ABSTRACT

Li, Xiao Yu. Optimization Algorithms for the Minimum-Cost Satisfiability Problem.
(Under the direction of Dr. Matthias F. Stallmann and Dr. Franc Brglez)

Given a Boolean satisfiability (Sat) problem whose variables have non-negative
weights, the minimum-cost satisfiability (MinCostSat) problem finds a satisfying
truth assignment that minimizes a weighted sum of the truth values of the variables.
Many NP-optimization problems are either special cases of MinCostSat or can be
transformed into MinCostSat efficiently. However, in the past, these problems have
been largely considered in isolation. In this dissertation, we (1) classify existing Min-
CostSat problems, (2) study factors affecting the performance of MinCostSat solvers,
(3) propose algorithms for MinCostSat problems, and (4) implement and validate the
performance of state-of-the-art solvers for special cases of MinCostSat, including set
and binate covering, Max-Sat, and group-partial Maz-Sat.

We categorize MinCostSat problems as either native or non-native. Non-native
problems can only be transformed into MinCostSat by adding slack variables. These
problems include the Mazx-Sat, partial Max-Sat, and group-partial Maz-Sat problems
which have applications ranging from course assignment to FPGA detailed routing.
Native problems are various sub-cases of MinCostSat. We further divide these into two
groups: covering problems and non-covering problems. The covering problems include
the unate or set covering and the binate covering problems. They have applications
in Operations Research (e.g., routing and scheduling) and logic synthesis (e.g., logic
minimization and finite state machine minimization). In the covering problems, all or
most clauses contain no complemented variables and a feasible solution is relatively
easy to find. The non-covering problems contain clauses that are highly constrained,
and sometimes only a small fraction of the variables are weighted. The non-covering

problems have applications in minimume-size test pattern and minimum-length plans.

We study two important performance factors, among others, in branch-and-bound
MinCostSat solvers. They are the lower-bounding and upper-bounding strategies.
For lower bounding, we incorporate two advanced techniques: linear programming
relaxation and cutting planes. Both methods can provide much higher quality lower-
bounds than previous methods based on maximum independent sets of rows. For
upper bounding, we show that our local-search MinCostSat solver, when initialized
and terminated properly, can find the best upper-bound quickly.

Other techniques that contribute to the engineering of state-of-the-art solvers for
applications of MinCostSat are also introduced. This work has led to the development
of (1) a solver for covering problems that consistently outperforms previous leading
solvers by as much as two orders of magnitude, (2) a logic minimizer that is able to
solve three benchmark problems whose solution has eluded solvers for more than a
decade, (3) a Maz-Sat solver that challenges the dominance of linear programming
solvers, particularly cplez, on Maz-2-Sat benchmarks, and (4) a stochastic local-
search solver for group-partial Maz-Sat (with applications to FPGA routing) that
finds known optima quickly and is able to find better than previously-known solutions

on benchmarks whose optima remain unknown.

Optimization Algorithms for the Minimum-Cost Satisfiability Problem
by
Xiao Yu Li

A dissertation submitted to the Graduate Faculty of
North Carolina State University
in partial fulfillment of the
requirements for the Degree of
Doctor of Philosophy

Computer Science

Raleigh, North Carolina
August 2004

Approved By:

Dr. S. Purushothaman Iyer Dr. Dennis R. Bahler

Dr. Matthias F. Stallmann Dr. Franc Brglez (Co-chair)
Chair of Advisory Committee

To my family ...

i

iii
Biography

Personal

Born in Wuhan, Hubei, China, on the 13th of August, 1977
Education

e North Carolina State University, Ph.D. in Computer Science, August 2004
e North Carolina State University, M.S. in Computer Science, December 2002

e University of Louisiana at Monroe, B.S. in Computer Science, May 2000

Publications

1. X.Y. Li and M.F. Stallmann. “New bounds on the barycenter heuristic for
bipartite graph drawing.” Information Processing Letters, 82 (2002) pp. 293-
298.

2. F. Brglez, X.Y. Li, and M.F. Stallmann. “On SAT Instance Classes and a
Method for Reliable Performance Experiments with SAT Solvers.” Annals of
Mathematics and Artificial Intelligence, 2004. In print.

3. F. Brglez, X.Y. Li, M.F. Stallmann and M. Burkhard. “Evolutionary and al-
ternative algorithms: reliable cost predictions for finding optimal solutions to

the LABS problem.” Information Science Journal, 2004. In print.

4. X.Y. Li, M.F. Stallmann and F. Brglez. “A local search SAT solver using an
effective switching strategy and an efficient unit propagation.” Springer-Verlag

Lecture Notes in Computer Science, vol 2919 (2004), pp. 53-68.

5. F. Brglez, X.Y. Li, M.F. Stallmann and B. Militzer. “Reliable cost predictions
for finding optimal solutions to LABS problem: evolutionary and alternative

algorithms.” In Proceedings of FEA, Cary, NC, September 2003.

v

6. X.Y. Li, M.F. Stallmann and F. Brglez. “QingTing: A fast SAT solver us-
ing local search and efficient unit propagation.” In Proceedings of SAT2003,
S. Margherita Ligure - Portofino, Italy, May 2003.

7. F. Brglez, M.F. Stallmann and X.Y. Li. “SATbed: an environment for reli-
able performance experiments with SAT instance classes and algorithms.” In

Proceedings of SAT2003, S. Margherita Ligure - Portofino, Italy, May 2003

8. F. Brglez, X.Y. Li and M.F. Stallmann. “The role of a skeptic agent in testing
and benchmarking of SAT algorithms.” In Proceedings of SAT2002, Cincinnati,
OH, May 2002.

Awards

e Microsoft Fellowship (2003 - 2004)

Academic Scholarship with Out-of-State Tuition Waiver (1996 - 2000)

President’s and Dean’s List (1996 - 2000)

Math. Assoc. of America (MS/LA) Competition 5th Place Winner (1999)

Math. Assoc. of America (MS/LA) Competition 9th Place Winner (1998)

Univ. of Louisiana at Monroe Chemistry Competition 1st Place Winner (1997)

Acknowledgments

I take this opportunity to thank Dr. Matt Stallmann and Dr. Franc Brglez without
whose direction this thesis would not have been possible. I owe a lot of my knowledge,
writing, and organization skills to them. They have spent countless hours in shaping
my research career. Their constant drive for excellence has finally instilled in me a
desire for excelling in whatever I do.

I gratefully acknowledge the time and commitment of the other two members of
my committee, Dr. Dennis Bahler and Dr. Purush Iyer. I want to thank the staff
of the department, especially Margery Page, for doing the administrative work. The
four-inch thick folder in the departmental office with my name on it reminds me how
much you have helped me over the four years. I also want to thank the Department
of Computer Science for supporting me throughout my graduate studies.

Most of my research would not have taken place without the software packages
and benchmarks shared with us by our dear colleagues. These generous individuals
include (in alphabetical order) Fadi Aloul, Brian Borchers, Robert Brayton, Luca
Carloni, Olivier Coudert, Edward Hirsch, Henry Kautz, Paolo Liberatore, Sharad
Malik, Vasco Manquinho, Joao Marques-Silva, Jordi Planes, Richard Rudell, Bart
Selman, Tiziano Villa, Hui Xu, Hantao Zhang, and Lintao Zhang. I also want to
thank Dr. Rudra Dutta for lending his machine and software to us at the final and
most critical stages of writing this thesis. Thanks also goes to Network Appliances
for the filer you provided to our research group. The technical support team, Jason
Corley and Sarah Williams, I appreciate your timely help on many occasions.

I cherish the time I have spent with the many friends while at NC State. Suzanne,
Ergune, Laura, Chris, Feng Fang, Cai Xin, Zhou Tong, Ran Xia, Liang Xun, Xie Bin,
the tennis partners, and the basketball teammates, you will always be in my thoughts.

Last, but the most. If it were not for my parents and sister, I would not have
started my adventure nine years ago and finally made it today. I dedicate this thesis
to them. And Ling, how can I forget you, thanks for pushing me so hard in the past

two years. We made it together.

vi

Table of Contents

List of Figures ix
List of Tables X
1 Introduction

1
1.1 Definition of MinCostSat 2
1.2 Motivating Exampleso 3
1.2.1 MinCostSat and 0-1 Integer Programming 6

1.3 MinCostSat Problem Classification 7
1.4 Approaches and Challenges 9
1

1.5 Thesis Organization 1
Thesis Overview 13
2.1 Special Cases of MinCostSat 13
2.1.1 The Covering Problems 15
2.1.2 Non-covering Problems, 17
2.1.3 MaxSat Problemso 19
2.1.4 Partial MaxSat Problems 20
2.1.5 Group-Partial MaxSat Problems 22
2.2 Our Contributions 23
2.2.1 Branch-and-Bound UCP/BCP Algorithms 23
2.2.2 Local-search Algorithms for FPGA Detailed Routing 25
2.2.3 Branch-and-Bound Algorithms for MaxSat 25
2.2.4 Branch-and-Bound Algorithm for Minimum-Size Test Pattern
Problem o 26
2.3 SUMMATY o o 26
Survey of Branch-and-Bound Algorithms 28
3.1 Classical Branch-and-Bound Algorithm 28

3.1.1 Reduction Techniques 29

3.2

3.3

vii

3.1.2 Lower-Bounding Technique 39
3.1.3 Search Pruning Technique 44
3.1.4 Branching Variable Selection 45
3.1.5 The Classical Branch-and-Bound Algorithm 46
SAT-based Algorithms 47
3.2.1 SAT-based Linear Search Algorithm 47
3.2.2 SAT-based Branch-and-Bound Algorithm 48
SUMMATY o o o o e 48

Engineering an Efficient Branch-and-Bound MinCostSat Solver 49

4.1 Introduction to the Eclipse Algorithm 50
4.2 Key Features o 50
4.3 Experimental Setupo L 52
4.4 Performance Factors Lo 53
4.4.1 Factor 1: Lower-Bounding Techniques 53
4.4.2 Factor 2: Upper-bounding Techniques. 59
4.4.3 Factor 3: Heuristic Search-tree Exploration 64
4.4.4 Factor 4: Branching Variable Selection 67
4.4.5 Factor 5: Search Pruning 68
4.4.6 Factor 6: Reduction Techniques: 68
4.4.7 Factor 7: Data Structures 69
4.5 Experimental Results oL 70
4.5.1 TheSolvers 70
4.5.2 Unate Covering Comparisons 71
4.5.3 Binate Covering Comparisons 78
4.5.4 Runtime Analysis 81
4.6 Summaryo 81
Local Search Algorithms 86
5.1 Introduce the Eclipse-stoc Algorithm 86
5.2 Benchmark Profiling L. 87
5.2.1 The Static Measure 88
5.2.2 The Dynamic Measure 88
5.3 Addressing the Feasibility Issue 92
5.3.1 The unitwalk Algorithm Adapted for BCP 92
5.3.2 The walksat Algorithm Adapted for BCP 95
5.4 Addressing the Quality Issue 95
5.5 The Eclipse-stoc Algorithm 97
5.6 Experimental Results L. 97
5.6.1 Unate Covering Comparisons Under Termination A 98
5.6.2 Binate Covering Comparisons Under Termination A 100

5.6.3 Experiments Under Termination Criterion B 100

.7 Summary . o.o.o. ..o

6 Applications and Case Studies
6.1 UCP and Two-Level Logic Minimization
6.1.1 Background
6.1.2 Minimizing the Two-Level Logic
6.1.3 Two-Level Logic Minimizer — Espresso
6.1.4 Experimental Results
6.1.5 Summary
6.2 Group-Partial MaxSat and FPGA Routing
6.2.1 The RCS Formulation
6.2.2 The sub_ SAT Approach
6.2.3 The Local-Search Approach
6.2.4 Experimental Results
6.2.5 Summary
6.3 MaxSat
6.3.1 The Branch-and-Bound Algorithm — qtmax
6.3.2 Experimental Results with qtmax
6.3.3 Solving MaxSat as IP and MinCostSat
6.3.4 Summary
6.4 Minimum-size Test Pattern Problem
6.4.1 The BCP Formulation
6.4.2 Experimental Results
6.4.3 Summaryo
6.5 SAT Comparisons

7 Conclusions and Future Work

Bibliography

viii

102

103
103
104
105
107
107
110
110
111
113
114
115
117
118
118
122
128
131
131
132
132
133
135

137

140

X

List of Figures

1.1

1.2
2.1

3.1
3.2
3.3
3.4

3.5

3.6

4.1
4.2

5.1
5.2
5.3
5.4
5.5

6.1

6.2
6.3
6.4

Unate covering example: the players and their positions represented in

a matrix format.o 3
Classification of MinCostSat. 8
The MinCostSat problems studied in this thesis. 14
The row dominance reduction algorithm. 32
The column dominance reduction algorithm. 35
The overall reduction algorithm. 38
The greedy algorithm for constructing the MIS and calculating the

lower-bound. 40
The improved algorithm for constructing MIS and calculating the lower-

bound. 43
The branch-and-bound algorithm for MinCostSat in [1].. 46
The seven performance factors in eclipse. 54
The breakdown of execution time for various components of eclipse-Ipr

(top) and eclipse-cp (bottom). 82
The algorithm for calculating the variable immunity 89
The unitwalk algorithm adapted for MinCostSat. 93
The walksat algorithm adapted for MinCostSat. 94
The neighborhood-search algorithm that searches for optimal solutions. 96
The eclipse-stoc algorithm for MinCostSat. 97
A small unsatisfiable routing example (3 nets and 3 tracks) and its

RCS formulation.o 113
The wpack algorithm for optimizing FPGA detailed routing. 115
A recursive DPLL-based Maz-Sat algorithm. 119

Asymptotic behavior of three solvers’ runtime and nodes for the Maz-
2-Sat benchmarks. 130

List of Tables

2.1
2.2
2.3

2.4
2.5

4.1

4.2

4.3

4.4
4.5
4.6

4.7

4.8

4.9

4.10

The unate covering benchmarks from logic synthesis, set covering and

randomly generated instances. Lo 16
The binate covering benchmarks from logic synthesis. 18
The non-covering benchmarks from ATPG and Sat. 19
The non-native benchmarks from random Maz-2-Sat and Max-3-Sat. 21
The non-native benchmarks from group-partial Maz-Sat (FPGA de-
tailed routing). 24
Comparison of four lower bounding techniques on unate covering bench-
marks. L Y
Comparison of four lower-bounding techniques on binate covering bench-
marks. 58
Comparison of two local-search initialization strategies in eclipse: ran-

dom initialization vs. heuristic initialization. 62
Comparison of four different upper-bounding methods with eclipse. . 65
Comparison of two search-tree exploration strategies: depth-first search

vs. best-first search.o 67

Comparison of scherzo, aurall, cplex, eclipse-lpr and eclipse-cp on
unate covering benchmarks (reference instances only) from logic mini-

mization. 72
Comparison of cplex, eclipse-lpr and eclipse-cp on P-classes of size 32
for the unate covering benchmarks from two-level logic minimization. 74

Comparison of scherzo, aurall, cplex, eclipse-lpr and eclipse-cp on
unate covering benchmarks (reference instances only) from set covering
and randomly generated set. 76
Comparison of cplex, eclipse-lpr and eclipse-cp on P-classes of size 32
for the unate covering benchmarks from set covering and randomly
generated set. 77
Comparison of scherzo, bsolo, cplex, eclipse-lpr and eclipse-cp on binate
covering benchmarks (reference instances only) from logic synthesis. . 79

4.11 Comparison of cplex, eclipse-Ipr, and eclipse-cp on P-classes of size 32
for the binate covering benchmarks from logic synthesis.

5.1 The static and dynamic measures of structuredness on unate covering
benchmarks.o
5.2 The static and dynamic measures of structuredness on binate covering
benchmarks. oo
5.3 The eclipse-stoc results on unate covering benchmarks under termina-
tion criterion A.
5.4 The eclipse-stoc results on binate covering benchmarks under termina-
tion criterion A. L
5.5 Find new best solutions with eclipse-stoc.

6.1 Comparison of espresso-exact and latte on three previous unsolved
benchmarks.
6.2 Comparison of solution quality between local-search and branch-and-
bound methods on two-level logic minimization benchmarks
6.3 Runtime comparisons between sub_SAT, wpack and eclipse-stoc on
FPGA detailed routing benchmarks.
6.4 Solution quality comparisons between sub_SAT and wpack on bench-
marks whose optima are unknown.
6.5 Backtrack comparisons for three variants of ¢tmax on random Mazx-2-
Sat and Maz-3-Sat (reference instances only).
6.6 Average performance comparisons of mazsat, LB2+MOMS, LB2+JW
and gtmax on PC-classes of size 32 from Maz-2-Sat benchmarks. . . .
6.7 Average performance comparisons of mazsat, LB2+MOMS, LB2+JW
and gtmax on PC-classes of size 32 from Maz-3-Sat benchmarks. . . .
6.8 Backtrack and runtime comparisons for mazsat, LB2+MOMS, LB2+JW

x1

80

90

91

99

101
102

108

109

116

117

121

124

125

and gtmaz on PC-classes of size 32 from two random Maz-Sat instances.126

6.9 Backtrack and runtime comparisons for maxzsat, LB2+MOMS, LB2+JW
and gtmaz on PC-classes of size 32 from two structured Maxz-Sat in-
SEAIICES. . . . L. L e e e e

6.10 Results for gtmaz, cpler and eclipse on PC-classes of size 32 from
random Maz-2-Sat and Max-3-Sat benchmarks.

6.11 Comparisons between bsolo and eclipse-bf on P-classes of size 16 of the
ATPG benchmarks.

6.12 Comparison of cplex, eclipse-cp and zchaff on P-Classes of size of 32
from the SAT benchmarks.

Chapter 1

Introduction

The propositional satisfiability problem (Sat) underlies many applications such as
artificial intelligence (e.g., planning [2, 3, 4]), electronic design automation [5] (e.g.,
test pattern generation [6], equivalence checking [7, 8], routing [9, 10, 11, 12, 13]), and
operations research (e.g., scheduling [14]). In recent years, Sat research has attracted
much attention and its tremendous advances [15, 16, 17] continue to motivate re-
searchers to formulate problems from various domains into Sat. The Sat formulation
is attractive: (1) state-of-the-art Sat solvers are general purpose and extremely fast,
(2) improvements are constantly being made to Sat solvers and problems formulated
as Sat can immediately take advantage of these improvements.

Despite these clear advantages, the Sat formulation also has its innate limitations.
Sat is a decision problem and this means that a Sat solver can either find a feasible
solution or claim that no solution exists for a given problem instance. However, the
Sat approach has no control over the quality of the solution it finds. As a result,
Sat solvers are not capable of directly solving optimization problems, in which high
quality solutions are desirable.

In this thesis, we study an optimization problem that is closely related to Sat:
the minimum-cost Satisfiability (MinCostSat) problem. Given a Sat problem whose

variables have non-negative weights, the MinCostSat problem finds a satisfying truth

assignment that minimizes a weighted sum of the truth values of the variables. Min-
CostSat problems arise in practice in many occasions. For example, in Sat-based
planning [2], in order to find a minimum-length plan that minimizes the number of
operators, the weight of each variable for the operators is assigned 1 and the weight
of all other variables is assigned 0. The goal is then to find a satisfying assignment

to a Sat formula with the least number of operator variables set to 1.

1.1 Definition of MinCostSat

In order to formally define MinCostSat, we need to first define Sat'. An instance of

Sat is a Boolean formula F' that is made up of three components:

1. aset of propositional variables X = {xy, 29, -+, x,} where z; € {0, 1} for integer

i€[l,n].

2. a set of literals each of which is in the form of variable x or its complement z

where x € X.

3. aset of clauses Y = {y1,¥2, - -, ym} where each clause consists of literals com-

bined by logical or (V) connectives.

The Sat problem is: Does there exists an assignment to the variables such that the

following formula in conjunctive normal form (CNF) is true:

NNANY2 ANY3 - NYm

where A is the logic and connective?

Definition 1 (MinCostSat) Given a Boolean formula F in conjunctive normal

form with n variables and m clauses, and a cost function that assigns non-negative c;

"'We restrict our attention to formulas in conjunctive normal form.

to z; for integer i € [1,n| and z; € {0,1}, the MinCostSat problem is the problem of

finding a satisfying assignment for F that minimizes the objective function:

D citi. (1.1)
i=1

MinCostSat is NP-hard. For its approximability, please refer to [18].

1.2 Motivating Examples

The unate and binate covering problems [19, 1], not traditionally viewed as MinCost-
Sat problems, are also sub-cases of MinCostSat. To help introduce MinCostSat and
motivate our work, we present an NBA trading scenario that can be formulated by

the covering problems.

A Unate Covering Example. Assume the NBA team Raleigh Wolves is buying
players to fill three back-up positions: guard, forward and center. Some potential
candidates and the positions they play are shown in the following 0-1 matrix (for
example, Duncan plays both the forward and center position, but not the guard

position): The trade values for the players are: Duncan — $5 million, Francis — $4

Duncan Francis Malone Stockton Yao

Guard 0 1 0 1 0
Forward 1 0 1 0 0
Center 1 0 1 0 1

Figure 1.1: Unate covering example: the players and their positions represented in a
matrix format.

million, Malone — $6 million, Stockton — $2 million, and Yao — $3 million. The Raleigh

Wolves manager wants to sign up enough players to cover all the positions with the
least cost.

This is an example of the unate covering problem (UCP), also known as the set
covering problem . We create one Boolean variable, denoted by the first letter of the
last name, for each player. For example, the variable Y is 1 if Yao is signed; Y is
0 otherwise. To cover each of the three positions, at least one of the players who

play the position has to be chosen. Therefore, we create the following three Boolean

clauses:
F+S for the guard position (1.2)
D+ M for the forward position (1.3)
Y+D+M for the center position (1.4)

To minimize the cost of acquiring the players, the manager needs to minimize the

following linear function:
5-D+4-F+6-M+2-5+3-Y (1.5)

where the coefficient for each variable is the cost of acquiring the player corresponding
to that variable. Clearly, this is an instance of the MinCostSat problem. Duncan and
Malone are the only players that play two positions. Since Duncan costs less than
Malone, we can pick Duncan to cover the forward and the center positions. To cover
the guard position, we choose Stockton, who is less expensive than Francis, the only
other player for the guard position. The solution (Duncan and Stockton) constructed
in this greedy fashion happens to be the optimal solution and it has a cost of $7

million.

A Binate Covering Example. Suppose that, in addition to the constraints in the
UCP example above, there are two other constraints: (1) Duncan and Stockton don’t
get along so they can’t be signed together, (2) if one of Malone and Stockton is signed,
the other one must be signed, too (after 18 years, they still want to be together for a
final shot at the championship). The goal is still to cover all the positions with the

least cost.

To ensure that Duncan and Stockton are not signed together, we create the fol-

lowing clause:
D+S (1.6)

To ensure Malone and Stockton are signed together, we generate M <« S, which is

equivalent to the following two clauses:

M+ S (1.7)
M+ S (1.8)

Clearly, the Duncan and Stockton combination is no longer a feasible solution because
it violates clause (1.6) above. Using the same greedy approach, we choose Duncan
again to cover the forward and center positions, then we would have to choose Francis
to cover the guard position. The cost of this solution is $9 million. However, if we
choose Malone instead of Duncan to play the forward and center positions, then we
can choose Stockton for the guard position. The cost of this solution is only $8
million. Therefore, the greedy approach for UCP doesn’t work for MinCostSat in
this case.

All the constraints above can be expressed in the following binate covering matrix

(the ith row corresponds to the ith constraint presented above):

D F M S Y

0 1 0 1 0
1 0 1 0 0
1 0 1 0 1
-1 0 0O -1 0
0 0 -1 1 0
0 O 1 -1 0

If a variable appears positively (negatively, respectively) in a clause, its corresponding

entry in the covering matrix is 1 (—1, respectively). If a variable doesn’t appear in a

clause, its corresponding entry is 0. UCP is a special case of BCP : all the entries in

a UCP covering matrix are non-negative. BCP is also a subcase of MinCostSat.

1.2.1 MinCostSat and 0-1 Integer Programming

MinCostSat is a special case of 0-1 integer programming problem (0-1 IP).

Definition 2 The objective of 0-1 integer programming problem is to

minimize rLC T
subject to A-x>b, xe€{0,1}"

where ¢; is the nonnegative cost of variable z; € {0,1} and i € [1,n]; Ais am x n
matriz; and b is a vector of size m. A-x > b is the set of m linear constraints.

In MinCostSat, the entries in the matrix A are from {—1,0,1}; therefore, we have
the following:

Definition 3 The objective of MinCostSat problem is to

minimize Y Ci - X
subject to A-x>b, x€{0,1}"

where ¢; is the nonnegative cost of variable z; € {0,1} and i € [1,n]; Ais am X n
matriz with entries from {—1,0,1}; and b is a vector of size m where b; =1 — [{a;; :
a;; = —1}. A-x > b is the set of m linear constraints.

To show that the Sat-based definition and the 0-1 IP based definition are equiv-
alent, we observe that a CNF clause (I; + Iy + - - - 4+ ;) can be viewed as a linear
inequality Iy +ly 4 - - -+ 1 > 1. If we use 1 — x; to represent the complement literal
Z; in a CNF formula, then a CNF clause can be expressed as a linear inequality. For

example, consider the CNF clause in 1.6:

D+ S

can be rewritten as:
(1-D)+(1-5)>1
which turns into:
-D—-S5>-1.

The six CNF clauses in our MinCostSat example can then be rewritten as linear

inequalities:

0O 1 0 1 0 r 7 1
D

10 1 0 1
F

1 0 1 0 1 1

X| M| =

-1 0 0 -1 0 —1
S

0 0 -1 1 0 0
Y

0O 0 1 -1 0 - - 0

Notice that the inequalities comply with the 0-1 IP-based definition. For example,
the number of negative literals in the last row is 1 and bg = 1 — 1 = 0. The six
inequalities can be satisfied iff there is a feasible solution for the six CNF clauses.
Since MinCostSat is a special case of (-1 IP, integer programming tools such as

cplex [20] can be used to solve MinCostSat.

1.3 MinCostSat Problem Classification

Many NP-optimization problems are either subcases of MinCostSat (e.g., UCP and
BCP) or can be transformed into MinCostSat efficiently by introducing slack vari-
ables. We refer to the former as native MinCostSat problems and the later as non-
native MinCostSat problems. We depict our classification of the MinCostSat prob-

lems in Figure 1.2.

0-11pP

MinCostSat

Native Non—native

Non-covering [MaxSat j [Partial MaxSatj [

Group—Partial MaxSat j

Figure 1.2: Classification of MinCostSat.

Native MinCostSat problems are further divided into the covering problems and
the non-covering problem. The covering problems include unate covering and binate
covering problems we presented earlier. The unate covering problems, also known as
the set covering problems, have a number of applications in Operations Research (e.g.,
routing [21] and scheduling [22]) and logic synthesis (e.g., logic minimization [23]).
The binate covering problems also have many applications in logic synthesis (e.g.,
finite state machine minimization [24], technology mapping [19], and Boolean rela-
tions [25]). Covering algorithms and solvers based on branch-and-bound [23, 26, 27,
28, 29, 30, 31] and local search [32, 33, 34, 35, 36] have been studied extensively in
the past.

The non-covering MinCostSat problems have applications in minimum-size test
pattern problem [37], minimum-size planning [38], and minimum-cost goal mod-
els [39]. Branch-and-bound algorithms and solvers for non-covering MinCostSat prob-
lems have been investigated in [40, 41, 42]. The differences between the covering
problems and the non-covering problems are both syntactic and semantic. Syntac-
tically, most clauses in the covering problems contain all positive literals whereas in
the non-covering problems, most clauses contain a mixture of positive and negative

literals. In addition, most if not all variables in the covering problems are weighted

whereas in non-covering problems, only a fraction of variables may be weighted and
the remaining variables have weight of zero. Semantically, the clauses in the covering
problems are almost trivial to satisfy whereas in non-covering problems, the clauses
can be highly constrained. Furthermore, reduction and lower-bounding techniques
that tend to work well for the covering problems are not effective on the non-covering
problems.

Non-native MinCostSat problems include Maz-Sat, partial Maz-Sat, and group-
partial Max-Sat. The partial Maz-Sat problem has applications in course assign-
ment [43] and two-level crossing number minimization [44]. The group-partial Maz-
Sat has application in FPGA detailed routing [13]. As we will see in Chapter 2,
non-native MinCostSat problem can only be transformed into MinCostSat by in-
troducing slack variables. Branch-and-bound algorithms for Max-Sat are the top-
ics in [45, 46, 47, 48, 49]. Various local-search Maz-Sat algorithms are presented
in [50, 51, 52]. We know of only two algorithms [43, 53] (both based on local search)
for partial Maz-Sat and only one algorithm [13] (based on branch-and-bound) for
group-partial Maz-Sat.

Traditionally, most of these problems have been considered in isolation. In this
dissertation, we (1) classify MinCostSat problems, (2) study factors affecting the
performance of MinCostSat solvers, (3) propose algorithms for MinCostSat problems,
and (4) implement and validate the performance of state-of-the-art solvers for special

cases of MinCostSat, including UCP, BCP, Maz-Sat, and group-partial Maz-Sat.

1.4 Approaches and Challenges

In general, there are two types of algorithm for solving MinCostSat:

1. Branch-and-bound algorithms. Given sufficient time, a branch-and-bound
solver is guaranteed to find the optimal solution. It systematically explores
the search space as follows: at each node of the branching tree, it simplifies

the formula by applying several reduction techniques. The effectiveness of the

10

reductions depends largely on whether the problem represents a covering prob-
lem or not: reductions can reduce the size of the formula significantly but are
usually useless for non-covering problems. When no more reductions can be
applied, a branching variable is chosen and set to either 1 or 0 to generate the
two sub search-trees of the current node. The search backtracks when either the
upper-bound meets the lower-bound or a clause becomes unsatisfied. In both
situations, some MinCostSat solvers [41, 42] utilize the conflict diagnosis and
non-chronological backtracking techniques introduced in SAT solvers [15, 54, 16].
The lower-bounding techniques used in these algorithms are mostly based on
mazximum independent set of rows [28, 30, 40, 41] or linear-programming relaz-
ation [29]. For upper bounding, some algorithms use local-search methods to
find a good upper-bound before doing branch-and-bound. We survey branch-
and-bound MinCostSat algorithms in Chapter 3.

2. Local-search algorithms. Local-search algorithms for MinCostSat have
largely been ignored in the past. The local-search partial Max-Sat solver,
mazwalksat [53], was used in [40] to solve MinCostSat problems after they
were transformed to partial Maz-Sat problems. Local-search algorithms don’t
guarantee optimality because the searches are greedy and may overlook some
regions of the solution space. Experiments in [40] show that mazwalksat can
sometimes fail to find a solution when one exists; in some other cases, the best

solution it finds is not optimal.

