit with 2 data−points(sync_interval=4)
Linear−fit with 2 data−points(sync_interval=128)
Linear−fit with 128 data−points(sync_interval=4)
Linear−fit with 128 data−points(sync_interval=128)
Tiny−sync(sync_interval=4)
Tiny−sync(sync_interval=128)
TPSN(sync_interval=4)
TPSN(sync_interval=128)
FTSP(sync_interval=4)
FTSP(sync_interval=128)

Figure 3.18: Comparison of synchronization errors as a function of the number of hops.

a single hop, and a small synchronization interval.

Robustness Evaluation

In this section, we present results of the experiment that tested the robustness of tiny-sync with

respect to large variations in the relative drift of the clocks. Essentially, we break the assumption (3.1)

and study its effect on the precision of the algorithm. To induce a variation in the drift, we drastically

changed the temperature of node2, while keeping node1 at a constant room temperature. One hour

into the experiment, we placed node 2 into a box filled with ice and closed the lid. One hour later, we

removed the node from the ice box and continued the experiment for a total duration of 4.48 hours.

The change in temperature, as expected, negatively affected the bounds on the relative drift

of the clocks (Figure 3.20(a)). We used the procedure detailed in Section 3.3.3 to detect the change in

the drift of the clocks and restart the algorithm. Figure 3.20(b) shows the moments when the algorithm

detects the change in the relative drift of the clocks and restarts.

Figure 3.21 shows the synchronization error for the second experiment. Despite the significant

change in the relative drift while node2 was in the ice box, the average synchronization error during

that period did not change. The average precision of this experiment (10.78µs) was actually better than

that of the initial experiment (12.07µs in Fig. 3.14). This experiment validates that the restart detection

algorithm shows that tiny-sync is robust with respect to changes in the clock drifts.

50

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Synchronization Interval (s)

A
ve

ra
ge

 S
yn

ch
ro

ni
za

tio
n

E
rr

or
 (

s)

Linear−fit with 2 data−points(1 hop)
Linear−fit with 2 data−points(4 hops)
Linear−fit with 128 data−points(1 hop)
Linear−fit with 128 data−points(4 hops)
Tiny−sync(1 hop)
Tiny−sync(4 hops)
TPSN(1 hop)
TPSN(4 hops)
FTSP(1 hop)
FTSP(4 hops)

Figure 3.19: Comparison of synchronization errors as a function of the synchronization interval.

0 2000 4000 6000 8000 10000 12000 14000 16000
10

−7

10
−6

10
−5

10
−4

10
−3

time (s)

∆a
12

∆a
12

2.0*MIN(RTT)/(sample times)

out of the ice−box
Node 2

out of the ice−box
Node 2 Node 2

in the ice−box

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

10
−3e−005

10
−2e−005

10
−1e−005

10
0

10
1e−005

10
2e−005

10
3e−005

time (s)

U
pp

er
/lo

w
er

 b
ou

nd
 o

f a
12

Upper bound of a
12

Lower bound of a
12

Estimation of a
12

out of the ice−box
Node 2 Node 2 Node 2

in the ice−box out of the ice−box

(a) (b)

Figure 3.20: Behavior of tiny-sync when the clocks are forced to change their relative clock drift by
sudden changes in the temperature of one of them (by temporary placing it in an ice-box). During the
cool-down and warm-up period, tiny-sync restarts several times. (a) the evolution of the bound on the
relative drift∆a12 and the predicted evolution (3.23); (b) the evolution of the bounds on the drift.

51

0 2000 4000 6000 8000 10000 12000 14000 16000
−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−4

Avg(abs(sync. error)):1.0788e−005

Time (s)

S
yn

ch
ro

ni
za

tio
n

E
rr

or
 (

s)

synchronization error
moving average of synchronization error in magnitude

Node 2 Node 2 Node 2
outside the ice−box inside the ice−box outside the ice−box

Figure 3.21: The synchronization error when nodes were subjected to variation of the relative drift.

Figure 3.22 shows the results of the robustness of tiny-sync with respect to packet loss. In this

experiment, we simulated the environment in which synchronization packets experience random loss.

Using the data collected from the first experiment, we varied the packet loss rate (for both the probe

request and reply) from0 to 90%. Except for cases with large packet loss rate and large synchronization

intervals, the precision was not significantly affected.

Comparison of Tiny-sync and Mini-sync

In this section, we compare the performance of tiny-sync and mini-sync, which is optimal

(Section 3.3.2). Figures 3.23 and 3.24 show the synchronization errors of tiny-sync and mini-sync as

a function of the number of hops and synchronization interval, respectively. As expected, there is no

significant difference in performance between tiny-sync and mini-sync. Given the fact that tiny-sync

requires less resources (computational and storage) than mini-sync, this result suggests that using tiny-

sync is preferred to mini-sync.

Although one would expect mini-sync to always outperform tiny-sync, the results show that, in

practice, sometimes tiny-sync can show better precision than mini-sync. It turns out that the selection of

the first data-points to be used in the drift estimation can affect the overall performance of the algorithm.

Details on this effect are presented in Section 3.5.

52

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

−5

10
−4

10
−3

Synchronization Packet Loss Rate (round trip)

P
re

ci
si

on
 (

s)

4 sec
8 sec
16 sec
32 sec
64 sec
128 sec

Figure 3.22: The synchronization error with packet loss.

1 1.5 2 2.5 3 3.5 4
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
x 10

−5

Hops

P
re

ci
si

on
 (

s)

Tiny−sync(sync_interval=4)
Tiny−sync(sync_interval=128)
Mini−sync(sync_interval=4)
Mini−sync(sync_interval=128)

Figure 3.23: Synchronization error of tiny-sync and mini-sync as a function of the number of hops.

53

10
1

10
2

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
x 10

−5

Synchronization Interval (s)

P
re

ci
si

on
 (

s)

Tiny−sync(1 hop)
Tiny−sync(4 hops)
Mini−sync(1 hop)
Mini−sync(4 hops)

Figure 3.24: Synchronization error of tiny-sync and mini-sync as a function of the synchronization
interval.

Experimental Results on Mica2 Platform

We also implemented tiny-sync on the Mica2 platform [56] using TinyOS. In this experiment,

we used the far more accurate 7.4 MHz internal clock to obtain time-stamps. The average pair-wise

synchronization error achieved by tiny-sync on Mica2 was 1.3868µs. According to published data

[45, 47], the pair-wise accuracies of RBS, TPSN and FTSP on the Mica platform are 7µs, 16.9µs

and 1.48µs, respectively. The seemingly poor result for TPSN is for a single time-stamp exchange

on a Mica 1 platform (that has a slower clock and radio transceiver). We expect that an averaging

implementation on the Mica2 platform would result in a precision similar to FTSP and tiny-sync. The

accuracy of tiny-sync is very close to the accuracy of FTSP (tiny-sync is slightly better). It is likely

that both approaches reached the lower bound of achievable accuracy on the Mica2 platform (due to

non-deterministic delays, most likely introduced by the transceiver and/or clock inaccuracies).

Figure 3.25 shows the pair-wise synchronization errors for tiny-sync using Telos and Mica2

motes. In this experiment, we varied the synchronization interval from 4 s to 1024 s. When the synchro-

nization interval is short, the synchronization error on the Mica2 platform is better than that on Telos due

to the clock resolution on the Mica2 platform; however, the external crystal clock of the Telos platform

is more stable than the internal clock of Mica2 in the long run. Thus, for short synchronization inter-

vals, the synchronization errors on Mica2 are smaller than on the Telos motes; however, the situation is

54

10
1

10
2

10
3

10
0

10
1

10
2

Synchronization Interval (s)

P
re

ci
si

on
 (

us
)

Mica2 (internal 7.3 MHz)
Telos (external 32 KHz)

Figure 3.25: Synchronization error of tiny-sync on Mica2 and Telos platforms.

reversed when the synchronization interval is longer than 128 s.

Tiny-sync Initialization

As mentioned in Section 3.5, the selection of data-points in the beginning of the algorithm may

affect the synchronization precision in the initial phase (especially for long synchronization intervals).

Figure 3.26 shows an example of a data set with high synchronization error for the beginning

of the experiment. The synchronization interval is 128s. The reason for the poor performance is in the

choice of the initial data-points. If the first few data samples are of poor quality (i.e., with large non-

deterministic delays), the initial precision will suffer (until at least two reasonably “good” data-points

are received). A simple method of forcing tiny-sync to start with “good” data-points is to start with the

best two data-points out of the firstN . Figure 3.27 shows the synchronization error when N is 10.

3.6 Conclusion

In this chapter, we proposed and evaluated the performance of two simple time synchroniza-

tion algorithms suitable for wireless sensor networks. The algorithms perform pair-wise synchronization

and can be used as the basic building block for synchronizing an entire network. While the performance

of the two algorithms may vary in theory, in practice, they yield very similar results. Thus, the simplest

one, tiny-sync, is likely to be practically implemented. The main advantage of tiny-sync is its simplic-

55

0 1000 2000 3000 4000 5000 6000 7000 8000
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−4

Avg(abs(sync. error)):1.8555e−005

Time (s)

S
yn

ch
ro

ni
za

tio
n

E
rr

or
 (

s)

synchronization error
moving average of synchronization error in magnitude

Figure 3.26: Synchronization errors of tiny-sync without poor initial data.

0 1000 2000 3000 4000 5000 6000 7000
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−4

Avg(abs(sync. error)):1.4249e−005

Time (s)

S
yn

ch
ro

ni
za

tio
n

E
rr

or
 (

s)

synchronization error
moving average of synchronization error in magnitude

Figure 3.27: Synchronization errors of tiny-sync when the best two out of the first ten data-points are
used to initialize the algorithm.

56

ity and parsimonious resources requirements. Other advantages include robustness to large variations

in clock drift and its ability to achieve fast synchronization of an entire network. Experimental results

show that it performs as well or better than existing time synchronization approaches for wireless sensor

networks.

57

Chapter 4

Analyzing Power Consumption of

Wireless Sensor Networks MAC protocols

4.1 Introduction

With the development of micro electronic mechanical system (MEMS), wireless networking,

and embedded microprocessor, wireless sensor networks (WSNs) have been deployed in environmental,

military, and commercial areas [2–4]. WSNs consists of thousands of small nodes capable of sensing,

processing, and communicating. In many sensor network applications, each node periodically samples

its sensors and transmits the data (in multihop fashion) to the base station, where it will be further

delivered to the end users through long-haul links (e.g., the Internet).

An important characteristics of WSNs is that the nodes are equipped with batteries with lim-

ited capacity and, often, changing the batteries is either expensive or impossible. Therefore, power

management plays a very important role in increasing the lifetime of the sensor networks [8]. For ex-

ample, when a Telos mote equipped with 2250mAh batteries idles without any power saving algorithm,

the mote can operate for up to 52 days. With a 1% duty cycle, the lifetime of the node can be extended

to 4076 days [9].

The power management in WSNs has been extensively studied at each layer of the network-

ing stack (e.g., power saving medium access control (MAC) protocols, power aware routing algorithms,

topology control, deployment strategies, etc.) In this paper, we study the power efficiency of the MAC

58

layer of WSNs. A significant (in some nodes the largest) source of power consumption in sensor nodes

is the radio transceiver. There are several sources of power wastage in the MAC layer, such as collision,

overhearing, protocol overhead, and idle listening. Among those, for many applications, idle listen-

ing is often the major source or energy inefficiency. In many MAC protocols for WSNs nodes save

energy by going to sleep if they do not have data to sense, receive, or transmit. When sensor nodes

sleep, they turn off the microcontroller and the radio. In this paper, we determine analytically the power

consumption of several well-known MAC protocols for WSNs by calculating how much energy is con-

sumed in each mode of radio operations. Some of existing WSN MAC protocols provide the analysis

of power consumption. However, the existing results are based on the protocol specific assumptions

(e.g., piggybacking). Moreover, most existing models are based on a single-hop network model. The

power consumption models of this paper are based on a multi-hop environment. As much as possible,

we made the same assumptions as all compared protocols. To validate the analysis, we measure energy

consumptions of the MAC protocols on a testbed using the Mica 2 motes and compare the results.

4.2 Analysis of power consumption

In this section, we determine power consumptions of several common MAC protocols for

WSNs including S-MAC [21, 58], T-MAC [59], B-MAC [60], X-MAC [1], and SCP-MAC [61]. For

the comparison, we also consider the power consumptions of 802.11 [62] both with and without power

saving in ad-hoc mode as well as that of an ideal MAC protocol in terms of power consumption.

