
ABSTRACT

DOMIZIOLI, CARLO P. Noise Analysis and Low-Noise Design for Compact Multi-
Antenna Receivers: A Communication Theory Perspective. (Under the direction of Dr.
Brian L. Hughes).

Multiple-input, multiple-output (MIMO) systems combine the deployment of multiple

antennas at both the transmitter and receiver with sophisticated signal processing to im-

prove the performance of wireless communications. As with any communication system,

developing an accurate yet mathematically tractable channel model is essential to ana-

lyzing the performance of actual systems. Prior studies of MIMO channel modeling have

provided detailed models for fading correlation – either due to the propagation environ-

ment or through mutual coupling between the antennas – and how this correlation affects

performance. On the other hand, relatively little attention has been paid to the noise

correlation.

In this dissertation we consider noise analysis and low-noise design for compact MIMO

receivers. We begin by analyzing the performance of several MIMO communication

schemes in the presence of fading and noise correlation. It is shown that fading and noise

correlation have opposite effects on performance, so properly accounting for both in the

channel model is crucial to accurately predicting performance. Next we develop a circuit

model for compact multi-antenna receivers that includes noise generated by the antennas,

front-end amplifiers, and other components. Through analytical and numerical examples

we demonstrate that the noise may be correlated, and that different noise sources may

impact performance in profoundly different ways. Finally, we derive low-noise design

theorems for MIMO front-ends from communication-theoretic principles.
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Chapter 1

Introduction

In this dissertation we consider noise analysis and low-noise design for multiple-input,

multiple-output (MIMO) wireless communication systems. We approach this topic from a

communication theory perspective by first extending the MIMO channel model to include

noise correlation (Chapter 2), then specializing the noise model to include detailed circuit

models of various receiver components (Chapter 3), and finally, by developing theorems

for low-noise design from communication-theoretic principles (Chapter 4). In this chapter

we introduce the MIMO channel model, discuss some prior literature, and present an

outline of the dissertation.

MIMO systems combine the deployment of multiple antennas at both the transmitter

and receiver with sophisticated signal processing to improve the performance of wireless

communication systems. The interest in MIMO was sparked over a decade ago by the

pioneering studies of Telatar [82] and Foschini and Gans [29], which predicted that large

spectral efficiencies could be achieved by using antenna arrays to communicate over
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Figure 1.1: MIMO channel model.

fading multipath channels. These results spurred an unprecedented surge in scholarly

research, and led to the development of commercial wireless systems. For example,

recent revisions to international standards for wireless local area networks (WLANs)

and metropolitan area networks (WMANs) – IEEE 802.11n and 802.16e, respectively1

– both use MIMO signaling to vastly improve data rates over previous standards. As

with any communication system, developing an accurate yet mathematically tractable

channel model is essential to analyzing the performance of actual systems.

A channel model for a MIMO system with N transmit and M receive antennas is

shown in Fig. 1.1 (cf., [33, Ch. 10], [83, Ch. 7]). The details and underlying assumptions

of this model will be developed in Chapter 2; here we briefly discuss some key concepts.

The signals x1, . . . , xN sent over the transmit antennas are corrupted by two channel

1The 802.11 and 802.16 standards define the physical (PHY) and medium access control (MAC)
layers of WiFi and WiMAX wireless networks, respectively.
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impairments: fading and noise. The fading path gains hij model the random power

fluctuations that result from constructive and destructive interference of the scattered

radio waves. As we shall see in the next section, there is a rich literature on statistical

models for the fading path gains. On the other hand, the modeling and impact of the

noise ni has received relatively little attention. These topics, in addition to optimal

low-noise design principles, form the main contribution of this dissertation.

1.1 Prior Work

Early studies on MIMO modeled the fading path gains hij as independent random

variables. While this assumption may be valid if the antennas are separated by several

wavelengths, in compact mobile devices such large spacings may be impractical. This

observation led to a flood of research activity that provided detailed models for how the

fading path gains may become correlated – either through the propagation environment

or through mutual coupling between the antennas – and how this correlation affects per-

formance. In this section we provide a brief summary of prior work in this area. We

focus rather specifically on papers that provide analytical models for fading correlation

and mutual coupling, and study their impact on MIMO channel capacity. Before pro-

ceeding, we note that the impact of fading correlation and mutual coupling has long been

studied in diversity receivers [51], adaptive arrays [34], and various other multi-antenna

systems. Therefore, a comprehensive discussion of the literature on fading correlation

would take us too far afield, so we limit our coverage to selected papers that fit well

within the scope of this dissertation.
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Figure 1.2: The incident electric field and terminal voltage are related by the array
radiation pattern and impedance matrix.

One of the initial studies on MIMO capacity with fading correlation was provided in

2000 by Shiu et al. [75], which employed a classic ray-tracing propagation model previ-

ously developed for receive diversity. A key contribution of this work was the introduction

of the separable correlation model, which models the correlation between two fading path

gains as the product of two quantities: the transmit and receive correlations. Subsequent

studies focused on various mathematical techniques for computing capacity under the

separable correlation model. In [16] asymptotic results in random matrix theory were

used to evaluate capacity for transmit and receive correlation as the number of antennas

approached infinity. Other approaches, including simplifications of existing closed-form

expressions and asymptotic (in SNR or the number of antennas) analyses may be found

in several MIMO special issues published in 2003 [71], [72], [39]. Some of these results are

neatly summarized in the monograph on random matrix theory by Tulino and Verdu [84].

Alternate models for fading correlation include rank-deficient channels [13], [32] and vir-

tual channel representations [73].

While the above studies provide models for the propagation environment, they do

not account for all of the potential interactions that may occur between the antennas.

As illustrated in Fig. 1.2, the voltage induced in an antenna array by an incident electric
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field depends on the array radiation pattern, and this induced voltage is related to the

terminal (observed) voltage by the array impedance matrix. For certain arrays, e.g.,

dipole antennas separated by several wavelengths, these relationships are trivial and the

terminal voltage is simply a scalar multiple of the incident field. However, in compact

arrays several complications may occur. First, the radiation pattern of each antenna may

become distorted due to its close proximity to other antennas. Second, current flowing

in one antenna may induce a voltage in a neighboring antenna, i.e., the antennas are

coupled. This mutual coupling may be modeled by a non-diagonal impedance matrix,

cf., [4, Ch. 8].

Several researchers were quick to notice the lack of antenna modeling in the above

fading correlation studies; however, there was some initial disagreement about the impact

of mutual coupling on capacity. Earlier studies [79], [52], and [92] showed that mutual

coupling may decrease the correlation between fading path gains, so the authors con-

cluded that mutual coupling may increase capacity. This result was somewhat surprising

as mutual coupling is typically regarded as detrimental (e.g., the last section of [29]).

Subsequent studies considered the impact of mutual coupling on both the power and

correlation of the fading path gains, observing that an impedance mismatch between the

coupled array and its terminating impedance results in a power loss. It was shown that

the penalty associated with this power loss may outweigh the aforementioned benefit

of decorrelating, in which case mutual coupling indeed degrades capacity. However, as

demonstrated in [91], by optimizing the impedance match for maximum power trans-

fer [21], one can not only mitigate this power loss, but provide complete decoupling of

the array. On the other hand, [50] shows that this decoupling may sharply reduce band-
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width. Additional theoretical and experimental works on mutual coupling in MIMO

systems may be found, for example, in the 2006 special issue [43].

The studies presented so far have introduced increasingly detailed models of the fading

correlation; however, little attention has been paid to the noise. In fact, most of the pa-

pers cited above assume a spatially white noise model, only mentioning noise correlation

in reference to interference (cf., [56]). However, for closely-spaced antennas even noise

generated in the receiver may become correlated. For example, noise in a front-end am-

plifier may disperse across neighboring receiver chains through coupled antennas. Some

recent work has improved the noise modeling in multi-antenna receivers. A non-trivial

noise model for a MIMO receiver was considered in [58], where the authors introduced

a standard amplifier model into their previous model for mutual coupling [91]. They

demonstrated that matching networks optimized for noise figure outperformed those de-

signed for maximum power transfer. More recently, Gans [30], [31] evaluated the impact

of antenna thermal noise and (spatially white) amplifier noise individually. It was shown

that matching networks offer no improvement in capacity when antenna noise is domi-

nant, while they have a tremendous impact on capacity when amplifier noise is dominant.

In summary, over the last decade the modeling of fading correlation in MIMO has

progressed from the simple independent fading model used in the pioneering studies,

to separable models from which transmit and receive correlation may be derived, and

finally to models that account for the array radiation pattern and impedance matrix.

Recent studies have also included more realistic noise models for the antennas and am-

plifiers. As a consequence of this progress, the study of compact MIMO transceivers has

become increasingly multidisciplinary, combining elements from communication theory,
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electromagnetics, and RF circuit design.

1.2 Overview of Dissertation

As evidenced by the above literature review, far more attention has been devoted to

fading correlation in MIMO than noise correlation. Since fading and noise play equal

roles in determining most system performance metrics, a channel model that does not

correctly represent noise cannot be expected to correctly predict performance. In this

dissertation we focus on noise analysis, noise modeling, and low-noise design for compact

MIMO receivers.

We begin in the first two sections of Chapter 2 with an overview of some of the

basic assumptions underlying the channel model used in our work and most of the prior

literature. The remainder of the chapter is devoted to the analysis of some common

MIMO communication schemes in the presence of fading and noise correlation. It is

shown that fading and noise correlation have opposite effects on performance, so properly

accounting for both in the channel model is crucial to accurately predicting performance.

In Chapter 3 we develop a noise model for compact multi-antenna receivers. The

model includes noise generated by the antennas, front-end amplifiers, and other receiver

components. Using this model we show that noise in a compact multi-antenna receiver

may be spatially correlated. Expressions relating noise correlation to properties of the

antennas and amplifiers are derived and the impact of noise correlation on the outage

probability of an optimal diversity combiner is studied. Examples illustrating the rela-

tionship between mutual coupling and noise correlation demonstrate how different noise
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sources may impact performance in profoundly different ways. Other topics, including

the impact of matching, amplifier unilaterality, and directional fading and sky noise, are

also considered.

In Chapter 4 we combine the communications schemes presented Chapter 2 with a

generalization of the noise model introduced in Chapter 3. Our main task is to develop

low-noise design principles for compact multi-antenna receivers. We proceed by first

examining the performance metrics of several MIMO communication schemes, from which

we determine a common optimality criterion. The result is a natural generalization of the

well-known concept of minimum noise figure design for single-antenna receivers. With

this optimality criteria we are able to prove the optimality of a matching network that was

only conjectured to be optimal in prior studies. We also show that two amplifiers with

the same noise figure may perform very differently in the presence of coupled antennas.

Finally, in Chapter 5 we summarize our main findings and make some suggestions

for future work. Appendix A provides details for the numerical electromagnetics simula-

tions we used to compute the antenna array radiation pattern and impedance matrix in

Chapters 3 and 4, and also highlights some of the different assumptions underlying this

technique and that used in some of the related literature.



9

Chapter 2

MIMO Communication with

Correlated Fading and Noise

We begin our study by introducing noise correlation into the MIMO channel model

and examining its impact on the performance of several MIMO communication schemes.

In addition to providing background material, the main purpose of this chapter is to

demonstrate that fading and noise correlation play equal roles in determining most system

performance metrics. This observation motivates the detailed noise models considered in

the remainder of this dissertation.

A stochastic wireless channel model specifies the fading and noise statistics as a

function of time, frequency, and space. Since the focus of this dissertation is on spatial

correlation, we shall take a simplistic view of both the time and frequency coherence of

fading and noise. These topics are introduced in the context of single-input, single-output

(SISO) systems in the first section. In the next section we present a well-known model
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for the spatial correlation of fading. The spatial coherence of noise is one of the central

topics of this thesis, so we postpone a detailed discussion of this subject to later chapters.

The purpose of these first two sections is to place the model used throughout this

dissertation within the context of a much broader class of wireless channel models, so we

are concise and selective in our presentation. More complete introductions to wireless

channels are available in the many textbooks on the subject. A classic treatment is

Jakes’ text [44], which is based on research conducted at Bell Laboratories during their

development of cellular systems in the 1960s and early 1970s. More modern treatments

are available in the introductory chapters of the texts by Rappaport [69], Goldsmith

[33], and Tse and Viswanath [83]. Texts devoted specifically to MIMO include [64], [6],

and [62], with the latter providing the strongest emphasis on channel modeling. The

introductory communications text by Proakis [67] also includes a chapter on wireless

channels.

After introducing the channel model, we next consider the form several popular MIMO

communication schemes take under spatially correlated fading and noise. Each scheme

is introduced within the context of its requirements on both the channel knowledge and

maximum codeword length. We finish the chapter by evaluating the performance of each

communication scheme under a simple exponential correlation model, which, while not

based on any specific physical model, lends itself to simple interpretation and captures the

general effect of correlated fading and noise. It is shown that fading and noise correlation

have quite opposite effects on performance, so properly accounting for both of them in a

channel model is crucial to accurately predicting performance.
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Figure 2.1: Illustration of wireless propagation in an urban environment.

2.1 SISO Channel Model

In this section we present a channel model for SISO systems, which is the basis for

the MIMO channel used throughout this dissertation. Most of the results of this section

can be found in wireless communication textbooks; we shall follow [83, Ch. 2].

A typical wireless propagation environment is illustrated in Fig. 2.1. A complex

baseband signal x(t) transmitted over the channel scatters throughout the environment

and arrives at the receiver as a large number of multipath components. Assuming the

signal is further corrupted at the receiver by additive white Gaussian noise (AWGN) with

power spectral density N0

2
, we may model the received signal by

r(t) =
∑

i

αi(t)e
−j2πfcτi(t)x(t− τi(t)) + n(t) , (2.1)
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where αi(t) and τi(t) are the attenuation and propagation delay of the ith multipath

component at time t and n(t) is complex baseband AWGN. The propagation delay affects

both the complex baseband signal and its carrier ej2πfct, where fc is the carrier frequency

in Hz. We can view the wireless channel (2.1) as a time-varying linear filter channel,

r(t) =
∫

h(t, u)x(u)du + n(t), where the impulse response is

h(t, u) =
∑

i

αi(t)e
−j2πfcτi(t)δ(u− t + τi(t)) , (2.2)

and δ(t) is the Dirac-delta function.

Two important time-domain characterizations of the channel model (2.1) are the delay

spread and coherence time. The delay spread Td is the maximum time delay between two

multipath components1,

Td , max
i,j,t

|τi(t)− τj(t)| . (2.3)

The coherence time Tc is roughly defined as the largest time interval for which both αi(t)

and τi(t) are approximately constant. A common convention is to take the coherence

time as the reciprocal of the largest difference between the Doppler shifts fc
d
dt

τi of each

multipath, referred to as the Doppler spread

Ds , max
i,j,t

fc

∣∣∣∣
d

dt
(τi − τj)

∣∣∣∣ . (2.4)

Typical values for Td and Tc are on the order of microseconds and milliseconds, respec-

tively, and channels for which Td ¿ Tc are referred to as underspread. From (2.2) we see

that an impulse transmitted at any time u ∈ [0, Tc] over an underspread channel will be

1It is assumed that the propagation delays and attenuations are continuously differentiable functions
defined on some finite interval.
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received as
∑

i

αi(0)e−j2πfcτi(0)δ(u− t + τi(0)) . (2.5)

We may therefore model an underspread wireless channel by a sequence of linear, time-

invariant (LTI) channels that change every Tc seconds.

Practical wireless channels are constrained in bandwidth, so we may modify the

infinite-bandwidth impulse response (2.5) to reflect a bandpass bandwidth B by cas-

cading it with an ideal lowpass filter. The resulting channel is

hB(t) =
∑

i

αie
−j2πfcτisinc [B(t− τi)] , (2.6)

where sinc t , sin πt
πt

and we have dropped the time arguments from the attenuations and

propagation delays. The reciprocal of Td is often referred to as the coherence bandwidth,

and will be denoted by Bc. If B ¿ Bc, then Bτi ≈ Bτ1 for all i, and we may write

hB(t) ≈ sinc [B(t− τ1)]
∑

i

αie
−j2πfcτi . (2.7)

This is referred to as a frequency-flat channel since the Fourier transform of (2.7) is

constant over [−B
2
, B

2
]. On the other hand, if B À Bc we are able to resolve the individual

multipaths in (2.6) and the channel is said to be frequency-selective. Although we shall

use a frequency-flat channel throughout this dissertation, this does not imply we are

only considering low-bandwidth applications. By using orthogonal frequency division

multiplexing (OFDM), one can divide a frequency-selective wideband channel into a

set of frequency-flat narrowband channels. For example, the IEEE 802.16e WMAN

standard [42] uses OFDM to divide a 10 MHz channel into 10.9 kHz subchannels.

The complex baseband signal x(t) has bandwidth B
2
, so by the Nyquist sampling

theorem it is completely specified by samples x[k] , x(k/B) taken every 1
B

seconds.
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Thus we may model the underspread, frequency-flat channel in discrete time by the block

fading model

r[k] = hx[k] + n[k] , k = 0, 1, . . . , K − 1 . (2.8)

Here h ,
∑

i αie
−j2πfcτi is the fading path gain, which remains constant over the block

length2 K , bTcBc, and recalling the noise model we see that n[k] , n(k/B) is an

independent and identically distributed (i.i.d.) sequence of zero-mean, circularly sym-

metric, complex Gaussian (ZMCSCG) random variables with variance N0B, denoted by

n[k] ∼ CN (0, N0B).

The fading path gain h in (2.8) depends on the amplitude and propagation delay

of each multipath component. Usually detailed information about each multipath is

not available, so it is fruitful to model h as a random variable. In most practical sys-

tems fcτi À 1, so the phase 2πfcτi of each multipath component is well-modeled by a

uniformly-distributed random variable on [0, 2π]. Assuming a rich scattering environ-

ment in which there are a large number of i.i.d. multipaths, by the central limit theorem

h ∼ CN (0,
∑

i E[α2
i ]), where E[·] denotes the expectation. This is referred to as Rayleigh

fading, since |h| has a Rayleigh distribution. Other distributions for h may be derived

for channels with non-identically distributed multipath components, e.g., Rician fading

for propagation environments with a line-of-sight (LOS) component, but we shall restrict

our attention to Rayleigh fading.

Throughout this dissertation no explicit appeal to the time domain is required, so we

2Recalling our earlier discussion on typical values for delay spread and coherence time, and the
assumptions for underspread (Td ¿ Tc), frequency-flat (B ¿ Bc = 1

Td
) channels, we see that block

lengths on the order of a hundred are typical.
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drop the time indices in (2.8) and simply write the SISO channel model as

r = hx + n , (2.9)

where h ∼ CN (0, 1) and n ∼ CN (0, N0B). We have normalized the fading path gain

power to unity by absorbing the signal attenuation into the transmit power P , E|x|2.
In writing (2.9) it is implied that h remains fixed over K consecutive uses of the channel

and n is i.i.d. for each use of the channel.