The Challenge for Branch-and-bound Algorithms. There are at least two rea-
sons why faster and better branch-and-bound MinCostSat solvers are needed. First,
even though they may be slow in practice, branch-and-bound solvers are guaranteed
to provide an optimal solution. When an optimal solution is valuable enough to jus-
tify a large investment in computation time, it is worth running a branch-and-bound
solver. Secondly, in order to reliably evaluate the robustness and scaling behavior
of local-search MinCostSat algorithms, experiments have to be done on benchmarks
with a wide range of sizes. This requires the knowledge of the optimal solutions of

these benchmarks. However, existing MinCostSat solvers time out on many standard

11

benchmarks. In Chapter 4, we present an improved branch-and-bound MinCostSat
solver that can solve some open problems. It not only incorporates many of the best
features? in existing BOP solvers but also implements new lower bounding, upper

bounding, and search-tree traversal algorithms.

The Challenge for Local-search Algorithms. The two main challenges faced
by a local-search MinCostSat solver are (1) the feasibility issue: finding a solution
that satisfies all the constraints if one exists and (2) the quality issue: finding the
feasible solution with the optimal quality. In Chapter 5, we propose a new local-
search algorithm, eclipse-stoc, for solving MinCostSat. In general, eclipse-stoc solves
a MinCostSat problem by repeating the following two-stage process: in the construc-
tion stage, a feasible solution is constructed by a greedy method using known Sat
techniques and then in the search stage, a local search is conducted around this so-
lution to find solutions with better quality. For the constructive phase, we show that
local-search techniques for Sat can be effectively extended to satisfy the constraints

in MinCostSat.

1.5 Thesis Organization

In Chapter 2, we give an overview of the thesis by introducing the MinCostSat prob-
lems we study, their benchmarks and solvers, and our contributions. We survey the
branch-and-bound algorithms for MinCostSat in Chapter 3. In Chapter 4, we in-
troduce a new branch-and-bound MinCostSat solver that specializes in the covering
problems. Its various components are described in detail and the important perfor-
mance factors are studied through extensive experimentation. This is followed by a
presentation of a new local-search MinCostSat solver in Chapter 5. In Chapter 6, we
study the algorithms and solvers for five special cases of MinCostSat. The first one
is UCP with application in two-level logic minimization. We show how the two-level
logic minimizer espresso [23] can be improved when we replace its built-in covering

procedure with our new covering solver. The second one is group-partial Max-Sat

2Conflict analysis and non-chronological backtracking are not implemented in our solver.

12

with application in FPGA detailed routing. We compare specific FPGA detailed
routing solvers with our local-search MinCostSat solver. The third one is Maz-Sat,
a combinatorial optimization problem that can be formulated as either MinCostSat
or (-1 IP. We introduce and compare a new branch-and-bound Maz-Sat solver with
the more general-purpose MinCostSat and integer programming solvers. The fourth
one is a non-covering MinCostSat problem — the minimum-size test pattern prob-
lem. We present a simple and fast branch-and-bound solver that is competitive with
the previous leading solver. The last one is Sat and we compare two MinCostSat
solvers with a leading Sat solver on a set of common Sat benchmarks. Surprisingly,
both MinCostSat solvers can outperform the Sat solver on some instances. Finally

in Chapter 7, we conclude the thesis and present some future research directions.

13

Chapter 2

Thesis Overview

In this chapter, we give an overview of the thesis and problems it studies. We present
all the cases of MinCostSat shown in the classification scheme depicted in Figure 1.2.
For each case, we introduce its formulation, areas of application, the sets of bench-
marks we study, and the existing approaches and solvers. At the end of the chapter,

we give an overview of our contributions.

2.1 Special Cases of MinCostSat

In this thesis, we study all the special cases of MinCostSat shown in Figure 1.2. For
the native problems, we study the covering problems that include UCP and BCP,
and the non-covering problems. For the non-native problems, we study Max-Sat,
partial Maz-Sat, and group-partial Maxz-Sat. We present the following aspects of

these problems, also summarized in Figure 2.1.

1. Formulation. Non-native MinCostSat problems can only be transformed into
MinCostSat by introducing slack variables. We present their original formula-

tion as well as the transformations.

14

Native Problems
a. Covering
Unate Covering
Applications: OR [21, 22|, logic minimization [23]
Benchmarks: random [30], Steiner [55], industrial [23, 56]
cplex [20], espresso [23], scherzo [28], aurall [30]

bsolo [41], eclipse-lpr, eclipse-cp

Solvers:

Binate Covering
Applications: logic synthesis [19, 24, 25]
Benchmarks: industrial [41, 56]
Solvers: cplex, scherzo, bsolo, eclipse-lpr, eclipse-cp

b. Non-Covering
Applications: minimum-size test pattern problem [41]

Benchmarks: structured [41], subset of Sat [57, 58, 59]

Solvers: cplex, bsolo, mindp [40], eclipse_bf

Non-Native Problems
a. MaxSat
Applications: N/A
Benchmarks: random [46]
Solvers: cplex, maxsat [46], LB2+MOMS [47], LB2+JW [47]

eclipse_lpr, gtmax [60]

b. Partial MaxSat
Applications: course assignment [61]

Benchmarks: N/A
Solvers: cplex, maxwalksat [53], solver from [43]

c. Group-Partial MaxSat
Applications: FPGA detailed routing [13]

Benchmarks: structured [13]
Solvers: cplex, sub_SAT [13], eclipse_lpr, wpack

Figure 2.1: The MinCostSat problems studied in this thesis.

15

2. Applications. All special cases of MinCostSat have practical applications

except for Maz-Sat. We present the application domains for each special case.

3. Benchmarks. We introduce the source of the benchmarks and their charac-

teristics.

4. Solvers. We give a brief overview of the existing approaches and the solvers.

We now elaborate on cases shown in Figure 2.1 in more detail.

2.1.1 The Covering Problems

The covering problems can be divided into two groups: unate covering and binate
covering. The literals in unate covering are restricted to be positive. Unate covering

is a special case of binate covering.

Unate Covering Problems. UCP is also known as the set covering problem. The
the literals in the CNF clauses {y1,92 - + * ym} for UCP are all positive. Given a
CNF formula F' and a cost assignment that assigns w; to x; for integer i € [1,n], the

objective of UCP is to minimize:
i=1
subject to L Aya A Ay, = 1

Solving UCP is a necessary step in solving two-level logic minimization [23] and
it also has many applications in Operations Research [21, 22]. The three groups of
UCP benchmarks presented in Table 2.1 include:

1. Two-level logic minimization benchmarks from [23, 56]. The benchmarks post
significant challenges to previous BCP/ UCP solvers and have historically served

as a standard set of benchmarks for evaluating these solvers.
2. Set-covering benchmarks derived from Steiner triple systems [55].

3. Randomly generated benchmarks from [30].

16

Table 2.1: The unate covering benchmarks from logic synthesis, set covering and
randomly generated instances.

cplex

benchmark cols rows # of 1 # of —1 sparsity opt time
linrom 1076 1030 9955 0 0.0089 120 0.2

exam.pi 4677 509 25694 0 0.0107 63 3.6
benchl.pi 4677 398 9563 0 0.0510 121 4.4
prom2 2611 1924 15507 0 0.0031 278 2.2

prom2.pi 2618 1988 15545 0 0.0030 287 6.0
max1024 1264 1090 7221 0 0.0052 245 18.6
max1024.pi 1278 1087 6974 0 0.0050 259 211
exb.pi 2460 873 40681 0 0.0190 65 25.6

exb 2428 831 41085 0 0.0204 37 116.5

testd.pi 6139 1437 109318 0 0.0124 <101 3600*
steiner_a0009 9 12 36 0 0.3333 5 0.01
steiner_a0015 15 35 105 0 0.2000 9 0.03
steiner_a0027 27T 117 351 0 0.1111 18 0.8
steiner_a0045 45 375 990 0 0.0667 30 38.9
steiner_a0081 81 1080 3240 0 0.0370 <61 3600
m100.100-10_30 100 100 1968 0 0.1968 11 0.9
ml100.-100-10_15 100 100 1239 0 0.1239 10 1.8
m100-100-10_10 100 100 1000 0 0.1000 12 4.2
m200-100-10_.30 100 200 3949 0 0.1975 11 821
m200_100_30_50 100 200 7941 0 0.3971 6 129.1

* cplex times out at 3600 seconds.

This table presents three sets of unate covering benchmarks. From the top, these
are subsets from two-level logic minimization [23, 56], set covering derived from
the Steiner triple systems [55], and randomly generated benchmark set [30]. Most
relevant structural information is provided for each benchmark. Within each group,
the benchmarks are sorted by the runtime of c¢plex on each instance. For test4.pi,
cplex times out at 3600 seconds and it reaches a upper-bound is 101. It also times
out on steiner-a0081 but its optimum of 61 is proven in [60].

17

For each benchmark, we report the number of rows, columns, number of 1’s (posi-
tive literals) and —1’s (negative literals), the sparsity of the covering matrix, the cost
of the optimal solution and the runtime of cplex to solve each instance. All variables
in these benchmarks have unit weight. Each subgroup is sorted according to their

cplex runtime. The same table format is also used in Tables 2.2-2.5.

Binate Covering Problems. BCP has the same formulation as UCP except
that BCP can contain negative literals. It has extensive applications in logic synthe-
sis [24, 19, 25]. The group of benchmarks in Table 2.2 is from the MCNC benchmark
suite [56]. All variables in this group have unit weight.

Branch-and-bound algorithms for the covering problems have been studied in [23,
27,28, 29, 30, 31]. State-of-the-art covering solvers include scherzo [28] and aurall [30].
As we will show in Chapter 4, cplex is also very competitive and can outperform
scherzo and aurall on many industrial covering benchmarks. We will also introduce
our covering solvers eclipse-lpr and eclipse-cp and compare them with other covering
solvers in Chapter 4. MinCostSat solvers that are not specifically designed for cover-
ing problems, such as bsolo and mindp, are not competitive with the covering solvers

above.

2.1.2 Non-covering Problems

The non-covering MinCostSat problems have applications in minimum-size test pat-
tern problem [37], minimum-size planning [38], and minimum-cost goal models [39].

We study two sets of non-covering benchmarks shown in Table 2.3:

1. Exact Minimum-size Test Pattern Problem. The top group in Table 2.3
includes the five difficult benchmarks from the exact minimum-size test pattern
problem set [37, 41]. We will refer to this group as the ATPG set. Most clauses
in these benchmarks represent the nodes in a multi-level Boolean graph. In
these benchmarks, the objective is to assign the minimum number of 1’s to the
variables corresponding the primary inputs of the Boolean graph. The number

of such variables is less than or equal to 100 in each instance and that is only

18

Table 2.2: The binate covering benchmarks from logic synthesis.

cplex

benchmark cols Rows # of 1 # of —1 sparsity opt time

count.b 466 694 16704 631 0.0536 24 0.7
clip.b 349 707 13837 668 0.0588 15 0.8
9sym.b 309 963 21675 944 0.0760 5 1.1
jac3 1731 1254 22801 2210 0.0111 15 1.5
f51m.b 406 020 12921 476 0.0634 18 1.9
sao2.b 372 772 12098 722 0.0446 25 3.6
bxpl.b 464 845 29084 805 0.0762 12 5.0

apexd.a 4316 11912 46579 11016 0.0011 776 9.9
rot.b 1451 2932 38126 2629 0.0096 115 125
alud.b 807 1827 34518 1732 0.0246 <50 36007
e64.b 607 1022 7337 863 0.0132 <48 3600*

*

cplex times out at 3600 seconds.

This table presents the set of binate covering benchmarks from logic
synthesis [56]. For alug.b and e64.b, cplex times out and only the
upper-bounds are reported.

a small fraction of all variables. They have unit weight and the other variables

have zero weight.

2. Sat. The bottom group in Table 2.3 contains five satisfiable Sat benchmarks [57,
58]. Any non-trivial Sat benchmark also has the characteristics of a non-
covering MinCostSat benchmark. We let all variables in these benchmarks

have unit weight.

Branch-and-bound algorithms and solvers for non-covering MinCostSat problems
have been investigated in [40, 41, 42]. Leading solvers for non-covering MinCostSat
include bsolo [41] and pbs [42]. They are mainly based on Sat techniques and utilize
the conflict diagnosis and non-chronological backtracking techniques introduced in

SAT solvers [15, 16, 54]. Our work in the area of non-covering MinCostSat is lim-

19

ited and we don’t consider pbs in this work. Our solver eclipse-bf is introduced in

Chapter 6 and it is competitive with bsolo on the hardest ATPG benchmarks.

Table 2.3: The non-covering benchmarks from ATPG and Sat.

cplex

benchmark cols Rows # of 1 # of —1 sparsity opt time
c432_F37gat@Ql 964 5054 6656 8235 0.0031 9 179.63
misex3_Fb@Q1 2346 12574 15953 19725 0.0012 <13 3600*
c1908_F469Q0 2824 12735 15352 19155 0.0010 <12 3600*
c6288_F69gat@1 7537 36257 44055 54302 0.0004 NA® 3600*
c3540_F20@1 7598 41312 52261 65546 0.0004 NA°® 3600*
queenl9 361 10735 361 21432 0.0056 19 0.18

hanoid 249 1512 1099 2615 0.0099 61 1.47
bw_large b 1087 13772 6306 25461 0.0021 131 42.68

uf 250_1065.027 250 1065 1617 1578 0.0120 NA° 3600*

sched07s_v1386 1386 25671 41474 49425 0.0026 NA® 3600*

*

cplex times out at 3600 seconds.

¢ cplex doesn’t find a feasible solution.

This table presents two sets of native non-covering benchmarks. The top
group is from ATPG [37, 41] and the bottom group is from Sat [57, 58, 59]. On
the ATPG set, cplex times out on four out of five instances. For the last two
instances, it fails to find any feasible solutions. On the Sat set, cplex also fails
to find any feasible solutions for uf250_1065_027 and sched07s_v1386.

2.1.3 MaxSat Problems

Maz-Sat is the optimization version of Sat — the goal is to find the maximum number

of satisfiable clauses in a CNF formula by any given assignment. More formally, given

20

a CNF formula F' with m clauses, the objective of Maz-Sat is to maximize:

W ivi, where v; — 1 if y; is satisfied (2.2)
i=1 0 otherwise

A Maz-Sat problem M can be easily transformed into an instance of MinCostSat
B as follows: first, assign all variables in M a cost of 0. Then, for each clause y;
in M, add a new slack variable s; and assign it a cost of 1. This formulation was
first introduced in [62] and the slack variables were originally referred by as weighted
variables. M and B clearly have the same number of clauses. Thus, we can find the
maximum number of satisfiable clauses in a CNF formula by transforming it into a
MinCostSat and finding its minimum cost solution.

To date, we could not identify a set of Maz-Sat benchmarks that represent prob-
lems formulated for a specific application. Rather, the Maz-Sat benchmarks available
in the literature represent instances generated randomly. The benchmarks in Table 2.4
are derived from two series of Maz-Sat benchmarks, one for Maz-2-Sat and one for
Maz-3-Sat from the randomly generated set [46]. The slack variables have unit weight
and the original variables have zero weight.

Leading branch-and-bound Maz-Sat solvers include mazsat [46], LB2+MOMS
and LB2+JW [47]. The integer linear programming approach is shown to be more
effective than the branch-and-bound approach on Maz-2-Sat benchmarks but less ef-
fective on Maz-3-Sat benchmarks [46, 62]. We introduce a new branch-and-bound
Mazx-Sat solver in Chapter 6 and compare it with other state-of-the-art solvers, in-
cluding cpler. Experimental results show that our solver consistently outperforms

cplex not only on Max-3-Sat benchmark but also for Maz-2-Sat benchmarks.

2.1.4 Partial MaxSat Problems

Partial Maz-Sat was first introduced in [43]. Partial Maz-Sat is composed of two
CNF formulas Fy, = {yn1,Yn2,- - -, ynj} and Fy = {ys,¥s2, - - -, Ysk} over the same
set of variables. The objective is to find an assignment that satisfies Fj, (the hard

constraints) and maximizes the number of satisfied clauses in F; (the soft constraints),

Table 2.4: The non-native benchmarks from random Maz-2-Sat and Maz-3-Sat.

cplex

benchmark cols rows # of 1 # of —1 sparsity opt time

2sat_v050_¢200 50 200 218 182 0.0400 - -
250 200 418 182 0.0120 16 0.23
2sat_v050_¢250 50 250 245 255 0.0400 - -
300 250 495 255 0.0100 22 0.57
2sat_v050_¢300 50 300 309 291 0.0400 - -
350 300 609 291 0.0086 32 1.74
2sat_v050_¢350 50 350 357 343 0.0400 - -
400 350 707 343 0.0075 41 5.8
2sat_v050_c400 50 400 414 386 0.0400 - -
450 400 814 386 0.0067 45 6.15
3sat_v050_¢250 50 250 375 375 0.0600 - -
300 250 625 375 0.0133 2 3.3
3sat_v050_¢300 50 300 481 419 0.0600 - -
350 300 781 419 0.0114 3 17.28
3sat_v050_¢350 50 350 522 928 0.0600 - -
400 350 872 228 0.0100 8 66.01
3sat_v050_c450 50 450 680 670 0.0600 - -
500 450 1130 670 0.008 15 295.31
3sat_v050_c400 50 400 657 543 0.0600 - -
450 400 1057 543 0.0088 11 432.29

This table presents two sets of benchmarks from random Maz-2-Sat and Mazx-
3-Sat [46]. For each benchmark, the first row describes the original instance
and the second row describes its corresponding MinCostSat instance. The
number of slack variables for a Max-Sat instance is the same as the original
number of clauses. Therefore, in the MinCostSat instance, the number of
columns is equal to the sum of the rows and columns of the original instance.
We don’t report cplex information on the original Max-Sat instances because
they cannot be solved by cplex directly. Within each group, the benchmarks
are sorted according the cplex runtime of the MinCostSat instances.

22

in other words to maximize:

k 1 if yg is satisfied
W => v, whereuv; = (2.3)
i=1 0 otherwise

subject to Yt NYn2 A= ANyp; =1

We can transform an instance of the partial Maz-Sat problem into its corresponding
MinCostSat problem by adding a slack variable for each of its soft constraints. Some
applications of partial Maz-Sat include the course assignment problems [61] as well as
the two-level crossing number minimization problem [44]. Local search solvers [43, 53]

exist. Partial Maz-Sat is not studied further in this work.

2.1.5 Group-Partial MaxSat Problems

A variation of the partial Max-Sat problem arises from the FPGA detailed routing
problem [13]. Here, the soft constraints are in groups G = {g¢1, 99, - -,¢}. Each
group is satisfied if and only if all the soft constraints in the group are satisfied. The
objective is to maximize the number satisfied groups:

! 1 if g; is satisfied
W => v, whereuv = g (2.4)
i=1

0 otherwise

subject to Yn1 Ayn2a A+ Ay = 1.

In order to represent the grouping when transforming group-partial Maz-Sat to Min-
CostSat, we introduce a slack variable for each group (not for each soft constraint).
In Table 2.5, we present ten group-partial Maz-Sat benchmarks derived from the
FPGA detailed routing problem [11, 13]. We explain in Chapter 6 how to formu-
late the routing problem as a group-partial Maz-Sat problem. After converting to
MinCostSat, the slack variables have unit weight and the other variables have zero
weight. With a timeout of one hour for each benchmark, most instances from this
set of benchmarks are unsolvable for cplex as well as other MinCostSat solvers. The

sub_SAT approach [13] is more effective that cplez but still fails to solve some large

23

benchmarks. In Chapter 6, we propose a local-search solver that can find known op-
tima quickly and is able to find better than previously-known solutions on benchmarks

whose optima remain unknown.

2.2 Owur Contributions

Having gathered all MinCostSat benchmarks above provides us an opportunity to
conduct a comprehensive study of MinCostSat. In this work, we study and make con-
tributions in the following areas: improved covering algorithms and solvers, improved
branch-and-bound Maz-Sat solver, and new local-search algorithm for group-partial

Maz-Sat with application in FPGA detailed routing. We briefly highlight each one.

2.2.1 Branch-and-Bound UCP/BCP Algorithms

Many existing UCP/BCP benchmarks from logic synthesis are difficult for previous
covering solvers and some benchmarks are unsolved prior to this work. In order to
solve these open problems, we study seven critical performance factors in any branch-
and-bound MinCostSat solver that specializes in the covering problems. On three of
them, namely, lower-bounding techniques, upper-bounding techniques and search-tree
exploration strategies, we make significant improvements by devising new algorithms
with carefully designed experiments. Combining the best known techniques with the
newly discovered ideas, our branch-and-bound covering solver, eclipse, outperforms
state-of-the-art covering solvers on most of the logic synthesis benchmarks. This work
is presented in Chapter 4.

For two-level logic minimization in particular, we replace the covering procedure
in the exact two-level logic minimizer espresso [23] with eclipse. With the new logic
minimizer, we solve some previously unsolvable benchmarks. This work is presented

in Chapter 6.

24

Table 2.5: The non-native benchmarks from group-partial Maz-Sat (FPGA detailed
routing).

cplex

benchmark cols rows F of 1 # of —1 sparsity opt time
term1_rcs w3 606 2518 720 4632 0.0035 - =
694 2518 808 4632 0.0031 7 0.43

apex7res.w4d 1200 9416 1374 18232 0.0016 - -
1326 9416 1500 18232 0.0016 2 185.85

9symml res.wH 1295 24309 1475 48100 0.0016 - -
1374 24309 1554 48100 0.0015 <2 3600*

c499 gr rcs.wh 1560 15777 1757 30930 0.0013 - -
1675 15777 1872 30930 0.0012 <5 3600*
example2_gr res. wh 2220 23144 2459 45400 0.0009 - -
2425 23144 2664 45400 0.0009 <2 3600*
too_large_gr recs. w6 3114 43251 3447 85464 0.0006 = -
3300 43251 3633 85464 0.0006 na® 3600*

alu2_gr res.w7 3570 73478 3927 145936 0.0006 - -
3723 73478 4080 145936 0.0006 na® 3600*

c880_recs.w6 3936 53018 4358 104724 0.0005 - -
4170 53018 4592 104724 0.0005 na® 36007

vda_rcs.w7 5054 102047 5551 202650 0.0004 - -
5279 102047 5776 202650 0.0004 na® 3600*

k2fix res w9 11313 305160 12166 607806 0.0002 - -
11717 305160 12570 607806 0.0002 na® 3600*

*

cplex times out at 3600 seconds.

¢ cplex doesn’t find a feasible solution.

This table presents a set of benchmarks from the problem of optimizing FPGA
detailed routing. Each benchmark has two rows: the first row describes the
original benchmark as group-partial Maz-Sat instance; the second row de-
scribes its BCP counterpart. The number of slack variables in the BCP in-
stance is the same as the number of groups in the original instances (each
group corresponds to a net).

25

2.2.2 Local-search Algorithms for FPGA Detailed Routing

Nam et al. [11] presented a Sat formulation for deciding the routability of a given
FPGA and consequently a solution using Sat solvers. However, Sat solver cannot be
used directly to determine the minimum number of unroutable nets for a unroutable
layout. We refer to this problem as the optimizing FPGA detailed routing problem.
Xu et al. present a novel sub_SAT approach by transforming the optimization prob-
lem into a series of decision problems. This approach works well for small and medium
benchmarks but finds poor solutions for large ones. We show in Chapter 6 that the
optimization problem can be viewed as a group-partial Max-Sat problem and there-
fore transformed into MinCostSat. However, branch-and-bound MinCostSat solvers
remain ineffective in solving these benchmarks (shown in Table 2.5, ¢plex times out
on all but two small benchmarks).

When optimality is presently not achievable, we resort to local-search algorithms
that are not capable of proving optimality but can often find high quality solutions.
We study and compare three approaches for optimizing FPGA detailed routing:
(1) the sub_SAT approach, (2) an local-search approach specializing in optimizing
FPGA detailed routing and (3) the generic local-search MinCostSat solver we present
in Chapter 5.

2.2.3 Branch-and-Bound Algorithms for MaxSat

Branch-and-bound approaches for Maz-Sat include: (1) branch-and-bound, (2) trans-
form into 0-1 IP and solve with IP solvers, and (3) transform into MinCostSat and
solve with MinCostSat solvers. Comparison studies have been done on the branch-
and-bound approach and the IP approach [62, 46]. We renew this study by first
introducing a new state-of-the-art branch-and-bound Maz-Sat solver — gtmax. We
then compare ¢tmaz (branch-and-bound approach) with cplex (IP approach) and
eclipse (MinCostSat approach). The study shows a clear pattern of solver dominance
relationships and it challenges the view in the literature that considers IP as the most

competitive approach for Max-2-Sat. We present this study in Chapter 6.

26
2.2.4 Branch-and-Bound Algorithm for Minimum-Size Test

Pattern Problem

In the field of automatic test pattern generation (ATPG), the MinCostSat formula-
tion is the first formal non-heuristic model towards computing minimum-size test
patterns [37]. Even though the ATPG benchmarks in Table 2.3 can contain thou-
sands of variables, only a small fraction of them corresponds to the primary inputs
of the underlying multi-level Boolean graph. In their MinCostSat formulation, the
primary-input variables are very important: (1) only these variables contribute to the
cost function because they have unit weight while the rest of the variables have zero
weight, (2) the assignments for these variables largely determine the values of the
rest of the variables. Traditional MinCostSat solvers perform poorly on these ATPG
benchmarks mainly because they don’t exploit the unique properties of the primary-
input variables. In addition, Section 4.4.1 shows that the lower-bounding techniques
in current MinCostSat solvers perform poorly on these benchmarks. A recent Min-
CostSat solver bsolo [41] leads all solvers on these benchmarks by utilizing SAT-based
learning and non-chronological backtracking techniques.

We take a different approach on the ATPG benchmarks and do not use any expensive
lower-bounding or SAT-based learning. Our solver explores the search space as fast
as possible with only basic lower-bounding. As a result, our approach explores many
more nodes than bsolo but can be significantly faster on some benchmarks. This work

is presented in Chapter 6.

2.3 Summary

In this chapter, we presented various cases of MinCostSat along with their bench-
marks and solvers. For the native ones, we presented both the covering problems
and non-covering problems, which require different treatments when designing an ef-
ficient solver. Solvers that are designed for non-covering problems are not efficient

on covering problems and vice versa. For the non-native ones, we gave the formu-

27

lation of Maz-Sat, partial Maz-Sat, and group-partial Max-Sat and showed how to
transform them into MinCostSat. Finally, we gave an overview of the contributions
of this work. In the next chapter, we start the main body of this thesis by surveying
branch-and-bound algorithms for MinCostSat.

28

Chapter 3

Survey of Branch-and-Bound
Algorithms

There are mainly two types of branch-and-bound algorithms for solving MinCostSat.
For the covering problems, the classical branch-and-bound algorithms work the best;
for the non-covering problems, the SAT-based algorithms have been shown to be
more effective [41]. In this chapter, we survey these two approaches with an emphasis
on the first approach. This lays a foundation for our branch-and-bound MinCostSat

algorithm to be introduced in Chapter 4, which specializes in the covering problems.

3.1 Classical Branch-and-Bound Algorithm

A branch-and-bound algorithm for MinCostSat can be captured in a search tree. The
root of the search tree is initialized with the original covering instance. If applicable,
reductions are applied to simplify the covering matrix. We define upper bound to be
the objective value of the best solution found and upper-bounding to be the process

that finds a upper bound. We also define lower bound to be the sum of the minimum

29

cost to satisfy the current covering matrix and the cost of the path from the root
leading to the current node. Lower-bounding is the process of estimating the lower
bound. The search can backtrack when the lower bound is no less than the upper
bound. Otherwise, a branching variable is chosen to generate two children of the
parent, after setting the branching variable to either 0 or 1. Branch-and-bound algo-
rithms avoid exhaustively enumerating all the possible solutions by backtracking early.
The classical branch-and-bound algorithm has four main ingredients: (1) polynomial
time reductions, (2) lower bounding, (3) search-tree pruning, and (4) branching vari-
able selection. The first two tend to be effective on the covering problems but have

little effect on non-covering problems. We introduce each of the ingredients in turn.

3.1.1 Reduction Techniques

Three polynomial-time reduction techniques can be used to simplify the covering ma-

trix! for MinCostSat, namely, essentiality, row dominance and column dominance [1].

3.1.1.1 Essentiality

Definition 4 An essential row of a covering matriz F is a row with one literal.

The literals in the essential rows are called essential literals and their correspond-
ing variables are called essential variables. In order to cover the essential rows, the
essential literals have to be set true. For each essential literal, F' can be reduced
(simplified) by removing all rows containing the essential literal and removing the

complements of the essential literal from the other rows. Consider this example,

L An example of the covering matrix can be found on page 5.

30

Xy T2 T3 T4 Ty T X7

-1 0 0 0 0 0 0

Row 6 is an essential row and z; is the essential variable that must have the value

false. The covering matrix can be simplified as:

Ty T3 Ty Ty Te 7

o 1 -1 -1 -1 1
11 1 0 0 0

After the reduction using essentiality, new essential variables can arise and the
reduction process can be repeated. The idea of essentiality is the same as the unit
propagation in the Sat literature. Assume a literal can be located in the covering
matrix in constant time, the time complexity for essentiality reductions is O(l), where

[is the number of literals (non-zeros) removed.

3.1.1.2 Row Dominance

Definition 5 Let row; and row; be two rows in the covering matriz F, then row;

dominates row; if for every columny, one of the following situations occurs:

31

1. Fi, =1 and Fy, =1

2. Ek = —1 and ij =—1

3. Fy=0

In other words, row; dominates row; if row; is satisfied whenever row; is satisfied.

A dominating row can be removed from the formula without affecting the optimal so-
lution because any solution satisfying the dominated row also satisfies the dominating
row. In our running example, after removing the essential variable, row; dominates

rows. We can remove row; and get:

To T3 Ta T Tg X7

Reduction using row dominance can be implemented using the algorithm presented
in Figure 3.1.

