
 1

ABSTRACT

DONG, PUXUAN. Design, Analysis and Real-Time Realization of Artificial Neural

Network for Control and Classification. (Under the direction of Dr. Griff L. Bilbro.)

 Artificial neural networks (ANNs) are parallel architectures for processing information

even though they are usually realized on general-purpose digital computers. This research

has been focused on the design, analysis and real-time realization of artificial neural

networks using programmable analog hardware for control and classification.

 We have investigated field programmable analog arrays (FPAAs) for realizing artificial

neural networks (ANN). Our research results and products include a general theoretical

limit on the number of neurons required by an ANN to classify a given number of data

points, a design methodology for the efficient use of specific FPAA resources in ANN

applications, several multi-chip FPAA implementations of ANNs for classification

experiments, several single-chip FPAA implementations of analog PID controllers for an

unmanned ground vehicle (UGV), experimental evaluation of FPAA PID controllers with

a conventional digital PID controller on a UGV, and finally a single-chip FPAA

implementation of a (non-linear) ANN controller for comparison with the previous

FPAA PID controller on a UGV.

 2

 These results are collected as four papers formatted for publication and comprising

chapters 3, 4, 5, and 6 of this thesis. The first paper develops our general bound for neural

network complexity. The second presents a systematic approach based on the upper

bound theory for implementing and simplifying neural network structures in FPAA

technology. In the third paper, a FPAA based PID controller was designed and

characterized in a path-tracking UGV; some of the results from this report are used as a

baseline in the fourth paper. In the fourth paper, a FPAA based ANN controller is

designed to control a path-tracking UGV and is investigated analytically and with

simulation before its performance was experimentally compared to the previously

designed FPAA PID controller regarding speed, stability and robustness.

 In conclusion, this dissertation focuses on the design, analysis and real-time realization

of artificial neural networks. The proposed upper bound for neural network complexity

provides guidelines for reducing hardware requirements and applies to any layered ANN

approach to classification. It is complemented by the neural network structure

simplification method which exploits specific features available in the FPAA technology

which we used in our experiments and which we believe possess great potential for future

real-time control and classification applications.

 3

DESIGN, ANALYSIS AND REAT-TIME REALIZATION OF ARTIFICIAL

NEURAL NETWORK FOR CONTROL AND CLASSIFICATION

by

PUXUAN DONG

A dissertation submitted to the Graduate Faculty of

North Carolina State University

in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

ELECTRICAL ENGINEERING

Raleigh

2006

APPROVED BY:

______________________ _____________________
 Dr. Mo-Yuen Chow Dr. Rhett Davis

______________________ _____________________

 Dr. Mohan Putcha Dr. Wesley E. Snyder

 Dr. Griff L. Bilbro Chair of Advisory Committee

 4

BIOGRAPHY

 Puxuan Dong was born in Tangshan, China. He received a B.S. degree in Physics and a

B.A. degree in English both in 1998 from Tianjin University. China. He continued his

research until 2000 in the physics department.

 In 2000, being awarded with fellowship, he went to Dartmouth College to study physics.

He then transferred to the Department of Electrical and Computer Engineering at North

Carolina State University in 2001. He obtained his M.S. degree in Electrical Engineering

in 2003. During the spring and summer of 2005, he worked as co-op electrical engineer at

ATI – Industrial Automation designing mixed-signal circuits for high-precision

force/torque sensors. He joined the Advanced Diagnosis And Control (ADAC) lab

directed by Dr. Mo-Yuen Chow in 2005. He is currently a Ph.D. candidate at North

Carolina State University. His main interests are reconfigurable hardware design,

computational intelligence and mechatronics systems. His current research topic is design,

analysis and real-time realization of artificial neural networks using hardware for control

and classification.

ii

 5

ACKNOWLEDGEMENTS

 First of all, I cordially thank Dr. Griff Bilbro for his invaluable guidance, great

encouragement and persistent support during the course of this research. It is he who led

me into the world of analog circuit design, built up my knowledge and confidence, and

shaped my philosophy in science. I would like to express my sincere appreciation to my

other committee members: Dr. Mo-Yuen Chow, Dr. Wesley Snyder, Dr. Rhett Davis and

Dr. Mohan Putcha for their discussions, valuable suggestions and encouragement.

 I would also like to acknowledge the help from the members in Dr. Chow’s ADAC lab:

Rangsarit Vanijjirattikhan, Le Xu, Zheng Li, Tao Hong, Rachana Gupta and Manas

Talukdar. I have benefited enormously from the inspiring academic atmosphere in the

ADAC lab.

 My special thanks go to electronic lab staff member Rudy Salas for his help in

hardware facilities.

 I wish to express my deepest thanks to my wife Shen, Fei, my parents, my brother, and

my parents in law for their love and continuous support. I also wish to thank my daughter

Elaine Fei Dong, who was born in Sept. 2005. She also became part of my mental

support for my study although it may take time for her to understand it.

 My thanks also go to all my friends at North Carolina State University which I could

not mention all of them here.

iii

 6

TABLE OF CONTENTS

LIST OF TABLES……………………………………………………………..………...vii

LIST OF FIGURES…………………………………………………………..…………viii

CHAPTER I - Introduction ... 1

References... 3

CHAPTER II - Introduction to Field Programmable Analog Arrays and Survey of

Artificial Neural Network Hardware ... 7

I. The FPAA Technology .. 7

II. Introduction to Artificial Neural Networks.. 10

A. Application Areas of ANNs .. 12

B. Artificial Neuron Model and Neural Network Structures................................... 12

C. Overview of ANN Hardware Implementation ... 14

III. Sample Design of ANN Using FPAA .. 18

IV. References... 21

CHAPTER III - Upper Bound on the Size of Neural Networks for Data Classification.. 28

I. Introduction ... 29

II. Theory.. 30

III. Experimental Results ... 36

IV. Conclusion .. 43

V. References.. 43

iv

 7

CHAPTER IV - Implementation of Artificial Neural Network for Real Time

Applications Using Field Programmable Analog Arrays ... 46

I. Introduction ... 47

II. Neural Network Architecture Simplification in FPAA .. 49

A. The Piecewise Linear Activation Function.. 49

B. Implementing the PL Function on FPAA .. 51

C. Merging the Gain Stages of Cascade Blocks on the FPAA 53

III. Logic Gates Implementation Using Single-chip FPAA .. 56

IV. Multi-chip FPAA Based Neural Network Classifying 2 Groups of Data 60

A. The Two Classes of Data .. 60

B. Classifying the Two Groups of Data ... 61

C. Simulation and Experimental Results .. 62

V. Analysis of Speed Performance .. 66

VI. Discussion on the Scalability of the Structure.. 68

VII. Conclusion... 69

VIII. References .. 70

CHAPTER V - Controlling a Path-tracking Unmanned Ground Vehicle with a Field-

Programmable Analog Array... 74

I. Introduction ... 75

II. Design .. 78

A. The Unmanned Ground Vehicle.. 78

B. System Architecture.. 78

C. The Control System .. 83

v

 8

III. Experimental Results and Comparison to Microcontroller controlled UGV 90

IV. Conclusion .. 93

V. References.. 94

CHAPTER VI - Field Programmable Analog Array Based Artificial Neural Network for

the Navigation of Unmanned Ground Vehicles.. 96

I. Introduction ... 97

II. The Artificial Neural Network Controller ... 100

III. Simulation Results... 104

A. DC Motor Characteristics ... 104

B. Disturbance Rejection Capability and Sensitivity to Noise 105

C. Stability Region Estimation for the ANN Controller 113

IV. Experimental Setup and Results .. 113

A. The Controller .. 113

B. Hardware Setup for Experiment .. 114

C. Experimental Results .. 116

V. Conclusion ... 117

VI. References... 118

vi

 9

LIST OF TABLES

Table 3.1. Comparison of different methods classifying the two-spiral problem. 38

Table 4.1. Two classes of data: class a = 0 and class b = 1. ... 61

Table 5.1. Error rate comparison between the FPAA–controlled UGV and the

microcontroller–controlled UGV. .. 91

Table 5.2. Running time comparison between the FPAA–controlled UGV and the

microcontroller–controlled UGV. .. 92

Table 6.1. Parameters of the DC motor used in the simulation. 105

vii

 10

LIST OF FIGURES

Figure 2.1. Switched capacitor and its sampling clocks ... 8

Figure 2.2. A normal inverting integrator .. 8

Figure 2.3. An inverting integrator with the resistor replaced by a switched capacitor 9

Figure 2.4. AN10E40 FPAA Chip and Evaluation Board .. 10

Figure 2.5. AN221E04 FPAA Chip and Evaluation Board .. 10

Figure 2.6. Artificial neuron model ... 13

Figure 2.7. Example of feed forward neural network. .. 14

Figure 2.8. Classification of neural network hardware ... 16

Figure 2.9. FPAA circuit that implements the hyperbolic tangent function using look up

table. ... 19

Figure 2.10. Look up table for the hyperbolic tangent transfer function. 20

Figure 3.1. The unit sigmoid function.. 32

Figure 3.2. Example of data points .. 32

Figure 3.3:)tanh(1)(0 xxu α
α

= and the corresponding straight line showing the error at

)(1yxN − as δH4 .. 33

Figure 3.4. Three hyperbolic tangent functions classifying five data points 34

Figure 3.5. Data mapping of the two spirals problem. ... 37

Figure 3.6. Generalization performance of two-spiral problem by different methods. 39

viii

 11

Figure 3.7. Testing results of two-spirals problem trained with the 3-layered feed forward

neural networks. (Simulated in MATLAB/SIMULINK from the MathWorks,

Natick, MA, USA)... 40

Figure 4.1. The piecewise linear (PL) activation function for [1,1]T =w in two dimensions.

.. 51

Figure 4.2. Obtaining the PL function using two gain stages.. 53

Figure 4.3. Neural network architecture with unmerged gain blocks. 54

Figure 4.4. Neural network architecture with merged gain blocks.................................. 54

Figure 4.5. Simplifying the FPAA circuit by merging G1 into the inverting sum amplifier.

.. 55

Figure 4.6. XNOR-gate FPAA circuit (left) and XOR-gate FPAA circuit (right) 58

Figure 4.7. Simulation results of XNOR (channel 2) and XOR gate (Channel 4). Channel

1 and 3 are two inputs.. 59

Figure 4.8. AND-gate FPAA circuit (left) and OR-gate FPAA circuit (right)................. 59

Figure 4.9. Simulation results of AND (channel 2) and OR gate (Channel 4). Channel 1

and 3 are two inputs... 60

Figure 4.10. Seven decision boundaries separating 8 data points of 2 classes. 61

Figure 4.11. The output of the trained neural network view in x-z plane at y=1. 62

(Simulated in MATLAB/SIMULINK from the MathWorks, Natick, MA, USA) 62

Figure 4.12. Constructing a 2-5-1 neural network using configurable analog modules of

the FPAA. ... 63

Figure 4.13. The multi-chip FPAA based neural network programmed using software

AnadigmDesigner 2... 64

ix

 12

Figure 4.14. The simulation results of neural network classifying two classes of data.... 65

Figure 4.15. Experimental results of neural network classifying two classes of data. 65

Figure 4.16. The five FPAA evaluation boards for the experiment................................. 66

Figure 4.17. Neural network execution time by software versus number of hidden nodes.

.. 68

Figure 5.1. UGV and the path to track. Total length of the path is 380.92cm 77

Figure 5.2. UGV used in ADAC lab at North Carolina State University. 78

Figure 5.3. Birdseye view of the UGV... 79

Figure 5.4. System architecture of the FPAA - controlled unmanned ground vehicle. 80

Figure 5.5. The AN10DS40 Evaluation and Development System................................. 80

Figure 5.6. Internal circuit of photomicrosensors manufactured by OMRON................. 81

Figure 5.7. The H-Bridge circuit (L293D) and its function table for each driver. 82

Figure 5.8. Connection between the H-bridge circuit (L293D) and DC motors. 83

Figure 5.9. Track for the unmanned ground vehicle testing.. 84

Figure 5.10. The unmanned ground vehicle with 5 optical sensors mounted at its front

end. ... 84

Figure 5.11. Sensor S1 and S5 are in asymmetrical positions of the track. 86

Figure 5.12. The closed-loop control of the system.. 86

Figure 5.13. H-bridge circuits acts as the interface between the FPAA and the DC motors

.. 88

Figure 5.14. Simulation result showing the generated PWM signal................................ 89

Figure 5.15. FPAA circuit that controls the path-tracking unmanned ground vehicle. 89

x

 13

Figure 5.16. System architecture of microcontroller - controlled unmanned ground

vehicle... 90

Figure 6.1. Block diagram of the conventional PID controller. 100

Figure 6.2. Artificial neural network with 3 layers... 101

Figure 6.3. Example of an ANN controller in a closed-loop control. 102

Figure 6.4. Activation function of the hidden node in the ANN. 103

Figure 6.5. Variation of nonlinear gain k with respect to the error 103

Figure 6.6. Closed-loop control with disturbance... 106

Figure 6.7. Disturbance rejection performance of the PI controller and the ANN

controller. .. 107

Figure 6.8. Step response comparison of ANN and PI controllers without disturbances.

.. 108

Figure 6.9. Step response comparison of ANN and PI controllers with small disturbances.

.. 109

Figure 6.10. Step response comparison of ANN and PI controllers with moderate

disturbances... 109

Figure 6.11. Step response comparison of ANN and PI controllers with large disturbances.

.. 110

Figure 6.12. Gaussian white noise with different noise variances................................. 111

Figure 6.13. Variations of gain k with different parameters. .. 112

Figure 6.14. Analysis of controllers’ sensitivity to noise.. 112

Figure 6.15. UGV used in ADAC lab at North Carolina State University. 114

Figure 6.16. The path-tracking UGV and the track. ... 115

xi

 14

Figure 6.17. System overview of the path-tracking UGV controlled by FPAA based ANN.

.. 116

Figure 6.18. UGV round trip time comparison... 117

Figure 6.19. Comparison of error rate for UGV path tracking. 117

xii

 1

CHAPTER I - Introduction

 Artificial neural networks (ANNs) play an increasingly important role in areas such as

robotics [1], process control [2-3], and motor fault detection [4-6]. Both software and

hardware based approaches have been used for implementing ANNs. In general, software

instructions executed serially cannot take advantage of the inherent parallelism of ANN

architectures. Hardware implementations of neural networks promise higher speed

operation when they can exploit this massive parallelism. Different hardware implements

of neural network have been reported [7-25]. Other than the FPGA based approaches [10,

11, 18, 24], most hardware implementations provide no programmability even though

real-time reconfigurability of the topology or the size of an ANN could presumably

improve its performance in applications where its immediate environment changes or its

immediate objective is updated.

 The best choices for neural network implementations that achieve both high speed and

rapid prototyping appear to be programmable hardware approaches like field

programmable gate arrays (FPGAs) and field programmable analog arrays (FPAAs).

Compared to digital hardware, FPAAs have the advantage of interacting directly with the

real (analog) world because they receive, process, and transmit signals totally in the

analog domain without need of A/D or D/A conversion. Their speed is also suited to real

time applications. As reported in [26] on controlling a path-tracking unmanned ground

 2

vehicle (UGV), the FPAA easily outperformed comparable digital hardware by

processing the signal 8,000 times faster. Few Anadigm FPAA applications have been

reported, except a voltage-to-frequency converter and a Hodgkin-Huxley neuron

simulator [27-28].

 Hardware requirements are important for economical implementations. Realization of

ANN structures with minimal hardware is facilitated by an understanding of the general

limits on the complexity required by an ANN structure for it to learn a set of examples of

a certain size. This maximum complexity can be expressed as an upper bound on the

neural network size. Designs of this size are guaranteed to be large enough for correct

operation. Smaller ANNs might possibly operate correctly depending on the details of

the problem, but any larger ANN are now guaranteed a-priori to waste neurons

regardless of any particulars of the problem.

 A few such bounds were known previously in certain cases. It was known that a single-

hidden layer feed forward neural network with two hidden nodes can solve the

nonlinearly separable XOR problem. XOR has only two input variables and only four

data patterns, but is typical except for its size. For larger problems with more inputs and

data patterns, general upper bounds on the complexity of neural networks have been

unavailable until now. My general bound has been useful for increasing the size of ANNs

that are feasible with the hardware available but in this research, ANN size was still

constrained by hardware resources. For complicated tasks, further simplifications were

developed to take advantage of some specific features of FPAA technology.

 3

 Following the introductory part of the dissertation, a literature survey of neural network

hardware and the introduction to the FPAA technology is presented in Chapter II.

Implementation examples of simple ANN structures are also present in the same chapter.

Chapter III presents an upper bound on the complexity of feed forward neural networks -

a single-hidden-layer network with at most (N/2)+1 hidden neurons is sufficient to

classify N (N is even) data points of 2 classes with zero error. The upper bound reduces

to (N-1)/2+1 when N is odd. The theory is then applied to design and train a neural

classifier for the two-spiral problem, a benchmark problem in the neural network

literature. Chapter IV applies the theory to solve another classification task and

implements the ANN in the FPAA. A further neural network structure simplification

technique for FPAA based ANNs is also proposed in Chapter IV. In Chapter V, an FPAA

based PID controller is designed to control a path tracking unmanned ground vehicle for

future performance comparison with FPAA based ANN controller. At last in Chapter VI,

to demonstrate the application of FPAA based ANN in control systems, an ANN is

designed in FPAA to control a path tracking unmanned ground vehicle. The performance

of the FPAA based ANN controller is characterized in terms of speed, stability and

robustness.

References

[1] F. L.Lewis, “Neural-network control of robot manipulators,” IEEE Expert, pp. 64-75, June 1996.

[2] J. Teeter and M.-Y. Chow, “Application of Functional Link Neural Network to HVAC Thermal

Dynamic System Identification,” IEEE Transactions on Industrial Electronics, vol. 45, no. 1, pp. 170-

176, 1998.

 4

[3] M.-Y. Chow and J. Teeter, “A Knowledge-Based Approach for Improved Neural Network Control of a

Servomotor System with Nonlinear Friction Characteristics,” Mechatronics, vol. 5, no. 8, pp. 949-962,

1995.

[4] B. Ayhan, M.-Y. Chow, and M.-H. Song, “Monolith and Partition Schemes with LDA and Neural

Networks as Detector Units for Induction Motor Broken Rotor Bar Fault Detection,” KIEE

International Transactions on Electrical Machinery and Energy Conversion Systems, June 1, 2005

(invited).

[5] M.Y. Chow, “Methodologies of Using Artificial Neural Network and Fuzzy Logic Technologies for

Motor Incipient Fault Detection,” World Scientific Publishing Co. Pte. Ltd., 1998.

