
Abstract

LOKHNYGINA, YULIYA. Topics in Design and Analysis of Clinical Trials. (Under

the direction of Anastasios A. Tsiatis.)

In the first part of this dissertation we derive optimal two-stage adaptive group-

sequential designs for normally distributed data which achieve the minimum of a

mixture of expected sample sizes at the range of plausible values of a normal mean.

Unlike standard group-sequential tests, our method is adaptive in that it allows the

group size at the second look to be a function of the observed test statistic at the

first look. Using optimality criteria, we construct two-stage designs which we show

have advantage over other popular adaptive methods. The employed computational

method is a modification of the backward induction algorithm applied to a Bayesian

decision problem.

Two-stage randomization designs (TSRD) are becoming increasingly common in

oncology and AIDS clinical trials as they make more efficient use of study participants

to examine therapeutic regimens. In these designs patients are initially randomized to

an induction treatment, followed by randomization to a maintenance treatment con-

ditional on their induction response and consent to further study treatment. Broader

acceptance of TSRDs in drug development may hinge on the ability to make appro-

priate intent-to-treat type inference as to whether an experimental induction regimen

is better than a standard regimen in the absence of maintenance treatment within

this design framework. Lunceford, Davidian, and Tsiatis (2002, Biometrics 58, 48-57)



introduced an inverse-probability-weighting based analytical framework for estimat-

ing survival distributions and mean restricted survival times, as well as for comparing

treatment policies in the TSRD setting. In practice Cox regression is widely used, and

in the second part of this dissertation we extend the analytical framework of Lunce-

ford et. al. to derive a consistent estimator for the log hazard in the Cox model and

a robust score test to compare treatment policies. Large sample properties of these

methods are derived and illustrated via a simulation study. Considerations regarding

the application of TSRDs compared to single randomization designs are discussed.
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Chapter 1

Preface

Advances in the field of the design and analysis of clinical trials are often mo-

tivated by practical problems suggested by the drug development industry. In this

dissertation we consider two such problems.

Most phase III clinical trials are extremely expensive and involve a large number

of patients. It may take many years for the potential cures of serious diseases to

reach the general patient population. Consequently, investigators are often interested

in designing the trials in a way that would require the least amount of resources

while still guarantee the specified significance level and power. Group-sequential

designs offer a reduction of the average sample size of a trial by monitoring the results

periodically to allow the possibility of stopping the study early. In traditional clinical

trial designs determination of the sample size requires specification of a ”clinically

important treatment difference”, which is often an artificial and ambiguous construct.

Recently, various ”adaptive” designs have been proposed in the literature, that use
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estimated treatment differences at interim analyses to adaptively modify the trial

design and sample size. However, the rationale for these designs has been ad hoc.

In this dissertation we pursued the goal of developing optimal two-stage sequential

designs for normally distributed data which achieve the minimum of the expected

sample sizes at the range of plausible values of a normal mean.

The problem of estimating optimal dynamic treatment regimens has received con-

siderable attention in the last few years. During the course of treating such complex

diseases as HIV and cancer, physicians have to make multiple treatment decisions

along the way. Dynamic treatment regimen is a set of decision rules, one per time

interval, for how the treatment type and the dosage should vary. Naturally, the chal-

lenge is to find the treatment regimen which results in the best response. For example,

in the case of two time intervals and when considering combining a novel treatment

to existing standard of care treatment, it is often unclear whether the best strategy

is to give the novel treatment concurrently with current treatments as an induction

strategy, sequentially after current treatments as a possible maintenance strategy, or

both concurrently and sequentially. Such multiple questions can be assessed with a

single two-stage randomization design, where patients are initially randomized to an

induction treatment, followed by randomization to a maintenance treatment condi-

tional on their induction response and consent to further participation in the study.

Even though two-stage randomization designs are becoming increasingly popular, lit-

tle has been done to develop adequate statistical analysis methods for such designs.

In this dissertation we consider a Cox regression approach to the analysis of two-
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stage randomization designs. This topic was suggested during the author’s summer

internship at Genentech, Inc., and was motivated by a E4494 clinical trial.

This dissertation is organized as follows. In Chapter 1 we formulate the statistical

testing problem and the concept of optimal two-stage sequential designs, introduce

our method of finding optimal designs and present the numerical results. Chapter 2

describes the Cox regression approach to the problem of analysis of two-stage random-

ization designs and presents the results of the study of performance of the proposed

method via a series of simulation experiments. Some computational details for the

construction of optimal two-stage designs and the proof of large sample properties of

the proposed Cox regression analysis of two-stage randomization designs are given in

the Appendix.
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Chapter 2

Optimal Two-stage Designs

2.1 Introduction

Most large scale phase III clinical trials are monitored periodically using group-

sequential tests that allow the possibility of stopping the study early if sufficiently

large or small treatment differences are observed at an interim analysis while pre-

serving the operating characteristics of the test. Recently, there has been a great

deal of interest in what are termed ‘adaptive sequential designs’. Traditionally, in the

design of a clinical trial, the sample size is computed so that a ‘clinically important

treatment difference’ can be detected with some specified power. Often, the criterion

for the choice of such a clinically important difference is not straightforward. The

appeal of the adaptive design is that it uses estimated treatment differences at in-

terim analyses to adaptively modify the design and sample size. Roughly speaking,

rather than fixing the sample size in advance, the sample size may be modified based
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on the observed treatment difference according to some power or conditional power

considerations. For example, Proschan and Hunsberger (1995) proposed a procedure

that guarantees that a two-stage test has a desired conditional power to detect the

treatment effect equal to the estimated treatment effect at the first stage, given the

observed test statistic at the first stage. Another adaptive strategy, suggested by Cui,

Hung and Wang (1999), is a modification of a standard two-stage group-sequential

test where an initial sample size was computed based on some best guess for a clin-

ically important alternative. The sample size, to be collected at the second stage,

would be increased proportionally by the squared ratio of the treatment difference

which the study was originally powered to detect and the estimated treatment differ-

ence at the first stage, if this ratio is greater than one. Because of the adaptive nature

of these designs, the test statistic is modified to preserve the overall type I error. For

instance, the test statistic used by Cui et al. adaptively weights the increments of

the commonly used test statistic. Other examples of such adaptive designs are given

by Posch and Bauer (1999) and Lehmacher and Wassmer (1999).

Because of administrative constraints, some clinical trials may not be able to

conduct many interim analyses. It may be that a two-stage sequential procedure

is the only logistically feasible design. In such cases, the issue then becomes how

to best design two-stage sequential procedures. Rather than using standard group-

sequential methods, we consider optimal two-stage designs. That is, we derive the

two-stage design which minimizes the expected sample size for some fixed alternative

or minimizes a weighted average of expected sample sizes across a range of alternatives
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among all two-stage designs with specified level and power. We show that such an

optimal test is an adaptive test where the sample size at the second stage depends

on the data at the first stage. However, rather than using an ad-hoc adaptive design,

we construct tests based on a rationale of optimality.