2.2 MIMO Channel Model

Now consider a MIMO system with N transmit and M receive antennas, which we

hereafter refer to as an N ×M system. We assume the channel between each transmit

and receive antenna pair is identical to the SISO model (2.9), so the MIMO channel may

be expressed in vector form as

r = Hx + n , (2.10)

where r ∈ CM is the received signal, H ∈ CM×N is the channel matrix, x ∈ CN is the

transmitted signal, and n ∈ CM is noise. The transmit power is P = tr(Σx), where

Σx , E[xx†] is the transmit correlation matrix, tr(·) is the trace, and the † superscript

denotes the conjugate-transpose. We shall use ∗ and T superscripts to denote conjugation

and transposition, respectively, so A† = (A∗)T . The elements of the channel matrix and

noise vector are jointly ZMCSCG, so it remains to specify the correlation between these

elements, i.e., the spatial correlation. In this section we focus on the channel matrix

correlations; in later chapters we will determine the noise correlation matrix Σn , E[nn†]
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for specific receiver models.

Correlation between the elements hij of H may be expressed by the MN×MN block

matrix

Ψ ,




E[h1h
†
1] · · · E[h1h

†
N ]

...
. . .

...

E[hNh†1] · · · E[hNh†N ]




, (2.11)

where hi denotes the ith column of H, so the (k, l)th element of E[hih
†
j] is E[hkih

∗
lj]. Under

the separable correlation model (cf., [62, Ch. 3]) the correlations satisfy

E[hkih
∗
lj] = [ΣT

h ]ij · [ΣR
h ]kl , (2.12)

where ΣT
h and ΣR

h are the transmit and receive correlation matrices, respectively, and

[A]ij denotes the (i, j)th element of a matrix A. The concept of separable correlations

was introduced in [75] for a ray-tracing propagation model, and is frequently assumed

throughout the MIMO literature. Intuitively, the underlying assumption is that the

correlation between signals sent from two transmit antennas is independent of the receive

antenna from which they are observed and, conversely, the correlation between signals

observed by two receive antennas is independent of the transmit antenna from which the

signal was sent. This is typically a good approximation in rich scattering environments

with no LOS between the transmitter and receiver [75]. By substituting (2.12) into (2.11),

we obtain

Ψ = ΣT
h ⊗ΣR

h , (2.13)

where ⊗ denotes the Kronecker product. For this reason the assumption (2.12) is often

referred to as the Kronecker correlation model (cf., [62, pg. 82]).
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The exact form of ΣT
h and ΣR

h depends on the antennas and surrounding propagation

environment. Generally speaking, these matrices become diagonal as both the antenna

separations and the number of scatterers around the array increase. As an example,

consider the downlink of the system illustrated in Fig. 2.1. The mobile receiver is sur-

rounded by many scatterers, so antenna separations of only a few wavelengths may result

in ΣR
h ≈ I, where I is the identity matrix. On the other hand, the base station is located

at a higher elevation away from scatterers, so antenna separations of 10s of wavelengths

may be needed for ΣT
h ≈ I [75]. Of course, space constraints are much less stringent for

a base station tower than for a compact mobile device, so it may still be easier to design

a cellular system for less transmit correlation than receive correlation.

The main topic of this dissertation is fading and noise correlation in compact MIMO

receivers, so ΣR
h will typically be non-diagonal. Therefore, to simplify the analysis we

will assume ΣT
h = I, i.e., there is no transmit correlation. Since there will be no further

need to distinguish between transmit and receive correlation, we shall simplify notation

by removing the superscript from ΣR
h . By substituting ΣT

h = I and ΣR
h = Σh into (2.13),

from (2.11) we obtain E[hih
†
j] = Σhδij, where δij is the Kronecker-Delta function. Thus

for no transmit correlation the columns of H in (2.10) are i.i.d. ZMCSCG random vectors

with correlation matrix Σh, denoted by hi ∼ CN (0,Σh). Specific formulas relating Σh

to the antennas and propagation model will be provided in the next chapter.

For concreteness we summarize the developments of these last two sections by restat-

ing the assumptions of our channel model

r = Hx + n . (2.14)
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Figure 2.2: Digital communication over the MIMO channel.

The columns hi of the M ×N channel matrix H are i.i.d. CN (0,Σh). The value of H is

drawn according to this distribution, and remains fixed over K consecutive uses of the

channel, i.e., during the transmission of one block. The power of the transmitted signal x

is P = tr(Σx). The noise is n ∼ CN (0,Σn) and drawn i.i.d. for each use of the channel,

so we say that the noise is temporally white. In general the noise correlation matrix Σn

is non-diagonal, so we say the noise is spatially colored. If Σn = N0BI we say that the

noise is spatially white, and if in addition Σh = I, we shall refer to the model as the

i.i.d. fading and noise channel.

2.3 MIMO Communication Schemes

Consider the transmission of a binary sequence b over the MIMO channel (2.14),

as illustrated in Fig. 2.2. The binary sequence is mapped to the transmitted signal

x = [x1 . . . xN ]T by a space-time encoder, and an estimate b̂ of the data is formed from the
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received signal r = [r1 · · · rM ]T by a space-time decoder. In practice, temporal encoding

and modulation of the binary sequence may be performed by separate devices either

before or after spatial encoding (cf., [33, Fig. 10.10]), however, for our purposes we may

view encoding and modulation across both space and time as a single operation. For

clarity we have suppressed the D/A and A/D converters and RF front-ends required to

convert the complex baseband, discrete-time channel in Fig. 2.2 to a practical analog

channel. The modeling and impact of receiver front-ends will be the focus of subsequent

chapters.

Different types of space-time encoders and decoders have been suggested for different

constraints on the channel knowledge and codeword length. For example, the seminal

works on MIMO channel capacity [82], [29], spatial multiplexing [96], space-time coding

[80], and transmit beamforming [54] all make different assumptions about the channel

knowledge and codeword length. In this section we evaluate the channel capacity and

the performance of these systems for the MIMO channel (2.14) with correlated fading

and noise. We first present a brief discussion of channel knowledge and codeword length

for the block fading channel.

2.3.1 Channel Knowledge and Codeword Length

Consider a typical sample function of a fading path gain hij, illustrated in Fig. 2.3

with some of the transmitted blocks superimposed. The blocks contain training sym-

bols that are used to estimate the channel matrix H. If the receiver obtains a perfect

estimate, we say that we have channel state information at the receiver (CSIR). Under
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Figure 2.3: A block fading channel.

certain conditions channel state information may also be available at the transmitter,

and we have full CSI. We shall always assume CSIR is available, so the distinguishing

feature in channel knowledge is whether or not there is CSI available to the transmitter.

One particular scenario that allows for transmitter CSI is a time-division duplex (TDD)

system, where communication in both the forward and reverse (the roles of the trans-

mitter and receiver are reversed) links occur at different times within each data block.

In certain scenarios the channel is reciprocal, i.e., the channel matrix of the reverse link

is HT , so channel estimates obtained at the receiver of the forward link may be taken

as transmitter CSI for the reverse link, and vice-versa. As an example, in the IEEE

802.16e WMAN standard [42], data blocks are divided equally between the uplink and

downlink channels, so both open loop (CSIR) and closed loop (full CSI) MIMO schemes

are specified.

Decoding a temporally encoded signal usually introduces a time delay since the re-

ceiver may have to wait for the entire codeword to arrive before it is decoded. Therefore, a
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high-level delay constraint on the data will impose a maximum length on the codewords.

For example, in real-time voice applications delays of more than a few hundred millisec-

onds may be intolerable, while for file transfers much laxer constraints are possible. If the

delay constraint is on the order of the coherence time Tc, coding over one or only a few

consecutive blocks is possible, and as illustrated in Fig. 2.3, the channel matrix H may

not change significantly. If H remains constant during the entire codeword transmission,

we have a slow fading channel. On the other hand, if the delay constraint is orders of

magnitude larger than Tc, coding over a long sequence of blocks is possible. If the se-

quence of channel matrices associated with these blocks is stationary and ergodic, one

can show that the capacity of this channel is identical to that of a hypothetical channel

in which H is temporally white [82] – this is referred to as fast fading. In practice, one

could construct a fast fading channel from (2.14) by performing appropriate interleaving

and de-interleaving at its input and output (cf., [83, Ch. 5]).

In summary, we can consider four distinct scenarios in which we have some combina-

tion of CSIR or full CSI with slow or fast fading. Each case will give rise to the various

communication schemes we discuss below. The performance of many SISO communica-

tion schemes (2.9) is parameterized by the signal-to-noise ratio (SNR),

σ , P · E|h|2
E|n|2 =

P

N0B
. (2.15)

The MIMO communication schemes we present below are parameterized by the following

extension of SNR to the vector channel (2.14), which we will refer to as the SNR matrix :

Σ , P ·Σ1/2
h Σ−1

n Σ
1/2
h , (2.16)

where A1/2 denotes the positive definite square root of a positive definite matrix A
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(cf., [40, pg. 406]). We will have much to say about the role of the SNR matrix in later

chapters, for now we just observe that it appears in each of the below metrics.

2.3.2 Ergodic Capacity

The capacity of a channel is defined as the maximum possible rate at which one

can communicate with an arbitrarily low probability of error [74]. For any fixed h, the

SISO channel (2.9) is an AWGN channel with SNR |h|2σ, for which the capacity is

(cf., [19, Ch. 9])

CAWGN = log(1 + |h|2σ) . (2.17)

With this result in mind, it is useful to think of a slow fading SISO channel as an AWGN

channel with the SNR randomly drawn from a Rayleigh distribution. The Rayleigh

probability density function (pdf) has a non-zero mass around zero, so from (2.17) it

should not be surprising to learn that the capacity of the slow fading SISO channel is

zero (cf., [83, pg.188]). More generally, in [82] it was shown that the capacity of the

slow fading MIMO channel (2.14) is zero. As an alternative to capacity, communication

engineers have found it useful to consider the outage capacity of slow fading MIMO

channels, defined as the probability that one can communicate error-free at a certain

rate [29]. However, we shall not consider outage capacity, opting instead to examine

specific schemes designed for slow fading channels.

Due to the stationarity and ergodicity of the fast fading channel, one may average

over many realizations of the channel and obtain a non-zero capacity (cf., [83, pg. 200]).

To distinguish this from the outage capacity of a slow fading channel, the capacity of
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a fast fading channel is often referred to as the ergodic capacity. The original MIMO

ergodic capacity derivations for i.i.d. fading and noise with CSIR [82] and full CSI [46]

show that codewords of the form x ∼ CN (0,Σx) are optimal. Moreover, inspection of

these analyses reveals that Gaussian signaling is still optimal (i.e., mutual information

is maximized) for spatially correlated fading and noise, so finding the capacity of (2.14)

reduces to a transmit covariance matrix optimization. For CSIR we obtain

CR = max
Σx: 0≤tr(Σx)≤1

E
[
log det

(
I + ΣxH

†
wΣHw

)]
, (2.18)

where Hw denotes a channel matrix with i.i.d. CN (0, 1) entries. The capacity with full

CSI is

CF = max
ρ: E[ρ]≤1

E

[
max

Σx|Hw
: 0≤tr(Σx|Hw

)≤ρ
log det

(
I + Σx|Hw

H†
wΣHw

)]
, (2.19)

where Σx|Hw
, E[xx†|Hw] is the transmit covariance conditioned on Hw.

Under the assumption of i.i.d. fading and noise, Telatar [82] showed that Σx = 1
N
I is

optimal for CSIR. It is clear that (2.18) still benefits from the symmetry and convexity

properties3 used in his proof, so we conclude that

CR = E

[
log det

(
I +

1

N
H†

wΣHw

)]
. (2.20)

The solution to (2.19) is an obvious modification to the well-known space-time waterfilling

distribution (cf., [83, pg. 346]), obtained by aligning the transmit covariance eigenvectors

with those of H†
wΣHw. Denoting the ordered eigenvalues of a Hermitian matrix A by

3Σ−1/2
n HU ∼ Σ−1/2

n H for any unitary U and the argument of (2.18) preserves the positive definite-
ness of any Σx. Note that our assumption that the columns of H are i.i.d. is essential.
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λ1(A) ≥ · · · ≥ λN(A), the full CSI capacity is

CF =

min{N,M}∑
i=1

E
[
log

(
1 + P ∗

i λi(H
†
wΣHw)

)]
, (2.21)

where the waterfilling power allocations are given by

P ∗
i =

[
µ− 1

λi(H
†
wΣHw)

]+

, (2.22)

[x]+ denotes the positive part of x, and the water level µ satisfies
∑

i E[P ∗
i ] = 1.

2.3.3 Spatial Multiplexing

The CSIR capacity derivation suggests that sending independent data streams over

each transmit antenna is desirable. Optimal decoding requires joint maximum a-posteriori

(MAP) detection of the received signals, which may become computationally infeasible

for even moderate N and signal constellations. The V-BLAST receiver proposed in [96]

uses a linear estimator x̃ = Ar, A ∈ CN×M , in conjunction with individual MAP de-

tection and successive cancelation. Both zero forcing (ZF) and linear minimum-mean

square error (MMSE) are considered; here we briefly evaluate the capacity of these re-

ceivers under our model (2.14) by making simple modifications to the i.i.d. fading and

noise case (cf., [83, Sec. 8.3]).

The ZF transformation assumes the transmitted signal x can be any complex vector,

and forms the maximum-likelihood (ML) estimate [90, Ch. 5],

x̃ = arg max
x∈CN

ln fr|x(r|x) =
(
Σ−1/2

n H
)+

Σ−1/2
n r , (2.23)

where fr|x(r|x) is the conditional pdf of r given x and the + superscript denotes the

Moore-Penrose generalized inverse. Using the identity (Σ
−1/2
n H)+Σ

−1/2
n = H+ and ob-
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serving that H is full rank with probability one, we may express the ZF transformation

as

AZF =





(H†H)−1H† , N ≤ M

H†(HH†)−1 , N > M
. (2.24)

Thus noise correlation does not change the structure of the ZF receiver. For clarity, let

N ≤ M so that, conditioned on H, the ZF filter output equals x plus noise with covariance

matrix (H†
wΣHw)−1. We now have N parallel Gaussian channels, so for individual MAP

detection of the received signals the ZF capacity is

CZF =
N∑

i=1

E

[
log

(
1 +

1

N [(H†
wΣHw)−1]ii

)]
, (2.25)

where we use the notation [A]ij to denote the (i, j)th element of a matrix A. From the

channel coding theorem we know that the error probability in decoding each stream may

be made as close to zero as desired (cf., [19, Ch. 9]), so it is beneficial to subtract the ith

correctly decoded signal from r before performing ZF on stream i + 1. This is ZF with

successive cancelation (ZF-SC). Observe that for correctly-decoded 4 SC the input to the

ZF filter for stream i is only affected by interference from streams i + 1, . . . , N , so the

capacity of V-BLAST with ZF-SC (for N ≤ M) is given by

CZF-SC =
N∑

i=1

E

[
log

(
1 +

1

N [(Hi†
wΣHi

w)−1]ii

)]
, (2.26)

where Hi
w denotes the matrix obtained by deleting the first i− 1 columns of Hw.

The linear MMSE transformation also assumes that x ∈ CN , and forms the MMSE

4An important consideration in implementing SC is the impact of subtracting incorrectly decoded
data [90, Ch. 7]; however, we shall not explore this possibility.



26

estimate x̃ = AMMSEr, where [90, Ch. 6]

AMMSE = arg min
A∈CN×M

tr E[(Ar− x)(Ar− x)†]

=
P

N
H†

(
P

N
HH† + Σ−1

n

)−1

. (2.27)

Proceeding as before, we assume correctly-decoded SC so that x̃i is only affected by

interference from xi+1, . . . , xN . Thus the ith estimated signal of the MMSE-SC is

x̃i = [Ai
MMSEH

i]iixi +
∑
j>i

[Ai
MMSEH

i]ijxj + zi , (2.28)

where Hi denotes the matrix obtained by deleting the first i − 1 columns of H, Ai
MMSE

is given by (2.27) with H replaced by Hi, and zi ∼ CN (0, [Ai
MMSEΣnA

i†
MMSE]ii). The

capacity is therefore

CMMSE-SC =
N∑

i=1

E

[
log

(
1 +

P
N
|[Ai

MMSEH
i]ii|2

P
N

∑
j>i |[Ai

MMSEH
i]ij|2 + [Ai

MMSEΣnA
i†
MMSE]ii

)]
. (2.29)

The expression for MMSE-SC capacity is considerably more complicated than the ZF-

SC capacity (2.26) because the MMSE filter does not completely remove the subchannel

interference. However, it is well-known [88] that the MMSE-SC receiver is a capacity-

achieving architecture5, so we may simply conclude

CMMSE-SC = CR = E

[
log det

(
I +

1

N
H†

wΣHw

)]
. (2.30)

The optimality of the MMSE-SC receiver will be confirmed in the next section by eval-

uating (2.29) and (2.30).

5This may be demonstrated by applying the chain rule of mutual information and noting that

[AMMSEr]i = P
N h†i

(
P
N HH† + Σ−1

n

)−1

r is a sufficient statistic for detecting xi in Gaussian noise∑
j 6=i hjxj + n (cf., [83, pg. 362]).
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2.3.4 Space-Time Block Codes

Now let us consider a slow fading channel in which H remains constant throughout

the transmission. Here coding over many channel realizations is not possible and the

spatial multiplexing system described above is subject to outage. In this case it may be

desirable to improve reliability (at the expense of data rate) by introducing some spatial

redundancy in the transmitted signal through the use of space-time codes. Specifically,

consider the transmission of RL data symbols during L channel uses with a rate-R linear

space-time block code (STBC) (cf., [49])

R = HX + N , (2.31)

where the ith column of R, X, and N denotes the received signal, transmitted signal,

and noise during the ith channel use, respectively. For equiprobable codewords the ML

detector

X̂ML = arg min
Xi∈X

‖Σ−1/2
n (R−HXi)‖2

F (2.32)

minimizes the probability of error, where ‖ · ‖2
F is the Frobenius norm and X is the code

space. An upper bound for the probability of error can be obtained by considering the

pairwise error probability (PEP) Pij between codewords Xi and Xj, defined as the error

probability of the hypothetical ML binary decision X ∈ {Xi,Xj}. From (2.32) we obtain

Pij = E

[
Q

(√
1

2
tr

[
(Xi −Xj)†H

†
wΣHw(Xi −Xj)

])]
. (2.33)

In our numerical examples we shall focus on orthogonal STBCs [81], in which case

(Xi−Xj)(Xi−Xj)
† = d2

ijI, where dij is the Euclidian distance between the corresponding

vectors of RL data symbols. The PEP upper bound on the probability of error contains
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the sum over all pairs (Xi,Xj), which is usually dominated by the terms with codewords

corresponding to the smallest Euclidean distance dmin between a single pair of data

symbols. To derive the relationship between dmin and the power constraint, let us consider

BPSK modulation. Here the symbol constellation is ±dmin

2
, and to satisfy the power

constraint implied in (2.33) we must have 1
L
E[tr(XX†)] = 1

L
·N ·RL · d2

min

4
≤ 1. Therefore

dmin = 2√
NR

and the PEP is

Pij = E

[
Q

(√
2

NR
tr

(
H†

wΣHw

))]
. (2.34)

2.3.5 Beamforming

If channel knowledge can also be obtained at the transmitter, the reliability of the

slow fading channel may be improved relative to STBCs (again at the expense of data

rate) by sending a single data symbol x over the channel. The instantaneous SNR is

γ(wT ,wR) = P
|w†

RHwT |2
w†

RΣnwR

, (2.35)

where wT ,wR are the beamforming weights applied to the transmit and receive array,

respectively. For spatially white noise, the optimal weights are given by the MIMO

maximum-ratio combiner (MIMO-MRC) [54]. The derivation for correlated fading and

noise is similar,

max
wR,wT
‖wT ‖=1

γ(wT ,wR) = max
wT

‖wT ‖=1

P‖Σ−1/2
n HwT‖2 = Pλ1(H

†Σ−1
n H) , (2.36)

which follows from the Cauchy-Schwarz inequality and Rayleigh-Ritz theorem. The out-

age probability of this system is

Pout = Pr
{
λ1(H

†
wΣHw) ≤ τ

}
, (2.37)
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where τ is a non-negative threshold.

