
ABSTRACT

LIU, DONGGANG. Security Mechanisms for Wireless Sensor Networks. (Under

the direction of Assistant Professor Peng Ning).

Wireless sensor networks have received a lot of attention recently due to their

wide applications in military and civilian operations. Example applications include target

tracking, scientific exploration, and data acquisition in hazardous environments. Security

becomes one of the main concerns when there are malicious attacks against the network.

However, providing security services in such networks turns out to be a challenging task

due to the resource constraints on sensor nodes and the node compromise attacks. These

features and challenges motivate the research on security mechanisms for wireless sensor

networks.

This dissertation includes three studies on security mechanisms for wireless sensor

networks. The first study extends the capabilities of µTESLA, a broadcast authentication

technique for wireless sensor networks, so that it can cover a long time period and support

a large number of sensor nodes as well as potential senders in the network.

The second study addresses how to establish pairwise keys between sensor nodes in

a wireless sensor network. A key pre-distribution framework based on bivariate polynomial

pool is developed for this purpose. Two efficient instantiations of this framework are also

provided: a random subset assignment scheme and a hypercube-based key pre-distribution

scheme. To further improve the pairwise key establishment in static sensor networks, prior

deployment knowledge, post deployment knowledge and group-based deployment knowledge

are used to facilitate key pre-distribution.

The third study investigates how to enhance the security of location discovery in

sensor networks. An attack-resistant MMSE method and a voting-based method are de-

veloped to tolerate malicious attacks against location discovery. Both methods can survive

malicious attacks even if the attacks bypass traditional cryptographic protections such as

authentication, as long as the benign beacon signals constitute the majority of the “con-

sistent” beacon signals. In addition, a number of techniques are proposed to detect and

revoke malicious beacon nodes that supply malicious beacon signals to sensor nodes.

Security Mechanisms for Wireless Sensor Networks

by

Donggang Liu

A dissertation submitted to the Graduate Faculty of

North Carolina State University

in partial satisfaction of the

requirements for the Degree of

Doctor of Philosophy

Department of Computer Science

Raleigh

2005

Approved By:

Dr. Carla D. Savage Dr. Mladen A. Vouk.

Dr. Peng Ning Dr. Douglas S. Reeves
Chair of Advisory Committee

ii

To my family and friends

iii

Biography

Donggang Liu is a PhD student in the Department of Computer Science at North Carolina

State University from 2001 to 2005. He received his M.S. degree from Institute of Computing

Technology, Chinese Academy of Science, in 2001, and B.E. degree from the Department of

Computer Science and Engineering, Beijing Institute of Technology, in 1998.

He will join the Department of Computer Science and Engineering, University of

Texas at Arlington, in Fall 2005, as an assistant professor. His research interests include

network and distributed system security.

iv

Acknowledgements

Pursuing and completing a PhD study in the area of Computer Science is a challenging

mission. I would like to thank all those who have supported me during my PhD education.

I would like to thank my adviser, Dr. Peng Ning. His guidance and wisdom show

me the way of doing research in the area of Computer Science. I would like to thank my

committee members, Dr. Douglas S. Reeves, Dr. Carla D. Savage, and Dr. Mladen A.

Vouk, for their valuable feedback and comments on my research. I would like to thank

Professor Sushil Jajodia who offered me an opportunity to visit George Mason University

for two months, which gave me valuable experience on collaborative work. I would like to

thank Dr. Annie I. Anton, Dr. Cliff Wang, Dr. Laurie Williams, Dr. Jun Xu and Dr. Ting

Yu for their helpful feedback and comments in research meetings and discussions.

I would like to thank the National Science Foundation (NSF), Army Research

Office (ARO) and NCSU Center for Advanced Computing & Communication (CACC) for

their funding support. I would like to thank NDSS’03, CCS’03 and ICDCS’05 for their

student travel support.

I would like to give my thanks to all my friends for their help in my PhD study

(sorted by name): Hua Li, Pai Peng, Julia M. Star, Kun Sun, Pan Wang, Dingbang Xu,

Yan Zhai, Qinghua Zhang, Sencun Zhu. I would like to thank Fay Ward for proofreading

my thesis.

Finally, I would like to give my special thanks to my wife, Rongfang Li. She

always supports me so that I can focus on my research work. She also helped me implement

TinyKeyMan, a software package for pairwise key establishment in sensor networks.

v

Contents

List of Figures viii

List of Tables xiii

1 Introduction 1
1.1 Motivation . 2

1.1.1 Broadcast Authentication . 4
1.1.2 Pairwise Key Establishment . 5
1.1.3 Security in Localization . 6

1.2 Summary of Contributions . 8
1.3 Organization of the Dissertation . 10

2 Background 12
2.1 Broadcast Authentication in Sensor Networks 12
2.2 Key Pre-Distribution Techniques in Sensor Networks 15

2.2.1 Polynomial-Based Key Pre-Distribution 15
2.2.2 Probabilistic Key Pre-Distribution 16

2.3 Other Related Work on Sensor Network Security 18
2.4 Localization in Sensor Networks . 19

3 Extending µTESLA Broadcast Authentication Technique 22
3.1 Multi-Level µTESLA . 23

3.1.1 Scheme I: Predetermined Key Chain Commitment 24
3.1.2 Scheme II: Naive Two-Level µTESLA 25
3.1.3 Scheme III: Fault Tolerant Two-Level µTESLA 28
3.1.4 Scheme IV: DOS-Tolerant Two-Level µTESLA 31
3.1.5 Scheme V: DOS-Resistant Two-Level µTESLA 39
3.1.6 Scheme VI: Multi-Level µTESLA . 42
3.1.7 Experimental Results . 52

3.2 Tree-Based µTESLA . 56
3.2.1 The Basic Approach . 57
3.2.2 A Scheme for Long-Lived Senders 60

vi

3.2.3 Distributing Parameter Certificates 63
3.2.4 Revoking µTESLA Instances . 64
3.2.5 Implementation and Evaluation . 68

3.3 Summary . 72

4 Polynomial Pool-Based Key Pre-Distribution 74
4.1 Polynomial Pool-Based Key Pre-Distribution 76

4.1.1 Phase 1: Setup . 77
4.1.2 Phase 2: Direct Key Establishment 77
4.1.3 Phase 3: Path Key Establishment 79

4.2 Key Pre-Distribution Using Random Subset Assignment 81
4.2.1 The Random Subset Assignment Scheme 81
4.2.2 Performance . 82
4.2.3 Overheads . 83
4.2.4 Security Analysis . 84
4.2.5 Comparison with Previous Schemes 86

4.3 Hypercube-based Key Pre-Distribution . 90
4.3.1 The Hypercube-Based Scheme . 91
4.3.2 Dynamic Key Path Discovery . 94
4.3.3 Performance . 97
4.3.4 Overhead . 97
4.3.5 Security Analysis . 99
4.3.6 Comparison with Previous Schemes 104

4.4 Implementation and Evaluation . 106
4.4.1 Optimization of Polynomial Evaluation on Sensor Nodes 107
4.4.2 Evaluation . 109

4.5 Summary . 111

5 Improving Key Pre-Distribution Using Deployment Knowledge 112
5.1 Improving Key Pre-Distribution with Prior Deployment Knowledge 113

5.1.1 A Location-Aware Deployment Model 113
5.1.2 Closest Pairwise Keys Scheme . 115
5.1.3 Closest Polynomials Pre-Distribution Scheme 125

5.2 Improving Key Pre-Distribution with Post Deployment Knowledge 136
5.2.1 Key Prioritization Using Post Deployment Knowledge 137
5.2.2 Improving Random Subset Assignment Scheme with Deployment Lo-

cations . 138
5.3 Improving Key Pre-Distribution with Group-Based Deployment 146

5.3.1 Group-Based Deployment Model . 147
5.3.2 A General Framework . 148
5.3.3 Performance Analysis . 152
5.3.4 Security Analysis . 158

5.4 Summary . 166

vii

6 Secure Location Discovery 168
6.1 Pitfalls of Current Localization Schemes in Presence of Malicious Attacks . 169
6.2 Attack-Resistant Location Estimation . 171

6.2.1 Assumptions . 171
6.2.2 Attack-Resistant Minimum Mean Square Estimation (MMSE) . . . 172
6.2.3 Voting-Based Location Estimation 178
6.2.4 Security Analysis . 184
6.2.5 Simulation Evaluation . 185
6.2.6 Implementation and Field Experiments 191

6.3 A Detector for Malicious Beacon Nodes . 194
6.3.1 Detecting Malicious Beacon Signals 195
6.3.2 Filtering Replayed Beacon Signals 197
6.3.3 Revoking Malicious Beacon Nodes 204
6.3.4 Simulation Evaluation . 210

6.4 Summary . 213

7 Conclusions and Future Work 215
7.1 Contributions . 215
7.2 Future Work . 217

Bibliography 219

viii

List of Figures

1.1 Attacks against location discovery schemes 7

2.1 µTESLA protocol. 13
2.2 Probability of sharing at least one key for different combinations of key pool

size and the number of keys at sensor nodes. 17
2.3 Fraction of compromise links between non-compromised sensor nodes for the

basic probabilistic scheme and the q-composite scheme when p = 0.33 and
s′ = 200. 18

2.4 An example of localization method. Nodes A,B and C are beacon nodes,
and node O is a non-beacon node. 20

3.1 The two levels of key chains in Scheme II. Each key Ki is used for the high-
level time interval Ii, and each key Ki,j is used for the low-level time interval
Ii,j . F0 and F1 are different pseudo random functions. Each commitment
Ki,0 is distributed during the time interval Ii−2. 28

3.2 Key disclosure schedule in Scheme II . 28
3.3 The two levels of key chains in Scheme III. It differs from Figure 3.1 in that

each Ki,n1 is derived from Ki+1 using an additional pseudo random function
F01. 29

3.4 State transition diagram for Scheme IV . 36
3.5 Bandwidth required for CDM messages to ensure 90% of low-level key chain

commitments are authenticated before the key chains are used. 38
3.6 Bandwidth for CDM messages v.s. number of key chain levels. Assume the

number of CDM buffers in each key chain level is m = 40. 45
3.7 The performance with different buffer allocation schemes for total memory

512 and 1024 bytes to buffer data and CDM messages. Assume 95% of
CDM packets are forged and 50% of packets are lost when transmitted over
the channel. 54

3.8 Experimental results under different channel loss rate and percentage of
forged CDM packets. Assuming 3 data packet buffers, 39 CDM buffers
and fixed data rate (100 data packets/minute). 56

3.9 Example of a parameter distribution tree 58

ix

3.10 Example of a parameter distribution tree for long-lived schemes 62
3.11 Example of fragmentation . 64
3.12 Authentication rate under 0.2 loss rate and 200 forged parameter distribution

packet per minute. 69
3.13 Channel loss rate: 0.2; # forged commitment distribution: 200 per minute;

distribution rate: 95%. 70
3.14 Average failure recovery delay. Assume 20 parameter distribution packet per

minute. 71

4.1 Probabilities about pairwise key establishment 84
4.2 Performance of the random subset assignment scheme under attacks. RS

refers to the random subset assignment scheme. Assume each node has avail-
able storage for 200 keys and p = 0.33. 87

4.3 The probability of re-establishing a pairwise key using path discovery. As-
sume each node has available storage equivalent to 200 keys, and contacts 30
neighbor nodes d = 30. Assume N = 20, 000 87

4.4 The relationship between the probability of establishing a common key and
the maximum supported network size in order to be resilient against node
compromise. 90

4.5 Hypercube-based key pre-distribution when n = 2 92
4.6 Performance of the hypercube-based scheme 98
4.7 Security performance of the hypercube-based scheme. Assume each sensor

has available storage equivalent to 50 keys, N = 20, 000, m = n
√

N , and
t = ⌊50

n − 1⌋. 101
4.8 Maximum supported network size for different number of dimensions. As-

sume each sensor has available storage equivalent to 50 keys. 102
4.9 Probability of re-establishing a pairwise key between non-compromised nodes

v.s. the fraction of compromised nodes. Assume that each sensor node has
available storage equivalent to 50 keys and N = 20, 000. 104

4.10 Performance of the grid-based key pre-distribution scheme under attacks.
Assume each sensor node has available storage equivalent to 200 keys. . . . 105

4.11 Comparison with RC5 and SkipJack. 110

5.1 Probability of establishing direct keys between two neighbor nodes given
different values of e and γ. CPKS denotes the closest pairwise keys pre-
distribution scheme. 119

5.2 Probability of establishing direct keys in random pairwise keys scheme and
the closest pairwise keys scheme for different m and e given c = 200 and
N = 600. 121

5.3 Fraction of compromised pairwise keys between non-compromised sensor
nodes v.s. number of compromised sensor nodes. RS denotes the random
subset assignment scheme . 122

5.4 Partition of a target field . 127
5.5 Probability of establishing direct keys between two neighbor nodes given

different cell side length L and maximum deployment error e 130

x

5.6 Fraction of compromised direct keys between non-compromised sensor nodes
v.s. fraction of compromised sensor nodes. Assume each node has available
storage equivalent to 200 cryptographic keys. 132

5.7 Fraction of compromised direct keys between non-compromised sensor nodes
v.s. number of compromised sensor nodes. Assume each node has available
storage equivalent to 200 cryptographic keys. Assume p = 0.33 and m = 40.
CPPS denotes the closest polynomials pre-distribution random scheme. . . 134

5.8 Probability of establishing pairwise key directly between two neighbor nodes
given different e and m. The length of cell side in CPPS is configured so that
it is perfectly resistant to the node captures. Assume each node has available
storage equivalent to 200 cryptographic keys. 134

5.9 Shared circles of neighbor sensor nodes . 140
5.10 Probability of sharing a direct key between neighbor sensor nodes. 142
5.11 Security performance of the improved scheme in Situation 1. 143
5.12 Security performance of the improved scheme in Situation 2. 145
5.13 Deployment Distribution . 147
5.14 Example of group construction . 150
5.15 Probability of having a direct key between two neighbor nodes. 155
5.16 Probability of having a direct key between two neighbor sensor nodes. Mem-

ory usage is measured by counting the number of keys stored on each node. 156
5.17 Probability of having a direct key between two neighbor sensor nodes. Mem-

ory usage is measured by counting the number of keys stored on each node. 156
5.18 Probability of having a direct key between two neighbor sensor nodes. Mem-

ory usage is measured by counting the number of polynomial coefficients
stored on each node. 157

5.19 Probability of having indirect keys between sensor nodes in different deploy-
ment groups. Memory usage is measured by counting the number of keys or
polynomial coefficients stored on each node. 159

5.20 Probability of a direct key between two non-compromised nodes being com-
promised. Assume the probability of having a direct key between two neigh-
bor nodes is 0.3. 161

5.21 Probability of a direct key between two non-compromised nodes being com-
promised. Assume the probability of having a direct key between two neigh-
bor nodes is 0.3. 162

5.22 pgci−in(c) for the group-based EG scheme and the probability of an indi-
rect key being compromised for the basic probabilistic scheme. Assume the
probability of having a direct key between two neighbor nodes is 0.3. 163

5.23 pgci−in(c) for the group-based PB scheme and the probability of an indirect
key being compromised for the random subset assignment scheme. Assume
the probability of having a direct key between two neighbor nodes is 0.3. . . 164

5.24 pgci−cr(c) for the group-based EG scheme and the probability of an indi-
rect key being compromised for the basic probabilistic scheme. Assume the
probability of having a direct key between two neighbor nodes is 0.3. 166

xi

5.25 pgci−cr(c) for the group-based PB scheme and the probability of an indirect
key being compromised for the random subset assignment scheme. Assume
the probability of having a direct key between two neighbor nodes is 0.3. . . 167

6.1 Location estimation error of a MMSE-based method in presence of malicious
attacks . 170

6.2 The effect of malicious attacks on the mean square error ς2 173
6.3 Cumulative distribution function for the mean square error of location esti-

mation on benign location references. Let c = ς0
ǫ 177

6.4 The voting-based location estimation . 179
6.5 Determine whether a ring overlaps with a cell 180
6.6 Cumulative probability distribution of location estimation error for different

partition configurations. Assume the location error created by a malicious
beacon node is 20m, and the measurement error is ǫ = 4m. 182

6.7 Performance of attack-resistant MMSE (with 9 benign location references) . 185
6.8 Average number of removed location references v.s. the value of threshold τ .

