
ABSTRACT

DULBERG, MARTIN S. A Task-based Framework for the Quantitative Evaluation of
Input Devices. (Under the direction of Robert St. Amant and David F. McAllister.)

This research describes the development of a conceptual framework and methodology that

will permit the evaluation of input devices in graphical user interfaces in a more meaningful

context than previous studies. We provide a procedure for the reuse of performance

characteristics in expanded domains. Individual performance differences are analyzed and

their implications for current evaluation methods are discussed. We have built an

interactive simulation for domain-independent testing of the suitability of different input

devices for specific tasks, based on the demand characteristics of the task and the

performance characteristics of the device. The simulation will allow researchers and

practitioners to evaluate the suitability of particular input devices in a given user interface

with a severely restricted role for usability testing. Using the system, it will be possible to

select a device based upon optimal task completion time or estimated error rate. The role of

inter-task transition times is explored. A methodology for prediction of performance with

the use of execution graphs is described.

A TASK-BASED FRAMEWORK FOR THE QUANTITATIVE
EVALUATION OF INPUT DEVICES

by
MARTIN S. DULBERG

A dissertation submitted to the Graduate Faculty of North
Carolina State University in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy

COMPUTER SCIENCE

Raleigh

2003

APPROVED BY:

___________________________________ ___________________________________

___________________________________ ___________________________________
Co-chair of Advisory Committee Co-chair of Advisory Committee

 ii

PERSONAL BIOGRAPHY

Martin Dulberg was born in 1960 in New York City. He received a Bachelor of Arts in

Computer Science from the City University of New York, Queens College in 1994 and a

Master of Science in Computer Science from North Carolina State University in 1996.

 iii

ACKNOWLEDGEMENTS

This research was partially supported by the National Science Foundation, award number

IIS-0083281. The U.S. Government is authorized to reproduce and distribute reprints for

governmental purposes not withstanding any copyright notation hereon.

 iv

Table of Contents

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

1. INTRODUCTION 1

1.1 Contributions 6
1.2 Outline 10

2. Related Work 12

2.1 Evaluation and Calibration of Input Devices . . 14
2.2 Comparison of Input Devices 16
2.3 Taxonomies of Input Devices 22
2.4 Models of Device Usage 28
2.5 Task Taxonomies 33
2.6 Other Related Work 36

3. Interaction Modeling 39

3.1 Introduction 39
3.2 Task Taxonomy 39
3.3 Execution Paths 41
3.4 Execution Graphs 44
3.5 Performance analysis and prediction 47

4. Simulation Design and Experiment Procedures 49

4.1 Method . 49
4.1.1 Subjects 49
4.1.2 Design 49
4.1.3 Procedure 53
4.2 Data Collection 54
4.3 Data Analysis Procedures 55

5. Data Exploration and Analysis 58

5.1 Modeling inter-task transition times 58
5.2 Modeling device dependencies 62
5.3 Overall performance patterns 63
5.4. Individual performance patterns 83

 v

5.5. Individual Performance Differences 103
5.6 Aggregate Error Rates 114

6. Discussion . 118

6.1 Methodological Contributions 118
6.1.1 Implications of user differences to
 generality of device testing 119
6.2 Theoretical Contributions 120
6.2.1 Task Execution Graphs 120
6.2.2 Creating and Upgrading Models 121
6.2.3 Limitation of model 122
6.3 Future Work 123
6.3.1 Evaluation of novel input devices 123
6.3.2 Analysis of Time/Error critical regions of
 applications 124
6.3.3 Device recommendation for specific users . . 124
6.3.4 Analysis of disabled user’s performance . . . 125

7. List of References 126

8. Appendices . 133

8.1 Median trial completion times and curve error
 factors 133
8.2 Simulation code: Form1.frm (Visual Basic) . . . 134
8.3 Simulation code: Modheaderbas.bas (Visual Basic) 142
8.4 Simulation code: vectorlib.bas (Visual Basic) . 147
8.5 Simulation code: staticstuff.bas (Visual Basic) 149
8.6 Data Analysis Code: dataanal.cpp 151
8.7 Data Analysis Code: dataanal.h 162
8.8 Data Analysis Code: transitions.cpp 166
8.9 Data Analysis Code: trialanalysis.cpp 167

 vi

List of Tables

Page

Chapter 4

1. Format of trials.txt file 54

2. Format of test.txt file 55

Chapter 5

1: Fit and analysis of variance over all subjects . 60

2. Fit and analysis of variance over all subjects

 by device 63

3. Summary data collected by participant 64

4. Sample size and task curve fit parameters for

 subject six 90

5. Number of trials and selection errors by device 115

 vii

List of Figures

Page

Chapter 2

1. A selection of devices plotted on Buxton’s

 taxonomy [Buxton 93] 24

2. A selection of devices plotted on Card et al’s.

 taxonomy [Card 91] 27

3. Selection using a direct pointing device

 [Buxton 1990] 29

4. The selection task from Foley et al. [Foley 1983] 35

Chapter 3

1: Menu selection abstract model 41

2: Simplified menu selection, abstract model . . . 42

3: Generalized execution graph 44

4: Execution graph for simulation 45

Chapter 4

1. Participant view of a random trial 50

2. User view of a random trial in progress 52

 viii

Chapter 5

1. Oneway Analysis of Time (ms) By Transition type 61

2. Distribution by time (ms.) of selection task

 with mouse across subjects 65

3. Distribution by time (ms.) of selection task

 with Touchpad across subjects 66

4. Distribution by time (ms.) of selection task

 with Trackpoint across subjects 67

5. Scatter Plot with Fitts’ Law Model for Selection

 with Mouse across subjects 68

6. Scatter Plot with Fitts’ Law Model for Selection

 with Touchpad across subjects 69

7. Scatter Plot with Fitts’ Law Model for Selection

 with Trackpoint across subjects 70

8. Distribution by time (ms.) of Orientation task

 with Mouse across subject 71

9. Distribution by time (ms.) of Orientation task

 with Touchpad across subjects 72

10. Distribution by time (ms.) of Orientation task

 with Trackpoint across subjects 73

11. Scatter Plot with Fitts’ Law Model for

 Orientation with Mouse across subjects 74

 ix

12. Scatter Plot with Fitts’ Law Model for

 Orientation with Touchpad across subjects . . 75

13. Scatter Plot with Fitts’ Law Model for

 Orientation with Trackpoint across subjects . 76

14. Distribution by time (ms.) of Position task

 with Mouse across subjects 77

15. Distribution by time (ms.) of Position task

 with Touchpad across subjects 78

16. Distribution by time (ms.) of Position task

 with Trackpoint across subjects 79

17. Scatter Plot with Fitts’ Law Model for

 Position with Mouse across subjects 80

18. Scatter Plot with Fitts’ Law Model for

 Position with Touchpad across subjects 81

19. Scatter Plot with Fitts’ Law Model for

 Position with Trackpoint across subjects . . . 82

20. Selection task using the mouse (subject 6) . . 84

21. Selection task using the touchpad (subject 6) 84

22. Selection task using the trackpoint (subject 6) 85

23. Orientation task using the mouse (subject 6) . 85

24. Orientation task using the touchpad (subject 6) 86

 x

25. Orientation task using the trackpoint

 (subject 6) 86

26. Position task using the mouse (subject 6) . . 87

27. Position task using the touchpad (subject 6) . 87

28. Position task using the trackpoint (subject 6) 88

29. Distribution by time (ms.) for S/DM transition

 with mouse (subject 6) 92

30. Distribution by time (ms.) for S/DM transition

 with touchpad (subject 6) 93

31. Distribution by time (ms.) for S/DM transition

 with trackpoint (subject 6) 94

32. Distribution by time (ms.) for S/P transition

 with mouse (subject 6) 95

33. Distribution by time (ms.) for S/P transition

 with touchpad (subject 6) 96

34. Distribution by time (ms.) for S/P transition

 with trackpoint (subject 6) 97

35. Distribution by time (ms.) for DM/S transition

 with mouse (subject 6) 98

36. Distribution by time (ms.) for DM/S transition

 with touchpad (subject 6) 99

37. Distribution by time (ms.) for DM/S transition

 with trackpoint (subject 6) 100

 xi

38. Distribution by time (ms.) for P/S transition

 with mouse (subject 6) 101

39. Distribution by time (ms.) for P/S transition

 with touchpad (subject 6) 102

40. Distribution by time (ms.) for P/S transition

 with trackpoint (subject 6) 103

41. Scatter Plot with Fitts’ Law Model for

 Selection with Mouse (subject nine) 104

42. Distribution by time (ms.) for DM/S transition

 with mouse (subject 10) 107

43. Distribution by time (ms.) for P/S transition

 with mouse (subject 16) 108

44. Normalized performance time (ms.) for

 selection task (mouse=1.0) 109

45. Normalized performance time (ms.) for

 orientation task (mouse=1.0) 110

46. Normalized performance time (ms.) for

 position task (mouse=1.0) 110

47. Normalized performance time (ms.) for S/DM

 transition (mouse=1.0) 112

48. Normalized performance time (ms.) for S/P

 transition (mouse=1.0) 112

 xii

49. Normalized performance time (ms.) for DM/S

 transition (mouse=1.0) 113

50. Normalized performance time (ms.) for P/S

 transition (mouse=1.0) 114

1. Introduction

A graphical user interface (GUI) is a visual environment through which a user can interact

with a software application. GUIs derive their effectiveness from their support for direct

manipulation [Shneiderman, 1983]. Direct manipulation interfaces are associated with

• The visibility of objects of interest.

• The replacement of language with action.

• Incremental action and rapid feedback.

• Reversibility of actions.

• Syntactic correctness of all actions.

These properties encourage users to explore the functionality of the interface, promote

learning and retention, and enable users to gain mastery of the interface more quickly than

through most other forms of interaction.

Direct manipulation interfaces have become the dominant paradigm in human-computer

interaction, and GUIs are the most common form that they take. In a GUI, virtual objects

represent their counterparts in the domain of the application. In GUIs based on the

common desktop metaphor, for example, we find visual representations of manila folders,

paper documents, calculators, sticky notes, address books, and other office tools and

artifacts. GUIs for word processing applications generally contain visual representations of

rulers, typefaces, bulleted lists, and other properties of text and documents. These types of

 2

presentation are sometimes generalized as the "WIMP" model, being based on windows,

icons, menus, and a pointer (e.g., a mouse or touchpad.)

The visual representation is only part of the GUI; interaction with the GUI must support

problem-solving activities in the application domain. A desktop GUI thus supports the

dragging of file icons from one spatial location to another, representing file movement in

the directory system; a word processing GUI supports the activation of buttons that change

the visual properties of text. A key issue for developers is designing visual representations

that appropriately reflect the support of the GUI for the tasks that the user needs to carry

out. Ideally, the GUI will provide a set of conventions for interacting with the application

domain that can be easily comprehended and remembered, quickly learned, and efficiently

executed [Dix 1998].

Producing such interfaces is non-trivial. For a given GUI, significant performance

differences can arise due to natural physiological variation in users, differences in domain

knowledge and reasoning abilities between users, and differences in the ways that users

interpret the capabilities of the interface based on its visual representation. In comparing

different GUIs developed for the same task, further performance differences are due to the

alternative mappings of tasks to GUI interactions, the spatial structuring of screen elements,

and even variations in the size and appearance of those elements. The performance

properties of a given GUI are so complex and tightly interrelated that it is practically

impossible to predict them in advance, from first principles. Evaluation has thus come to

occupy a critical role in user interface development.

 3

The specific evaluation issue addressed in this dissertation deals with the match between

the tasks that a user interface is designed to support and the low-level performance

properties of the physical input device through which the interaction occurs. For example,

consider the task of steering a car in a simulation. The task in this case would be indicating

one of two directions (steer left or steer right), and possibly a magnitude (e.g. bearing left

versus a hairpin left turn), depending on the simulation software. Any number of input

devices might be used for this task: a mouse, a touchpad, a joystick, arrow keys, even a

steering wheel. Intuitively, some of these devices will be more effective than the others,

especially if the task is considered in the context of other tasks that must be carried out

simultaneously, such as adjusting the speed of the car, attending to road signs, and so forth.

The problem of selecting the best match between the steering task and the input device can

involve a significant amount of analysis and empirical experience. (Early steering devices

in the history of the automobile include steering bars, steering sticks, and even leather reins

comparable to those used for horse-driven carriages; modern steering devices in prototype

cars include joysticks and immobile force sensitive steering wheels). Every year novel

computer input devices, either general-purpose or specialized for particular domains, are

described in the human-computer interaction literature, each with distinctly different

capabilities and performance differences. An important system design issue is determining

how effective an input device will be for performing a particular task with a particular GUI.

The suitability of input devices as they relate to task performance is generally evaluated by

empirical means through controlled experiments. For example, MacKenzie, Sellen, and

Buxton [1991] studied the suitability of mice, trackballs and tablets for pointing and

 4

dragging tasks. In such experiments the user is asked to perform a task or series of tasks

with different devices to determine which one performs better for the task being evaluated.

Better is usually defined as faster task completion time or fewer errors, while errors are

usually defined by the experimenter within the context of the task being performed. For

their study MacKenzie et al. developed an experiment and wrote software that provided the

targets for the users to point at, as well as collected the data from each trial. Twelve

subjects were recruited and presented with trials of both tasks (dragging and pointing),

using four different target amplitudes with four different widths, for a total of 32 different

conditions. Once all of this data was collected, it was analyzed and adjusted to look at

movement time, error rate, movement time adjusted for errors, and fit of data to existing

performance models.

This study is an excellent model for empirical research in this area, and it has been adopted

widely in HCI. Generally, to conduct research that will yield meaningful results, it is

necessary to design and implement an experiment, recruit participants, have the participants

perform the experiment while data is being collected, and finally analyze the data to

determine the performance characteristics of the devices. Implementing the experiment

usually involves writing a customized version of the application with data logging

procedures built in. Somewhere between four and twenty subjects must be recruited and

monitored during the experiment. Once the experiment is done, the data are filtered,

aggregated, and analyzed to get a result. The MacKenzie et al. study points out a number of

broad, general findings about the performance characteristics of the above devices in

relation to the two tasks analyzed. Dragging takes longer than pointing with the devices

 5

tested and it involves a higher error rate than pointing, for example. We can even conclude

that a tablet is superior to a mouse for pointing tasks but not for dragging.

For all the information that we can glean from such experiments, however, there are

significant missing elements. These provide the motivation for our research.

• Ecological validity. Interaction tasks are usually tested in isolation, for the sake of

experimental control. Real user interfaces generally involve much more complex

tasks than those used in testing the input device, however, which means that

individual tasks carried out in an experimental testbed may or may not provide a

good match for task combinations that are required in deployed interactive systems.

• Task coverage. Device evaluations almost always rely on a set of tasks that include

pointing and dragging, with many being limited to just these two tasks. The scope

of actions possible in GUIs is much wider than this; some action taxonomies include

rotation and path following as elements, for example, and it is not always clear that

these can be treated as composite tasks whose performance is precisely predictable

from an analysis of their individual component tasks.

• Standards for cross-device comparison. Although comparative studies of devices

usually lay out their procedures in clear detail, they are often implicitly tied to those

devices under consideration. When tasks and procedures are described that go

beyond pointing and dragging, we find variation across the devices being evaluated.

 6

This can make it difficult for those considering the adoption of a novel device to

determine its comparative advantages in practice.

• Individual differences. By focusing on broad patterns in device comparisons,

evaluations usually neglect individual performance differences. For example, do

trends exist across users? Will all individuals that do well using a mouse will also

do well using a tablet?

This dissertation addresses these issues and a number of related questions that they raise.

1.1 Contributions

This dissertation describes the development of a conceptual framework and methodology

that will permit the evaluation of input devices in GUIs in a more meaningful context than

previous studies. We provide a procedure for the reuse of performance characteristics in

expanded domains. Individual performance differences are analyzed and their implications

for current evaluation methods are discussed. We have built an interactive simulation for

domain-independent testing of the suitability of different input devices for specific tasks,

based on the demand characteristics of the task and the performance characteristics of the

device. The simulation will allow researchers and practitioners to evaluate the suitability of

particular input devices in a given user interface with a severely restricted role for usability

testing. Using the system, it will be possible to select a device based upon optimal task

completion time or estimated error rate. In order to perform this evaluation with current

methods it would be necessary to exhaustively explore the space of device-task pairs. This

 7

type of analysis would require an inordinate number of comparisons and time, and it would

yield an evaluation that would be of value only to the domain-specific task that was tested.

Our research provides a framework that enables a researcher or designer of interactive

systems to quickly evaluate device suitability for a wide range of tasks.

The approach taken in this dissertation involves the following steps:

• Development of a taxonomy of elemental tasks. We have identified a set of core,

fundamental tasks that users will perform in a GUI. The tasks in the taxonomy are

low-level operations that can be chained together to allow the modeling of more

complex interaction tasks. Examples of elemental tasks are key presses, clicks, and

moving the cursor to a particular location.

• Selection of representative input devices. We have chosen a representative sample

of input devices in our evaluation, each device associated with a characteristic set of

appropriate tasks. Although the input devices we have chosen are conventional,

they have not undergone the type of analysis presented in this dissertation. The set

is furthermore easily extensible to other less conventional input devices.

• Modeling: task execution paths. Once a task list and a device list have been created,

a set of execution steps can be derived for each task on a device by device basis,

assuming that the device is capable of performing the task. A series of execution

steps represents an execution path for a particular device and task pairing. We have

analyzed device task pairings and produced appropriate task execution paths.

 8

• Modeling: task execution graphs. We have developed task execution graphs to

combine execution paths into a concise, convenient representation. Nodes in the

graph represent states of the user interface. Outgoing arcs from each node represent

the elemental actions or steps that the user performs. Two weighting factors are

associated with the transitions in each task graph. One value represents an

execution time for the particular action represented by the transition, the other an

error probability. Task execution graphs, when parameterized in this way, can be

applied as predictive models of user performance.

• Simulation: A GUI test bed was created with a trial presentation interface, extensive

timing, and event logging mechanisms and reporting capabilities, which permit the

observation and analysis of user actions within the test bed. The user is presented

with a series of curve matching tasks with randomized orderings and position

requirements. By altering the task orderings to complete a trial, we are able to

capture performance data for all possible combinations of task orderings and

transitions between tasks.

• Implications of user differences to conventional evaluation methods. Our results

demonstrate that individual user performance varies widely from median

performance and even with respect to the relationships between different devices.

This leads us to conclude that conventional evaluation methods are of very little

benefit in comparing device usage characteristics for substantial segments of the

user population.

 9

The contributions of this thesis are the development of a simulation environment, the design

of a new model for representing and analyzing interaction, and the empirical results of

applying the interaction model to data produced by users using the simulation. Our

research has led to interesting findings in the area of modeling task and transition

performance, the role of individuality of user performance to prediction findings and a new

methodology for modeling user interaction. We have made contributions in the following

areas:

• Analysis: inter-task transition times. Inter-task transition times are predictable.

Models in common use in user interface performance modeling vary widely in the

level of detail at which they represent user behavior. The most popular approaches

represent tasks individually, rather than in combination. Our work shows that

individual task performance depends on the sequencing of the tasks involved, and

that this performance can be characterized naturally and concisely. The result is an

improvement in modeling accuracy with only a small increase in modeling

complexity.

• Analysis: device-dependent transition times. Transition times depend on device.

Common modeling approaches generally neglect the interactions between modeling

predictions and devices under consideration. In the keystroke level model [Card

1980], for example, pointing operations are generic, generating predictions that are

independent of whether pointing is carried out with a mouse, a touch pad, a

trackball, or some other device. Performance models for these different devices

 10

exist in the literature; we show how they can be incorporated into general modeling

procedures, again taking account of transitions between tasks of different types.

• User performance differences. Current evaluation methodologies do not take

individual performance characteristics into account, preferring instead to generalize

over a large population. This generalization has the effect of diminishing the

applicability of the results to any particular user in the population. We find that

while there appear to be some general trends with regards to performance, a

substantial minority of users cut against that trend.

1.2 Outline

The remainder of this thesis is organized in the following manner:

• Related Work: A review of relevant research is done. We look at studies related to

interaction and device usage in GUI’s in section two.

• Interaction modeling: In section three we present a new model for interaction in a

GUI and explain the steps necessary to construct a model and populate it with user

performance data.

• Simulation design and experiment procedures: We look at the constructional issues

related to the simulation in section four and provide details of how data was

collected for the 24 participants that were in our study.

 11

• Data Exploration and Analysis: In section five we review the results of the analysis

of the participant data looking at task and transition based performance at the

aggregate and individual level.

• Conclusions: In section six we discuss the implications of our findings.

 12

2. Related Work

This proposal draws upon a large body of work in the HCI and psychology literature. We

have broken this up into six general areas of interest.

• Evaluation and calibration of input devices: Numerous studies have evaluated how

long it takes a user to complete a task and how well they are capable of doing it. The

findings of these studies inform our efforts to create a model of human performance

that supports the evaluation of device suitability in terms of task completion time

and some metric of the quality of performance. The data in these studies provide us

with a body of empirical data that we can use to both create and validate our model.

• Comparison of input devices: Many studies have analyzed the performance metrics

of a sampling of devices. We aim to extend this body of research with a new

framework for the evaluation of these devices. It is therefore important to

understand the strengths and limitations of work in this area. Each study in this area

has been done with a customized piece of experimental software, using a different

methodology and different analysis methodologies. This has the effect of limiting

the applicability of the results of these studies and diminishing the ability to

generalize about the findings. Our aim is to provide a more consistent approach to

device evaluation.

 13

• Device taxonomies: The range or type of input devices as well as the characteristics

that make devices similar or different have also been studied in detail. These

classification dimensions have helped us structure our model appropriately by

giving us a schema for covering the design space of relevant devices for a particular

task.

• Models of device usage: Various modeling techniques attempt to explain different

aspects of device usage through biomechanical, cognitive and probabilistic means.

These models are successful at describing device usage in different domains and

different contexts. We intend to use these models both as guidance for our model

and for verification that our model is reliable.

• Task taxonomies: Taxonomies have been developed that describe what type of tasks

are typically performed and how they are defined. We intend to use these task

taxonomies as a starting point for our model, to provide for a wide range of

evaluation conditions that might reasonably be encountered in the course of an

evaluation.

• Other Related Work: Finally, there is additional research that does not fit into any of

the categories above which we believe is important to understand the context of our

work and the current state of the art in device evaluation.

 14

2.1 Evaluation and Calibration of Input Devices

Input devices have been evaluated for many different performance characteristics. These

evaluations have been used to determine the performance characteristics of devices, usually

with a single task, in order to uncover the underlying nature of user performance. Task

completion time has been studied extensively [Albert 1982, Card 1978, MacKenzie 1991,

MacKenzie 1992, Meyer 1988, Murata 1991, Walker 1993, Worden 1997], time to

complete a task along paths of different angles [Dulberg 1999, Jagacinski 1985], and

motion along a curved path [Accot 1997]. Error rates or mistakes in performance have also

been calculated in the above work as well as other studies. User preferences (including the

phenomenon that users may not prefer the most efficient devices) have also been examined

[Andre 1995].