2.4 Performance in Correlated Fading and Noise

We conclude this chapter by evaluating the communication schemes presented in the

previous section for some specific examples of the fading and noise correlation matrices

Σh and Σn. In particular, we consider an exponential correlation model (cf., [55]) where

[Σh]ij = ρ
|i−j|
h and [Σn]ij = N0Bρ|i−j|

n (2.38)

for some correlation coefficients ρh, ρn ∈ [0, 1). To compute the SNR matrix (2.16) we

need only specify the value of each correlation coefficient and the SISO SNR (2.15), which

we take as 10 dB. In later chapters we shall derive correlation matrices from physical

models of the fading and noise; for now the exponential correlation model will serve as

a useful tool for examining the impact of fading and noise correlation, and also provides

us an opportunity to discuss how the performance metrics are computed throughout this

dissertation.

We shall use two techniques to compute the performance metrics: Monte-Carlo simu-

lations and numerical integration. Other techniques, e.g., bounds and asymptotic analy-

ses for capacity, may be found in MIMO special issues [71], [72], [39]. In the Monte-Carlo

approach we use a random number generator to produce an i.i.d. sequence of Hw matrices,

from which the means and distributions specified by each metric may be approximated

by sample means and histograms. A rigorous discussion of the sample size needed to

produce a desired confidence interval would take us too far afield, so we simply follow

standards established in the MIMO literature (e.g., [29]) and use 10,000 simulations.
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If a large number of data points are desired, e.g., over a range of ρh and ρn, the Monte-

Carlo approach may be time consuming. As an alternative, some of the metrics may be

evaluated using numerical integration. The CSIR capacity (2.20) may be expressed as

CR =

min{N,M}∑
i=1

E

[
log

(
1 +

1

N
λi(H

†
wΣHw)

)]

= min{N, M}
∫ ∞

0

log

(
1 +

1

N
λ

)
f(λ)dλ , (2.39)

where f(λ) is the pdf of an unordered, positive eigenvalue of 6 H†
wΣHw. An expression for

this pdf, when the eigenvalues of Σ are distinct, is available in [3], and we may evaluate

the above integral numerically. Similarly, the full CSI capacity (2.21) is

CF = min{N, M}
∫ ∞

1/µ

log(µλ)f(λ)dλ , (2.40)

where the water level µ satisfies

min{N, M}
∫ ∞

1/µ

(
µ− 1

λ

)
f(λ)dλ = 1 . (2.41)

The MIMO-MRC outage probability (2.37) is simply the cumulative distribution function

(cdf) of the largest eigenvalue of H†
wΣHw, which is also available in the literature, e.g.,

[63], [97]. As one example, for N = M and distinct SNR matrix eigenvalues λi(Σ) we

obtain

Pout =
detA∏N

i=1
j>i

λi
i(Σ) [1− λi(Σ)/λj(Σ)]

, (2.42)

where

[A]ij =
λj

i (Σ)

(j − 1)!

∫ τ/λi(Σ)

0

uj−1e−udu (2.43)

6This is known as a complex central Wishart matrix, cf., [84, Ch. 2].
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Figure 2.4: (a) CSIR and (b) full CSI capacity of N ×N systems with correlated fading
and noise. The lines are computed using numerical integration, and the points using
Monte-Carlo simulations.

may be evaluated numerically. The STBC pairwise error probability (2.33) for orthogonal

codes is

Pij = E


Q




√
d2

ij

2
tr(H†

wΣHw)







=
1

π

∫ π/2

0

M∏
i=1


 sin2 u

sin2 u +
d2

ij

4
λi(Σ)




N

du . (2.44)

The above result follows by observing that tr
(
H†

wΣHw

) ∼ ∑
i,j |[Hw]ij|2λj(Σ), so the

above error probability is identical to that of an NM -branch optimal diversity combiner

with independent, non-identical SNRs, which is evaluated in [76, Sec. 9.2].

The ergodic capacity of 2 × 2 and 4 × 4 MIMO channels with CSIR and full CSI

is shown as a function of the fading and noise correlation coefficient in Fig. 2.4. The

correlated fading curves were calculated for ρn = 0 and ρh ∈ (0, 0.95] in (2.38), and
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conversely for correlated noise. The lines are computed using numerical integration of

(2.39) and (2.40) at 0.01 increments of the correlation coefficient, and the points are

computed using Monte-Carlo simulations of (2.20) and (2.21) at 0.1 increments. The

logarithm is base-2, so the capacity units are bits per second per Hertz (b/s/Hz). There

are several observations to make from these results. First, Monte-Carlo simulations and

numerical integration appear to give consistent results, so we may use the more expedient

technique of numerical integration in future computations. Second, the benefit of full CSI

is almost negligible for all values of fading and noise correlation. However, we note that

this conclusion applies specifically to the case we have considered where the SNR is

large and N ≤ M ; if either the SNR is small or N > M , full CSI may offer a large

improvement in capacity (cf., [83, Sec. 5.4.6]). The final and most important observation

we make from these plots is that fading and noise correlation have quite opposite effects.

Fading correlation degrades capacity, while capacity increases with noise correlation.

To gain some insight into the distinctive behavior of fading and noise correlation, let

us examine the CSIR ergodic capacity of an N × 2 system for limiting values of ρh and

ρn. For correlated fading and ρn = 0, the SNR matrix has eigenvalues λ1(Σ) = (1+ ρh)σ

and λ2(Σ) = (1 − ρh)σ, where σ is the SISO SNR (2.15). Thus as ρh → 1, we see that

λ1(H
†
wΣHw) → 2σ‖hw‖2 and λ2(H

†
wΣHw) → 0‖hw‖2, where hw ∈ CN is CN (0, I) and

‖ · ‖ is the Euclidean norm. Therefore, from (2.39) we conclude that the CSIR capacity

of an N × 2 system with spatially white noise and ρh = 1 is E[log(1 + 2 σ
N
‖hw‖2)]. From

(2.20) we see that this is identical to the CSIR capacity of an N × 1 system with twice

the transmit power. Since ρh = 1 implies the rows of H are equal with probability one,

we may obtain the aforementioned N × 1 channel by performing the operation r1 + r2.
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Figure 2.5: (a) ZF-SC and (b) MMSE-SC V-BLAST capacity of N × N systems with
correlated fading and noise.

The simplicity of this optimal array processing reflects the fact that the receiver provides

an array gain (of 3 dB) but no multiplexing gain (cf., [83, Sec. 8.2]). On the other hand,

for correlated noise and ρh = 0 we have λ1(Σ) = σ
1−ρn

and λ2(Σ) = σ
1+ρn

, so as ρn → 1

the largest SNR matrix eigenvalue λ1(H
†
wΣHw) →∞‖hw‖2, and the capacity is infinite.

In this case n1 = n2 with probability one, so we may create a noise-free channel by

performing the operation r1 − r2.

We note that the penalty of fading correlation and benefit of noise correlation are

well known for many other communication systems. For example, early studies of receive

diversity [65] noted the deleterious impact of fading correlation, and Van Trees’ classic

text includes an extensive and elegant discussion [86, Sec. 4.3] on how optimal detectors

and estimators exploit temporally correlated noise by subtracting an estimate of the noise

from the received signal. The observations we made in the preceding paragraph are just
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Figure 2.6: (a) Orthogonal STBC coding gain at 10−3 error probability and (b) MIMO-
MRC diversity gain at 1% outage probability for N ×N systems with correlated fading
and noise.

special cases of these well-established concepts, and we shall see further evidence of this

behavior in the next few examples and throughout the rest of this dissertation.

The capacity of the ZF-SC and MMSE-SC V-BLAST systems are shown in Fig. 2.5.

Only Monte-Carlo simulations are provided for the ZF-SC since, to the best of our knowl-

edge, no compact integral expression for (2.26) is available. To verify the optimality of

MMSE-SC claimed in (2.30), the points in Fig. 2.5(b) were computed using Monte-Carlo

simulations of (2.29) and the lines using numerical integration of the CSIR capacity

(2.39). The results are indeed in agreement.

Finally, coding and diversity gains for orthogonal STBCs (2.34) and MIMO-MRC

(2.37) are shown in Fig. 2.6. Here the coding gain is defined as the SNR difference

between the pairwise error probability and N = 1 curves at an error probability of 10−3,

and diversity gain is similarly defined for the outage curves at a 1% probability of outage.
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In Fig. 2.6(a) we use a BPSK constellation with a rate-1 code (e.g., the Alamouti code [2])

for N = 2 and a rate-1/2 code for N = 4, so NR = 2 for each curve.
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Chapter 3

Noise Correlation in Compact

Multi-Antenna Receivers

The numerical results of the previous chapter demonstrate the dramatic impact noise

correlation may have on the performance of MIMO communication schemes, which mo-

tivates the study of noise models for compact multi-antenna receivers. In this chapter we

evaluate the performance of an optimal diversity combiner in the presence of antenna mu-

tual coupling and various receiver noise sources. Our receiver noise model is divided into

three components: the antennas, front-end amplifiers, and everything else “downstream”

from the amplifiers. This approach will allow us to characterize the unique properties of

each source of noise, and to determine how each is impacted by antenna mutual coupling.

Prior approaches have only modeled noise from either the antennas [30], [48] or ampli-

fiers [59], [31], and a detailed study of how mutual coupling and the receiver structure

affect noise correlation is lacking. For example, both [59] and [31] present results for spe-
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cific amplifiers, but there is little discussion of how certain parameters of the amplifier

(e.g., unilaterality, gain, noise figure) affect noise correlation and performance. It is the

goal of this chapter to clearly articulate the characteristics of each receiver noise source

and study their impact on optimal diversity performance.

We begin with an overview of our receiver model and, in order to orient the reader

to receiver noise modeling, include a discussion of typical noise budgets for a single-

antenna receiver. This analysis suggests that for many receivers no single source of

noise is dominant. Using this model we find an expression for the signal collected by the

combiner, and formulas for the outage probability of an optimal combiner are derived. In

contrast to [59] and [31] (which use scattering and transmission parameters, respectively),

we use an impedance formulation to describe the receiver, for which the familiar concepts

of voltage and current may be more accessible to the reader unfamiliar with microwave

circuit analysis. In the subsequent section we attempt to connect our model with the

typical i.i.d. noise assumption. It is shown that in the presence of coupled antennas,

strong assumptions on both the receiver structure and dominant source of noise may

be needed to justify the white noise model. After introducing matching networks into

our model, numerical results are presented. Several scenarios of interest are presented,

including a detailed study of receiver noise correlation, a parametric sweep of various

receiver parameters and noise sources, and the impact of directional fading and sky

noise. From these results and the developed theory we conclude that noise correlation

in compact multi-antenna receivers depends on the interaction between the dominant

sources of noise and the coupled antennas – a result that may have profound implications

for the selection of receiver components. For example, in uncoupled systems only the
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Figure 3.1: Basic diagram of a post-detection diversity receiver.

total noise power generated by a front-end amplifier is of interest, while in the presence

of coupled antennas one should be concerned with how the noise is distributed between

the input and output ports.

3.1 Receiver Model

A typical post-detection diversity receiver is illustrated in Fig. 3.1. The signals col-

lected by each antenna are amplified and demodulated prior to A/D conversion and

diversity combining. We assume coupling occurs only between antennas; there is no

coupling between the amplifiers, demodulators or A/D converters in each branch. We

further assume a narrowband system, so all impedances are constant over the system

bandwidth and all signals can be expressed in complex baseband form. A circuit model

of this M -branch receiver is illustrated in Fig. 3.2. Both the antenna array and front-end

amplifiers are represented by equivalent noisy circuit models. As will be seen later, noise

generated by receiver components “downstream” from the front-end amplifiers is consid-
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Figure 3.2: Circuit model of a post-detection diversity receiver.

erably less affected by antenna coupling, so we shall lump them together as a “load” on

the amplifiers. Below we discuss these circuit models in more detail.

3.1.1 Antenna Array

The function of an antenna is to convert an incident electromagnetic field into a

voltage across the antenna terminals. When the antennas of an array are closely spaced,

the terminal voltage of each antenna depends not only on the field at that antenna but

also on the currents flowing through neighboring antennas. The relationship between

the terminal voltages and currents, arranged in M -dimensional column vectors v and i,

respectively, can be modeled as

v = ZAi + vo , (3.1)

where ZA is an M ×M impedance matrix and vo is an M -dimensional vector of open-

circuit (induced) voltages. Here [ZA]nn is the self-impedance of antenna n, and [ZA]nm
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is the mutual impedance between antennas n and m. Approximate formulas for these

impedances are available for thin dipoles [4, Ch. 8]; other types of antennas may be

evaluated by numerical techniques.

We assume a frequency-flat, Rayleigh fading environment, so

vo = hx + no , (3.2)

where x is the transmitted symbol, h is a vector of fading path gains, and no is noise.

The transmit power is P , E[|x|2], where E[ · ] denotes the expectation. For Rayleigh

fading h has a zero-mean, circularly-symmetric, complex Gaussian distribution, denoted

by h ∼ CN (0,Σh), where Σh = E[hh†] is the fading correlation matrix.

For perfectly conducting antennas, no is the voltage induced in the array by noise

sources in the surrounding environment. These sources may include thermal radiation,

cosmic background, and interference from other electronic devices. We will use the

classical model for spherically isotropic thermal radiation in which the array is surrounded

by a blackbody enclosure at temperature TA K (cf., [5, Ch. 6]). The noise voltage is

then [85] no ∼ CN (0, 4kTABRA), where RA , 1
2
(ZA + Z†A), † denotes the conjugate-

transpose, k = 1.38 × 10−23 J/K is Boltzmann’s constant and B is the bandwidth in

Hz. Gaussian interference may be modeled by a simple generalization of this model

that accounts for its spatial distribution (the above model is isotropic) [66, pg. 642]; an

example will be provided in Sec. 3.6.6. Note that if the array is imbedded in a linear

medium, the reciprocity theorem of electromagnetics [4, pg. 144] implies ZA is symmetric,

and so RA = Re[ZA].
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3.1.2 Front-End Amplifiers

An amplifier is usually well-modeled within its dynamic range as a linear, noisy two-

port network, so it can be represented by a Thevenin equivalent network with impedance

matrix 


z11 z12

z21 z22


 (3.3)

and open-circuit noise voltages n1 and n2 at the input and output ports, respectively.

Many noise sources, such as thermal and shot noise, are well-modeled [5, pg. 42] as

ni ∼ CN (0, σ2
i ), with ρ12 , E[n1n∗2]

σ1σ2
6= 0 in general. Thus amplifier noise may be charac-

terized by the noise parameters {σ1, σ2, ρ12}. However, these particular parameters are

rarely used in practice. Below we briefly present some of the more common noise metrics

relevant to this study.

The Rothe-Dahlke [70] noise model, shown for each amplifier in Fig. 3.2, is typically

used to model amplifiers instead of the Thevenin equivalent model discussed above. The

voltage and current sources at the input port, denoted by va and ia, are related to the

parameters above by

va = n1 +
zcor − z11

z21

n2 , ia = − n2

z21

(3.4)

where zcor = rcor + jxcor = z11 − z21ρ12
σ1

σ2
is the correlation impedance defined so that

E[vai
∗
a] = 0. A common convention is to normalize the variances of these noise sources by

the thermal noise power generated by a 1 Ω resistor at standard temperature T0 = 290

K. Thus, the equivalent noise resistance of the voltage source and the equivalent noise
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conductance of the current source are given by

ra =
E [|va|2]
4kT0B

, ga =
E [|ia|2]
4kT0B

. (3.5)

The amplifiers in Fig. 3.2 are identical and uncoupled, so the joint distributions of

the M amplifier voltage and current sources are va ∼ CN (0, 4kT0BraI) and ia ∼
CN (0, 4kT0BgaI), where I is the identity matrix.

An important amplifier noise metric is the noise factor, Famp, defined as the ratio of

the output noise power to the noise power contributed by a source alone, when a source

impedance zs = rs +jxs at standard temperature is connected to the input port, i.e., [70]

Famp = 1 +
1

rs

(
ra + ga |zs + zcor|2

)
. (3.6)

The noise factor is useful because it relates the input and output signal-to-noise ratios

(SNRs) of the amplifier, given in dB by SNRout = SNRin−NF, where NF = 10 log10 Famp

is the noise figure. Note that Famp attains its minimum value Fmin when zs = zopt

where [70]

Fmin = 1 + 2

(
garcor +

√
gara + (garcor)

2

)
(3.7)

zopt =
√

ra/ga + r2
cor − jxcor . (3.8)

Note the parameters {Fmin, ga, zopt} are typically used to characterize the noise statistics

of low-noise amplifiers (LNAs),1 and are related to the noise factor by

Famp = Fmin +
ga

rs

|zs − zopt|2 . (3.9)

1A variation of these parameters based on the admittance version of the Rothe-Dahlke model are
{Fmin, Ra, Yopt}. For microwave amplifiers a reflection coefficient Γopt is usually given in place of Yopt [66,
pg. 558].
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3.1.3 Load

Since the receiver chains downstream from the amplifiers in Fig. 3.1 are assumed to

be electrically isolated, the noise in each branch is independent and the impedances are

uncoupled. Each branch consists of filters, mixers and other analog devices that generate

noise. Here we reference all downstream noise to the amplifier output and assume that

each branch may be modeled by an impedance zL and a zero-mean Gaussian noise voltage

vdi with equivalent noise resistance rd, as shown in Fig. 3.2. We denote the noise factor

of the downstream components by Fdow.