We classify energy efficient MAC protocols for WSNs into two groups; synchronization-based

and preamble-based.

• In synchronization-based MAC protocols, the sampling period is divided into fixed sizeframes.

Sensor nodes wake up and go to sleep once during each frame. To send and receive frames, all

nodes in a neighborhood wake up and go to sleep at the same time. Therefore, synchronization-

based MAC protocols provide (and use) synchronization mechanisms. Synchronization-based

MAC protocols include 802.11 power saving mode, S-MAC, T-MAC, and SCP-MAC.

• In preamble-based MAC protocols, the nodes are not synchronized with each other. Instead,

senders use a long preamble to wake up receivers. In these protocols the receiver sleeps for

59

a long time and wakes up for a very short time to check for the existence of a preamble. If

the receiver does not detect any preamble, it goes back to sleep immediately. If it detects the

preamble, the node goes back to sleep after performing the protocol specific radio operations. We

define aframein the preamble-based protocols as the time combining the sleep time and the time

to check the preamble. Unlike in synchronized-based protocols, the number of frames during

each sampling period in preamble-based protocols varies depending on the traffic load during the

sampling period. Preamble-based protocols include B-MAC and X-MAC.

4.2.1 Assumptions

Following are the assumptions used to derive the models for the power consumption of MAC

protocols:

• each sensor node takes one sample and sends it to the base station during each sampling periodT

(i.e., we assume a continuous monitoring application);

• all nodes follow the same power saving schedule. We assume that for all MAC protocols that

require it, time synchronization is provided by exchanging the beacons orSY NC messages;

• there are no transmission errors;

• the network has sufficient capacity to transport the data;

• there are no collisions. This assumption is effectively a reasonable approximation of reality in

systems with very low duty cycles and low contention;

• the power consumption during the contention period is the same for all MAC protocols. Thus we

omit the power consumption during the contention period;

• all traffic is forwarded to a single base station through a shortest path routingtree.

4.2.2 Sources of Power Consumptions

In this section we present all power consumption sources used in our models.

60

• Collisions When two or more packets arrive at the receiver at overlapping times, those packets

collide with each other. In this case, the senders have to retransmit the packets. This increases the

number of packet transmissions and the energy consumption. MAC protocols provide different

methods to reduce the collisions such as collision avoidance backoffs and RTS/CTS schemes. The

MAC protocols we analyze use similar methods to reduce collisions. Thus, we assume that the

same amount of energy due to collisions is used for all MAC protocols.

• Transmissions/ReceptionsRadio transmissions and receptions are necessary and unavoidable

for the actual data transfer.

• Overhearing This source of power consumption is rooted in the broadcast characteristics of wire-

less communication. That is, even if a packet is destined to a specific receiver, all nodes within

the transmission range of the sender can hear the packet. Thus, the neighboring nodes that are

not the intended receiver still receive and process the packet before discarding it. The amount of

overhearing increases with the density of the nodes.

• Idle listening Idle listening occurs when nodes wait to receive packets by listening idly to the

channel. Measurements show that for most transceivers the energy needed to listen to the wireless

channel is almost as high as that for packet receptions [25]. In many applications sensor nodes

are in idle listening state for long period of time. Thus, idle listening is the dominant component

of power consumption of MAC protocols in WSNs.

• SensingThe power consumption for sensing the environment differs from application to applica-

tion. In some applications, it may be a large percentage of the total power consumption. However,

this component is not related to the MAC protocol, and therefore we do not consider it in our anal-

ysis of MAC protocols.

• SleepWhen nodes go to sleep, the radio is turned off. Furthermore, we assume that the CPU is

also at stand-by mode to minimize the power consumption when it is in sleep state.

4.2.3 Notation

In this section we present the notation we use for the analysis. We denote the variables starting

with t to represent the time for a specific operation or a time period and the variables starting withT to

61

represent the total time of a operation during one sampling period.

T The sampling period;

tf The frame size. The frame is a fixed time period, which is used in synchronization-based MAC

protocols such as 802.11, S-MAC, and T-MAC. Within the frame, nodes stay awake at least a

portion of the frame to send/receive data, or go to sleep to save the energy according to the

schedule of the MAC protocol;

K The number of frames that can be sent during one sampling period;

T = tfK. (4.1)

tlisten The active listening period within the frame when each node receives and/or transmits data;

tsleep The sleeping period within the frame where each node goes to sleep if it does not have data to

transmit (or receive):

tf = tlisten + tsleep; (4.2)

tbeacon (tsync) The beacon interval (tbeacon) of 802.11 protocols and the synchronization interval (tsync)

of MAC protocols that require the time synchronization. For fairness we assumetbeacon = tsync;

tX The time for sending/receiving a packet of typeX, whereX is RTS, CTS, DATA, ACKDATA,

P (for preamble),ACKP (for ACK of the preamble),B (for BEACON), orSY NC;

tWU The time for radio transition from sleep to a fully awake state;

tA The timeout interval for T-MAC;

tCCA The time for clear channel assessment in B-MAC and X-MAC;

TY The time spent forY during thesampling period, whereY ∈ {tx, rx, oh, idl lsn, startup, slp}.
Ttx is the time spent on transmitting packets during the sampling period.Trx is the time spent

on receiving packets during the sampling period.Toh andTidllsn are the overhearing and idle

listening time during the sampling period.Tstartup is the sum oftWU during the sampling period:

62

T = Ttx + Trx + Toh + Tidl lsn + Tstartup + Tslp; (4.3)

PY The power consumed for Y, whereX ∈ {tx, rx, oh, idl lsn, startup, slp};

EY The energy consumed for Y during the sampling period, whereY ∈ {tx, rx, oh, idl lsn, startup, slp};

E The energy consumed during each sampling period:

E = TtxPtx + TrxPrx + TohPoh + Tidl lsnPidl lsn + TstartupPstartup + TslpPslp; (4.4)

Nchildren(i) The number of descendent nodes of nodei in the routing tree, i.e., nodei needs to forward

Nchildren(i) data packets during one sampling period. If nodei is a leaf node in the routing tree,

Nchildren(i) = 0;

Υi The set of nodes whose transmissions can be received by nodei ;

Nneighbor(i) The cardinality ofΥi;

Nh(i) The total number ofDATA packets that nodei hears from its neighbors during one sampling

period:

Nh(i) =
∑

k∈Υi

(Nchildren(k) + 1); (4.5)

Ntx(i) The number of packets that nodei transmits during each sampling periodT , Ntx(i) = Nchildren(i)+

1;

Nrx(i) The number of packets that nodei receives during each sampling periodT , Nrx(i) = Nchildren(i);

Noh,X(i) The number of packets of type X that nodei overhears during each sampling periodT , where

X ∈ {DATA,ATIM, RTS, ACKDATA, ACKATIM , CTS}:

Noh,DATA(i) = Nh(i)−Nrx(i). (4.6)

Equation (4.6) also holds for ATIM and RTS packets.

63

A

B
C

F
D

G H

E

Figure 4.1: An example of a WSN topology.

Example

Let us illustrate the main variables for node C in Fig. 4.1. Solid lines in the figure represent

routing paths and two nodes connected by dotted lines are within transmission range of each other (but

they do not route packets to each other). NodeC can hear packet transmissions from nodesA, B,

D, andE even if they are not all sent through nodeC. ThusNneighbor(C) = 4, Nchildren(C) = 4,

ΥC = {A,B, D, E}, andNh(C) = (Nchildren(A) + 1) + (Nchildren(B) + 1) + (Nchildren(D) + 1) +

(Nchildren(E) + 1) = 14.

Theorem5 We assume a typical sensor network application where each sensor node periodically reads

sensor data and transmits the data to the base station. When a sensor node receives a DATA packet, it

replies with an ACK packet to the sender. Assume each node generates one packet during the sampling

period and transmits the packet to the base station using the shortest hop routing. LetNA(i) be the

number of ACK packets that nodei hears from its neighbors. LetND(i) be the number of DATA packets

that nodei hears from its neighbors. Then the following relationship is satisfied:

NA(i) = ND(i)−Nneighbor(i). (4.7)

64

Proof Nodei hears only the packets that its neighbors send. Letj be one of nodei’s neighbors. Then,

the number ofDATA packets that nodei hears from nodej is Ntx(j) and the number ofACK packets

that nodei hears from nodej is Nrx(j). We knowNtx(j) = Nrx(j) + 1. That is, for each neighbor

j of nodei, the number ofACK packets that nodei hears from nodej is one less than that ofDATA

packets. Summation for all neighbors provide (4.7). ¥

Corollary 6 Let Noh,ACKDATA
(i) be the number ofACKDATA packets that nodei overhears during

each sampling periodT . LetNh(i)] be the total number ofDATA packets that nodei hears from its

neighbors during the sampling period. Then the following relationship is satisfied:

Noh,ACKDATA
(i) = Nh(i)−Nneighbor(i)−Nrx(i). (4.8)

Proof Nodei receives anACKDATA packet for each of its DATA packet transmission. By Theorem

5, the total number ofACKDATA packets that nodei hears isNh(i) −Nneighbor(i). AmongNh(i) −
Nneighbor(i), only Ntx(i) are ACK packets that nodei should receive. Therefore, Corollary 6 holds.¥

Note the Corollary 1 holds forACKATIM andCTS packets.

4.2.4 Power Consumption Analysis of 802.11 basic mode (ad-hoc)

Protocol overview

For comparison purposes, we examine the power consumption of the 802.11 protocol in ad-

hoc mode [62]. The initial design of this protocol assumes that all nodes are within transmission range

each other. All nodes attempt to sendBEACON packets to synchronize with each other. Only one

BEACON packet is sent among all nodes in a neighborhood during a beacon interval. If a node has

a packet to transmit and the medium is free for the duration of a (DIFS), the node starts sending the

packet as we assume no collisions and no collision avoidance. As shown in Fig. 4.2, nodes are always

in receive mode unless they are transmitting.

Power consumption analysis

Sensor nodes are always on (either transmitting, receiving, or idle listening) through the entire

sampling period. Thus,Tslp = Tstartup = 0. The energy consumption in each sampling period is:

65

Beacon

ACK

DATA

tf tf

Receiving

Sleep

Beacon

Sender

Receiver

Transmitting

Idle listening

Figure 4.2: Example of data exchange in 802.11 in ad-hoc mode without power saving.

E = TtxPtx + TrxPrx + TohPoh + Tidl lsnPidl lsn, (4.9)

where we omit the node index from the variables of time and energy consumption to simplify

the expressions.

Both the sender and the receiver spendtDATA+tACKDATA
seconds for transmitting or receiv-

ing oneDATA packet. In 802.11 specification, the defaultBEACON intervalTf is around100ms.

However, in sensor network MAC protocols such S-MAC [58] and SCP-MAC [61] that require time

synchronization, the synchronization interval is much longer than100ms. To make the comparison as

fair as possible, the beacon interval in 802.11 is set to the same values as the synchronization inter-

val in SCP-MAC. Thus, each sensor node, on the average, transmitsT
tbeacon

1
Nneighbor(i)+1 and receives

Nh
T

tbeacon

Nneighbor(i)
Nneighbor(i)+1 BEACON messages during one sampling periodT . The energy consump-

tions in each sampling period for transmitting and receiving packets are given by (4.10) and (4.11),

respectively:

Etx = (Ntx(i)tDATA + Nrx(i)tACK) Ptx + tB
T

tbeacon

1
Nneighbor(i) + 1

Ptx, (4.10)

66

Erx = (Nrx(i)tDATA + Ntx(i)tACK) Prx

+ tB
T

tbeacon

Nneighbor(i)
Nneighbor(i) + 1

Prx.
(4.11)

Overhearing timeToh for a sensor nodei is the time spent on receiving packets meant for other

nodes. To computeToh we first compute the total time spent on receiving packets from its neighbors

includingDATA andACKDATA. Then, we subtract the time spent on receiving packets for nodei

from the total time. Thus, using (4.6) and Corollary 1, we can compute the time a node spends on

overhearing in each sampling period (4.12). The same expression applies to all other protocols.

Toh = Noh,DATA(i)(tDATA) + Noh,ACKDATA
(i)(tACKDATA

). (4.12)

The idle-listening time is the difference between the sampling periodT and the sum of all

other times:

Tidl lsn = T − (Ntx(i) + Nrx(i))(tDATA + tACK)

− Toh − tB
T

tbeacon
.

