
ABSTRACT

LIU, SONG. Variable Selection in Semi-parametric Additive Models with Extensions
to High Dimensional Data and Additive Cox Models . (Under the direction of Dr.
Hao Helen Zhang).

Variable selection in nonparametric and semi-parametric regression is more chal-

lenging than in linear models or other parametric models. We not only need to

estimate the component functions with proper smoothers, but also consider which

terms should be included in the model. In this paper, we focus on the variable se-

lection in semi-parametric additive models. We propose new methods of variable

selection for generalized additive models (GAM) and additive Cox models based on

Breiman’s (1995) nonnegative garrote. To achieve optimal performance of garrote in

GAMs and the additive Cox models, we develop several algorithms to improve the

initial estimation of component functions. Our methods can deal with continuous

and categorical variables in a unified fashion.

High dimensional data are more and more encountered in real life, and posing

serious challenge for model estimation and variable selection. In this dissertation

research, we extend our methods to high dimensional data by developing a two-stage

garrote to conduct variable selection and estimation. Simulations and real examples

show that our methods are very competitive in terms of prediction and variable

selection compared with other variable selection methods in semi-parametric additive

models.
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Chapter 1

Introduction

Variable selection is an important topic in statistical modeling. It is an effec-

tive way to reduce model complexity by balancing model bias and model variance.

Identifying the most important predictors will improve both prediction accuracy and

model interpretability. For linear models or parametric models, statisticians often use

classical methods to choose important variables such as forward selection, backward

elimination and best-subset selection. But these procedures are known to be locally

optimal and perform with high variability (Breiman, 1995).

In recent years, a lot of regularization techniques are applied to variable selection,

and many new methods are developed (Breiman, 1995; Tibshirani, 1996; Fan and Li,

2001; Efron et al., 2004; Yuan and Lin, 2006; Zou, 2006). Particularly, these methods

constrain the “length” of the coefficients of predictors to be some preselected values

which are tuning parameters. By properly choosing tuning parameters, we can find

a sparse model with improvement in the prediction errors (PE) over the full model.

We define prediction error in the same way as in Tibshirani (1996). It is assumed

that the observation (X, Y ) are drawn from some unknown distribution, where X is

a p-dimensional predictor, Y is a response. For convenience, we assume X is fixed.

Suppose that

Y = η(X) + ε, (1.1)
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where E(ε) = 0 and V ar(ε) = σ2. Then the PE of an estimate η̂(X) is defined as

PE = E{Y − η̂(X)}2 = ME + σ2, (1.2)

the expectation is taken over the conditional distribution of Y given X, if X is fixed.

The model error (ME) is given by

ME = E{η̂(X)− η(X)}2. (1.3)

This component is the prediction error due to lack of fit to the underlying true model.

We usually use the estimated ME to evaluate models.

There are several approaches to estimate ME. Among these methods, Mallows Cp

(Mallows, 1973), Akaike Information Criteria (Akaike, 1970, 1974) and Bayesian In-

formation Criteria (Schwarz, 1978) are most commonly used. Other popular methods

include Cross Validation (Picard and Cook, 1984) and Bootstrap (Efron, 1977), and

both of these two methods are computationally intensive.

Consider a simple linear regression problem with n observations {xi, yi}n
i=1, where

xi = (x1i, . . . , xpi) are linearly independent predictors, and

yi =

p∑
j=1

xjiβj + εi, i = 1, 2, . . . , n, (1.4)

where εi’s are iid random errors. For convenience, we do not include the intercept in

the model and assume the variable y and xj’s, j = 1, . . . , p, are all centered.

Fan and Li (2001) discussed the desired properties of a good variable selection

procedure, including the oracle properties. Assume the underlying true model for

(1.4) has a sparse representation. Without loss of generality, let π = {j : βj 6= 0} =

{1, 2, . . . , p0} and p0 < p. We also define πc = {j : βj = 0} as the true index set

of zero parameters. Therefore, the true parameter β has a partition (βπ, 0), and

correspondingly, we decompose any estimator β̂ = (β̂π, β̂πc). Define π∗ = {j : β̂j 6=
0}. Under some mild regularity conditions in Appendix of Fan and Li (2001), we call

β̂ an oracle estimator if it satisfies the following conditions:

1. Consistence in variable selection: limn→∞ P (π∗ = π) = 1;
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2. Asymptotic normality:
√

n
(
β̂π − βπ

)
→d N(0,Σ), where Σ is the p0 × p0

covariance matrix of the estimator for the nonzero coefficients if the true subset

mode were known.

The procedure with oracle properties is considered consistent in terms of both model

estimation and variable selection.

1.1 Penalized Least Squares for Linear Models

Breiman (1995) introduced the nonnegative garrote (nn-garrote) estimator in lin-

ear models. We denote the ordinary least squares (OLS) estimator of β as β̂
OLS

. The

original nn-garrote estimator is a “shrunk” OLS estimator. The shrinking factor cj’s

are the solution of

min
c1,...,cp

n∑
i=1

(
yi −

p∑
j=1

cjxjiβ̂
OLS
j

)2

+ λ

p∑
j=1

cj, subject to cj ≥ 0, for all j, (1.5)

where λ > 0 is a tuning parameters. The nn-garrote estimator is defined as β̂g
j =

ĉjβ̂
OLS
j , j = 1, . . . , p. When we have the orthogonal design, the garrote shrinking

factor has an explicit form:

ĉj =


1− λ(

β̂OLS
j

)2




+

. (1.6)

From (1.6), the coefficients with large OLS estimates will have large ĉj close to

1, while the coefficients with small OLS estimates tend to have small ĉj, which can

be exactly 0 when |β̂OLS
j | ≤

√
λ. Therefore, the garrote estimator has a sparse

solution. Besides this sparsity property, Breiman (1995) conducted comprehensive

simulations to compare subset selection and the nn-garrote estimator. Both simulated

and real experiments showed that the nn-garrote estimator has the mean prediction

error smaller than that of the subset selection, and comparable to that of the ridge

regression. Breiman (1995) concluded that subset selection is very unstable in terms

of variable selection, while the nn-garrote estimator is much more stable.
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The garrote has a drawback, as pointed by Tibshirani (1996), that it heavily

depends on the OLS estimates. When the OLS estimators behave badly in some

situations such as highly correlated covariates, the garrote estimates may suffer the

same problems as the OLS estimates. Tibshirani (1996) introduced the Least Absolute

Selection and Smoothing Operator (LASSO) estimate, which does not depend on the

OLS estimates. The Lasso estimate is defined as

β̂
lasso

= min
β1,...,βp

n∑
i=1

(
yi −

p∑
j=1

xjiβj

)2

+ λ

p∑
j=1

|βj| , (1.7)

where λ ≥ 0 is a tuning parameter. The second term in (1.7) is called the `1 penalty.

With the `1 penalty, the lasso can do variable selection and estimation simultaneously

and it has brought a lot of interest in the statistical machine learning community.

Many other techniques based on the `1 penalty have been developed recently (Fu,

1998; Fan and Li, 2001; Efron et al., 2004; Yuan and Lin, 2006; Zou and Hastie, 2005;

Zou, 2006), and theoretical results on the consistency properties of the lasso estimate

are established. Fan and Li (2001) conjectured that the lasso estimate does not have

oracle properties and Zou (2006) proved that the lasso is not an oracle estimate in

general although the lasso estimate is consistent in terms of estimation.

Fan and Li (2001) proposed a new variable selection approach to remedy the

inconsistency of the lasso via a nonconcave penalized likelihood. They imposed a

new penalty, which is derived from `1 penalty, named Smoothly Clipped Absolute

Deviation (SCAD), on the log likelihood function. With the SCAD penalty, the

coefficients of unimportant variables are shrunk to be exactly 0 and the important

coefficients are not severely biased as the lasso estimates. Fan and Li (2001) proved

the SCAD estimate is consistent for both estimation and variable selection under

certain regularity conditions. So the SCAD estimate has oracle properties.

Zou (2006) proposed the adaptive lasso to fix the consistency problem of the

original lasso. The adaptive lasso is defined as:

β̂
alasso

= min
β1,...,βp

n∑
i=1

(
yi −

p∑
j=1

xjiβj

)2

+ λ

p∑
j=1

|βj|
|β̃j|

, (1.8)
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where β̃j is a
√

n-consistent estimator of βj, j = 1, . . . , p. Zou (2006) showed that

the adaptive lasso enjoyed the oracle properties, and further connected his adaptive

lasso with the nonnegative garrote.

In (1.8), if we replace β̃j with the OLS estimators β̂OLS
j , then the adaptive lasso

solves

min
β1,...,βp

n∑
i=1

(
yi −

p∑
j=1

xjiβj

)2

+ λ

p∑
j=1

|βj|
|β̂OLS

j | . (1.9)

This equation is similar to (1.5). Since ĉj = β̂g
j /β̂

OLS
j , we can reformulate (1.5) as

min
β1,...,βp

n∑
i=1

(
yi −

p∑
j=1

xjiβj

)2

+ λ

p∑
j=1

|βj|
|β̂OLS

j | , subject to βjβ̂
OLS
j ≥ 0,∀j. (1.10)

The equations (1.9) and (1.10) are almost the same except the sign constraint in

(1.10). Zou (2006) proved the garrote estimate is consistent both in estimation and

in variable selection, and Yuan and Lin (2007) conducted an independent study on

its theoretical and computational properties in great details.

Yuan and Lin (2007) extended the garrote into a more general case:

min
c1,...,cp

n∑
i=1

(
yi −

p∑
j=1

cjxjiβ̂
init
j

)2

+ λ

p∑
j=1

cj, subject to cj ≥ 0, j = 1, . . . , p, (1.11)

where β̂init
j is an initial estimate. This initial estimate is not restricted to the least

squares estimate, and other estimates including lasso, ridge regression and elastic

net (Zou and Hastie, 2005) can also be used as initial values. They proved that the

solution to (1.11) has oracle properties as long as the initial estimate is
√

n-consistent

in estimation and suggested a path algorithm which is similar to LARS solution (Efron

et al, 2004).

Yuan and Lin (2006) proposed the group garrote to select groups of variables

(factors) in linear models. The idea is to put garrote-type constraints groupwisely

instead of elementwisely on initial estimates. Therefore, variables in a same group can

be either selected or discarded as a bundle. A detailed review on the group garrote

is given in Chapter 2.
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1.2 Variable Selection for Nonparametric Models

Currently, most methods of variable selection focus on linear models or parametric

models. Nonparametric and semi-parametric regression models allow more relaxed

assumptions than linear models, but not many methods have been developed for

variable selection in nonparametric and semi-parameter regression models.

The streamlined techniques include backward and forward stepwise selection,

which are implemented in CART (Breiman et al., 1984), TURBO (Friedman and

Silverman, 1989), BRUTO (Hastie,1989), and MARS (Friedman,1991). These meth-

ods perform well in practice, but they can be computationally expensive because

they all use some types of search algorithms. In addition, as the forward selection

and backward selection in linear models, they are discrete processes that either keep

or drop one variable at a time. In this way, they may have problems in finding the

globally optimal solution.

Kohn and his colleagues (Shively, Kohn and Wood,1999; Wood, Kohn, Shively

and Jiang, 2002; Yau, Kohn and Wood, 2003; Yaui and Kohn, 2003) proposed a

MCMC based Bayesian method to conduct variable selection for additive models.

Their experiment results are very promising, but their approach is computationally

demanding. Zhang et al. (2004) introduced the likelihood basis pursuit approach

for model selection and estimation in the functional ANOVA. Their method is also

computationally expensive.

The regularization techniques are continuous in variable selection, and usually

result in optimal models with low variability and good prediction. Compared to

traditional search algorithms, the success of regularization methods in linear mod-

els provides new motivations for variable selection in nonparametric models. In the

framework of smoothing spline ANOVA (SS-ANOVA), Lin and Zhang (2006) devel-

oped a lasso-type method—COSSO, Component Selection and Smoothing Operator,

to conduct variable selection and function estimation simultaneously. The COSSO

allows the treatment of Gaussian data, exponential families (Zhang and Lin, 2006)

and survival data (Leng and Zhang, 2006). In the SS-ANOVA COSSO model, the

penalty is the sum of functional component norms and referred to as the COSSO



7

penalty. Like the lasso penalty, the COSSO penalty leads to a sparse model. Since

COSSO is based on smoothing splines, the original full basis algorithm for COSSO

generally demands high computational cost when the sample size is large. To ad-

dress this issue, Zhang and Lin (2006) suggested the subset basis algorithm, which

effectively reduces the computation burden of the COSSO.