Assume there are 9 benign location references and each malicious location
reference introduces 40m location error. 187

6.9 Performance for different M (e: error introduced by a malicious location
reference) . 188

6.10 Computational cost for different M (e: error introduced by a malicious loca-
tion reference) . 189

6.11 Performance of the voting-based scheme (M = 100 and S = 0) 189
6.12 Attack-resistant MMSE scheme v.s. the voting-based scheme 190
6.13 Performance under different distance measurement errors (assume that the

location error introduced by each malicious location references is 10m) . . 190
6.14 Average execution time on MICA2 motes (ǫ = 4m, τ = 0.8ǫ, M = 100 and

S = 0) . 191
6.15 Target area of field experiment. 192
6.16 Performance of the attack-resistant schemes in the field experiment (M = 100

and S = 0 for the voting-based scheme; τ = 0.8ǫ = 3.2 feet for attack-
resistant MMSE) . 194

6.17 Detect malicious beacon signals . 196
6.18 Round trip time . 199
6.19 Cumulative distribution of round trip time 200
6.20 Relationship between Pr and P . 204
6.21 Detection rate v.s. probability of non-beacon nodes being affected. Nc = 100. 206
6.22 Detection rate. m = 8 and τ = 2. 207
6.23 Average number of affected non-beacon nodes after all detected malicious

beacon nodes are revoked from the network. m = 8 and Nc = 100. 208
6.24 Average number of affected non-beacon nodes when P is chosen in such a

way that P ′ is maximized. 209
6.25 Probability of the report counter of a benign beacon node exceeding τ ′. As-

sume N = 10, 000, Nb = 1100, Na = 100, Nw = 100, pd = 0.9, τ = 2, m = 8,
and P = 0.1. 211

xii

6.26 Deployment of beacon nodes in a sensing field. 212
6.27 Detection rate v.s. P . Assume τ ′ = 2 and τ = 2. 212
6.28 Average number of requesting non-beacon nodes accepting the malicious bea-

con signals from a malicious beacon node. Assume τ ′ = 2 and τ = 2. 213
6.29 ROC curves. Assume P is chosen to maximize N ′. 213

xiii

List of Tables

1.1 Characteristic of MICA2 and MICA2dot motes. 2

4.1 Communication and computational overheads for direct key establishment in
different schemes. sk is the key pool size in the basic probabilistic scheme
and the q-composite scheme. s′ = C

t+1 . The last row will be discussed in
Section 4.3. 89

4.2 Code sizes for our optimized polynomial evaluation schemes. 110
4.3 The code size for random subset assignment and grid-based scheme. The

storage for the polynomial coefficients and the list of compromised nodes are
not included in the calculation of code size. 110

5.1 Notations . 117
5.2 Notations . 153

6.1 Code size for different schemes (assume a maximum of 12 location references;
M = 100) . 191

1

Chapter 1

Introduction

A sensor network typically consists of a large number of tiny sensor nodes and

possibly a few powerful control nodes (also called base stations). A sensor node is usually

composed of one or a few sensing components, which are able to sense conditions (e.g.

temperature, humidity, pressure) from its immediate surroundings, and a processing and

communication component, which is able to carry out simple computation on raw data and

communicate with its neighbor nodes in short distances. The control nodes may further

process the data collected from sensor nodes, disseminate control commands to sensor nodes,

and connect the network to a traditional wired network. Sensor nodes are usually densely

deployed on a large scale and communicate with each other through wireless links [1].

There is usually no infrastructure for a sensor network. These features imply a variety of

applications of sensor networks in military and civilian operations, such as target tracking,

battlefield surveillance, and wildlife habitat monitoring.

Consider the scenario of battlefield surveillance. A large number of sensor nodes are

rapidly deployed in a battlefield via airplanes or trucks. After the deployment, sensor nodes

are quickly self-organized together to form an ad-hoc network. Each individual sensor node

then monitors conditions and activities in its surroundings, and reports these observations

to a central server via wireless communication with its neighbors. After collecting a large

number of observations from sensor nodes, it is possible to conduct a more accurate detection

on the activities (e.g. possible attacks) of the opposing force, and make appropriate decisions

and responses in the battlefield.

2

Table 1.1: Characteristic of MICA2 and MICA2dot motes.

MICA2 MICA2dot

Processor 8-bit 7.7MHz ATmega128 8-bit 4MHz ATmega128

RAM 4K bytes 4K bytes

ROM 128K bytes 128K bytes

EEPROM 512K bytes 512K bytes

Data Rate 38.4K baud 38.4k baud

Default Packet Size 29 bytes 29 bytes
(under TinyOS[25])

Power Supply 2 AA batteries 1 coin cell battery

Obviously, the design of such networks requires wireless networking techniques,

especially wireless ad hoc networking techniques. However, most traditional wireless net-

working protocols and algorithms are not suitable for sensor networks. The main challenge

of designing a sensor network comes from the resource constraints on sensor nodes. Table

1.1 shows some basic characteristics of typical MICA2 and MICA2dot motes [13], which

are widely used in current generation of sensor networks. The protocols and algorithms in

sensor networks are usually application-specific in order to achieve high performance and

save valuable resources at sensor nodes.

The wide applications of sensor networks and the challenges in designing such

networks have attracted many researchers to develop protocols and algorithms for sensor

networks (e.g., [62, 25, 20, 54, 30, 53, 1]). This research focuses on the security mechanisms

of sensor networks in hostile environments, where there are malicious attacks against the

network.

1.1 Motivation

Security becomes one of the major concerns when there are potential attacks

against sensor networks. Many protocols and algorithms (e.g. routing, localization) will

not work in hostile environments without security protection. Security services such as

authentication and key management are critical to ensure the normal operations of a sensor

network in hostile environments. However, some special features of sensor networks make

it particularly challenging to provide security protection for a sensor network.

3

• Resource constraints: As shown in Table 1.1, sensor nodes are usually resource con-

strained, especially energy constrained. Every operation reduces the lifetime of a

sensor node. This makes it impractical to perform expensive operations such as pub-

lic key cryptography (e.g. RSA [67]) on sensor nodes. For example, a public key is

usually 1024 bits (128 bytes) or 2048 bits (256 bytes) long, while a sensor network

may only support small size packets as shown in Table 1.1. Though the size of mes-

sages can be increased, it is generally not practical to accommodate a long message,

since wireless communication is one of the most expensive operations on sensor nodes.

In addition, public key operation usually involves many expensive computations (e.g.

large integer modular exponentiations).

• Node compromise: Different from traditional wireless networks, where each individual

node may be physically protected, the large scale of wireless sensor networks makes

it impractical to protect or monitor each individual sensor node physically. An at-

tacker may capture or compromise one or a number of sensor nodes without being

noticed. If sensor nodes are compromised, the attacker learns all the secrets stored

on them and may launch a variety of malicious actions against the network through

these compromised nodes. For example, the compromised nodes may discard all im-

portant messages in order to hide some critical events from being noticed, or report

observations that are significantly different from those observed by non-compromised

nodes in order to mislead any decision made based on these data. The result will be

even worse if the nodes that provide some critical functions (e.g. data aggregation)

are compromised.

Though using tamper-resistance hardwares may help to protect security sensitive data

on sensor nodes, this solution generally increases the cost of an individual sensor node

dramatically. An alternative way is to develop security protocols that are resilient to

node compromise attacks in the sense that even if one or a number of sensor nodes

are compromised, the sensor network can still function correctly.

• Local Computation and Communication versus Global Threats: The sensor applica-

tions in a typical sensor network are usually based on local computation and com-

munication. For example, they may make decisions based on the message exchanged

between neighbor nodes. However, adversaries usually are much more powerful and

resourceful than sensor nodes, and they usually have a global view of the network

4

(e.g., topology). Thus, we have to use resource-constrained sensor nodes to deal with

very powerful attacks.

In this dissertation, I study two fundamental security services in wireless sensor

networks: broadcast authentication and pairwise key establishment. In addition, I also

investigate how to protect a critical service, location discovery, in wireless sensor networks.

1.1.1 Broadcast Authentication

Broadcast authentication is an essential security service in wireless sensor net-

works. Because of the large number of sensor nodes and the broadcast nature of wireless

communication, it is usually desirable for base stations to broadcast commands and data

to sensor nodes. The authenticity of such commands and data is critical for the normal

operation of sensor networks. If convinced to accept forged or modified commands or data,

sensor nodes may perform unnecessary or incorrect operations and cannot fulfill the intended

purposes of the network. Thus, in hostile environments (e.g., battle field, anti-terrorists op-

erations), it is necessary to enable sensor nodes to authenticate broadcast messages received

from base stations.

Providing broadcast authentication in distributed sensor networks is a non-trivial

task. On the one hand, public key based digital signatures (e.g., RSA [67]), which are typi-

cally used for broadcast authentication in traditional networks, are too expensive to be used

in sensor networks, due to the intensive computation involved in signature verification and

the resource constraints on sensor nodes. On the other hand, secret key based mechanisms

(e.g., HMAC [36]) cannot be directly applied to broadcast authentication, since otherwise

a compromised receiver can easily forge any message from the sender.

A protocol named µTESLA [62], , which is adapted from a stream authentication

protocol called TESLA [60], has been proposed for broadcast authentication in wireless

sensor networks. µTESLA employs a chain of authentication keys linked to each other by a

pseudo random function [22], which is by definition a one-way function. Each key in the key

chain is the image of the next key under the pseudo random function. µTESLA achieves

broadcast authentication through delayed disclosure of authentication keys in the key chain.

The efficiency of µTESLA is based on the fact that only pseudo random function and secret

key based cryptographic operations are needed to authenticate a broadcast message.

5

The original TESLA uses broadcast to distribute the initial parameters required for

broadcast authentication. The authenticity of these parameters are guaranteed by a digital

signature generated by the sender. However, due to the low bandwidth of a sensor network

and the low computational resources at each sensor node, µTESLA cannot distribute these

initial parameters using public key cryptography. Instead, the base station has to unicast

the initial parameters to the sensor nodes individually. Such a method certainly cannot

scale up to very large sensor networks, which may have thousands of nodes.

Techniques to address this problem are provided in Chapter 3.

1.1.2 Pairwise Key Establishment

Pairwise key establishment is another important fundamental security service. It

enables sensor nodes to communicate securely with each other using cryptographic tech-

niques. The main problem here is to establish a secure key shared between two commu-

nicating sensor nodes. However, due to the resource constraints on sensor nodes, it is not

feasible for them to use traditional pairwise key establishment techniques such as public

key cryptography and key distribution center (KDC).

Instead of the above two techniques, sensor nodes may establish keys between each

other through key pre-distribution, where keying materials are pre-distributed to sensor

nodes before deployment. As two extreme cases, one may setup a global key among the

network so that two sensor nodes can establish a key based on this key, or one may assign

each sensor node a unique random key with each of the other nodes. However, the former

is vulnerable to the compromise of a single node, and the latter introduces huge storage

overhead at sensor nodes.

Eschenauer and Gligor proposed a probabilistic key pre-distribution scheme re-

cently for pairwise key establishment [19]. The main idea is to let each sensor node randomly

pick a set of keys from a key pool before the deployment so that any two sensor nodes have

a certain probability to share at least one common key. Chan et al. further extended this

idea and developed two key pre-distribution techniques: a q-composite key pre-distribution

scheme and a random pairwise keys scheme [11]. The q-composite key pre-distribution also

uses a key pool but requires that two nodes compute a pairwise key from at least q pre-

distributed keys that they share. The random pairwise keys scheme randomly picks pairs

of sensor nodes and assigns each pair a unique random key. Both schemes improve the

6

security over the basic probabilistic key pre-distribution scheme.

However, the pairwise key establishment problem is still not fully solved. For

the basic probabilistic and the q-composite key pre-distribution schemes, as the number of

compromised nodes increases, the fraction of affected pairwise keys increases quickly. As a

result, a small number of compromised nodes may disclose a large fraction of pairwise keys.

Though the random pairwise keys scheme does not suffer from the above security problem,

given a memory constraint, the network size is strictly limited by the desired probability

that two sensor nodes share a pairwise key, the memory available for keys on sensor nodes,

and the number of neighbor nodes that a sensor node can communicate with.

Techniques to address this problem are provided Chapter 4 and Chapter 5.

1.1.3 Security in Localization

Sensors’ locations play a critical role in many sensor network applications. Not

only do applications such as environment monitoring and target tracking require sensors’

location information to fulfill their tasks, but several fundamental techniques developed for

wireless sensor networks also require sensor nodes’ locations. For example, in geographical

routing protocols (e.g., GPSR [34] and GEAR [79]), sensor nodes make routing decisions at

least partially based on their own and their neighbors’ locations. As another example, in

some data-centric storage applications such as GHT [65, 72], storage and retrieval of sensor

data highly depend on sensors’ locations. Indeed, many sensor network applications will

not work without sensors’ location information.

A number of location discovery protocols [70, 71, 55, 51, 15, 8, 56, 50, 24] have

been proposed for wireless sensor networks in recent years. These protocols share a common

feature: they all use some special nodes, called beacon nodes, which are assumed to know

their own locations (e.g., through GPS receivers or manual configuration). These protocols

work in two stages. In the first stage, non-beacon nodes receive radio signals called beacon

signals from the beacon nodes. The packet carried by a beacon signal, called the beacon

packet, usually includes the location of the beacon node. The non-beacon nodes then esti-

mate certain measurements (e.g., distance between the beacon and the non-beacon nodes)

based on features of the beacon signals (e.g., received signal strength indicator, time of

arrival). Such a measurement and the location of the corresponding beacon node collec-

tively is called a location reference. In the second stage, a sensor node determines its own

7

beacon node nb

(x, y)

attacking node na

n

(x’, y’)

I’m nb;my location is (x, y)

(a) Masquerade beacon nodes

malicious beacon
node nb

(x, y)

n

I’m nb; my location
is (x’, y’)

(b) Compromise beacon nodes

� � � � � � � � � � � �	
 � �
 � � � � � � �� � � � � � � �
� 	
 �� � �
� �� � � � � � � � � � � � � �� � 	
 � �
� � � � � � � � �� � � � �! " # $ % & " � & ' 	
 � �
 (

(c) Replay beacon signals

Figure 1.1: Attacks against location discovery schemes

location when it has a sufficient number of location references from different beacon nodes.

A typical approach is to consider the location references as constraints that a sensor node’s

location must satisfy, and estimate it by finding a mathematical solution that satisfies these

constraints with minimum estimation error.