(4.13)

4.2.5 Power Consumption Analysis of 802.11 PS mode (ad-hoc)

Protocol overview

The 802.11 power saving (PS) mode also assumes that all nodes are within the transmission

range of each other [62]. In this mode, the beacon interval is divided into active (listen) and sleep

periods. The time durations of the active and sleep periods are fixed and determined by theduty cycle.

Nodes are awake when they are in the active period. During the active period, nodes are following the

same synchronization algorithm (usingBEACON messages) as in the basic 802.11 mode. When a

node has packets to transmit, it first sends an Ad hoc Traffic Indication Map (ATIM) where the sender

specifies the receiver of theDATA packet. Only the intended receiver replies with an acknowledgment.

After this exchange, both the sender and the receiver stay awake for the duration of the beacon period to

send and, respectively, receive theDATA packets and the associated acknowledgments. If a node does

not have any packet to send and it is not an intended receiver, the node goes to sleep for the rest of the

sleep period (as shown in Fig. 4.3).

67

Beacon

ACK

DATA

tf tf

Beacon

Sender

Receiver

Receiving

Sleep

Transmitting

Idle listening

ATIM

ATIM_ACK

tlisten tsleep tlisten tsleep

Listen ListenSleep Sleep

Figure 4.3: Example of data exchange in 802.11 power saving mode (ad-hoc).

Power Consumption Analysis

Each frame periodtf has a listentlisten and a sleep periodtsleep:

Tf = tsleep + tlisten. (4.14)

When the sensor node is awake, it consumes energy by transmitting, receiving, and idle lis-

tening. When the sensor node is in sleep mode, it consumes comparatively very little energy. However,

it also takes time and energy to wake up the radio:

T = Ttx + Trx + Toh + Tidl lsn + Tslp + Tstartup. (4.15)

The energy per sampling period spent on sending and receiving packets in 802.11 PS mode

is identical with the one for 802.11 basic mode except for the additional exchange ofATIM and

ATIMACK packets (4.16), (4.17):

Etx = [Ntx(i) (tDATA + tATIM) + Nrx(i) (tACK + tATIMACK
)]Ptx

+ tB
T

tbeacon

1
Nneighbor(i) + 1

Ptx,
(4.16)

68

Erx = [Nrx(i) (tDATA + tATIM) + Ntx(i) (tACK + tATIMACK
)]Prx

+ tB
T

tbeacon

Nneighbor(i)
Nneighbor(i) + 1

Prx.
(4.17)

We divide the overhearing time of 802.11 PS mode into two parts: overhearing time during

the listen periodToha and overhearing time during the sleep periodTohs :

Toh = Toha + Tohs . (4.18)

The overhearing time of 802.11 PS mode is reduced because nodes go to sleep when they it

neither have packets to send nor to receive. Thus, overhearing does not occur when the node is in sleep

mode. Nodes are always awake in listen (active) state in all frames of the sampling period. Thus, the

overhearing time in the listen period can be computed using the same logic as in 802.11 basic mode.

The difference between the overhearing time in listen period of 802.11 PS mode and that in 802.11 basic

mode is that the listen period of 802.11 PS mode hastATIM andtACKATIM
while 802.11 basic mode

hastDATA andtACK :

Toha = Noh,ATIM (i)tATIM + Noh,ACKATIM
(i)tACKATIM

. (4.19)

Nodes use the radio in sleep period when they have data to transmit or receive. Thus, the

overhearing time in sleep periodTohs is computed as the portion of frames for transmitting and receiving

over the whole frames,Ntx(i)+Nrx(i)
K , multiplied by the overhearing time in 802.11 non power saving

mode:

Tohs =
Ntx(i) + Nrx(i)

K
[Noh,DATA(i)(tDATA) + Noh,ACKDATA

(i)(tACKDATA
)] . (4.20)

To compute the idle listening timeTidl lsn in listening period, we subtract the radio operation

time from total listening time:

Tidl lsna = tlistenK −Ntx(i)(tATIM + tACKATIM
)

−Nrx(i)(tATIM + tACKATIM
)

− Toha − tB
T

tbeacon
.

(4.21)

69

For the idle listening time of sleep period, we subtract the radio operation time from the time

where the node is awake in sleep the period:

Tidl lsns = tsleep(Ntx + Nrx)

−Ntx(i)(tDATA + tACKDATA
)

−Nrx(i)(tDATA + tACKDATA
)− Tohs .

(4.22)

Nodes turn on the radio once per each frame, thereforetWUK is needed for radio startup in

each periodT :

Tstartup = tWUK. (4.23)

The total sleep timeTslp during the sampling period is computed by subtracting the time for

ratio operations from the sampling period (4.15). This can be applied to sleep time computation of other

protocols.

4.2.6 Power Consumption Analysis of S-MAC

Protocol overview

The basic scheme of S-MAC [21, 58] is shown in Fig. 4.4. Each node sleeps for some time,

and then wakes up and listens to determine if it needs to receive a packet. The sleep schedules of all

nodes in a neighborhood are synchronized and nodes useSY NC packets to maintain synchronization.

The power model of S-MAC is similar to the one of 802.11 in power saving mode. The main difference

in terms of power consumption is that, for S-MAC, the nodes go to sleep after transmitting and receiving

aDATA packet rather than remaining awake for the rest of the beacon period. S-MAC also provides a

mechanism that handles the situation where there exist nodes with different sleep schedules (thus being

suitable for multihop networks). In this case, the border nodes maintain multiple schedules to adopt the

different schedules. However, to make the comparison with other protocols fair, we only consider the

power consumption with a single schedule.

70

SYNC

ACK

DATA

tf tf

SYNC

Sender

Receiver

Receiving

Sleep

Transmitting

Idle listening

RTS

CTS

tlisten tsleep tlisten tsleep

Listen ListenSleep Sleep

Figure 4.4: Example of data exchange in S-MAC.

Power Consumption Analysis

The time spent sending and receiving packets in S-MAC is identical with the one for 802.11 PS

mode (4.16), (4.17) except that the beacon interval,tbeacon, should be replaced by the synchronization

interval,tsync.

When the data transmission is completed, S-MAC nodes return to sleep state. This reduces

not only the idle listening time but also the overhearing time of nodes. Since, in S-MAC, the overhear-

ing occurs during the listen period, the power consumption due to overhearing is similar to the power

consumption of overhearing during the listen period of 802.11 PS mode (4.19):

Toh = Noh,RTS(i)tRTS + Noh,CTS(i)tCTS . (4.24)

The idle listening also occurs only during the listen period. We compute the idle listening

time by subtracting the radio operation time from the total listen period time of the sampling period:

Tidl lsn = tlistenK −Ntx(i)(tRTS + tCTS)

−Nrx(i)(tRTS + tCTS)− Toh − tSY NC
T

tsync
.

(4.25)

71

SYNC

ACK

DATA

tf tf

SYNC

Sender

Receiver

Receiving

Sleep

Transmitting

Idle listening

RTS

CTS

tA

Listen ListenSleep Sleep

tA

Figure 4.5: Example of data exchange in T-MAC.

4.2.7 Power Consumption Analysis of T-MAC

Protocol overview

Figure 4.5 shows the basic scheme of the T-MAC protocol [59]. Similarly to S-MAC, every

node periodically wakes up to communicate with its neighbors, and then goes to back sleep again until

next frame. In the meantime, all new messages are queued. Nodes communicate with each other using a

RTS, CTS, ACK scheme, which provides both collision avoidance and reliable transmission. To handle

load variations in time and location T-MAC introduces an adaptive duty cycle by dynamically adjusting

the length of the active period. A node will continue to listen and potentially transmit, as long as it is in

an active period. An active period ends when no activation event has occurred for a timeout periodtA.

A node will sleep if it is not in an active period. Consequently,tA determines the minimal amount of

idle listening per frame. This adaptive scheme reduces the amount of energy wasted on idle listening, in

which nodes wait for potentially incoming messages, while still maintaining a reasonable throughput.

Power Consumption Analysis

Unlike S-MAC that has a fixed active listening period, T-MAC maintains a dynamic active

listening period. Thus, T-MAC reduces the idle listening and overhearing times during the active period

and it introduces a time-out periodtA after a packet transmission. We assume that the packet transmis-

sions and receptions uniformly occur throughout the frame periodTf . Since S-MAC and T-MAC follow

72

the same message exchange sequence to transmit or receive packets, the energy consumptions spent on

sending and receiving packets in T-MAC,Ttx andTrx, respectively, are the same as those of S-MAC,

which are also same as those of 802.11 PS mode (4.16, 4.17).

Let Toht be the overhearing time during the sampling period when the node stays awake until

the next frame begins:

Toht = Noh,RTS(i)tRTS + Noh,CTS(i)tCTS + Noh,DATA(i)tDATA + Noh,ACKDATA
(i)tACK . (4.26)

Then, the overhearing timeToh during the sampling period is given by the portion of total

timeout timeKtA over the sum of the remaining time until the end of each frame multiplied byToht:

Toh = Toht
KtA

T − Toht − T
tsync

tSY NC

. (4.27)

Idle listening occurs only duringtA in T-MAC. If there is no channel activity duringtA after

the synchronization, the idle listening time istA during one frameTf . Nodes also listen to the channel

for tA after the packet exchanges. We ignore the idle listening time between two back to back packets

within one frameTf Thus, the idle listening time during a sampling period is simply:

Tidl lsn = tAK. (4.28)

4.2.8 Power Consumption Analysis of B-MAC

Protocol overview

Figure 4.6 shows the basic operation of B-MAC [60]. B-MAC uses a preamble to implement

a low power listening (LPL) scheme. Nodes sleep (tsleep) and wake up (tCCA) periodically. When a

node wakes up, it turns on its radio and checks for activity on the channel. If the node does not detect

any activity on the channel, it goes immediately back to sleep. If it detects the activity, the node keeps

the radio on and receives the packet. After receiving the packet, the node goes back to sleep. Senders

transmit a long preamble before each payload, such that receivers can detect the channel activity and

remain active. To reliably receive the data, the preamble length should be greater than or equal to the

interval that the channel is checked for activity.

73

DATASender

Receiver

Preamble

ACK

tsleeptCCA

tsleeptCCA

tsleep

Receiving

Sleep

Transmitting

Idle listening

tsleep

Figure 4.6: Example of data exchange in B-MAC.

Power Consumption Analysis

The power consumption of B-MAC was analyzed in [60, 61], based on a single-hop network

model. We follow their approach for the analysis, however, we provide the power consumption formula

for a multihop network. We also obtain more detailed power consumption than those of [60,61].

When it has a packet to transmit, B-MAC first sends a long preamble (of lengthtP) followed

by the payload. For a meaningful comparison, similar to the other protocols, we assume that B-MAC

enables acknowledgments, (which are optional in B-MAC):

Ttx = Ntx(i)(tP + tDATA) + Nrx(i)tACKDATA
. (4.29)

Sensor nodes, on average, receive half of entire preamble for every packet destined to them:

Trx = Nrx(i)(0.5tP + tDATA) + Ntx(i)tACKDATA
. (4.30)

When the packets are destined to other nodes (overhearing), sensor nodes only receive the

preamble and the data, but they do not send ACK:

Toh = Noh,DATA(i)(0.5tP + tDATA). (4.31)

Unlike the other protocols such as 802.11 PSM, S-MAC, and T-MAC where the number of

frames per sampling interval is constant and therefore the startup time (Tstartup) is also constant for each

74

sampling period (4.23), the number of frames in B-MAC,KB, varies depending on the number of data

to send or receive (4.32). TheKB is calculated as the number of wake-ups that result in packet trans-

missions or receptions (including overhearing) during the sampling period plus the number of wake-ups

without sensing activities:

KB = (Ntx(i) + Nh)(i)

+
1

TP + tCCA
{T

−Ntx(i)(tCCA + tP + tDATA + tACKDATA
)

−Nrx(i)(tCCA + 0.5tP + tDATA + tACKDATA
)

− (Nh(i)−Nrx(i))(tCCA + 0.5tP + tDATA)}.

(4.32)

B-MAC senders and receivers turn on the radio and perform the CCA operation once per each

frame. Thus, the CCA operation includes the radio startup operation, which means that we can assume

that the startup timeTstartup is zero and the only idle listening time in B-MAC is the time for CCA.