A large body of literature starting with Paul Fitts’s seminal work [Fitts 1954] investigates

the time required to complete a pointing task with a variety of different of apparatus, under

a multitude of different conditions assuming expert performance with a low error rate. Most

of these works have validated some form of Fitts’ law equation, which takes the form of a

log relationship such as the following:

T=a+b log2 (2A/W)

where T is time, a and b are experimentally derived constants, A is the distance to the center

of the target, and W is the width of the target. The index of performance (IP) of a device is

the reciprocal of b. Different devices have a different (IP) [Douglas 1994, MacKenzie

 15

1992]. Fitts' Law has been experimentally validated for a variety of tasks such as pointing,

tapping a stylus, hand movement, wrist rotation, joystick use and mouse positioning [Albert

1982, Card 1978, MacKenzie 1991, MacKenzie 1992, Meyer 1988, Murata 1991] and can

thus be used as a tool for the predictive measures of performance times for many cursor

prediction tasks. For example, MacKenzie, Sellen and Buxton [MacKenzie 1991] showed

that pointing and dragging tasks fall under the category of Fitts’ Law tasks. They also

analyzed the rate of dropping errors for the dragging task.

The log form of Fitts’ law has been the target of some investigation. Meyer et al [Meyer

1988?] is one representative sample. They proposed a stochastic optimized-submovement

model which characterizes target acquisition as a gross movement followed by a corrective

submovement. Their work yields a formula for predicted time of:

WDBAT /+=

where A and B are experimentally derived nonnegative constants, D is distance and W is

target width. This model, like some of the other modifications to Fitts’ law yields slightly

more accurate predictions at shorter distances with very similar predictions to Fitts’ law at

longer distances. For theoretical reasons, however, the log form of Fitts’ law remains the

standard. As Newell explains it [Card 1983], the time to acquire a target is based on a

series of movements by the user until the goal is achieved. Each movement requires that the

user make use of their perceptual processor to observe where their hand or cursor is

(perceive the current state of the environment), then their cognitive processor to decide on

any correction needed (goal formation) and finally use their motor processor to carry out

 16

the action. This process is repeated n times until the goal is achieved. He goes on to show

that the relationship between the time to complete the action and the environment is based

on a logarithmic term of the distance to, and width of, the target.

Researchers do not always agree on the value of IP for a particular device. For example, the

IP of the mouse varies from 1.1 to 10.4 [MacKenzie 1991]. What accounts for this

discrepancy? Two factors are at work here: Different researchers use a different term for the

IP, and there are also quality issues with regard to the manufacture of the device. Some

mice are superior to others, employing finer quality mechanisms for the tracking of

movement, higher sampling rates to provide better feedback and perhaps a better ergonomic

shape to allow the user to manipulate the mouse more easily. We do not concern ourselves

with this aspect of device evaluation other than to demonstrate that it exists and to provide

some recommendations for compensation methods. We believe that it represents itself as a

constant factor in task performance time and so can be accounted for. What is less clear is

the effect that such differences in quality will have on errors.

2.2 Comparison of Input Devices

The comparison literature specifically looks at inter-device differences to determine which

devices are best suited to a particular task in either the time, variability of time, or error rate

dimensions. All of the following studies contain numerical results regarding device

comparisons. We have used these studies as the starting point for our model; they have also

influenced our empirical approach.

 17

One of the earlier papers that investigated the different performance characteristics of

various input devices was Card, English and Burr's work [Card 1978], which studied the

performance characteristics of the mouse, isometric joystick, step keys (which resemble a

diamond layout of arrow keys with a home key in the center), and text keys (which have

dedicated functionality like shortcut keys). The paper primarily looks at how rapidly and

accurately text can be selected with the four devices. The authors took five novice users

(one of whom was discarded for being significantly slower than the others) and discarded

results from the first 200 trials to control for practice effect (the subjects ran approx. 800

trials for each condition). The mouse was found to be faster and less error prone with less of

an increase in positioning time for greater distances, which is consistent with Fitts' Law.

The positioning time for the isometric joystick grew at the same rate as the mouse, but the

values were consistently higher regardless of the distance. The step keys and text keys saw

performance degrade at a much faster rate as the distance increased. The mouse had a

significantly lower error rate than the other three devices regardless of the target size.

The authors also discussed the effects of approach angle to the target. They found no

significant difference in positioning time when using a mouse regardless of the angle of

approach, whereas the other three devices had a noticeable increase in performance time as

the angle of approach to the target became more oblique, because the target was a piece of

text and hence was only one character high. The reason that they might not have found a

difference in the mouse performance was that they were only looking at the interval 0-90

degrees broken up into 3 bins (0-22.5 , 22.5-67.5 , 67.5-90) and might have missed more

subtle differences.

 18

Albert [Albert 1982] compared seven different input devices for accuracy, speed, and a

subjective evaluation of each device that involve a graphical input task that required the

participant to select a target. There were differences in the groups of devices that were

considered more or less direct. In this context we refer to directness as having a one to one

correspondence to the world, without an intermediary [Norman 1986]. For example, given

a drawing task, most direct to least direct approaches might include: drawing with pen and

paper; using stylus and tablet, a mouse; a joystick; a set of typed, drawing commands.

Albert found that the direct manipulation devices, a touch screen and a light pen, afforded

faster positioning speed and higher positioning accuracy than less direct devices such as

track balls and joysticks. Even within the same device, a touch screen mounted on the

display provided superior performance over one that was mounted next to the display.

Direct hand-eye coordination is presumed to be superior to indirect. A separate "enter"

button was also found to degrade the performance of participants due to the homing time

required both to context switch to the button, then return to the input device.

MacKenzie, Sellen and Buxton [MacKenzie 1991] looked at pointing and dragging tasks

with mouse, trackball and stylus. Fitts’ law modeled both tasks well with a higher IP for

pointing than dragging. The mouse was superior for dragging while the stylus was faster for

pointing. The track ball was third in both cases.

Errors were also investigated, particularly accidentally “dropping” an object while dragging

it. The mouse produced the fewest percentage of errors in the dragging task while the

 19

trackball was the most error prone device. There was little difference in errors across

devices for the pointing task.

Murata [Murata 1991] looked at pointing tasks and error rates between six devices. The

task was for the participants to sort five three-digit numbers. This task was paired with a

mouse, trackball, joystick, joycard, light pen and touch screen. A joycard is a type of

isometric joystick. The author used 10 naive subjects. He found that the joystick was fastest

while the light pen was most accurate. This study however only looked at these devices in

the context of a one-dimensional task. The participants were simply picking the row in

which the number was located. The author also gives no insight into whether he controlled

for learning with regard to task times. The findings in this paper run counter to previous

device comparisons in the literature.

Kurtenbach and Buxton [Kurtenbach 1993] did an evaluation of marking menus using pen

and mouse input, looking at error and response times based on the number of segments or

different selection areas in the circular pie menu and depth of submenus. A marking menu

provides a pie menu for novice users but allows experts to simply make the gesture that

corresponds to a selection in the novice menus. This gesture would correspond to the path

that would need to be traversed through the menus to make a particular selection. They

found the pen more accurate and faster than mouse input for this task. The error rate

increased as segments, depth or the combination increased while the response time

increased at a slower rate.

 20

Guimbretière and Winograd [Guimbretière 2000] discuss an extension of marking menus

called FlowMenus. In a suggested usage, the menu appears with eight submenus appearing

radially arranged around the center menu at the time the menu is invoked. Using pen based

input, users can use a path to select like a marking menu but also use a path to quantify a

degree of selection based on path properties. No empirical evaluation was provided.

Douglas and Mithal [Douglas 1994] showed that isometric devices (devices which sense

pressure but don't move or change shape as a result of pressure being applied) are Fitts' Law

devices. The authors believed that a finger controlled isometric device would operate faster

than a joystick (the finger has a higher IP than the hand: Langolf 1976). This supposition

did not hold. Even though the keyboard joystick that they tested reduced homing time, it

had a longer pointing time component than the mouse. The authors question the

assumption in the Keystroke Level Model that homing time to a mouse (or other device) is

a constant by suggesting that Fitts’ law would dictate otherwise (relationship to distance of

the device from the hand).

Zhang et. al. [Zhang 1988] evaluated single and multimodal interaction in a CAD system.

Multimodal findings aside (which are beyond the scope of our model), they found that

mouse input was superior to pen based input in task completion time accuracy and

subjective satisfaction.

While all of the results described thus far in this section have been empirical, there are

some qualitative results available as well. van de Pol, Ribarsky, Hodges and Post [van de

Pol 1998] looked at interaction techniques for navigation, selection and manipulation

 21

particularly on the virtual workbench, but the findings can be generalized to other large

display immersive environments.

They mention five different types of selection interaction techniques:

• Direct Picking: The user reaches out till they actually "touch" the object in question.

This was implemented with a glove with positioning info. Direct picking was the

most intuitive and easiest selection technique but suffers from the limitation that

objects can't be out of reach.

• Ray Casting: By having a ray shoot out from the tip of a finger, the user can use

their finger like a laser pointer. This technique is useful for picking distant objects.

Feedback must be provided to the user to indicate the current position of the beam

in the virtual world; otherwise there can be discrepancies between the perceived and

actual position of the ray.

• Gaze directed selection: The user selects an object by looking at it. The ray starts

from a point mid-distance between the eyes. There is an uncited mention in the

article that it was found to be more intuitive to have the gaze point down rather than

straight ahead. A small cursor in the form of a cube is placed on the workbench

surface to provide feedback to the user. In the case of occluding objects, the closest

one is selected.

• Pointing: The user selects an object by covering it with their fingertip.

 22

• Virtual Hands: A representation of one's hands is provided in the scene much like

direct picking; however, a nonlinear mapping technique is employed to allow the

user to select objects outside of their reach.

An unknown method was used to evaluate the effectiveness of these methods. Ray casting

was found to be most effective for distant object selection.

All of the studies that we have seen that relate to device comparisons have demonstrated

that performance is based on Fitts’ law with few minor differences. None of these studies

look at individual performance differences, concentrating instead on the overall patterns of

device usage across populations.

2.3 Taxonomies of Input Devices

A taxonomy of input devices is useful as a means for classifying and understanding the

underlying nature of input. By classifying devices according to characteristics like

dimensionality, degrees of freedom, or activation methods, the taxonomy provides insight

into the nature of how devices are used, as well as hints at where one might start looking for

similarities and differences in the performance characteristics of the devices.

Buxton [Buxton 1983] proposed a taxonomy that classifies devices along two dimensions,

the property that is sensed and the number of dimensions that the device can track (figure

2.1). Devices are then further classified according to whether they sense input via

 23

mechanical or touch sensitive means. The distinction that Buxton was making is very

similar to the difference between direct and indirect manipulation, as discussed above.

The number of dimensions relates to the number of degrees of freedom along which the

device affords movement. A slider or rotary control allows or controls a single dimension

of movement, while a mouse, joystick, tablet or light pen allows motion along two

dimensions.

The properties that can be sensed are position, motion and pressure. A tablet, slider or light

pen sense position; a mouse, trackball or joystick sense motion; while an isometric joystick,

some styli on tablets and a space ball sense pressure or torque.

The device taxonomy allows us to group devices that are similar in performance

characteristics with the hope of simplifying our model. It allows us to establish relevant

relationships between devices that are close to each other in the possible design space.

One of the major drawbacks of the Buxton taxonomy is the lack of descriptive ability for

discrete devices. Without that capability, it is limited to a subset of all input devices.

Another drawback relates to the way that devices are categorized according to how they

sense input. While it might seem appropriate, there is little evidence provided to indicate

that it is a meaningful distinction. The author also mentions the notion of being able to

make analogies between devices according to their relative positions in the taxonomy.

There is no evidence to suggest that these might be meaningful relationships.

 24

Figure 2.1: A selection of devices plotted on Buxton’s taxonomy [Buxton 83]

Simpson and St. Amant [Simpson 2003] developed a taxonomy based on the physical

properties of devices with the idea in mind of being able to automatically find more

efficient mappings of device controls to tasks.

Foley et al. [Foley 1984] provide more of a design space rather than taxonomy for input

devices within the context of computer graphics interaction techniques. A variety of devices

commonly used in two-dimensional GUI's are described in terms of the tasks that are

commonly performed in graphics software, so devices are analyzed in terms of their ability

or suitability of performance for a task, rather than their physical performance

 25

characteristics. For example, a mouse might be classified as excellent for selection but poor

for text entry.

Due to the informal classification scheme in the Foley paper, the possible design space of

input devices is quite constrained and somewhat arbitrary. While they have performed a

reasonable coverage of devices that were deemed appropriate for use within a GUI, the

scope of the design space is limited to devices that were in existence at the time of

publication. The Foley taxonomy is not designed to be extensible. There is also no

consideration of three-dimensional and hybrid devices that have been developed subsequent

to the publication of the paper.

Card, MacKinlay and Robertson[Card 1991, 1992] provide an interesting scheme for the

classification of devices based on the physical characteristics of the device as well as the

method of operation and interaction with said device. The Card et al. scheme classifies

devices along the following dimensions (Figure 2.2):

• Axes that can be manipulated: A rotary dial or slider can manipulate along a single

axis, a mouse or joystick can manipulate along two axes, usually referred to as x and

y, while a space ball or data glove can manipulate along all three axes

simultaneously. When manipulation along an axis is mentioned, it refers to the

device's native abilities, not what is possible with overloading functionality. There

exist seven different possible combinations for either one, two, or three axes. Of

course, many of these are functionally equivalent when we simply consider

transformation of coordinate spaces.

 26

• Linear vs. Rotary: A device either allows a user to make movements that can be

tracked in a positional manner or makes use of the angle of rotational information of

the device. A mouse is a linear device since it keeps track of the change in x and y

coordinates of movement, while a dial is a rotary device since it is controlled by

how much or how far it has been rotated. It is also possible to have hybrid devices

such as the Magellan mouse or a data glove where all six degrees of freedom are

being utilized.

• Position or Angle Utilization: If a device tracks movement or rotation it will do so

in either an absolute or relative fashion. A mouse tracks relative movement. Every

time that the mouse is polled, it reports the distance that it has moved since the last

time it was polled. On the other hand, a graphics tablet is frequently set up in

absolute mode. Each time the tablet is polled, it reports the actual location, if any, of

the stylus. There exists a correspondence between the screen and the tablet. A

mouse has no such correspondence. If a user picks up the mouse and places it down

on a different part of the desktop then no movement has taken place.

• Positional or Relative Force and Torque: For input devices that utilize force such as

a pressure sensitive stylus or space ball, the device can either measure the absolute

or relative force and torque that is applied.

 27

Figure 2.2: A selection of devices plotted on Card et al’s. taxonomy [Card 91]

The authors clearly intended that the above taxonomy be used to describe the design space

for all possible input devices regardless of practicality. As such it is capable of describing

all input devices regardless of whether they are discrete or continuous unlike the taxonomy

proposed by Buxton [Buxton 1983] and Foley [Foley 1984]. Both Buxton's and Foley's

taxonomies or design spaces exist as a subset of the Card taxonomy.

 28

2.4 Models of Device Usage

The modeling of device usage is concerned with arriving upon a "formal description of

activity which can be used for predicting some future activity." [Baber 1997] Several

techniques have been used. The primary focus is usually transaction time (time to complete

a specific task or subtask). Models can be used to test a particular interaction task without

the need for building the actual system and testing it with human subjects. For example,

Fitts' Law can be used to produce quantitative predictions that buttons three pixels wide are

not a good idea in an interface because the user would have a great deal of difficulty

clicking on them with a conventional mouse and hence the task completion time would be

unreasonably long. All this can be accurately predicted without writing a single line of code

or running a single subject in an experiment.

Fitts' Law [Fitts 1954] is an early model for rapid aimed pointing tasks with a low error

rate. Paul Fitts did his original work with a stylus tapping task where participants were

required to alternately tap two targets of fixed width, separated by a fixed distance, as

quickly as possible. His work has subsequently been extended to a variety of tasks

including mouse movement and dragging.

The three state device approach [Buxton 1990] takes an automata or state transition

diagram approach for the generic actions allowed by user interface widgets and interaction

devices. Examples are given to show the state diagrams for simple tasks such as selecting

(figure 2.3) and dragging. The three state device approach does not allow for the

comparison of different devices since their state diagrams may be the same, yet in practice

 29

they will have different characteristics with regards to usability. It is also limited in terms of

tasks and devices that it can describe, a pressure stylus being one example of a device that

cannot be modeled. It is possible that one could focus on the transitions and look at how

they were actually performed by the different devices. Note that the arcs in Buxton’s model

might be annotated by performance characteristics. Although not explored in his work, the

state diagrams can be expanded on by adding performance measures.

Figure 2.3: Selection using a direct pointing device [Buxton 1990]

 30

The keystroke level model (KLM) [Card 1980, 83] takes a summation of a task

decomposition approach to the prediction of task completion times. Given a particular task

A, A would be broken down into a series of elemental subtasks. Times can be computed for

each subtask and then the summation of all subtask completion times will give you the time

to complete task A. Certain constant times are used to determine the subtask times, such as

1.35 seconds per mental operation, 0.2 seconds per keystroke (based on an average typing

speed of 55 words per minute), or 1.1 seconds to move the cursor to a particular area. The

KLM has advantages as well as disadvantages in predicting user performance. It is fairly

easy to apply if a task decomposition can be created. It gives a fairly reasonable

approximation of actual performance [Baber 1997, Card 1983] but does not account for the

wide differences in individual performance. There is a lot of disagreement as to what the

appropriate constant values should be for different devices. Different constants have been

used [Card 1978, Epps 1986, MacKenzie 1991] for different devices to provide a greater or

lesser degree of fidelity to the actual user performance. This suggests that perhaps the

keystroke model does not always capture the essence of the task that is being measured.

For example, one assumption is that tasks are practiced and efficient; there is no

accommodation for users stopping to think about what to do next. In addition, there is also

the question of equivalence of devices. Two mice, for example, might not have the same

performance characteristics and would therefore require different weights [Buxton 1986].

Markov chain models are based on the idea that it is possible to describe the interaction

between a user and a device with a finite state machine. If each one of these actions takes a

user to a particular state then times can be assigned to the transitions between states.

 31

Probabilities can be assigned to these transitions. An expected duration can then be

calculated by looking for the most likely path through the state diagram given that the user

is trying to accomplish a particular task. This method is most frequently used in voice

recognition systems [Rudnicky 1991].

Task network models are similar to Markov models in that they have states with projected

task completion time except that they are constrained by time; they expect action to occur

within a specified period of time [Baber 1997]. The time constraint is used to allow for the

inclusion of an error factor for unsuccessful completion within the projected time.

In some ways both of these approaches are similar to the KLM approach, with the inclusion

of probabilities between transitions. In addition, differences in performance can be modeled

with the possibility that different paths are taken.

GOMS (Goals, Operators, Methods, Selection) and the Model Human Processor (MHP)

[Card 1983] incorporate an approach to modeling that consists of three basic components:

The MHP which attempts to describe the cognitive aspects of the process that humans use

to store and retrieve information as well as process and act upon the information, a set of

tasks with a description of the knowledge required by the human to perform them, and a set

of performance times to allow performance prediction much like the KLM. The MHP is a

systems level way of describing the human mind. It consists of three subsystems: the

perceptual system which brings sensory information into the MHP, the motor system which

controls the output of the body, and the cognitive system which is responsible for mediating

 32

between the perceptual system and the motor system as well as solving more complex

problems requiring stored information and goal formation.

GOMS suffers from a number of different drawbacks. One problem is that it is a serial

based model and so does not allow for any parallelism in the MHP. It is not clear to what

extent a human may be forming the intention for a goal while still processing the results of

a previous action. What is clear is that some form of parallelism does occur [Olsen 1990].

GOMS also does not factor in or account for error. Even expert performance is not error

free. Finally GOMS is also subject to a high degree of complexity particularly when

alternative means of task completion are taken into account.

The Cognitive Complexity Theory (CCT) [Kieras 1986] extends GOMS by adding

production rules to describe the user knowledge and a state transition diagram of the

system. CCT suffers from many of the same problems as GOMS and has not been

empirically evaluated [Knowles 1988] although it is still in use for its qualitative properties.

Cognitive models such as EPIC [Hornof 1999] are frequently employed for the purpose of

simulating human interaction in a system. EPIC requires as inputs to its system a cognitive

strategy to complete a task, the perceptual features of the interface and the details of the

task environment. While models like EPIC are useful tools to understand the nature of an

interaction with a system, they require too much a priori knowledge of what the user wishes

to do. The direction of our research is not concerned with predicting a user's intent but

rather determining the user's ability to accomplish specific goals.

 33

Different models may be more appropriate for different research goals. Fitts' Law may be

very useful for predicting performance time for elemental pointing tasks and gives

designers valuable guidance as to positioning and size criteria of controls in interfaces. The

KLM or GOMS are more useful for representing more complex interactions with interfaces.

Markov models are particularly useful for speech recognition or for probabilistically

calculating likely user intent, while task network models are frequently used to measure

error as opposed to task completion time. Cognitive models are useful for simulating human

interaction with a system. Some of these models are composites of other simpler modeling

techniques. For example, KLM or GMS incorporate aspects of Fitts’ Law in their models.

2.5 Task Taxonomies

Very little work has been done in the area of developing a task taxonomy that can be used

to specify the range of user actions in a GUI. By range of user actions we mean a complete

description or taxonomy of possible interaction methods and tasks that can be accomplished

in a GUI without consideration of context. To our knowledge, there is no prior work that

adequately describes the full range of tasks or actions possible in a GUI and provides a

framework for evaluating their similarities and differences although Simpson and St. Amant

[Simpson 2003] are using a set of low level tasks called positioning, orientation and

confirmation as a set of basic primitives to build larger tasks. There are however quite a

number of articles that mention specific tasks within the context of performance evaluation.

Unfortunately the definition of a task is not clearly agreed upon, so some work looks at

tasks from a primitive viewpoint while others have fairly high level monolithic tasks that

 34

seem specific to a particular interface. For example, Szalavari [Szalavari 1998] mentions

Navigation, System control and Object manipulation as possible user tasks. Poupyrev

[Poupyrev 1996] investigated methods for Manipulation and Selection of objects. Some

work takes a more elemental view of tasks and considers cursor movement [Shneiderman

1983], pointing, and typing [Graham 1996, Douglas 1994] to be primary tasks. We are

looking for a middle level task taxonomy that will permit us to express a reasonably

complete set of user interactions in a GUI without having to resort to a complete task

decomposition scheme that would require an unwieldy amount of task analysis before

someone could use our system.

Foley [1984] has what appears to be a comprehensive set of tasks as they relate to

interaction in a graphics package:

• Select: Select from a finite set of alternatives (see Figure 2.4)

• Position: Indicate a position on an interactive display

• Orient: Manipulate the angle of orientation of an object in two space or three space

• Path: Generate a series of points or orientations over time (Considered distinct

because of time dimension)

• Quantify: Specify a quantity either through text input or manipulation of a control

• Text: Input a string from the keyboard or other text entry device

 35

Figure 2.4: The selection task from Foley et al. [Foley 1984]

The related work described has done a good job of advancing the field to the point where it

is possible to develop the system that we are proposing. A lot of work has been done in the

area of evaluation and calibration that can be used both for the purpose of model

construction and model validation by making sure that it is consistent with earlier research.

The comparison studies that have been done are also very useful as verification tools for a

 36

model. They all suffer however from a lack of generality that can be overcome by making

the results more applicable to complex systems rather than simply focusing on a specific,

narrowly defined task.

We use prior device taxonomy work to clarify likely differences in performance based on

the differences in the underlying device, to aid us in developing our model. All of our work

is experimentally validated. Since it is not provable that these taxonomies are indicative of

performance, they merely serve as descriptors of the possible design space of input devices.

The task taxonomy work that we have looked at serves as a starting point for the task

descriptions that we develop for our model. Since we are not suggesting that we can

describe this area in its entirety, we are not concerned with the lack of empirical evaluation

in this area.