3.2 Noise in Single-Antenna Receivers

Prior studies of noise in multi-antenna receivers have assumed either antenna [30]

or amplifier [59], [31] noise is dominant, and downstream noise is usually neglected.

In this section we examine this assumption by considering typical noise budgets for a

single-antenna receiver, which suggest that for many receivers no single source of noise

is dominant. The results of this section may be inferred from any text on receiver design

(e.g., [66, Ch. 10-13]).

Consider the model of Fig. 3.2 with M = 1. As discussed in Sec. 3.1.2, for TA = T0

the SNR drop across the receiver is equal to its noise factor FRx. For TA 6= T0, it can be

shown (cf., [66, pg. 641]) that the SNR drop across the receiver is 1 + T0

TA
(FRx − 1), so

the SNR at the load is

σ =
P

4kT0BrA

· 1
TA

T0
+ FRx − 1

. (3.10)
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If Gamp = |z21/(zA + z11)|2 is the amplifier gain, then the receiver noise factor is related

to the amplifier and downstream noise factors by (cf., [66, pg. 495])

FRx = Famp +
Fdow − 1

Gamp

. (3.11)

We may now use (3.10) and (3.11) to make the following assertions for single-antenna

receivers:

• Assuming typical receiver noise figures of 3− 10 dB, in order for antenna noise to

dominate we would need TA to be at least 10− 100 times larger than the standard

temperature.

• On the other hand, antenna noise of purely thermal origin typically results in

TA/T0 ∈ [−3, 0] dB [66, Fig. 13.6], so receiver noise figures of at least 7 − 10 dB

would be required in order to neglect thermal antenna noise.

• Many microwave amplifiers have FampGamp ∈ [10, 20] dB [66, Tbl. 10.2], in which

case the downstream noise figure2 may need to be as low as 1 − 10 dB to be

considered negligible.

From this discussion we conclude that one must typically include all three noise sources.

As an example, consider the receiver in [66, Ex. 10.2]. The antenna temperature is 150

K, the LNA has a 2 dB noise figure and 10 dB gain, and the downstream components

consist of a filter with 1 dB loss and a mixer with 4 dB noise figure. Here no noise source

2In contrast to the LNA, some downstream components are lossy, noisy devices such as filters and
mixers, so noise figures in the 5− 10 dB range are not uncommon.
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can be neglected since

TA

T0

= 0.517 , Famp − 1 = 0.585 ,
Fdow − 1

Gamp

= 0.216 .

3.3 Outage Probability of an Optimal Combiner

We now derive the outage probability of an optimal diversity combiner for the system

in Fig. 3.2. We begin by finding an expression for the voltage across the load, vL, and

then use this expression to determine the optimal combiner. We assume throughout that

all impedance matrices are invertible, so every non-zero current vector input produces a

non-zero voltage vector.

The M uncoupled amplifiers may be collectively viewed as a 2M -port network with

input and output open-circuit voltages va + (zcor − z11)ia and −z21ia, respectively, and

impedance matrix 


z11I z12I

z21I z22I


 , (3.12)

where each I is M×M . Relating the voltages and currents at the input and output of this

network to those of the antenna array, we can show that the antenna array plus amplifiers

comprise an M -port network with open-circuit voltage u and impedance matrix Z, where

u = C(vo − va)− [(zcor − z11)C + z21I] ia

Z = −z12C + z22I , (3.13)

and C = z21 (ZA + z11I)
−1. By voltage division between this network and the load, we
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obtain

vL = zL (Z + zLI)
−1 u + Z (Z + zLI)

−1 vd

= G
[
vo − va − (ZA + zcorI) ia + Kvd

]
, (3.14)

where

G =
z21zL

zL + z22

(
ZA +

z11(zL + z22)− z12z21

zL + z22

I

)−1

(3.15)

K =
z22

z21zL

(
ZA +

z11z22 − z12z21

z22

I

)
. (3.16)

Since we have assumed G is invertible, finding an optimal combiner for vL is equivalent

to finding one for G−1vL. Since the latter expression is simpler, we take the observed

signal to be

r , G−1vL = hx + n , (3.17)

where the second equality follows by substituting (3.2) into (3.14), and defining the noise

as

n , no − va − (ZA + zcorI) ia + Kvd . (3.18)

Recalling that no ∼ CN (0, 4kTABRA), va ∼ CN (0, 4kT0BraI), ia ∼ CN (0, 4kT0BgaI)

and vd ∼ CN (0, 4kT0BrdI) are mutually independent, we obtain n ∼ CN (0,Σn) where

Σn = 4kT0B

[
TA

T0

RA + raI + ga (ZA + zcorI) (ZA + zcorI)
† + rdKK†

]
. (3.19)

We now derive the optimal linear combiner for the observation (3.17). For a combiner

of the form y = w†r, the instantaneous SNR at the combiner output is

γ(w) = P

∣∣w†h
∣∣2

E |w†n|2 = P
w†hh†w
w†Σnw

. (3.20)
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For i.i.d. noise (e.g., Σn = I) it is well-known [8] that the maximum-ratio combiner

(MRC) w ∝ h uniquely maximizes γ(w). It is a simple exercise [22] to show that

w ∝ Σ−1
n h maximizes (3.20) for any noise correlation. The resulting optimal SNR is3

γo = max
w

γ(w) = P · h†Σ−1
n h . (3.21)

The performance of receive diversity systems is often measured by the outage prob-

ability, defined as Pout(τ) = Pr {γo ≤ τ}, where τ is a non-negative threshold. A

closed-form expression for the outage can be obtained using the results of [51]: If

λ1(Σ) > · · · > λM(Σ) > 0 are the distinct eigenvalues of the SNR matrix

Σ , P ·Σ1/2
h Σ−1

n Σ
1/2
h , (3.22)

and A1/2 is the positive-definite square root of a positive definite matrix A [40, pg. 406],

then4

Pout(τ) =
M∑

j=1

λM−1
j (Σ)

(
1− e−τ/λj(Σ)

)
∏

i6=j(λj(Σ)− λi(Σ))
. (3.23)

The restriction of distinct eigenvalues on Σ includes a large class of Σh and Σn; however,

an important exception occurs when Σh and Σn are proportional. One example of

proportional Σh and Σn occurs when both the fading and noise are i.i.d.; a second

example will be presented in Section 3.6.4. In this case, the SNR matrix (3.22) reduces

to Σ = σI, where σ is the single-antenna SNR (3.10), and we may use Brennan’s outage

formula [8]:

Pout(τ) =
1

(M − 1)!

∫ τ/σ

0

tM−1e−tdt . (3.24)

3Optimization problems of this form are encountered in many other areas; adaptive array processing
is one related example [41, pg. 60].

4This follows from the Appendix of [51] by writing γo = h†wΣhw, where hw ∼ CN (0, I).
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3.4 Spatially White Noise

Most prior studies of receive diversity assume spatially white noise. In this section

we examine some sufficient conditions for uncorrelated noise in our model. The total

noise voltage across the load is Gn, where G and n are defined in (3.15) and (3.18).

Thus the correlation matrices of noise contributions from the antennas, amplifiers, and

downstream components are given by

Σant = 4kTABGRAG† (3.25)

Σamp = 4kT0BG
[
raI + ga(ZA + zcorI)(ZA + zcorI)

†]G† (3.26)

Σdow = 4kT0B
rd

|zL + z22|2 (z22I− z12G)(z22I− z12G)† . (3.27)

When the antennas are uncoupled, ZA is diagonal and from (3.15) we see that each

of the above correlation matrices is diagonal, and so the noise is spatially white. Not

surprisingly, mutual coupling is therefore necessary in our model for the noise to be

correlated. It is not, however, sufficient: the noise can be white when the antennas are

coupled. Since the amplifier and downstream noise sources are independent, isolating

these sources from the coupled antennas should result in spatially white noise. Two

examples of this are given below.

An amplifier that provides zero gain from its output to input port (the reverse signal

path) is said to be unilateral [66, pg. 524]. This condition implies z12 = 0 in Fig. 3.2

and results in a diagonal Σdow in (3.27). Since most practical front-end amplifiers are

approximately unilateral (z12 ≈ 0), we expect that a spatially white noise model is

justified if there is a dominant source of noise downstream from the amplifiers. Later we

will illustrate this result for a specific LNA.
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Other assumptions may also result in white noise. In [31] the dominant noise sources

are assumed to be unilateral front-end amplifiers with the property that the total noise

current at the amplifier output is independent of the source impedance. To see the

implications of this assumption, observe that when an impedance zs is connected to the

input port of the Rothe-Dahlke amplifier model (cf. Sec 3.1.2) with z12 = 0, the noise

current at the output is

iout =
z21

(z11 + zs)(z22 + zL)
[va + (zcor + zs) ia] . (3.28)

This expression is independent of zs only if va = ia(z11 − zcor). From (3.4), this is

equivalent to assuming that the input port is noise free, n1 = 0, which implies ra = 0

and zcor = z11. It is easy to show that these conditions, together with the assumption

z12 = 0, do indeed imply that Σamp in (3.26) is diagonal, as asserted in [31]. However, it

appears that many practical amplifiers (e.g., [57]) do not satisfy these conditions, and so

the amplifier noise may be correlated.

These observations suggest that, when the antennas are coupled, strong assumptions

on the front-end amplifiers and downstream components may be needed to justify a white

noise model. Even when the noise sources in each branch are independent (e.g., amplifier

noise), these sources can interact through the coupled antennas to produce correlated

noise in the observed signal. White noise can arise when the amplifiers completely isolate

these sources from the antennas, but many amplifiers do not satisfy the conditions needed

for this to occur.
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Figure 3.3: Receiver model with matching.

3.5 Matching Networks

The transfer of signal and noise power between two networks may be controlled using

impedance matching techniques (cf., [66, Ch. 5]). Ideally a matching network is formed

with passive, reactive elements so it is noiseless, lossless, and reciprocal. Consider a

2M -port matching network inserted between the antennas and front-end amplifiers in

Fig. 3.2 with impedance matrix



ZM11 ZM12

ZM21 ZM22


 , (3.29)

as shown in Fig. 3.3. If v1,v2 and i1, i2 denote the voltages and currents at the input

and output of the network, respectively, the matrices in (3.29) are defined by the circuit

equations

v1 = ZM11i1 + ZM12i2

v2 = ZM21i1 + ZM22i2 , (3.30)
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where each ZMnm is an M × M matrix. The network is lossless (no power is dissi-

pated within it) provided the following conditions are satisfied [38, pg. 13]: ZM11 =

−ZM
†
11, ZM22 = −ZM

†
22, ZM21 = −ZM

†
12. Most passive networks are also reciprocal, in

which case ZM11 = ZM
T
11, ZM22 = ZM

T
22, and ZM21 = ZM

T
12, where the T superscript

denotes transpose.

From the standpoint of the rest of the receiver, the antennas plus matching comprise a

noisy linear network which can be represented by a Thevenin equivalent circuit with [38]

v′o = Mvo , Z′A = −MZM12 + ZM22 , (3.31)

where M = ZM21 (ZA + ZM11)
−1. Thus the results of Section 3.3 still apply with Σh

replaced by MΣhM
† and ZA replaced by Z′A. In particular, the SNR matrix (3.22)

becomes5

Σ =
P

4kT0B
MΣhM

†
[
TA

T0

R′
A + raI + ga (Z′A + zcorI) (Z′A + zcorI)

†
+ rdK

′K′†
]−1

,

(3.32)

where R′
A , 1

2
(Z′A + Z′†A) and K′ is given by (3.16) with ZA replaced by Z′A.

3.6 Numerical Results

We now present numerical results for several examples of our model. In each case we

use (3.23) and (3.32) to calculate the diversity gain at 1% outage for M = 2, 4 antennas,

where diversity gain is defined as the difference in SNR between a given outage curve and

5For convenience we have expressed the SNR matrix as P ·ΣhΣ−1
n , which has the same eigenvalues

(and therefore results in the same outage probability) as the SNR matrix defined in (3.22).
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the M = 1 curve at a fixed probability. We begin with a description of the parameters6

common to each example.

3.6.1 System Parameters

We consider a uniform linear array (ULA) of half-wavelength dipoles with inter-

element spacings 0.01λ ≤ d ≤ λ, where λ is the wavelength. The received electric field

is composed of a large number (in the sense of the central limit theorem for Rayleigh

fading) of plane waves with independent and uniformly-distributed polarization angles7

and phases. In a spherical coordinate system with θ and φ denoting the zenith and az-

imuth, respectively, let p(θ, φ) sin θdθdφ denote the probability that a plane wave arrives

within solid angle sin θdθdφ. Then the entries of the fading correlation matrix are given

by (cf., [17])

[Σh]nm =

∫ 2π

0

∫ π

0

gn(θ, φ)g∗m(θ, φ)ej 2π
λ

d(m−n) sin θ cos φp(θ, φ) sin θdθdφ , (3.33)

where the antenna pattern gn(θ, φ) is defined as the voltage induced in the nth dipole by

a zero-phase, unit-amplitude, θ̂-polarized plane wave with angle-of-arrival (AoA) (θ, φ)

(cf., Appendix A). In the first few examples we shall consider the standard 2D scattering

model p(θ, φ) = 1
2π

δ
(
θ − π

2

)
. We shall initially take TA = T0, and consider the impact of

antenna temperature in a later example.

Approximate expressions for the impedance matrix ZA and antenna patterns gn(θ, φ)

6Diversity gain is unchanged for scalar multiples of the fading and noise correlation matrices such as
P and B, so values for these parameters are not provided.

7Since dipoles respond only to the field component parallel to its axis, we may equivalently consider
co-polarized waves with i.i.d. amplitudes α ∈ (0, 1), where Pr[α ≤ x] = 1 − 2

π cos−1 x. Regardless, the
average power loss resulting from random amplitudes may be absorbed into P .



53

are given in [4, Ch. 8] for infinitesimally thin wire dipoles. To account for scatter-

ing among the antennas, however, we evaluated these quantities numerically for finite-

thickness dipoles using the Numerical Electromagnetics Code (NEC) [9], a method-of-

moments based program. Details of the NEC simulations and results are provided in

Appendix A. Each wire dipole was 10−3λ thick and divided into 25 computational seg-

ments. For each value of d, gn(θ, φ) was computed over 11.25◦ increments of azimuth

and zenith and the results used to numerically approximate (3.33). Note that, in the

absence of scattering among the antennas, each dipole could be considered omnidi-

rectional, gn(π
2
, φ) = 1, and for 2D scattering (3.33) reduces to Clarke’s [17] formula

J0

(
2π d

λ
(m− n)

)
, where J0(x) is the zeroth-order Bessel function of the first kind.

The amplifier selected for this study is a low-cost SiGe, heterojunction bipolar transis-

tor LNA [57] designed for use in the cellular band. In high-gain mode with Rbias = 510 Ω

and fc = 900 MHz, its impedance matrix and Rothe-Dahlke noise parameters are:



z11 z12

z21 z22


 =




35.7∠− 82.0o 2.74∠91.8o

325∠119o 46.1∠− 23.3o


 Ω

ra = 9.45 Ω, ga = 3.24 mS, zcor = 35.3∠− 114o Ω

This amplifier is nearly unilateral (z21 À z12) and the minimum noise figure is quite low

(1.04 dB), ideal characteristics for front-end amplifiers. In practice the noise figure may

be slightly higher due to impedance mismatch and other implementation issues, but still

low enough (a few dBs) that amplifier noise cannot be regarded as dominant over thermal

antenna noise.

We calculate the downstream equivalent noise resistance rd from a textbook example
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[66, pg. 654] in which the downstream components are a mixer with a 6 dB conversion

loss and 7 dB noise figure and an intermediate-frequency amplifier with a 1.1 dB noise

figure. The downstream noise figure is then ∼ 7.6 dB. Converting this to an equivalent

noise resistance is not straightforward since the noise factor (3.6) depends on additional

parameters. For the purpose of this example, we assume the downstream components

take the composite form of a unilateral amplifier with a single input-referred noise source,

and that the above noise figures were calculated with the standard Z0 = 50 Ω input

impedance. The equivalent noise resistance is then

rd = Z0(Fdow − 1) ≈ 240 Ω . (3.34)

3.6.2 Multiport and Self Matching

We now evaluate outage for two matching networks considered in [59]. In optimal

multiport matching for minimum noise figure, the network (3.31) is chosen so that Z′A =

zoptI, where zopt = ropt + jxopt is the source impedance (3.8) that minimizes the amplifier

noise factor Famp. A lossless, reciprocal matching network that accomplishes this task is




ZM11 ZM12

ZM21 ZM22


 = j




−XA (roptRA)1/2

(roptRA)1/2 xoptI


 (3.35)

where XA , 1
2j

(ZA − Z†A).

The matching network (3.35) may be difficult to realize in practice. A simpler, sub-

optimum strategy is to apply to each receive antenna the two-port matching network

that achieves the minimum noise figure for that antenna in isolation. This is called self



55

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

8

10

12

14

16

18

20

d/λ

D
iv

er
si

ty
 G

ai
n 

[d
B

]

Multiport Match
Self Match
i.i.d. Fading & Noise

M = 4

M = 2

M = 3

Figure 3.4: Diversity gain at 1% outage for multiport and self matching.

matching for minimum noise figure and is accomplished by the network




ZM11 ZM12

ZM21 ZM22


 = j




−xAI
√

roptrAI

√
roptrAI xoptI


 (3.36)

where zA = rA + jxA is the self-impedance of each antenna in isolation.

Diversity gains for both multiport and self matching are shown in Fig. 3.4, with the

i.i.d. fading and noise case (3.24) included for reference. At close inter-element spacings

there is a dramatic difference between the two matching networks – gain for self-matching

drops sharply for small d, while multiport matching does not. For example, there is little

benefit (< 1 dB for M = 3, 4) in using more than two self-matched antennas for a fixed

receiver aperture of 0.2λ, while there is apparently a significant benefit for multiport

matching.
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Figure 3.5: Diversity gain for various noise sources and self-matching.

3.6.3 Noise Sources

We now examine the impact of each noise source by considering antenna, amplifier,

and downstream noise individually. For multiport matching Z′A = zoptI, so from (3.32)

Σ = σrAR
−1/2
A ΣhR

−1/2
A , (3.37)

where σ is the SNR of a single-antenna system (3.10) with TA = T0 and zA = zopt.

Since diversity gain is unchanged by scalar multiples of Σ, the impact of each noise

source is identical for multiport matching. For self-matching, however, there is a strong

dependence on the relative strength of each noise source. This is illustrated in Fig. 3.5,

where diversity gain curves are shown for systems in which each source is dominant. Note

that noise from the amplifiers has the most detrimental affect, while antenna thermal

noise appears to be more benign. A system with all three noise sources (e.g., the previous

example) would lie between these extremes.
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Figure 3.6: Output signal and noise (a) power and (b) correlation in a dual-diversity
system with self-matching.

