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ABSTRACT 
 

DONG, PUXUAN. Design, Analysis and Real-Time Realization of Artificial Neural 

Network for Control and Classification. (Under the direction of Dr. Griff L. Bilbro.) 

 

   Artificial neural networks (ANNs) are parallel architectures for processing information 

even though they are usually realized on general-purpose digital computers. This research 

has been focused on the design, analysis and real-time realization of artificial neural 

networks using programmable analog hardware for control and classification.  

 

   We have investigated field programmable analog arrays (FPAAs) for realizing artificial 

neural networks (ANN).  Our research results and products include a general theoretical 

limit on the number of neurons required by an ANN to classify a given number of data 

points, a design methodology for the efficient use of specific FPAA resources in ANN 

applications, several multi-chip FPAA implementations of ANNs for classification 

experiments, several single-chip FPAA implementations of analog PID controllers for an 

unmanned ground vehicle (UGV), experimental evaluation of FPAA PID controllers with 

a conventional digital PID controller on a UGV,  and finally a single-chip FPAA 

implementation of a (non-linear) ANN controller  for comparison with the previous 

FPAA PID controller on a UGV.    
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   These results are collected as four papers formatted for publication and comprising 

chapters 3, 4, 5, and 6 of this thesis. The first paper develops our general bound for neural 

network complexity.  The second presents a systematic approach based on the upper 

bound theory for implementing and simplifying neural network structures in FPAA 

technology.   In the third paper, a FPAA based PID controller was designed and 

characterized in a path-tracking UGV; some of the results from this report are used as a 

baseline in the fourth paper. In the fourth paper, a FPAA based ANN controller is 

designed to control a path-tracking UGV and is investigated analytically and with 

simulation before its performance was experimentally compared to the previously 

designed FPAA PID controller regarding  speed, stability and robustness. 

 

   In conclusion, this dissertation focuses on the design, analysis and real-time realization 

of artificial neural networks. The proposed upper bound for neural network complexity 

provides guidelines for reducing hardware requirements and applies to any layered ANN 

approach to classification.  It is complemented by the neural network structure 

simplification method which exploits specific features available in the FPAA technology 

which we used in our experiments and which we believe possess great potential for future 

real-time control and classification applications.  
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CHAPTER I - Introduction 
 

   Artificial neural networks (ANNs) play an increasingly important role in areas such as 

robotics [1], process control [2-3], and motor fault detection [4-6]. Both software and 

hardware based approaches have been used for implementing ANNs. In general, software 

instructions executed serially cannot take advantage of the inherent parallelism of ANN 

architectures. Hardware implementations of neural networks promise higher speed 

operation when they can exploit this massive parallelism. Different hardware implements 

of neural network have been reported [7-25]. Other than the FPGA based approaches [10, 

11, 18, 24], most hardware implementations provide no programmability even though 

real-time reconfigurability of the topology or the size of an ANN could presumably 

improve its performance in applications where its immediate environment changes or its 

immediate objective is updated. 

   The best choices for neural network implementations that achieve both high speed and 

rapid prototyping appear to be programmable hardware approaches like field 

programmable gate arrays (FPGAs) and field programmable analog arrays (FPAAs). 

Compared to digital hardware, FPAAs have the advantage of interacting directly with the 

real (analog) world because they receive, process, and transmit signals totally in the 

analog domain without need of A/D or D/A conversion.   Their speed is also suited to real 

time applications. As reported in [26] on controlling a path-tracking unmanned ground 
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vehicle (UGV), the FPAA easily outperformed comparable digital hardware by 

processing the signal 8,000 times faster.  Few Anadigm FPAA applications have been 

reported, except a voltage-to-frequency converter and a Hodgkin-Huxley neuron 

simulator [27-28].  

   Hardware requirements are important for economical implementations. Realization of 

ANN structures with minimal hardware is facilitated by an understanding of the general 

limits on the complexity required by an ANN structure for it to learn a set of examples of 

a certain size.  This maximum complexity can be expressed as an upper bound on the 

neural network size.  Designs of this size are guaranteed to be large enough for correct 

operation.  Smaller ANNs might possibly operate correctly depending on the details of 

the problem, but any larger ANN are now guaranteed a-priori to waste neurons 

regardless of any particulars of the problem.    

   A few such bounds were known previously in certain cases. It was known that a single-

hidden layer feed forward neural network with two hidden nodes can solve the 

nonlinearly separable XOR problem.  XOR has only two input variables and only four 

data patterns, but is typical except for its size.  For larger problems with more inputs and 

data patterns, general upper bounds on the complexity of neural networks have been 

unavailable until now. My general bound has been useful for increasing the size of ANNs 

that are feasible with the hardware available but in this research, ANN size was still 

constrained by hardware resources. For complicated tasks, further simplifications were 

developed to take advantage of some specific features of FPAA technology.  
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   Following the introductory part of the dissertation, a literature survey of neural network 

hardware and the introduction to the FPAA technology is presented in Chapter II. 

Implementation examples of simple ANN structures are also present in the same chapter. 

Chapter III presents an upper bound on the complexity of feed forward neural networks - 

a single-hidden-layer network with at most (N/2)+1 hidden neurons is sufficient to 

classify N (N is even) data points of 2 classes with zero error. The upper bound reduces 

to (N-1)/2+1 when N is odd. The theory is then applied to design and train a neural 

classifier for the two-spiral problem, a benchmark problem in the neural network 

literature. Chapter IV applies the theory to solve another classification task and 

implements the ANN in the FPAA. A further neural network structure simplification 

technique for FPAA based ANNs is also proposed in Chapter IV. In Chapter V, an FPAA 

based PID controller is designed to control a path tracking unmanned ground vehicle for 

future performance comparison with FPAA based ANN controller. At last in Chapter VI, 

to demonstrate the application of FPAA based ANN in control systems, an ANN is 

designed in FPAA to control a path tracking unmanned ground vehicle. The performance 

of the FPAA based ANN controller is characterized in terms of speed, stability and 

robustness. 

References 

 
[1] F. L.Lewis, “Neural-network control of robot manipulators,” IEEE Expert, pp. 64-75, June 1996. 

[2] J. Teeter and M.-Y. Chow, “Application of Functional Link Neural Network to HVAC Thermal 

Dynamic System Identification,” IEEE Transactions on Industrial Electronics, vol. 45, no. 1, pp. 170-

176, 1998. 



 4 

[3] M.-Y. Chow and J. Teeter, “A Knowledge-Based Approach for Improved Neural Network Control of a 

Servomotor System with Nonlinear Friction Characteristics,” Mechatronics, vol. 5, no. 8, pp. 949-962, 

1995. 

[4] B. Ayhan, M.-Y. Chow, and M.-H. Song, “Monolith and Partition Schemes with LDA and Neural 

Networks as Detector Units for Induction Motor Broken Rotor Bar Fault Detection,” KIEE 

International Transactions on Electrical Machinery and Energy Conversion Systems, June 1, 2005 

(invited). 

[5] M.Y. Chow, “Methodologies of Using Artificial Neural Network and Fuzzy Logic Technologies for 

Motor Incipient Fault Detection,” World Scientific Publishing Co. Pte. Ltd., 1998. 

[6] M.-Y. Chow, G. Bilbro, and S. O. Yee, “Application of Learning Theory to a Single Phase Induction 

Motor Incipient Fault Detection Artificial Neural Network,” International Journal of Neural Systems, 

vol. 2, no. 1&2, pp. 91-100, 1991. 

[7] M. Holler, S. Tam, H. Castro and R. Benson, “An electrically trainable artificial neural network 

(ETANN) with 10240 `floating gate' synapses ,” Neural Networks, 1989. IJCNN, International Joint 

Conference on, pp. 191 - 196 vol.2, 18-22 June 1989.  

[8] S. Tam, B. Gupta, H. Castro and M. Holler, “Learning on an Analog VLSI Neural Network Chip,” 

Proceedings of the IEEE International Conference on Systems, Man & Cybernetics, 1990. 

[9] Y. Maeda, H. Hirano and Y. Kanata, “AN Analog Neural Network Circuit with a Learning Rule via 

Simutaneous Perturbation,” Proceedings of the IJCNN-93-Nagoya, pp. 853-856, 1993. 

[10] S. S. Kim [1] and S. Jung, "Hardware implementation of a real time neural network controller with a 

DSP and an FPGA," presented at Robotics and Automation, 2004. Proceedings. ICRA '04. 2004 IEEE 

International Conference on, 2004. 

[11] S. S. Kim W. Qinruo, Y. Bo, X. Yun, and L. Bingru, "The hardware structure design of perceptron 

with FPGA implementation," presented at Systems, Man and Cybernetics, 2003. IEEE International 

Conference on, 2003. 

[12] S. B. Yun, Y. J. Kim, S. S. Dong, and C. H. Lee, "Hardware implementation of neural network with 

expansible and reconfigurable architecture," presented at Neural Information Processing, 2002. 

ICONIP '02. Proceedings of the 9th International Conference on, 2002. 



 5 

[13] H. Withagen, “Implementing Backpropagation with Analog Hardware,” Proceedings of the IEEE 

ICNN-94-Orlando Florida, pp. 2015-2017, 1994. 

[14] T. Szabo, L. Antoni, G. Horvath, and B. Feher, "A full-parallel digital implementation for pre-trained 

NNs," presented at Neural Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS 

International Joint Conference on, 2000. 

[15] S. Popescu, "Hardware implementation of fast neural networks using CPLD," presented at Neural 

Network Applications in Electrical Engineering, Proceedings of the 5th Seminar on, 2000. 

[16] B. Girau, "Digital hardware implementation of 2D compatible neural networks," presented at Neural 

Networks, Proceedings of the IEEE-INNS-ENNS International Joint Conference on, 2000. 

[17] H. Abdelbaki, E. Gelenbe, and S. E. EL-Khamy, "Analog hardware implementation of the random 

neural network model," presented at Neural Networks, Proceedings of the IEEE-INNS-ENNS 

International Joint Conference on, 2000. 

[18] J. Zhu, G. J. Milne, and B. K. Gunther, "Towards an FPGA based reconfigurable computing 

environment for neural network implementations," presented at Artificial Neural Networks, Ninth 

International Conference on, 1999. 

[19] J. Liu and M. Brooke, "A fully parallel learning neural network chip for real-time control," presented 

at Neural Networks, International Joint Conference on, 1999. 

[20] J. Liu and M. Brooke, "Fully parallel on-chip learning hardware neural network for real-time control," 

presented at Circuits and Systems, Proceedings of the IEEE International Symposium on, 1999. 

[21] E. J. Brauer, J. J. Abbas, B. Callaway, J. Colvin, and J. Farris, "Hardware implementation of a neural 

network pattern shaper algorithm," presented at Neural Networks, International Joint Conference on, 

1999. 

[22] P. M. Engel and R. F. Molz, "A new proposal for implementation of competitive neural networks in 

analog hardware," presented at Neural Networks, Proceedings. 5th Brazilian Symposium on, 1998. 

[23] J. Tang, M. R. Varley, and M. S. Peak, "Hardware implementations of multi-layer feed forward neural 

networks and error backpropagation using 8-bit PIC microcontrollers," presented at Neural and Fuzzy 

Systems: Design, Hardware and Applications, IEE Colloquium on, 1997. 



 6 

[24] D. S. Reay, T. C. Green, and B. W. Williams, "Field programmable gate array implementation of a 

neural network accelerator," presented at Hardware Implementation of Neural Networks and Fuzzy 

Logic, IEE Colloquium on, 1994. 

[25] A. Achyuthan and M. I. Elmasry, "Mixed analog/digital hardware synthesis of artificial neural 

networks," Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 13, 

pp. 1073-1087, 1994. 

[26] P. Dong, G. Bilbro, and M.-Y. Chow, “Controlling a Path-tracking Unmanned Ground Vehicle with a 

Field-Programmable Analog Array,” IEEE/ASME International Conference on Advanced Intelligent 

Mechatronics, Monterey, CA, 24-28 July, 2005. 

[27] P. I. Yakimov, E. D. Manolov, and M. H. Hristov, "Design and implementation of a V-f converter 

using FPAA," presented at Electronics Technology: Meeting the Challenges of Electronics Technology 

Progress, 2004. 27th International Spring Seminar on, 2004. 

[28] M. Sekerli and R. J. Butera, "An implementation of a simple neuron model in field programmable 

analog arrays," presented at Engineering in Medicine and Biology Society, 2004. EMBC 2004. 

Conference Proceedings. 26th Annual International Conference of the, 2004. 

 

 

 

 

 

 

 

 



 7 

 

CHAPTER II - Introduction to Field 
Programmable Analog Arrays and Survey 

of Artificial Neural Network Hardware 
 

   This chapter introduces FPAA technologies for ANN applications and surveys the 

literature of artificial neural network (ANN) hardware. Some ANN implementation 

examples using FPAAs are also presented.  

I. The FPAA Technology 

   The field programmable analog array technology, which is the analog counterpart of the 

FPGA, appeared in 1980’s [1-8]. The technology was made commercially available by 

AnadigmTM in 2000. Anadigm’s FPAA chips are mainly used as platforms for 

experiments along with our research.  