2.2 Method

We focus our attention on the problem where the data X = X1, X2, ..., observed se-

quentially, are independent and normally distributed with mean µ and unit variance,

and we wish to test the null hypothesis H0 : µ ≤ 0 against the alternative H1 : µ > 0

with type I error α and type II error β at µ = 0 and µ = δ respectively. For example,

in a clinical trial, the parameter µ can measure the effectiveness of the experimental

treatment compared to control, with positive values of µ indicating the superiority

of the experimental treatment. The data Xi may represent one observation from the

i-th individual or a statistic computed from the i-th group of observations obtained

between interim analyses. Although this example seems oversimplified, most test

statistics used to test treatment differences, whether the outcomes be continuous,

discrete, survival or longitudinal, will have, asymptotically, the same distributional

structure as above; that is, most test statistics, properly normalized, computed se-

quentially over time, will have a joint distribution which is asymptotically normal

with independent increments and variance proportional to the Fisher information;

see Scharfstein, Tsiatis and Robins (1997). Consequently, for the general problem,

the Fisher information would play the same role as sample size in the scenario above.
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The sufficient statistic for µ after k observations is given by the partial sum Sk =

X1+. . .+Xk and any optimal procedure will always be a function of the data through

the sufficient statistic. Here we focus on two-stage group-sequential designs where a

decision to either stop and reject or accept the null hypothesis or to continue to

sample can be made after n1 observations (the first stage), and the number n2(Sn1)

of additional observations to be collected at the next stage (possibly zero) can be

determined based on the observed data Sn1 . For simplicity, we denote the total

sample size by N = n1 +n2(Sn1). Note that N defined this way is a random variable.

To fully describe the optimal design, we must find the first stage sample size n1, the

rule to determine the number of additional observations n2(Sn1) to be collected at

the second stage as a function of the observed data at the first stage, and a critical

value aN where the null hypothesis is rejected if SN ≥ aN and accepted otherwise.

Consequently, a two-stage design can be described by the triplet{n1, n2(Sn1), aN ; for

all possible Sn1}.

Among two-stage designs with type I error α and type II error β at µ = 0 and

µ = δ respectively, we define the optimal two-stage design as the one which minimizes

the weighted average of the expected sample sizes across a range of plausible values

of µ. Specifically, we want to minimize

∫
E(N |µ)f(µ)dh(µ),

where
∫

f(µ)dh(µ) = 1.

Remark 1. The specific value of δ where the power 1 − β is desired is not important

in the subsequent development but serves as an anchor for comparative purposes.
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That is, δ could be increased or decreased and this only changes the problem by

proportionately decreasing or increasing the sample sizes at the two stages.

Remark 2. We allow h(µ) to be either Lebesgue measure to reflect continuous densities

or counting measure to allow for mass at only a fixed number of µ.

Remark 3. A standard two-stage group-sequential test is one which either rejects or

accepts the null hypothesis at the first stage or continues to a second stage at a fixed

value n1 + n2. This test which can be represented by n2(Sn1) = 0 if Sn1 is in the

first stage rejection or acceptance region or n2(Sn1) = n2 if Sn1 is in the first stage

continuation region is just a special case of the two-stage designs considered above.

Following the general approach of Lai (1973), Eales and Jennison (1992), Chang

(1996) and Barber and Jennison (2002), a convenient way to devise an optimal group-

sequential test is to find a solution to a corresponding Bayes sequential decision

problem where we must choose between decisions D0 : µ = 0 and Dδ : µ = δ with

associated loss function C(D,µ) taking values C(D0, δ) = dδ, C(Dδ, 0) = d0 and

zero otherwise. For the two-stage design Dδ(X) = (SN ≥ aN), corresponding to

the rejection of the null hypothesis and D0(X) = (SN < aN) if we accept the null

hypothesis. The description of the problem should also include the prior distribution

of the parameter of interest π(µ) and the sampling cost per observation c(µ). We

take the sampling cost to equal one for values of µ along the support h(µ) used to

compute the average expected sample size; i.e. c(µ) = 1 whenever dh(µ) > 0. The

prior distribution is chosen as follows: we put probability mass of 1/3 at µ = 0 and

µ = δ; that is π(0) = 1/3, π(δ) = 1/3, and spread the remaining probability of
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1/3 with density π(µ) = f(µ)/3 with respect to the dominating measure h(µ). The

solution to this Bayes problem minimizes the expected total cost consisting of the

sum of the expected cost of sampling and the expected cost of the decision which

equals

E(L) =

∫
E(N |µ)

f(µ)

3
dh(µ) +

1

3
d0Pr(SN ≥ aN |µ = 0)

+
1

3
dδPr(SN < aN |µ = δ). (2.1)

Remark 4. The conversion of the original problem of minimizing the functional

∫
E(N |µ)f(µ)dh(µ)

into a Bayesian decision problem can be viewed as a version of a well-known conversion

of the problem of optimizing a function H(x) subject to the constraints φ1(x) =

0, φ2(x) = 0 to that of optimizing g(x) = H(x)−d0φ1(x)−d1φ2(x) via using Lagrange

multipliers d0, d1.

Remark 5. The choice of one-third prior mass at µ = 0 and µ = δ is not important.

Any prior mass could be used and the choice of d0 and dδ can be adjusted to lead to

the same E(L) up to a proportionality constant.

Two classes of objective functions are of particular interest. In the first, we min-

imize the expected sample size at a fixed value µ = φ. For this case, we took h(µ)

to be point mass at µ = φ and f(φ) = 1. We will denote functions of this class by

G1,φ. For the second class of objective functions, denoted by G2,φ, we minimize the

weighted average of the expected sample size over a range of µ. For this second class,

we took h(µ) to be Lebesgue measure. We consider the density f(µ) to be normally
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distributed with mean φ and standard deviation δ/2. The standard deviation was

chosen as a multiple of δ to reflect the range of interest when specifying the type I

and type II errors. The specific choice of δ/2 was arbitrary, but, experimenting with

other values for the standard deviation, we found the results to be insensitive to this

choice.

Thus, the expected total loss for the first class of objective functions is given by

E(L)1,φ =
1

3
Eφ(N) +

1

3
{d0Pr0(Dδ) + dδPrδ(D0)}, (2.2)

and for the second class of objective functions, by

E(L)2,φ =
1

3

∫
E(N |µ)

2

δ
φ

(
µ − φ

δ/2

)
dµ +

1

3
{d0Pr0(Dδ) + dδPrδ(D0)}. (2.3)

The optimal Bayes rule should also satisfy the condition

Pr0(Dδ) = α, Prδ(D0) = β, (2.4)

which can be achieved by finding the appropriate values for d0 and dδ. As the next

equation shows, the critical value aN at the final stage, and hence the error probabil-

ities in (2.4), depend on the ratio of d0 and dδ. The solution minimizing the expected

total cost can be found for any values of costs d0 and dδ. Thus, if d0 and dδ are cho-

sen to satisfy (2.4), the optimal Bayes rule will also minimize the objective function

among all decision rules with error probabilities α and β, yielding the desired optimal

decision rule.

The optimal solution can be computed using the dynamic programming algorithm,

also known as the backward induction algorithm as it proceeds by finding the stopping
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boundaries of a group-sequential design going from the final stage to the first stage.

Note that the first stage can also be the final stage if n2(Sn1) = 0. The critical value

aN , at the final stage, is the value such that the expected loss from rejecting the null

hypothesis is equal to the expected loss from accepting the null hypothesis:

d0Pr(µ = 0|N,SN = aN) = dδPr(µ = δ|N,SN = aN) (2.5)

For any value s1 of the test statistic Sn1 at the first stage, the optimal additional

number of observations n2(s1) can be found by minimizing the additional conditional

expected loss E(L|Sn1 = s1) incurred by sampling n2(s1) observations at the second

stage and proceeding optimally. When the optimal n2(s1) = 0, this corresponds to

stopping the study at the first stage after n1 observations, in which case, we reject or

accept the null hypothesis according to whether Sn1 is greater than or smaller than

an1 respectively, where an1 is defined by (2.5). By searching over the costs d0 and

dδ we find the values for which condition (2.4) is satisfied. Finally, to minimize the

expected sample size, we search over a range of possible values for n1.