For M = 2, we can gain insight by examining how the power and correlation of each

noise source varies with antenna spacing d. These parameters can be calculated from the

matrices (3.25)-(3.27) with ZA replaced by Z′A. For example, the antenna noise power

in each branch is P = [Σant]11 = [Σant]22, and the correlation between the noise in each

branch is ρ = [Σant]12/[Σant]11. In Fig. 3.6, we plot P and ρ for each noise source, and for

the fading path gains (3.33). In this plot, each power is normalized by the corresponding

power for M = 1. From Fig. 3.6(a), note that amplifier noise power increases as the

antennas move closer. This explains the negative impact of amplifier noise in Fig. 3.5,

and is caused by each antenna recapturing amplifier noise radiated from its neighbor.

This is illustrated in Fig. 3.7, where the noise power an amplifier contributes to its own

branch is compared to the power it contributes to the other branch. In Fig. 3.6(b) we

see that both fading and antenna noise become highly correlated as the antennas move
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Figure 3.7: Amplifier power coupling.

closer. Since correlated noise is generally desirable in communications, exploiting this

correlation in our model mitigates the undesirable impact of fading correlation for small

d. Finally, observe that downstream noise power is relatively constant and correlation low

for most d, similar to white noise. Indeed, setting Σn = I and repeating the self-match

simulations in Fig. 3.4 produced curves (not shown) almost indistinguishable from the

downstream noise curves in Fig. 3.5. As discussed in Sec. 3.4, this is due to the amplifier

unilaterality that isolates downstream components from the coupled antennas. If the

amplifier was perfectly unilateral (z12 = 0), both downstream noise curves in Fig. 3.6

would be exactly zero at all spacings.

3.6.4 3D Scattering

At the end of Section 3.3 we mentioned that systems with proportional fading and

noise correlation matrices have the same outage probability as a system with i.i.d. fading
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and noise. In this section we examine two cases of this phenomenon, both of which follow

from a well-known result in electromagnetics that we briefly present below.

Consider operating the array in transmit mode by applying a current i = [i1 · · · iM ]T to

its terminals. By superposition and reciprocity, the electric field at a large distance r from

the array (i.e., in the radiation zone) is given by θ̂ 1
r
e−j 2π

λ
r
∑

n ingn(θ, φ)ej 2π
λ

d(1−n) sin θ cos φ,

where θ̂ is the unit vector oriented along the θ direction. The array is lossless, so the real

power delivered to the antennas must be equal to the radiated power:

i†RAi =
1

η0

∫ 2π

0

∫ π

0

∣∣∣∣∣
∑

n

ingn(θ, φ)ej 2π
λ

d(1−n) sin θ cos φ

∣∣∣∣∣

2

sin θdθdφ , (3.38)

where η0 ≈ 120π Ω is the impedance of free space. Since this holds for all i we conclude

that

[RA]nm =
1

η0

∫ 2π

0

∫ π

0

gn(θ, φ)g∗m(θ, φ)ej 2π
λ

d(m−n) sin θ cos φ sin θdθdφ . (3.39)

This result is well-known in the antenna community (sometimes expressed in terms

of scattering parameters, cf. [77]), and has been used in the context of communications

to relate fading correlation and mutual impedances [89]. In particular, for a 3D scat-

tering model in which the received electric field arrives from each direction with equal

probability, i.e., p(θ, φ) = 1
4π

, from (3.33) and (3.39) we see that Σh = η0

4π
RA. Here we

are concerned with two consequences of this result observed in8 [30], [31] that also hold

for our model:

8Recall that the receiver model in these references is a special case of Fig. 3.2 in which the amplifiers
are unilateral with no input noise (see our discussion in Section 3.4) and downstream noise is neglected.
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1. For 3D scattering and multiport matching (cf. Sec. 3.6.2), from (3.37) we see that9

Σ = ση0

4π
I.

2. For 3D scattering and any lossless matching network, when antenna noise is domi-

nant (i.e., we can zero ra, ga, and rd without appreciably changing Σn), from (3.32)

we have

Σ =
P

4kT0B
MΣhR

−1
A M−1 =

Pη0

16πkT0B
I, (3.40)

where we observed R′
A = MRAM† for lossless matching, cf. (3.31).

In both cases the diversity gain is identical to that of a system with i.i.d. fading and

noise, regardless of inter-element spacing. This result is unsettling since it suggests that,

at least in theory, one may realize unbounded performance improvements by packing an

arbitrarily large number of antennas into a small space. However, we show below that

for small d both observations are extremely sensitive to other system parameters.

Let us begin with observation 1. In this study we have assumed a narrowband,

frequency-flat system, so the array impedance and radiation pattern were computed at

a single frequency fc (the value of fc is immaterial since the antenna parameters may

be normalized by λ, e.g., we are using a λ
2
-length dipole). To test whether these results

are valid in a useable frequency band around fc, we recalculated the transformed array

impedance matrix Z′A and induced voltage v′o with the multiport matching tuned to

fc and the array parameters calculated at 0.999fc, 0.99fc, and 0.95fc. The resulting

9In Fig. 3.4, where 2D scattering is assumed, the multiport curves are quite close to the i.i.d. fading
and noise curves. Here the dipole radiation pattern attenuates many of the AoAs in the support set of
p(θ, φ) exclusive to 3D scattering.
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Figure 3.8: Diversity gain with 3D fading. (a) Multiport matching at various multiples
of the center frequency fc. (b) Antenna noise of varying strength.

diversity gain is shown in Fig. 3.8(a). Performance is equal to an i.i.d. fading and noise

system at exactly fc, as predicted, but drops off dramatically from this frequency for small

d. A similar conclusion is reached in [50] for a decoupling matching network optimized

for maximum power transfer in a system with i.i.d. noise. As noted in [31], this sharp

bandwidth reduction is an artifact of supergain behavior. The problems associated with

superdirective arrays have been well-chronicled in the antenna design literature (cf., [4, pg.

345]) and their implications for MIMO are considered in [60].

Now consider observation 2. Since it is clear from (3.32) that Σ is non-diagonal when

we include receiver noise (i.e., ra, ga, and rd are nonzero), it is interesting to consider how

large we must make the antenna temperature in order to approximate an i.i.d. system.

To answer this question we re-evaluated the self-matching system in Sec. 3.6.2 with 3D

scattering and TA 6= T0. The resulting diversity gain is shown in Fig. 3.8(b) as a function
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of antenna temperature for several inter-element spacings. Note that for d = 0.2λ,

TA only needs to be a few hundred Kelvin above standard temperature to approach the

i.i.d. curve, but for d = 0.05λ this same result requires a tremendously large temperature.

Such large temperatures are usually non-thermal in origin (cf., [66, Fig. 13.6]), e.g., from

a strong source of Gaussian interference.

3.6.5 Downstream Noise

As discussed in Sec. 3.4, downstream noise becomes correlated by traversing the

reverse signal path (output to input) of the amplifiers and coupling through the antennas.

In this example we quantify how amplifier unilaterality and antenna mutual coupling alter

the impact of downstream noise on the self-matching receiver of Sec. 3.6.2. We consider

3D scattering and set TA = T0.

In Fig. 3.9 we plot diversity gain as a function of downstream noise figure (3.34), pa-

rameterized by various degrees of amplifier unilaterality and inter-element spacings. To

make the amplifier [57] more (less) unilateral we performed the transformation {z12, z21} →
{1

c
z12, cz21} ({z12, z21} → {cz12,

1
c
z21}), where c =

√
10, which alters the relative strength

of the noise from the antennas (3.25) and amplifiers (3.26) while keeping the downstream

noise (3.27) fixed. From this plot we see that when the antennas are strongly coupled

and the amplifier is less unilateral, downstream noise has a dramatic impact on diversity

gain, even for relatively low-noise devices (e.g., Fdow ∼ 3 dB). For example, at d = 0.05λ

increasing the downstream noise figure from 0 to 10 dB reduces diversity gain by almost 2

dB for the “less unilateral” amplifier, while there is little change in diversity gain for the
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Figure 3.9: Diversity gain as a function of downstream noise figure at various antenna
spacings and amplifier unilaterality.

“more unilateral” amplifier. On the other hand, at d = 0.2λ varying both the downstream

noise figure and amplifier unilaterality yields negligible change in performance.

3.6.6 Directional Fading and Sky Noise

In Fig. 3.8(b) we observed that large antenna temperatures were required to render

receiver noise negligible. Such large temperatures are usually non-thermal in nature and

arise from a strong source of Gaussian interference. In contrast to spherically isotropic

thermal noise, interference is typically directional, so in this example we consider direc-

tional fading and sky noise.

Let us model directional fading by (3.33) with p(θ, φ) = δ
(
θ − π

2

)
u(φ), where u(φ)

is uniform over
(−φs

2
, φs

2

)
and φs ∈ [0, 2π] is the angular spread. We may replace the

thermal antenna noise model used throughout this chapter with directional sky noise of
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Figure 3.10: (a) Diversity gain and (b) correlation for directional fading and sky noise
with various angular spreads.

the same form as (3.33) by taking no ∼ CN (0,Σo), where

[Σo]nm =
4kTABrA

φs

∫ φs/2

−φs/2

gn(π/2, φ)g∗m(π/2, φ)ej 2π
λ

d(m−n) cos φdφ , (3.41)

which is normalized so that the sky noise power of a single-antenna receiver is 4kTABrA.

We continue with the self-matching receiver model, so the SNR matrix is given by (3.32)

with the 4kTABR′
A term replaced by (3.41). For the purpose of this example we simply

take TA = T0.

Diversity gain for various angular spreads of fading and sky noise are shown in

Fig. 3.10(a). In the directional fading curve the sky noise is omnidirectional (φs = 2π),

and the opposite applies for the directional sky noise curve. The correlation coefficient

corresponding to various angular spreads is provided in Fig. 3.10(b) for reference. Note

that directional fading is generally much more harmful than directional sky noise is ben-

eficial. For example, reducing the angular spread of fading from 360◦ to 45◦ results in an
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almost 7 dB drop in diversity gain over the entire range of inter-element spacings, while

reducing the sky noise angular spread by the same amount only improves performance by

about 1 dB. This can be explained by observing that directional fading changes the entire

signal correlation matix in (3.32), whereas directional sky noise affects only the first term

of the noise correlation (i.e., amplifier and downstream noise are unchanged). Of course,

if antenna noise were dominant the benefit of directional sky noise would increase.

3.7 Conclusion

A model for a compact diversity receiver was presented that articulates noise from

the antennas, front-end amplifiers, and downstream components. Using this model we

showed that receiver noise is generally correlated between diversity branches, in contrast

the common assumption of spatially white noise. In fact, our results suggest that, in

the presence of strongly coupled antennas, some stringent assumptions on the dominant

source of noise and receiver structure may be needed to justify a white noise model.

We considered several examples of receivers to illustrate the characteristics of different

noise sources. These examples suggest that the sources behave in profoundly different

ways:

• Thermal noise from the antennas has the least detrimental effect on diversity gain

since it becomes highly correlated at close antenna spacings.

• Amplifier noise can reduce diversity gain more than any other noise source since

it can spread through neighboring receiver chains as the antennas become strongly
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coupled.

• Noise generated downstream from the amplifiers is usually well isolated from the

coupled antennas and thus behaves quite similar to spatially white noise. Its impact

on diversity gain is between that of antenna and amplifier noise.

Multiport matching may significantly alter the above conclusions since one may decouple

the antennas, however, at close antenna separations this may result in supergain effects

that sharply reduce the system bandwidth.

While the above results are specific to the examples considered, some of the insights

learned from this study may apply more broadly. Specifically, a spatially white noise

model may not be accurate, even if the noise sources in each branch are independent and

uncoupled. Each noise source is observed by the combiner (or any post-detection pro-

cesser) only after interacting with the coupled antennas, which acts to correlate both the

signal and noise components in each diversity branch. This effect is more significant for

noise sources closer to the antennas, and is dependent on the unilaterality of the front-end

amplifiers. We conclude that, in compact multi-antenna receivers, the impact of various

noise sources depends on receiver parameters (e.g., front-end amplifier unilaterality) that

are usually not considered in a standard single-antenna receiver noise budget. This is

a consequence of the fact that both the power and correlation of each noise source are

important. It is therefore vitally important to carefully identify different sources of noise,

as they may have profoundly different effects on performance.
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Chapter 4

Optimal Front-End Design for

Compact MIMO Receivers

A critical component of modern wireless receivers is the front-end, which converts

the weak RF signal collected by the antennas to a baseband signal suitable for A/D

conversion. It is well-known (cf., [66]) that a SISO front-end degrades the SNR by a

positive constant referred to as the noise factor (or noise figure in dB), so one usually

designs the front-end for minimum noise factor. For MIMO systems with independent

and identically distributed (i.i.d.) noise in each receiver chain, it is clear that one can

simply apply SISO minimum noise figure design to each chain. However, when the noise

is spatially colored, e.g., through mutual coupling in the antenna array or receiver, the

optimal design choice is no longer clear.

In this chapter we address the problem of optimal MIMO front-end design from a

communication theory perspective. Our approach will mirror the logical development
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of SISO low-noise design, in which one first parameterizes system performance by SNR,

then finds that designing the front-end for minimum noise figure maximizes SNR. After

introducing a circuit model for the antenna array and front-end, we observe that the

MIMO performance metrics derived in Sec. 2.3 depend on the positive-definiteness of the

SNR matrix, which is in turn dependent on a quantity we refer to as the noise factor

matrix. Our main result is a theorem that provides a sufficient condition for MIMO low-

noise design, and is optimal for a large class of front-ends and communication schemes.

In Sec. 4.3 we apply our result to the problem of matching network design for a

bank of uncoupled amplifiers. While prior studies in this area have certainly provided

insight to this problem, only heuristic arguments [58], [31] of capacity-optimal matching

have been provided. Matching that maximizes the output SNR of a phased array was

derived in [94], however, it was only conjectured to be optimal from a channel capacity

viewpoint. With the aid of the low-noise design principles developed in the prior sections

we are easily able to derive matching networks that maximize capacity, and moreover,

are optimal for a variety of different communication schemes.

Numerical results are presented in Sec. 4.4 that verify the optimal matching result and

demonstrate that the existing SISO low-noise design principles cannot reliably predict

performance in the presence of coupled antennas. With regard to the latter, we provide

a bank of two SISO front-ends with the same noise factor that perform quite differently

in the presence of coupled antennas – a result not predicted by standard two-port noise

theory. A brief review of some relevant concepts from two-port noise modeling is provided

in Appendix B.
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Figure 4.1: Receiver model. The antenna array and front-end are modeled with Thevenin
equivalent networks.

4.1 Receiver Model

Consider a MIMO system with N transmit and M receive antennas. The signals at

each receive antenna are usually amplified and down-converted before A/D conversion

and subsequent digital signal processing. The analog circuits that accomplish this goal

are collectively referred to as the front-end. In this chapter we will take a more general

viewpoint than is typically found in the communications literature by only constraining

the antenna array and front end to be linear networks with frequency-flat transfer function

and noise power spectral density. Under these conditions we may model each device with

a Thevenin equivalent network (cf., [38]), as shown in Fig. 4.1. Below we discuss these

networks in more detail.
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4.1.1 Antenna Array

Let v, i ∈ CM denote the complex-baseband voltage across and current flowing into

the antenna array terminals, respectively. The circuit equation for the array is

v = ZAi + vo , (4.1)

where ZA is the antenna impedance matrix and vo is the open-circuit (induced) voltage, as

shown in Fig. 4.1. Throughout this chapter we shall write impedance matrices (uniquely)

as Z = R+ jX, where R , 1
2
(Z+Z†), X , 1

2j
(Z−Z†), and the † superscript denotes the

conjugate-transpose. For one-port devices this reduces to z = r + jx, where r and x are

the device resistance and reactance. For a uniform linear array (ULA), ZA = RA + jXA

is a function1 of the inter-element spacing d. Mutual coupling between the antennas is

reflected by the off-diagonal elements of ZA.

Assuming a frequency-flat propagation environment, the open-circuit voltage is given

by

vo = Hx + no , (4.2)

where x ∈ CN is the transmitted signal, H ∈ CM×N is the channel matrix, and no ∈ CM

is noise induced in the antennas. We assume Rayleigh fading and a Kronecker corre-

lation model [75] with no transmit correlation, so the columns of H are independent

and identically distributed (i.i.d.) zero-mean, circularly-symmetric, complex Gaussian

random vectors, denoted by hi ∼ CN (0,Σh), where Σh , E[hih
†
i ] is the fading correla-

tion matrix and E[ · ] denotes the expectation. This may be an appropriate model, for

1Approximate formulas are available for infinitesimally-thin wire dipoles; other antennas may be
evaluated using numerical techniques [4, Ch. 8].
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example, of the downlink from a base station with widely spaced antennas to a compact

mobile device in a rich scattering environment. Throughout the chapter we shall impose

the transmit power constraint tr(Σx) ≤ P , where Σx , E[xx†] is the signal correlation

matrix.

For perfectly conducting antennas, no is the voltage induced in the array by noise

sources in the surrounding environment. These sources may include thermal radiation,

cosmic background, and interference from other electronic devices. Here we focus on ther-

mal noise. Strictly speaking, Nyquist’s [61] well-known formula for thermal noise applies

to an antenna when it is enclosed by a black-body radiator [5, pg. 111]. This formula

was extended to antenna arrays by Twiss [85], who showed that the noise voltage can

be modeled as no ∼ CN (0, 4kT0BRA), where k = 1.38× 10−23 J/K is Boltzmann’s con-

stant, T0 = 290 K is the standard temperature, and B is the bandwidth in Hz. Note that

with the array imbedded in a linear medium, the reciprocity theorem of electromagnetics

(cf., [4, pg. 144]) applies so that ZA is symmetric, RA = Re[ZA], and XA = Im[ZA].

4.1.2 Front-End

Most prior studies of noise in MIMO receivers have been restricted to uncoupled

amplifiers [58], [31]. Here we take a more general viewpoint and assume the front-end

may have arbitrary coupling and noise correlation between its ports. Let v1,v2 ∈ CM

and i1, i2 ∈ CM denote the voltages and currents at the input and output terminals of
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the front-end in Fig. 4.1, respectively. These circuit quantities are related by




v1

v2


 =




Z11 Z12

Z21 Z22







i1

i2


 +




n1

n2


 , (4.3)

where each Zij ∈ CM×M , and the noise voltages n1,n2 are zero-mean Gaussian with

correlation matrices Σij , E[nin
†
j].