   The FPAA is an array of identical Configurable Analog Blocks (CABs). Which 

includes operational amplifiers, comparators and switched programmable capacitors . 

The FPAA allows designers to implement an extremely wide variety of signal processing 

functions using digital configuration data. 

   Anadigm’s FPAAs are based on switched-capacitor technology.  Switched capacitors 

take the place of resistors in switched-capacitor circuits.   An effective resistance can be 
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defined for switched capacitors; its value depends on the capacitance but changes 

according to the sampling frequency. 

 

 

Figure 2.1. Switched capacitor and its sampling clocks 

   As shown in Figure 2.1, capacitor C is a switched capacitor; non-overlapping clocks 

control two switches respectively.  inV  is sampled at the falling edge of 1φ , the sampling 

frequency is sf . The charges going from inV  to outV  each sampling period is 

)( outin VVCQ −= . So the current flowing from inV  to outV  is )( outins VVCfI −= . Then we 

can get the equivalent resistor of resistance 
Cf

R
s

1
= .  The following two examples show 

that how the switched capacitor could take the place of the resistor in an inverting 

integrator and a non-inverting integrator. 

 

Figure 2.2. A normal inverting integrator 

  To replace the resistor with a switched capacitor, the first switched-capacitor design 

used following circuit: 



 9 

 

Figure 2.3. An inverting integrator with the resistor replaced by a switched capacitor 

   The advantage of the switched capacitors is that these are easy to build in an integrated 

circuit (IC) technology. It is difficult to make precise large-value resistors on silicon, but 

easier to make precise (and well-matched) small-value capacitors.  When the switching 

noise is eliminated by filtering, a simple use of switched capacitor is as a resistor. For 

example, an effective resistance of 100 kilohms can be obtained at a switching frequency 

of 1 MHz by a capacitor with a capacitance of 10 pF.  Switched-capacitor technology is 

key to the accuracy and flexibility of FPAA.   

     At present, Anadigm has shipped two generations of FPAA chips (AN10E40 and 

ANx2xE0x) and corresponding evaluation boards (shown in Figure 2.4 & 2.5).  The 

frequencies of the master clock are 1Mhz and 4Mhz for the first-generation board and 

second-generation board respectively.  
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Figure 2.4. AN10E40 FPAA Chip and Evaluation Board 

 

 

Figure 2.5. AN221E04 FPAA Chip and Evaluation Board   

II. Introduction to Artificial Neural Networks 

  Artificial neural networks (ANNs), or more simply neural networks (NNs), are 

information processing systems that roughly replicate the behavior of a human brain by 

emulating the operations and connectivity of biological neurons.   Under some 
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conditions, they can be trained directly from data, and sometimes complicated or 

imprecise data.  NNs can be used to extract patterns and detect trends thus it be applied to 

data classification and nonlinear functional mapping. Specific application examples 

include process modeling, control, machine diagnosis, and real-time recognition. The 

history of the ANNs stems from the 1940s, the decade of the first electronic computer. 

An important step toward artificial neural networks occurred in 1943 when Warren 

McCulloch and Walter Pitts wrote a paper on the working mechanism of the neurons. 

They modeled a simple neural network with electrical circuits [9]. However, the first 

significant application only took place in 1958 when Rosenblatt introduced the first 

concrete neural model - the perceptron [10]. In 1959, Bernard Widrow and Marcian Hoff 

of Stanford University developed models they called ADALINE and MADALINE [11-

12]. These models were named for their use of Multiple ADAptive LINear Elements. 

MADALINE was the first neural network to be applied to a real world problem. It is an 

adaptive filter that eliminates echoes on phone lines. This neural network is still in 

commercial use. The perceptron model Rosenblatt proposed contained only one layer. 

And after that, a multi-layered model was derived by Fukushima in 1975 [13]. The multi-

layer perceptron network didn’t show its potential in various applications until 

Rummelhart and Mclelland introduced a general backpropagation algorithm for a multi-

layered perceptron in 1986 [14-15]. In 1982, Hopfield proposed a type of neural network 

called “Hopefield network” in which there is only one layer whose neurons are fully 

connected with each other [16]. In 1982, Kohonen introduced a unique kind of network 

model called “Self-Organizing Map (SOM)”. SOM is a certain kind of topological map 

which organizes itself based on the input patterns that it is trained with. The SOM 
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originated from the LVQ (Learning Vector Quantization) network underlying the idea of 

which was also Kohonen's in 1972 [17]. 

A. Application Areas of ANNs 

  Neural networks have been successfully applied to various data-intensive applications in 

industry, business and science [18]. Those applications include bankruptcy prediction 

[19-24], handwriting recognition [25-29], speech recognition [30], product inspection 

[31-32], fault detection [33-34], medical diagnosis [35-37], and bond rating [38-40]. A 

number of performance comparisons between neural and conventional classifiers have 

been made by many studies [41-43]. In addition, several computer experimental 

evaluations of neural networks for classification problems have been conducted under a 

variety of conditions [44-45]. 

  One example of application to motor fault detection was proposed by Li, Chow, 

Tipsuwan and Hung [46]. They present an approach for motor rolling bearing fault 

diagnosis using neural networks and time/frequency-domain bearing vibration domain 

analysis. The results of motor bearing faults can be effectively diagnosed using neural 

network if the signal of motor bearing vibration is appropriately measured and translated.   

B. Artificial Neuron Model and Neural Network Structures 

   An artificial neuron (process element) is often called a node or unit. The model is 

shown in Figure 2.6. It receives input from some other units, or perhaps from an external 

source. Each input has an associated weight w, which can be modified so as to model 

synaptic learning. The unit computes some function f of the weighted sum of its inputs: y 

= f (x). Its output, in turn, can serve as input to other units. The function f is the unit's 
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activation function. The activation function could be linear function, step function, 

sigmoid function xe
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Figure 2.6. Artificial neuron model 

   A neural network normally consists of many artificial neurons and a large number of 

interconnections among them as shown in Figure 2.7. Based on the structure of the 

connections, the neural networks can be classified into two categories: first, the feed 

forward neural network in which the neurons in one layer get input from the previous 

layer and the output is connected to the next layer; and second, the recurrent neural 

network where connections to the neurons are to the same layer to the previous layers. 

The Hopfield neural network [16] is a widely used example of recurrent neural networks. 
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Figure 2.7. Example of feed forward neural network. 

C. Overview of ANN Hardware Implementation 

   Neural network can be implemented with either software or hardware. Software 

implementation means programming the neural network on a PC or workstation.  

Nowadays the performance of von-Newman processors like the Intel Pentium series are 

advancing  steadily. However, since they are designed to process instructions more-or-

less one after the other instead of concurrently in parallel, alternative ANN simulators 

might supplement general purpose digital processors. Software implementation is 

preferred when the neural network is of low neuron density or the specific problem 

doesn’t need high speed processing. When the speedup is of the interest, special purpose 

hardware implementations are a more attractive choice. For example, some dedicated 

devices such as those for hand-written character recognition [25-29] and speech 

recognition [30] are implemented in special purpose hardware. Most hardware with 
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multiple inputs implementing neural networks has a speed advantage over software since 

it can take the advantage of the inherent parallelism of the ANN. 

   In the literature treating the hardware, implementation of neural networks, 

specifications include the technology used (analog, digital, or hybrid), the precision (in 

equivalent numbers of bits) of the input/outputs, of the weights, and of the accumulators, 

etc. There are two traditional criteria for the performance of neural network hardware: the 

first one is the MCPS or Millions of Connections Per Second, which is defined as the rate 

of multiply and/or accumulate operations. The other one is MCUPS or Millions of 

Connection Update Per Second value that denotes the rate of weight changes during 

network learning. 

   Efforts have been made to develop a more detailed classification of the neural network 

hardware from aspects such as system architecture, degree of parallelism or whether 

general-purpose or special-purpose devices are employed [48].  

    As for the chips, hardware for neural network implementation can be classified into 

two main categories: general-purpose hardware that can be reconfigured for different 

tasks (such as Adaptive Solutions CNAPS [47] and the algorithm specific hardware to 

implement one specific task very efficiently such as handwriting recognition. The 

reported general-purpose hardware includes PC accelerator boards and neurocomputers. 

The reported algorithm specific hardware has three sub-categories: digital, analog and 

hybrid. The resulting classification is shown in Figure 2.8 describes the hardware 

reported in references [49-65], [68] and will be used to discuss them in the following.  
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Figure 2.8. Classification of neural network hardware 

   Accelerator boards are a kind of hardware that can work in conjunction with PC to 

speed up the neural network implementations. They normally reside in the expansion slot. 

Accelerator boards are usually based on neural network chips but some just use fast 

digital signal processors that do multiple-accumulate operations. One example of the 

accelerator boards is the IBM ZISC ISA and PCI cards [49]. The ZISC is a digital chip 

with 64 8-bit inputs and 36 radial basis function neurons. Multiple chips can be cascaded 

together to create networks of arbitrary size. The ISA card holds up to 16 ZISCX036 

chips providing 576 neurons and the PCI cards can hold up to 19 chips providing 684 

neurons. Other accelerator cards include SAIC SIGMA-1 [50], Neuro Turbo [51] and 

HNC [52]. 

   Neurocomputers are stand-alone systems that are intended for large scale processing 

applications such as high throughput optical characters recognition. They are built from 

general-purpose processors to provide high programmability for implementation of 
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different neural networks. Neurocomputers are complex and expensive. Examples 

include BSP400 [53], COKOS [54] and RAP (Ring Array Processor) [55]. RAP was 

developed at the ICSI (International Computer Science Institute, Berkeley, CA) and has 

been used as an essential component in the development of connectionist algorithms for 

speech recognition since 1990. Implementations consist of 4 to 40 Texas Instruments 

TITMS320C30 floating point DSPs containing 256 Kbytes of fast static RAM and 4 

Mbytes of dynamic RAM each. These chips are connected via a ring of FPGAs, each 

implementing a simple two-register data pipeline. Additionally each board has a VME 

bus interface logic, which allows it to connect to a host computer. 

   The algorithm specific neural network hardware (neural network VLSI) can be divided 

into three broad categories: digital, analog, and hybrids. 

   The digital neural network category itself includes slice architectures [56-58], single 

instruction multiple data (SIMD) [59-60] and systolic array devices [61]. For SIMD 

design, each processor executes the same instruction in parallel but on different data. In 

systolic arrays, a processor does one step of a calculation (always the same step) before 

passing its result on to the next processor in a pipelined manner. A systolic array system 

can be built with the Siemens MA-16 [62]. Digital hardware has the advantages of 

mature fabrication techniques, weight storage in RAM, and arithmetic operations exact 

within the number of bits of the operands and accumulators. However, digital operations 

are usually slower than in analog systems, especially in some computationally expensive 

part of the neural calculation such as the hyperbolic tangent transfer function, and analog-

to-digital and digital-to-analog processing take extra time compared to analog chips. 
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  Compared to digital neural network hardware, analog hardware networks have the 

advantages of high speed since there is no A/D and D/A conversion needed. The first 

commercially available analog neural network chip is Intel’s analog ETANN chip [63]. 

Later more analog chips appeared such as [64-65]. Besides the advantages of high speed 

and high densities, since analog hardware interact directly with the real world and process 

signals totally in analog domain which is very fast, it is more suitable for real-time 

applications such as controlling unmanned vehicles compared to digital hardware.  

  The following section presents a new platform for ANN implementation: field 

programmable analog arrays (FPAAs), which can be classified into either algorithm 

specific or general-purpose hardware category, which are mentioned above.  

III. Sample Design of ANN Using FPAA 

   We can conclude from the above survey that to obtain high speed and flexible neural 

network simulator, programmable analog hardware is desired. This paper proposes the 

new neural network hardware to be built using FPAA technology, which could be either 

algorithm specific slice analog chip or large-scale neurocomputer after integrate multiple 

FPAAs together. 

   The FPAA shows considerable potential as a neural network simulator. It processes 

signals totally in the analog domain. It is digitally programmable.  Multiple chips (or 

multiple evaluation boards in the present case, since the FPAA are provided as evaluation 

boards in my implementations) can be integrated easily to realize artificial neural 

networks of arbitrary sizes as needed. Moreover, the transfer function of the neurons in 
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the neural network can be arbitrarily tabulated in a look up table in each FPAA chip. 

Figure 2.9 is an example circuit implementing a hyperbolic tangent transfer function. The 

look up table as shown in Figure 2.10 was loaded from an Excel file. Figure 2.11 is the 

simulation result. 

 

Figure 2.9. FPAA circuit that implements the hyperbolic tangent function using look up table. 
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Figure 2.10. Look up table for the hyperbolic tangent transfer function. 

 

Figure 2.11. Simulation result of hyperbolic tangent transfer function. 
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Abstract  

   This paper proposes an upper bound on the complexity of feed forward neural networks 

for classifying data. We show that N data points drawn from two classes can be correctly 

labeled by a network with a single hidden layer network containing at most N/2+1 hidden 

neurons (when N is even or (N-1)/2+1 hidden neurons when N is odd) with hyperbolic 

tangent activation functions. 