Despite the recent advances, location discovery for wireless sensor networks in hos-

tile environments, where there may be malicious attacks, has been mostly overlooked. The

only exception is a location verification scheme [69] that allows a node to verify the location

claimed by another node using special hardware. As a matter of fact, all of the existing

location discovery protocols become vulnerable in the presence of malicious attacks. As

illustrated in Figure 1.1, an attacker may provide incorrect location reference by pretending

to be valid beacon nodes (Figure 1.1(a)), compromising beacon nodes (Figure 1.1(b)), or

replaying the beacon packets that he/she intercepted in different locations (Figure 1.1(c)).

In either of the above cases, non-beacon nodes will determine their locations incorrectly.

The location verification technique proposed in [69] can verify the relative distance between

neighbor nodes; however, it cannot guarantee correct location discovery if a malicious bea-

con node lies about its location.

The security of location discovery can certainly be enhanced by authentication.

Specifically, each beacon packet should be authenticated with a cryptographic key only

known to the sender and the intended receivers, and a non-beacon node accepts a beacon

signal only when the beacon packet carried by the beacon signal can be authenticated.

However, only having authentication does not guarantee the security of location discovery.

An attacker may forge beacon packets with keys learned through compromised nodes or

replay beacon signals intercepted in different locations. Thus, it is highly desirable to have

8

additional mechanisms to improve the security of location discovery in sensor networks.

Some solutions to address this problem are provided in Chapter 6.

1.2 Summary of Contributions

The contributions of this dissertation are summarized below:

• Multi-level µTESLA: The first contribution is a multi-level µTESLA technique, which

is used to extend the capabilities of the original µTESLA. The main idea is to prede-

termine and broadcast the initial parameters required by µTESLA instead of unicast-

based message transmission. Specifically, the proposed technique constructs a multi-

level key chain scheme, in which the higher-level key chains are used to authenticate

the commitments of lower-level ones. To further improve the survivability of the

scheme against message loss and Denial of Service (DOS) attacks, redundant message

transmissions and random selection strategies are used to deal with the messages that

distribute key chain commitments. The resulting scheme removes the requirement

of unicast-based initial communication between base station and sensor nodes while

keeping the desirable properties of µTESLA (e.g., tolerance of message loss, resistance

to replay attacks). The experimental results demonstrate that the proposed scheme

can tolerate high channel loss rate and is resistant to known DOS attacks to a certain

degree.

• Tree-based µTESLA: The second contribution is a tree-based µTESLA technique,

which is developed to support a potentially large number of broadcast senders us-

ing µTESLA instances as building blocks. The basic idea is to take advantage of

Merkle hash tree [49] to authenticate the initial parameters of µTESLA instances.

The proposed techniques are immune to the DOS attacks. In addition, a revocation

tree based scheme and a proactive distribution based scheme are proposed to revoke

the broadcast authentication capability from compromised senders. The analysis and

experiment show that the proposed techniques are efficient and practical and can

achieve better performance than the previous approaches.

• Polynomial pool-based key pre-distribution: The third contribution is on the estab-

lishment of pairwise keys between sensor nodes. A general framework is developed

9

for this purpose by using the polynomial-based key pre-distribution protocol in [5]

and the probabilistic key distribution scheme in [19, 11]. We also show two efficient

instantiations of this framework: a random subset assignment key pre-distribution

scheme and a hypercube-based key pre-distribution scheme. The analysis shows that

these schemes have a number of nice properties, including high probability to estab-

lish pairwise keys, tolerance of node captures, and low storage, communication, and

computation overhead. To further reduce the computation at sensor nodes, we also

presents an optimization technique for polynomial evaluation, which is used to com-

pute pairwise keys. we also report the implementation and the performance of these

schemes on MICA2 motes running TinyOS [25], an operating system for networked

sensors. The results indicate that the proposed techniques can be applied efficiently

in resource-constrained sensor networks.

• Improving key pre-distribution using deployment knowledge: The fourth contribution

is on how to further improve the existing key pre-distribution techniques in static

sensor networks. We propose to take advantage of prior deployment, post deployment

and group-based deployment knowledge to facilitate key pre-distribution. With the

prior deployment knowledge, a closest pairwise keys scheme and a closest polynomials

scheme are proposed. The main idea is to pre-distribute keys between sensor nodes

that have high probability of being neighbors. We then investigates how to use post

deployment knowledge to improve pairwise key pre-distribution in static sensor net-

works. The idea is to load an excessive amount of pre-distributed keys on sensor

nodes, prioritize these keys based on sensors’ actual locations discovered after de-

ployment, and discard low priority keys to thwart node compromise attacks. This

approach is then used to improve the random subset assignment scheme proposed

recently to demonstrate its practicality and effectiveness. Finally, we observe that

sensor nodes are usually deployed in groups, and the nodes in the same group are

close to each other after the deployment. Based on this model, we develop a group-

based key pre-distribution framework, which can be combined with any of the existing

key pre-distribution techniques. The analysis and experiments indicate that the per-

formance of key pre-distribution can be greatly improved by using prior deployment,

post deployment or group-based deployment knowledge.

10

• Attack-resistant location estimation: The fifth contribution is on how to protect lo-

cation discovery service in sensor networks, where sensor nodes accept a number of

malicious beacon signals in addition to the benign ones and tries to estimate accurate

locations based on the beacon signals. We presents two methods to survive malicious

attacks against location discovery in sensor networks. The first method filters out

malicious beacon signals on the basis of the “consistency” among multiple beacon sig-

nals, while the second method tolerates malicious beacon signals by adopting a voting

scheme. Both methods can survive malicious attacks even if the attacks bypass tradi-

tional cryptographic protections such as authentication, as long as the benign beacon

signals constitute the majority of the “consistent” beacon signals. We also present the

implementation of the proposed techniques on MICA2 motes running TinyOS as well

as the evaluation through both simulation and field experiments. The experimental

results demonstrate that the proposed methods are not only effective but also practi-

cal in surviving malicious attacks against location discovery in the current generation

of sensor networks.

• Detecting Malicious Beacon Nodes: The sixth contribution is on how to detect and

remove compromised beacon nodes that supply misleading location information to

the regular sensors, aiming at providing secure location discovery services in wire-

less sensor networks. These techniques start with a simple but effective method to

detect malicious beacon signals. To identify malicious beacon nodes and avoid false

detection, we also present several techniques to detect replayed beacon signals. We

then propose a method to reason about the suspiciousness of each beacon node at the

base station based on the detection results collected from beacon nodes and revoke

malicious beacon nodes accordingly. The analysis and experimental results show that

these techniques are practical and effective in detecting malicious beacon nodes.

1.3 Organization of the Dissertation

The organization of this dissertation is as follows. The next chapter gives back-

ground information on broadcast authentication, pairwise key establishment, and exist-

ing localization schemes. Chapter 3 presents the multi-level and the tree-based µTESLA

broadcast authentication techniques. Chapter 4 discusses the polynomial pool-based key

11

pre-distribution techniques. Chapter 5 presents techniques to improve the performance

of pairwise key pre-distribution by using deployment knowledge. Chapter 6 gives details

on how to tolerate malicious attacks against location discovery and detect malicious bea-

con nodes supplying malicious beacon signals. Chapter 7 discusses some future research

directions on security in wireless sensor networks.

12

Chapter 2

Background

2.1 Broadcast Authentication in Sensor Networks

Generally, an asymmetric mechanism, such as public key cryptography, is required

to authenticate broadcast messages. Otherwise, a malicious receiver can easily forge any

packet from a sender. However, due to the resource constraints at sensor nodes, solutions

based on asymmetric cryptography [21, 68, 76] are usually impractical for sensor networks.

One way hash functions have been proposed for authentication in many studies.

The use of such functions can be traced back to Lamport [37], which was later implemented

as the S/Key one-time password system [23]. Cheung proposed OLSV that uses delayed

disclosures of keys by the sender to authenticate link-state routing updates between routers

[12]. Anderson et al. used the same technique in their Guy Fawkes protocol to authen-

ticate messages between two parties [2]. Briscoe proposed the FLAMeS protocol [6], and

Bergadano et al. presented an authentication protocol for multicast [4]. Both are similar

to the OLSV protocol [12]. Canetti et al. proposed to use k different keys to authenticate

the multicast messages with k different MAC’s for sender authentication [9]; however, this

scheme has high communication overhead because of the k MAC’s for each message. Per-

rig introduced a verification efficient signature scheme named BiBa based on one-way hash

functions without trapdoors [58]; however, BiBa has high overhead in signature generation

and public key distribution.

13) * + ,) *) * - ,. . ..
/ 0 1 2

3 45 6 7 89 : ; < = > ; ?@ A B C B D 9 : ; < = > ; ?@ A B D 9 : ; < = > ; ?@ A E C B D
F A B C G * G * - ,

Figure 2.1: µTESLA protocol.

µTESLA protocol introduces asymmetry by delaying the disclosure of symmetric

keys [62]. A sender broadcasts a message with a Message Authentication Code (MAC)

generated with a secret key K, which will be disclosed after a certain period of time. When

a receiver receives this message, if it can ensure that the packet was sent before the key

was disclosed, the receiver can buffer this packet and authenticate it when it receives the

corresponding disclosed key. This requires loose time synchronization between the sender

and the receivers. To continuously authenticate the broadcast packets, µTESLA divides

the time period for broadcasting into multiple time intervals and assigns different keys to

different time intervals, as shown in Figure 2.1. All packets broadcasted in a particular time

interval are authenticated with the same key assigned to that time interval. For example,

packets 1, 2 are authenticated with Ki−1, packet 3 is authenticated with Ki, and packets

4,5,6 are authenticated with Ki+1.

To authenticate the broadcast messages, a receiver first authenticates the disclosed

keys. µTESLA uses a one-way key chain for this purpose. As shown in Figure 2.1, the sender

selects a random value Kn as the last key in the key chain and repeatedly performs a pseudo

random function F to compute all the other keys: Ki = F (Ki+1), 0 ≤ i ≤ n − 1, where the

secret key Ki is assigned to the ith time interval. With the pseudo random function F , given

Kj in the key chain, anybody can compute all the previous keys Ki, 0 ≤ i ≤ j, but nobody

can compute any of the later keys Ki, j +1 ≤ i ≤ n. Thus, with the knowledge of the initial

key K0, which is called the commitment of the key chain, the receiver can authenticate

14

any key in the key chain by merely performing pseudo random function operations. When

a broadcast message is available in ith time interval, the sender generates MAC for this

message with a key derived from Ki and then broadcasts this message along with its MAC

and discloses the key Ki−d assigned to the time interval Ii−d, where d is the disclosure lag

of the authentication keys. The sender prefers a long delay in order to make sure that all or

most of the receivers can receive its broadcast messages. But, for the receiver, a long delay

could result in high storage overhead to buffer the messages.

Each key in the key chain will be disclosed after certain delay. As a result, an

attacker can forge a broadcast packet by using the disclosed key. µTESLA uses a security

condition to prevent a receiver from accepting any broadcast packet authenticated with a

disclosed key. When a receiver receives an incoming broadcast packet at time interval Ii, it

checks the security condition ⌊(Tc + ∆−T0)/Tint⌋ < Ii + d, where Tc is the local time when

the packet is received, T0 is the start time of the time interval 0, Tint is the duration of each

time interval, and ∆ is the maximum clock difference between the sender and itself. If the

security condition is satisfied, i.e., the sender has not disclosed the key Ki yet, the receiver

accepts this packet. Otherwise, the receiver simply drops it. When the receiver receives

the disclosed key Ki, it can authenticate it with a previously received key Kj by checking

whether Kj = F i−j(Ki), and then authenticate the buffered packets that were sent during

time interval Ii.

µTESLA is an extension to TESLA [60]. The only difference between TESLA and

µTESLA is in their key chain commitment distribution schemes. TESLA uses asymmetric

cryptography to bootstrap new receivers, which is impractical for current sensor networks

due to its high computation and storage overhead. µTESLA depends on symmetric cryp-

tography with the master key shared between the sender and each receiver to bootstrap the

new receivers individually. In this scheme, the receiver first sends a request to the sender,

and then the sender replies a packet containing the current time Tc (for time synchroniza-

tion), a key Ki of the one-way key chain used in a past interval i, the start time Ti of

interval i, the duration Tint of each time interval and the disclosure lag d.

TESLA was later extended to include an immediate authentication mechanism

[61]. The basic idea is to include an image under a pseudo random function of a late

message content in an earlier message so that once the earlier message is authenticated, the

later message content can be authenticated immediately after it is received. This extension

can be applied to µTESLA protocol in the same way.

15

Perrig et al. proposed to use an earlier key chain to distribute the commitments of

the next key chain [59]. Multiple early TESLA packets are used to tolerate packet losses.

However, since reliable distribution of later commitment cannot be fully guaranteed, if

all the packets used to distribute commitments are lost (e.g., due to temporary network

partition), a receiver will not be able to recover the commitment of the later key chain. As

a result, the sender and the receivers will have to repeat the costly bootstrap process.

2.2 Key Pre-Distribution Techniques in Sensor Networks

This section reviews two types of techniques to perform key pre-distribution in the

context of resource constrained sensor networks: the polynomial-based key pre-distribution

[5] and the probabilistic key pre-distribution [19, 11, 63].

2.2.1 Polynomial-Based Key Pre-Distribution

The original key pre-distribution protocol in [5] was developed for group key pre-

distribution. Since the goal is to establish pairwise keys, for simplicity, we only discuss the

special case of pairwise key establishment in the context of sensor networks.

To pre-distribute pairwise keys, the (key) setup server randomly generates a bi-

variate t-degree polynomial f(x, y) =
∑t

i,j=0 aijx
iyj over a finite field Fq, where q is a prime

number that is large enough to accommodate a cryptographic key, such that it has the prop-

erty of f(x, y) = f(y, x). (In the following, we assume that all the bivariate polynomials

have this property without explicit statement.) It is assumed that each sensor node has a

unique ID. For each node i, the setup server computes a polynomial share of f(x, y), that is,

f(i, y). This polynomial share is pre-distributed to node i. Thus, for any two sensor nodes

i and j, node i can compute the key f(i, j) by evaluating f(i, y) at point j. And node j can

compute the same key f(j, i) = f(i, j) by evaluating f(j, y) at point i. As a result, nodes i

and j can establish a common key f(i, j).

In this approach, each sensor node i needs to store a t-degree polynomial f(i, x),

which occupies (t+1) log q storage space. To establish a pairwise key, both sensor nodes need

to evaluate the polynomial at the ID of the other sensor node. There is no communication

overhead during the pairwise key establishment process.

16

The security proof in [5] ensures that this scheme is unconditionally secure and

t-collusion resistant. That is, the coalition of no more than t compromised sensor nodes

knows nothing about the pairwise key between any two non-compromised nodes.

It is theoretically possible to use the general group key distribution protocol in

[5] in sensor networks. However, the storage cost for a polynomial share is exponential in

terms of the group size, making it prohibitive in sensor networks. This dissertation focuses

on the problem of pairwise key establishment.

2.2.2 Probabilistic Key Pre-Distribution

A probabilistic key pre-distribution technique was proposed to bootstrap initial

trust between sensor nodes in [19]. The main idea is to have each node randomly pick a

set of keys from a key pool before deployment so that any two sensor nodes can share a

common key with certain probability. Specifically, a setup server, which is assumed to be

trusted, generates a large pool of random keys, where each key has a unique key ID. Each

sensor node then gets assigned a random subset of keys as well as their IDs from this pool

before the deployment of this sensor node.

