
Abstract

OSBORNE, JASON, MATTHEW. On Geometric Control Design for Holonomic
and Nonholonomic Mechanical Systems. (Under the direction of Dr. Dmitry Zenkov.)

Geometric mechanics as a field of study does not hesitate to draw upon foun-

dational geometry for formulation, re-formulation and inspiration. Herein, we take

geometry to mean not only Riemannian and differential geometry but also fibre bun-

dle theory. Broadly and simply stated, an overarching and unifying theme for this

document is that:

Viewing mechanical systems through a geometric lens opens up an ex-

tensive set of tools that can be brought to bear upon energy, mass, and

system–conscious control design for constrained mechanical systems.

To demonstrate this thesis we consider the dynamics and control for several mechan-

ical systems.

The moving mass Chaplygin sleigh, a rigid platform and moving mass system

with attached blade imposing nonholonomic or velocity constraints, when viewed

through a geometric lens presents a nontrivial momentum equation. Analysis of this

momentum equation reveals natural (uncontrolled) motions of the sleigh system that

play a central role in our control design to steer the sleigh to any point in the plane

using a moving mass. The details for this control problem can be found in Chapter 2.

In Chapter 3 we develop a geodesic–based proportional–derivative (PD) control

logic for tracking on a class of Riemannian manifolds. As a specific application of this

general control logic, we consider the double gimbal system (envision a telescope), a

mechanical system comprised of a base, an outer gimbal attached to the base through



a revolute joint, and an inner gimbal also attached to the outer gimbal through a

revolute joint. A Riemannian structure for the double gimbal system is derived from

its kinetic energy tensor which is itself constructed from the gimbal mass properties.

At this point, the double gimbal system is now in the control domain of our geodesic–

based PD control logic. The free and minimal energy motions of the double gimbal

(or the double gimbal geodesics) are the natural tendencies of the double gimbal

system that take into account its mass distribution. Since double gimbal geodesics

are central to our PD control design, we work with, rather than against, the gimbals

natural tendencies.

The foundational geometries most often chosen to begin modeling mechanical sys-

tems are the tangent and cotangent bundles to a configuration manifold Q, denoted

TQ and T ⋆Q respectively. That both T ⋆Q and TQ are associated bundles to the

frame bundle (the bundle of linear frames) of a configuration manifold Q, denoted

LQ seems to, at least initially, indicate that it is also a natural geometric model of

mechanical systems. That the frame bundle is also an appropriate geometric model

within which to begin the study of mechanical systems is strengthened upon realizing

that LQ carries with it a generalized symplectic (Hamiltonian) structure. In this

generalized setting, kinetic energy dynamics are formulated on the frame bundle of

a mechanical systems configuration manifold. By adapting the frame bundle dynam-

ics to the constraint distribution (that is, by appropriate choice of moving frame),

a portion of the (constrained) generalized momenta dynamics are an n-symplectic

version of the nonholonomic momentum equation, see Chapter 4. These general dy-

namics have been carried out for the simple examples of the vertical rolling hoop and

a nonholonomic constrained particle. Since the n-symplectic theory allows for the

introduction of potentials which appear at the generalized momenta level, prelimi-

nary work along the n-symplectic line of thought indicates the possiblity of potential

shaping and momenta based control design for nonholonomic mechanical systems.
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strained by ż = yẋ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

I.3 The particles motion towards negative infinity can be arrested and we

can return the particle to its starting position. The necessary input

data is Cx = −0.1, Cy = −0.1, Cz = 0, xref = yref = zref = 0, IC:

[x0, y0, z0, ẋ0, ẏ0] = [0, 0, 0, 1,−1]. . . . . . . . . . . . . . . . . . . . . . 220

I.4 The particles motion towards negative infinity can be arrested and we

can redirect the particle in a “perpendicular” and “elevated” direction.

The necessary input data is Cx = 0, Cy = −1, Cz = 0, xref = yref =

zref = 0 (left), xref = yref = zref = 0.1t (right), IC: [x0, y0, z0, ẋ0, ẏ0] =
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Chapter 1

Introduction

1.1 Selective Historical Excerpts

A relatively brief venture into the history of late nineteenth and early twentieth

century mathematics, specifically the development of Lie groups [17], brought clearly

and to the forefront of my attention that many great mathematicians were inspired

by the advances in the physics of their time. Indeed, Hermann Weyl wrote (1949,

[17, pg. 421])

For myself I can say that the wish to understand what really is the math-

ematical substance behind the formal apparatus of relativity theory led

me to the study of representations and invariants of groups...

where (general) relativity theory is the theory of gravitation developed by Albert

Einstein in 1916. According to ([17, pg. 423]) and the references cited therein, Ein-

stein began the 1916 paper by acknowledging a debt to the mathematician Hermann

Minkowski:

The generalization of the relativity theory was facilitated through the

form that Minkowski had given to the special relativity theory. He was

the first mathematician to clearly perceive the formal equivalence of the

1
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space and time coordinates; this made possible the construction of the

[general] theory.

The form of special relativity theory, as mentioned above by Einstein, with roots

in James Clerk Maxwell’s electromagnetic theory of light, is based upon the equal

treatment of both space and time. In Minkowski’s own words (1907, [17, pg. 339])

Out of the electromagnetic theory of light there recently seems to have

come a complete transformation of our representations of space and time

which must be of exceptional interest to the mathematician. The mathe-

matician is also especially well prepared to pick up the new views because

it is a question of acclimatization to conceptual schemes with which he

has long been familiar. The physicist meanwhile must rediscover these

concepts and must painfully cut way through a primeval forest of obscu-

rities.

Embedded in the above quote is the call for mathematicians to look to physics for

interesting problems that they are, by their training, well equipped to solve. The

necessity of such a statement and why Minkowski would jestingly need to apologize

in a letter to David Hilbert for being

. . . thoroughly infected with physics . . .

gains meaning through an understanding of the mathematical atmosphere of the late

19th century. As stated by the author in ([17, pg. 334]):

. . . by 1890 mathematics had been professionalized to the point where

university mathematicians rarely ventured outside the ever expanding do-

main of pure mathematics. By then, most mathematicians were no longer

active participants in the science of their day as Euler, Lagrange and

Gauss had been in their time—Poincare’ being a notable exception to the

general trend.
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That Newtonian (foundational) mechanics was the science of the time for Euler and

Lagrange no doubt influenced Hilbert’s feelings that it would be

very desirable that the discussion of the foundations of mechanics be taken

up by mathematicians also. (1900, [17, pg. 334])

Given the advice of this great mathematician, one can feel the sense of bewilderment

in the anonymous quote from the preface of [24] published in 1992!

Many of the greatest mathematicians—Euler, Gauss, Lagrange, Riemann,

Poincare’, Hilbert, Birkoff, Atiyah, Arnold, Smale— were will versed in

mechanics and many of the greatest advances in mathematics use ideas

from mechanics in a fundamental way. Why is it no longer taught as a

basic subject to mathematicians?

On a personal note, it has been my experience that the clear take home message

from those historically minded individuals to those not-so historically interested is

ubiquitously “learn your history so you are not doomed to repeat it”. Regarding the

mathematical study of mechanics, I have at least begun to learn my history for the

following document reflects my efforts in the study of geometric mechanics.

In the next section we summarize more recent literature which play a central role

to our contributions in geometric mechanics, specifically control design of holonomic

and nonholonomic mechanical systems.

1.2 Literature Background and Statement of Con-

tributions

This document largely addresses geometric control design for holonomic and non-

holonomic mechanical systems and is centrally based upon the following foundational

framework:

A: Symmetry reduction of Lagrangian mechanical systems with nonholonomic con-

straints as developed in BKMM [3],
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B: PD (proportional and derivative) feedback control on manifolds as introduced

in Bullo et. al. [9] and further developed in Bullo [6],

C: n-Symplectic geometry (generalized cotangent bundle geometry) and n-symplectic

dynamics (generalized Hamiltonian dynamics) as developed in [28].

A zeroth order statement of this documents contributions are as follows:

A’: We show that the Chaplygin sleigh, a rigid platform with attached blade (im-

posing nonholonomic constraints, see Figure 1.1) can be steered using a moving

mass, see Chapter 2 and Osborne and Zenkov [31]. The dynamics of the sleigh

are a special case of those derived in [3].

B’: Using geometric constructs (geodesic distance and parallel transport), we spe-

cialize the PD control theorem of [6] to a class of Riemannian manifolds, see

Chapter 3 and Fuentes, Hicks and Osborne [14] and [15]. We specifically apply

our controller to the double gimbal system, a coupled system of rigid bodies

(see Figure 1.1).

C’: As an alternative to the tangent bundle (Lagrangian) and cotangent bundle

(Hamiltonian or symplectic) formulations of mechanics, we demonstrate the

frame bundle (n-symplectic/moving frame) approach to nonholonomic mechan-

ical systems with symmetry. An n-symplectic equivalent of the nonholonomic

momentum equation of [3] is obtained and the feasibility of momenta based

control design is established.

The above foundational works are summarized in the following subsections for their

contributions to the big picture in order that a more detailed statement of contribu-

tions may be given. Details of the foundational works will be given in the following

chapters and in corresponding appendices.
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Figure 1.1: Chaplygin Sleigh and Double Gimbal System

1.2.1 Short Summary of BKMM [3]

The dynamics of nonholonomic mechanical systems with symmetry are obtained in

[3] using a constrained form of the Lagrange–d’Alembert principle, i.e. where both

velocities and the variations are constrained. Utilizing also Lagrangian reduction

techniques the constrained, reduced dynamics become the so called (nonholonomic)

momentum equation which can be expressed as

ṗ = 〈α(r)p, p〉 + 〈β(r)p, ṙ〉 + 〈γ(r)ṙ, ṙ〉 (1.1)

and the shape equation which can be expressed as

r̈ = f(r, ṙ, p). (1.2)

The shape equation is of Euler-Lagrange type on the reduced space with extra forc-

ing terms. Together with the reconstruction equation or group dynamics equation

expressed as

ġ = g(J(r)p − A(r)ṙ), (1.3)

these three equations are the full system of equations for nonholonomic mechanical

systems with symmetry. See [3] for a derivation and the coordinate form of these

dynamics or [16] for a coordinate free (bundle and connection oriented) approach.

An important feature of the dynamics in the above form is that while the shape
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and momentum dynamics are coupled, they are both decoupled from the group dy-

namics. The momentum equation characterizes a major difference between holonomic

and nonholonomic systems. According to Noether’s theorem, for a holonomic system

with symmetry, the spatial components of momentum are conserved. On the con-

trary, for nonholonomic systems the momenta are, in general, dynamic variables with

dynamics governed by a nontrivial momentum equation. The nonholonomic momen-

tum equation and its lack of conservation are shown to be important in control,

motion generation, and stability analysis of nonholonomic systems (see Bloch et al.

[3], Zenkov et al. [41], and references therein).

That the nonholonomic momenta are not, in general, conserved and that the

nonholonomic momenta dynamics are coupled to the shape dynamics allows us to

restate our first contribution more precisely:

Contribution A’ restated: We design a steering control algorithm for the

Chaplygin sleigh using a moving mass. The key to the design lies in certain

control primitives that are discovered from an analysis of the momentum

equation (2.2) for particular fixed placements of the mass. Assuming

fully actuated control over the moving mass (the shape of the system)

and utilizing the coupling between shape dynamics and nonholonomic

momentum equation we are able to asymptotically steer the sleigh to any

desired direction of motion and to any point in the plane.

The details of this contribution along with further supporting references are given in

Chapter 2. The research for this chapter was supported by NSF grant DMS-0306017

and was conducted under the guidance of Dr. Dmitry Zenkov. Much of this chapter

originally appeared in [31].
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1.2.2 Short Summary of Bullo et. al. [9] and Bullo and

Murray [6]

By way of two simple and yet illustrative examples we can gain a partial footing into

the PD control results of Bullo and thusly to our specialized geometric PD control

result.

Simply stated, to render the dynamics of a system in PD (proportional plus deriva-

tive) form is to add control forces to the systems free dynamics for which the controlled

dynamics take the form of a damped, linear spring. For a point particle of mass m

moving in 1D, the free/uncontrolled dynamics are mq̈ = 0. Introduction of the control

forces 1) the negative gradient of a positive definite quadratic potential 1
2
kq2 about

q = 0; the proportional control forces and 2) the damping constant times the velocity

cq̇; the derivative control forces renders the free point particle dynamics of the form

mq̈ + cq̇ + kq = 0. Adjusting or tuning the control parameters k, c, one can make the

particles position asymptotically approach q = 0 with zero velocity q̇ = 0.

Extending the 1D damped spring example to mechanical systems with configura-

tion manifold Q is the over arching idea behind [9] and [6]. A mechanical system of

particular interest to us is the double gimbal system (see Figure 1.1). Simply stated,

the double gimbal system is comprised of a base, an outer gimbal attached to the

base through a revolute joint, and an inner gimbal attached to the outer gimbal also

through a revolute joint. Since this system has two circular degrees of freedom, the

spinning angles of both the inner and outer gimbals, the configuration manifold is the

torus T 2 = S1 × S1. Equipping the torus with the kinetic energy metric defined by

the mass properties of the inner and outer gimbals, we obtain a Riemannian manifold

that we call the double gimbal torus. Control on the double gimbal torus takes two

flavors (a) fixed point tracking which corresponds to re-orientating a telescope pointed

at fixed Star X to fixed Star Y and (b) full tracking which corresponds to a telescope

tracking a comet.

Intuitively, the control forces of a geodesic based fixed point tracking controller on

the double gimbal torus can be characterized as: (1) a force tangent to a minimal



CHAPTER 1. INTRODUCTION 8

energy curve (a geodesic) connecting the points identified with Star X and Star Y and

(2) a dissipation force opposing motion along a geodesic segment which will eventually

stop the telescope when pointed at Star Y.

In Bullo et al. [9] the geodesic based PD fixed point tracking controller intuitively

described above was introduced and implemented on the two-sphere. In the conclu-

sions of Bullo et. al., it is stated that design of Lyapunov functions for tracking on not

only the sphere and Lie groups but also a general Riemannian manifold are problems

of future interest. Indeed, in Bullo and Murray [6] a general PD feedback control law

was formulated for tracking on Riemmanian manifolds. The general feedback forces

devised are analogous to those of the damped simple harmonic 1D oscillator example.

It should be emphasized at this point that to actually implement the general

controller of Bullo and Murray on specific examples requires the explicit formulation

of the feedback forces, which themselves are constructed from explicit formulations

of a compatible pair of objects called i) the configuration error and ii) the transport

map. Utilizing canonical cross product Lie algebra structure of R
3 ∼= so(3), the

configuration and velocity errors are explicitly formulated in [6] for tracking on the

two-sphere embedded in R
3.

Contribution B’ restated:

As a geometric, specifically geodesic, framework of [9] seemed to be the

original impetus for [6] it would be natural and thus highly desirable,

to return to a geodesic setting for tracking on Riemannian manifolds.

Indeed, we achieved this geometric generalization in [14]. That is, we

specialized the results of [6] to a class of Riemannian manifolds (one of

which is the double gimbal torus) by explicitly using a quadratic geodesic

based configuration error and compatible parallel transport map pair. Use

of this pair, however, presented new problems. Namely, one need now

find an appropriate region of, for example, the double gimbal torus for

which any two points can be connected by a unique minimal geodesic.

Using ideas from Riemannian and differential geometry ideas along with
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the software Loki [39], we are able to obtain estimates for the stability

region on the double gimbal torus. With this knowledge we are able to

confidently implement the controller.

The details of this contribution along with further supporting references are given in

Chapter 3. This chapter was joint work with Dr. Robert Fuentes (then at, Boeing-

SVS) and Dr. Gregory Hicks (then at, General Dynamics) and originally appeared

in [14] and [15]. This authors work on the project was supported by the Air Force

Research Labs (AFRL) Space Scholars program. During this time the author was

also supported by NSF grant DMS-0306017 (PI: Dr. D. Zenkov).

1.2.3 Short Summary of LKN [28]

The geometries most often chosen to begin modeling mechanical systems are the

tangent and cotangent bundles to a configuration manifold Q, denoted TQ and T ⋆Q

respectively. For example, to obtain dynamics on T ⋆Q one needs only a geometric

object, a real-valued one form, ϑ called the canonical form and a physical object,

a real-valued function, f called an observable or Hamiltonian function. Specifically,

given the canonical real-valued one-form, ϑ on T ⋆M and corresponding canonical

non-degenerate real-valued two form Ω = dϑ on T ⋆M given in canonical coordinates

(qi, pj) by

Ω = dpi ∧ dqi (ϑ = pidqi) (1.4)

one can use the structure equation

df = −Xf Ω (1.5)

to uniquely determine a global Hamiltonian vector field Xf given a globally defined

Hamiltonian function f : T ⋆M → R. The integral curve equations of the global

Hamiltonian vector field are exactly Hamilton’s equations.

That both T ⋆Q and TQ are associated bundles to the frame bundle (the bun-
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dle of linear frames) of a configuration manifold Q, denoted LQ seems to, at least

initially, indicate that LQ is also a natural geometric model of mechanical systems

(see Appendix B for LQ details and Appendix C for associated bundle details). The

appropriateness of LQ to the study of mechanical systems is strengthened by the

discovery of the generalized symplectic (Hamiltonian) structure on LQ in [28]. Using

the n-symplectic structure of LQ, this reference establishes the generalized momenta

dynamics for arbitrary rank observables.

For example, following [28], one obtains dynamics of mechanical systems on the

frame bundle by first lifting a rank-2 observable, the kinetic energy metric g, a (0,2)

tensor field on Q, to an R
n ⊗ R

n-valued tensorial function ĝ on LQ and then solving

the n-symplectic structure equation, a generalization of the structure equation on T ⋆Q,

dĝij = −2X̂
(i
ĝ Ω̂j) (1.6)

for n-vector fields [X̂ i
ĝ]. Here Ω̂ = dθ̂ where θ̂ is an R

n-valued generalization of the

canonical form θ on T ⋆Q called the soldering form. A critical difference in the n-

symplectic versus the symplectic setting is that solutions [X i
ĝ] are equivalence classes

of vector fields rather than a unique vector field. Equivalence here is characterized by

an n-symplectic gauge freedom in the choice of a torsion free connection which, when

specified, defines a unique solution vector field.

It is of general interest to the author to establish the applicability of n-symplectic

geometry to mechanical systems and control. To the author’s knowledge, no one

has considered this approach. It is both interesting and encouraging to note that

linear connections, the frame bundle and the distribution adapted frame bundle (used

below) make an appearance in [21], a paper whose application of affine connections

and distributions is to derive the nonholonomic momentum equation. To our reading

and understanding, n-symplectic geometry played no role in the derivation.

The n-symplectic approach has been used to obtain results in field theory [26, 34,

35] but an analysis of the rank-2 observable (the kinetic energy) case with the control
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of mechanical systems perspective in mind has not been addressed.

Contribution C’ restated: For a distribution ∆ modeling a mechanical sys-

tems nonholonomic constraints, we adapt the soldering form θ̂, the kinetic

energy observable and the frame bundle to the distribution to obtain a

distribution adapted structure equation

d
∆

g
ij

= −2
∆

X
(i

ĝ

∆

Ω
j)

(1.7)

specific solutions to which lead to constrained momenta dynamics. Some

of the momenta dynamics are the nonholonomic momentum equation of

[3]. That the n-symplectic theory allows for the introduction of potentials

which appear at the generalized momenta level indicate the feasibility of

potential shaping and momenta based control design for nonholonomic

mechanical systems. We illustrate the above n-symplectic approach using

two examples, the vertical rolling hoop and a nonholonomic constrained

particle.

The details of this contribution are given in Chapter 4. Preliminary results relating

to the use of the n-symplectic gauge freedom and the n-symplectic scalar potentials in

control are addressed in Appendix I. The preliminary research in this chapter was

conducted under the guidance and support of Dr. Larry Norris.
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1.3 On the Structure of this Document

There are many appendices for this document that offer extra details and relevant

background material for the readers’ convenience. For Chapter 3, which utilizes a

significant amount of geometry in developing a PD control logic on Riemmanian

manifolds, we have added

• Appendix A which collects a detailed account of the requisite Riemmanian

geometry objects and

• Appendix D which gives a detailed account of a fibre bundle needed to correctly

formulate a configuration error function from our PD control design.

For Chapter 4, which utilizes n-symplectic (frame bundle, LQ) geometry to formulate

the dynamics for constrained mechanical systems, we have added several appendices.

• Appendix B defines the frame bundle and its fibre bundle structure.

• Appendix C defines not only the soldering form (a generalization of the canon-

ical one form on the cotangent bundle) but addresses the relationship between

tensor fields (on the base manifold, Q) and tensorial vector–valued and matrix–

valued functions on LQ. The soldering form and the tensor field/tensorial func-

tion relationship are key in formulating kinetic energy dynamics on the frame

bundle.
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• Appendix G, addresses the canonical formulation of generalized Hamiltonian

mechanics on the frame bundle. Appendix F defines the (constraint) distribu-

tion adapted frame bundle, L∆Q. The canonical dynamics and L∆Q are key to

formulating the constrained n-symplectic dynamics.

• We have also added Appendix H which summarizes the nonholonomic momen-

tum equation of BKMM [3] which will be compared to the generalized momenta

dynamics on L∆Q.

• Appendix I addresses preliminary results pertaining to the use of the n-symplectic

gauge freedom and scalar potentials as control inputs to mechanical systems.



Chapter 2

The Moving Mass Chaplygin Sleigh

In this chapter we design a steering control algorithm for the Chaplygin sleigh with

a moving mass. Our strategy is to only use the controlled dynamics to initiate short-

time transitions between the various uncontrolled modes of the system in order to

achieve the desired direction of motion.

2.1 Introduction

The objective of this chapter is to use a moving mass to control the direction of motion

of the Chaplygin sleigh—a rigid body on a horizontal plane constrained by a blade.

The blade limits the velocity of the body-plane contact point to a direction fixed in

the body. This constraint is nonholonomic as it imposes a velocity restriction on the

system which is not derivable from a position constraint. Rand and Ramani [33] and

Ruina [36] point out that blade constraints similar to this have been used to model

an underwater missile with fins.

In recent years much work has been done in using geometric structures to both

formulate the equations and to address aspects of control of constrained mechanical

systems. We summarize some such works. For a more complete list of references on

the dynamics and control of nonholonomic systems see [4].

In the seminal paper by Bloch, Krishnaprasad, Marsden, and Murray [3] (hereafter

14
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referred to as BKMM), nonholonomic mechanical systems with symmetry are studied.

For a system with symmetry, it is natural to split the configuration variables into the

group variables g which describe the overall position (attitude) of the system and the

shape variables r which describe the positions of the system’s components relative to

each other. In the case of the Chaplygin sleigh with a moving mass, the variable g

is the element of the group of Euclidean transformations of the 2-dimensional plane

and the variable r is the position of the moving mass relative to the contact point of

the body and the plane.

The dynamics of a nonholonomic system with symmetry are governed by the

system of equations

r̈ = f(r, ṙ, p) + u, (2.1)

ṗ = 〈α(r)p, p〉 + 〈β(r)p, ṙ〉 + 〈γ(r)ṙ, ṙ〉, (2.2)

ġ = g(J(r)p − A(r)ṙ), (2.3)

where p is the nonholonomic momentum, which in general is no longer conserved, and

u represents control forces. We emphasize that the controls appear only in the shape

equation. Note that equations (2.1) and (2.2) decouple from the the group dynamics

(2.3). See [3] for details and formulae that define the various coefficients in equations

(2.1)–(2.3). Equations (2.1), (2.2), and (2.3) are referred to as the shape equation,

momentum equation, and reconstruction equation, respectively.

Utilizing the perturbation methods of [19] to study equations (2.1)–(2.3), Os-

trowski [32] determines relations between the cyclic control inputs u(t), resultant

momentum generation, and ultimately, motion. These integral relations were critical

in designing momentum generating and steering algorithms.

In Lewis and Murray [23], a symmetric product is introduced and used to for-

mulate sufficient conditions for various types of configuration controllability of simple

mechanical control systems. The general equations analyzed are of geodesic type with

extra external force and control input terms.
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Simple mechanical control systems with constraints are treated in Lewis [22]. The

symmetric product was shown to address configuration controllability questions in

this constraint setting also.

In Bullo, Leonard, and Lewis [7], simple mechanical control systems on a Lie group

G are investigated. Here the dynamics of interest are of the form

ṗ = 〈α p, p〉 + uaFa, (2.4)

ġ = g(Jp), (2.5)

where ua are the control inputs and Fa are the directions in which they act. Imple-

menting the perturbation approach of [19] and using the symmetric product technique,

Bullo, Leonard, and Lewis [7] design steering control algorithms for equations (2.5)

and (2.4).

The physical system of particular interest to us is the Chaplygin sleigh with a

fully actuated moving mass. The dynamics of this system are of the form (2.1)–(2.3)

(details are given in Section 2.2).

Unlike Ostrowski, in this paper we are not concerned with motion generation. We

assume that the Chaplygin sleigh is already in motion and concentrate on steering the

system using the movable mass. Since the mass is fully actuated, we can assign its

position relative to the sleigh as a function of time. Therefore, the dynamics reduce

to equations (2.2) and (2.3), where the moving mass position r relative to the contact

point is interpreted as the control parameter. We emphasize that the dependence

of the right-hand sides of (2.2) and (2.3) on r is inherently nonlinear, and thus the

control design of Bullo, Leonard, and Lewis [7] is not applicable.

The perturbation control techniques and associated algorithm design of Ostrowski

[32] and Bullo, Leonard, and Lewis [7] mentioned above are extremely useful and have

a wide range of application. However, it is our philosophy that the dynamics of the

uncontrolled system, which are not explicitly addressed in any of the above references,

should play a critical role in the design of control algorithms.
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Our control philosophy can be outlined as follows: We first study the variety of

trajectories of equations (2.2) and (2.3) in the uncontrolled setting (i.e., constant r).

We then use the controlled dynamics (i.e., equations (2.2) and (2.3) with non-constant

r) to switch between the various types of uncontrolled dynamics which then lead to

the goal configuration. This approach proved to be useful in various situations (see,

e.g., [5]). We emphasize that the transfer is very short in duration and hence the

system remains uncontrolled for most of the steering procedure.

On a technical note, we assume that, except for the short time that the actuators

must implement the change in shape configuration, they are at rest. That is, the

actuators are engineered to maintain the constancy of r when inactive. For example,

in the Chaplygin sleigh, we can view the mass as sliding on a rod where the friction

between the rod and sliding mass, not the actuator, is applied to keep the mass fixed.

The exposition is organized as follows: In Section 2.2 we summarize the properties

of the uncontrolled dynamics of the Chaplygin sleigh. In particular, we list all possible

types of trajectories of the contact point of the sleigh on the plane. In Section 2.3 we

study “control primitives” which implement the transitions between the uncontrolled

trajectories of the sleigh. These control primitives, when applied in the proper order,

result in the desired reorientation of the system. Simulations are presented in Section

2.4.

2.2 The Dynamics of the Chaplygin Sleigh

2.2.1 The Configuration Variables

The Chaplygin sleigh is a rigid body sliding on a horizontal plane. The body is

supported at three points, two of which slide freely without friction while the third

is a knife edge, a constraint that allows no motion orthogonal to this edge. This

mechanical system was introduced and studied in 1911 by Chaplygin [11] (although

the work was actually finished in 1906).

The configuration space of this system is the group of Euclidean motions of the
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two-dimensional plane which we parameterize with coordinates (θ, x, y). As Figure

2.1 indicates, θ and (x, y) are the angular orientation of the blade (shown as the bold

segment in the Figure) and position of the contact point of the blade on the plane,

respectively. We view the sleigh as a platform whose center of mass is at the contact

point. The mass and moment of inertia of the platform relative to the contact point

are M and I, respectively. There is also a point mass m positioned at (a, b) relative to

the platform, see Figure 2.1. In the classical Chaplygin sleigh this mass is motionless

relative to the platform; in Section 2.3 we will control its position in order to steer

the sleigh on the plane.

Figure 2.1: The Chaplygin sleigh (top view of Figure 1.1(a))

The constraint imposed by the blade reads

−ẋ sin θ + ẏ sin θ = 0. (2.6)

This constraint is nonholonomic, whereby we mean it is not possible to derive the

velocity constraint (2.6) from a position constraint G(θ, x, y) = 0.
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2.2.2 The Momentum Dynamics and Reconstruction

Let Ω1 be the angular velocity of the platform and Ω2, Ω3 be the components of

linear velocity of the contact point along and orthogonal to the blade, respectively.

Constraint (2.6) implies Ω3 = 0.

Denote the nonholonomic momentum by (p1, p2). The components p1 and p2

satisfy the equations

Ω1 =
(M + m)p1 + mbp2

(M + m)(I + ma2) + Mmb2
,

Ω2 =
mbp1 + (I + ma2 + mb2) p2

(M + m)(I + ma2) + Mmb2
,

see [3] and [42] for details and definitions. If b = 0, the components p1 and p2 equal

the angular momentum of the sleigh relative to the contact point, and the projection

of the linear momentum along the direction of the blade, respectively.

The dynamics of the Chaplygin sleigh is governed by the momentum equations

ṗ1 = −maΩ1Ω2, ṗ2 = ma(Ω1)2, (2.7)

coupled with the reconstruction equations

θ̇ = Ω1, ẋ = Ω2 cos θ, ẏ = Ω2 sin θ, (2.8)

(see, e.g., [42]). This representation of the equations of motion allows one to first

solve (2.7) and then find the trajectory of the sleigh by integrating equations (2.8).

For the details on the derivation of these equations see BKMM [3] and Zenkov and

Bloch [42].

The dynamics of the Chaplygin sleigh depends drastically on the value of a. This

dependence is critical in the design of our control algorithm in Section 2.3.

If a = 0, the momentum components p1 and p2 are preserved. Equations (2.8)

then imply that the trajectory of the contact point is either a circle or a straight line.



CHAPTER 2. THE MOVING MASS CHAPLYGIN SLEIGH 20

In both cases the contact point is moving at a constant rate. The existence of circular

trajectories is very important for our steering control algorithm.

If a 6= 0, the trajectories in the momentum plane are either equilibria situated on

the line (M + m)p1 + mbp2 = 0, or elliptic arcs, as shown in Figure 2.2. Assuming

a > 0, the equilibria located in the upper half plane are asymptotically stable (filled

dots in Figure 2.2) whereas the equilibria in the lower half plane are unstable (empty

dots). The elliptic arcs form heteroclinic connections between the pairs of equilibria.

The trajectories of the contact point that correspond to the momentum equilibria are

Figure 2.2: The momentum dynamics of the unbalanced sleigh.

straight lines in the xy-plane. They are stable if the mass m precedes the contact

point and unstable otherwise.

The trajectories of the contact point reconstructed from the heteroclinic momen-

tum trajectories should be regarded as the transfer solutions from an unstable straight

line motion to a stable one. A typical transfer trajectory is shown in Figure 2.3. The

shape of these transfer trajectories is predetermined by the inertia of the body and

the position of the center of mass relative to the contact point, and is independent of

the initial conditions. The angle between the asymptotic directions of a trajectory of

the contact point in the xy-plane is evaluated in [18] for the case b = 0.1
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(a)

Figure 2.3: A generic trajectory of the contact point.

2.3 Controllability of the Chaplygin Sleigh with a

Moving Mass

2.3.1 The Reduced Controlled Dynamics

We now allow the point mass to change its position relative to the rigid body. That

is, the quantities (a, b) are now dynamic variables. Assuming that the mass degrees

of freedom are fully actuated, the system’s dynamics are given by equations (2.2) and

(2.3), where r = (a, b) is viewed as the control parameter. Recall that the controller

is active only when ȧ2 + ḃ2 6= 0—see the discussion of the physical implementation of

controllers in the Introduction.

In order to write equations (2.2) and (2.3) for the Chaplygin sleigh with a moving

mass explicitly, let

ξ1 =
(M + m)(p1 − maḃ) + mb(p2 + Mȧ)

(M + m)(I + ma2) + Mmb2
,

ξ2 =
m[b(p1 − maḃ) − (I + ma2)ȧ] + [I + m(a2 + b2)]p2

(M + m)(I + ma2) + Mmb2
,

and define η by

[Mmb2 + I(M + m)]ḃ + a[(M + m)p1 + mb(p2 + Mȧ)]

(M + m)(I + ma2) + Mmb2
.
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The momentum dynamics (2.2) for the Chaplygin sleigh with a moving mass is com-

puted to be

ṗ1 = −mηξ2, ṗ2 = mηξ1. (2.9)

Observe that for (a, b) = const, equations (2.9) reduce to (2.7).

After solving equations (2.9), the group configuration variables (θ, x, y) are ob-

tained from the reconstruction equations

θ̇ = ξ1, ẋ = ξ2 cos θ, ẏ = ξ2 sin θ.

2.3.2 Controllability of Asymptotic Directions

Recall that if (p1, p2) is constant and p2 6= 0, there are three types of motions for the

uncontrolled (ȧ2 + ḃ2 = 0) dynamics:

1. If a 6= 0 and (M + m)p1 + mbp2 6= 0, then the system’s trajectory is a curve

that approaches straight-line motions as t → ±∞ (see Figure 2.3).

2. If a = 0 and (M + m)p1 + mbp2 6= 0, then the system moves along a circle in

the xy-plane at a constant rate.

3. If (M +m)p1 +mbp2 = 0, the system moves along a straight line in the xy-plane

at a constant speed.

We remark that the first type is generic (i.e., observed with probability one when the

initial conditions are randomly generated) whereas the second and the third are not.

The objective of this paper is: Assuming that the sleigh is sliding (that is, ξ2 6= 0),

find the control inputs that put the system on a trajectory which asymptotically ap-

proaches a straight line with the desired direction in the xy-plane. In the theorems

below we prove that it is possible to change the trajectory type by controlling pa-

rameters a and b. The existence of the desired steering control algorithm follows

immediately from these theorems.
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Theorem 2.3.1 Assume that the initial motion of the system is circular, i.e., a = 0,

b = const, and (M +m)p1 +mbp2 6= 0. Then there exist a continuously-differentiable

function a(t) and constants A, T1, and T2 with properties

• a(t) = 0 when t ≤ T1 and a(t) = A when t ≥ T2,

• a(t) is increasing when T1 < t < T2,

such that the trajectory of the system with a = a(t), b = const asymptotically

approaches a straight line motion with a given direction in the xy-plane.

Without loss of generality assume that θ = 0 at t = 0. Choose positive constants A

and T and consider a continuously-differentiable function f(t) such that f(t) = 0 for

t ≤ 0, f(t) = A for t ≥ T and f(t) is increasing on 0 < t < T . The actual shape of

f(t) on the interval 0 < t < T is not important. For instance, one can define f(t) as

FA,T (t) =






0 if t ≤ 0

2A

T 2
t2 if 0 < t ≤ T/2

A − 2A

T 2
(t − T )2 if T/2 < t ≤ T

A if t > T

(this will be our default choice).

Set a = f(t). At the end of transition interval 0 < t < T the value of a becomes A.

According to the classification of motions given above, the trajectory of the system

for t > T is either of type 1 or type 3. Let φ be the angle between the asymptotic

direction of this trajectory as t → ∞ (or the trajectory itself if it is a straight line)

and the positive direction of the x-axis. Let ψ be the angle between the desired

(asymptotic) direction of motion and the positive direction of the x-axis.

For the initial circular trajectory, let T1 ∈ R be such that θ(T1) = ψ − φ. Set a(t)

equal to f(t − T1). Then the trajectory of the system with a = a(t) and b = const

satisfies the statement of the theorem. Indeed, this trajectory is obtained from the
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one corresponding to a = f(t) by rotation about the center of the initial circular

trajectory by the angle ψ − φ. Therefore, the asymptotic direction of the trajectory

forms the angle ψ with the positive direction of the x-axis.

Theorem 2.3.2 Assume that the system is moving along a trajectory of type 1, i.e.,

a = A 6= 0 and (M +m)p1+mbp2 6= 0.2 Then there exist a continuously-differentiable

function a(t) and constants T1 and T2 with properties

• a(t) = A when t ≤ T1 and a(t) = 0 when t ≥ T2,

• a(t) is decreasing when T1 < t < T2,

such that the trajectory of the system with a = a(t), b = const becomes a circle for

t > T2.

Choose the values T1, T2 and set T = T2 − T1, a(t) = A − f(t − T1), where f(t) is

the function introduced in Theorem 2.3.1. Then at the end of the transition period

the value of a equals 0. Therefore, the trajectory of the system for t > T2 is either a

circle, or a straight line. Adjusting the initial and terminal moments T1 and T2 of the

transition period if necessary, it is possible to have (M +m)p1 +mbp2 6= 0. Therefore,

the trajectory becomes circular for t > T2.

Theorem 2.3.3 Assume that the system is moving along a straight line, i.e., b =

B1 = const and (M + m)p1 + mbp2 = 0. Assume that a = A > 0. Then there exist

a continuously-differentiable function b(t) and constants B2 6= B1, T1, and T2 with

properties

• b(t) = B1 when t ≤ T1 and b(t) = B2 when t ≥ T2,

• b(t) is monotonic when T1 < t < T2,

such that the trajectory of the system with a = A, b = b(t) becomes type 1 for t > T2.
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Define b(t) by the formula B1 + FB2−B1,T2−T1
(t). By adjusting the values of T1, T2,

and B2, it is possible to satisfy the condition (M + m)p1(T2) + mb(T2)p2(T2) 6= 0.

Since the value of a has not changed, the trajectory of the system becomes type 1 for

t > T2.

Remark: The statement of the last theorem can be extended to the case of an

initial straight line motion with a = 0. One just needs to change the value of a from

0 to A and then apply the algorithm of Theorem 2.3.3.

The reorientation algorithm can now be stated in the following steps:

1. Check if the trajectory of the sleigh is a straight line. If no, go to step 2. If yes,

use Theorem 2.3.3 to transfer the sleigh to a generic trajectory and then go to

step 2.

2. Check if the trajectory is circular. If yes, go to step 3. If no, use the control

from Theorem 2.3.2 to transfer the sleigh to a circular trajectory and then go

to step 3.

3. Using Theorem 2.3.1, exit the circular trajectory at an appropriate moment.

Remark: By Theorem 2.3.1, any point outside a circular trajectory in the plane

belongs to an “exit” trajectory. It is now evident that the above three reorientation

algorithm steps can be used to steer the Chaplygin sleigh through any point in the

plane.

2.4 Simulations

In this section we illustrate the control primitives obtained in Theorems 2.3.1–2.3.3.

We assume that the numerical values of the parameters of the system are I = 10,

M = 2, and m = 1. In all simulations the initial value of b is set to 0.

Figure 2.4 illustrates the steering algorithm of Theorem 2.3.1. The value of a on

the circular trajectory equals 0, and f(t) is chosen to be F1,4(t).
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(a) (b)

(c)

Figure 2.4: Control Primitives for Chaplygin Sleigh. (a) Transition form a circle to
the trajectory with desired direction (b) Transition from a generic trajectory to a
circle (c) Transition from a straight line to a generic trajectory.

If a = f(t), the system’s trajectory leaves the circle along the dashed curve in

Figure 2.4 (a). The trajectory corresponding to a = a(t) = f(t − 30) is the solid

curve in Figure 2.4 (a).

Figure 2.4 (b) illustrates the control input that steers the system from a generic

trajectory to a circular one. The initial value of a is 1, and a(t) is set to 1−F1,4(t−2).

Figure 2.4 (c) illustrates the transfer from a straight line to a generic trajectory.

The initial value of a is 0.1 and b(t) equals F2,4(t).

2.5 Conclusions

In this chapter we have developed a dynamical system approach to controlling the

asymptotic dynamics of the Chaplygin sleigh. The key feature of our algorithm is the

use of the controlled dynamics only for switching to and from circular trajectories.

As a consequence, the controller remains unpowered most of the time.

While our control algorithm design is problem specific (the uncontrolled dynamics
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change for each mechanical system chosen) as a philosophy it is a general principle.

Whether it is applicable to a given situation depends of course on the nature of both

the uncontrolled dynamics and controllers.



Chapter 3

Geodesic Based

Proportional–Derivative (PD)

Control on Riemannian Manifolds

In this chapter a geodesic-based formulation of geometric PD tracking control for

fully actuated mechanical systems is derived from the Riemannian metric. The re-

gion of stability is determined directly from the size of the injectivity radius and,

for a restricted set of control problems, the locus of cut points about a desired ref-

erence point in the manifold. Exponential stability is proven for controlled motion

along a geodesic, yielding a particularly simple, yet elegant, methodology for control

design. This chapter concludes with the geometry of the double gimbal system, a

particular mechanical system on which the geodesic–based, PD control design can be

implemented.