Keywords: upper bound, classification, feed forward neural network 

I. Introduction 

   Proper size of a neural network (NN) allows it to learn a task efficiently and to predict 

future output appropriately [1] and has been considered by several researchers. Lecun 

proposed optimal brain damage [2]; Hassibi presented optimal brain surgeon [3]; Mozer 

“trimmed” the excessive neuron and weights from the neural network via relevance 

assessment, which he called “Skeletonization” [4]. The initial maximum necessary 

network size is desired for pruning techniques since it makes the techniques efficient. 

Besides the pruning techniques mentioned above, there are also constructive methods 

such as cascade-correlation (CC) introduced by Falman [5]. Thivierge, Rivest and Shultz 

even found a way to prune constructive neural networks which is a “dual phase” 

technique [6]. 

   Apart from these growing and pruning methods, the approximation capabilities of 

neural networks have been intensively analyzed [7-14] as another kind of effort to find 

the ideal topology of neural networks for certain problems. Analysis of approximation 
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capability is also important since it helps to choose the size of neural networks. 

Excessively large neural networks are computationally demanding to simulate and may 

not generalize appropriately; and on the other hand, neural networks of inadequate 

complexity may fail to learn significant features of a data set.   A lower bound on the size 

of the neural network was recently reported by Gao and Ji [15].   

   In this paper we present an upper bound for the size of the neural network solving 

classification problems.  We show that a conventional three-layer feed forward neural 

network with hyperbolic tangent activating functions containing K+1 neurons in its 

hidden layer can learn any arbitrary assignment of 2K vectors to two classes.    

   We apply the proposed theory to the two spirals benchmark problem [17].   We find 

that a neural network with the proposed number of hidden neurons learns the two-spiral 

problem perfectly within 500 training epochs.  This is about 70% less training effort than 

for the cascade-correlation algorithm proposed by Fahlman and Lebiere [5].  We also find 

that networks with 15% fewer neurons than the proposed upper bound cannot learn the 

data without error.   

   The paper is organized as follows: section II derives the upper bound; section III 

applies the theory to a benchmark classification problem - the two-spiral problem and 

section IV offers some concluding remarks. 

II. Theory 

   Gao and Ji’s research result shows that hidden neuron number required in a single-

hidden-layer neural network to solve the n-class problem is independent of the dimension 
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of the input data vectors [15]. We therefore restrict our attention to the one-dimensional 

case to analyze the upper bound on the number of hidden neurons of a single-hidden-

layer feed forward neural network solve two-class classification problems of N data 

points. 

   In one dimension, the alternate label problem [16] requires the most decision points 

since when elements from different classes of data alternate with each other, each pair of 

adjacent points needs one decision point between them. The N-point alternate label problem 

needs N-1 decision points and provides an upper bound on the number of hidden neurons 

required for classification. 

   For simplicity, we choose { 1, 1}+ −  as the label set for the alternate label problem.  This 

is equivalent to using the algebraic sign of the neural network output as the label that it 

computes for a particular input value.  This can also be described as choosing a threshold 

value of zero for the real-valued function computed by the neural network. 

   We assume that the number 2 1N K= + of data points is odd, that they are indexed by 

size so that 1 2 3 2 1Kx x x x +< < <L , that the odd points are labeled 1+ , and that the even 

points are labeled 1− .  We define ( )1
1 1

1 max
2

N
n n nH x x−

= +≡ −  to be half the maximum 

interval between adjacent data points and ( )1
1 1

1 min
2

N
n n nh x x−

= +≡ −  to be half the minimum 

interval between adjacent data points.  Consider the unit sigmoid 
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( ))tanh(1
2
1)( xxu β+= shown in Figure 3.1 where β  is chosen to solve 

δβ 21)tanh( −=x  for
4

h
KH

δ =  so that 1u δ≥ − for x h≥  and u δ≤ for x h≤ − .    

 

Figure 3.1. The unit sigmoid function 

   It is convenient to define a second set of N points as n ny x h≡ − for 1 k N≤ ≤  as 

indicated in Figure 3.2. It follows from these definitions for appropriate n that n nx y h− = , 

and 1n nh y x H+≤ − ≤ , and 1 12 2n n n nh x x y y H+ +≤ − = − ≤ . 

 

Figure 3.2. Example of data points 

   We define the function 0
1( ) tanh( )u x xα
α

=  to be approximately linear in the interval 

Nxxy ≤≤1  by choosing α to satisfy ( )
K
hHyxyx NN ==−−− δα

α
4)(tanh1

11 . The 
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relationship between )( 1yxN − and )tanh(1)(0 xxu α
α

= is shown in Figure 3.3.  It follows 

that 1101 )(4 yxyxuHyx −≤−≤−− δ . 

 

Figure 3.3: )tanh(1)(0 xxu α
α

=  and the corresponding straight line showing the error at )( 1yxN − as 

δH4  

   We now show that the function ( ) ( )0 1 2 1 2 1 2
1

( ) ( )
K

k k k
k

f x u x y y y u x y+ −
=

= − − − −∑  

correctly labels any point kx  as the algebraic sign of ( )kf x .  There are two cases.  First 

we show that 2( ) 0nf x ≤ so that the evenly indexed points are labeled 1− .  Second we will 

show that 2 1( ) 0nf x + ≥  correctly labels every odd data point as 1+ .   An illustrative 

cartoon of f for 5 points using 3 hyperbolic tangents are shown in Figure 3.4. 

 



 34 

 

Figure 3.4. Three hyperbolic tangent functions classifying five data points 

   In the expression ( ) ( )2 0 2 1 2 1 2 1 2 2
1

( ) ( )
K

n n k k n k
k

f x u x y y y u x y+ −
=

= − − − −∑ , we decompose 

the sum into two parts.  In the first part over 1 k n≤ ≤  we have 2 2n kx y h− ≥  so that 

2 2( ) 1n ku x y δ− ≥ − .  In the second part over 1n k K+ ≤ ≤ we have 2 2n kx y h− ≤ −  and we 

assert only that 0u > , so that ( ) ( )2 2 1 2 1 2 1 2 1 2 1
1 1

( )
n n

n n k k k k
k k

f x x y y y y y δ+ − + −
= =

≤ − − − + −∑ ∑ .  

The first sum telescopes to 112 yy n −+  and combines with the first two terms to yield 

2 2 1n nx y h+− ≤ − .  The second term is less than 4n Hδ , so that 

2( ) 4 4nf x h nH h KH h hδ δ≤ − + ≤ − + = − + which implies that 2( ) 0nf x ≤  as desired. 
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   For the remaining data points, we have 

( ) ( )2 1 0 2 1 1 2 1 2 1 2 1 2
1

( ) ( )
K

n n k k n k
k

f x u x y y y u x y+ + + − +
=

= − − − −∑ .   Again we decompose the 

sum into two parts.  For 1n k K+ ≤ ≤ , we have 2 1 2n kx y h+ − ≤ −  so that 

2 1 2( )n ku x y δ+ − ≤  and we have 1u <  for all k including 1 k n≤ ≤ .  In addition 

0 2 1 1 2 1 1( ) 4n nu x y x y Hδ+ +− ≥ − − by construction. Consequently we can 

write ( ) ( )2 1 2 1 1 2 1 2 1 2 1 2 1
1 1

( ) 4
n K

n n k k k k
k k n

f x x y H y y y yδ δ+ + + − + −
= = +

≥ − − − − − −∑ ∑ , where the 

first sum telescopes as before and combines with the first two terms.  The second sum is 

bounded above by 
1
4

K

k n
Hδ

= +
∑ , so that 

( )2 1 2 1 2 1( ) 4 4 1 4 ( )n n nf x x y H H K n h H K nδ δ δ+ + +≥ − − − − − = − − . But  K n K− ≤  so 

that this implies that 2 1( ) 4nf x h HK h hδ+ ≥ − = −  and we can conclude that 2 1( ) 0nf x + ≥ , 

as desired.  

   Therefore, 2K+1 points can be classified correctly by K+1 neurons in the hidden layer 

of a feed forward neural network. In other words, 12/)1( +−N hidden neurons are 

sufficient to classify N data points of two classes. 

   The case of an even number 2N K= of data points, the same function can be used and 

the same proof is valid if only a fictitious point is introduced at 2 1 22K Kx h x+ = +  with an 

appropriate label.  Consequently the proposed network output function f can correctly 

treat the alternate label problem regardless of the parity of N .  Therefore, 2K points can 

be classified correctly by K+1 neurons in the hidden layer of a feed forward neural 
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network. In other words, 12/ +N  hidden neurons are sufficient to classify N data points 

of two classes. 

   Since f is contained in the set of functions naturally realized by conventional three-

layer feed forward neural networks, we have shown that a single-hidden-layer network 

with at most (N/2)+1 hidden neurons is sufficient to classify N (N is even) data points of 

2 classes with zero error. The upper bound reduces to (N-1)/2+1 when N is odd. Since 

this problem is the worst case of any one-dimensional problem of size N and since the 

number of hidden layer neurons does not depend on the dimension of the inputs, we have 

shown that any 2-labeling problem of size N can be learned without error by a 

conventional feed forward neural network with at most / 2 1N +  hidden neurons. 

III. Experimental Results 

   The application of the theory is demonstrated with the classification benchmark 

problem – the two spirals problem [17]. The two spirals problem has been used to test all 

kinds of neural classifiers [18-20]. The two spirals problem consists of 194 X-Y training 

points forming two interlocking classes of which one class has the output of 1 and the 

other has the output of -1. Each class has 97 points circling around the origin for three 

and half times as shown in Figure 3.5.  
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Figure 3.5.  Data mapping of the two spirals problem. 

   To solve the two spiral problem, Yu and Tang proposed to use adaptive activation 

functions in the neural network [21]; Xiong, et al. present the branch control network as a 

supplement for the exiting neural network to solve the problem [22]; Wilamowski and 

Jaeger recommend to use input pattern transformation method to obtain a solution [23]; 

Jia and Chua present the method of input data representation [18] and Waterhouse and 

Robinson adopt hierarchical mixture of experts as another alternative [24]. The 

classification results of all above mentioned method are listed in Table I in terms of 

network structure, training epochs, training MSE error, number of training data points 

and number of testing data points. It appears that only the adaptive activation function 

and branch control network method classify the 194 data points with 100 percent 

accuracy as shown in Figure 3.6. However, none of these two methods use traditional 

feed forward neural network – adaptive activation function method indicates the 

activation functions of the neurons need to be changed during training which increases 



 38 

the computational complexity and branch control network add additional structure to the 

existing neural network which adds complexity to training as well.   

Table 3.1. Comparison of different methods classifying the two-spiral problem. 

 Network 
Structure 

 

Training Epoch 
 

Training Set 
Data Points 

 

Testing Set Data 
Points 

 
Cascade-

Correlation, 
S.E.Falman, 
C.Lebiere 

 

 
 

>11 hidden layers 
 

 
 

1700 

 
 

194 

 
 

Not specified 

Adaptive 
Activation 
Function 

C.C. Yu, Y.C. 
Tang, and B.D. 

Liu. 
 

 
 

2-12-1 

 
 

Not specified 

 
 

200 

 
 

Not specified 

Branch Control 
Network 

Q.Xiong, K. 
Hirasawa, J, Hu 
and J. Murata 

 

 
2-100-1 

with extra branch 
network 

 

 
 

>1,000,000 

 
 

194 

 
 

2601 

Input Pattern 
Transformation 

B.M. 
Wilamowski and 

R.C. Jaeger 
 

 
2-8-1 

with extra 
transformation 

layer 

 
 

Not specified 

 
 

Not specified 

 
 

Not specified 

Input Data 
Representation 

(Weighted 
Binary) 

J. Jia and H.C. 
Chua 

 

 
 

18-40-2 

 
 

<2,000 

 
 

Not specified 

 
 

Not specified 

Hierarchical 
Mixture of 

Experts 
S.R. Waterhouse 

and A.J. 
Robinson 

 

 
 

10 layer tree 

 
 

315 

 
 

Not specified 

 
 

Not specified 

The Upper Bound 
Theory 

P. Dong and G. 
Bilbro 

 

 
 

2-98-1 

 
 

500 

 
 

194 

 
 

14,400 
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Figure 3.6. Generalization performance of two-spiral problem by different methods. 

   Based on our theory, 98 neurons are sufficient to separate the data of two classes with 

zero error. We train and test different single hidden layer neural networks with the 

following number of hidden neuron numbers: 40, 60, 70, 80, 90, 98 and 145. The trained 

the network is tested thoroughly with 14400 data points as shown in Figure 3.7a-3.7n.  

 

 



 40 

3.7(a) 40 hidden neurons 3.7(b) 40 hidden neurons 

 
3.7(c) 60 hidden neurons  

3.7(d) 60 hidden neurons 

3.7(e) 70 hidden neurons 3.7(f) 70 hidden neurons 
 

Figure 3.7. Testing results of two-spirals problem trained with the 3-layered feed forward neural networks. 

(Simulated in MATLAB/SIMULINK from the MathWorks, Natick, MA, USA) 
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3.7(g) 80 hidden neurons 3.7(h) 80 hidden neurons 

3.7(i) 90 hidden neurons 
 

3.7(j) 90 hidden neurons 

3.7(k) 98 hidden neurons 
 

3.7(l) 98 hidden neurons 

Figure 3.7 – continued. 
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3.7(m) 145 hidden neurons 3.7(n) 145 hidden neurons 

    

As shown in Figure 3.7, the testing results indicate the network classifies the problem 

better with the increase of the number of the hidden neurons. The network classifies the 

two groups of data completely when the neuron number reaches 90 in the hidden layer. 