[6] M.-Y. Chow, G. Bilbro, and S. O. Yee, “Application of Learning Theory to a Single Phase Induction

Motor Incipient Fault Detection Artificial Neural Network,” International Journal of Neural Systems,

vol. 2, no. 1&2, pp. 91-100, 1991.

[7] M. Holler, S. Tam, H. Castro and R. Benson, “An electrically trainable artificial neural network

(ETANN) with 10240 `floating gate' synapses ,” Neural Networks, 1989. IJCNN, International Joint

Conference on, pp. 191 - 196 vol.2, 18-22 June 1989.

[8] S. Tam, B. Gupta, H. Castro and M. Holler, “Learning on an Analog VLSI Neural Network Chip,”

Proceedings of the IEEE International Conference on Systems, Man & Cybernetics, 1990.

[9] Y. Maeda, H. Hirano and Y. Kanata, “AN Analog Neural Network Circuit with a Learning Rule via

Simutaneous Perturbation,” Proceedings of the IJCNN-93-Nagoya, pp. 853-856, 1993.

[10] S. S. Kim [1] and S. Jung, "Hardware implementation of a real time neural network controller with a

DSP and an FPGA," presented at Robotics and Automation, 2004. Proceedings. ICRA '04. 2004 IEEE

International Conference on, 2004.

[11] S. S. Kim W. Qinruo, Y. Bo, X. Yun, and L. Bingru, "The hardware structure design of perceptron

with FPGA implementation," presented at Systems, Man and Cybernetics, 2003. IEEE International

Conference on, 2003.

[12] S. B. Yun, Y. J. Kim, S. S. Dong, and C. H. Lee, "Hardware implementation of neural network with

expansible and reconfigurable architecture," presented at Neural Information Processing, 2002.

ICONIP '02. Proceedings of the 9th International Conference on, 2002.

 5

[13] H. Withagen, “Implementing Backpropagation with Analog Hardware,” Proceedings of the IEEE

ICNN-94-Orlando Florida, pp. 2015-2017, 1994.

[14] T. Szabo, L. Antoni, G. Horvath, and B. Feher, "A full-parallel digital implementation for pre-trained

NNs," presented at Neural Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS

International Joint Conference on, 2000.

[15] S. Popescu, "Hardware implementation of fast neural networks using CPLD," presented at Neural

Network Applications in Electrical Engineering, Proceedings of the 5th Seminar on, 2000.

[16] B. Girau, "Digital hardware implementation of 2D compatible neural networks," presented at Neural

Networks, Proceedings of the IEEE-INNS-ENNS International Joint Conference on, 2000.

[17] H. Abdelbaki, E. Gelenbe, and S. E. EL-Khamy, "Analog hardware implementation of the random

neural network model," presented at Neural Networks, Proceedings of the IEEE-INNS-ENNS

International Joint Conference on, 2000.

[18] J. Zhu, G. J. Milne, and B. K. Gunther, "Towards an FPGA based reconfigurable computing

environment for neural network implementations," presented at Artificial Neural Networks, Ninth

International Conference on, 1999.

[19] J. Liu and M. Brooke, "A fully parallel learning neural network chip for real-time control," presented

at Neural Networks, International Joint Conference on, 1999.

[20] J. Liu and M. Brooke, "Fully parallel on-chip learning hardware neural network for real-time control,"

presented at Circuits and Systems, Proceedings of the IEEE International Symposium on, 1999.

[21] E. J. Brauer, J. J. Abbas, B. Callaway, J. Colvin, and J. Farris, "Hardware implementation of a neural

network pattern shaper algorithm," presented at Neural Networks, International Joint Conference on,

1999.

[22] P. M. Engel and R. F. Molz, "A new proposal for implementation of competitive neural networks in

analog hardware," presented at Neural Networks, Proceedings. 5th Brazilian Symposium on, 1998.

[23] J. Tang, M. R. Varley, and M. S. Peak, "Hardware implementations of multi-layer feed forward neural

networks and error backpropagation using 8-bit PIC microcontrollers," presented at Neural and Fuzzy

Systems: Design, Hardware and Applications, IEE Colloquium on, 1997.

 6

[24] D. S. Reay, T. C. Green, and B. W. Williams, "Field programmable gate array implementation of a

neural network accelerator," presented at Hardware Implementation of Neural Networks and Fuzzy

Logic, IEE Colloquium on, 1994.

[25] A. Achyuthan and M. I. Elmasry, "Mixed analog/digital hardware synthesis of artificial neural

networks," Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 13,

pp. 1073-1087, 1994.

[26] P. Dong, G. Bilbro, and M.-Y. Chow, “Controlling a Path-tracking Unmanned Ground Vehicle with a

Field-Programmable Analog Array,” IEEE/ASME International Conference on Advanced Intelligent

Mechatronics, Monterey, CA, 24-28 July, 2005.

[27] P. I. Yakimov, E. D. Manolov, and M. H. Hristov, "Design and implementation of a V-f converter

using FPAA," presented at Electronics Technology: Meeting the Challenges of Electronics Technology

Progress, 2004. 27th International Spring Seminar on, 2004.

[28] M. Sekerli and R. J. Butera, "An implementation of a simple neuron model in field programmable

analog arrays," presented at Engineering in Medicine and Biology Society, 2004. EMBC 2004.

Conference Proceedings. 26th Annual International Conference of the, 2004.

 7

CHAPTER II - Introduction to Field
Programmable Analog Arrays and Survey

of Artificial Neural Network Hardware

 This chapter introduces FPAA technologies for ANN applications and surveys the

literature of artificial neural network (ANN) hardware. Some ANN implementation

examples using FPAAs are also presented.

I. The FPAA Technology

 The field programmable analog array technology, which is the analog counterpart of the

FPGA, appeared in 1980’s [1-8]. The technology was made commercially available by

AnadigmTM in 2000. Anadigm’s FPAA chips are mainly used as platforms for

experiments along with our research.

 The FPAA is an array of identical Configurable Analog Blocks (CABs). Which

includes operational amplifiers, comparators and switched programmable capacitors .

The FPAA allows designers to implement an extremely wide variety of signal processing

functions using digital configuration data.

 Anadigm’s FPAAs are based on switched-capacitor technology. Switched capacitors

take the place of resistors in switched-capacitor circuits. An effective resistance can be

 8

defined for switched capacitors; its value depends on the capacitance but changes

according to the sampling frequency.

Figure 2.1. Switched capacitor and its sampling clocks

 As shown in Figure 2.1, capacitor C is a switched capacitor; non-overlapping clocks

control two switches respectively. inV is sampled at the falling edge of 1φ , the sampling

frequency is sf . The charges going from inV to outV each sampling period is

)(outin VVCQ −= . So the current flowing from inV to outV is)(outins VVCfI −= . Then we

can get the equivalent resistor of resistance
Cf

R
s

1
= . The following two examples show

that how the switched capacitor could take the place of the resistor in an inverting

integrator and a non-inverting integrator.

Figure 2.2. A normal inverting integrator

 To replace the resistor with a switched capacitor, the first switched-capacitor design

used following circuit:

 9

Figure 2.3. An inverting integrator with the resistor replaced by a switched capacitor

 The advantage of the switched capacitors is that these are easy to build in an integrated

circuit (IC) technology. It is difficult to make precise large-value resistors on silicon, but

easier to make precise (and well-matched) small-value capacitors. When the switching

noise is eliminated by filtering, a simple use of switched capacitor is as a resistor. For

example, an effective resistance of 100 kilohms can be obtained at a switching frequency

of 1 MHz by a capacitor with a capacitance of 10 pF. Switched-capacitor technology is

key to the accuracy and flexibility of FPAA.

 At present, Anadigm has shipped two generations of FPAA chips (AN10E40 and

ANx2xE0x) and corresponding evaluation boards (shown in Figure 2.4 & 2.5). The

frequencies of the master clock are 1Mhz and 4Mhz for the first-generation board and

second-generation board respectively.

 10

Figure 2.4. AN10E40 FPAA Chip and Evaluation Board

Figure 2.5. AN221E04 FPAA Chip and Evaluation Board

II. Introduction to Artificial Neural Networks

 Artificial neural networks (ANNs), or more simply neural networks (NNs), are

information processing systems that roughly replicate the behavior of a human brain by

emulating the operations and connectivity of biological neurons. Under some

 11

conditions, they can be trained directly from data, and sometimes complicated or

imprecise data. NNs can be used to extract patterns and detect trends thus it be applied to

data classification and nonlinear functional mapping. Specific application examples

include process modeling, control, machine diagnosis, and real-time recognition. The

history of the ANNs stems from the 1940s, the decade of the first electronic computer.

An important step toward artificial neural networks occurred in 1943 when Warren

McCulloch and Walter Pitts wrote a paper on the working mechanism of the neurons.

They modeled a simple neural network with electrical circuits [9]. However, the first

significant application only took place in 1958 when Rosenblatt introduced the first

concrete neural model - the perceptron [10]. In 1959, Bernard Widrow and Marcian Hoff

of Stanford University developed models they called ADALINE and MADALINE [11-

12]. These models were named for their use of Multiple ADAptive LINear Elements.

MADALINE was the first neural network to be applied to a real world problem. It is an

adaptive filter that eliminates echoes on phone lines. This neural network is still in

commercial use. The perceptron model Rosenblatt proposed contained only one layer.

And after that, a multi-layered model was derived by Fukushima in 1975 [13]. The multi-

layer perceptron network didn’t show its potential in various applications until

Rummelhart and Mclelland introduced a general backpropagation algorithm for a multi-

layered perceptron in 1986 [14-15]. In 1982, Hopfield proposed a type of neural network

called “Hopefield network” in which there is only one layer whose neurons are fully

connected with each other [16]. In 1982, Kohonen introduced a unique kind of network

model called “Self-Organizing Map (SOM)”. SOM is a certain kind of topological map

which organizes itself based on the input patterns that it is trained with. The SOM

 12

originated from the LVQ (Learning Vector Quantization) network underlying the idea of

which was also Kohonen's in 1972 [17].

A. Application Areas of ANNs

 Neural networks have been successfully applied to various data-intensive applications in

industry, business and science [18]. Those applications include bankruptcy prediction

[19-24], handwriting recognition [25-29], speech recognition [30], product inspection

[31-32], fault detection [33-34], medical diagnosis [35-37], and bond rating [38-40]. A

number of performance comparisons between neural and conventional classifiers have

been made by many studies [41-43]. In addition, several computer experimental

evaluations of neural networks for classification problems have been conducted under a

variety of conditions [44-45].

 One example of application to motor fault detection was proposed by Li, Chow,

Tipsuwan and Hung [46]. They present an approach for motor rolling bearing fault

diagnosis using neural networks and time/frequency-domain bearing vibration domain

analysis. The results of motor bearing faults can be effectively diagnosed using neural

network if the signal of motor bearing vibration is appropriately measured and translated.

B. Artificial Neuron Model and Neural Network Structures

 An artificial neuron (process element) is often called a node or unit. The model is

shown in Figure 2.6. It receives input from some other units, or perhaps from an external

source. Each input has an associated weight w, which can be modified so as to model

synaptic learning. The unit computes some function f of the weighted sum of its inputs: y

= f (x). Its output, in turn, can serve as input to other units. The function f is the unit's

 13

activation function. The activation function could be linear function, step function,

sigmoid function xe
xf

−+
=

1
1)(, hyperbolic tangent function x

x

e
exf 2

2

1
1)(−

−

+
−

= and radial

basis function
2

)(xexf −= .

Figure 2.6. Artificial neuron model

 A neural network normally consists of many artificial neurons and a large number of

interconnections among them as shown in Figure 2.7. Based on the structure of the

connections, the neural networks can be classified into two categories: first, the feed

forward neural network in which the neurons in one layer get input from the previous

layer and the output is connected to the next layer; and second, the recurrent neural

network where connections to the neurons are to the same layer to the previous layers.

The Hopfield neural network [16] is a widely used example of recurrent neural networks.

 14

Figure 2.7. Example of feed forward neural network.

C. Overview of ANN Hardware Implementation

 Neural network can be implemented with either software or hardware. Software

implementation means programming the neural network on a PC or workstation.

Nowadays the performance of von-Newman processors like the Intel Pentium series are

advancing steadily. However, since they are designed to process instructions more-or-

less one after the other instead of concurrently in parallel, alternative ANN simulators

might supplement general purpose digital processors. Software implementation is

preferred when the neural network is of low neuron density or the specific problem

doesn’t need high speed processing. When the speedup is of the interest, special purpose

hardware implementations are a more attractive choice. For example, some dedicated

devices such as those for hand-written character recognition [25-29] and speech

recognition [30] are implemented in special purpose hardware. Most hardware with

 15

multiple inputs implementing neural networks has a speed advantage over software since

it can take the advantage of the inherent parallelism of the ANN.

 In the literature treating the hardware, implementation of neural networks,

specifications include the technology used (analog, digital, or hybrid), the precision (in

equivalent numbers of bits) of the input/outputs, of the weights, and of the accumulators,

etc. There are two traditional criteria for the performance of neural network hardware: the

first one is the MCPS or Millions of Connections Per Second, which is defined as the rate

of multiply and/or accumulate operations. The other one is MCUPS or Millions of

Connection Update Per Second value that denotes the rate of weight changes during

network learning.

 Efforts have been made to develop a more detailed classification of the neural network

hardware from aspects such as system architecture, degree of parallelism or whether

general-purpose or special-purpose devices are employed [48].

 As for the chips, hardware for neural network implementation can be classified into

two main categories: general-purpose hardware that can be reconfigured for different

tasks (such as Adaptive Solutions CNAPS [47] and the algorithm specific hardware to

implement one specific task very efficiently such as handwriting recognition. The

reported general-purpose hardware includes PC accelerator boards and neurocomputers.

The reported algorithm specific hardware has three sub-categories: digital, analog and

hybrid. The resulting classification is shown in Figure 2.8 describes the hardware

reported in references [49-65], [68] and will be used to discuss them in the following.

 16

Figure 2.8. Classification of neural network hardware

 Accelerator boards are a kind of hardware that can work in conjunction with PC to

speed up the neural network implementations. They normally reside in the expansion slot.

Accelerator boards are usually based on neural network chips but some just use fast

digital signal processors that do multiple-accumulate operations. One example of the

accelerator boards is the IBM ZISC ISA and PCI cards [49]. The ZISC is a digital chip

with 64 8-bit inputs and 36 radial basis function neurons. Multiple chips can be cascaded

together to create networks of arbitrary size. The ISA card holds up to 16 ZISCX036

chips providing 576 neurons and the PCI cards can hold up to 19 chips providing 684

neurons. Other accelerator cards include SAIC SIGMA-1 [50], Neuro Turbo [51] and

HNC [52].

 Neurocomputers are stand-alone systems that are intended for large scale processing

applications such as high throughput optical characters recognition. They are built from

general-purpose processors to provide high programmability for implementation of

 17

different neural networks. Neurocomputers are complex and expensive. Examples

include BSP400 [53], COKOS [54] and RAP (Ring Array Processor) [55]. RAP was

developed at the ICSI (International Computer Science Institute, Berkeley, CA) and has

been used as an essential component in the development of connectionist algorithms for

speech recognition since 1990. Implementations consist of 4 to 40 Texas Instruments

TITMS320C30 floating point DSPs containing 256 Kbytes of fast static RAM and 4

Mbytes of dynamic RAM each. These chips are connected via a ring of FPGAs, each

implementing a simple two-register data pipeline. Additionally each board has a VME

bus interface logic, which allows it to connect to a host computer.

 The algorithm specific neural network hardware (neural network VLSI) can be divided

into three broad categories: digital, analog, and hybrids.

 The digital neural network category itself includes slice architectures [56-58], single

instruction multiple data (SIMD) [59-60] and systolic array devices [61]. For SIMD

design, each processor executes the same instruction in parallel but on different data. In

systolic arrays, a processor does one step of a calculation (always the same step) before

passing its result on to the next processor in a pipelined manner. A systolic array system

can be built with the Siemens MA-16 [62]. Digital hardware has the advantages of

mature fabrication techniques, weight storage in RAM, and arithmetic operations exact

within the number of bits of the operands and accumulators. However, digital operations

are usually slower than in analog systems, especially in some computationally expensive

part of the neural calculation such as the hyperbolic tangent transfer function, and analog-

to-digital and digital-to-analog processing take extra time compared to analog chips.

 18

 Compared to digital neural network hardware, analog hardware networks have the

advantages of high speed since there is no A/D and D/A conversion needed. The first

commercially available analog neural network chip is Intel’s analog ETANN chip [63].

Later more analog chips appeared such as [64-65]. Besides the advantages of high speed

and high densities, since analog hardware interact directly with the real world and process

signals totally in analog domain which is very fast, it is more suitable for real-time

applications such as controlling unmanned vehicles compared to digital hardware.

 The following section presents a new platform for ANN implementation: field

programmable analog arrays (FPAAs), which can be classified into either algorithm

specific or general-purpose hardware category, which are mentioned above.

III. Sample Design of ANN Using FPAA

 We can conclude from the above survey that to obtain high speed and flexible neural

network simulator, programmable analog hardware is desired. This paper proposes the

new neural network hardware to be built using FPAA technology, which could be either

algorithm specific slice analog chip or large-scale neurocomputer after integrate multiple

FPAAs together.

 The FPAA shows considerable potential as a neural network simulator. It processes

signals totally in the analog domain. It is digitally programmable. Multiple chips (or

multiple evaluation boards in the present case, since the FPAA are provided as evaluation

boards in my implementations) can be integrated easily to realize artificial neural

networks of arbitrary sizes as needed. Moreover, the transfer function of the neurons in

 19

the neural network can be arbitrarily tabulated in a look up table in each FPAA chip.

Figure 2.9 is an example circuit implementing a hyperbolic tangent transfer function. The

look up table as shown in Figure 2.10 was loaded from an Excel file. Figure 2.11 is the

simulation result.

Figure 2.9. FPAA circuit that implements the hyperbolic tangent function using look up table.

 20

Figure 2.10. Look up table for the hyperbolic tangent transfer function.

Figure 2.11. Simulation result of hyperbolic tangent transfer function.

 21

IV. References

[1] D. Anderson, C. Marcjan, D. Bersch, H. Anderson, P. Hu, O. Palusinki, D. Gettman, I. Macbeth, A.

Bratt, “A Field Programmable Analog Array and its Application,” 1997 Custom Integrated Circuits

Conference Proceedings, May, 5-8, 1997, Santa Clara, California, USA.

[2] E.K.F. Lee and W.L. Hui, "A novel switched-capacitor based field-programmable analog array

architecture," Kluwer Analog Integrated Circuits and Signal Processing - Special Issue on Field

Programmable Analog Arrays, Vol. 17, No. 1-2, pp. 35-50, September 1998.