3.1 Introduction

The applicability of differential geometry and topology to the discipline of theoretical

mechanics has been clear for some time [1]. Hence it is not a surprising development

for one to conceive the notion that a more complete understanding of the control of

28
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mechanical systems, or simply, machines, may also reside within these frameworks.

It so happens that many recent advances in control theory were obtained using the

machinery of differential geometry and topology. Specifically regarding the theory

of control design, it has clearly been demonstrated ( [9, 10, 8] ) that Riemannian

geometry can be utilized to naturally approach a variety of control design problems

and to obtain a proper perspective on commonly used control logic. Of particular

interest to us is the notion of the geodesic spring introduced by Bullo, Murray, and

Sarti in [9]. We expound upon this idea as it is the foundation of the control approach

we shall take up herein.

Essentially, the philosophy of control system design is to create in the closed loop

a well understood mechanical analogy. In more cases than not, the mass–spring–

damper or the proportional derivative (PD) system is that to which the analogue

system is compared. This is fitting, as its one of the few systems we understand quite

well. The awkward part of this philosophy, in the context of mechanical systems, is

the manner in which it is most often realized. By and large, typical control designs

are brought to fruition and their subsequent analyses are carried out in R
n. In some

sense working in R
n is quite a natural thing to do and is easy enough to fall into;

for it is typical to measure by some means the states of the physical system at hand,

which then, either directly or indirectly, provide ordinates or n-tuples of real numbers

from which a controls engineer elicits an input command. However, the configuration

manifolds of ideal machines are typically not R
n. As a result, the intrinsic nature of

the machines one desires to understand and control is disregarded in typical control

design.

In [9] a geodesic based, PD, set–point controller was introduced and “imple-

mented” on the two-sphere. In the conclusions of this paper it was stated that the

geometric design of controllers for tracking on, not only the sphere and Lie groups,

but also a general Riemannian manifold, was a problem of future interest.

In [10], Bullo and Murray addressed this problem by introducing a fairly generic

framework which extended the PD or generalized mass–spring–damper paradigm to
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the tracking problem on an arbitrary Riemannian manifold. This platform was hinged

upon two mappings that generalized the notions of configuration error and velocity

error. The latter object is constructed by means of a transport map that is “compat-

ible” with the configuration error mapping. It should be emphasized that to actually

specify the controller of [10] for specific machines requires the explicit presentation of

both the configuration error and compatible transport mappings. Utilizing the alge-

braic structure of a Lie group, Bullo and Murray were able to construct a compatible

pair and thus able to employ their controller on systems which evolve on SO(3) and

SE(3).

Since the geodesic spring paradigm of [9] appears to have been the impetus for [10],

it seems natural and highly desirable to return to an intrinsic geometric setting for

tracking on Riemannian manifolds. Indeed, that is the purpose of this paper. That

is, we are particularly interested in demonstrating herein, how a machine’s intrinsic

geometry (i.e. the geometry induced by the machine’s kinetic energy tensor) can be

exploited within the a generic framework similar to that of [10] in order to general-

ize [9]. In the intrinsic geometry setting there is an obvious choice of configuration

error and transport map. Namely, they are the quadratic function of intrinsic distance

and parallel transport along geodesic paths. However, control design based upon im-

plicit geometry is technically difficult due to the non-trivial nature of Riemannian

geometries. Nevertheless, we show that control is feasible on an ”appropriate region”

of the configuration manifold.

This paper is organized as follows. Sections 3.2 and 3.2.3 introduces those concepts

from intrinsic geometry needed for the construction of a geodesic based controller.

Should the reader already be familiar with the basic concepts of intrinsic geometry

then they may better use their time by going directly to section 3.3 . The main

objects, configuration error, compatible transport mapping and dissipation function,

along with the main control result from Bullo et. al. are summarized in Section 3.3.

In Section 3.4 we prove, as a corollary to the main control result from Section 3.3, a

local exponential stability result for a specific class of control problems. Also in this
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section, it is explicitly argued that our control approach is a geodesic mass–spring–

damper. In Section 3.5 we discuss our injectivity radius assumption and provide some

examples.

3.2 Background Material

3.2.1 Some Conceptual and Notational Overhead

It is presumed that the reader has a knowledge of manifolds, bundles, and associated

objects. We state here the notations associated to said notions that we shall use.

Q: A smooth connected manifold. Throughout this writing we shall make

reference to pairs of points taken from Q. We will consistently use r and

q to denote these points.

(Uα, φα): An indexed coordinate chart compatible with the atlases comprising the

differentiable structure of Q.

qi: The ith coordinate function xi ◦ φα : Q → R
n : q 7→ (q1(q), . . . , qn(q))

associated to a chart (Uα, φα).

F : If f is a mapping between manifolds, the local representation thereof.

fx(y): If f is a function of Q×Q or any other product, then we use this convention

to denote the restriction f(x, y)|x fixed. Similarly, fy(x)
∆
= f(x, y)|y fixed.

TqQ: The tangent space to Q at the point q ∈ Q.

vq: An element of TqQ.
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T ∗
q Q: The cotangent space to Q at the point q ∈ Q.

ωq: An element of T ∗
q Q.

(E, π,M): A fibre bundle with total space E, base space M , and projection π.

We will often refer to the bundle by the total space.

TQ: The tangent bundle of Q.

v: An element of TQ.

qi, v
j: The coordinate functions associated to a chart (Uα, φα) of TQ that reflects

a local trivialization this bundle.

(~q,~v) If we desire to make use of coordinate vectors to describe the image of the

qi and vk collectively, we will use this notation.

X(Q): The set of smooth vector fields on Q. Typical representatives of this set

will be denoted X,Y, . . . , etc. We use Yr to indicate that the field Y has

been evaluated at a particular point r and Y (r) to denote a functional de-

pendence upon a variable point r. The same conventions will be observed

for tensor fields in general.

3.2.2 Basic Intrinsic Geometry

We begin with the purpose of providing context by introducing some of the basic

elements of Riemannian geometry. Detailed expositions are abundant. Reference

[13], for example, is decent and concise for the purpose of understanding this paper

and with the exception of slight paraphrasing and notation, the definitions and results

of this subsection and that to follow, are extracted therefrom.
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Let Q denote a Riemannian manifold with metric tensor g. The metric structure

is sufficient enough to describe a geometry on Q, for it emits the notion of lines and

angles as well as length and angle measures. We will only briefly describe the lines of

the geometry and the metric.

We focus first on the ruler. The restriction of a smooth curve σ : R → Q to

the compact interval [a, b] shall be called a segment connecting points r = σ(a) and

q = σ(b). Designating u as the curve “parameter” or coordinate on R, the length of

a segment is given by the line integral of its speed:

lσ(r, q) =

∫ b

a

√

g

(
dσ

du
,
dσ

du

)
du .

If S(r, q) denotes the set of all segments connecting r and q then the Riemannian

manifold’s intrinsic distance is defined as

dist(r, q) = inf
σ∈ S(r, q)

lσ(r, q) .

The intrinsic distance of a Riemannian manifold is a metric and its induced topology

corresponds to that of the configuration manifold (a quite important fact indeed).

Now let us describe the lines of the geometry. The metric structure induces the

Levi-Civita or Riemannian connection ∇, which itself effects a covariant derivative

D
du

of vector fields on smooth curves. This covariant derivative then identifies the zero

acceleration curves γ or the geodesics of the manifold (lines of the geometry). That

is, Dγ′

du
= 0. We denote the parameterized geodesic with velocity v at u = 0 by γ(u, v)

and we simply use γ(u) when the initial data is of little concern. Thus, components of

the geodesic induced by a selection of chart satisfy the following second order system

of ordinary differential equations (ODEs)

D

du

dγk

du
=

d2γk

du2
+ Γk

ij

dγi

du

dγj

du
= 0
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where Γk
ij denote the Christoffel symbols and summation over repeated indices is

implied. The classic existence and uniqueness theorems from the qualitative theory

of ODEs ensures a flow box for this system.

3.2.3 The Exponential Map and Related Geometric Notions

Now we focus on the primary analytic tool associated to the Riemannian geome-

tries, the exponential mapping exp : TQ → Q. This mapping allows us to gather the

geodesic spray of points r in Q (all of the lines emanating from r) and is defined by

exp(v) = γ(1, v)

for v sufficiently small.

For a fixed r ∈ Q, we also make use of the restriction expr : TrQ → Q. The homo-

geneity property of geodesics ensures us that, for the given point r, the exponential

mapping is defined on a sufficiently small neighborhood of 0 ∈ TrQ. Further, letting

Bε(0) be a ball centered at the origin of R
n of radius ε, we have

Proposition 3.2.1 Given r ∈ Q, ∃ε > 0 ∋ expr : Bε(0) → Q is a diffeomorphism of

Bε(0) onto an open subset of Q.

If expr is a diffeomorphism of a neighborhood V of the origin in TrQ, exprV = N

is called a normal neighborhood of r in Q. If Bε(0) is such that Bε(0) ⊆ V , we call

Bε(r) = exprBε(0) the normal ball (or geodesic ball) with center r and radius ε.

Using this proposition, the exponential mapping allows us to create several special

charts. By selecting an ordered orthonormal basis for TrQ and inducing a coordinate

system for this linear space w.r.t. this basis, we create by means of the local diffeo-

mophism expr a system of coordinates on the image of the maximal normal neighbor-

hood of r. Such a system of coordinates is called a normal coordinate system. Radial

lines in this coordinate system get mapped onto the image (trace) of geodesics and

(lγ)2(r, q) = q2
1 + . . . + q2

n. We will make use of this special coordinate system. In
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the same manner, defining polar coordinates on tangent space we obtain the geodesic

polar coordinate system in which the arclength actually plays the role of a coordinate.

Making use of these tools and other results the following proposition may be

established:

Proposition 3.2.2 Let r ∈ N , N a normal neighborhood of r, and B ⊆ N a normal

ball of center r. Let γ : [0, 1] → B be a geodesic segment with γ(0) = r. If σ :

[0, 1] → Q is any piecewise differentiable curve joining γ(0) to γ(1), then lγ ≤ lσ and

if equality holds then γ([0, 1]) = σ([0, 1]).

Thus, geodesics are locally minimizing curves. That is, for q in a sufficiently small

neighborhood, specifically, in a normal neighborhood of a point r ∈ Q,

dist(r, q) = lγ(r, q) (3.1)

where γ is the unique (arc–length parameterized) geodesic connecting r to q. In

fact, as we will illustrate at a later juncture, this relation is, under conditions to be

discussed, smooth. We shall utilize these facts extensively and equation (3.1) is the

crux of the intrinsic view of the geodesic spring paradigm. Consequently, we have

need of knowing at what point this state of affairs ceases to persist.

Of course, this relation fails if a member fails to be defined. In an incomplete

manifold, γ may not extend indefinitely and the spray of r may not cover Q. In this

situation the right member becomes undefined for certain q and the relation must

end. Thus, it may ease one’s path to consider taking up the assumption that Q

be geodesically complete. Under this assumption one may invoke the Hopf–Rinow

theorem. This theorem asserts that the completeness assumption is equivalent to,

amongst other things, the following:

1. expr is defined on all of TrQ.

2. The closed and bounded sets of Q are compact.

3. Q is a complete metric space.



CHAPTER 3. GEODESIC–BASED PD CONTROL 36

4. For any q ∈ Q there exists a geodesic γ joining r to q with dist(r, q) = lγ(r, q).

Equivalence 4 indicates to us that relation (3.1) becomes global once we alter the

qualification “γ is the unique” to “γ is a”. Though not a cure all, as dist(r, q) may

not be a smooth everywhere, the situation is improved.

Should we have geodesic completeness and the exponential mapping be defined for

all v ∈ TrQ, then the smooth nature of dist(r, q), as we shall see, cannot be assured

at those locations where the exponential mapping expr fails to be a diffeomorphism.

This occurs at those points q such that expr or its tangent mapping become singular.

As the proposition to follow asserts, singularity of the tangent mapping occurs at

conjugate points, which are those points q at which nearby geodesics of a spray will

appear to be destined to, and may, intersect.

Proposition 3.2.3 Let γ : [0, a] → Q be a geodesic with γ(0) = r. The point q =

γ(u∗), u∗ 6= 0 is conjugate to r along γ iff v = u∗ dγ
du

(0) is a critical point of expr.

We will take up the assumption of geodesic completeness in order to ensure that

these latter pitfalls are all we need worry with. Working under this supposition

we continue.

Definition 3.2.1 Let Q be a complete Riemannian manifold, and let γ : [0,∞) → Q

be a normalized geodesic with γ(0) = r. A cut point of r along γ, if it exists, is the

last point q = γ(s∗) along γ such that dist(r, q) = s∗. The cut locus, denoted C(r), is

the union of cut points along all geodesics emanating from r.

As our previous discussion suggests, the cut locus may be composed of two different

types of points. The next proposition characterizes these points. Proof of this result

can also be found in [13].

Proposition 3.2.4 Let γ be defined as in definition 3.2.1 and suppose that γ(s∗) is

the cut point of r = γ(0) along γ. Then

1. either q = γ(s∗) is the first conjugate point of γ(0) = r
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2. or there exists a geodesic σ 6= γ from r to q = γ(s∗) such that the arc lengths

satisfy lσ(r, q) = lγ(r, q),

Conversely, if either 1 or 2 holds, then ∃s̃ ∈ (0, s∗] such that γ(s̃) is the cut point of

r along γ.

Thus, at those points of C(r) where the exponential mapping actually fails to be 1–1,

two lines segments contained in the spray of r and of equal length intersect once more.

Apparently, the map expr along with its tangent mapping are injective on an open

ball Bε(0) if the radius ε is less than the infimum of distances to C(r). Hence the

quantity

Inj(r) = inf
q∈C(r)

dist(r, q)

is called the injectivity radius of r. Defining

Inj(Q) = inf
r

Inj(r) (3.2)

to be the injectivity radius of the manifold Q, we see that expr is a diffeomorphism

on any open ball Bε with ε ≤ Inj(Q).

Of course, there is the degenerate case Inj(Q) = 0. For purposes of formulating the

control problem, it is important to know when the injectivity radius of a Riemannian

manifold is non-degenerate. The answer to this question is always affirmative when

the manifold in question is compact or the sectional curvature is non-positive [2, 13].

Interestingly enough, the radius can often times be estimated from knowledge of

the sectional curvature and the shortest periodic geodesic. Section 3.5 highlights

some results along this head and the applicability of these results to control design

examples.

3.3 Dynamics and Control

Let us now describe the potential free (post compensated), fully actuated, simple,

mechanical, control system or more simply, an abstract machine. An abstract machine
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is a mathematical construct of the form [Q, g,F ], where

1. Q is a smooth manifold of dimension n called the configuration manifold,

2. g is a Riemannian metric on Q,

3. and F is a rank n control co-distribution.

Since an abstract machine comes equipped with a Riemannian manifold, it has an

intrinsic geometry and carries with it all of the machinery described in section 3.2.

In particular, the lines of the geometry indicate to us those motions of the machine

that are locally the “easiest” (kinetic energy minimizing) to perform. The dynamics

of the machine are given by the abstract form of the Lagrange-D’Alembert principle

to be

g♭ Dγ̇

dt
= uiF

i . (3.3)

where g♭ is that mapping which identifies vector fields with Pfaffians by means of the

metric tensor g. Apparently, free motions are lines and we know only as much about

the machine’s tendencies as we do about the manifold’s topology and geometry.

We now introduce those constructs from [10, 8] which are needed to describe the

generalized PD controller, specifically 1) a tracking error function and 2) a transport

mapping.

Definition 3.3.1 (Configuration or Tracking Error) Let P be a connected sub-

manifold of Q×Q. A smooth function ϕ : P → R is a Tracking Error Function if for

each fixed r ∈ Q, ϕr(q) is smooth, symmetric, proper, and bounded from below and ϕ

satisfies

1. ϕ(r, r) = 0

2. dϕr(q)|q=r = 0

3. Hess ϕr(q)|q=r is positive definite.
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The differential of the error function will serve us as geodesic “stiffness”. That is, the

tracking error function is a generalization of the quadratic Hookean potential.

In order to demonstrate, by the means provided us by Bullo and Murray, that

we can obtain a generalized damped spring with the expected behavior, we shall also

need the following definitions which are used specifically for proving local exponential

stability.

Definition 3.3.2 Let

Lreg(ϕr(q), r)
∆
= sup {L ∈ R | q ∈ ϕ−1

r ([0, L]) \ {r} ⇒ dϕr(q) 6= 0
}

Lreg(ϕ,Q)
∆
= inf {Lreg(ϕr(q), r) | r ∈ Q}

A tracking error function ϕ is uniformly quadratic if Lreg(ϕ,Q) > 0 and if, for all

L ∈ (0, Lreg(ϕ,Q)) and r ∈ Q, there exist two constants 0 < a ≤ b such that for all

q ∈ ϕ−1
r (BL(0))\{r}, we have

0 < a ‖dϕr(q)‖2
g ≤ ϕ(r, q) ≤ b ‖dϕr(q)‖2

g

where for ‖ · ‖g denotes the induced or operator norm w.r.t. the norm associated to

the inner product g.

Next we need to describe velocity error. This requires the concept of transport

map. A transport map T is a smooth mapping on a connected submanifold P of

Q × Q with point–wise behavior (r, q) 7→ GL(TrQ, TqQ) satisfying the property that

(r, r) 7→ id. In other words, a transport map is simply a construct through which

one can compare velocities which reside in different fibers of the tangent bundle TQ.

Thus, given a curve (r(t), q(t)) ∈ P one may define a velocity error in TqQ by

ė = q̇ − Tr→qṙ .

Upon close inspection one may find the above description of the transport mapping

to be a bit nebulous. To make this object concrete we recall bitensor fields (or
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alternatively, two-point tensor fields).

Remark 3.3.1 In [40] (pg. 48) two-point tensors were introduced. As is common

in the classic physics literature, this tensorial object was described in a coordinate

context and was thought of as a multidimensional array which acts on like indexed

objects. For example, in [40], we find T i′

j where (D′, C ′) and (D,C) are the (domain,

coordinate system) pair about two points p′ and p of a manifold Q. The object T i′

j

is viewed therein as a co-vector relative to coordinate transformations at p and a

vector relative to coordinate transformations at p′. Viewed as such, each index could

be covariantly differentiated according to the notation T i′

j;k or T i′

j;k′ . Furthermore,

transport of a vector vp ∈ TpQ to a vector v̄p′ ∈ Tp′Q would have been written as

v̄i′ = T i′

j vj.

Consider two finite dimensional vector spaces V and W of dimension n and m, re-

spectively. The space of linear functionals on each of V and W , denoted V ∗ and W ∗,

can be used to generate the tensor product V ∗ ⊗ W ∗, the vector space of bilinear

mappings on V × W of dimension nm. Selecting bases for V and W , the bilinear

mappings of V ∗ ⊗ W ∗ can be represented as n × m matrices.

Now suppose that, for p = (r, q) ∈ P ⊆ Q × Q, the vector spaces of concern are

TrQ and T ∗
q Q. Then the mapping T ∈ T ∗

r Q ⊗ TqQ takes a vector at r, say vr, and

a covector at q, say ωq, and maps them into R. So, T is like a (1, 1) tensor, but the

arguments of the map work over spaces based at different points.

Take under examination the disjoint union

BT0,1
1,0P

∆
=

⋃

p∈P

T ∗
r Q ⊗ TqQ.

BT0,1
1,0P is a vector bundle over P . As such, we may talk about a section φ : P →

BT0,1
1,0P or a bitensor field (or alternatively, two–point tensor field). Such a field

is smooth if the section p 7→ φp is a smooth mapping. We note that given a point

p = (r, q) ∈ P and a vector vr, or simply a pair (vr, q) ∈ TQ×Q, that φ(r,q)(vr, ·) = wq,

a vector above q. So, it becomes clear that we may, as is commonly done with the
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typical (1, 1) tensor, view the section φ as a mapping φ : p = (r, q) 7→ gl(TrQ, TqQ),

as previously discussed. i.e., a bitensor field provides a means of transporting vectors.

Further, the notion of being smooth is made concrete in this context by insisting

that X(r, q)
∆
= φ(r, q)(Y (r), ·) is a smooth section of the bundle Q × TQ whenever

Y ∈ X(Q).

The above discussion motivates the following definition, which can be found to be

completely equivalent to the vector bundle mapping approach to be found in [8].

Definition 3.3.3 (Transport Mapping) A Transport Mapping is a smooth biten-

sor field T on a connected submanifold P of Q × Q satisfying the properties:

1. Tr→q ∈ GL(TrQ, TqQ).

2. Tr→r = id.

where the notation Tr→q
∆
= T(r,q) is used for clarity.

A given transport mapping is said to be compatible with configuration error ϕ if

it satisfies the relation

dϕq(r) = −T∗
r→q (dϕr(q)) .

In order to understand conditions to be delineated in the statement of Bullo

and Murray’s theorem below, one needs a definition of the covariant derivative of a

transport mapping, ∇T. As a bitensor, T(r, q)(vr, ·), vr ∈ TrQ, is a smooth vector

field over Q. As such, given a vector wq, we can take the covariant derivative of this

vector field, that is, ∇wqT(r, q)(vr, ·) makes sense. For understanding, it is helpful

to consider the case of a parameterized curve q(u). In this situation, the assignment

u 7→ T(r, q(u))(vr, ·) describes a vector field, call it V , along the curve q, and DV
du

=

∇q′T(r, q(u))(vr, ·). So, we define ∇T : TP → TQ by the assignment (vr, wq) 7→
∇wqT(r, q)(vr, ·). As stated in [8], ∇T is a vector bundle map.

Finally we have need of the dissipation function.



CHAPTER 3. GEODESIC–BASED PD CONTROL 42

Definition 3.3.4 (Linear Rayleigh Dissipation Function (LRDF)) A Linear

Rayleigh Dissipation Function is a smooth, self-adjoint, positive-definite tensor field

Kd(q) : TqQ → T ∗
q Q .

We note immediately that g♭ is a LRDF. The LRDF along the velocity error allows

us to abstract the dissipation term of the spring.

Finally, we conclude this section by stating the main theorem of [10]. It should

be noted that in this paper, P = Q × Q was used as the domain of definition for the

error function, etc.

Theorem 3.3.1 (Bullo and Murray) Consider the control system in equation (3.3),

and let {r(t), t ∈ R+} be a twice differentiable reference trajectory. Let ϕ be an er-

ror function, T a transport map satisfying the compatibility condition and Kd be a

dissipation function.

If the control input is defined as F = FPD + FFF with

FPD = −dϕr(q) − Kdė

FFF = g♭(q)

(
(∇q̇Tr→q)ṙ +

d

dt

∣∣∣
q fixed

(Tr→qṙ)

)

then the curve q(t) = r(t) is stable with Liapunov function

Wtotal(q, q̇, r, ṙ) = ϕ(r, q) +
1

2
g(ė, ė) .

In addition, if the error function ϕ satisfies the quadratic assumption with a constant
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L, and if the boundedness assumptions

d1 ≤ inf
q∈Q

‖Kd(q)‖g ≤ sup
q∈Q

‖Kd(q)‖g ≤ d2

sup
(r,q)∈Q×Q

‖∇Tr→q‖g < ∞

sup
(r,q)∈Q×Q

‖∇dϕr(q)‖g < ∞

sup
t∈R

‖ṙ‖g < ∞

where 0 < d1 ≤ d2, hold, then the curve q(t) = r(t) is exponentially stable with

Liapunov function Wtotal from all initial conditions (q(0), q̇(0)) such that

Wtotal(0) < L .

3.4 Intrinsic Tracking Control

Theorem 3.3.1 of Bullo and Murray does not tell one how to actually select the

configuration error ϕ and a compatible transport mapping T. As discussed in the

introduction, if the configuration manifold is a Lie group, there are candidates which

present themselves as obvious on account of the group structure. In fact, if one

simply takes a smooth function f on G which is quadratic about the identity element

e, then ϕ(r, q) = f(r−1q) offers itself immediately as a possibility for design. Using

the machinery of generators associated with the Lie algebra g corresponding to G one

can also easily transport velocities. However, there is, in our view, a natural selection

in all cases which in many instances provides the desired pair. Namely, we suggest,

in the spirit of [9], that one use the constructs of intrinsic geometry. In this section

we show, as a corollary to theorem 3.3.1, that the function

ϕ(r, q) =
1

2
dist(r, q)2 (3.4)
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and the traditional parallel transport along length minimizing geodesics form a com-

patible configuration error-transport mapping pair. As we shall see, in accord with

our desire, the tracking design which results from (3.3.1) will tend always to push

along the trace of the geodesic connecting r to q and with a strength proportional to

the distance separating them.

To begin we must be careful to specify an appropriate domain P ⊆ Q × Q for ϕ.

Namely, one in which it ϕ shall be smooth. Our stratagem is this. We will specify a

submanifold of Q × Q in which (3.1) holds and such that lγ(r, q) depends smoothly

on p = (r, q) ∈ P .

Assume that Inj(Q) is non-degenerate and consider the connected fibered sub-

manifold

BQInj(Q) =
{

v ∈ TQ :
√

g (v, v) < Inj(Q)
}

.

of TQ (see Appendix D for the details of the bundle structure). The canonical charts

inherited from TQ do not immediately provide local trivializations about points of

BQInj(Q), as the image of the coordinate neighborhoods have the form

{
(qi, v

j) ∈ ψα(Uα) × R
n :

√
gijvivj < Inj(Q)

}
.

Nevertheless, using the coordinate neighborhoods (Uα, ψα) of Q and the canonical

basis fields associated to these charts, such local trivializations can be constructed.

Since the Riemannian metric is a smooth (0, 2) tensor, we may act the Gram–Schmidt

procedure upon the canonical basis field to obtain an orthonormal frame field. With

respect to this frame field we may define coordinates on each vector space π−1(q)

in the same manner that coordinates are defined on these fibres with respect to the

canonical fields and thus we may define a chart mapping, say ψ̂α, on TUα. The image

of π−1(Uα) under ψ̂α has the desired form

{
(qi, w

j) ∈ ψα(Uα) × R
n|

√
δijwiwj < Inj(Q)

}
= ψα(Uα) × BInj(Q)(0).
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Thus, BQInj(Q) is, in fact, a fiber bundle in its own right and we refer to it as the

ball–bundle.

We now construct an embedding of BQInj(Q) into Q × Q. The embedded space

will be the appropriate domain for which the general configuration error defined in

the next section will be smooth.

Proposition 3.4.1 Let f : BQInj(Q) → Q × Q be defined as

f(v) = (π(v), exp(v)) . (3.5)

Then f is an embedding.

If r = π(v) = π(v′) then v, v′ ∈ TrQ. As a map on any fixed base point, expr is a

diffeomorphism and hence expr(vr) = expr(v
′
r) implies v = v′. Therefore, f is 1–1.

All that remains is to show that f is differentiable with differentiable inverse in a

neighborhood of each point.

Consider the map f in its local form

F (~r,~v) = (~r, Exp(~r,~v)) .

The exponential map exp is a differentiable function. Thus all partials of Exp exist

and are smooth. The tangent mapping of F has the following local form:

TF =



I T Exp~v

0 T Exp~r



 .

Given any fixed r ∈ Q, if v ∈ BInj(Q)(0) then expr(v) is not a conjugate point

by proposition 3.2.4. Thus T Exp~r(~v) is injective by definition 3.2.3. That TF is

injective at each point (~r,~v) follows as the diagonal blocks are injective. By the

inverse function theorem, f is a local diffeomorphism. Since the local diffeomorphism

maps local neighborhoods into neighborhoods of Q × Q, f is an embedding.
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Given a Riemannian manifold Q with non-zero injectivity radius, we define the

set

EQ
∆
= f(BQInj(Q)) .

From the charts on BQInj(Q) and the diffeomorphism f , we have a set of local triv-

ializations for EQ of the form provided in equation (3.4). As such, EQ is indeed a

fiber bundle with projection ρ : EQ → Q : (r, q) 7→ r. EQ is connected since f is a

continuous map of BQInj(Q).

From the above result we have the following needed result.

Corollary 3.4.1 Let Q be a manifold with Inj(Q) > 0. Then for p = (r, q) ∈ EQ,

there exists a unique (unit speed), length minimizing geodesic γ between r and q that

is differentiably dependent on r and q. As a consequence, equation (3.1) holds and

depends smoothly on p.

We have already discussed the existence and uniqueness of length minimizing seg-

ments. Since the geodesic vector field is smooth, geodesics γ are smooth functions of

initial data v ∈ BQInj(Q). Via the above bundle isomorphism, we see that they are

differentiable functions of the boundary data p.

The set EQ is a differentiable manifold with fiber over each point r diffeomorphic

to a normal neighborhood centered at r of radius Inj(Q). It is natural to think the

trajectory of the mechanical system as “linked”, through the fiber, to the reference

trajectory path in the base space. The equilibrium of a controlled system will be

considered to be the point of the “diagonal” of Q × Q, that is (r(t), r(t)) ∈ EQ.

Consider a curve p : R → EQ : u 7→ (r(u), q(u)) which does not touch the

diagonal of Q × Q. Composing this curve with lγ provides a length function with

domain, codomain R parameterized by u, which we shall also denote by lγ. To which

lγ we refer should be clear by context. Being it the case that lγ : EQ → R is smooth

and the curve p is smooth, lγ : R → R is smooth and we may take its derivative with

respect to the parameter u.
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Let η(s, u) be the family of length minimizing geodesics parameterized by arc

length, s, between r(u) and q(u). Select some fixed parameter value and call it u∗.

Taking γ(s) to be the minimizing geodesic between r = r(u)|u∗ and q = q(u)|u∗ we see

that η(s, u) is a geodesic variation of γ(s) with boundary values η(s, u)|s=lγ(u) = q(u)

and η(s, u)|s=0 = r(u). That η(s, u) depends smoothly on the boundary values q(u)

and r(u) follows from proposition 3.4.1.

One finds dlγ

du
to be related to the partials of η at u∗ through the metric by the

first variation formula, which is stated in the following lemma.

Lemma 3.4.1 (Gauss) Let the curve p and the geodesic variation η(s, u) be as de-

scribed in the above discussion. Then

dlγ

du

∣∣∣
u∗

= g

(
dq

du

∣∣∣
u∗

,
∂η

∂s

∣∣∣
(lγ(u∗),u∗)

)
− g

(
dr

du

∣∣∣
u∗

,
∂η

∂s

∣∣∣
(0,u∗)

)

This lemma proves to be invaluable as it is the foundation of the following vital result.

We know that lγ is smooth on EQ and thus the differentials dlγq and dlγr exist.

Using the preceding lemma, we can calculate them.

Corollary 3.4.2 Let the circumstances be those given in Lemma 3.4.1. Then the

differential of the length function with respect to q and to r are, respectively

dlγr (q) = g♭(q)
dγ

ds
(lγ(r, q)) (3.6)

dlγq (r) = −g♭(r)
dγ

ds
(0) (3.7)

where, in the right members of these equations, γ is the unique geodesic segment

connecting q to r.

Consider the vector vq and let σ(u) ∈ vq. Using the curve σ we may create, in accord

with the above discussions, a curve p(u) = (r, σ(u)) ∈ EQ and an associated geodesic

variation η(s, u) in which one endpoint, namely r, is fixed. It follows from Lemma
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3.4.1 that

[dlγr ](vq) = vq(l
γ
r )

=
d

du
lγr (u)

∣∣∣
u=0

= g

(
vq,

∂η

∂s
(lγ(0), 0)

)

= g

(
vq,

dγ

ds
(lγ(r, q))

)

=

[
g♭(q)

dγ

ds
(lγ(r, q))

]
vq

Since such is the case for all vq ∈ TqQ the result follows. Eq. (3.7) follows along

exactly the same lines. We note the analogy between Corollary 3.4.2 and Lemma

1 of [9]. In another parallel with [9], we remark that dγ
ds

is the geodesic versor. In

the case of the Euclidean sphere, the metric was induced from the ambient space and

thus g♭ = id.

We now show that (3.4) is a local uniformly quadratic tracking error function.

Theorem 3.4.1 (Intrinsic Configuration Error) Assuming Inj(Q) > 0, the func-

tion

ϕ(r, q) =
1

2
(lγ(r, q))2 (3.8)

is a uniformly quadratic tracking error function with Lreg = 1
2
(Inj(Q))2.

The proof that this mapping is tracking error function is indeed simple if we make

use of a normal chart (U, ψ) centered at r. In such a chart we have the representation

Φr(q1, . . . , qn) = 1
2
(q2

1 + . . . + q2
n). The local expression of the differential is then

(dΦr)ψ(q) =
[
q1 . . . qn

]
. So (dΦr)ψ(r)=0 = 0 and r is a critical point of ϕr. This

is a geometric property and does not depend on the local representation. Since r is

a critical point of ϕr, the Hessian of this function Hess ϕr is coordinate independent

and is positive definite provided the matrix
[

∂2Φr

∂qi∂qj

]
is positive definite for any chart

whatsoever we should choose. Using normal coordinates we obtain the identity matrix

which completes the discussion concerning the conjecture that ϕr is a tracking error
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function.

We now demonstrate the fact that ϕ is uniformly quadratic with Lreg = 1
2
(Inj(Q))2.

Let r ∈ Q. For a given geodesic γ emanating from r, ϕ is defined only within the

injectivity radius and dϕr 6= 0 for every interval [0, L] with L < 1
2
(Inj(Q))2. Hence

Lreg(ϕr(q), r) = 1
2
(Inj(r))2 for each r ∈ Q. Taking the infimum over all r ∈ Q, we

have Lreg(ϕ,Q) = 1
2
(Inj(Q))2.

Continuing we consider ‖dϕr(q)‖g. Using equation (3.6) we discover by direct

calculation that ‖dϕr(q)‖2
g = dist2(r, q). Using the Cauchy-Schwarz inequality, we

have, suppressing the evaluation of dγ
ds

at lγ(r, q),

|dϕr(q)vq|2 = (lγ)2g

(
dγ

ds
, vq

)2

≤ (lγ)2g

(
dγ

ds
,
dγ

ds

)
g (vq, vq)

= (lγ)2g (vq, vq) .

Taking the square root of both sides and then the supremum over |vq| = 1, it is clear

that ‖dϕr(q)‖g can be no greater than lγ . If we take vq = dγ
ds

(lγ(r, q)), the supremum

is reached and thus the result. Taking a = b = 1
2

in definition 3.3.2 completes the

discussion.

Now we set up the compatible transport mapping. We begin with the proper

definition of parallel transport. Let vr ∈ TrQ and σ : I → Q be a curve in Q with

σ(0) = r, 0 ∈ I. The parallel transport of vr from r to a point σ(u∗) = q is the

map σr→q : TrQ → TqQ : vr 7→ σr→qvr
∆
= V (u∗), where V (u) is the solution to the

differential equation

∇dσ
du

V = 0, V (0) = vr . (3.9)

We now move to show that parallel transport defines a transport mapping on EQ.

Our argument will need the aid of the following lemma, which is a standby of the

science with which we are involved.

Lemma 3.4.2 The parallel transport of two vectors vr, wr ∈ TrQ from a point r to
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another point q along a curve γ ⊂ Q preserves the length of each vector and the inner

product between the transport of vr, wr in the Riemannian metric g (·, ·). That is,

|vr| = |γr→qvr| and g (vr, wr) = g (γr→qvr, γr→qwr).

Theorem 3.4.2 (Intrinsic Transport Map) Parallel transport along length min-

imizing geodesics is a transport mapping on EQ as given by definition 3.3.3 .

Writing the parallel transport equations out in coordinates we get the IVP

dvk

du
+ Γk

ijv
j dσi

du
= 0 k = 1, . . . , n

with vk(0) = vk
0 . Thus we get a linear (possibly nonautonomous) system and a unique

solution with infinite continuation is assured. The solution at u∗ is determined by the

associated state transition matrix Φ(u∗, 0). So we see that, within a chart, parallel

transport is, point–wise, a smooth linear mapping with local representation Φ. This

conclusion, however, remains true even if we have need of involving multiple charts

along the way from r to q. It is, therefore, clear that σr→q describes a bitensor field

over EQ.

By the definition of parallel transport, σr→r = id. Further, Lemma 3.4.2 in-

dicates that parallel transport preserves frames. Thus, we also know that σr→q ∈
GL(TrQ, TqQ). Should we show that σr→q is smooth, then we may conclude that it

is a transport mapping. We now take the argument up.

The geodesic field on TQ is smooth. So, by the theory of ordinary differential

equations, the geodesics depend smoothly on the initial data. Further, since f is a dif-

feomorphism of BQInj(Q) onto EQ, the length minimizing geodesics depend smoothly

on the boundary data (r, q) ∈ EQ. Thus the field described by equation (3.9) is

smoothly parameterized by the boundary data (r, q) ∈ EQ. Hence, calling upon the

theory of ordinary differential equations once more, we determine that the solutions

V (u; vr, (r, q)) depend smoothly on the initial condition vr and the boundary data

(r, q). Therefore, σr→q takes smooth fields to smooth sections of Q × TQ. That is,

for Y ∈ X(Q), V (1; Y (r), (r, q)) is a smooth section of Q × TQ.
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It remains to show that this transport mapping is compatible with our selection

of ϕ.

Theorem 3.4.3 (Compatability) Parallel transport along length minimizing

geodesics and the tracking error function (3.8) are compatible in the sense that

dϕq(r) = −γ∗
r→q (dϕr(q)) .

Since dϕr(q) = lγ(r, q)dlγr (q), dϕq(r) = lγ(r, q)dlγq (r), and γ∗
r→q is a linear operator,

we need only show

d(lγq (r)) = −γ∗
r→q (d(lγr (q))) .

Consider an arbitrary vector vr ∈ TrQ. Computing directly:

[dlγq (r)](vr)
eq.(3.7)

=

[
−g♭(r)

dγ

ds
(0)

]
(vr)

= −g

(
dγ

ds
(0), vr

)

Lm.3.4.2
= −g

(
γr→q

dγ

ds
(0), γr→qvr

)

= −g

(
dγ

ds
(lγ(r, q)), γr→qvr

)

=

[
−γ∗

r→q

(
g♭(q)

dγ

ds

∣∣∣
lγ(r,q)

)]
(vr)

eq.(3.6)
=

[
−γ∗

r→q (dlγr (q))
]
(vr) .

This calculation holds for all vr ∈ TrQ and so the result.

Theorems 3.4.1 and 3.4.3 ensure that the objective of this paper is obtained.

Namely we have constructed a generalization of [9], or an instance of theorem 3.3.1,

in which the intrinsic geometry of an abstract machine creates a closed-loop system

analagous to a mass-spring–damper.

Corollary 3.4.3 Suppose that one has an abstract machine with dynamics given by

equation (3.3). Further assume that the machine’s configuration manifold Q has a
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positive injectivity radius. Let the control force be defined as F = FFB + FFF where

FFB = −α dϕr(q) − β g♭(q)ė

= −α g♭(q) grad ϕr − β g♭(q)ė

= −α dist(r, q) g♭(q)
dγ

ds
− β g♭(q)ė

ė = q̇ − γr→qṙ

FFF = g♭(q)

(
D

dt
γr→qṙ

)

where ϕ(r, q) is the tracking error function given in equation (3.8) and γ is the unique

minimizing geodesic between r(t) and q(t) at time t. Let

V (t) =
1

2
α dist2(r(t), q(t)) +

1

2
g (ė(t), ė(t))

be the Lyapunov candidate. Then, r(t) is stable and should the boundedness conditions

of theorem 3.3.1 be satisfied over P = EQ the curve r(t) is locally exponentially stable

from all initial conditions satisfying

dist2(r(0), q(0)) +
1

α
g (ė(0), ė(0)) < Inj(Q)2 . (3.10)

In the next theorem, we show that this particular design induces the mass–spring–

damper paradigm explicitly when the reference trajectory and mechanical system

initial condition belongs to TIm(γ). We shall also see that corollary 3.4.3 has another

advantage.