Compared with the lasso penalty, the garrote penalty has many advantages if

a good initial estimate is available. Firstly, the garrote estimate is shown to have

oracle properties for linear models. Secondly, it is easy and natural to extend to

any dictionary-based models, for example, additive models in both nonparametric

and semi-parametric settings. Cantoni et al. (2006) adapted the garrote method

to nonparametric additive models with Gaussian data. They used several fitting

methods to get initial estimates and 5-fold cross validation to find tuning parameters

in the garrote. Their simulation results showed that the garrote estimate in additive

models gives competitive performance in terms of prediction error compared to the

COSSO, but tends to overfit in terms of variable selection. However, Cantoni et al.

(2006) can not handle non-normal data, like count data, binary data and survival

data with censoring.

Recently, Yuan (2008) also extended the nn-garrote for component selection in

additive models and more general functional ANOVA models. He used smoothing

splines to get initial estimates, and developed a similar path algorithm as LARS

(Efron et al., 2004) to get the whole path solution efficiently. Most importantly, he

showed that the garrote estimate enjoys the good oracle properties as in the linear

models given the tuning parameter is appropriately chosen. In Theorem 2 of Yuan

(2008), Yuan pointed out that as long as the initial estimate of each component is

consistent, the garrote estimate is consistent in terms of both estimation and variable

selection. In other words, the garrote has the ability to “transform” a consistent

initial estimate to the estimate with oracle properties. Again, Yuan’s work focused

on normal data only.
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1.3 Proposal of Work

In this dissertation study, we develop new variable selection methods in general

semi-parametric settings of exponential family data and survival data. Furthermore,

we extend our methods to high dimensional data. Model estimation and variable

selection for these types of data pose several unique challenges:

• For non-normal data, statistical inferences are often based on likelihood func-

tions. The garrote in the context of penalized least squares then needs to be

extended to the general case of penalized likelihood. Both inferences and com-

putation are more complicated than the least squares setting.

• Not many methods are available for estimation and variable selection for the

nonparametric and semi-parametric Cox proportional hazard models.

• When the sample size is small and there are many noisy variables, the current

algorithm for fitting generalized additive models often encounters convergence

problems, which makes the estimation results very unstable. A more robust

method for small data is therefore desired.

In our work, we will address all the issues above and extend the garrote method

to generalized additive models (GAM), to survival data and high dimensional data.

We will propose new techniques to improve both initial estimates and the method of

tuning. In addition, we will use the group garrote to deal with categorical variables

altogether with continuous ones. Efficient algorithms are developed for computation.

We suggest a new boosting algorithm to obtain a stable initial GAM estimates when

there are a large number of covariates. In addition, we also propose a two-stage

garrote method for high dimensional data. Our simulation results and real examples

show that the new methods perform as well or better than other competitors in terms

of both prediction and variable selection.

This thesis is organized as follows. In Chapter 2, our new methods of variable

selection in semi-parametric GAMs are introduced. We first review some background

material for GAMs, the group garrote and boosting, then propose our methods and
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algorithms, followed by simulations and real examples. In Chapter 3, we propose the

garrote method for additive Cox models. In Chapter 4, we propose a new variable

selection for high dimensional data. Chapter 5 contains conclusions and comments.
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Chapter 2

New Variable Selection for

Semi-parametric Additive Models

In this chapter, we propose a new variable selection method for semi-parametric

regression models in the setting of penalized likelihood. We also develop a new al-

gorithm to get the stable initial estimates for GAMs. The computation and tuning

parameter issues are discussed. Simulation and real examples are conducted.

2.1 Review on GAMs

Generalized additive models (Hastie and Tibshirani, 1990) are a class of extended

generalized linear models with a linear predictor replaced by a sum of unknown

smooth functions of predictors. Suppose we have a response variable Y and p-

dimensional covariate X = (X1, . . . , Xp). Assume Y |X has an exponential family

distribution of

exp (yη(X)−B(X) + C(y)) , (2.1)

where B and C are known functions. The purpose of regression is to estimate the

unknown η(X) based on an independently and identically distributed sample. The

GAM assumes the structure of:

g(µ) = η(X) = α +

p∑
j=1

fj(Xj), (2.2)
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where µ = E(Y |X), g(·) is a known link function, α is the intercept, and fj,

j = 1, . . . , p, are unspecified univariate functions. This model allows a more relaxed

assumption on the function form of covariates than parametric models, in which we

assume the response has a parametric relationship with predictors. This relaxed

assumption brings two important issues for GAMs: fitting the GAMs with proper

smoothers and choices of smoothing parameters. In the following, we review several

popular approaches to the model estimation for GAMs.

2.1.1 GAMs with Backfitting

Hastie and Tibshirani (1990) first proposed solving GAMs with the so-called back-

fitting technique. This simple method has the advantage of allowing one to estimate

the component functions with any smoothing technique. Now we give a brief de-

scription of this algorithm. We first illustrate how the backfitting algorithm works in

additive models. This is Gauss-Seidel type of updating procedure (Monahan, 2001).

Assume we have data {yi,xi}n
i=1 following the model,

yi = α +

p∑
j=1

f(xji) + εi, i = 1, . . . , n, (2.3)

where εi, i = 1, . . . , n, are iid errors.

Define y = (y1, . . . , yn)T and fj = (fj(xj1), . . . , fj(xjn))T for j = 1, . . . , p. The

backfitting algorithm is:

1. For j = 1, . . . , p, set α̂ = y and f̂
(1)
j = 0.

2. For m = 1, 2, . . ., until all f̂j converge

For j = 1, 2, . . . , p

f̂j,temp = Sj[y − α̂ · 1−
∑

k<j

f̂
(m+1)
k −

∑

k>j

f̂
(m)
k ], (2.4)

f̂
(m+1)
j = f̂j,temp − 1

n

n∑
i=1

f̂j,temp(xij) · 1, (2.5)

end (inner For loop);



12

end (outer For loop).

where Sj is the smoother for the jth variable. To fit the GAM, a weighted version

of backfitting is applied. The algorithm is known as the iteratively reweighted least

squares (IRLS) (Hastie and Tibshirani, 1990).

There is an R package gam providing backfitting GAMs. Although the backfit-

ting algorithm chooses a wide range of smoothers, the tuning can be computationally

expensive. There are multiple tuning parameters, one associated with each compo-

nent, and it is often hard to determine the proper amount of smoothing for individual

component functions. Commonly used tuning criteria include Cross Validation (CV)

and Generalized Cross Validation (GCV).

2.1.2 GAMs with Penalized Regression Splines

To facilitate the problem of choosing smoothing parameters in backfitting, Wood

(2000, 2004) developed another method based on penalized regression splines to fit

GAMs while incorporating automatic selection of smoothing parameters at the same

time. In this method, the smoothing functions are restricted to regression splines,

which requires the specification of the number of knots and their locations.

Wood (2003) proposed a new smoothing method, thin plate regression spline,

which is a hybrid of thin-plate smoothing splines and regression splines. The thin-

plate regression spline avoids the problem of placing knots and provides low rank

approximations to generalized smoothing spline models. Wood (2003) argued that

the performance of the thin-plate regression splines is not sensitive to the dimension

of basis. The advantage of this setting is that we can automatically choose smoothing

parameters for each smoother with low computational cost. More details are given

as follows.

• First, we represent each smooth term with a basis expansion,

fj(xji) =

Kj∑

k=1

rjkbjk(xji), i = 1, . . . , n, j = 1, . . . , p, (2.6)
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where bjk is a preselected basis function, Kj is the number of the basis functions

to estimate fj. Absorb bjk(xji) into the design matrix B, and rjk into r, j =

1, . . . , p, i = 1, . . . , n, k = 1, . . . , Kj, then the model in (2.3) has the form of a

linear model:

y = Br + ε, (2.7)

where ε is an n-vector of iid random errors.

• As in the setting of smoothing splines, we estimate r by minimizing:

‖y −Br‖2 +

p∑
j=1

λj

∫
f̈j

2
(x)dx, (2.8)

where λj is a smoothing parameter for the jth term, j = 1, . . . , p. The second

term of (2.8) can be rewritten as rTΩjr where Ωj can be expressed in terms of

the basis functions bj = (bj1, . . . , bjKj
), j = 1, . . . , p. To avoid the identifiability

problem, we may impose the mean-zero constraints on fj, j = 1, . . . , p. Then

we estimate r by minimizing

‖y −Br‖2 +

p∑
j=1

λjr
TΩjr,

which is a generalized ridge regression for a given set of λj, j = 1, . . . , p.

• Choose the multiple smoothing parameters by minimizing the GCV score with

the modified Newton method, and estimate the component functions with se-

lected smoothing parameters.

To fit a GAM, we use the weighted version of the above procedure. The algo-

rithm of estimating multiple smoothing parameters is fast, taking p3
p∑

j=1

K3
j opera-

tions, where p is the number of smoothing terms and Kj is the dimension of basis

function for each term. In our method of variable selection, we use this GAM method

to get initial estimates. In R, the package mgcv provides the function gam to imple-

ment this algorithm.

In addition to these two methods of fitting GAMs, there are other alternatives.

The generalized smoothing spline method of Wahba (1990) and Gu (2002) is built
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on a complete theoretical framework. Their approach is based on the elegant theory

of reproducing kernel Hilbert space (RKHS). The drawback of their approach is high

computational cost. Gu (2002) developed the gss package in R to fit the GAM.

Fahrmeir and Lang (2001) and Fahrmeir et al. (2004) suggested a Bayesian approach

for GAMs and used MCMC technique for computation.

2.2 Other Background Review

2.2.1 Group Garrote for Linear Models

In linear models, multifactor or categorical variables are often coded as a group of

dummy variables. Traditional variable selection methods usually select the dummy

variables separately without taking into account their internal relationship. Yuan and

Lin (2006) proposed the group selection idea by encouraging the selection of dummy

variables associated with one same variable simultaneously. The following gives a

brief introduction on the group garrote.

Consider a regression model with J factors,

y =
J∑

j=1

Xjβj + ε, (2.9)

where y is a length of n vector, ε ∼ N(0, σ2I), Xj is an n× pj matrix corresponding

to the jth factor, and βj is a coefficient vector of size pj, j = 1, . . . , J . Let β̂
OLS

j

denote the OLS estimate of βj, and Zj = Xjβ̂
OLS

j , Z = (Z1, . . . , ZJ). Then the group

garrote estimate d̂ = (d̂1, . . . , d̂J)T is the solution of

min
d

(
‖y − Zd‖2 + λ

J∑
j=1

pjdj

)
, subject to dj ≥ 0,∀j. (2.10)

The final prediction is given by ŷ =
J∑

j=1

Xjβ̂
OLS

j d̂j. If d̂j = 0, then the entire group

of dummy variables associated with Xj is dropped out of the final model. Obviously,

when p1 = · · · = pJ = 1, this model reduces to the ordinary garrote proposed by

Breiman (1995). The group garrote solution can be solved by quadratic programming.
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Yuan and Lin (2007) developed a path algorithm for the garrote, which can be also

applied in the group garrote. To choose the tuning parameter λ, Yuan and Lin (2006)

proposed an approximation formula to calculate the degree of freedom (df) for the

group garrote,

d̃f = 2
J∑

j=1

I(d̂j > 0) +
J∑

j=1

d̂j(pj − 2), (2.11)

where I is an indicator function.

Yuan and Lin (2006) conducted simulations to compare the group garrote, group

lasso and group LARS with stepwise selection, and concluded that the group garrote

has smaller prediction errors and gives a more sparse model than other methods. The

initial estimates in the group garrote can be replaced by other consistent estimates.

2.2.2 Boosting

Boosting is one of the most successful learning algorithms in statistical learning.

It was first introduced by Scapire (1990) and Freund (1995) in the context of classi-

fication problems. The essential idea of the boosting method is to build a powerful

“committee” by series of “weak” learners. Here the “weak” learner refers to a very

simple classifier which is just slightly better than a random guess. Usually, when a

model has small variance and large bias, the corresponding learner is considered to be

“weak”. Friedman et al. (2000) gave a detailed review on boosting from a statistical

point of view, where the boosting is viewed as a functional gradient descent algorithm.