In order to establish a common key directly between two sensor nodes after deploy-

ment, the nodes only need to identify a common key ID they share. This can be achieved

by exchanging the list of key IDs they have. The probability of sharing at least one common

key can be easily derived for a given key pool size s and the number of keys s′ at sensor

nodes using the following equation [19].

p = 1 −
s′−1
∏

i=0

s − s′ − i

s − i

For example, if the key pool size is 100,000 and each sensor node randomly gets

assigned 200 keys, the probability of sharing at least one common key is about 0.33. Figure

2.2 shows the probability of sharing at least one key for different combinations of key pool

size and the number of keys assigned to each sensor node.

Note that it is possible that two sensor nodes cannot establish a common key

directly. In this case, they need to find a number of other sensor nodes to help them

establish a temporary session key. A simple way is to find another node that can directly

establish keys with both the source and the destination nodes and let this node act as an

intermediate node (like a KDC) between them.

17

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
s'

P
ro

ba
bi

lit
y

of
 s

ha
rin

g
a

 k
e

y

s=1000

s=5000

s=10,000

s=100,000

Figure 2.2: Probability of sharing at least one key for different combinations of key pool
size and the number of keys at sensor nodes.

Chan et al. extended the basic probabilistic key pre-distribution scheme and pro-

posed the q-composite key pre-distribution scheme [11]. This approach requires two sensor

nodes to setup a pairwise key only when they share at least q common keys. This idea im-

proves the security of the basic probabilistic scheme [19] when there are a small number of

compromised sensor nodes. Pietro et al. proposed a seed-based key deployment strategy to

simplify the key discovery procedure and a cooperative protocol to enhance its performance

[63].

The advantage of the above key pre-distribution schemes is that they require a

small amount of memory at sensor nodes but guarantee a high probability of sharing a

common key between two sensor nodes. The main disadvantage is that a small number

of compromised sensor nodes discloses a large fraction of secrets in the network, which is

shown in Figure 2.3. The reason is that the same key may be shared by more than two

sensor nodes.

Chan et al. also developed a random pairwise keys scheme to defeat node capture

attacks [11]. In this scheme, the setup server randomly selects a pair of sensor nodes and

distributes a unique random key between them. The benefit is that none of the keys shared

directly between non-compromised sensor nodes will be disclosed no matter how many

sensor nodes are compromised. The disadvantage is that the maximum supported network

size is limited by the storage overhead and the desired probability of sharing a key between

sensor nodes directly.

Du et al. independently discovered a technique similar to one of our proposed poly-

nomial pool-based key pre-distribution schemes (random subset assignment) [17]. However,

18

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100 120 140
Number of compromised nodes

F
ra

ct
io

n
of

 c
om

pr
om

is
e

d
lin

ks

basic probabilistic scheme

q-composite (q=1)

q-composite (q=2)

q-composite (q=3)

Figure 2.3: Fraction of compromise links between non-compromised sensor nodes for the
basic probabilistic scheme and the q-composite scheme when p = 0.33 and s′ = 200.

our scheme provides a more general framework, which makes it possible to discover novel key

pre-distribution schemes. The idea of using prior deployment knowledge was independently

discovered in [16] and our work [42] to improve the key pre-distribution schemes.

2.3 Other Related Work on Sensor Network Security

In addition to the above two security services, there are a lot of other related work

on sensor network security. Stajano and Anderson discussed bootstrapping trust between

devices through location-limited channels such as physical contact [74]. Carman, Kruus, and

Matt studied the performance of a number of key management approaches in sensor network

on different hardware platforms [10]. Wong and Chan proposed reducing the computational

overhead for key exchange in a low power computing device with the help of a more power

server [77].

Basagni et al. presented a key management scheme to secure the communication

by periodically updating the symmetric keys shared by all sensor nodes [3]. However, this

scheme assumes a tamper-resistant device to protect the key, which is not always available in

sensor networks. Zhu et al. proposed a protocol suite named LEAP (Localized Encryption

and Authentication Protocol) to help establish individual keys between sensors and a base

station, pairwise keys between sensors, cluster keys within a local area, and a group key

shared by all nodes [80].

Deng, Han and Mishra developed a collection of mechanisms to improve the se-

19

curity for in-networking processing [14]. Zhu et al. proposed an interleaved hop-by-hop

authentication to defeat malicious data injection in sensor networks [81]. The problem of

secure data aggregation in the presence of compromised nodes is studied in [26] and [64].

Wood and Stankovic identified a number of DOS attacks in sensor networks [78].

Karlof and Wagner pointed out security goals for routing in sensor networks and analyzed

the vulnerabilities as well as the countermeasures for a number of existing routing protocols

[33]. Sastry, Shankar and Wagner proposed a location verification technique based on the

round trip time (RTT) [69] to detect false location claims. Hu and Evans proposed using

directional antennae to detect wormhole attacks in wireless Ad Hoc networks [27]. Newsome

et al. studied the Sybil attack in sensor networks where a node illegitimately claims multiple

identities and developed techniques to defend against this attack [52].

2.4 Localization in Sensor Networks

Existing localization schemes either employ range-based methods, which use the

exact measurements obtained in stage one, or range-free methods, which only need the ex-

istences of beacon signals in stage one. Typical techniques to obtain the measurements be-

tween two nodes include Received Signal Strength Indicator (RSSI), Time of Arrive (ToA),

Time Difference of Arrive (TDoA), and Angle of Arrive (AoA).

The basic idea of localization in sensor networks can be illustrated through a simple

example. As shown in Figure 2.4, non-beacon node O wants to estimate its location. In

the first phase, Node O measures the distances d1, d2, and d3 to beacon node A, B and C

respectively, based on the received beacon signals. In the second phase, node O lists the

following equations according to the measured distances and the locations of beacon nodes.















f1 = d1 −
√

(x − x1)2 + (y − y1)2

f2 = d2 −
√

(x − x2)2 + (y − y2)2

f3 = d3 −
√

(x − x3)2 + (y − y3)2

A typical way to solve the above equations is to use MMSE (Minimum Mean

Square Estimation) so that F = f2
1 + f2

2 + f2
3 is minimized. In general, when non-beacon

nodes receive beacon signals from more than three beacon nodes, the accuracy of location

estimation can be improved by solving a serial of such equations using MMSE.

20

A (x1, y1)

B (x2, y2) C (x3, y3)

O (x, y)

d1

d2 d3

Figure 2.4: An example of localization method. Nodes A,B and C are beacon nodes, and
node O is a non-beacon node.



























f1 = d1 −
√

(x − x1)2 + (y − y1)2

f2 = d2 −
√

(x − x2)2 + (y − y2)2

...
...

fm = dm −
√

(x − xm)2 + (y − ym)2

With these equations, we can use the technique in [70] to estimate the location of

sensor nodes.

The above example shows the basic idea of a range-based localization scheme.

Range-based localization schemes in sensor networks include those in [70, 71, 55, 51, 15].

Savvides et al. developed AHLoS localization protocol based on Time Difference of Arrive

[70]. Extension of this work can be found in [71]. Doherty et al. presented a localization

scheme based on connectivity-induced constraints and the relative angle between neighbors

[15]. Angle of Arrive is also used to develop localization schemes in [55] and [51].

Range-free based schemes are proposed to provide location estimation services for

those applications with less required location precision [8, 56, 50, 24]. Bulusu, Heidemann

and Estrin proposed a simple range-free, coarse grained localization scheme where each

sensor estimated its location by centering the locations contained in the received signals

[8]. Niculescu and Nath proposed using the minimum hop count and the average hop size

21

to estimate the distance between two nodes and then use multilateration to estimate the

location [56].

22

Chapter 3

Extending µTESLA Broadcast

Authentication Technique

In this chapter, we first present a multi-level µTESLA to extend the capabilities

of µTESLA. The basic idea is to predetermine and broadcast the initial parameters required

by µTESLA instead of using unicast-based message transmission. In the simplest form,

this extension distributes the µTESLA parameters during the initialization of the sensor

nodes (e.g., along with the master key shared between each sensor and the base station).

To provide more flexibility, especially to prolong the lifetime of µTESLA without requiring

a very long key chain, we introduce a multi-level key chain scheme in which the higher-

level key chains are used to authenticate the commitments of lower-level ones. To further

improve the survivability of the scheme against message loss and Denial of Service (DOS)

attacks, we use redundant message transmissions and random selection strategies to deal

with the messages that distribute key chain commitments. The resulting scheme removes the

requirement of unicast-based initial communication between base station and sensor nodes

while keeping the nice properties of µTESLA (e.g., tolerance of message loss, resistance to

replay attacks). The experimental results demonstrate that this scheme can tolerate high

channel loss rate and is resistant to known DOS attacks to a certain degree.

We then develop an efficient tree-based µTESLA to support a large number of

23

senders over a long period of time by using Merkle hash tree [49]. This method has the

following advantages over the multi-level µTESLA schemes: (1) It allows broadcast authen-

tication in large sensor networks with a large number of senders, while multi-level µTESLA

schemes (as well as the original µTESLA protocol) is not scalable in terms of the number

of senders. (2) It is not subject to the DOS attacks against the distribution of µTESLA pa-

rameters. In contrast, multi-level µTESLA schemes either consume substantial bandwidth

or require significant resources at senders in order to defeat such DOS attacks. To deal with

the limited packet payload size in sensor networks, we adopt the idea in [31] and develop

a simple method to distribute large messages required for authenticating µTESLA param-

eters over multiple packets. A nice property of this method is that it allows immediate

authentication of the segments of such messages and thus is immune to DOS attacks.

We also develop two complementary techniques to revoke broadcast authentica-

tion capability from compromised senders: a revocation tree-based scheme and a proactive

distribution scheme. The former constructs a Merkle hash tree to revoke compromised

senders, while the latter proactively controls the distribution of broadcast authentication

capability of each sender to allow the revocation of compromised senders.

3.1 Multi-Level µTESLA

The major barrier of using µTESLA in large sensor networks lies in its difficulty

with distributing the key chain commitments to a large number of sensor nodes. In other

words, the method for bootstrapping new receivers in µTESLA does not scale to a large

group of new receivers, though it is okay to bootstrap one or a few. The essential reason for

this difficulty is the mismatch between the unicast-based distribution of key chain commit-

ments and the authentication of broadcast messages. That is, the technique is developed for

broadcast authentication, but it relies on unicast-based technique to distribute the initial

parameters.

In this section, we develop several techniques to extend the capability of µTESLA.

The basic idea is to predetermine and broadcast the key chain commitments instead of

unicast-based message transmissions. In the following, we present a series of schemes; each

later scheme improves over the previous one by addressing some of its limitations except for

Scheme V, which improves over Scheme IV only in special cases where the base station is

24

very resourceful in terms of computational power. The final scheme, a multi-level µTESLA

scheme, then has two variations based on schemes IV and V, respectively.

We assume each broadcast message is from the base station to the sensor nodes.

Broadcast messages from a sensor node to the sensor network can be handled as suggested

in [62]. That is, the sensor node unicasts the message to the base station, which then broad-

casts the message to the other sensor nodes. The messages transmitted in a sensor network

may reach the destination directly, or may have to be forwarded by some intermediate

nodes; however, we do not distinguish between them in our schemes.

For the sake of presentation, we denote the key chain with commitment K0 as

〈K0〉 throughout this chapter.

3.1.1 Scheme I: Predetermined Key Chain Commitment

A simple solution to bypass the unicast-based distribution of key chain commit-

ments is to predetermine the commitments, the starting times, and other parameters of key

chains to the sensor nodes during the initialization of the sensor nodes, possibly along with

the master keys shared between the sensor nodes and the base station. (Unlike the master

keys, whose confidentiality and integrity are both important, only the integrity of the key

chain commitments needs to be ensured.) As a result, all the sensor nodes have the key

chain commitments and other necessary parameters once they are initialized, and they are

ready to use µTESLA as long as the starting time is passed.

This simple scheme can greatly reduce the overhead involved in distribution of

key chain commitments in µTESLA since unicast-based message transmission is no longer

required. However, this simple solution also introduces several problems.

First, a key chain in this scheme can only cover a fixed period of time. To cover

a long period of time, we need either a long key chain or long time intervals to divide

the time period. However, both options may introduce problems. If a long key chain is

used, the base station has to allocate a large amount of memory to store the key chain.

For example, in our later experiments, the duration of each time interval is 100ms. To

cover one day, the base station has to allocate 24 × 60 ×60 × 10 × 8 = 6, 912, 000 bytes

memory to store the keys. This may not be desirable in some applications. In addition,

the receivers has to perform intensive computation of pseudo random functions if there is

a long delay (which covers a large number of time intervals) between broadcast messages

25

in order to authenticate a later disclosed key. Continuing from the previous example, if the

time between two consecutive messages received in a sensor is one hour, the sensor has to

perform 60× 60× 10 = 36, 000 pseudo random operations to verify the disclosed key, which

may be prohibitive in resource-constrained sensors. If a long interval is used, there will be

a long delay before the authentication of a message after it is received, and it requires a

larger buffer at each sensor node. Though the extensions to TESLA [61] can remove the

delay in authenticating the data payload and the buffer requirement at the sensor nodes,

the messages will have to be buffered longer at the base station.

Second, it is difficult to predict the starting time of a key chain when the sensor

nodes are initialized. If the starting time is set too early, the sensor nodes will have to

compute a large number of pseudo random functions in order to authenticate the first

broadcast message. As shown in the previous example, one hour delay will introduce a

huge number of pseudo number operations. In addition, the key chain must be fairly long

so that it does not run out before the sensor network’s lifetime ends. If the starting time is

set too late, messages broadcasted before it cannot be authenticated via µTESLA.

These problems make this simple scheme not a practical one. In the following, we

propose several additional techniques so that we not only avoid the problems of unicast-

based distribution of key chain commitment but also those of this simple scheme.

3.1.2 Scheme II: Naive Two-Level µTESLA

The essential problem of Scheme I lies in the fact that it is impossible to use both

a short key chain and short time intervals to cover a long period of time. This conflict can

be mitigated by using multiple levels of key chains. In the following several subsections, we

first investigate the special case of two-level key chains to enhance security and robustness,

and then extend the results to multi-level key chains in Section 3.1.6.

The two-level key chains consist of a high-level key chain and multiple low-level

key chains. The low-level key chains are intended for authenticating broadcast messages

while the high-level key chain is used to distribute and authenticate commitments of the

low-level key chains. The high-level key chain uses a long enough interval to divide the time

line so that it can cover the lifetime of a sensor network without having too many keys.

The low-level key chains have short enough intervals so that the delay between the receipt

of broadcast messages and the verification of the messages is tolerable.

26

The lifetime of a sensor network is divided into n0 (long) intervals of duration

∆0, denoted as I1, I2, ..., and In0. The high-level key chain has n0 + 1 elements K0, K1,

..., Kn0 , which are generated by randomly picking Kn0 and computing Ki = F0(Ki+1) for

i = 0, 1, ..., n0 − 1, where F0 is a pseudo random function. The key Ki is associated with

each time interval Ii. We denote the starting time of Ii as Ti. Thus, the starting time of

the high-level key chain is T1.

Since the duration of the high-level time intervals is usually very long compared

with the network delay and clock discrepancies, we choose to disclose a high-level key Ki

used for Ii in the following time interval Ii+1. Thus, we use the following security condition

to check whether the base station has disclosed the key Ki when a sensor node receives a

message authenticated with Ki at time t: t + δMax < Ti+1, where δMax is the maximum

clock discrepancy between the base station and the sensor node.