Theorem 3.4.4 Let r(t) be a smooth curve with image contained within the path of

a geodesic γ : R → Q, where Q is a manifold with positive injectivity radius. For any

initial condition of the mechanical system satisfying

1. Inequality 3.10,

2. q(0) ∈ Im(γ), and
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3. q̇(0) ∈ Tq(0)Im(γ)

the closed loop solution q to (3.3) under the control law of corollary (3.4.3) satisfies

the following:

1. q(t) lies in the trace of γ for all t > 0

2. q(t) = r(t) is exponentially stable with rate of convergence dictated by α and β.

Choosing a base point o ∈ Im(γ) and a unit tangent vector vo ∈ ToIm(γ), parameterize

the curve γ by the associated signed arc length measure s so that γ(s)
∆
= γ(s, vo). Let

the reference trajectory be parameterized by, say sr(t), so that

r(t) = γ(sr(t)) .

Now, let us assume momentarily or “guess” that the signed arc length difference

∆s(t), where dist(r, q) = |∆s(t)|, between the points r(t) and q(t) satisfies the mass–

spring–damper differential equation:

∆s̈ = −α∆s − β∆ṡ . (3.11)

We show that the solution to the closed loop dynamic system under the control action

of corollary 3.4.3 is

q(t) = γ(sr(t) + ∆s(t)) .

During our computations we will suppress the functional dependence on t.

Taking derivatives, we have the velocity vectors

q̇ =
dγ

ds

∣∣∣
(sr+∆s)

(ṡr + ∆ṡ)

ṙ =
dγ

ds

∣∣∣
sr

ṡr.
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The parallel transport of ṙ(t) to the base point q(t) is given by

γr→qṙ = γr→q
dγ

ds

∣∣∣
sr

ṡr

=
dγ

ds

∣∣∣
(sr+∆s)

ṡr .

So,

ė = q̇ − γr→qṙ

=
dγ

ds

∣∣∣
(sr+∆s)

∆ṡ.

Taking the covariant derivative of the velocity error vector, we have, suppressing the

evaluation of dγ
ds

at sr + ∆s,

Dė

dt
=

D

dt

(
dγ

ds
∆ṡ

)

=
D

dt

(
dγ

ds

)
∆ṡ +

dγ

ds
∆s̈

=
D

ds

(
dγ

ds

)
(ṡr + ∆ṡ) ∆ṡ +

dγ

ds
∆s̈

=
dγ

ds
∆s̈

as D
ds

dγ
ds

= 0 due to the fact that γ is a geodesic. Substituting (3.11), we have

Dė

dt
=

dγ

ds

∣∣∣
(sr+∆s)

(−α∆s − β∆ṡ)

= −α gradϕr(q) − β ė

Under the operator g♭(q) we arrive at the closed loop dynamics given by the control

law of Corollary 3.4.3. By uniqueness of solutions we find that our “guess” of the

mass–spring–damper dynamics in (3.11) was correct.

Furthermore, note that the Lyapunov function presented in Corollary 3.4.3 takes
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the form

V (t) =
α

2
∆s2 +

1

2
g (ė, ė)

=
α

2
∆s2 +

1

2
∆ṡ2

∣∣∣∣
dγ

ds

∣∣∣∣
2

=
α

2
∆s2 +

1

2
∆ṡ2

on the geodesic. This is a Lyapunov function we’re used to seeing for the mass-spring

damper.

For this restricted case, we can design the arc length and arc length rate to be

over-damped, critically damped, or under-damped through judicious choice of positive

constants α and β. Hence, this is a very “practical” design tool for those interested in

tuning the performance of an abstract machine. Imbedded in this geometric control

methodology is a second order linear, time-invariant ODE in kinetic energy distance.

It is seen that the relative kinetic energy dissipates as the mechanical system’s tra-

jectory converges to the reference trajectory.

Another interesting consequence unfolds if we further restrict our considerations

to the set point control problem with zero initial conditions.

Corollary 3.4.4 Let S(r)
∆
= Q \ C(r). Let ṙ(t) = q̇(0) = 0. Then there exists a

control law such that q(t) exponentially converges to r for all q(0) ∈ S(r).

Choose α and β as to ensure the ODE in equation (3.11) is over-damped. The

definitions for arc length and parallel transport can be extended along each geodesic

up until its intersection with the cut locus. The arc length is strictly decreasing

and the trajectory length can never leave the geodesic between r and q(0). The

convergence is exponential by the above argument.
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3.5 The Assumption Inj(Q) > 0

It behooves us to at least discuss that assumption which drives the use of intrinsic

mechanisms for control and that assumption is that the injectivity radius of the

abstract machine along its desired motion is nonzero. Being a bit more restrictive,

let us, as we have done heretofore, consider only the case of the geodesically complete

manifold and the condition that the injectivity radius of the machine is nonzero.

In several instances, which we shall delineate, certain other properties of the ab-

stract machine’s Riemannian structure ensures us that this focal assumption is satis-

fied. Let us begin with those which provide the greatest dividends w.r.t. this particular

assumption. These are the suppositions which drive the theorem of Hadamard:

Theorem 3.5.1 (Hadamard; As Stated in [13]) Let Q be a complete Rieman-

nian manifold, simply connected, with sectional curvature K(r, σ) ≤ 0 for all r ∈ Q

and for all σ ⊆ TrQ. Then Q is diffeomorphic to R
n, n = dim Q; more precisely expr

is a global diffeomorphism.

Thus we see that under these assumptions none of the complications which we have

previously discussed arise and Inj(Q) = ∞. The concern is then shifted to the other

assumption made in course to 3.4.3. Namely, the boundedness assumptions. Here we

should say that is seems to be the case that these assumptions are gratuitous barring

the desire to guarantee exponential stability. In fact, the control design works well

for those machines which simply satisfy those requirements for Hadamard’s theorem.

Example 3.5.1 (Tracking in the Poincarè Plane) We take up for study here the

Poincarè half-plane model of Hyperbolic geometry. Consider the upper half plane U

as an open submanifold of R
2. By restriction, the standard chart for R

2, becomes a

global chart for U and we make use of the corresponding coordinate system (u, v). We

impose upon this smooth manifold the metric ds2 = 1
v2 (du2 + dv2), which has compo-

nents g11 = g22 = 1
v2 and g12 = g21 = 0. Thus, we acquire a Riemannian manifold

H
2 which is said to be conformal with ruler function h = v. By assuming the control

co-distribution F = {du, dv}, we complete the construction of an abstract machine.
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Now, what of the injectivity radius of this machine? H
2 is complete and clearly

simply connected. Further, it is well known that hyperbolic space has constant sectional

curvature K(Hn, σ) = −1 for all tangent planes σ. Thus, this machine satisfies the

hypotheses of Hadamard’s theorem and Inj(H2) = ∞. This tells us that our geometric

control constructs are globally well defined as is the corresponding control law.

In fact, everything is known of this machine. Free motions are vertical lines and

semicircles orthogonal to the u–axis. For the pair (R,Q) ∈ H
2 defining the “line”

(semicircle) with “endpoints” (X,Y ) we have

dist(R,Q) = ln

(
RX QY

RY XQ

)

where juxtaposition with overbar indicates Euclidean distance. Likewise there is a

closed form coordinate expression of the parallel transport operator for a given pair

(R,Q), however, we will spare the detail and simply present the result of having put

the controller to action. In Figure 3.1 we illustrate the result of tracking the circular

reference r(t) = (ur(t), vr(t)) = (0.5 cos(t), 0.5 sin(t) + 1) for the zero velocity initial

position q(0) = (uq(0), vq(0)) = (1, 1). Note that at two instances, including the

initial, we indicate that line connecting the machine configuration with that of the

reference.

Another hypothesis with wide sweeping implications is that of compactness. If the

abstract machine’s configuration manifold is compact, then Inj(Q) > 0 and we are

guaranteed an exponential region of attraction, as the boundedness assumptions are

also met. This covers a good number of actual machines, such as robot manipulators,

whose configuration manifolds are the n-dim tori. Further, should one be able to

get some controlling bounds on a compact manifold’s sectional curvature, then more

definite information can be obtained. This brings us to the following theorems, each

of which provides definite estimates on Inj(Q).

Theorem 3.5.2 (Klingenberg; As Stated in [2]) If Q is a compact Riemannian

manifold with sectional curvature K ≤ ∆ everywhere then the injectivity radius of Q
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Figure 3.1: Tracking a circular trajectory in the Poincarè Plane

is not smaller than the lesser of the two numbers

1. π
∆

2. half the length of the shortest periodic geodesic.

The theorem of Cheeger aids in the assessment.

Theorem 3.5.3 (Cheeger; As Stated in [2]) The length of the periodic geodesics

on a compact manifold of given dimension can be controlled from below with the three

following quantities:

1. a lower bound δ for the sectional curvature

2. a lower bound for the volume Vol(Q) and

3. an upper bound for the diameter diam(Q).

Getting tighter we have

Theorem 3.5.4 (Klingenberg; As Stated in [2]) Let Q be a compact, oriented,

and simply connected manifold with 0 < K ≤ ∆. If either
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1. Q has odd dimension and satisfies the “pinching” hypothesis

δ ≤ K ≤ ∆

with δ
∆

> 1
4

or

2. Q has even dimension

then the injectivity radius of Q satisfies

Inj(Q) ≥ π√
∆

.

As an application of this sections geodesic–based control design along with the cor-

responding cut locus and injectivity radius issues see Section 3.6 wherein we consider

the double gimbal system.

3.6 The Geometry of the Double Gimbal

To undertake the general PD control design of Theorem 3.3.1 for the double gimbal

system it is necessary to identify 1) a notion of intrinsic distance, 2) mass preferential

directions, and 3) a consistent method for comparing velocities in this space. We use

the mass distribution of the double gimbal system to induce a Riemannian geometry

on T2. It is this geometry that provides the extra structure needed to construct

configuration and velocity errors for a geometric based PD control logic for the double

gimbal system. That is, following Section 3.4, we use geodesic distance and parallel

transport along geodesics to construct a compatible configuration error and transport

map pair that are used in, for example, fixed point to fixed point tracking for the

double gimbal system. The configuration space of the double gimbal system is T 2 =

S1 ×S1. We realize this torus as a set of points in R
3 defined in (θ, φ) coordinates by
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the parameterization

T (θ, φ) =
[
(R + r cos (φ)) cos (θ) (R + r cos (φ)) sin (θ) r sin (φ)

]T

. (3.12)

where θ and φ in the interval [0, 2π) represent the spinning angles of the outer and

inner gimbals, respectively (see Figure 3.2). By appropriate restriction of the parame-

terization in (3.12), T2 is in fact a 2-dimensional manifold or a surface. Conspicuously

absent from this manifold description of the double gimbal system are the mass prop-

erties for each of the gimbals. The remedy to this obvious shortcoming is to equip

the torus T 2 with a metric or energy tensor, g which, simply stated, defines a mass

and configuration dependent weighted dot product on T 2.

For the double gimbal system the energy tensor is given in coordinate form by

g(v,v) = vTM(q)v , (3.13)

where v is a velocity vector and M(q) is the gimbal system’s generalized mass matrix

given by

M =



m11 m12

m12 m22



 =



Iz + Jz cos(φ)2 + Jx sin(φ)2 0

0 Jy



 . (3.14)

The inertias I and J denote, respectively, the body frame inertia scalars of the outer

and inner gimbals with respect to their mass centers. The conspicuous feature of the

energy tensor is the weights of the dot product defined are determined by the mass

distribution of the double gimbal system in a particular configuration.

A manifold equipped with a metric tensor is called a Riemannian manifold. The

manifold T 2 equipped with the energy tensor defined by the mass matrix in (3.14) is

a Riemannian manifold we call the double gimbal torus.

With the energy tensor for the double gimbal system in hand an intrinsic distance

function between two gimbal configurations can now be defined. First, the arclength
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of a curve segment on T 2, σ(u) for u in the interval [a, b] is given by

lσ(q, r) =

∫ u=b

u=a

√

g

(
dσ

du
,
dσ

du

)
du (3.15)

=

∫ u=b

u=a

√

m11

(
dθ

du

)2

+ 2m12
dθ

du

dφ

du
+ m22

(
dφ

du

)2

du, (3.16)

where σ(u) is a curve on T 2 defined by T (γ(u)) for some curve γ(u) = [θ(u), φ(u)] in

the gimbal parameter space. Now, given the arclength function, the intrinsic distance

between the gimbal configurations q = σ(a) and r = σ(b) is defined as

dist(q, r) = inf
σ

lσ(q, r), (3.17)

which gives the distance between q and r as the greatest lower bound on the lengths

of all smooth curves σ connecting q, r. The intrinsic distance function of (3.17) is an

immediate precursor to the definition of configuration error we use for inertia based

PD control in the control section.

For all but those pathological Riemannian manifolds, there is at least one curve

that yields the intrinsic distance. These special curves called geodesics are those

curves, out of all possible curves, that minimize the energy functional (see [27]),

E(α) =

∫ u=b

u=a

g

(
dα

du
,
dα

du

)
du. (3.18)

Equivalently, geodesics are those curves which satisfy the geodesic equations (the

analogue of Newton’s F=ma for F=0 and m=1 on a Riemannian manifold) given in

coordinates by
∑

j,k

d2αi

du2
+ Γi

jk

dαj

du

dαk

du
= 0. (3.19)

where Γi
jk are the Christoffel symbols, which for the double gimbal are those functions
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of the energy tensor and its partial derivatives, given by

Γi
jk =

∑

a

1

2
mia(mak,j + mja,k − mjk,a), (3.20)

where mia is the kth-row and ath-column entry of inverse of the mass matrix and ,i

denotes partial differentiation with respect to the ith coordinate, see Table 3.7. From

this point forward we use an implied summation on repeated upper and lower indices.

The geodesic equations (or minimal energy dynamics) for the double gimbal system

are

d2φ

du2
+

cos (φ) sin (φ) (J z − Jx)

Jy

(
dθ

du

)2

= 0, (3.21)

d2θ

du2
− 2 cos (φ) sin (φ) (Jz − Jx)

Iz + Jz (cos (φ))2 + Jx (sin (φ))2

(
dθ

du

)(
dφ

du

)
= 0. (3.22)

Double gimbal geodesics between gimbal configurations p and q serve as the mass

preferential directions of the PD control logic in the control section. With such a

critical role to play, it is important to have as full a library as possible of double

gimbal geodesics.

Analyzing Clairaut’s relation (see [12] for details) given by

m11θ̇ = constant =
√

m11 cos(ψ), (3.23)

where ψ is the angle between the geodesic and a parallel crossed by the geodesic leads

to geodesics which are qualitatively a) parallels: φ = k1 (constant) and b) meridians:

θ = k2 (constant) c) bound geodesics: those geodesics bound between two parallels and

d) asymptotic geodesics: those geodesics which approach φ = k3 (constant). These

solutions are summarized in Table 3.7 with plots given in Figure 3.3

The geodesic curves of Table 3.7 seen in Figure 3.3 are some of the minimal en-

ergy motions of the double gimbal system; motion here meaning the time evolution of

the gimbal system absent of external forces. For instance, the geodesic curve which



CHAPTER 3. GEODESIC–BASED PD CONTROL 63

asymptotically approaches φ = π/2 corresponds to the free/uncontrolled motion seen

in Figure 3.4. That is, given the right initial conditions, the double gimbal system can

point “due north” (without control). Since no geodesic asymptotically approaches all

gimbal pointing direction, some form of control is necessary to reach these configura-

tions.

We arrive at a simple model of the double gimbal that most engineers use in

practice when we move beyond the Christoffel symbols to the Riemann curvature

tensor (see Appendix A), the entries of which are constructed from the components

of the mass matrix and their first and second partial derivatives by the formula

R ρ
γαβ·

∆
= Γρ

γβ,α + Γ∆
γβΓρ

∆α − Γρ
γα,β − Γ∆

γαΓρ
∆β. (3.24)

A cursory analysis of the double gimbal data from Table 3.7 presents immediately for

inspection Jz = Jx, since not only does the Gauss curvature vanish but so also can

the geodesics equations be written as

d2φ

du2
= 0 and

d2θ

du2
= 0. (3.25)

We call this special gimbal system a flat double gimbal. The types of geodesics for

the flat gimbal are summarized by the first row of Table 3.7. Apparently, an absence

of curvature decouples the two gimbal motions while the presence of curvature acts

to couple the gimbal motions.

To this point we have developed an intrinsic distance function that, as in Section

3.4, we use to define the gimbal PD control configuration error

ϕ(r, q) =
1

2
dist(r, q)2.

We have also introduced geodesics which play the role of mass preferential directions

for the gimbal system.

Equally important to an inertia–based PD for the double gimbal is the notion
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of a transport mapping, Tr→q which is, essentially, a smooth mapping that carries

vr, a velocity of gimbal in configuration r, to Tr→q(vr), a velocity of the gimbal

in configuration q. A transport map is required since only velocities of the gimbal

system in the same configuration can be subtracted. Working in a metric or inertia

based geometry leads us to naturally choose parallel transport along the gimbal mass

preferential directions (geodesics) as the transport map to define PD control law

velocity error in the control section.

The coordinate free form of the parallel transport equations are

D

du
V = 0, (3.26)

where D/du is the covariant derivative (with respect to the Levi-Civita connection)

along a curve σ(u) and V is a vector field along σ(u). Irrespective of the exact

meaning of covariant, we deduce the solution vector field is, in some sense, constant

along the curve σ(u) (see Appendix A for the details of the Levi-Civita connection

and a covariant derivative). In coordinates the parallel transport equation are the

linear system of, possibly, non-autonomous ODE’s given by

dV i

du
+ Γi

jk

dγj

du
V k = 0, (3.27)

where Γi
jk are the Christoffel symbols from (A.32). For some examples of parallel

transport see Appendix A.

Using the square of geodesic distance to define a configuration error function and

parallel transport along geodesics defining to define a transport map, the tracking

control design of Section 3.4 can be implemented. Since this control logic depends on

finding a unique minimal geodesic between the desired configuration r and the actual

machine configuration q and since there might be multiple geodesics between the two

configurations, it is possible that the configuration error function is not well–defined.

For this reason, we must take care in ascertaining the stability region of the double

gimbal system.
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Figure 3.6 illustrates that there are gimbal configurations connected by two min-

imal geodesics, for example, the red point and any point on the “antipodal” ring.

As a result, the Hookean potential ϕ in (3.4) is not a configuration error function

on the whole torus. Consequently the PD control law based on this potential cannot

yield asymptotic stability for all reference configurations. Rather we must restrict

the neighborhood of stability. The solution to this technical restriction issue is the

subject of the rest of this section.

For the Hookean potential of (3.4) the problematic configurations q for each ref-

erence configuration r are collectively called the cut locus of r denoted by C(r) (cf.

Definition 3.2.1). By avoiding the cut locus we can then compute, as required by

Theorem 3.3.1, the differential of ϕ to be

−α dϕr(q) = −α g♭ (∇ ϕr) = −α dist(r, q) g♭

(
dγ

ds

)
,

where γ is the unit speed geodesic segment connecting q to r and g♭ is the Riemannian

metric thought of as a function acting on a vector.

To determine the extent of the cut locus for each point on the reference trajectory

r(t) is to know the stability region for the geodesic–based PD tracking control design

of the previous section. The best possible circumstance is to find the maximum

geodesic distance the actual configuration can be from any reference configuration

without encountering a point of the cut locus. This distance denoted by i(Q) is called

the injectivity radius of Q (cf. equation 3.2). Simply stated, the injectivity radius

defines the domain on which ϕ of (3.4) is in fact a configuration–error function.

That the configuration space Q = T2 of the double–gimbal system is compact

is sufficient to guarantee that i(T2) > 0. Consequently, there exists some region of

phase space determined by i(T2) for which an energy– and distance–based control

law provides local exponential stabilization for a given double–gimbal reference r. To

determine the extent of the stability region is to ascertain the magnitude of i(T2).

A result of Klingenberg (1959, see [2]), gives i(Q) as the smaller of 1) half the
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length of the shortest closed geodesic and 2) π divided by the least upper bound on

the sectional curvature (for the double–gimbal torus the sectional curvature is the

Ricci curvature and is found from the Riemann curvature using Ricij =
∑

a R···a
aij·).

This result is double edged, since now we must discover all the closed geodesics on the

double–gimbal torus. A general result of this nature is not known to the authors. We

suspect, however, that in many applied cases the meridian geodesics (see Table 3.7) are

the shortest closed geodesics. These geodesics correspond to the inner gimbal, which

is usually the lightest of the two gimbals, spinning through 2π radians. Any other

closed geodesic involves motion of the outer gimbal and thus requires more energy.

On taking half the natural length of a purely inner gimbal motion and comparing to

the sectional curvature bound, we conjecture half the meridian length to be a good

estimate of the injectivity radius i(T2) for many practical double gimbals, (see Figure

3.6). Future results in geometry may pave the way to tighter estimates.

Shifting our focus away from the general tracking problem to the fixed–point to

fixed–point maneuverers, a little more can be said for the double–gimbal system. In

the fixed point case the object of interest, as regards the region of stability, is the cut

locus of the gimbal. According to [2], the geodesics of product manifolds are precisely

those which project in each factor onto geodesics of the multiplicands. Since the

configuration space of the double gimbal system is T2 = S1 × S1, we can deduce

almost immediately that the cut locus of a given point must consist of two rings.

To address specifically this problem, a software package called Loki has been writ-

ten (see [38]) which computes the cut locus of an abstract, two–dimensional Rieman-

nian manifold. The software requires only that the metric tensor coefficients gij or a

parameterization for the two–dimensional manifold Q be given to compute the points

of control indecision. For the double–gimbal torus, the cut locus of any point appears

to be, as suspected, two rings seen for example in Figure 3.6. As a result, we conclude

that fixed–point to fixed–point control is indeed possible so long as the two rings are

avoided for each point on the geodesic segments connecting the two set–points (see

Figure 3.7). Hence we can perform a series of fixed–point to fixed–point operations
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as illustrated in Figure 3.7 in an energy efficient manner.

3.7 Conclussion

We would like to conclude by commenting on the larger picture, as we see it. For any

given fully-actuated abstract machine, Corollary 3.4.3 yields a control law specific to

its geometry as a Riemannian manifold. This makes Theorem 3.3.1 applicable to a

broader class of problems than was known before, but also introduces some additional

complexity to the control design. For those problems whose explicit solutions are

not known, numerical solutions to a geodesic boundary value problem need to be

computed in practice. However, the advantage of such a design clearly lies in the

result of Theorem 3.4.4 and Corollary 3.4.4. For those cases described, the closed

loop characteristic behavior is revealed to be that of a spring-mass-damper in the

geometry of the machine.

Due to our control design’s dependence on intrinsic geometry, nearly every result

providing insight into Riemannian geometry tells us something about the intrinsic

control of abstract machines. For instance, as addressed in Section 3.5, the theorems of

Klingenberg, Cheeger, and Buchner and Wall provide insight into just how the metric

structure of the machine’s manifold dictates controlling bounds over the stability

region of our geodesic based controller.

This is no little thing when we consider further those facts which indicate that

an abstract machine’s topology alone dictates its capabilities. We speak, of course,

of such results as the Morse inequalities, which dictate by means of a machine’s

Betti numbers the minimum number of equilibria under the influence of a potential.

Viewing the configuration error as a potential we see our control limitations. The

topology results, however, do not provide us insight into those configurations, for a

given machine, at which the physical limitations are felt. Rather this is the role of

the geometry (a.k.a. the metric). It doesn’t seem a stretch for us to say that the cut

loci indicates a machines physical limitations.
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Therefore, the assumption on the injectivity radius is not a frivolous supposition.

It is necessary in order to avoid those, so to speak, singular values of the machine’s

“natural” (intrinsically dictated by physical parameters) physical capabilities; where

the machine “naturally” gets jammed up or confused. There is no more simple il-

lustration of what we speak of than the tracking problem on the circle. Consider

chasing someone about a circular corridor. The cut locus is the the antipodal point.

It is near this location that the target desires to be in order to be avoid being caught.

If the target and the tracker both start out in equilibrium, it is also that place at

which there is no obvious direction in which to move and as a result the control law

is undefined and the tracker is jammed.

Figure 3.2: Coordinate system for the double gimbal. In a right handed coordinate
system, positive θ (the inner gimbal rotation angle) is measured from the X–axis to
the Y–axis while positive φ (the outer gimbal rotation angle) is measured from the
X–axis to the Z–axis.
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(a) (b) (c)

Figure 3.3: Some geodesics on the double gimbal torus. The black curves are the
gimbal geodesics γ(u) = (θ(u), φ(u)) mapped under T given in (3.12) and plotted on
the surface defined by the image of T . The parallel, asymptotic and bound geodesics
seen here are typical of any inertias fitting the description of the second line of Table
3.7. In this particular case, the inertias are in the ratio Iz = 2, Jz = 2, Jx = 1, Jy = 4
with initial conditions [θ = 0, φ = π/2, θ̇ = .8164965808, φ̇ = 0],[θ = 0, φ = 0, θ̇ =
.6123724355, φ̇ = .3535533910] and [θ = 0, φ = 1, θ̇ = .7794529900, φ̇ = 0] for the
parallel, asymptotic and bound geodesics, respectively. A geodesic on the double
gimbal torus is a minimal energy motion (time evolution absent external forces) of
the double gimbal system.

Figure 3.4: Asymptotic Motion. The motion of the double gimbal system approaches
the “due north” configuration as indicated by the asymptotic gimbal geodesic from
Figure 3.3. Since gimbal geodesics take into account the mass distribution of the
system the corresponding motions are the natural tendencies of the double gimbal
system. Since double gimbal geodesics are central to our inertia–based PD control
design, we work with, rather than against, the gimbals natural tendencies.
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Figure 3.5: The flat double gimbal. An example of the ”flat” double gimbal system is
constructed by mounting a uniform, spherically symmetric body (denoted J) to the
outer gimbal. Since the ratio Jz/Jx equals 1, the mass matrix of (3.14) becomes angle
independent and thus the “flat” gimbal inherits its flatness from an angle independent
kinetic energy metric. The angle independent metric of the flat gimbal has the effect
of decoupling the inner and outer gimbal free motions (see Figure 3.7). Since it is
geometrically straight forward to analyze, the flat double gimbal gives an intuitive
and simple example into not only the behavior but also the control of more difficult
(meaning ”non-flat” or coupled) double gimbal systems.

Figure 3.6: Klingenberg result and Loki computations on the double gimbal torus.
The blue geodesics emanate from a point p for a distance i(T2) given by the Klin-
genberg result which defines the red curve. The green geodesics emanate from point
p until they reach the two black rings called the cut locus C(p) as determined by
the software Loki. For inertia–based tracking control of the double gimbal system,
the region described by the red curve is a conservative estimate of the region of local
exponential stability. For fixed–point to fixed–point maneuverers, the black rings, are
the problematic reference configurations for local exponential stability of our inertia–
based PD control logic.
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Figure 3.7: Fixed–point to fixed–point tracking on double gimbal torus. The geodesic
segments given in black are the minimal energy motions between two successive double
gimbal configurations. That the cut locus is avoided for each point along the geodesics
indicates that our inertia–based PD control design is valid and proceeding in an energy
efficient manner.

Table 3.1: Geometric data for the double gimbal torus. The mass matrix entries
mij are substituted into eq. (A.32) to find the Christoffel symbols, Γi

jk which are
substituted into eq. (A.16) to lead to the function Rijkl. The Gauss curvature, K is
then computed by the above equation.

non-zero entries

mij m11 = Iz + Jz cos(φ)2 + Jx sin(φ)2, m22 = Jy

Γi
jk Γ1

12=− cos(φ) sin(φ)(Jz−Jx)

Iz+Jz(cos(φ))
2
+Jx(sin(φ))

2 , Γ2
11=

cos(φ) sin(φ)(Jz−Jx)
Jy

Rijkl R1212=
((Jz−Jx)(cos(φ))

4
+(2Iz+2 Jx)(cos(φ))

2−Iz−Jx)(Jz−Jx)

Iz+Jz(cos(φ))
2
+Jx(sin(φ))

2

K (Gauss Curvature) K = R1212/(m11m22)
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Table 3.2: Geodesic information for the double gimbal. For a double gimbal with
inertia data given in the left column, the geodesic types (parallel, meridian, bound or
asymptotic) are indicated.

Inertia Data Geodesic type

Parallel Meridian Bound Asymptotic
[φ = k1, θ ∈ (0, 2π)] [θ = k2, φ ∈ (0, 2π)] [φ1 ≤ φ ≤ φ2] [approach φ = k3]

Iz, Jz, Jx, Jy > 0 all all none none
Jz = Jx

Iz, Jz, Jx, Jy > 0 φ = 0, φ = π/2 all yes φ = π/2, φ = 3π/2
Jz > Jx φ = π, φ = 3π/2

Iz, Jz, Jx, Jy > 0 φ = 0, φ = π/2 all yes φ = 0, φ = π
Jz < Jx φ = π, φ = 3π/2



Chapter 4

A Frame Bundle Approach to

Nonholonomic Mechanical Systems

4.1 Introduction

In sections 4.2.1, 4.2.2, and 4.2.3 of this chapter we derive the constrained n-symplectic

dynamics two ways. The first requires that the soldering form of Appendix C be

adapted to the distribution. The second transforms the canonical dynamics of [28]

(expressed in terms of canonical coordinates on LQ with details given in Appendix

G) to the distribution adapted coordinates. We find that the two formulation are the

same (as they should be) and take this as a double check that they are correct.

Given the correct mathematical formulation of the constrained n-symplectic dy-

namics we look to a couple of examples (the vertical rolling hoop and a nonholonomic

constrained particle) to determine the applicability of these equations to mechanics

and control. We find indeed that some useful information comes out, namely an n-

symplectic formulation of the nonholonomic momentum equation of [3]. That there

are extra momenta (specific to the n-symplectic formulation and thus unobtainable

from the smaller geometric setting of TQ) and that the n-symplectic theory allows for

potentials (the gradients of which occur in not only the nonholonomic momenta but

also the the extra generalized momenta) indicate the feasibility of potential shaping

73
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and momenta based control design. For some preliminary thoughts along this line see

Appendix I.

4.2 n-Symplectic Constrained Dynamics

We summarize here the main theorem of this section. Sections 4.2.1, 4.2.2, and 4.2.3

should be viewed as the proof of this theorem.

Theorem 4.2.1 (N-Symplectic Constrained Dynamics) Given the n-symplectic rank

2 structure equation

dĝ(i2i1) = −2X
(i2
ĝ Ω̂i1)

the integral curve equations for the equivalence class of solution vector fields [X i2
ĝ ]

adapted to a constraint distribution ∆ (via the matrix G) are given by

q̇i2i4 =
∆

X
i2i4

=
∆

g
i7i5 ∆

Π
i2

i5
Gi4

i7
+ Extrai2i4 (4.1a)

∆̇

Π

i1i2

··i3
= Gi6

i3

[
−1

2

∆

g
i7i5

,i6

∆

Π
i1

i7

∆

Π
i2

i5
+2

−1

G
i8

[i4,i6]

∆

Π
(i1

i8

∆

X
i2)i4

]
+ Extrai1i2·

··i3
(4.1b)

where
∆

g
i3i4

= gi5i6
−1

G
i3

i5

−1

G
i4

i6
and where

Extrai2i4 = Bi2i4

Extrai1i2·
··i3

= Gi7
i3
C

(i1i2)
,i7

+ Gi7
i3
T

[i1i2]
i7

+
-1

G
i5

i8

∆

Π
(i1

i5
B

i2)i8
,i7

Gi7
i3
− Bi2i4

-1

G
i6

i9,i4
Gi9

i3

∆

Π
i1

i6

:= (Extra C)
(i1i2)·
··i3

+ (Extra T )
[i1i2]·
··i3

+ (Extra V P1)
(i1i2)·
··i3

+ (Extra V P2)
i1i2·
··i3

such that (C(q)) are scalar potential terms (functions of the configuration manifold

coordinates only), (B(q)) are vector potential terms (again functions of the configura-

tion manifold coordinates only) and (T ) are the terms characterizing the n-symplectic

gauge freedom. We emphasize that to obtain an actual system of dynamics for a

mechanical system one need specify

• A specific vector field, by specifying the i2 index.



CHAPTER 4. THE FRAME BUNDLE AND MECHANICAL SYSTEMS 75

• A rank 2 observable by specifying the components gij of a kinetic energy metric

tensor from which the components of the inverse energy tensor gij can be found.

• A matrix G defining how to transform from canonical coordinate vector field to

the vector fields defining the constraint distribution (see Appendix F )

• Any extra scalar, vector and/or gauge terms.

Applications and implementation of this theorem to the vertical rolling hoop and a

nonholonomic constrained particle are addressed in Section 4.3.

4.2.1 Decompose Soldering Form wrt Distribution

Using the coordinated local reference frame field f = ∂, eq. (C.25) is given by

cIdp = dqI ⊗ ∂I|p ⇐⇒ cθ̂u =
c

Π
J

I (u)dqI|u ⊗ rJ (4.2)

where q̄I = qI ◦ π and
c

Π
J

I (u) =
c

Π
J

I ((p, e)) are the canonical n-symplectic momenta

from Remark B.2.1 defined by

c

Π
J

I (u) = eJ(∂I|p) (u = (p, e) = arbitrary frame at p)

Using the distribtution adapted local reference frame field
∆

F = (
∆

fJ) = (
∆

RA,
∆

F i) with

corresponding distribution adapted co-frame field
∆
ω̄= (

∆

ω
J

) = (
∆

ω
A

,
∆

ω
k

) then

dq̄I(Xu) =
[
dqI ◦ dπ

]
(X|u)

=

[
∆

G
I

J (q)
∆

ω
J

|q
]

(π⋆Xu)

=

[
π⋆(

∆

G
I

J (q)
∆

ω
J

|q)
]

(Xu)

which implies

dq̄I|u = (
∆

G ◦π)I
J(u)

∆

ω
J

|u
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where ωJ|u ∆
= π⋆(ωJ|q) and thus, from the commutation of pull-back and differential,

dωJ|u = π⋆(dωJ|q)

The analog of eq. (4.2) is

∆Idp = ωJ ⊗ eJ|p ⇐⇒ ∆θ̂u =
∆

Π
J

I (u)
∆

ω
I

|u ⊗ rJ (4.3)

where
∆

Π
J

I (u) = eJ(
∆

fI |p) (4.4)

and u = (p, e) is an arbitrary frame at p ∈ π−1(Ũ) ⊂ LP .

Note 4.2.1 (Terminology) We call ∆θ̂u the distribution adapted soldering one-form.

As in section B.2, (qk,
∆

Π
J

I) and (qk,
c

Π
J

I) define distribution adapted coordinates and

canonical coordinates on π−1(Ũ) ⊂ LP , π−1(U) ⊂ LP , respecitively.

A natural question is: What is the relationship between the canonical soldering one

form and the distribution adapted soldering one form? . Let u = (p, E) ∈ π−1(Û) =

π−1(U) ∩ π−1(Ũ) be a point in the domain of both coordinate systems. On this

common domain, the two reference frame fields transform via some gp ∈ Gl(n) by

eI|p = gJ

I
(p)∂J|p.

As determined by eq. (F.8) we have gp = Gp and thus

∆

Π
J

I (u) = EJ(eI|p) = EJ(GK
I (p)∂K|p) = (G ◦ λ)K

I (u)
c

Π
J

K (u).

It follows that

−1(
∆

G ◦π)I
K(u)

∆

Π
J

I (u) =
c

Π
J

K (u). (4.5)
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and hence eq. (4.2) becomes

cθ̂u =
∆

Π
J

I (u)−1GI
K(p)dq̄K|u ⊗ rJ

=
∆

Π
J

I (u)
∆

ω
I

|u ⊗ rJ = ∆θ̂u (4.6)

where
∆

ω
J

|u = −1(
∆

G ◦π)I
K(u)dq̄K|u. That is, we have written the canonical soldering

form in terms of the adapted momentum coordinates.

4.2.2 Via Constrained Soldering Form Structure Equation

The claim is the n-symplectic constrained dynamics are given by

dĝi1i2 = −2
∆

X
(i2

ĝ
∆Ω̂i1) (4.7)

where
∆

X, ∆Ω̂ = d∆θ̂, and ĝ are adapted to the constraints via

∆

X
i2

=
∆

X
i2i3 ∂

∂
∆

q
i3

+
∆

X
i2i4

i5

∂

∂
∆

Π
i4

i5

∆θ̂i1 =
∆

Π
i1

i3

-1

G
i3

i4
dqi4

∆Ω̂i1 =
−1

G
i2

i3

[
d

∆

Π
i1

i2
∧dqi3

]
+

(
−1

G
i2

i4,i5

∆

Π
i1

i2

) [
dqi5 ∧ dqi4

]

ĝi1i2 =
∆

g
i3i4 ∆

Π
i1

i3

∆

Π
i2

i4
where

∆

g
i3i4

= gi5i6
−1

G
i3

i5

−1

G
i4

i6

with gi3i4 the inverse of the metric on the configuration manifold Q and G and −1G

really given by G ◦ λ and −1(G ◦ λ).

Now computing the lhs and rhs of eq. (4.7) give

∆

X
i2

∆Ω̂i1 = −
-1

G
i4

i8
δi1
i5

∆

X
i2i8

d
∆

Π
i5

i4
+

(
2

-1

G
i7

[i5,i8]

∆

X
i2i8 ∆

Π
i1

i7
+

-1

G
i4

i5

∆

X
i2i1

i4

)
dqi5
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which implies

−2
∆

X
(i2

∆Ω̂i1) = −2

(
−

-1

G
i4

i8
δ
(i2
i5

∆

X
i1)i8

)
d

∆

Π
i5

i4
−2

(
2

-1

G
i7

[i5,i8]

∆

Π
(i2

i7

∆

X
i1)i8

+
-1

G
i4

i5

∆

X
(i2i1)

i4

)
dqi5

and

dĝ(i2i1) =

(
∆

g
i3i9

,i5

∆

Π
(i2

i3

∆

Π
i1)

i9

)
dqi5 +

(
2

∆

g
i4i3

δ
(i2
i5

∆

Π
i1)

i3

)
d

∆

Π
i5

i4

Equating coefficients gives

∆

g
i3i9

,i5

∆

Π
(i2

i3

∆

Π
i1)

i9
= −22

-1

G
i7

[i5,i8]

∆

Π
(i2

i7

∆

X
i1)i8

−2
-1

G
i4

i5

∆

X
(i2i1)

i4
(4.8)

2
∆

g
i4i3

δ
(i2
i5

∆

Π
i1)

i3
= 2

-1

G
i4

i8
δ
(i2
i5

∆

X
i1)i8

(4.9)

We first solve eq. (4.9): Unsymmetrizing we get

∆

g
i4i3

(
δi1
i5

∆

Π
i2

i3
+δi2

i5

∆

Π
i1

i5

)
=

-1

G
i4

i8

(
δi2
i5

∆

X
i1i8

+δi1
i5

∆

X
i2i8

)

which for i1 = i5 reduces to

(n + 1)
∆

g
i4i3 ∆

Π
i2

i3
= (n + 1)

-1

G
i4

i8

∆

X
i2i8

and thus
∆

X
i2i8

= Gi8
i4

∆

g
i4i3 ∆

Π
i2

i3
(4.10)

Now solving eq.(4.8) for the symmetrized coefficients
∆

X
(i2i1)

i4
gives

∆
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= Gi5
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= Gi5
i4

[
−1

2

∆

g
i3i9

,i5

∆

Π
i1

i3

∆

Π
i2

i9
−

-1

G
i7

[i5,i8]

(
∆

Π
i1

i7

∆

X
i2i8

+
∆

Π
i2

i7

∆

X
i1i8

)]
(4.11)
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We now have the equivalence class of vector fields [
∆

X ĝ] given by

[
∆

X
i2

ĝ ] =
∆

X
i2i8 ∂

∂
∆

q
i8

+

(
∆

X
i2i1

i4
+T

[i2i1]
i4

)
∂

∂
∆

Π
i1

i4

=
∆

X
i2i8 ∂

∂
∆

q
i8

+

(
∆

X
(i2i1)

i4
+

∆

X
[i2i1]

i4
+T

[i2i1]
i4

)
∂

∂
∆

Π
i1

i4

with and unique vector field
∆

X ĝ corresponding to T
[i2i1]
i4

= −
∆

X
[i2i1]

i4
given by

∆

X
i2

ĝ =
∆

X
i2i8 ∂

∂
∆

q
i8

+
∆

X
(i2i1)

i4

∂

∂
∆

Π
i1

i4

(4.12)

=

(
Gi8

i4

∆

g
i4i3 ∆

Π
i2

i3

)
∂

∂
∆

q
i8

+

(
Gi5

i4

[
−1

2

∆

g
i3i9

,i5

∆

Π
(i2

i3

∆

Π
i1)

i9
−

-1

G
i7

[i5,i8]

(
∆

Π
i1

i7

∆

X
i2i8

+
∆

Π
i2

i7

∆

X
i1i8

)])
∂

∂
∆

Π
i1

i4

=

(
Gi8

i4

∆

g
i4i3 ∆

Π
i2

i3

)
∂

∂
∆

q
i8

+

(
Gi5

i4

[
−1

2

∆

g
i3i9

,i5

∆

Π
(i2

i3

∆

Π
i1)

i9
−2

-1

G
i7

[i5,i8]

∆

Π
(i2

i7

∆

X
i1)i8

])
∂

∂
∆

Π
i1

i4

4.2.3 Via Transform of Canonical Rank Two Solution

As addressed in Appendix G the equivalence class of solutions to

dĝ(i2i1) = −2X
(i2
ĝ Ω̂i1)

for the observable expressed as ĝ = g−1 · Π · Π + B · Π + C or in coordinates

ĝi2i1 = gi5i6Π
(i2
i5

Π
i1)
i6

+ Π
(i2
i8

Bi1)i8 + C(i2i1)

where C = C(q) are scalar potentials and B = B(q) are vector potentials is given by

[X i2
ĝ ] =

(
gi3i4Πi2

i3
+ Bi2i4

) ∂

∂qi4
−1

2

(
gi5i6

,i7
Π

(i2
i5

Π
i1)
i6

+ 2Π
(i2
i8

B
i1)i8
,i7

+ 2C
(i2i1)
,i7

+ T
[i2i1]
i7

) ∂

∂Πi1
i7

(4.13)

where C, and B, are the derivatives of scalar and vector potential terms and T is

the gauge term characterizing the equivalence class. The following transformation
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relations will be critical in transforming [X i2
ĝ ] to [X̃ i2

ĝ ] (which will then be compared

to
∆

X
i2

ĝ in eq. (4.12)).