Tstartup = 0, (4.33)

Tidl lsn = KBtCCA. (4.34)

4.2.9 Power Consumption Analysis of X-MAC

Protocol overview

The LPL (low power listening) in B-MAC using the long preamble enables the receivers to

sleep for long periods and wake up for short time intervals to receive packets. However, this long

preamble introduces a long transmission time for the senders and a large overhearing time [1, 61]. One

method to solve the drawback of long preambles in BMAC is to divide the long preamble into a series

of short preamble packets [1].

Figure 4.7 shows the basic operation of X-MAC. The operation of X-MAC is similar to B-

MAC. The nodes sleep and wake up repeatedly. When a node has data to send, it broadcast a series

of short preambles that include the receiver’s address. When a node wakes up and receives a short

75

B-MAC Sender

B-MAC Receiver

X-MAC Sender

X-MAC Receiver

Receiver wakes up

Long preamble DATA

Extended wait time

DATA

ACK
Receiver wakes up

Short preambles with
target address information

Receiving

Sleep

Transmitting

Idle listening

DATA

Figure 4.7: Comparison of the timelines between B-MAC and X-MAC [1].

preamble packet, it examine the receiver ID field. If the target address does not match its address, the

node goes back to sleep. If the node is the intended receiver (i.e., the address in the short preamble is

the address of the receiver), it sends ACK to the sender and receives the DATA part of the packet. The

sender waits for the ACK from the intended receiver for a short period after it send a short preamble to

the nodes. After receiving the ACK, the sender transmits the DATA part of the packet.

Power Consumption Analysis

The power consumption analysis of X-MAC is presented in [1]. However, our analysis is

different from X-MAX’s approach in the following ways:

• we assume the multi-hop environment while X-MAC only analyzes the power consumption of

single hop environment;

• in order to handle effectively the case where multiple transmitters are trying to send packets to a

receiver, in X-MAC, the receiver remains awake for a short period of time. However, we do not

consider this post packet reception delay;

• for fairness of the comparison, while the X-MAC protocol does not explicitly specify the use of

76

acknowledgements, we assume that the receiver sends an ACK packet after it receives a DATA

packet.

The power consumption of X-MAC differs from that of B-MAC in sending/receiving the

preambles.

In X-MAC, authors does not specify the actual length of the short preamble. Instead, authors

specify the time to send a short preamble for Telos mote, which is almost the same as the time to send

an ACK. Denote bytPx the time to send a short preamble. Then, the number of short preambles,NPx ,

to transmit duringtP in B-MAC is:

NPx =
tP
tPx

. (4.35)

When the X-MAC sender starts to transmit short preambles, the receiver is, on average, in the

middle of its sleep period. Thus, the sender transmitsNPx
2 + 1 short frames until the receiver wakes up

to receive the short preamble and replies with ACK to the sender:

Ttx = Ntx(i)
[(

NPx

2
+ 1

)
tPx + tDATA

]
+ Nrx(i) (tACKPREAMBLE

+ tACKDATA
) . (4.36)

When the receiver wakes up, it will receive on average3
2 short preambles before it receives

the DATA part of the packet:

Trx = Nrx(i)
(

3
2
tPx + tDATA

)
+ Ntx(i) (tACKPREAMBLE

+ tACKDATA
) . (4.37)

The number of packets that the X-MAC receiver overhears is the same as that of in B-MAC.

However, after the receiver receives only one short preamble, it can determine if the packet is destined

to itself or not:

Toh = [Nh(i)−Nrx(i)]
(

3
2
tPx

)
. (4.38)

Since we assume that the check intervals in B-MAC and X-MAC are the same and the radio

remain awake between short preambles, theTstartup andTidl lsn of X-MAC are the same as those of

B-MAC (4.33, 4.34).

77

Data
Tone

Receiver

Sender

Sync

Sync

Receiving

Sleep

Transmitting

Idle listening

Wakeup Wakeup

Wakeup

Figure 4.8: SCP-MAC synchronization scheme.

4.2.10 Power Consumption Analysis of SCP-MAC

Protocol overview

As explained in Section 4.2.9, B-MAC transmissions waste energy with long preambles. SCP

(Scheduled Channel Polling) MAC reduces the preamble size by waking up the senders and the receiver

at the same time and exchanging packets. All nodes, in SCP-MAC [61], sleep and wake up repeatedly.

When a sender wakes up, it sends a short preamble called the tone to the neighbors as shown in Figure

4.8. The receiver also wakes up at approximately the same time, detects the tone, and receives the data.

Since the nodes are synchronized, the duration of the tone can be very small as long as it is detected at

the receiver. Therefore, most of the overhead in SCP-MAC stems from maintaining the synchronization.

The SCP-MAC authors use the synchronization scheme used in S-MAC [58]. The authors determine the

optimal synchronization period, which ranges between7× packet generation intervaland16× packet

generation interval. The authors also derive the wakeup tone length that minimizes the overall power

consumption, which is about from 10 ms to 30 ms depending on the packet generation interval.

Power Consumption Analysis

The power consumption of SCP-MAC was analyzed in [61]. The differences between our

power consumption analysis and the one in [61] are as follows.

• the authors of SCP-MAC provide the formulas for two power consumptions, the best and the worst

case. In the best case, all synchronization information is piggybacked on data packets, therefore,

78

there is no extra overhead for synchronization. In the worst case there is no piggybacking. For

the fairness of the comparison, we do not assume piggybacking;

• the analysis of SCP-MAC is also based on a single-hop network model. We assume a multi-hop

network model;

• while SCP-MAC protocol does not explicitly specify acknowledgements for the data, for fairness

we assume the existence of an ACK packet for each DATA packet.

Let tPSCP
andtsync be the optimal duration of the tone and optimal synchronization interval,

respectively. The synchronization packet also requires a short preamble. Thus, it will taketPSCP
+

tSY NC to send a synchronization packet during one sampling period. Then, the time for transmitting

packets during each sampling period is given as:

Ttx = Ntx(i)(tPSCP
+ tDATA) + Nrx(i)tACKDATA

+ tSY NC
T

tsync

1
Nneighbor(i) + 1

. (4.39)

The receiving and overhearing times during the sampling period are also similar to those of

B-MAC except for the preamble size and the synchronization overhead:

Trx = Nrx(i)(0.5tPSCP
+ tDATA) + Ntx(i)tACKDATA

+ tSY NC
T

tsync

Nneighbor(i)
Nneighbor(i) + 1

, (4.40)

Toh = (Nh(i)−Nrx(i))(0.5tPSCP
+ tDATA). (4.41)

4.2.11 Power Consumption Analysis of an Ideal MAC

Protocol overview

Although it is practically impossible to implement an ideal MAC, we present the I-MAC (the

Ideal MAC) for comparison purposes. In I-MAC, nodes sleep all the time except when they transmit or

receive packets. That is, we assume that senders and receivers have exact schedule information of each

other and are perfectly synchronized with no overhead. When the sender transmits data packets, the

receiver can receive the packet without any collisions. Thus, sensor nodes consume the energy only for

79

Sender

Receiver

DATA

ACK

Receiving

Sleep

Transmitting

Idle listening

Figure 4.9: Example of data exchange in I-MAC.

data packet transmissions and receptions. For fairness, we also assume the existence of an ACK packet

for each DATA packet. Figure 4.9 shows the basic operation of I-MAC.

Power Consumption Analysis

In I-MAC, nodes wake up only if there are packets to transmit or receive. Therefore, there is

no overhearing or idle listening in I-MAC:

E = Etx + Erx + Estartup. (4.42)

When senders transmit packets, they consume the energy for transmitting DATA packets and

receiving ACK packets:

Etx = (Ntx(i)tDATA + Nrx(i)tACKDATA
)Ptx. (4.43)

When receivers receive packets, they consume the energy for receiving DATA packets and

transmitting ACK packets:

Erx = (Nrx(i)tDATA + Ntx(i)tACKDATA
)Prx. (4.44)

For each packet transmission and reception, nodes need to start up the radio:

Estartup = (Ntx(i) + Nrx(i))tWUPstartup. (4.45)

80

4.3 Numerical Results

In this section, we compare the energy consumption of the MAC protocols that we presented

in the previous section.

4.3.1 Simulation Setup

Since current ad hoc network simulators are not suitable for modeling the power consumption

of large scale wireless sensor networks with a variety of MAC protocols, we implemented our own

simulator that idealizes the physical and MAC layers [63]. We simulated N nodes randomly deployed in

a 60m x 60m rectangular area. In the middle of the area there is a single base station. The transmission

range is assumed circular with a radius of 10m. The nodes are assumed to be powered by two AA

alkaline batteries with a capacity of 2000 mAh. Since the focus of the paper is not on the routing

algorithm, a simple shortest path algorithm was employed. If multiple shortest paths with different

amounts of power left are available, the one with the largest power available is preferred. We assumed

that no in-network processing is done, and therefore, all data is forwarded (in a multihop fashion) to

the base station. We assume that the base station has enough power to outlast any of the sensor nodes.

We use the time until 50% of the nodes can no longer forward data to the base station (either because

their batteries are depleted, or because there are no routes to the base station) as the main performance

measure.

We used two set of parameters one for Mica 2 [60] and one for Telos mote [9], shown in

Tables 4.1 and 4.2, respectively. Mica 2 and Telos use the CC1000 and CC2420 radio chips, respec-

tively. The power consumptions for data transmission and reception of CC2420 are similar to those of

CC1000; however, the time to transmit/receive a byte with CC2420 is more than 10 times shorter than

with CC1000. There are also significant differences in the startup time and power consumption during

sleeping. We were not able to find a reference on the average current consumption for starting up the

radio for CC2420. Based on the similarity of the power consumption in transmit and receive modes, we

use the same value as that of CC1000, i.e., 5 mA [60].

We assume that the sizes of all control and data packets are 10 bytes and 20 bytes, respectively.

We also assume that the sampling period (T) is 600 s and the frame size is100ms. Thus, there are 6000

frames in one sampling period. Table 4.3 shows the parameters used in the experiments.

81

Table 4.1: Current consumption and time for Mica2 radio operations

Operation Current(mA) Time(s)
Idle listening 15.1
Receive 1 byte 15.1 416E-6
Transmit 1 byte (0 dBm) 25.4 416E-6
Sleep 0.019
Start up 5 1.8E-3

Table 4.2: Current consumption and time for Telos radio operations

Operation Current(mA) Time(s)
Idle listening 21.8
Receive 1 byte 21.8 32E-6
Transmit 1 byte (0 dBm) 19.5 32E-6
Sleep 0.0051
Start up 5 0.58E-3

Table 4.3: Parameters used in the experiments

Parameter Default Range
Deployment area 60m× 60m fixed
Battery size 2× 2000 mAh fixed
Sampling period 600s fixed
Number of nodes 227 227∼ 629
Wake up interval 100ms 100ms ∼ 10100ms
Duty cycle 15% 0.15% ∼ 15%

82

4.3.2 Simulation Results

Dependency on the density of sensor nodes

Figures 4.10 (a) and (b) show the lifetime of the networks using as a function of the initial

number of nodes for Mica 2 and Telos motes, respectively while maintaining the deployment area fixed.

In this simulation, we varied the initial number of sensor nodes from 227 to 629, while the duty cycle

was fixed to 15%, i.e., the active time within a frame is15ms for 802.11 PSM, S-MAC, and T-MAC.

For Mica 2 mote, we set the check interval of B-MAC to100ms, which results in a preamble size of

240 bytes. The time to wake up from sleep mode and sense the channelTCCA is set to1.8ms. For

X-MAC, we used 10 byte short preambles. For SCP-MAC, we used the tone length of30ms, which is

recommended as an optimal value in [61] for the sampling interval600s. It is impossible to implement

B-MAC on Telos mote because Telos uses packet-based CC2420 radio chip, thus, it cannot utilize the

long preamble of B-MAC. However, we depict the B-MAC lifetime on Telos assuming that the long

preamble is implemented using back-to-back packets like in X-MAC [1].

In Fig. 4.10, two groups of protocols show similar results as the number of initial sensor nodes

increases. The lifetimes of preamble-based protocols such as B-MAC, X-MAC, and SCP-MAC that use

preambles to notify the receivers of the data frames are longer than those of frame-based protocols

such as S-MAC and T-MAC that use designated sleeping/listening intervals. However, the lifetime of

preamble-based protocols decreases as the number of nodes increases, while the performance of frame-

based MACs does not change with the number of initial nodes. The reason is that the overhearing time of

a sensor node in frame-based protocols is less affected by the number of neighbors of the node than those

in preamble-based protocols (4.24), (4.27), (4.31), (4.38), (4.41). The overhearing times of preamble-

based protocols are primarily determined by the preamble size and the number of neighbors while the

overhearing times of frame-based protocols are affected by control packets (CTS andATIMACK) that

a node hears and the number of control packets is less than the number of preambles that a node hears

by the number of neighbors (4.7).