[3] S.H.K. Embabi, X. Quan, N. Oki, A. Manjrekar, and E. Sanchez-Sinencio, "A current-mode based

field-programmable analog array for signal processing applications," Kluwer Analog Integrated

Circuits and Signal Processing - Special Issue on Field Programmable Analog Arrays, Vol. 17, No.

1-2, pp. 125-142, September 1998.

[4] E. Pierzchala and M.A. Perkowski, "A high-frequency field-programmable analog array (FPAA) part

I: design," Kluwer Analog Integrated Circuits and Signal Processing - Special Issue on Field

Programmable Analog Arrays, Vol. 17, No. 1-2, pp. 143-156, September 1998.

[5] E. Lee and G. Gulak, "A CMOS field-programmable analog array," IEEE Journal of Solid-State

Circuits, Vol. 26, No. 12, pp. 1860-1867, December 1991.

[6] S.T. Chang, B.R. Hayes-Gill, and C.J. Paul, "Multi-function Block for a Switched Current Field

Programmable Analog Array", 1996 Midwest Symposium on Circuits and Systems, August 1996.

[7] K.F.E. Lee and P.G. Gulak, "A Transconductor-Based Field-Programmable Analog Array", ISSCC

Digest of Technical Papers, pages 198-199, Feb. 1995.

[8] K.F.E. Lee and P.G. Gulak, "A CMOS Field-Programmable Analog Array", ISSCC Digest of

Technical Papers, pages 186-188, Feb. 1991.

[9] McCulloch, W.S. & Pitts, W.H. “A Logical Calculus of the Ideas Immanent in Nervous Activity,”

Bulletin of Mathematical Biophysics, 5: pp. 115-137, 1943.

[10] Rosenblatt, F. “The Perceptron: A Probabilistic Model for Information Storage and Organization in

the Brain,” Psychological Review, 65: pp. 386-408, 1958.

[11] B. Widrow, "Generalization and information storage in networks of adaline 'neurons'," Self-

Organizing Systems, Ed. M. C. Yovits, Washington, DC: Spartan, pp. 435-461, 1962.

 22

[12] B. Widrow and M.E. Hoff, “Adaptive Switching Circuits,” IRE WESCON Convention Record, New

York: IRE pp. 96-104, 1960.

[13] K. Fukushima, “Cognitron: A Self-organizing Multilayered Neural Network,” Biological

Cybernetics, 20: pp. 121-136, 1975.

[14] D.B. Parker, “A Comparison of Algorithms for Neuron-Like Cells,” In J.S. Denker (Ed.), Neural

Networks for Computing, New York: American Institute of Physics, pp. 327-332, 1986.

[15] D.D. Rumelhart, G.E. Hinton and R.J. Williams, Ronald J. “Learning Representations by Back-

Propagating Errors,” Nature 323: pp. 533-536, 1986.

[16] J.J. Hopfield, “Neural Networks and Physical Systems with Emergent Collective Computational

Abilities,” Proceedings of the National Academy of Sciences, 79: pp. 2554-2558, 1982.

[17] T. Kohonen, “Correlation Matrix Memories,” IEEE Transaction on Computers, C-21: pp. 353-359,

1972.

[18] B. Widrow, D. E. Rumelhard, and M. A. Lehr, “Neural networks: Applications in industry, business

and science,” Communications. ACM, vol. 37, pp. 93–105, 1994.

[19] E. I. Altman, G. Marco, and F. Varetto, “Corporate distress diagnosis: Comparisons using linear

discriminant analysis and neural networks (theItalian experience),” Jouranl of Bank and Finance, vol.

18, pp. 505–529, 1994.

[20] R. C. Lacher, P. K. Coats, S. C. Sharma, and L. F. Fant, “A neural net-work for classifying the

financial health of a firm,” European Journal of Operations Research., vol. 85, pp. 53–65, 1995.

[21] M. Leshno and Y. Spector, “Neural network prediction analysis: Thebankruptcy case,” Journal of

Neurocomputing, vol. 10, pp. 125–147, 1996.

[22] K. Y. Tam and M. Y. Kiang, “Managerial application of neural networks:The case of bank failure

predictions,” Management Science., vol. 38, no. 7, pp. 926–947, 1992.

[23] R. L. Wilson and R. Sharda, “Bankruptcy prediction using neural net-works,” Decision Support

System, vol. 11, pp. 545–557, 1994.

[24] G. Zhang, M. Y. Hu, E. B. Patuwo, and D. Indro, “Artificial neural networks in bankruptcy

prediction: General framework and cross-valida-tion analysis,” European Journal of Operations

Research, vol. 116, pp. 16–32, 1999.

 23

[25] I. Guyon, “Applications of neural networks to character recognition,” International Journal of

Pattern Recognition and Artificial Intelligence, vol. 5, pp. 353–382, 1991.

[26] S. Knerr, L. Personnaz, and G. Dreyfus, “Handwritten digit recognition by neural networks with

single-layer training,” IEEE Transactions on Neural Networks, vol. 3, pp. 962–968, 1992.

[27] Y. Le Cun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubberd, and L. D. Jackel,

“Handwritten digit recognition with a back-propagation network,” Advanced Neural Information

Processing System, vol. 2, pp. 396–404, 1990.

[28] D. S. Lee, S. N. Sriharia, and R. Gaborski, “Bayesian and neural-net-work pattern recognition: A

theoretical connection and empirical results with handwritten characters,” in Artificial Neural

Networks and Statistical Pattern Recognition, I. K. Sethi and A. K. Jain, Eds. New York: Elsevier,

pp. 89–108, 1991.

[29] G. L. Martin and G. L. Pitman, “Recognizing hand-printed letter and digits using backpropagation

learning,” Neural Computing, vol. 3, pp. 258–267, 1991.

[30] H. Bourlard and N. Morgan, “Continuous speech recognition by connectionist statistical methods,”

IEEE Transactions on Neural Networks, vol. 4, pp. 893–909, 1993.

[31] J. Lampinen, S. Smolander, and M. Korhonen, “Wood surface inspection system based on generic

visual features,” in Industrial Applications of Neural Networks, F. F. Soulie and P. Gallinari, Eds,

Singapore: World Scientific, pp. 35–42, 1998.

[32] T. Petsche, A. Marcantonio, C. Darken, S. J. Hanson, G. M. Huhn, and I. Santoso, “An autoassociator

for on-line motor monitoring,” in Industrial Applications of Neural Networks, F. F. Soulie and P.

Gallinari, Eds, Singapore: World Scientific, pp. 91–97, 1998.

[33] E. B. Barlett and R. E. Uhrig, “Nuclear power plant status diagnostics using artificial neural

networks,” Nuclear Technology, vol. 97, pp. 272–281, 1992.

[34] J. C. Hoskins, K. M. Kaliyur, and D. M. Himmelblau, “Incipient fault detection and diagnosis using

artificial neural networks,” in International Joint Conference on Neural Networks, pp. 81–86, 1990.

[35] W. G. Baxt, “Use of an artificial neural network for data analysis in clinical decision-making: The

diagnosis of acute coronary occlusion,” Neural Computing, vol. 2, pp. 480–489, 1990.

 24

[36] H. B. Burke, “Artificial neural networks for cancer research: Outcome prediction,” Seminars in

Surgical Oncology, vol. 10, pp. 73–79, 1994.

[37] H. B. Burke, P. H. Goodman, D. B. Rosen, D. E. Henson, J. N. Wein-stein, F. E. Harrell, J. R. Marks,

D. P. Winchester, and D. G. Bostwick, “Artificial neural networks improve the accuracy of cancer

survival pre-diction,” Cancer, vol. 79, pp. 857–862, 1997.

[38] S. Dutta and S. Shekhar, “Bond rating: A nonconservative application of neural networks,” in Proc.

IEEE International Conference on Neural Networks, vol. 2, San Diego, CA, pp. 443–450, 1988.

[39] A. J. Surkan and J. C. Singleton, “Neural networks for bond rating improved by multiple hidden

layers,” in Proc. IEEE International Joint Conference on Neural Networks, vol. 2, San Diego, CA,

pp. 157–162, 1990.

[40] J. Utans and J. Moody, “Selecting neural network architecture via the prediction risk: Application to

corporate bond rating prediction,” in International Conference on Artificial Intelligence Applications

Wall Street, pp. 35–41, 1991.

[41] S. P. Curram and J. Mingers, “Neural networks, decision tree induction and discriminant analysis: An

empirical comparison,” Journal of Operational Research Society, vol. 45, no. 4, pp. 440–450, 1994.

[42] W. Y. Huang and R. P. Lippmann, “Comparisons between neural net and conventional classifiers,” in

IEEE International Conference on Neural Networks, San Diego, CA, pp. 485–493, 1987.

[43] D. Michie, D. J. Spiegelhalter, and C. C. Taylor, Eds., Machine Learning, Neural, and Statistical

Classification, London, U.K.: Ellis Horwood, 1994.

[44] E. Patwo, M. Y. Hu, and M. S. Hung, “Two-group classification using neural networks,” Decision

Science, vol. 24, no. 4, pp. 825–845, 1993.

[45] V. Subramanian, M. S. Hung, and M. Y. Hu, “An experimental evaluation of neural networks for

classification,” Computers and Operations Research., vol. 20, pp. 769–782, 1993.

[46] B. Li, M.-Y. Chow, Y. Tipsuwan, J. C. Hung, "Neural Network Based Motor Vibration Signal

Analysis, Fault Detection, and Diagnosis," IEEE Transactions on Industrial Electronics Special Issue

on Motor Fault Detection and Diagnosis, October, 2000.

 25

[47] H. McCartor, “A Highly Parallel Digital Architecture for Neural Network Emulation,” In Delgado-

Frias, J. G. and Moore, W. R. (eds.), VLSI for Artificial Intelligence and Neural Networks, Plenum

Press, New York, pp 357-366, 1991.

[48] T. Schoenauer, A. Jahnke, U. Roth and H. Klar, “Digital Neurohardware: Principles and

Perspectives,” Proceedings of Neuronal Networks in Applications (NN'98), Magdeburg, 1998

[49] C. S. Lindsey, Th. Lindblad, G. Sekniaidze, M. Minerskjold, S. Szekely and A. Eide, “Experience

with the IBM ZISC Neural Network Chip,” Proceedings of 3rd Int. Workshop on Software

Engineering, Artificial Intelligence, and Expert Systems, for High Energy and Nuclear Physics, Pisa,

Italy, April 3-8, 1995.

[50] P.C. Treleaven, “Neurocomputers,” International Journal of Neurocomputing, 1, 4-31, 1989.

[51] A. F. Arif, S. Kuno, A. Iwata and Y. Yoshita, “A Neural Network Accelerator Using Matrix Memory

with Broadcast Bus,” Proceedings of the IJCNN-93-Nagoya, pp. 3050-3053, 1993.

[52] “HNC, High-Performance Parallel Computing,” SIMD Numerical Array Processor, DataSheet, San

Diego.

[53] J.N. H. Heemskerk, J. Hoekstra, J.M.J., Murre, L.H.J.K. Kemna and P.T.W. Hudson, “The BSP400:

A Modular Neurocomputer,” Microprocessors and Microsystems, 18, 2, pp. 67-78, 1994.

[54] H. Speckman, P. Thole and W. Rosentiel, “COKOS: A Coprocessor for Kohonen's Selforganizing

Map,” Proceedings of the ICANN-93-Amsterdam, London: Springer-Verlag, pp. 1040-1045, 1993.

[55] N. Morgan, J. Beck, P. Kohn, J. Bilmes, .E Allman and J. Beer, “The Ring Array Processor: A

Multiprocessing Peripheral for Connectionist Applications,” Journal of Parallel and Distributed

Computing, 14, pp. 248-259, 1992.

[56] MD1220 Data Sheet, Micro Devices, 30 Skyline Dr., Lake Mary, Fl. 32746, March 1990.

[57] NLX420 Data Sheet, Neurologix, Inc., 800 Charcot Av., Suite 112, San Jose, CA, June 1992.

[58] N. Mauduit, M. Duranton and J. Gobert, “Lneuro 1.0: A Piece of Hardware LEGO for Building

Neural Network Systems,” IEEE Transactions on Neural Networks, 3, pp. 414-422, May 1992.

[59] A. Jahnke, U. Roth, and H. Klar, “A SIMD/Dataflow Architecture for a Neurocomputer for Spike-

Processing Neural Networks (NESPINN),” Proceedings of the 6th International Conference on

Microelectronics for Neural Networks (Micro Neuro), pp. 232-237, 1996.

 26

[60] M. Glover and W. T. Miller, “A massively-parallel SIMD processor for neural network and machine

vision applications,” Proceedings NIPS-6, ed. J.D. Cowan et al., Morgan Kaufmann Pub, pp. 843-

849, 1993.

[61] H. Amin, K. M. Curtis and B. R. Hayes Gill, “Two-ring systolic array network for artificial neural

networks,” Circuits, Devices and Systems, IEE Proceedings, vol. 146, iss. 5, pp. 225-230, Oct. 1999.

[62] U. Ramacher, “SYNAPSE - A Neurocomputer that Synthesizes Neural Algorithms on a Parallel

Systolic Engine,” Journal of Parallel and Distributed Computing, 14, pp. 306-318, 1992.

[63] S. Tam, B. Gupta, H. Castro and M. Holler, “Learning on an Analog VLSI Neural Network Chip,”

Proceedings of the IEEE International Conference on Systems, Man & Cybernetics, 1990.

[64] Y. Maeda, H. Hirano and Y. Kanata, “AN Analog Neural Network Circuit with a Learning Rule via

Simutaneous Perturbation,” Proceedings of the IJCNN-93-Nagoya, pp. 853-856, 1993.

[65] H. Withagen, “Implementing Backpropagation with Analog Hardware,” Proceedings of the IEEE

ICNN-94-Orlando Florida, pp. 2015-2017, 1994.

[66] Synaptics, 2860 Zanker Rd., Suite 206, San Jose, Ca. 95134, USA.

[67] M. Jabri and B. Flower, “Weight Perturbation: An Optimal Architecture and Learning Technique for

Analog VLSI Feed forward and Recurrent Multi-Layer Networks,” Neural Computation, vol. 3, pp.

546-565, 1991.

[68] V. F. Koosh and R. M. Goodman, “VLSI neural network with digital weights and analog

multipliers,” Proc. IEEE International Symposium on Circuits and Systems, vol. III, pp. 233-236,

May 2001.

[69] S. Churcher, D. J. Baxter, A. Hamilton, A. F. Murray and H. M. Reekie, “Generic Analog Neural

Computation-the Epsilon Chip,” Advances in Neural Information Processing Systems: Proceedings

of the 1992 Conference, Denver, Colorado.

[70] Y. Hirai, “A 1,000-Neuron System with One Million 7-bit Physical Interconnections,” In Jordan,

M.I., Kearns, M.J. and Solla, S.A. eds. Advances in Neural Information Processing Systems 10, A

Bradford Book, The MIT Press, Cambridge, Massachusetts, pp.705-711, 1998.

 27

[71] B. Kim, C. Kim, S. Han, S. Kim and H. Park, “1.2-μM non-epi CMOS smart power IC with four H-

bridge motor drivers for portable applications,” Circuits and Systems, ISCAS '96., 'Connecting the

World'., 1996 IEEE International Symposium on , Vol.1 pp: 633 – 636, 12-15 May 1996

[72] Datasheet of L293D by Texas Instrument Inc.

[73] Product GH12-1828Y of Jameco Electronics Inc.

[74] N.N. Bengiamin and M. Jacobsen, “Pulse-width modulated drive for high performance DC motors,”

Industry Applications Society Annual Meeting, 1988., Conference Record of the 1988 IEEE,

Vol.1, pp:543 – 550, 2-7 Oct. 1988.

[75] www.handyboard.com

[76] M.-Y. Chow, G. Bilbro, and S. O. Yee, “Application of Learning Theory to a Single Phase Induction

Motor Incipient Fault Detection Artificial Neural Network,” International Journal of Neural Systems,

vol. 2, no. 1&2, pp. 91-100, 1991.

[77] J. Van der Spiegel, P. Mueller, V. Agami, P. Aziz, D. Blackman, P. Chance, A. Choudhury, C.

Donham, R. Etienne-Cummings, L. Jones, J. Kim, P. Kinget, M. Massa, W. von Koch, J. Xin, “A

multichip analog neural network,” Proceedings of Technical Papers, International Symposium on

VLSI Technology, Systems, and Applications, pp. 64 – 68, 22-24 May 1991

[78] S. Tam, M. Holler, J. Brauch, A. Pine, A. Peterson, S. Anderson, S. Deiss,” A reconfigurable multi-

chip analog neural network: recognition and back-propagation training,” International Joint

Conference on Neural Networks, 1992., Vol. 2, pp. 625-630, 7-11 June 1992

[79] P. Hasler, L. Akers, “Implementation of analog neural networks,” Tenth Annual International

Phoenix Conference on Computers and Communications, pp. 32-38, 27-30 March 1991

[80] M. Ponca, G. Scarbata, "Implementation of Artificial Neurons Using Programmable Hardware,"

Synopsys User Group Conference - SNUG Europe, Munich, Germany, 12-13 March, 2001

[81] Y. Liao, “Neural Network Hardware: A Survey,” University of California – Davis, 1995

http://www.handyboard.com

 28

CHAPTER III - Upper Bound on the Size
of Neural Networks for Data

Classification

1 Department of Electrical and Computer Engineering,

North Carolina State University, Raleigh NC 27695 USA

* Corresponding Author

This work has been submitted to IEEE Transactions on Neural Networks

Puxuan Dong1
IEEE Student Member

pdong@ncsu.edu

Griff Bilbro1*
IEEE Senior Member

glb@ncsu.edu

mailto:pdong@ncsu.edu
mailto:glb@ncsu.edu

 29

Abstract

 This paper proposes an upper bound on the complexity of feed forward neural networks

for classifying data. We show that N data points drawn from two classes can be correctly

labeled by a network with a single hidden layer network containing at most N/2+1 hidden

neurons (when N is even or (N-1)/2+1 hidden neurons when N is odd) with hyperbolic

tangent activation functions.

Keywords: upper bound, classification, feed forward neural network

I. Introduction

 Proper size of a neural network (NN) allows it to learn a task efficiently and to predict

future output appropriately [1] and has been considered by several researchers. Lecun

proposed optimal brain damage [2]; Hassibi presented optimal brain surgeon [3]; Mozer

“trimmed” the excessive neuron and weights from the neural network via relevance

assessment, which he called “Skeletonization” [4]. The initial maximum necessary

network size is desired for pruning techniques since it makes the techniques efficient.

Besides the pruning techniques mentioned above, there are also constructive methods

such as cascade-correlation (CC) introduced by Falman [5]. Thivierge, Rivest and Shultz

even found a way to prune constructive neural networks which is a “dual phase”

technique [6].