The computational details of the algorithm for the first class of objective functions

are given in the Appendix.

2.3 Results

Investigators are often interested in the stopping properties of the sequential pro-

cedure at or near the clinically important alternative of interest. Consequently, we

will focus attention on the performance of optimal tests for values of µ in a range
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around δ. We investigated the performance of our optimal tests for the objective

function G1,φ at a range of values of φ in the interval {δ/2, 3δ/2}, and for the ob-

jective function G2,φ where φ takes values δ/2, 3δ/2. We considered tests with error

probabilities α = 0.05, β = 0.1. We define the sample size nfix to be that necessary

for a fixed-sample level α test to have power 1 − β to detect the alternative δ. For

α = 0.05 and β = 0.1, nfix = {(1.64 + 1.28)/δ}2. For ease of comparison, we will

present sample sizes and expected sample sizes as a percentage of nfix. For each op-

timal decision rule, the expected sample size was evaluated at µ = 0, δ
8
, δ

4
, ..., 11δ

8
, 3δ

2
.

Figure 2.1 plots, for each optimal test, the ratio of the expected sample size to nfix for

the range of the parameter values at which the expected sample size was evaluated.

By construction, at a given value of µ = φ, the minimum expected sample size

among all two-stage level α tests with power 1 − β for µ = δ is given by the optimal

test minimizing the objective function G1,φ. Therefore, the expected sample size for

these optimal tests as a function of φ in the range {δ/2, 3δ/2} serves as an minimal

envelope for comparing the global behavior (in terms of expected sample size across

this range of alternatives) of any two-stage design. As we can see, optimal rules that

minimize the objective function G1,φ with the values of φ at the lower end of the

range of possible alternatives are not very efficient at the higher end of the range of

possible alternatives, with φ in the range {δ, 3δ/2}. On the other hand, optimal rules

that minimize the objective function G1,φ with the values of φ at the higher end of the

range of possible alternatives are inefficient for φ in the range {0, δ/2}, with expected

sample size evaluated at the null hypothesis achieving values as high as 1.3nfix.
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In contrast, the optimal tests based on the objective function G2,φ, although not

best for any fixed value µ = φ, showed excellent global performance across a wide

range of µ. We also notice that the performance of G2,δ/2 was similar to that of G2,3δ/2.

Based on these results, we recommend using the integral objective function G2,φ with

φ chosen to emphasize the part of the parameter space the investigator wants to focus

on. For example, if the investigator wants good early stopping properties for values

of µ ≥ δ, then a good choice is the two-stage design which minimizes the objective

function G2,3δ/2.

For ease of implementation, these optimal two-stage designs can be described in

terms of standardized statistics, relative alternative φ/δ and sample sizes expressed

as percentages of the fixed sample size nfix. Consequently, we define the sample size

at the first stage as a percentage of nfix, n1/nfix, and the standardized test statistic

at the first stage by Z1 = Sn1/
√

n1.

We denote the upper and lower standardized boundaries at the first stage as u1

and l1, where

u1 = min{s1/
√

n1 such that n2(s1) = 0 and s1 ≥ an1}

and

l1 = max{s1/
√

n1 such that n2(s1) = 0 and s1 ≤ an1}.

If the value of the standardized statistic Z1 = z1 at the first stage exceeds u1, we stop

and reject the null hypothesis, if z1 ≤ l1, then we stop and accept the null hypothesis.

If l1 < z1 < u1 then we increase the sample size to a total sample size as a percentage
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Figure 2.1: Expected sample size for optimal designs, as a proportion of nfix.
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of nfix, N/nfix. We define the standardized test statistic at the second stage by

Z2(z1) = SN/
√

N and the boundary at the second stage by u2N = aN/
√

N . The test

would reject the null hypothesis at the second stage if l1 < Z1 < u1, Z2(Z1) ≥ u2N

and accept the null hypothesis if l1 < Z1 < u1, Z2(Z1) < u2N .

The methods described above can be used to find optimal two-stage designs for a

given α, β, δ, φ. Because the partial sum of iid normal random variables approximates

Brownian motion, the design, presented in terms of standardized statistics and ratios

of nfix, will depend on α, β and the ratio φ/δ and will be insensitive to the actual

value of δ as long as the sample size is sufficiently large for a good approximation

to Brownian motion. Thus, for various error probabilities, tables or graphs with

specifications of the optimal designs can be constructed to be used by practicing

statisticians. As an example, here we consider an optimal design which minimizes

the objective function G2,3δ/2 =
∫

E(N |µ)2
δ
φ(µ−3δ/2

δ/2
)dµ with error probabilities α =

0.05, β = 0.1. Figure 2.2 shows the total sample size N expressed as a percentage

of nfix, as a function of the standardized statistic z1 where z1 is in the continuation

region, and the boundary value at the second stage as a function of z1.

To use this design we would proceed as follows. First we compute nfix, i.e. the

sample size necessary to detect the alternative of interest δ with 90% power using a

test at the .05 level of significance. In accordance with the left hand panel of Figure

2.2, the first stage would be conducted after .49 × nfix observations. A standardized

test statistic Z1 is then computed. Using the right hand panel of Figure 2.2, if Z1

exceeds 2.0 then we stop the study and reject the null hypothesis. If Z1 is less than
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.40 then we stop the study and accept the null hypothesis. Otherwise we continue

to a second stage with a total sample size, which is given as a function of Z1 in

the left hand panel of Figure 2.2. For example, if Z1 = 1.0, then the total sample

size at stage 2 is 1.29 × nfix. Finally, we reject or accept the null hypothesis if the

standardized statistic Z2, computed using all the data, is greater than or less than

the boundary value u2, given as a function of Z1 on the right hand panel of Figure

2.2, respectively. Again, if Z1 = 1.0 we would reject the null hypothesis if Z2 ≥ 1.85

and accept otherwise.

To further investigate the performance of the optimal tests relative to some com-

mon adaptive designs, we compared the conditional power adaptive design by (Proschan

& Hunsberger 1995) with our two optimal adaptive designs which minimize the ob-

jective functions G2,δ/2 and G2,3δ/2. All three tests have 90% power to detect the same

alternative δ at the .05 level of significance. Figure 3 shows a substantial decrease in

the expected sample size of either of the two optimal designs compared to conditional

power adaptive test, uniformly over the range of alternatives 0 ≤ µ ≤ 3δ/2. We ob-

served the same effect when we compared our optimal tests with the design of (Cui,

Hung & Wang 1999). In this case, we used tests at the .025 level of significance with

90% power to detect the same alternative δ. These results are depicted in Figure 4.

2.4 Discussion

In this dissertation we presented two-stage tests for normally distributed data

with specified power to detect the minimally accepted treatment difference and the
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property of stopping early on the average for the larger plausible treatment differences.