The idea of boosting has its root in PAC (Probably Approximately Correct) learning

(Valient, 1984). The AdaBoost (Adaptive Boosting) algorithm proposed by Freund

and Schapire (1996) is generally considered as a first step towards the practical boost-

ing algorithm. There are many types of boosting algorithms such as gradientBoost

(Breiman, 1999; Friedman, 2001) and L2 boosting (Buhlmann and Yu, 2005).

AdaBoost

Consider a classification problem with two classes, with the label Y ∈ {−1, 1}. A

classifier Gm(X) is obtained by training on the data with p−dimensional predictor
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X. Define F (X) =
∑M

m=1 αmGm(X), in which m is a boosting iteration and αm

is the weight for each boosting iteration. After M steps, the boosting estimator

is sign(F (X)). In general, the AdaBoost will train a classifier based on different

weights on the training sample, and give large weights to the sample points that are

misclassified in the previous boosting iteration.

Freund and Schapire (1996) explained the AdaBoost with following algorithm.

1. Set initial weights wi = 1/n, i = 1, . . . , n.

2. For m = 1, . . . , M :

• Train Gm(X) with weights wi’s on the data.

• Calculate em = (
∑n

i=1 wiI(yi 6= Gm(xi)))/(
∑n

i=1 wi), and αm = log((1 −
em)/em).

• Recalculate weights: wi ← wi exp(αmI(yi 6= Gm(xi))), i = 1, . . . , n, and do

normalization so that
∑

i wi = 1.

3. Get the classifier by calculating sign(
∑M

m=1 αmGm).

The total number of iterations M is usually decided by cross validation.

gradientBoost

Breiman (1999) first proposed a gradient decent boosting. Friedman (2001) de-

veloped a more general gradient boosting algorithm based on the weak learner tree,

which is known as Multiple Additive Regression Tree (MART). Friedman (2001) fur-

ther explained boosting as a numerical function optimization algorithm in certain

functional spaces. He also connected the stagewise additive expansion and steepest

descent.

Suppose our objective is to minimize a differentiable loss function L(f). Then the

steepest decent is hm = −ρmgm, where ρm is a scalar and gm is the gradient of L(f)

evaluated at f = fm−1. m is the boosting iteration. The ith component of gm is

gmi = −
(

∂L(yi, f(xi))

∂f(xi)

)

f(xi)=fm−1(xi)

. (2.12)
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Then the step length ρm is the minimizer of L(fm−1 + ρgm). The current solution is

updated by

fm = fm−1 + ρmgm. (2.13)

The detailed algorithm of generic gradientBoost is as following:

1. Initial f0(x) = minρ

∑n
i=1 L(yi, ρ).

2. For m = 1, . . . , M :

• ỹi = −
(

∂L(yi,f(xi))
∂f(xi)

)
f(xi)=fm−1(xi)

, i = 1, . . . , n.

• γm = min
γ, β

∑n
i=1(ỹi − βb(xi; γ))2.

• ρm = min
ρ

n
i=1L(yi, fm−1(xi) + ρb(xi; γm)).

• fm(x) = fm−1(x) + ρmb(x; γm).

3. Stop at (M + 1)th step .

Here b(xi; .) is a basis function in regression tree.

Friedman (2001) conducted comprehensive experiments and showed that MART

is a competitive and highly robust procedure for both regression and classification

problems, and it outperforms many other data mining tools in cases of messy data.

L2 Boosting

Buhlmann and Yu (2003, 2005) proposed L2 boosting with componentwise least

square and cubic smoothing splines as base learners.

In L2 boosting, the loss function is the squared error loss L(y, f) = (y − f)2. In

this section, we choose the componentwise linear least squares as the base learners.

Based on the data {yi,xi}, i = 1, . . . , n, the L2 boosting algorithm conducts the

following procedure:

1. Set f̂ (0) = ȳ.

2. For m = 1, . . . , M :

• Compute the residuals ri = yi − f̂ (m−1)(xi), i = 1, . . . , n.
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• Fit the component OLS for each xj, and get the fitted coefficients β̂j, α̂j,

j = 1, . . . , p.

Select the covariate xκ which reduces the L2 loss most:

κ = min
j=1,...,p

‖r− α̂j1− β̂jxj‖2,

where r = (r1, . . . , rn)T .

• Update f̂ (m)(x) = f̂ (m−1)(x) + ν(α̂κ + β̂κxκ).

The ν in the last step is called the shrinkage factor. The natural value of ν is 1,

but smaller values are often preferred since they lead to more stable and less greedy

procedures. Usually, the smaller we choose ν, the more boosting iterations we must

take. Empirical results (Buhlmann and Yu, 2003, 2005) suggested that ν = 0.1 is a

good choice in practice.

The L2 boosting with componentwise least squares works in the similar way as

the lasso. It can conduct variable selection and component estimation simultaneously.

The only tuning parameter is the boosting step. Buhlmann and Yu (2003) showed

that L2 boosting with componentwise smoothing splines can fit additive models with

variable selection. They also proved that the boosting estimation of component func-

tion can achieve optimal convergence rate in one dimensional case, and can be adapted

to higher-order smoothness.

Connection of Boosting and `1 Regularization

Recent boosting research showed there is a strong connection between boosting

and `1 regularization (lasso). Zhang and Yu (2003) explored the quantitative relation-

ship between early stopping in boosting and the `1 penalty. Zhang (2003) proposed a

“shrinkage” boosting which converges to `1 solution path. Efron et al. (2004) showed

that forward stagewise regression, which is similar to gradient boosting, is closely

related to the lasso.
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2.3 New Methodology

We consider the generalized additive model with both continuous and categorical

variables. Since the statistical inferences of GAMs are generally based on the like-

lihood functions, we will use the penalized likelihood methods (Fan and Li, 2001)

for function estimation and variable selection. In this section, we assume there are

totally p+ q variables X = (x1, . . . , xp, u1, . . . , uq). The first p variables x1, . . . , xp are

continuous, and the remaining q variables u1, . . . , uq are categorical (factors). Each

uj is coded to be dummy vector zj, j = 1, . . . , q, and each uj has dj categories. As-

sume the response variable Y given X = x follows a distribution from the exponential

family as in (2.1).

2.3.1 Formulation

Given a random sample {yi, x1i, . . . , xpi, u1i, . . . , uqi}n
i=1 we consider the following

model:

g(µi) = ηi, ηi = α +

p∑
j=1

fj(xji) +

q∑
j=1

zT
jiβj, (2.14)

where µi = E(Yi|Xi), g(·) is a known link function, α is the intercept, fj, j = 1, . . . , p,

are unspecified functions, and βj = (βj1, . . . , βjdj
)T . As in Section (2.1) , we assume

fj to be a univariate function. The density of Yi|Xi is denoted by pi(yi, ηi). Let

`i = log pi(yi, ηi) be the log-likelihood of yi. Then a garrote-type estimator for GAMs

is proposed by solving

min
c
−`n(c) + λ

(
p∑

j=1

cj +

q∑
j=1

djcp+j

)
, subject to cj ≥ 0, j = 1, . . . , p + q, (2.15)

where `n(c) =
n∑

i=1

`i(yi, η̃i), and

η̃i = α̂ +

p∑
j=1

cj f̂
init
j (xji) +

q∑
j=1

cj+pz
T
jiβ̂

init

j , (2.16)

and f̂ init
j (xji), j = 1, . . . , p and β̂

init

j , j = 1, . . . , q are some initial estimates. The final

garrote estimate of fj(xji) is ĉj f̂
init
j (xji), j = 1, . . . , p and the final garrote estimate of
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β̂j is ĉj+pβ̂
init

j , j = 1, . . . , q. If some ĉj = 0, then the corresponding smoothing term

or parametric term is dropped from the final model, which produces a sparse model.

In theory, if both f̂ init
j , j = 1, . . . , p and β̂

init

j , j = 1, . . . , q are consistent estimators,

the garrote solution of our method may have oracle properties.

2.3.2 Computational Algorithms

In the context of generalized additive models, the garrote becomes a penalized

likelihood problem instead of the penalized least squares. To solve the garrote in

GAMs, we will use a Newton-Raphson iteration algorithm in the same spirit of the

iteratively reweighted least squares (IRLS) (Tibshirani, 1997). At each iteration,

we replace the weighted least squares by solving a weighted least squares garrote.

In particular, define c = (c1, . . . , cp+q)
T , the gradient g = −∂`n/∂c , the Hessian

matrix H = −∂2`n/∂ccT. Let W be the Cholesky decomposition of H such that

H = WTW. Define the working variable v = (WT)−1(Hc−g). Then a second-order

Taylor expansion of −`n can be approximated by ‖v −Wc‖2 plus some constant not

containing c.

To get the garrote solution for GAMs in (2.15) for a fixed λ, we propose the

following procedure:

1. Get the initial fits f̂ init
j , j = 1, . . . , p and β̂

init

j , j = 1, . . . , q.

2. Initialize ĉ = 0.

3. Compute g, H, W, and v based on the current value of ĉ.

4. Minimize ‖v −Wc‖2+λ

(
p∑

j=1

cj +
q∑

j=1

djcp+j

)
, subject to cj ≥ 0, j = 1, . . . , p+

q for given λ.

5. Repeat Steps 3 and 4 until the convergence criterion meets.

Breiman (1995) used the quadratic programming techniques to solve the original

garrote problem, and developed a Fortran routine to implement this algorithm. We

will adapt this garrote routine in Step 4 of our algorithm. Next, we will discuss two
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key issues in the implementation of the proposed computational algorithms. One

is the computation of initial estimates, and the other is the selection of the tuning

parameter.

(1) Initial Estimation for GAMs

1. Fitting GAMs with mgcv in R

There are several packages in R to fit the GAM. In particular, the function gam

in the gam library implements the backfitting algorithm. Gu (2002) developed

the gss package to fit GAM in the framework of smoothing splines. Both of these

procedures perform well in practice, but they suffer from expensive computation

due to choosing multiple smoothing parameters. If there are p smoothers, one

has to search the optimal smoothing parameters in a p-dimensional space. Wood

(2000,2004) suggested an efficient algorithm to estimate all components and

automatically choose the smoothing parameters at the same time. He developed

a package called mgcv library in R. Cantoni et al. (2006) tried several fitting

methods and showed that Wood’s package performs much better than other

methods. In our approach , we employ the method of Wood (2000, 2004) and

its package in R.

2. When p is Large (relatively to n) The package above works well in general

except for data of small sample sizes. The mgcv package seems to be unstable

and tends to experience convergence problems in practice when n is relatively

small compared to p, say, p = 10, n = 50. In the following, we propose a

boosting algorithm to fit the GAM by componentwise regression and smoothing

based on the forward stagewise regression (Friedman et al., 2000), L2 Boosting

(Buhlmann and Yu, 2005) and likelihood-based boosting (Gerhard and Binder,

2006).

We use the penalized thin-plate regression splines as weak learners. The loss

function is the negative likelihood (deviance). Define y = (y1, . . . , yn)T , fj =

(fj(xj1), . . . , fj(xjn))T and 1 = (1, . . . , 1)T . The boosting procedure is as fol-

lowing:
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(a) Fit the models with intercept only:

α̂(0) = ȳ1,

β̂
(0)

= 0,

f̂
(0)
j = 0, j = 1, . . . , p,

η̂(0) = (ȳ, . . . , ȳ)T ,

µ̂(0) = g−1(η̂(0)).

(b) For m = 0, 1, . . ., do;

• Fit parametric (linear) terms

Fit generalized linear models (GLM) with (y− µ̂(m)) as response and

Z = (z1, . . . , zq) as covariates, and obtain α̂ and β̂. Update:

α̂(m+1) = α̂(m) + α̂1,

β̂
(m+1)

= β̂
(m)

+ β̂,

η̂temp = α̂(m+1) + Zβ̂
(m+1)

+

p∑
j=1

f
(m)
j .

• Fit smoothing terms

For j = 1, . . . , p, do;

– Estimate f̂j,temp with (y−g−1(η̂temp)) as response, using gam(mgcv)

in R, and set all the smoothing parameters to be large.

– Let η̂j,temp = η̂temp + f̂j,temp.

end;

Choose the κth term,

where κ = max
j

(
Deviance(η̂temp)−Deviance(η̂j,temp)

)
.

Update:

f̂ (m+1) = f̂ (m) + f̂κ,temp,

η̂(m+1) = η̂temp + f̂ (m+1),

µ̂(m+1) = g−1(η̂(m+1)).