∆

q
i3

= qi3 (4.14)
∆

Π
i3

i4
= Gi5

i4
Πi3

i5
(4.15)

Πi5
i6

=
-1

G
i8

i6

∆

Π
i5

i8
(4.16)

∆

g
i3i4

= gi5i6
-1

G
i3

i5

-1

G
i4

i6
(4.17)

∂

∂Πi1
i7

= Gi7
i8

∂

∂
∆

Π
i1

i8

(4.18)

∂

∂qi4
=

∂

∂
∆

q
i4
−

-1

G
i6

i3,i4
Gi3

i8

∆

Π
i7

i6

∂

∂
∆

Π
i7

i8

(4.19)

δi3
i4

=
-1

G
i5

i4
Gi3

i5
(4.20)

Note 4.2.2 Transformation equation (4.19) follows from

∂

∂qk
= Bl

k

∂

∂
∆

q
l
+ Ai

kj

∂

∂
∆

Π
i

j

=⇒ Bl
k =

∂
∆

q
l

∂qk
= δl

k and Ai
kj =

∂
∆

Π
i

j

∂qk
=

∂(Gn
j Πi

n)

∂qk
= Gn

j,kΠ
i
n

wherby eq. (4.26) G, becomes −
-1

G, G ·G and the result is obtained. Eq. (4.18) follows

similarily.

We first transform the ∂/∂qi4 term:

gi3i4Πi2
i3

= gi5i6δi3
i5

δi4
i6

Πi2
i3

= gi5i6
-1

G
i7

i5
Gi3

i7

-1

G
i8

i6
Gi4

i8
Πi2

i3
=

∆

g
i7i8 ∆

Π
i2

i7
Gi4

i8
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which gives

(
gi3i4Πi2

i3
+ Bi2i4

) ∂

∂qi4
=

(
∆

g
i7i8 ∆

Π
i2

i7
Gi4

i8
+ Bi2i4

)
∂

∂qi4
:= (

∆

X
i2i4

+Bi2i4)
∂

∂qi4
(4.21)

= (
∆

X
i2i4

+Bi2i4)
∂

∂
∆

q
i4
− Gi7

i8

(
-1

G
i5

i7,i6

∆

Π
i1

i5

[
∆

X
i2i6

+Bi2i6

])
∂

∂
∆

Π
i1

i8

(4.22)

We now transform the ∂/∂Πi1
i7

term:

−1

2

(
gi5i6

,i7
Πi2

i5
Πi1

i6
+ 2Π

(i2
i8

B
i1)i8
,i7

+ 2Ci2i1
,i7

+ T i2i1
i7

) ∂

∂Πi1
i7

(4.23)

= −1

2
Gi7

i8

(
gi5i6

,i7
Πi2

i5
Πi1

i6
+ 2Π

(i2
i8

B
i1)i8
,i7

+ 2Ci2i1
,i7

+ T i2i1
i7

) ∂

∂
∆

Π
i1

i8

(4.24)

where, in particular, the g, · Π · Π term becomes

gi5i6
,i7

Πi2
i5
Πi1

i6
=

(
∆

g
i3i4

Gi5
i3
Gi6

i4

)

,i7

-1

G
i8

i5

-1

G
i9

i6

∆

Π
i1

i8

∆

Π
i2

i9

=
∆

g
i3i4

,i7

∆

Π
i1

i3

∆

Π
i2

i4
+

∆

g
i3i4 (

Gi5
i3
Gi6

i4

)
,i7

-1

G
i8

i5

-1

G
i9

i6

∆

Π
i1

i8

∆

Π
i2

i9
.

Now the product rule again gives

∆

g
i3i4 (

Gi5
i3
Gi6

i4

)
,i7

-1

G
i8

i5

-1

G
i9

i6

∆

Π
i1

i8

∆

Π
i2

i9
=

∆

g
i3i4 [

Gi5
i3,i7

Gi6
i4

+ Gi5
i3
Gi6

i4,i7

] -1

G
i8

i5

-1

G
i9

i6

∆

Π
i1

i8

∆

Π
i2

i9

=
∆

g
i3i4

Gi5
i3,i7

-1

G
i8

i5

∆

Π
i2

i4

∆

Π
i1

i8
+

∆

g
i3i4

Gi6
i4,i7

-1

G
i9

i6

∆

Π
i1

i3

∆

Π
2

i9
(4.25)

From 0 = ∂(δ) = ∂(
-1

G ·G) one obtains

Gi5
i3,i7

= −
-1

G
i9

i6,i7
Gi5

i9
Gi6

i3
and Gi6

i4,i7
= −

-1

G
i8

i5,i7
Gi6

i8
Gi5

i4
(4.26)
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which can be substituted into eq. (4.25) to give

∆

g
i3i4

[
−

-1

G
i9

i6,i7
Gi5

i9
Gi6

i3

]
-1

G
i8

i5

∆

Π
i2

i4

∆

Π
i1

i8
+

∆

g
i3i4

[
−

-1

G
i8

i5,i7
Gi6

i8
Gi5

i4

]
-1

G
i9

i6

∆

Π
i1

i3

∆

Π
i2

i9

= −
∆

g
i3i4

Gi6
i3

∆

Π
i2

i4

-1

G
i8

i6,i7

∆

Π
i1

i8
−

∆

g
i3i4

Gi5
i4

∆

Π
i1

i3

-1

G
i9

i5,i7

∆

Π
i2

i9

= −
∆

X
i6i2 -1

G
i8

i6,i7

∆

Π
i1

i8
−

∆

X
i5i1 -1

G
i9

i5,i7

∆

Π
i2

i9

= −
-1

G
i8

i6,i7

(
∆

X
i6i2 ∆

Π
i1

i8
+

∆

X
i6i1 ∆

Π
i2

i8

)

= −2
-1

G
i8

i6,i7

∆

Π
(i2

i8

∆

X
i1)i6

(4.27)

It follows now that [X̃ i2
ĝ ] (i.e. [X i2

ĝ ] transformed to distribution variables) is given by

[X̃ i2
ĝ ] = (

∆

X
i2i4

+Bi2i4)
∂

∂
∆

q
i4

(4.28)

+Gi7
i8


−

1

2

∆

g
i3i4

,i7

∆

Π
i1

i3

∆

Π
i2

i4
+

-1

G
i5

i6,i7

∆

Π
(i2

i5

∆

X
i1)i6

︸ ︷︷ ︸
from eq.(4.27)

−
-1

G
i5

i7,i6

∆

Π
i1

i5

[
∆

X
i2i6

+Bi2i6

]

︸ ︷︷ ︸
from eq.(4.22)




∂

∂
∆

Π
i1

i8

(4.29)

+Gi7
i8

[
−Π

(i2
i8

B
i1)i8
,i7

− Ci2i1
,i7

− 1

2
T i2i1

i7

]
∂

∂
∆

Π
i1

i8

= (
∆

X
i2i4

+Bi2i4)
∂

∂
∆

q
i4

(4.30)

+Gi7
i8

[
−1

2

∆

g
i3i4

,i7

∆

Π
i1

i3

∆

Π
i2

i4
+

-1

G
i5

i6,i7

∆

Π
(i2

i5

∆

X
i1)i6

−
(

-1

G
i5

i7,i6

∆

Π
(i2

i5

∆

X
i1)i6

+
-1

G
i5

i7,i6

∆

Π
[i2

i5

∆

X
i1]i6

)]
∂

∂
∆

Π
i1

i8

+Gi7
i8

[
−

-1

G
i5

i7,i6

∆

Π
i1

i5
Bi2i6 − Π

(i2
i8

B
i1)i8
,i7

− Ci2i1
,i7

− 1

2
T i21

i7

]
∂

∂
∆

Π
i1

i8

(4.31)

where
∆

X
i2i4

=
∆

g
i7i8 ∆

Π
i2

i7
Gi4

i8
. Now for B = C = 0 and T i2i1

i7
= −2

-1

G
i5

i7,i6

∆

Π
[i2

i5

∆

X
i1]i6

a unique

vector X̃ i2
ĝ is obtained,

X̃ i2
ĝ =

∆

X
i2i4 ∂

∂
∆

q
i4

+ Gi7
i8

[
−1

2

∆

g
i3i4

,i7

∆

Π
1

i3

∆

Π
i2

i4
+2

-1

G
i5

[i6,i7]

∆

Π
(i2

i5

∆

X
i1)i6

]
∂

∂
∆

Π
i1

i8

(4.32)
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4.2.4 Integral curve Equations

From eq. (4.12) we have

∆

X
i2

ĝ =
∆

X
i2i8 ∂

∂
∆

q
i8

+ Gi5
i4

[
−1

2

∆

g
i3i9

,i5

∆

Π
(i2

i3

∆

Π
i1)

i9
−2

-1

G
i7

[i5,i8]

∆

Π
(i2

i7

∆

X
i1)i8

]
∂

∂
∆

Π
i1

i4

=
∆

X
i2i8 ∂

∂
∆

q
i8

+ Gi5
i4

[
−1

2

∆

g
i3i9

,i5

∆

Π
(i2

i3

∆

Π
i1)

i9
+2

-1

G
i7

[i8,i5]

∆

Π
(i2

i7

∆

X
i1)i8

]
∂

∂
∆

Π
i1

i4

and from eq. (4.32) we have

X̃ i2
ĝ =

∆

X
i2i8 ∂

∂
∆

q
i8

+ Gi5
i4

[
−1

2

∆

g
i3i9

,i5

∆

Π
(i2

i3

∆

Π
i1)

i9
+2

-1

G
i7

[i8,i5]

∆

Π
(i2

i7

∆

X
i1)i8

]
∂

∂
∆

Π
i1

i4

where
∆

X
i2i8

= Gi8
i4

∆

g
i4i3 ∆

Π
i2

i3
. The above vector fields are equal whereby we take this to

mean that they been double checked to be correct.

The integral curve equations for the vector fields
∆

X
i2

ĝ = X̃ i2
ĝ are

q̇i2i4 =
∆

X
i2i4

=
∆

g
i7i5 ∆

Π
i2

i5
Gi4

i7

∆̇

Π

i1i2

··i3
= Gi6

i3

[
−1

2

∆

g
i7i5

,i6

∆

Π
i1

i7

∆

Π
i2

i5
+2

−1

G
i8

[i4,i6]

∆

Π
(i1

i8

∆

X
i2)i4

]
(4.33)

Remark 4.2.1 If we want to include scalar potential terms (C(q)), vector poten-

tial terms (B(q)) and extra gauge terms (T ) we would add to the above equations

(following eq. (4.31))

Extrai2i4 = Bi2i4

Extrai1i2·
··i3

= Gi7
i3
C

(i1i2)
,i7

+ Gi7
i3
T

[i1i2]
i7

+
-1

G
i5

i8

∆

Π
(i1

i5
B

i2)i8
,i7

Gi7
i3
− Bi2i4

-1

G
i6

i9,i4
Gi9

i3

∆

Π
i1

i6

:= (Extra C)
(i1i2)·
··i3

+ (Extra T )
[i1i2]·
··i3

+ (Extra V P1)
(i1i2)·
··i3

+ (Extra V P2)
i1i2·
··i3

One can, for example, choose i2 = (A = 1) which selects the
∆

X
i2=(A=1)

vector field
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to find the integral curves for. This choice leads to , after splitting eq. (4.33) into

i1 = (i, 1, Ā) pieces, the equations

q̇i4 =
∆

g
i7i5 ∆

Π
A=1

i5
Gi4

i7
(4.34a)

∆̇

Π

A=1

i3
= Gi6

i3

[
−1

2

∆

g
i7i5

,i6

∆

Π
A=1

i7

∆

Π
A=1

i5
+2

−1

G
i8

[i4,i6]

∆

Π
A=1

i8
q̇i4

]
(4.34b)

∆̇

Π

Ā

i3
= Gi6

i3

[
−1

2

∆

g
i7i5

,i6

∆

Π
Ā

i7

∆

Π
A=1

i5
+

−1

G
i8

[i4,i6]

(
∆

Π
Ā

i8
q̇i4+

∆

Π
A=1

i8

∆

X
Āi4

)]
(4.34c)

∆̇

Π

i

i3
= Gi6

i3

[
−1

2

∆

g
i7i5

,i6

∆

Π
i

i7

∆

Π
A=1

i5
+

−1

G
i8

[i4,i6]

(
∆

Π
i

i8
q̇i4+

∆

Π
A=1

i8

∆

X
ii4

)]
(4.34d)

where
∆

X
ii4

=
∆

g
i7i5 ∆

Π
i

i5
Gi4

i7
and

∆

X
Āi4

=
∆

g
i7i5 ∆

Π
Ā

i5
Gi4

i7
.

Remark 4.2.2 The extra terms above are split amongst the above momentum equa-

tions as

ExtraA=1i4 = BA=1i4 (4.35a)

ExtraA=1A=1·
··i3

= (Extra C)A=1A=1·
··i3

+

=0︷ ︸︸ ︷
(Extra T )

[A=1A=1]·
··i3

+(Extra V P1)
A=1A=1·
··i3

+ (Extra V P2)
A=1A=1·
··i3

(4.35b)

ExtraĀA=1·
··i3

= (Extra C)ĀA=1·
··i3

+ (Extra T )ĀA=1·
··i3

+(Extra V P1)
ĀA=1·
··i3

+ (Extra V P2)
ĀA=1·
··i3

(4.35c)

ExtraiA=1·
··i3

= (Extra C)iA=1·
··i3

+ (Extra T )iA=1·
··i3

+(Extra V P1)
iA=1·
··i3

+ (Extra V P2)
iA=1·
··i3

(4.35d)

4.3 n-Symplectic Dynamics Examples

4.3.1 Vertical Rolling Hoop

Section Summary 4.3.1 (N-symplectic Form of the Dynamics of a Vertical Rolling

Hoop) For the choices of potentials C43(t, x, y) = 0 and C33, C13 and C23 given by
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equations

C33(t, x, y) = K (− cos (Ωt + φ0) y + sin (Ωt + φ0) x) where K = −mRωΩ

C13(t, x, y) =

(
−

∆

Π
1

2 (0)x+
∆

Π
1

1 (0)y

)
Ω

2
cos

(
Ω

2
t + φ0

)

+

(
−

∆

Π
1

1 (0)x−
∆

Π
1

2 (0)y

)
Ω

2
sin

(
Ω

2
t + φ0

)

C23(t, x, y) =

(
−

∆

Π
2

2 (0)x+
∆

Π
2

1 (0)y

)
Ω

2
cos

(
Ω

2
t + φ0

)

+

(
−

∆

Π
2

1 (0)x−
∆

Π
2

2 (0)y

)
Ω

2
sin

(
Ω

2
t + φ0

)

and for the specific n-symplectic momenta
∆

Π
i

j given by

∆

Π
1

1 (t) =
∆

Π
1

1 (0) cos

(
Ω

2
t + φ0

)
−

∆

Π
1

2 (0) sin

(
Ω

2
t + φ0

)

∆

Π
1

2 (t) =
∆

Π
1

2 (0) cos

(
Ω

2
t + φ0

)
+

∆

Π
1

1 (0) sin

(
Ω

2
t + φ0

)

∆

Π
2

1 (t) =
∆

Π
2

1 (0) cos

(
Ω

2
t + φ0

)
−

∆

Π
2

2 (0) sin

(
Ω

2
t + φ0

)

∆

Π
2

2 (t) =
∆

Π
2

2 (0) cos

(
Ω

2
t + φ0

)
+

∆

Π
2

1 (0) sin

(
Ω

2
t + φ0

)

where
∆

Π
i

j (0) are the initial momenta satisfying
∆

Π
1

1 (0)
∆

Π
2

2 (0)−
∆

Π
1

2 (0)
∆

Π
2

1 (0) 6= 0,

the n-symplectic momenta along with the consistent system of n-symplectic momenta

dynamics are given by

[
∆

Π
I

J(t)

]
=




∆

Π
1

1 (t)
∆

Π
1

2 (t) 0 0
∆

Π
2

1 (t)
∆

Π
2

2 (t) 0 0

mR cos(φ)θ̇ mR sin(φ)θ̇ (m + M1R
2)θ̇ M2φ̇

∆

Π
4

1 (t)
∆

Π
4

2 (t)
∆

Π
4

3 (t)
∆

Π
4

4 (t)



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and

[
d

dt

∆

Π
I

J(t)

]
=




C13
,3 C13

,4 0 0

C23
,3 C23

,4 0 0

C33
,3 C33

,4 0 0

0 0 −R
2

φ̇

(
∆

Π
4

1 (t) sin(φ)−
∆

Π
4

2 (t) cos(φ)

)
0




where θ̇φ̇ = ωΩ which implies θ = θ(t) = ωt + θ0, φ = φ(t) = Ωt + φ0 and

ẋ − R cos(φ)θ̇ = 0 and ẏ − R sin(φ)θ̇ = 0.

Remark 4.3.1 It is not unexpected that the n-symplectic dynamics (on L∆Q) are

related to the nonholonomic momentum dynamics of [3] (see Appendix H)

d

dt
JA(q) − ΓC

AIJC(q)q̇I = 0

since the n-symplectic generalized momentum dynamics (cf. eq. 4.1) are

∆̇

Π

i1i2

··i3
− 2Gi6

i3

-1

G
i8

[i4,i6]

∆

Π
(i1

i8
q̇i2)i4 +

1

2
Gi6

i3

∆

g
i7i5

,i6

∆

Π
i1

i7

∆

Π
i2

i5
= 0

The two sets of equations are structurally similar with
∆

Π playing the role of J and

with G · ∂G playing the role of Γ.

The dynamics for a vertical rolling hoop are addressed from both the Lagrange-

d’-Alembert and the nonholonomic momenta (both spatial and reduced) perspectives

in [3]. One finds that for the hoop Lagrangian

L =
1

2
m(ẋ2 + ẏ2) +

1

2
Iθ̇2 +

1

2
Jφ̇2 (4.36)

and the constraint 1-forms (i.e. the basis vectors of the constraints codistribution
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∆⋆)

ω1 = dx − R cos(φ)dθ

ω2 = dy − R sin(φ)dθ

which define the (rolling) constraint vectors (i.e. the basis vectors of the constraint

distribution ∆)

∆

F 1 = ∂θ + R cos(φ)∂x + R sin(φ)∂y

∆

F 2 = ∂φ

the dynamics from the (constrained) Lagrange-d’-Alembert principle are

(I + mR2)θ̈ = 0

Jφ̈ = 0

ẋ = R cos(φ)θ̇

ẏ = R sin(φ)θ̇.

while from the non-holonomic momentum (spatial) perspective (see also Appendix

H) the dynamics are equivalently

ẋ = R cos(φ)θ̇

ẏ = R sin(φ)θ̇

J̇1 = 0

J̇3 = 0

J1 = (I + mR2)θ̇

J3 = Jφ̇

We now approach the rolling hoop from an n-symplectic perspective by utilizing
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equations (4.34). As stated in Theorem 4.2.1, the inputs to the general equations

(4.1) required to obtain a specific set of dynamics equations are

• A specific vector field X i2 : In this case i2 = 3 = (A = 1) where the variables

are indexed as

[{qi1}] = [{ri}, {sA}] = [r1, r2, s1, s2] = [θ, φ, x, y]

A justification for this choice of vector field is given in Section 4.3.3.

• Mass Matrix:

g =




M1 0 0 0

0 M2 0 0

0 0 m 0

0 0 0 m




• Transformation from Canonical Basis ∂ to Disbribution Basis
∆

F (cf. Appendix

F equation (F.8)):

∆

G=




0 0 1 0

0 0 0 1

1 0 R cos(φ) 0

0 1 R sin(φ) 0




• Both g−1 and
∆

G
−1

can be found from the previous two points.

One can but is not required to utilize the full scalar potential (C), the full vector

potential (B) or the full gauge terms (T ) which will add terms of the form in eq. (4.35).

To obtain the vertical rolling hoop equations we will need select scalar potential terms.

For the time being we disregard the vector potential and gauge terms, though it is

a source of future work to consider the contribution of these terms to the dynamics

(with momenta based control specifically in mind). With these required inputs and
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the extra scalar potential functions, the dynamic of eqns.(4.34) can be written as

(
∆

Π
I

J(t)

)
=




∆

Π
1

1

∆

Π
1

2 0 0
∆

Π
2

1

∆

Π
2

2 0 0

mR cos(φ)θ̇ mR sin(φ)θ̇ (m + M1R
2)θ̇ M2φ̇

∆

Π
4

1

∆

Π
4

2

∆

Π
4

3

∆

Π
4

4




(4.37)

and

(
d

dt

∆

Π
I

J(t)

)
= (4.38)




C13
,x C13

,y
R

2M2

∆

Π
3

4

[(
−

∆

Π
1

1 +2M2

∆

Π
3

4

C13
,y

)
sin(φ) +

(
∆

Π
1

2 +2M2

∆

Π
3

4

C13
,x

)
cos(φ)

]
+ C13

,θ C13
,φ

C23
,x C23

,y
R

2M2

∆

Π
3

4

[(
−

∆

Π
2

1 +2M2

∆

Π
3

4

C23
,y

)
sin(φ) +

(
∆

Π
2

2 +2M2

∆

Π
3

4

C23
,x

)
cos(φ)

]
+ C23

,θ C23
,φ

C33
,x C33

,y C33
,x · R cos(φ) + C33

,y · R sin(φ) + C33
,θ C33

,φ

C43
,x C43

,y
R

2M2

∆

Π
3

4

[(
−

∆

Π
4

1 +2M2

∆

Π
3

4

C43
,y

)
sin(φ) +

(
∆

Π
4

2 +2M2

∆

Π
3

4

C43
,x

)
cos(φ)

]
+ C43

,θ C43
,φ




where C33
,x and C33

,y must satisfy the consistency equations

−mR sin(φ)θ̇φ̇ + mR cos(φ)θ̈ − C33
,x = 0

mR cos(φ)θ̇φ̇ + mR sin(φ)θ̈ − C33
,y = 0

and the two constraint equations are

ẋ − R cos(φ)θ̇ = 0

ẏ − R sin(φ)θ̇ = 0.

One can see that
∆

Π
3

3= (M1 + mR2)θ̇ is the first non-holonomic momentum and that
∆

Π
3

4= M2φ̇ is the second non-holonomic momentum.
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Assumption 4.3.1 (CJ3 functional restriction) We assume that

C13
,θ = C13

,φ = C23
,θ = C23

,φ = C33
,θ = C33

,φ = C43
,θ = C43

,φ = 0 (4.39)

and thus we assume the function dependence

CJ3(t, x, y). (4.40)

From assumption 4.3.1, d
dt

∆

Π
3

4= 0 which indicates conservation of the second nonholo-

nomic momentum
∆

Π
3

4 and that

φ(t) = Ωt + φ0.

The presence of potential terms seem to indicate that the first nonholonomic momen-

tum
∆

Π
3

3 is not conserved. However, one can solve the PDE

R

((
∂

∂x
C 33 (x, y)

)
cos (Ωt + φ0) +

(
∂

∂y
C 33 (x, y)

)
sin (Ωt + φ0)

)
= 0

to find

C33(t, x, y) = K (−y cos (Ωt + φ0) + sin (Ωt + φ0) x) (4.41)

where K is any constant. That is, for C33(t, x, y) as given the nonholonomic mo-

mentum
∆

Π
3

3 is conserved. A natural question is why introduce scalar potentials at

all for without them
∆

Π
3

3 would have been immediately conserved? The lack of scalar

potential terms cause problems at the consistency equation level as follows: With

scalar potentials as above or without them, that
∆

Π
3

1 is conserved implies that θ̈ is 0

which lead to the consistency equations

−mR sin(φ)θ̇φ̇ = C33
,x

mR cos(φ)θ̇φ̇ = C33
,y (4.42)
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Were C33(t, x, y) = 0 (i.e. no scalar potentials present) then the only solution to the

consistency equation given by eq. (4.42) would be φ̇ = 0 (as θ̇ 6= 0 or else there would

be no rolling). That is, the hoop motion would be only in a straight line. And while

this is possible it is not the full story. So scalar potential terms need to be present

to recover all of the physics of the rolling hoop. To maintain conservation of one of

the nonholonomic momenta, C33(t, x, y) must be given by eq. (4.41) and which, upon

substitution into eq. (4.42), give

θ̇φ̇ =
K

−mR

where from conservation of the two momenta, θ̇ and φ̇ are constants denoted say

ω and Ω. As K can be any constant then let it be K = −mRωΩ. We have thus

recovered in the larger context of n-symplectic dynamics the dynamics of the vertical

rolling hoop (an example of a non-holonomic mechanical system with symmetry).

There is, however, another problem arising from the n-symplectic formulation,

namely that d
dt

∆

Π
I

J does not have the [1,3] and [2,3] entries 0 and so the L∆Q condition

which ensures that the dynamics satisfy the constraints for all t is not met (see

Appendix F for L∆Q details). The L∆Q condition can be met can by solving the

equations

−
∆

Π
1

1 +
2M2

∆

Π
3

4

C13
,y = λ cos(Ωt + φ0) and

∆

Π
1

2 +
2M2

∆

Π
3

4

C13
,x = −λ sin(Ωt + φ0)(4.43)

−
∆

Π
1

2 +
2M2

∆

Π
3

4

C23
,y = λ cos(Ωt + φ0) and

∆

Π
2

2 +
2M2

∆

Π
3

4

C23
,x = −λ sin(Ωt + φ0)(4.44)

for
∆

Π
I

J (t) where these solutions must also satisfy the consistency equations

d

dt

∆

Π
1

1= C13
,x and

d

dt

∆

Π
1

2= C13
,y

d

dt

∆

Π
2

1= C23
,x and

d

dt

∆

Π
2

2= C23
,y (4.45)
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Since 2M2

∆

Π
3

4

= 2
φ̇

where φ̇ = Ω = const. then we need to solve the linear system




d
dt

∆

Π
1

1

d
dt

∆

Π
1

2

d
dt

∆

Π
2

1

d
dt

∆

Π
2

2




=




0 −Ω
2

0 0

Ω
2

0 0 0

0 0 0 −Ω
2

0 0 Ω
2

0







∆

Π
1

1

∆

Π
1

2

∆

Π
2

1

∆

Π
2

2




+




−λΩ
2

sin(Ωt + φ0)

λΩ
2

cos(Ωt + φ0)

−λΩ
2

sin(Ωt + φ0)

λΩ
2

cos(Ωt + φ0)




(4.46)

We focus on the case λ = 0. The solutions then are

∆

Π
1

1 (t) =
∆

Π
1

1 (0) cos

(
Ω

2
t + φ0

)
−

∆

Π
1

2 (0) sin

(
Ω

2
t + φ0

)

∆

Π
1

2 (t) =
∆

Π
1

2 (0) cos

(
Ω

2
t + φ0

)
+

∆

Π
1

1 (0) sin

(
Ω

2
t + φ0

)

∆

Π
2

1 (t) =
∆

Π
2

1 (0) cos

(
Ω

2
t + φ0

)
−

∆

Π
2

2 (0) sin

(
Ω

2
t + φ0

)

∆

Π
2

2 (t) =
∆

Π
2

2 (0) cos

(
Ω

2
t + φ0

)
+

∆

Π
2

1 (0) sin

(
Ω

2
t + φ0

)
(4.47)

where
∆

Π
I

J (0) are the intial momenta and are required to satisfy

∆

Π
1

1 (0)
∆

Π
2

2 (0)−
∆

Π
1

2 (0)
∆

Π
2

1 (0) 6= 0

The consistency equations given by eq. (4.45) are satisfied by choosing

C13(t, x, y) =

(
−

∆

Π
1

2 (0)x+
∆

Π
1

1 (0)y

)
Ω

2
cos

(
Ω

2
t + φ0

)
(4.48)

+

(
−

∆

Π
1

1 (0)x−
∆

Π
1

2 (0)y

)
Ω

2
sin

(
Ω

2
t + φ0

)

C23(t, x, y) =

(
−

∆

Π
2

2 (0)x+
∆

Π
2

1 (0)y

)
Ω

2
cos

(
Ω

2
t + φ0

)
(4.49)

+

(
−

∆

Π
2

1 (0)x−
∆

Π
2

2 (0)y

)
Ω

2
sin

(
Ω

2
t + φ0

)

It is a matter of future work to determine a meaning and use of extra scalar potential
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C, vector potential B and gauge T terms in, for example, potential shaping and

energy conserving control of the hoop.

4.3.2 A Nonholonomic Constrained Particle

Section Summary 4.3.2 (N-symplectic Form of the Dynamics of a Nonholonomic

Particle) For the choices of potentials C13 = C23 = 0 and for

C33(t, x, z) =
Q · A [z − x · (At + B)]

[1 + (At + B)2]3/2

C23(t, y) = −y

2

[
(At + B) · Q · K√

1 + (At + B)2

]

where A,B, and Q are arbitrary constants and K =
∆

Π
2

2 (0) 6= 0 (and
∆

Π
2

1 (0) = 0),

the n-symplectic momenta along with a consistent system of n-symplectic momenta

dynamics are given by

(
∆

Π
I

J(t)

)
=




∆

Π
1

1

∆

Π
1

2 0
∆

Π
2

1

∆

Π
2

2 0

yẋ ẋ(1 + y2) ẏ




and

(
d

dt

∆

Π
I

J(t)

)
=




0 1
2
ẏ

∆

Π
1

1 0

0 0 0

Q·A

[1+(At+B)2]3/2 yẋẏ 0




where the constraint equation is given by

ż − yẋ = 0.

These first order dynamics not only build the second order dynamics

ẍ =
−yẋẏ

1 + y2
and ÿ = 0



CHAPTER 4. THE FRAME BUNDLE AND MECHANICAL SYSTEMS 94

but also contain the consistency equation

ẋ =
Q√

1 + y2

along the solution to ÿ = 0.

We now consider the details for the dynamics of a particle of mass m = 1 moving in

three-space subject to the nonholonomic constraints ż = yẋ (see also [3] and [21]). As

in the rolling hoop example from section 4.3.1, the n-symplectic dynamics program

requires the input of vector field to start (take again i2 = 3 with the coordinates

ordered as [{ri}, {sA}] = [r1, r2, s1] = [x, y, z], see Section 4.3.3) along with a mass

matrix, g and the transformation matrix,
∆

G (cf. Appendix F equation (F.8))

g =




1 0 0

0 1 0

0 0 1




and G =




0 1 0

0 0 1

1 y 0




.

It will be necessary to again include certain terms of the scalar potential matrix, C

(we assume both the gauge terms T and the vector potential terms B are zero). The

dynamics of (4.34) can be written as

(
∆

Π
I

J(t)

)
=




∆

Π
1

1

∆

Π
1

2 0
∆

Π
2

1

∆

Π
2

2 0

yẋ ẋ(1 + y2) ẏ




and

(
d

dt

∆

Π
I

J(t)

)
=




C13
,z

1
2

∆

Π
3

3

∆

Π
1

1 +C13
,x + yC13

,z C13
,y

C23
,z

1
2

∆

Π
2

1

(
∆

Π
3

3 +yẋ

)
+ C23

,x + yC23
,z

1
2
yẋ

∆

Π
2

2 +C23
,y

C33
,z yẋ

∆

Π
3

3 +C33
,x + yC33

,z C33
,y



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where the constraint equation is given by

ż − yẋ = 0.

Assumption 4.3.2 (Scalar Potential C restriction) Let C13 = 0 and let

C33(t, x, z) =
Q · A [z − x · (At + B)]

[1 + (At + B)2]3/2
(4.50)

C23(t, y) = −y

2

[
(At + B) · Q · K√

1 + (At + B)2

]
(4.51)

where A,B, and Q are arbitrary constants and K =
∆

Π
2

2 (0).

For the scalar potentials restricted as above, d
dt

∆

Π
3

3= 0 where
∆

Π
3

3= ẏ and thus ÿ = 0

which gives y(t) = At + B. Consequently, at least along solution to ÿ = 0, the

generalized momentum dynamics reduce to

(
d

dt

∆

Π
I

J(t)

)
=




0 1
2
ẏ

∆

Π
1

1 0

0 1
2

∆

Π
2

1 (ẏ + yẋ) 1
2
yẋ

∆

Π
2

2 +C23
,y

Q·A

[1+(At+B)2]3/2 yẋẏ 0


 (4.52)

Note that we have, as in the rolling hoop example, recovered the nonholonomic mo-

menta and the nonholonomic momentum equation

∆

Π
3

2= (1 + y2)ẋ = ẋ + yż and
d

dt

∆

Π
3

2= yẋẏ = żẏ

Differentiating the [3,1] and the [3,2] entries of the matrix (4.3.2) we obtain

d

dt

∆

Π
3

1= ẏẋ + yẍ and
d

dt

∆

Π
3

2= ẍ(1 + y2) + 2ẋẏ.

which are also equal to the corresponding entries of the generalized momenta dynamics
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matrix in eq. (4.52). Equating the two sets of terms, we obtain the two equations

ẋẏ + yẍ =
Q · A

[1 + (At + B)2]3/2
(4.53)

ẍ =
−yẋẏ

1 + y2
(4.54)

Equation (4.54), ÿ = 0 and the constraint equation ż = yẋ complete the dynamics

for this nonholonomic particle. Equation (4.53) is a consistency equation that arises

from our n-symplectic formulation. Substituting eq. (4.54) into eq. (4.53) gives

ẋ =
Q√

1 + (At + B)2
(4.55)

As pointed out in BKMM [3] and references cited therein, eq. (4.54) is the total

derivative of

ẋ =
Q√

1 + y2
. (4.56)

So our consistency equation (4.55) is eq. (4.56) along the solutions to ÿ = 0. To ensure

that the L∆Q condition is met (namely that
∆

Π
1

3 and
∆

Π
2

3, which we have constrained

to be 0, stay 0 under time evolution). That is, we must show that d
dt

∆

Π
2

3= 0. Since

d
dt

∆

Π
2

1 (t) = 0 ∀t then setting the initial momenta
∆

Π
2

1 (0) = 0 gives
∆

Π
2

1 (t) = 0 ∀t.

Consequently, d
dt

∆

Π
2

2 (t) = 0 ∀t and so by setting
∆

Π
2

2 (0) = K 6= 0 then
∆

Π
2

2 (t) =

K ∀t. So the equation we need to satisfy, along the solutions to ÿ = 0 and ẍ =

−yẋẏ/
√

1 + y2 is

1

2

(At + b) · KQ̇√
1 + (At + B)2

+ C23
,y = 0.

For the potential in eq. (4.51) this equation is indeed satisfied.

Finally, our n-symplectic formulation of this nonholonomic particle is consistent

with the dynamics derived by BKMM [3]. We would like to point out here that

A.D. Lewis in [21] considers this same nonholonomic particle example but from the

perspective of restricting connections on the configuration space to the constraint

distribution. That is, using a new connection (and not n-symplectic dynamics), the



CHAPTER 4. THE FRAME BUNDLE AND MECHANICAL SYSTEMS 97

nonholonomic momentum for this particle are derived. It is encouraging and inter-

esting to note that the frame bundle, the distribution adapted frame bundle and

the soldering form are known objects to this author but the generalized symplectic

structure, which we have used to derive the dynamics for this particle, appears to

be unknown. The relationship between the two formulations would be interesting to

explore.

We have recovered in the larger context of n-symplectic dynamics the equations

for a particle subject to the nonholonomic constraints ż = xẏ. To obtain these

dynamics we were required to impose scalar potentials on the larger space, LQ to

obtain the dynamics [3] formulate in terms of TQ. The next step and a source of

future work is to use more potentials and gauge terms to address potential shaping

and energy conserving control strategies. For some preliminary results along these

lines see Appendix I.

4.3.3 Why Choose the i2 = 3 = (A = 1) Vector Field?

As stated in Theorem 4.2.1, to obtain a specific system of constrained n-symplectic

dynamics it is necessary to choose a specific vector field
∆

X
i2

. Which vector field

(or linear combination of vector fields) should be chosen and by what mathematical

means is this vector field actually specified? Mathematically, we specify a vector field

using an element α from R
n⋆ [represented in coordinates as (α1, α2 . . . , αn)] which can

then be multiplied (traced) with the n vector fields to obtain αi2X
i2 . The selection of

α essentially choses a “slice” of the full n-symplectic dynamics. Finding the correct

“slice” is our next task. To the n-symplectic way of thinking
∆

g
ab ∆

Π
i

a

∆

Π
j

b is the rank-2 (i.e.

matrix valued) kinetic energy observable adapted to the constraint distribution. This

n-symplectic matrix should in some way be related to the constrained kinetic energy

function (Lagrangian) for the specific mechanical system. Tracing out
∆

g ·
∆

Π ·
∆

Π with

the unknown but desired α according to αiαj(
∆

g
ab ∆

Π
i

a

∆

Π
j

b) should give the constrained

Lagrangian for the mechanical system.

Indeed in the n-symplectic vertical rolling hoop example, for α = (0, 0, 1, 0), we
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obtain

αiαj(
∆

g
ab ∆

Π
i

a

∆

Π
j

b) =
1

2
(I + mR2)θ̇2 +

1

2
Jφ̇2 (4.57)

which is the constrained Lagrangian for the vertical rolling hoop. For this choice of α,

αi2

∆

X
i2

=
∆

X
3

which justifies our assignment of i2 = 3 (the A = 1 or 1st group variable

index).

In the nonholonomic particle example, we chose α = (0, 0, 1) since

αiαj(
∆

g
ab ∆

Π
i

a

∆

Π
j

b) = (1 + y2)ẋ2 + ẏ2 (4.58)

which is the constrained Lagrangian for the nonholonomic constrained particle.
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Appendix A

Constructs from Riemannian

Geometry

A.1 Introduction

In this appendix the details behind the connection/covariant derivative, specifically

the Levi-Civita connection, and the Riemmann curvature are given. With the Levi-

Civita connection defined we then move on to Parallel Transport and Geodesics.

These geometric constructs are needed for the geodesic based PD control on Rieman-

nian manifolds and the geometry of the double gimbal chapters. The structure of this

appendix follows [30] and is as follows:

• Section A.1.1: Notation

• Section A.2: Connections and Statement of Levi-Civita Connection

• Section A.2.1: Tensor Derivations

• Section A.2.2: Components of Covariant Derivative (specifically of DX, DΘ,

Dg)

• Section A.2.3 Derivation/Proof of Levi-Civita Connection

104



APPENDIX A. CONSTRUCTS FROM RIEMANNIAN GEOMETRY 105

• Section A.3 Riemman Curvature Tensor, Ricci Tensor, Ricci Scalar

• Section A.4 Parallel Transport and Geodesics

A.1.1 Notation

We will use the following notation:

• M-smooth manifold

• p-point in M, x=(x1, . . . , xn) is a chart on U (open set about p in M)

• X(M)-Set of all (tangent) vector fields on M . In terms of tensor fields we say

that X(M) is a (1,0) tensor field. Notation: X(M)=T1
0.