With 98 and 145 neurons in the hidden layer, the network still classifies the two groups 

of data points successfully. This means the minimum required neuron numbers is 

between 80 - 90 which is fairly close to our calculated “data-independent” upper bound. 

This result would be closer to our upper bound if the problem could somehow be made 

more difficult. 

   For the 2-98-1 structure, the classification error on the training set of 194 points drops 

to zero after 500 back propagation training epochs. The trained network classifies the two 

groups of data with 100 percent accuracy. The number of epochs is 70.59% less than the 

result (1700 epochs) obtained by the cascade-correlation algorithm proposed by Fahlman 

and Lebiere [5].  

 

Figure 3.7 – continued. 
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IV. Conclusion  

   An upper bound has been presented for the number of neurons in the hidden layer of a 

3-layered neural network that can correctly label any N data points of 2 classes. At most 

N/2+1 hidden neurons is sufficient to classify N such data points of 2 classes with zero 

error.  The hidden neurons have hyperbolic tangent activation functions. The data points 

are allowed to be m dimensional (m > 1). The application of the theory is demonstrated 

with a classification benchmark problem from the literature. 
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Abstract  

   This paper presents a method of realizing artificial neural networks (ANNs) hardware 

implementation using field programmable analog arrays (FPAAs). A simplified 

realization for neurons with piecewise linear activation functions is used to reduce the 

complexity of the neural network architecture. Several different feedforward neural 

networks are implemented using single-chip and multi-chip FPAAs. Anadigm’s 

commercially available AN221E04 FPAA chips are adopted as the platform for 

simulation and experiments. The FPAA based multi-chip ANN classifies two groups of 

data with zero error at a speed of 6.0 Million Connections Per Second (MCPS). The 

result is more than 1400 times faster than comparable software implementation. The 

ANN architecture is also expandable to perform more complicated tasks by incorporating 

more FPAA chips into the implementation. The programmability of the FPAA makes 

analog rapid prototyping possible.   

 

Keywords:  field programmable analog arrays, neural network hardware, rapid 

prototyping 

I. Introduction 

   Artificial neural networks (ANNs) have been playing an increasingly important role in 

areas such as robotics [1], process control [2-3], and motor fault detection [4-6]. Both 

software and hardware based approaches have been used for implementing ANNs. In 

general, software instructions executed serially cannot take advantage of the inherent 

parallelism of ANN architectures. Hardware implementations of neural networks promise 

higher speed operation when they can exploit this massive parallelism. Different 
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hardware implements of neural network have been reported [7-25]. Other than the FPGA 

based approaches [10, 11, 18, 24], most of the hardware implementations provide no 

programmability. Reconfigurability of an ANN is desirable since many ANN 

applications, e.g., robots performing different tasks in different environments may benefit 

from different neural network topologies (e.g., different number of hidden nodes). The 

best choices for neural network implementations that achieve both high speed and rapid 

prototyping appear to be programmable hardware approaches like field programmable 

gate arrays (FPGAs) and field programmable analog arrays (FPAAs). Compared to 

digital hardware, FPAAs have the advantage of interacting directly with the real world 

because they receive, process, and transmit signals totally in the analog domain (without 

the need to do A/D, D/A conversions) and are suitable for real time applications. As 

reported in [26] on controlling a path-tracking unmanned ground vehicle, an FPAA can 

easily outperform the digital hardware by processing the signal 8,000 times faster.  Other 

FPAA applications, including a voltage-to-frequency converter and a Hodgkin-Huxley 

neuron simulator, have been reported [27-28]. 

   Section II of this paper proposes a simple realization of layered neural networks 

appropriate for FPAAs. Section III applies the neural network architecture simplification 

method to a single-chip FPAA based neural network to realize the XOR gate with can be 

converted to other 3 logic gates with very little change of the network architecture. 

Section IV applies the neural network architecture simplification method to a multi-chip 

FPAA based neural network to classify the elements of a data set containing two groups 

of data. Section V analyzes the speed performance of the FPAA implementing the ANN 

by comparing it to software implementation. Section VI gives some concluding remarks. 
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II. Neural Network Architecture Simplification in FPAA 

A. The Piecewise Linear Activation Function 

   In the ANN, the output of a neuron is computed by applying its activation function to a 

weighted sum of its inputs. Some activation functions such as hyperbolic tangent and 

sigmoid are expensive for digital hardware implementation. To reduce the cost for 

implementation, the piecewise linear activation function has been used to approximate 

sigmoid activation function [29]. We chose the Piecewise Linear (PL) activation function 

for the neurons in the hidden layer of our neural network architecture because it is 

naturally suited for applying FPAA hardware to the problem of interest (to be described 

in later sections).    

   A neural network must be trained to reflect or to generalize a desired relationship 

between inputs and outputs.  During the back propagation training process in a neural 

network, the error signal at the output of the neuron j at iteration n (i.e., presentation of 

the nth training example) is defined by  

)()()( nyndne jjj −= ,  (1) 

where )(nd j  is the desired response of neuron j and is used to compute )(ne j , )(ny j  is to 

the function signal appearing at the output of neuron j at iteration n. Let ( )•jϕ  be the 

activation function; then the synaptic weight )(nw ji∆  change is: 

)()()( nynnw ijji ηδ=∆ ,    (2) 

where  
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( )( ) ( ) ( )j j j jn e n v nδ ϕ ′= ,   (3) 

is called the local gradient and  η  is the learning rate. In equation (3), 

)()()(
0

nynwnv i

m

i
jij ∑

=

= ,    (4) 

and jiw denotes the synaptic weight connecting the output neuron i ( there are m inputs) 

to the input of neuron j at iteration n. The PL activation function is given by 
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where 1 2[ , ,... ]T d
dx x x R= ∈x is the input vector and 3

10 ],,,...,[ +
−+ ∈= d

d
T Rwwwwww , 

with 1+=+w  and 1−=−w , is the parameter vector that characterizes the node function. 

Figure 4.1 shows the 3D view of input-output relationship of a neuron of 2 inputs with 

piecewise linear activation function. 

   Although the PL activation function is less popular than the hyperbolic tangent 

activation function, the piecewise nature has attractive features such as ease of 

implementation and amenability to VLSI implementation [30-31]. It is also simpler to 

find ( )'jϕ •  in equation (5) since it requires only addition, multiplication and comparison 

operations in contrast to the trigonometric function that must be evaluated for the 

hyperbolic tangent function. 
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Figure 4.1. The piecewise linear (PL) activation function for [1,1]T =w  in two dimensions. 

B. Implementing the PL Function on FPAA 

   This section develops a realization of the standard PL activation function that uses two 

gain amplifier functional blocks. A standard PL function has the following form: 









+≥+
+<≤−

−<−
=

11
11

11
)(

x
xx

x
xPL .   (6) 

   In a FPAA circuit which saturates symmetrically at V+ and V-, where 

0,0 00 <−=>= −+ VVVV , a standard PL activation function can be obtained with two 

cascade gain stages 1G  and 2G  if V0 >1, where 01 2
VVVG =

−
= −+  and 

0
2

12
VVV

G =
−

=
−+

 

(which will be explained in the following paragraphs). Note that the product of 1G  and 

G2 is unity and 21 1 GG >> . 

   Since the circuit saturates at V+ and V-, the relationship between input voltage x and 

output voltage F1(x) of a “through” circuit is: 
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   A gain stage 1G  after F1(x) establishes the following relationship between the new 

output F2(x) and x: 
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   Adding another gain stage 2G  after F2(x) gives the following relationship between 

F3(x) and x: 
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   Thus the standard piecewise linear activation function is obtained by inserting these 

two particular gain stages between the input and the output of a through circuit. Figure 

4.2 shows the three functions (with using V0 = 2.5).  
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Figure 4.2. Obtaining the PL function using two gain stages. 

C. Merging the Gain Stages of Cascade Blocks on the FPAA 

As shown in Figures 3 and 4, the neural network can be simplified further by merging 

the two gain blocks 1G  and 2G  into the input and output weights of the neurons. 1G  

and 2G  form the standard piecewise linear transfer function for neuron j. The neural 

network architecture in Figure 4.3 can be simplified by multiplying every weight of 

neuron j by 1G  and multiplying 1kw by 2G  as shown in Figure 4.4. As a result, addition 

and multiplication are the only two operations required for a neural network 

implementation on the FPAA. The addition operation is performed by inverting sum 

amplifier blocks. The weights that a neuron uses to compute the weighted sum of its 

inputs are realized as the gain parameters of the inverting sum amplifiers on the FPAA.  

These weights are obtained from an offline training procedure using 

MATLAB/SIMULINK software to accurately simulate the network topology and to 

optimize the weights.  The optimal weights are downloaded to the Anadigm FPAA chips 

for the corresponding real-time operation, such as controlling a mobile robot or, in this 
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paper, classifying data points. 

 

Figure 4.3. Neural network architecture with unmerged gain blocks. 

 

Figure 4.4. Neural network architecture with merged gain blocks. 

   Note that merging 1G  into wji will not change the input to 2G  in Figure 4.4. In the 
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meantime, merging 2G  into wk1 will not change the input to the summing junction of kth 

neuron. The merging procedure for 1G  implemented in FPAA is depicted in Figure 4.5. 

The circuits shown reflexes the FPAA circuits except that resistors are replaced by 

equivalent switched capacitors and signals are differential inside the actual FPAA. The 

top circuit is the one before merging and the bottom one is after merging.  

   This section explains why voltage saturation at the upper and lower limits of circuit 

does not invalidate our merging simplification. In the circuits shown in Figure 4.5, 1G  is 

equal to 4/5 RR . In all cases the output of the Op Amps saturates at 0v±  (the Op Amps are 

assumed to be ideal). 
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Figure 4.5. Simplifying the FPAA circuit by merging G1 into the inverting sum amplifier. 

      The output Vout1 of the circuit with unmerged gain blocks is  
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   The output Vout2 of the circuit with merged gain blocks is 
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  Similar proof can be applied to the merging of G2 into the subsequent functional blocks 

of the FPAA. 

III. Logic Gates Implementation Using Single-chip FPAA 

   This section applies the network architecture simplification method to solve the classic 

neural network benchmark problem: XOR problem. Moreover, the versatility of FPAA 

chips is shown by the implementation of other three logic gates XNOR, AND or OR gate 
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with slight change of network parameters and/or circuit configuration for the XOR gate. 

Speed performance of the implementation is also addressed. 

   The XOR problem is a classic problem for neural networks since it is a simple, non-

linearly separable problem that can be solved by neural networks. 

   The piece-wise linear transfer function was chosen for the neural network because it 

can be easily realized by inverting gain stages in two low cost Configurable Analog 

Modules (CAMs). The circuit configuration can be further simplified by merging the two 

gain modules into inverting summer modules required by the neural network.  

   A 2-2-1 feedforward neural network topology was trained in MATLAB for XOR, 

XNOR, AND and OR gates, and the 4 resulting sets of weights were stored for 

downloading.  

   The FPAA used in our simulation and experiments is the AN221E04 FPAA from 

AnadigmTM Inc. The AN221E04 is a dynamically reconfigurable analog chip composed 

of op-amps, comparators and switched programmable capacitors. FPAA technology 

enables rapid-prototyping of analog circuits by programming the configurable analog 

modules supported by the chip, such as gain blocks, inverters, summing inverters, adders, 

multipliers, integrators, quadratic/linear analog filter blocks, and sine wave generators. 

With the aid of design software AnadigmDesigner 2, the FPAA can translate complex 

analog circuits into the simple set of system/block level design instead of transistor level 

design, and thus gives designers the analog equivalent of an FPGA. Moreover, it places 

analog functions under real-time software control within the system. 
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   Figure 4.6, 4.7, 4.8 and 4.9 show the actual circuit configurations and simulation results 

for the XOR, XNOR, AND and OR gates. Note that the circuit configuration of XOR is 

same as OR gate as well as the identity of the circuit configurations between XNOR and 

AND gate. The two types of circuit configurations differ by only one analog functional 

block. Each network has its own set of parameters. The parameters are obtained by 

training the network in MATLAB. Thus it is easy to change the circuit from one type of 

logic gate to any of other three gates.  

 

Figure 4.6. XNOR-gate FPAA circuit (left) and XOR-gate FPAA circuit (right) 
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Figure 4.7. Simulation results of XNOR (channel 2) and XOR gate (Channel 4). Channel 1 and 3 are two 

inputs. 

 

Figure 4.8. AND-gate FPAA circuit (left) and OR-gate FPAA circuit (right) 
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Figure 4.9. Simulation results of AND (channel 2) and OR gate (Channel 4). Channel 1 and 3 are two 

inputs 

   The measured time delay between input and output for the XOR gate is 0.2 

microseconds. Our 3-layer neural network has 6 connections so the neural network has 

the performance of 6/0.2 = 30 Million Connections per Second (MCPS) [33]. 