Update m to m + 1.
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until the total deviance is small, end.

In practice, we set the smoothing parameters for component thin-plate splines

to be 100, which performs well in our simulations. Based on our numerical

experience, our boosting algorithm is able to provide a good initial estimate

when the sample size is relatively small.

(2) Tuning Parameter Selection

To estimate the tuning parameter λ in (2.15), we use the BIC criterion:

BICλ = −2`n(ĉ) + dfλ × logn, (2.17)

where ĉ is the garrote solution for given λ, and dfλ is the degree of freedom. We use

the definition of Yuan and Lin (2006). For categorical terms, we have,

dfλ = 2

p+q∑
j=p+1

I(ĉj > 0) +

p+q∑
j=p+1

ĉj(dj−p − 2). (2.18)

For smoothing terms, the degree of freedom of the garrote is:

dfλ = 2

p∑
j=1

I(ĉj > 0) +

p∑
j=1

ĉj(edfj − 2), (2.19)

where edfj is the effective degree of freedom defined as the trace of influence matrix.

In the GAM fitting procedures of Section (2.1.2), the total influence matrix is defined

as H = (BTB +
p∑

j=1

Ωj)
−1BT .

2.4 Simulation Studies

We investigate the performance of our proposed methods in three examples for

semi-parametric additive models We compare our procedures with other commonly

used model selection methods: MARS and COSSO. For each example, we start with

the description of the simulation design, which is followed by the summary of results.
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2.4.1 Example 1

Consider a Gaussian additive model with p = 20 covariates. The first ten covari-

ates are categorical, each with three levels. The second ten covariates are continuous

with certain degree of correlation.

First, we generate Q1, . . . , Q20 and U independently from U(0, 1). Define Xj = Qj,

j = 1, . . . , 10. Then these 10 predictors are trichotomized as 0, 1 or 2 depending on

whether they are smaller than 1
3
, larger than 2

3
or in between. Xj, j = 11, . . . , 20

are generated as Xj = (Qj + tU)/(1 + t). This construction makes ten continu-

ous covariates be correlated with a compound symmetry (CS) covariance structure:

corr(Xj, Xk) = t2/(1 + t2) for any pair j 6= k and j, k = 11, . . . , 20. The parameter

t controls the degree of correlation: no correlation, moderate correlation and strong

correlation. We use t = 0, 1, 3, which result in the corr(Xj, Xk) = 0, 0.5, 0.9, j 6= k

respectively.

The true model is:

Y = 2.5I(X1 = 1) + I(X1 = 2) + 3I(X2 = 1) + 1.5I(X2 = 2) +

5f1(X11) + 3f2(X12) + 4f3(X13) + 6f4(X14) + ε, (2.20)

where

f1(s) = s; f2(s) = (2s− 1)2; f3(s) =
sin(2πs)

2− sin(2πs)
; (2.21)

f4(s) = 0.1 sin(2πs) + 0.2 cos(2πs) + 0.3 sin2(2πs) + 0.4 cos3(2πs) + 0.5 sin3(2πs).

(2.22)

The error ε is iid from a centered normal distribution with σ2 = 3.5, which yields a

signal to noise ratio of 3. For this model, there are totally 14 uninformative variables.

We choose the sample size to be 250. For each model setting, 100 data sets were

generated. To measure the prediction accuracy, we use the integrated squared error

(ISE), which is defined as EX ((η̂ − η)2). The average ISE is estimated by Monte

Carlo using 2000 test points.

We compare our garrote method with MARS. Table 2.1 displays the selection

frequency of two dummies (1 and 2, out of 100 simulations) for each categorical

variable. Table 2.2 shows the selection frequency of each continuous variable in the
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Table 2.1: Frequency of selected dummies for categorical variables in Example 1.

t Methods X1 X2 X3 X4 X5

0 garrote 100\100 100\100 3\3 3\3 3\3
MARS 100\90 100\100 4\3 3\5 5\5

1 garrote 100\100 100\100 3\3 2\2 3\3
MARS 100\58 100\90 3\5 7\6 5\12

3 garrote 100\100 100\100 7\7 9\9 5\5
MARS 100\37 100\57 9\10 7\12 10\7

t Methods X6 X7 X8 X9 X10

0 garrote 5\5 5\5 5\5 4\4 2\2
MARS 6\4 6\3 6\6 3\5 3\3

1 garrote 7\7 5\5 4\4 7\7 2\2
MARS 9\9 5\12 5\12 8\10 7\7

3 garrote 8\8 9\9 7\7 9\9 3\3
MARS 11\9 10\13 4\5 11\14 9\6

The number before backslash is the selection frequency of level “1”, and the number

after backslash is for level “2”.

final models. Generally, MARS overall chooses uninformative variables more often.

We can see our method tends to choose a sparse model and removes noisy variables

more effectively than MARS. In high correlation settings (t = 1, 3), we notice that

the garrote drops slightly more important variables than MARS. The garrote method

has overall smaller average ISEs than MARS.

2.4.2 Example 2

In this example, we compare our garrote method with gam(mgcv) (ggam), GAM

with boosting (gBoostgam) and COSSO in logistic additive models. All the simulation

settings are similar to Zhang and Lin (2006). Since the garrote with gam(mgcv) is

computationally unstable when the sample size is small, we do not include this method

in some of the simulation settings.

To be consistent with Zhang and Lin (2006) we measure the estimation accuracy

via two criteria: the comparative Kullback-Leibler distance (CKL) between η and η̂

and the expected misclassification rate (EMR). For logistic additive models, CKL is
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Table 2.2: Frequency of selected continuous variables in Example 1.

t Methods X11 X12 X13 X14 X15 X16 X17 X18 X19 X20

0 garrote 100 100 100 100 10 10 11 10 12 10
MARS 100 100 100 100 21 26 26 19 25 23

1 garrote 100 92 100 100 12 13 11 10 13 14
MARS 100 99 100 100 25 18 30 24 22 25

3 garrote 87 83 100 100 11 14 9 10 11 12
MARS 93 90 100 100 33 30 35 35 33 31

Table 2.3: The average ISE results in Example 1.

t=0 t=1 t=3

garrote 0.37 0.41 0.46
MARS 0.76 0.59 0.67
oracle 0.27 0.26 0.25

The range of the standard errors for average ISE is 0.01 to 0.02 in all three settings.

defined as:

CKL(η, η̂) =
1

n

n∑
i=1

(log(1 + exp(η̂i))− µiη̂i) .

We use 10, 000 testing points to estimate µ. The same testing data are also used to

calculate EMR. The Bayes error for each simulation scenario is reported. We simulate

100 data sets and report the means of CKL and EMR. We also report the selection

frequency of each factor and/or variable in the final model.

Consider a logistic additive model in which the covariates are correlated. The data

and the true logit function are the same as in Example 1, except we only consider

continuous variables here. First, we generate Q1, . . . , Q10 and U independently from

U(0, 1). Xj, j = 1, . . . , 10 are built according to “compound symmetry ” design:

Xj = (Qj + tU)/(1 + t) with corr(Xj, Xk) = t2/(1 + t2) for any pair j 6= k. We use

t = 0, 1, which result in the corr(Xj, Xk) = 0, 0.5, j 6= k respectively.

The true logit function is:

η(X) = 5f1(X1) + 3f2(X2) + 4f3(X3) + 6f4(X4), (2.23)



27

Table 2.4: Frequency of the selected variables in Example 2 (t = 0).

n Methods X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

100 ggam – – – – – – – – – –
gBoostgam 81 38 91 100 14 16 23 14 17 11
COSSO 86 32 99 95 32 30 29 30 31 29

200 ggam – – – – – – – – – –
gBoostgam 99 59 100 100 6 10 10 7 10 7
COSSO 95 40 100 100 10 14 13 7 12 12

500 ggam 100 98 100 100 2 2 1 0 1 0
gBoostgam 100 78 100 100 1 0 0 2 1 1
COSSO 100 85 100 100 6 8 6 8 7 3

where

f1(s) = s; f2(s) = (2s− 1)2; f3(s) =
sin(2πs)

2− sin(2πs)
; (2.24)

f4(s) = 0.1 sin(2πs) + 0.2 cos(2πs) + 0.3 sin2(2πs) + 0.4 cos3(2πs) + 0.5 sin3(2πs).

(2.25)

yi is generated independently from Bin(1, exp(ηi)/(1 + exp(ηi))). We try three sample

sizes: 100, 200, 500. The Bayes error is 0.134 for t = 0 and 0.142 for t = 1.

In Figure 2.1, we plot the total deviance against the number of boosting steps

when n = 100, t = 0. Since the deviance is relative small when the boosting iteration

M is greater than 200, we try several iterations: M = 300, 400, 500. Our results show

that boosting with 400 iterations gives the best performance in this example. The

typical initial estimates for the component functions in one data set are plotted in

Figure 2.2. We can see the fitted curves overall capture the true function forms well.

In Figure 2.3, we plot the estimated individual functions given by our method and

the three broken lines respectively correspond the 10th, 50th and 90th percentiles of

the estimated EMR among the 100 simulations. To find the sampling variability of

the garrote estimates at each point, we plot the 2.5th, 50th and 97.5th percentiles of

the estimated functions at 100 random data points among 100 simulations in Figure

2.4. This forms a 95% pointwise empirical confidence envelope for the garrote esti-

mates. These results show that our method can capture the true function except at

boundaries, where the data points are scarce.
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Figure 2.1: Total deviance versus the number of boosting steps in Example 2 (n =
100, t = 0).

Table 2.5: Average CKL and EMR in Example 2 (t = 0).

n Methods CKL EMR
100 ggam – –

gBoostgam 0.27 0.18
COSSO 0.46 0.22

200 ggam – –
gBoostgam 0.23 0.16
COSSO 0.37 0.17

500 ggam 0.20 0.14
gBoostgam 0.21 0.14
COSSO 0.33 0.15

The range of the standard errors for average CKL is 0.01 to 0.05, for average EMR

is 0.01 to 0.03.
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Figure 2.2: Initial estimates for component functions with the boosting algorithm in
Example 2 (n = 100, t = 0). Black solid lines indicate the true functions, red dashed
lines are estimated functions with boosting. The boosting iteration is M = 400.

Table 2.6: Frequency of the selected variables in Example 2 (t = 1).

n Methods X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

100 ggam – – – – – – – – – –
gBoostgam 77 32 100 100 21 16 21 15 13 18
COSSO 74 38 100 81 38 33 30 33 34 35

200 ggam – – – – – – – – – –
gBoostgam 91 40 100 100 7 5 15 7 9 10
COSSO 84 35 100 100 8 17 12 13 15 13

500 ggam 99 68 100 100 3 1 2 1 3 4
gBoostgam 100 76 100 100 5 4 3 3 3 7
COSSO 100 77 100 100 14 9 12 7 11 14
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Figure 2.3: Estimated functions with garrote in Example 2 (n = 100, t = 0). Red
dashed lines indicate the 10th best (in terms of misclassification rate), blue dotted
lines indicate the 50th best, and green dot-dashed lines are the 90th best. The black
solid lines are true function curves.
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Figure 2.4: Sampling variability of the estimated functions with garrote at each point
based on 100 simulations in Example 2 (n = 100, t = 0). Dashed lines are the 2.5th
and 97.5th percentiles of 100 simulations, and they form the 95% envelope. Dotted
lines are the 50th percentiles. Blue solid lines are true function curves.
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Table 2.7: Average CKL and EMR in Example 2 (t = 1).

n Methods CKL EMR
100 ggam – (–) – (–)

gBoostgam 0.39 0.19
COSSO 0.47 0.22

200 ggam – –
gBoostgam 0.35 0.17
COSSO 0.38 0.18

500 ggam 0.33 0.15
gBoostgam 0.34 0.15
COSSO 0.34 0.16

The range of the standard errors for average CKL is 0.01 to 0.05, for average EMR

is 0.01 to 0.02.

Tables 2.4, 2.5, 2.6, 2.7 summarize the results for Example 2 with t = 0 and t = 1

respectively. The missing values indicate that the algorithm for gam(mgcv) does not

converge. For COSSO, we use the algorithm with basis= 50. We can see the garrote

with boosting gives satisfactory performance even when the sample size is relatively

small compared to the data dimension. In terms of variable selection, our method

selects important variables more often than COSSO, and the final model is simpler

than COSSO. The garrote with boosting also reduces CKL and EMR substantially.