Each time interval Ii is further divided into n1 (short) intervals of duration ∆1,

denoted as Ii,1, Ii,2, ..., Ii,n1. If needed, the base station generates a low-level key chain

for each time interval Ii by randomly picking Ki,n1 and computing Ki,j = F1(Ki,j+1) for

j = 0, 1, ..., n1 − 1, where F1 is a pseudo random function. The key Ki,j is intended for

authenticating messages broadcasted during the time interval Ii,j . The starting time of the

key chain 〈Ki,0〉 is predetermined as Ti. The disclosure lag for the low-level key chains

can be determined in the same way as µTESLA and TESLA [60, 62]. For simplicity, we

assume all the low-level key chains use the same disclosure lag d. Further assume that

messages broadcasted during Ii,j are indexed as (i, j). Thus, the security condition for a

message authenticated with Ki,j and received at time t is i′ < (i − 1) ∗ n1 + j + d, where

i′ = ⌊ t−T1+δMax

∆1
⌋+1, and δMax is the maximum clock discrepancy between the base station

and the sensor node.

When sensor nodes are initialized, their clocks are synchronized with the base

station. In addition, the starting time T1, the commitment K0 of the high-level key chain,

the duration ∆0 of each high-level time interval, the duration ∆1 of each low-level time

interval, the disclosure lag d for the low-level key chains, and the maximum clock discrepancy

δMax between the base station and the sensor nodes throughout the lifetime of the sensor

network are distributed to the sensors.

In order for the sensors to use a low-level key chain 〈Ki,0〉 during the time interval

Ii, they must authenticate the commitment Ki,0 before Ti. To achieve this goal, the base

station broadcasts a commitment distribution message, denoted as CDMi, during each time

27

interval Ii. (In the rest of this chapter, we use commitment distribution message and its

abbreviation CDM interchangeably.) This message consists of the commitment Ki+2,0 of

the low-level key chain 〈Ki+2,0〉 and the key Ki−1 in the high-level key chain. Specifically,

the base station constructs the CDMi message as follows:

CDMi = i|Ki+2,0|MACK ′

i
(i|Ki+2,0)|Ki−1, where “|” denotes message concatenation,

and K ′
i is derived from Ki with a pseudo random function other than F0 and F1.

Thus, to use a low-level key chain 〈Ki,0〉 during Ii, the base station needs to generate the

key chain during Ii−2 and distribute Ki,0 in CDMi−2.

Since the high-level authentication key Ki is disclosed in CDMi+1 during the time

interval Ii+1, each sensor needs to store CDMi until it receives CDMi+1. Each sensor

also stores a key Kj , which is initially K0. After receiving Ki−1 in CDMi, the sensor

authenticates it by verifying that F i−1−j
1 (Ki−1) = Kj . Then the sensor replaces the current

Kj with Ki−1.

Suppose a sensor has received CDMi−2. Upon receiving CDMi−1 during Ii−1, the

sensor can authenticate CDMi−2 with Ki−2 disclosed in CDMi−1, and thus verify Ki,0. As

a result, the sensor can authenticate broadcast messages sent by the base station using the

µTESLA key chain 〈Ki,0〉 during the high-level time interval Ii.

This scheme uses µTESLA in two different levels. The high-level key chain relies

on the initialization phase of the sensor nodes to distribute the key chain commitment,

and it only has a single key chain throughout the lifetime of the sensor network. The

low-level key chains depend on the high-level key chain to distribute and authenticate the

commitments. Figure 3.1 illustrates the two-level key chains, and Figure 3.2 displays the

key disclosure schedule for the keys in these key chains.

The two-level key chains scheme mitigates the problem encountered in Scheme I.

On the one hand, by having long time intervals, the high-level key chain can cover a long

period of time without having a very long key chain. On the other hand, the low-level key

chain has short time intervals so that authentication of broadcast messages does not have

to be delayed too much.

The security of this scheme follows directly from the security of µTESLA. Note

that the high-level key chain is only used to authenticate the commitment of each low-level

key chain. As long as the security condition of each µTESLA key chain is satisfied, the

two-level µTESLA has the same degree of security as all the µTESLA instances involved

28H I J K H I H IL KM M MH IJ K N K H I J K N O H I N K H I NO H I P K N K H I P K N OM M M M M MQ R Q R Q RQ R Q K Q K Q K Q K Q K Q K Q K Q K Q KM M MM M M M M MS TU VH IN R H I P K N R H I P W N RQ K Q K Q K Q KH IP X NR H I P W N K
1,1 niK −

1,2 niK − 1,niK
1,1niK +

Figure 3.1: The two levels of key chains in Scheme II. Each key Ki is used for the high-level
time interval Ii, and each key Ki,j is used for the low-level time interval Ii,j. F0 and F1 are
different pseudo random functions. Each commitment Ki,0 is distributed during the time
interval Ii−2. Y Y Y Y Y YY Y Y Y Y YZ [Z [\]

^ [\ _ ` a ^ [\ b ` a Y Y YY Y Y c d e fg d h i j k h l m f k nj k o p j f q f j r f s hg d h i j k h l m f k nt d u t pj f q f j r f s hg d h v m dw l v d k x k nj k o p j f q f j i k e e d v e f x v h ^ [y] ^ [^ [\]` a ^ [\ _ ` az l v t f x v d i { v dk x k nj k o p j f q f j i k e e d v e f x v h 1,1 1 +−− dniK 2,1 1 +−− dniK dniK −1, 1, 1 +−dniK 2, 1 +−dniK dniK −+ 1,1

1,niI1,iI 2,iI 1,1+iI 2,1+iI
1,1 niI +

Figure 3.2: Key disclosure schedule in Scheme II

in this scheme. Thus, similar to µTESLA and TESLA, a sensor can detect forged messages

by verifying the MAC with the corresponding authentication key once the sensor receives

it. In addition, replay attacks can be easily defeated if a sequence number is included in

each message.

3.1.3 Scheme III: Fault Tolerant Two-Level µTESLA

Scheme II does not tolerate message losses as well as µTESLA and TESLA. There

are two types of message losses: the losses of normal messages, and the losses of CDM

messages. Both may cause problems for Scheme II. First, the low-level keys are not entirely

29| }~ � | } | }� �� � �| } ~ � � � | }~ � � � | } � � | } � � | } � � � � | } � � ��� � � � � �
� � � � � �� �� � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � �� � � � � �� �� �| }� � | } � � � � | } � � �� | } � � � �� � � � � � � � | } � � � �

1,1 niK −1,2 niK − 1,niK
1,1 niK +

Figure 3.3: The two levels of key chains in Scheme III. It differs from Figure 3.1 in that
each Ki,n1 is derived from Ki+1 using an additional pseudo random function F01.

chained together. Thus, losses of a key disclosure messages for later keys in a low-level key

chain cannot be recovered even if the sensor can receive keys in some later low-level key

chains. For example, consider the last key Ki,n1 that is used to authenticate the packet in

the key chain of time interval Ii. If the CDM message that carries the disclosure of Ki,n1 is

lost, the sensor then has no way to authenticate this packet. As a result, a sensor may not

be able to authenticate a stored message even if it receives some key disclosure messages

later. In contrast, with µTESLA a receiver can authenticate a stored message as long as

it receives a later key. Second, if CDMi−2 does not reach a sensor, the sensor will not be

able to use the key chain 〈Ki,0〉 for authentication during the entire time interval Ii, which

is usually pretty long (to make the high-level key chain short).

To address the first problem, we propose to further connect the low-level key chains

to the high-level one. Specifically, instead of choosing each Ki,n1 randomly, we derive each

Ki,n1 from a high-level key Ki+1 (which is to be used in the next high-level time interval)

through another pseudo random function F01. That is, Ki,n1 = F01(Ki+1). As a result, a

sensor can recover any authentication key Ki,j as long as it receives a CDM message that

discloses Ki′ with i′ >= i + 1, even if it does not receive any later low-level key Ki,j′ with

j′ >= j. Thus, the first problem can be resolved. Figure 3.3 illustrates this idea.

The second problem does not have an ultimate solution; if the base station cannot

reach a sensor at all during a time interval Ii, CDMi will not be delivered to the sensor.

However, the impact of temporary communication failures can be reduced by standard fault

tolerant approaches.

30

One possible solution to mitigate the second problem is to include each key chain

commitment in multiple CDM messages. For example, we may include each key chain

commitment Ki,0 in l consecutive CDM messages, CDMi−2, . . ., CDMi−(l+1). As a result,

CDMi includes the key chain commitments Ki+2,0, ..., Ki+1+l,0. A sensor can recover and

authenticate Ki,0 if it receives either any two of the above l CDM messages, or one of the

l CDM messages and CDMi−1. However, this also increases the size of CDM messages as

well as the CDM buffer on sensor nodes. Moreover, the larger a packet is, the more likely

it will be lost in wireless communication. Considering the fact that packets in distributed

sensor networks usually have limited size (e.g., the payload of each packet in TinyOS [25]

is at most 29 bytes), we decide not to go with this solution.

Instead, we propose to have the base station periodically broadcast the CDM

message during each time interval. Assuming that the frequency of this broadcast is F ,

each CDM message is therefore broadcasted F × ∆0 times. To simplify the analysis, we

assume the probability that a sensor cannot receive a broadcast of a CDM message is pf .

Thus, the probability that a sensor cannot receive any copy of the CDM message is reduced

to pF×∆0
f .

Note that even if a sensor cannot receive any CDM message during a time interval

Ii, it still has the opportunity to authenticate broadcast messages in time intervals later

than Ii+1. Not having the CDM message in time interval Ii only prevents a sensor from

authenticating broadcast messages during Ii+1. As long as the sensor gets a CDM message,

it can derive all the low-level keys in the previous time intervals.

By periodically broadcasting CDM messages, Scheme III introduces more over-

head than Scheme II. Consider the overhead on the base station, the sensors, and the com-

munication channel respectively. Compared with Scheme II, this scheme does not change

the computation of CDM messages in the base station but increases the overhead to trans-

mit CDM messages by F × ∆0 times. Base stations in a sensor network are usually much

more powerful than the sensor nodes. Thus, the increased overhead on base stations may

not be a big problem as long as F × ∆0 is reasonable.

The sensors are affected much less than the base station in a benign environment

since each sensor only needs to process one CDM message for each time interval. Thus,

the sensors have roughly the same overhead as in Scheme II. However, we will show that

a sensor has to take a different strategy in a hostile environment in which there are DOS

attacks. We will delay the discussion of sensors’ overhead until we introduce our counter

31

measures.

This approach increases the overhead in the communication channel by F × ∆0

times since the CDM message for each time interval is repeated F ×∆0 times. Assume the

probability that a sensor cannot receive a CDM message is pf = 1/2 and F × ∆0 = 10.

Under our simplified assumption, the probability that the sensor cannot receive any of the

10 CDM messages is pF×∆0
f < 0.1%. Further assume that ∆0 is 1 minutes, which is quite

short as the interval length for the high-level key chain. Thus, there is one CDM message

per 6 seconds. Assume the bandwidth is 10 kbps and each CDM packet is 36 bytes =

288 bits, which includes the 29 byte CDM message and the 7 byte packet header as in our

experiments (Section 3.1.7). Then the relative communication overhead is 288
10240×6 = 0.47%.

This is certainly optimistic since we assume perfect channel utilization. However, it still

shows that Scheme III introduces very reasonable communication overhead in typical sensor

networks.

The security of Scheme III is similar to that of Scheme II. The only difference is

that each low-level key chain in Scheme III is derived from a high-level key with a pseudo

random function F01. Each high-level key is disclosed at least one high-level time interval

after the corresponding low-level key chain is used. Thus, as long as the pseudo random

function is secure (i.e., it is computationally infeasible to distinguish the output of the

pseudo random function from a true random number), Scheme III is equivalent to Scheme

II, which does not have F01 connecting the two levels of key chains.

One limitation of Scheme III is that if a sensor misses all copies of CDMi during

the time interval Ii, it cannot authenticate any data packets received during Ii+2 before

it receives an authentic Kj , j > i + 2. (Note that the sensor does not have to receive an

authentic CDM message. As long as the sensor can authenticate a high-level key Kj with

j > i + 2, it can derive the low-level keys through the pseudo random functions F0, F01,

and F1.) Since the earliest high-level key Kj that satisfies j > i + 2 is Ki+3, and Ki+3 is

disclosed during Ii+4, the sensor has to buffer the data packets received during Ii+2 for at

least the duration of one high-level time interval.

3.1.4 Scheme IV: DOS-Tolerant Two-Level µTESLA

In Scheme III, the usability of a low-level key chain depends on the authentication

of the key chain commitment contained in the corresponding CDM message. A sensor

32

cannot use the low-level key chain 〈Ki,0〉 for authentication before it can authenticate Ki,0

distributed in CDMi−2. This makes the CDM messages attractive targets for attackers.

An attacker may disrupt the distribution of CDM messages and thus prevent the sensors

from authenticating broadcast messages during the corresponding high-level time intervals.

Although the high-level key chain and the low-level ones are chained together, and such

sensors may store the broadcast messages and authenticate them once they receive a later

commitment distribution message, the delay between the receipt and the authentication of

the messages may introduce a problem. Indeed, an attacker may send a large number of

forged messages to exhaust the sensors’ buffer before they can authenticate the buffered

messages, and force them to drop some authentic messages.

The simplest way for an attacker to disrupt the CDM messages is to jam the

communication channel. We may have to resort to techniques such as frequency hopping

if the attacker completely jams the communication channel. This is out of the scope of

this chapter. The attacker may also jam the communication channel only when the CDM

messages are being transmitted. If the attacker can predict the schedule of such messages,

it would be much easier for the attacker to disrupt such message transmissions. Thus, the

base station needs to send the CDM messages randomly or in a pseudo random manner

that cannot be predicted by an attacker who is unaware of the random seed. For simplicity,

we assume that the base station sends the CDM messages randomly.

An attacker may forge commitment distribution messages to confuse the sensors.

If a sensor does not have a copy of the actual CDMi, it will not be able to get the correct

Ki+2,0, and cannot use the low-level key chain 〈Ki+2,0〉 during the time interval Ii+2.

Consider a CDM message: CDMi = i|Ki+2,0|MACK ′

i
(i|Ki+2,0)|Ki−1. Once seeing

such a message, the attacker learns i and Ki−1. Then the attacker can replace the actual

Ki+2,0 or MACK ′

i
(i|Ki+2,0) with arbitrary values K ′

i+2,0 or MAC ′ and forge another mes-

sage: CDM ′
i = i|K ′

i+2,0|MAC ′|Ki−1. Assume a sensor has an authentic copy of CDMi−1.

The sensor can verify Ki−1 with Ki−2 since Ki−2 is included in CDMi−1. However, the

sensor has no way to verify the authenticity of K ′
i+2,0 or MAC ′ without the corresponding

key, which will be disclosed later. In other words, the sensor cannot distinguish between

the authentic CDMi messages and those forged by the attacker. If the sensor does not save

an authentic copy of CDMi during Ii, it will not be able to get an authenticated Ki+2,0

even if it receives the authentication key Ki in CDMi+1 during Ii+1. As a result, the sensor

cannot use the key chain 〈Ki+2,0〉 during Ii+2.

33

One may suggest distributing each Ki,0 in some earlier time intervals than Ii−2.

However, this does not solve the problem. If a sensor does not have an authentic copy of

the CDM message, it can never get the correct Ki,0. To take advantage of this, an attacker

can simply forge CDM messages as discussed earlier.