2.6 Other Related Work

Not all GUI interaction situations can be modeled accurately without greatly increasing the

complexity of the model. For example, Farris et. al. [Farris 2001] describe a situation where

targets can be placed at the edges of the screen to decrease target acquisition time.

Placement of targets at the edge of the screen (with no pixel border between the edge and

the target) is superior because it eliminates overshoot and theoretically allows users to

maintain velocity rather than slowing as they approach the target [Tognazzini 1999],

although in practice users still slowed down as if they were approaching a non-edge target.

Techniques such as this can be incorporated into our model with a corresponding increase

in accuracy. This dissertation will not address interaction techniques such as these because

 37

we feel that it is not desirable to add special cases such as edge targets since it will yield

marginal improvements in model accuracy but a combinatorial increase in the complexity

of the model. After adding relatively few special cases, the effort required to build a model

will eclipse the cost of testing the actual system.

Accot and Zhai [Accot 2001] investigated control gain and scale between monitor and input

device in steering law tasks. They determined that the error rate went up sharply for both

linear and steering law tasks as scale was increased. There was a less pronounced but

significant decrease in Index of Performance indicating that increasing scale above a factor

of two was detrimental to both performance time and accuracy in either type of task. Our

model handles interaction issues such as these through device specific calibration. The

same mouse set to two different C/D ratios is considered to be two different devices.

Various work has looked at optimization of target layout to minimize interaction time

[Schmitt 1999, Tognazzini 1999]. With the exception of techniques that “overcome” Fitts’

Law by altering characteristics such as gain [Worden 1997] or edge placement, these

techniques are simply optimizations of Fitts’ Law and are subsumed in our model. While

our model is designed to give an overall measure of suitability to purpose for the various

interactions possible in a GUI given a particular device, the optimization literature tends to

take a more frequency of task approach, optimizing the time and error rate for more

frequently performed tasks while allowing sparsely used functions to be more difficult.

These types of studies are more germane to particular interfaces while we strive for a

greater level of generality and application independence in our model.

 38

Douglas et. al. [Douglas 1999] investigated the predictive power of the ISO 9241, Part 9

Draft International Standard for testing computer pointing devices for performance and

comfort [ISO Draft 1999, Final 2000]. While the ISO standard addresses a variety of

ergonomic issues related to muscle load and fatigue, which are beyond the scope of our

model, it does little to address the suitability to task of a particular device. Its greatest

contribution perhaps is to specify a particular framework for the experimental evaluation of

devices to conform to a range of biomechanical parameters and to develop a single

instrument for the evaluation of subjective user comfort. This will obviously have the

benefit of permitting more cross-study comparisons which is also a goal of our work.

Douglas et. al. have determined that there are a number of areas in which the ISO standard

still falls short of its goal, particularly in experimental evaluation.

MacKenzie et. Al. [MacKenzie 2001] take a novel approach to evaluating accuracy of

pointing devices. Rather than looking at a single error measure they propose seven new

accuracy measures that are designed to elicit more subtle differences between devices. All

of these quantitative measures look at some aspect of the deviation between a “perfect”

target selection task and actual performance. The measures are designed to allow the

researcher to augment an error rate, which simply gives you the magnitude of the problem

with the ability to measure why the problem is occurring. For example, is a high error rate

the result of a lack of smoothness in motion or a propensity for a device to allow cursor

acceleration thus overshooting the target? While this work is fascinating and will likely lead

to a better understanding of design tradeoffs in input devices, it is beyond the scope of our

model's purpose.

 39

3. Interaction Modeling

3.1 Introduction

In this section we describe an interaction model that provides our methodology for

analyzing user actions. The model has several components. It relies on a taxonomy of

elementary interaction tasks, and supports quantitative predictions of execution

performance. The model is based on the concept of execution graphs, in which user actions

are interpreted as transitions along weighted edges in a graph. A complete traversal of an

execution graph produces a prediction of performance in terms of duration or error rate.

The parameterization (i.e., the specific edge weights) of an execution graph depends on the

properties of a specific input device.

3.2 Task Taxonomy

We have identified a set of core, fundamental tasks that users will perform in a GUI. This

set is an extension of existing task taxonomies taken from the literature. The taxonomy is

not restrictive; it allows extension to new tasks as needed by the evaluator, by following a

methodology outlined below. For generality, the tasks in the taxonomy are of a fairly

primitive nature; they can be chained together to allow the modeling of more complex tasks

in an interface.

We have looked for a balance between the range of expressiveness permitted and the degree

of complexity that our taxonomy imposes upon the specification of a task. At one extreme,

we might have defined our tasks such that they were the basic components of a model such

 40

as the KLM. This would force an unnecessary degree of complexity upon the user of our

modeling system; and would therefore add only marginal value to what already exists with

the KLM. At the other extreme, we might have described and provided measurements for

high-level application specific tasks. Doing so would eliminate what we see as one of the

key advantages of our system, the promise of generality across applications. By tying our

tasks to specific applications, it would be necessary to define an arbitrarily large number of

tasks and then perform an exhaustive series of tests to validate each task. This sort of brute

force approach will not work in the changing world of interface development, nor would it

provide any real benefit over prototyping and usability testing.

The direction we have therefore chosen is to provide the system evaluator with a reasonable

set of tasks that will successfully model higher-level tasks. We provide a set of three tasks

that can be chained together to model more complex tasks. We also provide a means for

the extension of our model by way of adding additional tasks to our task set to meet the

changing nature of interface design and input devices.

For the purposes of this study we defined the actions selection, position and orient as

follows:

• Selection: A cursor movement starting with a minimum of a 3 pixel movement

[Worden 1997], ending with an activation while the cursor was on a target.

• Position: Movement of a target from position A to position B. Position is commonly

associated with dragging in a GUI.

 41

• Orient: Dragging the needle of a dial control to change the orientation of an object

and deactivating the pointing device when the desired position is reached. The

performance characteristics of orient are heavily dependent on the type of control

used and would need to be empirically evaluated for each different interaction style.

Since the verification and activation time are constants [Meyer 1988], a selection could be

defined in an execution graph as ending with the cursor stopped over a target. Our

operational definitions of tasks above were based on the ease of separating the tasks in data

analysis as well as commonly accepted interactions in current GUI’s. We could just as well

have used the alternate definition of selection by parsing the data collected in a different

fashion.

3.3 Execution Paths

Consider a common task in a GUI: menu selection. The user moves the pointer to a header

in the menu bar, clicks, waits for a menu to appear, then moves to a menu item and clicks

on it. This sequence can be modeled in the abstract as follows (figure 3.1):

Figure 3.1: Menu selection abstract model

This can be treated as a task execution path. If all GUI states were represented (possible in

theory, not in practice) we would see user interactions as paths through a very large graph.

 42

Because clicks of a mouse (or other pointing device) are similar enough in performance,

these actions are usually abstracted away, with a constant factor substituting for it. We can

further reduce the model by collapsing similar nodes, as with Buxton’s model.

Figure 3.2: Simplified menu selection, abstract model

Adding the other types of actions in the taxonomy, we have the generalized model shown in

figure 3.3. This model can obviously be tailored to other menu activation/selection

schemes.

We can generalize this example as follows. Once a task list and a device list have been

created, a set of execution steps are derived for each task on a device by device basis,

assuming that the device is capable of performing the task. A series of execution steps

represents an execution path for a particular device and task pairing. The execution paths

represent the most efficient possible series of interaction steps by the user, given a

particular interaction style, since we are trying to model optimum performance rather than

all possible interactions.

 43

An execution path consists of a series of elemental interactions or execution steps that must

be performed in order to perform the desired action, using a particular device. These

elemental steps share much in common with the KLM and are based upon the smallest

measurable subtasks that are reasonable to describe in an interaction with a GUI. An

example of some elemental steps might be key presses, clicks, and moving the cursor to a

particular location. We decompose our tasks from our task taxonomy into a series of

execution steps for each device that we include in our device list. Each of these task/device

pairs will yield at least one execution path if it is possible to perform the desired task with

that particular device. It is entirely possible and quite probable that a particular task/device

pairing will yield more than one execution path if the device can be used in a different

fashion to complete the same task. Because there are an infinite number of these possible

execution paths available (if we consider repeated actions), we do not consider any

execution path that contains additional or non-optimal elemental tasks within the execution

path to remove any pathological examples of inefficient or non-optimal interactions. We

also can't predict what new methods of task completion might be devised in the future and

hence can't provide an execution path for that particular interaction style prior to its

inception. One example of this is the work in the area of the activation of objects [Dulberg

1999] with the flick gesture by using a mouse to throw or flick the cursor at a target. In a

conventional GUI interface it would not have been reasonable to consider an execution path

where target activation could be accomplished by a mouse down, mouse move and mouse

up performed in sequence with temporal and movement constraints since most operating

systems are not designed to support this sequence of steps for this task, preferring instead to

 44

use them to indicate that either a drag, or a selection cancellation has taken place. We

therefore provide a mechanism for the creation and inclusion of new execution steps and

paths for the users of our system as the need arises.

Figure 3.3: Generalized execution graph

3.4 Execution Graphs

An execution graph consists of a set of circular nodes which represent tasks, and directed

arcs, representing transitions. An example of a generalized task execution graph appears in

 45

figure 3.3. Loosely based on Card’s taxonomy of tasks, this graph provides a model for the

execution of most tasks in a GUI. Each node would have an associated performance time

based on distance as well as an error rate in percent. The transitions would have an

empirically derived constant time and error rate associated with them. An execution graph

can be made as large as necessary to incorporate appropriate task taxonomy. Based on the

actual definition of said taxonomy and permissible orderings, the appropriate transitions

would need to be included as well.

Figure 3.4: Execution graph for simulation

An example of a three-task execution graph, which is modeled upon our test bed, appears in

figure 3.4. Notice that there are no transitions between the position and orient states since in

our experimental test bed it was necessary to select something before you positioned or

oriented it.

 46

Execution paths for each task are represented as a directed graph. The actual elemental

actions or steps required to be performed by the user are represented as nodes in the graph.

The transitions between nodes are annotated by time and error weights. Our experience

suggests that while individual nodes may be used by more than one device in the course of

completing the task, each path through the directed graph is unique to the particular device

that generated it, unless the two devices are equivalent. In this case the two devices can be

treated as one. There may of course be multiple execution paths for a single device if the

device can be used in different manners to complete the task, as discussed in the previous

section.

Execution graphs are constructed so as to insure that all paths from the start state to the

accepting state are valid execution paths; however they presume that a user will take a path

that is not duplicitous. For example, if a user were to repeatedly select and release an

object by clicking on it, before positioning the object, this would result in an execution path

of several selections followed by a position. Our model would not accept this because the

additional selections do not have anything to do with a goal directed behavior that we might

be studying. A user could however select an item and position it, release it then select and

position it again to reach a final goal. Our modeling technique would simply see this as two

distinct selections and positions since we are not concerned with the context in which they

are performed.

 47

3.5 Performance analysis and prediction

Each transition in a task graph has two weighting factors associated with it. One value

represents an execution time for the particular action represented by the transition, the other

an error probability. These factors must be calculated for each transition of the task graph.

We draw heavily upon prior, published work based upon well-accepted HCI principles such

as Fitts' law. Fitts' law describes the performance characteristics for the execution of a

rapid aimed movement such as a mouse move.

Once the transition weights have been calculated, it is then possible to examine all possible

paths through the directed graph in order to evaluate the relative performance

characteristics of the different devices and/or interaction styles that originally generated the

graph.

This work is based upon the underlying assumption that we are dealing with an optimal

device. By optimal, we are referring to a device that is working properly and consistently.

A mouse that was dirty or joystick with erratic contacts would most likely exhibit linear or

worse performance. While we have conducted a preliminary investigation into the area, it is

beyond the scope of this work to determine the specific difference between the performance

characteristics of two different devices of the same type such as two mice or keyboards.

We look at this area only to the extent that is necessary to determine its effect on our model

and to be able to provide an appropriate adaptation mechanism for those following our

work. Our model handles device differences within a class by presuming that they are of

different classes. This is to say that we would assume that two different mice with different

 48

indices of difficulty would be treated as different devices and no generalizations would be

made from one to the other. It is entirely possible that a quick calibration between the two

devices might yield a less cumbersome approach but this has not been determined.

 49

4. Simulation Design and Experiment Procedures

4.1 Method

4.1.1 Subjects

A total of 24 students from the College of Engineering at North Carolina State University

served as subjects. Participants were selected on a first-come, first-serve basis in response

to a call for participation. Subjects were paid US $40.00 for their participation. Each subject

was randomly assigned to one of six orderings of the 3 input devices. There were 17 males

and 7 females, 6 were left-handed and 18 were right-handed. The subjects’ median age was

28 with a range of 20 to 49.

4.1.2 Design

The experimental software was developed in Visual Basic. A trial consisted of

manipulating control points, positioning and orientation of a bezier curve to match a

randomly generated exemplar that appeared on their screen. This application was motivated

by Barham and McAllister’s [Barham xx] work in 3D cursor positioning with bezier curves.

The subject had a maximum of 30 seconds to complete each trial. The experimental

software logged the position of all objects on the screen as well as the cursor at 55 ms.

intervals. In addition, any user action or change in state of the environment was logged

when it occurred as well.

 50

Figure 4.1: Participant view of a random trial

Three basic actions are required to match the curves:

1. Move the two interior control points to their respective boxes

2. Position the entire curve

3. Orient or rotate the curve to the correct position.

 51

We selected these actions for the simulation because they allow us to look at selection,

position and orientation tasks in a variety of different combinations within an ecologically

valid task. These three primitive tasks can be combined to create a wide variety of

interactions in GUI’s.

Figure 4.1 shows a random trial displayed by the system. On the left-hand side of the screen

is the reference curve. Participants manipulate the controls on the right hand side of the

screen to match the user curve in shape, position and orientation as closely as possible to

the reference curve. There are four controls that the user must manipulate to accomplish the

task: drag the interior control points (represented as medium gray circles in figure 4.1) to

their respective box, drag the square to an appropriate place on the screen to reposition the

curve (represented as a light gray square) and rotate the dial to orient the curve.

Figure 4.2 shows a trial in progress. The interior control points have been dragged to their

respective positions and the curve has been oriented. The curve has not been positioned yet.

 52

Figure 4.2: User view of a random trial in progress

The order in which the actions were performed was randomly determined by the

experimental software. The participant was forced to perform the actions in a particular

sequence based on the color-coding provided by the interface starting out with the lightest

gray control, then the medium gray control and finally finishing with the black control.

Once a subject completed an action and moved to the next one, they were not permitted to

perform the previous action again in that trial. If the subject finished the trial before the

allotted time, they were able to click a "Next" button to proceed to the next trial. The two

interior reference control points were randomly perturbed from a position one third of the

 53

distance along the straight line formed by the outer control points within a range of 150

pixels in any direction, while the outermost control points were fixed as the endpoints. The

angle of the reference curve was randomly generated between the range of 0 and 2π radians.

The entire curve was rotated by the random angle about the midpoint between the

endpoints. The entire curve was then translated by a random distance in the range of 0 to 75

pixels along a randomly chosen vector. The user curve was always placed in a horizontal

orientation, centered on the right side of the screen with the two manipulatable control

points uniformly spaced in a straight line. It should be noted that while guidance was

provided to the participant with respect to where the interior control points could be placed,

it is possible to generate curves that are exactly the same, or closely resemble the reference

curve by placing the points in other areas. If, for example, the user rotates the curve 180

degrees and places the points 180 degrees from the suggested positions at the same distance

from the center, an identical curve will be generated. When looking at the participant’s

qualitative performance we do take this into account by checking the quality of both

orientations and selecting the closest fit.

The experiment was run on a Dell Inspiron 3800 laptop, which has an integrated track point

and touch pad. A Logitech two button mouse was attached via a serial port. Subjects were

permitted to position the apparatus to their liking.

4.1.3 Procedure

Participants performed 4 blocks of 25 trials with a rest period of 2 minutes between each

block during each one-hour session. Participants engaged in three sessions each scheduled

 54

one week apart. Each week a different input device was used. The ordering of the input

devices was randomly assigned to each participant so that each of the six possible orderings

of the three input devices was uniformly accounted for. Subjects were presented with a set

of written directions beforehand. They were also given a brief demonstration and permitted

to perform a few trials before they began the experiment.

4.2 Data Collection

For each block of trials that a participant completed two comma-delimited files were

created, a Trials file and a Test file. The Trials file (table 4.1) contained a single record for

each trial performed with the initial state of the trial and relevant parameter settings. The

Test file was used to log participant actions and poll the interface to keep a running history

of all activity. Records were written to the Test file every 55 milliseconds and whenever the

participant clicked, pressed or released an actuating switch on the input device.

Trial Number Number between 1 and 25 indicating trial number

Reference Points 1-4 (x,y) X and Y coordinates of points 1-4 on reference curve
(randomly generated for each trial)

User Points 1-4 (x,y) X and Y coordinates of the initial position of the user
curve control points (these values are the same every
trial)

Dial Points 1 and 2 (x,y) The initial position of the orientation dial (same for
each trial)

Reference Curve Center (x,y) X and Y coordinates of the central point of the bezier
curve (randomly generated each trial)

Task Ordering (a,b,c) The randomly generated sequence of activities that
governed trial where 1=position, 2=orientation, 3=
pointmove

Table 4.1 Format of trials.txt file

 55

Time Current timestamp in ms.
Trial Current trial number
Message One or two character message indicating a critical event

generated by button actuation
State 0-4: indicating degree of completeness of trial
Cursor Position Current cursor coordinates
User Points Position X and Y coordinates of the current position of the user

curve control points
Dial Position Coordinates of the current position of the extremity of

the dial needle
User Curve Center Current coordinates of the user curve center

Table 4.2: Format of test.txt file

After each block of trials, the files were renamed with the participant’s number, block

number, and device used. A total of 12 sets of files were generated for each of the 24

participants representing four sets of blocks for each of the three devices tested.

4.3 Data Analysis Procedures

For every block of trials, the Trials and corresponding Test files were run through an

action-parsing program and an actions file was created. The parsing program read in the

objectives for each trial (ordering of actions and goal positions) and then attempted to

match it to the user actions logged in Test for that particular trial. As the data for each user

action was processed an event file was generated. Each action was logged in the event file

in chronological order to permit the analysis of various sequences. The data collected for

each event included the event type, start time, end time, and magnitude (distance in pixels

or radians). If an error occurred, an error message was logged instead.

 56

Errors were defined as any action undertaken by the user that did not lead towards a

successful execution of the required task. At this stage of the analysis, we did not treat

qualitative differences as errors. For example, if the user was moving away from a target

rather than towards, this was not considered to be an error. The experimental software

logged error messages in the message field of Test if the participant’s action did not match

one of the appropriate actions given the ordering of tasks. For example, if the software was

currently in point move mode then permissible actions would include clicking and dragging

either user point, clicking on the “Next” button to advance to the next trial, or clicking on

the correct control to advance to the next mode if one was available.

Once a block of trials has been action-parsed, the data analysis diverged along two different

paths: evaluation and verification of action performance, and computation and analysis of

transition times.

The action performance times file was imported into Microsoft Excel. Once in Excel, it was

sorted by action and duration time. The quantity of errors were recorded and any anomalous

data points, such as a user hovering for three seconds (we presume they were thinking about

what they wanted to do next) while they were in the middle of an action, were removed.

The removal accounted for less than 2% of the data which is well below the bounds of

accepted practice in Fitts’ Law research [MacKenzie 1991a]. The cleaned action

performance data were then analyzed as described below.

 57

The procedures above produced some 360 megabytes of descriptions of user performance.

To provide context for later analysis, it will be useful to give a broad overview of patterns

in the data.

Each individual subject engaged in some 100 trials using the simulation. Recall from our

discussion above that one key to our research is the ability to predict performance based on

the properties of a task.

 58

5. Data Exploration and Analysis

In the introduction to this thesis we identified three questions not otherwise addressed in the

HCI literature. First, is it appropriate for a detailed model of performance to neglect the

time interval between what are usually considered elementary tasks? That is, models

generally do ignore this time, implicitly treating it as an approximately constant noise

factor. If we find patterns in inter-task transition times however, specifically patterns that

depend on task types, we might build more accurate models at a greater level of detail.

Second, if there exist patterns in inter-task transition times, do they depend on the type of

device being used? Again, if we find such relationships, we will be able to build better

models. These two questions can be treated as testable hypotheses. The third question is

whether individual differences in performance should be considered in model building.

This is not the type of issue that can be addressed by hypothesis testing, but exploratory

data analysis leads to some suggestive findings.

5.1 Modeling inter-task transition times

The first question we address is the most basic: is there a significant difference in the

transition times between different types of tasks? To our knowledge this question has not

been addressed by an empirical study, though an experienced researcher in HCI would have

a strong suspicion that such a difference exists. Our analysis confirms this suspicion.

For our analysis, we extracted all pairs of sequential tasks from the data logs. For each pair

we measured the time interval between the conclusion of the first task and the initiation of

 59

the second task. All action-error and error-action transitions are ignored, because they are

not valid transitions in our model. This gives us data for the four different types of

transitions possible:

• DM/S is a transition between an orientation task and a selection task. For example,

in our simulation, the user completes the task of rotating the curve and begins the

task of moving the pointer to press a button.

• P/S is a transition between a positioning task and a selection task. For example, the

user might complete the task of positioning an interior control point and begin the

task of selecting the other interior control point.

• S/DM is a transition between a selection task and an orientation task. This

transition can only occur in the interval between the user selecting the dial and

actually moving the dial to orient the curve.

• S/P is a transition between a selection task and a position task. . For example, this

transition would occur between the time that a user selected an interior control point

and actually started to move it.

During the experiment, each user completes several dozen of each type of the transitions

above. For each user, we recorded the type of transition in the categorical variable

Transition, and collected the median time for completing the transition. To be consistent

 60

with standard practices for human performance research, medians were used rather than

means in order to prevent outliers from distorting our results. These median time intervals

are stored in the continuous variable Time. In all, there are 96 observations (24 users x 4

transition types). An analysis of variance shows a significant effect of Transition on Time,

as given below (table 5.1). The F value of 95.8806 is highly significant. The means

between the different groups vary between around 30ms to 175ms, which has some

practical significance in modeling terms, justifying our interest in this issue.

Summary of Fit

Rsquare 0.757666
Adj Rsquare 0.749764
Root Mean Square Error 40.84062
Mean of Response 101.9444
Observations (or Sum Wgts) 96

Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio Prob > F
Transition 3 479773.94 159925 95.8806 <.0001
Error 92 153451.99 1668
C. Total 95 633225.93

Table 5.1: Fit and analysis of variance over all subjects

Figure 5.1 shows the source data for the analysis of variance. A clear pattern is obvious

here: we see a differentiation between those task sequences that end with an S task and

those that do not. Further, the S and non-S groups of tasks are relatively homogeneous

internally.

 61

M
ea

n(
Ti

m
e)

0

50

100

150

200

250

300

350

400

DM/S Med P/S Med S/DM Med S/P Med

Transition

Figure 5.1: One way Analysis of Time (ms) By Transition type

It is straightforward to explain these patterns, in cognitive terms. The S/DM and S/P

transactions simply reflect the mechanical time required to activate the pointing device (i.e.

click) once on the target. The DM/S and P/S transitions do however involve a more

complex set of actions. Once the user has deactivated the pointing device to complete a

task, they will typically perceive the current state of the interface and engage in goal

formation before beginning their next task. These considerations are taken into account in

detailed cognitive models such as ACT-R [Anderson 1997] and Soar [Newell 1990].