For large data (n = 500), the garrote with gam has competitive performance in both

variable selection and estimation accuracy.

2.4.3 Example 3

In this example, we extend Example 2 and consider the semi-parametric GAM

models where both continuous and categorical covariates are present. We generate

X1, . . . , X11 from U(0, 1), the first seven variables are generated in the same way as

in Example 2. We then make the last four categorical variables by the following
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Table 2.8: Variable frequency of group garrote with boosting in Example 3.

t n X1 X2 X3 X4 X5 X6 X7 z1 z2 z3 z4

0 150 99 56 99 100 9 7 14 72 14 87 23
200 100 66 99 100 3 2 5 73 10 97 5
500 100 90 100 100 2 1 0 97 1 100 2

1 150 80 46 99 100 29 20 13 82 19 98 17
200 85 50 100 100 16 10 6 91 15 99 8
500 98 78 100 100 7 3 6 100 3 100 2

Table 2.9: Average CKL and EMR of the group garrote in Example 3.

t n CKL EMR
0 150 0.35 0.16

200 0.32 0.14
500 0.28 0.12

1 150 0.40 0.19
200 0.39 0.18
500 0.34 0.16

The range of the standard errors for average CKL is 0.01 to 0.03, for average EMR

is 0.01 to 0.02.

transformations:

z1 = I(X8 ≥ 2

3
) + 2I(X8 ∈ [

1

3
,
2

3
)) + I(X8 <

1

3
),

z2 = I(X9 ≥ 2

3
) + I(X9 ∈ [

1

3
,
2

3
)) + I(X9 <

1

3
),

z3 = 0.5I(X10 <
1

4
) + 1.5I(X10 ∈ [

1

4
,
1

2
)) + 3I(X10 ∈ [

1

2
,
3

4
)) + I(X10 ≥ 3

4
),

z4 = I(X11 ≥ 2

3
) + I(X11 ∈ [

1

3
,
2

3
)) + I(X11 <

1

3
),

where I is an indicator function. The true logit function is ,

η = −4.5 + 5f1(X1) + 3f2(X2) + 4f3(X3) + 6f4(X4) + z1 + z3.

We consider t = 0, 1 and sample size n = 150, 200, 500. The Bayes error is 0.098

for t = 0, and 0.132 for t = 1. From Tables 2.8, 2.9, we can see our method gives

smaller CKL and EMR as the sample size increases, and it produces sparse models

with the error rate close to the Bayes rate when n = 500.
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2.5 Real Examples

2.5.1 German Credit Data

The German credit data comes from a German bank and is provided by Professor

Hans Hofmann in Strathclyde University (available at ftp.ics.uci.edu/pub/machine-

learning-databases/statlog/). The data has 20 covariates and 1000 observations which

represent 1000 past credit applicants. Each applicant was rated as “good credit” (700

cases, coded as “1”) or “bad credit” (300 cases, coded as “0”). We want to obtain

a model for the credit scoring rule that can be used to determine if a new applicant

presents a good or bad credit risk, based on values for one or more of the predictor

variables.

Various statistical models and data mining tools, such as linear discriminant analy-

sis, logistic regression, classification tree, neural network, boosting and support vector

machines (SVM) have been used to evaluate the credit worthiness of potential bor-

rowers in order to reduce the default risk (Franke, Hardle, and Stahl, 2000; Shao 2004;

Rätsch, et al., 2000). In many applications of credit scoring, important variables are

selected to get good prediction and interpretation of the final model. In this data,we

have 7 numerical predictors and 13 categorical predictors (variable annotations are

given in Appendix). The number of levels of these 13 categorical variables ranges

from 2 to 10. Most of these categorical variables are derived from numerical variables

by score developers, for purpose of easy interpretation and implementation. For ex-

ample, the variable “present employment since” represents the number of years the

applicant was at the present job. This original numerical variable was divided into

five bins: unemployed, < 1 year, [1, 4) years, [4, 7) years and ≥ 7 years. In practice,

score developers would like to keep or drop all levels simultaneously in the process of

variable selection. However, most of current variable selection and statistical models

can not achieve this. Our garrote method for generalized additive models can select

grouped categorical variables and continuous variable at the same time. We apply our

method to the data and compare our results with several other benchmark methods

in machine learning.
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In Table 2.10, the average misclassification error (with standard error) over 100

partitions of the data sets is given. In each partition, we divide the 1000 observations

into two sets: training set (size of 700) and test set (size of 300). We apply our

garrote method and other methods to the training set, and then use the test set to

calculate the misclassification error. We observe that our method has the smallest

misclassification error among all methods.

Table 2.10: The average error in German credit data.

Misclassification error

SVM with RBF-Kernel 23.61 (0.21)
Kernel Fisher Discriminant 23.71 (0.22)
AdaBoost with RBF-Network 27.45 (0.25)
garrote 22.54 (0.22)

All other methods use all of 20 variables to fit the final model, while our method

results in a much smaller and simpler model. The average model size of our garrote

models is 10.52. When we apply our method to the complete data set (1000 obser-

vations), it selects 9 variables : status of existing checking account (x1), duration in

month (x2), credit history (x3), loan purpose (x4), credit amount (x5), savings ac-

count/bonds (x6), present employment since (x7), other debtors / guarantors (x10).

Among these 9 variables in the final model, x2 and x5 are continuous variables. We

plot the garrote estimates for these two variables in Figure 2.5. It shows the variable

“duration in month” has a linear trend, while a nonlinear trend exists in the other

variable “credit amount” .

2.5.2 Wisconsin Prognostic Breast Cancer (wpbc) Data

The wpbc data is from the UCI repository (Blake and Merx, 1998). The data is

collected by studying recurrent events in breast cancer patients based on their digital

image of breast tissues. In this study, there are 194 patients which have complete

records. For each patient, 32 continuous covariates are derived by computing the

characteristics of breast cell nuclei presenting in the image. The annotations of these

32 variables are in Appendix.
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Figure 2.5: Garrote estimates of component functions for German credit data.

Instead of investigating survival time of recurrent events, we focus on a binary

classification problem: recurrence vs. non-recurrence. Since we are primarily inter-

ested in the relationship between the log odds ratio of recurrence to non-recurrence

and prediction covariates, the generalized additive model is a good choice. Since the

number of observations (n = 194) is relatively small to the dimension of covariates

(p = 32), variable selection will be an issue for most nonparametric regressions. Our

garrote method can deal with this problem efficiently. We apply our boosting algo-

rithm to get initial estimates with 32 variables first, and then use the garrote to select

important covariates.

In Table 2.11, the 5-fold cross validation misclassification errors (with standard

error) for three methods are given. We compare our method with the stepwise GLM

and MARS. Final results suggest that our new method can outperform MARS by a

good margin.
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Table 2.11: Five-fold cross validation error in wpbc data.

5-fold cross validation error (×100 )

Stepwise GLM 30.21 (2.52)
MARS 27.18 (2.71)
two-stage garrote 24.18 (2.24)

We also fit the complete data set (n = 194) with MARS and the garrote. As a

reference, we fit a logistic regression with stepwise selection for complete data. The

logistic regression with stepwise selects 19 variables: mean radius, mean texture,

mean smoothness, mean symmetry, mean fractaldim, SE texture, SE perimeter, SE

compactness, SE concavity, SE concavepoints, SE symmetry, SE fractaldim, worst

radius, worst perimeter, worst area, worst smoothness, worst compactness, tsize,

pnodes. MARS selects 6 variables: mean fractaldim, SE radius, SE perimeter, worst

perimeter worst smoothness and pnodes. Our method selects 8 variables in the final

model: tsize, worst radius, pnodes, worst smoothness, SE texture, SE perimeter,

mean symmetry and SE concavity. The variables selected by our methods is a subset

of the stepwise regression, but quite different from the variables selected by MARS

except for only one variable: worst smoothness. In Figures 2.6 and 2.7, the estimated

component functions selected by MARS and the garrote are plotted. For all the

selected variables in both methods, the model fit suggests they have very strong

nonlinear trends. We can see the MARS fit is not as smooth as the fitted components

given by our garrote method.
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Figure 2.7: Garrote estimates for selected component functions in wpbc data.
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Chapter 3

New Variable Selection for

Additive Cox Models

In this chapter, we first review the additive Cox model and existing methods of

variable selection in this model. Then we propose a garrote method for variable se-

lection in the penalized partial likelihood of additive Cox models. A new algorithm

is suggested to get reliable initial estimates for the additive Cox models. The compu-

tation and tuning parameter issues are addressed as well. The simulations and real

examples are then presented.

3.1 Background Review

3.1.1 Additive Cox Models

The purpose of survival data analysis is to study the dependence of survival time

T on the p-dimensional predictors X = (X1, . . . , Xp). The classical proportional

hazards model, also known as the Cox model, assumes that,

h(T |X) = h0(T ) exp(

p∑
j=1

Xjβj), (3.1)

where h(T |X) is the hazard function at time T given covariates X = (X1, . . . , Xp),

h0(T ) is an unspecified baseline hazard function, and βj, j = 1, . . . , p are regression
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coefficients.

Suppose a typical survival data of n samples is given. Let T be the failure time,

C be the censoring time, and T̃ = min(T, C), δ = I(T ≤ C). Assume that T and

C are conditionally independent given X, and the censoring is noninformative. For

simplicity, we assume there are no ties in the observed failure times. Then the log

partial likelihood of the Cox model is:

`i(ηi) ≡ δi

(
ηi − log

[
n∑

j=1

I(T̃j ≥ T̃i)exp(ηi)

])
, i = 1, . . . , n. (3.2)

In the parametric Cox model, we have

ηi =

p∑
j=1

Xjiβj, i = 1, . . . , n. (3.3)

To increase the model flexibility, it is natural to extend the model (3.1) to a

nonparametric additive Cox model as

h(T |X) = h0(T ) exp(

p∑
j=1

fj(Xj)), (3.4)

where fj, j = 1, . . . , p are unspecified univariate smooth functions.

Hastie and Tibshirani (1990) proposed a computation algorithm based on the

backfitting to estimate the components functions in (3.4). They use the Newton-

Raphson algorithm and the additive Gauss-Seidel procedure to update the nonlinear

components iteratively. Since their method is based on the backfitting, the problem

of choosing multiple smoothing parameters can be a challenging issue as in other

backfitting additive models.

3.1.2 COSSO-type Variable Selection for Additive Cox Mod-

els

Due to the nature of censored data, it is very difficult to conduct nonparametric

estimation and variable selection jointly in survival data. Very few methods are

reported. Leng and Zhang (2007) extended the Component Selection and Smoothing
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Operator (COSSO) to survival data. The COSSO penalty is a functional analogue

of `1 penalty used in the lasso. With COSSO penalty, this method can result in a

sparse estimated model.

In COSSO-type method, the nonparametric estimation of η(X) is estimated via

the minimization of a penalized partial likelihood (Leng and Zhang, 2007),

min
η∈H

− 1

n

n∑
i=1

`i(ηi) + τJ(η) + λ

p∑
α=1

θα, s.t. θα ≥ 0, (3.5)

where J(η) =
∑p

α=1 θ−1
α ‖Pαη‖2 is a roughness penalty and Pαη is the projection of

η onto Hα, α = 1, . . . , p, which are orthogonal reproducing kernel Hilbert spaces.

Here λ is smoothing parameter which controls the goodness of fit and sparsity in the

solution.

Leng and Zhang (2007) conducted extensive experiments and showed that the

COSSO-type method can do variable selection and component estimation simultane-

ously in nonparametric Cox models. Their results showed the COSSO-type method

performs well even for highly censored survival data.

3.2 New Methodology for Additive Cox Models

3.2.1 New Methodology

Assume there are totally p + q variables X = (x1, . . . , xp, u1, . . . , uq). The first

p variables x1, . . . , xp are continuous, and the remaining q variables u1, . . . , uq are

categorical (factors). Each uj is coded to be a dummy vector zj, j = 1, . . . , q, and

each uj has dj categories.