• X⋆(M)-Set of all covector fields on M (i.e. the dual space to X(M), i.e. the

space of all F(M) linear maps from X(M) into F(M)). In terms of tensor fields

we say that X⋆(M) is a (0,1) tensor field. Notation: X⋆(M)=T0
1.

• F(M)-Set of all smooth functions from M into R, f ∈ F(M)

• X=X i∂i,Y=Y j∂j ∈ X(M)-vector fields where X i, Y j ∈ F(M) and ∂i = ∂
∂xi , ∂j =

∂
∂xj ∈ X(M)

• Θ = Θkdxk-covector field where Θk ∈ F(M) and dxk ∈ X⋆(M).

• g=gijdxi ⊗ dxj ∈ T0
2-metric tensor where gij ∈ F(M). A (0,2) tensor field that

is symmetric and non-degenerate is said to be a metric tensor field.

• (M,g)-semi-Riemannian manifold, g a metric tensor field.

A short explantation of the notation is as follows.

1. We are using the Einstein convention. So whenever there is a repeated upper

and lower index we are summing over that index. That is,

X i∂i =
m∑

i=1

X i∂i
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where m is the dimension of the manifold M.

2. A tensor field is an F(M)-multilinear map into F(M). Our main examples will

be (0,2),(1,0) and (0,1) tensor fields:

• The metric tensor g, is a (0,2) tensor field which means g is an F(M)-

bilinear map from X(M)×X(M) → F(M). That is, g(fX, Y ) = fg(X,Y )

and g(X + Y, Z) = g(X,Z) + g(Y, Z). Ditto for the second slot.

• A vector field X, is a (1,0) tensor field which means that X is an F(M)-

linear map from X⋆(M) → F(M). That is, X(fΘ) = fX(Θ) and X(Θ +

Ψ) = X(Θ) + X(Ψ) [Note: We are using here that X(M)∼= X⋆⋆(M) via the

isomorphism ρ defined by ρ(X)(Θ) = Θ(X)]

• A covector field Θ, is a (0,1) tensor field which means that Θ is an F(M)-

linear map from X(M) → F(M). That is, Θ(fX) = fΘ(X) and Θ(X +

Y ) = Θ(X) + Θ(Y ).

3. Covector fields act on vector fields to give smooth functions. That is,

Θ(X) = Θjdxj(X i∂i)

= ΘjX
idxj(∂i)

= ΘjX
iδj

i

= ΘjX
j ∈ F(M)

4. Vector fields act on smooth functions to give smooth functions. That is,

X(f) = X i∂i(f) = X ifi ∈ F(M)

5. Vector fields act on points in M to give vectors at a point. That is,

X(p) = X|p = X i(p)∂i|p
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where X i(p) ∈ R and ∂i|p ∈ TpM (tangent space to M at p)

6. g a metric tensor acts on two vector fields to return a smooth function. That

is,

g(X,Y ) = gijdxi ⊗ dxj(Xa∂a, Y
b∂b)

= gijX
aY bdxi ⊗ dxj(∂a, ∂b)

:= gijX
aY bdxi(∂a)dxj(∂b)

= gijX
aY bδi

jδ
j
b

= gijX
iY j ∈ F(M)

7. The coordinates of g given by gij are obtained by acting g on the vector fields

∂a, ∂b. That is,

g(∂a, ∂b) = gijdxi ⊗ dxj(∂a, ∂b)

= gijdxi(∂a)dxj(∂b)

= gijδ
i
aδ

j
b

= gab

This is how we find the coordinates of any tensor field. For more on tensor

fields (that is, more details than just saying a tensor field is an F(M)-multilinear

function into F(M)) see [[30], Chapter 2].

A.2 Connection/Covariant Derivative

In this section we define the connection and prove a theorem about a special connec-

tion called the Levi-Civita connection.

Definition A.2.1 ([30], pg. 59) A connection D on (M,g) is a map D:X(M) ×
X(M) → X(M) such that
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1. D(X,Y):=DXY is F(M)-linear in the first slot (i.e the X slot)

2. D(X,Y):=DXY is R-linear in the second slot (i.e. the Y slot)

3. DX(fY ) := DX(f)Y + fDX(Y ) := (Xf)Y + f(DXY )

DX is called the covariant derivative with respect to X for the connection D and DXY

is called the covariant derivative of Y with respect to X for the connection D. We can

see that 3. is saying that DX acts as a derivation or that DX obeys a product rule

and hence the connection is not a tensor.

Now we see from the definition that given two vector fields X,Y the covariant

derivative of Y with respect to X is another vector field, say

DXY = Z = Zk∂k. (A.1)

We can think of D:X(M) × X(M) → X(M) in another way, that is, as a map from

D:X(M) × X(M) × X⋆(M) → F(M). Hence,

D(X,Y, Θ) := (DXY )(Θ)

where D is F(M)-linear in the X slot, R-linear in the Y slot and F(M)-linear in the

Θ slot. Hence we can think of writing D as

D = Γk
ijdxi ⊗ dxj ⊗ ∂k

where Γk
ij ∈ F(M) are the component functions of D (by 3. we know that they are

not tensor components). To find the components we do exactly as we did in 7. from

Section 1. That is let X=∂a and Y=∂b to obtain

D(X,Y, ·) = Γk
ijdxi ⊗ dxj ⊗ ∂k(∂a, ∂b, ·)

= Γk
ijdxi(∂a)dxj(∂b)∂k(·)

= Γk
ab∂k (A.2)
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where the dot indicates that we are to leave that spot open. So we can equate eq. 1

and eq. 2 to see that Zk = Γk
ab. Hence, we can just go straight to the result that

D∂i
∂j = Γk

ij∂k.

The Γk
ij are called the connection coefficients and we say again are not the components

of a tensor.

Theorem A.2.1 If (M,g) is a semi-Riemannian manifold then there is a unique

connection D called the Levi-Civita connection such that

4. [X,Y ] = DXY − DY X (torsion free condition)

5. X(g(Y,Z))=g(DXY, Z) + g(Y,DXZ) (non-metricity condition)

We will soon get to the proof but first we examine why 4. is called the torsion free

condition and 5. the non-metricity condition. Let us work out 4. in local coordinates.

The left side works out when we define [·,·] (the commutator bracket of vector fields)

and switch some indices:

[X,Y ] := X(Y i)∂i − Y (Xj)∂j

= Xj∂j((Y
i)∂i) − Y i∂i((X

j)∂j)

= XjY i
,j∂i − Y iXj

,i∂j

= (XjY k
,j − Y iXk

,i)∂k

= (XjY k
,j − Y jXk

,j)∂k
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The right side works out when we use the derivation property of D∂i
and D∂i

:

DXY − DY X = X iD∂i
(Y j∂j) − Y jD∂j

(X i∂i)

= X i(Y j
,i ∂j + Y jD∂i

∂j) − Y j(X i
,j∂i + X iD∂j

∂i)

= X iY j
,i ∂j − Y jX i

,j∂i + X iY jΓk
ij − Y jX iΓk

ji

= (X iY k
,i − Y jXk

,j)∂k + X iY j(Γk
ij − Γk

ji)

= [X,Y ] + X iY jT k
ij

T k
ij is called the torsion tensor (it is indeed a tensor because basically the non-

tensor components of the connection coefficients are subtracted out; more on this

in a minute). So we have Tij=0 =⇒ [X,Y ] = DXY − DY X. To see that

[X,Y ] = DXY − DY X=0 =⇒ Tij = 0 follows immediately from [∂i, ∂j]=0. That is,

0 = [∂i, ∂j] = D∂i
(∂j) − D∂j

(∂i) = Γk
ij − Γk

ji = T k
ij

A connection that satisfies 4. is called a symmetric connection since T k
ij = 0

implies Γk
ij = Γk

ji and hence the connection coefficients are symmetric in the lower

indices.

To understand the non-metricity condition we must consider the concept of a

tensor derivation.

A.2.1 Tensor Derivations

Definition A.2.2 ([30], pg. 43) Let A∈ Tr
s and B∈ Tm

n . A tensor derivation Dp
q

is set of R-linear maps

Dp
q : Tp

q → Tp
q where p = r + m, q = s + n

such that

1. Dp
q(A ⊗ B) = Dr

sA ⊗ B + A ⊗ Dm
n B
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2. D commutes with any contraction, that is Dr−1
s−1(CA) = C(Dr

sA)

Note: For the concept of a contraction see [[30], pg. 40]. But as an example of

a contraction in coordinates, the contraction of a (1-2) tensor field A is given by

C1
2(Ai

jk) = Ai
ik. That is, the C1

2 contraction just sums out the first contravariant index

with the first covariant index. By extension, C1
3 would sum out the first contravariant

index with the second covariant index to give C1
3(Ai

jk) = Ai
ji

In [[30], pg. 44] a product rule formula for tensor derivations given a tensor field of

type (p,q) is derived. This formula requires the use of both 1. and 2. from above.

The jist of this formula can be seen in the special cases of a vector field X, a covector

field Θ, a (1,1) tensor field A and a (0,2) tensor field g (thinking of the metric tensor

field). That is,

D0
0(A(Θ, X)) = D1

1A(Θ, X) + A(D0
1Θ, X) + A(Θ,D1

0X) (A.3)

and

D0
0(Θ(X)) = D0

1Θ(X) + Θ(D1
0X) (A.4)

and

D0
0(X(Θ)) = D1

0X(Θ) + X(D0
1Θ) (A.5)

and

D0
0(g(X,Y )) = D0

2g(X,Y ) + g(D1
0X,Y ) + g(X,D1

0Y ) (A.6)

There are three points to be made by these examples

1. From eq. 3 and eq. 6 we can solve for D1
1 and D0

2 to obtain

D1
1A(Θ, X) = D0

0(A(Θ, X)) − A(D0
1Θ, X) − A(Θ,D1

0X)

D0
2g(X,Y ) = D0

0(g(X,Y )) − g(D1
0X,Y ) − g(X,D1

0Y ).

That is, all we really need to know to find tensor derivations of higher order

tensor fields are D0
0(f), D1

0(X) and D0
1(Θ).
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2. But from eq. 4 we can find D0
1 in terms of D0

0 and D1
0. That is,

D0
1Θ(X) = D0

0(Θ(X)) − Θ(D1
0X)

3. So all we really need to find tensor derivation of higher order tensor fields are

D1
0 and D0

0.

The point of the argument in [[30], pg. 12 (the bottom of the page)] is that

D0
0(f) = Xf ∀f ∈ F(M)

and the point of the theorem in [[30], pg. 45] (where δ = DX since DX(fY ) :=

DX(f)Y + fDX(Y ) := (Xf)Y + f(DXY ) by property 3. of the connection D) is that

D1
0(X) = DZX forsomeZ ∈ X(M)

Taking into account these formulas we can write eq. 6 as (where we have switched X

to Y and Y to Z and denoted D0
2 = D)

X(g(Y, Z)) = Dg(X,Y ) + g(DXY, Z) + g(Y,DXZ). (A.7)

Comparing eq. 7 and 5. (i.e. X(g(Y, Z)) = g(DXY, Z) + g(Y,DXZ)) from the

theorem on pg. 4 we can see that

X(g(Y, Z)) = g(DXY, Z) + g(Y,DXZ) ⇐⇒ Dg = 0

where we mean

Dg = DZg = Dg(·, ·, Z) = 0 ∀Z

and hence the terminology non-metricity condition makes sense. A connection that

satisfies 5. is said to be a metric connection. A metric, symmetric connection is called

the Levi-Civita connection. That is, the connection D which satisfies Dg = DZg =
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0 ∀Z is the Levi-Civita connection.

Before we proof the theorem we must introduce one more concept, that is the

components of the covariant derivative of a tensor field.

A.2.2 Components of DT, T ∈ Tr
s

Given a tensor field of type (r,s) T (with coordinates T i1,...,ir
j1,...js

then D : Tr
s → Tr

s+1 is

given by

DT (Θ1, . . . , Θr, X1, . . . , Xs, X) := DX(Θ1, . . . , Θr, X1, . . . , Xs)

where the components of the new tensor are given by DT i1,...,ir
j1,...,js;k

. The term covariant

derivative is fitting in the sense that a new lower index (a covariant index), namely

;k, is introduced. To describe the components of the new tensor DT, we will consider

smaller examples as these will sufficiently illustrate the general.

• If T=X=Xa∂a then what are the Xa
;k of DX=Xa

;k∂a ⊗ dxk? We present the

following computations:

DX(·, Y ) = Xa
;k∂a ⊗ dxk(·, Y j∂j)

= Y jXa
;kδ

k
j ∂a

= Y kXa
;k∂a

= Y kXn
;k∂n (switch a to n)



APPENDIX A. CONSTRUCTS FROM RIEMANNIAN GEOMETRY 114

but by definition of DX we have

DX(·, Y ) := [DY X](·)

= [Y kD∂k(X
a∂a)](·)

= [Y k(Xa
,k∂a + XaD∂k

(∂a))](·) (tensor derivation property ofD∂k)

= [Y k(Xn
,k + XaΓn

ka)∂n](·)

= Y k(Xn
,k + XaΓn

ka)∂n.

Equating the two computations gives Xn
;k = Xn

,k + XaΓn
ka, the components of

DX.

• If T=Θ = Θadxa then what are the Θa;k of DΘ = Θa;kdxa ⊗ dxk? We present

the following computations:

DΘ(·, Y ) = Θa;kdxa ⊗ dxk(·, Y j∂j)

= Y jΘa;k∂
k
j dxa

= Y jΘa;jdxa

= Y jΘk;jdxk (switch a to k)

but by defintion of DΘ we have

DΘ(Y, ·) := [DY Θ](·)

= [Y jD∂j
(Θadxa)](·)

= [Y j(Θa,jdxa + ΘaD∂j
(dxa))](·) (using tensor derivation property)

= [Y j(Θa,jdxa − ΘaΓ
a
jkdxk)](·) (usingD∂j

(dxa) = −Γa
jkdxk)

= [Y j(Θk,j − ΘaΓ
a
jk)dxk](·)

= Y j(Θk,j − ΘaΓ
a
jk)dxk.

Equating the two computations gives Θk;j = Θk,j − ΘaΓ
a
jk, the components of



APPENDIX A. CONSTRUCTS FROM RIEMANNIAN GEOMETRY 115

DΘ.

• Following the same method as above we find that for g ∈ T0
2 then

gij;k = gij,k − gajΓ
a
ki − giaΓ

a
kj (A.8)

A.2.3 Levi-Civita Connection

We now prove the

Theorem A.2.2 If (M,g) is a semi-Riemannian manifold then there is a unique

connection D called the Levi-Civita connection such that

4. [X,Y ] = DXY − DY X ⇐⇒ T k
ij = 0

5. X(g(Y,Z))=g(DXY, Z) + g(Y,DXZ) ⇐⇒ Dg = 0 ⇐⇒ DXg = 0 ∀X ⇐⇒
gij;k = 0 ∀i, j, k

Proof: Let D be a connection. Consider Nabi := −gab;i + gib;a + gai;b where a,b,i are

fixed but arbitrary indices. Expanding out Nabi using eq. 8 three times and gij = gji

gives

Nabi = −gab,i + gkbΓ
k
ia + gakΓ

k
ib

gib,a − gkbΓ
k
ai − gikΓ

k
ab

gai,b − gkiΓ
k
ba − gakΓ

k
bi

= −gab,i + gib,a + gai,b + gkb(Γ
k
ia − Γk

ai) + gak(Γ
k
ib − Γk

bi) − gki(Γ
k
ab + Γk

ba)

Now notice that Γk
ij which is not a tensor can be “factored” into a symmetric object

and a tensor via

Γk
ij =

1

2
(Γk

ij + Γk
ji) +

1

2
(Γk

ij − Γk
ji)

= Γk
(ij) +

1

2
T k

ij. (A.9)
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Using eq. 9 in can easily be seen, for example, that

Γk
ia − Γk

ai = T k
ia

Γk
ab + Γk

ba = 2Γk
(ab)

which implies

Nabi = −gab,i + gib,a + gai,b + gkbT
k
ia + gakT

k
ib − 2gkiΓ

k
(ab).

We may solve the above for 2gkiΓ
k
(ab) and use eq. 9 to obtain a formula that we can

use to solve for Γk
ab. That is,

2gkiΓ
k
(ab) = 2gki(Γ

k
ab −

1

2
T k

ab) = 2gkiΓ
k
ab − gkiT

k
ab (A.10)

and thus

2gkiΓ
k
ab = −gab,i + gib,a + gai,b + gkbT

k
ia + gakT

k
ib + gkiT

k
ij − Nabi)

where by applying gji to both sides we obtain the desired result,

δj
kΓ

k
ab = Γj

ab =
1

2
gji(−gab,i + gib,a + gai,b + gkbT

k
ia + gakT

k
ib + gkiT

k
ij − Nabi) (A.11)

In words, eq. 11 expresses the components of a general connection in terms of the

metric tensor components, the torsion tensor components, and the covariant deriva-

tive of the metric tensor components. We can see that by applying 4. kills off all

torsion terms in eq. 11 and 5. kills off the Nabi leaving only

Γj
ab =

1

2
gji(gib,a + gai,b − gab,i) (A.12)

called the Christoffel symbols or the components of the Levi-Civita connection or the

components of a symmetric, metric connection. One could invent new notation for
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the Christoffel symbols to distinguish them from arbitrary connection coefficients, say

{
j
ab

}
or ωj

ab.

A.3 Curvatures

A.3.1 Riemann Curvature

The Riemann curvature tensor has an algebraic definition. It is given in [30, pg. 74] as

Definition: Given (M,g) and Levi-Civita connection D the mapping

R:X(M)×X(M)×X(M) → X(M) given by

R(X,Y )Z = R[XY ]Z − [DX , DY ]Z

is called the Riemann curvature tensor. In terms of coordinates,

Ra
·ibj = Γa

ij,b − Γa
ib,j + Γa

bnΓn
ji − Γa

jnΓn
ai

:= Γa
[|i|j,b] + Γa

[b|n|Γ
n
j]i

where [a|c|b] means acb-bca.

In its most straight-forward incarnation, the Riemann curvature of an n-dimensional

Riemannian manifold (M, g) is, simply stated, that notion which measures the local

difference between a subset (U, g) of (M, g) and Euclidean R
n. What follows will be

a diagrammatic illustration of curvature based upon parallel transport followed by

an argument and explicit formula for the Riemannian curvature tensor. We conclude

with a formula of the Gauss curvature of a surface.

From a pictorial standpoint, a manifold has curvature if one can find a closed

curve which does not traverse a 2-dimensional topological hole for which the parallel
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transport (see section A.4) of an initial vector V0 around this curve returns a final

vector, Vf 6= V0. That is, the difference between an initial vector V0 and the parallel

transported vector, Vf is a measure of curvature. One can say that if V0−Vf = 0 then

(U, g) has zero curvature or that M is locally flat or even that M is locally Euclidean

R
n. Moreover, if V0−Vf 6= 0 then one can say that the subset (U, g) ⊂ (M, g) has non-

zero curvature or that M is locally non-flat or even that M is locally non-Euclidean.

(a)

Figure A.1: Parallel Transport on Euclidean S2. Parallel transport of initial vector,
V0 (in blue) around closed curve (in black) to a final vector, Vf (in green)

A good example is given by Figure A.2. There the closed curve (in black) does not

traverse a hole (there are none since the Betti number B1(S
2) = 0) and the blue and

green vectors are obviously different. We have pictorially discovered that the sphere

is curved, as expected. To address the question of “How curved is the manifold?”

will require an explicit curvature formula.

To obtain a curvature formula one can ask the following question: Given a co-

ordinate system (Ψα) for the open set U of M with metric tensor expressed in this

coordinate system gαβ(p) 6= δαβ for every p belonging to U , does there exist a coor-

dinate system (Φk) on U such that the metric tensor in this new system gij(p) takes

the form of the identity tensor δij? In other words, if a Riemannian manifold does

not appear Euclidean in one coordinate system then is it Euclidean in another? The
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answer to the existence question can be broken into three steps (one can find further

detail in [25]):

[ Step 1: gij = δij if and only if Γk
ij = 0 ] This result follows from the formula

for the Christoffel symbols, Γ (the components of the Levi-Civita connection)

and that the covariant derivative (w.r.t to the Levi-Civita connection) of the

metric tensor, denoted g;, is 0:

Γk
ij =

1

2
gka(gaj,i + gia,j − gij,a) (A.13)

gij;l = gij,l − gajΓ
a
li − gibΓ

b
lj = 0 (A.14)

Now if gij = δij, then by equation A.14, Γk
ij = 0. If Γk

ij = 0, then by equation

(A.14), gij,l = 0 which have a particular solution gij = δij.

[ Step 2: Γk
ij = 0 is equivalent to the statement: Φk satisfies the system of

PDE’s given by equation (A.15) ] This result follows from the formula for the

non-tensor transformation law for the Christoffel symbols

Γσ
αβΦk

,σ = Φk
,αβ + Φi

,αΦj
,βΓk

ij

where Φk = Φk(Ψα) are the change of coordinate functions with ,α partial dif-

ferentiation wrt the Ψα coordinate and ,αβ is partial differentiation with respect

to Ψα then with respect to Ψβ. Now for Γk
ij = 0, the desired system of PDE’s is

Γσ
αβΦk

,σ = Φk
,αβ (A.15)

That is, the desired coordinates (Φk) for which Γk
ij = 0 need to satisfy equation

(A.15).

[ Step 3: Riemann curvature tensor = 0 implies Φk satisfy equation (A.15) ] This

result follows from an analysis of the integrability conditions (a.k.a the neces-

sary conditions for Φk to be a solution) of equation (A.15). The integrability
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conditions, namely that mixed partials commute, lead to

R ρ
γαβ· := Γρ

γβ,α + Γ∆
γβΓρ

∆α − Γρ
γα,β − Γ∆

γαΓρ
∆β = 0. (A.16)

For an n dimensional manifold, the n4 functions R ρ
γαβ· define the Riemann cur-

vature tensor and are determined from the metric tensor gαβ by first computing

Γσ
ρη by equation (A.32) and then using equation (A.16).

The above steps are summarized as,

Curvature result: If the Riemann curvature tensor in the original co-

ordinate system is zero then there exists a coordinate system (Φk) such

that gij = δij and hence M would locally appear to be Euclidean R
n (i.e.

flat). However, a Riemann curvature with non-zero components indicates

a manifolds local deviation from flatness.

With the Riemann curvature tensor in hand, the Gaussian curvature of a surface or

2-D manifold is given by

K :=
R1212

g11g22 − (g12)2
(A.17)

where R1212 is the [1212]-entry of Rjkli := giaR
a

jkl·

Some examples using the curvature result are

Example 2a. The cylinder

Choose a parametrization (coordinate system) of (on) the cylinder given by

(θ, z) → [cos(θ), sin(θ), z]

which will give the components of the metric tensor

g11 = = [− sin(θ), cos(θ), 0] · [− sin(θ), cos(θ), 0] = 1

g22 = [0, 0, 1] · [0, 0, 1] = 1

g12 = 0
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and hence Γ = 0 (as the metric tensor components are constant on an open set U

given by, e.g. θ = 0..2π and z=0..1).

Example 2b. The cone

Choose a parametrization (coordinate system) of (on) the cone given by

(u, v) → [u cos(v), u sin(v), u]

which will give the components of the metric tensor

g11 = 2, g22 = u2, g12 = 0

which are not constant on an open set but still the curvature tensor is

Rρ
γαβ = 0.

Example 2c. The mobius strip

Choose a parametrization (coordinate system) of (on) the mobius strip given by

(u, θ) → [(4 − u sin(θ/2)) cos(θ), (4 − u sin(θ/2)) sin(θ), u cos(θ/2)]

which will define the components of the metric tensor as

g11 = 1, g22 = 16 − 8u sin(θ/2) + 5/4u2 − u2 cos2(θ/2), g12 = 0

which are not constant on an open set and the curvature tensor is

Rργαβ = R1212 =
16

32u sin(θ/2) − 5u2 + 4u2 cos2(θ/2) − 64

which is not zero on an open set.
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There is also another physical interpretation of the Riemann tensor. The Riemann

tensor makes an appearance in the Jacobi equation, which for geodesic variations, is

an equation describing how “nearby” geodesics (free-falling observers) attract or repel

each other, see [30].

Back to the curvature tensor itself.

Remark A.3.1 (Prelude To Riemann Differences) One can also write R(X,Y )Z =

R(Z,X, Y ), the order here is important. This is the order Oneill uses (he calls it the

classical/historical order) while Milnor uses R(X,Y )Z = R(X,Y, Z) (he calls it a more

convenient order). At the end of Section A.3.3 we will examine the differences between

R and R.

Using the classical order

R(∂k, ∂i, ∂j) = R∂i∂j
∂k = Ra

·kij∂a

the first symmetry of the Riemann tensor (pg. 75, [30]), RXY = −RY X means

R(Z,X, Y ) = −R(Z, Y,X) and hence at the coordinate level

Ra
·kij = −Ra

·kji (A.18)

Consider now the object g(W,R(Z,X, Y )). In coordinates, using the classical order-

ing, we obtain

g(∂n, R(∂k, ∂i, ∂j)) = g(∂n, ·)[R(∂k, ∂i, ∂j)]

= gnbdxb[Ra
·kij∂a]

= gnbR
b
·kij

:= Rnkij
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The first step used

g(∂n, X) = gnbX
b = gnbdxb(X) =⇒ g(∂n, ·) = gnbdxb.

The last step above is an example of lowering a contra-variant index to a covariant

index using the metric. The meaning of the · in the symbol Ra
·kij is used to indicate

that the a contravariant index is to be lowered to that spot.

The second symmetry of the Riemann tensor [30, pg. 75], g(W,R(Z,X, Y )) =

−g(Z,R(W,X, Y )) can now be expressed at the coordinate level, using the classical

ordering, by

Rnkij = −Rknij (A.19)

Remark A.3.2 (Raising and Lowering) Raising and lowering indices (using a

metric) creates new tensors from an original tensor. The new tensors are said to

be metrically equivalent to the original. For instance, as above, let R = R1
3 be the

(1,3) Riemman tensor field given in coordinates by Ra
·kij. Define the (0,4) tensor

↓1
1 R1

3 = R0
4 by

R0
4(W,Z,X, Y ) = g(W,R1

3(Z,X, Y ))

where the coordinates of R0
4 are given by

Rnkij

In coordinates, we see the significance of the subscripts and superscripts of ↓1
1; the

metric g will lower the first contra-variant index to the first covariant index of the

new tensor. Other metric equivalent tensor can be obtained. For instance ↓1
2 (Ra

kij) =

Rkaij. Lowering via ↓1
1 will be the convention for the Riemann tensor as indicated by

the notation Ra
·kij where · says “lower the index to this spot”.

One can raise covariant indices to contra-variant indices using the inverse of the

metric. For example given the original (1,3) Riemann tensor R = Ra
·kij the new tensor
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↑2
1 R is a (2,2) tensor defined by

Ran
ij = gnkRa

·kij

Now that we can raise indices we can contract tensors we couldn’t before (i.e to

contract the Ricci tensor to the Ricci scalar)

A.3.2 Contraction

We recall first contraction of a contra-variant and co-variant index. Contraction is a

map which drops the rank of the tensor field being contracted by 2. In the case of a

(1,1)-tensor field T = θ ⊗ X contraction is defined by

C(T ) := T (dxi, ∂i) = (θ ⊗ X)(dxi, ∂i) = θiX
i = θ(X). (A.20)

which is a function on M or 0-tensor field. This could be expressed as T a
b = θbX

a C−→
T i

i = θiX
i. One could also think of the contraction in the following way:

C(θ ⊗ X) = θ(X) = g(Y,X) (A.21)

where Y is the vector metrically equivalent to θ. In coordinates this would be

gijY
jdxi(Xk∂k) = gijY

jX i = θiX
i

As this example has only one contravariant and one covariant index there was no

choice as to the contraction to be performed. But contraction can be extended to

higher order tensor fields. For example consider the (1,2)-tensor field A (meaning

A(θ,X, Y )) given in coordinates by Ai
jk. Now there are two lower indices that can be

used to contract out the upper index, i.e there are two maps C = C1
1 and C = C1

2
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defined, following eq. (A.20),

C1
1(A) = A(dxi, ∂i, Y ) , Y fixed

C1
2(A) = A(dxk, X, ∂k) , X fixed

with respective coordinate descriptions

C1
1(Ai

jk) = Ai
ik

C1
2(Ai

jk) = Ak
ik

So we have illustrated how to contract upper (contravariant) indices with lower (co-

variant) indices of tensor fields (i.e. F(M)-valued multi–linear functions).

However, the Riemann curvature tensor is a X(M)-valued multilinear function,

i.e. vector valued function given by (X,Y, Z) −→ R(X,Y, Z). To make this a “true”

tensor field we need to make this a F(M)-valued multi-linear function as follows:

Given R(X,Y, Z) ∈ X(M) define

R̄(θ,X, Y, Z) = θ(R(X,Y, Z)) ∈ F(M) (A.22)

where a coordinate description of R̄ is

R̄b
ijk = R̄(dxb, ∂i, ∂j, ∂k) = dxb(R(∂i, ∂j, ∂k))

= dxb(Ra
·ijk∂a)

= Rb
·ijk (A.23)

It is in the sense of eqs. (A.22) and (A.23) that we say the vector valued object R

can be interpreted as a (1,3)-tensor field R̄. To contract a vector valued object like

R is to contract its corresponding tensor field via the higher rank analogue of (A.20)

given by

(C1
3 R̄)(X,Y ) = R̄(dxk, X, Y, ∂k) = dxk(R(X,Y, ∂k)) (A.24)
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or in coordinates by

C1
3(R̄a

·ijk) = Rk
·ijk (A.25)

A different contraction of the Riemann tensor could be

(C1
2 R̄)(X,Z) = R̄(dxk, X, ∂k, Z) = dxk(R(X, ∂k, Z)) (A.26)

with coordinate description

C1
2(R̄a

·ijk) = Rk
·ikj = −Rk

·ijk = −C1
3(R̄a

·ijk) (A.27)

So C1
2 = −C1

3 . These are the only non-zero contractions as

C1
1(Ra

·ijk) = Ri
·ijk = giaRaijk = −giaRiajk = −Ri

·ijk

and so C1
1(R̄) = 0.

Remark A.3.3 (Tensor Interpretations) The distinction between R̄ and R will be

dropped from now on. This is fine, since, as seen above, the components of multilinear

function, R̄, are exactly the components of the vector valued object R. So without

further thought, (1,3)-contraction of R is given by Rk
·ijk. Just for reference, given say

a (1,3)-tensor field (θ,X, Y, Z) −→ T̄ (θ,X, Y, Z) one can define

T (X,Y, Z) = T̄ (·, X, Y, Z)

which is an equation interpreting T̄ as a vector valued object T .

So we can contract the upper and lower indices of a tensor field and we can perform

a contraction of a vector valued object. It will be necessary to contract two lower or

two upper indices of a tensor field. We won’t get into much detail about this except

to do a couple of specific examples in coordinates.

For instance, consider the (0,2) tensor field Tij and the object C12(Tij) which we

know should be some sort of function but the exact function requires a definition of
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C12. The meaning of C12(Tij) is:

1. Find the metric equivalent tensor of Tij. This is, T k
j where gkiT

k
j = Tij.

2. Now we have an upper and lower index, so contract in the usual way, i.e.

T k
j

C−→ T j
j

3. Now C12(Tij) will be the function of Tij for which making the substitution

gkiT
k
j = Tij will be exactly T j

j . This is exactly,

4. C12(Tij) = gijTij

Now consider the (0,4) tensor field Raijk and the object C14(Raijk). The meaning

of C14(Raijk) is:

1. Find a metric equivalent tensor of Raijk. Now we have a choice here, which

index do we raise and to which spot? Say that we raise the first index to the

first spot, so a metric equivalent tensor to Raijk is Rb
·ijk where gbaR

b
·ijk = Raijk.

2. Now that we have an upper and lower index, we can contract. Again, there

is a choice; which lower index to contract with the upper index? Say that we

contract the first and third, i.e.

Rb
·ijk

C1
3−→ Rk

·ijk

3. Now, as 3) above, using Rk
·ijk = gakRaijk leads to,

4. C14(Raijk) = gakRaijk

Remark A.3.4 (Prelude To Contraction Differences) In the C14(Raijk) exam-

ple, there were two choices that had to be made: i) which index to raise (here we

raised the first) and then ii) which contraction to take (here we took C1
3). As we will

address at the end of Section A.3.3, different books (and Maple !!) can make different

choices.
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A.3.3 Ricci Curvature Tensor, Ricci Scalar

The Ricci tensor, Ric = Rij is the (1,3) contraction of the Riemann tensor as defined

in eqs. (A.24) and (A.25) . That is,

Ric(X,Y ) = (C1
3 R̄)(X,Y ) = R̄(dxj, X, Y, ∂j)

= dxj(R(X,Y, ∂j))

or in coordinates as

Rki = C1
3(Ra

·kij) = Rj
·kij

The Ricci scalar, S is a contraction of the Ricci tensor. That is,

S = C(Ric)

which in coordinates is

S = Ri
i = gkiRki

Remark A.3.5 (Oneill, Milnor and Maple) We now point out the difference

between the Oneill and Milnor definitions of curvature. We also bring in how Maple

is computing Ricci and Ricci scalar. From what I gather from footnote at the bottom

of Milnor pg. 51 the definitions R(X,Y, Z) = R(X,Y )Z and (↓1
4 R)(X,Y, Z,W ) =

g(R(X,Y, Z),W ) are made since

g(R(∂i, ∂j, ∂k), ∂n) = g(R a
ijk· ∂a, ∂n)

= gbnR
b

ijk·

= Rijkn

As shown on pg. 53 of Milnor, the curvature tensor R satisfies the same symmetry re-

lations as R. That is, Rijkn = −Rjikn and Rijkn = −Rijnk. Contrast this with Oneills

classical definition R(Z,X, Y ) = R(X,Y )Z and (↓1
1 R)(W,Z,X, Y ) = g(W,R(Z,X, Y ))
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which gave

g(∂n, R(∂k, ∂i, ∂j)) = g(∂n, ·)[R(∂k, ∂i, ∂j)]

= gnbdxb[Ra
·kij∂a]

= gnbR
b
·kij

:= Rnkij

We have seen that for Oneill, that the Ricci tensor is Rij = Ra
·ija. From what I

can gather from Milnor pg. 104, the Ricci tensor is given by (cf. eq. (A.24))

(C1
2 R̄)(X,Y ) = R̄(dxk, X, ∂k, Y ) = dxk(R(X, ∂k, Y ))

which coordinate description

Rij = R a
iaj·

To understand what Maple is computing we consider the example, Euclidean S2

parametrized by sphere(θ, φ) = (cos(θ) sin(φ), sin(θ) sin(φ), cos(φ)) where θ = 0..2π,

φ = 0..π/2. Maple computes for S2

g22 = sin2(φ), g11 = 1

g22 = 1/ sin2(φ), g11 = 1

RMN = Rijkl = R1212 = sin2(φ)

Ricci = Ric = Rij where R11 = − sin2(φ), R22 = −1

RS = S = Ri
i = −2

For all these quantities to make sense Maple has to be using for Riemann

R a
ijk· (A.28)
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as in Milnor while for Ricci

Rij = R k
kij· = gkaRkija (A.29)

which is the negative of Milnor. We justify these via computations: Raising the fourth

index of Rijka (of which the only non-zero entry is R1212 = sin2(φ)) using g−1 gives

the non-zero entries

R 2
121· = sin2(φ) = −R 2

211·

R 1
122· = −1 = −R 1

212·

and thus computing the (1,1) contraction of R a
ijk· gives Rij of which the only non-zero

entries are

R22 = R 2
211· = −sin2(φ)

R11 = R 1
122· = −1

which is what Maple computed. Note: the (1,1) contraction here is first up index with

first down index. Maple actually labels the first up index as the 4 total index and the

first down index as first total index and thus (1,1)-contraction is at (1,4) contraction.

Summary A.3.1 We summarize the Riemman and Ricci curvatures with the table:

author Riemann Ricci

Oneill Ra
·ijk Rij = Ra

·ija

Milnor R a
ijk· Rik = R a

iak·

Maple R a
ijk· Rij = R a

aij·
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where the symmetries of each are

Ra
·ijk = −Ra

·ikj and Rnijk = −Rinjk

R a
ijk· = −R a

jik· and Rijkn = −Rijnk

R a
ijk· = −R a

jik· and Rijkn = −Rijnk

and thus

Rik = R a
iak· = −R a

aik· = −Rik.

A.3.4 Sectional Curvature

Given two independent vector fields on M, say X and Y, then they define a tangent

plane at each point of M, say Πp. That sectional curvature of Π is

K(X,Y ) = g(R(X,Y )X,Y )/Q(X,Y )

where R is the Riemann tensor using Oneill’s convention and Q(X,Y ) = g(X,X)g(Y, Y )−
g(X,Y )2. If the vector fields are orthonormal then we get

K(X,Y ) = g(RXY X,Y ).

We move to higher dimensions, Let Ei i = 1 . . . dim(TM) be an orthonormal basis

for TM. Fix the leg E1 of the orthonormal frame and form dim(TM)-1 tangent planes

using the other legs of the frame and find the sectional curvature of each. That is,

∑

i

K(E1, Ei) =
∑

i

g(RE1Ei
E1, Ei) = Ric(E1, E1)

It can now be seen that the n-th diagonal entry of the Ricci tensor is the sum of all

the sectional curvatures of the planes containing En leg of an orthonormal frame.

As pointed out in [Remark 55, pg 89, [30]] to convert from their classical notation
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based on R to more convenient notation based on R one need only switch R in Oneill’s

definitions to −R to find the new definitions. He gives the example of the sectional

curvature defined through the curvature tensor:

K(X,Y ) = g(RXY X,Y )/Q(X,Y )

= −g(RXY X,Y )/Q(X,Y )

= g(RXY Y,X)/Q(X,Y ).

That is, K(X,Y ) = g(RXY X,Y )/Q(X,Y ) is the definition of sectional curvature

defined through R. In order to keep the sign of the sectional curvature the same when

using R one must use the definition K(X,Y ) = g(RXY Y,X)/Q(X,Y ).

A.4 Parallel Transport and Geodesics

It is necessary in building a geometry-based controller for the double gimbal that one

has the notion of a transport mapping, Tr→q which is, essentially, a smooth mapping

that carries vr, a tangent vector at r in the Riemannian manifold to another tangent

vector Tr→q(vr) at the point q. The utility of said map lies in the fact that only vectors

at the same point can be added or subtracted. Parallel transport along geodesic

curves is the transport map we use in defining an intrinsic velocity error required for

an intrinsic geometry based control law, see Chapter 3. So we now address parallel

transport and geodesics and give some examples.

The coordinate free form of the parallel transport equations are

D

du
V = 0, (A.30)

where D/du is the covariant derivative (w.r.t the Levi-Civita connection) along a

curve σ(u) and V is a vector field along σ(u). The solution vector field is that which

is covariatn constant along the curve σ(u). In coordinates the parallel transport
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equation are the linear system of, possibly, non-autonomous ODE’s given by

n∑

j=1

n∑

k=1

dV i

du
+ Γi

jk

dγj

du
V k = 0, (A.31)

where Γi
jk are the Christoffel symbols, namely those functions of the metric tensor

and its derivatives, given by

Γi
jk =

n∑

a=1

1

2
gia(gak,j + gja,k − gjk,a), (A.32)

where gia is the kth-row and ath-column entry of (g)−1 and ,i denotes partial differen-

tiation wrt the ith coordinate. From this point on we will consistently use an implied

summation over repeated upper and lower indices.

A geodesic curve on M is that curve, σ(u) whose tangent vector field dσ/du

satisfies the equation
D

du

d

du
σ(u) = 0. (A.33)

Equation A.33 is called the geodesic equation and is that equation requiring the

tangent vector field to a geodesic curve be parallel transported. The geodesic equation

is Newton’s equation F = ma on a Riemannian manifold with F = 0 and m = 1.