In the algorithm in Figure 3.1, for each row;, the loop in line 2-18 finds all its
dominating rows and removes them from the covering matrix F. We say a row; and
a column column; intersect when Fj; # 0. On line 2, we find the shortest column
intersecting with row; in order to minimize the rows we have to consider as possible
dominating rows of row;. The function row-dominates reflects the row dominance
definition. We define the length of a row (column) as the number of nonzero entries
on that row (column). The algorithm runs in O(m- ¢pae Tmae) Where m is the number
of rows and ez (Tmaz) is the maximum length of any column (row). The idea of row
dominance is equivalent to the subsumption operation used in some Sat solvers: if

clause A is satisfied whenever clause B is satisfied (A is subsumed by B), then neither

32

Algorithm: Row-Dominance-Reduction(F')
input: a covering matrix F
output: F after applying row dominance reduction
method:
1 did-reduction = false
2 for each row; do
3 Let columny be the shortest column intersecting with row;
4 for each row; intersecting with column;, where j # 7 do
5 if length(row;) > length(row;), then
6 if row-dominates(row;, row;)
7 then ' = F — row;
8 did-reduction = true

9 endif

10 endif

11 if length(row;) = length(row;) and j >
12 if row-dominates(row;, row;)

13 then ' = F — row;

14 did-reduction = true

15 endif

16 endif

17 end do

18 end do

19 return did-reduction

20 function row-dominates(row,,, row,)
21 for each column; in row, do

23 then return false
24 endif
25 end do

26 return true

Figure 3.1: The row dominance reduction algorithm.

the satisfiability nor the solutions of a formula are affected by removing clause A from

the formula.

33
3.1.1.3 Column Dominance

Definition 6 Let column; and columny, be two columns in the covering matriz F),
then column; dominates columny if, for each row;, one of the following situations

occurs:

1. Fj; =1

ij —
2. Fij =0 and Fy, # 1

Column dominance is defined in such a way that when x, = 0, the rows containing
Ty, can be satisfied by x; = 0 and the rows containing xj can be satisfied by z; = 1.

This leads to the following theorem [1]:

Theorem 1 Let F' be satisfiable. If column; dominates columny, and cost(column;) <

cost(columny,), then there is at least one minimum solution with x), = 0.

Going back to our running example (after applying essentiality and row domi-

nance), rs is dominated by z4. Therefore, the covering matrix:

i) T3 T4 Ty T Ty

-1 0 -1 1 1 -1

o 1 -1 -1 -1 1

can be further reduced by setting x5 = 0 to:

34

Notice that now xg dominates x; and the covering matrix can be further reduced.

The algorithm for column dominance reduction is very similar to that for row
dominance reduction. In the algorithm in Figure 3.2, for each column;, if it doesn’t
contain any 1’s, then we can assign x; = 0 without increasing the cost function (line
3 through line 6). Line 7 through line 15 attempts to find one dominating column of
column; and if one is found, we assign z; to 0. On line 2, we find the row with the
minimum number of 1’s that intersects with column; on a 1. We choose this row in
order to minimize the columns we have to consider as possible dominating columns
of column; (if column; has a 1 on rowy, then its dominating column must have a 1 on
rowy too.) Lines 20 and 22 in the function column-dominates enumerate the cases
by which we can determine that columm,, doesn’t dominate column,. These cases
are basically the complement of the cases listed in Definition 3.1.1.3. The column
dominance reduction algorithm runs in O(n - 7pap © Cnae) Where n is the number of
columns.

We are not aware of an equivalent operation that detects column dominance in
Sat solvers. Column dominance is definitely applicable in the context of Sat because
Sat is a special case of MinCostSat in which all variables have zero costs. Assume
that column,, is dominated in a Sat instance F'. If F' is satisfiable, then there is
a solution with z, = 0; therefore, we can eliminate the branch where z;, = 1. If
F' is unsatisfiable, then its unsatisfiability is not changed by setting x;, = 0 and we
don’t have to explore the branch where x;, = 1. In both cases, it is an open question
whether the gain from eliminating such a branch is sufficient to overcome the overhead

of detecting column dominance relationships.

35

Algorithm: Column-Dominance-Reduction(F')
input: a covering matrix F
output: F' after applying column dominance reduction
method:
1 did-reduction = false
2 for each column; do

3 if column; doesn’t contain any 1’s

4 then F = F(z; — 0)

5 did-reduction = true

6 endif

7 Let row,, be the row with the minimum number
8 of 1’s that intersects with column; on a 1

9 for each column; intersecting with rowy, where j # 7 do
10 if column-dominates(column,;, column,;)

11 then F' = F(x; — 0)

12 did-reduction = true

13 break

14 endif

15 end do

16 end do

17 return did-reduction

function column-dominates(column,,, column,,)

18 if cost(column,,) > cost(column,,), then return false endif
19 for each row;, in column,, do

21 then return false

22 else if F,,, = —1 and F}, # —1

23 then return false

24 endif

25 end do

26 return true

Figure 3.2: The column dominance reduction algorithm.

The three reduction techniques: essentiality, row dominance and column domi-

nance all can be done in polynomial time. However, when no more reduction tech-

36

niques can be applied, the covering matrix becomes cyclic and branching is needed.

For example, the following covering is cyclic:

Ty T2 T3

-1 01
1 -1 0
-1 10

3.1.1.4 Order of Applying Reductions

Given the essentiality and the dominance reduction techniques, does the order matter
when several reductions can be applied at the same time? To answer this question,
we do a case-by-case analysis to see whether the order between any two reductions

makes a difference.

Row dominance and column dominance. Reduction by row dominance and
reduction by column dominance are two orthogonal operations; therefore, the order

between these two reductions is irrelevant.

Essentiality and column dominance. The order here does make a difference.

Consider the following example:

- 11 1 1 _
-1 -1 1 -1
0 0 -1 -1
-1 -1 0 1
10 0 0

Notice that x; is the essential variable and column,; dominates columnsy. If we apply

reduction by essentiality first by setting xy = 1, we have:

37

T2 T3 Ty

-1 1 -1
0 -1 -1
-1 0 1

The covering is cyclic at this point (the original column, is eliminated and columns
is no longer dominated). However, if we apply column dominance first, we can let

z9 = 0 and have:

W5} T3 Ty

1 1 1
0 -1 -1
1 0 0

We can then apply reduction by essentiality and set x; = 1 to get:

xr3 T4

]

The column x4 now dominates x3 (or vice versa) and we can set x3 = 0, 4 = 1 to get
the optimal solution. This example shows that by doing reduction with essentiality
first, we may lose some reduction power. Is it possible to lose reduction power when we
do column dominance first? The answer is no. The only case an essential variable x;
can be eliminated by column dominance is when z; appears negatively in the essential
row and the column for variable x; is dominated. In this case, column dominance
reductions set x; = 0 and reduce the covering matrix, the exact same way as the
reduction by essentiality would have done. Therefore, column dominance doesn’t
affect essentiality when doing reduction. As a result, we always want to do column

dominance reduction prior to doing reduction with essential variables.

38

Algorithm: Reduction (F')
input: a covering matrix F
output: the cyclic core of F
method:
reduced = true
while reduced = true
reduced = false
if column-dominance-reduction(F’), then reduction = true
if essentiality-reduction(F'), then reduction = true
if row-dominance-reduction(F'), then reduction = true
end do
return

Figure 3.3: The overall reduction algorithm.

Essentiality and row dominance. If we do reduction by essentiality first, then,
for two rows with a dominance relationship before the reduction, the relationship still
exists after the reduction because reduction by essentiality removes the same column
elements from both rows. If we do reduction with row dominance first, then the
essential variable won’t be affected because the essential row can’t be the dominating

row and won’t be eliminated.

Summary When doing reduction, we should always carry out reduction with column
dominance before we apply essentiality. Row dominance can be applied in any order
with respect to column dominance and essentiality. The overall reduction is presented
in Figure 3.3. The main while loop repeats as long as one of the three reduction
techniques has been applied (indicated by reduction = true). The end product of this
algorithm is the cyclic core of the covering matrix. In branch-and-bound MinCostSat
solvers, such as scherzo [28], reduction is applied at each node before branching.
However, at any given node, it is possible that no reduction can be applied.

For any branch-and-bound algorithm, good lower-bounding and search pruning

techniques are essential in reducing the amount of search. Next, we present these

39

techniques as they are used for MinCostSat.

3.1.2 Lower-Bounding Technique

Given any node n, and the search-tree rooted at this node T, let Cost, be the
lower bound of the best-cost solution in 7,. Then Cost, = Costyun + Costiower,
where C'ost,q is the cost of the path from the root to n, and C'ostjsye, is the lower-
bound on the cost of covering T,. Let UB be the global upper-bound of the optimal
solution, given by the best solution found so far. The search can backtrack once
Costparn + CoStigwer > UB. Both Costy,, and UB are fixed for any given node. This
means that much effort should go into estimating C'ost;,,e-. There are two approaches
for doing lower-bound estimation. The first one is based the maximum independent
set of rows and the second one is based on linear programming relaxation. We present

them next.

3.1.2.1 MIS-Based Lower Bounding

Maximum Independent Set of Rows. A lower-bound on the cost of covering
a matrix is provided by the cost for covering its maximum independent set of rows
(MIS). Two rows are independent if it is not possible to cover both by setting at most
one variable to true. In the case of UCP two rows are independent of each other if
they don’t have any intersecting columns. In the case of MinCostSat, however, any
row; containing a —1 is dependent on any other row because row; can be satisfied by
setting the complemented variable to 0. Because the rows in an independent set don’t
intersect, at least one variable from each row in the independent set has be true in
order to cover the whole matrix. Therefore, the cost of covering the MIS provides a
lower-bound on the best solution that covers the whole matrix. However, MIS-based
lower-bound can be arbitrarily far from the minimum solution cost even in the UCP
case. Courdert provides a covering matrix made of n rows and n(n — 1)/2 columns
such that any pair of rows is covered by only one column and each column covers

only two rows [28]. The following figure shows such a matrix with n = 6:

- 11111000000O0O00O0
1000011110000
01 0001O00O01T1T1FO0
0010001O0O01O0QO01
000100O01O0O0T1QO071
000010O0O0O1O0O0T1O0

o o O

1

o o O

1

40

Assuming unit cost for all variables, the MIS has a size of 1 and provides a

lower-bound of cost 1. However, the minimum cost solution consists of setting [n/2]

variables to 1.

Basic MIS Construction. Not only can the size of MIS be far from the minimum

cost of the solutions, finding the size of the MIS is also NP-hard [28]. For this reason,

we have to construct a mazimal independent set of rows using greedy heuristics. We

present the one from [28] in Figure 3.4.

Algorithm: Greedy-MIS-Construction
input: a covering matrix F
output: the size of a set of independent rows of F'
method:
Let Y be the rows in F’
MIS =10
while Y # () do
choose a random row y from Y
remove all rows intersecting with y from Y
MIS =MISUy
end do
return |[MIS]

Figure 3.4: The greedy algorithm for constructing the MIS and calculating the lower-

bound.

Intuitively, two rows are intersecting when at least one variable occurs in both

41

rows. The approximation ratio of the best known algorithm for selecting a maximal
independent set is O(m/(log(m?)) [63].

Coudert [28] presented a log-approximation algorithm for the lower bound that is
not based on MIS. It can provably obtain a tighter bound than the algorithm presented
above in the worst case; however, the former doesn’t perform well in practice because
(1) many standard benchmarks are sparse, for which the bounds obtained from the
two methods have small differences, (2) the log-approximation algorithm, not based
on MIS, cannot take advantage of the limit lower-bound pruning technique, which we

will present in Section 3.1.3 when we discuss the search pruning techniques.

Heuristic MIS Construction. As shown in Figure 3.4, once a row is selected,
all its intersecting rows are removed from the covering matrix. Let I R(x) denote the
intersecting rows of row x. The larger | R(x)| is, the fewer rows remain to build a
large MIS. Therefore, a simple heuristic that chooses the row x with minimum |7 R(z)|
has been used in [23].

It was claimed in [28] that it helps to look-ahead one more level. Removing I(y)
from Y decreases the size of I(y’) for all ¥/ such that I(y) N I(y’) # 0. The heuristic
we describe below breaks ties by selecting the row y that maximizes 3=,c) [1(y)].

Let IC(y) be the columns that intersect with y. We define for a row y,
weight(y) = Min cost(x) where x € IC(y). (3.1)

It was proposed that the row to select should minimize:

| 1 3 weight(y’). (3.2)
weight(y) e, H@)

This is a costly heuristic because every time when a row y is removed, each weight(y’)
and |I(y')| have to be updated. Consequently, the cost function for many other column
variables have to be updated before adding the next row to the MIS. However, we
observe that the high quality lower bounds obtained with this heuristic help to speed
up the search significantly compared to the MIS construction method in Figure 3.4.
We refer to the new heuristic as Coudert’s heuristic and the resulting lower-bounding

technique as MIS1.

42

Further Improvement. In Figure 3.4, when a row y is selected, all rows in I(y)
are removed from the covering matrix. On first sight, this is necessary because for
the purpose of constructing the MIS, no rows in I(y) are allowed to contribute to
the remaining MIS construction because these rows can be potentially covered by a
variable in y. However, when no variable exists that can cover y and all rows in I(y),
the removal of I(y) is not necessary and the lower-bound can be bumped up further.

For example, consider the following matrix:

ry Ty X3 T4 Ts Tg

1 1 1 0 0 O
0 1 0 0 1 O
0 0 1 0 0 O
0 0 0 1 0 1

If the first row is chosen to be in the MIS, then the second and third rows are removed
because they intersect with the first row. The last row is then added the MIS and the
size of the MIS is 2. Let Vi 15 be all the variables that occur in the rows of the MIS.
In this example, Vs = {21, 22, 3, x4, 26 }. Notice that no variable in Vyyg, if set to
1, covers the first three rows at the same time. Therefore, at least one more variable
has be set to 1 and we can increase the lower-bound by 1 in addition to the size of
the MIS. In the general case, for each row y in the MIS and its intersecting rows, we
can check whether the situation above occurs and increment the lower-bound when
appropriate.

The new lower-bounding algorithm (not previously known in the literature) is
described in Figure 3.5. On line 1, we initialize the variable bonus that will record
how much we can increment from the size of the MIS when doing lower bounding.
Lines 5-10 construct the MIS and store in Vg all the variables that occur in the
MIS. Bear in mind that, if a row contains —1, then it won’t be put into the MIS
because it is dependent on all other rows. On lines 11 — 16, for each row y we check

whether there is a variable in V)¢ that can cover y and I(y). If not, we can increment

43

Algorithm: Improved-Lower-Bound-Calculation
input: a covering matrix F
output: a lower-bound of the covering matrix

method:

1 bonus =0

2 Let X be the rows in the covering matrix
3 MIS =10

4 Virs =10

5 while Y # () do

6 choose a row y from Y using Coudert’s heuristic

7 remove I(y) from Y

8 MIS=MISUy

9 Virs = Vrs U{zi|x; € y}

10 end do

11 for each y € MIS do

12 if no variable in Vj; 5 covers all rows in y and I(y)
13 then bonus = bonus + 1

14 Viurs = Virrs U x|z occurs in I(y)}
15 endif
16 end do

17 return |MIS| + bonus

Figure 3.5: The improved algorithm for constructing MIS and calculating the lower-
bound.

the lower-bound by 1 and update Vj;;5. In practice, we observe that this strategy
can often return a lower-bound that is slightly greater (normally 1-3) than the size
of the MIS itself. We refer to this improved lower-bounding technique as MIS2. A
comparison of MIS1 and MIS2 will be done in Section 4.4.1.

3.1.2.2 LPR-based Lower-Bound

We have shown in Section 1.2.1 that MinCostSat can be formulated as 0-1 IP. When
the integral constraints are removed, the problem becomes linear programming (LP).
Many polynomial algorithms such as the interior point method have been developed

to solve LP. Liao and Devadas [29] proposed an algorithm that is similar to the

44

classical branch-and-bound algorithm but with a new lower-bounding technique using
linear-programming relaxation (LPR). At each node of the search-tree, an LP instance
is constructed from the current covering matrix. A general purpose LP solver is then
used to solve the LP instance. If C,, is returned as the optimal objective value,
then it is safe to take [Cyp | as the lower-bound of the IP instance. The experiments
of Liao et al. show that the LPR-based lower-bounding method, even though more
expensive, can almost always find better lower-bounds than MIS-based method. For
example, the MIS-based lower-bounding technique gives a lower-bound of cost 1 for

the covering matrix on page 42 whereas LPR gives a lower-bound of 3.

3.1.3 Search Pruning Technique

The standard search procedure backtracks as soon as Costpa, + Costiower > UB.
Two improvements were presented in [28]. The first improvement is based on the

following theorem:

Theorem 2 (C;-Lower-Bound [28]) Let C' be a binate covering problem and x be an
unassigned unate variable. Let Cost.ljgper and Cost.ripwer be the lower-bound on the
cost of Cy (the branch after setting x to 1) and C, (the branch after setting x to 0),

respectively. If Costpan + Cost.lipwer > UB, then both Cy and C, can be pruned.

Proof. For any clause y in C| if it contains x, then y is eliminated from C; when
x is set 1; however, the clause y — x is still in C,.. If ¢ doesn’t contain x, then ¢ is in
both C; and C,. Therefore, Cost.r, the cost of covering C, is no less than the cost
of covering C; because C, contains all clauses in C; and some extra clauses. Hence, if
Costparn, + Cost.lipwer > UB, then clearly Costp. + Cost.r > UB. Therefore, both
C; and C, can be pruned. O

It was claimed in [28] that Cj-Lower-Bound can reduce the number of branchings
by about 5%. The cost of utilizing C;-Lower-Bound pruning rule is minimal: at each

branching point, the condition is checked, which takes constant time.

45

Theorem 3 (Limit Lower-Bound) [28] Let Yyrs be an independent set of rows and
Clrower = |Yumrs| be the lower-bound. If there exists a variable x; not intersecting with
Yirs such that Costpan + Costigwer + Cost(x;) > UB, then the branch with x; = 1

can be eliminated and the covering matriz can be simplified by letting x; = 0.

Clearly, if x; = 1, then the lower-bound of the current branch becomes Costqp, +
Costipwer + Cost(z;) and since it is greater than U B, the search has to backtrack.
Branch-and-bound algorithms using MIS-based lower-bounds can take advantages of
the limit lower-bound pruning technique by checking all unassigned variables not in
the MIS and see whether the theorem above applies. This is a relatively cheap opera-
tion: the complexity of checking for limited lower-bound is O(m-|MIS]). In practice,
the lower-bound of the newly created covering problem almost always exceeds the
global upper-bound and this causes the search to backtrack right away. Experiments
in [28] show that the limit lower-bound pruning technique is extremely effective and
can speed up the solver for three orders of magnitude on some benchmarks. We also

observe similar speedup with limit lower-bound in our experiments.

3.1.4 Branching Variable Selection

The choice of branching variable can also have a big impact on the efficiency of a
branch-and-bound solver. Heuristics for choosing branching variable in UCP and
BCP solvers are discussed in [23, 28].

The heuristics tend to favor column variables with the following properties:

1. A column that covers many rows. It is assumed that such variables are more

likely in the optimal solution.

2. A column that covers many short rows. It is assumed that the short rows are

harder to cover and worth exploring first.
For a row y, define

length(y) = |{z € X|z € IC(y)}|

46

Then the heuristic in [28] chooses the column that maximizes:

1 3 weight(y)

) 3.3
Cost(x) JeI0(@) length(y) (3:3)

This heuristic is also used in our covering solver eclipse, to be introduced in Chapter 4.

3.1.5 The Classical Branch-and-Bound Algorithm

Now, we present a recursive branch-and-bound algorithm for MinCostSat introduced
in [1]. The Reduce, Lower-Bound, and Choose-Branching-Variable functions in
Figure 3.6 can be implemented using the ideas we presented earlier in this chapter.

Note that the function Lower-Bound returns the sum of Cost,.;, and Costjoyper.

Algorithm: BCP(F', UB, solution)
(F, solution) = Reduce(F, solution)
if all rows are covered
if F'# 0 and Cost(solution) < UB then
UB = Cost(solution)
return solution
else
return “no solution”
endif
endif
lower-bound = Lower-Bound(F, solution)
if lower-bound > UB
return “no solution”
endif
x; = Choose-Branching-Variable(F)
S1 = BCP(F(x;), upper-bound, solution U {x;})
S2 = BCP(F(—x;), upper-bound, solution)
return Best-Solution(S7, Ss)

Figure 3.6: The branch-and-bound algorithm for MinCostSat in [1].

47

3.2 SAT-based Algorithms

SAT-based branch-and-bound algorithms, unlike the classical branch-and-bound al-
gorithms, work better on non-covering problems. Reductions and lower-bounding
techniques play a much smaller role in these algorithms: (1) most of the time, the
reduction techniques do not apply, (2) the lower-bound found is often too far from
the upper-bound to help with search pruning. In this section, we briefly introduce
two SAT-based branch-and-bound algorithms for solving MinCostSat. The first SAT
approach does a linear search for the optimum by generating a sequence of interme-
diate decision problems and solving them with Sat solvers. The second one is more

sophisticated and it does not create intermediate problems.

3.2.1 SAT-based Linear Search Algorithm

The SAT-based linear search algorithm [64, 65] solves MinCostSat by doing a linear
search on the cost function. In addition to the feasibility constraints, constraints
ensuring a solution with cost lower than UB are also incorporated into the CNF
formula. This is done by encoding a multilevel adder and the bound of the sum
with a CNF formula [64]. The value of UB is initialized to be just above the highest

possible value:

UB=1+ Zn: cost(x;) (3.4)

j=1
If the Sat formula is satisfiable, then UB is replaced by the cost value of the

solution found:

UB = i cost(z;)x; (3.5)

j=1
The Sat formula is then reformulated with the new UB. The process continues
until the formula is no longer satisfiable. The solution with a cost of the last UB

becomes the optimal solution.

48

The advantage of the SAT-based linear search approach is that it can directly
use general-purpose Sat solvers that are extremely efficient. The shortcoming is that
many intermediate problem instances could be generated and each of them can be
difficult to solve. Experiments in [41] show that the solvers built on this type of

algorithms are not as competitive as the other state-of-the-art MinCostSat solvers.

3.2.2 SAT-based Branch-and-Bound Algorithm

Unlike the linear search approach, this branch-and-bound approach [41, 42] works
directly on the original formula without generating intermediate instances. It in-
corporates the search pruning techniques from Sat by doing non-chronological back-
tracking [66] on both logical conflicts and bounding conflicts. Logical conflicts arise
when a constraint is violated. A bounding conflict arises when the cost of the current
(partial) solution has a cost no less than the UB. It was shown in [41] that on the
covering problems, Sat-based solvers are not competitive with traditional covering
solvers; however, on the non-covering benchmarks from ATPG, Sat-solvers are much

more efficient.

3.3 Summary

In this chapter, we have surveyed branch-and-bound algorithms for MinCostSat in
the literature. For the classical branch-and-bound algorithms, we presented the re-
duction, lower-bounding, search pruning, as well as branching variable selection tech-
niques. We also briefly discussed two SAT-based algorithm for MinCostSat. Classical
branch-and-bound algorithms are mainly designed to solve the covering problems,
on which both reduction and lower-bounding techniques can be very effective. How-
ever, for non-covering problems, Sat-based algorithms are more efficient by utilizing
the learning techniques used Sat solvers. In the next chapter, we concentrate on im-
proving the classical branch-and-bound method and present a new branch-and-bound

MinCostSat solver that specializes in solving the covering problems.

49

Chapter 4

Engineering an Efficient
Branch-and-Bound MinCostSat
Solver

Despite the advances in branch-and-bound covering solvers in recent years, many
current benchmarks remain unsolvable by the leading solvers. In this chapter, we in-
troduce eclipse, a new branch-and-bound solver that improves the state of the art for
solving the covering problems. After presenting the outline of the eclipse algorithm,
we describe the three key features in this new solver. For each of the three features
and their corresponding components in eclipse, we explain the rationale behind our
implementation by comparing them with other alternatives. In the experimental sec-
tion, we compare two variations of eclipse with state-of-the-art MinCostSat solvers,
especially its nearest competitor cplezr, on a wide range of unate and binate bench-

marks. Last, we conclude with some future plans.

20

4.1 Introduction to the Eclipse Algorithm

Unlike the recursive branch-and-bound algorithm presented in Figure 3.6, the eclipse
algorithm is iterative. The concept of a node in eclipse is similar to the concept of a
node in any search tree. In the context of eclipse, a node contains the current covering
matrix and its lower-bound, which can be calculated from the covering matrix itself.

The outline of the eclipse algorithm is as follows.

Step 1. Initialize the root of the search-tree with the original covering matrix

and set its lower-bound to 0. Put the root node on a priority queue.

Step 2. If the priority queue is empty, then return the global upper-bound and
terminate. Otherwise, the node in the front of the priority queue is removed.
If the lower-bound of this node is no less than the current global upper-bound,

then repeat step 2.

Step 3. A branching variable is chosen and the two children of the node are
generated by setting the branching variable to 0 and 1. For each node, (1) apply
reduction techniques to its covering matrix, (2) apply lower-bounding techniques
to calculate the lower-bound of the node — if the lower-bound is no less than
the global upper-bound, then discard the node; and (3) do a local search at the
node; if a solution cost less than the global upper-bound is found, update the
upper-bound with the new lowest cost. Otherwise, put the node in the priority

queue. Go back to step 2.

4.2 Key Features

Besides implementing many of the best features in the literature, such as a sparse
matriz data structure and the reduction algorithms (presented in Chapter 3), eclipse

also introduces three new features to optimize the search:

1. Advanced Lower-bounding Techniques: The lower-bounding technique is

one of the most important factors in designing any branch-and-bound solver.

ol

Besides the MIS-based lower-bounding techniques, eclipse also implements two
advanced lower-bounding methods: LPR (linear programming relaxation, first
introduced in [29]) and CP (cutting planes, first used for lower-bounding in this
work). Our experiments show that on the same benchmark, the lower-bounds
given by LPR and CP are almost always better and never worse than the lower-
bounds given by the MIS-based methods. In addition, on some benchmarks
whose optimal solutions were previously unknown, CP returns better lower-
bounds than LPR and allows eclipse to solve them to optimality. Our experi-
ments demonstrate that the LPR and CP lower-bounding methods are essential

contributors to the success of eclipse.

. Upper-bounding Techniques: Branch-and-bound solvers backtrack when
the lower-bound meets the upper-bound. Having the two powerful techniques
for lower bounding above, it is still critical to have a good upper-bound in order
to force backtracks as soon as possible. To achieve this, eclipse deploys a local
search at each node of the search-tree to find a high-quality upper bound. Our
local-search procedure, when properly initialized, is very fast and often very
effective in finding the optimal solution for a given covering matrix. Of course,
the local search doesn’t provide any guarantee that the solution is optimal.
However, for the purpose of finding a good upper-bound, proven optimality is
not necessary. The amount of local search to do at each node also plays an im-
portant role in the overall performance of eclipse: too little search can overlook
a good upper-bound but too much search can slow down eclipse significantly.
Eclipse accommodates these conflicting demands by parameterizing the amount
of search at each node. Combining this upper-bound search strategy with the
search-tree exploration method below, eclipse is often able to find the global
optimal solution early in the search and therefore, achieve the best possible

upper-bound to maximize its search pruning.

. Heuristic Search-Tree Exploration Method: In most state-of-the-art Min-
CostSat solvers, the search-tree is explored in a depth-first fashion. This can

be problematic if the search wanders into a “bad” branch that doesn’t con-

52

tain an optimal solution and yet allows no effective search pruning. In eclipse,
the search-tree is explored in a “best”-first fashion. Unexplored tree nodes are
stored in a priority queue. The priority can be defined in various ways. In
our study, the most effective one is to give the highest priority to the node cur-
rently having the lowest lower-bound. Intuitively speaking, the optimal solution
is more likely to reside in the search-tree rooted at the node with the lowest
lower-bound; therefore, it is desirable to explore that node first and use the
local-search procedure to possibly improve the upper-bound. Our experiments
show that this node selection strategy complements the local search well in
practice and is very effective in guiding the search towards the optimal solution

early.

4.3 Experimental Setup

The above features could not have been devised without doing experimental com-
parative study. We have presented the benchmark sets in Section 2.1.1. In order
to increase the reliability of the performance evaluation of components of eclipse, we

follow the principles first articulated in [58]:

1. We first do experiments on the reference benchmarks, either downloaded from
the Internet or shared with us by their creators. When the results from the

experiments are not conclusive, we proceed with the following.

2. For each reference benchmark, we randomly select 32 instances from its equiv-
alence P-class. Each instance in the P-class is generated from the reference by
randomly permuting the column variables, the rows, and the order of column
variables in each row. The cost as well as the number of optimal solutions are

preserved in the P-class.

3. For each solver (or its variations) and all instances in the equivalence class, we
observe and record the mean and standard deviation for two random variables:

runtime and number of nodes explored. Runtime is used to measure the overall

53

efficiency; the number of nodes explored is a machine/implementation indepen-
dent combinatorial measure that can provide valuable insights not revealed by

looking at the runtime measure alone.

Unless specified otherwise, all our experiments in this work are done on a Pentium
IV@2.0Ghz with 1GB of RAM under Linux.

4.4 Performance Factors

Within eclipse, various “engines” have been built to optimize the search process for
time and space. There are many factors that can influence the performance of eclipse.
These include (1) lower-bounding techniques, (2) upper-bound techniques, (3) search-
tree exploration strategy, (4) branching variable selection, (5) search pruning tech-
niques, (6) reduction methods, and (7) data structures. The last four factors have
been well studied in the literature and the best choice for implementation is easy
to determine. However, for each of the first three factors, many variations exist
and making the right choice requires the implementation of many alternatives and
comparative studies of their performances. We list all seven performance factors in
Figure 4.1. We now start our discussion with what we believe is the most important

factor, the lower-bounding techniques.

4.4.1 Factor 1: Lower-Bounding Techniques

The lower-bounding technique is one of the most important factors in designing any
branch-and-bound solver. Clearly, the best lower-bounding algorithm will allow the
branch-and-bound to backtrack as early as possible and prevent wasting time on

unfruitful search branches. Fclipse implements four lower-bounding techniques.

1. MIS1: This lower-bounding technique was introduced in Section 3.1.2.1 and
it is based on the idea of a maximal independent set of rows. Let’s assume

all variables have unit cost. Since no two rows in the independent set can be

54

Factor 1: Lower bounding Techniques
a. MIS1 (maximum independent set)
b. MIS2 (maximum independent set improved)
c. LPR (linear programming relaxation)
d. CP (cutting planes)
Factor 2: Upper bounding Techniques
a. No local search
b. Local search only at the root
c. Local search at each node
- Initialization
1. Random
2. Solution from lower bounding
- Amount of Search
1. Fixed
2. Parameterized
d. Ask the Oracle
Factor 3: Search-Tree Exploration Strategy
a. Breadth-First Search
b. Depth-First Search
c. Best-First Search
Factor 4: Branching Variable Selection Heuristics
Factor 5: Search Pruning
Factor 6: Reduction Techniques
Factor 7: Data Structures

Figure 4.1: The seven performance factors in eclipse.

covered by the same variable, at least one variable has to be chosen from each
row to cover the rows in the maximum independent set. Since all the chosen
variables are distinct, the lower-bound is the size of the maximal independent

set.