We consider the log partial likelihood of the additive Cox model:

`i(ηi) ≡ δi

(
ηi − log

[
n∑

j=1

I(T̃j ≥ T̃i)exp(ηi)

])
, i = 1, . . . , n, (3.6)

where

ηi =

p∑
j=1

fj(xji) +

q∑
j=1

zT
jiβj, i = 1, . . . , n. (3.7)
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We now propose a garrote-type estimator for additive Cox model by solving

min
c
−`n(c) + λ

(
p∑

j=1

cj +

q∑
j=1

djcp+j

)
, subject to cj ≥ 0, j = 1, . . . , p + q, (3.8)

where `n(c) =
n∑

i=1

`i(yi, η̃i), and

η̃i =

p∑
j=1

cj f̂
init
j (xji) +

q∑
j=1

cj+pz
T
jiβ̂

init

j , (3.9)

and f̂ init
j (xji), j = 1, . . . , p and β̂

init

j , j = 1, . . . , q are initial estimates. The final

garrote estimate of fj(xji) is ĉj f̂
init
j (xji), j = 1, . . . , p and the final garrote estimate of

β̂p is ĉj+pβ̂
init

j , j = 1, . . . , q. If some of ĉj = 0, j = 1, . . . , p+q, then the corresponding

smoothing term or parametric term is dropped from the final model, which produces a

sparse model. In theory, if both f̂ init
j , j = 1, . . . , p and β̂

init

j , j = 1, . . . , q are consistent

estimators, the garrote solution of the additive Cox model may have oracle properties.

3.2.2 Computational Algorithms

In the additive Cox models, the garrote becomes a penalized partial likelihood

problem. To solve the garrote, we propose a new algorithm by modifying the it-

eratively reweighted least squares. At each iteration, we replace the weighted least

squares by solving a weighted least squares garrote. Define c = (c1, . . . , cp+q)
T , the

vector gradient g = −∂`n/∂c , the Hessian matrix H = −∂2`n/∂ccT, where `n is a

partial likelihood function defined in (3.6). Let W be the Cholesky decomposition of

H such that H = WTW. Define the working variable v = (WT)−1(Hc − g). The

iterative procedure is as follows for a given λ:

1. Get the initial fits f̂ init
j , j = 1, . . . , p and β̂

init

j , j = 1, . . . , q.

2. Initialize ĉ = 0.

3. Compute g, H, W, and v based on the current value of ĉ.

4. Minimize ‖v −Wc‖2+λ

(
p∑

j=1

cj +
q∑

j=1

djcp+j

)
, subject to cj ≥ 0, j = 1, . . . , p+

q with the garrote routine for a given λ.
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5. Repeat Steps 3 and 4 until the convergence criterion meets.

We use the garrote routine developed by Breiman (1995) in Step 4 of our algorithm.

Initial Estimation for Additive Cox Models

In this section, we propose a new approach to compute the initial estimates by

fitting additive Cox models. We generalized the algorithm of Wood (2000, 2004), since

it is desired to simultaneously estimate all components while incorporating automatic

choices of smoothing parameters.

Define u = −∂`n/∂η, A = −∂2`n/∂ηηT and γ = η − A−1u, where η =

(η1, . . . , ηn). To reduce the computation burden, we replace A with a diagonal matrix

D that has the same diagonal elements of A. Hastie and Tibshirani (1990) argued

this approximation leads to the similar results as the original A . Let D = WWT .

Then the Taylor expansion of −`n has the form of ‖W(z− η)‖2.

In our algorithm, we use the Newton-Raphson method to minimize the penalized

partial likelihood. Since we use a basis expansion to represent the nonparametric

regression, the total dimension of the estimator is large, which makes it hard to

find a good starting point. The update of current solutions can easily overshoot the

minimum, leading to the divergence of the algorithm. To solve this problem, we

suggest using a fraction of original update, i.e, let γ = η − τA−1u, where 0 < τ < 1.

We call this backtracking.

To get the initial fit for additive Cox model, we use the following procedure:

1. Initialize η̂ = 0.

2. compute u,W and γ based on the current value.

3. Use γ as the pseudo responses and W as the weights to fit (Gaussian) additive

model with gam subroutine in mgcv. Update η̂.

4. Evaluate the negative loglikelihood function in Step 3. If the solution overshoots

in Step 3, we do a backtracking to find new η̂.

5. Repeat Steps 2, 3 and 4 until the convergence criterion meets.
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Tuning Parameters

To estimate the tuning parameter λ in the garrote, we use the BIC criterion:

BICλ = −2`n(ĉ) + dfλ × logn, (3.10)

where ĉ is the garrote solution for a given λ, and dfλ is the degree of freedom. To

define dfλ, we use the definition of Yuan and Lin (2006). For categorical terms, we

have

dfλ = 2

p+q∑
j=p+1

I(ĉj > 0) +

p+q∑
j=p+1

ĉj(dj−p − 2). (3.11)

For smoothing terms, the degree of freedom of the garrote is:

dfλ = 2

p∑
j=1

I(ĉj > 0) +

p∑
j=1

ĉj(edfj − 2), (3.12)

where edfj is the effective degree of freedom of the estimated jth nonparametric

component.

3.3 Simulation Studies

3.3.1 Example 1

In this example, we adopt the same model as in Leng and Zhang (2006). In par-

ticular, we generate eight variables Xj, j = 1, . . . , 8, from N(0, 1), and the correlation

between Xi and Xj is ρ|i−j|. Two case are considered: ρ = 0 and ρ = 0.5. Each vari-

able is truncated into [−2, 2] and scaled to [0, 1]. We set the baseline hazard function

to be 1.

The true η is

η = f1(X1) + f2(X4) + f3(X7),

where

f1(s) = 3(3s− 2)2, f2(s) = 4 cos(
(3s− 1.5)π

5
), f3(s) = I(s < 0.5).

Also, we transform X8 into a categorical variable I(X8 > 0.6). The censoring

time C is generated from exponential distribution with mean V exp(−η(x)), where V
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Table 3.1: Selection frequency and the average number of correct 0 and incorrect 0
in Example 1 (ρ = 0).

n censoring X1 X2 X3 X4 X5 X6 X7 X8 Correct Incorrect
100 15% 100 8 14 81 8 8 90 6 4.56 0.29

30% 100 9 14 74 12 8 82 5 4.52 0.44
45% 100 9 11 61 11 10 74 4 4.55 0.65

200 15% 100 6 4 98 9 5 99 4 4.72 0.03
30% 100 6 5 96 8 8 97 3 4.70 0.07
45% 100 4 4 83 10 6 96 2 4.74 0.21

Table 3.2: Average ISE estimation in Example 1 ( ρ = 0 ).

n censoring Oracle ISE ISE
100 15% 0.42 0.60

30% 0.41 0.69
45% 0.43 0.80

200 15% 0.23 0.34
30% 0.25 0.36
45% 0.25 0.40

The range of the standard errors for average oracle ISE is 0.02 to 0.05, for ISE is 0.02

to 0.06

is a random variable from U(a, a + 2). We choose a such that the censoring rates are

15%, 30% and 45% respectively.

We consider two sample sizes n = 100, 200. In each simulation, we generate 100

data sets. To measure the model estimation accuracy, we calculate the integrated

square error ISE = E(
p∑

j=1

(fj − f̂j)
2), which is estimated by a Monte Carlo integration

with 2000 testing points.

In Tables 3.1, 3.2, 3.3 and 3.4, we report the oracle ISE, which is obtained by fitting

an additive Cox model with only important variables, the ISE of the garrote and the

selection frequency of variables that appear in the final model. We also summarize the

number of zero variables selected correctly by the model space (denoted as ‘Correct’)

and the number of nonzero variables incorrectly set to zero (denoted as ‘Incorrect’).

These tables show that our method performs well in both variable selection and



47

Table 3.3: Frequency of selected variables and the average number of correct 0 and
incorrect 0 in Example 1 (ρ = 0.5).

n censoring X1 X2 X3 X4 X5 X6 X7 X8 Correct Incorrect
100 15% 100 7 10 76 10 13 87 11 4.49 0.37

30% 100 14 19 73 16 15 85 12 4.24 0.42
45% 100 16 19 53 19 17 72 19 4.10 0.75

200 15% 100 8 10 99 17 9 99 2 4.54 0.02
30% 100 14 10 95 14 8 97 1 4.53 0.08
45% 100 5 17 88 10 8 93 1 4.59 0.19

Table 3.4: The average ISE results summary in Example 1 (ρ = 0.5).

n censoring Oracle ISE ISE
100 15% 0.45 0.63

30% 0.44 0.68
45% 0.51 0.96

200 15% 0.26 0.35
30% 0.26 0.38
45% 0.28 0.42

The range of the standard errors for average oracle ISE is 0.02 to 0.06, for ISE is 0.02

to 0.09

estimation.

In Figure 3.1, we plot one typical initial estimate for each component function with

our algorithm. We can see our approach can produce very good initial estimates.

In Figure 3.2, we plot the estimated functions selected by the garrote with per-

formance at 10th, 50th and 90th percentiles of the estimated ISE among the 100

simulations. To find the sampling variability of the garrote estimates at each point,

we plot the 2.5th, 50th and 97.5 percentiles of the estimated functions at 100 ran-

dom data points among 100 simulations in Figure 3.3. This forms a 95% pointwise

empirical confidence interval for the garrote estimates. These results show that our

method can identify important variables and provide very accurate estimation for

each component function.
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Figure 3.1: The initial estimates of component functions in additive Cox models.The
solid lines indicate the true curves, the red dashed lines are initial estimates.
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Figure 3.2: The garrote estimates of component functions when n = 100, ρ = 0.5 and
the censoring rate is 45%. Red dashed lines indicate the 10th best, blue dotted lines
indicate the 50th best, and green dot-dashed lines are the 90th best. The black solid
lines are the true curves.
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Figure 3.3: Sampling variability of the estimated functions with garrote at each point
based on 100 simulations when n = 100, ρ = 0.5 and the censoring rate is 45%. The
dotted lines are the 2.5th and 97.5th percentiles of 100 simulations, and they form
the 95% envelopes. The long dash lines are the 50th percentiles. The blue solid lines
are the true curves.
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3.3.2 Example 2

We extend Example 1 into a high dimensional setting. In this simulation, we

generate 20 variables Xj, j = 1, . . . , 20 from N(0, 1), and the pairwise correlation

between Xi and Xj is ρ|i−j|. Two cases are considered: ρ = 0 and ρ = 0.5. Each

variable is truncated into [−2, 2] and scaled to [0, 1]. We set the baseline hazard

function to be 1.

The true η is

η = f1(X1) + f2(X2) + f3(X3),

where

f1(s) = 3(3s− 2)2, f2(s) = 4 cos(
(3s− 1.5)π

5
), f3(s) = I(s < 0.5).

Also, we transform Xj, j = 18, 19, 20, into categorical variables I(Xj > 0.6). The

censoring time C is generated from exponential distribution with mean V exp(−η(x)),

where V is a random variable from U(a, a + 2). We choose a such that the censoring

rates are 15%, 30% and 45% respectively.

The sample size n = 300. For each simulation, we generate 100 data sets. To

measure the model estimation accuracy, we calculate the integrated square error

ISE = E(
p∑

j=1

(fj − f̂j)
2), which is estimated by a Monte Carlo integration with 2000

testing points.

Table 3.5: Selection frequency in Example 2 (ρ = 0).

censoring X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

15% 100 87 92 10 11 10 9 8 6 11
30% 100 77 85 13 14 11 10 12 9 13
45% 100 65 82 15 14 17 15 16 13 13

censoring X11 X12 X13 X14 X15 X16 X17 X18 X19 X20

15% 9 7 11 10 6 5 8 12 11 9
30% 11 12 15 11 9 9 13 16 12 11
45% 12 16 12 12 14 6 15 16 14 13

In Tables 3.5, 3.6 and 3.7, we report the oracle ISE, which is obtained by fitting

an additive Cox model only important variables, the ISE of the garrote and the
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Table 3.6: Selection frequency in Example 2 (ρ = 0.5).

censoring X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

15% 100 82 76 13 12 16 9 11 13 8
30% 99 79 71 16 17 15 18 12 14 12
45% 96 64 59 21 19 17 25 17 16 21

censoring X11 X12 X13 X14 X15 X16 X17 X18 X19 X20

15% 13 14 11 15 14 15 10 12 13 11
30% 11 15 10 13 15 17 13 15 15 17
45% 15 17 11 13 11 19 15 21 31 26

Table 3.7: The average ISE results summary in Example 2.