We have shown that the design that minimizes the weighted average of the expected

sample size over a range of the values of the normal mean is fairly robust under

a range of possible alternatives. The proposed designs outperform some popular

adaptive tests.
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Chapter 3

Cox Regression Methods for

Two-stage Randomization Designs

3.1 Introduction

Two-stage randomization designs (TSRDs) are becoming increasingly popular in

cancer and AIDS clinical trials. In such designs patients are randomly assigned ini-

tially to an induction treatment, followed by a second randomization to a maintenance

treatment if the patient responds to the induction treatment and consents to further

study treatment. Many times the primary objective is to compare different combina-

tions of treatment regimens, referred as treatment policies, to identify the best such

policy with respect to a time-to-event endpoint such as survival. Recent examples of

such trials are given in Thall, Sung and Estey (2002), Tummarello et al. (1994) and
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Joss et al. (1994).

In drug development when considering combining a novel treatment to existing

standard of care treatment, it is often unclear whether the best strategy is to give

the novel treatment concurrently with current treatments as an induction strategy,

sequentially after current treatments as a possible maintenance strategy, or both

concurrently and sequentially. Such questions can be assessed with a single TSRD.

However, broad acceptance of TSRDs will require the ability to assess in an appropri-

ate intent-to-treat manner whether the experimental concurrent induction regimen

including the novel treatment is better than the standard induction regimen.

Consider for example the E4494 clinical trial conducted by the Eastern Cooper-

ative Oncology Group (ECOG), the Cancer and Leukemia Group B (CALGB) and

the Southwest Oncology Group (SWOG) where a TSRD was employed (Habermann

et al., 2003). For this Phase III clinical trial, patients were initially randomized to

either chemotherapy alone (CHOP) or a combination of chemotherapy and Rituxan

(R-CHOP). After receiving 6-8 courses of CHOP (approximately 6 months from the

initial randomization), patients’ response was assessed and responders who consented

to the second randomization were assigned with equal probability to either obser-

vation or treatment with maintenance Rituxan. As the superiority of R-CHOP vs.

CHOP as an induction strategy had not been demonstrated in a US-based clinical

trial, a main objective of this TSRD study was to assess whether R-CHOP (followed

by observation) should be the preferred induction treatment relative to CHOP (fol-

lowed by observation) in terms of providing a survival benefit.



23

Applying standard analytic approaches in a TSRD framework cannot directly

answer the question of which induction strategy is preferable with a plausible intent-

to-treat interpretation and often may lead to biased inference. Recently Lunceford,

Davidian and Tsiatis (2002) (subsequently referred to as LDT) and Wahed and Tsi-

atis (2004) have developed an analytical framework for policy inference in the TSRD

setting. In these papers, estimators for the mean restricted survival time and the sur-

vival distribution for treatment policies were developed and Wald-based tests spec-

ified. Cox regression is widely used by practicing statisticians to perform inference

and estimate treatment effects. In this dissertation we extend the LDT framework to

the analysis of TSRDs based on the Cox proportional hazards model for the potential

survival times associated with treatment combinations and illustrate its relevance for

comparing induction strategies for a fixed maintenance regimen (e.g., observation).

For concreteness and following LDT, we will consider the TSRD trial where pa-

tients are initially randomized to one of two induction treatments, say A1 or A2, upon

entry into the trial. Among those eligible for maintenance therapy, a second random-

ization is offered to one of the maintenance therapies B1 or B2. Our objective is to use

the Cox model to compare the survival distributions associated with the treatment

policies AjBk, j, k = 1, 2, where AjBk represents the policy ”treat with Aj followed

by Bk if the patient responds and consents to subsequent maintenance therapy.”

This chapter is organized as follows. In Section 2 we introduce the model frame-

work and the methods for estimation and testing. In Section 3 we study the perfor-

mance of the method relative to alternative approaches via a series of Monte Carlo
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simulation studies. In Section 4 we discuss the factors one must weigh when consid-

ering a TSRD relative to more traditional single randomization designs.

3.2 Model framework and proposed method of anal-

ysis

Let Xi = 0(1) if a patient was randomized to A1(A2), Ri = 1 if a patient went

into remission and consented to further participation in the trial, and 0 otherwise,

Zi = 0(1) if a patient was randomized to B1(B2), defined only if Ri = 1. Denote

πX = Pr[X = 1], πZ = Pr[Z = 1|R = 1]. The problem of comparison of different

treatment policies can be conveniently conceptualized through potential outcomes,

or counterfactuals (Holland 1986). Let Tjki denote the potential survival time of the

ith patient, were this patient assigned to treatment AjBk, j, k = 1, 2, and R1i(R2i)

denote the potential remission/consent status the ith patient would achieve if assigned

to one of the treatment policies A1Bk (A2Bk). We make a reasonable assumption

that the survival time of the patients who did not respond or did not consent to

the second randomization would be the same under treatment policies AjB1 and

AjB2: Tj1 = Tj2, j = 1, 2. We also make a standard assumption of no unmeasured

confounders, also known as ”strongly ignorable treatment assignment”:

(T11i, T12i, T21i, T22i) ‖ Xi,

(T11i, T12i, T21i, T22i) ‖ Zi | Ri = 1.
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Let us consider two induction therapies A1 and A2 in the absence of maintenance

treatment, i.e. policies A1B1 and A2B1 in the framework of LDT. Note that the frame-

work described below can be modified to compare any pair of treatment policies. The

actual observed data for the ith patient are (Xi, Ri, RiZi, Ui), where Ui = min(Ti, Ci),

Ti is the underlying survival time and Ci is the time to right censoring. We assume

that for the patients assigned to the induction treatment Ak, potential survival times

are related to the observed data as

Ti = (1 − Ri)Tk1i + Ri(1 − Zi)Tk1i + RiZiTk2i, (3.1)

and that potential and observed consent/remission statuses are related as

Ri = (1 − Xi)R1i + XiR2i.

We assume the distribution of time to censoring to be the same for all patients

in each induction treatment arm, but we allow it to be different between the two

induction treatment arms. Formally, this means that Ci is conditionally independent

of (Ri, RiZi, Tj1i, Tj2i), given Xi = j − 1, j = 1, 2.

Following a standard approach to modeling survival data, we consider Cox pro-

portional hazards model

λ(t|X) = λ0(t)exp(Xβ),

where λ(t|X = j) is the hazard corresponding to therapy Aj+1B1, j = 0, 1. Usual Cox

regression analysis would then estimate the log-hazard ratio β from a score equation

and test the hypothesis H0 : β = 0 using a score statistic. We propose to modify the
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standard as follows. The estimate of β can be obtained from solving the pseudo-score

equation

Uwn(β) =
n∑

i=1

∫ ∞

0

wi[Xi − Xw(u, β)]dNi(u) = 0, (3.2)

where

wi = I[Ui ≤ tresp] + I[Ui > tresp]{1 − Ri +
Ri(1 − Zi)

1 − πZ

},

Xw(u, β) =

∑n
i=1 wjXjYj(u)exp(Xjβ)∑n

i=1 wjYj(u)exp(Xjβ)
,

Ni(t) = I[Ti ≤ t, ∆i = 1], Yi(t) = I[Ui ≥ t], ∆i = I[Ti ≤ Ci], and tresp is the time of

the response assessment.