2. MIS2: We have shown that MIS1 can underestimate the lower-bound in Sec-

tion 3.1.2.1. MIS2 is the improved version we introduced in the same section.

3. LPR: This method is based on linear programming relaxation and we first intro-

95

duced it in Section 3.1.2.2. With this method, at each node of the search-tree,
we generate a linear programming (LP) instance from the current covering ma-
trix after relaxing the integral constraints. We then find the optimal objective
value of the LP problem using cplez [20], a state-of-the-art LP/IP tool. The
optimal objective value from the LP problem may be fractional but we can take

its ceiling as the lower-bound for the current node.

4. CP: This one is similar to LPR but it utilizes cutting planes. We describe this

method in more detail next.

Lower Bounding with Cutting Planes The cutting planes method is a well-
known method for solving IP. With this method, the IP problem is first solved as
a LP problem with the simplex method. If the optimal solution of the LP problem
contains all integer values, then an optimal solution for the IP problem has been
found; otherwise, the search for an optimal (integral) solution starts. The cutting
planes method systematically generates new constraints, called Gomory cuts [67,
68, 69], and adds them to the optimal tableau of the original problem. These new
constraints cut away part of the feasible solution space from the original problem, but
they never exclude any integer solutions from the original solution space. Therefore,
the new I[P problem created is guaranteed to contain the same optimal solution as
the original one. However, when the new [P problem is solved as an LP problem, its
optimal objective value is no better than that of the first LP problem.

In the context of a minimization problem like MinCostSat, this means that the
lower-bound we get after adding the Gomory cuts to the original IP may be greater
than the one we get from simply doing LPR on the original IP.

Lower bounding with the cutting planes method goes through the following three
steps:

Step 1. Solve the original LP problem with the simplex method. If the optimal
solution contains fractional values, go to step 2; otherwise, return the optimal

solution of the LP problem as the optimal solution of the IP problem.

56

Step 2. Generate the Gomory cuts and add the Gomory cuts to the optimal

tableau found in step 1.

Step 3. Solve the new LP problem and return the ceiling of its optimal objective

value as the lower-bound.

Clearly, CP is more expensive than LPR. The extra work comes from generating
the Gomory cuts and solving the new LP problem. But CP sometimes provides much
better lower-bounds than the other three methods. For example, at the root of the
search-tree for the binate instance apex4.a, the four lower-bounding methods provide
a lower-bound of 525 (MIS1), 525 (MIS2), 756 (LPR) and 773 (CP), respectively.

Next, we compare the effectiveness of the four lower-bounding techniques in detail.

Comparisons of the Four Lower-Bounding Methods. In this study, we apply
all four methods on the reference instances. As we will see, the performance trend for
the four methods is very clear and convincing. For this reason, we do not generate the
P-class for each benchmark. Table 4.1 shows the results on a group of unate covering
benchmarks. The second column shows the size of the minimum cost cover. The next
two columns show the lower-bounds obtained from MIS1 and MIS2. Comparison
between the two columns shows that MIS2 can return slightly better lower-bounds
than MIS1, e.g., for exam.pi, maz1024 and steiner_a0081.

The last two columns show the lower-bounds given by LPR and CP. Clearly, either
method is able to obtain lower-bounds that are no worse (often better) than MIS1
and MIS2 on all the benchmarks. CP never returns worse lower-bounds than LPR
and obtains slightly better lower-bounds than LPR on exam.p: and all the Steiner
benchmarks.

A similar comparison study is shown in Table 4.2 for the binate benchmarks.
The performance pattern is identical to that in Table 4.2. The quality of the lower-
bounds is significant better for LPR and CP on most benchmarks. CP outperforms
LPR on benchmarks such as apex/.a and rot.b. As we will see in Section 4.5, these
two instances remain unsolvable (within the timeout limit) for eclipse with LPR lower

bounding but are solved when using CP.

57

Table 4.1: Comparison of four lower bounding techniques on unate covering

benchmarks.
benchmark opt MIS1 MIS2 LPR CP
lin_rom 120 115 115 120 120
exam.pi 63 52 55 60 62
bench1.pi 121 116 116 120 121
prom?2 278 264 264 278 278
prom2.pi 287 273 273 287 287
max1024 245 236 238 244 244
max1024.pi 259 250 252 258 258
exd.pi 65 60 60 64 64
exd 37 32 32 36 36
testd.pi < 101 26 56 80 80
steiner_a0009) 3 3 4
steiner_a0015 9 6
steiner_a0027 18 11
steiner_a0045 30 15 15 15 17
steiner_a0081 61 25 26 27 30
m100.100.10_30 11 4 4 7 7
m100.100_.10_15 10 4 4 8 8
m100-100-10_10 12) D 10 10
m200_100_-10_30 11 3 4 8 8
m200-100_30_50 6 1 2 3 3

from left to right.

For each benchmark, the cost of the minimum cost cover is reported in
the second column. The last four columns compare the two MIS-based
lower bounding techniques with linear programming relaxation (LPR)
and cutting planes (CP) based techniques. LPR and CP never performs
worse than MIS1 and MIS2. CP can outperform LPR for benchmarks
such as ezam.pi and steiner_a0081. In most cases, a gradual increase in
the quality of the lower-bounds can be observed across the four methods

58

Table 4.2: Comparison of four lower-bounding techniques on binate covering
benchmarks.

benchmark opt MIS1 MIS2 LPR CP

count.b 24 17 17 24 24

clip.b 15 10 10 14 14

9sym.b 5 4 4 D D

jac3 15 12 12 15 15

f51m.b 18 14 15 16 17

sao2.b 25 24 25 25 25

5xpl.b 12 9 9 11 11

apexd.a 776 525 525 7H6 773

rot.b 115 95 98 111 114

alud.b 50 38 39 AT 47

e64.b <48 32 32 37 40

c432_F37gat@]1 9
misex3_Fb@1

c1908_F469@0 11

c6288_F69gat@1 6
¢3540_F20@1

— = = s
— = = s
W N =N W
W DN =N W

The format of this table is identical to Table 4.1. Again, LPR and CP
never perform worse than MIS1 and MIS2. In most cases, a gradual in-
crease in the quality of the lower-bounds can be observed across the four
methods from left to right. In particular, on count.b, apexs.a, rot.b, and
e64.b, the differences are significant. Notice that for the ATPG group, the
lower-bounds at the root are relatively far from the optimum, especially
for MIS1 and MIS2. This is because all but few rows contain —1’s and
these rows cannot be added to the independent set.

LPR and CP are in general much more expensive than MIS1 and MIS2 for two
reasons: (1) the overhead of creating the LP instance and set up a procedure call to
cplex; (2) the dual simplex method used by cplez to solve the LP takes more time
than an MIS heuristic. However, since a small increase in the lower-bound value

can potentially cut off search branches of exponential size, an improvement is still

59

possible even with this big overhead. Indeed, our experiments in Section 4.5 show
that eclipse with LPR or CP can outperform state-of-the-art MinCostSat solvers on
many benchmarks. From this point on, we refer to the version of eclipse using LPR
as eclipse-Ipr and the version using CP as eclipse-cp. Table 4.1 and table 4.2 clearly
demonstrate that LPR/CP dominate MIS1/MIS2; therefore, we will not present any
results of eclipse with MIS1/MIS2.

Implementation Details. For the two MIS-based lower-bounding methods, eclipse
implements the algorithms we presented in Section 3.1.2. FEclipse-Ipr uses the idea
presented in Section 1.2.1 to generate an [P instance from the covering matrix at
each node. It then relaxes the integral constraints and feeds the corresponding LP
problem to cplex via a system call. Upon cplex’s completion, eclipse-lpr extracts the
optimal objective value v and uses [v] as the lower-bound of the current node.
Eclipse-cp generates the IP instance the same way as eclipse-Ilpr; however, instead
of feeding the relaxed LP instance, eclipse-cp feeds the IP instance itself to cplex.
Cplex adds the Gomory cuts to the IP problem and starts solving the new /P instance.
However, before it solves the new I[P instance, cplex will calculate the lower-bound
of the objective function, which is the optimal objective value of the LP instance
corresponding to the new IP instance. This is exactly the value eclipse-cp needs to
extract as the lower-bound. The system call to cplex is terminated once it finds the
first integer solution to the new [P problem. It is worth emphasizing that the Gomory

cuts are generated internally by cplex, not by eclipse-cp.

4.4.2 Factor 2: Upper-bounding Techniques

Branch-and-bound search is a tale of the two bounds: lower-bound and upper-bound.
The solver backtracks whenever they meet and the branch of the search-tree below
the current node is pruned. We have spent a lot of effort doing lower bounding, but it
is equally important to find an effective upper-bounding strategy. By definition, the
upper-bound is the cost of the best solution found and the best possible upper-bound
is the cost of the optimal solution. Clearly, the goal of any upper-bounding strategy

60

is to find an optimal solution as soon as possible. We list four possible ways of finding

high quality upper-bounds, each with increasing level of sophistication:

1. No local search: This the most naive method in which there is no explicit
search for a good upper-bound. The upper-bound is initialized to be oo (or
a sufficiently large number). The first time the upper-bound is updated is
when the first feasible solution is found in the branch-and-bound search-tree.
The upper-bound is updated only when a feasible solution with better quality
is found. The performance of a solver with this approach depends highly on
where the optimal solutions may reside in the search-tree. In the worst case,
the optimal solutions may be found only at the end of the search and therefore

cannot help the search pruning effectively.

2. Local search at the root: This is a method used in many branch-and-bound
solvers. These solvers have two phases. The purpose of the first phase is to find
a good upper-bound at the root of the search-tree. After that, no more explicit
search for a good upper-bound is carried out. In general, a branch-and-bound
solver with this method is more effective than one with the first method because
a good upper-bound can often be found quickly in very little time. However,
since the local search may get stuck in local minima, it may never find the
best possible upper-bound. Shown in Section 5.6, this situation does happen in

practice.

3. Local search at each node: This method does local search not only at the
root but also at each node of the search-tree. The local search at these nodes
tend to be more diversified than the one at the root. This is because at each
node below the root, a portion of the variables have been assigned. The local
search at each node fixes the same set of assignments and only the unassigned
variables are allowed to be changed during the local search. It is easy to see
that the set of fixed variables and their assignments is unique for each distinct
node. By doing a local search at each node, we are essentially forcing the local

search to cover all regions of the search space (even though these regions may

61

overlap). Therefore, the search is less likely to get stuck in a local minima and

overlook a high quality upper-bound.

4. Ask the Oracle: This is the ideal situation where the cost of the optimal
solution is given a priori. With this cost as the upper-bound, the search should
achieve the best performance (everything else being equal). We use this method

as a reference for evaluating the previous three methods.

At each node, besides calculating the lower-bound, eclipse uses the third method
above to search for a high quality upper-bound. The local-search procedure is based
on the algorithms we will present in Chapter 5. As we will see, the local-search pro-
cedure is very fast and often very effective in finding an optimal solution. Of course,
the local search doesn’t provide any guarantee that the solution it finds is optimal.
However, for the purpose of finding a good upper-bound, this is not necessary.

The local-search procedure starts by initializing all the variables to either 0 or 1.
At each step of the search, a variable is chosen according to some heuristics (discussed
in Chapter 5) and its value is flipped. The search terminates after a predefined number
of steps. Various strategies can be used to initialize the variables, among them the
easiest is to randomly initialize the variables. Next, we present a novel initialization

strategy implemented in eclipse.

Local-Search Initialization. Both eclipse-lpr and eclipse-cp take advantage of the
solution found in the their lower-bounding procedures. In eclipse-lpr, the variables
are initialized with the optimal LP solution from the LPR procedure, with fractional
values in (0, 0.5] rounding down to 0 and fractional values in (0.5, 1) rounding up to 1.
The rationale behind this initialization strategy is that we project the optimal integer
solution for the /P problem to be “close” to that for the corresponding LP problem;
therefore, we keep the variables with integer values intact and round the non-integer
variables to their nearest integer values.

In eclipse-cp, the solution it extracts from cplex during the lower-bounding proce-
dure is already a feasible solution to the IP problem. We use this solution to initialize

the local search.

62

We choose six representative benchmarks from the unate and binate covering
benchmark set in order to compare the two initialization strategies: random initial-
ization and heuristic initialization using the solutions from lower bounding. The same
set of six benchmarks will be used throughout the study of the second and the third
performance factor. For each reference benchmark, we run two variations of eclipse-cp
on the reference and 32 instances from its P-class (with a timeout of 300 seconds on
each instance). We then report the mean and standard deviation of the runtime and
the number of nodes explored for each initialization strategy. The results are shown
in Table 4.3.

Table 4.3: Comparison of two local-search initialization strategies in eclipse: random
initialization vs. heuristic initialization.

random init heuristic init

benchmark time nodes time nodes
exam.pi 20.8/50.0 117/474 5.4/5.0 12/22
benchl.pi 300/0* 597/5 4.7/14 7/4
max1024 143.9/86.6 303/333 27.5/18.7 27/20
exd 16.3/5.3 4/1 15.1/7.7 5/3

5xpl.b 3.0/1.5 10/7 3.1/1.5 10/7
jac3 8.7/1.5 3/1 8.1/1.0 3/0

* all 33 instances time out at 300 seconds.

This table compares two initialization strategies for the local search:
random initialization vs. heuristic initialization with the solution from
the lower-bounding procedure. The mean and standard deviation for
runtime and nodes are reported. The heuristic initialization method
performs significantly better on exam.pi, benchl.pi and max1024. In
both approaches, exam.pi and mazx102 each have large variances in
time and nodes.

For three of the six benchmarks, the initialization scheme makes a big difference.
For example, on bench.1.pi, all instances under random initialization time out at
300 seconds; under heuristic initialization, the mean runtime for eclipse-cp is only

4.7 seconds with a standard deviation of 1.4. For maz1024, eclipse-cp with random

63

initialization is on average about five times slower than eclipse-cp with heuristic ini-
tialization. The former explores 303 nodes on average whereas the latter only explores
27. A similar situation can also be observed on exam.pi. For the other benchmarks,
the initialization scheme doesn’t make a noticeable difference. This is primarily be-
cause a global optimal solution is easy to find early and cannot be improved by the
later local search, regardless of which initialization method is used.

This experiment shows that the heuristic initialization method can make the local
search much more effective in finding good quality upper-bounds than the random
initialization method. The cost of the heuristic initialization method is minimal
because the solutions we use are byproducts of the lower-bounding procedure.

After the initialization, the local search runs until the search termination criterion
is met. This termination criterion determines the amount of local search to do at each

node.

4.4.2.1 Search Termination Criteria

How much local search to do at each node can have a big impact on the performance

of eclipse:

1. Too much search will increase the processing time of each node and slow down

eclipse significantly.

2. Too little search may overlook the chance of improving the global upper-bound

at a node.

In addition, the amount of local search at each node shouldn’t be the same. Since
the search space below each node decreases exponentially as the depth of the search
tree grows, the amount of local search at each node along a path from the root should
decrease accordingly. To address these issues in eclipse, we define the number of

search steps to do at a given node to be:

(1/2)% % c; % S (4.1)

64

where d is the depth of this node, ¢y is a constant (set to 5 in our experiments), and S
is the size (the number of non-zero entries) of the covering matrix at the node. Under
such a strategy, the maximum amount of search at any given node is done at the root

and the amount of search decreases exponentially along any path of the search-tree.

4.4.2.2 Comparisons of the Four Upper-Bounding Methods

In order to present the essential role the local search plays in eclipse, we compare the
four different upper-bounding methods in Table 4.4 on the same six representative

benchmarks we studied in Table 4.3. We make the following observations:

1. From left to right, the decreasing trend for both the runtime and the number
of nodes is very clear. With no explicit upper bounding (the first method),
eclipse times out on three benchmarks. Simply by doing a local search at the
root, the performance of eclipse is already greatly enhanced and the timeout
situation is no longer observed. By doing parameterized amount of local search
at each node with heuristic initialization, eclipse is further improved, especially

on benchl.pi and max1024.

2. The difference between the third method (implemented in eclipse) and the last
method with the oracle are not dramatic. This indicates that the local search

is effective in finding an optimal solution early.

Shown in Section 4.5, the amount of time eclipse spent on doing local search at

each node is not overwhelming in most cases.

4.4.3 Factor 3: Heuristic Search-tree Exploration

There are many ways to explore the search-tree and the node selection strategy deter-
mines the order the search-tree nodes are visited. Common tree traversal strategies

include:

Table 4.4: Comparison of four different upper-bounding methods with eclipse.

none root each node oracle
benchmark time nodes time nodes time nodes time nodes
exam.pi 300/0* 2355/89 7.74/5.53 15/24 5.4/5.0 12/22 4.4/3.9 10/19
benchl.pi 300/0* 609/15 211.0/136.2 447/293 4.7/14 7/4 3.8/1.8 3/2
max1024 251.4/15.6 263/45 148.4/80.7 148/81 27.5/18.7 27/20 17.8/1.7 11/1
exd 300/0* 97/3 25.3/33.4 6/11 15.1/7.7 5/3 3.7/0.2 1/0
5xpl.b 26.6/3.5 594/92 2.84/1.26 9/5 3.1/1.5 10/7 2.5/1.8 7/6
jac3 10.8/1.6 130/70 8.3/0.6 3/0 8.1/1.0 3/0 2.4/0.3 1/0

* times out at 300 seconds.

From left to right, this table presents four upper-bounding strategies with respect to doing local search:
(1) no search at all, (2) only search at the root, (3) search at all nodes and (4) get the best possible
upper-bound from an oracle. The mean and standard deviation for runtime and nodes are reported.
Clearly, the third method performs much better than the first two methods in both runtime and the
number of nodes explored. In addition, the performance of the third method is not much worse than
the fourth method (the ideal situation). This indicates that the local search is effective in finding the
best possible upper-bound early.

99

66

1. Breadth-First Search: the node with the least depth is explored first. Breadth-
first search has the advantage of being able to search uniformly into the branches
of the search-tree but as the depths of the search increases, there are exponential
number of nodes to store in the memory. For this reason, we don’t consider

breadth-first search any further in our study.

2. Depth-First Search: the node with the greatest depth is explored first. The
advantage of depth-first search is that the number of nodes stored in memory
is proportional to the depth of the search-tree, which is often a small fraction
of the total number of variables. The disadvantage of depth-first search is that
once the search goes into a “bad” branch, it may take a long time for the search

to backtrack to a more fruitful branch.

3. Best-First Search: the node with the best heuristic measure is explored first.
Both the depth-first search and the breadth-first search are special cases of the
best-first search. The main advantage of the best-first search is that it may, on

average, find an optimal solution faster than the other two search strategies.

We deploy a type of best-first search in eclipse. All the unexplored nodes are
maintained on a priority queue. The highest priority is given to the node currently
having the lowest lower-bound. Intuitively speaking, an optimal solution is more
likely to reside in the search-tree below that node and therefore, it is desirable to
explore that node first. We compare two search-tree exploration strategies, depth-
first and best-first, in Table 4.5, one is depth-first search and the other one is best-first
search. On the first three benchmarks, best-first search explores less nodes and has
shorter runtime on average. For example, on maz1024, eclipse with depth-first search
explores 68 nodes on average but it only explores 27 nodes on average with best-first
search. On the last three benchmarks, the two strategies have practically the same

performance.

67

Table 4.5: Comparison of two search-tree exploration strategies: depth-first search
vs. best-first search.

depth FS best FS
benchmark time nodes time nodes
exam.pi 7.0/5.4 15/23 5.4/5.0 12/22
benchl.pi 7.91/12.0 12/21 4.7/14 7/4

max1024 74.1/27.0 68/43 27.5/18.7 27/20
ex5 16.2/6.7 4/2 15.1/7.7 5/3
5xplb 3.0/1.4 10/7 3.1/1.5 10/7
jac3 8.6/15 3/1 8.1/1.0 3/0

This table compares two search-tree exploration strategies: depth-first
search and best-first search. The mean and standard deviation for
runtime and nodes are reported. Best-first search explores the node
with the least lower-bound first. Best-first search outperforms depth-
first search on the first tree benchmarks. For the last three benchmarks,
the two approaches are almost identical.

4.4.4 Factor 4: Branching Variable Selection

After applying the reduction techniques at each node of the search-tree, we obtain
the cyclic core of the current covering matrix. To explore the search-tree further,
a branching variable has to be chosen to generate two children of the current node.
In eclipse-lpr, we complement the branching variable selection heuristic [28] (we also
presented it in Section 3.1.4) with the linear programming solution we obtained from
the LPR lower bounding. Fclipse-lpr extracts the optimal LP solution for the vari-
ables. For each variable z;, it calculates the distance between the value assigned to

x; and its nearest integer:

d; = min([v;| — v, v; — |vi]) (4.2)

Let I R(zx;) be the rows containing either z; or T;. For the branching variable, we

choose the x; that maximizes the expression

68

. d 1 weight(y)

o LI 43
Cost(x;) yelFle:) length(y) (4:3)

where weight(y) is the weight of the variable in y with the smallest weight and
length(y) is number of non-zero literals in y. The purpose of the constant ¢ in the
function above is to give more weights to d;. In all our experiments, we set ¢ to 5
because it gives us the best overall results.

In eclipse-cp, since cplex is given an [P instance, we don’t have the capability of
extracting the optimal solution for the LP instance (even though we can extract the
optimal objective value of the LP instance to serve as the lower-bound). Instead, the
solution eclipse-cp extracts is simply the first integral solution cplex finds. Therefore,
the distance between any variable’s assignment and its nearest integer is 0 and con-
sequently, the first term of the cost function in (4.3) is always 0. Then the variable
selection heuristic becomes identical to the one we introduced in Section 3.1.4. In

eclipse, the time spent on branching variable selection is negligible.

4.4.5 Factor 5: Search Pruning

Besides the usual search pruning when Cost,q,: + Costiower > UB, eclipse also uses
the Cj-Lower-Bound pruning technique we introduced in Section 3.1.3. Recall that
the Cj-Lower-Bound pruning technique states: if C'ostya, + Cost.ljpyer > UB, then
both C; (the branch after setting the branching variable to 1) and C, (the branch after
setting the variable to 0) can be pruned. The applicability of this pruning rule can be
checked at no extra cost since C'ost,q, is available when the root of C; is generated
and Cost.ljpper 18 just the result from the lower-bounding procedure, a necessary step

eclipse goes through regardless what search pruning technique it uses.

4.4.6 Factor 6: Reduction Techniques:

At each node, the current covering matrix is reduced to its cyclic core by using

row dominance, column dominance and essentiality. These reduction techniques are

69

implemented in eclipse following the algorithms described in Section 3.1.1. Runtime
analysis in Section 4.5 shows that during an execution of eclipse, the time spent on

reduction is often a small fraction of the total runtime.

4.4.7 Factor 7: Data Structures

Most of the standard MinCostSat benchmarks are very sparse: less than 10% of
entries (some are much less) in the covering matrix are occupied by 1 or —1 (see
Tables 2.1-2.5). To represent such matrices efficiently, we use a sparse matriz data

structure to store the covering matrix:

1. Each row is represented by a doubly-linked list of the non-zero entries in the

TOW.

2. Each column is represented by a doubly-linked list of the non-zero entries in the

column.

3. Each matrix entry has pointers to the row and columns it resides in and knows,

implicitly or explicitly, its positions in the appropriate lists.

The sparse matrix data structure compactly represents the covering matrix. It
also allows efficient implementation of the reduction algorithms by allowing constant
time removal of entries.

We have finished discussing the seven performance factors in eclipse. To sum-
marize, eclipse implements two advanced lower-bounding techniques: LPR and CP.
For upper bounding, eclipse does local search at each node of the search tree to find
high quality upper-bounds. The local search is initialized with the solutions from the
lower-bounding procedure and the amount of local search at each node is parameter-
ized by its depth in the tree. Eclipse uses the branching heuristic in (4.3). It explores
the search-tree in a best-first fashion in order to find the best possible upper bound
early. For search pruning, eclipse uses C;-Lower-Bound pruning technique. Fclipse is
built on top of the sparse matrix data structure and it implements efficient reduction

algorithms.

70

4.5 Experimental Results

Even though eclipse is capable of solve any MinCostSat problems, it has been designed
to specialize in the covering problems. Therefore, in this experimental study, we
concentrate on the native covering benchmarks first introduced in Table 2.1 and

Table 2.2. We start by introducing the solvers involved in our study.

4.5.1 The Solvers

The six solvers we consider in this experimental study include:

1. scherzo [28]: This solver introduced many of the state-of-the-art techniques for
solving the covering problems that include new heuristics for MIS-based lower

bounding, branching variable selection strategies, and two search pruning rules.

2. aurall [30]: This solver is built on top of scherzo. By doing “negative thinking”,
aurall is able to outperform scherzo on some unate instances. However, aurall

has not been implemented to solve the binate covering problems.

3. bsolo [41]: This is the latest MinCostSat solver in the literature. It is a scherzo-
like solver but it also incorporates Sat techniques such as non-chronological
backtracking. It is not efficient on covering problems but performs well on a set

of non-covering benchmarks from ATPG [41].

4. cplex [20]: This is a commercial state-of-the-art LP/IP solver. Since Min-
CostSat can be formulated as IP, cplex can be used to solve any MinCostSat
problem. It is quite competitive with solvers that specialize in solving covering

problems. FEclipse uses cplex to do LPR and CP lower bounding.

5. eclipse-lpr: This is our branch-and-bound MinCostSat solver that implements
all the main features we have discussed in this chapter. For lower bounding,

eclipse-lpr uses linear programming relaxation.

6. eclipse-cp: This is the same as eclipse-lpr except that for when doing lower

bounding, the cutting-planes method is used.

71

We chose not to include the MinCostSat solver mindp [40] in this comparison study
because it is not as competitive as the other solvers: it times out at 600 seconds on
lin_rom and count.b, the smallest industrial UCP and BCP benchmarks we consider

in this work.

4.5.2 Unate Covering Comparisons

We start by comparing scherzo, aurall, cplex, eclipse-lpr and eclipse-cp on the refer-
ence benchmarks from two-level logic minimization. We don’t include bsolo because
it is not competitive with the other five solvers. We then study the performances of
cplex, eclipse-lpr and eclipse-cp more carefully by conducting statistically significant
experiments on the P-classes of the reference benchmarks. For the set covering and
randomly generated benchmarks, we follow the same setup as above by first experi-

menting with the reference benchmarks only, and then with the P-class instances.

4.5.2.1 Comparison on logic minimization benchmarks

Comparison of five solvers on the reference instances. In Table 4.6, we com-
pare five solvers’ performance on the two-level logic minimization reference bench-
marks that were first introduced in Table 2.1. We observe dramatic performance
differences between the first two solvers and the last three solvers. Scherzo and
aurall perform poorly compared to cplex, eclipse-lpr and eclipse-cp. For example,
on benchl.pi, scherzo takes 1349.8 seconds; aurall times out at 3600 seconds; cplex,
eclipse-lpr and eclipse-cp take only 4.4, 3.8 and 2.2 seconds, respectively. The differ-
ences between the number of nodes explored are equally striking: scherzo explores
over two million nodes before it solves the instance whereas cplez, eclipse-lpr and
eclipse-cp explore fewer than 50 nodes each.

Recall that the lower-bounding techniques used in scherzo and aurall are based
on MIS. We have shown in Section 4.4.1 that MIS-based lower bounding is inferior
to both LPR and CP. We believe that the lack of ability to find good lower-bounds

is the key reason why scherzo and aurall don’t perform as well as the other three

72

Table 4.6: Comparison of scherzo, aurall, cplex, eclipse-lpr and eclipse-cp on unate
covering benchmarks (reference instances only) from logic minimization.

benchmark measure scherzo aurall cplex eclipse-lpr eclipse-cp
lin_rom time 0.6 1.6 0.2 0.3 0.3
nodes 236 54 1 1 1

exam.pi time 3600* 3600* 3.6 162.2 22.4
nodes - - 30 2768 109

benchl.pi time 1349.8 3600* 4.4 3.8 2.2
nodes 2001438 - 10 32 4

prom?2 time 376.9 3600* 5.2 2.2 8.0
nodes 25865 - 1 1 1

prom2.pi time 650.5 3600* 6.0 2.4 6.1
nodes 23585 - 1 1 1

max1024 time 224.3 3590.9 18.6 39.3 15.9
nodes 533635 1616993 118 224 11

max1024.pi time 1749.3 3600* 21.1 53.0 18.0
nodes 414030 - 119 282 16

ex5.pi time 36007 488.8 25.6 7.7 9.0
nodes — 223542 104 9 3

exH time 3157.9 400.4 116.5 5.9 43.2
nodes 615187 194663 1149 5 18

test4.pi time 3600* 3600 36007 3600* 3600*
nodes - - — - —

* times out at 3600 seconds.

This table compares five covering solvers on the set of two-level logic mini-
mization benchmarks. For each reference benchmark, we report the runtime
and the number of nodes explored by each solver with a one-hour timeout.
Clearly, traditional covering solvers scherzo and aurall are not competitive
with cplex, eclipse-lpr and eclipse-cp on either runtime or nodes. The perfor-
mance relationships among cplex, eclipse-lpr and eclipse-cp are less obvious.
We compare these three solvers more thoroughly in Table 4.7.

73

solvers.

The performance relationships among cplex, eclipse-lpr and eclipse-cp are less
obvious. In order to evaluate their performances more reliably, we conduct a set of
experiments with the three solvers on P-classes of size 32 on the same set of logic

minimization benchmarks. We report the results in Table 4.7.

Comparison between eclipse-lpr and eclipse-cp on P-classes. We first com-
pare the two variants of eclipse. In terms of runtime, eclipse-lpr generally runs much
faster on the easier instances such as prom?2, prom2.pi, and benchl. However, on
the more difficult instances such as exam.pi, max1024, and max1024.pi, eclipse-cp is
more efficient. On exam.pi in particular, eclipse-cp has a mean runtime of 5.4 seconds
whereas the mean for eclipse-Ipr is 160.6 seconds. In terms of the number of nodes ex-
plored, the pattern is much more consistent. Eclipse-cp always explores fewer nodes
than eclipse-Ipr on average. However, fewer nodes doesn’t always imply less runtime,
e.g. on benchl. This indicates that eclipse-cp spends more time processing each node

than eclipse-Ipr (mainly doing lower bounding) .