However, such models are difficult to construct and evaluate, requiring considerable

expertise and knowledge of cognitive psychology. Our results can be applied in simpler

models, such as GOMS, as well. In a nutshell, our analysis shows that patterns in inter-task

transition times are present, and that they can be characterized in a relatively simple way.

To take a straightforward case, for example, a GOMS model might be extended by adding

 62

inter-operator transitions whose durations are constant but depend on the types of operators

involved.

5.2 Modeling device dependencies

We can continue the above analysis by breaking down the observations by device. There

are three types of devices we considered:

• E is Trackpoint.

• P is Touchpad.

• M is Mouse.

Using the same procedure for Transition and Time, we added another categorical variable,

Device, corresponding to the three device types above. An analysis of variance shows

significant effects of Device and Transition on Time, as given below (table 5.2); as we

might expect, there is also a significant interaction effect.

 63

Summary of Fit

Rsquare 0.678914
RSquare Adj 0.666117
Root Mean Square Error 62.6082
Mean of Response 101.9444
Observations (or Sum Wgts) 288

Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio Prob > F
Model 11 2287516.1 207956 53.0529 <.0001
 Transition 3 1439321.8 122.3980 <.0001
 Device 2 424114.3 54.0992 <.0001
 Transition * Device 6 424080.0 18.0316 <.0001
Error 276 1081861.0 3920
C. Total 287 3369377.1

Table 5.2: Fit and analysis of variance over all subjects by device

5.3 Overall performance patterns

Part of the focus of this thesis is on the role that individual differences in user performance

can play in understanding the applicability of an interaction model. To explore this issue,

we will first need to see patterns in the aggregated data, over all the users. Summary

statistics for all of the participants were collected in tabular form as shown in table 5.3.

This summary data was analyzed to look at overall performance characteristics of the group

as well as to spot trends and anomalies between subjects.

 64

Column Description

Subject Subject number and Device

Sel Intcpt Y axis intercept of log model for selection task

Sel Log(dist) Coefficient of log term for log model of selection task

Sel N Number of selection task observations

D/M Intcpt Y axis intercept of log model for orientation task

D/M Log(dist) Coefficient of log term for log model of orientation task

D/M N Number of orientation task observations

Pos Intcpt Y axis intercept of log model for position task

Pos Log(dist) Coefficient of log term for log model of position task

Pos N Number of position task observations

S/DM Med Selection-Orientation transition median

S/DM N Number of Selection-Orientation transition observations

S/DM Stddev Selection-Orientation transition standard deviation

S/P Med Selection-Position transition median

S/P N Number of Selection-Position transition observations

S/P Stddev Selection-Position transition standard deviation

DM/S Med Orientation-Selection transition median

DM/S N Number of Orientation-Selection transition observations

DM/S Stddev Orientation-Selection transition standard deviation

P/S Med Position-Selection transition median

P/S N Number of Position-Selection transition observations

P/S Stddev Position-Selection transition standard deviation

Device Order Order in which subjects used devices in experiment

Table 5.3: Summary data collected by participant

 65

The median time for completion of the selection task, over all subjects, is 1043 ms. with the

mouse, 1729 ms. with the touchpad and 2019 ms. with the trackpoint. Histograms in figures

5.2-4 show the distributions for selection with the different devices. As we see, the shapes

of the distributions are not qualitatively different from one another.

 Duration

0

1000

2000

3000

4000

5000

6000

Quantile
100.0% maximum 5996.0
99.5% 5520.6
97.5% 4387.0
90.0% 2804.7
75.0% quartile 1686.0
50.0% median 1043.5
25.0% quartile 735.0
10.0% 517.0
2.5% 338.8
0.5% 213.8
0.0% minimum 88.0

Moment
Mean 1387.179
Std Dev 1011.4364
Std Err Mean 11.203656
upper 95% Mean 1409.141
lower 95% Mean 1365.217
N 8150

Figure 5.2: Distribution by time (ms.) of selection task with Mouse across subjects

 66

 Duration

0

1000

2000

3000

4000

5000

6000

Quantile
10 0.0% maximum 5998.0
99.5% 5756.4
97.5% 5021.2
90.0% 3677.6
75.0% quartile 2618.0
50.0% median 1729.0
25.0% quartile 1155.0
10.0% 779.6
2.5% 486.8
0.5% 299.9
0.0% minimum 44.0

Moment
Mean 2008.8697
Std Dev 1159.3234
Std Err Mean 13.592149
upper 95% Mean 2035.5142
lower 95% Mean 1982.2251
N 7275

Figure 5.3: Distribution by time (ms.) of selection task with Touchpad across subjects

 67

 Duration

0

1000

2000

3000

4000

5000

6000

Quantile
100.0% maximum 5998.0
99.5% 5777.6
97.5% 5106.4
90.0% 3960.7
75.0% quartile 2957.5
50.0% median 2019.0
25.0% quartile 1355.3
10.0% 889.3
2.5% 472.0
0.5% 235.5
0.0% minimum 23.0

Moment
Mean 2241.5294
Std Dev 1190.704
Std Err Mean 13.924696
upper 95% Mean 2268.8258
lower 95% Mean 2214.233
N 7312

Figure 5.4: Distribution by time (ms.) of selection task with Trackpoint across subjects

Figures 5.5-7 depict scatter plots of Duration versus Distance for all trials for all subjects of

the selection task by device. A Fitts’ Law model is superimposed over the plot to fit the

data. What appears as vertical banding in the graphs can be explained by the fact that the

 68

various controls on the screen that the users were asked to select were not uniformly evenly

distributed across the entire range of distances.

0

1000

2000

3000

4000

5000

6000

D
ur

at
io

n

0 10 20 30 40 50 60 70 80 90 100
2D/W

Transformed Fit to Log
Transformed Fit to Log
Duration = 297.91671 + 397.253 Log(2D/W)

Summary of Fit
RSquare 0.212344
RSquare Adj 0.212248
Root Mean Square Error 897.7045
Mean of Response 1387.179
Observations (or Sum Wgts) 8150

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 1 1770199108 1.7702e+9 2196.622
Error 8148 6566256476 805873.4 Prob > F
C. Total 8149 8336455584 0.0000

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 297.91671 25.27893 11.79 <.0001
Log(2D/W) 397.253 8.475972 46.87 0.0000

Figure 5.5: Scatter Plot with Fitts’ Law Model for Selection with Mouse across subjects

 69

0

1000

2000

3000

4000

5000

6000

D
ur

at
io

n

0 10 20 30 40 50 60 70 80
2D/W

Transformed Fit to Log
Transformed Fit to Log
Duration = 793.6449 + 439.00127 Log(2D/W)

Summary of Fit
RSquare 0.191248
RSquare Adj 0.191137
Root Mean Square Error 1042.659
Mean of Response 2008.87
Observations (or Sum Wgts) 7275

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 1 1869729456 1.86973e9 1719.865
Error 7273 7906750623 1087137.4 Prob > F
C. Total 7274 9776480078 0.0000

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 793.6449 31.75044 25.00 <.0001
Log(2D/W) 439.00127 10.58568 41.47 0.0000

Figure 5.6: Scatter Plot with Fitts’ Law Model for Selection with Touchpad across subjects

 70

0

1000

2000

3000

4000

5000

6000

D
ur

at
io

n

0 10 20 30 40 50 60 70 80 90
2D/W

Transformed Fit to Log
Transformed Fit to Log
Duration = 760.18858 + 533.60689 Log(2D/W)

Summary of Fit
RSquare 0.281549
RSquare Adj 0.28145
Root Mean Square Error 1009.328
Mean of Response 2241.529
Observations (or Sum Wgts) 7312

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 1 2918352608 2.91835e9 2864.662
Error 7310 7447007182 1018742.4 Prob > F
C. Total 7311 1.03654e10 0.0000

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 760.18858 30.08884 25.26 <.0001
Log(2D/W) 533.60689 9.969761 53.52 0.0000

Figure 5.7: Scatter Plot with Fitts’ Law Model for Selection with Trackpoint across subjects

The median time for completion of the orientation task, over all subjects, is 3051 ms. with

the mouse, 3138 ms. with the touchpad and 2880 ms. with the trackpoint. Histograms in

figures 5.8-10 show the distributions.

 71

 Duration

0

1000

2000

3000

4000

5000

6000

Quantile
100.0% maximum 5989.0
99.5% 5934.6
97.5% 5689.6
90.0% 4987.5
75.0% quartile 4047.3
50.0% median 3051.5
25.0% quartile 2156.0
10.0% 1409.5
2.5% 816.0
0.5% 257.1
0.0% minimum 85.0

Moment
Mean 3109.296
Std Dev 1310.4127
Std Err Mean 33.457649
upper 95% Mean 3174.9236
lower 95% Mean 3043.6684
N 1534

Figure 5.8: Distribution by time (ms.) of Orientation task with Mouse across subjects

 72

 Duration

0

1000

2000

3000

4000

5000

6000

Quantile
100.0% maximum 6353.0
99.5% 5946.4
97.5% 5746.0
90.0% 5086.7
75.0% quartile 4219.3
50.0% median 3138.0
25.0% quartile 2130.0
10.0% 1475.3
2.5% 883.0
0.5% 220.5
0.0% minimum 126.0

Moment
Mean 3192.9599
Std Dev 1333.5234
Std Err Mean 34.757356
upper 95% Mean 3261.1392
lower 95% Mean 3124.7807
N 1472

Figure 5.9: Distribution by time (ms.) of Orientation task with Touchpad across subjects

 73

 Duration

0

1000

2000

3000

4000

5000

6000

Quantile
100.0% maximum 5992.0
99.5% 5894.2
97.5% 5702.6
90.0% 4957.0
75.0% quartile 3904.3
50.0% median 2880.0
25.0% quartile 1878.0
10.0% 1084.0
2.5% 173.0
0.5% 103.5
0.0% minimum 37.0

Moment
Mean 2922.7892
Std Dev 1418.6659
Std Err Mean 36.703275
upper 95% Mean 2994.7846
lower 95% Mean 2850.7937
N 1494

Figure 5.10: Distribution by time (ms.) of Orientation task with Trackpoint across subjects

Figures 5.11-13 depict scatter plots of all trials for all subjects of the orientation task by

device. A Fitts’ Law model is superimposed over the plot to fit the data.

 74

0

1000

2000

3000

4000

5000

6000

D
ur

at
io

n

0 1
2D/W

Transformed Fit to Log
Transformed Fit to Log
Duration = 4357.2609 + 659.4835 Log(2D/W)

Summary of Fit
RSquare 0.327611
RSquare Adj 0.327172
Root Mean Square Error 1074.88
Mean of Response 3109.296
Observations (or Sum Wgts) 1534

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 1 862416196 862416196 746.4432
Error 1532 1770023020 1155367.5 Prob > F
C. Total 1533 2632439216 <.0001

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 4357.2609 53.28812 81.77 0.0000
Log(2D/W) 659.4835 24.13824 27.32 <.0001

Figure 5.11: Scatter Plot with Fitts’ Law Model for Orientation with Mouse across subjects

 75

0

1000

2000

3000

4000

5000

6000

D
ur

at
io

n

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1 1.1 1.2 1.3 1.4
2D/W

Transformed Fit to Log
Transformed Fit to Log
Duration = 4681.5918 + 777.71792 Log(2D/W)

Summary of Fit
RSquare 0.353176
RSquare Adj 0.352736
Root Mean Square Error 1072.856
Mean of Response 3192.96
Observations (or Sum Wgts) 1472

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 1 923857923 923857923 802.6431
Error 1470 1691998832 1151019.6 Prob > F
C. Total 1471 2615856755 <.0001

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 4681.5918 59.52186 78.65 0.0000
Log(2D/W) 777.71792 27.45117 28.33 <.0001

Figure 5.12: Scatter Plot with Fitts’ Law Model for Orientation with Touchpad across

subjects

 76

0

1000

2000

3000

4000

5000

6000

D
ur

at
io

n

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1 1.1 1.2
2D/W

Transformed Fit to Log
Transformed Fit to Log
Duration = 4626.6531 + 787.58961 Log(2D/W)

Summary of Fit
RSquare 0.390266
RSquare Adj 0.389857
Root Mean Square Error 1108.143
Mean of Response 2922.789
Observations (or Sum Wgts) 1494

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 1 1172683619 1.17268e9 954.9690
Error 1492 1832147372 1227980.8 Prob > F
C. Total 1493 3004830991 <.0001

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 4626.6531 62.14491 74.45 0.0000
Log(2D/W) 787.58961 25.48621 30.90 <.0001

Figure 5.13: Scatter Plot with Fitts’ Law Model for Orientation with Trackpoint across

subjects

 77

The median time for completion of the position task, over all subjects, is 1688 ms. with the

mouse, 2110 ms. with the touchpad and 2045 ms. with the trackpoint. Histograms in figures

5.14-16 show the distributions.

Duration

0

1000

2000

3000

4000

5000

6000

Quantiles
100.0% maximum 5991.0
99.5% 5719.1
97.5% 5023.7
90.0% 3726.0
75.0% quartile 2583.0
50.0% median 1688.0
25.0% quartile 1166.0
10.0% 866.0
2.5% 595.0
0.5% 391.9
0.0% minimum 147.0

Moments
Mean 2008.6335
Std Dev 1146.2035
Std Err Mean 14.685265
upper 95% Mean 2037.4218
lower 95% Mean 1979.8451
N 6092

Figure 5.14: Distribution by time (ms.) of Position task with Mouse across subjects

 78

Duration

0

1000

2000

3000

4000

5000

6000

Quantiles
100.0% maximum 6381.0
99.5% 5706.8
97.5% 5138.5
90.0% 4012.4
75.0% quartile 2985.0
50.0% median 2110.0
25.0% quartile 1435.3
10.0% 1031.0
2.5% 695.2
0.5% 422.2
0.0% minimum 108.0

Moments
Mean 2325.9579
Std Dev 1161.5099
Std Err Mean 16.033414
upper 95% Mean 2357.3901
lower 95% Mean 2294.5257
N 5248

Figure 5.15: Distribution by time (ms.) of Position task with Touchpad across subjects

 79

Duration

0

1000

2000

3000

4000

5000

6000

Quantiles
100.0% maximum 5998.0
99.5% 5731.1
97.5% 5028.0
90.0% 3837.0
75.0% quartile 2873.0
50.0% median 2045.0
25.0% quartile 1452.5
10.0% 1078.0
2.5% 720.0
0.5% 391.0
0.0% minimum 107.0

Moments
Mean 2272.4395
Std Dev 1094.1957
Std Err Mean 15.278428
upper 95% Mean 2302.3917
lower 95% Mean 2242.4872
N 5129

Figure 5.16: Distribution by time (ms.) of Position task with Trackpoint across subjects

Figures 5.17-19 depict scatter plots of all trials for all subjects of the position task by

device. A Fitts’ Law model is superimposed over the plot to fit the data.

 80

0

1000

2000

3000

4000

5000

6000

D
ur

at
io

n

0 10 20 30
2D/W

Transformed Fit to Log
Transformed Fit to Log
Duration = 1489.9683 + 262.5289 Log(2D/W)

Summary of Fit
RSquare 0.031278
RSquare Adj 0.031119
Root Mean Square Error 1128.228
Mean of Response 2008.633
Observations (or Sum Wgts) 6092

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 1 250297976 250297976 196.6362
Error 6090 7751951650 1272898.5 Prob > F
C. Total 6091 8002249627 <.0001

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 1489.9683 39.71175 37.52 <.0001
Log(2D/W) 262.5289 18.7217 14.02 <.0001

Figure 5.17: Scatter Plot with Fitts’ Law Model for Position with Mouse across subjects

 81

0

1000

2000

3000

4000

5000

6000

D
ur

at
io

n

0 10 20 30
2D/W

Transformed Fit to Log
Transformed Fit to Log
Duration = 1470.8271 + 426.03409 Log(2D/W)

Summary of Fit
RSquare 0.071505
RSquare Adj 0.071328
Root Mean Square Error 1119.32
Mean of Response 2325.958
Observations (or Sum Wgts) 5248

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 1 506164033 506164033 404.0014
Error 5246 6572591631 1252876.8 Prob > F
C. Total 5247 7078755664 <.0001

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 1470.8271 45.26311 32.50 <.0001
Log(2D/W) 426.03409 21.19595 20.10 <.0001

Figure 5.18: Scatter Plot with Fitts’ Law Model for Position with Touchpad across subjects

 82

0

1000

2000

3000

4000

5000

6000

D
ur

at
io

n

0 10 20 30
2D/W

Transformed Fit to Log
Transformed Fit to Log
Duration = 1375.6596 + 442.94985 Log(2D/W)

Summary of Fit
RSquare 0.084613
RSquare Adj 0.084434
Root Mean Square Error 1046.983
Mean of Response 2272.439
Observations (or Sum Wgts) 5129

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 1 519485651 519485651 473.9079
Error 5127 5620085871 1096174.3 Prob > F
C. Total 5128 6139571521 <.0001

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 1375.6596 43.71161 31.47 <.0001
Log(2D/W) 442.94985 20.34734 21.77 <.0001

Figure 5.19: Scatter Plot with Fitts’ Law Model for Position with Trackpoint across subjects

In the aggregate task data that we have seen in figures 5.2-19, we can see that the mouse is

superior to the other two devices for selection and position in terms of performance.

Between the touchpad and the trackpoint, we see that the touchpad is marginally faster for

 83

the selection task while the trackpoint is faster for the position task and fastest overall for

the orientation task. All of the patterns we see in the data are accounted for by Fitts’ Law

models reasonably well, and yet there’s considerable variance that’s not accounted for.

Next we examine an individual user’s data in order to show where at least some of this

variance comes from.

5.4. Individual performance patterns

To illustrate differences between individual and aggregate performance, it will be helpful to

see the complete analysis for a single subject. Figures 5.20-22 show the performance

relationship for subject six, as measured by the distance that the subject moved the pointer

for the purpose of selection and the time that this action took, using the mouse, the

touchpad, and the trackpoint, respectively. Similarly, figures 5.23-25 show similar data for

the same devices in the orientation task. Figures 5.26-28 show similar data for the same

devices in the positioning task. We are interested in seeing how closely the results of this

individual match the results of the group.

Each of these data plots is shown with a superimposed line representing a least squares log

model of the relationship between Duration and Distance, as dictated by Fitts’ Law.

Although the fit of the model varies considerably over the different input devices, the form

of the model is generally acceptable, consistent with the rest of the evaluation literature.

 84

0

1000

2000

3000

4000

5000

6000

D
ur

at
io

n
0 10 20 30 40 50 60 70

2D/W

Duration = 540.4677 + 365.79337 Log(2D/W)

Figure 5.20: Selection task using the mouse (subject 6)

0

1000

2000

3000

4000

5000

6000

D
ur

at
io

n

0 10 20 30 40 50 60 70
2D/W

Duration = 1079.1978 + 496.16569 Log(2D/W)

Figure 5.21: Selection task using the touchpad (subject 6)

 85

0

1000

2000

3000

4000

5000

6000

D
ur

at
io

n
0 10 20 30 40 50 60 70 80 90 100

2D/W

Duration = 847.52078 + 575.2825 Log(2D/W)

Figure 5.22: Selection task using the trackpoint (subject 6)

0

1000

2000

3000

4000

5000

6000

D
ur

at
io

n

0 .5 1 1.5
2D/W

Duration = 4436.0235 + 508.66113 Log(2D/W)

Figure 5.23: Orientation task using the mouse (subject 6)

 86

0

1000

2000

3000

4000

5000

6000

D
ur

at
io

n
0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

2D/W

Duration = 4202.2937 + 604.27615 Log(2D/W)

Figure 5.24: Orientation task using the touchpad (subject 6)

0

1000

2000

3000

4000

5000

6000

D
ur

at
io

n

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1 1.1 1.2 1.3
2D/W

Duration = 3655.0752 + 511.70823 Log(2D/W)

Figure 5.25: Orientation task using the trackpoint (subject 6)

 87

0

1000

2000

3000

4000

5000

6000

D
ur

at
io

n
0 5 10 15 20 25 30

2D/W

Duration = 1524.1656 + 210.68762 Log(2D/W)

Figure 5.26: Position task using the mouse (subject 6)

0

1000

2000

3000

4000

5000

6000

D
ur

at
io

n

0 5 10 15 20 25
2D/W

Duration = 1415.0856 + 647.15448 Log(2D/W)

Figure 5.27: Position task using the touchpad (subject 6)

 88

0

1000

2000

3000

4000

5000

6000

D
ur

at
io

n
0 5 10 15 20 25 30

2D/W

Duration = 1371.1816 + 587.82236 Log(2D/W)

Figure 5.28: Position task using the trackpoint (subject 6)

From the figures above, we can see the overall performance of user six for the task

performance times. The curve gives a reasonable approximation in most cases of the user’s

expected performance time over the range of the task. Table 5.4 provides detailed

parameters of the quality of the curve that was fit to the data.

The performance characteristics of the selection task (figures 5.20-22) for subject six

suggest that they were able to perform the task more quickly with the mouse and took the

longest time with the trackpoint. While the touchpad performance was faster than the

trackpoint performance, the subject did commit more errors with the touchpad (42) than the

trackpoint (28). The subject committed the fewest number of errors with the mouse (25).

Results were similar for the position task, the mouse was superior with regards to both

performance time and errors. There was little difference, if any, in performance between the

 89

trackpoint and touchpad for the position task. Interestingly enough, the performance

dynamics of the orientation task were quite different across devices for this subject. The

data indicates that the subject had the fastest time with the trackpoint and slowest time with

the mouse, the performance with the touchpad being slightly better than the mouse, the

exact opposite performance of the selection task. This subject had many more orientation

observations when using the trackpoint than either of the other devices. It appears that they

performed at least 1.54 orientations per trial with the trackpoint when only 1 was required

to complete the task with the mouse and touchpad. This would seem to indicate that subject

six employed a different strategy for orientation with the trackpoint than the other two

devices. We speculate that the subject may have found it easier to make a series of small

adjustments to the orientation when using the trackpoint and then inspecting the results,

making a second corrective orientation if needed or may have been “dropping” the dial

control after a short distance, requiring them to perform another orientation. This behavior

is atypical.

 90

Trans. Device N R
square

F ratio Prob
<f

T
log(2D/W)

Prob T T
intercept

Prob.<t

Sel. Mouse 347 .1673 69.29 <.0001 8.32 <.0001 4.35 <.0001

Sel. T. pad 317 .2462 102.91 <.0001 10.14 <.0001 7.87 <.0001

Sel. T.point 346 .2941 143.33 <.0001 11.97 <.0001 6.03 <.0001

Orient Mouse 72 .1813 15.51 .0002 3.94 .0002 14.96 <.0001

Orient T. pad 89 .2231 24.99 <.0001 5.00 <.0001 15.10 <.0001

Orient T.point 116 .1884 26.47 <.0001 5.14 <.0001 16.65 <.0001

Pos. Mouse 271 .0298 8.27 .0043 2.88 .0043 10.19 <.0001

Pos. T. pad 208 .1972 50.60 <.0001 7.11 <.0001 7.36 <.0001

Pos. T.point 209 .1069 24.78 <.0001 4.98 <.0001 5.15 <.0001

Table 5.4: Sample size and task curve fit parameters for subject six

Figures 5.29-40 show distributions of subject six’s performance in ms. for the transitions

between tasks. Figures 5.29-31 show the data for the selection-orientation task for the

mouse, the touchpad, and the trackpoint, respectively. Figures 5.32-34 show the data for

subject six related to the selection-position transition, figures 5.35-37 show the data for the

orientation-selection transition and figures 5.38-40 show the data for the position-selection

transition.