Theorem 3.2.1 n1/2(β̂n−β0), where β̂n is a solution of the equation (3.2), is asymp-

totically normal with mean zero and covariance matrix Σ = A−1(β0)B(β0)A
−1(β0),

which can be consistently estimated by Σ̂ = Â−1
n B̂nÂ

−1
n , where

Ân = −n−1dUwn(β)

dβ

∣∣∣∣
β=β̂n

,

B̂n = n−1

n∑

i=1

G2
i (β̂n),

Gi(β) =

∫ ∞

0

{Xi −
S

(1)
w (u, β)

S
(0)
w (u, β)

}widNi(u)

−
∫ ∞

0

wiYi(u)exp(Xiβ)

S
(0)
w (u, β)

{Xi −
S

(1)
w (u, β)

S
(0)
w (u, β)

}dNw(u)

n
,

Nw(u) =
n∑

i=1

wiNi(u) and

S(k)
w (u, β) = n−1

n∑

i=1

wiX
k
i Yi(u)exp(Xiβ), k = 0, 1.
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The detailed proof of Theorem 3.2.1 is given in the Appendix.

The hypothesis H0 : β = 0 can be tested with the pseudo-score statistic Uwn(0)√
B̂n

,

where variance of Uwn(0) can be consistently estimated by B̂n.

Note that in this instance, when we are comparing A1B1 relative to A2B1, wi is

equal to 1 if the patient does not respond or consent of if the patient dies or is lost to

follow-up before second randomization, 1
πZ

if the patient responds and is assigned B1

at the second randomization, and equal to 0 if the patient responds and is assigned B2.

Thus, wi acts as an inverse probability weight in the Cox regression, where patients

receiving the second randomization treatment of interest represent themselves as well

as the response of ( 1
πZ

− 1) similar individuals included in the second randomization

who have ”missing data” with respect to AjB1 since they were randomized to the

other maintenance treatment.

The idea of inverse probability weighting to remove bias that can result from

analyzing only a sub-cohort of patients is not new. Horvitz and Thompson (1952)

considered the inverse probability weighting approach to a missing data problem.

Prentice (1986) proposed a pseudo-score function as an estimate of the usual partial

likelihood based on complete cohort information for a problem of fitting Cox regres-

sion when covariate histories are obtained only for individuals who fail. Lin and

Ying (1993) extended the pseudo-score approach to the general missing data prob-

lem under Cox regression model. Pugh et al. (1993) and Wang and Chen (2001)

have used a pseudo-score approach in the problem with missing covariates. However,

the application of the pseudo-score methodology to the TSRD setting has not been
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established.

As shown in Therneau and Grambsch (2000) (Section 7.3), the S-Plus function

coxph() with option weights and term cluster(id) in the model statement can be used

to implement the pseudo-score function approach. It employs the robust jackknife

estimate of the variance of the pseudo-score statistic, which is algebraically equivalent

to B̂n, and produces a robust score test and correct standard errors for β̂n.

3.3 Simulation study

To study the large sample properties of the proposed method to compare A1B1 to

A2B1, we carried out a series of Monte Carlo simulations based on the sample size of

630 patients targeted for the E4494 study. The survival distribution for each policy

was generated as a mixture of distributions for responders and non-responders:

SK(t) = θKSR,K(t) + (1 − θK)SNR,K(t), K = 0, 1,

where

SR,K(t) =





1, t ≤ tresp,

θ−1
K {exp[−λ0exp(Kβ)t] − (1 − θK)cKexp(−λNR

K t)}, t > tresp,

SNR,K(t) =





(1 − θK)−1{exp[−λ0exp(Kβ)t] − θK}, t ≤ tresp,

cKexp(−λNR
K t), t > tresp,

tresp is the time of the response assessment, θK is the proportion of responders in the

induction treatment arm AK+1, and cK is the normalizing constant.
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Modeling the survival distributions in this manner ensures a proportional hazards

relationship for A1B1 relative to A2B1. The choice of conditional distribution for

responders makes sure that all responders survive past the response assessment time

tresp. In the simulation, the baseline hazard λ0 was set equal to 0.04. The survival

distribution for responders assigned to active maintenance (B2) was simulated us-

ing the hazard function proportional to that of responders assigned to observation:

λM
R,K(t) = AKλR,K(t). We considered scenarios with censoring times distributed uni-

formly on the interval [0, L]. All patients who did not fail or were censored before

time L, are censored at L. With these specifications, 350-450 overall death events

were observed in each simulation.

We were interested in the performance of the proposed method for the following

situations: 1) no induction or maintenance effect; 2) induction effect but no main-

tenance effect; 3) induction effect with the same maintenance treatment effect in

both induction subgroups; 4) induction effect with the maintenance treatment effect

confined to the A1 induction subgroup.

For scenarios 1-3 and 7-9, we assume the same probability of response and consent

in the two induction groups. For Scenarios 4-6 and 10-12 we assume the induction

response rate is greater for induction group A2 than A1. In scenarios 2 and 3 for

completeness, we assume no induction effect, with a similar maintenance effect in

both induction subgroups in scenario 2 and a maintenance effect limited to the A1

induction subgroup for scenario 3. We assessed the performance of the proposed in-

verse probability weighting method (IPW) with three alternative approaches one may
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consider to compare A1B1 to A2B1: 1) include all induction patients in the analysis

as assigned with all patients getting equal weight (ALL); 2) include those patients

who were not randomized to drug maintenance (B2) and give these patients equal

weight (UWM); 3) include all induction patients with equal weight and censor pa-

tients randomized to drug maintenance (B2) at the time of the second randomization

(CEN).

The results of the simulation experiment are presented in Tables 3.1 (with no

induction effect, β = 0) and 3.2 (with induction effect, β = log(0.7)). In the tables,

Bias means the average of the estimated log-hazard ratio values minus the true

value, SD denoted the square root of the sample variance of the estimates, ASE

is the average of the standard error estimates, α denotes the average of the type I

errors, Cov is the average of the sample coverages of the 95% Wald CIs and MSE

denotes the mean squared error of the estimates. For all four estimators, standard

error estimates SD and ASE were remarkably close. As expected by the theory, for

all scenarios the IPW estimator was approximately unbiased and did maintain the

targeted type 1 error. As expected, the IPW estimator with its robust variance did

have greater standard errors than the alternative estimators.

As it uses all available death information, the ALL estimator consistently had

the lowest standard errors. However, in two types of instances the ALL estimator

exhibited considerable bias and did not maintain type I error: 1) if there was main-

tenance treatment effect on survival, along with different induction response rates or

induction treatment effect (scenarios 5, 8, 11); or 2) if the maintenance treatment
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Table 3.1: No induction effect (β = 0); N=630, λ0 = 0.04, tresp = 6, L = 60, MC =
5000 runs. Average standard errors: 0.002(Bias), 0.002(SD), 0.002(α), 0.004(Cov)