We propose a random selection method to improve the reliable broadcast of com-

mitment distribution messages. For the CDMi messages received during each time interval

Ii, each sensor first tries to discard as many forged messages as possible. There is a simple

test for a sensor to identify some forged CDMi messages during Ii. The sensor can verify if

F i−1−j
0 (Ki−1) = Kj , where Ki−1 is the high-level key disclosed in CDMi and Kj is a pre-

viously disclosed high-level key. (Note that such a Kj always exists since the commitment

K0 of the high-level key chain is distributed during the initialization of the sensor nodes.)

Messages that fail this test are certainly forged and should be discarded.

The simple test can filter out some forged messages; however, they do not rule out

the forged messages discussed earlier. To further improve the possibility that the sensor

has an authentic CDMi message, the base station uses a random selection method to store

the CDMi messages that pass the above test. Our goal is to make the DOS attacks so

difficult that the attacker would rather use constant signal jamming instead to attack the

sensor network. In other words, we want to prevent the DOS attacks that can be achieved

by sending a few packets. Some of the strategies are also applicable to the low-level key

chains as well as the (extended) TESLA and µTESLA protocols.

Without loss of generality, we assume that each copy of CDMi has been weakly

authenticated in the time interval Ii by using the aforementioned test.

Single Buffer Random Selection

Let us first look at a simple strategy: single buffer random selection. Assume

that each sensor node only has one buffer for the CDM message broadcasted in each time

interval. In a time interval Ii, each sensor node randomly selects one message from all

copies of CDMi it receives. The key issue here is to make sure all copies of CDMi have

equal probability to be selected. Otherwise, an attacker who knows the protocol may take

advantage of the unequal probabilities and make a forged CDM message be selected.

To achieve this goal, for the kth copy of CDMi a sensor node receives during the

time interval Ii, the sensor node saves it in the buffer with probability 1/k. Thus, a sensor

34

node will save the first copy of CDMi in the buffer, substitute the second copy for the buffer

with probability 1/2, substitute the third copy for the buffer with probability 1/3, and so

on. It is easy to verify that if a sensor node receives n copies of CDMi, all copies have the

same probability 1/n to be kept in the buffer.

The probability that a sensor node has an authentic copy of CDMi can be esti-

mated as P (CDMi) = 1 − p, where p = #forged copies
#total copies . Thus, an attacker has to send as

many forged copies as possible to maximize the attack.

Multiple Buffer Random Selection

The single buffer random selection can be easily improved by having additional

buffers for the CDM messages. Assume there are m buffers. During each time interval

Ii, a sensor node can save the first m copies of CDMi. For the kth copy with k > m, the

sensor node keeps it with probability m
k . If a copy is to be kept, the sensor node randomly

selects one of the m buffers and replaces the corresponding copy. It is easy to verify that

if a sensor node receives n copies of CDMi, all copies have the same probability m
n to be

kept in one of the buffers.

During the time interval Ii+1, a sensor node can verify if it has an authentic copy

of CDMi once it receives and weakly authenticates a copy of CDMi+1. Specifically, the

sensor node uses the key Ki disclosed in CDMi+1 to verify the MAC of the buffered copies

of CDMi. Once it authenticates a copy, the sensor node can discard all the other buffered

copies.

If a sensor node cannot find an authentic copy of CDMi after the above verification,

it can conclude that all buffered copies of CDMi are forged and discard all of them. The

sensor node then needs to repeat the random selection process for the copies of CDMi+1.

Thus, a sensor node needs at most m + 1 buffers for CDM messages with this strategy:

m buffers for copies of CDMi, and one buffer for the first weakly authenticated copy of

CDMi+1.

It is also easy to see that each sensor node needs to verify the MACs for at most m

times. The number of pseudo random function operations required to weakly authenticate

the CDM messages depends on the total number of (true and forged) CDM messages

a sensor node receives. With m buffer random selection strategy, the probability that a

sensor node has an authentic copy of CDMi can be estimated as P (CDMi) = 1 − pm,

35

where p = #forged copies
#total copies .

Effectiveness of Random Selection

In the rest of this subsection, we perform a further analysis using Markov Chain

theory to understand the effectiveness of the random selection strategy. Specifically, we

would like to compute the probability that a sensor has an authentic low-level key chain

commitment before the key chain is used.

We assume that the base station sends out multiple CDM messages in each high-

level time interval so that the probability of all these CDM messages being lost due to lossy

channel is negligible. Since our concern is about the availability of an authentic commitment

for the low-level key chain before it is used, we consider the state of a sensor only at the

end of each high-level time interval.

At the end of each high-level time interval, we use Q1 to represent that a sensor

buffers at least one authentic CDM message in the previous high-level time interval, and

Q2 to represent that a sensor buffers at least one authentic CDM message in the current

high-level time interval. We use ¬Q1 (or ¬Q2) to represent that Q1 (or Q2) is not true.

Thus, with Q1, Q2, and their negations, we totally have four combinations, each of which

makes one possible state of the sensor. Specifically, state 1 represents Q1 ∧ Q2, which

indicates the sensor has an authentic copy of CDM message in both the previous and the

current high-level time interval. Similarly, state 2 represents Q1 ∧ ¬Q2, state 3 represents

¬Q1∧¬Q2, and state 4 represents ¬Q1∧Q2. A sensor may transit from one state to another

when the current time moves from the end of one high-level time interval to the end of the

next high-level time interval.

Figure 3.4 shows the state transition diagram, which is equivalent to the following

transition matrix:

P =















1 − pm pm 0 0

0 0 pm 1 − pm

0 0 pm 1 − pm

1 − pm pm 0 0















,

where p = #forged copies of each CDM message
#total copies of each CDM message and m is the number of buffers for CDM

messages in each sensor.

36� �� �� � � �
� � � � � �� �� � � � � � � �� � � �

Figure 3.4: State transition diagram for Scheme IV

Among the four states, both states 1 and 2 imply that the sensor gets an authentic

key chain commitment for the low-level key chain to be used in the next high-level time

interval. The reason is as follows: in both states 1 and 2, the sensor already has an authentic

CDM message in the previous high-level time interval. Thus, it only needs a disclosed key

to authenticate this message. If an attacker wants the DOS attack to be successful, he/she

has to ensure the forged CDM messages can be weakly authenticated. As a result, the

sensor can obtain a key to authenticate the CDM message distributed in the previous

high-level time interval and then obtain an authenticated commitment of the low-level key

chain to be used in the next high-level time interval, even if it does not have an authentic

copy of the CDM message. Therefore, the overall probability of having an authentic key

chain commitment for the next key chain is the sum of the probabilities in state 1 and state

2.

To determine the probability of a sensor being in each state, we need to find the

steady state of the above process. Thus, we need to solve the equation Π = Π × P, where

Π = (π1, π2, π3, π4) and πi represents the probability of the sensor being in state i. That is,

(π1, π2, π3, π4) = (π1, π2, π3, π4) ×















1 − pm pm 0 0

0 0 pm 1 − pm

0 0 pm 1 − pm

1 − pm pm 0 0















.

37

Considering that π1 + π2 + π3 + π4 = 1, the solution of the above equation is


























π1 = (1 − pm)2

π2 = pm(1 − pm)

π3 = p2m

π4 = pm(1 − pm).

Therefore, the probability that a sensor has an authentic key chain commitment

for the next low-level key chain is P = π1 + π2 = 1 − pm. This result shows that the more

buffers we have, the more effective this random selection strategy is. Moreover, according

to the exponential form of the above formula, having a few more buffers can significantly

increase the availability of an authenticated key chain commitment before the key chain is

used.

Frequency of CDM Messages

One critical parameter in the proposed technique is the frequency of CDM mes-

sages. We describe one way to determine this parameter. Consider a desirable probability

P that a sensor has an authenticated copy of a key chain commitment before the key chain

is used. Let Rd, Rc and Ra denote the fractions of bandwidth used by data, authentic

CDM messages and forged CDM messages, respectively. Assume each message has the

same probability pl of being lost in the communication channel. To simplify the analysis,

we assume an attacker uses all available bandwidth to launch a DOS attack. Then we have

Rd + Rc + Ra = 1. (Note that increasing the transmission of any type of messages will

reduce the bandwidth for the other two types of messages. Thus, it is usually difficult in

practice to choose Rd, Rc, and Ra as desired. Here we consider the relationship among the

actual rates as they happen in communication.) To ensure the probability that a sensor has

an authentic low-level key chain commitment (before the use of the key chain) is at least

P , we have

1 − (
Ra × (1 − pl)

Rc × (1 − pl) + Ra × (1 − pl)
)m ≥ P.

This implies

Ra ≤
m
√

1 − P

1 − m
√

1 − P
× Rc.

Together with Rd + Rc + Ra = 1, we have

Rc ≥ (1 − Rd)(1 − m
√

1 − P). (3.1)

38

0

0.05

0.1

0.15

0.2

0.25

0 0.2 0.4 0.6 0.8 1

Fraction of bandwidth for data packets

F
ra

ct
io

n
 o

f
b

an
d

w
id

th
 f

o
r

C
D

M
 p

ac
ke

ts

m=10 m=20 m=30 m=40 m=50

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50

m

F
ra

ct
io

n
 o

f
b

an
d

w
id

th
 f

o
r

C
D

M
 p

ac
ke

ts

Rd=0.2 Rd=0.4 Rd=0.6 Rd=0.8

(b)

Figure 3.5: Bandwidth required for CDM messages to ensure 90% of low-level key chain
commitments are authenticated before the key chains are used.

Equation 3.1 presents a way to determine the frequency of CDM messages to

mitigate severe DOS attacks that use all available bandwidth to prevent the distribution

and authentication of low-level key chain commitments. In other words, if we can determine

the number m of CDM buffers based on resources on sensors, the fraction Rd of bandwidth

for data packets based on the expected application behaviors, the probability P of a sensor

authenticating a low-level key chain commitment before the key chain is used based on the

expected security performance under severe DOS attacks, we can compute Rc and then

determine the frequency of CDM messages. Moreover, we may examine different choices

of these parameters and make a trade-off most suitable for the sensor networks.

Figure 3.5 shows the fraction of bandwidth required for CDM messages for dif-

ferent combinations of Rd and m given P = 0.9. We can see that the bandwidth required

for CDM messages in order to ensure P = 0.9 is substantially more than that required

to deal with message losses. For example, as shown in Figure 3.5(a), when there are few

data packets and each sensor has only 10 buffers for CDM messages, about 20% of the

bandwidth must be used for CDM messages in order to ensure 90% authentication rate for

low-level key chain comments when there are severe DOS attacks. This is understandable

since under such circumstances the sensor network is facing aggressive attackers that try

everything possible to disrupt the normal operations of the network.

It is also shown in Figure 3.5(b) that the increase in the number of CDM buffers

can significantly reduce the requirement for CDM messages. As shown in Figure 3.5(b),

39

when each sensor has 40 CDM buffers, less than 5% of the bandwidth is required for CDM

messages. In addition, the shape of the curves in Figure 3.5(b) also shows that the smaller

m is, the more effective an increase in m is.

Figure 3.5(a) further shows that the increase in data rate results in the decrease

in the fraction of bandwidth required for CDM messages. This is because when the data

consume more bandwidth, there is less bandwidth for the DOS attacks, and in effect the

requirement for CDM messages is also reduced.

It is worth noting that the fractions for data and CDM messages are the actual

fractions of CDM messages that the sensors receive, not the fractions planned by the base

station. A message scheduled for transmission by the base station is not guaranteed to

be transmitted if the DOS attack consumes too much bandwidth. Nevertheless, the above

analysis provides a target frequency of CDM messages, and the base station can adaptively

change its transmission strategy to meet this target.

3.1.5 Scheme V: DOS-Resistant Two-Level µTESLA

Scheme IV can be further improved if the base station has enough computational

and storage resources. Indeed, when at least one copy of each CDM message can reach

the sensors, we can completely defeat the aforementioned DOS attack without the random

selection mechanism.

The solution can be considered a variation of the immediate authentication exten-

sion to TESLA [61]. The idea is to include in CDMi the image H(CDMi+1) for each i,

where H is a pseudo random function. As a result, if a sensor can authenticate CDMi, it can

get authentic H(CDMi+1) and then authenticate CDMi+1 when it is received. Specifically,

the base station constructs CDMi for the high-level time interval Ii as follows:

CDMi = i|Ki+1,0|H(CDMi+1)|MACK ′

i
(i|Ki+1,0|H(CDMi+1)) |Ki−1, where “|” de-

notes message concatenation, H is a pseudo random function other than F0 and F1,

and K ′
i is derived from Ki with a pseudo random function other than H, F0 and F1.

Suppose a sensor has received CDMi. Upon receiving CDMi+1, the sensor can au-

thenticate CDMi with Ki disclosed in CDMi+1. Then the sensor can immediately authen-

ticate CDMi+1 by verifying that applying H to CDMi+1 results in the same H(CDMi+1)

included in CDMi. As a result, the sensor can authenticate a commitment distribution

40

message immediately after receiving it.

Alternatively, if H(CDM1) is pre-distributed before deployment, the sensor can

immediately authenticate CDM1 when receiving it, and then use H(CDM2) included in

CDM1 to authenticate CDM2, and so on. One may observe that in this case, a sensor

does not use the disclosed high-level keys in CDM messages directly. However, including

such keys in CDM messages is still useful. Indeed, when a sensor fails to receive or keep

an authentic CDM message, it can use the random selection mechanism and the approach

described in the previous paragraph to recover from the failure.

The cost, however, is that the base station has to compute the CDM messages in

the reverse order. That is, in order to include H(CDMi+1) in CDMi, the base station has

to have CDMi+1, which implies that it also needs CDMi+2, and so on. Therefore, the base

station needs to compute both the high-level and the low-level key chains completely to get

the commitments of these key chains and construct all the CDM messages in the reverse

order before the distribution of the first one of them. (Note that in Scheme IV, the base

station only needs to compute the high-level key chain, not all the low-level ones during

initialization. The base station may delay the computation of a low-level key chain until it

needs to distribute the commitment of that key chain.)

This imposes additional computation during the initialization phase. Assume that

all the key chains have 1,000 keys. The base station needs to perform about 1,001,000 pseudo

random function operations to generate all the key chain commitments, and 1,000 pseudo

random function operations and 1,000 MAC operations to generate all the CDM messages.

Due to the efficiency of pseudo random functions, such computation is still practical if

the base station is relatively resourceful. For example, using MD5 as the pseudo random

function, a modern PDA can finish the above computation in several seconds. Moreover,

the base station does not have to save the low-level key chains. Indeed, to reduce the storage

overhead, the base station may compute a low-level key chain (again) when the key chain is

needed. Thus, the base station only needs to store the high-level key chain and the MACs

of all the CDM messages. Further assume both the authentication key and the image of

a pseudo random function are 8 bytes. To continue the earlier example, the base station

needs (8 + 8) × 1, 000 = 16, 000 bytes to store the high-level key chain and the MACs.

The immediate authentication of CDMi depends on the successful receipt of

CDMi−1. However, if a sensor cannot receive an authentic CDMi due to communica-

tion failure or an attacker’s active disruption, the sensor has to fall back to the techniques

41

introduced in Scheme IV (i.e., the random selection strategies). This implies that the base

station still needs to distribute CDM messages multiple times in a random manner. The

combination of these techniques is straightforward; we do not discuss it further in this

chapter.

Now let us assess how difficult it is for a sensor to recover if it fails to receive

an authentic CDM message. We assume an attacker will launch a DOS attack to deter

this recovery. To recover from the failure, the sensor has to buffer an authentic CDM

message by the end of a later high-level time interval and then authenticate this message.