The transition data for subject six shows very little difference across devices for both the

selection-orientation and selection-position transitions both in time and variability. This is

 91

consistent with our definition of these transitions since they simply measure the time

between the ending mouse click of a selection and the start of an orientation or position.

The data for the orientation-selection and position-selection transitions indicate that subject

six was consistently faster and performed with less variability using the mouse and took the

longest amount of time and had the greatest variability with the touchpad while the

trackpoint performance lies somewhere in-between. Subject six’s performance

characteristics for the orientation-selection and position-selection transitions were

consistent with the group as a whole although the differential between devices was smaller

for the orientation-selection transition and the touchpoint performance for the position-

selection transition was much slower.

 92

Duration

0
10
20
30
40
50
60
70
80
90

100
110
120

Quantiles
100.0% maximum 119.00
99.5% 119.00
97.5% 100.25
90.0% 56.40
75.0% quartile 49.00
50.0% median 31.00
25.0% quartile 19.00
10.0% 12.00
2.5% 8.00
0.5% 5.00
0.0% minimum 5.00

Moments
Mean 34.8
Std Dev 20.094894
Std Err Mean 2.1795973
upper 95% Mean 39.134368
lower 95% Mean 30.465632
N 85

5.29: Distribution by time (ms.) for S/DM transition with mouse (subject 6)

 93

Duration

0
10
20
30
40
50
60
70
80
90

100
110

Quantiles
100.0% maximum 106.00
99.5% 106.00
97.5% 72.17
90.0% 59.00
75.0% quartile 49.00
50.0% median 39.00
25.0% quartile 24.00
10.0% 14.00
2.5% 12.58
0.5% 9.00
0.0% minimum 9.00

Moments
Mean 38.04
Std Dev 18.353939
Std Err Mean 1.8353939
upper 95% Mean 41.68182
lower 95% Mean 34.39818
N 100

5.30: Distribution by time (ms.) for S/DM transition with touchpad (subject 6)

 94

Duration

10
20
30
40
50
60
70
80
90

100
110
120
130

Quantiles
100.0% maximum 124.00
99.5% 124.00
97.5% 93.48
90.0% 64.00
75.0% quartile 54.00
50.0% median 34.00
25.0% quartile 29.00
10.0% 14.00
2.5% 14.00
0.5% 14.00
0.0% minimum 14.00

Moments
Mean 40.714286
Std Dev 21.109565
Std Err Mean 1.8805895
upper 95% Mean 44.436206
lower 95% Mean 36.992366
N 126

5.31: Distribution by time (ms.) for S/DM transition with trackpoint (subject 6)

 95

Duration

0
10
20
30
40
50
60
70
80
90

100
110

Quantiles
100.0% maximum 109.00
99.5% 109.00
97.5% 84.00
90.0% 54.00
75.0% quartile 44.00
50.0% median 29.00
25.0% quartile 19.00
10.0% 9.00
2.5% 4.00
0.5% 4.00
0.0% minimum 4.00

Moments
Mean 32.057554
Std Dev 20.004429
Std Err Mean 1.1997859
upper 95% Mean 34.419411
lower 95% Mean 29.695697
N 278

5.32: Distribution by time (ms.) for S/P transition with mouse (subject 6)

 96

Duration

0
10
20
30
40
50
60
70
80
90

100
110
120

Quantiles
100.0% maximum 114.00
99.5% 112.58
97.5% 87.68
90.0% 59.00
75.0% quartile 49.00
50.0% median 34.00
25.0% quartile 19.00
10.0% 9.00
2.5% 9.00
0.5% 5.10
0.0% minimum 5.00

Moments
Mean 35.279817
Std Dev 20.427903
Std Err Mean 1.3835522
upper 95% Mean 38.006737
lower 95% Mean 32.552896
N 218

5.33: Distribution by time (ms.) for S/P transition with touchpad (subject 6)

 97

Duration

0
10
20
30
40
50
60
70
80
90

100
110
120

Quantiles
100.0% maximum 114.00
99.5% 113.92
97.5% 70.80
90.0% 54.00
75.0% quartile 46.00
50.0% median 29.00
25.0% quartile 24.00
10.0% 14.00
2.5% 9.00
0.5% 3.08
0.0% minimum 3.00

Moments
Mean 34.488372
Std Dev 17.447347
Std Err Mean 1.1898992
upper 95% Mean 36.833796
lower 95% Mean 32.142948
N 215

5.34: Distribution by time (ms.) for S/P transition with trackpoint (subject 6)

 98

Duration

0

100

200

300

400

500

600

Quantiles
100.0% maximum 547.00
99.5% 547.00
97.5% 514.50
90.0% 315.80
75.0% quartile 199.75
50.0% median 111.50
25.0% quartile 50.00
10.0% 25.00
2.5% 24.00
0.5% 24.00
0.0% minimum 24.00

Moments
Mean 145.36538
Std Dev 117.75282
Std Err Mean 16.329378
upper 95% Mean 178.14798
lower 95% Mean 112.58279
N 52

5.35: Distribution by time (ms.) for DM/S transition with mouse (subject 6)

 99

Duration

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300

Quantiles
100.0% maximum 1214.0
99.5% 1214.0
97.5% 1000.1
90.0% 512.6
75.0% quartile 350.0
50.0% median 270.0
25.0% quartile 91.0
10.0% 45.0
2.5% 23.0
0.5% 23.0
0.0% minimum 23.0

Moments
Mean 279.15385
Std Dev 215.03446
Std Err Mean 26.671742
upper 95% Mean 332.43678
lower 95% Mean 225.87092
N 65

5.36: Distribution by time (ms.) for DM/S transition with touchpad (subject 6)

 100

Duration

0

200

400

600

800

1000

1200

1400

1600

Quantiles
100.0% maximum 1487.0
99.5% 1487.0
97.5% 1078.1
90.0% 443.3
75.0% quartile 295.8
50.0% median 205.0
25.0% quartile 138.0
10.0% 45.9
2.5% 21.3
0.5% 21.0
0.0% minimum 21.0

Moments
Mean 246.09783
Std Dev 215.56657
Std Err Mean 22.474369
upper 95% Mean 290.7404
lower 95% Mean 201.45525
N 92

5.37: Distribution by time (ms.) for DM/S transition with trackpoint (subject 6)

 101

Duration

0

200

400

600

800

1000

1200

1400

Quantiles
100.0% maximum 1422.0
99.5% 1375.7
97.5% 581.4
90.0% 124.4
75.0% quartile 75.0
50.0% median 50.0
25.0% quartile 25.0
10.0% 25.0
2.5% 24.0
0.5% 11.6
0.0% minimum 11.0

Moments
Mean 83.451163
Std Dev 141.91289
Std Err Mean 9.6783786
upper 95% Mean 102.52832
lower 95% Mean 64.374002
N 215

5.38: Distribution by time (ms.) for P/S transition with mouse (subject 6)

 102

Duration

0

200

400

600

800

1000

1200

1400

1600

1800

Quantiles
100.0% maximum 1621.0
99.5% 1621.0
97.5% 779.4
90.0% 503.8
75.0% quartile 359.0
50.0% median 283.0
25.0% quartile 90.0
10.0% 45.0
2.5% 23.0
0.5% 22.0
0.0% minimum 22.0

Moments
Mean 280.57143
Std Dev 214.16455
Std Err Mean 16.189318
upper 95% Mean 312.52415
lower 95% Mean 248.61871
N 175

5.39: Distribution by time (ms.) for P/S transition with touchpad (subject 6)

 103

Duration

0

200

400

600

800

1000
1100

1300

Quantiles
100.0% maximum 1388.0
99.5% 1388.0
97.5% 1060.6
90.0% 426.0
75.0% quartile 273.0
50.0% median 204.0
25.0% quartile 138.0
10.0% 92.2
2.5% 43.2
0.5% 22.0
0.0% minimum 22.0

Moments
Mean 246.09357
Std Dev 204.46128
Std Err Mean 15.635545
upper 95% Mean 276.95839
lower 95% Mean 215.22874
N 171

5.40: Distribution by time (ms.) for P/S transition with trackpoint (subject 6)

5.5. Individual Performance Differences

We have seen the patterns in the overall data and how these relate to individual patterns, but

there are further unusual patterns we find associated with specific subjects that are worth

considering, for completeness.

 104

Two subjects were observed to have a negative log term for the Fitts’ law model of their

positioning task using the mouse. Figure 5.41 shows the data for subject nine.

1000

2000

3000

4000

5000

6000

D
ur

at
io

n

0 5 10 15 20 25
2D/W

Transformed Fit to Log
Transformed Fit to Log
Duration = 2330.3701 - 52.925814 Log(2D/W)

Summary of Fit
RSquare 0.000796
RSquare Adj -0.0034
Root Mean Square Error 1135.079
Mean of Response 2213.5
Observations (or Sum Wgts) 240

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 1 244346 244346 0.1897
Error 238 306640142 1288404 Prob > F
C. Total 239 306884488 0.6636

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 2330.3701 278.1877 8.38 <.0001
Log(2D/W) -52.92581 121.5321 -0.44 0.6636

Figure 5.41: Scatter Plot with Fitts’ Law Model for Selection with Mouse (subject 9)

 105

At first glance, data would seem to suggest that it took subject nine longer to position an

object with a mouse, the shorter the distance that they were required to move. This is

counter to all research in the field. Upon closer inspection, however, it would appear that

with the removal of 12 data points over 4500 ms. in time, a weak Fitts’ Law model would

result. We speculate that the subject was trying to maximize the fidelity of their

performance with little consideration for performing the task as quickly as possible.

With respect to mean transition times, we observed two interesting anomalies. Subject four

had a median time of 854 ms. for the orientation-selection transition when using the

trackpoint; while the mean time across all subjects was 243 ms., subject four was 611 ms.

slower. Their performance was nominally below the median when using the mouse and

touchpad for the same transition. Since the trackpoint was the second device they used,

order effect does not explain this inconsistency. Subject four committed a large number of

errors when performing the orientation task, successfully performing the operation only

eight times. This leads us to conclude that their difficulty with the orientation task spilled

over into the transition from orientation to selection as they attempted to confirm that they

had performed the task correctly before they went on to the selection. We would, however,

not try to read too much into this as there were only eight data points available for analysis.

Subjects 10 and 16 had unusual data for transitions while using the mouse. Subject 10 had

an unusually short duration for the orientation-selection transition (figure 5.42), a median

time of 25ms., while the median across subjects was 66.25 ms. Subject 16 had an

abnormally low transition time for the position-selection transition (figure 5.43), a median

 106

time of 25ms., compared to 63.08 ms. across subjects. We speculate that these subjects may

have had a different method for performing these single transitions; for example, they may

have simply started moving as soon as they completed their pre-action and performed their

confirmation while they were engaged in the selection as opposed to the more normal

method of pausing to confirm. What is interesting to note is that neither subject’s data was

abnormal for any of the other transitions or tasks.

 107

Duration

0

10

20

30

40

50

60

70

80

Quantiles
100.0% maximum 79.000
99.5% 79.000
97.5% 79.000
90.0% 64.200
75.0% quartile 43.000
50.0% median 25.000
25.0% quartile 20.000
10.0% 9.600
2.5% 6.000
0.5% 6.000
0.0% minimum 6.000

Moments
Mean 31.870968
Std Dev 18.049454
Std Err Mean 3.2417777
upper 95% Mean 38.491561
lower 95% Mean 25.250375
N 31

Figure 5.42: Distribution by time (ms.) for DM/S transition with mouse (subject 10)

 108

Duration

0

20

40

60

80

100

120

140

160

180

Quantiles
100.0% maximum 175.00
99.5% 174.12
97.5% 124.00
90.0% 74.00
75.0% quartile 50.00
50.0% median 25.00
25.0% quartile 25.00
10.0% 24.00
2.5% 16.80
0.5% 8.16
0.0% minimum 8.00

Moments
Mean 38.511628
Std Dev 26.073559
Std Err Mean 1.778202
upper 95% Mean 42.016662
lower 95% Mean 35.006594
N 215

Figure 5.43: Distribution by time (ms.) for P/S transition with mouse (subject 16)

A great deal of variability between subjects was noticed in both the task performance and

transition times. To illustrate this effect, figures 5.44-49 display normalized mean

performance time by subject for each of the tasks and transitions. The figures were created

by taking the raw data and normalizing it to the mouse being equal to 1.0. The mouse

 109

performance therefore runs across the charts as a straight line. If all user performance was

consistent in its interdevice relationships we would expect to see a straight line for both the

touchpad and trackpoint data located either above or below the x axis. Instead what we see

is that the relationship between performance times varies dramatically from subject to

subject and from task to task.

Selection

0.00

0.50

1.00

1.50

2.00

2.50

1 3 5 7 9 11 13 15 17 19 21 23

Subject

N
or

m
al

iz
ed

 T
im

e

Mouse
Touchpad
Trackpoint

Figure 5.44: Normalized performance time (ms.) for selection task (mouse=1.0)

 110

Orientation

0.00

0.50

1.00

1.50

2.00

2.50

1 3 5 7 9 11 13 15 17 19 21 23

Subject

N
or

m
al

iz
ed

 T
im

e

Mouse
Touchpad
Trackpoint

Figure 5.45: Normalized performance time (ms.) for orientation task (mouse=1.0)

Position

0.00

0.50

1.00

1.50

2.00

2.50

1 3 5 7 9 11 13 15 17 19 21 23

Subject

N
or

m
al

iz
ed

 T
im

e

Mouse
Touchpad
Trackpoint

Figure 5.46: Normalized performance time (ms.) for position task (mouse=1.0)

 111

In the selection task (figure 5.44) we see that 14 users had faster mean performance with

the touchpad as opposed to the trackpoint. In no case was either of those two devices faster

than the mouse. Most users’ performance with the trackpoint and touchpad were between

1.5 and 2 times slower than when using the mouse. In the orientation task data (figure

5.45), we see an entirely different picture. While the relationship or general trends of

performance are less clear, 13 of the subjects are performing fastest with the trackpoint as

opposed to the mouse (subjects 4 and 12 had insufficient trackpoint data to reach any

meaningful comparisons, hence the 0 values). For the position task (figure 5.46) we see that

between the touchpad and trackpoint, there is no clear consensus with regards to

superiority; 14 users were faster with the trackpoint. In six cases, the user was faster with

the trackpoint as opposed to the mouse.

These results provide a much clearer understanding of the wide range of differences in

performance between subjects that simply isn’t captured in previous work where devices

are evaluated across groups with no consideration for individual differences.

When looking at the normalized transition data in figures 5.47-50, we see an entirely

different trend. As we would expect, there is little if any difference between any of the

devices for the S/DM and S/P transitions (figures 5.47-48). As you may recall, these two

transitions are just the time required to activate the pointing device, so they are more

reflective of a hardware timing interval than anything else.

 112

Selection/Orientation Transition

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60

1 3 5 7 9 11 13 15 17 19 21 23

Subject

N
or

m
al

iz
ed

 T
im

e
Mouse
Touchpad
Trackpoint

Figure 5.47: Normalized performance time (ms.) for S/DM transition (mouse=1.0)

Selection/Position Transition

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60

1 3 5 7 9 11 13 15 17 19 21 23

Subject

N
or

m
al

iz
ed

 T
im

e

Mouse
Touchpad
Trackpoint

Figure 5.48: Normalized performance time (ms.) for S/P transition (mouse=1.0)

 113

For the DM/S and P/S transitions (figures 5.49-50), we see a trend of both greater

magnitudes of difference and the mouse’s clear superiority, while there is no clear trend

between the trackpoint and touchpad. While the task completion times typically didn’t vary

by more than a factor of two, we see that for the DM/S and P/S transitions, the range is

from two to six times slower than the mouse.

Orientation/Selection Transition

0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00
18.00

1 3 5 7 9 11 13 15 17 19 21 23

Subject

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Mouse
Touchpad
Trackpoint

Figure 5.49: Normalized performance time (ms.) for DM/S transition (mouse=1.0)

 114

Position/Selection Transition

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

1 3 5 7 9 11 13 15 17 19 21 23

Subject

N
or

m
al

iz
ed

 T
im

e
Mouse
Touchpad
Trackpoint

Figure 5.50: Normalized performance time (ms.) for P/S transition (mouse=1.0)

5.6 Aggregate Error Rates

In our simulation, an error is defined solely as clicking on a control in the wrong task

ordering or a non-selectable region of the screen. We did not try to take user intent into

account because of the inherent difficulty of determining that intent. In table 5.5 we provide

a summary of the number of trials of the curve matching task that the user completed and

the number of selection errors that they committed. Bear in mind that these errors are

reported on a per trial basis when there can be a minimum of 4 selections in a successful

trial. On a per trial basis, there were .385, .455 and .449 errors per trial with the mouse,

touchpad and trackpoint respectively. Looking at the error rate on a per task basis we get

.084, .111 and .108 errors per selection with the mouse, touchpad and trackpoint

respectively. At first glance, these error rates look rather high but keep in mind our

 115

 Mouse Touchpad Trackpoint

Subject Trials Errors Trials Errors Trials Errors

1 75 15 75 41 73 57

2 75 10 75 17 75 26

3 75 41 72 48 74 51

4 75 19 74 40 73 45

5 73 25 74 27 75 19

6 75 25 75 42 74 28

7 73 24 73 12 75 19

8 75 17 74 18 75 35

9 75 40 74 20 75 40

10 75 51 75 43 71 54

11 75 16 74 52 73 40

12 75 20 72 16 73 29

13 75 10 71 67 68 24

14 75 48 74 40 75 23

15 75 31 74 26 73 29

16 75 43 75 35 71 48

17 75 34 75 30 75 15

18 75 19 75 19 75 28

19 74 51 75 34 75 17

20 75 16 73 24 71 20

21 75 10 73 21 73 27

22 74 52 74 48 72 42

23 75 23 73 25 71 37

24 74 51 75 63 74 36

Table 5.5: Number of trials and selection errors by device

 116

definition of an error. More than half of the errors we logged were simply participants

attempting to activate a control out of order, not missing the controls as one might define an

error.

While it is beyond the scope of our work, an interesting question was raised. How “well”

did the participants perform the curve-matching task? Defining the quality of a curve

match is a subjective judgment. There are many different approaches that can be taken,

from simply measuring the linear and angular discrepancies to overlaying the two curves

and determining the area between them. We approached this question by coming up with

three simple characteristics for the curve: center, angle and points. Center is defined as the

distance (in pixels) between the reference curve center and the user curve center with

respect to the origin of the region of the screen that they appear in. The center measure

corresponds to the positioning of the entire curve. Angle is the angle between the line

segments formed by the reference curve endpoints and the user curve endpoints. There are

two possible angles that can be calculated; we calculate both and select the smallest. The

angle measure corresponds to the orientation task. Finally, the points measure is derived by

translating the user curve so that the user curve center overlays the reference curve center

and then calculating the distance between the reference curve interior control points and the

user curve interior control points in a pair-wise fashion. Since this can be done in two

different ways (R1 to U1 and R2 to U2 as well as R1 to U2 and R2 to U1), we compute

both distances and select the minimum. This methodology was not meant to be a definitive

treatment of curve matching quality. It merely provided us with a little insight into the

 117

problem. We observed a median center value of 48.0 pixels, median angle of .787 radians

and median point value of 84.67 pixels.

In appendix 8.1 we provide the median data by subject for those interested in this problem.

It should also be noted that while we can’t guarantee that all users were operating at expert

level performance in all devices tested, we did check median performance time across trial

blocks two through four and did not find a significant difference in performance times.

 118

6. Discussion

This thesis makes several important contributions to the body of HCI literature.

Methodological contributions have been made in the form of an extensible generic

simulation testbed which permits an efficient evaluation of user performance. The need for

the consideration of individual performance characteristics is strongly indicated based on

the results we have obtained. A number of theoretical contributions are made, specifically:

a new taxonomy of tasks has been derived which can be directly used for evaluation, task

execution graphs have been introduced which permit the representation of realistic tasks

and corresponding performance metrics, and a methodology for representing device

differences within this framework. Finally we provide some insight into potentially

rewarding areas that this work can be applied to.

6.1 Methodological Contributions

One of the primary focuses of this work is to provide a generic test bed for the evaluation of

devices. A testbed was created that allows an experimenter to evaluate multiple pairings of

devices with an extensible set of tasks that might be performed in a given interface. A

natural follow-on, once these results are obtained, is verification in the deliverable

environment.

 119

6.1.1 Implications of user differences to generality of device testing

The results point to a deficiency in previous device comparison studies. Prior multi-device

studies have looked at the differences between devices across a user population. While this

approach yields a convenient general trend, it does not allow us to see that individual

differences in performance do not fit so neatly into the between-subject approach. While all

of our users were able to perform most tasks and transitions faster and with fewer errors

using a mouse, the differences between the trackpoint and touchpad were not as clear-cut.

As we saw in section 5.5, there was quite a bit of variability in the relative performance

characteristics of the devices. These results would indicate that a one-size-fits-all approach

to the reporting of performance data inaccurately characterizes the performance of a

substantial percentage of the population. It is clear from the results that individual users

may perform substantially better with a particular device than the general population. What

is not clear is why this is the case. One possible explanation is that users are not pursuing an

optimal strategy of device usage, having developed an approach to using a particular device

that while it appears to be intuitively optimal may actually not be [Andre 1995].

A look at the mean transition times of subjects in figure 5.1 indicates the wide range of

performance characteristics between users for the DM/S and P/S transitions. It is

convenient to look at one simple indication of performance over a large group, but there is

clearly a large spread between the performance of individual users.

 120

While it may be useful to have an overall measure of the performance characteristics of a

device, the differences in individual performance demonstrate the need for calibrating a

model to an individual’s performance data to yield higher quality predictive results.

6.2 Theoretical Contributions

A task taxonomy was created by decomposing common user tasks in a graphical user

interface into a set of primitive tasks that appear to be able to adequately describe any

conventional interaction in a graphical user interface. While many studies have been

previously undertaken to look at the performance characteristics of elemental actions, our

contribution is to look at the combinations of primitive tasks and the time it takes for a user

to transition from one to another in an ecologically valid environment.

6.2.1 Task Execution Graphs

A novel method for the depiction of tasks was developed in the form of task execution

graphs. This depiction of elemental tasks and the transitions between them allows one to

structure realistic tasks in a simple but meaningful way. Our model is composed of three

actions or tasks, and four transitions that connect the actions. Based on our data analysis,

each of the actions was modeled as a Fitts’ Law task while the transitions were modeled as

empirically derived constants. A model for a single subject on a single device therefore

consists of a set of eight coefficients or weights for the graph: 4 transitions, 3 tasks, and a

selection error rate. A model must be generated for each device used by each subject. To

 121

derive a prediction for performance time of a task, one simply traces a shortest path through

the state graph and sums the weights of each node and transition in the path.

6.2.2 Creating and Upgrading Models

One of the purposes of this work is to give researchers the ability to easily compare device

performance characteristics over a variety of environments. With this goal in mind, it is

necessary to be able to do the following three things with respect to modeling:

1. Generating models for new users: a procedure is outlined for generating the models

that will enable a comparison of the user’s performance across devices.

2. Extending a given model by the addition of a new task.

3. Extending a set of models with the addition of a new device.

A performance model can be generated for a new user by running the user on the

experimental test bed, collecting the relevant data as outlined in the methods section, and

then analyzing and summarizing the data according to our data analysis procedure. (The

code appears in Appendices 8.4-8.7). A set of performance parameters will be generated

that can then be attached to a model diagram. This procedure would be repeated for each

device of interest.

A performance model can be generated for a new device by simply following the procedure

above, assuming that performance data for the subject on the other comparators is already

 122

available. It is important to make sure that the subject has had sufficient experience with

the device before data collection begins.