Comparison between cplex and eclipse-cp on P-classes. In terms of runtime,
cplex and eclipse-cp are very similar on all but three benchmarks: exam.pi, ex5 and
exd.pi. On these three benchmarks, eclipse-cp outperforms cplex by a big margin. For
example, on ezd, eclipse-cp has a mean runtime of 15.1 seconds and cplex runs more
than four times as slow at 66.2 seconds. In terms of the number of nodes explored,
eclipse-cp always explores fewer nodes on average. On instances such as exam.pi and
exd, the nodes explored by eclipse-cp are two orders of magnitude smaller than that
of cplex. Again, the savings on the number of nodes explored don’t always transfer
to the same amount of savings on runtime. For example, on maz102/, the average
number of nodes explored by cplez (298) is 10 times as much as that for eclipse-cp

(27); however, cplex still runs slightly faster than eclipse-cp.

Overall comparison of cplex, eclipse-lpr and eclipse-cp on P-classes. On
all benchmarks, eclipse-cp explores the least number of nodes on average. Eclipse-cp
also has the best overall runtime performance among three solvers. It is interesting

to observe that all three solvers explore one node on lin_rom, prom2 and prom?2.pi.

74

Table 4.7: Comparison of cplex, eclipse-lpr and eclipse-cp on P-classes of size 32 for
the unate covering benchmarks from two-level logic minimization.

benchmark measure cplex eclipse-lpr eclipse-cp
lin_rom time 0.19/0.02 0.34/0.02 0.19/0.02
nodes 1/0 1/0 1/0

exam.pi time 26.1/44.7 160.6/31.3 5.4/5.0
nodes 1917/4248 2523/448 12/22

benchl.pi time 7.3/2.3 2.4/1.5 4.7/1.4
nodes 68/50 17/15 7/4

prom2 time 5.1/0.8 2.8/0.13 8.0/0.7
nodes 1/0 1/0 1/0

prom2.pi time 5.2/0.7 2.5/0.2 7.8/0.8
nodes 1/0 1/0 1/0

max1024 time 26.6/21.3 52.7/20.3 27.5/18.7
nodes 208/578 254/69 27/20

max1024.pi time 20.3/7.9 58.9/18.1 23.0/12.3
nodes 148/217 257/71 22/13

exH.pi time 65.7/37.6 12.8/14.1 16.7/15.0
nodes 524/419 18/34 5/4

ex5 time 66.2/28.3 13.9/15.7 15.1/7.7

nodes 505/310 22/40 5/3

testd.pi time 3600* 3600* 3600*
nodes - - -

* times out at 3600 seconds.

This table compares cplex, eclipse-lpr and eclipse-cp on the P-classes of size
32 for the two-level logic minimization benchmarks. For each solver on each
benchmark, we report the mean and standard deviation of the runtime and the
number of nodes explored. On the easier instances, eclipse-cp behaves similar
to cplex. But on harder instances such as exam.pi, exd and exd.pi, eclipse-cp
performs significantly better. Eclipse-lpr runs much slower than the other two
solvers on exam.pi, max1024 and max1024.pi. All solvers time out on test4.pi.

1)

This means that there exists an all-integer optimal solution to the LP relaxation.
Therefore, there is no need to explore the search-tree beyond the root. The benchmark

test4.pi remains unsolvable by all three solvers.

4.5.2.2 Comparison on Set Covering and Random Benchmarks

Following the same setup for studying the logic minimization benchmarks, we first
run all solvers on the reference benchmarks and report the results in Table 4.8. We

then run them on P-classes of the reference benchmarks.

Comparison of Five Solvers on the Reference Instances. For the set cov-
ering group, the runtime information for scherzo and aurall are almost identical.
Both solvers are much faster than cplez, eclipse-lpr and eclipse-cp. For example, on
steiner_a0045, scherzo and aurall run for 6.8 and 8.6 seconds, respectively; cplex runs
for 38.9 seconds and both eclipse-lpr and eclipse-cp run for more than 200 seconds.
However, the number of nodes explored tells a different story. On steiner_a0045,
scherzo explores 42334 nodes whereas eclipse-cp only explores 5818 nodes. This dis-
crepancy between the runtime and the number of nodes is mainly due to the difference
between the overhead of the lower-bounding procedures. In this group, eclipse-lpr and
eclipse-cp are similar in runtime but are both slower than cpler. For the randomly
generated group, aurall is the most dominant solver in speed. Like before, eclipse

explores the least number of nodes.

Comparison of cplex, eclipse-lpr and eclipse-cp on P-classes. For the set
covering group, cplex is the most efficient among the three solvers. It is worth pointing
out that the standard deviation of runtime and nodes is much smaller than their
mean for all three solvers (except for cplex on steiner_a0045). This indicates that the
permutations applied on the P-class instances have limited impact on the landscape
of the search space. Given the fact that the set covering benchmarks are “handmade”
and contain numerous symmetries, this is expected.

For the randomly generated benchmarks, cpler and eclipse-lpr are faster than

eclipse-cp but no clear winner can be declared. The tradeoff between quality and

76

Table 4.8: Comparison of scherzo, aurall, cplex, eclipse-lpr and eclipse-cp on unate
covering benchmarks (reference instances only) from set covering and randomly gen-
erated set.

benchmark measure scherzo aurall — cplex eclipse-lpr eclipse-cp

steiner_a0009 time 0.01 0.01 0.01 0.04 0.11
nodes 14 6 5) 5 12

steiner_a0015 time 0.01 0.01 0.03 0.36 0.32
nodes 60 86 91 39 29

steiner_a0027 time 0.09 0.14 0.79 11.87 13.29
nodes 2054 4145 3707 1287 1040

steiner_a0045 time 6.81 8.58 38.94 268.17 214.11
nodes 42334 93815 72135 15852 5818

steiner_a0081 time 3600 3600 3600 3600 3600
nodes - - - - -

m100.100_.10_15 time 2.57 1.01 0.93 0.96 2.28
nodes 10335 11067 116 33 19

m100.100.10_30 time 1.70 0.33 1.78 0.64 0.67
nodes 4618 2724 510 25 5

m100-100-10_10 time 15.29 8.99 4.19 4.59 8.39
nodes 95086 127919 1040 312 81

m200.100_10_30 time 245.5 55.9 82.06 106.01 258.76
nodes 564302 371160 25409 2847 1592

m200-100_30_50 time 71.4 14.1 129.07 65.29 200.68
nodes 123621 51616 30529 1511 1178

This table compares five covering solvers on the set covering and randomly
generated benchmarks. For each reference benchmark, we report the runtime
and the number of nodes explored by each solver with a one-hour timeout.
On the set covering benchmarks, scherzo and aurall behave similarly and
they both outperform the other three solvers. On the randomly generated
benchmarks, aurall is the clear winner. Even though eclipse-lpr and eclipse-
cp explores significant fewer nodes, they are still much slower than scherzo
and aurall on most benchmarks. All solvers time out on steiner_a0081.

7

Table 4.9: Comparison of cplex, eclipse-lpr and eclipse-cp on P-classes of size 32 for

the unate covering benchmarks from set covering and randomly generated set.

benchmark measure cplex eclipse-lpr eclipse-cp
steiner_a0009 time 0.01/0 0.04/0.01 0.11/0.03
nodes 2.2/2.6 5/0 12/0

steiner_a0015 time 0.03/0 0.32/0.06 0.37/0.16
nodes 82/5 37/2 31/14

steiner_a0027 time 0.81/0.04 11.88/0.54 14.1/1.24
nodes 3635/188 1278/10 1060/101

steiner_a0045 time 39.3/49.5 307.1/26.7 229.8/6.2
nodes 74547/9390 20648/4228 5998/141

steiner_a0081 time 3600* 36007 36007
nodes = - -

m100.100_10_15 time 0.9/0.1 1.07/0.57 2.45/0.41
nodes 116/1 50/44 22/4

m100-100-10_.30 time 1.0/0.4 0.53/0.23 0.65/0.01
nodes 222/163 19/18 5/0

m100.100_.10_10 time 6.7/3.1 10.75/10.25 17.1/19.7
nodes 2403/1595 665/643 200/270

m200-100-10-30 time 78.1/3.4 107.7/1.6 258.9/1.06
nodes 22603/1398 2846/2 1592/0

m200.100_30.50 time 123.0/4.7 66.0/1.2 202.0/0.77
nodes 31051/293 1511/0 1180/2

This table compares cplex with eclipse-lpr and eclipse-cp on P-classes of size
32 for the set covering and randomly generated benchmarks. The mean and
standard deviation for runtime and nodes are reported. On the set covering
benchmarks, cplex is much more efficient than eclipse-lpr and eclipse-cp even
though the latter two explore fewer nodes on average. All three solvers show
very small variability in both runtime and nodes. On the randomly generated
benchmarks, eclipse-cp generally runs slower than the other two solvers but
no clear dominance relationship exists between cplex and eclipse-Ipr. Again,
eclipse-cp explores the least number of nodes on average.

78

efficiency of the lower-bounding techniques manifests itself again here: for the number
of nodes explored, eclipse-cp consistently has the least mean value for all benchmarks;

however, eclipse-cp still runs slower than the other two solvers.

4.5.3 Binate Covering Comparisons

We first consider five solvers’ performance on the reference instances from logic syn-
thesis benchmarks. The covering solver aurall can only solve unate covering problems

so we replace it with bsolo in the binate covering comparisons.

Comparison of five solvers on the reference instances. The results are re-
ported in Table 4.10. It is clear that bsolo is not competitive so we exclude it from the
following discussions. On the easy benchmarks, scherzo remains competitive with the
other three solvers. For the more difficult instances, apex4.a and rot.b, both cplex and
eclipse-cp outperform scherzo. Eclipse-lpr times out on these two instances mainly
because its lower-bounding procedure doesn’t provide large enough lower-bounds to
prune the search early. Recall that in Table 4.2, eclipse-lpr returns a lower-bound
of 756 for apezxj.a, but eclipse-cp returns a lower-bound of 773 (only 4 away from
the global optimum). For rot.b, eclipse-lpr returns a lower-bound of 111 whereas
eclipse-cp returns 114 (only 1 away from the global optimum). For the number of
nodes, eclipse-cp explores the least amount on all benchmark except for rot.b. We
observe that when eclipse-lpr times out on apex4.a and rot.b, thousands of unexplored
nodes still reside in its priority queue. All solvers time out on the two most difficult

instances: alu4.b and e64.b.

Comparisons of cplex, eclipse-lpr, and eclipse-cp on P-classes. In Ta-
ble 4.11, we observe that cplex is the fastest solver in most cases, especially for
the two harder instances apexr4.b and rot.b. For these two benchmarks, eclipse-Ipr
times out mainly because its relatively weak lower-bounding technique. Using cut-
ting planes for lower bounding, eclipse-cp is able to solve the two instances. On the
two instances, it also explores the least number of nodes on average among the three

solvers; however, its runtime performance is not as competitive as cplez.

79

Table 4.10: Comparison of scherzo, bsolo, cplex, eclipse-lpr and eclipse-cp on binate
covering benchmarks (reference instances only) from logic synthesis.

benchmark measure scherzo bsolo cplex eclipse-lpr eclipse-cp

count.b time 333.7 2275.5 0.7 0.7 1.8
nodes 1429 31002 20 1 1

clip.b time 0.1 7.7 0.8 3.4 1.9
nodes 85 535 60 127 17

9sym.b time 1.9 0.5 1.1 1.5 4.2
nodes 318 43 31 1 1

jac3 time 2.6 3600* 1.5 2.6 7.8
nodes 294 - 7 3 3

f51m.b time 0.9 2897 1.9 2.3 5.0
nodes 1562 45271 199 128 81

sao2.b time 0.4 3600* 3.6 2.1 1.6
nodes 285 - 602 35 3

5xpl.b time 2.1 3600* 5.0 2.3 4.1
nodes 2661 - 258 128 36

apex4.a time 87.4 36007 9.9 3600* 29.5
nodes 33185 - o87 - 7

rot.b time 3600* 3600* 12.5 3600* 507.0
nodes - - 308 - 716

alud.b time 3600* 3600* 3600* 3600* 3600*
nodes - - - - -

e64.b time 3600* 3600* 3600* 3600* 3600*
nodes - = - - -

This table compares scherzo, bsolo, cplex, eclipse-lpr and eclipse-cp on the
binate covering reference benchmarks from logic synthesis. Bsolo is clearly not
competitive with other solvers. Scherzo is competitive on easier benchmarks
but runs much slower than cplex and eclipse-cp on two harder instances apex.a
and rot.b. Fclipse-Ipr times out on these two instances because of its relatively
weak lower-bounding technique. All solvers time out on the two most difficult
instances alu4.b and e64.0b.

80

Table 4.11: Comparison of cplex, eclipse-lpr, and eclipse-cp on P-classes of size 32 for
the binate covering benchmarks from logic synthesis.

benchmark measure cplex eclipse-lpr eclipse-cp
count.b time 0.7/0.4 0.7/0.02 2.0/0.1
nodes 21/18 1/0 1/0

clip.b time 0.4/0.3 2.8/0.8 1.1/0.7
nodes 18/23 88/32 8/8

9sym.b time 1.2/0.9 1.7/0.04 4.6/0.1
nodes 48 /65 1/0 1/0

jac3 time 2.5/38 3.3/0.3 8.1/1.0
nodes 13/45 3/0 3/0

f51m.b time 2.2/0.9 3.2/1.7 2.8/2.5
nodes 325/314 168/94 68/86

sao2.b time 1.6/0.7 3.3/2.6 3.1/4.8
nodes 216/168 63/5 101/340

oxpl.b time 6.2/5.0 3.2/1.7 3.1/1.5
nodes 499/856 168/94 10/7

apex4.a time 11.3/5.2 3600* 52.0/10.5
nodes 588/494 - 211/73

rot.b time 70.7/52.9 3000 333.4/153.2
nodes 3967/3706 - 455/208

alud.b time 3600* 3600* 3600
nodes - - -

e64.b time 3600* 3600* 3600*
nodes - - -

This table compares cplex, eclipse-lpr and eclipse-cp on P-classes of size 32 for
the binate benchmarks from logic synthesis. The mean and standard devia-
tion for runtime and nodes are reported. Overall, cplex has the best runtime
behavior whereas eclipse-cp explores the least number of nodes on average.
Eclipse-lpr times out on aperj.a and rot.b. With lower bounding using cut-
ting planes, eclipse-cp is able to solve apezrj.a and rot.b, but it is still much
slower than cplex. All solvers time out on alu.b and e64.b.

81

4.5.4 Runtime Analysis

During an execution of eclipse, the CPU cycles are spent doing the following: (1) lower
bounding, (2) matrix copying when generating new nodes, (3) reduction, (4) local
search at each node, and (5) bookkeeping. Figure 4.2 takes a closer look at the
breakdown of the execution time for eclipse-Ilpr and eclipse-cp. Shown in the top figure
in Figure 4.2, the lower-bounding procedure is the most time consuming component
of eclipse-lpr for the five unate benchmarks: over 40% of the total time is dedicated
to doing lower bounding. For the two relatively easy binate benchmarks, jac3 and
sa02, the time spent on local search is most dominant. Unfortunately, we are unable
to do a similar analysis for harder benchmarks such as apexr/ and rot.b because they
remain unsolved by eclipse-Ipr.

In the bottom figure in Figure 4.2, we include all the benchmarks in the top
figure as well as two benchmarks that are unsolved by eclipse-Ipr, namely, apex4 and
rot.b. For the unate benchmarks, the lower-bounding time in eclipse-cp is even more
dominant: lower bounding consumes over 65% of the total execution time. For the
binate benchmarks, the profiles for jac? and sao2 are similar to that for eclipse-Ipr.
However, for apex/ and rot.b, over 80% of the runtime are spent on doing lower
bounding.

Overall, Figure 4.2 indicates that lower bounding is the dominant time-consuming
factor in both eclipse-lpr and eclipse-cp in most cases. Any future improvement
on eclipse-Ipr and eclipse-cp should first focus on speeding up the lower-bounding

procedures without loss of quality.

4.6 Summary

In this chapter, we introduced a new state-of-the-art branch-and-bound covering
solver, eclipse. Eclipse implements well-known reduction techniques, branching vari-
able selection strategies and search prune methods on top of efficient data structures.

Three new features in eclipse are advanced lower-bounding techniques (Section 4.4.1),

ex5

max1024
exam.pi
steiner_a0027

ex5

max1024
exam.pi

steiner_a0027

m200_100_30_50

jac3

m200_100_30_50

saon2

jac3

apex4

saon2

rot.b

Book Keeping

Stochastic Search

Reduction

Matrix Duplication

Lower Bounding

Book Keeping

Stochastic Search

Reduction

Matrix Duplication

Lower Bounding

82

Figure 4.2: The breakdown of execution time for various components of eclipse-Ipr

(top) and eclipse-cp (bottom).

83

upper bounding with local search (Section 4.4.2), and best-first search-tree explo-
ration strategy (Section 4.4.3).

For lower bounding, eclipse implements two advanced techniques: linear program-
ming relaxation (LPR) and cutting planes (CP). We showed that these two lower-
bounding techniques are able to consistently provide better or equal lower-bounds
than MIS-based methods. For upper bounding, eclipse conducts a local search at
each node of the search tree in order to find the best possible upper-bound. Through
carefully designed search initialization method and termination criterion, the local
search is able to find the best possible upper-bound early and yet without degrading
the overall performance of eclipse. For search-tree exploration, eclipse conducts a
best-first search where the first node to explore has the lowest lower-bound among all
unexplored nodes. Best-first search enables eclipse to find the best possible upper-
bound earlier than depth-first search.

Combining all the features above, we created two variations of eclipse: eclipse-Ipr
and eclipse-cp. Through statistically significant experiments, we showed that both
eclipse-lpr and eclipse-cp can outperform traditional covering solvers by a big margin
on the unate benchmarks from logic minimization. For the set covering and random
benchmarks, scherzo and aurall are still the leading solvers. Cpler has the best
performance on binate benchmarks from logic synthesis. Eclipse-cp stays competitive
with eplex but is slower on some benchmarks. For all the benchmarks above, eclipse-
cp consistently explores the least number of nodes among all solvers; however, its
expensive lower-bounding procedure can sometimes slow it down significantly.

In order to further enhance the performance of eclipse, the following areas are

worth pursuing:

1. The Generation of Gomory Cuts. We have observed throughout our exper-
iments that even though eclipse-cp is able to explore very few nodes compared
to other solvers, it doesn’t consistently have the fastest runtime. Recall that
in the lower-bounding method with cutting planes (Section 4.4.1), doing lower
bounding with CP involves (1) solving the original LP problem, (2) generat-

ing the Gomory cuts and creating a new LP problem, and (3) solving the new

84

LP problem. We observe that generating the Gomory cuts are the most time
consuming part of this process. Currently, we don’t have control over how the
Gomory cuts are generated because it is done internally by cplex. It is worth
investigating whether it pays to generate the Gomory cuts directly. By gener-
ating the cuts ourselves, we may be able to decide the number of Gomory cuts
to generate as well as which ones to generate. Good decisions here may lead
to a better balance between the quality of the lower-bounds returned and the

time consumed by the lower-bounding procedure.7:49 am

. Incremental Lower Bounding. The lower-bounding procedure using ei-
ther LPR or CP is implemented in eclipse in two ways: incremental and non-
incremental. When implemented incrementally, an LP model is created at
program initialization according to the covering matrix. When a variable is as-
signed, e.g., x; = 1, either due to branching or reduction, the model is updated
with the constraint r; = 1. The lower bounding is then carried out based on
the updated model. When eclipse backtracks, the model is updated accordingly.
For example, if eclipse backtracks to level ¢, then all the constraints correspond-
ing to the assignments made below level ¢ are removed from the model. When
LPR and CP are implemented non-incrementally, a new LP model is created at
each node of the search-tree from the current covering matrix. Implementing the
lower-bounding procedure incrementally avoids creating a new model at each
node and was expected to be more efficient than the non-incremental approach.
However, preliminary experiments show that the two approaches perform very
similarly in runtime. It is likely that we haven’t found the most efficient way of

updating the LP model in cplex.

. Dynamic Local-Search Termination Criterion. As Figure 4.2 indicates,
the local-search procedure can sometimes take up a significant portion of the
runtime in both eclipse-lpr and eclipse-cp. According to our parameterized
local-search termination criterion, the nodes on the same level of the search-
tree are allocated the same number of flips. Instead of running the local search

for such a fixed number of flips, more dynamic search termination criterion may

85

be used to reduce the amount of search. For example, the search may still run
up to its allocated number of flips but may terminate early if no improvements

have been made for a certain period of time.

. Choosing the best lower-bounding technique. On the set covering and
randomly generated benchmarks, both eclipse-lpr and eclipse-cp are slower
than scherzo and aurall mainly because the overhead of the expensive lower-
bounding procedures. We observe that eclipse can be made competitive simply
by switching to the MIS-based lower bounding. This raises the question of how
we decide which lower-bounding technique to use for a given benchmark. One
possible indicator is the distance between the lower-bound found at the root and
the cost of the optimal solution. Recall that eclipse-cp outperforms scherzo and
aurall on unate benchmarks from logic minimization and binate benchmarks
from logic synthesis. We observe that for these benchmarks, the distances be-
tween the lower-bound found at the root and the cost of the optimal solution
are very small (mostly 0 or 1 but can be up to 3; please refer to Table 2.1 and
Table 2.2). However, for the set covering and randomly generated benchmarks,
such distances are normally larger (ranging from 1 to 29 but mostly 3 and up;
please refer to Table 2.1). Even though we don’t know the optimum up front,
a local search for the upper-bound at the root of the search-tree can normally
provide a very good estimate. Therefore, we may choose to measure the dis-
tance between the lower-bound and the upper-bound at the root in order to

determine which lower-bounding heuristic to use.

36

Chapter 5

Local Search Algorithms

Branch-and-bound MinCostSat algorithms explore the search space systematically
and they reduce the potentially exponential search space by using reduction and
search pruning techniques. However, branch-and-bound algorithms don’t scale well.
We have seen that large benchmarks such as test4.pi and alu4.b remain unsolved
by any branch-and-bound covering solver. For such problems, we have to rely on

local-search algorithms to find optimal or near optimal solutions.

5.1 Introduce the Eclipse-stoc Algorithm

First stated in Section 1.4, the two main challenges faced by local-search MinCostSat
algorithms are (1) the feasibility issue: finding a solution that satisfies all the con-
straints and (2) the quality issue: finding a feasible solution with the minimum cost.
In this chapter, we present a new SAT-based local-search algorithm for MinCostSat
called eclipse-stoc. Eclipse-stoc attempts to address the two challenges of MinCostSat
as follows.

To address the first challenge, we rely on local-search Sat algorithms to find fea-

sible solutions (and hopefully, good quality solutions). We consider two prominent

87

local-search Sat algorithms: walksat [70] and unitwalk [71]. According to our experi-
ences with Sat benchmarks and solvers [72], no single solver dominates the other on
all benchmarks. In most cases, walksat works better for randomly generated bench-
marks with little structure while unitwalk works better for more structured instances.
However, facing an unknown benchmark, how do we decide its “structuredness”? In
this work, we present two measures, one static and one dynamic. The static measure
is simply the percentage difference between the positive and negative literals in the
benchmark. The dynamic measure is variable immunity, a parameter we introduced
in [72] that gauges the structuredness of the benchmarks. Based on either measure,
we can effectively choose the better solver between unitwalk and walksat to solve a
given benchmark.

Once a feasible solution is found, we address the second challenge by conducting
a local search around the solution in the pursuit of an optimal solution. The local
search uses ideas from walksat, gsat [73] and tabu search [74]. The solver gsat was the
first successful local-search algorithm for Sat and tabu search increases the robustness
of our algorithm by ensuring that the value of a variable cannot be changed if the
variable is in the tabu list. The tabu list contains the variables changed most recently.

In the rest of this chapter, we first present the two measures of benchmark struc-
turedness. We then introduce modified versions of unitwalk and walksat that are
used to find feasible solutions for MinCostSat. After that, we present the local-search
techniques for finding good quality solutions. We then describe the eclipse-stoc algo-
rithm, which combines all these concepts along with the reduction techniques from
branch-and-bound solvers. In the experimental section, we study the performance
of eclipse-stoc on native MinCostSat benchmarks from two-level logic minimization,

logic synthesis and ATPG.

5.2 Benchmark Profiling

Benchmark profiling is the idea of putting benchmarks in different categories so that

each benchmark is solved by a solver that is most suitable for the benchmark’s cat-

88

egory. In this chapter, we consider the native MinCostSat benchmarks that include
all the UCP and BCP benchmarks (see Table 2.1 and Table 2.2) and non-covering
benchmarks from ATPG (see Table 2.3). We consider two local search based Sat solvers
unitwalk and walksat and we categorize the benchmarks as either structured or un-

structured. We introduce two measures of benchmark structuredness next.

5.2.1 The Static Measure

The static measure is the percentage difference between the positive literals m and

negative literals n in the formula:

[n —m|

percentage difference = (5.1)

n+m

We calculate the percentage differences for the benchmarks from Table 2.1- 2.3
and report them in Table 5.1 and Table 5.2. Not surprisingly, for all the covering
benchmarks, the percentage differences are above 60% with most of them over 90%.
For the non-covering benchmarks from ATPG, the percentage differences are around
10%. This means in these benchmarks, the positive and negative literals are fairly

balanced.

5.2.2 The Dynamic Measure

The dynamic measure is called wvariable immunity. Before we show how variable

immunity is calculated, we present some additional Sat concepts:

1. A Sat formula is empty if all its clauses are either satisfied or conflicted. A
clause is satisfied when one of its literals is true. A clause is conflicted if all of

its literals are false.

2. When a unit clauses {z} exists in a Sat formula, in order to satisfy the formula,
the unit literal z has to be set true. This unit literal is then propagated: all

clauses containing = are then satisfied and all z’s are removed from its residing

89

clauses. New unit clauses can arise as a result and they are propagated similarly.
This process stops when no unit clauses exist and we call this process unit

propagation.

Algorithm: calculate-variable-immunity
input: a Boolean formula F' in CNF (n = # of variables)
output: the value of variable-immunity
method:
1 wariable-immunity = 0
2 random-assignments = 0
3 for i :=1 to MAX-ITERATIONS do
4 while F # () do
5 assign a random value to an unassigned variable chosen at random
6 random-assignments++
7 do unit propagation until no unit clauses exist
8 end do
9 restore F'
10 end do
11 wariable-immunity = random-assignments / (n x MAX-ITERATIONS)
12 return variable-immunity

Figure 5.1: The algorithm for calculating the variable immunity

We show how to calculate variable immunity in Figure 5.1. Our experiments with
existing SAT benchmarks show that structured instances have low variable immunity
(normally below 0.1 or 10%). Intuitively, for these benchmarks, the variables have
intricate and tight relationships, and one variable’s assignment may cause a lot of
other variable to take on certain values. This leads to a low variable immunity because
only a few random assignments are needed to make the formula empty. On the other
hand, unstructured instances have a higher variable immunity because many variable
assignments have little impact on other variables and a large portion of the variables
have to be assigned randomly instead of assigned by unit propagation.

In Table 5.1, the variable immunity is above 90% for logic minimization and

randomly generated benchmarks; for the Steiner set-covering benchmarks, the vari-

90

Table 5.1: The static and dynamic measures of structuredness on unate covering

benchmarks.

static dynamic

benchmark % diff immunity
lin_rom 100 95.7

exam.pi 100 99.9
bench100.pi 100 99.9
prom?2 100 96.3

prom?2.pi 100 95.9
max1024 100 95.5
max1024.pi 100 92.4
exH.pi 100 99.9

exd 100 98.8

test4.pi 100 99.9
steiner_a0009 100 75.4
steiner_a0015 100 65.9
steiner_a0027 100 54.3
steiner_a0045 100 46.1
steiner_a0081 100 40.1
m100-100-10_30 100 92.9
m100-100-10-15 100 99.9
m100.100_10_10 100 99.7
m200-100_10_30 100 99.9
m200-100_30_50 100 99.9

The table presents the static and dynamic structuredness measures of
the UCP benchmarks. Since all benchmarks are unate, the percentage
differences (static measure) is 100%. For variable immunity (dynamic
measure), all benchmarks except the Steiner set-covering instances have
a value above 90%. Compared to the ATPG benchmarks in Table 5.2,
both measures here are much higher.

91

Table 5.2: The static and dynamic measures of structuredness on binate covering
benchmarks.

static dynamic

benchmark % diff immunity

count.b 92.7 98.1

clip.b 90.8 99.1

9sym.b 91.7 99.9

jac3 85.8 99.2

f51m.b 92.9 98.4

sao2.b 88.7 98.0

5xpl.b 94.6 99.6

apex4.a 61.7 92.7

rot.b 87.1 97.3

alud.b 90.4 97.7

e64.b 79.0 99.8
c432_F37gat@1 10.6 7.5
misex3_Fb@1 10.6 1.2
¢1908_F469@0 11.0 3.0
c6288_F69gat@1 10.4 1.7
¢3540_F20Q1 11.3 1.5

This table presents the static and dynamic structuredness measures for
the binate covering and the non-covering benchmarks. Both measures for
the ATPG set are significantly lower than those for the logic synthesis set.

able immunity decreases as the number of columns grows but it is still at 40% for
steiner_a0081, the largest such benchmark we consider. In Table 5.2, the variable
immunity is above 90% for all logic synthesis benchmarks but below 10% for all the
ATPG benchmarks. We observe very strong correlation between the static and dynamic
measures. Both measures are much lower for the ATPG benchmarks.

Since there exists a sharp threshold for both measures to categorize the Min-

CostSat benchmarks into the same two groups, either measure can be used in the

92

eclipse-stoc algorithm. We choose to use variable immunity in the eclipse-stoc algo-

rithm because we believe it is the more robust measure.

5.3 Addressing the Feasibility Issue

After calculating the variable immunity, we can decide which local-search solver to
use to find feasible solutions for MinCostSat. We use unitwalk for benchmarks with
low variable immunity and walksat for high variable immunity (both algorithms are
adapted to MinCostSat after some minor changes). We set the threshold at 8% be-
cause it is effective in separating structured and unstructured benchmarks. Both
unitwalk and walksat generate initial assignments for the variables and these assign-
ments are modified by complementing (flipping) the value of some variable in each
step. We first present the modified unitwalk algorithm and then present the modified

walksat algorithm.