For example, suppose a sensor buffers an authentic CDMi+j. If it receives a disclosed key

in interval Ii+j+1, it can authenticate CDMi+j immediately and gets H(CDMi+j+1). The

sensor then recovers from the failure. Thus, if a sensor fails to receive an authentic CDMi,

the probability that it recovers from this failure within the next l high-level time intervals

is 1− pm×l, where p = #forged copies of each CDM message
#total copies of each CDM message and m is the number of buffers for

CDM messages.

It is sensible to dynamically manage CDM buffers in sensors in this scheme. There

are three cases: (1) During normal operations, each sensor only needs one buffer to save an

authenticated CDM message during each high-level time interval; (2) When a sensor tries

to recover from communication failures, it needs a relatively small number of CDM buffers

to tolerate communication failures, as discussed in Section 3.1.3; (3) When a sensor tries to

recover from a loss of authentic CDM messages under severe DOS attacks, the sensor needs

as many buffers as possible to increase its chance of recovery. Once a sensor recovers an

authentic CDM message, it can fall back to only one CDM buffer since it can authenticate

the next CDM message once the message is received. This requires that each sensor be

able to detect the presence of DOS attacks. Fortunately, this can be done easily with high

precision. If most buffered CDM messages are forged, there must be a DOS attack.

The base station needs to broadcast each CDM message multiple times to mitigate

communication failures and help sensors recover from failures under potential DOS attacks.

The frequency of CDM messages required in this scheme can be determined in a similar

way to Scheme IV. However, a sensor in this scheme only needs a large number of CDM

buffers temporarily during recovery. Moreover, a sensor only needs to recover one authentic

CDM message in order to go back to normal operations, and the sensor may recover over

several high-level time intervals. Indeed, if we allow a sensor to recover from such a failure

over l high-level time intervals, we can get the following equation by using the same process

42

to derive Equation 3.1:

Rc ≥ (1 − Rd)(1 − m·l
√

1 − P), (3.2)

where Rc is the fraction of bandwidth required for CDM messages, Rd is the fraction of

bandwidth used by data packets, m is the number of buffers for CDM messages, and P is

the desired probability to recover from the failure over the next l high-level time intervals.

It is easy to see that Rc decreases when m and l increase. Thus, the bandwidth required

for CDM messages can be much less than in Scheme IV.

Since the probability that a sensor fails to receive an authentic CDM message is

unknown, it is not possible to derive the probability that the sensor has an authentic low-

level key chain commitment before the key chain is used. Nevertheless, this probability can

be easily computed in the same way as in Section 3.1.4 if the aforementioned information

is available.

From the above analysis, we can see that this scheme introduces additional com-

putation requirement before deployment, though it can defeat the DOS attacks when at

least one copy of each CDM message reaches the sensors. Fortunately, such computation

is affordable if the base station is relatively resourceful. It is also possible to perform such

computation on powerful machines and then download the result to the base station before

deployment. In addition, the communication overhead and the sensor storage overhead in

this scheme is potentially much less than that in Scheme IV, as discussed earlier. Thus,

when the required computational resources are available (on either the base station or some

other machines), Scheme V is more desirable. Otherwise, Scheme IV could be used to

mitigate the DOS attacks.

3.1.6 Scheme VI: Multi-Level µTESLA

Both Scheme IV and Scheme V can be extended to M -level key chain schemes.

The M -level key chains are arranged from level 0 to level M − 1 from top down. The keys

in the (M − 1)-level key chains are used for authenticating data packets. Each higher-level

key chain is used to distribute the commitments of the immediately lower-level key chains.

Only the last key of the top-level (level 0) key chain needs to be selected randomly; all the

other keys in the top-level key chain are generated from this key, and all the key chains in

level i, 1 ≤ i ≤ M − 1, are generated from the keys in level i − 1, in the same way that

the low-level key chains are generated from the high-level keys in the two-level key chain

43

schemes. For security concerns, we need a family of pseudo random functions. The pseudo

random function for each level and between adjacent levels should be different from each

other. Such a family of pseudo random functions has been proposed in [60].

The benefit of having multi-level key chains is that it is more flexible in providing

short key chains with short delays in authenticating data packets, compared with the two-

level key chain schemes. As a result, a multi-level µTESLA scheme can scale up to cover

a long period of time. In practice, a three-level scheme is usually sufficient to cover the

lifetime of a sensor network. For example, if the duration of a lowest-level time interval is

100ms, and each key chain has 1,000 keys, then a three-level scheme can cover a period of

108 seconds, which is over three years. In the following, we still present our techniques as

generic multi-level key chains schemes for the sake of generality.

In addition to multi-level µTESLA schemes directly extended from schemes IV and

V, we can combine them into a hybrid scheme to achieve a trade-off between precomputation

and operational overheads. Thus, we have three variations of multi-level µTESLA schemes.

The first variation, which is named DOS-tolerant multi-level µTESLA, is extended from

Scheme IV and is suitable for sensor networks where the base station is not very resourceful.

The second variation, which is named DOS-resistant multi-level µTESLA, is extended from

Scheme V. This variation is suitable for sensor networks with relatively short lifetime and

relatively powerful base stations. The third variation, which is named hybrid multi-level

µTESLA, is a trade-off between the above two variations. It sacrifices certain immediate

authentication capability in exchange for less precomputation requirement.

In the following, we describe and analyze these variations, respectively.

Variation I: DOS-Tolerant Multi-Level µTESLA

This variation of multi-level µTESLA scheme is a direct extension to Scheme IV.

Each CDM message has the same format as in Scheme IV, and each sensor uses the multiple

buffer random selection mechanism to save CDM messages. The only difference is that this

variation may have more than two key chain levels.

Compared with Scheme IV, this variation is not more vulnerable to DOS attacks.

The success of the DOS attacks depends on the percentage of forged CDM messages and

the buffer capacity in sensor nodes. As long as the base station maintains a certain authen-

tic CDM message rate, this variation will not have a higher percentage of forged CDM

44

messages than Scheme IV. The base station can further piggy-back the CDM messages for

different levels of key chains so as to reduce the communication cost.

Having more levels of key chains does increase the overhead at both the base

station and the sensor nodes. This variation requires the base station to maintain one

active key chain at each level. Because of the available resource in typical bases stations,

this overhead is usually tolerable. Similarly, sensor nodes have to maintain more buffers for

the key chain commitments as well as CDM messages in different key chain levels. This is

usually not desirable because of the resource constraints in sensors. In addition, the more

levels we have, the more bandwidth is required to transmit the CDM messages. Thus, we

should use as few levels as possible to cover the lifetime of a sensor network.

Now let us consider how to configure the frequency of CDM messages in DOS-

tolerant multi-level µTESLA. To increase the chance of success, the attacker may target

a particular key chain level instead of attacking all levels simultaneously. Further assume

that the base station sends out the CDM messages of each key chain level in the same

frequency, and the buffer in each sensor can accommodate m (authentic and/or forged)

copies of a CDM message. Thus, for DOS-tolerant M -level µTESLA, Equation 3.1 can be

generalized to

Rc ≥
(M − 1)(1 − Rd)(1 − m

√
1 − P)

(M − 1)(1 − m
√

1 − P) + m
√

1 − P
, (3.3)

where Rc is the fraction of bandwidth required for CDM messages in all key chain levels,

and Rd is the fraction of bandwidth used for data packets, m is the number of CDM buffers

in each key chain level, and P is the desired probability that a sensor has an authenticated

key chain commitment before the key chain is used.

We may still use the approach in Section 3.1.4 to determine the frequency of CDM

messages in order to maintain broadcast authentication service when the network is under

severe DOS attacks. Figure 3.6 shows the required fraction of bandwidth for CDM messages

to guarantee that each sensor has the probability P = 0.9 to have an authenticated low-level

key chain commitment before the key chain is used. It is easy to see that the addition of

more key chain levels does introduce additional communication overhead. Similar to Figure

3.5, Figure 3.6 shows a smaller fraction of bandwidth required for CDM messages when the

data rate is higher. As discussed earlier, the increase in data rate consumes more bandwidth

for data and leaves less bandwidth for forged CDM messages. As a result, the requirement

for CDM messages is also reduced.

45

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

2 4 6 8 10

Number of key chain levels

F
ra

ct
io

n
 o

f
b

an
d

w
id

th
 f

o
r

C
D

M
 p

ac
ke

ts

Rd=0.1 Rd=0.3 Rd=0.5 Rd=0.7 Rd=0.9

Figure 3.6: Bandwidth for CDM messages v.s. number of key chain levels. Assume the
number of CDM buffers in each key chain level is m = 40.

In the following, we give an analysis of the overheads introduced by the DOS-

tolerant multi-Level µTESLA scheme. For simplicity, we assume there are totally M levels

in our scheme and L keys in each key chain. Thus, if the duration of each lowest-level time

interval (level M − 1) is ∆, the duration of each level i time interval is ∆i = ∆ × LM−i−1,

and the maximum lifetime of the scheme is ∆ × LM .

The storage overhead in sensors is mainly due to the buffer of CDM messages.

Each sensor has to buffer weakly authenticated CDM messages for the top M − 1 levels.

Assuming a sensor uses m CDM buffers, this totally requires about m · (M − 1) buffers.

(Note that for each CDM message, only the disclosed key chain commitment and the MAC

need to be stored.) In addition, each sensor needs to store 1 most recently authenticated

key for level 0 key chain and 3 most recently authenticated keys for each of the other levels

(one for the previous key chain because it is possible that the sensor receives a packet which

discloses a key in the previous key chain, another for the current key chain, and a third for

the next key chain). Thus, each sensor needs to store 3M − 2 more keys.

A base station only needs to keep the current key chain for each level, which

occupies at most M × L storage space in total. This is because a lower-level key chain can

be generated directly from a key in its adjacent upper-level key chain, and the length of

key chain in our technique can be short enough to allow computation of a key chain in real

time. In contrast, in the original µTESLA scheme [62], the base station has to precompute

and store LM keys to cover the same period of time as in our scheme.

Consider the communication overhead due to the CDM messages. In order to

46

mitigate severe DOS attacks, the base station has to use a fair amount of bandwidth to

broadcast CDM messages, as indicated by Equation 3.3. For example, Figure 3.6 shows

that when the fraction of bandwidth for data packets is 0.1, the number of key chain levels

is 3, and each sensor has 40 buffers for each CDM message, the base station needs about

15% of the bandwidth for CDM messages.

The computational overhead in sensors is mainly due to the authentication of

disclosed keys and MACs. A sensor’s computation for data packets is dependent on the

number of data packets the sensor receives. However, a sensor’s computation for CDM

packets is bounded by the number m of CDM buffers since the sensor has at most m copies

of each CDM message, and it can stop once it authenticates a copy.

As discussed earlier, in the original µTESLA protocol, if there is a long delay

between the receipts of two data packets, a sensor has to perform a large number of pseudo

random functions in order to authenticate the key disclosed in the packet. In the worst

case, it has to perform about LM pseudo random functions if it only receives the first and

the last packets. In contrast, with the DOS-tolerant multi-level µTESLA scheme, such a

sensor needs to perform at most M × L pseudo random functions. In general, if a sensor

does not receive packets for nl lowest-level time intervals, the number of pseudo random

functions that it needs to perform in order to authenticate a key received later never exceeds

L × logL(nl).

It appears that the overheads in this scheme, especially the communication over-

head and the storage overhead in sensors, are not negligible. In the following, we introduce

the second variation of multi-level µTESLA scheme that is more efficient in terms of com-

munication overhead and storage overhead in sensors.

Variation II: DOS-Resistant Multi-Level µTESLA

The DOS-resistant multi-level µTESLA scheme is extended directly from scheme

V. There are multiple key chain levels, with lower-level key chains generated from keys in

the immediately higher-level key chains. There are multiple key chains in all levels except

for level 0. Among these levels, only level M − 1 is used to authenticate data packets;

all the other levels are used to distribute the key chain commitments in the immediately

lower-level. Each CDM message consists of the image of the next CDM message under a

pseudo random function. In level i, 0 < i < M − 1, the last CDM message in an earlier

47

key chain contains the image of the first CDM message in the immediately next key chain.

As a result, the end of a key chain does not interrupt the immediate authentication of later

CDM messages in the same level.

Similar to its two-level counter part, this scheme requires precomputation to gen-

erate all the key chains in each level and all the CDM messages. This computation cost

could be prohibitive if the lifetime of a sensor network is very long. However, it may be tol-

erable for relatively short-lived sensor networks. For example, consider a three-level scheme

with 100 keys in each key chain and 100ms lowest-level time intervals. Such a scheme can

cover 105 seconds, which is about 27 hours. The precomputation required to initialize the

scheme consists of 1,010,100 pseudo random functions to generate all the key chains, and

10,100 pseudo random functions to generate all the CDM messages. Such computation

can be finished in several seconds on a modern PC or PDA. Thus, the precomputation

can be either performed on base stations directly, or performed on a regular PC and then

downloaded to the base station.

The base station does not have to store all these values due to the low cost involved

in computing pseudo random functions. To continue the above example, the base station

may simply store the keys for the active key chain of each level and the images of CDM

messages under pseudo random functions. Assume that both a key and an image of a

pseudo random function takes 8 bytes. Then the base station only needs to save about

8 × 300 + 8 × 10, 100 ≈ 82 KBytes.

In general, for a DOS-resistant M -level µTESLA scheme, where each key chain

consists of L keys, a base station needs to precompute L+L2 + ...+LM = LM+1−L
L−1 keys and

L + L2 + ... + LM−1 = LM−L
L−1 CDM messages, respectively. In addition, the base station

needs to store M × L keys and LM−1
L−1 CDM images, respectively. Additional trade-off

is possible to reduce the storage requirement (by not saving but computing some CDM

images when they are needed) if the base station does not have space for all these keys and

CDM images.

This scheme inherits the advantage of its two-level counter part. That is, a sensor

can get an authenticated key chain commitment as long as it receives one copy of the

corresponding CDM message. As we discussed in Section 3.1.5, this property substantially

reduces the communication overhead introduced by CDM messages since the base station

only needs to send enough copies of a CDM message to make sure the sensors have a

high probability to receive CDM messages during normal operations, and have a high

48

probability to recover from failures over a period of time when the sensors are under DOS

attacks. Specifically, if we would like a sensor to recover from a failure of receiving a

CDM message within l time intervals (in the same level), by using the same process to get

Equation 3.3, we have the following equation:

Rc ≥
(M − 1)(1 − Rd)(1 − m·l

√
1 − P)

(M − 1)(1 − m·l
√

1 − P) + m·l
√

1 − P
, (3.4)

where Rc is the fraction of bandwidth required for CDM messages in all key chain levels,

and Rd is the fraction of bandwidth used for data packets, m is the number of CDM buffers

in each key chain level, and P is the desired probability that a sensor recovers from the

failure over the next l time intervals. It is easy to verify that when m and l increase, the

right hand side of Equation 3.4 decreases, and so does the requirement for Rc. Moreover, a

sensor may use dynamic buffer management as discussed in Section 3.1.5 to arrange buffers

for CDM messages. Though a CDM message in this scheme is slightly larger than that

in variation I (by one pseudo random function image per CDM message), the frequency

of CDM messages can be reduced substantially. Thus, the overall storage requirement in

sensors can be much less than that in Variation I.