For 802.11 and S-MAC, as the density increases, the overhearing time also increases but the

idle listening time decreases by the same amount. That is, the sum of idle listening time and overhearing

time is constant regardless of the density. For T-MAC, the lifetime of the network decreases only slightly

as the density increases. That is because T-MAC wastes a minimal amount of idle listening time(tA)

83

200 250 300 350 400 450 500 550 600 650
10

5

10
6

10
7

10
8

10
9

Initial number of nodes

Li
fe

tim
e

of
 th

e
ne

tw
or

k
[s

]

802.11 basic mode
802.11 PSM
S−MAC
T−MAC
B−MAC
X−MAC
SCP−MAC
Ideal−MAX

200 250 300 350 400 450 500 550 600 650
10

5

10
6

10
7

10
8

10
9

10
10

Initial number of nodes

Li
fe

tim
e

of
 th

e
ne

tw
or

k
[s

]

802.11 basic mode
802.11 PSM
S−MAC
T−MAC
B−MAC
X−MAC
SCP−MAC
Ideal−MAX

(a) Mica 2 (b) Telos

Figure 4.10: Lifetime of the network as a function of the number of sensor nodes for Mica 2 and Telos
motes (at constant network area).

each frame. Figures 4.11 and 4.12 depict the components of the power consumption of the nodes in the

first tier (one hop from the base station) during one sampling period as the function of initial number

of sensor nodes. The first tier nodes determine the lifetime of the network as, upon depletion of their

batteries, the network becomes disconnected. We observe from those figures that the idle listening time

dominates the total power consumption of frame-based protocols while overhearing time takes large

part of the energy consumption of preamble-based protocols.

Dependency on the wake-up interval

In this simulation, we fixed the initial number of nodes to 227 while varying the wake-up

interval from100ms to 10100ms in steps of500ms. All other parameters are the same as in Section

4.3.2. A variation in the wake-up interval corresponds to a variation in the frame period. Thus, when the

wake-up interval increases, the sleep period also increases while the listening period remains constant.

The listening period is always15ms. Therefore, increasing the wake-up interval means decreasing radio

duty cycle as well as increasing the packet transmission delay. For preamble-based protocols, we vary

the check interval at which the nodes wake up periodically.

Figures 4.13 (a) and (b) show the lifetime of the networks using as a function of wake-up

interval for Mica 2 and Telos motes, respectively. There are no significant differences in the trends

of the lifetime of the network on the two hardware platforms. Frame-based protocols and preamble-

based protocols show different behaviors as the wake-up interval increase. As the wake-up interval

84

227 305 403 509 629
0

2

4

6

8

10

12

14

16

Number of nodes

P
ow

er
 c

on
su

m
pt

io
n

[m
A

]

Tx energy
Rx energy
Overhearing
Idle listening
Wakeup
Sleep

227 305 403 509 629
0

0.5

1

1.5

2

2.5

Number of nodes

P
ow

er
 c

on
su

m
pt

io
n

[m
A

]

Tx energy
Rx energy
Overhearing
Idle listening
Wakeup
Sleep

227 305 403 509 629
0

0.5

1

1.5

2

2.5

Number of nodes

P
ow

er
 c

on
su

m
pt

io
n

[m
A

]

Tx energy
Rx energy
Overhearing
Idle listening
Wakeup
Sleep

(a) 801.11 basic mode (b) 802.11 PSM (c) S-MAC

227 305 403 509 629
0

0.5

1

1.5

Number of nodes

P
ow

er
 c

on
su

m
pt

io
n

[m
A

]

Tx energy
Rx energy
Overhearing
Idle listening
Wakeup
Sleep

227 305 403 509 629
0

0.5

1

1.5

2

2.5

3

3.5

Number of nodes

P
ow

er
 c

on
su

m
pt

io
n

[m
A

]

Tx energy
Rx energy
Overhearing
Idle listening
Wakeup
Sleep

227 305 403 509 629
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of nodes

P
ow

er
 c

on
su

m
pt

io
n

[m
A

]

Tx energy
Rx energy
Overhearing
Idle listening
Wakeup
Sleep

(d) T-MAC (e) B-MAC (f) X-MAC

227 305 403 509 629
0

0.5

1

1.5

2

2.5

3

Number of nodes

P
ow

er
 c

on
su

m
pt

io
n

[m
A

]

Tx energy
Rx energy
Overhearing
Idle listening
Wakeup
Sleep

227 305 403 509 629
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Number of nodes

P
ow

er
 c

on
su

m
pt

io
n

[m
A

]

Tx energy
Rx energy
Overhearing
Idle listening
Wakeup
Sleep

(g) SCP-MAC (h) Ideal MAC

Figure 4.11: Components of the power consumption of the first-tier of nodes as a function of the number
of sensor nodes with constant deployment area for Mica2.

85

227 305 403 509 629
0

5

10

15

20

25

Number of nodes

P
ow

er
 c

on
su

m
pt

io
n

[m
A

]

Tx energy
Rx energy
Overhearing
Idle listening
Wakeup
Sleep

227 305 403 509 629
0

0.5

1

1.5

2

2.5

3

3.5

Number of nodes

P
ow

er
 c

on
su

m
pt

io
n

[m
A

]

Tx energy
Rx energy
Overhearing
Idle listening
Wakeup
Sleep

227 305 403 509 629
0

0.5

1

1.5

2

2.5

3

3.5

Number of nodes

P
ow

er
 c

on
su

m
pt

io
n

[m
A

]

Tx energy
Rx energy
Overhearing
Idle listening
Wakeup
Sleep

(a) 801.11 basic mode (b) 802.11 PSM (c) S-MAC

227 305 403 509 629
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of nodes

P
ow

er
 c

on
su

m
pt

io
n

[m
A

]

Tx energy
Rx energy
Overhearing
Idle listening
Wakeup
Sleep

227 305 403 509 629
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of nodes

P
ow

er
 c

on
su

m
pt

io
n

[m
A

]

Tx energy
Rx energy
Overhearing
Idle listening
Wakeup
Sleep

227 305 403 509 629
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Number of nodes

P
ow

er
 c

on
su

m
pt

io
n

[m
A

]

Tx energy
Rx energy
Overhearing
Idle listening
Wakeup
Sleep

(d) T-MAC (e) B-MAC (f) X-MAC

227 305 403 509 629
0

0.5

1

1.5

2

2.5

3

3.5

Number of nodes

P
ow

er
 c

on
su

m
pt

io
n

[m
A

]

Tx energy
Rx energy
Overhearing
Idle listening
Wakeup
Sleep

227 305 403 509 629
0

1

2

3

4

5

6

7
x 10

−3

Number of nodes

P
ow

er
 c

on
su

m
pt

io
n

[m
A

]

Tx energy
Rx energy
Overhearing
Idle listening
Wakeup
Sleep

(g) SCP-MAC (h) Ideal MAC

Figure 4.12: Components of the power consumption of the first-tier of nodes as a function of the number
of sensor nodes with constant deployment area for Telos motes.

86

0 2 4 6 8 10 12
10

5

10
6

10
7

10
8

10
9

10
10

Wakeup Interval [s]

Li
fe

tim
e

of
 th

e
ne

tw
or

k
[s

]

802.11 basic mode
802.11 PSM
S−MAC
T−MAC
B−MAC
X−MAC
SCP−MAC
Ideal MAC

0 2 4 6 8 10 12
10

5

10
6

10
7

10
8

10
9

10
10

10
11

Wakeup Interval [s]

Li
fe

tim
e

of
 th

e
ne

tw
or

k
[s

]

802.11 basic mode
802.11 PSM
S−MAC
T−MAC
B−MAC
X−MAC
SCP−MAC
Ideal MAC

(a) Mica 2 (b) Telos

Figure 4.13: Lifetime of the network as a function of wake-up (check) interval for Mica 2 and Telos
motes.

increases, the lifetime of frame-based protocols except 802.11 PS mode increases while the lifetime of

preamble-based protocols decreases. The lifetimes of S-MAC and T-MAC approach that of Ideal MAC

as the wake-up interval increases (at the expense of an increase in delay). B-MAC shows the worst

performance as the wake-up interval increases since the overhearing time caused by the long preamble

becomes very large (see Figures 4.14 and 4.15). These results suggest that when the applications require

short delays (less than1s), X-MAC or SCP-MAC should be used; S-MAC or T-MAC should be used

for monitoring applications that tolerate the long delays.

One interesting result is that for 802.11 PS mode, the lifetime of the network increases until

the wake-up interval reaches around0.7s and decreases after that point. Figures 4.14 and 4.15, which

depict the components of the power consumption of the nodes in the first tier as the function of wake

up interval, provide the explanation for this result. The idle listening time during the listen period is

constant regardless of the wake-up interval, thus, the idle listening time decreases with the number of

frames when the sampling period decreases (i.e., as the wake-up interval increases). However, as the

wake-up interval increases, the idle listening time during the sleep period also increases. The decreasing

rate of idle listening time during the listen period is faster than that in the sleep period; however the idle

listening time during the listen period has a lower bound while the increase of the idle listening time

during the sleep period continues with the increase in the wake-up time.

87

0 0.5 1 1.5 2 2.5
0

2

4

6

8

10

12

14

16

Wake−up interval [s]

P
ow

er
 c

on
su

m
pt

io
n

[m
A

]

Tx energy
Rx energy
Overhearing
Idle listening
Wakeup
Sleep

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

Wake−up interval [s]

P
ow

er
 c

on
su

m
pt

io
n

[m
A

]

Tx energy
Rx energy
Overhearing
Idle listening
Wakeup
Sleep

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

Wake−up interval [s]

P
ow

er
 c

on
su

m
pt

io
n

[m
A

]

Tx energy
Rx energy
Overhearing
Idle listening
Wakeup
Sleep

(a) 801.11 basic mode (b) 802.11 PSM (c) S-MAC

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Wake−up interval [s]

P
ow

er
 c

on
su

m
pt

io
n

[m
A

]

Tx energy
Rx energy
Overhearing
Idle listening
Wakeup
Sleep

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

6

7

8

9

10

Wake−up interval [s]

P
ow

er
 c

on
su

m
pt

io
n

[m
A

]

Tx energy
Rx energy
Overhearing
Idle listening
Wakeup
Sleep

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Wake−up interval [s]

P
ow

er
 c

on
su

m
pt

io
n

[m
A

]

Tx energy
Rx energy
Overhearing
Idle listening
Wakeup
Sleep

(c) T-MAC (d) B-MAC (f) X-MAC

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Wake−up interval [s]

P
ow

er
 c

on
su

m
pt

io
n

[m
A

]

Tx energy
Rx energy
Overhearing
Idle listening
Wakeup
Sleep

0 0.5 1 1.5 2 2.5
0

0.005

0.01

0.015

0.02

0.025

0.03

Wake−up interval [s]

P
ow

er
 c

on
su

m
pt

io
n

[m
A

]

Tx energy
Rx energy
Overhearing
Idle listening
Wakeup
Sleep

(g) SCP-MAC (h) Ideal MAC

Figure 4.14: Components of the power consumption of the first-tier of nodes as a function of the wake-
up interval for Mica 2.

88

0 0.5 1 1.5 2 2.5
0

5

10

15

20

25

Wake−up interval [s]

P
ow

er
 c

on
su

m
pt

io
n

[m
A

]

Tx energy
Rx energy
Overhearing
Idle listening
Wakeup
Sleep

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

Wake−up interval [s]

P
ow

er
 c

on
su

m
pt

io
n

[m
A

]

Tx energy
Rx energy
Overhearing
Idle listening
Wakeup
Sleep

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

Wake−up interval [s]

P
ow

er
 c

on
su

m
pt

io
n

[m
A

]

Tx energy
Rx energy
Overhearing
Idle listening
Wakeup
Sleep

(a) 801.11 basic mode (b) 802.11 PSM (c) S-MAC

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Wake−up interval [s]

P
ow

er
 c

on
su

m
pt

io
n

[m
A

]

Tx energy
Rx energy
Overhearing
Idle listening
Wakeup
Sleep

0 0.5 1 1.5 2 2.5
0

2

4

6

8

10

12

14

Wake−up interval [s]

P
ow

er
 c

on
su

m
pt

io
n

[m
A

]

Tx energy
Rx energy
Overhearing
Idle listening
Wakeup
Sleep

0 0.5 1 1.5 2 2.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Wake−up interval [s]

P
ow

er
 c

on
su

m
pt

io
n

[m
A

]

Tx energy
Rx energy
Overhearing
Idle listening
Wakeup
Sleep

(c) T-MAC (d) B-MAC (f) X-MAC

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Wake−up interval [s]

P
ow

er
 c

on
su

m
pt

io
n

[m
A

]

Tx energy
Rx energy
Overhearing
Idle listening
Wakeup
Sleep

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

6
x 10

−3

Wake−up interval [s]

P
ow

er
 c

on
su

m
pt

io
n

[m
A

]

Tx energy
Rx energy
Overhearing
Idle listening
Wakeup
Sleep

(g) SCP-MAC (h) Ideal MAC

Figure 4.15: Components of the power consumption of the first-tier of nodes as a function of the wake-
up interval for Telos 2.