 Apart from these growing and pruning methods, the approximation capabilities of

neural networks have been intensively analyzed [7-14] as another kind of effort to find

the ideal topology of neural networks for certain problems. Analysis of approximation

 30

capability is also important since it helps to choose the size of neural networks.

Excessively large neural networks are computationally demanding to simulate and may

not generalize appropriately; and on the other hand, neural networks of inadequate

complexity may fail to learn significant features of a data set. A lower bound on the size

of the neural network was recently reported by Gao and Ji [15].

 In this paper we present an upper bound for the size of the neural network solving

classification problems. We show that a conventional three-layer feed forward neural

network with hyperbolic tangent activating functions containing K+1 neurons in its

hidden layer can learn any arbitrary assignment of 2K vectors to two classes.

 We apply the proposed theory to the two spirals benchmark problem [17]. We find

that a neural network with the proposed number of hidden neurons learns the two-spiral

problem perfectly within 500 training epochs. This is about 70% less training effort than

for the cascade-correlation algorithm proposed by Fahlman and Lebiere [5]. We also find

that networks with 15% fewer neurons than the proposed upper bound cannot learn the

data without error.

 The paper is organized as follows: section II derives the upper bound; section III

applies the theory to a benchmark classification problem - the two-spiral problem and

section IV offers some concluding remarks.

II. Theory

 Gao and Ji’s research result shows that hidden neuron number required in a single-

hidden-layer neural network to solve the n-class problem is independent of the dimension

 31

of the input data vectors [15]. We therefore restrict our attention to the one-dimensional

case to analyze the upper bound on the number of hidden neurons of a single-hidden-

layer feed forward neural network solve two-class classification problems of N data

points.

 In one dimension, the alternate label problem [16] requires the most decision points

since when elements from different classes of data alternate with each other, each pair of

adjacent points needs one decision point between them. The N-point alternate label problem

needs N-1 decision points and provides an upper bound on the number of hidden neurons

required for classification.

 For simplicity, we choose { 1, 1}+ − as the label set for the alternate label problem. This

is equivalent to using the algebraic sign of the neural network output as the label that it

computes for a particular input value. This can also be described as choosing a threshold

value of zero for the real-valued function computed by the neural network.

 We assume that the number 2 1N K= + of data points is odd, that they are indexed by

size so that 1 2 3 2 1Kx x x x +< < <L , that the odd points are labeled 1+ , and that the even

points are labeled 1− . We define ()1
1 1

1 max
2

N
n n nH x x−

= +≡ − to be half the maximum

interval between adjacent data points and ()1
1 1

1 min
2

N
n n nh x x−

= +≡ − to be half the minimum

interval between adjacent data points. Consider the unit sigmoid

 32

())tanh(1
2
1)(xxu β+= shown in Figure 3.1 where β is chosen to solve

δβ 21)tanh(−=x for
4

h
KH

δ = so that 1u δ≥ − for x h≥ and u δ≤ for x h≤ − .

Figure 3.1. The unit sigmoid function

 It is convenient to define a second set of N points as n ny x h≡ − for 1 k N≤ ≤ as

indicated in Figure 3.2. It follows from these definitions for appropriate n that n nx y h− = ,

and 1n nh y x H+≤ − ≤ , and 1 12 2n n n nh x x y y H+ +≤ − = − ≤ .

Figure 3.2. Example of data points

 We define the function 0
1() tanh()u x xα
α

= to be approximately linear in the interval

Nxxy ≤≤1 by choosing α to satisfy ()
K
hHyxyx NN ==−−− δα

α
4)(tanh1

11 . The

 33

relationship between)(1yxN − and)tanh(1)(0 xxu α
α

= is shown in Figure 3.3. It follows

that 1101)(4 yxyxuHyx −≤−≤−− δ .

Figure 3.3:)tanh(1)(0 xxu α
α

= and the corresponding straight line showing the error at)(1yxN − as

δH4

 We now show that the function () ()0 1 2 1 2 1 2
1

() ()
K

k k k
k

f x u x y y y u x y+ −
=

= − − − −∑

correctly labels any point kx as the algebraic sign of ()kf x . There are two cases. First

we show that 2() 0nf x ≤ so that the evenly indexed points are labeled 1− . Second we will

show that 2 1() 0nf x + ≥ correctly labels every odd data point as 1+ . An illustrative

cartoon of f for 5 points using 3 hyperbolic tangents are shown in Figure 3.4.

 34

Figure 3.4. Three hyperbolic tangent functions classifying five data points

 In the expression () ()2 0 2 1 2 1 2 1 2 2
1

() ()
K

n n k k n k
k

f x u x y y y u x y+ −
=

= − − − −∑ , we decompose

the sum into two parts. In the first part over 1 k n≤ ≤ we have 2 2n kx y h− ≥ so that

2 2() 1n ku x y δ− ≥ − . In the second part over 1n k K+ ≤ ≤ we have 2 2n kx y h− ≤ − and we

assert only that 0u > , so that () ()2 2 1 2 1 2 1 2 1 2 1
1 1

()
n n

n n k k k k
k k

f x x y y y y y δ+ − + −
= =

≤ − − − + −∑ ∑ .

The first sum telescopes to 112 yy n −+ and combines with the first two terms to yield

2 2 1n nx y h+− ≤ − . The second term is less than 4n Hδ , so that

2() 4 4nf x h nH h KH h hδ δ≤ − + ≤ − + = − + which implies that 2() 0nf x ≤ as desired.

 35

 For the remaining data points, we have

() ()2 1 0 2 1 1 2 1 2 1 2 1 2
1

() ()
K

n n k k n k
k

f x u x y y y u x y+ + + − +
=

= − − − −∑ . Again we decompose the

sum into two parts. For 1n k K+ ≤ ≤ , we have 2 1 2n kx y h+ − ≤ − so that

2 1 2()n ku x y δ+ − ≤ and we have 1u < for all k including 1 k n≤ ≤ . In addition

0 2 1 1 2 1 1() 4n nu x y x y Hδ+ +− ≥ − − by construction. Consequently we can

write () ()2 1 2 1 1 2 1 2 1 2 1 2 1
1 1

() 4
n K

n n k k k k
k k n

f x x y H y y y yδ δ+ + + − + −
= = +

≥ − − − − − −∑ ∑ , where the

first sum telescopes as before and combines with the first two terms. The second sum is

bounded above by
1
4

K

k n
Hδ

= +
∑ , so that

()2 1 2 1 2 1() 4 4 1 4 ()n n nf x x y H H K n h H K nδ δ δ+ + +≥ − − − − − = − − . But K n K− ≤ so

that this implies that 2 1() 4nf x h HK h hδ+ ≥ − = − and we can conclude that 2 1() 0nf x + ≥ ,

as desired.

 Therefore, 2K+1 points can be classified correctly by K+1 neurons in the hidden layer

of a feed forward neural network. In other words, 12/)1(+−N hidden neurons are

sufficient to classify N data points of two classes.

 The case of an even number 2N K= of data points, the same function can be used and

the same proof is valid if only a fictitious point is introduced at 2 1 22K Kx h x+ = + with an

appropriate label. Consequently the proposed network output function f can correctly

treat the alternate label problem regardless of the parity of N . Therefore, 2K points can

be classified correctly by K+1 neurons in the hidden layer of a feed forward neural

 36

network. In other words, 12/ +N hidden neurons are sufficient to classify N data points

of two classes.

 Since f is contained in the set of functions naturally realized by conventional three-

layer feed forward neural networks, we have shown that a single-hidden-layer network

with at most (N/2)+1 hidden neurons is sufficient to classify N (N is even) data points of

2 classes with zero error. The upper bound reduces to (N-1)/2+1 when N is odd. Since

this problem is the worst case of any one-dimensional problem of size N and since the

number of hidden layer neurons does not depend on the dimension of the inputs, we have

shown that any 2-labeling problem of size N can be learned without error by a

conventional feed forward neural network with at most / 2 1N + hidden neurons.

III. Experimental Results

 The application of the theory is demonstrated with the classification benchmark

problem – the two spirals problem [17]. The two spirals problem has been used to test all

kinds of neural classifiers [18-20]. The two spirals problem consists of 194 X-Y training

points forming two interlocking classes of which one class has the output of 1 and the

other has the output of -1. Each class has 97 points circling around the origin for three

and half times as shown in Figure 3.5.

 37

Figure 3.5. Data mapping of the two spirals problem.

 To solve the two spiral problem, Yu and Tang proposed to use adaptive activation

functions in the neural network [21]; Xiong, et al. present the branch control network as a

supplement for the exiting neural network to solve the problem [22]; Wilamowski and

Jaeger recommend to use input pattern transformation method to obtain a solution [23];

Jia and Chua present the method of input data representation [18] and Waterhouse and

Robinson adopt hierarchical mixture of experts as another alternative [24]. The

classification results of all above mentioned method are listed in Table I in terms of

network structure, training epochs, training MSE error, number of training data points

and number of testing data points. It appears that only the adaptive activation function

and branch control network method classify the 194 data points with 100 percent

accuracy as shown in Figure 3.6. However, none of these two methods use traditional

feed forward neural network – adaptive activation function method indicates the

activation functions of the neurons need to be changed during training which increases

 38

the computational complexity and branch control network add additional structure to the

existing neural network which adds complexity to training as well.

Table 3.1. Comparison of different methods classifying the two-spiral problem.

 Network
Structure

Training Epoch

Training Set
Data Points

Testing Set Data
Points

Cascade-

Correlation,
S.E.Falman,
C.Lebiere

>11 hidden layers

1700

194

Not specified

Adaptive
Activation
Function

C.C. Yu, Y.C.
Tang, and B.D.

Liu.

2-12-1

Not specified

200

Not specified

Branch Control
Network

Q.Xiong, K.
Hirasawa, J, Hu
and J. Murata

2-100-1

with extra branch
network

>1,000,000

194

2601

Input Pattern
Transformation

B.M.
Wilamowski and

R.C. Jaeger

2-8-1

with extra
transformation

layer

Not specified

Not specified

Not specified

Input Data
Representation

(Weighted
Binary)

J. Jia and H.C.
Chua

18-40-2

<2,000

Not specified

Not specified

Hierarchical
Mixture of

Experts
S.R. Waterhouse

and A.J.
Robinson

10 layer tree

315

Not specified

Not specified

The Upper Bound
Theory

P. Dong and G.
Bilbro

2-98-1

500

194

14,400

 39

Figure 3.6. Generalization performance of two-spiral problem by different methods.

 Based on our theory, 98 neurons are sufficient to separate the data of two classes with

zero error. We train and test different single hidden layer neural networks with the

following number of hidden neuron numbers: 40, 60, 70, 80, 90, 98 and 145. The trained

the network is tested thoroughly with 14400 data points as shown in Figure 3.7a-3.7n.

 40

3.7(a) 40 hidden neurons 3.7(b) 40 hidden neurons

3.7(c) 60 hidden neurons

3.7(d) 60 hidden neurons

3.7(e) 70 hidden neurons 3.7(f) 70 hidden neurons

Figure 3.7. Testing results of two-spirals problem trained with the 3-layered feed forward neural networks.

(Simulated in MATLAB/SIMULINK from the MathWorks, Natick, MA, USA)

 41

3.7(g) 80 hidden neurons 3.7(h) 80 hidden neurons

3.7(i) 90 hidden neurons

3.7(j) 90 hidden neurons

3.7(k) 98 hidden neurons

3.7(l) 98 hidden neurons

Figure 3.7 – continued.

 42

3.7(m) 145 hidden neurons 3.7(n) 145 hidden neurons

As shown in Figure 3.7, the testing results indicate the network classifies the problem

better with the increase of the number of the hidden neurons. The network classifies the

two groups of data completely when the neuron number reaches 90 in the hidden layer.

With 98 and 145 neurons in the hidden layer, the network still classifies the two groups

of data points successfully. This means the minimum required neuron numbers is

between 80 - 90 which is fairly close to our calculated “data-independent” upper bound.

This result would be closer to our upper bound if the problem could somehow be made

more difficult.

 For the 2-98-1 structure, the classification error on the training set of 194 points drops

to zero after 500 back propagation training epochs. The trained network classifies the two

groups of data with 100 percent accuracy. The number of epochs is 70.59% less than the

result (1700 epochs) obtained by the cascade-correlation algorithm proposed by Fahlman

and Lebiere [5].

Figure 3.7 – continued.

 43

IV. Conclusion

 An upper bound has been presented for the number of neurons in the hidden layer of a

3-layered neural network that can correctly label any N data points of 2 classes. At most

N/2+1 hidden neurons is sufficient to classify N such data points of 2 classes with zero

error. The hidden neurons have hyperbolic tangent activation functions. The data points

are allowed to be m dimensional (m > 1). The application of the theory is demonstrated

with a classification benchmark problem from the literature.

V. References

[1] Z. Qin and Z. Mao, "A new algorithm for neural network architecture study," presented at

Intelligent Control and Automation, 2000. Proceedings of the 3rd World Congress on, 2000.

[2] Y. LeCun, J. Denker & S. Solla, “Optimal Brain Damage,” In D. Touretzky (ed.), Advances in

Neural Information Processing Systems, Morgan Kaufmann, pp. 598-605. San Mateo, CA, 1990.

[3] B. Hassibi, D. G. Stork, “Second order derivatives for network pruning: Optimal Brain Surgeon,”

Proceedings of Neural Information Processing Systems, pp.164-171, 1993.

[4] M. C. Mozer & P. Smolensky, “Skeletonization: A technique for trimming the fat from a network

via relevance assessment,” Advances in Neural Information Processing Systems, pp. 107-115,

1998.

[5] S. E. Fahlman and C. Lebiere, “The cascade-correlation learning architecture,” In Touretzky, D. S.,

editor, Advances in Neural Information Processing Systems, pp. 524-532, San Mateo, 1990.

[6] J. P. Thivierge, F. Rivest, T.R. Shultz, “A dual-phase technique for pruning constructive networks,”

Proceedings of the IEEE International Joint Conference on Neural Networks, pp. 559-564, 2003.

[7] E. Baum, “On the capabilities of multilayer perceptrons,” Journal of Complexity, vol. 4, pp. 193–

215, 1988.

[8] K. Hornik, “Approximation capabilities of multilayer feed forward networks,” Neural Networks,

vol. 4, pp. 251–257, 1991.

 44

[9] I. Ciuca, "On the approximation capability of neural networks using bell-shaped and sigmoidal

functions," presented at IEEE International Conference on Systems, Man, and Cybernetics, 1998.

[10] W. Eppler and H. N. Beck, "Piecewise linear networks (PLN) for function approximation,"

presented at Neural Networks, 1999. IJCNN '99. International Joint Conference on, 1999.

[11] Z. Zhanga, X. Mab and Y. Yang, “Bounds on the number of hidden neurons in three-layer binary

neural networks,” Neural Networks 16, 2003.

[12] K. H. Schindler, M. Sanguineti, “Bounds on the complexity of neural-network models and

comparison with linear methods,” International Journal of Adaptive Control and Signal

Processing. Vol, 17, pp. 179-194, 2003.

[13] G. B. Huang, “Learning Capability and Storage Capacity of Two-Hidden-Layer Feed forward

Networks,” IEEE Transactions on Neural Networks, vol. 14, no. 2, Mar. 2003.

[14] G. B. Huang and H. A. Babri, "Upper Bounds on the Number of Hidden Neurons in Feed forward

Networks with Arbitrary Bounded Nonlinear Activation Functions," IEEE Transactions on Neural

Networks, vol. 9, no. 1, pp. 224-229, 1998.

[15] D. Gao and Y. Ji, “Classification methodologies of multilayer perceptrons with sigmoid activation

functions, ” Pattern Recognition 38 pp. 1469 – 1482, 2005

[16] S. Ridella, S. Rovetta, and R. Zunino, "Circular back propagation networks for classification,"

IEEE Transactions on Neural Networks, vol. 8, pp. 84-97, 1997.

[17] K. K. Lang and M. K. Witbrock, “Learning to tell two spirals apart,” in Proceedings of

Connectionist Models Summer School, San Mateo, CA: Morgan Kaufman, pp. 52-61, 1998.

[18] J. Jia and H. C. Chua, “Solving two-spiral problem through input data representation,” Neural

Networks, 1995. Proceedings., IEEE International Conference on, vol. 1, pp. 132 – 135, 27th

Nov.-1st Dec. 1995.

[19] S. Ridella, S. Rovetta and R. Zunino, “Representation and generalization properties of class-

entropy networks,” IEEE Transactions on Neural Networks, vol. 10, issue 1, pp. 31-47, Jan 1999.

[20] H. C. Fu, Y. L. Lee, C. C. Chiang and H. T. Pao, “Divide-and-conquer learning and modular

perceptron networks,” IEEE Transactions on Neural Networks, vol 12, issue 2, pp. 250 – 263,

March 2001.

 45

[21] C.-C. Yu, Y.-C. Tang, and B.-D. Liu, "An adaptive activation function for multilayer feed forward

neural networks," presented at TENCON '02. Proceedings. 2002 IEEE Region 10 Conference on

Computers, Communications, Control and Power Engineering, 2002.

[22] Q. Xiong, K. Hirasawa, J. Hu, and J. Murata, "Comparative study between functions distributed

network and ordinary neural network," presented at Systems, Man, and Cybernetics, 2001 IEEE

International Conference on, 2001.

[23] B. M. Wilamowski and R. C. Jaeger, "Implementation of RBF type networks by MLP networks,"

presented at Neural Networks, 1996., IEEE International Conference on, 1996.

[24] S. R. Waterhouse and A. J. Robinson, "Classification using hierarchical mixtures of experts,"

presented at Neural Networks for Signal Processing [1994] IV. Proceedings of the 1994 IEEE

Workshop, 1994.

[25] www.mathworld.com

http://www.mathworld.com

 46

CHAPTER IV - Implementation of
Artificial Neural Network for Real Time
Applications Using Field Programmable

Analog Arrays

¹ Advanced Diagnosis Automation & Control Lab,

Department of Electrical and Computer Engineering,

North Carolina State University, Raleigh NC 27695 USA

Phone: +1(919)515-5405

² Department of Electrical and Computer Engineering,

North Carolina State University, Raleigh NC 27695 USA

* Corresponding Author

This chapter is to be submitted to IEEE Transactions on Computational Intelligence. A

short version of this work is accepted for presentation in WCCI2006 (International Joint

Conference on Neural Netwoks, Vancouver, BC, Canada, July 16-21).