5.3.1 The unitwalk Algorithm Adapted for BCP

The unitwalk algorithm takes advantage of unit propagation whenever possible, de-
laying variable assignment until unit clauses are resolved. Initially, the variables are
randomly assigned to true or false. An iteration of the outer loop of unitwalk is called
a period. At the beginning of a period, a permutation of the variables is randomly
chosen. The algorithm will start doing unit propagation using the assignment for the
first variable in the permutation. The unit propagation process modifies the current
assignment and will continue as long as unit clauses exist. When there are no unit
clauses left and some variables remain unassigned, the first unassigned variable in the
permutation along with its current assignment is chosen to continue the unit prop-
agation process. At least one variable is flipped during each period, thus ensuring
progress. If at the end of a period, the formula becomes empty, then the current
assignment is returned as the satisfying solution.

We modify the unitwalk algorithm slightly: instead of generating a random as-

93

signment at the beginning of a period, we set all non-zero cost variables to false and

set all zero cost variables to true or false randomly. This way, we generate an initial

assignment with a zero cost. We present the algorithm in detail in Figure 5.2.

Algorithm: unitwalk-adapted
input: a Boolean formula F' in CNF containing n variables xy,- - -, z,
the cost function of the variables C'ost
output: a satisfying assignment A or “No solution found”
method:
1 for each variable z;
2 if cost(z;) > 0, then A[i] =0
3 else assign A[i] randomly
4 end do
5 for p:=1to MAX-PERIODS do
6 7 := random permutation of 1,---,n
7 G = F; flipped := false
8 for i :=1ton do
9 while G contains a unit clause do
10 pick a unit clause {z;} or {Z;}
11 if this clause is not satisfied by A and G doesn’t contain the
12 opposite unit clause then flip A[j] and set flipped := true
13 G = Glv; — Alj]]
14 end do
15 if variable v,[; still appears in G then G := Glvy;) — Anli]]]
16 end do
17 if G contains no clauses, then return A
18 if flipped = false, then choose j randomly from 1, - - n and flip A[j]
19 end do
20 Output "No solution found”

Figure 5.2: The unitwalk algorithm adapted for MinCostSat.

As lines 8-13 show, the algorithm will continue doing unit propagation as long as

unit clauses exist. During the search in unitwalk, a variable v with non-zero cost is

assigned true under only two conditions: (1) when this assignment is part of the unit

propagation process in which v becomes a unit literal, v has to be flipped from false

Algorithm: walksat-adapted
input: a Boolean formula F' in CNF containing n variables vy, - - -
the cost function of the variables C'ost
output: a satisfying assignment A or “No solution found”
method:
1 for ¢t :=1 to MAX-TRIES do
2 for each variable v; do
3 if cost(v;) > 0, then A[i] =0
4 else assign A[i] randomly
5 end do
6 for 7 := 1 to MAX-FLIPS do
7 choose an unsatisfied clause C' at random
8 with probability p
9 choose a variable x in C' at random
10 with probability 1 —p
11 choose a variable x in C' that minimize the
12 number of unsatisfied clauses when flipped
13 modify A by flipping the value of z in A
14 if A satisfies F', return A
15 end do
16 end do
17 Output ”No solution found”

Figure 5.3: The walksat algorithm adapted for MinCostSat.

94

to true (line 12). (2) when no flip is made for the period, v is randomly chosen and

flipped from false to true (line 17). The first condition attempts to keep the formula

satisfied at the expense of increasing the cost of the current assignment. The second

condition can happen because we need to make sure that at least one flip is made

during each period, but this is a rare event.

95

5.3.2 The walksat Algorithm Adapted for BCP

We present the adapted walksat algorithm in Figure 5.3. In walksat, an initial assign-
ment is chosen the same way as in unitwalk. The variable to be flipped is chosen from
a randomly picked unsatisfied clause (line 7). walksat chooses a variable to flip with
the following heuristic: with probability p (the noise parameter), randomly choose a
variable in the clause (line 9); with probability 1 — p, pick a variable that minimizes
the number of unsatisfied clauses when flipped (lines 11-12). The chosen variable is
then flipped on line 13. If a solution is not reached after a specified number of flips,

walksat tries again with a new random assignment as its starting point.

5.4 Addressing the Quality Issue

Once a solution is found by using either unitwalk or walksat, we can attempt to find
an optimal solution by doing a local search around the solution found. The details of
the local-search algorithm are presented in Figure 5.4.

The neighborhood-search algorithm combines ideas from random walk, walksat
and gsat. In addition, to increase the robustness of the search, tabu search is also
added: we maintain a tabu list that contains the most recently flipped variables and
no variable in the tabu list can be flipped. During each iteration of the main loop,
with probability p;, a variable is randomly chosen (lines 3—4). With probability ps, if
unsatisfied clauses exist, choose one at random and choose the variable in the clause
that minimizes the number of unsatisfied clauses when flipped; otherwise, choose a
true variable with non-zero weight at random (this is an attempt to reduce the cost
of the solution) (lines 5-10). With probability 1 — p; — ps, choose the variable that
minimizes the number of unsatisfied clauses when flipped (lines 11-13). If the chosen
variable is not in the tabu list, it is flipped and added to the tabu list (lines 14-16).
The length of the tabu list has little impact on eclipse-stoc and any small positive
integer suffices. In our experiments, the default is 3. If the resulting assignment is

feasible and has a cost less than the best known solution, then the best solution is

Algorithm: neighborhood-search
input: a Boolean formula F' in CNF

the cost function of the variables Cost
a solution A

output: the best cost found
method:

1 best-solution = A

2 for i :=1 to MAX-FLIPS do

3 with probability p,

4 choose a variable z at random

) with probability py

6 if unsatisfied clauses exist

7 then choose an unsatisfied clause C' at random

8 choose a variable x in C' that minimizes the

9 number of unsatisfied clauses when flipped

10 else choose a true variable with non-zero weight at random
11 with probability 1 — p; — po

12 choose the variable z that minimizes the number of
13 unsatisfied clauses when flipped

14 if z is not in the tabu list

15 then modify current-solution by flipping the value of x in A
16 add z to the tabu list

17 if A is feasible and cost-of(A) < cost-of(best-solution)
18 then best-solution = A
19 end do

20 return best-solution

96

Figure 5.4: The neighborhood-search algorithm that searches for optimal solutions.

updated with the current solution (lines 17-18). The main loop runs for MAX-FLIPS

number of iterations, which is determined by the size of the formula.

97

Algorithm: Eclipse-stoc
input: a Boolean formula F' in CNF
the cost function of the variables Cost
output: the best cost found
method:
1 best = INT-MAX
2 current-solution = NULL
3 wariable-immunity = calculate-variable-immunity (F)
4 for 7 :=1 to MAX-ITERATIONS do

5 if variable-immunity < THRESHOLD

6 current-solution = unitwalk-adapted(F, Cost)

7 else

8 current-solution = walksat-adapted(F', Cost)

9 current-solution = neighborhood-search(F', Cost, current-solution)

10 if cost-of(current-solution) < best

11 then best = cost-of(current-solution)
12 end do

13 return best

Figure 5.5: The eclipse-stoc algorithm for MinCostSat.

5.5 The Eclipse-stoc Algorithm

The eclipse-stoc algorithm in Figure 5.5 combines all the algorithms introduced in this
chapter. On line 3, the eclipse-stoc algorithm calculates the variable immunity and
decides which one of unitwalk and walksat to use to find feasible solutions. On lines 5
8, the chosen solver finds a feasible solution for MinCostSat; the neighborhood-search

is done on line 9; and the best solution is updated on lines 10-11.

5.6 Experimental Results

Eclipse-stoc, like many other local-search solvers, doesn’t have a natural termination

criterion: it can run for a fixed number of iterations, a fixed amount of time, or

98

terminate when a solution with a desired quality is found. In our experiments with

eclipse-stoc, we use one of two termination criteria:

1. Termination Criterion A: each eclipse-stoc run is terminated when the best

known value is found for the first time or when a timeout has been reached.

2. Termination Criterion B: for large benchmarks whose optimum is unknown,
eclipse-stoc is allowed to run for the same duration the branch-and-bound solvers

are allowed to run.

Termination criterion A allows us to gauge the ability of eclipse-stoc in finding an

optimal solution. It was also used in the early design stage to tune the local search.

5.6.1 Unate Covering Comparisons Under Termination A

Table 5.3 presents the eclipse-stoc results under termination criterion A on the P-
classes of the unate covering benchmarks. We study two variations of eclipse-stoc,
one applies an initial reduction to the covering matrix and the other one does not.
We terminate each experiment run when either the best known solution is found or

when the timeout of 300 seconds is exceeded.

Comparisons between with and without reduction. On the logic minimization
benchmarks, eclipse-stoc is generally faster in finding the best known solutions with
an initial reduction than without an initial reduction (e.g. exam.pi and benchl.pi).
On benchl.pi, without an initial reduction, eclipse-stoc times out at 300 seconds 19 out
of 33 runs on the P-class instances; with the reduction, it finds the optimum in only
4.9 seconds on average. On maz1024 and maxl024.pi, eclipse-stoc times out with
or without doing initial reduction. This indicates that eclipse-stoc can sometimes
get stuck in local minima and it echoes a point we made in Section 4.4.2: upper
bounding with local search at the root of the search tree may not find the best possible
upper-bound. The Steiner set-covering and randomly generated benchmarks are not
susceptible to reduction; therefore, we observe no significant differences between the

two variations of eclipse-stoc on these benchmarks.

99

Table 5.3: The eclipse-stoc results on unate covering benchmarks under termination
criterion A.

No Reduction With Reduction
benchmark runtime flip runtime flip
lin_rom 0.7/0.9 45890/77418 0.4/0.2 30842/23370
exam.pi 26.0/22.2 925481/836855 2.9/1.7 121631/160188
benchl.pi 279.8/74.1* 1.03e7/3.07¢6 4.9/3.8 492360/433963
prom2 1.5/0.5 45673/22314 1.5/0.6 49369/40488
prom2.pi 1.7/0.6 60363/27839 1.3/0.4 42021/22611

max1024 300.0/0° 4.75e6,/16890 300.0/0° 5.63e6/617978
max1024.pi 300.0/0° 4.58e6,/198374 300.0/0° 5.52e6,/896550

exd.pi 7.0/5.7 356154/350382 2.8/1.3 93156,/96295

exd 6.4/8.0 230983/209635 2.9/1.0 99890/77463

test4.pi 12.8/1.4 22636/6976 10.4/1.3 25302/9917
steiner_a0009 0.01/0 3/2 0.01/0 3/2
steiner_a0015 0.01/0 3/2 0.01/0 3/2
steiner_a0027 0.01/0 27/27 0.01/0 27/27
steiner_a0045 6.8/5.6 1.82e6/1.49¢6 7.0/5.7 1.82e6/1.49¢6
steiner_a0081 0.02/0.02 1813/3162 0.02/0.02 1813/3162
m100-100_10_30 0.01/0.01 80/18 0.01/0.01 80/18
m100-100-10_15 0.05/0.05 11533/12177 0.05/0.05 11533/12177
m100.100_10_10 0.08/0.07 18620/18241 0.1/0.1 18620/18241
m200_100_10_30 0.02/0.01 1930/1702 0.02/0.01 1930/1702
m200_100.30.50 0.02/0.01 201/115 0.02/0.01 201/115

* eclipse-stoc times out at 300 seconds on 19 out of 33 instances.

¢ eclipse-stoc times out at 300 seconds.

This table presents the eclipse-stoc results on the P-classes of size 32 of the
unate covering benchmarks. We study two variations of eclipse-stoc, with and
without initial reduction. We terminate each experiment when either the best
known solution is found or the timeout is exceeded. On the logic minimization
benchmarks, eclipse-stoc is generally faster in finding the best known solution
with reduction. No significant differences between the two variations of eclipse-
stoc can be observed on set-covering and randomly generated benchmarks.

100

Comparisons between eclipse-stoc and eclipse-cp. Even though it is hardly
fair to compare a local-search solver with a branch-and-bound solver, we would like to
make a few interesting observations by comparing the eclipse-stoc data in Table 5.3
with the eclipse-cp data in Table 4.7. On benchl.pi, eclipse-stoc takes 4.9 seconds
on average to find an optimal solution; however, eclipse-cp only takes 4.7 seconds
on average to find and prove the optimality of such a solution. More surprisingly,
on max1024 and mazx1024.pi, eclipse-stoc times out at 300 seconds but eclipse-cp
can find the optimal solutions and prove their optimality in 27.5 and 23.0 seconds,
respectively. In both cases, it means that eclipse-cp can sometimes be more effective
in finding an optimal solution than eclipse-stoc. We believe this is due to the fact
that eclipse-cp’s branch-and-bound search style allows more diversified local search at
each node of the search-tree and avoids getting stuck in local minima more effectively

than eclipse-stoc.

5.6.2 Binate Covering Comparisons Under Termination A

Table 5.4 presents the eclipse-stoc results on the P-classes of size 32 of the binate
covering benchmarks. The setup is the same as in Table 5.3. With reduction, eclipse-
stoc does significantly better on sa02.b, apex.b, and rot.b. In particular, eclipse-stoc
times out on apezr4.b without reduction, but with reduction, eclipse-stoc solves it in
3.9 seconds on average. We observe that reduction doesn’t play a significant role on

the ATPG benchmarks.

5.6.3 Experiments Under Termination Criterion B

In the benchmarks we considered in this chapter, three of them remain unsolved by
any branch-and-bound MinCostSat solvers. We run eclipse-stoc under termination
criteria B in which eclipse-stoc is allowed to run for an hour on each instance. In
Table 5.5, we report the previous best known solution found by cplex in the second
column and the best solution found by eclipse-stoc in the third column. Eclipse-stoc

is able to find a better solution than cplex with one hour execution time.

101

Table 5.4: The eclipse-stoc results on binate covering benchmarks under termination
criterion A.

No Reduction With Reduction
benchmark runtime flip runtime flip
count.b 0.1/0.02 1856 /877 0.28/0.02 1926/957
clip.b 0.1/0.02 3266,/2186 0.1/0.01 1374/1318
9sym.b 0.1/0.01 563/316 0.6/0.03 803/674
jac3 0.7/0.2 10686,/9406 1.7/0.2 4786/4063
f51m.b 0.08/0.01 1140/819 0.08/0.01 408/289
sao2.b 53.3/15.8 5.49¢6/1.63e6 1.95/1.34 287600/206849
5xpl.b 0.2/0.1 3403/6451 0.3/0.1 4305/4299
apex4.a 300/0* 1.179e6/14719 3.9/0.9 83118/79266
rot.b 57.2/12.7 2.91e6/600918 7.09/5.45 602138/527877
alud.b 0.5/0.1 7894 /6608 0.6/0.03 2347/1307
e64.b 0.2/0.1 13644/11370 0.1/0.01 2934/2154
c432 F37gat@1 52.8/83.5 928565/1.35e6 49.3/78.2 890872/1.12e6
misex3_Fb@l 1.4/0.7 2908/1418 1.3/0.6 2876,/1298

c1908_F469@0 157.4/123.5 30988/26011 154.4/113.3 29876/25691
c6288_F69gat@l 33.4/83.82 18493/46499 32.0/78.24 17654/43309
c3540_F20@1 300/0* 231512/97490 300/0* 222987,/84334

*

eclipse-stoc times out at 300 seconds.

This table presents the eclipse-stoc results on the P-classes of size 32 of the
binate covering and non-covering benchmarks. The setup is the same as in
Table 5.3. Each experiment is terminated when either the best known solution
is found or the timeout of 300 seconds is exceeded. With reduction, eclipse-
stoc does significantly better on benchmarks such as sa02.b, apezx4.b, and rot.b.
In particular, eclipse-stoc times out on apezr4.b without reduction, but with
reduction, eclipse-stoc solves it in 3.9 seconds on average. Reduction does
not play a significant role on the ATPG benchmarks. On ¢3540_F20@1, both
variations time out.

102

Table 5.5: Find new best solutions with eclipse-stoc.

previous best current best

benchmark cplex eclipse-stoc
test4.pi 101 94
alu.b 50 50

e64.b 48 48

On test4.pi, one of the three benchmarks whose optimum
has not been proven, eclipse-stoc is able to find a better
solution within an hour.

5.7 Summary

In this chapter, we presented a new local-search MinCostSat solver. We introduced
two measures, on static and one dynamic, to gauge the structuredness of the bench-
marks. Eclipse-stoc chooses either unitwalk or walksat to find a feasible solution
based on the variable immunity measure. It then utilizes a local-search to look for an
optimal solution near the solution just found. Such a process repeats under a termi-
nation criterion is met. FEclipse-stoc is effective in finding an optimal solution quickly
on most benchmarks. However, it may get stuck in local minima and fails to find an
optimal solution within a given time frame. Our experiments also show that apply-
ing an initial reduction to the covering matrix can often enhance the performance of

eclipse-stoc.

103

Chapter 6

Applications and Case Studies

In this chapter, we first present two applications of MinCostSat. The first one is unate
covering problem with application in two-level logic minimization. The second one is
group-partial Maz-Sat with application in FPGA detailed routing. We then present
three case studies on MinCostSat. The first case study involves the introduction of a
new branch-and-bound Mazx-Sat solver, gtmazx, and its performance comparisons with
cplex and eclipse-lpr. The second case study introduces a simple non-covering Min-
CostSat solver that utilizes neither reduction nor advanced lower bounding. We com-
pare its performance with bsolo, a leading branch-and-bound solver for non-covering
MinCostSat problems, on benchmarks from the minimum-size test pattern problem.
The last case study compares cplex, eclipse-cp with a leading Sat solver on some

typical Sat instances and reveals some surprising results.

6.1 UCP and Two-Level Logic Minimization

Solving the unate covering problem is an integral part of doing two-level logic min-
imization. We first provide some background information on two-level logic mini-

mization and show how to minimize it. We then present experimental results demon-

104

strating that the two-level logic minimizer espresso can be improved by incorporating

eclipse-cp.

6.1.1 Background

Two levels of logic are the minimum required to implement an arbitrary Boolean
function. Compared to multilevel logic, two-level logic has two key advantages: speed
and simplicity. It speed, or the lack of delay, is due to fact that the electronic signals
propagate through only two levels. It is also simpler to design and analyze than
multi-level logic. In fact, properties of multi-level logic can often be simplified and
modelled by two-level logic. Next, we briefly discuss the representation of two-level

logic, some of its properties and its cost measures.

Sums of Products and Products of Sums. A literal represents an uncomple-
mented or a complemented Boolean variable, e.g. z; or ;. A two-level n-variable
Boolean formula can be expressed in a number of canonical forms. Relevant to this
thesis are the sum of product (SOP) of n literals called minterms and the product of
sum (POS) of n literals called maxterms. Here, a product represents a conjunction
and a sum represents a disjunction. The objective of two-level logic minimization is to
re-write the formula with an equivalent formula that contains fewer terms and fewer
literals in each term. For example, a SOP formula for the 3-variable majority function

(true iff at least two of the three variables are true) can be written by inspection as:
Jmaj = T1T2%3 + 11 To%3 + T102T3 + T1 X273,
which minimizes to
fmaj = T1%2 + 123 + T273.

Similarly, a POS formula for the 3-variable threshold function (true iff at most one of

the three variables is true) can be written by inspection as

finr = (T1 + Ty + T3) (21 + T + T3)(T1 + 22 + T3)(T1 + Ta + 23),

105

and minimized to
fthr = (Tl + Tg)(fl —+ Tg)(fz + Tg).

Interchangeably, SOP and POS forms are also known as the disjunctive and conjunc-
tive normal forms. In general, we refer to terms contained in the SOP form as product
terms which are, as illustrated earlier, the primary objective of logic minimization.

In contrast, terms contained in the POS form are typically called clauses.

Implicants and Prime Implicants. An implicant of a function f is a product
term that is included in f. For example, if f = 2y + 2z + yz, two of its implicants
include xy and zyz. A prime implicant of f is an implicant that doesn’t include any
other implicant. In the previous example, xy is a prime implicant whereas xyz is not
because it contains the implicant zy. We will see next that the prime implicant xy

has less cost than xyz because it has one fewer literal.

Cost Function for Two-Level Logic. Programming logic arrays (PLAs) are well-
known structures to implement two-level logic functions [19, 1]. A PLA is a rectangu-
lar macro-cell consisting of an array of transistors aligned to form rows in correspon-
dence with product terms and columns in correspondence with inputs and outputs.
The input and output columns partition the array into two subarrays, called input
and output planes, respectively. Each row of a PLA is in one-to-one correspondence
with a product term of the SOP representation. Each transistor in the output plane
relates to the dependence of a scalar output on a product term. Therefore, the pri-
mary goal of logic minimization is the reduction of product terms and a secondary one
the reduction of literals. For example, f = xy + Zy + xZ has a minimal representation

f" =y + xz with one fewer product term and three fewer literals than the original.

6.1.2 Minimizing the Two-Level Logic

Two-level logic minimization is based on the following theorem due to Quine [75]:

Theorem 4 A minimal SOP must always consist of a sum of prime implicants if

106

any definition of cost is used in which the addition of a single literals to any formula

increases the cost of the formula.

A well-known two-level logic minimization procedure is called the Quine-McCluskey
procedure. It first generates all the prime implicants of the SOP formula and then
chooses a subset of them to cover all the minterms. As an example, let’s consider the

following SOP representing a two-level Boolean formula with three variables:

fx)=zy+zyz+yz + 2z + vyz (6.1)

The minterms for f(x) are my = Tyz, my = Yz, ms = TYz, my = Yz, Mms = TYZ
and mg = Tyz.
Compute the Prime Implicants. The prime implicants of a two-level formula
can be computed using the tabular method or the iterated consensus method [19, 1].
We will not present these techniques here since our main interest is in the covering
procedure. Using either technique, we find that the prime implicants for f(z) in (6.1)
are: p1 = IY,ps = TZ,p3 = Yz, pd = yz,ps = vz and pg = Y.
Constructing the Covering Matrix. To construct the covering matrix, we list
the minterms (m's) as the rows and the prime implicants (p's) as the columns. The

covering matrix for f is:

P1r P2 P3 P4 Ps DPe

mg 1 1 0 0 0 O
my 1 0O 1 0 0 O
mg 0 1 0 1 0 O
mgy 0 0 1 0 1 0
ms 0 0 0 1 0 1
mg 0 0 O 0 1 1

107

The matrix element A;; is 1 if p; covers m;, and 0 otherwise. For example, A;; and
Ag are 1’s because p; = Ty covers m; = Tyz and my = Tyz. The goal of the two-level
logic minimization is to cover all the minterms (the rows) with the least number of

prime implicants (the columns). This is the familiar unate covering problem.

6.1.3 Two-Level Logic Minimizer — Espresso

FEspresso [23] is a well-known two-level logic minimizer and represents a very efficient
implementation of the Quine-McCluskey procedure. FEspresso runs in two modes:
heuristic and exact. In the heuristic mode, espresso does not generate the full covering
table and only uses greedy heuristics to find a subset of the prime implicants to cover
all the minterms. In this mode, espresso runs very fast but there is no guarantee
how close the quality of the solution found is from the optimal value. In the exact
mode, espresso is guaranteed to return the optimal representation of two-level logic
but it may run for a long time in order to exhaust the large search space. Thus, it
is often impractical to run espresso in the exact mode on large benchmark problems.
From this point on, we refer to espresso running in exact mode as espresso-exact and
espresso running in heuristic mode as espresso-heur.

The value of the exact mode is that it allows us to obtain optimal solutions to
many small to medium size benchmarks. Only when we have knowledge of these
optimal solutions, can we reliably assess the effectiveness of various heuristics for
two-logic minimization. In both the heuristic and the exact modes, espresso uses a
procedure called mincov to solve the unate covering problem. Next, we study how we

can improve the performance of espresso-exact by replacing mincov with eclipse-cp.

6.1.4 Experimental Results

The covering procedure in espresso-exact is called mincov. We incorporate eclipse-cp
into espresso-exact by swapping out mincov for the covering procedure. We call the
new two-level logic minimizer latte. We ran both espresso-exact and latte on 134

standard two-level logic minimization benchmarks that are distributed with espresso.

108

The 134 benchmarks were categorized as easy and hard according to whether it
is solvable by espresso. For the 114 easy instances, the covering procedure is not
the bottleneck and both solvers can solve the instances in approximately the same
time. For the hard instances, 14 of them were solved by espresso-signature in [76].
However, 6 hard instances remains unsolved: 3 of them are due to the fact that
the covering problem couldn’t be generated because the enormous number of prime
implicants involved; the other 3 are unsolved because of the complexity of the covering
procedure. We successfully solve the latter 3 benchmarks with latte and we report
the results in Figure 6.1.

Table 6.1: Comparison of espresso-exact and latte on three previous unsolved
benchmarks.

espresso latte
benchmark cover total cover total
exh — 12hrs* 129.58 139.24
max1024 - 12hrs* 329.11 329.5
prom?2 - 12hrs* 12.97 14.75

* times out at 12 hours.

This table compares espresso-exact with latte on three two-level logic
minimization benchmarks. For each benchmark, the timeout value is
12 hours and the table reports the covering time (if the benchmark is
solved) and the total execution time. On all three benchmarks, espresso
times out after 12 hours of execution. However, latte can solve each
benchmark within a few hundred seconds. By comparing the covering
time and the total time, it is clear that the covering procedure is the
bottleneck for latte to solve these benchmarks.

In Figure 6.1, for each benchmark, we report the covering time and the total time
for latte. The solver espresso-exact times out on all the benchmarks after 12 hours of
execution. However, latte is able to solve each of them within a few hundred seconds.
By comparing the covering time and the total time, it is clear that the covering

procedure is the bottleneck for latte to solve these benchmarks.

109

In Table 6.2, we compare the solution quality between espresso-heur and latte. We
mentioned earlier in Section 6.1.1 that, in two-level logic minimization, the primary
cost is the number of product terms and the secondary cost is the number of literals.
Latte, like espresso-exact, guarantees the optimality of the number of product terms
but not the number of literals. On ez5 and max1024, we observe a gradual decrease in
both product terms and literals from the original instance to the solution returned by
latte. For example, on max1024, the original instance has 1024 product terms. The
solution returned by espresso-heur has 274 product terms and the solution returned
by latte only has 259 product terms. On prom2, the original formula already has the
minimum number of product terms. Even though latte is able to reduce the number
of literals, it gives a solution with more literals than espresso-heur.

Table 6.2: Comparison of solution quality between local-search and branch-and-bound
methods on two-level logic minimization benchmarks

orig espresso-heur latte
benchmark p. terms literals p. terms literals p. terms literals
exh 256 9668 74 1903 65 1193
max1024 1024 13472 274 2266 259 2207
prom?2 287 5610 287 5526 287 5528

This table compares the solution quality between espresso-heur and latte. The
table reports the original number of product terms and literals for each bench-
mark. It also reports the number of product terms and literals after doing
logic minimization with espresso-heur and latte. The solver latte guarantees
the optimality on the number of product terms, the primary cost, but not the
optimality on the number of literals, the secondary cost. On ex5 and max1024,
we observe a gradual decrease in both product terms and literals. On prom2,
latte actually gives a solution with more literals than espresso-heur.

110

6.1.5 Summary

We improved the state-of-the-art two-level logic minimizer, espresso-ezact, by replac-
ing its covering procedure with eclipse-cp. The new logic minimizer, latte, is able
to solve some open problems by having a much more efficient implementation of
the covering procedure. We also compared the solution quality between latte and
espresso-heur. For benchmarks whose optima are previously unknown, latte found

better solutions than espresso-heur in two of the three cases.

6.2 Group-Partial MaxSat and FPGA Routing

Advances in Sat solvers [15, 16, 17] have motivated researchers in physical design to
recast FPGA detailed routing problems as Sat problems [9, 10, 11, 12]. Wood and
Rutenbar represented the routing constraints as a single large Boolean equation using
a binary decision diagram (BDD) [9]. This formulation considers all nets simultane-
ously: any assignment to the input variables that satisfies the Boolean equation also
specifies a complete detailed routing. However, BDDs suffer from memory explosion
when the FPGA detailed routing instances become large. To alleviate this problem,
Nam et al. [10] presented a Sat formulation that is capable of handling very large
FPGA instances. This formulation uses a track-based routing constraint model. Nam
et al. [11] made further improvements by introducing the RCS formulation using a
route-based routing constraint model. They showed that the RCS formulation yields
an easier-to-solve and more scalable routability Boolean function. Their SAT-based
router obtains second best results next to VPR [77] but outperforms all other conven-
tional routers such as SEGA [78] and SROUTE [79]. It is worth noting that VPR has
the advantage of doing both global and detailed routing while the SAT-based router
only does detailed routing.

The SAT-based approaches above ask the question introduced in [10]: “Given an

FPGA placement, is this layout routable?” The answer is yes or no: either a complete

111

detailed routing solution is found or we get a proof that a routing does not exist.!
This situation arises when for a layout with N nets, we cannot tell whether half of
the nets cannot be routed or only one net cannot be routed — there is no middle
ground. Xu et al. argue for a partial solution and ask a different question [13]: “.
can we route this layout with not more than k£ nets unconnected?” In response to the
question, they formulate a “subset satisfiable” Boolean Sat which clearly supports
the concept of high quality partial solutions [13].

In this work, we ask the question that is equivalent to the question above: “What
is the maximum number of nets that can be routed in this layout?” We answer
this question directly by formulating it as a group-partial Maz-Sat problem. In this
section, we first present the RCS routing formulation and connect it with group-
partial Max-Sat. We then present our local-search solver, wpack, for optimizing FPGA
detailed routing. Experimental results that compare and contrast sub_SAT, wpack

and eclipse-Ipr on a set of FPGA routing benchmarks are then presented.

6.2.1 The RCS Formulation

The RCS formulation for the FPGA detailed routing problems distinguishes the rout-
ing constraints as either “liveness” constraints or “exclusivity” constraints [11]: the
first ensures the routability of each net and the second ensures the exclusive usage of
the tracks. For any complete or partial solution to make sense, all the exclusivity con-
straints have to be satisfied. Since a net can have multiple connections, each of which
corresponds one-to-one to the liveness constraints, we group all such constraints for
the same net together to represent its routability. A net is routed only when all of
its liveness constraints are satisfied. The goal of maximizing the number of routable
nets then requires us to satisfy all exclusivity constraints and maximize the number
of nets whose group of liveness constraints are all satisfied. When using the RCS
formulation of FPGA detailed routing, a multi-pin net is decomposed into a set of

2-pin connections prior to the transformation.

In practice, we may get a third answer, due to the Sat solver timeout: ‘unresolved’. The real
possibility of such a scenario re-enforces the case for partial solutions.