IV. Multi-chip FPAA Based Neural Network Classifying 2 Groups of Data 

A. The Two Classes of Data 

   The 8-point version of the “alternate labels” problem [32] is chosen to as an example to 

demonstrate the speed advantage of using FPAA implementation. The problem has two 

classes of data points. Let the two class be A and B. Each class has 4 data points 

alternating with the 4 data points of the other group in two dimensions. Each data point is 

represented in the usual way as an ordered pair of numbers as shown in Figure 4.10; we 

call the elements of the nth pair xn and yn (n = 1, 2, …, 8). All 8 data points have the same 

the y values thus y1 = y2 = …= y8. “a” (represented by squares) and “b” (represented by 
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circles) are two different real numbers representing the two classes. Without loss of 

generality, we can assume that the interval between successive xn’s is constant, say 0.4, 

and that the values of all yn are the same, say 1.0, as shown in Table I.  A feedforward 

neural network with several neurons in the hidden layer can generate the decision 

boundaries.  

 

Figure 4.10. Seven decision boundaries separating 8 data points of 2 classes. 

B. Classifying the Two Groups of Data 

   Table 4.1 shows the input and output values of the 8 data points used in our simulation 

and experiment. 

Table 4.1.  Two classes of data: class a = 0 and class b = 1. 
 

Input x 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 

Input y 1 1 1 1 1 1 1 1 

Output z 0 1 0 1 0 1 0 1 

   The neural network needs to implicitly generate the desired decision boundaries based 

the input data pairs in order to make proper classification. To classify these 8 data points, 

a 2-5-1 neural network is trained using the training data in Table I in MATLAB to obtain 

the weights. The neural network has 5 neurons in the hidden layer which has the PL 
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activation functions and one output neuron to construct a linear combination of the 

outputs of the 5 hidden neurons. Before the neural network is mapped onto the FPAA, it 

is simulated in MATLAB/SIMULINK to verify the separation capabilities of the network. 

As a result, the neural network achieves 100 percent classification accuracy as shown in 

Figure 4.11 with the output (z) threshold chosen to be 0.5.  

 

 Figure 4.11. The output of the trained neural network view in x-z plane at y=1. 

(Simulated in MATLAB/SIMULINK from the MathWorks, Natick, MA, USA) 

C. Simulation and Experimental Results 

In this section we map the trained neural network onto the FPAA devices.  

The 2-5-1 neural network with parameters obtained by the MATLAB/SIMULINK 

model was mapped onto the FPAA programmed using only Inverting Gain Amplifier 

functional blocks (represented by “Inv G” in the Figure) and Inverting Sum Amplifier 

functional blocks (represented by “Inv Sum” in Figure 8). The element “b” in the figure 

is the trained bias input for each neuron. We programmed the Inverting Sum Amplifier to 
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accept at most 3 inputs; and several of the Inverting Sum Amplifiers are cascaded 

between the hidden layer and the output layer to realize the sum operation for the output 

neuron. The accumulated sign-flips of Inverting Gain Amplifiers are correctly accounted 

for by additional inversions when necessary. For example, in Figure 4.12, the trained 

weight for the Y input to the first neuron in the hidden layer has the negative sign but 

there are 4 Inverting Sum Amplifiers between the input Y and the final output which 

provides a positive sign; thus an Inverting Gain Amplifier is needed in the signal path to 

generate the negative sign. The exact location of the Inverting Gain Amplifier in the 

signal path is chosen based on the available programming resources of each chip.  

 

Figure 4.12. Constructing a 2-5-1 neural network using configurable analog modules of the FPAA. 

   Five AN221E04 chips are integrated together to realize the neural network as shown in 

Figure 4.13. The network is decomposed into five modules as shown in Figure 4.12 and 

each module is encapsulated in one chip. The simulation result using AnadigmDesigner 2 

is shown in Figure 4.14. Input Y is a test signal of 1v constant voltage and Input X is the 
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triangular voltage input peaking at 3v. Setting the output threshold at 0.5v, the network 

classifies the data with 100% accuracy. The experimental result showing more details of 

the classification is shown in Figure 4.15, which is the oscilloscope screen shot of the 

experiment result. 

 

Figure 4.13. The multi-chip FPAA based neural network programmed using software AnadigmDesigner 2. 
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Figure 4.14. The simulation results of neural network classifying two classes of data. 

 

Figure 4.15. Experimental results of neural network classifying two classes of data. 
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   As shown in Figure 4.15, the neural network trained from a 2-5-1 neural network 

separates the two classes of data into 2 regions and makes correct classifications of all 

data points with the threshold chosen to be 0.5v. We would also like to evaluate the speed 

performance for our multi-chip neural network using the standard neural network 

hardware measuring criteria: Millions of Connections Per Second (MCPS) [33]. The 

measured delay from the network input to the network output is 2.5 microseconds and 

there are 15 connections, yielding 6.0 MCPS in actual measured speed performance. 

Figure 4.16 shows the 5 FPAA evaluation boards for the experiments. 

 

Figure 4.16. The five FPAA evaluation boards for the experiment. 

V. Analysis of Speed Performance 

To compare the speed performance of neural network implementation using FPAA to 

the software implementation (MATLAB on an Intel Celeron 2 GHz machine), neural 

networks with 4 architectures: 2-2-1, 2-3-1, 2-4-1 and 2-5-1 are implemented using both 

FPAA and the software. The measured implementation time of the neural network (time 
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delay from the input to the output of the network) of all four architectures is 2.5 

microseconds (error bound is below 0.5%) on the FPAA, independent of the number of 

neurons in the hidden layer. One the other hand, the software implementation time is 

more than 3.6 milliseconds. As a result, the FPAA implements the neural network more 

than 1400 times faster than the software implementation. Figure 4.17 shows the 

relationship between the software implementation time and the number of the neurons in 

the hidden layer of the network. It is shown that adding neurons into the hidden layer 

increases the overall software implementation time. This is because software instructions 

that are executed serially cannot take advantage of the inherent parallelism of ANN 

architectures as FPAA does. This indicates that the speed difference between two 

implementation approaches become more obvious with the increase of the number of the 

hidden nodes. Note the experiment results are only to qualitatively show how the 

implementation time is affected with different neuron numbers instead of showing the 

exact functional relationship between software implementation time and the neuron 

numbers. All in all, the FPAA implementation of the neural network has superior 

performance over software implementation. 
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Figure 4.17. Neural network execution time by software versus number of hidden nodes. 

VI. Discussion on the Scalability of the Structure 

The structure is scalable for the neural network which has same number of 

inputs/outputs and more neurons in the hidden layer. More summer blocks are required to 

obtain the final output. The positions of inverting gain blocks may need to be adjusted 

according the signs of the weights. An example of scaling is shown in Figure 4.18.  
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Figure 4.18. Scalability of the FPAA based ANN 

VII. Conclusion 

This paper demonstrates the hardware implementation a feedforward artificial neural 

network using low-cost commercially available FPAA chips.  We proposed a simplified 

realization for neurons with piecewise linear activation functions and thereby reduced the 

complexity of the neural network architecture correspondingly. Our final ANN requires 

only two types of analog function blocks: the Inverting Gain Amplifier and the Inverting 

Sum Amplifier.  In this effort, we did not require the many other functional blocks 

available on the Anadigm FPAA chip, but these additional resources can be combined 

with ANNs for conventional signal processing at the input or output of an ANN. 
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Demonstrated with simulation and experimental results, a single chip FPAA is 

programmed to realize 4 different logic gates with similar circuit configurations; 

moreover, a multi-chip FPAA circuit correctly performs a classification task at the speed 

of 6.0 MCPS. We used 5 chips to realize the 2-5-1 ANN for the classification task, which 

suggests more complicated network architectures can be realized by integrating more 

FPAA chips. We found that FPAA-based ANNs are convenient to implement fast to 

operate and scalable. We conclude that the proposed approach to realizing ANNs is 

suitable for real time applications.  

VIII. References 

[1] F. L.Lewis, “Neural-network control of robot manipulators,” IEEE Expert, pp. 64-75, June 1996. 

[2] J. Teeter and M.-Y. Chow, “Application of Functional Link Neural Network to HVAC Thermal 

Dynamic System Identification,” IEEE Transactions on Industrial Electronics, vol. 45, no. 1, pp. 170-

176, 1998. 

[3] M.-Y. Chow and J. Teeter, “A Knowledge-Based Approach for Improved Neural Network Control of a 

Servomotor System with Nonlinear Friction Characteristics,” Mechatronics, vol. 5, no. 8, pp. 949-962, 

1995. 

[4] B. Ayhan, M.-Y. Chow, and M.-H. Song, “Monolith and Partition Schemes with LDA and Neural 

Networks as Detector Units for Induction Motor Broken Rotor Bar Fault Detection,” KIEE 

International Transactions on Electrical Machinery and Energy Conversion Systems, June 1, 2005 

(invited). 

[5] M.Y. Chow, “Methodologies of Using Artificial Neural Network and Fuzzy Logic Technologies for 

Motor Incipient Fault Detection,” World Scientific Publishing Co. Pte. Ltd., 1998. 

[6] M.-Y. Chow, G. Bilbro, and S. O. Yee, “Application of Learning Theory to a Single Phase Induction 

Motor Incipient Fault Detection Artificial Neural Network,” International Journal of Neural Systems, 

vol. 2, no. 1&2, pp. 91-100, 1991. 



 71 

[7] M. Holler, S. Tam, H. Castro and R. Benson, “An electrically trainable artificial neural network 

(ETANN) with 10240 `floating gate' synapses ,” Neural Networks, 1989. IJCNN, International Joint 

Conference on, pp. 191 - 196 vol.2, 18-22 June 1989.  

[8] S. Tam, B. Gupta, H. Castro and M. Holler, “Learning on an Analog VLSI Neural Network Chip,” 

Proceedings of the IEEE International Conference on Systems, Man & Cybernetics, 1990. 

[9] Y. Maeda, H. Hirano and Y. Kanata, “AN Analog Neural Network Circuit with a Learning Rule via 

Simutaneous Perturbation,” Proceedings of the IJCNN-93-Nagoya, pp. 853-856, 1993. 

[10] S. S. Kim and S. Jung, "Hardware implementation of a real time neural network controller with a DSP 

and an FPGA," presented at Robotics and Automation, 2004. Proceedings. ICRA '04. 2004 IEEE 

International Conference on, 2004. 

[11] W. Qinruo, Y. Bo, X. Yun, and L. Bingru, "The hardware structure design of perceptron with FPGA 

implementation," presented at Systems, Man and Cybernetics, 2003. IEEE International Conference 

on, 2003. 

[12] S. B. Yun, Y. J. Kim, S. S. Dong, and C. H. Lee, "Hardware implementation of neural network with 

expansible and reconfigurable architecture," presented at Neural Information Processing, 2002. 

ICONIP '02. Proceedings of the 9th International Conference on, 2002. 

[13] H. Withagen, “Implementing Backpropagation with Analog Hardware,” Proceedings of the IEEE 

ICNN-94-Orlando Florida, pp. 2015-2017, 1994. 

[14] T. Szabo, L. Antoni, G. Horvath, and B. Feher, "A full-parallel digital implementation for pre-trained 

NNs," presented at Neural Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS 

International Joint Conference on, 2000. 

[15] S. Popescu, "Hardware implementation of fast neural networks using CPLD," presented at Neural 

Network Applications in Electrical Engineering, Proceedings of the 5th Seminar on, 2000. 

[16] B. Girau, "Digital hardware implementation of 2D compatible neural networks," presented at Neural 

Networks, Proceedings of the IEEE-INNS-ENNS International Joint Conference on, 2000. 

[17] H. Abdelbaki, E. Gelenbe, and S. E. EL-Khamy, "Analog hardware implementation of the random 

neural network model," presented at Neural Networks, Proceedings of the IEEE-INNS-ENNS 

International Joint Conference on, 2000. 



 72 

[18] J. Zhu, G. J. Milne, and B. K. Gunther, "Towards an FPGA based reconfigurable computing 

environment for neural network implementations," presented at Artificial Neural Networks, Ninth 

International Conference on, 1999. 

[19] J. Liu and M. Brooke, "A fully parallel learning neural network chip for real-time control," presented 

at Neural Networks, International Joint Conference on, 1999. 

[20] J. Liu and M. Brooke, "Fully parallel on-chip learning hardware neural network for real-time control," 

presented at Circuits and Systems, Proceedings of the IEEE International Symposium on, 1999. 

[21] E. J. Brauer, J. J. Abbas, B. Callaway, J. Colvin, and J. Farris, "Hardware implementation of a neural 

network pattern shaper algorithm," presented at Neural Networks, International Joint Conference on, 

1999. 

[22] P. M. Engel and R. F. Molz, "A new proposal for implementation of competitive neural networks in 

analog hardware," presented at Neural Networks, Proceedings. 5th Brazilian Symposium on, 1998. 

[23] J. Tang, M. R. Varley, and M. S. Peak, "Hardware implementations of multi-layer feedforward neural 

networks and error backpropagation using 8-bit PIC microcontrollers," presented at Neural and Fuzzy 

Systems: Design, Hardware and Applications, IEE Colloquium on, 1997. 