(θ0, θ1, λ
NR
0 , λNR

1 , A0, A1) IPW ALL UWM CEN
1 (.6,.6,.07,.07,1,1) Bias -0.004 -0.002 -0.004 -0.004

SD 0.13 0.10 0.11 0.11
ASE 0.13 0.10 0.12 0.12
MSE 0.016 0.010 0.013 0.013

α 0.026 0.028 0.025 0.025
Cov 0.953 0.950 0.953 0.954

2 (.6,.6,.07,.07,.5,.5) Bias 0.004 0.004 0.005 0.005
SD 0.13 0.11 0.12 0.12

ASE 0.13 0.11 0.12 0.12
MSE 0.017 0.011 0.013 0.013

α 0.024 0.021 0.021 0.021
Cov 0.949 0.952 0.951 0.952

3 (.6,.6,.07,.07,.5,1) Bias 0.002 0.16 0.002 0.002
SD 0.13 0.10 0.12 0.12

ASE 0.13 0.10 0.12 0.12
MSE 0.017 0.035 0.014 0.014

α 0.023 0.0002 0.024 0.021
Cov 0.949 0.673 0.948 0.952

4 (.4,.7,.07,.07,1,1) Bias 0.000 0.001 0.032 -0.071
SD 0.13 0.10 0.12 0.12

ASE 0.13 0.10 0.12 0.12
MSE 0.016 0.010 0.014 0.018

α 0.027 0.024 0.014 0.090
Cov 0.948 0.949 0.937 0.905

5 (.4,.7,.07,.07,.5,.5) Bias -0.003 -0.10 0.029 -0.073
SD 0.13 0.11 0.12 0.12

ASE 0.13 0.11 0.12 0.12
MSE 0.017 0.022 0.014 0.019

α 0.026 0.16 0.013 0.093
Cov 0.949 0.839 0.941 0.902

6 (.4,.7,.07,.07,.5,1) Bias 0.000 0.088 0.032 -0.071
SD 0.13 0.10 0.12 0.11

ASE 0.13 0.10 0.12 0.11
MSE 0.016 0.018 0.014 0.018

α 0.024 0.003 0.011 0.084
Cov 0.955 0.867 0.944 0.912
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Table 3.2: Induction effect (β = log(0.7)); N=630, λ0 = 0.04, tresp = 6, L = 60,
MC = 5000 runs. Average standard errors: 0.002(Bias), 0.002(SD), 0.004(Cov)

(θ0, θ1, λ
NR
0 , λNR

1 , A0, A1) IPW ALL UWM CEN
7 (.6,.6,.07,.07,1,1) Bias 0.000 0.000 0.057 0.064

SD 0.14 0.11 0.12 0.12
ASE 0.14 0.11 0.12 0.12
MSE 0.019 0.012 0.018 0.019
Cov 0.951 0.949 0.925 0.913

8 (.6,.6,.07,.07,.5,.5) Bias 0.002 0.045 0.059 0.066
SD 0.14 0.11 0.12 0.12

ASE 0.14 0.11 0.12 0.12
MSE 0.019 0.014 0.018 0.019
Cov 0.949 0.930 0.920 0.913

9 (.6,.6,.07,.07,.5,1) Bias -0.003 0.16 0.055 0.062
SD 0.14 0.11 0.12 0.12

ASE 0.14 0.11 0.12 0.12
MSE 0.018 0.038 0.017 0.018
Cov 0.951 0.674 0.926 0.919

10 (.4,.7,.07,.07,1,1) Bias 0.000 0.002 0.062 -0.023
SD 0.14 0.11 0.12 0.12

ASE 0.14 0.11 0.12 0.12
MSE 0.019 0.011 0.019 0.015
Cov 0.948 0.950 0.913 0.945

11 (.4,.7,.07,.07,.5,.5) Bias 0.000 -0.065 0.061 -0.023
SD 0.13 0.11 0.12 0.12

ASE 0.13 0.11 0.12 0.12
MSE 0.018 0.017 0.018 0.015
Cov 0.950 0.911 0.917 0.949

12 (.4,.7,.07,.07,.5,1) Bias -0.001 0.093 0.061 -0.024
SD 0.14 0.11 0.12 0.12

ASE 0.14 0.11 0.12 0.12
MSE 0.019 0.020 0.019 0.015
Cov 0.946 0.858 0.917 0.947
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effect was different based on the induction treatment received (scenarios 3, 6, 9, 12).

Note that the latter case of a maintenance by induction interaction (e.g., scenario 9)

would be likely in practice if the novel treatment exhibited a benefit when combined

with standard care either concurrently or sequentially, but garnished little additional

benefit as maintenance therapy if received as part of the induction regimen.

The UWM and CEN estimators exhibited bias in every scenario with an induction

treatment effect (scenarios 7-12) or when there was a difference in induction response

rates (scenarios 4-6). This is not surprising as responding patients in these scenarios

are differentially under-represented in the assessments of the two individual induction

survival distributions and this therefore translates to the estimate of the log hazard.

We have also considered using time-dependent weights

w∗
i (t) = I[t ≤ tresp] + I[t > tresp]{1 − Ri +

Ri(1 − Zi)

1 − πZ

},

which potentially can lead to efficiency gain as more subjects are used to estimate

the survival distributions in the time interval [0, tresp]. However, our simulation ex-

periments have shown that this efficiency gain is small (less than 5%) and may be

outweighed by the convenience of implementing IPW analysis using standard soft-

ware.
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3.4 Considerations for two-stage randomization de-

signs

Prior to its use, one should compare the implications of conducting a TSRD clinical

trial relative to two kinds of single randomization designs (SRD): 1) a SRD where

patients are randomized upfront to one of the available four induction/maintenance

combinations, and 2) a SRD that compares the two induction treatments with no

maintenance randomization.

In the first instance and as discussed in LDT, the analytical framework presented

here for TSRDs allows a similar intent-to-treat type inference of the four policies to

be made while making more efficient use of the information from patients who do not

respond or do not consent. Patients randomized to induction A1 who do not respond

or do not consent are used when estimating survival distributions for both A1B1 and

A1B2.

Additionally, the ability to compare maintenance regimens in an intent-to-treat

manner is compromised by the upfront randomization, as one is required to compare

all patients randomized to B1 and B2 regardless of whether the patient actually re-

sponded to induction treatment and therefore received the maintenance treatment

assigned, introducing further variability. This reflects the idea that it is best to com-

pare any two maintenance treatments by randomizing patients as closely as possible

to the time of maintenance treatment start.

In the second instance, TSRDs have the obvious advantage that a maintenance
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hypothesis can be assessed in the same study where an induction hypothesis is tested,

and the analysis of maintenance strategies is straightforward. However, non-standard

analysis methods as introduced in LDT and here must be employed in the TSRD set-

ting to compare induction strategies for a given maintenance treatment in an intent-

to-treat manner. Although badly biased in some instances as shown above, one may

be tempted to compare induction strategies using the ALL method. However, the

intent-to-treat interpretation of such an analysis is non-plausible: ”treat with Aj fol-

lowed by the physician tossing a two-sided coin to determine next treatment if the

patient responds and consents to the coin flip.”

A SRD is preferable to a TSRD if one is truly only interested in the induction

comparison as all patients can be used in the intent-to-treat analysis yielding more

precise estimates of effect and greater power. However, it is often questioned whether

a novel treatment should given concurrently, subsequently, or both concurrently and

subsequently relative to current treatments, and this can be effectively assessed in

one TSRD.

The additional assumption we have to impose when considering a TSRD vs. a SRD

is that within each induction subgroup, responding patients randomized to B1 should

be suitably similar to those assigned to B2 with respect to factors at baseline and

prior to the second randomization. In addition to the second randomization process

itself, stratification at the second randomization for important factors can be used to

promote this similarity. Additionally, the potential impact of any lack of similarity

should be put into the perspective of the other inverse weighting that already occurs



36

in survival analysis, namely, due to censoring where randomization and stratification

are not available to promote similarity. Fortunately, any potential imbalances can be

assessed directly and then addressed via standard sensitivity analyses.

3.5 Discussion

In this chapter we extend the analytical framework of LDT and propose re-

weighted versions of the usual score estimating equation and the score test in the

Cox model to be used for the analysis of TSRD clinical trials. These methods yield

relevant intent-to-treat interpretations. The simulation results demonstrate that the

IPW estimator is unbiased and maintains type I error while alternative estimators,

while yielding small standard errors, can be badly biased in some instances. In par-

ticular, when the effect of maintenance treatment differs by the induction treatment

received, the alternative estimators will perform poorly.