Puxuan Dong1*
IEEE Student Member

pdong@ncsu.edu

Mo-Yuen Chow1
IEEE Senior Member

chow@ncsu.edu

Griff Bilbro2
IEEE Senior Member

glb@ncsu.edu

mailto:pdong@ncsu.edu
mailto:chow@ncsu.edu
mailto:glb@ncsu.edu

 47

Abstract

 This paper presents a method of realizing artificial neural networks (ANNs) hardware

implementation using field programmable analog arrays (FPAAs). A simplified

realization for neurons with piecewise linear activation functions is used to reduce the

complexity of the neural network architecture. Several different feedforward neural

networks are implemented using single-chip and multi-chip FPAAs. Anadigm’s

commercially available AN221E04 FPAA chips are adopted as the platform for

simulation and experiments. The FPAA based multi-chip ANN classifies two groups of

data with zero error at a speed of 6.0 Million Connections Per Second (MCPS). The

result is more than 1400 times faster than comparable software implementation. The

ANN architecture is also expandable to perform more complicated tasks by incorporating

more FPAA chips into the implementation. The programmability of the FPAA makes

analog rapid prototyping possible.

Keywords: field programmable analog arrays, neural network hardware, rapid

prototyping

I. Introduction

 Artificial neural networks (ANNs) have been playing an increasingly important role in

areas such as robotics [1], process control [2-3], and motor fault detection [4-6]. Both

software and hardware based approaches have been used for implementing ANNs. In

general, software instructions executed serially cannot take advantage of the inherent

parallelism of ANN architectures. Hardware implementations of neural networks promise

higher speed operation when they can exploit this massive parallelism. Different

 48

hardware implements of neural network have been reported [7-25]. Other than the FPGA

based approaches [10, 11, 18, 24], most of the hardware implementations provide no

programmability. Reconfigurability of an ANN is desirable since many ANN

applications, e.g., robots performing different tasks in different environments may benefit

from different neural network topologies (e.g., different number of hidden nodes). The

best choices for neural network implementations that achieve both high speed and rapid

prototyping appear to be programmable hardware approaches like field programmable

gate arrays (FPGAs) and field programmable analog arrays (FPAAs). Compared to

digital hardware, FPAAs have the advantage of interacting directly with the real world

because they receive, process, and transmit signals totally in the analog domain (without

the need to do A/D, D/A conversions) and are suitable for real time applications. As

reported in [26] on controlling a path-tracking unmanned ground vehicle, an FPAA can

easily outperform the digital hardware by processing the signal 8,000 times faster. Other

FPAA applications, including a voltage-to-frequency converter and a Hodgkin-Huxley

neuron simulator, have been reported [27-28].

 Section II of this paper proposes a simple realization of layered neural networks

appropriate for FPAAs. Section III applies the neural network architecture simplification

method to a single-chip FPAA based neural network to realize the XOR gate with can be

converted to other 3 logic gates with very little change of the network architecture.

Section IV applies the neural network architecture simplification method to a multi-chip

FPAA based neural network to classify the elements of a data set containing two groups

of data. Section V analyzes the speed performance of the FPAA implementing the ANN

by comparing it to software implementation. Section VI gives some concluding remarks.

 49

II. Neural Network Architecture Simplification in FPAA

A. The Piecewise Linear Activation Function

 In the ANN, the output of a neuron is computed by applying its activation function to a

weighted sum of its inputs. Some activation functions such as hyperbolic tangent and

sigmoid are expensive for digital hardware implementation. To reduce the cost for

implementation, the piecewise linear activation function has been used to approximate

sigmoid activation function [29]. We chose the Piecewise Linear (PL) activation function

for the neurons in the hidden layer of our neural network architecture because it is

naturally suited for applying FPAA hardware to the problem of interest (to be described

in later sections).

 A neural network must be trained to reflect or to generalize a desired relationship

between inputs and outputs. During the back propagation training process in a neural

network, the error signal at the output of the neuron j at iteration n (i.e., presentation of

the nth training example) is defined by

)()()(nyndne jjj −= , (1)

where)(nd j is the desired response of neuron j and is used to compute)(ne j ,)(ny j is to

the function signal appearing at the output of neuron j at iteration n. Let ()•jϕ be the

activation function; then the synaptic weight)(nw ji∆ change is:

)()()(nynnw ijji ηδ=∆ , (2)

where

 50

()() () ()j j j jn e n v nδ ϕ ′= , (3)

is called the local gradient and η is the learning rate. In equation (3),

)()()(
0

nynwnv i

m

i
jij ∑

=

= , (4)

and jiw denotes the synaptic weight connecting the output neuron i (there are m inputs)

to the input of neuron j at iteration n. The PL activation function is given by









≤+

<+<+

≥+

=

−−

+−

++

www
wwww

www
x

T
l

T
l

T
l

T
l

j

0

00

0

,

,
,

)(

xw
xwxw

xw
ϕ , (5)

where 1 2[, ,...]T d
dx x x R= ∈x is the input vector and 3

10],,,...,[+
−+ ∈= d

d
T Rwwwwww ,

with 1+=+w and 1−=−w , is the parameter vector that characterizes the node function.

Figure 4.1 shows the 3D view of input-output relationship of a neuron of 2 inputs with

piecewise linear activation function.

 Although the PL activation function is less popular than the hyperbolic tangent

activation function, the piecewise nature has attractive features such as ease of

implementation and amenability to VLSI implementation [30-31]. It is also simpler to

find ()'jϕ • in equation (5) since it requires only addition, multiplication and comparison

operations in contrast to the trigonometric function that must be evaluated for the

hyperbolic tangent function.

 51

Figure 4.1. The piecewise linear (PL) activation function for [1,1]T =w in two dimensions.

B. Implementing the PL Function on FPAA

 This section develops a realization of the standard PL activation function that uses two

gain amplifier functional blocks. A standard PL function has the following form:









+≥+
+<≤−

−<−
=

11
11

11
)(

x
xx

x
xPL . (6)

 In a FPAA circuit which saturates symmetrically at V+ and V-, where

0,0 00 <−=>= −+ VVVV , a standard PL activation function can be obtained with two

cascade gain stages 1G and 2G if V0 >1, where 01 2
VVVG =

−
= −+ and

0
2

12
VVV

G =
−

=
−+

(which will be explained in the following paragraphs). Note that the product of 1G and

G2 is unity and 21 1 GG >> .

 Since the circuit saturates at V+ and V-, the relationship between input voltage x and

output voltage F1(x) of a “through” circuit is:

 52









≥
<≤−

−<−

=

00

00

00

1)(
VxV

VxVx
VxV

xF . (7)

 A gain stage 1G after F1(x) establishes the following relationship between the new

output F2(x) and x:









≥
<≤−×

−<−
=×=

1
11

1
)()(

0

1

0

112

xV
xxG

xV
GxFxF . (8)

 Adding another gain stage 2G after F2(x) gives the following relationship between

F3(x) and x:









+≥+
+<≤−

−<−
=×=

11
11

11
)()(223

x
xx

x
GxFxF . (9)

 Thus the standard piecewise linear activation function is obtained by inserting these

two particular gain stages between the input and the output of a through circuit. Figure

4.2 shows the three functions (with using V0 = 2.5).

 53

Figure 4.2. Obtaining the PL function using two gain stages.

C. Merging the Gain Stages of Cascade Blocks on the FPAA

As shown in Figures 3 and 4, the neural network can be simplified further by merging

the two gain blocks 1G and 2G into the input and output weights of the neurons. 1G

and 2G form the standard piecewise linear transfer function for neuron j. The neural

network architecture in Figure 4.3 can be simplified by multiplying every weight of

neuron j by 1G and multiplying 1kw by 2G as shown in Figure 4.4. As a result, addition

and multiplication are the only two operations required for a neural network

implementation on the FPAA. The addition operation is performed by inverting sum

amplifier blocks. The weights that a neuron uses to compute the weighted sum of its

inputs are realized as the gain parameters of the inverting sum amplifiers on the FPAA.

These weights are obtained from an offline training procedure using

MATLAB/SIMULINK software to accurately simulate the network topology and to

optimize the weights. The optimal weights are downloaded to the Anadigm FPAA chips

for the corresponding real-time operation, such as controlling a mobile robot or, in this

 54

paper, classifying data points.

Figure 4.3. Neural network architecture with unmerged gain blocks.

Figure 4.4. Neural network architecture with merged gain blocks.

 Note that merging 1G into wji will not change the input to 2G in Figure 4.4. In the

 55

meantime, merging 2G into wk1 will not change the input to the summing junction of kth

neuron. The merging procedure for 1G implemented in FPAA is depicted in Figure 4.5.

The circuits shown reflexes the FPAA circuits except that resistors are replaced by

equivalent switched capacitors and signals are differential inside the actual FPAA. The

top circuit is the one before merging and the bottom one is after merging.

 This section explains why voltage saturation at the upper and lower limits of circuit

does not invalidate our merging simplification. In the circuits shown in Figure 4.5, 1G is

equal to 4/5 RR . In all cases the output of the Op Amps saturates at 0v± (the Op Amps are

assumed to be ideal).

1

3

2

OUT

+

-

R1/(R5/R4)

1

3

2

OUT

+

-

Inverting Sum Amplifier G1

1

3

2

OUT

+

-

Vout1

Vout2

V1

R5

V2

R3

R6

V2

V1

R2/(R5/R4)

1

3

2

OUT

+

-

R1 R6

R2

R3

R4

Figure 4.5. Simplifying the FPAA circuit by merging G1 into the inverting sum amplifier.

 The output Vout1 of the circuit with unmerged gain blocks is

 56















−≤+−

<+<−+−

≥+

=

1)(

1)(1),(

1)(,

2

2

1

1
30

2

2

1

1
3

2

2

1

1

4

35

2

2

1

1
30

1

R
V

R
VRV

R
V

R
VR

R
V

R
V

R
RR

R
V

R
VRV

Vout
. (10)

 The output Vout2 of the circuit with merged gain blocks is















−≤+−

<+<−+−

≥+

=

0
2

2

1

1

4

35
0

0
2

2

1

1

4

35
0

2

2

1

1

4

35

0
2

2

1

1

4

35
0

2

)(,

)(),(

)(,

V
R
V

R
V

R
RRV

V
R
V

R
V

R
RR

V
R
V

R
V

R
RR

V
R
V

R
V

R
RRV

Vout
 . (11)

 Since
0

4

5 V
R
R

= , thus 1)(
2

2

1

1
3 ≥+

R
V

R
VR is equivalent to

0
2

2

1

1

4

35)(V
R
V

R
V

R
RR

≥+ ,

1)(1
2

2

1

1
3 <+<−

R
V

R
VR is equivalent to

0
2

2

1

1

4

35
0)(V

R
V

R
V

R
RRV <+<− and 1)(

2

2

1

1
3 −≤+

R
V

R
VR is

equivalent to 0
2

2

1

1

4

35)(V
R
V

R
V

R
RR

−≤+ . Thus the two circuits are equivalent.

 Similar proof can be applied to the merging of G2 into the subsequent functional blocks

of the FPAA.

III. Logic Gates Implementation Using Single-chip FPAA

 This section applies the network architecture simplification method to solve the classic

neural network benchmark problem: XOR problem. Moreover, the versatility of FPAA

chips is shown by the implementation of other three logic gates XNOR, AND or OR gate

 57

with slight change of network parameters and/or circuit configuration for the XOR gate.

Speed performance of the implementation is also addressed.

 The XOR problem is a classic problem for neural networks since it is a simple, non-

linearly separable problem that can be solved by neural networks.

 The piece-wise linear transfer function was chosen for the neural network because it

can be easily realized by inverting gain stages in two low cost Configurable Analog

Modules (CAMs). The circuit configuration can be further simplified by merging the two

gain modules into inverting summer modules required by the neural network.

 A 2-2-1 feedforward neural network topology was trained in MATLAB for XOR,

XNOR, AND and OR gates, and the 4 resulting sets of weights were stored for

downloading.

 The FPAA used in our simulation and experiments is the AN221E04 FPAA from

AnadigmTM Inc. The AN221E04 is a dynamically reconfigurable analog chip composed

of op-amps, comparators and switched programmable capacitors. FPAA technology

enables rapid-prototyping of analog circuits by programming the configurable analog

modules supported by the chip, such as gain blocks, inverters, summing inverters, adders,

multipliers, integrators, quadratic/linear analog filter blocks, and sine wave generators.

With the aid of design software AnadigmDesigner 2, the FPAA can translate complex

analog circuits into the simple set of system/block level design instead of transistor level

design, and thus gives designers the analog equivalent of an FPGA. Moreover, it places

analog functions under real-time software control within the system.

 58

 Figure 4.6, 4.7, 4.8 and 4.9 show the actual circuit configurations and simulation results

for the XOR, XNOR, AND and OR gates. Note that the circuit configuration of XOR is

same as OR gate as well as the identity of the circuit configurations between XNOR and

AND gate. The two types of circuit configurations differ by only one analog functional

block. Each network has its own set of parameters. The parameters are obtained by

training the network in MATLAB. Thus it is easy to change the circuit from one type of

logic gate to any of other three gates.

Figure 4.6. XNOR-gate FPAA circuit (left) and XOR-gate FPAA circuit (right)

 59

Figure 4.7. Simulation results of XNOR (channel 2) and XOR gate (Channel 4). Channel 1 and 3 are two

inputs.

Figure 4.8. AND-gate FPAA circuit (left) and OR-gate FPAA circuit (right)

 60

Figure 4.9. Simulation results of AND (channel 2) and OR gate (Channel 4). Channel 1 and 3 are two

inputs

 The measured time delay between input and output for the XOR gate is 0.2

microseconds. Our 3-layer neural network has 6 connections so the neural network has

the performance of 6/0.2 = 30 Million Connections per Second (MCPS) [33].

IV. Multi-chip FPAA Based Neural Network Classifying 2 Groups of Data

A. The Two Classes of Data

 The 8-point version of the “alternate labels” problem [32] is chosen to as an example to

demonstrate the speed advantage of using FPAA implementation. The problem has two

classes of data points. Let the two class be A and B. Each class has 4 data points

alternating with the 4 data points of the other group in two dimensions. Each data point is

represented in the usual way as an ordered pair of numbers as shown in Figure 4.10; we

call the elements of the nth pair xn and yn (n = 1, 2, …, 8). All 8 data points have the same

the y values thus y1 = y2 = …= y8. “a” (represented by squares) and “b” (represented by

 61

circles) are two different real numbers representing the two classes. Without loss of

generality, we can assume that the interval between successive xn’s is constant, say 0.4,

and that the values of all yn are the same, say 1.0, as shown in Table I. A feedforward

neural network with several neurons in the hidden layer can generate the decision

boundaries.

Figure 4.10. Seven decision boundaries separating 8 data points of 2 classes.

B. Classifying the Two Groups of Data

 Table 4.1 shows the input and output values of the 8 data points used in our simulation

and experiment.

Table 4.1. Two classes of data: class a = 0 and class b = 1.

Input x 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8

Input y 1 1 1 1 1 1 1 1

Output z 0 1 0 1 0 1 0 1

 The neural network needs to implicitly generate the desired decision boundaries based

the input data pairs in order to make proper classification. To classify these 8 data points,

a 2-5-1 neural network is trained using the training data in Table I in MATLAB to obtain

the weights. The neural network has 5 neurons in the hidden layer which has the PL

 62

activation functions and one output neuron to construct a linear combination of the

outputs of the 5 hidden neurons. Before the neural network is mapped onto the FPAA, it

is simulated in MATLAB/SIMULINK to verify the separation capabilities of the network.

As a result, the neural network achieves 100 percent classification accuracy as shown in

Figure 4.11 with the output (z) threshold chosen to be 0.5.

 Figure 4.11. The output of the trained neural network view in x-z plane at y=1.

(Simulated in MATLAB/SIMULINK from the MathWorks, Natick, MA, USA)

C. Simulation and Experimental Results

In this section we map the trained neural network onto the FPAA devices.

The 2-5-1 neural network with parameters obtained by the MATLAB/SIMULINK

model was mapped onto the FPAA programmed using only Inverting Gain Amplifier

functional blocks (represented by “Inv G” in the Figure) and Inverting Sum Amplifier

functional blocks (represented by “Inv Sum” in Figure 8). The element “b” in the figure

is the trained bias input for each neuron. We programmed the Inverting Sum Amplifier to

 63

accept at most 3 inputs; and several of the Inverting Sum Amplifiers are cascaded

between the hidden layer and the output layer to realize the sum operation for the output

neuron. The accumulated sign-flips of Inverting Gain Amplifiers are correctly accounted

for by additional inversions when necessary. For example, in Figure 4.12, the trained

weight for the Y input to the first neuron in the hidden layer has the negative sign but

there are 4 Inverting Sum Amplifiers between the input Y and the final output which

provides a positive sign; thus an Inverting Gain Amplifier is needed in the signal path to

generate the negative sign. The exact location of the Inverting Gain Amplifier in the

signal path is chosen based on the available programming resources of each chip.

Figure 4.12. Constructing a 2-5-1 neural network using configurable analog modules of the FPAA.

 Five AN221E04 chips are integrated together to realize the neural network as shown in

Figure 4.13. The network is decomposed into five modules as shown in Figure 4.12 and

each module is encapsulated in one chip. The simulation result using AnadigmDesigner 2

is shown in Figure 4.14. Input Y is a test signal of 1v constant voltage and Input X is the

 64

triangular voltage input peaking at 3v. Setting the output threshold at 0.5v, the network

classifies the data with 100% accuracy. The experimental result showing more details of

the classification is shown in Figure 4.15, which is the oscilloscope screen shot of the

experiment result.

Figure 4.13. The multi-chip FPAA based neural network programmed using software AnadigmDesigner 2.

 65

Figure 4.14. The simulation results of neural network classifying two classes of data.

Figure 4.15. Experimental results of neural network classifying two classes of data.

 66

 As shown in Figure 4.15, the neural network trained from a 2-5-1 neural network

separates the two classes of data into 2 regions and makes correct classifications of all

data points with the threshold chosen to be 0.5v. We would also like to evaluate the speed

performance for our multi-chip neural network using the standard neural network

hardware measuring criteria: Millions of Connections Per Second (MCPS) [33]. The

measured delay from the network input to the network output is 2.5 microseconds and

there are 15 connections, yielding 6.0 MCPS in actual measured speed performance.

Figure 4.16 shows the 5 FPAA evaluation boards for the experiments.

Figure 4.16. The five FPAA evaluation boards for the experiment.