112

We show an example of RCS formulation in Figure 6.1. This is an unroutable
example with 3 nets and 3 tracks. Net A has two 2-pin connections Aa and Ab;
Net B and Net (' each has one 2-pin connection. There are two types of clauses

(constraints) in Figure 6.1:

1. Liveness Clauses. The four liveness clauses guarantee that each 2-pin con-
nection has at least one route in the routing solution. A typical liveness clause
consists of an OR of all route variables for a 2-pin connection. The number of
route variables for a 2-pin connection is the same as the number of tracks avail-
able to the connection. In Figure 6.1, the first liveness clause Aa0 V Aal V Aa2
means that the 2-pin connection Aa is routed either via track O or track 1 or
track 2. For a net with n 2-pin connections, n liveness clauses are required
to ensure all such connections are routed. Net A in Figure 6.1 has two 2-pin
connections: Aa and Ab. A net is not considered routed if any such connection
is not routed. Therefore, the four liveness clauses in this example are in three
groups: the first two are the group of liveness clauses for net A and the last two

are in their individual groups for B and C.

2. Exclusivity Clauses. The exclusivity clauses guarantee that no two 2-pin
connections are assigned to the same track. An exclusivity clause consists of two
negative literals. For example, in Figure 6.1, the exclusivity clause Aa0 V Ab0
means that Ae and Ab cannot be routed on track 0 at the same time. The
group of six exclusivity clauses ensure that no two nets are routed on track 0.

Similar clauses can be constructed for track 1 and 2.

This example is not routable due to the pigeon hole principle. In fact, at most two
nets can be routed.

The problem of optimizing FPGA detailed routing can be viewed as a group-
partial Maz-Sat problem (first introduced in Section 2.1.5): the exclusivity clauses
are the hard constraints; the groups of liveness clauses are the software constraints
and each group is satisfied if and only if all the clauses in the group are satisfied.

The traditional Sat approach is unable to solve this problem easily because it can

113
Aa0 + Aal + Aa2
Aa Ab Ba Ba Ab0 + Abl + Ab2)
Liveness
Ba0 + Bal + Ba2 clauses
Track 0 Ca0+ Cal + Ca2

Track 1 .
rec Aa0 + AbO

Track 2 Aa0 + Bab
@ +Cal Exclusivity clauses
Ab0O + Ba0 for track 0

Ab0 + Ca0
Ba0 + Cal

Ca Aa Ab Ca

Exclusivity clauses
for track 1, 2

Figure 6.1: A small unsatisfiable routing example (3 nets and 3 tracks) and its RCS
formulation.

only tell whether all the nets can be routed or not. Xu et al. [13] took a novel

subset-satisfiability approach to solve this problem.

6.2.2 The sub_SAT Approach

The subset-satisfiability approach, or sub_SAT for short, transforms the optimization
problem into a sequence of Sat problems with a relaxation parameter k. Starting
from k = 1, the original unsatisfiable Sat instance is transformed into a new relaxed
Sat instance, which is satisfiable if and only if £ nets cannot be routed in the original
Sat formulation. If the relaxed Sat instance is still not satisfiable, then a new instance
with k& = 2 is generated from the original instance. The process continues until the
relaxed Sat instance is satisfiable and then the current k& = opt becomes the minimum
number of unroutable nets. The satisfiability checking part is done using one of the
fastest Sat solvers - zchaff [16]. One obvious advantage of this approach is that

it can leverage the highly optimized Sat solvers and their continuous advances. The

114

sub_SAT idea was successfully applied to several standard FPGA routing benchmarks
and found the minimum number of unroutable nets [13] (this is equivalent to finding
the maximum number of routable nets).

However, the sub_SAT approach has a few possible drawbacks:

1. The sub_SAT approach relies on state-of-the-art branch-and-bound Sat solvers.
Despite the tremendous improvements made recently, these solvers still don’t
scale well. However, the CNF formulae from today’s FPGA routing benchmarks

can contain tens of thousands of variables and clauses.

2. Instances generated with k = 1,2, ..., opt can be difficult themselves. The cost
of finding the optimum has to take into account the cost of solving all the

intermediate problems.

3. The formulation may suffer from significant size explosion when the relaxation
parameter k is large. So the sub_SAT approach is suitable best for cases where
the minimum number of unsatisfied constraints is small. One of the reasons
why sub_SAT works well for the FPGA detailed routing benchmarks is that
they are “almost” routable, which means the optimum number of unroutable

nets is small.

To avoid these drawbacks, we decide to tackle the routing problem directly with a

local-search algorithm.

6.2.3 The Local-Search Approach

Our local-search algorithm wpack works on the original RCS formulation and doesn’t
generated any intermediate problems. We present wpack in Figure 6.2.

In the wpack algorithm, on lines 3—4, a choice is made globally to flip a variable to
increase the number of routed nets the most. On lines 5-8, a choice is made locally
within an unrouted net with the least number of unsatisfied liveness clauses. This is
an attempt to route an “almost routable” net. Line 9 changes the value of the chosen

variable and lines 10-12 updates the best solution if appropriate.

115

Algorithm: wpack

input: a cnf formual F representing a FPGA detailed routing instance
output: the minimum number of nets that cannot be routed
method:

1 randomly initialize the variable assignments

2 while termination criterion not met do

3 with probability p, choose a variable not in the tabu list that

4 increases the number of routed nets the most

5 with probability 1 — p, randomly choose an unsatisfied liveness

6 clause for a net with the smallest group of unsatisfied liveness
7 clauses and choose a variable in the clause but not in the tabu list
8 which increases the number of routed nets the most

9 flip the variable

10 if all exclusivity constraints are satisfied

11 and current-unrouted-nets < unrouted-nets,,;

12 then unrouted-nets,,, = current-unrouted-nets

13 endif

14 end do

15 return unrouted-nets,,

Figure 6.2: The wpack algorithm for optimizing FPGA detailed routing.

6.2.4 Experimental Results

The FPGA detailed routing optimization problem posts a great challenge to branch-

and-bound MinCostSat and IP solvers. As we have seen in Table 2.5, cplex times

out on 8 out of 10 benchmarks. In this section, we evaluate the performances of two

local-search approaches: wpack (the solver specifically designed for FPGA detailed

routing) and eclipse-stoc (the general-purpose local-search MinCostSat solver). All

experiments ran on a Pentium IVQ1.8Ghz with 256 MB of RAM under Linux.

We first show our experiments under termination criterion A in Table 6.3. Recall

that under this termination criterion, a local search solver is terminated when either

a solution with best known cost has been discovered or when the runtime exceeds

116

Table 6.3: Runtime comparisons between sub_SAT, wpack and eclipse-stoc on FPGA
detailed routing benchmarks.

benchmark nets opt sub_SAT wpack eclipse-stoc

terml1_gr rcs_.w3 88 7 1.1 6.6 7.3
apex7_grrcs.w4d 126 2 0.1 0.3 32.2
9symml_gr_rcs_wb 79 1 0.1 1.6 123.9
c499_gr res.wh 115 3 15.6 3600* 3600*
example2 gr rcs.whH 205 2 20.5 11.2 36007
too_large_gr rcs. w6 186 < 3° 3649.5 3600* 3600*
alu2_gr res.w7 153 1 204 135.0 3600*
c880_grrcs.wb 234 < 4° 6067.1 272.1 3600*
vda_gr res. w7 225 < 13° 21605.1 11.3 3600*
k2fix gr res. w9 404 < 11° 16008.8 401.0 3600*

* solver times out at 3600 seconds.

¢ Some intermediate sub_SAT runs time out at 1800 seconds
so the optimum is unknown.

This table compares sub_SAT with wpack and eclipse-stoc. In last two
columns, we report the mean runtime for wpack and eclipse-stoc. Our solver
wpack is capable of finding the best known solutions on all benchmarks ex-
cept c499_gr_res_wd and too_large_gr_res-w6. The general-purpose local-search
MinCostSat solver eclipse-stoc is not effective on this set of benchmarks.

a fixed timeout value, in this case, 3600 seconds. The second column shows the
number of nets each benchmark contains. The third column shows the minimum
number of unroutable nets (for four larger benchmarks, the optima are not known
and we show the best values found by sub_SAT [13]). The last three columns show the
runtime of sub_SAT, wpack and eclipse-stoc, respectively. For wpack and eclipse-stoc,
we report the average of 32 runs each with a different initial variable assignments.
Our solver wpack is effective in find best known solutions on all benchmarks except
c499_gr_rcs_wb and too_large_gr_-rcs_w6. The general-purpose BCP solver eclipse-stoc
is not effective on this set of benchmarks.

In Table 6.4, we focus on the benchmarks whose minimum number of unroutable

117

nets is unknown. For each benchmark, we only launch wpack once. We allow wpack
to run for the same amount of time sub_SAT ran and return the best value it finds.
For three out of the four benchmarks, we are able to improve upon the previous
best solution, e.g., for the largest benchmark k2fiz_gr_rcs_w9, wpack is able to find a
solution with only 6 unrouted nets while the previous best solution has 11 unrouted
nets. However, for too_large_gr_rcs_w6, wpack still cannot find a solution with the
previously best known cost 3.

Table 6.4: Solution quality comparisons between sub_SAT and wpack on benchmarks
whose optima are unknown.

sub_SAT wpack
benchmark best time best time
too_large_gr rcs w6 3 3649.5 4 3649.5
vda_gr_rcs w7 13 21605.1 7 21605.1
C880_gr_rcs_wb6 4 6067.1 3 6067.1
k2fix_gr_res-w9 11 16008.8 6 16008.8

For the benchmarks whose optimum is unknown, we run
wpack for the same time as sub_SAT. On three out of the
four instances, wpack finds better quality solutions.

6.2.5 Summary

In this section, we first introduced the RCS formulation for FPGA detailed rout-
ing. We then presented the sub_SAT approach and its drawbacks. To address these
drawbacks, we designed the wpack algorithm based on local search. We compared
sub_SAT, wpack and eclipse-stoc on a set of FPGA detailed routing benchmarks.
Eclipse-stoc is in general not competitive. Whpack is effectively in finding the best
known solutions in most cases and is able to discover new best known solutions for

large instances whose optimum is unknown.

118

6.3 MaxSat

Introduced in Chapter 2, Maz-Sat is a combinatorial optimization problem that can
be formulated as MinCostSat by introducing slack variables. Maz-Sat is NP-complete,
even when each clause contains only two literals (Maz-2-Sat). It can be solved
using either branch-and-bound algorithms [45, 46, 47, 48, 49] or local-search algo-
rithms [50, 51, 52]. Branch-and-bound algorithms guarantee optimality and use the
algorithm based on the Davis-Putnam-Logemann-Loveland (DPLL) procedure [80].
Local-search algorithms use variations of greedy search and consequently do not guar-
antee optimality. In this work, we study branch-and-bound algorithms for Max-Sat
(local-search algorithms are only used to obtain an initial upper-bound). Three ap-
proaches for Maz-Sat include: (1) the branch-and-bound approach under the original
formulation, (2) the IP approach, and (3) the MinCostSat approach.

We first present an improved branch-and-bound Maz-Sat solver, gtmax [60], that
implements state-of-the-art lower-bounding techniques, search pruning techniques
and variable selection heuristics. Our experimental results show that ¢tmazx is com-
petitive with state-of-the-art Maz-Sat solvers and outperforms them on many bench-
marks. We then study the three branch-and-bound algorithms for Maxz-Sat by com-
paring the performances of gtmax, cplex and eclipse-lpr? on two series of Maz-2-Sat

and Maz-3-Sat benchmarks.

6.3.1 The Branch-and-Bound Algorithm — qtmax

Previous Maz-Sat solvers include those of Wallace and Freuder [45], Borchers and
Furman [46], and Alsinet et al. [47, 48]. Zhang et al. [49] have recently proposed an
efficient algorithm for the special case of Max-2-Sat, where it performs considerably
better than those in [45, 46, 47, 48], but our interest is in the more general problem.
The gtmax algorithm is based on the DPLL procedure depicted in Figure 6.3. For

convenience we think in terms of minimizing the number of unsatisfied clauses. Let

2We use eclipse-Ipr instead of eclipse-cp because eclipse-cp is not competitive with eclipse-Ipr for
the BCP instances derived from Maz-Sat.

119

function MaxSat-BB(F": clause set, current-unsat: integer)
Search-Tree-Pruning(F’, current_unsat)
if Lower-Bound(F', current-unsat) > upper-bound
then return upper-bound
else if Lower-Bound(F', current-unsat) = upper-bound —1
then Unit-Propagation(F, current-unsat)
if F' contains non-empty clauses and
Lower-Bound(F', current-unsat) < upper-bound
then x = Select-Splitting-Variable(F))
return min(MaxSat-BB(F'[z], current-unsat + |{T}|),
MaxSat-BB(F'[z], current-unsat + [{x}]));
if current-unsat < upper-bound then upper-bound = current-unsat
return upper-bound
end function

Figure 6.3: A recursive DPLL-based Max-Sat algorithm.

F[z] denote the set of clauses that remain after assigning x = true, i.e. removing all
clauses containing x and removing T from any clauses that contain it. We use {x}
to denote a unit clause containing x and |{z}| for the number of such unit clauses.
Initially called with current-unsat = 0 and upper-bound = oo, the algorithm in
Figure 6.3 solves the Maz-Sat problem recursively.

Similar to a branch-and-bound MinCostSat solver, the performance of a branch-
and-bound Maz-Sat solver depends on (1) the lower-bounding technique, (2) the
search-tree pruning technique, (3) the ability to obtain a good initial upper-bound

and (4) the branching variable selection heuristic.

Lower-Bounding Techniques. An improvement on simply using current-unsat as
the lower-bound is introduced in [45] and implemented by Alsinet, et al. [47]. It is
based on the observation that in addition to the currently unsatisfied clauses, there
can be unit clauses that contain opposite literals. Such literals will result in empty
(unsatisfied) clauses when they are assigned, whether true or false. For example,

if the unit clauses contain {x1}, {71}, {z2}, {Z2} and {Z2}, then at least two more

120

unsatisfied clauses will be generated when z; and x5 are assigned. The lower-bound

can therefore be increased by Y- ; min(|{xz;}|, |{Z:}])-

Search-Tree Pruning Techniques. The most obvious way to prune the search-
tree is unit propagation. When there are unit clauses and the lower-bound (LB) is
within 1 of the upper-bound (UB), a branch containing an unsatisfied unit clause
need not be explored — that clause will make LB > UB — and unit clauses can be
assumed to be true and propagated.

To further reduce the search-tree size, we use two techniques. The dominating
unit-clause rule [45] is based on the following observation: if [{z}| is greater than the
number of T occurrences in F, then the branch in which = false does not have to
be explored — the best solution in that branch can be no better than one in which
x = true.

The near upper-bound rule [48] notes that if [{z}| > |{Z}| and LB + abs(|{z}| —
|{z}|) > UB, there is no need to set = false: doing so will generate |{x}| unsatisfied
clauses and make current-unsat > UB. The solver gtmaz uses both pruning rules and

the resulting improvements on selected benchmarks are shown in Table 6.5.

Obtaining a Good Upper-Bound. Instead of initializing UB = oo, Max-Sat
solvers often obtain a better upper-bound by running a local search. For example,
Borchers and Furman’s solver (mawxsat) has two phases [46]. The first phase runs
gsat [73] (a local-search algorithm for SAT) for a fixed number of tries, each try
consisting of a fixed number of flips. The second phase is a branch-and-bound with
UB initialized to the best solution found in the first phase. Our solver gtmax uses the
same idea. Unlike in eclipse, we do not do local search at each node because gtmaz

is very effective in finding the optimal UB in the first phase.

Branching Variable Selection Heuristics. Branching variable selection heuris-
tics are the subject of intensive research in the Sat community. These heuristics are
very effective in reducing the size of the search-tree. Two of the heuristics are used

for Maz-Sat:

1. MOMS (see, e.g., [46]): Choose the variable that appears most often in clauses

with minimum size. When there are unit clauses, such a scheme clearly favors

121

Table 6.5: Backtrack comparisons for three variants of ¢tmax on random Maz-2-Sat
and Maz-3-Sat (reference instances only).

benchmark unsat,,; 1o duc rule no nub rule gtmax
2sat_v50_c100 4 434 242 236
2sat_v5H0_c150 8 873 411 299
2sat_vh0_c200 16 16762 10038 5893
2sat_v50_c250 22 14069 11138 6650
2sat_v50_c300 32 149741 112161 68916
2sat_vb0_c350 41 333100 261687 153763
2sat_vb0_c400 45 135852 136737 78517
3sat_vbH0_c250 2 258 269 258
3sat_v50_c300 3 9137 10550 9099
3sat_v50_c350 8 142436 334077 141523
3sat_v50_c400 11 390924 943062 385749

This table compares three variations of ¢tmazr on a set of Maz-2-Sat
and Maz-3-Sat reference instances. The third column (no duc rule) rep-
resents the variation of ¢tmax that doesn’t implement the dominating
unit-clause rule. The next column (no nub rule) represents the variation
of gtmax that doesn’t implement the near upper-bound rule. The last
column represents the variation of ¢tmaz that implements both rules.
It is clear that for all the benchmarks in this table, the ¢tmaz that im-
plements both dominating unit-clause rule and near upper-bound rule
uses the least amount of backtracks.

the variables appearing often in the unit clauses. The MOMS heuristic works

well on benchmarks with a small optimum number of unsatisfied clauses [47].

2. Jeroslow-Wang (JW) [81]: For each literal L in F, the JW heuristic calculates
the function J(L) = ¥ 271¢ where |C| is the length of clause C' and chooses
the variable that maximizes J(z) + J(Z). Clearly, J(z) + J(Z) increases when
|C'| decreases and the occurrences of x and T increase. Intuitively, this favors a

variable that appears often in short clauses.

122

The branching variable selection heuristic in ¢¢tmax takes into account the value of
UB. If UB is less than a given threshold, our heuristic is identical to MOMS; otherwise,
we use a variant of MOMS: choose the variable with the most occurrences in the
shortest non-unit clauses. In the latter case, we exclude unit clauses because we have
already exploited them extensively in both our lower-bounding and search pruning
techniques. Let v,, be the variable that occurs the most in non-unit clauses. The
variable v,, is a good candidate for the splitting variable because (assuming v,, = true;
a symmetric argument applies when v,, = false): (1) all the clauses containing v,,
are eliminated from the formula, reducing the size of the formula significantly, and
(2) T, is removed from all the clauses containing it, potentially introducing new unit
clauses that will raise the lower-bound.

Combining all the techniques we discussed so far, we implemented our branch-and-
bound Maz-Sat solver qtmaz. Next, we compare gtmazr with other state-of-the-art

Maz-Sat solvers.

6.3.2 Experimental Results with qtmax

We report on the performance of four Maz-Sat solvers: mazsat as described in [46],
LB2+JW and LB2+MOMS as described in [47, 48], and gtmaz as described in this
work. The class labels beginning with 2sat and 3sat denote classes of random in-
stances, introduced in [46]. The numbers of variables and clauses in these instances are
also contained in the labels. The minimum number of clauses that cannot be satisfied
is known and is shown as unsat,y, for each instance. The label steiner_a0027 denotes
an instance derived from Steiner set-covering instances. The instance bw_large_a_u

represents a well-known unsatisfiable block-world benchmark [82].

123

6.3.2.1 Comparative Results

Tables 6.6 and 6.7 report on the mean of backtracks and runtime® (in seconds) for
each PC* class of size 32 of the randomly generated benchmarks. For all Maz-2-Sat
benchmarks, gtmaz has the least number of mean backtracks among four solvers. For
Max-3-Sat benchmarks, the results are less conclusive even though gtmax still has
the least overall. It is interesting to note that the least number of backtracks doesn’t
always correspond to the shortest runtime.

Tables 6.8 and 6.9 provide a more thorough view of the backtrack and runtime
data for selected Maz-2-Sat and Max-3-Sat benchmarks as well as two structured
benchmarks. It reports both the mean and standard deviation of backtracks and
runtime for the entire population of instances in the class — as well as the observed
distribution for each variable, based on the outcome of the x2-test (a = 0.05).

Following the convention introduced in [58], we recognize the following distribu-
tion classes: normal (N), exponential (E), near-normal(nN), near-exponential (nE)
and heavy-tailed (hT). In addition, the column labelled as initV reports on the back-
track and runtime values observed for the reference instance. When we observe the
exponential distribution, the size of standard deviation is close to or identical to value
of the mean; hence the difference between initV and meanV can be significant (as for

bw_large_a_u).

3 All experiment in Table 6.6-6.9 are done on a Pentium 11@266Mhz with 196MB of RAM under
Linux.

4The difference between PC-classes and P-classes is that PC-class allows complementation of
the literals. For Maz-Sat, such an operation doesn’t change the minimum number of unsatisfiable
clauses.

Table 6.6: Average performance comparisons of maxsat, LB2+MOMS, LB2+JW and qtmax on PC-classes of size 32
from Mazx-2-Sat benchmarks.

mazsat LB2+MOMS LB2+JW gtmax

benchmark unsat,, backtrack time backtrack time backtrack time backtrack time
2sat_v050_¢100 4 670 0.17 513 0.18 624 0.19 231 0.46
2sat_v050_c150 8 14,839 0.48 8,809 0.58 1,226 0.27 312 0.50
2sat_v050_¢200 16 1,324,875 28.8 221,123 12.7 40,420 3.76 5,953 1.13
2sat_v050_¢250 22 6,723,974 180 339,118 24.8 32,294 3.92 6,028 1.42
2sat_v050_¢300 32 - 1800* 1,386,415 134 431,048 5H8.7 71,999 11.5
2sat_v050_¢350 41 - 1800* - 1800* 1,098,454 175 156,318 26.2
2sat_v050_¢400 45 - 1800* - 1800* 362,224 725 81,576 18.1
2sat_v100_¢200 5 16,573 0.96 14,407 1.33 12,438 1.92 3,910 1.51
2sat_v100_¢300 15 - 1800* - 1800* 1,517,643 244 390,056 61.7
2sat_v100_¢400 29 - 1800* - 1800* — 1800* - 1800*
2sat_v150_¢300 4 9,606 1.28 8,797 1.60 56,242 10.6 2,948 2.6

* solver times out at 1800 seconds.

This table compares four solvers’ performance on PC-classes of size 32 from Maxz-2-Sat instances. The mean
and standard deviation of runtime and backtracks are reported. For all benchmarks, gtmaz consistently
has the least average number of backtracks. The solver LB2+JW is the most competitive with gtmaz on
both backtracks and runtime; however, in most cases, it is more than three times as slow as gtmax.

yel

Table 6.7: Average performance comparisons of maxsat, LB2+MOMS, LB2+JW and qtmax on PC-classes of size 32
from Mazx-3-Sat benchmarks.

mazsat LB2+MOMS LB2+JW gtmazx

benchmark unsat,, backtrack time backtrack time backtrack time backtrack time
3sat_vb0_c250 2 365 0.29 333 0.27 3775 0.63 332 0.77
3sat_vH0-c300 3 11,533 0.94 9,302 1.06 17,953 2.72 8,189 2.07
3sat_v50-c350 8 929,361 41.7 530,127 44.2 185,353 29.6 142,781 28.7
3sat_v50_c400 11 6,001,288 272 2,382,077 220 581,519 104 386,116 84.1
3sat_v50_c450 15 34,925,193 1,666 7,585,480 797 1,178,399 239 676,750 156
3sat_vH0_c5H00 15 20,416,608 1,046 4,092,190 457 662,574 154 385,765 99.6
3sat_v100_¢500 4 506,968 56.9 460,148 70.3 - 18007 584,698 145.13
3sat_v150_c675 2 240,554 49.8 233,878 57.1 - 18007 252,662 96.9

* solver times out at 1800 seconds.

This table compares four solvers’ performance on PC-classes of size 32 from Max-3-Sat instances. The
mean and standard deviation of runtime and backtracks are reported. For backtracks, gtmaz has the least
amount except for 3sat_v100-c500 and 3sat_v150_c675. On these two benchmarks, LB2+MOMS has the
least number of backtracks and also runs faster than gtmaz. But it runs significantly slower than gtmax
on other benchmarks.

qcl

Table 6.8: Backtrack and runtime comparisons for maxsat, LB2+MOMS, LB2+JW and gtmaz on PC-classes of size
32 from two random Maz-Sat instances.

Class Name = 2sat_v050_c250_PC, Size = 32, unsat,,; = 22

backtrack time
solverID initV meanV stDev initV - meanV stDev distributions
gtmazx 6,405 6,528 951 1.39 142 0.12 N, N
LB2+JW 30,013 32,294 1,705 3.67 3.92 0.18 N, N
LB2+MOMS 333,843 339,118 31,103 24.1 24.8 2.26 N, N
maxsat 6,627,660 6,723,974 648,599 177.0 180 17.1 N, N

Class Name = 3sat_v050_c450_PC, Size = 32, unsat,,; = 15

backtrack time
solverID initV meanV stDev initV meanV stDev distributions
qgtmax 653,757 676,750 36,204 150 156 8.11 nN, N
LB2+JW 1,169,907 1,178,399 121,939 237 239 23.6 nN, nN
LB2+MOMS 7,417,235 7,585,480 170,382 781 797 178 nN, nN
maxsat 34,246,168 34,925,193 1,069,538 1,634 1,666 51.0 nN, nN

9¢1

Table 6.9: Backtrack and runtime comparisons for maxsat, LB2+MOMS, LB2+JW and gtmaz on PC-classes of size
32 from two structured Max-Sat instances.

Class Name = steiner_a0027_PC, Size = 32, unsat,,; = 8

backtrack time
solverID initV meanV stDev initV. - meanV stDev distributions
qgtmax 19,551 19,311 117 1.52 1.61 0.02 N, N
LB2+JW 161,155 162,748 725 5.50 5.65 0.04 nN, N
LB2+MOMS 340,484 348,304 4,605 8.43 8.72 0.12 N, N
maxsat 1,573,453 1,679,637 41,621 23.3 25.0 0.59 N, nN

Class Name = bw_large_a_u_PC, Size = 32, unsat,,; = 4

backtrack time
solverID initV meanV stDev initV meanV stDev distributions
gtmazr 141,639 240,822 254,264 128 254 242 nk, nE
LB2+MOMS 170,079 313,598 252,028 126 304 245 E, E
mazsat 322,793 541,858 422741 112 261 202 E, E
LB24+JW * * * * * * _

* The solver times out at 1800 seconds.

Lcl

128

6.3.3 Solving MaxSat as IP and MinCostSat

Joy et al. [62] introduced the IP formulation for Maz-Sat and compared their branch-
and-cut algorithm with EDPL (a DPLL based Maz-Sat solver) [83]. Their experi-
ments show that the branch-and-cut algorithm outperforms EDPL on most Maz-2-Sat
benchmarks but is not competitive on Maz-3-Sat benchmarks. Borchers et al. intro-
duced a new state-of-the-art branch-and-bound solver mazsat in [46] and compared
it with the IP solver minto [84]. They concluded that minto is faster on Max-2-Sat
benchmark whereas mazsat is superior on Maz-3-Sat instances.

In this work, we renew their study and compare the branch-and-bound approach
with the IP approach for solving Max-Sat. In order to have meaningful results, it
is crucial that we only use the leading solvers for both approaches. Therefore, we
compare gtmaz (the most efficient branch-and-bound Maz-Sat solver) with cplez(the
industrial leader in IP solvers). We also add eclipse-Ipr to the competition to see
whether the MinCostSat approach can be competitive. In Table 6.10, we compare
the performance of gtmaz, cplex and eclipse-Ipr on two series of Maz-2-Sat and Maz-
3-Sat benchmarks.

On the PC-classes of all the benchmarks in Table 6.10, ¢tmax has the best runtime
performance. For example, on 2sat_v050_¢400, gtmazx, cplex and eclipse-lpr have mean
runtime of 2.5 seconds, 5.7 seconds and 144.5 seconds, respectively. On Maax-3-Sat
instances, the differences between ¢tmaz and cplex are even more dramatic, e.g., for
3Isat_v050_c450, qtmaxr and cplex have mean runtime of 21.8 seconds, 606.3 seconds
respectively. Overall, gtmax is able to outperform both cplez and eclipse-lpr on not
only all the Maz-3-Sat benchmarks but also all the Maz-2-Sat benchmarks. This is
in contrast with the conclusions drew in [46] and [62]. However, as we have seen, the
data in Table 6.10 does indicate that ¢tmaz is more dominant on Maz-3-Sat instances
than on Max-2-Sat instances. This means that if ¢tmax were less efficient, we may
have observed the same dominance relationships as in [46] and [62]. Not surprisingly,
eclipse-lpr is not competitive with gtmaz because the MinCostSat benchmarks from
Maz-Sat don’t represent covering problems.

In Figure 6.4, we plot the mean runtime and the number of nodes explored for the

129

Table 6.10: Results for gtmaz, cplex and eclipse on PC-classes of size 32 from random
Maz-2-Sat and Max-3-Sat benchmarks.

benchmark measure gtmax cplex eclipse-Ipr
2sat_v050_c200 time 0.2/0.01 0.3/0 2.2/0.2
nodes 5953 /552 165,44 104/12

2sat_v050_c250 time 0.2/0.01 0.5/0.1 5.3/0.3
nodes 6528/951 261/70 233/11

2sat_v050-¢300 time 1.6/0.2 2.0/0.5 49.1/1.8
nodes 71999/7235 1499/459 1644/38

2sat_v050_¢350 time 3.7/0.2 5.3/1.0 177.26/15.3
nodes 156832/9664 4121/980 4074/233

2sat_v050_c400 time 2.5/0.5 5.7/0.8 144.5/13.3
nodes 81576/17241 3367/548 3288/233

3sat_v050_c250 time 0.1/0.01 4.8/2.0 2.8/0.6
nodes 332/296 3054/1508 111/26

3sat_v050_¢300 time 0.3/0.01 18.0/7.0 20.8/5.5
nodes 8189/236 11693/5162 792/207

3sat_v050_c350 time 4.0/0.1 123.9/53.2 201.2/39.9
nodes 142781/4436 80386/38070 7045/927

3sat_v050.c400 time 11.8/0.5 364.7/133.8 1805.45/488.4
nodes 386116/14865 208262/76581 22098/3284

3sat_v050_c450 time 21.8/1.1 606.3/336.2 5237.6/289.3
nodes 676750/36204 312902/179101 23442 /2255

This table presents a comparison of gtmaz, cplexr and eclipse-Ipr on PC-classes
of size 32 from random Maz-2-Sat and random Mazx-3-Sat benchmarks. The
mean and standard deviation of runtime and nodes are reported. Even though
eclipse-lpr and cpler explore much fewer nodes than g¢tmax, qtmaz clearly
dominates both cplez and eclipse-lpr in runtime on all the Maz-2-Sat and
Maz-3-Sat benchmarks. This is in contrast with the conclusions drew in [62]
and [46]. However, the superiority of g¢tmaz is much more obvious on the
Mazx-3-Sat benchmarks on which it is about 30 times faster than cplex. For
Mazx-2-Sat benchmarks,gtmax is only about 3 times faster than cplez.