To extend a model with a new task it is necessary to modify the experimental test bed

(unless the addition is simply a redefinition of the current primitives) to add the additional

task, modifying the states and order of presentation appropriately. The data analysis

software must be updated as well to encompass the new task definition and timing

requirements. Then, models can be generated as for a new user.

6.2.3 Limitation of model

To lend some ecological validity to the experiment, the study used a curve-matching task,

which required judgment on the part of the participant and involved some uncertainty or

qualitative judgment rather than a more simplistic set of tasks like simple target acquisition

and line orientation. Our model, like Fitts’ Law, does not take into account intervals where

a user is involved with cognitive activities like goal formation. We structured the timing of

user events to log when a user started and completed an action. This eliminated most

exploratory behaviors (activities where the goal was not immediately clear to the user). We

therefore assumed that any user action taking longer than six seconds was non-goal directed

and removed it from consideration.

Fitts’ Law was chosen as the dominant means of expressing the predicted times for tasks

because of its dominance in the literature and its ability to express the relationship between

performance and distance so well. While there are several variations of Fitts’ Law, we

selected a very general form that is well regarded in the literature, T= I log2(2D/W), where

 123

T is time, I is the index of difficulty, D is the distance traveled and W is the width of the

target. Other variations of Fitts’ Law have been shown to provide nominally better

predictive accuracy over short distances but we use only the general form to enhance the

generality and applicability of our findings across a wide range of situations. [Card 1983,

MacKenzie 1991a]

While there may be multiple or even infinite acceptable paths through the model graph to

complete a task, this work assumes that a goal directed path (where each action leads closer

to a goal) will be taken.

6.3 Future Work

A number of compelling areas for future research are opened by this work. A more

standardized and effective mode of device evaluation can be pursued. In complex

application domains, critical sections of the application can be analyzed for appropriateness

of device selection with good generality for performance in the whole application. The

methodology described herein could be used to create a recommendation system for device

appropriateness for a given user, based on monitoring actual user performance. Finally, in

areas where individual performance varies greatly, our techniques will be helpful in

evaluating assistive technologies.

6.3.1 Evaluation of novel input devices

By adopting the environment and representations of user actions described herein, it should

be possible to advance the state of device evaluation by creating a set of consistent and

 124

coherent procedures across the field. This would allow for more effective testing of devices

and the ability to generalize across studies if all other variables were kept constant. A

common set of procedures would minimize the occurrence of methodological flaws that can

arise in this type of research.

6.3.2 Analysis of Time/Error critical regions of applications

In complex application domains, it may not be possible to apply our approach to device

evaluation. It may, however, be quite feasible to profile the application and look at the most

frequently used bottlenecks of user interaction, where a bottleneck might be defined as a

time intensive or error intensive area of the application. Time or error critical areas of the

application could be studied as well.

6.3.3 Device recommendation for specific users

Using our approach, it should be possible to optimize a particular user’s performance given

a specific set of tasks and set of devices. Given that a user might perform different tasks

more efficiently with different devices, it is essential to have a good understanding of what

a representative workload might be. The user would be tested on the task set with each of

the devices or simple logging software could be installed that observed what the user was

doing as they went about their normal workflow. Performance metrics would be derived

from the tests and then a recommendation could be made. In emerging areas of

computational applications like mobile computing, these recommendations might be

particularly helpful in understanding these more demanding interaction environments.

 125

6.3.4 Analysis of disabled user’s performance

As computers become more ubiquitous, it becomes increasingly more important to assess

how disabled users make use of different input devices. Our approach can allow a

researcher to analyze the performance characteristics of a particular type of disability and

make appropriate recommendations for device usage.

Within a specific disability it is likely that the individual differences that we observed in

our study will be even more enhanced, illustrating that a one size fits all approach simply

won’t work when attempting to tailor computational devices to disabled users. Our model

could enable an approach where computational devices could be customized by way of

input devices to the differently-abled user.

 126

7. References

Accot, J. & Zhai, S. (1997). Beyond Fitts' Law: Models for Trajectory-Based HCI Tasks. In

Proceedings of ACM CHI 97 Conference on Human Factors in Computing Systems, p.295-

302.

Accot, J. & Zhai, S. (2001). Scale Effects in Sterring Law Tasks. In Proceedings of ACM

CHI 2001 Conference on Human Factors in Computing Systems, p.1-8.

Albert, A.E. (1982). The effect of graphic input devices on performance in a cursor

positioning task, In Proceedings of the Human Factors Society - 26th annual meeting, 26,

p.54-58.

Anderson, J.R., Matessa, M. & Lebiere, C. (1997). ACT-R: A Theory of Higher Level

Cognition and Its Relation to Visual Attention. Human Computer Interaction, 12(4), p. 439-

462

Andre, A.D. & Wickens, C.D. (1995). When Users Want What’s Not Best For Them.

Ergonomics in Design, 3(10), p.10-13.

Baber, C. (1997). Beyond the desktop, designing and using interaction devices. Academic

Press, New York.

 127

Barham, P. & McAllister, D.F. (1991). A Comparison of Stereoscopic Cursors for the

Interactive Manipulation of B-Splines. SPIE Proceedings, Stereoscopic Displays and

Applications II, 1457, p. 18-26

Buxton, W. (1983). Lexical and pragmatic considerations of input structures. Computer

Graphics, 17, p.31-37

Buxton, W. (1986). There’s more to interaction than meets the eye: some issues in manual

input. In D.A. Norman and S.W. Draper (Eds), User Centred System Design. LEA,

Hillsdale, N.J.

Buxton, W. (1990). A three state model of graphical input. In Proceedings of INTERACT

’90, p. 449-456.

Card, S.K., English, W.K. & Burr, B.J. (1978). Evaluation of Mouse, Rate-Controlled

Isometric Joystick, Step Keys, and Text Keys for Text Selection on a CRT. Ergonomics,

21(8), p.601-613.

Card, S.K., Moran, T., & Newell, A. (1980). The keystroke level model for user

performance time with interactive systems. Communications of the ACM, 23, p.396-410.

Card, S.K., Moran, T., & Newell, A. (1983). The Psychology of Human Computer

Interaction. LEA, Hillsdale, N.J.

Card, S.K., MacKinlay, J.D., & Robertson, G.G. (1991). A morphological analysis of the

design space of input devices. ACM Transactions on Information Systems, 9, p.99-122.

 128

Card, S.K., MacKinlay, J.D., & Robertson, G.G. (1992). The design space of input devices.

In M.M. Blattner and R.B. Dannenberg (Eds), Multimedia Interface Design. New York,

ACM Press.

Dix, A.J., Finlay, J.E., Abowd, G.D. & Beale, R. (1998). Human-Computer Interaction.

Prentice Hall, New York.

Douglas, S.A., & Mithal, A.K. (1994). The Effect of Reducing Homing Time on the Speed

of a Finger-Controlled Isometric Pointing Device. In Proceedings of ACM CHI '94, p.411-

416

Douglas, S.A., Kirkpatrick, A.E. & MacKenzie, I.S. (1999). Testing Pointing Device

Performance and User Assessment with the ISO 9241, Part 9 Standard. In Proceedings of

ACM CHI '99 Conference on Human Factors in Computing Systems, p.215-222

Dulberg, M.S., St. Amant, R. & Zettlemoyer, L. (1999). An Imprecise Mouse Gesture for

the Fast Activation of Controls. In Proceedings of INTERACT '99, p.375-382

Epps, B.W. (1986). Comparison of six cursor control devices based on Fitts’ law models. In

Proceedings of the Human Factors Society - 30th annual meeting, 30, p.327-331.

Fitts, P.M. (1954). The information capacity of the human motor system in controlling the

amplitude of movement. Journal of Experimental Psychology, 47, p.381-391.

Foley, J.D., Wallace, V.L., & Chan, P. (1984). The human factors of graphics interaction

techniques. IEEE Computer Graphics and Applications, 4(11), p.13-48.

 129

Graham, E.D. & MacKenzie, C.L. (1996). Physical versus virtual pointing. In Proceedings

on Human factors in computing systems, p.292-299

Guimbretière,F. & Winograd, T. (2000). FlowMenu: Combining Command, Text, and

Data Entry Selection. In Proceedings of the ACM Symposium on User Interface Software

and Technology, p.213-216.

Hornof, A.J. & Kieras, D.E. (1999). Cognitive modeling demonstrates how people use

anticipated location of menu items. In Proceedings of CHI ’99, The CHI is the Limit, p.410-

417.

ISO (1999). ISO/DIS 9241-9 Ergonomic Requirements for Office Work with Visual

Display Terminals, Nonkeyboard Input Device Requirements, Draft International Standard,

International Organization for Standardization.

Jagacinski, R.J. & Monk, D.L. (1985). Fitts’ Law in Two Dimensions with Hand and Head

Movements. Journal of Motor Behavior, 17(1), 77-95.

Kieras, D. & Polson, P.G. (1986). An approach to the formal analysis of user complexity.

International Journal of Man-Machine Studies, 22, p.365-394

Knowles, C. (1988). Can CCT produce a measure of system usability? In D.M. Jones and

R. Winder (eds) People and Computers IV. Cambridge University Press, Cambridge.

Kurtenbach, G. & Buxton, W. (1993). The limits of expert performance using hierarchic

marking menus. In Proceedings of ACM INTERCHI '93, p.482-487.

 130

Langolf, G.D., Chaffin, D.B., & Foulke, J.A. (1976). An investigation of Fitts’ Law using a

wide range of movement amplitudes. Journal of Motor Behavior, 8, 113-128.

MacKenzie, I.S., Sellen, A. & Buxton, W. (1991). A comparison of input devices in

elemental pointing and dragging tasks. In Proceedings of ACM CHI '91 Conference on

Human Factors in Computing Systems, p.161-166.

MacKenzie, I.S. (1991a). Fitts’ law as a performance model in human-computer interaction.

Doctoral dissertation, University of Toronto

MacKenzie, I.S., Buxton, W. (1992). Extending Fitts' Law to Two-Dimensional Tasks

Proceedings of ACM CHI '92 Conference on Human Factors in Computing Systems, p.219-

226

MacKenzie, I.S., Kauppinen, T. & Silfverberg, M. (2001). Accuracy Measures for

Evaluating Computer Pointing Devices Human Performance Points. In Proceedings of

ACM CHI 2001 Conference on Human Factors in Computing Systems, p.9-16

Meyer, D.E., Abrams, R.A., Kornblum, S., Wright, C.E., and Smith, J.E.K. (1988).

Optimality in human motor performance: Ideal control of rapid aimed movements.

Psychological Review, 95, 340-370.

Mithal, A.K. & Douglas, S.A. (1996) Differences in movement microstructure of the mouse

and the finger-controlled isometric joystick. In Proceedings of CHI '96, p.300-307.

 131

Murata, Atsuo (1991). An experimental evaluation of mouse, joystick, joycard, lightpen,

trackball and touchscreen for pointing - Basic study on human interface design. In H.J.

Bullinger (Ed.), Human Aspects in Computing: Design and Use of Interactive Systems and

Work with Terminals, 123-127, Elsevier: B.V.

Newell, A. (1990). Unified Theories of Cognition. Harvard University Press, Cambridge,

MA.

Norman, D.A. & Draper, S.W. (1986). User Centered System Design: New Perspectives on

Human-Computer Interaction, Lawrence Erlbaum Associates, Hillsdale, NJ.

Olsen, J.R., & Olson, G.M. (1990) The growth in cognitive modeling in human-computer

interaction since GOMS. Human Computer Interaction, 5, p.221-265.

Poupyrev, I., Billinghurst, M, Weghorst, S. & Ichikawa, T. (1996). The go-go interaction

technique: non-linear mapping for direct manipulation in VR. Proceedings of the ACM

symposium on User interface software and technology, p.79-80.

Rudnicky, A.I., & Hauptmann, A.G. (1991). Models for evaluating interaction protocols in

speech recognition. In Proceedings of CHI ’91, p.285-291.

Schmitt, A. & Oel, P. (1999). Calculation of totally optimized button configurations using

fitts' law. In Proceedings of the Eighth International Conference on Human-Computer

Interaction, 1, p.392-396

 132

Shneiderman, B. (1983). Direct manipulation: a step beyond programming languages. IEEE

Computer, 16, p.57-69.

Simpson, C.A. & St. Amant, R. (2003). Search for Efficient Device-Dependent Action

Sequences in the User Interface. In Proceedings of IUI. To appear.

Tognazzini, B. (1999). A Quiz Designed to Give You Fitts. On the World Wide Web:

http://www.asktog.com/columns/022DesignedToGiveFitts.html

van de Pol, R. Ribarsky, W., Hodges, L., & Post, F. (1998). Interaction in Semi-Immersive

Large Display Environments. GVU Technical Report 98-30.

Walker, N., Meyer, D.E., & Smelcer, J.B. (1993). Spatial and temporal characteristics of

rapid cursor-positioning movements with electromechanical mice in human-computer

interaction. Human Factors, 35, p.431-458.

Worden, A., Walker, N., Bharat, K. and Hudson, S. (1997). Making Computers Easier for

Older Adults to Use: Area Cursors and Sticky Icons. In Proceedings of the ACM

Conference on Computer Human Interaction, March 1997, pp. 266-271.

 133

Appendices

8.1 Median trial completion times and curve error factors

Subject N Time (ms) Center (pixels) Angle (radians) Points (pixels)
1 75 21615 53.1507 0.812059 119.351
2 75 23931 39.6232 0.772066 64.884
3 75 16409 53.1413 0.805395 72.3506
4 75 21487 47.1699 0.71883 80.3083
5 73 27236 48.7955 0.815389 119.276
6 75 21024 42.72 0.748748 65.9433
7 73 24925 50.0899 0.574305 84.7159
8 75 17938 39.9625 0.902312 79.1206
9 75 17915 53.6004 0.691713 68.7549
10 75 18931 46.8615 0.745419 104.569
11 75 20655 58.8218 0.882086 61.3799
12 75 22168 48.2597 0.782779 81.6827
13 75 16553 43.382 0.798731 93.2998
14 75 20368 41.8808 0.738765 78.5296
15 75 19699 38.833 0.785398 84.7859
16 75 13154 47.634 0.738765 86.133
17 75 16818 52.1536 0.72547 85.3799
18 75 19845 46.4004 0.785398 84.8539
19 74 21115 40.66175 0.768734 72.29325
20 75 14217 45.1774 0.91223 83.536
21 75 14554 51.6624 0.872137 102.047
22 74 24357 66.6286 0.97526 85.0003
23 75 13648 45.2217 0.73544 73.0472
24 74 25588 50.2352 0.798997 100.7346

 134

8.2 Simulation code: Form1.frm (Visual Basic)
VERSION 5.00
Begin VB.Form Form1
 BackColor = &H00FFFFFF&
 BorderStyle = 0 'None
 Caption = "Form1"
 ClientHeight = 11520
 ClientLeft = 0
 ClientTop = 0
 ClientWidth = 15360
 LinkTopic = "Form1"
 Moveable = 0 'False
 ScaleHeight = 768
 ScaleMode = 3 'Pixel
 ScaleWidth = 1024
 ShowInTaskbar = 0 'False
 Begin VB.Timer Timer3
 Interval = 55
 Left = 1440
 Top = 0
 End
 Begin VB.Timer Timer2
 Interval = 1000
 Left = 720
 Top = 0
 End
 Begin VB.CommandButton Command1
 Caption = "Next"
 Height = 615
 Left = 5400
 TabIndex = 0
 Top = 9360
 Width = 1215
 End
 Begin VB.Timer Timer1
 Interval = 55
 Left = 120
 Top = 0
 End
 Begin VB.Shape Shape3
 BorderColor = &H00404040&
 FillColor = &H00404040&
 FillStyle = 0 'Solid
 Height = 300
 Left = 11370
 Top = 3690
 Width = 300
 End
 Begin VB.Shape box2
 FillColor = &H00FFFFFF&
 Height = 345
 Left = 12720
 Top = 1200
 Width = 345
 End
 Begin VB.Shape box1
 FillColor = &H00FFFFFF&

 135

 Height = 345
 Left = 10080
 Top = 1320
 Width = 345
 End
 Begin VB.Shape Shape2
 BackColor = &H00FFFFFF&
 BorderColor = &H00FFFFFF&
 FillColor = &H00FFFFFF&
 Height = 3375
 Left = 9840
 Top = 8040
 Width = 3735
 End
 Begin VB.Line Line1
 BorderColor = &H00C0C0C0&
 BorderWidth = 15
 X1 = 776
 X2 = 776
 Y1 = 650
 Y2 = 550
 End
 Begin VB.Shape Shape7
 BorderColor = &H00000000&
 FillColor = &H00C00000&
 FillStyle = 0 'Solid
 Height = 1515
 Left = 10890
 Shape = 3 'Circle
 Top = 9000
 Width = 1515
 End
 Begin VB.Shape Shape6
 BorderColor = &H00C00000&
 BorderWidth = 3
 FillColor = &H00C00000&
 Height = 3015
 Left = 10140
 Shape = 3 'Circle
 Top = 8250
 Width = 3015
 End
 Begin VB.Shape Shape5
 FillStyle = 0 'Solid
 Height = 195
 Left = 0
 Shape = 3 'Circle
 Top = 1080
 Width = 195
 End
 Begin VB.Shape Shape4
 BackStyle = 1 'Opaque
 FillStyle = 0 'Solid
 Height = 195
 Left = 0
 Shape = 3 'Circle
 Top = 720
 Width = 195
 End

 136

 Begin VB.Label Label2
 BackColor = &H8000000E&
 Caption = "Time Left"
 BeginProperty Font
 Name = "MS Sans Serif"
 Size = 24
 Charset = 0
 Weight = 400
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty
 Height = 615
 Left = 840
 TabIndex = 2
 Top = 9360
 Width = 2415
 End
 Begin VB.Label Label1
 BackColor = &H8000000E&
 BeginProperty Font
 Name = "MS Sans Serif"
 Size = 24
 Charset = 0
 Weight = 400
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty
 Height = 615
 Left = 3360
 TabIndex = 1
 Top = 9360
 Width = 1815
 End
 Begin VB.Shape Shape1
 BackStyle = 1 'Opaque
 BorderColor = &H00C00000&
 FillColor = &H00C00000&
 FillStyle = 0 'Solid
 Height = 255
 Index = 3
 Left = 14400
 Shape = 3 'Circle
 Top = 3690
 Width = 255
 End
 Begin VB.Shape Shape1
 BackStyle = 1 'Opaque
 BorderColor = &H00808080&
 FillColor = &H00808080&
 FillStyle = 0 'Solid
 Height = 255
 Index = 2
 Left = 12390
 Shape = 3 'Circle
 Top = 3690
 Width = 255
 End

 137

 Begin VB.Shape Shape1
 BackStyle = 1 'Opaque
 BorderColor = &H00808080&
 FillColor = &H00808080&
 FillStyle = 0 'Solid
 Height = 255
 Index = 1
 Left = 10395
 Shape = 3 'Circle
 Top = 3690
 Width = 255
 End
 Begin VB.Shape Shape1
 BackStyle = 1 'Opaque
 BorderColor = &H00C00000&
 FillColor = &H00C00000&
 FillStyle = 0 'Solid
 Height = 255
 Index = 0
 Left = 8400
 Shape = 3 'Circle
 Top = 3690
 Width = 255
 End
End
Attribute VB_Name = "Form1"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Option Explicit
Dim shapeindex As Integer
Dim INTERVAL As Integer
Dim trial As Integer
Dim MAXTRIAL As Integer
Dim time As Integer

Dim state As Integer

Private Sub Command1_Click()
Timer1.Enabled = True
time = INTERVAL
End Sub

Private Sub Form_Load()
DrawWidth = 3
state = 0
filenum = FreeFile
Open "c:\test.txt" For Output As filenum
fileiter = FreeFile
Open "c:\trials.txt" For Output As fileiter
'order(1)= dial
'order(2)= points
'order(3)= position
setorder
usercenter.X = 768
usercenter.y = 256
referencecenter.X = 256 'replace w/random nums!

 138

referencecenter.y = 256
trial = 0
MAXTRIAL = 25
Randomize 'remove argument to get system seed
shapeindex = -1
radius = 9
INTERVAL = 30 ' MAX LENGTH OF TRIAL SET HERE
time = INTERVAL
Dialradius = 100
Dialcenter.X = 776
Dialcenter.y = 650
'setboxes
R1.X = 106
R1.y = 256
R4.X = 406
R4.y = 256
'need to set P's to something so that they dont intefere
End Sub

Private Sub Form_MouseDown(Button As Integer, Shift As Integer, X As Single, y As
Single)
Dim counter As Single
Dim dist As Double
Dim cursor As VECTOR
Dim previous As VECTOR
shapeindex = isinside(X, y)
message = "X" 'assume error, correct below
 If shapeindex > -1 Then 'move point
 If OrderCheck(order(2)) = 1 Then
 Shape1(shapeindex).Left = X - 6
 Shape1(shapeindex).Top = y - 6
 DrawBez P1, P2, P3, P4, 15
 LoadPoints P1, P2, P3, P4
 DrawBez P1, P2, P3, P4, 2
 For counter = 0 To 3
 Shape1(counter).Refresh
 Next
 Shape3.Refresh
 message = "S" & shapeindex
 refreshbox
 End If
 ElseIf shapeindex = -3 Then ' move whole user figure
 If (OrderCheck(order(3)) = 1) Then
 moveusercurve X, y
 message = "SM"
 End If
 Else
 shapeindex = -2
 previous.X = CDbl(Line1.X2)
 previous.y = Line1.Y2
 vectsub2 previous, Dialcenter, previous
 vectunit2 previous, previous
 cursor.X = X
 cursor.y = y
 dist = Distance(cursor, Dialcenter)
 If dist < Dialradius And dist > 2 Then 'move needle to new point
 If (OrderCheck(order(1)) = 1) Then
 movedial previous, cursor
 message = "SD"

 139

 End If
 End If
End If
Logdata trial
End Sub

Private Sub Form_MouseMove(Button As Integer, Shift As Integer, X As Single, y As
Single)
Dim counter
Dim dist As Double
Dim magnitude As Double
Dim cursor As VECTOR
Dim previous As VECTOR
'0-3 for points
'-2 for dial
'-3 for positioner
If shapeindex > -1 Then
 If (OrderCheck(order(2)) = 1) Then
 message = ""
 Shape1(shapeindex).Left = X - 6
 Shape1(shapeindex).Top = y - 6
 DrawBez P1, P2, P3, P4, 15
 For counter = 0 To 3
 Shape1(counter).Refresh
 Next
 Shape3.Refresh
 refreshbox
 LoadPoints P1, P2, P3, P4
 DrawBez P1, P2, P3, P4, 2
 End If
ElseIf shapeindex = -3 Then
 If (OrderCheck(order(3)) = 1) Then
 ' move whole user figure
 moveusercurve X, y
 message = ""
 End If
ElseIf shapeindex = -2 Then
 message = "" 'NOT COUNTING AS ERROR IF YOU MOVE OUT
 refreshdial
 previous.X = CDbl(Line1.X2)
 previous.y = Line1.Y2
 vectsub2 previous, Dialcenter, previous
 vectunit2 previous, previous
 cursor.X = X
 cursor.y = y
 dist = Distance(cursor, Dialcenter)
 If dist < Dialradius And dist > 2 Then 'move needle to new point
 If (OrderCheck(order(1)) = 1) Then
 movedial previous, cursor
 End If
 End If
End If
Logdata trial
End Sub

Private Sub Form_MouseUp(Button As Integer, Shift As Integer, X As Single, y As
Single)
shapeindex = -1
message = "ED"