The Cox model analytical framework described here can be easily extended to

incorporate baseline covariates, as shown in Binder (1992). One open question is

whether inverse probability weights as used here should be favored over empirical

weights that are determined by the actual number of patients randomized to the two

maintenance strategies. Both approaches will yield consistent estimators and tests.

Additionally, methods for sample size determination in TSRDs need development, as

one now may need to ensure enough power to test both an induction and a mainte-

nance hypothesis in the same study.

The TSRD framework offers several advantages in terms of efficiency. The broader
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acceptance of TSRDs in drug development will likely hinge on the ability to make

appropriate intent-to-treat type inference as to whether an experimental induction

regimen is better than a standard regimen within this design framework. The meth-

ods described in this dissertation create such an analytical framework, with mild

additional assumptions relative to single randomization designs that can be assessed

and effectively dealt with if violated.

The E4494 study illustrates the need for considering the methods developed in this

dissertation. At the 2003 American Society of Hematology meeting, study authors

reported a considerable maintenance Rituxan by induction treatment interaction,

with maintenance effects predominantly confined to the CHOP induction subgroup

(Habermann, Weller, Morrison, Cassileth, Cohn, Dakil, Gascoyne, Woda, Fisher, Pe-

terson & Horning 2003). The authors proceeded to conduct two induction strategy

comparisons, effectively the ALL and IPW analyses for survival. For the ALL analy-

sis, the authors reported a p-value of 0.29, while for the IPW analysis they reported

a p-value of 0.03 and a hazard ratio of 0.69 in favor of R-CHOP over CHOP. Hence,

induction strategy conclusions related to survival in this instance would be largely

dependent on the analytical method assessed as most relevant.
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Appendix A

Application of the backward

induction algorithm for the

objective function G1,φ = E(N |φ)

Suppose we want to find the two-stage optimal test of H0 : µ ≤ 0 versus H1 :

µ > 0 which minimizes the objective function G1,φ = E(N |φ) and attains error

probabilities α and β at µ = 0 and µ = δ respectively. To achieve this, we consider a

Bayes decision problem introduced in the Section 2, where we must choose between

decisions D0 : µ = 0 and Dδ : µ = δ with associated loss function C(D,µ) taking

values C(D0, δ) = dδ, C(Dδ, 0) = d0 and zero otherwise; we set cost function c(µ)

to be one at µ = φ and zero otherwise and we place a three point prior distribution

π(0) = π(δ) = π(φ) = 1
3
. The optimal solution should minimize the expected total
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loss

E (L)1,φ =
1

3
Eφ(N) +

1

3
(d0Pr0(Dδ) + dδPrδ(D0)),

and satisfy the condition (2.4) for the error probabilities.

As we explained above, the critical value aN must satisfy condition (2.5). If we

solve this equation, we find that for any given values of n1 and n2,

aN =
1

δ
log

d0

dδ

+
n1 + n2

2
δ (A.1)

For a given value s1 of the observed test statistic at the first look, the additional

expected loss incurred by sampling n2 = n2(s1) observations at the second stage is

E{L(s1)}1,φ = n2Pr(µ = φ|S1 = s1) + d0Pr(µ = 0, S1 + S2 > aN |S1 = s1)

+dδPr(µ = δ, S1 + S2 ≤ aN |S1 = s1) (A.2)

The probabilities involved in these calculations are

Pr(µ = φ|S1 = s1) =
π(φ)Pr(S1 = s1|µ = φ)∑

µ′∈{0,δ,φ} π(µ′)Pr(S1 = s1|µ = µ′)

=
φ( s1−n1φ√

n1
)

φ( s1√
n1

) + φ( s1−n1δ√
n1

) + φ( s1−n1φ√
n1

)
,

P r(µ = 0, S1 + S2 > aN |S1 = s1) = Pr(S2 > aN − s1|S1 = s1, µ = 0)

×Pr(µ = 0|S1 = s1) = Φ

(−aN + s1√
n2

)
Pr(µ = 0|S1 = s1),
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Pr(µ = δ, S1 + S2 ≤ aN |S1 = s1) = Pr(S2 ≤ aN − s1|S1 = s1, µ = δ)

×Pr(µ = δ|S1 = s1) = Φ

(
aN − s1 − n2δ√

n2

)
Pr(µ = δ|S1 = s1),

where φ(x) and Φ(x) are respectively density and cdf of the standard normal distri-

bution.

Then the backward induction algorithm proceeds as follows. We choose some

initial values for n1 and costs d0, dδ. For each s1, optimal additional sample size

n2(s1) can be found by minimizing (A.2). We search over the values of s1 until we

find standardized first stage boundaries l1, u1 such that

u1 = min{s1/
√

n1 such that n2(s1) = 0 and s1 ≥ an1},

l1 = max{s1/
√

n1 such that n2(s1) = 0 and s1 ≤ an1},

where an1 is defined by (2.5). The error probabilities α∗ and β∗ of the two-stage test

with the first stage sample size n1, additional sample size at the second stage defined

by the function n2(s1), and boundaries l1, u1, u2N = aN/
√

N can be computed as

α∗ = Φ (−u1) +

∫ u1

l1

Φ

(−aN + z1
√

n1√
n2

)
φ (z1) dz1,

β∗ = Φ (l1 − δ
√

n1) +

∫ u1

l1

Φ

(
aN − z1

√
n1 − n2δ√
n2

)
φ (z1 − δ

√
n1) dz1.

We search over a two-dimensional range of values (d0, dδ) until the error probabilities

of the test satisfy
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√(
1 − α∗

α

)2

+

(
1 − β∗

β

)2

≤ ǫ,

for some small ǫ (we took ǫ = 0.005). The distance in the left part of this inequality

is a measure of the proximity of the test error probabilities to the target values α and

β. After the appropriate costs (d0, dδ) are determined for a given n1, we compute the

objective function

G1,φ = E(N |φ) = n1 +

∫ u1
√

n1

l1
√

n1

n2(s1)
1√
n1

φ

(
s1 − n1φ√

n1

)
ds1

By searching over the range of possible values for n1, we find the one that minimizes

the objective function G1,φ.
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Appendix B

Proof of Theorem 3.2.1

The following proof uses the fact that under the assumptions of Section 2 there

exists a neighborhood B of β0 such that, for each τ < ∞ and k = 0, 1

sup
t∈[0,τ ],β∈B

||S(k)
w (β, t) − s(k)

w (β, t)|| → 0

in probability as n → ∞ and s
(1)
w (β,τ)

s
(0)
w (β,τ)

is bounded on B × [0, τ ].

First, we will show that n−1/2Uwn(β0) can be expressed as a sum of n i.i.d. terms

and a remainder term that converges in probability to zero, by applying the techniques

used in the proof of theorem 2.1 of Lin and Wei (1989). Notice that the pseudo-score

function can be expressed as

Uwn(β) =
n∑

i=1

∫ ∞

0

wiXidNi(u) −
∫ ∞

0

S
(1)
w (u, β)

S
(0)
w (u, β)

dNw(u),

where Nw(u) =
∑n

i=1 wiNi(u) and S
(k)
w (u, β) = n−1

∑n
i=1 wiX

k
i Yi(u)exp(Xiβ), k =

0, 1.
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Taylor expansion of Uwn(β̂n) around β0 results in

n1/2(β̂n − β0) = Â−1(β∗)n−1/2Uwn(β0),

where Â(β) = −n−1 dUwn(β)
dβ

and β∗ lies between β̂n and β0. Assuming consistency of

β̂n, consistency of Â(β∗) for A(β0) can be shown using the techniques from the proofs

of theorems 3.2 and 4.2 of Andersen & Gill (1982).