Solving the circuit in Fig. 4.1 for the output voltage, we obtain

r =

[
zL

(
Z22 + zLI−GZ†12

)−1

G

] (
vo − n1 + G−1n2

)
, (4.4)

where G = Z21 (ZA + Z11)
−1 and we have assumed the impedance matrices are non-

singular, i.e., every nonzero current input produces a nonzero terminal voltage. The

performance metrics presented in the next section are invariant to invertible transforma-

tions applied to the received signal, so we may instead use the simpler expression

r = Hx + n , (4.5)

where n , no−n1+G−1n2 is the overall system noise. Intuitively, (4.5) refers all voltages

to the open-circuited antenna terminals.

4.2 Low-Noise Design and the Noise Factor Matrix

For single antenna receivers, it is well-known that designing the receiver front-end

for minimum noise figure is optimal (cf., Appendix B). This follows from observing that

1) most performance metrics are optimized by maximizing the SNR and 2) minimizing

the receiver noise figure maximizes the SNR. Thus we can design a receiver front-end for
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minimum noise figure and be assured this is an optimal choice for a variety of applications.

In this section we develop a similar notion for multi-antenna receivers. We proceed by

demonstrating that, roughly speaking, 1) the performance metrics in Section 2.3 are

increasing functions of the SNR matrix and 2) the SNR matrix may be maximized by

minimizing a matrix we refer to as the noise factor matrix. We shall use the notation

A ≥ B (A > B) to indicate that A−B is nonnegative (positive) definite.

4.2.1 Form of Performance Metrics

We claim that the performance metrics in Section 2.3 may be expressed as the mean

or cumulative distribution function (cdf) of the random variable

z = g(H†
wΣHw) , (4.6)

where for any A ≥ B > 0 the functional g satisfies

1. g(A) ≥ g(B)

2. A = B ⇔ g(C†AC) = g(C†BC) for all full-rank C ∈ CM×N .

This claim is verified in Appendix C; for now we prove the following key result.

Theorem 1 Consider two otherwise identical systems with SNR matrices Σ1 ≥ Σ2 and

let

z1 = g(H†
wΣ1Hw) , z2 = g(H†

wΣ2Hw) , (4.7)

where g satisfies both of the above properties. Letting mi and Fi(x) denote the mean and

cdf of zi, we have

m1 ≥ m2 and F1(x) ≤ F2(x) ∀ x ∈ R , (4.8)
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with equality if and only if Σ1 = Σ2.

Proof : Let Σ1 ≥ Σ2 > 0. Since H†
wΣ1Hw ≥ H†

wΣ2Hw for any fixed Hw ∈ CM×N , we

may apply Property 1 to conclude that z1 ≥ z2 with probability one. Clearly m1 ≥ m2,

and by partitioning Pr[z2 ≤ x] we see that

F2(x) = Pr[z2 ≤ x, z2 > z1] + Pr[z2 ≤ x, z2 ≤ z1, z1 ≤ x] + Pr[z2 ≤ x, z2 ≤ z1, z1 > x] .

The first term is zero and the second term is F1(x), so F2(x) ≥ F1(x). The forward part of

the equality condition is trivial, so it remains to verify the converse. Let F1(x) = F2(x) so

that m1 = m2 and z1−z2 is zero-mean. We have already seen that z1−z2 is a nonnegative

random variable, so we must have z1 = z2 with probability one. Since the support of

Hw is the set of full-rank M × N matrices, the desired result follows immediately from

Property 2. ¥

4.2.2 The Noise Factor Matrix

The noise factor of a two-port network is the ratio of the output noise power to the

noise power contributed by a thermal source alone (cf., Appendix B). This concept may

be extended to multiport networks by defining the noise factor matrix as

F , (Σn|z=0)
−1/2 Σn (Σn|z=0)

−1/2

= I +
1

4kT0B
R
−1/2
A E

[
zz†

]
R
−1/2
A , (4.9)

where z , G−1n2 − n1 is noise from the front-end. The two-port noise factor is useful

since it equals the SNR drop across the network. Thus, from a system design perspective,
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the noise factor provides a sufficient description of a device and we may ignore its internal

details. As we shall see, F enjoys similar properties. Indeed, (3.22) may be expressed as

Σ =
P

4kT0B
Σ

1/2
h R

−1/2
A F−1R

−1/2
A Σ

1/2
h . (4.10)

The noise factor of a SISO front end should be made as small as possible so that

the output SNR (and thereby the performance metric) is maximized, as discussed in

Appendix B. By using (4.10) and Theorem 1, we can readily state the following analogous

result for MIMO receivers.

Theorem 2 Consider two otherwise identical MIMO systems with front-end noise factor

matrices F1 ≤ F2. Then the CSIR (2.20), full CSI (2.21), and V-BLAST ZF-SC (2.25)

and MMSE-SC (2.29) capacities, STBC pairwise error probabilities (2.33), and MIMO-

MRC outage probabilities (2.37) of these systems satisfy

• C
(1)
R ≥ C

(2)
R

• C
(1)
F ≥ C

(2)
F

• C
(1)
ZF ≥ C

(2)
ZF

• C
(1)
MMSE ≥ C

(2)
MMSE

• P
(1)
ij ≤ P

(2)
ij

• P
(1)
out ≤ P

(2)
out ,

with equality if and only if F1 = F2.
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Figure 4.2: A simple front-end consisting of a matching network and M uncoupled
amplifiers.

This completes our goal of developing low-noise design principles for multi-antenna

receivers of the form in Fig. 4.1. The result is a sufficient condition for optimal MIMO

front-end design. That is, suppose we have a set F of distinct noise factor matrices such

that there exists an

Fo = inf F , (4.11)

where the infimum is with respect to the positive definite partial ordering of Hermitian

matrices (cf., [40, Sec. 7.7]). From the above result we may conclude that the performance

of a system built with Fo will be strictly better than one built with any other F ∈ F .

For the general problem, however, we note that unlike a totally ordered set (e.g., the real

numbers), an arbitrary partially ordered set may not have an infimum. For example,

if F2 − F1 is indefinite, Theorem 2 does not apply and we cannot make any immediate

conclusions about the relative performance of these systems. Fortunately, there are

practical scenarios where one can find an infimum, as demonstrated in the next section.
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4.3 Optimal Matching for Front-End Amplifiers

Consider a front-end consisting of a 2M -port matching network and a bank of M un-

coupled, identical amplifiers, as shown in Fig. 4.2. The matching network has impedance

matrix 


ZM11 ZM12

ZM21 ZM22


 , (4.12)

where each submatrix is M ×M . In addition to our usual assumption of nonsingularity,

we shall restrict the matching network to be lossless so that it does not dissipate power or

generate noise. Such a network satisfies [38, pg. 13] ZM11 = −ZM
†
11, ZM22 = −ZM

†
22, and

ZM21 = −ZM
†
12. The amplifiers are represented by Rothe-Dahlke equivalent networks

(cf., Appendix B) with va ∼ CN (0, 4kT0BraI) and ia ∼ CN (0, 4kT0BgaI) mutually

independent. Our goal is to find the (possibly non-unique) optimal matching network

for this system.

Before proceeding, we note that similar problems have been posed in the literature.

For example, front-ends of this form were considered in [58] and [31], however, in the

former antenna thermal noise was neglected and in the latter additional constraints were

imposed upon the amplifiers. In these papers optimal matching schemes were suggested

heuristically [58] or through numerical simulations [31]. More recently, in [94] a matrix

Taylor series expansion was used to derive an optimal matching network for a phased

array, and the authors conjectured that such a network may also be optimal from a

channel capacity viewpoint. Here we use the low-noise design principles summarized

in Theorem 2 to easily derive a matching condition that is optimal for a variety of

communication schemes.
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We first derive the infimum of the set of noise factor matrices with lossless matching,

then seek matching networks that achieve this minimum. After some tedious but essen-

tially straightforward circuit analysis, the input-referred front-end noise may be found

as

z = M−1 [va + (Z′A + zcorI) ia] , (4.13)

where

M = ZM21 (ZA + ZM11)
−1 and Z′A = −MZM12 + ZM22 . (4.14)

Using this in (4.9), the noise factor matrix is

F = I + R
−1/2
A M−1

[
raI + ga (Z′A + zcorI) (Z′A + zcorI)

†
]
M−†R−1/2

A , (4.15)

which reduces to the classical noise factor (B.4) for M = 1. The noise factor of a

single-antenna receiver achieves its minimum Fmin (B.6) when the source impedance is

zopt = ropt + jxopt (B.7). We now derive a multi-antenna generalization of this result.

Let us factor (4.15) as follows:

F = I + gaR
−1/2
A M−1

[
Z′AZ′†A + 2rcorR

′
A + 2xcorX

′
A + |zopt|2I

]
M−†R−1/2

A

= I + gaR
−1/2
A M−1

[
(Z′A − zoptI)(Z

′
A − zoptI)

† + 2(rcor + ropt)R
′
A

]
M−†R−1/2

A

= FminI + gaR
−1/2
A M−1(Z′A − zoptI)(Z

′
A − zoptI)

†M−†R−1/2
A (4.16)

In the first step we used |zopt|2 = ra

ga
+ |zcor|2, in the second step we completed the

square and observed that xopt = −xcor, and the third step made use of the identities

R′
A = MRAM† (for lossless matching) and Fmin = 1 + 2ga(rcor + ropt). The second term

in (4.16) is nonnegative definite, so

F ≥ FminI , (4.17)
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with equality if and only if Z′A = zoptI. From Theorem 2 we conclude that the optimal

matching network transforms the antenna array into a bank of uncoupled impedances

zopt, and any matching that does not perform this transformation is strictly suboptimal.

The problem of finding a lossless matching network that achieves the desired impedance

transformation is heavily over-determined – we shall see there is no loss of optimality by

imposing the additional restriction of reciprocity. This guarantees that the matching

network can be constructed with passive, reactive elements (cf., [66, pg. 171]), and when

combined with the lossless assumption restricts (4.12) to be of the form

j




XM11 XM12

XT
M12 XM22


 , (4.18)

where each submatrix is real, XM11,XM22 are symmetric, and the T superscript denotes

the matrix transpose. From (4.14) we obtain2

R′
A = XT

M12

[
RA + (XA + XM11)R

−1
A (XA + XM11)

]−1
XM12 (4.19)

X′
A = XM22 −XT

M12

[
XA + XM11 + RA (XA + XM11)

−1 RA

]−1
XM12 . (4.20)

Setting Z′A = zoptI and solving these equations for the matching impedances, we see that

for any given XM11 the solution is of the form

XM12 =
√

ropt

[
RA + (XA + XM11)R

−1
A (XA + XM11)

]1/2
U (4.21)

XM22 = xoptI + XT
M12

[
XA + XM11 + RA (XA + XM11)

−1 RA

]−1
XM12 , (4.22)

where U is an arbitrary real-orthogonal matrix. Thus the optimal matching network is

only unique up to the choice of XM11 and U. By picking XM11 = −XA (recall this

2We have made use of the identity (R + jX)−1 = (R + XR−1X)−1 − j(X + RX−1R)−1.
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matrix is real and symmetric by reciprocity) and U = I, we obtain a multi-antenna

extension of (B.8):




ZM11 ZM12

ZM21 ZM22


 = j




−XA (roptRA)1/2

(roptRA)1/2 xoptI


 . (4.23)

As a concluding remark, we note that the derivation of the optimal matching con-

dition (4.17) relied heavily on the fact that the front-ends in Fig. 4.2 were uncoupled,

uncorrelated, and identical. There are many practical scenarios that may violate any of

these conditions, such as noise correlation between receiver chains from a common local

oscillator or multi-band devices that use amplifiers tuned to different frequencies. In such

cases one should not necessarily expect that decoupling the antenna array is optimal.

4.4 Numerical Results

With the analytical portion of the chapter complete, we present some numerical results

to illustrate our theory. We first describe the antenna array and propagation model, then

evaluate capacity for several front-ends of interest. Note that we may write the SNR

matrix (3.22) as

Σ = σrAFΣ
1/2
h R

−1/2
A F−1R

−1/2
A Σ

1/2
h , (4.24)

where σ, rA, and F are the SNR, antenna resistance, and noise factor of the corresponding

SISO system in Appendix B, and Σh is normalized by the SISO channel attenuation E|h|2.
In all our examples we take the SISO SNR as 10 dB. Results are given for M = N = 1−4

antennas with spacings of 0.01λ ≤ d ≤ λ, where λ is the carrier wavelength.
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All metrics except V-BLAST capacity were evaluated using numerical integration of

closed-form expressions available in the literature, see our discussion at the end of Section

2.3. The V-BLAST ZF and MMSE capacities were evaluated using Monte Carlo simu-

lations over 5000 realizations of Hw, which were also used to verify the aforementioned

numerical integrations.

4.4.1 Antenna Array and Propagation Model

The receive array is a ULA of half-wavelength dipoles. Expressions for the impedance

matrix and radiation pattern of such an array are available for infinitesimally thin wire

dipoles [4], however, we prefer to evaluate finite-thickness dipoles numerically. The Nu-

merical Electromagnetics Code (NEC) [9], a well-known Method-of-Moments (MoM)

based program, was used for this purpose. Each wire dipole is 10−3λ thick and divided

into 25 computational segments. Details of the NEC simulations and results are provided

in Appendix A.

A sufficient condition for Rayleigh fading is that the received electric field be composed

of a large number (in the sense of the central limit theorem) of plane waves modulated by

independent and uniformly-distributed phases. We consider a two-dimensional model in

which the plane waves are co-polarized with the dipole orientation and arrive with equal

probability over the azimuthal range. The entries of the open-circuit correlation matrix

Σh are then given by [17]

[Σh]nm =
1

2π

∫ 2π

0

gn (π/2, φ) g∗m (π/2, φ) ej2π d
λ
(m−n) cos φdφ , (4.25)

where gn (π/2, φ) is the voltage induced in the nth antenna by a plane wave arriving with
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azimuthal angle φ (cf., Appendix A).

The gn (π/2, φ) functions were evaluated in NEC over 32 evenly spaced angles (for

each inter-element spacing) and the results used in a numerical approximation of (4.25).

This approach accounts for scattering between neighboring antennas – if we assumed

the omnidirectionality of isolated dipoles, (4.25) would reduce to Clarke’s [17] formula

J0

(
2π d

λ
(m− n)

)
, where J0(x) is the zeroth-order Bessel function of the first kind.

4.4.2 Noise Factor Example

The noise factor matrix F introduced in this chapter provides a sufficient condition

for low-noise design, whereas the two-port noise factor F (B.2) may be unable to predict

performance in the presence of coupled antennas. We demonstrate the latter point in

this example by evaluating the performance of two amplifiers with the same noise factor.

Referring to Fig. 4.1, consider two uncoupled front-ends (label them “A” and “B”)

with identical impedance matrices


Z11 Z12

Z21 Z22


 =




z11I 0

z21I z22I


 , (4.26)

where z11 = z22 = 50 Ω and z21 = 500 Ω, and uncorrelated noise sources Σ12 = Σ21 = 0,

Σii = 4kT0Bri, i ∈ {1, 2}. Let the noise resistances of each front-end be assigned as

Front-end A : r1 = 9rA, r2 = 0

Front-end B : r1 = 0, r2 = 9rA|G|2
, (4.27)

where G = z21/(zA + z11) and zA = rA + jxA is the impedance of an isolated antenna.

Note that the branches of both of these front-ends have a 10 dB noise figure, hence for

uncoupled antennas they should perform identically.
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Figure 4.3: CSIR capacity versus inter-element spacing for two front-ends.

The CSIR capacity (2.20) of each of these systems for N = 1− 4 is shown in Fig. 4.3,

with the i.i.d. fading and noise case provided for reference. We immediately notice that

for strongly coupled antennas (say, d < 0.5λ) these two front-ends behave quite differ-

ently, in stark contrast to the above statement for uncoupled antennas (which appears to

be in agreement here for d ≥ 0.5λ). In particular, a four-antenna receiver with d = 0.1λ

will benefit from a 25% increase in capacity by choosing front-end A over front-end B,

even though they have the same noise figure. This somewhat peculiar result is under-

stood by observing that the noise in front-end A correlates through the coupled antennas,

while that of front-end B is isolated from the antennas and thus remains spatially white

for all inter-element spacings. It is well-known that noise correlation can only increase

capacity, thus front-end A should have a larger capacity at small spacings.
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4.4.3 Matching Example

In Section 4.3 we derived an optimal matching network for the system of Fig. 4.2.

While the network (4.23) achieves the minimum noise factor matrix, it may be difficult

to realize in practice. A practical, suboptimal alternative is to apply to each antenna

the (two-port) optimal matching network (B.8) for an isolated dipole. We shall follow

the terminology introduced in [58] and refer to this as self-matching. Below we compare

optimal and self matching for the six performance metrics presented in Sec. 2.3. In each

plot the N = 3 case is suppressed for clarity.

The amplifier selected for this example is a SiGe low-noise amplifier [57] designed for

use in the cellular band. In high-gain mode with Rbias = 510 Ω and f = 900 MHz, its

impedance matrix and Rothe-Dahlke noise parameters are:




z11 z12

z21 z22


 =




35.7∠− 82.0o 2.74∠91.8o

325∠119o 46.1∠− 23.3o


 Ω

ra = 9.45 Ω, ga = 3.24 mS, zcor = 35.3∠− 114o Ω

This amplifier is approximately unilateral (z21 À z12) and the minimum noise figure is

quite low (1.04 dB), ideal characteristics for front-end amplifiers.

The ergodic capacity for systems with CSIR (2.20) and full CSI (2.21) are shown in

Fig. 4.4, with the i.i.d. fading and noise capacity provided for reference. At small inter-

element spacings, the optimal match is superior to the self match, and is an upper bound

at all spacings in accordance with the results derived in Section 4.3. For self-matching, the

fading and noise correlations approach unity as the antennas are brought closer together,
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Figure 4.4: (a) CSIR and (b) full CSI capacity of N × N systems for optimal and self
matching.

and the capacity reduces to that of a SISO system. In contrast, the optimal match is able

to completely decouple the array at any distance, and the performance of an i.i.d. system

is retained even at extremely close spacings. However, the results for optimal matching

should be interpreted with caution since the array may exhibit supergain behavior [31].

Consequently, the system is highly sensitive to channel estimation errors, and, as shown

in3 [50], becomes extremely narrowband at small inter-element spacings.4

Capacity for V-BLAST systems with ZF-SC (2.26) and MMSE-SC (2.29) receivers

are shown in Fig. 4.5. Similar observations about the performance of optimal and self

matching can be made. Note that the MMSE-SC curve is identical to the CSIR capacity,

3In this study the match was optimized for power transfer instead of noise, however, the decoupling
property responsible for these effects remains.