[24] D. S. Reay, T. C. Green, and B. W. Williams, "Field programmable gate array implementation of a 

neural network accelerator," presented at Hardware Implementation of Neural Networks and Fuzzy 

Logic, IEE Colloquium on, 1994. 

[25] A. Achyuthan and M. I. Elmasry, "Mixed analog/digital hardware synthesis of artificial neural 

networks," Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 13, 

pp. 1073-1087, 1994. 

[26] P. Dong, G. Bilbro, and M.-Y. Chow, “Controlling a Path-tracking Unmanned Ground Vehicle with a 

Field-Programmable Analog Array,” IEEE/ASME International Conference on Advanced Intelligent 

Mechatronics, Monterey, CA, 24-28 July, 2005. 

[27] P. I. Yakimov, E. D. Manolov, and M. H. Hristov, "Design and implementation of a V-f converter 

using FPAA," presented at Electronics Technology: Meeting the Challenges of Electronics Technology 

Progress, 2004. 27th International Spring Seminar on, 2004. 



 73 

[28] M. Sekerli and R. J. Butera, "An implementation of a simple neuron model in field programmable 

analog arrays," presented at Engineering in Medicine and Biology Society, 2004. EMBC 2004. 

Conference Proceedings. 26th Annual International Conference of the, 2004. 

[29] K. Basterretxea, J. M. Tarela, and I. del Campo, "Approximation of sigmoid function and the 

derivative for hardware implementation of artificial neurons," Circuits, Devices and Systems, IEE 

Proceedings [see also IEE Proceedings G- Circuits, Devices and Systems], vol. 151, pp. 18-24, 2004. 

[30] A. Atiya, E. Gad, S. Shaheen, and A. El-Dessouky, "On training piecewise linear networks," presented 

at Neural Networks for Signal Processing IX, Proceedings of the IEEE Signal Processing Society 

Workshop, 1999.  

[31] A. Bermak and A. Bouzerdoum, "VLSI implementation of a neural network classifier based on the 

saturating linear activation function," presented at Neural Information Processing, Proceedings of the 

9th International Conference on, 2002. 

[32] S. Ridella, S. Rovetta, and R. Zunino, "Circular backpropagation networks for classification," Neural 

Networks, IEEE Transactions on, vol. 8, pp. 84-97, 1997. 

[33] E. van Keulen, S. Colak, H. Withagen, and H. Hegt, "Neural network hardware performance criteria," 

presented at Neural Networks, IEEE World Congress on Computational Intelligence, 1994 IEEE 

International Conference on, 1994. 

 

 

 

 

 

 

 

 

 

 

 



 74 

 

CHAPTER V - Controlling a Path-
tracking Unmanned Ground Vehicle with 

a Field-Programmable Analog Array 
 

 

 
            
       
 
 
 
 
 
 

¹ Advanced Diagnosis Automation & Control Lab 

Department of Electrical and Computer Engineering,  

North Carolina State University, Raleigh NC 27695 USA 

Phone: +1(919)515-5405 

 
² Department of Electrical and Computer Engineering,  

North Carolina State University, Raleigh NC 27695 USA 

 

 
* Corresponding Author 

 

 

 

This chapter was accepted to IEEE/ASME International Conference on Advanced 

Intelligent Mechatronics  (AIM 2005), 24–28 July 2005, Monterey, CA. 

Puxuan Dong1* 
IEEE Student Member 

pdong@ncsu.edu 

Mo-Yuen Chow1 
IEEE Senior Member 

chow@ncsu.edu 

Griff Bilbro2 
IEEE Senior Member 

glb@ncsu.edu 

mailto:pdong@ncsu.edu
mailto:chow@ncsu.edu
mailto:glb@ncsu.edu


 75 

Abstract 

   Unmanned ground vehicle (UGV) path-tracking has been an important topic in 

mechatronics real-time applications. This paper describes and compares the 

implementation and performance of path-tracking unmanned ground vehicle using a field 

programmable analog array (FPAA) and conventional digital microcontroller. The FPAA 

AN10E40 is a general-purpose, digitally reconfigurable analog signal-processing chip. Its 

current commercial applications center on signal conditioning and base-band analog 

signal processing and rapid prototyping. This paper will show that the AN10E40 can also 

readily implement a control system for a path-tracking UGV. Using PI control for the 

path tracking, the FPAA controlled UGV made about 38% fewer tracking error with 22% 

faster traveling speed than the digital microcontroller  (MC68HC11) controlled UGV due 

to the fast processing time of the FPAA. The results indicate the great potential of using 

FPAA for real-time control in mechatronics systems. 

I. Introduction 

   Unmanned ground vehicle (UGV) path-tracking is an important topic in mechatronics, 

robotics and automation. Although much research work has been done in UGV path-

tracking [1-5], controlling the UGV with programmable analog controller is presented for 

the first time in our paper. In [2], Koh and Cho formulated a path-tracking problem for an 

unmanned ground vehicle, which moves along a pre-defined path. Tipsuwan and Chow 

proposed the use of gain scheduling to optimally control a mobile robot over IP network 

[3]. Kanayama and Fahroo proposed a steering function as a line tracking method for 

nonholonomic vehicles [4]. Besides the research work dedicated to this area, there are 
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regular competitions of path-tracking UGVs held by several organizations including 

Dallas Personal Robotics Group (DPRG) and Chicago Area Robotics Group (Chibotics). 

Most of today’s path-tracking UGVs at these competitions use off-the-shelf digital 

microcontrollers such as Atmel AVR microprocessor, PIC16C74A microprocessor, 

PIC16F84 microprocessor, or the Motorola MC68HC11 processor. Digital 

microcontrollers require analog-to-digital and digital-to-analog signal processing. No 

field programmable analog controller for path-tracking UGVs has been reported. The 

FPAA, a new programmable analog technology, has potential to play a major role in 

future unmanned ground vehicle real-time applications. The FPAA AN10E40 is a 

general-purpose, digitally reconfigurable analog signal-processing chip. Its current 

commercial applications center on signal conditioning and base-band analog signal 

processing and rapid prototyping. With its dynamic reconfigurability and fast analog 

signal processing speed, FPAA can be used in real time adaptive control such as [6]. The 

FPAA is chosen as controller for the path-tracking UGV because the signal processing is 

totally in the analog domain. This has the advantage of producing simpler systems than 

are possible with digital microcontrollers. Moreover, the convenient software design 

environment provided with FPAA evaluation kits and its dynamic reconfigurability make 

it attractive for developing control systems. FPAAs enable many popular controllers 

including P, PI, PD and PID to be conveniently and quickly realized. In FPAA-based 

systems the signal remains in the analog domain at all times, but the configuration of a 

FPAA chip is digital and its open-ended functionality is programmable. The resulting 

designs require minimum hardware, are convenient to prototype and refine, and are 

highly reliable [7]. 
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    The task in this paper is a simple path tracking problem with reflective sensors and 2 

DC motors. Although DC motor control has been investigated intensively by many 

researchers [8-11], FPAA is employed as the controller for the first time in our paper. For 

our system, two FPAA-based PI controllers were designed for each DC motor of the 

UGV that drives each wheel, to control the UGV to move along a predefined path as 

shown in Figure 5.1 using photomicrosensors and control implementation performed by 

FPAA. The path is composed of three half-circles and two quarter-circles connected by 

straight lines.  The UGV will start from one point on the straight line and travel along the 

whole loop and return to its starting point. The goal of the control is to make the UGV 

track the path as accurate as possible and run as fast as possible. The UGV will start from 

one point on the track and run along the track. The performance of the FPAA controlled 

UGV is evaluated based on two aspects: the traveling time C1 and the error rate C2. The 

traveling time is the time for the UGV to run along the path until it reaches back to its 

starting point. The definition of the error rate will be described in section III.  

 

Figure 5.1. UGV and the path to track. Total length of the path is 380.92cm 

 

Optical Sensors 
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II. Design 

A. The Unmanned Ground Vehicle 

   The unmanned ground vehicle, as shown in Figure 5.2, used in the Advanced 

Diagnosis, Automation, and Control (ADAC) lab of North Carolina State University is a 

UGV which was previously controlled by MC68HC11 microcontroller embedded in 

Handy Board. The Handy Board is a commercially available digital microcontroller 

system originally developed at MIT for educational uses [12]. In addition to the control, 

the UGV has optical sensors, an H-bridge circuit for driving DC motors, two DC motors 

and the power supply. This paper will compare the UGV path-tracking performance by 

using the MC68HC11 and by using the FPAA AN10E40.  

 

Figure 5.2. UGV used in ADAC lab at North Carolina State University. 

B. System Architecture 

   The path-tracking UGV estimates its track position with optical sensors mounted at its 

front end as shown in Figure 5.3. The overall path-tracking closed-loop control system is 

shown in Figure 5.4.  The FPAA calculates the required control voltage for the DC 

motors, and sends control signals to an H-bridge circuit, which is used as an interface 
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between the FPAA and the DC motors [13]. The FPAA was configured to output a PWM 

voltage signal in the range from 0 to 5v in order to comply with the input specifications 

of the H-bridge circuit. The five optical sensors sense the relative position of the UGV 

with respect to the track. These optical sensor signals were sent to the FPAA from which 

it produces signals for controlling the DC motors to adjust the positions of the UGV with 

respect to the track.  

 

Figure 5.3. Birdseye view of the UGV.  

 

 

Optical 
Sensors 
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Figure 5.4. System architecture of the FPAA - controlled unmanned ground vehicle. 

   The controller selected for the UGV is AN10DS40 Evaluation and Development 

System for AN10E40 Field Programmable Analog Array as shown in Figure 5.5. 

 

Figure 5.5. The AN10DS40 Evaluation and Development System.  
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   The AN10E40 FPAA is the square chip at the center of the board. The rest of the board 

facilitates the development. There is no encoder or microcontroller inside the AN10E40 

chip.  The chip itself is a stand-alone system, and requires only a 5V external power 

supply and an EEPROM for non-volatile memory for power-up. The array is supported 

by 13 input/output cells as part of its monolithic integrated circuit. 

   After programming a control algorithm using AnadigmDesigner, the control 

configuration can be downloaded to the chip directly or to the flash memory on 

evaluation board through a RS232 cable. The on-board microcontroller provides four 

FPAA configurations in its flash memory. The development board allows any of four pre-

programmed alternative configurations for the AN10E40 to be loaded after powered up 

from flash memory by pushing buttons S1-S4, as labeled in Figure 5.6. The sensors used 

in the UGV are EE-SF5 Reflective Photomicrosensors manufactured by OMRON. The 

internal circuit is showed in Figure 5.6. 

   

Figure 5.6. Internal circuit of photomicrosensors manufactured by OMRON. 

A – Anode, K – Cathode, C – Collector and E – Emitter 
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   A H-Bridge circuit is used as the interface between the FPAA and the DC motors. The 

H-bridge is specifically designed to drive inductive loads such as relays, solenoids, dc 

and bipolar stepping motors [14] while FPAA cannot directly drive DC motors by itself. 

H-Bridges allow forward and reverse motor control by closing one or the other pair of 

diagonally opposing switches.  

As shown in Figure 5.7, a separate supply voltage connected to VCC1 is provided for 

the logic input circuits to minimize device power dissipation.  Supply voltage VCC2 is 

used for the output circuits.  

 

Figure 5.7.  The H-Bridge circuit (L293D) and its function table for each driver. 

   We have two 12VDC Reversible Gear Head Motors [15] to drive the two wheels of the 

UGV. The H-bridge circuit drives the two DC motors simultaneously. Figure 5.8 shows 

the diagram of the H-bridge circuit connecting to the two DC motors.  
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Figure 5.8.  Connection between the H-bridge circuit (L293D) and DC motors. 

   To turn the motor, a high (+5 volts or logic 1) is sent to the 1A line while a low (0 volts 

or logic 0) is delivered to the 2A line. To turn the motor in the opposite direction, a high 

is sent to the 2A line while a low is sent to the 1A line. The other motor is controlled 

similarly based on the 4A and 3A inputs.  

   The motor runs at full speed when logic 1 is applied to 1A and logic 0 to 2A.  When 

both motors run at full speed the measured UGV’s maximum speed is 10.2 cm/sec. We 

controlled the motor speed by adjusting the duty cycle of a conventional pulse width 

modulation (PWM) signal [16], which the FPAA can conveniently be configured to 

synthesize.  

C. The Control System 

   The path selected for tracking is in the Advanced Diagnosis, Automation, and Control 

(ADAC) Laboratory of Electrical and Computer Engineering Department at North 

Carolina State University as shown in Figure 5.9. The width of the track is generally less 

than the distance between the left edge of sensor 1 and the right edge of sensor 5 but 
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more than the distance between the right edge of sensor 1 and the left edge of sensor 5. 

Let the track width be W, then it has the following relationship to L1 and L2 as shown in 

Figure 11: L1 < W < L2. 

 

Figure 5.9. Track for the unmanned ground vehicle testing. 

 

Figure 5.10. The unmanned ground vehicle with 5 optical sensors mounted at its front end. 
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   The error processing here refers to the computing of the errors in the control loop. The 

unmanned ground vehicle has 5 sensors to sense its position with respect to the path. 