V. Analysis of Speed Performance

To compare the speed performance of neural network implementation using FPAA to

the software implementation (MATLAB on an Intel Celeron 2 GHz machine), neural

networks with 4 architectures: 2-2-1, 2-3-1, 2-4-1 and 2-5-1 are implemented using both

FPAA and the software. The measured implementation time of the neural network (time

 67

delay from the input to the output of the network) of all four architectures is 2.5

microseconds (error bound is below 0.5%) on the FPAA, independent of the number of

neurons in the hidden layer. One the other hand, the software implementation time is

more than 3.6 milliseconds. As a result, the FPAA implements the neural network more

than 1400 times faster than the software implementation. Figure 4.17 shows the

relationship between the software implementation time and the number of the neurons in

the hidden layer of the network. It is shown that adding neurons into the hidden layer

increases the overall software implementation time. This is because software instructions

that are executed serially cannot take advantage of the inherent parallelism of ANN

architectures as FPAA does. This indicates that the speed difference between two

implementation approaches become more obvious with the increase of the number of the

hidden nodes. Note the experiment results are only to qualitatively show how the

implementation time is affected with different neuron numbers instead of showing the

exact functional relationship between software implementation time and the neuron

numbers. All in all, the FPAA implementation of the neural network has superior

performance over software implementation.

 68

Figure 4.17. Neural network execution time by software versus number of hidden nodes.

VI. Discussion on the Scalability of the Structure

The structure is scalable for the neural network which has same number of

inputs/outputs and more neurons in the hidden layer. More summer blocks are required to

obtain the final output. The positions of inverting gain blocks may need to be adjusted

according the signs of the weights. An example of scaling is shown in Figure 4.18.

 69

Figure 4.18. Scalability of the FPAA based ANN

VII. Conclusion

This paper demonstrates the hardware implementation a feedforward artificial neural

network using low-cost commercially available FPAA chips. We proposed a simplified

realization for neurons with piecewise linear activation functions and thereby reduced the

complexity of the neural network architecture correspondingly. Our final ANN requires

only two types of analog function blocks: the Inverting Gain Amplifier and the Inverting

Sum Amplifier. In this effort, we did not require the many other functional blocks

available on the Anadigm FPAA chip, but these additional resources can be combined

with ANNs for conventional signal processing at the input or output of an ANN.

 70

Demonstrated with simulation and experimental results, a single chip FPAA is

programmed to realize 4 different logic gates with similar circuit configurations;

moreover, a multi-chip FPAA circuit correctly performs a classification task at the speed

of 6.0 MCPS. We used 5 chips to realize the 2-5-1 ANN for the classification task, which

suggests more complicated network architectures can be realized by integrating more

FPAA chips. We found that FPAA-based ANNs are convenient to implement fast to

operate and scalable. We conclude that the proposed approach to realizing ANNs is

suitable for real time applications.

VIII. References

[1] F. L.Lewis, “Neural-network control of robot manipulators,” IEEE Expert, pp. 64-75, June 1996.

[2] J. Teeter and M.-Y. Chow, “Application of Functional Link Neural Network to HVAC Thermal

Dynamic System Identification,” IEEE Transactions on Industrial Electronics, vol. 45, no. 1, pp. 170-

176, 1998.

[3] M.-Y. Chow and J. Teeter, “A Knowledge-Based Approach for Improved Neural Network Control of a

Servomotor System with Nonlinear Friction Characteristics,” Mechatronics, vol. 5, no. 8, pp. 949-962,

1995.

[4] B. Ayhan, M.-Y. Chow, and M.-H. Song, “Monolith and Partition Schemes with LDA and Neural

Networks as Detector Units for Induction Motor Broken Rotor Bar Fault Detection,” KIEE

International Transactions on Electrical Machinery and Energy Conversion Systems, June 1, 2005

(invited).

[5] M.Y. Chow, “Methodologies of Using Artificial Neural Network and Fuzzy Logic Technologies for

Motor Incipient Fault Detection,” World Scientific Publishing Co. Pte. Ltd., 1998.

[6] M.-Y. Chow, G. Bilbro, and S. O. Yee, “Application of Learning Theory to a Single Phase Induction

Motor Incipient Fault Detection Artificial Neural Network,” International Journal of Neural Systems,

vol. 2, no. 1&2, pp. 91-100, 1991.

 71

[7] M. Holler, S. Tam, H. Castro and R. Benson, “An electrically trainable artificial neural network

(ETANN) with 10240 `floating gate' synapses ,” Neural Networks, 1989. IJCNN, International Joint

Conference on, pp. 191 - 196 vol.2, 18-22 June 1989.

[8] S. Tam, B. Gupta, H. Castro and M. Holler, “Learning on an Analog VLSI Neural Network Chip,”

Proceedings of the IEEE International Conference on Systems, Man & Cybernetics, 1990.

[9] Y. Maeda, H. Hirano and Y. Kanata, “AN Analog Neural Network Circuit with a Learning Rule via

Simutaneous Perturbation,” Proceedings of the IJCNN-93-Nagoya, pp. 853-856, 1993.

[10] S. S. Kim and S. Jung, "Hardware implementation of a real time neural network controller with a DSP

and an FPGA," presented at Robotics and Automation, 2004. Proceedings. ICRA '04. 2004 IEEE

International Conference on, 2004.

[11] W. Qinruo, Y. Bo, X. Yun, and L. Bingru, "The hardware structure design of perceptron with FPGA

implementation," presented at Systems, Man and Cybernetics, 2003. IEEE International Conference

on, 2003.

[12] S. B. Yun, Y. J. Kim, S. S. Dong, and C. H. Lee, "Hardware implementation of neural network with

expansible and reconfigurable architecture," presented at Neural Information Processing, 2002.

ICONIP '02. Proceedings of the 9th International Conference on, 2002.

[13] H. Withagen, “Implementing Backpropagation with Analog Hardware,” Proceedings of the IEEE

ICNN-94-Orlando Florida, pp. 2015-2017, 1994.

[14] T. Szabo, L. Antoni, G. Horvath, and B. Feher, "A full-parallel digital implementation for pre-trained

NNs," presented at Neural Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS

International Joint Conference on, 2000.

[15] S. Popescu, "Hardware implementation of fast neural networks using CPLD," presented at Neural

Network Applications in Electrical Engineering, Proceedings of the 5th Seminar on, 2000.

[16] B. Girau, "Digital hardware implementation of 2D compatible neural networks," presented at Neural

Networks, Proceedings of the IEEE-INNS-ENNS International Joint Conference on, 2000.

[17] H. Abdelbaki, E. Gelenbe, and S. E. EL-Khamy, "Analog hardware implementation of the random

neural network model," presented at Neural Networks, Proceedings of the IEEE-INNS-ENNS

International Joint Conference on, 2000.

 72

[18] J. Zhu, G. J. Milne, and B. K. Gunther, "Towards an FPGA based reconfigurable computing

environment for neural network implementations," presented at Artificial Neural Networks, Ninth

International Conference on, 1999.

[19] J. Liu and M. Brooke, "A fully parallel learning neural network chip for real-time control," presented

at Neural Networks, International Joint Conference on, 1999.

[20] J. Liu and M. Brooke, "Fully parallel on-chip learning hardware neural network for real-time control,"

presented at Circuits and Systems, Proceedings of the IEEE International Symposium on, 1999.

[21] E. J. Brauer, J. J. Abbas, B. Callaway, J. Colvin, and J. Farris, "Hardware implementation of a neural

network pattern shaper algorithm," presented at Neural Networks, International Joint Conference on,

1999.

[22] P. M. Engel and R. F. Molz, "A new proposal for implementation of competitive neural networks in

analog hardware," presented at Neural Networks, Proceedings. 5th Brazilian Symposium on, 1998.

[23] J. Tang, M. R. Varley, and M. S. Peak, "Hardware implementations of multi-layer feedforward neural

networks and error backpropagation using 8-bit PIC microcontrollers," presented at Neural and Fuzzy

Systems: Design, Hardware and Applications, IEE Colloquium on, 1997.

[24] D. S. Reay, T. C. Green, and B. W. Williams, "Field programmable gate array implementation of a

neural network accelerator," presented at Hardware Implementation of Neural Networks and Fuzzy

Logic, IEE Colloquium on, 1994.

[25] A. Achyuthan and M. I. Elmasry, "Mixed analog/digital hardware synthesis of artificial neural

networks," Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 13,

pp. 1073-1087, 1994.

[26] P. Dong, G. Bilbro, and M.-Y. Chow, “Controlling a Path-tracking Unmanned Ground Vehicle with a

Field-Programmable Analog Array,” IEEE/ASME International Conference on Advanced Intelligent

Mechatronics, Monterey, CA, 24-28 July, 2005.

[27] P. I. Yakimov, E. D. Manolov, and M. H. Hristov, "Design and implementation of a V-f converter

using FPAA," presented at Electronics Technology: Meeting the Challenges of Electronics Technology

Progress, 2004. 27th International Spring Seminar on, 2004.

 73

[28] M. Sekerli and R. J. Butera, "An implementation of a simple neuron model in field programmable

analog arrays," presented at Engineering in Medicine and Biology Society, 2004. EMBC 2004.

Conference Proceedings. 26th Annual International Conference of the, 2004.

[29] K. Basterretxea, J. M. Tarela, and I. del Campo, "Approximation of sigmoid function and the

derivative for hardware implementation of artificial neurons," Circuits, Devices and Systems, IEE

Proceedings [see also IEE Proceedings G- Circuits, Devices and Systems], vol. 151, pp. 18-24, 2004.

[30] A. Atiya, E. Gad, S. Shaheen, and A. El-Dessouky, "On training piecewise linear networks," presented

at Neural Networks for Signal Processing IX, Proceedings of the IEEE Signal Processing Society

Workshop, 1999.

[31] A. Bermak and A. Bouzerdoum, "VLSI implementation of a neural network classifier based on the

saturating linear activation function," presented at Neural Information Processing, Proceedings of the

9th International Conference on, 2002.

[32] S. Ridella, S. Rovetta, and R. Zunino, "Circular backpropagation networks for classification," Neural

Networks, IEEE Transactions on, vol. 8, pp. 84-97, 1997.

[33] E. van Keulen, S. Colak, H. Withagen, and H. Hegt, "Neural network hardware performance criteria,"

presented at Neural Networks, IEEE World Congress on Computational Intelligence, 1994 IEEE

International Conference on, 1994.

 74

CHAPTER V - Controlling a Path-
tracking Unmanned Ground Vehicle with

a Field-Programmable Analog Array

¹ Advanced Diagnosis Automation & Control Lab

Department of Electrical and Computer Engineering,

North Carolina State University, Raleigh NC 27695 USA

Phone: +1(919)515-5405

² Department of Electrical and Computer Engineering,

North Carolina State University, Raleigh NC 27695 USA

* Corresponding Author

This chapter was accepted to IEEE/ASME International Conference on Advanced

Intelligent Mechatronics (AIM 2005), 24–28 July 2005, Monterey, CA.

Puxuan Dong1*
IEEE Student Member

pdong@ncsu.edu

Mo-Yuen Chow1
IEEE Senior Member

chow@ncsu.edu

Griff Bilbro2
IEEE Senior Member

glb@ncsu.edu

mailto:pdong@ncsu.edu
mailto:chow@ncsu.edu
mailto:glb@ncsu.edu

 75

Abstract

 Unmanned ground vehicle (UGV) path-tracking has been an important topic in

mechatronics real-time applications. This paper describes and compares the

implementation and performance of path-tracking unmanned ground vehicle using a field

programmable analog array (FPAA) and conventional digital microcontroller. The FPAA

AN10E40 is a general-purpose, digitally reconfigurable analog signal-processing chip. Its

current commercial applications center on signal conditioning and base-band analog

signal processing and rapid prototyping. This paper will show that the AN10E40 can also

readily implement a control system for a path-tracking UGV. Using PI control for the

path tracking, the FPAA controlled UGV made about 38% fewer tracking error with 22%

faster traveling speed than the digital microcontroller (MC68HC11) controlled UGV due

to the fast processing time of the FPAA. The results indicate the great potential of using

FPAA for real-time control in mechatronics systems.

I. Introduction

 Unmanned ground vehicle (UGV) path-tracking is an important topic in mechatronics,

robotics and automation. Although much research work has been done in UGV path-

tracking [1-5], controlling the UGV with programmable analog controller is presented for

the first time in our paper. In [2], Koh and Cho formulated a path-tracking problem for an

unmanned ground vehicle, which moves along a pre-defined path. Tipsuwan and Chow

proposed the use of gain scheduling to optimally control a mobile robot over IP network

[3]. Kanayama and Fahroo proposed a steering function as a line tracking method for

nonholonomic vehicles [4]. Besides the research work dedicated to this area, there are

 76

regular competitions of path-tracking UGVs held by several organizations including

Dallas Personal Robotics Group (DPRG) and Chicago Area Robotics Group (Chibotics).

Most of today’s path-tracking UGVs at these competitions use off-the-shelf digital

microcontrollers such as Atmel AVR microprocessor, PIC16C74A microprocessor,

PIC16F84 microprocessor, or the Motorola MC68HC11 processor. Digital

microcontrollers require analog-to-digital and digital-to-analog signal processing. No

field programmable analog controller for path-tracking UGVs has been reported. The

FPAA, a new programmable analog technology, has potential to play a major role in

future unmanned ground vehicle real-time applications. The FPAA AN10E40 is a

general-purpose, digitally reconfigurable analog signal-processing chip. Its current

commercial applications center on signal conditioning and base-band analog signal

processing and rapid prototyping. With its dynamic reconfigurability and fast analog

signal processing speed, FPAA can be used in real time adaptive control such as [6]. The

FPAA is chosen as controller for the path-tracking UGV because the signal processing is

totally in the analog domain. This has the advantage of producing simpler systems than

are possible with digital microcontrollers. Moreover, the convenient software design

environment provided with FPAA evaluation kits and its dynamic reconfigurability make

it attractive for developing control systems. FPAAs enable many popular controllers

including P, PI, PD and PID to be conveniently and quickly realized. In FPAA-based

systems the signal remains in the analog domain at all times, but the configuration of a

FPAA chip is digital and its open-ended functionality is programmable. The resulting

designs require minimum hardware, are convenient to prototype and refine, and are

highly reliable [7].

 77

 The task in this paper is a simple path tracking problem with reflective sensors and 2

DC motors. Although DC motor control has been investigated intensively by many

researchers [8-11], FPAA is employed as the controller for the first time in our paper. For

our system, two FPAA-based PI controllers were designed for each DC motor of the

UGV that drives each wheel, to control the UGV to move along a predefined path as

shown in Figure 5.1 using photomicrosensors and control implementation performed by

FPAA. The path is composed of three half-circles and two quarter-circles connected by

straight lines. The UGV will start from one point on the straight line and travel along the

whole loop and return to its starting point. The goal of the control is to make the UGV

track the path as accurate as possible and run as fast as possible. The UGV will start from

one point on the track and run along the track. The performance of the FPAA controlled

UGV is evaluated based on two aspects: the traveling time C1 and the error rate C2. The

traveling time is the time for the UGV to run along the path until it reaches back to its

starting point. The definition of the error rate will be described in section III.

Figure 5.1. UGV and the path to track. Total length of the path is 380.92cm

Optical Sensors

 78

II. Design

A. The Unmanned Ground Vehicle

 The unmanned ground vehicle, as shown in Figure 5.2, used in the Advanced

Diagnosis, Automation, and Control (ADAC) lab of North Carolina State University is a

UGV which was previously controlled by MC68HC11 microcontroller embedded in

Handy Board. The Handy Board is a commercially available digital microcontroller

system originally developed at MIT for educational uses [12]. In addition to the control,

the UGV has optical sensors, an H-bridge circuit for driving DC motors, two DC motors

and the power supply. This paper will compare the UGV path-tracking performance by

using the MC68HC11 and by using the FPAA AN10E40.

Figure 5.2. UGV used in ADAC lab at North Carolina State University.

B. System Architecture

 The path-tracking UGV estimates its track position with optical sensors mounted at its

front end as shown in Figure 5.3. The overall path-tracking closed-loop control system is

shown in Figure 5.4. The FPAA calculates the required control voltage for the DC

motors, and sends control signals to an H-bridge circuit, which is used as an interface

 79

between the FPAA and the DC motors [13]. The FPAA was configured to output a PWM

voltage signal in the range from 0 to 5v in order to comply with the input specifications

of the H-bridge circuit. The five optical sensors sense the relative position of the UGV

with respect to the track. These optical sensor signals were sent to the FPAA from which

it produces signals for controlling the DC motors to adjust the positions of the UGV with

respect to the track.

Figure 5.3. Birdseye view of the UGV.

Optical
Sensors

 80

Figure 5.4. System architecture of the FPAA - controlled unmanned ground vehicle.

 The controller selected for the UGV is AN10DS40 Evaluation and Development

System for AN10E40 Field Programmable Analog Array as shown in Figure 5.5.

Figure 5.5. The AN10DS40 Evaluation and Development System.

 81

 The AN10E40 FPAA is the square chip at the center of the board. The rest of the board

facilitates the development. There is no encoder or microcontroller inside the AN10E40

chip. The chip itself is a stand-alone system, and requires only a 5V external power

supply and an EEPROM for non-volatile memory for power-up. The array is supported

by 13 input/output cells as part of its monolithic integrated circuit.

 After programming a control algorithm using AnadigmDesigner, the control

configuration can be downloaded to the chip directly or to the flash memory on

evaluation board through a RS232 cable. The on-board microcontroller provides four

FPAA configurations in its flash memory. The development board allows any of four pre-

programmed alternative configurations for the AN10E40 to be loaded after powered up

from flash memory by pushing buttons S1-S4, as labeled in Figure 5.6. The sensors used

in the UGV are EE-SF5 Reflective Photomicrosensors manufactured by OMRON. The

internal circuit is showed in Figure 5.6.

Figure 5.6. Internal circuit of photomicrosensors manufactured by OMRON.

A – Anode, K – Cathode, C – Collector and E – Emitter

 82

 A H-Bridge circuit is used as the interface between the FPAA and the DC motors. The

H-bridge is specifically designed to drive inductive loads such as relays, solenoids, dc

and bipolar stepping motors [14] while FPAA cannot directly drive DC motors by itself.

H-Bridges allow forward and reverse motor control by closing one or the other pair of

diagonally opposing switches.

As shown in Figure 5.7, a separate supply voltage connected to VCC1 is provided for

the logic input circuits to minimize device power dissipation. Supply voltage VCC2 is

used for the output circuits.

Figure 5.7. The H-Bridge circuit (L293D) and its function table for each driver.

 We have two 12VDC Reversible Gear Head Motors [15] to drive the two wheels of the

UGV. The H-bridge circuit drives the two DC motors simultaneously. Figure 5.8 shows

the diagram of the H-bridge circuit connecting to the two DC motors.

 83

Figure 5.8. Connection between the H-bridge circuit (L293D) and DC motors.

 To turn the motor, a high (+5 volts or logic 1) is sent to the 1A line while a low (0 volts

or logic 0) is delivered to the 2A line. To turn the motor in the opposite direction, a high

is sent to the 2A line while a low is sent to the 1A line. The other motor is controlled

similarly based on the 4A and 3A inputs.