4In fact, this narrowband behavior may be used to explain the drop in the optimal match curve for
d < 0.1λ in Fig. 3 of [58] that is not observed in our results in Fig. 4.4(a). The authors of [58] use a
time-limited sinusoid in their finite-difference time-domain (FDTD) program, while here the MoM-based
NEC assumes time-harmonic fields.
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Figure 4.5: (a) ZF-SC and (b) MMSE-SC V-BLAST capacity of N × N systems for
optimal and self matching.

confirming that MMSE with successive cancelation is still optimal for correlated noise.

Finally, coding and diversity gains for orthogonal STBCs (2.34) and MIMO-MRC (2.37)

are shown in Fig. 4.6. Here the coding gain is defined as the SNR difference between the

PEP and N = 1 Rayleigh curves at an error probability of 10−3, and diversity gain is

similarly defined for the outage curves at a 1% probability of outage. In Fig. 4.6(a) we

use a BPSK constellation with a rate-1 code (e.g., the Alamouti code [2]) for N = 2 and

a rate-1/2 code for N = 4, so NR = 2 for each curve.

4.5 Conclusion

In this chapter we derived optimal front-end design principles from a communication

theory perspective by examining the form of several MIMO communication schemes.

Through this approach vector channel generalizations of SNR and noise factor were de-
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Figure 4.6: (a) Orthogonal STBC coding gain at 10−3 error probability and (b) MIMO-
MRC diversity gain at 1% outage probability for N × N systems for optimal and self
matching.

veloped, and a sufficient condition for low-noise design was derived in Theorem 2. The

result applies to a larger class of front-ends than is typically considered in the commu-

nications literature, but may be readily applied to practical problems such as amplifier

matching. In fact, with the developed theory we were able to derive optimal matching

networks that were only conjectured to be optimal in previous studies. Through numer-

ical simulations we verified this result, and also demonstrated the need for alternative

noise measures such as the noise factor matrix by showing that the two-port noise factor

may not be able to accurately predict performance in the presence of coupled antennas.
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Chapter 5

Conclusion

In this concluding chapter we summarize the main results of this dissertation and

provide some recommendations for future work.

5.1 Summary of Dissertation

We began our study in Chapter 2 by examining the impact of noise correlation on

the performance of several MIMO communication schemes. In particular, we looked

at capacity with CSIR and full CSI, spatial multiplexing with ZF-SC and MMSE-SC

receivers, space-time block codes, and beamforming. In each case we observed that

fading and noise correlation had very different effects on performance: fading correlation

was detrimental and noise correlation was beneficial. This observation, and the lack of

noise modeling in the MIMO literature, motivated the detailed study of noise modeling

in subsequent chapters.
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In Chapter 3 we introduced a circuit model for a compact multi-antenna receiver.

The model allowed us to examine how noise from the antennas, front-end amplifiers, and

downstream components may become spatially correlated. Moreover, it was shown that

these noise sources affect the performance of an optimal diversity combiner in profoundly

different ways. Each noise source is observed by the combiner only after interacting with

the coupled antennas, which acts to correlate both the signal and noise components

in each receiver branch. This effect is more significant for noise sources closer to the

antennas, and is dependent on the unilaterality of the front-end amplifiers.

While Chapter 3 studied noise correlation for a specific receiver front-end, in Chapter

4 we considered a much more general front-end. By observing the form of the perfor-

mance metrics introduced in Chapter 2, we were able to extend existing low-noise design

principles for single-antenna receivers to MIMO systems. Specifically, we showed that

the performance of each MIMO system was uniquely optimized by designing the front-

end such that the noise factor matrix is minimized (with respect to the positive definite

partial ordering). By applying these low-noise design principles to the amplifier match-

ing problem, we were able to prove the optimality of a matching network that was only

conjectured to be optimal in prior studies.

During the literature review in Chapter 1 we made the observation that the modeling

and impact of fading correlation in MIMO has received much more attention than noise.

While we believe this dissertation is a good first step towards closing the gap between our

understanding of fading and noise correlation, there are still many issues we would like

to see addressed. We conclude by reviewing some of these problems in the next section.
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Figure 5.1: Frequency response of a two-element dipole array with inter-element spacing
d = 0.2λ, as computed by the NEC and the induced EMF method.

5.2 Future Work

During the development of this dissertation several interesting research problems were

encountered that still remain unsolved. In this section we briefly present some of these

open problems and, in the hopes that future researchers consider them, comment on some

potential solution approaches.

Optimal Broadband Matching. In Sec. 3.6.4 we found that the optimal matching

network exhibited highly narrowband behavior at close inter-element spacings. An open

problem is deriving the optimal matching network over a non-zero bandwidth (as opposed

to the single-frequency derivation in Chapter 4). To begin, one would need to obtain the

frequency response of the antenna impedances. In Fig. 5.1 we computed the frequency

response of a two-element dipole array with inter-element spacing d = 0.2λ using the two

approaches presented in Appendix A: the Numerical Electromagnetics Code (NEC) and
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the induced EMF method. The NEC impedances were computed at the center frequency

fc and at 0.999fc, 0.99fc, and 0.95fc (the value of fc is immaterial since the antenna

parameters may be normalized by the wavelength, e.g., we are using a half-wavelength

dipole); a linear least-squares fit line is shown through the actual data points. The

induced EMF curves were obtained by varying the wavelength λ in (A.18). From these

results it appears that, over a bandwidth of 10% of the center frequency, a reasonably

good approximation to the frequency response is given by

ZA(ω) = Z0 + ωZ1 , (5.1)

where ω is the frequency in rad/s and Z0,Z1 ∈ CM×M .

The research problem we now pose is to find the optimal matching network for the

system of Fig. 4.2 over some bandwidth B > 0. From the following discussion, we an-

ticipate that this problem may be considerably more difficult than its single-frequency

counterpart. The pioneering studies of Bode [7] and Fano [28], conducted over 60 years

ago, considered matching a purely resistive source to a frequency-dependent load. Subse-

quent studies have have expended considerable effort to generalize these results, first to a

frequency-dependent source [15] and then to a bank of uncoupled, frequency-dependent

sources [12]. After reviewing this literature and texts on broadband matching [11] and

network synthesis [87], [95], we have not found any existing theory that appears to be

immediately applicable to the coupled source impedances (5.1) with frequency-dependent

real and imaginary parts.

Optimal Matching for Coupled Front Ends. In Sec. 4.3 we applied our noise factor

matrix formulation to derive an optimal matching condition for a bank of uncoupled,



92

Z11 Z12

Z21 Z22

v21

n11

n1M

n21

n2M

. . .

. . .

v2M

v11

v1M

vn1

Zcor -Zcor

in1

vnM

inM

. . . . . .

. . .
Z11 Z12

Z21 Z22

. . .

v11

v1M

v21

v2M

(a) (b)

Figure 5.2: (a) A 2M -port noisy network and (b) its generalized Rothe-Dahlke equivalent
network.

identical amplifiers. Also of interest is an optimal matching condition for coupled front-

ends. One possible approach to this problem proceeds in a manner analogous to the

Rothe-Dahlke [70] model for two-port noisy networks. Consider the 2M -port network in

Fig. 5.2(a), which was defined in the general front-end model of Sec. 4.1.2. By making

the transformations

vn = n1 + (Zcor − Z11)Z
−1
21 n2 , in = −Z−1

21 n2 , (5.2)

and Zcor , Z11 −Σ12Σ
−1
22 Z21, where vn ∼ CN (0, 4kT0BRn) and in ∼ CN (0, 4kT0BGn)

are independent, we obtain the generalized version of the Rothe-Dahlke model illustrated

in Fig. 5.2(b). By replacing the uncoupled front-end amplifiers in Fig. 4.2 with this

generalized front-end, we see that the noise factor matrix (4.9) is

F = I + R
′−1/2
A

[
Rn + (Z′A + Zcor)Gn(Z′A + Zcor)

†]R
′−1/2
A , (5.3)

where Z′A = R′
A + jX′

A is the transformed antenna impedance matrix (3.31).
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According to the low-noise design principles developed in Chapter 4, the optimal

matching network produces the transformed impedance

Zopt = arg inf
Z′A

F , (5.4)

where the infimum is with respect to the positive definite partial ordering of Hermitian

matrices (cf., [40, Sec. 7.7]). In the optimal matching derivation for uncoupled front-ends

(4.16), finding an infimum was straightforward. In fact, if all the matrices in (5.3) were

simultaneously diagonalizable, we could proceed in the same manner. However, for the

more general case it is not clear how to proceed. Moreover, since the positive definite

ordering is partial, an infimum is not even guaranteed to exist. Perhaps by using some

alternative approach to the problem, i.e., not relying on noise factor matrices, one could

find a solution; however, we have not explored this possibility. Motivation for considering

this problem includes applications to receivers that are not well-modeled by uncoupled,

identical front ends, e.g., noise correlation between receiver chains from a common local

oscillator, or multi-band devices that use (non-identical) amplifiers tuned to different

frequencies.

Additional Simulations and Experimental Work. The numerical examples of Chapters

3 and 4 considered an idealized model for thin-wire dipole antennas (cf., Appendix A).

While this canonical model provides a good reference for initial investigations, we would

also like to see how our results translate to more modern antennas, e.g., microstrip

antennas [4, Ch. 14]. Alternate choices for other receiver components may also provide

further research opportunities. For example, in Sec. 4.4.2 we observed that the location

of noise sources within a front-end amplifier (i.e., the input and output ports) may have a
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dramatic affect on performance. It would therefore be interesting to investigate different

amplifier technologies, e.g., CMOS and HBT [66, Sec. 10.4], on the basis of how noise

is correlated between input and output ports. We believe a detailed study of this type,

combined with the insights developed in this dissertation, may have profound implications

on the selection of front-end amplifiers. Finally, experimental work verifying the noise

correlation predicted by the theoretical analysis of this dissertation, and its impact on

the performance of real-world systems, would be a welcome addition to the literature.
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Appendix A

Computation of Antenna

Impedances and Patterns

In this Appendix we provide an overview of the numerical technique used to com-

pute the antenna impedances and patterns for the numerical examples in Chapters 3 and

4. The Numerical Electromagnetics Code (NEC) [9], a well-known Method-of-Moments

(MoM) based program, is employed to compute the impedances and patterns of a uni-

form linear array (ULA) of half-wavelength dipole antennas. As a benchmark we also

consider the induced EMF method, which is used to derive approximate formulas for

the impedances and patterns. Detailed expositions on both the MoM and induced EMF

method are available in various antenna texts, e.g., [4], [27], and [78], so we shall limit

our coverage to discussing the similarities and differences between these two approaches.

We begin with a description of the physical model and some simplifying assumptions

frequently used in the analysis of thin-wire dipoles.
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Figure A.1: Dipole array model.

A.1 Model and Solution Techniques

Consider the model for an M -element ULA of half-wavelength dipoles illustrated in

Fig. A.1. Each dipole consists of two perfect electrically conducting (PEC) cylinders

of radius a and length λ
4
− δ

2
, where λ is the wavelength, separated by a feed gap of

width δ. Typically both a ¿ λ and δ ¿ λ, in which case we have a thin-wire dipole

(cf., [4, Ch. 4]). Wires connected to the feed gap form the antenna terminals, across which

voltages v1, . . . , vM and currents i1, . . . , iM are defined. The dipoles are uniformly spaced

a distance d apart along the x-axis in infinite free space, so the effect of the feed wires

(or any other surrounding obstacle) is neglected. All sources and fields are sinusoidally-

varying in time, in which case we are within the scope of standard time-harmonic field
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analysis [36]. The complex baseband current density in the nth dipole and the electric

field it generates will be denoted by Jn and En, respectively. Incident on the array is a

complex baseband, uniform plane wave1 (cf., [36, Sec. 2-11])

Ei =
(
x̂Ei

x + ŷEi
y + ẑEi

z

)
ejk(x sin θi cos φi+y sin θi sin φi+z cos θi) , (A.1)

where x̂, ŷ, and ẑ are the standard orthonormal basis vectors of the rectangular coor-

dinate system, the field components Ei
x, Ei

y, and Ei
z are constant, k = 2π

λ
is the wave

number, and θi and φi are the zenith and azimuth of the wave angle-of-arrival (AoA),

respectively.

Let us consider the relationship between the terminal voltages and currents when

Ei = 0. The medium connected to the antenna terminals (i.e., the PECs and free space)

is linear and isotropic, so the voltages and currents are related by an M ×M impedance

matrix ZA (cf., [36, Sec. 3-8])

v = ZAi , (A.2)

where v , [v1 · · · vM ]T and i , [i1 · · · iM ]T . By definition, [ZA]nm is the ratio vn

is
when the

mth dipole is driven by a current source is 6= 0 and every other dipole is open-circuited

(i.e., in = 0 for all n 6= m). Now if Ei 6= 0, by superposition (since the medium is linear)

v = ZAi + vo , (A.3)

where vo = [vo1 · · · voM ]T is the voltage induced in the open-circuited array terminals by

Ei. When plotted as a function of AoA, the induced voltages von(θ, φ) are often referred

to as receive patterns. It is conventional to work with normalized receive patterns gn(θ, φ),

1For clarity, throughout the Appendix we consider a single, deterministic incident wave. The extension
to the multiple, random waves used in the fading models of Chapters 3 and 4 is straightforward.
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defined as the voltage induced in the nth antenna by θ̂-polarized, unit-amplitude, zero-

phase plane wave with AoA (θ, φ). Thus,

von = Ei
θe

jkd(n−1) sin θi cos φi · gn(θi, φi) , (A.4)

where Ei
θ = Ei

x cos θi cos φi +Ei
y cos θi sin φi−Ei

z sin θi is the θ̂-component of the incident

field, and the exponential term is simply the phase shift of the incident field between

the dipole coordinates and the origin. In writing (A.4) we have made use of the fact

that the thin-wire dipoles in Fig. A.1 only detect the θ̂-component of the incident field;

for other antenna and array configurations we may also have to define patterns for the

φ̂-component.

In summary, the terminal characteristics of the array are determined by two quan-

tities: the impedance matrix and receive patterns. In principle, one could solve for the

impedances and patterns by making the necessary terminal excitations, then solving

Maxwell’s equations subject to the boundary conditions2 of zero tangential electric field

over the surfaces of the PECs and a sphere of infinite radius. For example, to find [ZA]12

we could drive dipole 2 with a 1 A current source while leaving all the other dipoles

open-circuited and setting Ei = 0, then solve for the voltage induced across the terminal

of dipole 1. Unfortunately, closed-form solutions to Maxwell’s equations are feasible only

for problems in which the boundary conditions are coincident with constant surfaces of

certain coordinate systems (e.g., [36, Ch. 4-6]). Since the boundary conditions specified

above do not meet this requirement, we resort to approximate solution techniques.

Below we present two well-known techniques for thin-wire dipoles that invoke the

2By the uniqueness theorem (cf., [36, Sec. 3-3]), there is a unique solution to this problem.



112

following assumptions (cf., [4, Ch. 8], [78, Ch. 10]):

• The current density Jn in each dipole resides on a cylindrical shell of radius a about

each dipole axis, and is axially-directed and rotationally-symmetric:

Jn(x, y, z) =





ẑ 1
2πa

In(z) , [x− (n− 1)d]2 + y2 = a2 and − λ
4
≤ z ≤ λ

4

0 , otherwise
, (A.5)

where In(z) is the total current.

• The z-component of the electric field Enz produced by Jn is equal to the field

produced by a line current source with distribution equal to In(z), positioned along

the axis of the dipole in free space:

Enz(x, y, z) =
1

j4πωε0

∫ λ/4

−λ/4

In(z′)
[
k2 +

∂2

∂z2

]
e−jkr

r
dz′ , (A.6)

where ω is the frequency in rad/s, ε0 = 8.85× 10−12 F/m is the permittivity of free

space, and

r =
√

[x− (n− 1)d]2 + y2 + (z − z′)2 (A.7)

is the distance between the source (x′, y′, z′) and field (x, y, z) coordinates.

Since the validity of these approximations improves as a → 0, they are often collec-

tively referred to as the thin-wire approximation. In the first solution technique we shall

consider, the method of moments (MoM), the current distributions In(z) are evaluated

numerically. The second technique, the induced EMF method, assumes a current distri-

bution and derives formulas for the impedances and patterns by applying the reciprocity

theorem. Some other possible approaches are briefly mentioned at the end of the section.

The NEC, which we shall use for computing the impedances and patterns, is based on

the MoM.



113

A.1.1 Method of Moments

The MoM for solving electromagnetic problems was introduced by Harrington in [37].

Among its many applications, the MoM is particularly suitable for computing fields and

currents in the presence of thin wires. In this section we provide a brief overview of the

MoM as it relates to our problem. The current distributions {I1, . . . , IM} are computed

in the following manner:

1. Specify a source field Es. For impedance calculations Es is produced by a voltage

impressed across one of the dipole terminals; for pattern calculations Es = Ei.

2. Enforce the PEC boundary condition
∑

n Enz = −Es
z along the M lines specified

by the coordinates x ∈ {a, a + d, . . . , a + (M − 1)d}, y = 0, and −λ
4
≤ z ≤ λ

4
. This

results in M integral equations in the unknown current distributions.

3. Approximate the integral equations with an appropriate linear equation. Solve the

linear equations for the approximate current distributions.

A brief overview these steps is provided below; more detailed expositions may be found,

for example, in [4, Ch. 8], [27, Ch. 7], and [78, Ch. 10]. Note that the MoM views the

terminal voltages as known and computes terminal currents in = In(0), which is opposite

to the viewpoint of the Thevenin network model (A.3). It is therefore convenient to

instead work with the Norton equivalent network

i = YAv + is , (A.8)

where YA is the antenna admittance matrix and is is the short-circuit current induced

by Ei. The desired impedances and patterns can be computed from the circuit relations
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ZA = Y−1
A and vo = −ZAis.

Let us begin by calculating the first column of the admittance matrix, [YA]n1. We

apply a voltage source vs to dipole 1 and short-circuit the other dipoles, so vn = 0 for

all n 6= 1. The field of the voltage source is assumed to follow the delta-gap model

(cf., [4, pg. 447]) in which Es = ẑvs

δ
within the gap of dipole 1 and Es = 0 elsewhere

(i.e., there is no fringing). By enforcing the boundary conditions outlined in Step 2, and

recalling the thin-wire approximation of the currents and fields, we obtain the following

integral equations:

∫ λ/4

−λ/4

[
M∑

n=1

Gn1(z, z
′)In(z′)

]
dz′ =




−j4πωε0

vs

δ
, − δ

2
≤ z ≤ δ

2

0 , δ
2

< |z| ≤ λ
4

∫ λ/4

−λ/4

[
M∑

n=1

Gnm(z, z′)In(z′)

]
dz′ = 0 , −λ

4
≤ z ≤ λ

4
, m = 2, . . . , M ,

where

Gnm(z, z′) ,





[
k2 + ∂2

∂z2

]
e−jk

√
a2+(z−z′)2√

a2+(z−z′)2
, n = m = 1, 2, . . . ,M

[
k2 + ∂2

∂z2

]
e−jk

√
(n−m)2d2+(z−z′)2√

(n−m)2d2+(z−z′)2
, n 6= m

. (A.9)

In writing Gnm for n 6= m we have assumed d À a so that d− a ≈ d, which is usually a

valid approximation in practical systems.