ρ censoring Oracle ISE ISE
0 15% 0.21 0.72

30% 0.23 0.73
45% 0.25 0.81

0.5 15% 0.24 0.81
30% 0.25 0.92
45% 0.27 1.01

The range of the standard errors for average oracle ISE is 0.01 to 0.02, for ISE is 0.01

to 0.07

selection frequency of variables that appear in the final model. These results show

that our initial fitting method is computationally stable in large p, large n settings.

Our garrote procedure also performs well for both variable selection and estimation,

even when the censoring rate is as high as 45%.

3.4 Primary Biliary Cirrhosis (pbc) Data

The pbc data was gathered from the Mayo Clinic trial in primary biliary cirrhosis

of liver conducted between 1974 and 1984. This data is provided by Therneau and

Grambsch (2000). In this study, 312 patients from a total of 424 patients who agreed

to participate in the randomized trial are eligible for the analysis. For each patient,

clinical and other related characteristics are collected. Of those, 125 patients died
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before the end of follow-up. We use the 17 covariates as followings: age (in days), alb

(albumin ib g/dl), alk (alkaline phosphatase in U/liter), bil (serum bilirubin in mg/dl),

chol (serum cholesterol in mg/dl), cop(urine copper in µg/day), plat (platelets per

cubic ml/1000), prot (prothrombin time in seconds), sgot (liver enzyme in U/ml), trig

(triglycerides in mg/dl), asc (0, absence of ascites; 1, presence of ascites), ede (0, no

edema; 0.5, untreated or successfully treated; 1, unsuccessfully treated edema), hep

(0, absence of hepatomegaly; 1, presence of hepatomegaly), sex (0, male; 1, female),

spid (0, absence of spiders; 1, presence of spiders), stage (histological stage of disease,

grades 1, 2, 3 or 4), trt (1, control; 2, treatment). The first ten variables are continues,

the last seven are categorical.

We only use 276 complete observations. Among the total 17 variables, 10 of

them are continues, and the rest are categorical. We compare our method with lasso,

adaptive lasso (Alasso) and Cosso-type method proposed by Leng and Zhang (2007).

In Table 3.8, we list the variables selected by each method (denoted by 1). Our

method results in a simplest model by selecting 6 variables: 5 continuous variables

and one categorical variable. These variables are also selected by other three methods.

The fitted continuous functions of our garrote model are plotted in Figure 3.4.

Leng and Zhang (2007) concluded that most of the selected continuous functions

selected by their method are linear. Our procedure shows that the fitted components

all have nonlinear trends, which are worth further investigation.
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Figure 3.4: Garrote estimate for component functions in pbc data.
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Table 3.8: Selected variables for pbc data.

Covariates lasso Alasso Cosso-type garrote
trt 0 0 0 0
age 1 1 1 1
sex 0 0 1 0
asc 1 0 0 0
hep 0 0 0 0
spid 0 0 0 0
ede 1 1 1 1
bil 1 1 1 1
chol 0 0 1 0
alb 1 1 1 1
cop 1 1 1 1
alk 0 0 0 0
sgot 1 1 1 0
trig 0 0 0 0
plat 0 0 0 0
prot 1 1 1 1
stage 1 1 1 0
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Chapter 4

New Variable Selection Method in

High Dimensional Data

4.1 Motivation

4.1.1 High Dimensional Data Challenge

There are more and more high dimensional data in real life. For example, high

dimensional expression microarray data have been rapidly accumulated in the field

of biological and medical research. They impose new challenges to conventional sta-

tistical model estimation and variable selection methods, mainly due to their unique

“large p, small n” data structure. That is, these data in general contain large num-

bers of variables, typically tens of thousands of genes, but much smaller numbers of

samples which are often less than hundreds. Effective and reliable variable selection

methods are hence demanded to discover hidden patterns in these high dimensional

data.

In the modern age, new technologies of data collection rapidly produce data sets

of ever increasing samples sizes and dimensions (the number of variables), which often

include superfluous variables. In order to enhance the generalization performance of

a learning algorithm, it is important to identify important variables and build parsi-

monious classifiers with high interpretability and improved prediction performance.
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In the research of cancer classification using microarray gene expression data, accu-

rate identification of different cancer types is critical to achieve effective treatment

and longer survival time of patients. Each type of cancer may be characterized by

a group of abnormally expressed genes, called a “signature”. Since gene expression

arrays measure tens of thousands of genes, choosing the ones that comprise a sig-

nature that can accurately classify cancer subtypes remains a major challenge. It is

therefore desired to select important features, which help to build highly interpretable

classifiers with competitive generalization performance.

4.1.2 Two-stage Ranking Method

For gene selection, commonly used methods include qualitative observations, heuris-

tic rules such as cutoff values and model-based probability analysis. Various two-

sample t-tests procedures have been proposed including both parametric tests and

nonparametric tests. Bayesian approaches generally assume priors which favor sparse-

ness of the model.

Variable selection by first ranking variables based on the association strength

of individual variables to the response variable and then selecting the top ones is

another popular technique used in practice, especially for high-dimensional linear

models. When the data dimension is high with p > n or ultra-high with p À n, some

selection methods such as backward elimination can not be directly applied since the

OLS estimate can not be uniquely defined. One natural way to handle this is a two-

stage procedure: pre-screening followed by model fitting. We can first screen data by

eliminating redundant features and reducing the data dimension from p to p∗ such

that p∗ < n, and then apply a standard selection procedure to the reduced data. For

example, in cancer classification using microarray gene expression data, gene-ranking

is often used to identify “marker” genes which characterize different types of cancer.

The screening step is often implemented by ordering variables based on some

measures of their “importance”, which needs to be carefully chosen to assure that no

important variables would be filtered out. A good ranking criteria is very important

for variable screening, in the sense that its magnitude should well reflect the strength
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of the association between individual variables and the response variable, such that

the variables that have strong correlation with the response can be more likely retained

in the model than those having weak correlation with the response. To overcome the

curse of dimensionality, most ranking methods are based on a univariate model fitting

and inference for each input variable. In linear models, each predictor is assumed to

be linearly related with the response, therefore marginal correlation coefficients are

often used to order them. Various correlation coefficients have been proposed as

ranking criteria, such as Fisher correlation coefficient, t-statistic, p-value, BW ratio

(Between-class Within-class variation ratio), and etc.

Variable ranking based on marginal correlation is very useful for dimension reduc-

tion, but it may not work well in the case of collinearity and nonlinearity. For high

dimensional data, many variables tend to be highly correlated with each other. Some-

times one unimportant predictor can be highly correlated with important predictors,

and is therefore more likely to be selected than other important predictors which have

weak marginal correlation with the response. Also, the marginal correlation ranking

ignores the nonlinearity effects between the dependent variable and predictors.

4.2 New Variable Selection Method in High Di-

mensional Data

For high dimensional data with p > n, most of current nonparametric methods

can not handle this due to the small number of observations. L2 boosting with

componentwise smoothing splines (Buhlmann and Yu, 2003) can conduct variable

selection and estimation simultaneously. But in cases of p À n, the componentwise

boosting tends to overfit (Buhlmann, 2008) and the number of selected variables is

still large. In the following, we propose a two-stage boosting algorithm: at the first

stage, we screen all the variables by fitting the GAM by boosting componentwise

regression and smoothing; at the second stage, we use our garrote method to select

variables from the variables preselected by first stage boosting.
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4.2.1 Automatic Screening by Boosting

In this step, we use boosting as a screening tool to exclude some unimportant

variables and hence achieve dimension reduction. We use the penalized thin-plate

regression splines as weak learners. The loss function is the negative likelihood (de-

viance). Define y = (y1, . . . , yn)T , β = (β1, . . . , βq)
T , fj = (fj(xj1), . . . , fj(xjn))T ,

Z = (z1, . . . , zq), 1n = (1, . . . , 1)T , and 0n = (0, . . . , 0)T . The boosting procedure is

as following:

1. Initialization.

α̂(0) = ȳ1n,

β̂
(0)

= (0d1 , . . . ,0dq)
T ,

f̂
(0)
j = 0n, j = 1, . . . , p,

η̂(0) = ȳ1n,

µ̂(0) = g−1(η̂(0)).

2. For m = 0, 1, . . . ,M do;

• Fit parametric (linear) terms

For j = 1, . . . , q, do;

- Estimate α̂j and β̂j with (y − µ̂(m)) as response, using GLM in R.

- Let η̂j,new = η̂(m) + α̂j + zjβ̂j.

end;

Choose zι, such that ι = max
j=1,...,q

(
Deviance(η̂(m))−Deviance(η̂j,new)

)
.

Update:

α̂(m+1) = α̂(m) + να̂ι1n,

β̂
(m+1)

ι = β̂
(m)

ι + νβ̂ι,

β̂
(m+1)

j = β̂
(m)

j , j = 1, . . . , q, and j 6= ι,

η̂temp = α̂(m+1) + Zβ̂
(m+1)

+

p∑
j=1

f̂
(m)
j .
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• Fit smoothing terms

For j = 1, . . . , p, do;

- Estimate f̂j,temp with (y − g−1(η̂temp)) as response, using gam(mgcv)

in R, and setting all the smoothing parameters to be large.

- Let η̂j,temp = η̂temp + f̂j,temp.

end;

Choose the κth term,

where κ = max
j=1,...,p

(
Deviance(η̂temp)−Deviance(η̂j,temp)

)
.

Update:

f̂ (m+1) = f̂ (m) + f̂κ,temp,

η̂(m+1) = η̂temp + f̂ (m+1),

µ̂(m+1) = g−1(η̂(m+1))

Update m to m + 1.

Stop the boosting step.

In practice, we set M = 500, ν = 0.1. We choose the “optimal” boosting step

at which the AIC achieves minimum. For AIC, we need to calculate the hat matrix,

which can be derived using the method in Tutz and Binder (2006). After boosting

screening, we selected p∗ continues variables and q∗ categorical variables. We often

observed that p∗ + q∗ < n. So after the first-stage screening, the traditional methods

can be applied in the second stage.

4.2.2 Second-stage Garrote

For the pre-selected variables retained from the first stage, we further select the

important variables by taking the following procedure:

1. Get the initial fits from the first-stage boosting: f̂ init
j , j = 1, . . . , p∗ and β̂

init

j , j =

1, . . . , q∗.

2. Initialize ĉ = 0.
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3. Compute g, H, W, and v based on the current value of ĉ.

4. Minimize ‖v −Wc‖2+λ

(
p∗∑

j=1

cj +
q∗∑

j=1

djcp∗+j

)
, subject to cj ≥ 0, j = 1, . . . , p∗+

q∗ with the garrote routine for given λ.

5. Repeat Steps 3 and 4 until the convergence criterion meets.

This method can also be extended into survival data, using partial likelihood to

replace the deviance in our algorithm, and then we can conduct variable selection and

model estimation for high dimensional survival data.

4.3 Simulation Studies

Consider a situation where the dimension of predictors is higher than the sample

size (large p, small n). We generate 500 independent variables Xj, j = 1, . . . , 500,

and only the first three variables are relevant. The true logit function is:

η(X) = f1(X1) + f2(X2) + f3(X3), (4.1)

where

f1(s) = 5s; f2(s) = 3(2s− 1)2; f3(s) =
4 sin(2πs)

2− sin(2πs)
. (4.2)

Sample sizes are 40, 50, 60, 70, 100 and yi is generated independently from

Bin(1, exp(ηi)/(1 + exp(ηi))). For each simulation, we generate 100 data sets. To

measure the model estimation accuracy, we calculate the integrated square error

ISE = E(
p∑

j=1

(fj − f̂j)
2). It is estimated by a Monte Carlo integration with 10000

testing points. We also calculate misclassification errors (denoted as “Error”) for

each simulation. In each Monte Carlo simulation, we report the oracle ISE and or-

acle misclassification error, which are obtained by fitting the logistic additive model

by including important variables only. We also report the model size which is the

number of selected variables in the final model. The Bayes error is 0.081.

Tables 4.1 shows that the average model size of two-stage garrote increases with

the increasing sample size. The average ISE approaches to oracle ISE when the sample
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Table 4.1: Average ISE , misclassification errors and model sizes.

n Model Size ISE Oracle ISE Error Oracle error
40 5.17 42 16 0.10 0.09
50 6.20 21 16 0.10 0.09
60 7.07 16 14 0.10 0.09
70 7.67 16 13 0.09 0.09
100 11.52 14 13 0.09 0.09

The range of the standard errors for average model size is 0.20 to 0.36, for average

ISE is 1 to 4, for average oracle ISE is 1 to 2, for average error is 0.00, for oracle error

is 0.00.

size increases. It is observed that the misclassification error is relatively small, even

in very small sample.