 The motor runs at full speed when logic 1 is applied to 1A and logic 0 to 2A. When

both motors run at full speed the measured UGV’s maximum speed is 10.2 cm/sec. We

controlled the motor speed by adjusting the duty cycle of a conventional pulse width

modulation (PWM) signal [16], which the FPAA can conveniently be configured to

synthesize.

C. The Control System

 The path selected for tracking is in the Advanced Diagnosis, Automation, and Control

(ADAC) Laboratory of Electrical and Computer Engineering Department at North

Carolina State University as shown in Figure 5.9. The width of the track is generally less

than the distance between the left edge of sensor 1 and the right edge of sensor 5 but

 84

more than the distance between the right edge of sensor 1 and the left edge of sensor 5.

Let the track width be W, then it has the following relationship to L1 and L2 as shown in

Figure 11: L1 < W < L2.

Figure 5.9. Track for the unmanned ground vehicle testing.

Figure 5.10. The unmanned ground vehicle with 5 optical sensors mounted at its front end.

 85

 The error processing here refers to the computing of the errors in the control loop. The

unmanned ground vehicle has 5 sensors to sense its position with respect to the path.

When any sensor is fully on the black track it outputs a nominal 5v signal; when it fully

off the track (on white background) it outputs a nominal 0v. When partial sensor is the

off the track the output voltage will be between 0 and 5v which is proportional to the area

of the sensor that is on the track. The sensors are labeled from left to right as S1, S2, S3,

S4 and S5 as shown in Figure 10. The voltage output of each sensor is represented by V1,

V2, V3, V4 and V5.When the middle sensor S3 is centered on the track and sensor line is

perpendicular to the tangent line of the track, the voltage outputs of S1 and S5 are the

same and sensors S2, S3 and S4 are at 5v.This ideal position is shown in Figure 5.10 and

requires no position correction.

 The speed of DC motors are controlled by PI gain according to the signals of optical

sensors. A derivative control could be used to decrease the overshoot of a system but for

our system the output signal updating of the controller is much faster than the mechanical

response of the UGV so there is very little overshoot resulted. Thus D component is not

included in our design. When the voltage difference ∆V1,5 between S1 and S5 is 0, the

DC motors are configured to run at full speed and S1 and S5 are in symmetrical positions

on the track. When S1 and S5 are in asymmetrical positions of the track as the right

picture of Figure 5.11 shows, there will be a voltage difference between the outputs of S1

and S5 that is used to regulate the speed of the DC motors.

 86

Figure 5.11. Sensor S1 and S5 are in asymmetrical positions of the track.

 The control is closed-loop as shown in Figure 5.12.

Figure 5.12. The closed-loop control of the system.

 87

R is the reference signal that corresponds to the zero voltage in our design. Y is the

actual output that corresponds to the voltage difference between sensor 1 and sensor 5:

5,151 VVVY ∆=−= (1)

 Y is equal to zero volts when the UGV is right on the path. The e represents the error

where

YRe −= (2)

The error e is sent to the PI controller that also produces the control signal u1 and u2

for the DC motors. For the right motor, the control signal u subtracted from 5v is equal to

the proportional gain (pK) times the magnitude of the error plus the integral gain (IK)

times the integral of the error:

5- dteKeKu Ip ∫+= (3)

 For the left motor, the control signal u minus 5v is equal to the proportional gain (pK)

times the magnitude of the error plus the integral gain (IK) times the integral of the

error:

-5+ dteKeKu Ip ∫+= (4)

 Control signals saturate at 5v since that is the upper bound of FPAA output signal.

When error is equal to zero, the control signal will be 5v for both motors so the UGV will

run at full speed. When error is not equal to zero, the calculated control signal will be

 88

sent to corresponding DC motor to decrease its speed then the position of the UGV can

be adjusted.

 The H-bridge circuit acts as the interface between the FPAA and the DC motors as

shown in Figure 5.13. The FPAA is configured to output PWM signals that are

compatible with the H-bridge circuit.

Figure 5.13. H-bridge circuits acts as the interface between the FPAA and the DC motors

 The DC voltage signals can be converted to PWM signals by comparing itself to sine

waves. The DC-to-PWM signal conversion is realized with the FPAA by configuring the

resources in the AN10E40 FPAA as a sine wave oscillator, another as a comparator, and

connecting them as if they were discrete components or cells in an ASIC design to

process the DC signal in the usual way.

 Configurations for the FPAA such as the PWM generator are developed using

AnadigmDesigner that represents the design logically. Figure 5.14 shows the simulation

results of PWM generation. The sine oscillator function block in the FPAA, like most

other function blocks is parameterizable. Any such parameters, such as the oscillator

 89

frequency in this case, can be modified by the user with a dialog box displayed by

AnadigmDesigner.

Figure 5.14. Simulation result showing the generated PWM signal.

 To conclude, the FPAA is configured to be a PI controller and it also converts the DC

control signal u to PWM signals for the H-bridge circuit. The final FPAA circuit

programmed with AnadigmDesigner is shown in Figure 5.15.

Figure 5.15. FPAA circuit that controls the path-tracking unmanned ground vehicle.

 90

III. Experimental Results and Comparison to Microcontroller controlled UGV

 We compared our FPAA controlled UGV with microcontroller controlled UGV under

identical test conditions. The MC68HC11 controlled UGV system architecture is exactly

the same as the FPAA controlled UGV as shown is Figure 5.16. The MC68HC11 needs

is programmed using the language Interactive C.

Figure 5.16. System architecture of microcontroller - controlled unmanned ground vehicle.

 To make a fair comparison, both controllers were well tuned before testing. Moreover,

both the FPAA evaluation board and the Handy Board were mounted on the UGV during

all test runs to maintain the weight of the system constant. A second MC68HC11

controller does the error recording and time recording for performance comparison.

 The error rate (error/sec) and the average running time of one trip are two aspects of the

performance comparison. As for the error rate, we count an error occur when more than

half of the sensor is off the track. The range of voltage outputs from the sensors are from

0 to 5v, so if Vi is equal 2.5v then half of the sensor Si is on/off the track. 2.5v correspond

 91

the integer number 255*(2.5/5) = 128 for sensor output read by the microcontroller

MC68HC11. The integer number 128 is thus set as the threshold for error recording. An

error occurs when the sensor output is below 128. However, when the two side sensors

output values lower than 128 but the middle three sensors are on track, the position of the

UGV needs no correction as shown in Figure 10. In this case, the UGV is deemed as right

on track and no error are recorded by the second microcontroller. The second

MC68HC11 microcontroller records the error every 100 milliseconds. The second

MC68HC11 microcontroller also measures how long it takes the UGV to finish one

roundtrip along the path. The experimental data of error recording and time recording are

based on the average of 15 test runs for each controller. Since the experiment might have

randomness which is treated as random error, we use Monte Carlo simulation approach

and compare the resulted means and medians to draw statistical conclusion.

 The Error rate comparison results are shown is Table 5.1. Running time comparison

results are shown in Table 5.2.

Table 5.1. Error rate comparison between the FPAA–controlled UGV and the microcontroller–controlled

UGV.

Error Rate (error/sec) Mean Median

Microcontroller MC68HC11 (em) 7.423 7.385

FPAA AN10E40 (ef) 4.659 4.511

Decrease in Error Rate (em-ef)/em 37.24 % 38.92 %

 92

Table 5.2. Running time comparison between the FPAA–controlled UGV and the microcontroller–

controlled UGV.

Running Time (sec) Mean Median

Microcontroller MC68HC11 (tm) 52.31 53.27

FPAA AN10E40 (tf) 40.89 41.06

Increase in Speed [(1/tm)-(1/tf)]/(1/tm) 21.83 % 22.92 %

 By comparing the error rate, we can see from Table 5.1 and Table 5.2 that the FPAA-

controlled UGV showed better performance by making about 38% fewer error than the

microcontroller-controlled UGV. Moreover, the FPAA controlled UGV runs 22% faster

than the microcontroller controlled UGV. This results from the microcontroller

MC68HC11’s relatively slower speed of error processing. The error processing of the

digital microcontroller includes analog to digital signal conversion, error calculation and

digital to analog signal conversion. We have optimized our code to minimize the time

required for the controller to run the code of error calculation. Nevertheless, it takes 16

milliseconds for the microcontroller to calculate the error. Apart from the time required

for error calculation in the microcontroller, the controller also needs time to convert

analog signals of optic sensors to digital signals and digital signals to back to analog

signals to control the DC motors.

 Error processing speed for the FPAA is much faster because of two reasons. First, it

processes signals in the analog domain and requires no analog to digital conversion.

Secondly, the circuit inside the FPAA was programmed by combining analog circuit

blocks together instead of running the Interactive C code. The measured signal input to

output delay of the FPAA circuit is less than 2 microseconds. From above analysis we

 93

can say FPAA processes the error less than 2 microseconds while the MC68HC11

microcontroller processes the error more than 16 milliseconds. Consequently, FPAA

process more errors than MC68HC11 does during the same time period. Thus FPAA can

send more frequently updated control signals to DC motors to adjust position of UGV

faster and then the UGV can track the path more accurately.

 Besides the error rate comparison, from Table 2 we can see that the speed increases by

22% when FPAA takes the place of microcontroller to control the UGV. This is because

the FPAA controlled UGV follows the path more accurately so it runs less distance than

the microcontroller controlled UGV, thus it takes less time to finish running the whole

loop.

 To summarize, the analog FPAA is faster than the digital microcontroller. Moreover,

the error calculation in the digital circuits of the microcontroller creates more time delay

in signal processing. These factors lead to better performance for the FPAA than the

microcontroller to control the UGV.

IV. Conclusion

 The paper describes and compares the implementation of a field programmable analog

array (FPAA) controlled and conventional digital microcontroller controlled path –

tracking unmanned ground vehicle. The FPAA is a general-purpose, digitally

reconfigurable analog signal-processing chip. Its current commercial applications center

on signal conditioning and base-band analog signal processing and rapid prototyping. We

have shown that the AN10E40, a kind of FPAA, can also readily implement a control

system for a path-tracking UGV. The performance of the FPAA controlled UGV was

 94

compared to a digital microcontroller (MC68HC11) controlled UGV that has been very

popular in this field [12]. The FPAA controlled UGV made about 38% fewer error with

22% more running speed than the digital microcontroller controlled UGV. As a result, the

FPAA showed much better performance over microcontroller for path-tracking

unmanned ground vehicle and thus FPAA showed great potential in control systems.

 The FPAA technology is new and is rapidly developing. The second-generation chip

ANxE04 supports an IP module specifically intended for PID controllers and is also

suitable for path-tracking UGVs as we will report in a separate article.

V. References

[1] J. Wit, C. Crane, D. Armstrong, "Autonomous ground vehicle path tracking," Journal of Robotic

Systems, Vol. 21, Issue 8, pp. 439-449, August, 2004

[2] Koh, K. & Cho, H. “A smooth path tracking algorithm for wheeled mobile robots with dynamic

constraints,” Journal of Intelligent and Robotic Systems: Theory and Applications 24(4), pp.367-385,

1999.

[3] S. Kim, W. Lee, and J. Kim, “Research of the unmanned vehicle control and modeling for lane

tracking and obstacle avoidance,” in Proc of the International Conference on Control, Automation, and

Systems (ICCAS), Gyeongju, Korea, October 2003.

[4] Y. Tipsuwan, M-Y Chow, “Neural Network Middleware for Model Predictive Path Tracking of

Networked Mobile Robot over IP Network,” IEEE IECon’03, Roanoke, VA, Nov 2 – Nov 6, 2003.

[5] Y. J. Kanayama and F. Fahroo, “A new line tracking method for nonholonomic vehicles,” Robotics

and Automation, 1997. Proceedings, 1997 IEEE International Conference on , Vol. 4, pp. 2908-2913,

20-25 April 1997.

[6] News from Anadigm Inc., “Analogue Arrays Turn to Loudspeaker Control,” Edited by: Electronicstalk

Editorial Team, Nov 1st. 2004.

 95

[7] D. Anderson, C. Marcjan, D. Bersch, H. Anderson, P. Hu, O. Palusinki, D. Gettman, I. Macbeth, A.

Bratt, “A Field Programmable Analog Array and its Application,” 1997 Custom Integrated Circuits

Conference Proceedings, May, 5-8, 1997, Santa Clara, California, USA.

[8] M.-Y. Chow, Y. Tipsuwan, “Gain Adaptation of Networked Dc Motor Controllers on QoS

Variations,” IEEE Transactions on Industrial Electronics, Vol. 50, no. 5, October, 2003.

[9] J. T. Teeter, M.-Y. Chow, and J. J. B. Jr., “A Novel Fuzzy Friction Compensation Approach to

Improve the Performance of a DC Motor Control System,” IEEE Transactions on Industrial

Electronics, vol. 43, no. 1, pp. 113-120, 1996.

[10] C. Canudas, K. J. Astrom and K. Braun, “Adaptive friction compensation in DC-motor drives,” IEEE J.

Robot. Automat., vol. RA-3, no. 6, pp. 681-685, 1987.

[11] Y. Tipsuwan, M.-Y. Chow, "Fuzzy Logic Microcontroller Implementation for a DC Motor Speed

Control", IECon 99, San Jose, CA, April 1999.

[12] www.handyboard.com

[13] B. Kim, C. Kim, S. Han, S. Kim, H. Park and H. Park, “1.2-μM non-epi CMOS smart power IC with

four H-bridge motor drivers for portable applications,” Circuits and Systems, ISCAS '96., 'Connecting

the World'., 1996 IEEE International Symposium on , Vol.1 pp: 633 – 636, 12-15 May 1996

[14] Datasheet of L293D by Texas Instrument Inc.

[15] Product GH12-1828Y of Jameco Electronics Inc.

[16] N.N. Bengiamin and M. Jacobsen, “Pulse-width modulated drive for high performance DC motors,”

Industry Applications Society Annual Meeting, 1988., Conference Record of the 1988 IEEE,

Vol.1, pp:543 – 550, 2-7 Oct. 1988.

[17] M.-Y. Chow, G. Bilbro, and S. O. Yee, “Application of Learning Theory to a Single Phase Induction

Motor Incipient Fault Detection Artificial Neural Network,” International Journal of Neural Systems,

vol. 2, no. 1&2, pp. 91-100, 1991.

http://www.handyboard.com

 96

CHAPTER VI - Field Programmable
Analog Array Based Artificial Neural

Network for the Navigation of Unmanned
Ground Vehicles

¹ Advanced Diagnosis Automation & Control Lab

Department of Electrical and Computer Engineering,

North Carolina State University, Raleigh NC 27695 USA

Phone: +1(919)515-5405

² Department of Electrical and Computer Engineering,

North Carolina State University, Raleigh NC 27695 USA

* Corresponding Author

This chapter is to be submitted to IEEE Transactions on Mechatronics

Puxuan Dong1*
IEEE Student Member

pdong@ncsu.edu

Mo-Yuen Chow1
IEEE Senior Member

chow@ncsu.edu

Griff Bilbro2
IEEE Senior Member

glb@ncsu.edu

mailto:pdong@ncsu.edu
mailto:chow@ncsu.edu
mailto:glb@ncsu.edu

 97

Abstract

 A field programmable analog array (FPAA) based artificial neural network (ANN) is

designed to control a path-tracking unmanned ground vehicle. The ANN controller can

be viewed as a nonlinear proportional, integral and derivative (PID) controller of which

the adaptive gain is realized by the ANN to achieve better disturbance rejection

performance and lower sensitivity to noise than a conventional PID controller. The

stability of proposed controller is guaranteed by Popov stability analysis. UGV path-

tracking experiments are reported. The performance of the proposed ANN controller

compares favorably to a conventional PID controller. The ANN controller shows 35.9%

improvement for noise rejection simulations. Moreover, a path-tracking UGV controlled

by the ANN controller shows 6.4% less travel time and 15.4% few tracking error than the

UGV controlled by a comparable PID controller. We conclude that the FPAA based

ANN controller has better disturbance rejection and noise rejection than the conventional

PID controller.

I. Introduction

 Unmanned ground vehicle (UGV) path tracking has been used to test control

technologies and various hardware controllers. Koh and Cho formulated a path-tracking

problem for an unmanned ground vehicle [1], which moves along a pre-defined path.

Tipsuwan and Chow proposed Gain Scheduling Middleware (GSM) technology to

optimally control a mobile robot over IP network [2-3]. Kanayama and Fahroo proposed

a novel steering function as a path-tracking method for nonholonomic vehicles [4].

Besides the research work dedicated to this area, there are regular competitions of path-

 98

tracking UGV held by several organizations including Dallas Personal Robotics Group

(DPRG) and Chicago Area Robotics Group (Chibotics). Most of today’s path-tracking

UGVs at these competitions use off-the-shelf digital microcontrollers such as Atmel

AVR microprocessor, PIC16C74A microprocessor, PIC16F84 microprocessor, or the

Motorola MC68HC11 processor.

 Digital microcontrollers require analog-to-digital and digital-to-analog signal

processing while FPAAs process the signal in analog domain. The first FPAA based PI

controller for UGV path tracking was reported by Dong, Bilbro and Chow [5]. The FPAA

based controller outperforms a digital controller MC68HC11 by processing the signal

8000 times faster.

 Artificial neural networks are parallel information processing structures that have been

used in path-tracking UGV controlling [6-9]. However, the ANN controller’s immunity

to disturbance and noise in UGV path tracking application hasn’t been investigated to our

knowledge. Moreover, no commercially available FPAA based ANN controller has ever

been reported although a Hodgkin-Huxley neuron simulator has been implemented with

FPAAs by Sekerli and Butera [21].

 This paper presents a new ANN structure which is equivalent to a nonlinear PID

controller. A neuron with hyperbolic tangent transfer function maps the nonlinear

relationship between error and the exiting linear PID controller input, which we call an

ANN controller. The ANN controller is used to control a path-tracking UGV. We find

that the ANN controller has improved immunity to disturbance and noise compared to the

linear PID controller which is also designed in FPAA chip. We demonstrate the improved

 99

immunity with both simulation and experimental results. We also estimate the stability

region of the ANN controller.

 In our experiment, we choose a commercial FPAA as the implementation platform for

our ANN controller. The FPAA adopted in this paper is the AN221E04 from Anadigm

Inc [10]. The AN221E04 is a dynamically reconfigurable analog chip composed of op-

amps, comparators and switched capacitors. Analog circuits can be rapid-prototyped by

programming the configurable analog modules such as gain blocks, inverters, summing

inverters, adders, multipliers, integrators and sine wave generators. The FPAA gives

designers the analog equivalent of an FPGA. Moreover, it places analog functions under

real-time software control.