Further, n−1/2Uwn(β0) can be expressed as

n−1/2Uwn(β0) = n−1/2

n∑

i=1

∫ ∞

0

wiXidNi(u) − n1/2

∫ ∞

0

S
(1)
w (u, β0)

S
(0)
w (u, β0)

d

{
E

(
Nw(u)

n

)}

−n1/2

∫ ∞

0

s
(1)
w (u, β0)

s
(0)
w (u, β0)

d

{
Nw(u)

n
− E

(
Nw(u)

n

)}
(B.1)

−n1/2

∫ ∞

0

{
S

(1)
w (u, β0)

S
(0)
w (u, β0)

− s
(1)
w (u, β0)

s
(0)
w (u, β0)

}
d

{
Nw(u)

n
− E

(
Nw(u)

n

)}
,

where s
(k)
w (u, β) = E{S(k)

w (u, β)}, k = 0, 1. Since n−1{Nw(u) − E(Nw(u))} converges

in distribution to a mean zero Gaussian process, the last term in (B.1) is op(1). The

second term in (B.1) can be shown to be equal to

n1/2

∫ ∞

0

s(0)
w (u, β0)

−1

{
S(1)

w (u, β0) −
s
(1)
w (u, β0)

s
(0)
w (u, β0)

×

× [S(0)
w (u, β0) − s(0)

w (u, β0)]

}
d

{
E

(
Nw(u)

n

)}
+ op(1)

Combining the terms, we observe that

n−1/2Uwn(β0) = n−1/2

n∑

i=1

gi(β0) + op(1),
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where gi(β), i = 1, . . . , n, are i.i.d. terms,

gi(β) =

∫ ∞

0

{
Xi −

s
(1)
w (u, β)

s
(0)
w (u, β)

}
widNi(u)

−
∫ ∞

0

wiYi(u)exp(Xiβ)

s
(0)
w (u, β)

{
Xi −

s
(1)
w (u, β)

s
(0)
w (u, β)

}
d

{
E

(
Nw(u)

n

)}
.

To show the asymptotic unbiasedness of n−1/2
∑n

i=1 gi(β0), we first observe that

E

[ ∫ ∞

0

{
Xi −

s
(1)
w (u, β0)

s
(0)
w (u, β0)

}
wiYi(u)exp(Xiβ)

s
(0)
w (u, β0)

d

{
E

(
Nw(u)

n

)}]
=

∫ ∞

0

E

[{
Xi −

s
(1)
w (u, β0)

s
(0)
w (u, β0)

}
wiYi(u)exp(Xiβ)

s
(0)
w (u, β0)

]
d

{
E

(
Nw(u)

n

)}
=

∫ ∞

0

[
s
(1)
w (u, β0)

s
(0)
w (u, β0)

− s
(1)
w (u, β0)

s
(0)
w (u, β0)

s
(0)
w (u, β0)

s
(0)
w (u, β0)

]
d

{
E

(
Nw(u)

n

)}
= 0.

Let us consider a representation for the weighted counting processes wiNi(u) and

wiYi(u), u ∈ (0,∞), i = 1, . . . , n, in terms of counterfactuals using (3.1). Since

I[Ui ≤ tresp]Ni(u) =





Ni(u), u ≤ tresp,

Ni(t
resp), u > tresp,

I[Ui > tresp]Ni(u) =





0, u ≤ tresp,

I[Ci > tresp]{Ni(u) − Ni(t
resp)}, u > tresp,

the weighted counting processes wiNi(u) and wiYi(u) can be expressed as
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wiNi(u) =





Ni(u), u ≤ tresp,

Ni(t
resp)+ {1 − Ri + Ri(1−Zi)

1−πZ

}×

×I[Ci > tresp]{Ni(u) − Ni(t
resp)},

u > tresp,

=





(1 − Xi)N11i(u) + XiN21i(u), u ≤ tresp,

(1 − Xi)N11i(t
resp) + XiN21i(t

resp) + I[Ci > tresp]×

×{1 − Ri + Ri(1−Zi)
1−πZ

}
[
(1 − Xi)N11i(u) + XiN21i(u)−

−(1 − Xi)N11i(t
resp) − XiN21i(t

resp)
]
,

u > tresp,

wiYi(u) =





Yi(u) − Yi(t
resp) + {1 − Ri + Ri(1−Zi)

1−πZ

}Yi(t
resp), u ≤ tresp,

{1 − Ri + Ri(1−Zi)
1−πZ

}Yi(u), u > tresp,

=





(1 − Xi)Y11i(u) + XiY21i(u)+

+{Ri(1−Zi)
1−πZ

− Ri}
{
(1 − Xi)Y11i(t

resp) + XiY21i(t
resp)

}
,

u ≤ tresp,

{1 − Ri + Ri(1−Zi)
1−πZ

}
{
(1 − Xi)Y11i(u) + XiY21i(u)

}
, u > tresp,

Using a conditional expectation argument, we establish that

E
[
{Ri(1 − Zi)

1 − πZ

− Ri}
{
(1 − Xi)Y11i(u) + XiY21i(u)

}]
=

E

[
E

{Ri(1 − Zi)

1 − πZ

− Ri|Xi

}
E

{
(1 − Xi)Y11i(u) + XiY21i(u)|Xi, Ri

}]
= 0

The last assertion is true because

E
{Ri(1 − Zi)

1 − πZ

− Ri|Xi, Ri = 0
}

= E
{Ri(1 − Zi)

1 − πZ

− Ri|Xi, Ri = 1
}

= 0

Therefore,

E{wiYi(u)|Xi} = E
{

(1 − Xi)Y11i(u) + XiY21i(u)|Xi

}
,
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which results in s
(k)
w (u, β) = s(k)(u, β), k = 0, 1, where

s(k)(u, β) = E{n−1

n∑

i=1

Xk
i Ỹi(u)exp(Xiβ)},

and Ỹi(u) corresponds to the survival time we would observe if the patients were only

randomized to one of the induction therapies in a SRD.

Using repeatedly a conditional expectation argument and observing that

I[Ci > tresp]dNjki(u) = dNjki(u), j, k ∈ {1, 2}, u ≥ tresp, it is easy to show that

E
{
widNi(u)|Xi

}
= E

{
(1 − Xi)dN11i(u) + XidN21i(u)|Xi

}

We have shown that

E

[ ∫ ∞

0

{
Xi −

s
(1)
w (u, β)

s
(0)
w (u, β)

}
widNi(u)

]
= E

[ ∫ ∞

0

{
Xi −

s(1)(u, β)

s(0)(u, β)

}
dÑi(u)

]

where S(β) =
∫ ∞
0

{
Xi − s(1)(u,β)

s(0)(u,β)

}
dÑi(u) is the usual score vector that is routinely

used for estimating β in a SRD, with the property E
{
S(β0)

}
= 0. Therefore,

E
{
n−1/2

∑n
i=1 gi(β0)

}
= 0 and β̂n is an unbiased estimate for β0. This concludes

the proof of the Theorem 3.2.1.