The above equations may be expressed in a compact form by introducing the inner

product

〈f, g〉 ,
∫ λ/4

−λ/4

f(z)g(z)dz , (A.10)
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defining the M functions

e1(z) =




−j4πωε0

vs

δ
, − δ

2
≤ z ≤ δ

2

0 , δ
2

< |z| ≤ λ
4

em(z) = 0 , m = 2, . . . , M ,

and finally, the M2 linear operators

Lnm(f) =

∫ λ/4

−λ/4

Gnm(z, z′)f(z′)dz′ . (A.11)

With these definitions the above integral equations take the following form:

em =
M∑

n=1

Lnm(In) , m = 1, . . . , M . (A.12)

The MoM provides a numerical solution to these equations by considering solutions of

the form

In(z) =
L∑

i=1

αnifi(z) , (A.13)

where {f1, . . . , fL} are basis functions and the αni terms are unknown constants. For

some weighting functions {w1, . . . , wL} defined on the space spanned by the functions

Lnm(fi) and ei, substituting (A.13) into (A.12) and taking inner products yields

〈wj, em〉 =
L∑

i=1

M∑
n=1

αni〈wj, Lnm(fi)〉 ,
j = 1, . . . , L

m = 1, . . . , M
. (A.14)

The inner products on both sides may be evaluated (either analytically or numerically),

yielding LM linear equations in LM unknowns αni, which may be solved by standard

techniques such as Gaussian elimination. Finally, we obtain the approximate current

densities (A.13), from which we compute the admittances [YA]1n = in/vs = In(0)/vs.
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To compute the short-circuit currents is we repeat the above steps, but with Es = Ei.

Clearly the accuracy of the MoM approach is heavily dependent on the choice of basis

and weighting functions, a subject which has received much attention in the literature

(cf., [4, Ch. 8], [27, Ch. 7], and [78, Ch. 10]).

A.1.2 Induced EMF

The induced EMF method assumes that the currents are sinusoidal,

In(z) = in cos kz , (A.15)

and derives the impedances from the following specialization of the reciprocity theorem

(cf., [36, Sec. 3-8]):

[ZA]nm =
−1

inim

∫
Em · Jndτ , (A.16)

where the volume integral is over all space. By applying the thin-wire approximation,

we can reduce the integral to

[ZA]nm =
−1

j4πωε0

∫ λ/4

−λ/4

∫ λ/4

−λ/4

cos kz cos kz′Gnm(z, z′)dz′dz , (A.17)

where for n 6= m we have again assumed d À a so that the electric field Enz is approxi-

mately independent of x and y over each circle {(x, y) : [x− (m− 1)d]2 + y2 = a2}. The

above integral has been evaluated in closed form [10]; for the self impedances we have

[RA]nn =
η0

4π

[
2Ci (ka)− Ci

(√
(ka)2 + π2 + π

)
− Ci

(√
(ka)2 + π2 − π

)]

[XA]nn =
−η0

4π

[
2Si (ka)− Si

(√
(ka)2 + π2 + π

)
− Si

(√
(ka)2 + π2 − π

)]
,(A.18)
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where ZA = RA + jXA, η0 ≈ 120π Ω is the intrinsic impedance of free space, and

Si(x) ,
∫ x

0

sin x

x
dx and Ci(x) , −

∫ ∞

x

cos x

x
dx (A.19)

are the sine and cosine integrals (cf., [4, App. III]). As one example, for a = 10−3λ we

obtain [ZA]nn = 73.1 + j42.5 Ω. The mutual impedances [ZA]nm, n 6= m, are given by

(A.18) with a replaced by (n−m)d.

The receive patterns may also be derived using reciprocity by considering an element

of current is = θ̂Ei
θin located far from the origin, from which one can show that [36,

pg. 140]

von =
k

2

∫ λ/4

−λ/4

Ei
θe

jk((n−1)d sin θi cos φi+z′ cos θi) sin θiI(z′) dz′

= Ei
θe

jk(n−1)d sin θi cos φi cos
(

π
2

cos θi
)

sin θi
, (A.20)

where we used (A.15) and evaluated the integral. From (A.4) we conclude that

gn(θ, φ) =
cos

(
π
2

cos θ
)

sin θ
. (A.21)

A.1.3 Other Techniques

Dipole antennas have been extensively studied for well over a century, and a vast

collection of other solution techniques have been developed. For example, before the

advent of digital computers made numerical electromagnetics (e.g., the MoM) feasible,

several authors proposed iterative solutions to the current integral equations in which

successive approximations to the actual current distribution were derived (these tech-

niques are well-chronicled in [27, Ch. 7] and [47]). More recently, the finite-difference
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time-domain (FDTD) method [35], which discretizes Maxwell’s equations in time and

space, has gained widespread use in the antenna community, and is implemented in

several commercial software packages. While the FDTD does not have to invoke the

thin-wire approximation, other issues arise (e.g., absorbing boundary conditions) that

are not present in the MoM approach. There are many other numerical techniques we

could use to calculate the patterns and impedances; however, we shall proceed with the

NEC as it is a widely-accepted approach to solving thin-wire problems [4, Ch. 8].

A.2 NEC Computation of Array Parameters

The Numerical Electromagnetics Code (NEC) [9] was developed at Lawrence Liv-

ermore National Laboratory as a user-oriented program for computing the fields and

currents generated by sources operating in the presence of metallic structures. It is

based on a MoM solution to generalized versions of the integral equations considered in

the previous section: the electric field integral equation (EFIE) for wires and the mag-

netic field integral equation (MFIE) for surfaces. A detailed description of the code is

available in [9]; here we provide a brief discussion on its connection to the prior section

and application to our problem.

Recall that the primary consideration in developing a MoM solution (A.14) was the

selection of the basis and weighting functions. The basis functions in NEC are

fi(z) =





ai + bi sin k(z − zi) + ci cos k(z − zi) , |z − zi| ≤ ∆

0 , otherwise
, (A.22)

where, for our problem, the points {z1, . . . , zL} are equally spaced over [−λ
4
, λ

4
] in segments
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of length ∆. For each i, two of the constants {ai, bi, ci} are computed by enforcing

boundary conditions on the current and its derivative between segments, leaving one

unknown constant for each segment. The weighting functions are

wi(z) = δ(z − pi) , (A.23)

where the matching points {p1, . . . , pL} are equally spaced over [−λ
4
, λ

4
] along the axis of

each segment.

The NEC accepts a text file – the input card3 – which contains simulation information.

After computing the MoM solution, it returns the requested computations in another

text file – the output card. A variety of graphical-user interface (GUI) programs have

been developed for the NEC, e.g., 4nec2 [1], so one does not have to use the cards

directly. However, since we will require repeated executions of the NEC over various

array configurations, the GUI approach is impractical. In order to automate the process,

we created a Python [68] script that performs the following operations:

1. Create the NEC input card

2. Execute the NEC

3. Extract the desired simulation results from the NEC output card

Using this approach we were able to repeatedly run simulations for a variety of different

array sizes M and inter-element spacings d. We set a = 10−3λ and λ = 1 m, and

used 25 segments per dipole, so ∆ = 0.02λ. These values are consistent with the NEC

3This name dates back to the punched-card computers used during initial versions of the NEC.



120

CE
GW 1 25 0.0  0 -0.25 0.0  0 0.25 0.001
GW 2 25 0.25 0 -0.25 0.25 0 0.25 0.001
GE
FR 0 0 0 0 299.8 0
PT 2
GN -1
EX  0 1 13  0  1  0
XQ
EX  0 2 13  0  1  0
XQ
EN

Figure A.2: NEC input card for admittance calcuations.

recommendations [9] of selecting 10−3λ < ∆ < 10−1λ, 2πa ¿ λ, and, for less than 1 %

error in the computed fields, ∆ > 8a.

An NEC input card that performs an admittance measurement for M = 2 and

d = 0.25λ is shown in Fig. A.2. A detailed description of the various NEC commands

is provided in [9]. Briefly, the GW lines specify the coordinates of each dipole, the EX

commands drive the center segment of each antenna with a 1 V voltage source, and the

XQ commands run the simulation, generating the output cards. In the first output card

we find the currents induced in the center segment of each dipole by a 1 V source ap-

plied at the first antenna – these are equal to the first row of YA. Similarly, the second

row of YA is extracted from the second output card. To compute the short-circuit cur-

rents is, uniform plane waves were propagated towards the array by driving θ̂-oriented

“source” dipoles located 10, 000λ from the origin with 1 V sources. The source dipoles

were uniformly spaced over 11.25◦ increments of azimuth and zenith.

The NEC impedances computed for a 2-element array with 0.01λ ≤ d ≤ λ are

shown in Fig. A.3. Also included are NEC results for a = 10−5λ and the induced EMF
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Figure A.3: Impedances computed with NEC and EMF.

impedances (A.18) (the difference between the EMF curves for a = 10−3λ and a = 10−5λ

is negligible). All three curves are in reasonably good agreement, with the a = 10−5

NEC curve closer to the EMF curve than the a = 10−3 curve. This is expected since

the sinusoidal current distribution (A.15) assumed by the induced EMF method becomes

a better approximation as a → 0 (cf., [4, Ch. 8]). Note that the self-impedance [ZA]11

varies with d when computed with NEC, but is independent of d under the induced

EMF model. From (A.15), we see that for the induced EMF method, when a dipole is

open-circuited its current density is zero, and therefore its effect on neighboring dipoles

is neglected. On the other hand, NEC computes the current in open-circuited dipoles,

so the presence of neighboring dipoles does affect the self-impedance (again, more for

a = 10−3λ than for a = 10−5λ). Results similar to Fig. A.3 were obtained in [4, Ch. 8].

To compute the NEC receive patterns we first found the voltage viso induced in an

isolated (M = 1) dipole by a plane wave with AoA (π
2
, π

2
), then normalized the induced
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Figure A.4: Power patterns computed with NEC and EMF.

voltages vo by viso. This approach removed the dependance of vo on the unknown Ei
θ

term in (A.4). The resulting power |von/viso|2 and phase ∠von−∠viso patterns for d = 0.2λ

(results for other inter-element spacings are similar) are shown for a = 10−3λ in Figs. A.4

and A.5, respectively, with zenith patterns (0 ≤ θ ≤ π, φ = 0) in the upper plots and

azimuth patterns (0 ≤ φ ≤ 2π, θ = π
2
) in the lower plots. Again we include the EMF

patterns (A.20) for comparison. In contrast to the impedance calculations, there is very

little difference between the NEC and EMF patterns. The NEC power patterns deviate

at most by 0.5 dB from the EMF pattern, and the phase patterns are indistinguishable.

It is well known (cf., [36, pg. 81]) that far-field quantities such as patterns are relatively

insensitive to minor changes in the current distribution, so we should not expect much

difference in the two approaches (this result is also confirmed using NEC in [98]).

Finally, we compute the open-circuit correlation matrix Σh for the 2D scattering
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Figure A.5: Phase patterns computed with NEC and EMF.

model used in Chapters 3 and 4. The incident field consists of a large number of ẑ-

polarized plane waves with independent and uniformly-distributed AoAs and phases.

Recall from (3.33) that

[Σh]nm =
1

2π

∫ 2π

0

gn (π/2, φ) g∗m (π/2, φ) ejkd(n−m) cos φdφ . (A.24)

The normalized power P = [Σh]11/Piso and correlation coefficient ρ = [Σh]12/[Σh]11

are shown in Fig. A.6 for NEC and EMF. As expected from our previous results on

patterns, there is little difference between the two curves. The NEC accounts for the

slight fluctuations in the received field due to scattering from open-circuited dipoles,

while the EMF approach assumes each antenna receives the incident field unperturbed.

In fact, the induced EMF patterns (A.21) are omnidirectional (i.e., gn (π/2, φ) = 1), in
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Figure A.6: Open-circuit voltage (a) power and (b) correlation for 2D scattering.

which case we recover Clarke’s [17] model

[Σh]nm =
1

2π

∫ 2π

0

ejkd(n−m) cos φdφ

= J0 (kd (n−m)) , (A.25)

where J0(x) is the zeroth-order Bessel function of the first kind.
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Appendix B

SISO Low-Noise Design

We briefly review the standard noise model for a single-antenna receiver, shown in

Fig. B.1. The antenna is modeled by a Thevenin equivalent circuit with impedance

zA = rA + jxA and open-circuit voltage vo = hx + no, where h ∼ CN (0, 1) is Rayleigh

fading, x is the transmitted signal with E[|x|2] = P , and no ∼ CN (0, 4kT0BrA) is antenna

thermal noise.

The Rothe-Dahlke model [70], a commonly accepted standard for representing noisy,

vo

zcor -zcor

va

ia r

zA

i1

z12i2 z21i1

z11 z22

zL

i2

Antenna Front-End Load

Figure B.1: Circuit model for a SISO receiver front-end.
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linear two-ports, is used to model the front-end. The noise sources va ∼ CN (0, 4kT0Bra)

and ia ∼ CN (0, 4kT0Bga) are mutually independent, where ra is the equivalent noise

resistance and ga is the equivalent noise conductance. Noise correlation between the

input and output ports is accounted for by the correlation impedance zcor.

The voltage across the load is

r =
GzL

z22 + zL −Gz12

(hx + no − z) , (B.1)

where G = z21/(zA + z11) and z = va +(zA +zcor)ia are the front-end open-circuit voltage

gain and noise, respectively. A useful metric associated with a two-port network is the

noise factor,1 F , defined as the ratio of the output noise power to the (thermal) noise

power contributed by the source alone. Identifying the noise component of r as n ∝ no−z,

we have

F =
E[|n|2]

E[|n|2]|z=0

= 1 +
E[|z|2]

4kT0BrA

(B.2)

Now consider a lossless (and therefore noise-free) matching network with impedance

matrix 


zM11 zM12

zM21 zM22


 (B.3)

inserted between the antenna and front-end. The noise factor of the composite (matching

plus front-end) network is

F = 1 +
ra + ga|z′A + zcor|2

r′A
, (B.4)

where the transformed antenna impedance z′A = r′A + jx′A may be chosen arbitrarily with

the appropriate matching network.

1The noise figure of a two-port network is 10 log10 F .
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The SNR (2.15) at the load is

σ =
P

4kT0BrAF
. (B.5)

Thus we can maximize σ by minimizing (B.4). The minimum Fmin occurs at z′A = zopt =

ropt + jxopt, where [70]

Fmin = 1 + 2

(
garcor +

√
gara + (garcor)

2

)
(B.6)

zopt =
√

ra/ga + r2
cor − jxcor. (B.7)

One particular matching network that achieves z′A = zopt is




zM11 zM12

zM21 zM22


 = j




−xA
√

rAropt

√
rAropt xopt


 . (B.8)
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Appendix C

Proofs for Chapter 4

Here we show that the metrics presented in Section 2.3 satisfy the two properties

specified in (4.6). In each case we identify a simplified version of the functional g(A).

The proof for ergodic capacity with CSIR also applies to the full CSI (2.19) and MMSE

V-BLAST (2.30) capacities.

Ergodic capacity with CSIR (2.20), g(A) = log detA. If A ≥ B > 0 then λi(A) ≥
λi(B) > 0 and Property 1 follows immediately from writing the determinant as the

product of eigenvalues and using the monotonicity of log(·). The forward part of Property

2 is trivial, so we verify the converse. If log detC†AC = log detC†BC, then the argument

of each logarithm must be equal, and by using basic properties of determinants and

factoring the Hermitian square root of the positive definite matrix (since C is full-rank)

C†BC we obtain
N∏

i=1

λi(D) = 1 , (C.1)

where D , (C†BC)−1/2C†AC(C†BC)−1/2. But C†AC ≥ C†BC, so D ≥ I and each
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λi(D) ≥ 1. Together we conclude that λi(D) = 1, so D = I and C†(A−B)C = 0 for all

full-rank C. For any nonzero x ∈ CN it is clear that {Cx | C ∈ CM×N is full-rank} = CM ,

so the previous condition implies y†(A−B)y = 0 ∀ y ∈ CM . But A−B is nonnegative

definite, so we must have A = B.

STBC pairwise error probability (2.33), g(A) = Q(tr A). The proof is similar to the

previous case since Q(·) is also monotonic and the trace of a matrix is the sum of its

eigenvalues, so we only show the converse of Property 2. Let Q(tr C†AC) = Q(tr C†BC)

so that the arguments are equal and we may obtain

N∑
i=1

λi

[
C†(A−B)C

]
= 0 . (C.2)

But A ≥ B, so λi

[
C†(A−B)C

] ≥ 0, and together we conclude each eigenvalue is zero,

and finally that A = B.

MIMO-MRC outage probability (2.37), g(A) = λ1(A). Once again the only non-trivial

part of the proof is the converse of Property 2. Suppose that λ1(C
†AC) = λ1(C

†BC)

for all full-rank C ∈ CM×N . In particular, let us write B−1/2AB−1/2 = UΛU†, where U

is unitary and Λ is diagonal, and consider C such that its columns {c1, . . . , cN} satisfy

ci =





B−1/2Uei , i ∈ I
0 , otherwise

, (C.3)

where ei is the ith canonical basis vector (1 in the ith component, 0 elsewhere) for CM

and I ⊂ {1, . . . , M}. For M < N we take |I| = M , while for M ≥ N we shall take

|I| = N (note that only the former is uniquely defined). With this choice of C we obtain
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the N ×N matrices

C†AC =








Λ 0

0 0


 , M < N

Λ(I) , M ≥ N

and C†BC =








IM 0

0 0


 , M < N

IN , M ≥ N

,

where Λ(I) denotes the principal submatrix of Λ indexed by I.

For any M, N we see that λ1(C
†BC) = 1, and we can always pick our index set

such that 1 ∈ I, in which case λ1(C
†AC) = λ1(B

−1/2AB−1/2). Applying our initial

assumption yields λ1(B
−1/2AB−1/2) = 1. But A ≥ B, so λ1(B

−1/2AB−1/2) ≥ · · · ≥
λN(B−1/2AB−1/2) ≥ 1. Together we conclude that each λi(B

−1/2AB−1/2) = 1, so A = B.

V-BLAST capacity with ZF-SC receiver (2.25), g(A) =
∑

i log 1
[A−1]ii

. Property 1

follows from observing A ≥ B ⇒ A−1 ≤ B−1 and the diagonal elements of a nonnegative

definite matrix are nonnegative. The converse of Property 2 follows by utilizing the

convexity of
∑

k log(·) and choosing C as in the prior proof so that the initial assumption

implies each λi(B
−1/2AB−1/2) = 1.
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