Alternatively, geodesics are those curves σ(u) on (M, g), out of all possible curves

α(u) on (M, g), which minimize the energy functional (see [27]),

E(α) =

∫ u=b

u=a

g

(
dα

du
,
dα

du

)
du.

The coordinate form of equation (A.33) is obtained by substitution of V k = dαk/du

into equation (A.31):
d2αi

du2
+ Γi

jk

dαj

du

dαk

du
= 0. (A.34)

We now give some examples of parallel transport and geodesics. To illustrate

the parallel transport equations consider the curve in Euclidean R
3 given by σ(u) =
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I(γ(u)) where γ(u) = [ γ1(u) γ2(u) γ3(u) ]T = [ x(u) y(u) z(u) ]T and Γi
jk = 0 (which follows

from the derivatives of the constant entries of GR3 = I being 0). In this case the

parallel transport equations are

d

du
V i(γ(u)) = 0

That is, in the Euclidean R
3 case, the covariant derivative can be replaced by a regular

time derivative. For the initial conditions [V i(γ(u0))] := V0 the solution vector field,

V along γ(u) is that with constant components V0, see Figure A.2. We say that

V (γ(uf )) := Vf is the transport of V0 along γ(u).

As another illustration consider the curve on S2 (r = 1) given by σ(u) = S(γ(u))

with γ(u) = [θ(u), φ(u)]T. We equip S2 with the standard metric, the components of

which can be used in equation (A.32) to find the Christoffel symbols, see Table A.4.

Table A.1: Metric tensor, g and Christoffel symbol, Γ data for standard S2 (r = 1)
non-zero entries

gij g11 = sin2(φ) g22 = 1
Γi

jk Γ1
12 = Γ1

21 = cot(φ), Γ2
11 = − sin(φ) cos(φ)

With the data from Table A.4 the parallel transport equations in equation (A.31)

become

dV 1

du
+ cot(φ(u))

dφ

du
V 1 + cot(φ(u))

dθ

du
V 2 = 0 (A.35)

dV 2

du
− cos(φ(u)) sin(φ(u))

dθ

du
V 1 = 0 (A.36)

which, for example, along the curve γ(u) = [u, u] are

dV 1

du
+ cot(u)V 1 + cot(u)V 2 = 0

dV 2

du
− cos(u) sin(u)V 1 = 0.
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These equations can be solved for V = [V 1, V 2]T and mapped under DS to the curve

σ(u), see Figure A.2.

(a) (b) (c)

Figure A.2: Parallel Transport on Euclidean R
3 and standard S2. a) (left) For R

3

the curve is γ(u) = [x(u), y(u), z(u)] = [sin(u), cos(u), u] is given in black with initial
vector V0 = [0, 0, 1] (time u0 = 1) given in blue and the transported vector Vf =
[0, 0, 1] (time uf = 7) given in green. b) (middle) For S2 the curve σ(u) = S(u, u) is
given in black with initial vector V0 = [1, 1] (time u0 = 1) mapped to the curve σ(u)
under DS given in blue and the transported vector given in green (time uf = 3). c)
(right) Parallel transport of initial vector, V0 (in blue) around closed curve (in black)
to a final vector, Vf (in green)

For Euclidean R
3 the geodesics equations are

d2x

du2
= 0 and

d2y

du2
= 0 and

d2z

du2
= 0. (A.37)

The solutions, γ(u) to equation (A.37) are easily seen by inspection to be

γ(u) = [x(u), y(u), z(u)] = [x0 + vx0u, y0 + vy0u, z0 + vz0u]

where the geodesics σ(u) = I(γ(u)) (on Euclidean R
3) are straight lines through the

point p = [x0, y0, z0] with initial velocity v = [vx0, vy0, vz0].

For standard S2 the geodesic equations are (A.38)

d2θ

du2
+ 2 cot(φ(u))

dθ

du

dφ

du
= 0 and

d2φ

du2
− cos(φ(u)) sin(φ(u))

(
dθ

du

)2

= 0. (A.38)
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Some solutions, γ(u) to equation (A.38) easily seen by inspection are

γ(u) = [θ(u), φ(u)] = [θconst., u] or γ(u) = [u, 0]

with corresponding geodesics on S2, σ(u) = S(γ(u)), given by

σ(u) = lines of longitude or σ(u) = equator.
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Coordinates on Q → Q/G and LQ

B.1 Adapted Coordinates On Q → Q/G

GG
Orb  (p)

P=Q−−>Q/G

Π

Q/G

Π  (   )U
−1

Q/G U

{(r,g)}

{(r,id)}

λ

r

p

λ(  )r

(r,g)

Π−1

Locλ

Figure B.1: Adapted Coordinates on Q from a Local Trivialization of a Local Section

Let Q
πQ→ Q/G be a principal fiber bundle which can be be viewed as union of

group orbits. Assume Q/G is a manifold (called shape space) with coordinates (ri)

defined on U ⊂ Q/G about r ∈ Q/G. Now let σQ be a local section of πQ, which is

137
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to say that σQ(U) is a submanifold of Q for which

πQ(σQ(r)) = r ∀ r ∈ U

One can define coordinates on Q → Q/G using a local trivialization of a local section

of πQ, LocσQ
. Let LocσQ

: π−1
Q (U) → U × G ⊂ Q/G × G be defined by

1. LocσQ
(σQ(r)) = (r, id) ∀ r ∈ U

2. LocσQ
(σQ(r) · g) = (r, g) ∀ r ∈ U

Clarification of 2: Let q ∈ π−1
Q (U) ⊂ Q be any point. As Q is a union of group orbits,

q has to lie on some group orbit over some r. To figure out which compute

πQ(q) = r.

The section can then be used to find

σQ(r)

Since πQ(σQ(r)) = r then σQ(r) is on the same fiber as q and hence there must exist

a g ∈ G for which

q = Rg(σQ(r)) = σQ(r) · g

Impose the condition (a “commutivity” condition requiring shifting then trivializing

to be equal to trivializing then shifting)

LocσQ
(σQ(r) · g) = LocσQ

(σQ(r)) · g = (r, id) · g := (r, g)

Then for any q ∈ π−1(U), LocσQ
(q) = (r, g) ∈ U × G. Now let (sA) be coordinates

on G which can be used to define coordinates (qI) on π−1
Q (U) ⊂ P (using a local



APPENDIX B. COORDINATES ON Q → Q/G AND LQ 139

trivialization of the section πQ) by

qI(q) = qI(LocσQ
(q)) = qI(r, g) := (ri, sA)(r, g) := (ri(r), sA(g)) (B.1)

We emphasize that the index convention being used is

I, J,K (upper case script) = 1 . . . dim(Q) = n (B.2)

i, j, k (lower case roman) = 1 . . . dim(Q/G) (B.3)

A,B,C (upper case roman) = 1 . . . dim(G) (B.4)

B.2 Coordinates On LQ

We now consider the principle fibre bundle LQ
πLQ→ Q, the bundle of linear frames

to an n-dimensional manifold Q which is itself a principal fiber bundle Q
πQ→ Q/G.

Notationally, LQ is given by

LQ = {(p, e)} (B.5)

where e = (eJ) is a basis of TQ . That LQ can be made into a manifold is now

addressed. Let (qI) be coordinates on U ⊂ Q about q ∈ Q and let σLQ be a local

section of πLQ be given by σLQ(U) = {(q, e)| e = {eJ} a basis of TqQ} ⊂ π−1(U)

where

πLQ(σLQ(q)) = q ∀ q ∈ U ⊂ Q

That is, a local section is an assignment to each point q ∈ U ⊂ Q a particular

frame. Hence a local section of LQ can be called a local frame field. Define a local

trivialization of π−1
LQ(U) given a section σLQ, denoted LocσLQ

: π−1
LQ(U) → U×Gl(n) ⊂

P × Gl(n) by

1. LocσLQ
(σLQ(q)) = (q, id) ∀ q ∈ U

2. LocσLQ
(σLQ(q) · g) = (q, g) ∀ q ∈ U
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Clarification of 2: Let u ∈ π−1
LQ(U) ⊂ LQ be any point. As LQ can be viewed as

union of group orbits, u has to lie on some group orbit over some q. To figure out

which compute

πLQ(u) = q.

The section can then be used to find σLQ(q). Since πLQ(σLQ(q)) = q then σLQ(q)

is on the same fiber as u. So there must exist a gq ∈ G ( the q indicating that the

group element needed to shift the section to another frame field will vary from point

to point) for which

u = Rgq(σLQ(q)) = σLQ(p) · gq

We then impose the condition (a “commutivity” condition requiring shifting then

trivializing to be equal to trivializing then shifting)

LocσLQ
(σLQ(q) · gq) = LocσLQ

(σLQ(q)) · gq = (q, id) · gq := (q, gq)

From now on we assume that g’s q-dependence is implicit, gq = g.

We can restate the above in terms of local reference frame fields. Assume that a

local frame field of LQ is given as σLQ(q) = (q, f). Via the local trivialization map,

LocσLQ
(q, f) = (q, id). Now let u be an arbitrary point in π−1(U) ⊂ LQ. Using

the section σLQ we identified that σLQ(q) is on the same fiber as u and hence there

exists g ∈ Gl(n) such that u = σLQ(q) · g = (q, e) · g. Denote this arbitrary point

u ∈ π−1
LQ(U) ⊂ LQ by u = (q, e) where e = f · g. Using the local trivialization map,

LocσLQ
(q, e) = (q, g). We can think of (q, e) as another frame field related to a given

(reference) local frame field (q, f) by (q, e) = (q, f · g). That is, the group element

obtained from the local trivialization tells us how any frame field is related to the

reference frame field.

We can now define coordinates on π−1
LQ(U) ⊂ LQ given a (reference) local frame

field (q, f). Let u = (q, e) be an arbitrary element of π−1
LQ(U). Define (momentum)
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coordinates q̄K and ΠI
J by

q̄K(q, e) := qK(q)

ΠI
J(q, e) := eI(fJ(q)) (B.6)

where fJ(q) is the J−th vector from the reference frame field, eI is the I−th co-vector

of the arbitrary I-th vector from the arbitrary frame field and qK are defined in eq.

(B.1). One can also define (velocity) coordinates q̄K and V I
J by

q̄K(q, e) = qK(q)

V I
J (q, e) = fI(eJ(q)) (B.7)

It follows from the definitions that

eJ = ΠJ

I
(u)fI [or invariantly ē = Π · f̄ ] (B.8)

eI = V J

I
(u)fJ [or invariantly e = f · V ] (B.9)

which are equations describing the Π′s and V ′s role in relating the reference co-

frame, f̄ and reference frame, f to an arbitrary co-frame, ē and arbitrary frame, e

respectively. It also follows that

ΠJ

K
(u)V K

I (u) = δJ

I
(u)

V K
J (u)ΠJ

I
(u) = δK

I (u) (B.10)

and hence the Π′s and V ′s are inverses of each other.

Remark B.2.1 We note that the definitions given in eqs. (B.6) and (B.7) are slightly

more general than those originally used by LKN [28], in that we allow for a reference

frame field (p, e) not necessarily equal to (q, ∂) where ∂ = (∂/∂qI) = (∂I). That is,
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LKN [28] uses

ΠI
J(p, e) = eI(∂J(q))

which we will denote as
c

Π
I

J (q, e) and call the canonical n-sympectic momenta. The

generality will allow us to take as a reference frame field one which is in some sense

adapted to the constraints and adapted to the fundamental vertical vectors, see Ap-

pendix F.



Appendix C

More on LQ

C.1 TP and T ⋆P , Associated Bundles of LP

This section can be summarized by the following two diagrams.

Summary C.1.1 The diagram

u ∈ LP v ∈ R
n

φu
-

¾

φ−1
u

TP ∼= E = LP ×Gl(n) R
n ∋ [u, v]

P
¾

τ
π

-

where φu is the well-defined mapping

φu(v) = [u, v] ∋ τ [u, v] = p

such that [u, v] ∈ E is an equivalence class summarizes how TP can be viewed as a

vector bundle associated to LQ. It follows that a section of τ , f is a smooth assignment

of a vector Xp to each p ∈ P . That is f is a vector field on P.

143
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Summary C.1.2 The diagram

u ∈ LP α ∈ R
n⋆

ψu
-

¾

ψ−1
u

T ⋆P ∼= E = (LP ×GL(n) R
n⋆) ∋ [u, α]

P
¾

σ
π

-

where ψu is the well-defined mapping

ψu(α) = [u, α] ∋ σ[u, α] = p

such that [u, α] is an equivalence class summarizes how T ⋆P can be viewed as a vector

bundle associated to LQ.. A section of σ is a co-vector field on P.

In section B.2 we have seen the sense in which LQ is considered to be a principle

G=Gl(n)-bundle (right action of Gl(n) on LQ). A left action of Gl(n) on V = R
n

can be defined by

Lg(v) := g−1 · v ∀v ∈ R
n

Remark C.1.1 The above is a left action since

Lgh(v) = (gh)−1 · v = h−1(g−1 · v) = Lh(Lgv)

Remark C.1.2 Coordinate formulas will periodically be presented which illustate

various invariant definitions. For example,

Rg(u) := (p, e · g) = (p, (fIg
I
J)) ∀g ∈ Gl(n), u ∈ LP

Lg(v) := g−1 · v = (−1gI
Jv

J) ∀g ∈ Gl(n), v ∈ R
n

where the row vector-matrix multiplication fIg
I
J gives eJ, the J-th frame vector of the

frame f · g := e and the matrix-column vector multiplication −1gI
Jv

J gives ṽI, the I-th
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coordinate of the vector g−1 · v := ṽ where we are using the index convention

1 ≤ I, J,K ≤ dim(P)=n

Comparing the above to equation (B.9) we see that

fIg
I
J = eJ

is an equation relating the reference frame vector fI at p to an arbitrary frame vector

eJ at p where

gI
J(p) = V I

J ((p, e)) (C.1)

In [20, pg. 54] it is shown how given a PFB P(M,G) [right action of mathfrakG

on P] one can construct a vector bundle E(P,M,G,F=V) called the associated bundle

of P with standard fiber V [left action of G on V]. As addressed above we have the

ingredients to construct an associated bundle of LP with standard fiber V = R
n.

Following [20] we construct

E = (LP × R
n)/GL(n) = {[u, v]|u ∈ LP and v ∈ R

n}

where [u, v], [ũ, ṽ] ∈ E are equal if

1. p=p̃

2. there exists g ∈ GL(n) such that ũ = u · g and ṽ = −1g · v ∀u ∈ LP and v ∈ R
n.

That is, E is the collection of equivalence classes {[u,v]} where [u, v] = {(u · g, g−1 ·
v)∀ u ∈ LP, v ∈ R

n, g ∈ Gl(n)}.

Remark C.1.3 To get a feeling for the above equivalence, recall that two vector fields

X = XIeI and Y = Y JfJ ∈ TP are equal if they are related by the coordinate trans-

form (the basis transform via the right group action and the coordinates transform
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via the left group action) given by

X = XIeI = XIδJ

I
eJ = XI(−1gK

I gJ

K
)eJ

= −1gK
I XIeJg

J

K
= Y KfK = Y ∀p

Substituting eq. (C.1) and using the relationship (B.10) implies

−1gJ

I
(p) = ΠJ

I
(p, f) (C.2)

We will soon see the relationship between E and TM.

A critical formula can be derived using the equivalence relation defined on E. We

ask for what ṽ the following will hold, [g · u, v] = [u, ṽ]. This implies there exists

h ∈ G for which h · (g · u) = u and h−1 · v = ṽ =⇒ h = g−1 and thus ṽ = g · v. We

now have the critical formula (for right actions of G on P and left actions of G on

V)

[u · g, v] = [u, g · v] (C.3)

Now define τ : E → P by

τ([u, v]) := π(u) = p

As is always the case when defining a function on equivalence classes we must show

well-definedness. That is, if [u, v] = [ũ, ṽ] then we must show that τ([u, v]) = τ([ũ = u·
g, ṽ = g−1 ·v]). This follows from τ([u, v]) = π(u) = p and τ([ũ, ξ̃]) = π(u·g) = p since

Rg keeps u on the fiber over p. We consider the implications of τ([u, v]) := π(u) = p.

Let τ−1 be the fiber of E
τ→ P defined by

τ−1(p) = {[u, v]|τ([u, v]) = p} ⊂ E.
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We show that τ−1
p is a vector space. Define addition of [u, v], [ũ, ṽ] ∈ τ−1(p) by

[u, v] + [ũ, ṽ] = [u, v] + [u · g, ṽ]

= [u, v] + [u, g · ṽ] (by (C.3))

:= [u, v + g · ṽ]

Now [u, v + g · ṽ] ∈ τ−1(p) and hence τ−1
p is a vector space. We now show that the

fibers τ−1(p) are isomorphic to R
n by identifying a frame with a mapping. That is,

to each u ∈ LM define φu : R
n → π−1(p) ⊂ E by

φu(v) = [u, v] where τ [u, v] = p (C.4)

Define φ−1
u : τ−1(p) → R

n by

φ−1
u ([u, v]) = v (C.5)

where [u, v] is any point on the fiber τ−1(p). Again, as this is a function defined on an

equivalence class we must show that it is well-defined. That is, we have to show that

if [u, v] and [ũ, ṽ] are on the same fiber τ−1(p) then φ−1([u, v]) = φ−1([ũ, ṽ]) = v. By

the equivalence relation and the crucial formula, φ−1([ũ, ṽ]) = φ−1([u · g, g−1 · v]) =

φ−1([u, gg−1 · v]) = v. Clearly φu is 1-1 and onto and now invertible which implies

that τ−1(p) ∼= R
n. So we have shown that E = (LP × R

n)/Gl(n) is a vector bundle

over P with fiber τ−1(p) ∼= R
n.

That E ∼= TP follows using

[u, v] = [(p, e), v] ∼= X = vIeI ∀p (C.6)

which says that the vector field X is formed using the components of vI of v = vIrI ∈
V = R

n summed out with the I-th frame vector eI.

Remark C.1.4 We note that the vector v and frame u used in eq. (C.6) are those

of the represenative (u, v) = ((p, e), v) ∈ [u, v]. Were any other (ũ, ṽ) ∈ [u, v] chosen
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it would have defined a vector field Y equal (in the sense of Remark C.1.3) to X by

X = vIeI
∼= [u, v] = [u · g, g−1 · v] ∼= eIg

I
J(

−1gJ

I
vI) = ṽJfJ = Y ∀p

and thus the mapping [u, v] → X is well-defined. A specific vector Xp will be obtained

once a specific frame at p and specific v ∈ V are chosen.

Other coordinate formulas are

φ−1
u ([u, v]) = v → φ−1

fJ
(vIfI) = vJrJ (C.7)

φu(v) = [u, v] → φfJ
(vIrI) = vJfJ (C.8)

φ−1
u·g([u, v]) = g−1 · v → φ−1

eJ
(vIfI) = −1gJ

I
vIrJ (C.9)

φu·g(v) = [u, g−1 · v] → φeJ
(vIrI) = −1gJ

I
vIfJ (C.10)

where {rI} is a basis for R
n and f = (fJ) is the (reference) frame field and e = {eI}

is another arbitrary frame field.

As expected T ⋆Q can also be constructed as an associated bundle of LQ. The

construction is

E = (LP × R
n⋆)/GL(n) (α ∈ R

n⋆).

where equivalence is given by [u, α] = [ũ, α̃] = [u · g, α · g] (such that Lgα = α · g is a

left action since Lgh(α) = α · gh = Lh(Lgα)). This notion of equivalence leads to the

critical formula (cf. arguement leading to eq. (C.3)) [u ·g, α] = [u, α ·g−1]. Analagous

to the TP case one defines σ([u, α]) := π(u) = p and ψu : σ−1(p) → R
n⋆ is given by

ψu(α) = [u, α] with inverse ψ−1
u ([u, α]) = α which gives ψ−1(p) ∼= R

n⋆. Analagous to

(C.9) and (C.10) we have that

ψ−1
u·g([u, α]) = α · g → ψ−1

eJ
(αIf

I) = gI
JαIr

J (C.11)

ψu·g(α) = [u, α · g] → ψeJ
(αIr

I) = gI
JαIf

J (C.12)
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That E ∼= T ⋆P follows using

[u, α] ∼= Θ = αIe
I

which says that co-vector Θ is formed using the components of αI of α = αIr
I ∈ V =

R
n⋆ and summed out with the fI the co-frame of the (reference) frame defined by

u = (p, f = (fI)) ∈ LP . A smooth section of λ is a co-vector field on P.

Remark C.1.5 In a very natual way one can put the diagrams for TP and T ⋆P

together into a single diagram for a new associated vector bundle Ẽ

LP R
n ⊗ R

n⋆
ξu
-

¾

ξ−1
u

Ẽ = TP ⊗ T ⋆P

P
¾

λ
π

-

where ξu(v ⊗ α) := (φu ⊗ ψu)(v ⊗ α) = φu(v) ⊗ ψu(α) = [u, v] ⊗ [u, α] ∼= X ⊗ Θ and

λ(X ⊗ Θ) := (τ ⊗ σ)(X ⊗ Θ) = τ(X) ⊗ σ(Θ) = p ⊗ p ∼ p. A smooth section of λ is

a 1-1 tensor field on P.

Remark C.1.6 Extrapolating Remark C.1.5 to its full generality gives the diagram

LP R
n ⊗r

s R
n⋆ -

¾ Ē ∼= TP ⊗r
s T ⋆P

P
¾

γ
π

-

where a section of γ is an (r,s) tensor field on P.
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C.2 Tensorial p-forms on LP

We begin with the general definition of a pseduo-tensorial p-form on P(M,G) as given

[20, pg. 75]

Definition C.2.1 Let P(M,G) be principle G-bundle [right action of G on P] and

let ρ be a representation of G on V. A pseudo-tensorial p-form on P of type (ρ,V) is

a V-valued p-form ψ such that

R⋆
gψ = ρ(g−1) · ψ ∀g ∈ G

The p-form ψ is said to be tensorial if ψ(X1, . . . , Xp) = 0 whenever dπ(Xi) = 0 for

some 1 ≤ i ≤ dim(P ).

We focus on tensorial 0-forms and tensorial 1-forms in the case where LP(P,Gl(n))

and ρ is the standard representation of Gl(n) on V = R
n. That is,

ρ(g−1) · ξ = g−1 · ξ

C.2.1 Tensorial 0-Forms on LP

First we discuss f̂ : LM → R
n a tensorial 0-form. Note that f̂ fills in the gap of a

previous diagram where we define f to be a (smooth) section of τ (i.e. f (smooth)

defined pointwise by p → Xp such that τ(Xp) = p). That is, the section f of τ

smoothly assigns to each p a specific vector Xp and hence can be considered a vector
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field.

LP
f̂

- R
n

φu
-

¾

φ−1
u

TP ∼= E

P
f(

se
ct
io
n)
-

π

-

Recall from section C.1 that τ−1 : P → E ∼= TP , φu : R
n → τ−1(p) = f(p) and

φ−1
u : f(p) → R

n were defined pointwise by

τ−1(p) = [u, v] such that τ [u, v] = p

φ−1
u ([u, v]) = v

φu(v) = [u, v] ∼= X

where E ∼= TM via [(p, e, v] ∼= vIeI = Xp. Specifying the frame u at a given p and a

vector v determines Xp a specific element of TpP . The relationship between a section

f and a tensorial function, f̂ is given by the

Theorem C.2.1 Sections of τ and tensorial 0-forms are in one-to-one correspon-

dence.

Proof: First let f : M → TM be a section. Define (pointwise), f̂ : LM → R
n by

f̂u := φ−1
u (fp) (C.13)

where fp is a point on the same fiber of E ∼= TM over p as [u, v] ∈ τ−1(p). That is

fp can be expressed as fp = [ū, v̄] where τ(fp) = τ([ū, v̄]) = p. As [ū, v̄] is on the same

fiber as [u, v] there exists an h ∈ Gl(n) such that fp = [u · h, v̄] = [u, h · v̄] =⇒ f̂u =

φ−1
u (fp) = h · v̄. To show f̂ is tensorial we must show (again pointwise)

(R⋆
gf̂)|u = g−1 · f̂u.
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or, since the pull-back of a function f through Rg is f ◦ Rg

f̂u·g = g−1 · f̂u

By the above definition,

f̂u·g = φ−1
u·g(fp) = φ−1

u·g([ū, v̄])

= φ−1
u·g([u, h · v̄])

= φ−1
u·g[u · gg−1, h · v̄]

= φ−1
u·g[u · g, g−1 · (h · v̄)]

= g−1 · (h · v̄) = g−1 · f̂u

Thus we have shown that a section f defines a tensorial function f̂ . Now given f̂ :

LM → R
n (tensorial) define f : P → TP (pointwise) by

fp := φu(f̂u). (C.14)

We just need to assure that two frames which are equivalent get mapped to the same

vector. That is, we must show

φũ(f̂ũ) = φu(f̂u) where ũ = u · g

Now

φũ(f̂ũ) = φu·g(f̂u·g) = φu·g(g
−1 · f̂u) (using f̂ tensorial)

= [u · g, g−1 · f̂u]

= [u, gg−1 · f̂u]

= φu(f̂u) = [u, f̂u]

Thus we have shown that a tensorial function f̂ gives a well defined section f which
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completes the one-to-one correspondence of sections of τ with R
n-valued tensorial

functions on LP. ¤

Remark C.2.1 It is readily apparent that one can generalize the above theorem to

arbitrary tensor fields. That is, sections of γ (cf. Summary (i.e. (r,s)-tensor fields)

are in one-to-one correspondence with R
n ⊗r

s R
n⋆ valued tensorial functions on LP.

This is illustrated in the (1,1) tensor field case by the diagram (cf. Remark C.1.5)

LP
ŝ
- R

n ⊗ R
n⋆

ξu
-

¾

ξ−1
u

Ẽ = TP ⊗ T ⋆P

P

s

-

π

-

where a section of λ, s , is a (1,1) tensor field on P given by the formula

sp = ξu(ŝu) (C.15)

Given a (1,1) tensor field sp there corresponds a R
n ⊗ R

n⋆-valued tensorial function

on LP given by the formula

ŝu = ξ−1
u (sp). (C.16)

C.2.2 Tensorial One Forms on LP

Theorem C.2.2 Tensorial one forms on LP are in one-to-one correspondence with

(1,1)-tensor fields on TP.

Proof: First, let ψ̂ : T (LP ) → R
n be a tensorial one-form on LP given point-wise by

ψ̂uX̂u ∈ R
n

where we assume

X̂u ∈ TuLP s.t. dπ(X̂u) = Xp ∈ TpP (C.17)
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Now define ψ : P → T 1
1 (TP ) given ψ̂ and the map φu defined in (C.4) by

ψpXp := φu(ψ̂uX̂u) = [u, ψ̂uX̂u] ∈ TpP. (C.18)

As ψp maps into an equivalence class (via TP ∼= E) we must show it is a well-defined

function. That is, were another tangent vector to LP which projects to Xp given

would we obtain the same value for ψpXp. Notice that X̂u·g = dRgX̂u ∈ Tu·gLP is an

arbitrary vector which projects to Xp as

dπ(X̂u·g) = dπ(dRgX̂u) = d(π ◦ Rg)X̂u = X̂(π◦Rg)(u) = X̂p

it follows that

φu·g(ψ̂u·gX̂u·g) = φu·g(g
−1 · ψ̂uX̂u) (using ψ̂ tensorial)

= [u · g, g−1 · ψ̂uX̂u]

= [u, g · g−1 · ψ̂uX̂u] (using (C.3))

= [u, ψ̂uX̂u] = ψpXp

so the map ψp : TpP → TpP defined through the given map ψ̂u : TuLP → R
n is

well-defined for each p and hence ψ : P → T 1
1 (TP ) is well defined. Now let ψ : P →

T 1
1 (TP ) be given pointwise by

ψpXp
∼= [ū, v̄] = [u, h · v̄] ∈ TpP for some h ∈ Gl(n)

Given this map ψ, the map φ−1 from (C.5) and again assuming that dπ(X̂u) = Xp

we define the function ψ̂ : T (LP ) → R
n pointwise by

ψ̂uX̂u = φ−1
u (ψp(dπX̂u)) (C.19)



APPENDIX C. MORE ON LQ 155

We now show that ψ̂u is indeed tensorial. We must show that

ψ̂u·g(X̂u·g) = g−1 · ψ̂uX̂u (C.20)

The right side of (C.20) works out to (since X̂u projects to Xp)

g−1 · φ−1
u ([u, h · v̄]) = g−1 · (h · v̄).

The left hand side of (C.20) works out to (since X̂u·g projects to Xp)

φ−1
u·g(ψpXp) = φ−1

u·g([u, h · v̄]))

= φ−1
u·g([u · g, g−1(h · v̄)])

= g−1 · (h · v̄)

and thus ψ̂p : TpLP → R
n is a tensorial function for each p and hence ψ̂ : T (LP ) →

R
n is a tensorial function. We have now shown that tensorial one-forms on LP are

in one-to-one correspondence with (1,1)-tensor fields on TP. ¤

Summary C.2.1 We summarize tensorial 1-forms on LP with the diagram

T (LP )

LM
f̂

- R
n

φu
-

¾

φ−1
u

ψ̂

-

TP
ψ

- TP

P
¾

τπ

-
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C.3 Soldering Form on LP

The soldering form is an R
p-valued one form on LP defined by

θ̂u(X̂u)
∆
= φ−1

u (dπ(X̂u)) (C.21)

where (as in C.2.2) we require dπXu = Xp
∼= ([(q, f), v] (i.e. Xp is expressed relative

to the reference frame) and that τ([u, v]) = p) ∀p.

Note C.3.1 The canonical 1-form on T ⋆Q is given by

ϑ[q,α](X[q,α]) = α(dπX[q,α]) = α(Xq)

which in canonical local coordinates on T ⋆Q given by

q̄I([q, α]) = (qI ◦ π)([q, α]) = qI(q) and pJ([q, α]) = αq

(
∂

∂xJ
|q

)

can be written as

αq(X
I(q)∂I) = pI([q, α])XI(q)

= pI([q, α])dqI(Xq)

= pI([q, α])dq̄I(X[q,α])

=⇒ ϑ[q,α] = pI([q, α])dq̄I|[q,α]

which implies ϑ as an R-valued one-form on T ⋆Q can be written

ϑ = pI ∧ dq̄I.

That θ̂u is a tensorial one-form on LP follows as in the proof from C.2.2. The

corresponding (1,1)-tensor field on TP is (using eq. (C.18))

θpXp = φu(θ̂uX̂u) = φu(φ
−1
u Xp) = Xp (C.22)
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which implies that the soldering form θ̂u corresponds to the identity (1,1) tensor, Idp

on TpP for each p. Hence θ̂ corresponds to the identity tensor field on TP. Using the

coordinate formulation in eq. (C.9) and (C.2) we obtain a coordinate formulation of

(C.21) given by

θ̂(p,eJ)(v
IfI) = ΠJ

I
((p, e))vIrJ ∈ R

n

or as an R
n-valued one form on LP by

θ̂(p,e) = ΠJ

I
((p, e))fI ⊗ rJ ∈ T ⋆

p (LP ). (C.23)

Relative to the canonical reference frame f = ∂, eq. (C.23) is

θ̂u = ΠJ

I
(u)dqI ⊗ rJ

whereupon removing the u dependence and the range index gives

θ̂I = ΠI
J ∧ dqJ (C.24)

which should be compared with the above T ⋆Q version. A coordinate formulation of

θp is Idp = eI ⊗ eI and so we have the correspondence

Idp = fI ⊗ fI|p ⇐⇒ θ̂u = ΠJ

I
(u)fI|u ⊗ rJ (C.25)

C.4 More LQ Coordinate Formulations

We now show the coordinate relationship between R
n⊗r

sR
n⋆–valued tensorial functions

on LP and sections of TP ⊗r
s T ⋆P (cf. Summary C.2.1) using the example of sections

of TP ⊗ T ⋆P (cf. Remark C.1.5).

Using the definition of the map ξ−1
u := φ−1

u ⊗ψ−1
u : T 1

1 M → R
n⋆⊗R

n from Remark
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C.1.5 and eqs. (C.12), (C.10) it follows that

ξ−1
u·g([u, v] ⊗ [u, α]) := (φ−1

u·g ⊗ ψ−1
u·g)([u, v] ⊗ [u, α])

= φ−1
u·g([u, v]) ⊗ ψ−1

u·g([u, α]))

= g−1 · v ⊗ α · g

= Π · v ⊗ α · V

and thus given a 1-1 tensor T (p) = T I
J(p)(eI ⊗ eJ) on TpP we have that T̂ (u) =

ξ−1
u (T (p)) can be computed in coordinates as

ξ−1
u (T I

J(p)(eI ⊗ eJ)) = T I
J(p)φ−1

fN
(eI)ψ

−1
fM

(eJ)

= T I
J(p)ΠN

I (u)rNV J

M
(u)rM

= T I
J(p)ΠN

I (u)V J

M
(u)rN ⊗ rM

:= T̂N
M(u)rN ⊗ rM

We now have the coordinate correspondence of (1-1) tensor fields of TP with R
n ⊗r

s

R
n⋆–valued tensorial functions on LP:

T I
J(p) −→ T I

J(p)ΠN
I (u)V J

M
(u) := T̂N

M(u) (C.26)

It follows by extension that (0,2) tensor fields on TP correspond to R
n⋆ ⊗R

n⋆–valued

tensorial functions on LP given by

gIJ(p) −→ ĝNM(u) = gIJ(p)V I
N(u)V J

M
(u) (C.27)

and (2,0) tensor fields correspond to R
n ⊗ R

n-valued tensorial function on LP given

by

gIJ(p) −→ ĝNM(u) = gIJ(p)ΠN
I (u)ΠM

J (u) (C.28)

Remark C.4.1 The equation (C.27) is very important in the following sense: take
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the metric gIJ(p) on P to be the kinetic energy metric then ĝNM(u) can be viewed

as the corresponding kinetic energy metric on LP. In Chapter 4.2 and Appendix G

we derive dynamic equations on LP with ĝNM(u) just as one would derive dynamic

equations with gIJ on P.

Remark C.4.2 We can effectively say that ĝ is a metric tensor on LP and hence we

can use it to raise and lower the indices of tensorial functions on LP. For example,

ĝNMT̂N
P = T̂MP since

ĝNMT̂N
P = gIJV

I
NV J

M
TA

BΠN
AV B

P

= gIJT
A
BV I

NV J

M
ΠN

AV B
P

= gIJT
A
BδI

AV J

M
V B

P

= gIJT
I
BV J

M
V B

P

= TJBV J

M
V B

P

= T̂MP

Similarily ĝNM will raise the index of a covariant tensorial function on LP.



Appendix D

On BMinj(M)

D.1 Summary of the Tangent Bundle as an Associ-

ated (Vector) Bundle of the (Principle Fibre)

Bundle of Linear Frames

In [20, pg. 54] it is shown that given a principle fibre bundle P (M,G) [right action

of G on M] one can construct a vector bundle E(P, V ) = (P × V )/G called the

associated bundle of P with standard fiber V [left action of G on V]. Specifically the

tangent bundle TM is vector bundle over M with fiber isomorphic to R
n associated

to the principle fiber bundle LM, the bundle of linear frames. The bundle maps can

be summarized by the diagram

u ∈ LM vp ∈ R
n
p

φu
-

¾

φ−1
u

τ−1(p) ⊂ E = (LM × R
n)/Gl(n) ∼= TM ∋ X

p ∈ M
¾

τ
π

-

A summary of all objects and maps are as follows:

• (The Bundle of Linear Frames) LM = {u = (p, f)} where f = {fi}dim(M)
i=1

160
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is any basis of TpM . That is, LM is the collection of all the frames of M for all

points of M.

• (Projection of LM onto M) π(u) = p ∀u ∈ LM

• (The Associated Bundle of LM) E = (LM × R
n)/GL(n) = {[u, v]|u ∈

LM ∋ X and v ∈ R
n} (i.e. a set of Gl(n) equivalence classes) where [u, v], [ũ, ṽ] ∈

E are equal if

1. p=p̃

2. there exists g ∈ GL(n) such that ũ = u · g and ṽ = −1g · v ∀u ∈ LP and

v ∈ R
n (Note the right action of G on LM and the left action of G on R

n)

A most critical formula can be derived from 2. (see eq. (C.3))

[u · g, v] = [u, g · v] (D.1)

• (Projection of E onto M) τ([u, v]) = π(u) = p is well-defined.

• (Standard Fibres of E) τ−1(p) = {[u, v]|τ([u, v]) = p is a vector space

• (Identifying a Frame with a Mapping) φu(v) = [u, v] ∈ τ−1(p) and

φ−1
u ([u, v]) = v ∈ R

n
p (i.e. a copy of R

n for each p ∈ M . (this is well defined)

• (Identification of E with TM) E ∼= TM follows using

[u, v] = [(p, e), v] ∼= X = viei ∀ p ∈ M

which says that the vector field Xp is formed using the components of vi(p) of

vp = vi(p)ri|p ∈ V = R
n ({ri|p} basis of R

n
p ) summed out with the frame vectors

ei|p. The mapping [u, v] → viei is well-defined.

For the details of the above points (e.g. coordinates on LM and the well-definedness

proofs) see Appendices B and C.
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D.2 BM |<Inj(M) a Fibre Bundle over M

Theorem D.2.1 Let (M,g) be a Riemannian manifold and let OM = {u = (p, f)|g(fi, fj) =

δij ∀ f = {fi} ∈ TpM and ∀ p ∈ M} be the orthonormal frame bundle where

OM is the collection of all orthonormal frames of M for all points in M. OM is a

subbundle of LM with structure group O(n), the set of orthogonal matrices as shown

in [KNvol1, Example 5.7 pg. 60]. Define

BM |<Inj(M) := {X ∈ TM |
√

g(X,X) = |X| < Inj(M)]}.

BM |<Inj(M) is a fibre bundle over M with fiber isomorphic to the submanifold BInj(M)(0).

We define the ball with respect to the standard (Euclidean) inner product in R
n. Thus

BInj(M)(0) is a (n-1)-sphere of radius Inj(M) centered at 0 ∈ R
n. The bundle maps

are summarized by the diagram:

u ∈ OM BInj(M)(0)
φu
-

¾

φ−1
u

τ−1(p) ⊂ E = (OM × BInj(M)(0))/O(n) ∼= BM |<Inj(M) ∋ X<Inj(M)

p ∈ M
¾

τ
π

-

Proof: The proof is essentially an explanation of the modifications made to the di-

agram from Section D.1. Essentially Gl(n) is replaced by O(n) to guarantee that

vectors in BM |Inj(M)(0) stay in BM |Inj(M)(0) which follows from O(n), by defini-

tion, preserving the standard Euclidean inner product. That we have a Euclidean

inner product on each BM |<Inj(M) when we restrict to only orthonormal frames will

complete the proof. To be specific:

• E = {[u, v] | u ∈ OM and v ∈ BInj(M)(0)} with equivalence classes given by

[u, v] = {u·O,Ot ·v ∀O ∈ O(n)}. That O is an orthogonal transformation guar-

antees that the O(n) orbits of (u,v), [u,v] remain of the form (OM,BInj(M)(0)).
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• E ∼= BM |<Inj(M) via

[u, v] = [(p, e), v] ∼= X<Inj(M) = viei
∼= viri ∀ p ∈ M

meaning that the vector field X<Inj(M)|p is formed using the components of vi

of v = viri ∈ BM |Inj(M)(0) (where {ri} = {(0 . . . 1︸︷︷︸
ithspot

, . . . 0)} is the standard

orthonormal basis in R
n) summed out with arbitrary orthonormal frame vectors

ei|p (which are in 1-1 correspondence with ri). As in Section D.1 the map

[u, v] → viei is well-defined. It now follows that for each p ∈ M

g(X<Inj(M), X<Inj(M)) = δijv
ivj = vivi =⇒ |X<Inj(M)| < Inj(M)

• τ([u, v]) = π(u) = p and τ−1(p) = {[u, v]|τ([u, v] = p}

• φu : BInj(M)(0) → τ−1(p) defined by φu(v) = [u, v] with φ−1
u : τ−1(p) →

BInj(M)(0) well-defined by φ−1
u ([u, v]) = v

The previous points explain the diagram and proof that E ∼= BM |<Inj(M) is a fibre

bundle with fibers τ−1(p) isomorphic to the manifold BInj(M)(0). ¤



Appendix E

On Constraints

E.1 Canonical Bases of Distribution, ∆ and Co-

Distribution, ∆⋆

Section Summary E.1.1 The canonical bases of both ∆ and ∆⋆, derived in the

following section, can be summarized by the matrix equations:

(
∆

RA

∆

F i

)
=

(
∂k ∂B

)


 −ek
i ω

i
A ek

i

δB
A + ek

i ω
i
AAB

k −AB
k ek

i



 (E.1)

and 


∆

ω
A

∆

ω
i



 =



 AA
k δA

B

ẽi
k + ωi

BAB
k ωi

B







drk

dsB



 (E.2)

where we have freedom to choose

ek
i (invertible with inverse ẽi

k) and ωi
A. (E.3)

In this section we show how to decompose an arbitrary TQ-valued one form ω = ωI⊗eI

(called an Ehressman connection on TQ) into ωv and ωh, projections onto ver(TQ)

and hor(TQ) respecitvely.
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Let ω be a TQ-valued 1-form on Q → Q/G. Let ∆ be a m-dimensional distribution

spanned by
∆

F i and ⋆∆ be the (q-m)-dimensional co-distribution spanned by ωA. We

fill out the frames and co-frames on Q using the riggings
∆

RA and ωi. That is, we split

ω into

ω = ωI ⊗ eI =

=ωi co-frame rigging︷ ︸︸ ︷
(ωi

kdrk + ωi
BdsB) ⊗

∆

F i +

=ωA basis of ⋆∆︷ ︸︸ ︷
(ωA

k drk + ωA
BdsA)⊗

∆

RA

:= ωh + ωv

and

eI = en
i ∂n + eB

i ∂B︸ ︷︷ ︸
=

∆

F i span ∆

+ em
A∂m + eC

A∂C︸ ︷︷ ︸
=

∆

RA frame rigging

A theorem (to be found in Spivak) showed that the canonical basis for the co-

distribution could be written as

ωA = dsA + AA
i (rj, sB)dri. (E.4)

Requiring that ωv be a projection into the space spanned by the
∆

RA and that ωv

annihilate the space spanned by the
∆

F i implies that

ωv(
∆

RB) = (ωA⊗
∆

RA)(
∆

RB) = δA
B

∆

RA=
∆

RB

ωv(
∆

F i) = (ωA⊗
∆

RA)(
∆

F i) = 0.