89

4.4 Experimental results

In this section, we measure the energy consumptions of the MAC protocols implementation

on the Mica 2 platform using trace-based method to validate the analytical results that we derived in

Section 4.2. We chose the Mica2 platform as most power saving MACs that were implemented used

this platform (either due to its flexibility or lack of an alternative at the time).

4.4.1 Experiment setup

The trace-based measurement of energy consumption is a well known method [64–66] that

tracks the energy consumption in each state of the transceiver during the operation of the MAC pro-

tocols by generating timestamped log messages when changing the radio state. After collecting the

log messages from the mote, the energy consumption is computed offline. For the power consumption

in each radio state, we use the results from PowerTOSSIM [66] (also shown in Table 4.1), a TinyOS

simulator with support for power consumption.

We trace the following radio operations:

• RadioStart: Turn on the radio

• RadioStop: Turn off the radio

• Rxmode: Start of Rx mode

• Txmode: Start of Tx mode

• SetPower: Set the transmission power

Figure 4.16 shows the simplified radio state diagram. The idea used in trace-based measure-

ment like in PowerTOSSIM is as follows: when the mote is working on its normal operation, the radio

should be in one of three state: sleeping (Sleep), receiving (Idle, Rx, or PreTx), or transmitting (Tx).

When the radio state changes, we generate the corresponding log message with current timestamp. For

example, when the mote goes into sleep state, theRadioStopmessage is generated. When it wakes

up and goes into idle (Idle/Rx) state, theRadioStartandRxModemessages are generated. With those

messages and the timestamp we can determine how long the mote stayed in the corresponding radio

state.

90

���������

Start / RxMode

	���
 ��

Timeout / RadioStart, RxMode

Timeout / RadioStop

�
���

Send
Tx ready / TxMode

Tx done / RxMode

Figure 4.16: The radio state diagram and log messages.

However, the trace method we employ is slightly different from the one in PowerTOSSIM.

The main difference is that our method determines the energy consumption by the mote during the

experiments while PowerTOSSIM generates the log messages form the simulation and calculate the the

power consumption off-line. The reason is that the mote does not have enough memory space to store

all log messages generated during the entire experiment period. When the mote changes its radio state

changes, instead of generating log messages, we compute the radio operation times online after saving

the current timestamp. For example, when the radio state changes from Tx to Idle, we can compute the

time duration that the radio stayed in the Tx state. With two timestamps (current and previous), the event

type, and previous radio state, we can determine time spent in the previous state. The mote transmits

the cumulative radio operation times in DATA packets at each sampling time.

Figure 4.17 shows the network topology used during the experiment. The solid black lines

represent the routing paths and dotted red lines indicate a neighboring relation between nodes. In this

topology, node 1, 2, and 4 can hear packets from all nodes while node 3, 5, 6, and 7 only can hear

packets from node 1, 2, and 4.

4.4.2 Experimental results

We measure the energy consumption from Mica 2 mote for 802.11 basic, 802.11 PS mode,

S-MAC, and B-MAC and compare the experimental results with the analytical results.

91

1 2

3
4

6 7

5

�����������	

Figure 4.17: The experimental topology.

Experimental results of S-MAC, 802.11 power-saving, and 802.11 basic mode

We used the latest version of S-MAC from [67] to measure the power consumption. In addi-

tion to the basic functionality described in Section 4.2.6, S-MAC adopts the adaptive listening technique

to reduce the end-to-end delay in multihop networks. S-MAC also uses the NAV to minimize the power

consumption caused by overhearings. In this experiment we disable those features.

The S-MAC implementation uses115ms listening period. We set the duty cycle and the

sampling period to16.7% and20s, respectively. Accordingly, the frame length was set to690ms. Each

node sends total 120 packets to the base station, therefore, total experiment time is2400s.

In the analytical model, we did not consider the energy consumption spent on accessing the

channel such as contention window, DIFS (distributed (coordination function) interframe space), and

SIFS (short interframe space). For the comparison with the experimental results, we add those energy

consumptions to the analytical model, for a total of about31ms for each packet transmission. S-MAC

uses a guard time at the end of each listen interval. We also add the guard time (8ms in S-MAC) to the

analytical model in the comparison.

Figures 4.18 (a) and (b) shows the comparison of the time spent on each radio operation and

total energy consumption of S-MAC using analytical modeling and experiments. We observe that the

92

0 1 2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

3000

Node Id

T
im

e
[s

]

Tx energy
Rx energy
Sleep
Startup

1 2 3 4 5 6 7
7400

7600

7800

8000

8200

8400

8600

8800

9000

Node Id

E
ne

rg
y

co
ns

um
pt

io
n

[m
J]

Analytical
Experimental

1 2 3 4 5 6 7
0

2

4

6

8

10

12

14

16

18

20

Node Id

D
iff

er
en

ce
 in

 e
ne

rg
y

co
ns

um
pt

io
n

[%
]

(a) Time spent on radio (b) Total energy consumption (c) Total energy difference
operations for experiment (left) in percentage

and analysis (right)

Figure 4.18: Comparison of time and energy consumption of S-MAC between the analytical and exper-
imental results.

0 1 2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

3000

Node Id

T
im

e
[s

]

Tx energy
Rx energy
Sleep
Startup

1 2 3 4 5 6 7
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7
x 10

4

Node Id

E
ne

rg
y

co
ns

um
pt

io
n

[m
J]

Analytical
Experimental

1 2 3 4 5 6 7
0

2

4

6

8

10

12

14

16

18

20

Node Id

D
iff

er
en

ce
 in

 e
ne

rg
y

co
ns

um
pt

io
n

[%
]

(a) Time spent on radio (b) Total energy consumption (c) Total energy difference
operations for experiment (left) in percentage

and analysis (right)

Figure 4.19: Comparison of time and energy consumption of 802.11 power-saving mode between the
analytical and experimental results.

experimental result are very similar to the analytical modeling. The difference between the experimental

and analytical results are less than5% (Figure 4.18 (c)).

The basic operation of 802.11 power-saving mode is the same as S-MAC except that the radio

stays awake after the packet transmission in 802.11 power-saving mode (Figure 4.3). Thus, we modified

the S-MAC implementation accordingly for the experiment. We also use the same parameters as those

in S-MAC experiment. The comparison results in Figures 4.19 (a), (b), and (c) show that the energy

consumption of the analytical model is very close to that of the experiment.

For the experiment of 802.11 basic mode, we use the S-MAC implementation withNO SLEEP CY CLE

option since the basic operation of 802.11 basic mode is similar to that of S-MAC except that the radio

always stays awake when there are no transmission or reception operations. From the Fig. 4.20 (a),

(b), and (c) we can conclude that there are no significant differences between analytical model and the

93

0 1 2 3 4 5 6 7 8
0

200

400

600

800

1000

1200

1400

Node Id

T
im

e
[s

]

Tx energy
Rx energy
Sleep
Startup

1 2 3 4 5 6 7
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
x 10

4

Node Id

E
ne

rg
y

co
ns

um
pt

io
n

[m
J]

Analytical
Experimental

1 2 3 4 5 6 7
0

2

4

6

8

10

12

14

16

18

20

Node Id

D
iff

er
en

ce
 in

 e
ne

rg
y

co
ns

um
pt

io
n

[%
]

(a) Time spent on radio (b) Total energy consumption (c) Total energy difference
operations for experiment (left) in percentage

and analysis (right)

Figure 4.20: Comparison of time and energy consumption of 802.11 basic mode between the analytical
and experimental results.

0 1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

700

800

Node Id

T
im

e
[s

]

Tx energy
Rx energy
Sleep
Startup

1 2 3 4 5 6 7
2200

2400

2600

2800

3000

3200

3400

3600

3800

Node Id

E
ne

rg
y

co
ns

um
pt

io
n

[m
J]

Analytical
Experimental

1 2 3 4 5 6 7
0

2

4

6

8

10

12

14

16

18

20

Node Id

D
iff

er
en

ce
 in

 e
ne

rg
y

co
ns

um
pt

io
n

[%
]

(a) Time spent on radio (b) Total energy consumption (c) Total energy difference
operations for experiment (left) in percentage

and analysis (right)

Figure 4.21: Comparison of time and energy consumption of B-MAC between the analytical and exper-
imental results.

experiment for energy consumption of 802.11 basic mode (less than3%).

Experimental results of B-MAC

We used the TinyOS 1.1.15 for B-MAC experiment. The preamble length and the time for

clear channel assessmenttCCA were set to 250 bytes and8ms, respectively. The sampling period is

5ms. Each node transmits 120 packets to the base station during the experiment.

Figures 4.21 (a), (b), and (c) show the comparison of energy consumption for analytical model

and the experiment. Like in other experimental results, the energy consumption of the analytical model

of B-MAC is very close to the experimental one.

94

4.5 Related work

It is difficult to measure the energy consumption of an MAC protocol. The most realistic

method to measure the energy consumption is to deploy the motes with a specific MAC protocol in real

environment and determine the lifetime of the network. However, this method is not practical because

it may take a very long time (i.e., more than a year), for the network to expire. The measurements can

be expedited by performing the measurement for a short period of time and determining the remaining

energy of the batteries. Another drawback is that the environment where the motes are deployed may

affect energy consumption. Finally, this method cannot differentiate between different sources of power

consumption, measuring the total energy consumption of the mote including CPU, memory access,

sensing, and radio operations.

Another method of measuring power consumption is to directly measure current consumption

of the mote in each state. This method accurately measures the total power consumption of the mote

in a controlled environment. By selectively powering different hardware components we can determine

the contribution of each of them.

Trace-based modeling and offline processing are also widely used to measure the power con-

sumption of hardware components [66]. This approach tracks the energy consumption of each hardware

component of the simulated motes by generating the corresponding messages.

Finally, analytical models can be used to estimate the energy consumptions of MAC protocols.

The main advantage of analytical models is their flexibility and insight they offer. Given the power

consumption of each radio state, we can easily determine the power consumption of each MAC protocol.

Some of proposed MAC protocols proposed provide analytical models for their power consumptions.

However, each analysis is performed in isolation based on different assumptions making the comparison

of the protocols difficult. To the best of our knowledge, our work is the first attempt to a comprehensive,

fair comparison of modeling power consumptions of existing MAC protocols in WSNs.

The main disadvantages of analytical modes are inevitable simplifying assumptions. To asses

the impact of these assumptions we validate our modes on a real hardware platform and found that the

models closely match reality.

95

4.6 Energy Efficient Scheduling for Wireless Sensor Networks

The best way to minimize the power consumption of sensor nodes is to have the nodes sleep

as long as possible and awake them only for doing their required work, such as sensing and data for-

warding. In this section, we analyze a situation when collisions may occur in our node scheduling

protocol (cross-layer scheduling) [63] and provide several solutions. Simulation results show that the

power consumption of cross-layer scheduling is very close to that of the Ideal MAC protocol.

4.6.1 Overview of cross-layer scheduling

In our previous work, we proposed a cross-layer node scheduling for periodic traffic where

sensor nodes dynamically create on-off schedules in such a way that the nodes will be awake only when

needed and asleep the rest of the time [63]. The scheduling consists of two distinct phases for each flow

in the network:

• The setup and reconfiguration phaseis relatively short in comparison to the steady state phase.

Its goal is to set up the schedules that will be used during the steady state phase.

• The steady state phasetakes place between consecutive setup and reconfiguration phases. It

utilizes the schedule established in the setup and reconfiguration phase to forward the data to the

base station.