4.4 UNC Breast Cancer Data

Three public microarray gene expression datasets, “Stanford”, “Rosetta” and

“Singapore”, are combined and used in this study. The details of these three datasets

are described in Zhang, et al. (2005). The combined data set has p = 2924 genes

and n = 300 patients. Our purpose is to find the most important variables and use

them to classify the tissues into: cancer or non-cancer. It is a typical “large p, small

n” classification problem. Support vector machine (SVM) is a standard classification

method to deal with it. But it can suffer from the existence of redundant variables

(Hastie et al., 2001). Bradly and Mangasarian (1998) proposed L1 SVM which by

applying the lasso type penalty on the hyperplane coefficients. Zhang et al (2005)

introduced SCAD SVM, and they imposed a nonconvex penalty which is used in

SCAD on the coefficients. We apply our two-stage garrote method to this data, and

compare it with SVM, L1 SVM and SCAD SVM.

We follow the same procedure as Zhang et al. (2005) used in their study to do

model training and testing. We use the source information to separate the combined

data into three folds naturally: “Stanford”, “Rosetta” and “Singapore”. The sample

size for each fold is: 104, 97 and 99 respectively. We train each model on two folds
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and test it on the third one. For example, we first train our garrote on “Rosetta”

and “Singapore”, then we test it and calculate misclassification errors on the third

one, “Stanford”. We call it Stanford learning. We repeat this procedure in a similar

way and got Rosetta learning and Singapore learning. For the two-stage garrote,

we use AIC to decide when the first-stage boosting produces an “optimal” set of

screened variables. In Figure 4.1, we plot AIC for varying number of boosting steps

in Stanford learning. In this learning, we use the selected variables at step 108 at

which AIC reaches minimum.
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16
0
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Figure 4.1: AIC versus the number of boosting steps for UNC data. Blue circle
indicates the minimum of AIC

Table 4.2 shows the test misclassification error in each learning and the average

error for the SVM, L1 SVM, SCAD SVM. As a reference, we also include the result
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Table 4.2: Three-fold cross validation errors for UNC data.

Stanford Rosetta Singapore Average

SVM 0.154 0.175 0.051 0.127
L1 SVM 0.125 0.216 0.081 0.141
SCAD SVM 0.115 0.175 0.061 0.117
first-stage boosting 0.126 0.221 0.068 0.138
two-stage garrote 0.106 0.165 0.060 0.110

from our first-stage boosting fitting. We denote it as “first-stage boosting”. In both

Stanford and Rosetta learning, the two-stage garrote has the smallest errors. In

Singapore learning, our method is the second best, only next to SVM. The first-stage

boosting has a smaller error than SVM in Stanford learning, and a smaller error than

L1 SVM in Singapore learning, although it has largest errors in Rosetta learning.

Overall, the two-stage garrote has the smallest error among all the methods under

comparison.

Table 4.3: Number of selected genes for UNC data.

Stanford Rosetta Singapore Average

L1 SVM 59 63 72 65
SCAD SVM 15 19 31 22
first-stage boosting 32 22 28 27
two-stage garrote 16 14 16 16

In Table 4.3, we show the number of genes selected in each learning. Since SVM

uses all the variables, we only compare the two-stage garrote, the first-stage boosting,

the L1 SVM and the SCAD SVM. The L1 SVM selects 65 genes on average, but the

SCAD SVM and our methods select much less genes than the L1 SVM. Our two-

stage garrote selects the fewest genes and has the smallest misclassification error. In

Table 4.4, we summarize the UniGene identifiers of all the genes in three learnings

that are selected at least twice by our two-stage garrote (garrote). The third and

fourth columns are respectively the frequency of each gene being selected by the

SCAD SVM (SCAD) and L1 SVM (L1). The last column displays the corresponding

annotation of UniGene identifiers. We can see the top genes selected by our methods
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are also selected by other methods frequently. Hs169946 is selected three times by all

of the methods, indicating that it might be a key gene for signal transduction in the

biological pathway.

Table 4.4: Gene selection frequency for UNC data.

UGid garrote SCAD L1 gene annotation

Hs169946 3 3 3 GATA binding protein 3
Hs80420 3 3 2 Chemokine (C-X3-C motif) ligand 1
Hs298654 3 2 2 Dual specificity phosphatase 6
Hs79136 2 3 2 Solute carrier family 39
Hs1657 2 2 3 estrogen receptor 1
Hs26770 2 2 3 fatty acid binding protein 7, brain
Hs191842 2 0 3 cadherin 3, type 1, P-cadherin (placental)
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Chapter 5

Discussion

In this dissertation study, we propose a new method for variable selection in

semi-parametric additive models. We investigate the procedures in different model

settings: generalized additive models and additive Cox models. We also extend our

procedure to generalized additive models to high dimensional data. Our garrote

method can make variable selection and estimation for both nonparametric functions

and linear predictors. With our garrote, continuous variables and categorical variables

are treated in a unified formulation.

For generalized additive models, we develop an efficient algorithm to solve the

garrote based on the likelihood. We emphasize that the success of our method of

variable selection depends on quality of initial estimates. A stable algorithm for

estimating initial solutions based on boosting is developed when the sample size is

relatively small compared to the dimensionality of predictors. The proposed algorithm

produces a fairly good initial fit for component functions. We compare our method

with other procedures, and the simulation results show that our garrote produce a

sparser but highly predictable models than other methods. When there is strong

correlation among the predictors, the garrote tends to drop important variables more

often, but still leads to a model with good prediction. The real examples suggest that

the garrote generally outperforms other competitive methods in terms of prediction.

High dimensional data are becoming more common in many areas, and they im-

pose serious challenges to statistical estimation and model selection. We further
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extend our procedure to high dimensional data, in which the samples size is much

smaller than the number of model predictors. We propose a two-stage method to con-

duct variable selection. The simulation shows that our method can produce a model

with a reasonably small size and good prediction. A real example of microarray

data analysis suggests the proposed two-stage garrote results good models with low

prediction errors and high sparsity, which are exactly sought in microarray studies.

We also generalize our method to survival data by focusing on the semi-parametric

Cox models. Since there is little research on the initial estimation for additive Cox

model, we develop an efficient algorithm to get the initial component estimates in

semi-parametric Cox models. We then propose a new variable selection method

based on the partial likelihood. Simulations show that our procedure can choose

variables accurately, even in highly censored data. Also, the selected components can

be estimated very well.

Future research will include extending the proposed procedures to other semi-

parametric regression models such as zero-inflation models. Oracle properties for

these semi-parametric models may exist, which are worth further investigation.
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Rätsch, G., Onoda, T. & Müller, K.-R. (2001). Soft margins for AdaBoost. Machine

Learning 42(3), 287–320. also NeuroCOLT Technical Report NC-TR-1998-021.

Schapire, R. E. (1990). The strength of weak learnability. Mach. Learn. 5(2), 197–227.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics

6, 461–464.

Therneau, T. M. & Grambsch, P. M. (2000). Modeling Survival Data: Extending the

Cox Model. Springer-Verlag.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society, Series B: Methodological 58, 267–288.

Tibshirani, R. (1997). The lasso method for variable selection in the Cox model.

Statistics in Medicine 16, 385–395.

Tutz, G. & Binder, H. (2006). Generalized additive modeling with implicit variable

selection by likelihood-based boosting. Biometrics 62(4), 961–971.

Wahba, G. (1990). Spline models for observation data. Vol. 59 of CBNS-NSF Regional

Conference Series in Applied Mathematics. SIAM.



Wood, S. N. (2000). Modeling and smoothing parameter estimation with mul-

tiple quadratic penalties. Journal Of The Royal Statistical Society Series B

62(2), 413–428.

Wood, S. N. (2003). Thin plate regression splines. Journal of the Royal Statistical

Society, Series B: Statistical Methodology 65(1), 95–114.

Wood, S. N. (2004). Stable and efficient multiple smoothing parameter estimation

for generalized additive models. Journal of the American Statistical Association

99, 673–686.

Yuan, M. & Lin, Y. (2006). Model selection and estimation in regression with grouped

variables. Journal of the Royal Statistical Society: Series B 68(1), 49–67.

Yuan, M. & Lin, Y. (2007). On the non-negative garrotte estimator. Journal Of The

Royal Statistical Society Series B 69(2), 143–161.

Zhang, H. H. & Lin, Y. (2006). Component selection and smoothing for nonparametric

regression in exponential families. Statistica Sinica 16(3), 1021–1041.

Zhang, H. H., Ahn, J., Lin, X. & Park, C. (2006). Gene selection using support vector

machines with non-convex penalty. Bioinformatics 22(1), 88–95.

Zou, H. (2006). The adaptive LASSO and its oracle properties. Journal of the Amer-

ican Statistical Association 101(476), 1418–1429.

Zou, H. & Hastie, T. (2005). Regularization and variable selection via the elastic

net. Journal of the Royal Statistical Society, Series B: Statistical Methodology

67(2), 301–320.



68

Appendix A

Variable Annotations



Table A.1: Variable annotations for German credit data (1).

Variable Description Variable Type Code Description

Checking account status Categorical A10 : < 0
A11: 0 ≤ . . . < 200
A12 : ≥ 200
A13: no checking account

Duration of credit Numerical
Credit history Categorical A30: no credits taken

A31: all credits paid back duly
A32: existing credits paid back
A33: delay in paying off
A34: critical account

Purpose Categorical A40 : car (new)
A41 : car (used)
A42 : furniture/equipment
A43 : radio/television
A44 : domestic appliances
A45 : repairs
A46 : education
A47: vacation
A48 : retraining
A49 : business
A410 : others

Credit amount Numerical
Savings account/bonds Categorical A61 : . . . < 100

A62 : 100 ≤ . . . < 500
A63 : 500 ≤ . . . < 1000
A64 : ≥ 1000
A65 : unknown

employment Categorical A71 : unemployed
A72 : < 1 year
A73 : 1 ≤ . . . < 4 years
A74 : 4 ≤ . . . < 7 years
A75 : ≥ 7 years

Installment rate numerical



Table A.2: Variable annotations for German credit data (2).

Variable Description Variable Type Code Description

Personal status Categorical A91 : male : divorced/separated
A92 : female : divorced/separated
A93 : male : single
A94 : male : married/widowed
A95 : female : single

Other debtors Categorical A101 : none
A102 : co-applicant
A103 : guarantor

Residence Numerical
Property Categorical A121 : real estate

A122 :life insurance
A123 : car or other
A124 : unknown / no property

Age Numerical
Other installment Categorical A141 : bank

A142 : stores
A143 : none

Housing Categorical A151 : rent
A152 : own
A153 : for free

Existing credits Numerical
Job Categorical A171 : unemployed

A172 : unskilled
A173 : skilled
A174 : highly qualified employee

People being liable Numerical
Telephone Categorical A191: yes

A192: no
Foreign worker Categorical A201 : yes

A202 : no



Table A.3: Variable annotations for wpbc data.

Variable Name Variable Description

status a factor with levels N (nonrecur) and R (recur)
mean-radius radius (mean of distances from center to perimeter)
mean-texture texture (standard deviation of gray-scale values)
mean-perimeter perimeter
mean-area area
mean-smoothness smoothness (local variation in radius lengths)
mean-compactness compactness
mean-concavity concavity (severity of concave portions of the contour)
mean-concavepoints concave points (number of concave portions of the contour)
mean-symmetry symmetry
mean-fractaldim fractal dimension
SE-radius radius (SE)
SE-texture texture (SE)
SE-perimeter perimeter (SE)
SE-area area (SE)
SE-smoothness smoothness (SE)
SE-compactness compactness (SE)
SE-concavity concavity (SE)
SE-concavepoints concave points (SE)
SE-symmetry symmetry (SE)
SE-fractaldim fractal dimension (SE)
worst-radius radius (worst)
worst-texture texture (worst)
worst-perimeter perimeter (worst)
worst-area area (worst)
worst-smoothness smoothness ((worst)
worst-compactness compactness (worst)
worst-concavity concavity (worst)
worst-concavepoints concave points (worst)
worst-symmetry symmetry (worst)
worst-fractaldim fractal dimension (worst)
tsize diameter of the excised tumor in centimeters
pnodes number of positive axillary lymph nodes