Solving the above for
∆

F i,
∆

RA, the basis for the distribution is found to be

∆

F i= (∂k − AA
k (rj, sB)∂A)ek

i (E.5)

while the rest of the frame is

∆

RA= ∂A + ek
A(∂k − AB

k (rj, sB)∂B). (E.6)
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Note E.1.1 The matrices ek
i , e

k
A represent some freedom in the choice of the frame.

Set
∆

F i= tke
k
i where tk := ∂k−AA

k ∂A are k linearly independent vectors. Since {
∆

F i} are

also k linearly independent vectors it must be the case that ek
i is invertible. Denote

the inverse of ek
i as ẽk

i

Requiring that ωh be a projection into the space spanned by the
∆

F i and that ωh

annihilate the space spanned by the
∆

RA implies that

ωh(
∆

F i) = (ωj⊗
∆

F j)(
∆

F i) = δj
i

∆

F j=
∆

F i

ωh(
∆

RA) = (ωj⊗
∆

F j)(
∆

RA) = 0

for ωi. Solving the above give

ωi = ẽi
kdrk + ωi

B(dsB + AB
k drk). (E.7)

Note E.1.2 Again there is some freedom in the choice of due to the matrix ωi
B. The

apparent freedom to choose ek
A was ficticious as it can be shown that it is defined by

the relation ek
A = −ek

i ω
i
A. So the only freedom is in the choice of ek

i and ωi
A.

Remark E.1.1 (On Terminology) Using the above constructed canonical basis of

TQ {
∆

F i,
∆

RA} we have

TQ = span{
∆

RA} ⊕ span{
∆

F i}

:= ver(TQ) ⊕ hor(TQ)

where ver(TQ) and hor(TQ) are the vertical and horizontal space of the tangent

space, respectively.
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By constuction, given an arbitrary vector X ∈ TQ we have

ωv(X) = ωv(XA
∆

RA +X i
∆

F i)

= (ωB⊗
∆

RB)(XA
∆

RA +X i
∆

F i)

= XB
∆

RB∈ ver(TQ)

or more intrinsically

ωv(X) = ωv(Xv + Xh) = Xv

ωh(X) = ωh(Xv + Xh) = Xh.

We can now represent the identity tensor field on TQ ( decomposed wrt to the

disbribtution, ∆ into horizontal (the distribution directions) and vertical (the rigging

directions) pieces)

∆Id = ωv + ωh = Idv + Idh. (E.8)

The above basis of horizontal vectors, {
∆

F i} (wrt to an Ehressman connection, ω)

also called the distribution directions or the basis of the distribution ∆, the rigging

vectors,
∆

RA (which fill out the basis on TQ), and the basis of the co-distribution ∆⋆

are summarized in eqns. (E.1) and (E.2).



Appendix F

LπQ and L∆Q

F.1 LπQ

Section Summary F.1.1 When passing from LQ to LπQ the general Gl(n) ma-

trices
v

Π
J

I(u) and
v

V
J

I(u) become, relative to the coordinated section σ(q) = (q, ∂) =

(q, {∂i, ∂A}),

v

Π
J

I(u) =




v

Π
i

j(u) 0
v

Π
B

j (u)
v

Π
B

A(u)



 and
v

V
J

I(u) =




v

V

i

j(u) 0

−
v

V

B

A(u)
v

V

i

j(u)
v

Π
A

i (u)
v

V

C

A(u)





where
v

Π
i

j (u) and
v

Π
B

A (u) are invertible with inverses
v

V

i

j (u) and
v

V

B

A (u), respectively

and
v

Π
B

j (u) are freely specifiable. Notice that
v

Π
J

I,
v

V
J

I: LπQ → G ⊂ Gl(n) where G is a

subgroup of Gl(n). The basis relations as matrix equations are




v

R
i

v

E
B



 =




v

Π
i

j(u) 0
v

Π
B

j (u)
v

Π
B

A(u)







dxj

dsA



 (F.1)

and
(

v

Rj

v

EA

)
=

(
∂i ∂B

)


 V
i
j(u) 0

−V
B
A(u)Vi

j(u)
v

Π
A

i (u) V
B
A(u)



 (F.2)
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where
v

Π
A

j(u) are freely specifiable.

Let Q be a configuration manifold with coordinates {qI}. Let LQ
πLQ−→ Q be the frame

bundle of Q with coordinates {(qI, ΠI
J)}. Let σLQ be an arbitrary local section of πLQ,

say σLQ(q) = (q, f = (fI)), then ΠI
J : LQ → Gl(n) can be defined by

ΠI
J(u) = ΠI

J(q, e) = eI(fJ|q)

where ē = {eI} is the dual frame to e = {eJ}. One can view the local section

σ(q) = (q, f) as a local reference frame with ΠI
J(u) the Gl(n) matrix relating the local

reference co-frame fJ|q to an arbitrary co-frame eI|q. That is,

eI|q = ΠI
J(u)fJ|q

Denoting V I
J (u) the inverse of ΠI

J(u) then

eJ|q = V I
J (u)fI|q

is an equation relating the local reference frame f to an arbitrary frame e. The

canonical choice of local section σ is the coordinated section σ(q) = (q, ∂) = (q, (∂I)) =(
q,

(
∂

∂qI

))
and thus

eI|q =
c

Π
I

J (u)dxJ|q
eJ|q =

c

V
I

J (u)∂I|q.

We emphasis that there is nothing unique about this choice of section.

Now we assume that Q has a principle fiber bundle structure Q
πQ−→ Q/G where

the action of G on Q is free and proper so that Q/G is a smooth manifold. Coordinates

on Q
πQ−→ Q/G can be obtained via a local trivialization of a local section σQ of πQ.

Denote these coordinates as {qI} = {ri, sA} where {ri} are coordinates on Q/G and
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{sA} are coordinates on G. The split in coordinates is manifest at the frame bundle

level by 

 ei

eA



 =



Πi
j(u) Πi

A(u)

ΠB
j (u) ΠB

A(u)







dxj

dxA





and
(
ej eA

)
=

(
∂i ∂B

)


V i
j (u) V i

A(u)

V B
j (u) V B

A (u)





where we do not have any additional information about the sub-matrices other than

they build an invertible matrices ΠI
J(u) and V I

J (u).

Now we place restrictions on the frames e = {eJ}. Define

LπQ = {(p, e) = (p, {
v

R,
v

E})} (F.3)

where
v

E = {
v

EA} are independent vertical vectors and
v

R = {
v

Ri} is a rigging (i.e. fills

out the basis). It follows that
v

EA can be linear combinations of the coordinated basis

of vertical vectors, i.e.
v

EA |q =
v

V
B

A(u)∂B|q

where
v

V
B

A(u) is invertible, denote this inverse P
B
A(u). Let (p, {R̄, Ē}) be the co-frame

of (p, {R,E}). The basis condition
v

R
j

(
v

EA) = 0 holds if and only if

v

Π
j

A(u) = 0 (F.4)

and thus
v

R
j

|q =
v

Π
j

k(u)drk|q

Again, both
v

R
j

and drk are bases at q and so
v

Π
j

k(u) is invertible, denote the inverse
v

V

j

k(u). It remains to determine the coefficients of

v

Ri =
v

V
i

J(u)∂J =
v

V
i

j(u)∂j+
v

V
i

A(u)∂A

v

E
B

=
v

Π
B

J(u)dqJ =
v

Π
B

i (u)dri+
v

Π
B

A(u)dsA
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such that
v

R
j

(
v

Ri) = δj
i ,

v

E
B

(
v

Ri) = 0 and
v

E
B

(
v

EA) = δB
A .

First some relations following from
v

Π
J

I(u)
v

V
I

K(u) = δJ

K
:

v

Π
A

I (u)
v

V
I

i(u) = 0 =⇒
v

V
C

i (u) = −
v

V

C

A(u)
v

V
j

i(u)
v

Π
A

j (u)
v

Π
i

I(u)
v

V
I

A(u) = 0 =⇒
v

V
k

A(u) = 0 (using
v

Π
i

B(u) = 0)
v

Π
A

I (u)
v

V
I

B(u) = δA
B =⇒

v

V
D

B(u) =
v

V

D

B(u) (using
v

V
i

B(u) = 0)
v

Π
i

I(u)
v

V
I

j(u) = δi
j =⇒

v

V
k

j(u) =
v

V

k

j(u) (using
v

Π
i

B(u) = 0)

We now know that
v

Ri=
v

V

k

i(u)∂k − (
v

V

D

A

v

V

j

i(u)
v

Π
A

j (u))∂D

To find the coefficients of EB one need analyze the equations
v

E
B

(
v

Ri) = 0 and
v

E
B

(
v

EA) = δB
A . The second equations yields

v

Π
B

D(u)
v

V

D

A(u) = δB
A =⇒

v

Π
B

D(u) = P
B
D(u)

while the first equations gives

v

Π
B

j (u)(
v

V

j

i(u)−
v

V

j

i(u)) = 0 =⇒
v

Π
B

j (u) freely specifiable

Equations (F.1) and (F.2) summarize the above formulas.

F.2 L∆Q

We again place restrictions on the frames e = (eJ). Define

L∆Q = {(p, ∆

e) = (p, (
∆

R,
∆

E))} (F.5)

where
∆

E = {
∆

Ei} are a collection of independent vectors in ∆ and
∆

R = {
∆

RA} is a

rigging (i.e. fills out the basis of TQ). From Appendix E, section E.1 we know that
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the section of LQ

σ(q) = (q,
∆

f) = (q, {
∆

fJ}) = (q, ({
∆

RA,
∆

F i}))

with (
∆

F i) and (
∆

RA) summarized by the matrix equation (E.1) is actually a section of

L∆Q. We also saw that the co-distribution basis is {ωB} with rigging {ωi} summa-

rized by matrix equation (E.2) satisfied

∆

ω
A

(
∆

F i) = 0
∆

ω
A

(
∆

RB) = δA
B

∆

ω
i

(
∆

RA) = 0
∆

ω
i

(
∆

F j) = δi
j.

Using the language of local (reference) frame field from section B.2 (cf. Remark

B.2.1) we interpret equations (E.1) and (E.2) the following way: If we set the local

(reference) frame field as the coordinated basis ∂ = (∂k, ∂B) as is the standard in [28],

then a new reference field, this time adapted to the distribution,
∆

f = (
∆

RA,
∆

F i), just

another point on the fiber of LQ over p, is related to the coordinated reference frame

via the matrix

∆

G=



 −ek
i ω

i
A ek

i

δB
A + ek

i ω
i
AAB

k −AB
k ek

i



 (F.6)

while the local co-frame field adapted to the distribution
∆

ω:= (
∆

ω
i

,
∆

ω
A

) is related to

the reference co-frame via the matrix

∆

G
−1

=



 AA
k δA

B

ẽi
k + ωi

BAB
k ωi

B



 . (F.7)

where (ẽi
k) = (ek

i )
−1. Using the freedom to choose ωi

A = 0 ∀i, A and ek
i = δk

i eqs.

(F.6) and (F.7) reduce to

∆

G=



 0 δk
i

δB
A −AB

i



 ∆

G
−1

=



AA
k δA

B

δi
k 0



 . (F.8)
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and thus
∆

F = ∂·
∆

G ω̄ =
∆

G
−1

·∂̄ (F.9)

where ∂̄ = (dqI) = (drk, dsA) and ∂ = (∂/∂qI) = (∂k, ∂A)

Remark F.2.1 ( Terminology and Key Idea) We will call
∆

F the local frame field

adapted to the distribution and
∆
ω̄ the local co-frame field adapted to the distribution.

We shall take distribtution adapted frame field, f =
∆

F as the local reference frame

rather than the coordinated frame field ∂ as is standard in [28]

Following the methods of section F.1, the matrix group element relating any other

frame at q, whose last vectors are in the distribution, to the reference section
∆
σ (q) =

(q, {
∆

RA,
∆

F i}) will be given as

∆

Π
I

J (u) =




∆

Π
i

j(u) 0
∆

Π
A

j (u)
∆

Π
A

B (u)





where
∆

Π
i

j(u) and
∆

Π
A

B(u) are invertible and
∆

Π
A

j (u) is an arbitrary matrix.

The utility of taking
∆

F as the reference frame field will be apparent in the n-

symplectic dynamics section I.5(a).



Appendix G

n-Symplectic Dynamics

Background

G.1 LM Dynamics Background

In this appendix we derive the canonical n-symplectic dynamics of both rank 1 and

rank 2 observables. The dynamics for general rank observables first appeared in [28].

For completeness of this document we focus on these two subcases. The rank 2,

canonical dynamics (using for example, the kinetic energy of a mechanical system

as the rank 2 observable) derived here serve as the foundation for our derivation

of the constrained rank 2 n–symplectic dynamics in Chapter 4. By foundation, we

mean to obtain the constrained n-symplectic dynamics from an appropriate change

of coordinates on the canonical dynamics derived here.

The outline for this section is to first give a foundation for n–symplectic (gen-

eralized Hamiltonian) dynamics by summarizing Hamiltonian dynamics. In Section

G.1.2, we consider the rank 1 case in full detail. Our ultimate goal, the rank 2 dy-

namics, are addressed in the G.1.3 section. An important feature of the n–symplectic

dynamics, namely the presence of gauge freedom, is addressed in Section G.1.4.

While still in the preliminary stages, it is our hope that the gauge terms might

be thought of as control forces and thus useful in control design. An examples along
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this preliminary line of thought is given in Appendix I. Since these gauge/control

forces carry over to the (nonholonomic) constrained dynamics setting, it is a goal to

use these terms in control of nonholonomic mechanical systems.

G.1.1 T ⋆M Dynamics

Given the canonical real-valued one-form, ϑ on T ⋆M and corresponding canonical

non-degenerate real-valued two form Ω = dθ on T ⋆M given in canonical coordinates

(qi, pj) by

Ω = dpi ∧ dqi (ϑ = pidqi) (G.1)

one can use the equation

df = −Xf Ω (G.2)

to uniquely determine a global Hamiltonian vector field Xf given a globally defined

Hamiltonian function f : T ⋆M → M . The integral curve equations of the global

Hamiltonian vector field are exactly Hamilton’s equations. The integrability condi-

tions (i.e the necessary condition for existence of solutions) for eq. (G.2) are

d(Xf Ω) = 0 (G.3)

To give insight into eq. (G.3) we recall that Y is a local Hamiltonian vector field if

LY Ω = 0 (G.4)

Using the formula for the Lie derivative of a two-form, that Ω closed, that Y is locally

Hamiltonian and the converse to Poincare’s lemma we obtain

0 = LY Ω = Y dΩ + d(Y Ω) = d(Y Ω) (G.5)

which implies

Y Ω = dF
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where F : U ⊂ T ⋆M → M , i.e. F locally defined function called a local Hamiltonian

function. It is now apparent that the integrability condition (G.3) is equivalent to

Xf being a local Hamiltonian vector field. Which makes sense: f a global function

defines a global Hamiltonian vector field only if f locally defines a local Hamiltonian

vector field.

G.1.2 LM Dynamics for R
n-valued Tensorial Functions

Section Summary G.1.1 (Rank One Case)

• (Dynamic Equation) The dynamic equation for f̂ a R
n-valued tensorial func-

tions on LM ∼ vector field on M (called the rank one structure equation) is

df̂ i = −Xf̂ Ω̂i

which is a system of PDE’s describing how to determine Xf̂ given f̂ or f̂ given

Xf̂ . The uniqueness follows from the non-degeneracy of Ω̂i.

• (Canonical Vector Field) Given the canonical f̂ i(u) = Πi
j(u)f j(p) where

f = f j∂j is a vector field on M and f̂ the corresponding vector valued tensorial

function on LM one finds

Xf̂ = f j(p)
∂

∂xj
− ∂f j(p)

∂xn
Πi

j(u)
∂

∂Πi
n

• (More General Vector Field) Analyzing the integrability conditions

d(−Xf̂ Ω̂i) = 0 one finds that a more general X is available:

Xf̂ = Ck(x)
∂

∂xk
−

(
∂Ci(x)

∂xb
Πb

j +
∂ξi(x)

∂xj

)
∂

∂Πi
j

where Ck(x) and ξi(x) are both n arbitrary functions constant in Π. The ten-

sorial vector-valued function on LM corresponding to this more general vector
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field on LM is

f̂ = f̂ iri = (Ck(x)Πi
k + ξi(x))ri

• (Gauge Freedom) Though not addressed previously, we now point out that

there may be an even more general vector field X and corresponding function

f̂ due to a gauge freedom. This gauge freedom can be described as follows:

Given Xf̂ with unique solution f̂ to df̂ i = −Xf̂ Ω̂i then is there a vector

field, say T, for which the unique solution F̂ to dF̂ i = −(Xf̂ + T ) Ω̂i is equal

to f̂? If such T exist then solutions to df̂ i = −Xf̂ Ω̂i are equivalence classes

[Xf̂ ] = {Xf̂ + T}. To find such T notice that

dF̂ i = −(Xf̂ + T ) Ω̂i = −Xf̂ Ω̂i − T Ω̂i

which for

−T Ω̂i = 0 (G.6)

will have solution f̂ . So the gauge freedom is characterized by those T which

satisfy eq. (G.6) . In the rank one case, the only solutions to eq. (G.6) are

T=0 so there is no gauge freedom and solutions to the structure equation are

uniquely determined.

We now give the details to the above summary. The canonical R
n-valued one form,

θ̂ on LM and non-degenerate R
n-valued two form, Ω̂ on LM are defined in canonical

coordinates (qi, cΠi
j = Πi

j) by

Ω̂i = dΠi
j ∧ dxj (θ̂i = Πi

jdxj) (G.7)

There is a nature correspondence between R
n-valued tensorial functions, f̂ = f̂ iri on

LM and vector fields, f = f i∂i on M given by

f̂ i(u) = Πi
j(u)f j(p) (G.8)
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One can ask for the LM equivalent of eq. (G.2). One would guess that it is

df̂ i = −Xf̂ Ω̂i (G.9)

where f̂ is some (global)tensorial function on LM, not necessarily of the form of

eq.(G.8).

As pointed out in [28] eq. (G.9) has a “geometric derivation”: Start with a torsion

free connection ω on LM

Θi = Ω̂i + ωi
j ∧ θ̂j = 0.

Now let Hi be horizontal vector fields on LM satisfying θ̂j(Hi) = δj
i and ω(Hi) = 0

then

Ω̂i(Hk) = (−ωi
j ∧ θ̂j)(Hk) = ωi

j θ̂
j(Hk)

and thus

ωi
k = Hk Ω̂i (G.10)

Now we use the connection from (G.10) in the covariant derivative formula for an

arbitrary tensorial function

Df̂ i = df̂ i + ωi
j · f̂ j = df̂ i + (Hj Ω̂i)f̂ j = df̂ i + (f̂ jHj Ω̂i).

And thus if f̂ is covariant constant then

df̂ i = −(f̂ jHj Ω̂i) = −(Xf̂ Ω̂i) (G.11)

where Xf̂ (u) := f̂ j(u)Hj|u is the (horizontal) vector field on LM defined by f̂ .

Remark G.1.1 The above derivation of eq.(G.9) (where the solution vectors are hor-

izontal) can be disregarded leaving only the

Axiom : df̂ i = −Xf̂ Ω̂i
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are the dynamic equations for an R
n-valued tensorial function on LM. The integra-

bility conditions are

d(−Xf̂ Ω̂i) = 0. (G.12)

(Given the specific R
n-valued tensorial function f̂ i(u) = f j(p)Πi

j(u) one can solve

eq. (G.9) to obtain a locally Hamiltonian vector field

Xf̂ = f j(p)∂j|u −
∂f j(p)

∂xn
Πi

j(u)
∂

∂Πi
n

. (G.13)

which has both a horizontal and vertical piece. The solution (G.13) follows from

df̂ i =
∂

∂xn

(
f j

pΠi
j(u)

)
∧ dxn +

∂

∂Πa
b

(
f jΠi

j(u)
)
∧ dΠa

b

=
∂f j

p

∂xn
Πi

j(u) ∧ dxn + f j ∧ dΠi
j

and

−Xf̂ Ω̂i = (dΠi
j(u) ∧ dxj|p)

(
−Xa∂a − Xn

m

∂

∂Πn
m

)

= −X i
jdxj + XjdΠi

j (G.14)

The question/objective seems to me to be: Are the solutions (G.13) the most general

solutions to the eq. (G.9)? If they are not, what are the extra pieces? How do

these extra pieces influence the corresponding tensorial function?. We must analyze

the integrability conditions (G.12). Using eq. (G.14) where X i
j = X i

j(x, Π) and
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Xj = Xj(x, Π) we obtain

0 = d(−Xf̂ Ω̂i)

= d(−X i
j ∧ dxj + Xk ∧ dΠi

k)

= −dX i
j ∧ dxj + dXk ∧ dΠi

k

= −
∂X i

j

∂Πn
m

dΠn
m ∧ dxj −

∂X i
j

∂xa
dxa ∧ dxj

+
∂Xk

∂Πe
f

dΠe
f ∧ dΠi

k +
∂Xk

∂xc
dxc ∧ dΠi

k

=

(
δi
n

∂Xk

∂xj
+

∂X i
j

∂Πn
k

)
dxj ∧ dΠn

k

+

(
−

∂X i
j

∂xa

)
dxa ∧ dxj +

(
δi
a

∂Xj

∂Πe
f

)
dΠe

f ∧ dΠa
j

whereby skew-symmetrizing we obtain

δi
n

∂Xk

∂xj
+

∂X i
j

∂Πn
k

= 0 (G.15)

∂X i
a

∂xj
−

∂X i
j

∂xa
= 0 (G.16)

δi
a

∂Xk

∂Πe
f

− δi
e

∂Xf

∂Πa
k

= 0. (G.17)

Setting i=a and i=e in (G.17) one obtains, respectively,

n
∂Xk

∂Πe
f

=
∂Xf

∂Πe
k

n
∂Xf

∂Πa
k

= −∂Xk

∂Πa
f

a→e
=⇒ n

∂Xf

∂Πe
k

= −∂Xk

∂Πe
f

which collectively give

(
n − 1

n

)
∂Xk

∂Πe
f

= 0
n6=1
=⇒ ∂Xk

∂Πe
f

= 0 =⇒ Xk = Ck(x) (G.18)
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where Ck(x) are n functions constant in Π. We use this constancy to find that X i
j

are linear in Π. Specifically, applying ∂/∂Πa
b to (G.15), using the symmetry of mixed

partials and that Xk is constant in Π we obtain

∂2X i
j

∂Πa
b∂Πn

k

= 0 =⇒ X i
j = Aiα

jβ(x)Πβ
α + Bi

j(x) (G.19)

where Ai
j and Bi

j are n2 functions constant in Π. Substituting (G.19) and (G.18) into

the integrability condition (G.15) we obtain

δi
n

∂Ck(x)

∂xj
+ Aik

jn(x) = 0

which, upon fixing i=n and absorbing the constant −n under the derivative yields

∂Ck(x)

∂xj
= Aik

ji(x) (G.20)

Eq. (G.20) says that, at this moment, we know only a “trace” of the full components

of A. Substituting (G.19) into the last integrability condition (G.16) we obtain

(Aiα
aβ,j − Aiα

jβ,a)Π
β
α + (Bi

a,j − Bi
j,a) = 0

Since it is not possible for the terms with coordinates Π to cancel with terms with no

Π coordinates (recall that A and B are functions of only the coordinates x) we must

have that

∂Bi
a(x)

∂xj
−

∂Bi
j(x)

∂xa
= 0 (G.21)

(
Aiα

aβ,j − Aiα
jβ,a

)
Πβ

α = 0 (G.22)
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Since eq. (G.22) is being summed over the index β we split it into two pieces; when

β = i and when β 6= i (denoted by ī) and then use eq. (G.20) to obtain

(
Aiα

ai,j − Aiα
ji,a

)
Πi

α +
(
Aiα

aī,j − Aiα
jī,a

)
Πī

α = 0
(
Cα

,aj − Cα
,ja

)
Πi

α +
(
Aiα

aī,j − Aiα
jī,a

)
Πī

α = 0

0 +
(
Aiα

aī,j − Aiα
jī,a

)
Πī

α = 0

This last system of PDE’s has at least the trivial solution Aiα
jī

= 0 ∀i, j, ī, α which

indicates that we need only concern ourselves with the non-zero, trace terms of eq.

(G.20). To understand the implications of eq. (G.21), we view the n2 functions Bi
j(x)

as the coefficients of a (1,1) tensor field B = Bi
j(x)dxj ⊗ ∂i which we can view as

n vector–valued one forms Bi = Bi
j(x)dxj. Taking the exterior derivative of the Bi

yield

dBi =
∂Bi

j(x)

∂xa
dxa ∧ dxj =

1

2

(
∂Bi

j(x)

∂xa
− ∂Bi

a(x)

∂xj

)
dxi ∧ dxa

and thus if
∂Bi

j(x)

∂xa − ∂Bi
a(x)

∂xj = 0 then dBi = 0 which by the converse of Poincare’s

lemma gives

Bi = −dξi = −∂ξi(x)

∂xj
dxj (the minus for convenience)

where ξi are locally defined functions. Thus, at least locally,

Bi
j(x) = −∂ξi(x)

∂xj
.
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We can now conclude that the most general vector field X which satisfies d(X Ωi) =

0 can be written in local coordinates as

X = Xk ∂

∂xk
+ X i

j

∂

∂Πi
j

= Ck(x)
∂

∂xk
−

(
∂Ci(x)

∂xb
Πb

j +
∂ξi(x)

∂xj

)
∂

∂Πi
j

(G.23)

Substituting eq. (G.23) into the structure equation df̂ i = −X Ωi one obtains a

system of PDE’s for the most general R
n-valued function corresponding to X:

∂f̂ i

∂xk
= −X i

k =
∂Ci(x)

∂xb
Πb

k +
∂ξi(x)

∂xk

∂f̂ i

∂Πi
k

= Xk = Ck(x)

which have solution

f̂ i = Ck(x)Πi
k + ξi(x) (G.24)

G.1.3 LM Dynamics for (Rn⊗R
n)-valued Tensorial Functions

Section Summary G.1.2 (Rank 2 Case)

• (Dynamic Equation)The dynamic equation for ĝ an R
n⊗R

n-valued tensorial

function on LM ∼ a (0,2) tensor field on M (called say the second rank structure

equation) is

dĝij = −2X
(i
ĝ Ω̂j).

As we will see in the fourth point below, given ĝ the corresponding Xĝ is not

uniquely defined but rather is an equivalence class of vector fields.

• (Canonical Vector Field) Given the canonical ĝij(u) = gab(p)Πi
a(u)Πj

b(u)

where g = gabdxadxb is the (0,2)-tensor field on M and ĝ the corresponding
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tensorial function one finds using the second rank structure equation that

X i
ĝ = gab

p Πi
b(u)

∂

∂xa
− 1

2

∂gab
p

∂xn
Πi

a(u)Πj
b(u)

∂

∂Πj
n

.

• (More General Vector Field) Analyzing the integrability conditions

d(X
(i
ĝ Ω̂j)) = 0 one finds that a more general X is available:

Xi
ĝ = (Aab(x)Πi

b + Bia(x))
∂

∂xa

−1

2

(
∂Aab(x)

∂xn
Πi

a(u)Πj
b(u) +

∂Bja(x)

∂xn
Πi

a(u) +
∂Cij(x)

∂xn

)
∂

∂Πj
n

• (Gauge Freedom) Unlike the rank one case, the rank two case exhibits some

gauge freedom characterized by the equation

T (α Ω̂i) = 0 =⇒ Tα = Tαa
b

∂

∂Πa
b

where T
(αa)
b = 0

and thus the equivalence class of vector fields is given by

[Xi
ĝ] = (Aab(x)Πi

b + Bia(x))
∂

∂xa

−1

2

(
∂Aab(x)

∂xn
Πi

a(u)Πj
b(u) +

∂Bja(x)

∂xn
Πi

a(u) +
∂Cij(x)

∂xn
+ T ij

n

)
∂

∂Πj
n

We now give the details to the above summary. The analog of eq. (G.9) for

ĝ = ĝijri ⊗ rj follows from assuming ĝ is covariant constant

0 = Dĝij = dĝij + ωi
aĝ

aj + ωj
b ĝ

ib

and using using again that the torsion of the connection is 0 to obtain

ωi
a = Ha Ω̂i.
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Both of these equation then lead to

dĝij = −(ĝajHa Ω̂i) − (ĝibHb Ω̂j)

:= −(Xj
ĝ Ω̂i) − (X i

ĝ Ω̂j)

= −2X
(i
ĝ Ω̂j).

Remark G.1.2 As in Remark G.1.1, independent of the derivation, we can take as

Axiom : dĝij = −2X
(i
ĝ Ω̂j) (G.25)

are the dynamic equations for an (Rn ⊗ R
n)-valued tensorial function on LM. The

integrability conditions of eq. (G.25) are

d(X
(i
ĝ Ω̂j)) = 0 (G.26)

We now parallel section G.1.2.

Given the canonical R
n ⊗ R

n-valued tensorial function on LM given by ĝij(u) =

gab(p)Πi
a(u)Πj

b(u) we ask for the corresponding solution vector fields Xĝ. The solution

will follow from

dĝij =
∂

∂xn

(
gab
p Πi

a(u)Πj
b(u)

)
∧ dxn +

∂

∂Πc
d

(
gabΠi

a(u)Πj
b(u)

)
∧ dΠc

d

=

(
∂gab

p

∂xn
Πi

a(u)Πj
b(u)

)
∧ dxn + 2gba

p Π
(i
b (u) ∧ dΠj)

a (G.27)

and

−X i
ĝ Ω̂j = (dΠj

n ∧ dxn)

(
−X ik∂k − X ia

b

∂

∂Πa
b

)

= −X ij
n dxn + X indΠj

n

= −X ij
n dxn + X iadΠj

a.
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since dΠj
a = d(δj

i Π
i
a) = δj

i dΠi
a as δi

j constant. Similarly

−Xj
ĝ Ω̂i = (dΠi

n ∧ dxn)

(
−Xjk∂k − Xja

b

∂

∂Πa
b

)

= −Xji
n dxn + XjndΠi

n

= −Xji
n dxn + XjadΠi

a

and hence

−X
(i
ĝ Ω̂j) = −2X(ij)

n ∧ dxn + 2X(ia ∧ dΠj)
a . (G.28)

Equating eq. (G.27) and (G.28) yields

−2X(ij)
n =

∂gab
p

∂xn
Πi

a(u)Πj
b(u)

X ia = gba(p)Πi
b(u).

Since the right hand side of the first equation is symmetric in i and j then X(ij) = X ij

and hence

X i
ĝ = gab

p Πi
b(u)

∂

∂xa
− 1

2

∂gab
p

∂xn
Πi

a(u)Πj
b(u)

∂

∂Πj
n

. (G.29)

To determine more general solutions one would have to analyze the integrability

conditions d(X
(i
ĝ Ω̂j)) = 0 using the same techniques as from section G.1.2. The

result for arbitrary rank tensorial functions is given in [28]. For the rank two condition

one obtains

Xi
ĝ = (Aab(x)Πi

b + Bia(x))
∂

∂xa

−1

2

(
∂Aab(x)

∂xn
Πi

a(u)Πj
b(u) +

∂Bja(x)

∂xn
Πi

a(u) +
∂Cij(x)

∂xn

)
∂

∂Πj
n

Unlike the rank 1 case there is some gauge freedom characterized by finding n vector

fields on LM denoted Tα = Tαn ∂
∂xn + Tαa

b
∂

∂Πa
b

which satisfy

T (α Ω̂i) = 0
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Upon working this out one finds that

Tα = Tαa
b

∂

∂Πa
b

where T
(αa)
b = 0 (G.30)

and thus the most general solutions to dĝij = −2X
(i
ĝ Ω̂j) are the equivalence classes

[Xi
ĝ] = (Aab(x)Πi

b + Bia(x))
∂

∂xa

−1

2

(
∂Aab(x)

∂xn
Πi

a(u)Πj
b(u) +

∂Bja(x)

∂xn
Πi

a(u) +
∂Cij(x)

∂xn
+ T ij

n

)
∂

∂Πj
n

G.1.4 Gauge Freedom Breaks Equivalence Classes

Summary G.1.1 (Rank 2 Gauge Freedom Case)

• (Dynamic Equation)The rank two structure equation for ĝ an R
n⊗R

n-valued

tensorial function on LM ∼ a (0,2) tensor field on M is

dĝij = −2X
(i
ĝ Ω̂j).

• (Canonical Vector Field with Gauge Freedom) Given the canonical ĝij(u) =

gab(p)Πi
a(u)Πj

b(u) where g = gabdxadxb is the (0,2)-tensor field on M and ĝ the

corresponding tensorial function one finds the equivalence class of solutions to

be

[X i
ĝ] = gab

p Πi
b(u)

∂

∂xa
−

(
1

2

∂gab
p

∂xn
Πi

a(u)Πj
b(u) + T ij

n

)
∂

∂Πj
n

.

• (Two Choices of Gauge Freedom)

◦ An obvious choice of gauge freedom is T ij
n = 0 has the corresponding unique

rank two solution

X i
ĝ = gab

p Πi
b(u)

∂

∂xa
− 1

2

∂gab
p

∂xn
Πi

a(u)Πj
b(u)

∂

∂Πj
n

. (G.31)
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◦ Choosing T ij
n = 1

2
gkjΓi

nk − 1
2
gkjΓi

nk (the Γ’s the coefficients for a symmet-

ric connection not necessarily the Levi–Civita connection) gives the corre-

sponding unique rank two solution

X i
ĝ = ĝiαHα +

1

2
Q̂·in

ρ··E
ρ⋆
n (G.32)

where vertical and horizontal are given respectively by

Eρ⋆
n = −Πρ

β

∂

∂Πn
β

and Hα =
−1

Π
i

α

(
∂

∂xi
+ Πl

jΓ
j
ik

∂

∂Πl
k

)
(G.33)

We now give the details to the above summary. In this section we ask for the form

of the gauge freedom

T ij
k

∂

∂Πj
k

where T
(ij)
k = 0 (G.34)

which transforms the purely kinetic energy solution to the n-symplectic rank two

structure equation written in canonical coordinates

X i
ĝ = gabΠi

b

∂

∂xa
− 1

2

∂gab

∂xn
Πi

aΠ
j
b

∂

∂Πj
n

+ T ij
k

∂

∂Πj
k

(G.35)

into

X i
ĝ = ĝiαHα +

1

2
[Hρ Dĝin]Eρ⋆

n (G.36)

where vertical and horizontal are given respectively by

Eρ⋆
n = −Πρ

β

∂

∂Πn
β

and Hα =
−1

Π
i

α

(
∂

∂xi
+ Πl

jΓ
j
ik

∂

∂Πl
k

)
(G.37)

and Dĝ is the covariant derivative given by

Dĝin = dĝin + ωi
dĝ

dn + ωn
c ĝic. (G.38)
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This problem was considered and solved in [29] but the exact form of the gauge terms

and some details were not expressly written. In this section we supply all the details.

First we deal with the horizontal part by inserting a Kronecker delta and then

adding and subtracting an appropriate vertical piece:

gabΠi
b

∂

∂xa
= gabΠi

bδ
k
a

∂

∂xk

= gabΠi
b

−1

Π
k

α Πα
a

∂

∂xk

= ĝiα
−1

Π
k

α

∂

∂xk
+ 0

= ĝiα
−1

Π
k

α

∂

∂xk
+ ĝiα

−1

Π
k

α Πγ
ξΓ

ξ
kβ

∂

∂Πγ
β

−ĝiα
−1

Π
k

α Πγ
ξΓ

ξ
kβ

∂

∂Πγ
β

= ĝiα
−1

Π
k

α

(
∂

∂xk
+ Πγ

ξΓ
ξ
kβ

∂

∂Πγ
β

)

−ĝiα
−1

Π
k

α Πγ
ξΓ

ξ
kβ

∂

∂Πγ
β

= ĝiαHα − ĝiα
−1

Π
k

α Πγ
ξΓ

ξ
kβ

∂

∂Πγ
β

So we have the horizontal piece we want plus an extra vertical piece which can be

written

−ĝiα
−1

Π
k

α Πγ
ξΓ

ξ
kβ

∂

∂Πγ
β

= −gakΠi
aΠ

γ
ξΓ

ξ
kβ

∂

∂Πγ
β

(G.39)

and collected with the other vertical pieces of eq. (G.35) to obtain

−
(

1

2
gab

,β Πi
aΠ

γ
b + gakΠi

aΠ
γ
ξΓ

ξ
kβ + T iγ

β

)
∂

∂Πγ
β

(G.40)

The canonical Π directions can be written in terms of the vertical directions according

to

− ∂

∂Πγ
β

= −δn
γ δβ

m

∂

∂Πn
m

= −δn
γ (

−1

Π
β

ρ Πρ
m)

∂

∂Πn
m

= δn
γ

−1

Π
β

ρ Eρ⋆
n (G.41)
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and thus eq.(G.40) can be written as

−1

Π
β

ρ

([
1

2
gab

,β + gakΓb
kβ + T ab

β

]
Πi

aΠ
n
b

)
Eρ⋆

n (G.42)

The question now is for what choice of T ab
β can we make eq. (G.42) take the form

1

2
(Hρ Dĝin)Eρ⋆

n =
1

2
[Hρ (dĝin + ωi

dĝ
dn + ωn

c ĝic)]Eρ⋆
n (G.43)

We attack this by first computing the above and then match terms with eq.(G.42);

whatever doesn’t match with be what we will choose for the T terms.

First, as we are using a torsion free connection characterized by Γξ
βk = Γξ

kβ, then

Hρ ωn
c ĝic = ĝci

−1

Π
k

c

−1

Π
β

ρ Πn
ξ

(
Γξ

βk − Γξ
kβ

)
= 0 (G.44)

and similarly Hρ ωi
dĝ

dn = 0. So for a torsion free connection

Hρ Dĝij = Hρ dĝij

It can be shown that

Q̂·in
ρ·· :=

1

2
dρĝ

in :=
1

2
Hρ dĝin

=
1

2
[gab

,β + gkaΓb
βk + gkbΓa

βk]Π
i
aΠ

n
b

−1

Π
β

ρ

=
1

2

−1

Π
β

ρ gab
;β Πi

aΠ
n
b (gab

;β := Qab·
··β )

:=
1

2
ĝin
;ρ (G.45)

using

dĝin = gab
,c Πi

aΠ
n
b dxc + gedΠi

ddΠn
e + gedΠn

ddΠi
e. (G.46)
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It now follows that we can make eq.(G.42) look like eq. (G.45) by adding in and

subtracting to eq. 39 the term

1

2
gkaΓb

βkΠ
i
aΠ

n
b

−1

Π
β

ρ

which defines the T ab
β as

T ab
β =

1

2
gkbΓa

βk −
1

2
gkaΓb

βk (G.47)

which is totally skew-symmetric and thus a valid n-symplectic gauge freedom.