During the route setup, a special route-setup packet is sent along the route from the source

node of the flow to the base station. Intermediate nodes along the path of route setup packet find a

time slot when a data packet can be scheduled without colliding with other nearby transmissions. The

scheduling scheme utilizes RTS/CTS protocol to ensure that only non-contending transmissions are

scheduled at the same time.

The simulation results showed that the network lifetime using the approach is order of mag-

nitude longer than that of the case without scheduling. The approach consumed only about one tenth of

802.11 power saving mode.

96

4.6.2 Recovery from Scheduling Collisions

As pointed out in [68], in some cases, the presented protocol may result in schedules that con-

sistently result in DATA packet collisions. At the hearts of this conflict is the hidden terminal problem.

Figure 4.22(a) shows such a situation when the proposed scheduling protocol can fail. In Fig. 4.22(a),

notes A, B and C are in steady state. At the end of their scheduled jobs, nodes B and C wait for RSETUP

packets from other nodes during time periods 6 and 2, respectively. In Fig. 4.22(b), a new node D joins

the network and tries to establish a new schedule. Node D broadcasts a RSETUP packet at time 2 and

node C correctly receives it, ACKs it, then forwards it to the base station. In Fig. 4.22(c), after the

RACK reply from the base station nodes A and D have a conflicting sending schedule, as they are both

scheduled to send at time 2, their packets colliding at node B (although D’s packet is correctly received

at node C). At the core of this problem is the fact that node A’s transmission is hidden from the new

node D.

There are at least three different methods we can use to solve this problem. The first, and

simplest, is to detect the disturbance of a data flow and trigger a new schedule discovery. Thus, if

several consecutive data packets are lost on an otherwise reliable route, another route schedule should

be sought (through RSETUP). Notice that in Fig. 4.22, if node A joins after node D, it cannot schedule

its data packets in slot 2, as node B hears the transmission from D and would not reply to a request in

that slot. This is likely the best solution, especially for sensor networks with low duty cycle, and, thus,

with sparse schedule tables. In those networks, it is unlikely that the newly schedule will conflict with

another flow.

A second solution is to use a MAC protocol that prevents the hidden terminal problem in

the steady state phase as well. An RTS/CTS mechanism would certainly work, although it may be

inefficient due to the extra control information. A better solution is the use of a MACA-BI [69] type

of MAC protocol, that foregoes the use of RTS. In this version, the receivers send a CTS before every

data transfer. Thus, in every transmission slot, the receiver sends a CTS (that effectively will protect the

receiver from hidden terminal collisions) and the sender follows immediately (in the same slot) with the

DATA packet. The main disadvantage of this solution is the increase in control overhead introduced by

the extra CTS packet that has the be sent for every DATA packet.

Finally, a slightly more comples solution involves broadcasting the schedules of all nodes to

97

B

C

A
BS

2

1 T

0 S

6

5 T

4 S

3 T

2 R

3

2 T

1 S

D

B

C

A
BS

2

1 T

0 S

1 S

6

5 T

4 S

3 T

2 R

3

2 T

1 S

RSETUP

RSETUP

(a) The initial topology (b) A new node D joins

D

B

C

A
BS

2

1 T

0 S

1 S

6

5 T

4 S

3 T

2 R

3

2 T

1 S

RACK

D

B

C

A
BS

2 R

1 T

0 S

2 T

1 S

5 T

4 S

3 T

2 R

2 T

1 S

(c) Route setup through node C (d) Collision at node B

Figure 4.22: An example of DATA packet collision.

98

200 250 300 350 400 450 500 550 600 650
10

5

10
6

10
7

10
8

10
9

Initial number of nodes

Li
fe

tim
e

of
 th

e
ne

tw
or

k
[s

]

802.11 basic mode
802.11 PSM
S−MAC
T−MAC
B−MAC
X−MAC
SCP−MAC
Ideal−MAX
Cross−layer

200 250 300 350 400 450 500 550 600 650
10

5

10
6

10
7

10
8

10
9

10
10

Initial number of nodes

Li
fe

tim
e

of
 th

e
ne

tw
or

k
[s

]

802.11 basic mode
802.11 PSM
S−MAC
T−MAC
B−MAC
X−MAC
SCP−MAC
Ideal−MAX
Cross−layer

(a) Mica 2 (b) Telos

Figure 4.23: Lifetime of the network as a function of the number of sensor nodes for Mica 2 and Telos
motes (at constant network area).

all their neighbors. Thus, incoming nodes, before attempting to send RSETUP packets, will first make

sure that none of their neighbors are receiving DATA packets on the slots they try to setup flows. This

solution is a bit more involved than the other two, but it has the advantage to work even in networks

with high duty cycles and have a relatively low overhead (the schedules do not have to be broadcasted

in every cycle).

4.6.3 Simulation results

We setup the same simulation environment as in Section 4.3.1. One of important parameter in

the cross-layer scheduling is the time synchronization error [63]. We set the time synchronization error

to 10ms while most time synchronization protocols including the Tiny-sync in Chapter 3 can provide

the time synchronization errors of less than1ms. Figures 4.23 (a) and (b) show the lifetime of the

network with cross-layer scheduling in comparison with WSN MAC protocols. The performance of the

cross-layer scheduling approach is much higher than that of other MAC protocols and close to the one

of the Ideal MAC.

4.7 Conclusion

In this chapter, we analyze the power efficiency of several well known MAC protocols for

WSNs. Not surprisingly, the MAC protocols specifically designed for WSNs perform significantly

99

better than 802.11 (both with and without power savings enabled). Among the WSN MACs, preamble-

based protocols such as B-MAC and X-MAC, show better performance in terms of energy consumption

when the wake-up interval is relatively small, while synchronization-based protocols such S-MAC and

T-MAC outperform preamble-based protocols when the wake-up interval is large. Thus, preamble-based

MAC protocols can be used for applications where the delay, in addition to the energy consumption,

is considered a major performance factor. The synchronization-based protocols are appropriate for

applications that do not have strict delay constraints.

To validate the analytically derived formulae, we also measured the energy consumption for

several MAC protocols using Mica 2 and Telos motes. The experimental results closely match the

analytical models.

100

Chapter 5

Conclusion

In this dissertation, we presented an analysis of the lifetime of wireless sensor networks that

employ periodic sensing. Lower and upper bounds on the network lifetime are derived, and the corre-

sponding routing algorithms achieving these bounds are presented. For large sensor networks the upper

and the lower bounds on the network lifetime are relatively close (less than a few percents), leading thus

to the conclusion that for such sensor networks the choice of the routing protocol is largely irrelevant

for the network lifetime, as long as some form of shortest paths are followed. Simulations are used to

validate the theoretical results. While the set of routing algorithms may seem to be restricted, our results

are likely to hold for all sensible routing approaches.

We also proposed and evaluated the performance of two simple time synchronization algo-

rithms suitable for wireless sensor networks. The algorithms perform pair-wise synchronization and

can be used as the basic building block for synchronizing an entire network. While the performance of

the two algorithms may vary in theory, in practice, they yield very similar results. Thus, the simplest

one, tiny-sync, is likely to be practically implemented. The main advantage of tiny-sync is its simplic-

ity and parsimonious resources requirements. Other advantages include robustness to large variations

in clock drift and its ability to achieve fast synchronization of an entire network. Experimental results

show that it performs as well or better than existing time synchronization approaches for wireless sensor

networks.

Finally, we constructed power consumption models at MAC layer of WSNs. We derived

analytically the power consumption of well known WSN MAC protocols and analyzed and compared

101

their performance. Validation results using Mica 2 motes show that the analytical models closely match

the experimental results.

102

Bibliography

[1] M. Buettner, G. V. Yee, E. Anderson, and R. Han, “X-mac: A short preamble mac protocol for

duty-cycled wireless sensor networks,” inProc. of the 4th ACM Conference on Embedded Network

Sensor Systems (Sensys’06), 2006.

[2] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor networks,”IEEE

Communication Magazine, vol. 40, pp. 102–116, Aug. 2002.

[3] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks: A survey,”

IEEE Computer, vol. 38, pp. 393–422, Mar. 2002.

[4] G. Asada, T. Dong, F. Lin, G. Pottie, W. Kaiser, and H. Marcy, “Wireless integrated network

sensors: Low power systems on a chip,” inProc. of the 24th European Solid-State Circuits Con-

ference, (The Hague, Netherlands), 1998.

[5] F. Zhao and L. Guibas, “Wireless sensor networks: an information processing approach,”Elsivier,

2004.

[6] V. A. Kottapalli, A. S. Kiremidjiana, J. P. Lyncha, E. Carryerb, T. W. Kennyb, K. H. Lawa, and

Y. Leia, “Two-tiered wireless sensor network architecture for structural health monitoring,” in

Proc. 10th Annual International Symposium on Smart Structures and Materials, (San Diego, CA),

March 2003.

[7] A. Mainwaring, J. Polastre, R. Szewczyk, and D. Culler, “Wireless sensor networks for habitat

monitoring,” inProc. of the First ACM International Workshop on Wireless Sensor Networks and

Applications, (Atlanta, GA), Sept. 2002.

103

[8] B. M. Sadler, “Fundamentals of energy-constrained sensor network systems,”IEEE A&E Systems

Magazine, vol. 20, pp. 17–35, Aug. 2005.

[9] J. Polastre, R. Szewczyk, and D. Culler, “Telos: Enabling ultra-low power wireless research,” in

In Proceedings of IPSN/SPOTS, (Los Angeles, CA), Apr. 2005.

[10] S. Singh, M. Woo, and C. S. Raghavendra, “Power-aware routing in mobile ad hoc networks,” in

Mobile Computing and Networking, pp. 181–190, 1998.

[11] W. Heinzelman, J. Kulik, and H. Balakrishnan, “Adaptive protocols for information dissemination

in wireless sensor networks,” inProc. MOBICOM, pp. 174–185, 1999.

[12] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient communication pro-

tocol for wireless microsensor networks,” inHICSS, 2000.

[13] J. Aslam, Q. Li, and D. Rus, “Three power-aware routing algorithms for sensor networks,”Wireless

Communications and Mobile Computing, vol. 2, pp. 187–208, Mar. 2003.

[14] V. Mhatre, C. Rosenberg, D. Kofman, R. Mazumdar, and N. Shroff, “A minimum cost heteroge-

neous sensor network with a lifetime constraint,”IEEE TMC, vol. 4, pp. 4–15, Jan. 2005.

[15] M. Bhardwaj, T. Garnett, and A. P. Chandrakasan, “Upper bounds on the lifetime of sensor net-

works,” in Proc. of ICC, pp. 785–790, 2001.

[16] M. Bhardwaj and A. P. Chandrakasan, “Bounding the lifetime of sensor networks via optimal role

assignments,” inProc. of INFOCOM, pp. 1587–1596, 2002.

[17] H. Zhang and J. Hou, “On deriving the upper bound of -lifetime for large sensor networks,” in

Proc. of MOBIHOC, pp. 121–132, May 2004.

[18] J. Pan, Y. T. Hou, L. Cai, Y. Shi, and S. X. Shen, “Topology control for wireless sensor networks,”

in Proc. of MobiCom, Sept. 2003.

[19] J. Alonso, A. Dunkels, and T. Voigt, “Bounds on the energy consumption of routings in wireless

sensor networks,” inProc. of WIOPT, 2004.

104

[20] A. Woo and D. E. Culler, “A transmission control scheme for media access in sensor networks,” in

Proc. ACM MOBICOM, July 2001.

[21] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient MAC protocol for wireless sensor net-

works,” in Proc. of Infocom 2002, pp. 1567–1576, USC/Information Sciences Institute, 2002.

[22] S. Singh and C. Raghavendra, “Power efficient MAC protocol for multihop radio networks,” inThe

Ninth IEEE International Symposium on Personal, Indoor and Mobile Radio Communications,

pp. 153–157, 1998.

[23] R. Rozovsky and P. R. Kumar, “SEEDEX: A MAC protocol for ad hoc networks,” inProc. of The

ACM Symposium on Mobile Ad Hoc Networking & Computing, (MobiHoc), (Long Beach, CA),

pp. 67–75, Oct. 2001.

[24] Y.-C. Tseng, C.-S. Hsu, and T.-Y. Hsieh, “Power-saving protocols for IEEE 802.11-based multi-

hop ad hoc networks,” inProc. of INFOCOM, vol. 1, pp. 200–209, 2002.