 The chip has 4 configurable analog modules (CAM) each of which has two fully

differential Op Amps, capacitor banks, an 8-bit successive approximation register (SAR)

for analog to digital converter, a high speed comparator, and a look up table (LUT).

 The organization of the paper is as follows: In section II, we describe our ANN

controller. In section III, we present simulation results that compare the disturbance

rejection capability and the noise immunity of our ANN controller to a conventional PID

controller. The stability analysis of the controller is also included in this section. In

section IV, we experimentally compare ANN controllers with conventional PID

controllers for a UGV path-tracking application. Section V presents some concluding

remarks.

 100

 II. The Artificial Neural Network Controller

 A standard PID controller is described formally by the following equation:

dt
tdeKdtteKteKtu D

t

Ip
)()()()(

0

++= ∫ , (1)

where u(t) is the output of the controller, KP, KI and KD are the gain parameters of the

proportional, integral and derivative part of the controller [25]. Here, the error e is the

measured difference between the desired output and the obtained output. The block

diagram of this controller is shown in Figure 6.1.

Figure 6.1. Block diagram of the conventional PID controller.

 Nonlinear PID controllers have been used to adapt the controller to changes in

operating conditions or environmental parameters which is beyond the capabilities of

conventional fixed-gain PID controllers [11-14]. Armstrong, Neevel and Kusik describe

the nonlinear PID controller in the following way:

dt
tdeKdtteKteKtu D

t

Ip
)()()()()()()(

0

•+•+•= ∫ , (2)

 101

where)(•PK ,)(•IK and)(•DK are time-varying controller gains [15].

 We construct a nonlinear PID controller using a 3-layer artificial neural network. As

shown in Figure 6.2, our design has one neuron with a nonlinear activation function in

the input layer which provides the nonlinear gain, one P neuron, one I neuron, one D

neuron in the middle layer, and one neuron with pure linear activation function in the

output layer. The input-output function of the P neuron is a proportional function, the

input-output function of the I neuron is an integral function and the input-output function

of the D neuron is a derivative function [24].

Figure 6.2. Artificial neural network with 3 layers.

 Figure 6.3 shows further details of our ANN controller (nonlinear PID controller) in a

particular closed-loop control application.

 102

Figure 6.3. Example of an ANN controller in a closed-loop control.

 In our design, a nonlinear activation function – hyperbolic tangent is cascaded with the

linear PID controller to provide the nonlinear gain. The corresponding nonlinear gain

obtained by the hyperbolic tangent function is

k =
e

eqc)tanh(×× , (3)

where e is the error, c and q are positive real values. As an example, the activation

function with q = 100 is shown in Figure 6.4. The nonlinear gain k is shown in Figure 5

for c = 0.6.

 103

Figure 6.4. Activation function of the hidden node in the ANN.

Figure 6.5. Variation of nonlinear gain k with respect to the error

 As shown in Figure 6.5, the nonlinear gain k increases as the absolute value of error

decreases.

 104

III. Simulation Results

 To demonstrate the advantages of the ANN controller over the linear PID controller, a

DC motor is used as a case study for simulation.

A. DC Motor Characteristics

 The dynamics of a DC motor for the UGV can be described by the differential equation:

l

b

TKi
dt
dB

dt
dJ

dt
dKVRi

dt
diL

+=+

−=+

θθ

θ

2

2

, (4)

where L is the armature winding inductance, i is armature winding current, R is the

armature winding resistance, V is the armature winding input voltage, Kb is back EMF

constant, θ is the position of the shaft, J is moment of inertia of the motor and the wheel,

B is the damping coefficient, K is the torque constant and Tl is the load torque. The

Laplace transformations of equations (4) are:

l

b

TsKIsBJss
ssKVsIRLs

+=+
−=+

)()()(
)()()(

θ
θ

. (5)

For zero Tl we can eliminate I(s) to get the following transfer function for
dt
d θ

ω = :

JL
KKBRs

JL
JRBLs

JL
K

KKRLsBJs
K

V bb
+

+
+

+
=

+++
=

2))((
ω . (6)

 105

 The parameters used [17] in our simulation are shown in Table 6.1:

Table 6.1. Parameters of the DC motor used in the simulation.

Parameters Values
K Torque constant 2.55e-3 N-m/A
R Armature winding resistance 6.43 Ω
Kb Back EMF constant 0.255e-3 V-sec/rad
L Armature winding inductance 28.8e-3 H
B Damping coefficient 0.1e-3 N-m-sec/rad
J Moment of inertia 3.53e-6 Kg-m2

 Substituting the parameters in Table I into equation (6), the obtained transfer function

becomes

63316.251
25080

2 ++
=

ssV
ω . (7)

 When the DC motor is controlled by the linear PID controller, the gain is tuned with the

following restrictions and specifications: percentage overshoot is less than 5%, settling

time is less than 0.0321 sec and rise time is less than 0.014 second. The PID controller

satisfying the above constraints is found to have (KP, KI KD) = (0.995, 25.572, 0) [18-19].

Thus the controller becomes a PI controller.

 An ANN controller is designed by cascading the nonlinear function shown in Figure

6.3 with the tuned PI controller.

B. Disturbance Rejection Capability and Sensitivity to Noise

 A closed-loop controller with disturbance D is shown in Figure 6.6.

 106

Figure 6.6. Closed-loop control with disturbance.

 To analyze the disturbance rejection capabilities of the ANN and PI controller, we

inject a series of step inputs as disturbance signals as shown in Figure 6.7.

Figure 6.7(a) Initial responses to 4 consecutive step inputs.

 107

Figure 6.7(b). Overall responses to multi consecutive step inputs.

Figure 6.7. Disturbance rejection performance of the PI controller and the ANN controller.

 As mentioned before, the gain of the ANN is relatively large for small error thus it

enjoys faster response for smaller error compared to the fixed-gain linear PI controller.

 For the series of step inputs comprising disturbance signal as shown in Figure 6.7, the

PI controller exhibits more severe error buildup. In the Figure 6.7(a), four step inputs are

injected into the system at time (in seconds) t = 0.002, 0.004, 0.006 and 0.008 as the

disturbance signals. It is shown that immediately after the first disturbance at t1 = 0.002s,

both system start to recover towards these reference signals. Before the disturbance is

fully rejected by either controller, the second step input is injected at time t2 = 0.004s.

During the 2 ms time interval t2-t1, the output of the ANN controller decreases more

because of its larger gain. The responses to the second step input are superimposed on the

 108

responses to the first step input. The PI controller suffers more since its initial recovery is

slower than the ANN controller. Such arguments with series step inputs can be extended

to draw similar conclusions for continuously changing disturbance signals and noise

signals.

 Disturbance rejection capabilities can be further compared by injecting sine wave

disturbance signal. Figure 6.8 shows the step responses of both controllers when there is

no disturbance. Figures 6.9 – 6.12 depict the step responses of both controllers under

various disturbances. It can be seen that each of these disturbances has more influences

on the PI controller’s performance than it does on the ANN controller.

Figure 6.8. Step response comparison of ANN and PI controllers without disturbances.

 109

Figure 6.9. Step response comparison of ANN and PI controllers with small disturbances.

Figure 6.10. Step response comparison of ANN and PI controllers with moderate disturbances.

 110

Figure 6.11. Step response comparison of ANN and PI controllers with large disturbances.

 The ANN controller demonstrates higher gain for smaller error relative to the linear PI

controller and noise can be regarded as small disturbances which is better rejected by

large gains. Gaussian white noise is injected into the control loop as disturbance signal as

shown in Figure 6.12. The noise chosen in the simulation is Gaussian white noise with

mean µ and standard deviation σ .

 In our simulation, µ = 0 and 2σ = 0.001, 0.002, 0.005, 0.008, 0.010 and 0.012. Noises

with these different standard deviations are plotted in Figure 6.12.

 111

001.02 =σ

002.02 =σ

005.02 =σ

008.02 =σ

010.02 =σ

012.02 =σ

Figure 6.12. Gaussian white noise with different noise variances

 Since cq
e

eqc
e

eqck =
××

≅
××

=
)()tanh(for small value of e, k increases as q

increases which is shown in Figure 6.13. As a result, the noise rejection capability of the

ANN controller increases with q, as shown in Figure 6.14.

 112

 On average, the ANN controller with q = 100 has a noise response 35.93% smaller than

the PID controller.

Figure 6.13. Variations of gain k with different parameters.

0
0.01
0.02
0.03
0.04

0.05
0.06

0.07
0.08

0 0.005 0.01 0.015

Variance of Gaussian White Noise

O
ut

pu
t D

ev
ia

tio
n ANN q=100

ANN q=10
ANN q=5
ANN q=2
PI

Figure 6.14. Analysis of controllers’ sensitivity to noise.

 113

C. Stability Region Estimation for the ANN Controller

 Following Seraji [22], the stability of the ANN controller can be analyzed using the

Popov criteria [23]. The ANN controller includes linear PI controller component in

cascade with the nonlinear gain k. The transfer function of the linear PI controller is

given by

s
KKsK I

P +=)(, (8)

and the plant transfer function is given by

bass
csG

++
= 2)(. (9)

let the allowable range of nonlinear gain k to be (0, kmax), According to Seraji’s result,

kmax ∞→ when IK ≤ a PK and

kmax
caKK

ab
PI)(−

= (10)

when IK > a PK .

IV. Experimental Setup and Results

A. The Controller

 Artificial neural networks are parallel information processing structures inspired by

biological neural networks. Software and hardware represent two valid approaches for

implementing ANNs, but software instructions which are executed serially cannot take

advantage of the inherent parallelism of ANN architectures. Hardware implementations

 114

of neural networks promise higher speed operation when they can exploit this massive

parallelism.

B. Hardware Setup for Experiment

 The unmanned ground vehicle, as shown in Figure 6.15, used in the Advanced

Diagnosis, Automation, and Control (ADAC) lab of North Carolina State University is a

UGV which was previously controlled by digital microcontrollers. In addition to the

control, the UGV has optical sensors, an H-bridge circuit for driving DC motors, two DC

motors and the power supply.

Figure 6.15. UGV used in ADAC lab at North Carolina State University.

 The experiment is carried out to test the disturbance rejection capabilities of the ANN

controller. A path-tracking UGV is controlled by a FPAA based ANN to run on a surface

that has been inclined relative to horizon by lifting one edge of the track board off the

ground. The UGV must track the path as close as possible and to finish the round trip in

shortest possible time. The UGV and the path to track are shown in Figure 6.16.

 115

Figure 6.16. The path-tracking UGV and the track.

 As the UGV runs up and down the surface, a varying load disturbance is continuously

applied to the DC motors spinning the wheels. A PI controller programmed with FPAA is

also tested with same experimental conditions for comparison. In closed-loop control,

either the ANN or PI controller accepts optic sensor signals from the UGV as inputs and

output the control signals to the H-bridge circuit which drives the DC motors as reported

in [5]. The system overview is shown in Figure 6.17. The PWM signals driving the DC

motors are generated by the FPAA circuit. Performance evaluation criteria for UGV path-

tracking can be found in [5]. The round trip time and error rate are two important

measures of the performance: good performance is generally associated with small error

rate and short round-trip time.

 116

Figure 6.17. System overview of the path-tracking UGV controlled by FPAA based ANN.

C. Experimental Results

 As shown in Figure 6.18, the varying load disturbance introduced by the inclined track

has more influence on the PI controller since its round trip time increases substantially

with the increase of the edge height. As the edge height increases from 0 to 45

centimeters the round trip time increases by 6.41% for the PI controller. For the ANN

controller the round trip time is roughly constant with less than 0.1% variation from the

average of 40.589 seconds. Regarding error rate, the ANN controller also outperforms the

PI controller as shown in Figure 6.19. The error rate increases 15.38% with edge height

increase for the PI controller. The ANN controller has less than 1.07% variation around

the average of 5.028 error/sec. As a result, we conclude that the ANN controller exhibits

better disturbance rejection than the PI controller does under same experimental

conditions.

 117

0 9 18 27 36 45
ANN

PI
39

39.5
40

40.5
41

41.5
42

42.5
43

Round trip
tim e (s)

Edge height (cm)

ANN
PI

Figure 6.18. UGV round trip time comparison.

0 9 18 27 36 45
ANN

PI
0
1
2

3
4

5

6

7

Error rate
(error/sec)

Edge height (cm)

ANN
PI

Figure 6.19. Comparison of error rate for UGV path tracking.

V. Conclusion

 An ANN controller with improved disturbance rejection capability and immunity to

noise is presented. Its performance is evaluated by comparison with a linear PI controller.

The ANN is equivalent to a nonlinear PID controller which adapts its gain to make it

 118

more sensitive to small error. Simulation shows that the ANN controller has better

capabilities of disturbance rejection and stronger immunity to noise. Stability analysis is

addressed for the ANN controller. Experimental evaluations are also carried out. A FPAA

based ANN controller is designed to control a path tracking UGV running on an inclined

surface, resulting in a load disturbance applied to the DC motors. Experimental results

indicate that same load disturbance has more influence on the PI controller’s performance

than it does on the ANN controller; thus we can conclude the ANN controller has

superior performance to the conventional linear PI controller for disturbance rejection.

The experiments also employ a whole new media for ANN controller for robotics

applications – commercial FPAA technology. With its ease of implementation, low cost

and high speed, FPAA’s potential advantage for real-time control applications is

considerable.

VI. References

[1] Koh, K. & Cho, H. “A smooth path tracking algorithm for wheeled mobile robots with dynamic

constraints”, Journal of Intelligent and Robotic Systems: Theory and Applications 24(4), pp.367-385,

1999.

[2] Y. Tipsuwan, and M.-Y. Chow, “Gain scheduler middleware: A methodology to enable existing

controllers for networked control and teleoperation: PART I: Networked control,” IEEE Transactions

on Industrial Electronics, December, 2004.

[3] Y. Tipsuwan, and M.-Y. Chow, “Gain scheduler middleware: A methodology to enable existing

controllers for networked control and teleoperation: PART II: teleoperations,” IEEE Transactions on

Industrial Electronics, December, 2004.

 119

[4] Y. J. Kanayama and F. Fahroo, “A new line tracking method for nonholonomic vehicles,” Robotics

and Automation, 1997. Proceedings., 1997 IEEE International Conference on , Vol. 4, pp. 2908-2913,

20-25 April 1997.

[5] P. Dong, G. Bilbro, and M.-Y. Chow, “Controlling a Path-tracking Unmanned Ground Vehicle with a

Field-Programmable Analog Array,” 2005 IEEE/ASME International Conference on Advanced

Intelligent Mechatronics, Monterey, CA, 24-28 July, 2005.

[6] S. Baluja, “Evolution of an Artificial Neural Network Based Autonomous Land Vehicle Controller,”

IEEE Transactions on Systems, Man and Cybernetics, Part B, Vol. 26, No. 3, pp. 450-463, June, 1996.

[7] J. Rosenblatt, “DAMN: A Distributed Architecture for Mobile Navigation,” Journal of Experimental

and Theoretical Artificial Intelligence, Vol. 9, No. 2/3, pp. 339-360, 1997

[8] R. Fierro and F. L. Lewis, “ Control of a Nonholonomic Mobile Robot Using Neural Networks,” IEEE

Transactions on Neural Networks, Vol. 9, No. 4, 1998.

[9] Y. B. Veryha and L. Kourtch, “Neural Network Based Manipulator Control with Time-Optimal Robot

Path Tracking,” IEEE International Conference on Control Applications, Anchorage, Alaska, USA,

September 25-27, 2000.

[10] http://www.anadigm.com

[11] J. Taylor and K. Strobel, “Nonlinear compensator systhesis via sinusoidal-input describing functions,”

in Proceedings of American Control Conference, Boston: AACC, 1985, pp. 1242–1247.

[12] J. H. Taylor and K. J. Astrom, “Nonlinear PID Autotuning Algorithm,” in Proceedings of American

Control Conference, Seattle, WA, pp. 2118–2123, 1986.

[13] Y. Xu, J. M. Hollerbach, and D. Ma, “A Nonlinear PD Controller for Force and Contact Transient

Control,” IEEE Control System Magazine, vol. 15, no. 1, pp. 15–21, 1995.

[14] B. Armstrong, D. Neevel, and T. Kusik, “New results in NPID control: Tracking, Integral Control,

Friction Compensation and Experimental Results,” in Proceeding of International Conference of

Robotics and Automation, pp. 837–842, 1999.

[15] B. Armstrong, D. Neevel, and T. Kusik, "New results in NPID control: Tracking, integral control,

friction compensation and experimental results," Control Systems Technology, IEEE Transactions on,

vol. 9, pp. 399-406, 2001.

http://www.anadigm.com

 120

[16] H. Huang , “Nonlinear PID Controller and its Applications in Power Plants,” International Conference

on Power System Technology, Vol. 3, pp. 1513-1517, Oct. 2002.

[17] Y. Tipsuwan, M.-Y. Chow, “Gain adaptation of mobile robot for compensating QoS deterioration”,

Proceedings of IECon’02, Sevilla, Spain, 2002.

[18] Tyler Richards, Mo-Yuen Chow, "Performance Characterization of IP Network-based Control

Methodologies for DC Motor Applications - Part I", Proceedings of IECON05, The 31st Annual

Conference of the IEEE Industrial Electronics Society, Raleigh, NC, Nov. 6-10, 2005, pp. 2405 - 2410.

[19] Tyler Richards, Mo-Yuen Chow, Fen Wu, "Performance Characterization of IP Network-based

Control Methodologies for DC Motor Applications – Part II", Proceedings of IECON05, The 31st

Annual Conference of the IEEE Industrial Electronics Society, Raleigh, NC, Nov. 6-10, 2005, pp. 2411

-2416.

[20] B. C. Kuo, “Automatic Control Systems,” 7th edition, Pretence Hall, Inc. ISBN 0-13-304759-8, 1995.

[21] M. Sekerli and R. J. Butera, "An implementation of a simple neuron model in field programmable

analog arrays," presented at Engineering in Medicine and Biology Society, 2004. EMBC 2004.

Conference Proceedings. 26th Annual International Conference of the, 2004.

[22] H. Seraji, “NPID Controllers with Robotic Applications,” Journal of Robotic Systems 15(3), pp. 161-

181, 1998.

[23] S. M. Shinners, “Advanced Modern Control System Theory And Design,” John Wiley & Sons, Inc.

ISBN 0-471-31857-4, 1998.

[24] H. Shu and X. Guo, “Decoupling control of multivariable time-varying systems based on PID neural

network,” 5th Asian Control Conference, vol. 1, pp. 682-685, July, 2004.

[25] W. Bolton, “Mechatronics, Electronic Control Systems in Mechanical and Electrical Engineering,”

Pretence Hall, ISBN 0-582-35705-5, 1999.