Appendix H

Nonholonomic Momentum Map

and Equation (spatial form)

This appendix is a summary of the nonholonomic momentum equation of BKMM

with particular application to the vertical rolling hoop.

H.1 Notation and Objects

• (Configuration Manifold Q a PFB)

Q → Q/G a PFB (structure group G with Lie algebra g) with local coordinates

qJ = (ri, sA)

• (Constraints defined by a Distribution)

∆ a distribution defined by those vectors killed by constraint 1-forms

• (Intersection of Orbits with Constraints)

Sq = ∆q ∩ TqOrbG(q)

192
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• (Distribution Part of Lie Algebra)

ξq ∈ g∆ = {ξ ∈ g|ξ⋆
q ∈ Sq}

• (Fixed (Canonical) Basis of Lie Algebra)

fA = (0 . . . 1︸︷︷︸
Ath spot

. . . 0) canonical basis of g with

f ⋆
A|q = T I

A(q)∂I|q (H.1)

where ∂I = (∂i, ∂A) = (∂/∂ri, ∂/∂sA)

• (Moving Basis Criteria)

Define a moving basis of g by

eB(q) = ΨB
A(q)fB (H.2)

where Ψ is characterized by

ξA = ξC(q)
−1

Ψ
A

C (q) (constant)

That is there are two representations of ξ ∈ g given by

ξ = ξA(q)fA︸ ︷︷ ︸
fixed basis rep.

= ξC(q)
−1

Ψ
A

C (q)ΨB
A(q)fB = ξBeB(q)︸ ︷︷ ︸

moving basis rep.

where in the fixed basis rep. the coordinates are q dependent while in the

moving basis rep. (i.e. q dependent basis) the coordinates are fixed. The choice

of Ψ will depend on what the constant ξA are desired to be.
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For example, in the case A=3, one could take

ξ =
(
f1 f2 f3

)




ξ1(q)

ξ2(q)

ξ3(q)


 =

(
f1 f2 f3

)




(ξ1(q) 0 0

0 ξ2(q) 0

0 0 ξ3(q)




︸ ︷︷ ︸
:=K




1

1

1


(H.3)

which gives ξA = (1, 1, 1)t and eB(q) = fAKA
B(q)

H.2 Non-Holonomic Momentum Map

BKMM define the non-holonomic momentum map Jnhc as

Jnhc(ξq) =

〈
∂L

∂q̇
, (ξq)⋆

〉
(H.4)

where ξq ∈ Sq. The momentum map, J in Lagrangian form is

J(ξ) =

〈
∂L

∂q̇
, ξ⋆

q

〉
(H.5)

and thus the non-holonomic momentum map, Jnhc is the canonical momentum map

on TQ restricted to those Lie algebra elements gq for which (gq)⋆ ∈ ∆q.

H.2.1 Non-Holonomic Momentum Map in Fixed Basis

The coordinate form of eq. (H.4) in the fixed (canonical) basis fA of g is

Jnhc(ξq) = Jnhc(ξA(q)fA) = Jnhc(fA)ξA(q) := JAξA(q)

where JA := Jnhc(fA) is given by

JA =

〈
∂L

∂q̇
, (fA)⋆

〉
=

〈
∂L

∂q̇I
dqI, T J

A(q)∂J

〉
=

∂L

∂q̇I
T I

A(q). (H.6)
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H.2.2 Non-Holonomic Momentum Map in Ψ Moving Basis

The coordinate form of eq. (H.4) in the moving basis eA(q) defined by (H.2) is

Jnhc(ξq) = Jnhc(ξAeA(q)) = Jnhc(eA(q))ξA := JA(q)ξA

where ξA = ξC(q)
−1

Ψ
A

C (q) (constant) and JA(q) is given by

JA(q) =

〈
∂L

∂q̇
, (eA(q))⋆

〉
=

〈
∂L

∂q̇
, (fB)⋆

〉
ΨB

A(q) =
∂L

∂q̇J
T J

B(q)ΨB
A(q) (H.7)

Note H.2.1 Jnhc(ξq) in the moving or fixed basis of g are equal because

Jnhc(ξq) = JAξA(q) = JAΨA
B(q)ξB = JB(q)ξB

but JA and JA(q) are not; JA is the component of Jnhc in the fixed fA direction while

JA(q) is the component of Jnhc is a configuration dependent direction eA(q).

H.3 Non-Holonomic Momentum Equation

BKMM proof that the derivative of the non-holonomic momentum map is given by

d

dt

[
Jnhc(ξq(t))

]
=

〈
∂L

∂q̇
,

(
d

dt
ξq(t)

)⋆〉

where ξq(t) is a curve in g∆ ⊂ g, i.e. (ξq(t))⋆ ∈ Sq(t).

H.3.1 Non-Holonomic Momentum Equation in Fixed Basis

d

dt

[
Jnhc(ξq(t))

]
=

〈
∂L

∂q̇
,

(
d

dt
ξq(t)

)⋆〉
=

〈
∂L

∂q̇
, f ⋆

A

〉 [
d

dt
ξA(q(t))

]
=

∂L

∂q̇J
T J

B(q)

[
d

dt
ξA(q)

]

(H.8)
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H.3.2 Non-Holonomic Momentum Equation in Moving Basis

In a moving basis given by eA(q) the non-holonomic momentum equation becomes

d

dt

[
Jnhc(ξq)

]
=

〈
∂L

∂q̇
,

(
d

dt
ξq

)⋆〉
=

〈
∂L

∂q̇
,

(
d

dt
eA(q)

)⋆〉
ξA (H.9)

whereby using

d

dt
eA(q) =

d

dt
(ΨB

A(q)fB) = ΨB
A,I(q)q̇

IfB = ΨB
A,I(q)

−1

Ψ
C

B (q)q̇IeC(q) := ΓC
AI(q)q̇

IeC(q)(H.10)

gives

d

dt

[
Jnhc(ξq)

]
=

〈
∂L

∂q̇
, eC(q)⋆

〉
ΓC

AI(q)q̇
IξA. (H.11)

Upon re-introduction of the notation

〈
∂L

∂q̇
, e⋆

A(q)

〉
:= JA(q)

one obtains for eq. (H.9)

[
d

dt
JA(q) − ΓC

A;IJC(q)q̇I

]
ξA = 0 (H.12)

Remark H.3.1 Again, the coordinate representations of d
dt

[
Jnhc(ξq)

]
given by eqs.

(H.8) and (H.12) are equal. The question at this state is can a moving basis eA(q) =

ΨA
B(q)fA be chosen through judicious choice of Ψ to make make ξA = (0 . . . 1︸︷︷︸

Nth spot

. . . 0).

In this moving frame, only the N th-component of the non-holonomic momentum will

survive and will be given by

d

dt
JN(q) = ΓC

NJJC(q)q̇J. (H.13)

The end result being that JN(q), the N-th component of the momentum in the moving
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frame eA(q) is not in general a conserved quantity. So the key is in the existence and

the choice of Ψ.

H.4 Rolling Hoop–see also BKMM

The configuration manifold of the Rolling Hoop is Q = R
2×S1×S1 with coordinates

(x, y, θ, φ) and Lagrangian

L =
1

2
m(ẋ2 + ẏ2) +

1

2
Iθ̇2 +

1

2
φ̇2

with constraint 1-forms

ω1 = dx − R cos(φ)dθ =⇒ 0 = ω1(ẋ∂x + ẏ∂y + θ̇∂θ + φ̇∂φ)

=⇒ ẋ = R cos(φ)θ̇ (rolling constraint)

ω2 = dy − R sin(φ)dθ =⇒ 0 = ω2(ẋ∂x + ẏ∂y + θ̇∂θ + φ̇∂φ)

=⇒ ẏ = R sin(φ)θ̇ (rolling constraint)

The constrained Lagrangian is thus

Lc =
1

2
(I + mR2)θ̇2 +

1

2
Jφ̇2

with constrained dynamics (see eq. 2.1.6 in BKMM, a straightforward calculation)

(I + mR2)θ̈ = 0

Jφ̈ = 0.

The constraint distribution ∆q follows from find those X,Y for which ω1(X) = 0 and

ω2(Y ) = 0:

∆q = span{∂φ, ∂θ + R cos(φ)∂x + R sin(φ)∂y}
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The coupled constrained dynamics for the rolling hoop are summarized as

(I + mR2)θ̈ = 0 (H.14)

Jφ̈ = 0 (H.15)

ẋ = R cos(φ)θ̇ (H.16)

ẏ = R sin(φ)θ̇ (H.17)

H.4.1 Non-Holonomic Momentum Equation for SE(2) action

on Q = R
2 × S1 × S1

Following BKMM we show how the non-holonomic momentum equation (for an

SE(2)) action relates to eq. (H.15).

Define the action of SE(2) on R
2 × S1 × S1 with coordinates

g = {sA} = (x, y, φ)

are the group variables and r = {ri} = (θ) is the shape variable by

α(t) = Lh(t)(r, g) = (Φ(t), X(t), Y (t)) · (θ, φ, x, y)

:= [θ, φ + Φ(t), x cos Φ(t) − y sin Φ(t) + X(t), x sin Φ(t)) + y cos Φ(t) + Y (t)]

where

h(t) = (Φ(t), X(t), Y (t))

is a curve in SE(2) such that h(0) = Id. and α(0) = h(0) · (r, g) = (r, g). That is, α(t)

is a curve in P through (r,g) at t=0 and h(t) is a curve in SE(2) through the identity
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at t=0. It follows that

Lh−1(t)(r, g) = [θ, φ − Φ(t), x cos Φ(t) + y sin Φ(t) − X(t) cos Φ(t) − Y (t) sin Φ(t),

−x sin Φ(t) + y cos Φ(t) + X(t) sin Φ(t) − Y (t) cos Φ(t)]

Recall that the push-forward of Xg = ṡA∂A|g to a vector (Lh−1)⋆Xg is given by

ṡA[(Lh−1)⋆∂A|g] = ṡAZB
A (g, r)∂B|h−1g := ξB(g, r)|h−1g∂B|h−1g

where ZB
A (g, r) are given by

(Lh−1)⋆(∂A|g)(sB) = ∂A|g[Lh−1sB] = ∂A|g[Lh−1g]B

So, if h(t) = g(t) = (x(t), y(t), φ(t)) then

ξB(r, g)|id = ṡA(∂A|g[Lg−1(t)g]B) (H.18)

or

ξ(r, g) = ġ · (Jacobianwrt group coordLg−1(t)g) (H.19)

where ξ(r, g)|id are the components of ξ thought of as a Lie algebra elements in the

basis ∂A|id. That is,

ξ = ξ(g, r)B|id∂B|id

Using Lg−1(t)g on the previous page we get

ξ2(r, g) = ẋ cos φ(t) − ẏ sin φ(t) (H.20)

ξ3(r, g) = ẋ sin φ(t) + ẏ cos φ(t) (H.21)

ξ1(r, g) = θ̇ (H.22)
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Using the notation ξ = (ξ1, ξ2, ξ3) = ξ1f1 + ξ2f2 + ξ3f3 [thinking of the matrices

f1 =




0 −1 0

1 0 0

0 0 0


 f2 =




0 0 1

0 0 0

0 0 0


 f3 =




0 0 0

0 0 1

0 0 0




as the vectors, respectively,

f1 = (0, 0, 1) = ∂φ|id, f2 = (1, 0, 0) = ∂x|id, f3 = (0, 1, 0) = ∂y|id

the tangents to the group orbits can be found by computing α̇(0). In coordinates we

obtain

d

dt
(αA(0))∂A =

d

dt

(
Lg(t)(r, g)

)
|t=0

= (−yξ1 + ξ2)∂x + (xξ1 + ξ3)∂y + (ξ1)∂θ

= −yξ1∂x + xξ1∂y + ξ1∂φ + ξ2∂x + ξ3∂y.

where ẋ(0) = ξ2, ẏ(0) = ξ3 and φ̇(0) = ξ1. In the {fA}-basis, notice that the curves

g2(t) = (0, x(t), 0), g3(t) = (0, 0, y(t)) and g1(t) = (φ(t), 0, 0) give

α1(t) = g1(t) · (r, g) → α̇3(0) = ξ1(−y∂x + x∂y + ∂φ)

α2(t) = g2(t) · (r, g) → α̇2(0) = ξ2∂x

α3(t) = g3(t) · (r, g) → α̇2(0) = ξ3∂y

which suggests the definition of the map ⋆ : g → TpOrb by

(f1)
⋆(q) = −y∂x + x∂y + ∂φ, (f2)

⋆(q) = ∂x, (f3)
⋆(q) = ∂y

It follows that

T(g, r)OrbSE(2)(g, r) = span{∂x, ∂y, ∂φ}
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which implies

Sq = span{∂φ}.

Thus, following the notation of sections H.2 and H.3,

ξq = yf2 − xf3 + 1f1 since (ξq)⋆ = yf ⋆
2 − xf ⋆

3 + 1f ⋆
1 = ∂φ

with

(ξA(q)) = (1, y,−x) =⇒
(

d

dt
ξA(q)

)
= (0, ẏ,−ẋ)

and

T = (T J
A(q)) =




0 0 0

1 0 0

−y 1 0

x 0 1




feed into eq. (H.6) to give the components of Jnhc is the fixed basis fA

(JA) := (Jnhc(fA)) =
(
Jφ̇ − myẋ + mxẏ mẋ mẏ

)

while the non-holonomic momentum map given by (H.8) is

Jnhc(ξq) =
∂L

∂q̇J
T J

A(q)ξA(q) =
(
Iθ̇ Jφ̇ mẋ mẏ

)




0

1

0

0




= Jφ̇.
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The non-holonomic momentum equation given by eq. (H.9) becomes

d

dt

[
Jnhc(ξq)

]
=

∂L

∂q̇J
T J

A(q)

[
d

dt
ξA(q)

]
=

(
Iθ̇ Jφ̇ mẋ mẏ

)




0

0

ẏ

−ẋ




= 0

The goal now is to look at a particular moving basis determined by Ψ(q) (defined

in eq. (H.2)) for which there is a single non-zero component of the non-holonomic

momenta . An obvious choice presents itself by simply noticing that

ξq = yf2 − xf3 + 1f1 = ξ1e1(q) = (1)e1(q) + (0)f2(q) + (0)f3(q)

with e1(q) := yf2 − xf3 + 1f1, e2(q) = f2 and e3(q) = f3 and thus

(ΨA
B(q)) =




1 0 0

y 1 0

−x 0 1




which gives the non-holonomic momenta in the moving basis {eA(q)} of g (cf. eq.

(H.7))

(JA(q)) := (Jnhc(eA(q))) =
∂L

∂q̇J
T J

B(q)ΨB
A(q) =

(
Jφ̇ mẋ mẏ

)
(H.23)

which because ξq has coordinate form ξA = (1, 0, 0) in the moving basis Jφ̇ is the first

component of Jnhc, J1(q) in the moving basis, {eA(q)}. One readily finds that J̇2 = 0

from which the equation J̈2(q) = 0 is recovered.
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Note H.4.1 Notice that e⋆
2(q) = ∂φ and so

(
e⋆
2(q)

)
=

(
∂θ ∂φ ∂x ∂y

)




0

1

0

0




(H.24)

H.4.2 Non-Holonomic Momentum Equation for R
2×S1 action

on Q = R
2 × S1 × S1

Following BKMM we show how the non-holonomic momentum equation (for an R
2 ×

S1) action relates to eq. (H.14).

Define the action of R
2 ×S1 on R

2 ×S1 ×S1 by (thinking of (x, y, θ) as the group

variables and φ as the shape variable)

α(t) = Lh(t)(r, g) = (Θ(t), X(t), Y (t)) · (θ, φ, x, y)

:= [θ + Θ(t), φ, x + X(t), y + Y (t)]

where h(t) = (X(t), Y (t), Θ(t)) is a curve in R
2 × S1 such that h(0) = Id and

α(0) = h(0) · (r, g) = (r, g). That is, α(t) is a curve in P through (r,g) at t=0 and

h(t) is a curve in SE(2) through the identity at t=0. It follows that

Lh−1(t)(g, r) = [x − X(t), y − Y (t), θ − Θ(t), φ]

which, from (H.19), one obtains

ξ = [θ̇, ẋ, ẏ, θ̇]
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From d
dt

(α(t))|t=0 one finds

f2 = (1, 0, 0) → f ⋆
1 = ∂x

f3 = (0, 1, 0) → f ⋆
2 = ∂y

f1 = (0, 0, 1) → f ⋆
3 = ∂θ

and so

T(r, g)OrbR2×S1(r, g) = span{∂x, ∂y, ∂θ}

which gives

Sq = span{∂θ + R cos(φ)∂x + R sin(φ)∂y}

and thus

ξq = 1f1 + R cos(φ)f2 + R sin(φ)f3 = (1)e1(q) + (0)e2(q) + (0)e3

=⇒ (ξA(q)) = (R cos(φ), R sin(φ), 1)or(ξA) = (1, 0, 0)

=⇒ (
d

dt
ξA(q)) = (−R sin(φ)φ̇, R cos(φ)φ̇, 0)

which feed into (H.6) to give

Jnhc(ξq) =
∂L

∂q̇J
T J

A(q)ξA(q)

=
(
mẋ mẏ Jφ̇ Iθ̇

)




R cos(φ)

R sin(φ)

1

0




= (I + mR2)θ̇ (upon substitution of constraints)

and into (H.9) to give (again using the constraints)

d

dt

[
Jnhc(ξq)

]
=

∂L

∂q̇J
T J

A(q)

[
d

dt
ξA(q)

]
= 0
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which recovers (I+mR2)θ̈ = 0. Introduction of a moving basis (as in the SE(2)-action

section) defined by e1(q) = 1f1 + R cos(φ)f2 + R sin(φ)f3, e2(q) = f2 and e3(q) = f3

gives

Ψ(q) =




1 0 0

R cos (φ) 1 0

R sin (φ) 0 1




=⇒ ξA = (1, 0, 0)t

gives

J1(q) = (I + mR2)θ̇ and J̇1(q) = 0 =⇒ (I + mR2)θ̈ = 0

Note H.4.2 Notice that e⋆
1(q) = ∂θ + R cos(φ)∂x + R sin(φ)∂y and so

(
e⋆
1(q)

)
=

(
∂θ ∂φ ∂x ∂y

)




1

0

R cos(φ)

R sin(φ)




(H.25)

which together with eq. (H.24) give

(
e⋆
1(q) e⋆

2(q)
)

=
(
∂θ ∂φ ∂x ∂y

)




1 0

0 1

R cos(φ) 0

R sin(φ) 0




(H.26)

Viewing e⋆
1(q), e

⋆
2(q) as part of a basis of TqQ which we can fill out (rig) to a full basis

via the addition of R1 = ∂x and R2 = ∂y we obtain

(
R1 R2 e⋆

1(q) e⋆
2(q)

)
=

(
∂θ ∂φ ∂x ∂y

)




0 0 1 0

0 0 0 1

1 0 R cos(φ) 0

0 1 R sin(φ) 0




(H.27)
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This matrix is critical in the n-symplectic derivation of the non-holonomic momentum

map and momentum equations, see section I.5(a).

At this point we can summarize the coupled dynamics for the rolling hoop as two

constraint equations (eqs. (H.28) and (H.29)), two (non-holonomic) conservation laws

(eq. (H.30) and (H.31)) and two momentum equations (eqs. (H.32) and (H.33))

ẋ = R cos(φ)θ̇ (H.28)

ẏ = R sin(φ)θ̇ (H.29)

˙J1(q) = 0 (H.30)

˙J2(q) = 0 (H.31)

J1(q) = (I + mR2)θ̇ (H.32)

J2(q) = Jφ̇ (H.33)



Appendix I

A Glimpse at the Role of

n-Symplectic Gauge Freedom and

Scalar Potentials in Control of

Mechanical Systems

I.1 Canonical Rank 2 Dynamics with Gauge Free-

dom

The goal for this subsection is to briefly explore the affect various gauge selections

have on control of a moving frame attached to a particles geodesic motion. First we

show that the canonical rank–2 n-symplectic dynamics can be written as a geodesic

equation and a modified form of the parallel transport of the generalized momenta.

The modification is manifest in the form of extra forces due to a torsion–free connec-

tion. In the last part of this subsection we address how to control a particular leg of

moving frame along the geodesic motion using a semi-metric form of a torsion free

connection.

Note I.1.1 (On index notation) For this section we use the greek indices α, β, η, µ, ξ =

207
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1 . . . n = dim(Q) as the configuration space coordinate indices.

It follows from eq. (G.32) that the dynamic equations for the n-vector fields Xγ
ĝ for

non-trivial gauge freedom T given by eq. (G.47) are

ẋβ = gαβΠγ
α

Π̇η
β = −1

2

(
Qαξ·

··β − 2Γξ
µβgαµ

)
Πγ

αΠη
ξ (I.1)

Equation (I.1) follow from a straight-forward substitution of eq. (G.33) and eq. (G.45)

into eq. (G.32). Again, for the γ = 1 vector field and η = (1, η̄) where η̄ = 2..n eq.

(I.1) becomes

ẋβ = gαβpα (I.2)

ṗβ = −1

2

(
Qαξ·

··β − 2Γξ
µβgαµ

)
pαpξ (I.3)

Π̇η̄
β = −1

2

(
Qαξ·

··β − 2Γξ
µβgαµ

)
pαΠη̄

ξ (I.4)

where we define pα := Π1
α. We recall here that a general torsion free connection Γ can

be expressed as (c.f. the proof of the Levi-Civita connection in Appendix A which

itself follows the proof in [37, pg. 132])

Γj
ab = {j

ab} +
1

2
gji(gab;i − gbi;a − gia;b)

= {j
ab} +

1

2
gji(−Qabi + Qbia + Qiab)

= {j
ab} +

1

2

(
−Q··j

ab· + Q·j·
b·a + Qj··

·ab

)
(I.5)

= {j
ab} +

1

2

(
−Q··j

ba· + Q·j·
b·a + Qj··

·ab

)
(I.6)
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where, for example, −Qabi := gab;i and the last two equations equal as the metric g is

symmetric. That −Qabi := gab;i follows from

Qab·
··i := gab

;i

=⇒ Q·b·
c·i = gacQ

ab·
··i = gac(g

ab
;i ) = (gacg

ab);i − gabgac;i

=⇒ Qcdi = Qdci = −gdc;i

Note I.1.2 (On equivalent notation) Herein we put the covariant index last while in

[37] it is put first. That is, we use −Qabi = gab;i while [37] use −Qiab = ∇igab. To

test the equivalence of decomposition (I.6) with the decomposition of [37] write the

above decomposition as

Γj
ab = {j

ab} +
1

2
gji (∇igab −∇agbi −∇bgia)

= {j
ab} +

1

2
gji(−Qiab + Qabi + Qbia)

= {j
ab} +

1

2

(
−Qj··

·ab + Q··j
ab· + Q·j·

b·a

)

use j → χ a → µ b → λ

Γχ
µλ = {χ

µλ} +
1

2

(
−Qχ··

·µλ + Q··χ
µλ· + Q·χ·

λ·µ

)
(I.7)

which is eq. 3.5 in [37, pg. 132], indicating that the decomposition (I.6) and Schouten’s

(I.7) are equivalent.
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Using decomposition (I.6) in eq. (I.3) (after symmetrizing on α and ξ) yields

ṗβ = −1

2

(
Qαξ·

··β

)
pαpξ +

1

2

[
Γξ

µβgαµ + Γα
µβgξµ

]
pαpξ

= −1

2

(
Qαξ·

··β

)
pαpξ

+
1

2

[(
{ξ

µβ} +
1

2

(
−Q··ξ

βµ· + Q·ξ·
β·µ + Qξ··

·µβ

))
gαµ

]

+

[(
{α

µβ} +
1

2

(
−Q··α

βµ· + Q·α·
β·µ + Qα··

·µβ

))
gξµ

]
pαpξ

= −1

2

(
Qαξ·

··β

)
pαpξ +

1

2

[
{ξ

µβ}gαµ + {α
µβ}gξµ

]
pαpξ

+
1

2

[
−1

2
Q·αξ

β·· +
1

2
Q·ξα

β·· +
1

2
Qξα·

··β − 1

2
Q·ξα

β·· +
1

2
Q·αξ

β·· +
1

2
Qαξ·

··β

]
pαpξ

1 and 5; 2 and 4 cancel and using symmetry Qαξ·
··β = Qξα·

··β

= −1

2

(
Qαξ·

··β

)
pαpξ +

1

2
Qξα·

··β pαpξ +
1

2

[
{ξ

µβ}gαµ + {α
µβ}gξµ

]
pαpξ

Again using Qαξ·
··β = gαξ

;β is symmetric in α and ξ and un-symmetrizing the Levi-Civita

terms the last equation above reduces to

ṗβ = {ξ
µβ}gαµpαpξ

= g∆ξ{ξ
µβ}ẋµẋ∆

Using eq. (I.2) it is clear that pβ = gηβẋη and thus ṗβ = gηβ,σẋ
σẋη+gηβẍη. The partial

derivative can be replaced with a covariant derivative by adding in and subtracting

the appropriate terms; that is

gηβ,σ = gηβ,σ − gnβ{n
ση} − gηm{m

σβ} + gnβ{n
ση} + gηm{m

σβ}

= gηβ;σ + gnβ{n
ση} + gηm{m

σβ}.
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As g is covariant constant (wrt to the Levi-Civita connection {·}) the momentum

dynamics ṗβ become

gηβẍη +
[
gaβ{a

ση} + gηβ{ξ
σβ}

]
ẋσẋη = gηξ{ξ

σβ}ẋσẋη

=⇒ ẍ∆ + {∆
ση}ẋσẋη = 0 (I.8)

which are the geodesic equations for the Levi-Civita connection. Again, using the

decomposition formula (I.5) in eq. (I.1) and the symmetry Qαξ·
··β = Qξα·

··β one obtains

Π̇η̄
β =

[
−1

2
Qαξ·

··β +

(
{ξ

µβ} +
1

2

(
−Q··ξ

µβ· + Q·ξ·
β·µ + Qξ··

·µβ

))
gαµ

]
pαΠη̄

ξ

=

[
{ξ

µβ} +
1

2

(
Q·ξ·

β·µ − Q··ξ
µβ·

)]
gαµpαΠη̄

ξ

which can be written as

D

dt
Πη̄

β =
1

2

(
Q·ξ·

β·µ − Q··ξ
µβ·

)
ẋµΠη̄

ξ (I.9)

where D
dt

Πη̄
β := Π̇η̄

β − {ξ
µβ}ẋµΠη̄

ξ .

Remark I.1.1 Equations (I.8) and (I.9) are given in [29] modulo the detail we have

provided. For Q=0 the geodesic equation (I.8) and the parallel transport of the spatial

triad (or laboratory frame) equation (I.9) collectively represent, in relativity language,

the dynamics of a free falling, non-rotating observer in spacetime. One would not be

remise to envision a spacecraft hurtling through a region of “empty” space with the

center of mass tracing a “straight” line and the outer hull lifelessly devoid of motion

about the center of mass. A natural question is “Can the attitude of the spacecraft

be controlled to, say, align the cockpit of the spacecraft with the overall (geodesic)

direction of motion using the Q terms as “external” control forces?”
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Following Schouten [37, pg. 133], a natural choice is to use a semi-metric connec-

tion

Qab·
··i = gabAi

Qdci = −gdcAi

Q·b·
c·i = −δb

cAi

gaiQdci = Q··a
dc· = −gdcg

aiAi

where the second to last line follows from Q·b·
c·i = gabQcai = −gabgcaAi. At least at this

stage of the thought process and in keeping with the spacecraft analogy, we view the

vector of control inputs [Ai] as a thrust vector. The steps to formulating and solving

the resulting controlled system of equations are

• Start with a given metric gαβ (and the inverse gαβ) from which the Christoffel

symbols {ξ
σδ} can be found.

• Choose the vector of control inputs [Aζ ].

• The dynamics for Qab·
··i = gabAi 6= 0 are

ẍ∆ = −{∆
ση}ẋσẋη (I.10)

Π̇η̄
β =

[
{ξ

µβ} +
1

2

(
−δξ

βAµ −−gµβgξζAζ

)]
ẋµΠη̄

ξ

• Solve the above coupled system for ẋα := vα and Πη̄
ξ

• Solve for pβ using pβ = gαηv
α

• Form the matrix denoted Π with first row pβ then 2 through n rows Π2
β, Π3

β . . . Πn
β.

This is the matrix describing how the coframe moves relative to the fixed spatial

(coordinated) coframe.

• Invert the matrix Π and call it V . The matrix V describes how the frame moves

along the geodesic relative to a fixed spatial (coordinated) frame.
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As a special case consider g = δ =⇒ {·} = 0. That is, we envision body whose

center of mass tracks an actual straight line in R
3 where the “skeleton” of the body

is defined by the spatial triad attached to the center of mass. The time evolution or

motion of this body is determined by the position of the center of mass along the line

and the orientation of the triad for each point along the line.

The dynamics (I.10) in this case reduce to

v̇∆ = 0 =⇒ v∆ = const.

ẋ∆ = v∆ =⇒ x∆ = linear

Π̇η̄
β = −1

2
Aµv

µΠη̄
β +

1

2
vβAξΠη̄

ξ

where the components of the row vector Aµ equal the components of the column

vector Aµ as the metric is the identity (similarly for vβ and vβ). For this special case,

we are interested in finding the control inputs A which aligns a leg of the triad along

the straight line motion in R
3 of center of mass.

The frame dynamics of equation (I.11) can be written in expanded form as

d

dt
Π21 +

1

2
(A2v2 + A3v3) Π21 −

1

2
(A2Π22 + A3Π23) v1 = 0

d

dt
Π22 +

1

2
(A1v1 + A3v3) Π22 −

1

2
(A1Π21 + A3Π23) v2 = 0

d

dt
Π23 +

1

2
(A1v1 + A2v2) Π23 −

1

2
(A1Π21 + A2Π22) v3 = 0

d

dt
Π31 +

1

2
(A2v2 + A3v3) Π31 −

1

2
(A2Π32 + A3Π33) v1 = 0

d

dt
Π32 +

1

2
(A1v1 + A3v3) Π32 −

1

2
(A1Π31 + A3Π33) v2 = 0

d

dt
Π33 +

1

2
(A1v1 + A2v2) Π33 −

1

2
(A1Π31 + A2Π32) v3 = 0.

Along with ṗα = Π̇1
α = 0, the full momentum dynamics can be expressed as as linear

system of the form

~̇Π = M(v, A)~Π (I.11)



APPENDIX I. N-SYMPLECTIC GEOMETRY AND CONTROL 214

where the vector ~Π is given by [p1, p2, p3, Π21, . . . , Π33] and

M(v, A) = diag(0, block1, block1)

such that 0 is a 3 × 3 matrix of zeros and

block1 =




−1
2 A2 v2 − 1

2 A3 v3
1
2 A2 v1

1
2 A3 v1

1
2 A1 v2 −1

2 A1 v1 − 1/2 A3 v3
1
2 A3 v2

1
2 A1 v3

1
2 A2 v3 −1

2 A1 v1 − 1
2 A2 v2




.

Assumption I.1.1 For a general metric g, the vector v = [v1, v2, v3] will not be

constant in time. For g = δ, however, v is constant in time. Making the further

assumption that the vector of control inputs A = [A1, A2, A3] is also constant in time

then the M(v, A) is a constant matrix and the resulting linear system can be solved

by the matrix exponential.

The solution to the linear system (I.11) is given by

~Π(t) = ~Π0Φ(t) (I.12)

where ~Π0 is the vector of initial momenta and Φ(t) is exp(M · t) given by

diag[I, block2, block2] where block2 = exp(block1) is given by




A1 v1+A2 v2 e−K·t+A3 v3 e−K·t

2·K
−A2 v1 (e−K·t−1)

2·K
−A3 v1 (e−K·t−1)

2·K

−A1 v2 (e−K·t−1)
2·K

A2 v2+A1 v1 e−K·t+A3 v3 e−K·t

2·K
−A3 v2 (e−K·t−1)

2·K

−A1 v3 (e−K·t−1)
2·K

−A2 v3 (e−K·t−1)
2·K

A3 v3+A1 v1 e−K·t+A2 v2 e−K·t

2·K




(I.13)

such that K = 1
2
(A1 + A2 + A3). The 9 vector solution to equation (I.11) can be

written as a 3 × 3 matrix Π(t) and inverted to give the matrix V (t). The matrix

V (t) is the transformation matrix describing the time evolution of a fixed spatial

frame along a geodesic in R
3 subject to the control inputs A = [A1, A2, A3]. Of
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particular interest to us is the matrix V (0) which describes the initial triad and the

matrix V (∞) := limt→∞ V (t) which describes the asymptotic orientation, if any, of

the controlled spatial triad.

Assumption I.1.2 It can be shown that the matrix V (0) takes the form




⋆ ⋆ ⋆

⋆ ⋆ ⋆

0 0 ⋆




when Π23(0) = Π31(0) = Π32(0) = 0 and Π21(0), Π22(0), Π33(0) remain free to choose

so long as Π21(0) 6= Π22(0). The limit V (∞) exists when K < 0.

For initial momenta, velocities and control inputs satisfying the assumptions in

I.1.2 we obtain

V (0) =


− Π22(0)
−v1(0) Π22(0)+Π21(0) v2(0)

v2(0)
−v1(0) Π22(0)+Π21(0) v2(0)

v3(0) Π22(0)
−v1(0) Π22(0) Π33(0)+Π21(0) v2(0) Π33(0)

Π21(0)
−v1(0) Π22(0)+Π21(0) v2(0) − v1(0)

−v1(0) Π22(0)+Π21(0) v2(0) − v3(0) Π21(0)
−v1(0) Π22(0) Π33(0)+Π21(0) v2(0) Π33(0)

0 0 Π33(0)−1




V (∞) =




A1

v2(0) A2+A1 v1(0)+v3(0) A3
0 0

A2

v2(0) A2+A1 v1(0)+v3(0) A3
0 0

A3

v2(0) A2+A1 v1(0)+v3(0) A3
0 0




It follows from the form of V (∞) that, independent of the initial configuration, the

x–leg of the spatial triad asymptotically approaches the vector

[
A1

v1(0)A1 + v2(0)A2 + v3(0)A3
,

A2

v1(0)A1 + v2(0)A2 + v3(0)A3
,

A3

v1(0)A1 + v2(0)A2 + v3(0)A3

]

while the y–leg and z–leg tend to [0, 0, 0]. Given an initial velocity

v(0) = [v1(0), v2(0), v3(0)] a natural question is to ask for the control inputs that

asymptotically align the x–leg of the spatial frame with a desired direction dir =

[xd, yd, zd]. That is, given the initial velocity v(0) and desired direction dir can the
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system of equations

A1

v1(0)A1 + v2(0)A2 + v3(0)A3

= xd

A2

v1(0)A1 + v2(0)A2 + v3(0)A3

= yd

A3

v1(0)A1 + v2(0)A2 + v3(0)A3

= zd

be solved for the control inputs A? For example, when dir is the geodesic direction

[v1(0), v2(0), v3(0)] the control inputs are A = [A2, A2,−A2] where A2 < 0, see Figure

I.1. As another example, for v = [1, 1, 0] and A = [−1,−1, A3] then the x–leg ap-

proaches [1/2, 1/2,−A3/2] which is a vector aligned with the geodesic x,y direction

but elevated (for negative A3) or de-elevated (for positive A3) by the angle

θ = arccos

( √
2√

2 + (A3)2

)
.

In this case it is clear that for a desired θd one can find the necessary input A3. For

example, for θd = 1.5 (nearly vertical), A3 = ±19.94 stretches and drives the x–leg

to line up with the geodesic x,y direction with the z–component nearly vertical.
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, ,
(a) Moving triad at t=0, t=0.9, and t=3

(b) Angle between x–leg of moving triad (black)
and geodesic direction (red); Length of x–leg of
moving triad (blue)

Figure I.1: Control of moving frame along the geodesic using the control input vector
A = [−1,−1, 1].

I.2 Constrained Rank 2 Dynamics with Scalar Po-

tentials

The goal for this subsection is to briefly explore the affect various scalar potentials

have on control of a nonholonomic constrained particle.

Recall from Section 4.3.2 that the second order dynamics of a particle of mass

m = 1 moving in three space [x,y,z] with kinetic energy 1
2
(ẋ2 + ẏ2 + ż2) subject to the
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nonholonomic constraint ż = yẋ are

ẍ =
−yẋẏ

1 + y2
and ÿ = 0.

These equations in first order form can be written as

v̇ =
−yvw

1 + y2

ẇ = 0

ẋ = v

ẏ = w

ż = yv. (I.14)

In Section 4.3.2 these equations were written equivalently (relative to a moving basis

adapted to the constraint distribution) in first order form as

ṗ1 =
yp1p2

1 + y2

ṗ2 = 0

ẋ =
p1

1 + y2

ẏ = p2

ż =
yp1

1 + y2
(I.15)

where p1 = ẋ(1 + y2) and p2 = ẏ. For initial conditions IC1 = [x0, y0, z0, v0, w0] =

[0, 0, 0, 1,−1] for the first system and IC2 = [x0, y0, z0, p10, p20] = [x0, y0, z0, v0(1 +

y2
0), w0] for the second system, a typical solution is seen in Figure I.2.

As indicated in Section 4.3.2, the n–symplectic theory allows for the introduction

of scalar potential forces in the generalized momenta dynamics.

Assumption I.2.1 (Quadratic Scalar Potential) We focus specifically on a scalar

potential of the form C33(x, y, z, t) = Cx(x−xref (t))
2+Cy(y−yref (t))

2+Cz(z−zref (t))
2

where Cx, Cy, and Cz are constants and [xref (t), yref (t), zref (t)] is a possibly moving
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(a) Black solid line solution to I.14
and red points solution to I.15

Figure I.2: Typical trajectory of particle whose z–velocity is nonholonomically con-
strained by ż = yẋ

reference trajectory. That is, C33 is assumed to be a quadratic potential centered at a

moving reference point.

The new controlled dynamics for the nonholonomic particle can now be written as

ṗ1 =
yp1p2

1 + y2
+ Cx(x − xref ) + Czy(z − zref )

ṗ2 = Cy(y − yref )

ẋ =
p1

1 + y2

ẏ = p2

ż =
yp1

1 + y2
. (I.16)

In Figure I.3–I.5 some numerical simulations are shown which illustrate the potential

force affects on the constrained particle dynamics. It is a matter of future work to

put these ideas together to a general control logic which can move the nonholonomic

particle to any point in space from any starting point.
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(a) The black curve is the controlled trajec-
tory while the red curve is the uncontrolled
trajectory.

Figure I.3: The particles motion towards negative infinity can be arrested and we
can return the particle to its starting position. The necessary input data is Cx =
−0.1, Cy = −0.1, Cz = 0, xref = yref = zref = 0, IC: [x0, y0, z0, ẋ0, ẏ0] = [0, 0, 0, 1,−1].

,
(a) The black curves are the controlled trajectories while the red curves are the
uncontrolled trajectories.

Figure I.4: The particles motion towards negative infinity can be arrested and we can
redirect the particle in a “perpendicular” and “elevated” direction. The necessary
input data is Cx = 0, Cy = −1, Cz = 0, xref = yref = zref = 0 (left), xref = yref =
zref = 0.1t (right), IC: [x0, y0, z0, ẋ0, ẏ0] = [0, 0, 0, 1,−1].
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(a) The black curve is the controlled tra-
jectory while the red dot is the equilibrium.

Figure I.5: Using a cyclic reference point, the particle can be given momentum and
thus move away from equilibrium. The necessary data input data is Cx = −0.1, Cy =
−0.1, Cz = 0, yref = zref = 0, xref = sin(t), IC: [x0, y0, z0, ẋ0, ẏ0] = [0, y0 6= 0, 0, 0, 0].