When any sensor is fully on the black track it outputs a nominal 5v signal; when it fully 

off the track (on white background) it outputs a nominal 0v. When partial sensor is the 

off the track the output voltage will be between 0 and 5v which is proportional to the area 

of the sensor that is on the track.  The sensors are labeled from left to right as S1, S2, S3, 

S4 and S5 as shown in Figure 10. The voltage output of each sensor is represented by V1, 

V2, V3, V4 and V5.When the middle sensor S3 is centered on the track and sensor line is 

perpendicular to the tangent line of the track, the voltage outputs of S1 and S5 are the 

same and sensors S2, S3 and S4 are at 5v.This ideal position is shown in Figure 5.10 and 

requires no position correction. 

   The speed of DC motors are controlled by PI gain according to the signals of optical 

sensors. A derivative control could be used to decrease the overshoot of a system but for 

our system the output signal updating of the controller is much faster than the mechanical 

response of the UGV so there is very little overshoot resulted. Thus D component is not 

included in our design.   When the voltage difference ∆V1,5 between S1 and S5 is 0, the 

DC motors are configured to run at full speed and S1 and S5 are in symmetrical positions 

on the track.  When S1 and S5 are in asymmetrical positions of the track as the right 

picture of Figure 5.11 shows, there will be a voltage difference between the outputs of S1 

and S5 that is used to regulate the speed of the DC motors.  
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Figure 5.11. Sensor S1 and S5 are in asymmetrical positions of the track. 

   The control is closed-loop as shown in Figure 5.12.   

 

Figure 5.12. The closed-loop control of the system. 
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R is the reference signal that corresponds to the zero voltage in our design. Y is the 

actual output that corresponds to the voltage difference between sensor 1 and sensor 5:  

5,151 VVVY ∆=−=   (1) 

  Y is equal to zero volts when the UGV is right on the path. The e represents the error 

where 

YRe −=    (2) 

The error e is sent to the PI controller that also produces the control signal u1 and u2 

for the DC motors. For the right motor, the control signal u subtracted from 5v is equal to 

the proportional gain ( pK ) times the magnitude of the error plus the integral gain ( IK ) 

times the integral of the error:  

5- dteKeKu Ip ∫+=                       (3) 

   For the left motor, the control signal u minus 5v is equal to the proportional gain ( pK ) 

times the magnitude of the error plus the integral gain ( IK ) times the integral of the 

error:  

-5+ dteKeKu Ip ∫+=                                            (4) 

   Control signals saturate at 5v since that is the upper bound of FPAA output signal. 

When error is equal to zero, the control signal will be 5v for both motors so the UGV will 

run at full speed. When error is not equal to zero, the calculated control signal will be 
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sent to corresponding DC motor to decrease its speed then the position of the UGV can 

be adjusted.   

    The H-bridge circuit acts as the interface between the FPAA and the DC motors as 

shown in Figure 5.13. The FPAA is configured to output PWM signals that are 

compatible with the H-bridge circuit. 

 

Figure 5.13. H-bridge circuits acts as the interface between the FPAA and the DC motors 

   The DC voltage signals can be converted to PWM signals by comparing itself to sine 

waves. The DC-to-PWM signal conversion is realized with the FPAA by configuring the 

resources in the AN10E40 FPAA as a sine wave oscillator, another as a comparator, and 

connecting them as if they were discrete components or cells in an ASIC design to 

process the DC signal in the usual way.  

   Configurations for the FPAA such as the PWM generator are developed using 

AnadigmDesigner that represents the design logically. Figure 5.14 shows the simulation 

results of PWM generation.  The sine oscillator function block in the FPAA, like most 

other function blocks is parameterizable.  Any such parameters, such as the oscillator 
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frequency in this case, can be modified by the user with a dialog box displayed by 

AnadigmDesigner. 

  

Figure 5.14. Simulation result showing the generated PWM signal. 

   To conclude, the FPAA is configured to be a PI controller and it also converts the DC 

control signal u to PWM signals for the H-bridge circuit. The final FPAA circuit 

programmed with AnadigmDesigner is shown in Figure 5.15. 

 

Figure 5.15. FPAA circuit that controls the path-tracking unmanned ground vehicle.    
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III. Experimental Results and Comparison to Microcontroller controlled UGV 

   We compared our FPAA controlled UGV with microcontroller controlled UGV under 

identical test conditions. The MC68HC11 controlled UGV system architecture is exactly 

the same as the FPAA controlled UGV as shown is Figure 5.16. The MC68HC11 needs 

is programmed using the language Interactive C. 

 

Figure 5.16. System architecture of microcontroller - controlled unmanned ground vehicle. 

   To make a fair comparison, both controllers were well tuned before testing. Moreover, 

both the FPAA evaluation board and the Handy Board were mounted on the UGV during 

all test runs to maintain the weight of the system constant. A second MC68HC11 

controller does the error recording and time recording for performance comparison.  

   The error rate (error/sec) and the average running time of one trip are two aspects of the 

performance comparison. As for the error rate, we count an error occur when more than 

half of the sensor is off the track. The range of voltage outputs from the sensors are from 

0 to 5v, so if Vi is equal 2.5v then half of the sensor Si is on/off the track. 2.5v correspond 
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the integer number 255*(2.5/5) = 128 for sensor output read by the microcontroller 

MC68HC11. The integer number 128 is thus set as the threshold for error recording. An 

error occurs when the sensor output is below 128. However, when the two side sensors 

output values lower than 128 but the middle three sensors are on track, the position of the 

UGV needs no correction as shown in Figure 10. In this case, the UGV is deemed as right 

on track and no error are recorded by the second microcontroller. The second 

MC68HC11 microcontroller records the error every 100 milliseconds. The second 

MC68HC11 microcontroller also measures how long it takes the UGV to finish one 

roundtrip along the path. The experimental data of error recording and time recording are 

based on the average of 15 test runs for each controller. Since the experiment might have 

randomness which is treated as random error, we use Monte Carlo simulation approach 

and compare the resulted means and medians to draw statistical conclusion. 

   The Error rate comparison results are shown is Table 5.1. Running time comparison 

results are shown in Table 5.2. 

Table 5.1. Error rate comparison between the FPAA–controlled UGV and the microcontroller–controlled 

UGV. 

Error Rate  (error/sec) Mean Median 

Microcontroller MC68HC11 (em) 7.423 7.385 

FPAA AN10E40 (ef) 4.659 4.511 

Decrease in Error Rate (em-ef)/em 37.24 % 38.92 % 
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Table 5.2. Running time comparison  between the FPAA–controlled UGV and the microcontroller–

controlled UGV. 

Running Time (sec) Mean Median 

Microcontroller MC68HC11 (tm) 52.31 53.27 

FPAA AN10E40 (tf) 40.89 41.06 

Increase in Speed [(1/tm)-(1/tf)]/(1/tm) 21.83 % 22.92 % 

   By comparing the error rate, we can see from Table 5.1 and Table 5.2 that the FPAA-

controlled UGV showed better performance by making about 38% fewer error than the 

microcontroller-controlled UGV. Moreover, the FPAA controlled UGV runs 22% faster 

than the microcontroller controlled UGV. This results from the microcontroller 

MC68HC11’s relatively slower speed of error processing. The error processing of the 

digital microcontroller includes analog to digital signal conversion, error calculation and 

digital to analog signal conversion. We have optimized our code to minimize the time 

required for the controller to run the code of error calculation. Nevertheless, it takes 16 

milliseconds for the microcontroller to calculate the error. Apart from the time required 

for error calculation in the microcontroller, the controller also needs time to convert 

analog signals of optic sensors to digital signals and digital signals to back to analog 

signals to control the DC motors.   

   Error processing speed for the FPAA is much faster because of two reasons. First, it 

processes signals in the analog domain and requires no analog to digital  conversion. 

Secondly, the circuit inside the FPAA was programmed by combining analog circuit 

blocks together instead of running the Interactive C code. The measured signal input to 

output delay of the FPAA circuit is less than 2 microseconds. From above analysis we 
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can say FPAA processes the error less than 2 microseconds while the MC68HC11 

microcontroller processes the error more than 16 milliseconds. Consequently, FPAA 

process more errors than MC68HC11 does during the same time period. Thus FPAA can 

send more frequently updated control signals to DC motors to adjust position of UGV 

faster and then the UGV can track the path more accurately. 

   Besides the error rate comparison, from Table 2 we can see that the speed increases by 

22% when FPAA takes the place of microcontroller to control the UGV. This is because 

the FPAA controlled UGV follows the path more accurately so it runs less distance than 

the microcontroller controlled UGV, thus it takes less time to finish running the whole 

loop.    

   To summarize, the analog FPAA is faster than the digital microcontroller. Moreover, 

the error calculation in the digital circuits of the microcontroller creates more time delay 

in signal processing. These factors lead to better performance for the FPAA than the 

microcontroller to control the UGV.  

IV. Conclusion 

   The paper describes and compares the implementation of a field programmable analog 

array (FPAA) controlled and conventional digital microcontroller controlled path – 

tracking unmanned ground vehicle.  The FPAA is a general-purpose, digitally 

reconfigurable analog signal-processing chip.  Its current commercial applications center 

on signal conditioning and base-band analog signal processing and rapid prototyping. We 

have shown that the AN10E40, a kind of FPAA, can also readily implement a control 

system for a path-tracking UGV. The performance of the FPAA controlled UGV was 
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compared to a digital microcontroller (MC68HC11) controlled UGV that has been very 

popular in this field [12]. The FPAA controlled UGV made about 38% fewer error with 

22% more running speed than the digital microcontroller controlled UGV. As a result, the 

FPAA showed much better performance over microcontroller for path-tracking 

unmanned ground vehicle and thus FPAA showed great potential in control systems. 

   The FPAA technology is new and is rapidly developing.  The second-generation chip 

ANxE04 supports an IP module specifically intended for PID controllers and is also 

suitable for path-tracking UGVs as we will report in a separate article. 
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Abstract 

   A field programmable analog array (FPAA) based artificial neural network (ANN) is 

designed to control a path-tracking unmanned ground vehicle. The ANN controller can 

be viewed as a nonlinear proportional, integral and derivative (PID) controller of which 

the adaptive gain is realized by the ANN to achieve better disturbance rejection 

performance and lower sensitivity to noise than a conventional PID controller. The 

stability of proposed controller is guaranteed by Popov stability analysis. UGV path-

tracking experiments are reported. The performance of the proposed ANN controller 

compares favorably to a conventional PID controller. The ANN controller shows 35.9% 

improvement for noise rejection simulations. Moreover, a path-tracking UGV controlled 

by the ANN controller shows 6.4% less travel time and 15.4% few tracking error than the 

UGV controlled by a comparable PID controller. We conclude that the FPAA based 

ANN controller has better disturbance rejection and noise rejection than the conventional 

PID controller.  

I. Introduction 

   Unmanned ground vehicle (UGV) path tracking has been used to test control 

technologies and various hardware controllers. Koh and Cho formulated a path-tracking 

problem for an unmanned ground vehicle [1], which moves along a pre-defined path. 

Tipsuwan and Chow proposed Gain Scheduling Middleware (GSM) technology to 

optimally control a mobile robot over IP network [2-3]. Kanayama and Fahroo proposed 

a novel steering function as a path-tracking method for nonholonomic vehicles [4]. 

Besides the research work dedicated to this area, there are regular competitions of path-
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tracking UGV held by several organizations including Dallas Personal Robotics Group 

(DPRG) and Chicago Area Robotics Group (Chibotics). Most of today’s path-tracking 

UGVs at these competitions use off-the-shelf digital microcontrollers such as Atmel 

AVR microprocessor, PIC16C74A microprocessor, PIC16F84 microprocessor, or the 

Motorola MC68HC11 processor.  

   Digital microcontrollers require analog-to-digital and digital-to-analog signal 

processing while FPAAs process the signal in analog domain. The first FPAA based PI 

controller for UGV path tracking was reported by Dong, Bilbro and Chow [5]. The FPAA 

based controller outperforms a digital controller MC68HC11 by processing the signal 

8000 times faster.  

   Artificial neural networks are parallel information processing structures that have been 

used in path-tracking UGV controlling [6-9]. However, the ANN controller’s immunity 

to disturbance and noise in UGV path tracking application hasn’t been investigated to our 

knowledge. Moreover, no commercially available FPAA based ANN controller has ever 

been reported although a Hodgkin-Huxley neuron simulator has been implemented with 

FPAAs by Sekerli and Butera [21].  

   This paper presents a new ANN structure which is equivalent to a nonlinear PID 

controller. A neuron with hyperbolic tangent transfer function maps the nonlinear 

relationship between error and the exiting linear PID controller input, which we call an 

ANN controller. The ANN controller is used to control a path-tracking UGV. We find 

that the ANN controller has improved immunity to disturbance and noise compared to the 

linear PID controller which is also designed in FPAA chip. We demonstrate the improved 
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immunity with both simulation and experimental results. We also estimate the stability 

region of the ANN controller. 