 140

Logdata trial
message = ""
End Sub

Private Sub Timer1_Timer()
Dim randAngle As Double
randAngle = 0
Line (512, 0)-(512, 512), QBColor(1)
Line (0, 512)-(1024, 512), QBColor(1)
DrawBez R1, R2, R3, R4, 15 ' erase previous reference curve
Randompoints R2, R3 'get new midpoints
R1.X = 106
R1.y = 256
R4.X = 406
R4.y = 256

DrawBez P1, P2, P3, P4, 15 'erase previous user curve
resetuser 'reset position of user shapes
LoadPoints P1, P2, P3, P4 'reset user curve
DrawBez P1, P2, P3, P4, 2
Line1.X2 = 776
Line1.Y2 = 556

setboxes ' puts boxes in correct unrotated position
randAngle = (2 * 3.14127 * Rnd)

rotatereference R1, randAngle
rotatereference R2, randAngle
rotatereference R3, randAngle
rotatereference R4, randAngle

'Take out for debug
RandomRefCenter referencecenter

TranslateRef referencecenter, R1
TranslateRef referencecenter, R2
TranslateRef referencecenter, R3
TranslateRef referencecenter, R4

DrawBez R1, R2, R3, R4, 1 'draw new reference curve
Shape4.Left = R2.X - 7
Shape4.Top = R2.y - 7
Shape5.Left = R3.X - 7
Shape5.Top = R3.y - 7

trial = trial + 1
setorder
If trial > MAXTRIAL Then
 End
End If
state = 0
message = ""
Write #fileiter, trial, R1.X, R1.y, R2.X, R2.y, R3.X, R3.y, R4.X, R4.y, P1.X,
P1.y, P2.X, P2.y, P3.X, P3.y, P4.X, P4.y, Line1.X1, Line1.Y1, Line1.X2, Line1.Y2,
referencecenter.X, referencecenter.y, order(1), order(2), order(3)

Timer1.Enabled = False
End Sub

 141

Private Sub Timer2_Timer()
time = time - 1
Label1.Caption = time
If time = 0 Then
 time = INTERVAL
 shapeindex = -1 ' stop current drag if one is occuring
 Timer1.Enabled = True
End If
End Sub

Private Sub Timer3_Timer()
Logdata trial
End Sub

 142

8.3 Simulation code: Modheaderbas.bas (Visual Basic)
Attribute VB_Name = "Module2"
Option Explicit
Type POINTAPI
 X As Long
 y As Long
End Type

'added for timer
Declare Function GetCursorPos Lib "user32" (lpPoint As POINTAPI) As Long
Declare Function SetCursorPos Lib "user32" (ByVal X As Long, ByVal y As Long) As
Long
Declare Function GetTickCount Lib "kernel32" () As Long

Public dl&
Public filenum As Integer
Public fileiter As Integer
Public message As String
Public cursorspositionapi As POINTAPI
Public cursorsposition As POINTAPI
Public prevcursorsposition As POINTAPI
Public pull As VECTOR
Public state As Integer
Public P1 As POINTAPI 'user points
Public P2 As POINTAPI
Public P3 As POINTAPI
Public P4 As POINTAPI
Public R1 As POINTAPI 'reference points
Public R2 As POINTAPI
Public R3 As POINTAPI
Public R4 As POINTAPI
Public Dialcenter As VECTOR
Public usercenter As VECTOR
Public referencecenter As VECTOR
Public Dialradius As Double
Public radius As Integer
Public t As Double
Public currpt As POINTAPI
Public prevpt As POINTAPI
Public refreshcounter As Integer
Public order(3) As Integer
'order 1=dial, order 2=points, order 3=position

Public Function LoadPoints(P1 As POINTAPI, P2 As POINTAPI, P3 As POINTAPI, P4 As
POINTAPI)
P1.X = Form1.Shape1(0).Left + radius
P1.y = Form1.Shape1(0).Top + radius
P2.X = Form1.Shape1(1).Left + radius
P2.y = Form1.Shape1(1).Top + radius
P3.X = Form1.Shape1(2).Left + radius
P3.y = Form1.Shape1(2).Top + radius
P4.X = Form1.Shape1(3).Left + radius
P4.y = Form1.Shape1(3).Top + radius
End Function

Public Function isinside(X As Single, y As Single) As Integer
'returns -1 if not inside, else returns index of point

 143

'returns -2 if dial ???
'returns -3 if shape3 (positioner)
Dim center As VECTOR
Dim current As VECTOR
Dim cursordist As Double
isinside = -1
current.X = X
current.y = y
center.X = Form1.Shape1(1).Left + radius
center.y = Form1.Shape1(1).Top + radius
cursordist = Distance(current, center)
If cursordist <= radius Then
 isinside = 1
End If
center.X = Form1.Shape1(2).Left + radius
center.y = Form1.Shape1(2).Top + radius
cursordist = Distance(current, center)
If cursordist <= radius Then
 isinside = 2
End If
center.X = Form1.Shape3.Left + 10
center.y = Form1.Shape3.Top + 10
cursordist = Distance(current, center)
If cursordist <= 12 Then
 isinside = -3
End If
End Function

Public Sub Randompoints(a As POINTAPI, b As POINTAPI)
 Dim randAngle As Double
 Dim randDistance As Double
 randAngle = (2 * 3.14127 * Rnd)
 randDistance = 150 * Rnd
 a.y = CInt(Sin(randAngle) * randDistance) + 256
 a.X = CInt(Cos(randAngle) * randDistance) + 256
 randAngle = (2 * 3.14127 * Rnd)
 randDistance = 150 * Rnd
 b.y = CInt(Sin(randAngle) * randDistance) + 256
 b.X = CInt(Cos(randAngle) * randDistance) + 256
End Sub
Public Sub resetuser()
 Form1.Shape1(0).Top = 247
 Form1.Shape1(1).Top = 247
 Form1.Shape1(2).Top = 247
 Form1.Shape1(3).Top = 247
 Form1.Shape1(0).Left = 611
 Form1.Shape1(1).Left = 719
 Form1.Shape1(2).Left = 802
 Form1.Shape1(3).Left = 911
 usercenter.X = 768
 usercenter.y = 256
 Form1.Shape3.Left = usercenter.X - 9
 Form1.Shape3.Top = usercenter.y - 9

End Sub
Public Sub rotatereference(a As POINTAPI, theta As Double)
Dim newpoint As VECTOR
Dim newpoint2 As VECTOR
'translate to origin

 144

newpoint.X = a.X - referencecenter.X
newpoint.y = a.y - referencecenter.y
'rotate
newpoint2.X = newpoint.X * Cos(theta) - newpoint.y * Sin(theta)
newpoint2.y = newpoint.X * Sin(theta) + newpoint.y * Cos(theta)
a.X = newpoint2.X + referencecenter.X
a.y = newpoint2.y + referencecenter.y
End Sub

Public Sub rotatepoint(a As Shape, c As VECTOR, theta As Double)
Dim newpoint As VECTOR
Dim newpoint2 As VECTOR
'translate to origin
newpoint.X = a.Left + radius - c.X
newpoint.y = a.Top + radius - c.y
'rotate
newpoint2.X = newpoint.X * Cos(theta) - newpoint.y * Sin(theta)
newpoint2.y = newpoint.X * Sin(theta) + newpoint.y * Cos(theta)
'translate back
a.Left = newpoint2.X + c.X - radius
a.Top = newpoint2.y + c.y - radius
End Sub
Public Sub rotatebox(a As Shape, c As VECTOR, theta As Double)
Dim newpoint As VECTOR
Dim newpoint2 As VECTOR
'translate to origin
newpoint.X = a.Left + (a.Width / 2 + 1) - c.X
newpoint.y = a.Top + (a.Height / 2 + 1) - c.y
'rotate
newpoint2.X = newpoint.X * Cos(theta) - newpoint.y * Sin(theta)
newpoint2.y = newpoint.X * Sin(theta) + newpoint.y * Cos(theta)
'translate back
a.Left = newpoint2.X + c.X - (a.Width / 2 + 1)
a.Top = newpoint2.y + c.y - (a.Height / 2 + 1)
End Sub

Public Sub setboxes()
Form1.box1.Left = usercenter.X + (R2.X - referencecenter.X) - 12
Form1.box1.Top = usercenter.y + (R2.y - referencecenter.y) - 12
Form1.box2.Left = usercenter.X + (R3.X - referencecenter.X) - 12
Form1.box2.Top = usercenter.y + (R3.y - referencecenter.y) - 12

End Sub

Public Sub movedial(previous As VECTOR, cursor As VECTOR)
Dim counter
Dim dist As Double
Dim magnitude As Double
Dim tempvect As VECTOR
Dim temp2vect As VECTOR
Dim scalefactor As Double
Dim zdirect As Double
Dim theta As Double
Dim costheta As Double
Dim temp1 As Double
Dim temp2 As Double
Dim temp3 As Double
Dim temp4 As Double

 145

 ' message = "dialdrag"
 vectsub2 cursor, Dialcenter, tempvect
 zdirect = previous.X * tempvect.y - previous.y * tempvect.X
 scalefactor = Dialradius / vectmag2(tempvect)
 vectmult2 tempvect, scalefactor, tempvect
 vectadd2 tempvect, Dialcenter, temp2vect
 Form1.Line1.X2 = CInt(temp2vect.X)
 Form1.Line1.Y2 = CInt(temp2vect.y)
 'calculate angle of rotation
 vectunit2 tempvect, tempvect
 costheta = vectdot2(previous, tempvect)
 If costheta = 1 Then 'to prevent divide by 0
 theta = 0
 ElseIf costheta < 1 Then
 temp1 = Sqr(-costheta * costheta + 1)
 If temp1 = 0 Then 'force no divide by 0
 temp1 = 0.000001
 End If
 temp2 = -costheta / temp1
 temp3 = Atn(temp2)
 temp4 = 2 * Atn(1)
 theta = temp3 + temp4
 'theta = Atn(-costheta / Sqr(-costheta * costheta + 1)) + 2 * Atn(1)
 End If
 If zdirect < 0 Then
 theta = theta * -1#
 End If
' sintheta = Sin(theta)
 'rotate points P
 tempvect.X = 768 ' center of user circle
 tempvect.y = 256
 DrawBez P1, P2, P3, P4, 15 'erase previous user curve
 For counter = 0 To 3
 rotatepoint Form1.Shape1(counter), usercenter, theta
 Form1.Shape1(counter).Refresh
 Next
 LoadPoints P1, P2, P3, P4 'reset user curve
 DrawBez P1, P2, P3, P4, 2
 rotatebox Form1.box1, usercenter, theta
 rotatebox Form1.box2, usercenter, theta
 LoadPoints P1, P2, P3, P4 'reset user curve
 DrawBez P1, P2, P3, P4, 2
 Form1.Shape3.Refresh
End Sub

Public Sub moveusercurve(X As Single, y As Single)
Dim translation As VECTOR
Dim counter As Integer
 Form1.Shape3.Left = X - 10
 Form1.Shape3.Top = y - 10
 translation.X = usercenter.X - X
 translation.y = usercenter.y - y
 usercenter.X = X
 usercenter.y = y
'Erase current user curve
 DrawBez P1, P2, P3, P4, 15
 For counter = 0 To 3
 translatepoint Form1.Shape1(counter), translation
 Form1.Shape1(counter).Refresh

 146

 Next
 translatebox Form1.box1, translation
 translatebox Form1.box2, translation
 'redraw user curve
 LoadPoints P1, P2, P3, P4 'reset user curve
 DrawBez P1, P2, P3, P4, 2
End Sub

Public Sub translatepoint(a As Shape, c As VECTOR)
'translate to origin
a.Left = a.Left - c.X
a.Top = a.Top - c.y
End Sub

Public Sub translatebox(a As Shape, c As VECTOR)
'translate to origin
a.Left = a.Left - c.X
a.Top = a.Top - c.y
End Sub

Public Function OrderCheck(pos As Integer) As Integer
 If pos = state Then
 OrderCheck = 1
 ElseIf pos = (state + 1) Then
 state = state + 1
 OrderCheck = 1
 Else
 OrderCheck = 0
 End If
End Function

Public Sub RandomRefCenter(a As VECTOR)
 Dim randAngle As Double
 Dim randDistance As Double
 randAngle = (2 * 3.14127 * Rnd)
 randDistance = 75 * Rnd
 a.y = CInt(Sin(randAngle) * randDistance) + 256
 a.X = CInt(Cos(randAngle) * randDistance) + 256
End Sub
Public Sub TranslateRef(refcenter As VECTOR, a As POINTAPI)
 a.X = a.X + refcenter.X - 256
 a.y = a.y + refcenter.y - 256
End Sub

Public Sub Logdata(trial As Integer)
Dim time As Long
Dim curpos As POINTAPI
time = GetTickCount
GetCursorPos curpos

Write #filenum, time, trial, message, state, curpos.X, curpos.y, P1.X, P1.y,
P2.X, P2.y, P3.X, P3.y, P4.X, P4.y, Form1.Line1.X2, Form1.Line1.Y2, usercenter.X,
usercenter.y
message = ""
End Sub

 147

8.4 Simulation code: vectorlib.bas (Visual Basic)
Attribute VB_Name = "Module1"
Type VECTOR
 X As Double
 y As Double
End Type

Type VECTOR3
 X As Double
 y As Double
 z As Double
End Type

Public Function vectmag2(v1 As VECTOR) As Double
vectmag2 = Sqr((v1.X * v1.X) + (v1.y * v1.y))
End Function

Public Function vectmag3(v1 As VECTOR3) As Double
vectmag3 = Sqr((v1.X * v1.X) + (v1.y * v1.y) + (v1.z * v1.z))
End Function
'v1 and v2 must be normalized
Public Function vectdot2(v1 As VECTOR, v2 As VECTOR) As Double
vectdot2 = (v1.X * v2.X) + (v1.y * v2.y)
End Function
'v1 and v2 must be normalized
Public Function vectdot3(v1 As VECTOR3, v2 As VECTOR3) As Double
vectdot3 = (v1.X * v2.X) + (v1.y * v2.y) + (v1.z * v2.z)
End Function
'adds v1 and v2 and returns in v3
Public Sub vectadd2(v1 As VECTOR, v2 As VECTOR, v3 As VECTOR)
v3.X = v1.X + v2.X
v3.y = v1.y + v2.y
End Sub
'adds v1 and v2 and returns in v3
Public Sub vectadd3(v1 As VECTOR3, v2 As VECTOR3, v3 As VECTOR3)
v3.X = v1.X + v2.X
v3.y = v1.y + v2.y
v3.z = v1.z + v2.z
End Sub
'v1 - v2 = v3
Public Sub vectsub2(v1 As VECTOR, v2 As VECTOR, v3 As VECTOR)
v3.X = v1.X - v2.X
v3.y = v1.y - v2.y
End Sub
'v1 - v2 = v3
Public Sub vectsub3(v1 As VECTOR3, v2 As VECTOR3, v3 As VECTOR3)
v3.X = v1.X - v2.X
v3.y = v1.y - v2.y
v3.z = v1.z - v2.z
End Sub
'v1*c=v2
Public Sub vectmult2(v1 As VECTOR, c As Double, v2 As VECTOR)
v2.X = v1.X * c
v2.y = v1.y * c
End Sub
'v1*c=v2
Public Sub vectmult3(v1 As VECTOR3, c As Double, v2 As VECTOR3)

 148

v2.X = v1.X * c
v2.y = v1.y * c
v2.z = v1.z * c
End Sub
'v2 is normalized from v1
Public Sub vectunit2(v1 As VECTOR, v2 As VECTOR)
Dim magnitude As Double
magnitude = vectmag2(v1)
If magnitude = 0 Then 'GIGO keeps from divide by 0 if
 magnitude = 0.00001 ' vector = 0
End If
Call vectmult2(v1, (1 / magnitude), v2)
End Sub
'v2 is normalized from v1
Public Sub vectunit3(v1 As VECTOR3, v2 As VECTOR3)
Dim magnitude As Double
magnitude = vectmag3(v1)
If magnitude = 0 Then 'GIGO keeps from divide by 0 if
 magnitude = 0.00001 ' vector = 0
End If
vectmult3 v1, (1 / magnitude), v2
End Sub

Public Function Distance(v1 As VECTOR, v2 As VECTOR) As Double
Dim temp As VECTOR
temp.X = v1.X - v2.X
temp.y = v1.y - v2.y
Distance = vectmag2(temp)
End Function

 149

8.5 Simulation code: staticstuff.bas (Visual Basic)
Attribute VB_Name = "Module3"
Public Sub refreshbox()
 Form1.box1.Refresh
 Form1.box2.Refresh
End Sub

Public Sub refreshdial()
refreshcounter = refreshcounter + 1
If (refreshcounter Mod 5) = 0 Then
 Form1.Shape2.Refresh
End If
End Sub

Public Function DrawBez(P1 As POINTAPI, P2 As POINTAPI, P3 As POINTAPI, P4 As
POINTAPI, color As Single)
Dim co1 As Double
Dim co2 As Double
Dim co3 As Double
Dim co4 As Double
t = 0
prevpt.X = P1.X
prevpt.y = P1.y
Do
 t = t + 0.05
 co1 = (1 - t) * (1 - t) * (1 - t)
 co2 = (1 - t) * (1 - t) * 3 * t
 co3 = (1 - t) * 3 * t * t
 co4 = t * t * t
 currpt.X = CDbl(P1.X * co1 + P2.X * co2 + P3.X * co3 + P4.X * co4)
 currpt.y = P1.y * co1 + P2.y * co2 + P3.y * co3 + P4.y * co4
 Form1.Line (prevpt.X, prevpt.y)-(currpt.X, currpt.y), QBColor(color)
 prevpt.X = currpt.X
 prevpt.y = currpt.y
Loop While t < 1
End Function
Public Function getvector(start As POINTAPI, ending As POINTAPI, result As
VECTOR)
result.X = CDbl(ending.X - start.X)
result.y = CDbl(ending.y - start.y)
End Function

Public Sub setcolors()
If order(1) = 1 Then
 Form1.Line1.BorderColor = &HD0D0D0
ElseIf order(1) = 2 Then
 Form1.Line1.BorderColor = &H909090
Else
 Form1.Line1.BorderColor = &H0
End If

If order(2) = 1 Then
 Form1.Shape1(1).BorderColor = &HD0D0D0
 Form1.Shape1(1).FillColor = &HD0D0D0
 Form1.Shape1(2).BorderColor = &HD0D0D0
 Form1.Shape1(2).FillColor = &HD0D0D0
ElseIf order(2) = 2 Then

 150

 Form1.Shape1(1).BorderColor = &H808080
 Form1.Shape1(1).FillColor = &H808080
 Form1.Shape1(2).BorderColor = &H808080
 Form1.Shape1(2).FillColor = &H808080
Else
 Form1.Shape1(1).BorderColor = &H0
 Form1.Shape1(1).FillColor = &H0
 Form1.Shape1(2).BorderColor = &H0
 Form1.Shape1(2).FillColor = &H0
End If
If order(3) = 1 Then
 Form1.Shape3.BorderColor = &HD0D0D0
 Form1.Shape3.FillColor = &HD0D0D0
ElseIf order(3) = 2 Then
 Form1.Shape3.BorderColor = &H808080
 Form1.Shape3.FillColor = &H808080
Else
 Form1.Shape3.BorderColor = &H0
 Form1.Shape3.FillColor = &H0
End If

End Sub
Public Sub setorder()
Dim perm As Integer
perm = Int(6 * Rnd + 1)
If perm = 1 Then
 order(1) = 1
 order(2) = 2
 order(3) = 3
ElseIf perm = 2 Then
 order(1) = 1
 order(2) = 3
 order(3) = 2
ElseIf perm = 3 Then
 order(1) = 2
 order(2) = 1
 order(3) = 3
ElseIf perm = 4 Then
 order(1) = 2
 order(2) = 3
 order(3) = 1
ElseIf perm = 5 Then
 order(1) = 3
 order(2) = 1
 order(3) = 2
Else
 order(1) = 3
 order(2) = 2
 order(3) = 1
End If
state = 0
setcolors
End Sub

 151

8.6 Data Analysis Code: dataanal.cpp
/***
 * FILE: dataanal.cpp
 *
 * AUTHOR: Martin Dulberg, Angelina Talley
 *
 * DATE: 27-Nov-2001

 * Last Modified 18-Sep-2002
 *
 ***/

#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "dataanal.h"
void dodial(int & j, int size, int state);
void doposition(int & j, int size, int state);
void dopoints(int & j, int size, int state);
void doselection(int & start, int & end);
double compute_radians(int start, int end);
void do_selection(int &start_move, int &end_move, int end);
double VectMag (double v1[]);
double VectDot (double v1[], double v2[]);
double VectCos (double v1[], double v2[]);
void VectUnit (double v1[], double result[]);
int num_datapoints;

/**
 * Name: main
 *
 * Description:
 * main function of program - coordinates
 * reading in and processing
 *
 * Date: 27-Nov-2001
 **/
int main()
{
 datapoint curdatapoint;
 int trialnum = 0;
 int end_move = 0;

 /* prompt user for file names and open data
 and trial file streams */
 if (!prompt_openFiles())
 {
 return 0; //error could not open files
 }
 /* read in first data point */
 readDatapoint(curdatapoint);

 152

 //trim off first few lines where trial = 0
 while(curdatapoint.trial == 0)
 {
 readDatapoint(curdatapoint);
 }

 /* while we still have trials to complete, iterate through them */
 while(readTrial(curtrial, trialnum))
 {
 int start_move=0; //current datapoint
 int t = 0;

 num_datapoints = 0; //reset count of datapoints for this trial

 /* copy first datapoint into array manually */
 trial_datapoints[0] = curdatapoint; //CHANGED

 /* read in all datapoints for this trial */
 while(trialnum==readDatapoint(curdatapoint))
 {
 trial_datapoints[num_datapoints]= curdatapoint; //CHANGED
 num_datapoints++;
 }

 /* get the initial selection */
 int end_move = start_move;
 do_selection(start_move,end_move,num_datapoints);

 /* based on order user must go in, assume what we see in data is actually
 a certain type of action, and go look for it */
 for(int k=0;k<3;k++)
 {
 if(curtrial.o[k]==1)
 {
 dodial(end_move, num_datapoints, k+1); //check args and fix state
 }
 else if (curtrial.o[k]==2)
 {
 dopoints(end_move, num_datapoints, k+1); //must fix, curently
hardcoded
 }
 else if (curtrial.o[k]==3)
 {
 doposition(end_move, num_datapoints, k+1); //must fix, curently
hardcoded
 }
 else
 {
 //cout << "error k=" << k<< '\t'<<curtrial.o[k]<<endl;
 }
 if (end_move >= (num_datapoints-1) && k < 2)
 {
 /* watch for us hitting end without getting to all three tasks */
 //cout << "TIMEOUT detected before completing all tasks! Last state:
" << k << endl;
 break;
 }
 }
 //cout << "\nEND - trial " << trialnum <<endl;

 153

 }//while there is another trial
 return 0;
}

/**
 * Name: dodial
 *
 * Description:
 * process movement of the dial
 *
 * Date: 27-Nov-2001
 **/
void dodial(int & i, int size, int state)
{
 int j=0;
 int end=i;
 int count=0;
 int front=0;
 bool error = false;
 point dial_start_pos;
 int start = 0;
 int ED_loc = -1; // save location of last ED we find before end

 while(state==trial_datapoints[end].state && end<size-1)
 {
 end++; // find the end of this part of the trial
 }
 do
 {
 /* find start of dial */
 while(strcmp(trial_datapoints[i].message,"SD")!=0 && i<end)
 {
 i++;
 }

 dial_start_pos = trial_datapoints[i].l2;
 start = i;
 i+=1; // move to point past SD