[25] M. Stemm and R. H. Katz, “Measuring and reducing energy consumption of network interfaces in

hand-held devices,”IEICE Transactions on Communications, vol. E80-B, no. 8, pp. 1125–1131,

1997.

[26] L. M. Feeney and M. Nilsson, “Investigating the energy consumption of a wireless network inter-

face in an ad hoc networking environment,” inProc. of IEEE INFOCOM, pp. 1548–1557, 2001.

[27] D. E. Culler, J. Hill, P. Buonadonna, R. Szewczyk, and A. Woo, “A network-centric approach to

embedded software for tiny devices,” inProc. of the First International Workshop on Embedded

Software (EMSOFT), Oct. 2001.

[28] S. Singh and C. Raghavendra, “PAMAS: Power aware multi-access protocol with signalling for ad

hoc networks,”ACM Computer Communications Review, 1999.

[29] E.-S. Jung and N. Vaidya, “A power saving MAC protocol for wireless networks.” Technical Re-

port, UIUC, July 2002.

[30] M. L. Sichitiu and R. Dutta, “Benefits of multiple battery levels for the lifetime of large wireless

sensor networks,” inProc. of Networking 2005, (Waterloo, Canada), May 2005.

105

[31] N. Xu, S. Rangwala, K. K. Chintalapudi, D. Ganesan, A. Broad, R. Govindan, and D. Estrin,

“A wireless sensor network for structural monitoring,” inSenSys ’04: Proceedings of the 2nd

international conference on Embedded networked sensor systems, pp. 13–24, ACM Press, 2004.

[32] G. Lu, N. Sadagopan, B. Krishnamachari, and A. Goel, “Delay efficient sleep scheduling in wire-

less sensor networks,” inProc. of Infocom 2005, Mar. 2005.

[33] D. L. Mills, “Internet time synchronization: the network time protocol,”IEEE Trans. Communi-

cations, vol. 39, pp. 1482–1493, Oct. 1991.

[34] D. L. Mills, “Improved algorithms for synchronizing computer network clocks,” inProc. of ACM

Conference on Communication Architectures (ACM SIGCOMM’94), (London, UK), Aug. 1994.

[35] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins,Global Positioning System: Theory and

Practice. Springer-Verlag, 4th ed., 1997.

[36] G. Simon, M. Maŕoti, A. Lédeczi, G. Balogh, B. Kusy, A. Ńadas, G. Pap, J. Sallai, and K. Framp-

ton, “Sensor network-based countersniper system,” inSenSys ’04: Proceedings of the 2nd inter-

national conference on Embedded networked sensor systems, ACM Press, 2004.

[37] F. Sivrikaya and B. Yener, “Time synchronization in sensor networks: A survey,”IEEE Network,

vol. 18, pp. 45–50, July 2004.

[38] B. Sundararaman, U. Buy, and A. D. Kshemkalyani, “Clock synchronization in wireless sensor

networks: A survey,”Ad-Hoc Networks, vol. 3, pp. 281–323, May 2005.

[39] J. Elson and D. Estrin, “Time synchronization for wireless sensor networks,” inProc. of the 2001

International Parallel and Distributed Processing Symposium (IPDPS), Workshop on Parallel and

Distributed Computing Issues in Wireless Networks and Mobile Computing, (San Francisco, CA),

Apr. 2001.

[40] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchronization using reference

broadcasts,” inUCLA Technical Report 020008, Feb. 2002.

[41] D. E. Richard Karp, Jeremy Elson and S. Shenker, “Optimal and global time synchronization in

sensornets,” Tech. Rep. 0012, CENS, 2003.

106

[42] L. D. Girod, A Self-Calibrating System of Distributed Acoustic Arrays. PhD thesis, University of

California Los Angeles, 2005.

[43] K. Römer, “Time synchronization in ad hoc networks,” inProc. of ACM Mobihoc, (Long Beach,

CA), 2001.

[44] L. Meier, P. Blum, and L. Thiele, “Internal synchronization of drift-constraint clocks in ad-hoc

sensor networks,” inMobiHoc, 2004.

[45] S. Ganeriwal, R. Kumar, and M. B. Srivastava, “Timing-sync protocol for sensor networks,” in

Proc. of the First ACM Conference on Embedded Networked Sensor System (SenSys), pp. 138–

149, Nov. 2003.

[46] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J. Pister, “System architecture

directions for networked sensors,” inArchitectural Support for Programming Languages and Op-

erating Systems, pp. 93–104, 2000.

[47] M. Maróti, B. Kusy, G. Simon, and A. Ĺedeczi, “The flooding time synchronization protocol,”

in SenSys ’04: Proceedings of the 2nd international conference on Embedded networked sensor

systems, pp. 39–49, ACM Press, 2004.

[48] J. V. Greunen and J. Rabaey, “Lightweight time synchronization for sensor networks,” inWSNA’03,

2003.

[49] Q. Li and D. Rus, “Global clock synchronization in sensor network,” inINFOCOM, 2004.

[50] H. Dai and R. Han, “Tsync: a lightweight bidirectional time synchronization service for wireless

sensor networks,”ACM SIGMOBILE Mobile Computing and Communications Review, vol. 8,

no. 1, pp. 125–139, 2004.

[51] S. Ping, “Delay measurement time synchronization for wireless sensor networks.” In Intel Re-

search, IRB-TR-03-013, June 2003.

[52] S. PalChaudhuri, A. Saha, and D. B. Johnson, “Adaptive clock synchronization in sensor net-

works,” in ISPN ’04: Proceeding of The Third International Symposium on Information Process-

ing in Sensor Networks, pp. 340–348, Apr. 2004.

107

[53] W. Su and I. F. Akyildiz, “Time-diffusion synchronization protocol for wireless sensor networks,”

IEEE/ACM Transactions on Networking, vol. 13, pp. 384–397, Apr. 2005.

[54] F. Cristian, “Probabilistic clock synchronization,”Distributed Computing, vol. 3, no. 3, pp. 146–

158, 1989.

[55] M. Lemmon, J. Ganguly, and L. Xia, “Model-based clock synchronization in networks with drift-

ing clocks,” inProc. of the 2000 Pacific Rim International Symposium on Dependable Computing,

(Los Angeles, CA), pp. 177–185, Dec. 2000.

[56] Crossbow, “Mica2 wireless measurement system.” http://www.xbow.com/.

[57] M. Maróti, B. Kusy, G. Simon, and A. Ĺedeczi, “Implementation of flooding time synchronization

protocol,” 2005.

[58] W. Ye, J. Heidemann, and D. Estrin, “Medium access control with coordinated adaptive sleeping

for wireless sensor networks,”IEEE/ACM Transactions on Networking, vol. 12, June 2004.

[59] T. van Dam and K. Langendoen, “An adaptive energy-efficient MAC protocol for wireless sensor

networks,” inProc. of of the 1st ACM Conference on Embedded Network Sensor Systems (Sen-

sys’03), 2003.

[60] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access for wireless sensor networks,”

in Proc. of the 2nd ACM Conference on Embedded Network Sensor Systems (Sensys’04), 2004.

[61] W. Ye, F. Silva, and J. Heidemann, “Ultra-low duty cycle mac with scheduled channel polling,” in

Proc. of the 4th ACM Conference on Embedded Network Sensor Systems (Sensys’06), 2006.

[62] IEEE, “Wireless LAN medium access control (MAC) and physical layer (PHY) specification.”

IEEE Std. 802.11, June 1999.

[63] M. L. Sichitiu, “Cross-layer scheduling for power efficiency in wireless sensor networks,” inProc.

of Infocom 2004, vol. 3, (Hong Kong, PRC), pp. 1740–1750, Mar. 2004.

[64] V. T. D. Brooks and M. Martonosi, “Wattch: a framework for architectural-level power analysis

and optimizations,” inISCA, pp. 83–94, 2000.

108

[65] J. Flinn and M. Satyanarayanan, “Powerscope: a tool for profiling the energy usage of mobile

applications,” inSecond IEEE Workshop on Mobile Computing Systems and Applications, pp. 2–

10, Feb. 1999.

[66] V. Shnayder, M. Hempstead, B. Chen, G. W. Allen, and M. Welsh, “Simulating the power con-

sumption of largescale sensor network applications,” inIn Proceedings of SenSys’04, (Baltimore,

Maryland), Nov. 2004.

[67] “S-mac software: Information and source code,”

[68] M. J. Miller and N. H. Vaidya, “On-demand tdma scheduling for energy conservation in sensor

networks.” Technical Report, UIUC, 2004.

[69] F. Talucci, M. Gerla, and L. Fratta, “MACA–BI (MACA by invitation): A receiver oriented access

protocol for wireless multiple networks,” inPIMRC ’97, (Helsinki, Finland), Sept. 1997.

109

Appendix

110

Appendix A

Proof of Theorem 4

In this section we provide the proof for Theorem 4. Let us denote with(A,B) the line deter-

mined by the points A and B and withm(A,B) the slope of the line(A,B). We start by proving the

following lemma:

k

x

y

A
A

A

i

j

k

x x xi j k

C

y

y

y

yi

j

0

Figure A.1: Illustration for Lemma 7.

Lemma7 Consider three pointsAi, Aj , Ak of coordinates(xi, yi), (xj , yj) and (xk, yk) respectively

111

with xi < xj < xk. Then

m(Ai, Aj) < m(Ai, Ak) < m(Aj , Ak), (A.1)

if and only ifAj is below the line(Ai, Ak). Similarly,

m(Ai, Aj) > m(Ai, Ak) > m(Aj , Ak), (A.2)

if and only ifAj is above the line(Ai, Ak).

Proof Denote withy0 the y-coordinate of pointC where the vertical line fromAj intersects the line

(Ai, Ak):

y0 =
(yk − yi)xj + yixk − ykxi

xk − xi
. (A.3)

The expression “Aj is below the line(Ai, Ak)” is shorthand foryj < y0. With this notation,

if and only if yj < y0, then

m(Ai, Aj) =
yj − yi

xj − xi
<

y0 − yi

xj − xi
= m(Ai, Ak) =

yk − y0

xk − xj
<

yk − yj

xk − xj
= m(Aj , Ak), (A.4)

which is (A.1). By a similar argument it can be shown that (A.2) holds if and only ifyj > y0. ¥

Theorem 4Any constraintAj which satisfies

m(Ai, Aj) ≤ m(Aj , Ak) (A.5)

for at least one set of integers1 ≤ i < j < k can be safely discarded as it will never constrain the

boundsa12, a12, b12 andb12 more than any existing constraints.

Proof Consider the situation depicted in Fig. A.2. The constraintsAi, Aj andAk satisfy condition

(A.5). Consider a constraintBx of coordinates(t2x , t1x) such thatt1x > t1k
and t2x > t2k

. Con-

straintBx and one of the constraintsAi, Aj or Ak may determine the upper bounda12). Denote with

a12(Ay, Bx) the upper bound ona12 determined by the constraintsAy andBx. We can distinguish two

cases:

1. WhenBx is belowthe line(Ai, Ak) (e.g., positionBx1 in Fig. A.2). In this case, because both

Aj andBx1 are under the line(Ai, Ak), Ak is above the line(Aj , Bx1). From lemma 7 it follows

that

m(Ak, Bx1) < m(Aj , Bx1), (A.6)

112

t1

t2

Ai

Ak

Aj

B

B

b12(A ,Bxk

b12(A i,Bx

b12(A ,Bxj

b12(A ,Bxj

x1

x2

)
1

)
2

)
1

)
2

Figure A.2:Aj can be safely discarded asAi or Ak will result in better estimates in all cases.

which is equivalent with

a12(Ak, Bx1) < a12(Aj , Bx1). (A.7)

Thus, the constraint(Ak, Bx) is tighter than the constraint(Aj , Bx) for the case whenBx is below

the line(Ai, Ak).

2. WhenBx is abovethe line(Ai, Ak) (positionBx2 in Fig. A.2). In this case, by a similar logic, it

can be shown that

a12(Ai, Bx2) < a12(Aj , Bx2), (A.8)

i.e., the constraint(Ai, Bx) is tighter than the constraint(Aj , Bx) for the case whenBx is above

the line(Ai, Ak)

Thus, in both cases, one of the upper boundsa12(Ai, Bx2) or a12(Ak, Bx1) is tighter than the

upper bound introduced byAj , a12(Aj , Bx), showing that constraintAj will always results in a looser

upper bound thanAi or Ak, and, thus, enabling its disposal without any possible reduction in optimality

of the solution. ¥