   In our experiment, we choose a commercial FPAA as the implementation platform for 

our ANN controller. The FPAA adopted in this paper is the AN221E04 from Anadigm 

Inc [10]. The AN221E04 is a dynamically reconfigurable analog chip composed of op-

amps, comparators and switched capacitors. Analog circuits can be rapid-prototyped by 

programming the configurable analog modules such as gain blocks, inverters, summing 

inverters, adders, multipliers, integrators and sine wave generators. The FPAA gives 

designers the analog equivalent of an FPGA. Moreover, it places analog functions under 

real-time software control. 

   The chip has 4 configurable analog modules (CAM) each of which has two fully 

differential Op Amps, capacitor banks, an 8-bit successive approximation register (SAR) 

for analog to digital converter, a high speed comparator, and a look up table (LUT).  

   The organization of the paper is as follows: In section II, we describe our ANN 

controller. In section III, we present simulation results that compare the disturbance 

rejection capability and the noise immunity of our ANN controller to a conventional PID 

controller. The stability analysis of the controller is also included in this section. In 

section IV, we experimentally compare ANN controllers with conventional PID 

controllers for a UGV path-tracking application. Section V presents some concluding 

remarks. 
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 II. The Artificial Neural Network Controller 

   A standard PID controller is described formally by the following equation: 

dt
tdeKdtteKteKtu D

t

Ip
)()()()(

0

++= ∫ ,  (1) 

where u(t) is the output of the controller, KP, KI and KD are the gain parameters of the 

proportional, integral and derivative part of the controller [25]. Here, the error e is the 

measured difference between the desired output and the obtained output. The block 

diagram of this controller is shown in Figure 6.1.  

  

Figure 6.1. Block diagram of the conventional PID controller. 

   Nonlinear PID controllers have been used to adapt the controller to changes in 

operating conditions or environmental parameters which is beyond the capabilities of 

conventional fixed-gain PID controllers [11-14]. Armstrong, Neevel and Kusik describe 

the nonlinear PID controller in the following way: 

dt
tdeKdtteKteKtu D

t

Ip
)()()()()()()(
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•+•+•= ∫ ,  (2) 
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where )(•PK , )(•IK  and )(•DK are time-varying controller gains [15]. 

   We construct a nonlinear PID controller using a 3-layer artificial neural network. As 

shown in Figure 6.2, our design has one neuron with a nonlinear activation function in 

the input layer which provides the nonlinear gain, one P neuron, one I neuron, one D 

neuron in the middle layer, and one neuron with pure linear activation function in the 

output layer. The input-output function of the P neuron is a proportional function, the 

input-output function of the I neuron is an integral function and the input-output function 

of the D neuron is a derivative function [24].  

 

Figure 6.2. Artificial neural network with 3 layers. 

   Figure 6.3 shows further details of our ANN controller (nonlinear PID controller) in a 

particular closed-loop control application. 
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Figure 6.3. Example of an ANN controller in a closed-loop control. 

   In our design, a nonlinear activation function – hyperbolic tangent is cascaded with the 

linear PID controller to provide the nonlinear gain. The corresponding nonlinear gain 

obtained by the hyperbolic tangent function is  

k =
e

eqc )tanh( ×× ,  (3) 

where e is the error, c and q are positive real values. As an example, the activation 

function with q = 100 is shown in Figure 6.4. The nonlinear gain k is shown in Figure 5 

for c = 0.6. 
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Figure 6.4. Activation function of the hidden node in the ANN. 

 

Figure 6.5. Variation of nonlinear gain k with respect to the error 

   As shown in Figure 6.5, the nonlinear gain k increases as the absolute value of error 

decreases.  
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III. Simulation Results  

   To demonstrate the advantages of the ANN controller over the linear PID controller, a 

DC motor is used as a case study for simulation. 

A. DC Motor Characteristics 

   The dynamics of a DC motor for the UGV can be described by the differential equation: 

l

b

TKi
dt
dB

dt
dJ

dt
dKVRi

dt
diL

+=+

−=+

θθ

θ

2

2

,  (4) 

where L is the armature winding inductance, i is armature winding current, R is the 

armature winding resistance, V is the armature winding input voltage, Kb is back EMF 

constant, θ  is the position of the shaft, J is moment of inertia of the motor and the wheel, 

B is the damping coefficient, K is the torque constant and Tl is the load torque. The 

Laplace transformations of equations (4) are: 
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For zero Tl we can eliminate I(s) to get the following transfer function for 
dt
d θ
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   The parameters used [17] in our simulation are shown in Table 6.1: 

Table 6.1. Parameters of the DC motor used in the simulation. 
 

Parameters Values 
K Torque constant 2.55e-3 N-m/A 
R Armature winding resistance 6.43 Ω 
Kb Back EMF constant 0.255e-3 V-sec/rad 
L Armature winding inductance 28.8e-3 H 
B Damping coefficient 0.1e-3 N-m-sec/rad 
J Moment of inertia 3.53e-6 Kg-m2 

   Substituting the parameters in Table I into equation (6), the obtained transfer function 

becomes  

63316.251
25080

2 ++
=

ssV
ω .  (7) 

   When the DC motor is controlled by the linear PID controller, the gain is tuned with the 

following restrictions and specifications: percentage overshoot is less than 5%, settling 

time is less than 0.0321 sec and rise time is less than 0.014 second. The PID controller 

satisfying the above constraints is found to have (KP, KI KD) = (0.995, 25.572, 0) [18-19]. 

Thus the controller becomes a PI controller. 

   An ANN controller is designed by cascading the nonlinear function shown in Figure 

6.3 with the tuned PI controller.  

B. Disturbance Rejection Capability and Sensitivity to Noise 

   A closed-loop controller with disturbance D is shown in Figure 6.6. 
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Figure 6.6. Closed-loop control with disturbance. 

   To analyze the disturbance rejection capabilities of the ANN and PI controller, we 

inject a series of step inputs as disturbance signals as shown in Figure 6.7.  

 

Figure 6.7(a) Initial responses to 4 consecutive step inputs. 
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Figure 6.7(b). Overall responses to multi consecutive step inputs. 
 

Figure 6.7. Disturbance rejection performance of the PI controller and the ANN controller. 

   As mentioned before, the gain of the ANN is relatively large for small error thus it 

enjoys faster response for smaller error compared to the fixed-gain linear PI controller. 

   For the series of step inputs comprising disturbance signal as shown in Figure 6.7, the 

PI controller exhibits more severe error buildup. In the Figure 6.7(a), four step inputs are 

injected into the system at time (in seconds) t = 0.002, 0.004, 0.006 and 0.008 as the 

disturbance signals. It is shown that immediately after the first disturbance at t1 = 0.002s, 

both system start to recover towards these reference signals. Before the disturbance is 

fully rejected by either controller, the second step input is injected at time t2 = 0.004s. 

During the 2 ms time interval t2-t1, the output of the ANN controller decreases more 

because of its larger gain. The responses to the second step input are superimposed on the 
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responses to the first step input. The PI controller suffers more since its initial recovery is 

slower than the ANN controller. Such arguments with series step inputs can be extended 

to draw similar conclusions for continuously changing disturbance signals and noise 

signals. 

   Disturbance rejection capabilities can be further compared by injecting sine wave 

disturbance signal. Figure 6.8 shows the step responses of both controllers when there is 

no disturbance. Figures 6.9 – 6.12 depict the step responses of both controllers under 

various disturbances. It can be seen that each of these disturbances has more influences 

on the PI controller’s performance than it does on the ANN controller. 

 

Figure 6.8. Step response comparison of ANN and PI controllers without disturbances. 
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Figure 6.9. Step response comparison of ANN and PI controllers with small disturbances. 

 

Figure 6.10. Step response comparison of ANN and PI controllers with moderate disturbances. 
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Figure 6.11. Step response comparison of ANN and PI controllers with large disturbances. 

   The ANN controller demonstrates higher gain for smaller error relative to the linear PI 

controller and noise can be regarded as small disturbances which is better rejected by 

large gains. Gaussian white noise is injected into the control loop as disturbance signal as 

shown in Figure 6.12.  The noise chosen in the simulation is Gaussian white noise with 

mean µ  and standard deviation σ . 

   In our simulation, µ = 0 and 2σ = 0.001, 0.002, 0.005, 0.008, 0.010 and 0.012. Noises 

with these different standard deviations are plotted in Figure 6.12.  
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Figure 6.12. Gaussian white noise with different noise variances 

   Since cq
e

eqc
e

eqck =
××

≅
××

=
)()tanh(  for small value of e, k increases as q 

increases which is shown in Figure 6.13. As a result, the noise rejection capability of the 

ANN controller increases with q, as shown in Figure 6.14.  
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   On average, the ANN controller with q = 100 has a noise response 35.93% smaller than 

the PID controller. 

 

Figure 6.13. Variations of gain k with different parameters. 
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Figure 6.14. Analysis of controllers’ sensitivity to noise. 
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C. Stability Region Estimation for the ANN Controller 

   Following Seraji [22], the stability of the ANN controller can be analyzed using the 

Popov criteria [23]. The ANN controller includes linear PI controller component in 

cascade with the nonlinear gain k. The transfer function of the linear PI controller is 

given by  

s
KKsK I

P +=)( ,  (8) 

and the plant transfer function is given by 

bass
csG

++
= 2)( .  (9) 

let the allowable range of nonlinear gain k to be (0, kmax), According to Seraji’s result, 

kmax ∞→  when IK  ≤  a PK  and  

kmax
caKK

ab
PI )( −

=   (10) 

when IK  > a PK . 

IV. Experimental Setup and Results 

A. The Controller 

   Artificial neural networks are parallel information processing structures inspired by 

biological neural networks. Software and hardware represent two valid approaches for 

implementing ANNs, but software instructions which are executed serially cannot take 

advantage of the inherent parallelism of ANN architectures. Hardware implementations 
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of neural networks promise higher speed operation when they can exploit this massive 

parallelism.  

B. Hardware Setup for Experiment 

   The unmanned ground vehicle, as shown in Figure 6.15, used in the Advanced 

Diagnosis, Automation, and Control (ADAC) lab of North Carolina State University is a 

UGV which was previously controlled by digital microcontrollers. In addition to the 

control, the UGV has optical sensors, an H-bridge circuit for driving DC motors, two DC 

motors and the power supply.  

 

Figure 6.15. UGV used in ADAC lab at North Carolina State University. 

   The experiment is carried out to test the disturbance rejection capabilities of the ANN 

controller. A path-tracking UGV is controlled by a FPAA based ANN to run on a surface 

that has been inclined relative to horizon by lifting one edge of the track board off the 

ground. The UGV must track the path as close as possible and to finish the round trip in 

shortest possible time. The UGV and the path to track are shown in Figure 6.16.  
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Figure 6.16. The path-tracking UGV and the track. 

   As the UGV runs up and down the surface, a varying load disturbance is continuously 

applied to the DC motors spinning the wheels. A PI controller programmed with FPAA is 

also tested with same experimental conditions for comparison. In closed-loop control, 

either the ANN or PI controller accepts optic sensor signals from the UGV as inputs and 

output the control signals to the H-bridge circuit which drives the DC motors as reported 

in [5]. The system overview is shown in Figure 6.17. The PWM signals driving the DC 

motors are generated by the FPAA circuit. Performance evaluation criteria for UGV path-

tracking can be found in [5]. The round trip time and error rate are two important 

measures of the performance: good performance is generally associated with small error 

rate and short round-trip time. 
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Figure 6.17. System overview of the path-tracking UGV controlled by FPAA based ANN. 

C. Experimental Results 

   As shown in Figure 6.18, the varying load disturbance introduced by the inclined track 

has more influence on the PI controller since its round trip time increases substantially 

with the increase of the edge height. As the edge height increases from 0 to 45 

centimeters the round trip time increases by 6.41% for the PI controller. For the ANN 

controller the round trip time is roughly constant with less than 0.1% variation from the 

average of 40.589 seconds. Regarding error rate, the ANN controller also outperforms the 

PI controller as shown in Figure 6.19. The error rate increases 15.38% with edge height 

increase for the PI controller. The ANN controller has less than 1.07% variation around 

the average of 5.028 error/sec. As a result, we conclude that the ANN controller exhibits 

better disturbance rejection than the PI controller does under same experimental 

conditions.  
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Figure 6.18. UGV round trip time comparison. 
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Figure 6.19. Comparison of error rate for UGV path tracking. 

V. Conclusion 

   An ANN controller with improved disturbance rejection capability and immunity to 

noise is presented. Its performance is evaluated by comparison with a linear PI controller. 

The ANN is equivalent to a nonlinear PID controller which adapts its gain to make it 
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more sensitive to small error. Simulation shows that the ANN controller has better 

capabilities of disturbance rejection and stronger immunity to noise. Stability analysis is 

addressed for the ANN controller. Experimental evaluations are also carried out. A FPAA 

based ANN controller is designed to control a path tracking UGV running on an inclined 

surface, resulting in a load disturbance applied to the DC motors. Experimental results 

indicate that same load disturbance has more influence on the PI controller’s performance 

than it does on the ANN controller; thus we can conclude the ANN controller has 

superior performance to the conventional linear PI controller for disturbance rejection. 

The experiments also employ a whole new media for ANN controller for robotics 

applications – commercial FPAA technology. With its ease of implementation, low cost 

and high speed, FPAA’s potential advantage for real-time control applications is 

considerable. 
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