130

1000 7 _
] eclipse-lpr
| ® |
100 1 opiex
o]
= i —- gtmax
&
o 107
N E
E]
q) .
>
z |
L
0.1 I I
100 150 200 250 300 350 400
of Clauses
1000000 |
] eclipse-lpr
| o s .
1 |
100000 opiex ~m
3 : i gtmax
o
o
pd |
% 10000 E ‘
z | P—a
1 /
1000
100 I
100 150 200 250 300 350 400

of Clauses

Figure 6.4: Asymptotic behavior of three solvers’ runtime and nodes for the Maz-2-
Sat benchmarks.

131

three solvers on the Max-2-Sat series. All the instances in the series have 50 variables
and the number of clauses ranges from 200 to 400 with increments of 50. The figure
indicates that even though gtmaz explores the most number of nodes (in the bottom

figure), it still has the shortest runtime (in the top figure).

6.3.4 Summary

In this section, we first introduced g¢tmaz, a new branch-and-bound Maz-Sat solver.
We then compared it with three state-of-the-art Maz-Sat solvers on both randomly
generated benchmarks and two structured ones. Overall, ¢tmaz has the best perfor-
mance in runtime and the number of nodes explored. IP solvers have been shown to
be more efficient than branch-and-bound Maz-Sat solvers on Max-2-Sat benchmarks
but not as efficient on Maz-3-Sat benchmarks. The introduction of gtmaz changed
this dominance relationship. After comparing gtmax with cplex and eclipse-lpr, we
conclude that gtmaz is the fastest solver for all the Maz-2-Sat and Max-3-Sat bench-

marks we considered.

6.4 Minimum-size Test Pattern Problem

Test pattern generation is the process of finding the input sequences that cause the
defect to manifest itself at the output of the circuit. The most popular fault model
is the stuck-at (stuck-at-0, stuck-at-1) fault model. A stuck-at fault occurs when a
connection is permanently stuck at one logic value. A test for a stuck-at fault in a
combinational circuit is simply an assignment of 0’s and 1’s to the primary inputs
of the circuit that causes different outputs in the good and the faulty circuit. In
the presence of incompletely specified primary input assignments, the minimum-size
test pattern problem is to find a test with the minimum number of specified primary

inputs (the other primary inputs are don’t cares).

132

6.4.1 The BCP Formulation

When the minimum-size test pattern problem is formulated as a CNF formula F' [85],
two variables 2° and z! are generated for each primary input x. If both z° and z!
are 0, then the primary input x is a don’t care. When z° is 1 (0) and z' is 0 (1), then
the primary input z has to be 0 (1) in order to be a valid test. It is illegal to have
2% = 1 and 2! = 1. This combination is excluded by adding the clause 29 + 2! to the
CNF formula. The minimum-size test pattern problem is to:

minimize »_ (2% + z') (6.2)

zePI

subject to F

All the primary inputs variables have unit weight and the other variables have zero
weight. The minimum-size test pattern problem represents a non-covering MinCost-

Sat problem.

6.4.2 Experimental Results

The solver bsolo is the leading solver for the ATPG benchmarks. Other MinCostSat
solvers including eclipse are not competitive with bsolo because they do not exploit
the primary-input variables. In addition, as the data in Table 4.2 indicates, the
lower-bounding techniques perform poorly on these benchmarks. Therefore, we take
a different approach that explores the nodes as fast as possible and uses two very
basic lower-bounding techniques: (1) the solver backtracks when the cost function
above exceeds or is equal to the upper-bound, and (2) the solver backtracks when
there is a conflict in the clauses.

We call this new non-covering solver eclipse-bf (bf stands for brute force). It
branches on the weighted variables first (in the context of ATPG benchmarks, the
weighted variables correspond to the primary inputs) because their assignments largely
determine the values the rest of the variables. In Table 6.11, we compare eclipse-bf
with bsolo on the P-classes of size 16 for five difficult benchmarks from [41]. For

each benchmark, each solver runs 17 times, once on the reference benchmark and 16

133

times on the P-class instances. For each benchmark, the table reports the number
of primary-input variables and the optimal cost. For each solver, the table reports
the number of runs completed successfully within the 3000-second timeout. It also
reports the mean and standard deviation of the runtime and nodes for the successful
runs.

On all benchmarks except misex3_Fb@1, bsolo could not finish all 17 runs. For the
bottom three benchmarks in Table 6.11, bsolo was only able to complete successfully
on a small fraction of the 17 runs. For example, on c6288_F69gat@1, bsolo solves 2
out of 17 instances. However, eclipse-bf finishes 17 runs for all benchmarks except
c3540_F20@1. The number of primary-input variables in ¢3540_F20@1 is the most
among all benchmarks. Since eclipse-bf chose to branch on these variables first, it
faces a much larger search space on ¢3540_F20@1 and this explains why it fails to
solve any of the 17 instances. For misex3_Fb@1 where both solvers are able to solve
all 17 instances, bsolo has a mean runtime of 27.2 seconds and eclipse-bf runs slower
with a mean runtime of 43.4 seconds. In addition, eclipse-bf explores significantly

more nodes than bsolo.

6.4.3 Summary

We presented a branch-and-bound solver for minimum-size test pattern problem.
Our solver eclipse-bf abandons techniques that are only effective on the covering
problems, such as reduction and advanced lower-bounding. It attempts to explore
the nodes as fast as possible and backtracks when either the current cost is greater
than the upper bound or a conflict has occurred. We compared eclipse-bf with bsolo
on P-classes of size 16 for five difficult benchmarks from [41]. The results show that
eclipse-bf can solve all 17 instances for four out of the five benchmarks whereas bsolo
can only do so for one benchmark. However, eclipse-bf fails to solve any instance for
¢3540_F20@1, which has the most primary-input variables among the five benchmarks
we considered. It remains an open question whether advanced Sat techniques can be
effectively incorporated into eclipse-bf and enable it to consistently solve benchmarks

with large number of primary-input variables.

Table 6.11: Comparisons between bsolo and eclipse-bf on P-classes of size 16 of the ATPG benchmarks.

bsolo eclipse-bf
benchmark PI opt completed nodes time completed nodes time
c432 F37gat@1 72 9 12 23498/10092* * 17 7.87e6/5.85e6 466.8/570.8
misex3_Fb@1 28 8 17 1278/137 27.2/3.6 17 0.13e6/0.01e6 43.4/5.5
¢1908_F469@Q0 66 11 5 16413/20837* * 17 1.59e6/1.46e6 891.8/1225.4
c6288_F69gat@1 64 6 2 3967/4432* * 17 0.60e6/0.14e6 1184.3/310.9
¢3540_F20@1 100 6 2 19932/7473* * 0 - ¢

*bsolo time out on some instances.

eclipse-bf times out on all instances. The mean/std for the nodes of these unsuccessful runs is 4.65e6/3.92¢6.

This table compares bsolo with eclipse-bf on the P-classes of size 16 for five difficult benchmarks
from [41]. For each benchmark, each solver runs 17 times, once on the reference benchmark and 16
times on the P-class instances. For each benchmark, the table reports the number of primary-input
variables and the optimal cost. Then for each solver, the table reports the number of runs completed
successfully within the 3000 seconds timeout. It also reports the mean and standard deviation of
the runtime and nodes for the successful runs.

VEL

135

Table 6.12: Comparison of cplex, eclipse-cp and zchaff on P-Classes of size of 32 from
the SAT benchmarks.

benchmark measure cplex eclipse-cp zchaff
queenl9 time 0.2/0.1 8.7/0.4 13.7/6.5

nodes 5/8 2/0 292/3

hanoi3 time 1.7/1.4 3.0/0.7 0.01/0.01

nodes 485/445 3/1 43 /20

bw_large_b time 64.6/39.7 147.7/63.7 0.01/0.01
nodes 17/10 3/1 38/3

uf_250-1065_027 time 3600* 3600* 9.8/8.7
nodes — — 39/2

sched07s_v1386 time 1.3/0.04 12.6/1.5 1.9/1.6
nodes 1/0 1/0 115/64

This table compares cplex, eclipse-cp and zchaff on P-classes of size 32 from
five common Sat benchmarks. The mean and standard deviation of runtime
and nodes are reported. Since all these benchmarks are satisfiable, zchaff is
expected to be much faster than cplexr and eclipse-cp because it only needs to
find one solution whereas the other two solvers may need to consider many
solutions for quality comparison. However, on queenl19, zchaff is slower than
both cplex and eclipse-cp. On sched07s-v1386, zchaff is slower than cplez.

6.5 SAT Comparisons

MinCostSat is harder than Sat because in Sat, only one satisfying assignment is
needed to prove the satisfiability of a given benchmark. In Table 6.12, we compare
the state-of-the-art Sat solver zchaff with cplex and eclipse-cp on P-classes of size 32
for five common Sat benchmarks. Since all these benchmarks are satisfiable, zchaff
is expected to be much faster than cplex and eclipse-cp. However, on queen19, zchaff
is slower than both cplex and eclipse-cp because they explore many fewer nodes than

zchaff. On sched07s_v1386, zchaff is slower than cplex and explores many more nodes

136

than cplex and eclipse-cp. We observe that both cplex and eclipse-cp find an integer
optimal solution to the LP relaxation at the root; therefore, no further searches are
needed. For the other three benchmarks, there is no surprise: zchaff does run faster

than cplex and eclipse-cp.

137

Chapter 7

Conclusions and Future Work

In the past, many MinCostSat problems were considered separately. This work, for
the first time in the literature, tries to bring these seemingly isolated problems into a
single framework of MinCostSat. Our first goal, achieved in Chapter 2, is to compre-
hensively classify MinCostSat problems and introduce their applications, benchmarks
as well as solvers. We observe that native and non-native MinCostSat problems come
from totally different problem domains. Even among native MinCostSat problems
themselves, covering and non-covering problems are drastically different from each
other, both in terms of applications and benchmark structures. The majority of this
thesis has been limited to the study of covering problems and their algorithms.

Our second goal is to improve the state of the art for branch-and-bound Min-
CostSat algorithms. In Chapter 3, we surveyed essential techniques used in lead-
ing branch-and-bound covering solvers that include reduction algorithms, MIS-based
lower-bounding and branching variable selection heuristics. We also proposed new
techniques for LPR and CP lower bounding, upper bounding and search tree explo-
ration in Chapter 4. Combining existing and new techniques, we implemented two
covering solvers eclipse-lpr and eclipse-cp, which in most cases can solve an instance
by exploring many fewer nodes than competing solvers. However, this saving does

not always imply faster runtime because LPR and CP lower bounding can be very

138

time consuming. Any significant improvement of eclipse-lpr and eclipse-cp requires
speeding up their lower-bounding procedures.

The third goal is to devise an efficient local-search MinCostSat solver that scales
much better than branch-and-bound solvers. In Chapter 5, we presented a local-
search MinCostSat solver, eclipse-stoc, that utilizes well-known algorithms in the Sat
literature to successfully address both the feasibility issue and the quality issue of
MinCostSat.

Our last goal is to study special cases of MinCostSat. In Chapter 6, we presented
five of them that include two-level logic minimization, FPGA detailed routing, Mazx-
Sat, minimum-size test pattern problem, and Saf. In each case, we present new

approaches that are competitive with the state of the art.

Future Research Directions. We believe the following directions are pursuing;:

o Efficient Lower-Bounding Procedures for Covering Problems. The
performance of eclipse depends largely on the speed of its lower-bounding pro-
cedure. We have observed that even though eclipse-cp is able to explore very
few nodes compared to the other solvers, it does not always have the fastest
runtime. Already articulated in Chapter 4.6, in order to make the lower bound-
ing more efficient, we may (1) dynamically choose a suitable lower-bounding
strategy to avoid using expensive lower-bounding on all problems, (2) do lower
bounding incrementally without generating a new LP instance each time eclipse
needs to do lower bounding, and (3) generate the Gomory cuts directly so we
may be able to decide which Gomory cuts to generate. This may achieve a
good balance between the quality of the lower-bounds returned and the time

consumed by the lower-bounding procedure.

e Algorithms for Non-Covering MinCostSat Problems. Significant amount
of work in this thesis has concentrated on a subset of MinCostSat — the cover-
ing problems. Our work on non-covering MinCostSat problems is currently very
limited. We observe that even though eclipse-bf does not use any advanced Sat
techniques, it can be competitive with bsolo on most minimum-cost test pattern

benchmarks. However, eclipse-bf explores many more nodes than bsolo on the

139

same benchmarks. In addition, the performance of eclipse-bf seems to degrade
for instances with large number of primary-input variables. We plan to build a
non-covering MinCostSat solver on top of eclipse-bf that implements Sat-based
conflict diagnosis and non-chronological backtracking. It remains an open ques-
tion whether the savings provided by these techniques can compensate their

runtime overhead.

Branch-and-bound SAT Solver Enhanced by Local-Search Procedure.
In recent Sat competitions [86], local-search Sat solvers are shown to be infe-
rior to branch-and-bound Sat solvers on large satisfiable industrial benchmarks.
This is counter-intuitive because local-search Sat solvers are expected to have
better scaling behavior for large benchmarks. One common problem local-search
solvers have (not just for Sat) is their inability to escape local minima. We saw
in Section 4.4.2 that doing local search at each node of the branching tree is
more effective in finding the optimal solution than doing local search only at the
root. This indicates that the branching helps to diversify the local search and
effectively prevents it from getting stuck in local minima. Therefore, we expect
a branch-and-bound Sat solver that conducts a local-search at each node to be
effective on satisfiable instances — it combines the scalability of local-search
solvers with the systematic search of branch-and-bound solvers. Clearly, this

solver is also capable to proving an instance unsatisfiable.

140

Bibliography

1]

2]

[6]

[7]

G.D. Hachtel and F. Somenzi. Logic Synthesis and Verification Algorithms.
Kluwer Academic Publishers, 1996.

H. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic,
and stochastic search. In H. Shrobe and T. Senator, editors, Proceedings of the
Thirteenth National Conference on Artificial Intelligence and the Fighth Innova-
tive Applications of Artificial Intelligence Conference, pages 1194-1201, Menlo
Park, California, 1996. AAAI Press.

H. Kautz and B. Selman. Unifying SAT-based and graph-based planning. In
J. Minker, editor, Proceedings of the Workshop on Logic-Based Artificial In-
telligence, Washington, DC, June 1/-16, 1999, College Park, Maryland, 1999.

Computer Science Department, University of Maryland.

A. Meier, C. Gomes, and E. Melis. Heavy-tailed behavior and randomization in
proof planning. In Proceedings of the Workshop on Model-Based Validation of
Intelligence on AAAI Spring Symposium, 2001.

J.P. Marques-Silva and K.A. Sakallah. Boolean satisfiability in electronic design

automation. In Proceedings of the Design Automation Conference, 2000.

J.P. Marques-Silva and K.A. Sakallah. Robust search algorithms for test pattern
generation. In Proceedings of the Fault-Tolerant Computing Symposium, 1997.

A. Gupta and P. Ashar. Integrating a boolean satisfiability checker and BDDs for

[10]

[11]

[12]

[13]

[15]

141

combinatorial equivalence checking. In Proceedings of International Conference

in VLSI Design, 1998.

J.P. Marques-Silva and T. Glass. Combinatorial equivalence checking using sat-
isfiability and recursive learning. In Proceedings of the Design and Test in Europe

Conference, 1999.

R.G. Wood and R.A. Rutenbar. FPGA routing and routability estimation via
Boolean satisfiability. In Proceedings of the ACM Fifth International Symposium
on Field-Programmable Gate Arrays, pages 119-125. ACM Press, 1997.

G. Nam, K.A. Sakallah, and R.A. Rutenbar. Satisfiability-based layout revisited:
Detailed routing of complex FPGAs via search-based Boolean SAT. In Pro-
ceedings of the 1999 ACM/SIGDA Seventh International Symposium on Field
Programmable Gate Arrays, pages 167-175. ACM Press, 1999.

G. Nam, F. Aloul, K.A. Sakallah, and R. Rutenbar. A comparative study of
two Boolean formulations of FPGA detailed routing constraints. In Proceedings
of the 2001 International Symposium on Physical Design, pages 222-227. ACM
Press, 2001.

G. Nam, K.A. Sakallah, and R.A. Rutenbar. A Boolean satisfiability-based in-
cremental rerouting approach with application to FPGAs. In Proceedings of the

Design Automation and Testing Europe, 2001.

H. Xu, R.A. Rutenbar, and K.A. Sakallah. sub-SAT: A formulation for re-
lated Boolean satisfiability with applications in routing. IEEFE Transactions on

Computer-Aided Design, 22:814-820, June 2003.

S.0. Memik and F. Fallah. Accelerated SAT-based scheduling of control/data
flow graphs. In Proceedings of the International Conference on Computer Design,

2002.

J.P. Marques-Silva and K.A. Sakallah. GRASP: A new search algorithm for
satisfiability. CSE-TR-292-96, the University of Michigan, 1996.

[16]

[17]

[18]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

142

M. Moskewicz, C. Madigan, Y. Zhao, L.. Zhang, and S. Malik. Chaff: Engineering

an efficient sat solver. In Proceedings of the Design Automation Conference, 2001.

E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT solver. In
Proceedings of the Design Automation and Test in Furope, pages 142—149, 2002.

S. Khanna, M. Sudan, L. Trevisan, and D. Williamson. The approximability of
constraint satisfaction problems. SIAM Journal of Computing, 30(6):1863-1920,
2001.

G.D. Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill
Publishers, 1994.

ILOG. CPLEX Homepage, 2004. Information on CPLEX is available at
http://www.ilog.com/products/cplex/.

J. Bramel and D. Simchi-Levi. On the effectiveness of set covering formulations

for the vehicle routing problem. Operations Research, 45:295-301, 1997.

J. Holm. Airline crew scheduling during tracking. Master’s Thesis, Informatics

and Mathematical Modelling, Technical University of Denmark, DTU, 2002.

R.L. Rudell. Logic synthesis for visi design. Ph.D. Dissertation, Department of
EECS, University of California at Berkeley, 1989.

T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. A fully implicit
algorithm for exact state minimization. In Proceedings of the 31st Design Au-

tomation Conference, pages 684—690. ACM Press, 1994.

S. Jeong and F. Somenzi. A new algorithm for the binate covering problem and
its application to the minimization of Boolean relations. In Proceedings of the
1992 IEEE/ACM International Conference on Computer-aided Design, pages
417-420. IEEE Computer Society Press, 1992.

J.E. Beasley. An algorithm for set covering problems. Furopean Journal of

Operations Research, 31:85-93, 1987.

[27]

28]

[31]

[32]

[33]

[34]

143

O. Coudert and J.C. Madre. New ideas for solving covering problems. In Pro-

ceedings of the ACM/IEEE Design Automation Conference, 1995.

O. Coudert. On solving covering problems. In Proceedings of the 33rd Design
Automation Conference, pages 197-202, 1996.

S. Liao and S. Devadas. Solving covering problems using Ipr-based lower bounds.

In Proceedings of the 34th Design Automation Conference, pages 117-120, 1997.

E.I. Goldberg, L.P. Carloni, T. Villa, R.K. Brayton, and A.L. Sangiovanni-
Vincentelli. Negative thinking in branch-and-bound: the case of unate cover-
ing. IEEFE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 19:1-16, 2000.

T. Villa, T. Kam, R.K. Brayton, and A.L. Sangiovanni-Vincentelli. Explict
and implicit algorithms for binate covering problems. [FEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 16:677-691, 1997.

T.A. Feo and M. Resende. A probabilistic heuristic for a computationally difficult
set covering problem. Operations Research Letters, 8:67-71, 1989.

J.E. Beasle. A Lagrangian heuristic for set-covering problems. Nawval Research

Logistics, 37(1):151-164, 1990.

N. Karmarkar, M. Resende, and K.G. Ramakrishnan. An interior point algo-
rithm to solve computationally difficult set covering problems. Mathematical

Programming, 52:597-618, 1991.

A. Caprara, M. Fischetti, and P. Toth. A heuristic method for the set covering
problem. Lecture Notes in Computer Science, 1084:72-84, 1995.

M.S.F. Catalamo and F. Malucelli. Parallel randomized heuristics for the set cov-
ering problem. Technical Report, Transportation and Traffic Engineering Section,

Delft Unwversity of Technology, the Netherlands, 2000.

[37]

[38]

[39]

[40]

[41]

[42]

[45]

144

P.F. Flores, H.C. Neto, and J.P. Marques-Silva. An exact solution to the min-
imum size test pattern problem. IEEE Transactions on Design Automation of

FElectronic Systems, 6(4):629-644, 2001.

M. Balducini, G. Brignoli, G.A. Lanzarone, F. Magni, and A. Provetti. Ex-
periments in answer sets planning. Quarterly Bullettin of the Italian Artificial

Intelligence Association, 2000.

R. Sebastiani, P. Giorgini, and J. Mylopoulos. Simple and minimum-cost satis-

fiability for goal models. Lecture Notes in Computer Science, 3084:7-11, 2004.

P. Liberatore. Algorithms and experiments on finding minimal models. Technical
Report, Department of Computer and System Sciences, University of Rome “La

Sapienze”, 1999.

V.M. Manquinho and J.P. Marques-Silva. Search pruning techniques in SAT-
based branch-and-bound algorithms for the binate covering problem. I[FEFE
Transactions on Computer-Aided Design of Integrated Clircuits and Systems,

21:505-516, 2002.

F. Aloul, A. Ramari, I. Markov, and K.A. Sakallah. Generic ILP versus spe-
cialized 0-1 ILP: an update. In Proceedings of the International Conference on

Computer Aided Design, pages 450-457, 2002.

B. Cha, K. Iwama, Y. Kambayashi, and S. Miyazaki. Local search algorithms
for partial MAXSAT. In Proceedings of AAAI-97, pages 263-268, 1997.

B. Randerath, E. Speckenmeyer, E. Boros, P. Hammer, A. Kogao, K. Makino,
B. Simeone, and O. Cepek. A satisfiability formulation of problems on level

graphs. Rutcor Research Report 40, 2001.

R.J. Wallace and E.C. Freuder. Comparative studies of constraint satisfac-
tion and davis-putnam algorithms for maximum satisfiability problems. Cliques,
Coloring and Satisfiability: Second DIMACS Implementation Challenge, Amer.
Math. Soc., Providence, RI, USA, 1995.

[46]

[47]

[51]

[52]

[53]

145

B. Borchers and J. Furman. An two-phase exact algorithm for MAX-
SAT and weighted MAX-SAT problems. Journal of Combinatorial Opti-
mization, 2:299-306, 1999. The benchmarks and the solver are available at
http://www.nmt.edu/~borchers/maxsat.html.

T. Alsinet, F. Manya, and J. Planes. Improved branch and bound algorithms for
MAX-SAT. In Proceedings of SAT2003, Sixth International Symposium on the
Theory and Applications of Satisfiability Testing, May 5-8 2003, S. Margherita
Ligure - Portofino, Italy, May 2003.

T. Alsinet, F. Manya, and J. Planes. Improved brach and bound algorithms
for Max-2-SAT and weighted Max-2-SAT. In Proceedings of the Sizth Catalan
Conference on Artificial Intelligence (CCIA 2003), October 2003.

H. Zhang, H. Shen, and F. Manya. Exact algorithms for MAX-SAT. Flectronic
Notes in Theoretical Computer Science, 2003. To appear.

P. Mills and E. Tsang. Guided local search for solving SAT and weighted MAX-
SAT problems. SAT2000 - Highlights of Satisfiability Research in the Year 2000,
pages 459-465, 2000.

M. Yagiura and T. Ibaraki. Efficient 2 and 3-flip neighborhood search algorithms
for the MAX-SAT: Experimental evaluation. Journal of Heuristics, 7:423-442,
2001.

K. Smyth, H. Hoos, and T. Stiitzle. Iterated robust tabu search for MAX-SAT.
In Proceedings of the 16th Canadian Conference on Artificial Intelligence, 2003.

H. Kautz, B. Selman, and Y. Jiang. A general stochastic approach to solving
problems with hard and soft constraints. In D. Gu, J. Du, and P. Pardalos,
editors, The Satisfiability Problem: Theory and Applications, pages 573-586,
1997.

[54]

[55]

[59]

[60]

146

H. Zhang. SATO: An efficient propositional prover. In Proceedings of the Con-
ference on Automated Deduction, pages 272275, 1997. Version 3.2 of SATO is
available at ftp://cs.uiowa.edu/pub/hzhang/sato/sato.tar.gz.

D.R. Fulkerson and G.L. Nemhauser. Two computationally difficult set covering
problems that arise in computing the 1-width of incidence matrices of Steiner

triple systems. Mathematical Programming Study, 2:72-81, 1974.

S. Yang. Logic synthesis and optimization benchmarks wuser guide.
Technical Report 1991-IWLS-UG-Saeyang, @ MCNC, Research Trian-
gle Park, NC, January 1991. This report is now available from
http://www.cbl.ncsu.edu/publications/ and benchmark directories

archived at http://www.cbl.ncsu.edu/benchmarks/ .

H. Hoos and T. Stiitzle. SATLIB: An online resource for research on SAT, 2000.

For more information, see http://www.satlib.org.

F. Brglez, X. Y. Li, and M. Stallmann. On SAT instance classes and a method
for reliable performance experiments with SAT solvers. Annals of Mathematics
and Artificial Intelligence, 2004. In print. For links to pre-prints, data sets and

experimental testbed, see also http://www.cbl.ncsu.edu/publications/.

H. Zhang and M.E. Stickel. Implementing the Davis-Putnam method. Kluwer
Academic Publisher, 2000.

X.Y. Li, M.F. Stallmann, and F. Brglez. Engineering an improved MAX-SAT
solver. Technical Report 01, Computer Science Department, North Carolina

State University, Raleigh, NC, January 2004.

J.P. Walser and H. Kautz. Integer Optimization by Local Search: A Domain-
Independent Approach (Lecture Notes in Artificial Intelligence). Springer Verlag,
1999.

[62]

[63]

[64]

[65]

147

S. Joy, J. Mitchell, and B. Borchers. A branch and cut algorithm for MAX-
SAT and weighted MAX-SAT. In Proceedings of the DIMACS Workshop on
Satisfiability: Theory and Applications, 1998.

R. Boppana and M. Halldérsson. Approximating maximum independent sets by

excluding subgraphs. Bit, 32:180-196, 1992.

P. Barth. A Davis-Putnam enumeration algorithm for linear pseudo-Boolean
optimization. Technical Report MPI-1-95-2-003, Max Plank Institute Computer
Science, 1995.

V. Manquinho, P. Flores, J.P. Marques-Silva, and A. Oliverira. Prime implicant
computation using satisfiability algorithms. In Proceedings of the IEEE Interna-
tional Conference on Tools with Artificial Intelligence, pages 117-120, 1999.

J.P. Marques-Silva. Search algorithms for satisfiability problems in combina-
tional switching circuits. Ph.D. Dissertation, EECS Department, University of
Michigan, 1995.

R.E. Gomory. Outline of an algorithm for integer solution to linear programs.

Bulletin of the American Mathematical Society, 64:275, 1958.

R.E. Gomory. An algorithm for the mixed integer problem. RM-2537. Santa
Monica California: Rand Corporation, 1960.

T.M. Ozan. Applied Mathematical Programming for Production and Engineering
Management. Prentice-Hall, 1986.

D.A. McAllester, B. Selman, and H. Kautz. Evidence for invariants in local

search. In Proceedings of AAAI/TAAI pages 321-326, 1997.

E. Hirsch and A. Kojevnikov. UnitWalk: A new SAT solver that uses local search
guided by unit clause elimination. In Electronic Proceedings of Fifth International

Symposium on the Theory and Applications of Satisfiability Testing, 2002.

[72]

[75]

[76]

[77]

[80]

[31]

148

X.Y. Li, M.F. Stallmann, and F. Brglez. A local search solver using an effective
switching strategy and an efficient unit propagation. Lecture Notes in Computer
Science, 2919:53-68, 2004. For links to re-prints, data sets and experimental
testbed, see also http://www.cbl.ncsu.edu/publications/.

B. Selman, H.J. Levesque, and D. Mitchell. A new method for solving hard
satisfiability problems. In P. Rosenbloom and P. Szolovits, editors, Proceedings
of the Tenth National Conference on Artificial Intelligence, pages 440-446, Menlo
Park, California, 1992. AAAI Press.

F. Glover. Future paths for integer programming and links to artificial intelli-

gence. Computers and Operations Research, 5:533-549, 1986.

W.V.0O. Quine. The problem of simplifying truth functions. American Mathe-
matics Monthly, 59:521-531, 1952.

P.C. McGeer, J.V. Sanghavi, R.K. Brayton, and A.L. Sangiovanni-Vincentelli.
Espresso-signature: A new exact minimizer for logic functions. In Proceedings of

the 30th Design Automation Conference, pages 618-624, 1993.

V. Betz and J. Rose. VPR: A new packing, placement and routing tool for FPGA
research. In Proceedings of the Seventh Annual Workshop on Field Programmable

Logic and Applications, pages 213-222, 1997.

G. Lemieux and S. Brown. A detailed router for allocating wire segments in

FPGAs. In Proceedings of ACM Physical Design Workshop, 1993.

S. Wilton. Architecture and algorithms for field-programmable gate arrays with
embedded memories. Ph.D. Dissertation, University of Toronto, 1997.

M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-

proving. Communications of the ACM, 5(7):394-397, 1962.

R.G. Jeroslow and J. Wang. Solving propositional satisfiability problems. Annals
of Mathematics and Artificial Intelligence, 1:167-187, 1990.

[82]

[84]

[85]

[36]

149

H. Kautz, D. McAllester, and B. Selman. FEncoding plans in proposi-
tional logic. KR’96: Principles of Knowledge Representation and Reason-
ing, pages 374-384, 1996. The SATPLAN benchmark set is available at
http://sat.inesc.pt/benchmarks/cnf/satplan/.

B. Borchers and J. Furman. A two-phase exact algorithm for MAX-SAT and
weighted MAX-SAT problems. Technical Report, Mathematics Department, New
Mexico Tech, 1995.

G. Nemhauser, M. Savelsbergh, and G. Sigismondi. MINTO: a Mixed INTeger
Optimizer. Operations Research Letters, 15:425-441, 1994.

P. Flores, H. Neto, and J.P. Marques-Silva. An exact solution to the minimum
size test pattern problem. In Proceedings of the IEEFE International Conference

on Computer Design (ICCD), pages 510-515, 1998.

D. Le Berre and L. Simon. SAT Solver Competition, in conjunc-
tion with 2003 SAT Conference, May 2003. For more information, see
http://www.satlive.org/SATCompetition/2003/compO3report/index.html.