 /* find last ED of this round on the dial */
 while (i < end && strcmp(trial_datapoints[i].message,"SD")!=0)
 {
 while(strcmp(trial_datapoints[i].message,"ED")!=0 && i<end)
 {
 if (trial_datapoints[i].message[0]=='X')
 {
 cout << "ERROR IN DIAL" << endl;
 error = true;
 break;
 }
 i++;
 }

 if(i>start+1 && strcmp(trial_datapoints[i].message,"ED")==0)
 {
 ED_loc = i;
 i++; // now that we've marked ED, keep moving to end of this round

 154

 // if we don't have an error, this is the ED we're looking for -
abort
 if (!error)
 {
 break;
 }
 }
 }

 if (!error && ED_loc != -1)
 {
 cout << "dialmove \t" << compute_radians(start,ED_loc-1)
 << '\t' << trial_datapoints[start].time << '\t'
 <<trial_datapoints[ED_loc].time <<endl;
 }
 else
 {
 // reset the error variable
 error = false;
 }

 /* If ED_loc is == -1 or if it as the end, don't do selection here - go
 back out to main loop and start over */
 if (ED_loc == -1)
 {
 //cout << "TIMEOUT in dial" << endl;
 break;
 }
 else if (ED_loc == end)
 {
 break;
 }

 //i is at start, j is at end of selection
 i=ED_loc+1;
 j=i+1;

 /* find the next selection */
 do_selection(i,j,end);

 i = j; // set i to the start of the next trial

 } while(i<end);
}

/**
 * Name: doposition
 *
 * Description:
 * process drag of curve into position
 *
 * Date: 27-Nov-2001
 **/
void doposition(int & i, int size, int state)
{
 int j=0;
 int end=i;
 int count=0;
 int front=0;

 155

 bool error = false;
 int start = 0;
 int ED_loc = -1; // save location of last ED we find before end

 while(state==trial_datapoints[end].state && end<size-1)
 {
 end++; // find the end of this part of the trial
 }
 do
 {
 /* find start of position */
 while(strcmp(trial_datapoints[i].message,"SM")!=0 && i<end)
 {
 i++;
 }

 start = i;
 i+=1; // move to point past SM
 /* find last ED of this round on the dial */
 while (i < end && strcmp(trial_datapoints[i].message,"SM")!=0)
 {
 while(strcmp(trial_datapoints[i].message,"ED")!=0 && i<end)
 {
 if (trial_datapoints[i].message[0]=='X')
 {
 cout << "ERROR IN POSITION" << endl;
 error = true;
 break;
 }
 i++;
 }

 if(i>start+1 && strcmp(trial_datapoints[i].message,"ED")==0)
 {
 ED_loc = i;
 i++; // now that we've marked ED, keep moving to end of this round
 // if we don't have an error, this is the ED we're looking for -
abort
 if (!error)
 {
 break;
 }
 }
 }

 if (!error && ED_loc != -1)
 {
 cout << "position\t"
<<distance(trial_datapoints[start].cur,trial_datapoints[ED_loc].cur)<< '\t'
 << trial_datapoints[start].time << '\t'
<<trial_datapoints[ED_loc].time <<endl;
 }
 else
 {
 // reset the error variable
 error = false;
 }

 /* If ED_loc is == -1 or if it as the end, don't do selection here - go

 156

 back out to main loop and start over */
 if (ED_loc == -1)
 {
 //cout << "TIMEOUT in position" << endl;
 break;
 }
 else if (ED_loc == end)
 {
 break;
 }

 //i is at start, j is at end of selection
 i=ED_loc+1;
 j=i+1;

 /* find the next selection */
 do_selection(i,j,end);

 i = j; // set i to the start of the next trial

 } while(i<end);
}

/**
 * Name: dopoints
 *
 * Description:
 * process moving control points to boxes
 *
 * Date: 27-Nov-2001
 **/
void dopoints(int & i, int size, int state)
{
 int j=0;
 int end=i;
 int count=0;
 int front=0;
 bool error = false;
 int start = 0;
 int ED_loc = -1; // save location of last ED we find before end

 while(state==trial_datapoints[end].state && end<size-1)
 {
 end++; // find the end of this part of the trial
 }
 do
 {
 /* find start of first point */
 while((strcmp(trial_datapoints[i].message,"S1")!=0 &&
 strcmp(trial_datapoints[i].message,"S2")!=0) &&
 i<end)
 {
 i++;
 }

 start = i;
 i+=1; // move to point past S1/S2
 /* find last ED of this point's move */
 while (i < end && strcmp(trial_datapoints[i].message,"S1")!=0

 157

 && strcmp(trial_datapoints[i].message,"S2")!=0)
 {
 while(strcmp(trial_datapoints[i].message,"ED")!=0 && i<end)
 {
 /* if hit second point, stop */
 if (strcmp(trial_datapoints[i].message,"S1")==0 ||
 strcmp(trial_datapoints[i].message,"S2")==0)
 {
 break;
 }
 if (trial_datapoints[i].message[0]=='X')
 {
 cout << "ERROR IN POINTMOVE" << endl;
 error = true;
 break;
 }
 i++;
 }

 if(i>start+1 && strcmp(trial_datapoints[i].message,"ED")==0)
 {
 ED_loc = i;
 i++; // now that we've marked ED, keep moving to end of this round
 // if we don't have an error, this is the ED we're looking for -
abort
 if (!error)
 {
 break;
 }
 }
 }

 if (!error && ED_loc != -1)
 {
 cout << "pointmove\t"
<<distance(trial_datapoints[start].cur,trial_datapoints[ED_loc].cur)<< '\t'
 << trial_datapoints[start].time << '\t'
<<trial_datapoints[ED_loc].time <<endl;

 }
 else
 {
 // reset the error variable
 error = false;
 }

 /* If ED_loc is == -1 or if it as the end, don't do selection here - go
 back out to main loop and start over */
 if (ED_loc == -1)
 {
 //cout << "TIMEOUT in pointmove" << endl;
 break;
 }
 else if (ED_loc == end)
 {
 break;
 }

 //i is at start, j is at end of selection

 158

 i=ED_loc+1;
 j=i+1;
 ED_loc=-1; //re-initialize ED_loc, since we'll need it again

 /* find the next selection */
 do_selection(i,j,end);

 i = j; // set i to the start of the next trial

 } while(i<end);
}

/**
 * Name: computeRadians
 *
 * Description:
 * compute angular distance moved for dial
 * NOTE: Start and end are exact indecies
 * of start and end points.
 *
 * Date: 05-Dec-2001
 **/
double compute_radians(int data_start, int data_end)
{
/* create vector for l2-l1 at start and end of
 each move. Sum up the radians */
 int i = 0;
 double radians = 0;
 double cosine = 0;
 double vec1[2];
 double vec2[2];

 for (i = data_start; i < data_end-1; i++)
 {
 /* get vectors for the line made from these points */
 vec1[0] = trial_datapoints[i].l2.x-curtrial.l1.x;
 vec1[1] = trial_datapoints[i].l2.y-curtrial.l1.y;
 vec2[0] = trial_datapoints[i+1].l2.x-curtrial.l1.x;
 vec2[1] = trial_datapoints[i+1].l2.y-curtrial.l1.y;

 /* if vectors are not equal, we had movement */
 if ((vec1[0] != vec2[0]) ||
 (vec1[1] != vec2[1]))
 {
 cosine = VectCos(vec1,vec2);
 // cosine = ((vec1[0]*vec2[0])+(vec1[1]*vec2[1]))/
 //
(sqrt(pow(vec1[0],2)*pow(vec1[1],2))*sqrt(pow(vec2[0],2)*pow(vec2[1],2)));
 radians += acos(cosine);
 }

 }
 return radians;
}

/**
 * Name: do_selection
 *
 * Description:

 159

 * compute next selection
 *
 * Date: 28-Nov-2001
 **/
void do_selection(int &start_move, int &end_move, int end)
{
 int state = trial_datapoints[end_move].state;
 int ED_loc = -1;
 bool error = false;
 int true_start = 0;

 //throw away movement until have minimum 3 pixels
 while(trial_datapoints[start_move].state == trial_datapoints[end_move].state
&&
 distance(trial_datapoints[start_move].cur,
trial_datapoints[end_move].cur) < 3
 && end_move < end)
 {
 /* watch for ED - throw out this selection if
 don't move 3 pixels. Probably just mouse jitter
 */
 if (trial_datapoints[end_move].message[0] == 'E')
 {
 ED_loc = end_move;
 error = true; // by setting error here, we can
 // still use loop below to find our
 // way to start of next task
 break;
 }
 /* we'll handle error once we start the loop below */
 else if (trial_datapoints[end_move].message[0] == 'X')
 {

 error = true;
 break;
 }
 end_move++;
 }
 /* if broke because distance < 3 and have no error, we have a timeout */
 if (distance(trial_datapoints[start_move].cur,
trial_datapoints[end_move].cur) < 3
 && error == false)
 {
 //cout << "TIMEOUT in selection" << endl;
 return;
 }

 start_move=end_move;

 /* see how far we moved in initial selection before we start first task*/
 while(trial_datapoints[end_move].state == state &&
 end_move < end)
 {
 if (strcmp(trial_datapoints[end_move].message,"X") == 0)
 {
 /* go ahead and move forward to next slot inside error section */
 cout << "ERROR IN SELECTION" << endl;
 end_move++;
 /* move forward spot last ED and start selection over */

 160

 while (trial_datapoints[end_move].state == state &&
 end_move < end)
 {
 if (strcmp(trial_datapoints[end_move].message,"ED")==0)
 {
 ED_loc = end_move;
 end_move+=1; // move to spot after ED
 start_move=end_move;
 }
 /* we've hit another error, report it and go back up to
 the if to handle this new one
 */
 else
 {
 if (strcmp(trial_datapoints[end_move].message,"X") == 0)
 {
 break;
 }
 end_move++;
 }
 }
 }
 else if (trial_datapoints[end_move].message[0]=='S')
 {
 break;
 }
 else
 {
 end_move++;
 }
 }
 /* we get here, we know our valid start point (either start or just after
 the last ED. If was after an ED, check for three pixels movement to get
 true start point and watch for a timeout */
 if (ED_loc >= 0)
 {
 true_start = start_move;
 while(trial_datapoints[start_move].state ==
trial_datapoints[true_start].state &&
 distance(trial_datapoints[start_move].cur,
trial_datapoints[true_start].cur) < 3)
 {
 true_start++;
 }
 start_move = true_start;
 if (true_start == end)
 {
 //cout << "TIMEOUT in selection" << endl;
 return;
 }
 }
 /* if selection timing out is TIMEOUT, uncomment this code */
 else if (ED_loc == -1 && end_move == num_datapoints-1)
 {
 //cout << TIMEOUT in selection" << endl;
 return;
 }

 161

cout<<"Selection\t"<<distance(trial_datapoints[start_move].cur,trial_datapoints[e
nd_move-1].cur) <<'\t'<< trial_datapoints[start_move].time<<'\t'
<< trial_datapoints[end_move-1].time <<endl;

}

#define VectAdd(a,b,c) {c[0]=a[0]+b[0];c[1]=a[1]+b[1];c[2]=a[2]+b[2];}
#define VectMult(a,b,c) {c[0]=a[0]*b;c[1]=a[1]*b;}
double VectMag (double v1[])
{
 double result;
 result=(pow(v1[0],2))+(pow(v1[1],2));
 result=sqrt(result);
 return result;
}

double VectDot (double v1[], double v2[])
{
 double result;
 result=(v1[0]*v2[0])+(v1[1]*v2[1]);
 return result;
}
double VectCos (double v1[], double v2[])
{
 double norm1[2], norm2[2], dot;
 VectUnit(v1,norm1);
 VectUnit(v2,norm2);
 dot=VectDot(norm1,norm2);
 return dot;
}

void VectUnit (double v1[], double result[])
{
 double magnitude;
 magnitude=VectMag(v1);
 VectMult(v1,(1/magnitude),result);
}

 162

8.7 Data Analysis Code: dataanal.h
/***
 * FILE: dataanal.h
 *
 * AUTHOR: Martin Dulberg, Angelina Talley
 *
 * DATE: 27-Nov-2001
 *
 ***/

/**
 * Name: point
 *
 * Description:
 * a simple x and y coordinate
 *
 * Date: 27-Nov-2001
 **/
struct point
{
 unsigned short x;
 unsigned short y;
};

/**
 * Name: datapoint
 *
 * Description:
 * data point
 *
 * Date: 27-Nov-2001
 **/
struct datapoint
{
 unsigned long time;
 short trial;
 char message[10];
 short state;
 point cur;
 point p1; point p2; point p3; point p4;
 point l2;
 point uc;
};

/**
 * Name: trials
 *
 * Description:
 * hold information about a trial,
 * including number and setup values
 *
 * Date: 27-Nov-2001
 **/
struct trials
{
 int trialnum;
 point r1; point r2; point r3; point r4;

 163

 point p1; point p2; point p3; point p4;
 point l1; point l2; point ref;
 short o[3];
};

/*
 global variables to hold input streams
 from files
*/
ifstream trial_stream;
ifstream data_stream;

//global array to handle 1 trials worth of info
datapoint trial_datapoints[1500];
trials curtrial;

/**
 * Name: distance
 *
 * Description:
 * simple function to compute distance
 *
 * Date: 27-Nov-2001
 **/
double distance(point start, point end)
{
 double tempx=(double)abs((start.x-end.x));
 double tempy=(double)abs((start.y-end.y));
 return sqrt(tempx*tempx + tempy*tempy);
}

/**
 * Name: readTrial
 *
 * Description:
 * simple function to output one trial
 *
 * Date: 27-Nov-2001
 **/
bool readTrial(trials& c, int& trialnum)
{
 char t;
 /* read trial number */
 if(trial_stream >> c.trialnum)
 {
 /* read in comma, x coord, comma, y coord, etc. */
 trial_stream >> t >> c.r1.x>> t >> c.r1.y >> t >> c.r2.x >> t >> c.r2.y
 >> t >> c.r3.x >> t >> c.r3.y >> t >> c.r4.x
 >> t >> c.r4.y >> t >> c.p1.x >> t >> c.p1.y
 >> t >> c.p2.x >> t >> c.p2.y >> t >> c.p3.x
 >> t >> c.p3.y >> t >> c.p4.x >> t >> c.p4.y
 >> t >> c.l1.x >> t >> c.l1.y >> t >> c.l2.x
 >> t >> c.l2.y >> t >> c.ref.x >> t >> c.ref.y
 >> t >> c.o[0] >> t >> c.o[1] >> t >> c.o[2]; // last three
things
 // read are the order parts
 // should be completed in
 trialnum++;

 164

 if (trial_stream.eof())
 {
 trial_stream.close();
 }

 return true;
 }
 return false;
}

/**
 * Name: prompt_openFiles
 *
 * Description:
 * simple function to prompt for trial
 * and data input file names and open them
 * for later reading
 *
 * Date: 27-Nov-2001
 **/
bool prompt_openFiles(void)
{
 char filename[20];
 //cerr << "Enter Trial File Name: ";
 //cin >> filename;
 strcpy(filename,"trials.txt");
 trial_stream.open(filename);
 if(!trial_stream){
 cerr << "Error in Trial File Name" << endl;
 return false;
 }
 //cerr << "Enter Data File Name: ";
 //cin >> filename;
 strcpy(filename, "test.txt");
 data_stream.open(filename);
 if(!data_stream)
 {
 cerr << "Error in Data File Name" << endl;
 return false;
 }
 return true;
}

/**
 * Name: readDatapoint
 *
 * Description:
 * Read in the next data point from the
 * data file.
 * Returns the current trial number which
 * can be used to check to see if you have
 * moved to the next trial.
 * Returns 0 if no more data
 *
 * Date: 27-Nov-2001
 **/
int readDatapoint(datapoint& d)
{

 165

 char t;
 int i=0;

 /* first read in time, continue
 if not zero */
 if (!data_stream || !data_stream.is_open() || data_stream.eof())
 {
 return 0;
 }
 if(data_stream >>d.time)
 {
 /* read in comma, trial #, comma, "" */
 data_stream >> t >> d.trial >> t >> t;
 do
 {
 /* read in message, if any, about what user's doing */
 data_stream >> t;
 d.message[i]=t;
 i++;
 /* stop when hit next " */
 } while(t != '\"');
 /* null terminate the message */
 d.message[i-1]='\0';

 /* read in comma, then state, comma, x, comma, y, etc. */
 data_stream >> t >> d.state >> t >> d.cur.x >> t >> d.cur.y
 >> t >> d.p1.x >> t >> d.p1.y >> t >> d.p2.x
 >> t >> d.p2.y >> t >> d.p3.x >> t >> d.p3.y
 >> t >> d.p4.x >> t >> d.p4.y >> t >> d.l2.x
 >> t >> d.l2.y >> t >> d.uc.x >> t >>d.uc.y;
 if (data_stream.eof() || data_stream.peek() == EOF)
 {
 data_stream.close();
 }
 return d.trial;
 }
 return 0; //error condition no more records
}

 166

8.8 Data Analysis Code: transitions.cpp
#include <iostream>
#include <fstream>
#include <cstring>
using namespace std;

int main(){
char name[50];
char name2[50];
char trash[80];
float junk;
long int start[2];
long int end[2];
cout << "Enter File name : ";
cin >> name;
//cout <<"got to 1\n";
ifstream in(name);
cout <<"got to 2\n";

if(!in){
 cout << "ERROR" << endl;
 return 0;
}
in >> name;

in >>junk>>start[0] >> end[0];
in.getline(trash,80,'\n');

while(in>>name2){//cout << "here too";
 cout << name << ' '<<name2;
 if (name2[0]=='E'){
 cout << endl;
 }
 else if (name[0]=='E'){
 cout << endl;
 in >>junk>>start[1] >> end[1];
 }

 else{
 in >>junk>>start[1] >> end[1];
 cout <<'\t'<< start[1]-end[0]<<endl;
 }
 in.getline(trash,80, '\n');
 strcpy(name,name2);
 start[0]=start[1];
 end[0]=end[1];
 }

return 0;

}

 167

8.9 Data Analysis Code: trialanalysis.cpp
/***
 * FILE: trialanalysis.cpp
 *
 * AUTHOR: Martin Dulberg
 * Based on code from dataanal.cpp with Angelina Talley
 *
 * DATE: 18-Nov-2002
 * Last Modified
 *
 ***/
#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "trialanalysis.h" //same as dataanal.h
double compute_radians(int end);
int num_datapoints;
double computeinteriordist(int data_end);

/**
 * Name: main
 *
 * Description:
 * main function of program - coordinates
 * reading in and processing
 *
 * Date: 27-Nov-2001
 **/
int main()
{
 datapoint curdatapoint;
 int trialnum = 0;
 int end_move = 0;

 if (!prompt_openFiles())
 return 0; //error could not open files
 cout << "Order,Time,Center,Angle,Points,Selection,Position,Orientation"<<endl;
 readDatapoint(curdatapoint);// read in first data point
 while(curdatapoint.trial == 0)//trim off first few lines where trial = 0
 readDatapoint(curdatapoint);
 while(readTrial(curtrial, trialnum))
 {
 int start_move=0; //current datapoint
 int t = 0;
 num_datapoints = 0; //reset count of datapoints for this trial
 trial_datapoints[0] = curdatapoint;
 while(trialnum==readDatapoint(curdatapoint)){
 trial_datapoints[num_datapoints]= curdatapoint; //CHANGED
 num_datapoints++;
 }
//Process Trial
//correct bug in vb software logs 3-1-2 as 2-3-1 and vice versa
 if (curtrial.o[0]==3 && curtrial.o[1]== 1 && curtrial.o[2]== 2){

 168

 curtrial.o[0]=2;curtrial.o[1]=3; curtrial.o[2]=1;}
 else if (curtrial.o[0]==2 && curtrial.o[1]== 3 && curtrial.o[2]== 1){
 curtrial.o[0]=3;curtrial.o[1]=1; curtrial.o[2]=2;}

//output ordering as single integer
 cout << curtrial.o[0]*100+curtrial.o[1]*10+curtrial.o[2]<<',';
//figure out where end of user movement in trial was.
 int i=num_datapoints-1;
 while(strcmp(trial_datapoints[i].message,"")==0)
 i--;
 int elapsed=trial_datapoints[i].time-trial_datapoints[0].time;
 if (elapsed>30000)
 elapsed=30000;
 cout << elapsed <<',';
//error for center positioning
 point temp = trial_datapoints[i].uc;
 temp.x-=512; //translate to reference
 float centerdist=distance(curtrial.ref, temp);
 cout << centerdist<<',';

 double angle=compute_radians(i);
 cout << angle << ',';

//figure out which user points distance is shorter
//don't want to take into account displacement of entire curve)

 double pointdist=computeinteriordist(i);
 cout <<pointdist<<',';

//compute errors for trial
int selection=0, orientation=0, position=0;
 while(i>0){
 while(i>0 && trial_datapoints[i].message[0]!='X')
 i--;
 if(i--){
 while(i>0 && trial_datapoints[i].message[0]!='\0')
 i--;
 if(strcmp(trial_datapoints[i].message, "SD")==0)
 orientation++;
 else if(trial_datapoints[i].message[0]=='S')
 position++;
 else
 selection++;
 }//end if i--
 } //while i>0
 cout << selection<<','<<position<<','<<orientation<<endl;

 }//while there is another trial
 return 0;
}

/**
 * Name: computeRadians
 *
 * Description:
 * compute angular distance moved for dial
 * NOTE: Start and end are exact indecies
 * of start and end points.

 169

 *
 * Date: 05-Dec-2001
 **/
double compute_radians(int data_end)
{
/* create vector for l2-l1 at start and end of
 each move. Sum up the radians */
 int i = 0;
 double radians = 0;
 double radians2 = 0;

 double cosine = 0;
 double vec1[2];
 double vec2[2];

 /* get vectors for the line made from these points */
 vec1[0]= trial_datapoints[data_end].p1.x-trial_datapoints[data_end].p4.x;
 vec1[1]= trial_datapoints[data_end].p1.y-trial_datapoints[data_end].p4.y;
 vec2[0] = curtrial.r1.x-curtrial.r4.x;
 vec2[1] = curtrial.r1.x-curtrial.r4.x;
 cosine = VectCos(vec1,vec2);
 radians = acos(cosine);
 //now try the other way
 vec1[0]= trial_datapoints[data_end].p4.x-trial_datapoints[data_end].p1.x;
 vec1[1]= trial_datapoints[data_end].p4.y-trial_datapoints[data_end].p1.y;
 cosine = VectCos(vec1,vec2);
 radians2 = acos(cosine);
 if (radians2<radians)
 radians=radians2;
 return radians; //return smallest
}

double computeinteriordist(int data_end){
point u2, u3, translation;
double dist1=0, dist2=0;
translation.x=trial_datapoints[data_end].uc.x-curtrial.ref.x;
translation.y=trial_datapoints[data_end].uc.y-curtrial.ref.y;

u2=trial_datapoints[data_end].p2;
u3=trial_datapoints[data_end].p3;
u2.x-=translation.x;
u2.y-=translation.y;
u3.x-=translation.x;
u3.y-=translation.y;
dist1=distance(u2,curtrial.r2)+distance(u3,curtrial.r3);
dist2=distance(u3,curtrial.r2)+distance(u2,curtrial.r3);
if (dist2<dist1)
 dist1=dist2;
return dist1;
}