The computational overhead in a sensor is not as clear as in Variation I. In Vari-

ation I, the number of authentication operations a sensor needs to perform is bounded by

the number of CDM buffers. In contrast, in this scheme, a sensor may only need to au-

thenticate one copy of CDM message if the first received message is authentic, but it may

also have to authenticate every received copy of a CDM message if no copy is authentic in

the worst case.

The limitation of this variation is its scalability. It is easy to see that the precom-

putation cost is linear to the number of lowest-level time intervals. Consider a long-lived

sensor network that requires a 3-level key chains scheme, where each key chain consists of

1,000 keys and the duration of each lowest-level time interval is 10ms. The lifetime of this

scheme is 107 seconds, which is about 116 days. Using 3-level key chains implies that the

base station needs to precompute about 1,001,001,000 pseudo random functions to compute

the key chains and another 1,001,000 pseudo random functions to compute the images of

CDM messages. In addition, the base station needs to store about 3000 keys and 1,001,000

images of pseudo random functions, which take about 8 MBytes memory. Though this is

still feasible for typical PCs and workstations, it may be too expensive for base stations

that are not very resourceful.

49

Variation III: Hybrid Multi-Level µTESLA

Variation III is essentially a trade-off between the first two variations. To make

the techniques in Variation II practical for low-end base stations, we reduce the precom-

putation and storage overheads by sacrificing certain immediate authentication capability.

Specifically, we limit the precomputed CDM messages to the active key chain being used in

each level. For a given key chain in a particular level, the base station computes the images

of the CDM messages (under the pseudo random function H) only when the first key is

needed for authentication, and this computation does not go beyond this key chain in this

level. As a result, the CDM message authenticated with the last key in a key chain will not

include the image of the next CDM message in the same level, because this information

is not available yet. The base station may simply set this field as NULL. For the first key

chain in each level i, where 0 ≤ i ≤ M − 1, the image of the first CDM message can be

distributed during the initialization phase.

The behavior of a sensor is still very simple. If the sensor has an authentic image

of the next CDM message in a certain level, it can authenticate the next CDM message

immediately after receiving it. Otherwise, the sensor simply uses the random selection

strategy to buffer the weakly authenticated copies. To increase the chance that the sensors

receive an authentic image of the first CDM message for a key chain, the base station may

also broadcast it in data packets.

Such a method reduces the computation and storage requirements significantly

compared with Variation II. For an M -level µTESLA with L keys in each key chain, the

base station only needs to precompute around M · L pseudo random functions and store

(M − 1) · L images of CDM messages. In the earlier example with 3-level key chains and

1,000 keys per key chain, the base station only needs to compute about 3,000 (instead

of 1,001,001,000 in Variation II) pseudo random operations during initialization and store

2,000 (instead of 1,001,000 in Variation II) CDM images.

An obvious weak point of this multi-level µTESLA scheme is the handover of

two consecutive key chains in the same level. Consider two consecutive key chains in level

i, where i < M − 1. These key chains are used to distribute CDM messages for the

immediately lower-level key chains. For all the keys except for the last one in each key

chain, the corresponding CDM messages include an image of the next CDM message,

which enables a sensor to authenticate the next CDM message immediately after receiving

50

it. However, the last CDM message corresponding to the earlier key chain does not have an

image of the first CDM message corresponding to the later key chain, as discussed earlier.

Thus, the first CDM message of the later key chain cannot be authenticated immediately

after it is received, though the commitment of this key chain can be authenticated with

the immediately upper-level CDM message. As a result, a sensor has to wait for the next

CDM message to disclose the corresponding µTESLA key in order to authenticate the first

CDM message.

An attacker may take advantage of this opportunity to launch DOS attacks. How-

ever, this scheme will not perform worse than Variation I since each sensor can always

fall back to the random selection mechanism to mitigate the impact of such an attack. In

addition to the dynamic buffer management discussed in Section 3.1.5, the base station

can also use an adaptive method to determine the frequency of CDM messages to improve

the resistance against DOS attacks without substantially increasing the communication

overhead. That is, the base station may use a low frequency to send out CDM messages

corresponding to later intervals in a key chain and use a high frequency for the early ones.

The analysis performed for Variation I to decide the desirable frequency of CDM messages

is also applicable to Variation III.

Although having less overhead than Variation II, Variation III introduces more

overheads into base stations than Variation I. In addition to computing a key chain before

using it, a base station using this variation has to compute all the corresponding CDM

messages since each earlier CDM message includes the image of the immediately following

CDM message. The storage overhead in the base station in this scheme is also higher than

that in Variation I, due to the storage of these CDM messages.

Variation III introduces lower overheads in sensors than Variation I, but has higher

overheads than Variation II. In normal situations when a sensor has an authenticated image

of the following CDM message, it only needs to save one copy of that CDM message. A

sensor’s computation and storage overheads are the same as in Variation II. During the

handover of two key chains (in the same level), a sensor needs to increase the number of

CDM buffers to mitigate potential DOS attacks. This is similar to Variation I. However,

unlike in Variation I, a sensor using Variation III can recover to the above normal situation

once it authenticates one CDM message. This is essentially the same as recovering from

failures (to receive an authentic CDM message) in Variation II. As discussed earlier, the

storage overhead in sensors is much smaller than that in Variation I when the sensors are

51

allowed to recover over several time intervals. But such overheads in a sensor using Variation

III are higher than in Variation II since such recovery processes are “scheduled” in addition

to those due to failures.

A sensor using Variation III may use an adaptive approach to save CDM mes-

sages during handover of key chains. Specifically, a sensor may just save a few (or even a

single copy) of the first CDM message corresponding to a new key chain. When the next

CDM message arrives, the sensor can then decide whether there is an on-going DOS attack

by attempting to authenticate the earlier CDM message. If the earlier CDM message

is authenticated, the sensor can continue to authenticate later CDM messages with the

corresponding image; otherwise, the sensor can determine that there is a DOS attack and

adaptively increase the number of CDM buffers.

Consider the communication overhead in Variation III introduced by CDM mes-

sages. We can use Equation 3.4 to determine the frequency of CDM messages given the

fraction of bandwidth used by data packets, the number M of key chain levels, the number

m of CDM buffers in each sensor, and the probability P that a sensor recovers from a

failure (or gets the first authenticated CDM message for a key chain) over l time intervals.

The base station may increase the frequency of the first several CDM messages in a key

chain based on Equation 3.3 to increase their probability of being authenticated by sensors.

Thus, the communication overhead in Variation III is between those of Variation I and

Variation II.

Among these variations, Variation II has a distinctive advantage over the other

two variations. Indeed, Variation II can substantially reduce the impact of DOS attacks. In

order to get an authentic key chain commitment in a CDM message, a sensor only needs

to receive an authentic copy of this message in most of cases since the sensor can immedi-

ately authenticate it. Though a sensor has to rely on the random selection mechanism to

recover from failures, the cost is much less than those required by variations I and III. The

disadvantage of Variation II is its precomputation and storage overhead. Thus, if the base

station has enough resources, Variation II should be used. Variation III sacrifices some im-

mediate authentication capability to reduce the precomputation and storage requirements

in Variation II. Thus, if the base station has certain, but not enough resources, Variation III

should be used. If the base station cannot afford the precomputation and storage overheads

required by Variation III at all, Variation I can be used to mitigate the potential DOS

attacks.

52

3.1.7 Experimental Results

We have implemented the DOS-tolerant multi-level µTESLA scheme on TinyOS

[25], which is an operating system for networked sensors. We have performed a series of

experiments to evaluate the performance of the DOS-tolerant multi-level µTESLA when

there are packet losses and DOS attacks against CDM messages. The communication,

storage, and computation overheads are discussed in earlier sections. The focus of the

evaluation in this section is on the overall effectiveness of the proposed techniques (e.g.,

multi-buffer random selection) in tolerating packet losses and DOS attacks, and the impact

of different choices of certain parameters (e.g., buffer size, percentage of forged CDM

packets). The experiments were performed using Nido, the TinyOS simulator. To simulate

the lossy communication channel, we have each sensor drop each received packet with a

given probability.

To further study the performance of the scheme in presence of attacks, we also

implemented an attacker component, which listens to the CDM messages broadcasted by

the base station and inserts forged CDM messages into the broadcast channel to disrupt the

broadcast authentication. We assume that the attacker is intelligent in that it uses every

piece of authentic information that a sensor node can determine in the forged messages.

That is, it only modifies Ki+2,0 and the MAC value in a CDM message since any other

modification can be detected by a sensor node immediately. There are other attacks against

the scheme. Since they are either defeatable by the scheme (e.g., modification of data

packets) or not specific to our extension (e.g., DOS attacks against the data packets), we

did not consider them in our experiments.

To concentrate on the design decisions we made in our schemes, we fix the following

parameters in all the experiments. We only performed the experiments with DOS-tolerant

two-level µTESLA since the only purpose of having multiple levels is to scale up to a long

period of time. We assume the duration of each low-level time interval is 100 ms, and each

low-level key chain consists of 600 keys. Thus, the duration of each time interval for the

high-level key chain is 60 seconds. We put 200 keys in the high-level key chain, which covers

up to 200 minutes in time. We also set the data packet rate at base station to 100 data

packets per minute. Our analysis and experiments indicate that the number of high-level

keys does not have an obvious impact on the performance measures. Nevertheless, the

lifetime of the two-level key chains can be extended by having more keys in the high-level

53

key chain or another higher level of key chain. Since our purpose is to study the performance

of the scheme w.r.t. to packet losses and DOS attacks, we did not do so in our evaluation.

The performance of our techniques depends on the probability of having an au-

thentic key chain commitment, which is mainly affected by the number of CDM buffers in

sensors and the percentage of forged CDM packets in the communication channel as we

discussed before. Thus, in our experiments, we simply fix the CDM packet rate but use

different attack rates to evaluate the performance of our system.

The performance of our system is evaluated with the following metrics: average

percentage of authenticated data packets (i.e., #authenticated data packets
#received data packets averaged over the

sensor nodes) and average data packet authentication delay (i.e., the average time between

the receipt and the authentication of a data packet). In these experiments, we focused on

the impact of the following parameters on these performance metrics: sensor node’s buffer

size for data and CDM messages, percentage of forged CDM packets and the packet loss

rate.

Because of the extremely limited memory available on sensor nodes, the buffer

allocation for data packets and CDM messages becomes a major concern when we deploy

a real sensor network. We evaluate the performance of different memory allocation schemes

with a memory constraint. The format of data packet in our proposed technique is the

same as in the original µTESLA, except for a level number, which only occupies one byte.

In our implementation, both CDM and data packets consist of 29 bytes. The data packet

includes a level number (1 bytes), an index (4 bytes), data (8 bytes), MAC (8 bytes) and

a disclosed key (8 bytes). A CDM packet includes a level number (1 byte), an index (4

bytes), a key chain commitment Ki+2,0 (8 bytes), a MAC (8 bytes), and a disclosed key (8

bytes).

It is true that our schemes (and µTESLA) have relatively high overhead in data

packets with the above settings. This is in some sense because of the small packet size.

However, broadcast authentication is usually used to broadcast commands or control data

from the base station to sensors. We expect typical commands or control data can fit in the

8 bytes payload. The base station also has the option to split long commands or data into

multiple packets. Moreover, it is possible to modify the maximum packet size in TinyOS to

decrease the overhead. In our experiment, we only consider the default maximum packet

size supported by TinyOS, because the effect of CDM packets is our main concern.

When a sensor node receives a data packet, it does not need to buffer the level

54

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60
#Data Buffers

%
A

u
th

en
ti

ca
te

d
 D

at
a

P
ac

ke
ts

512 Bytes 1024 Bytes

Figure 3.7: The performance with different buffer allocation schemes for total memory 512
and 1024 bytes to buffer data and CDM messages. Assume 95% of CDM packets are
forged and 50% of packets are lost when transmitted over the channel.

number and the disclosed key for future authentication; only the other 20 bytes need to

be stored. For CDM packets, all copies of the same CDM message have the same values

for the fields other than the key chain commitment and the MAC value (i.e., Ki+2,0 and

MAC in CDMi) since all forged messages without these values can be filtered out by the

weak authentication mechanism. As a result, for all copies of CDMi, the only fields that

need saving are Ki+2,0 (8 bytes) and MAC (8 bytes), assuming that the level number and

the index are used to locate the buffer and the disclosed key Ki−1 is stored elsewhere to

authenticate later disclosed keys. Further assume the totally available memory for data

and CDM messages is C bytes, and the sensor node decides to store up to x data packets.

Then the sensor can save up to y = ⌊C−20×x
16 ⌋ copies of CDM messages.

Figure 3.7 shows the performance of different memory allocation schemes under

severe DOS attacks against CDM messages (95% forged CDM packets). In these exper-

iments, we have total memory of 512 bytes or 1K bytes. As shown in Figure 3.7, three

data buffers (60 bytes) are enough to authenticate over 90% of the received data packets

when the total memory is 1K bytes. This is because the data packet arrived in the later

time interval carries the key that can be used to authenticate the data packets arrived in

earlier time intervals. If there are no DOS attacks on data packets (such attacks are not

considered in our experiments), the sensor can authenticate those data packets that arrived

no less than d time intervals earlier and remove them from the buffer. Thus, the buffer size

for data packets depends on the data rate, the key disclosure lag d and the duration of the

lowest key chain time interval. In practice, it only needs to be large enough to hold all data

55

packets within one lowest-level time interval.

The figure also shows that after a certain point, having more data buffers does not

increase the performance. Instead, it decreases the performance since less memory is left

for buffering the CDM messages.

To measure the performance under intensive DOS attacks, we assume that each

sensor node can store up to 3 data packets and 39 CDM packets, which totally occupy

684 bytes memory space. The experimental results are shown in Figures 3.8(a) and 3.8(b).

Figure 3.8(a) shows that our system can tolerate DOS attacks to a certain degree; however,

when there are extremely severe DOS attacks (over 95% of forged CDM packets), the

performance decreases dramatically. This result is reasonable; a sensor node is certainly

not able to get an authentic CDM message if all of the CDM messages it receives are

forged. Nevertheless, an attacker has to make sure he/she sends many more forged CDM

packets than the authentic ones to increase his/her chance of success.

Figure 3.8(a) also shows that if the base station rebroadcasts a sufficient number

of CDM messages so that on average, at least one copy of such authentic CDM message

can reach a sensor node in the corresponding high-level time interval (e.g., when loss rate

≤ 70%), the channel loss rate does not affect our scheme much. When the loss rate is large

(e.g., 90% as in Figure 3.8(a)), we can observe the drop of data packet authentication rate

when the percentage of forged CDM packets is low.

An interesting result is that when the channel loss rate is 90%, the data packet

authentication rate initially increases when the percentage of forged CDM packets increases.

This is because the sensor nodes can get the disclosed key from forged CDM packets when

they cannot get it from the authentic ones.

The channel loss rate does affect the average authentication delay, which can be

seen in Figure 3.8(b). The reason is that a sensor node needs to wait a longer time to get the

disclosed key. Though the number of dropped packets increases dramatically under severe

DOS attack (over 95%) as seen in Figure 3.8(a), Figure 3.8(b) shows that the percentage

of forged CDM messages does not have a significant impact on the average data packet

authentication delay for those packets that have been authenticated.

In summary, the experimental results demonstrate that our system can maintain

reasonable performance even with high channel loss rate under severe DOS attacks.

56

0

20

40

60

80

100

120

0 20 40 60 80 100
%Forged CDM Packets

%
A

u
th

en
ti

ca
te

d
 D

at
a

P
ac

ke
ts

0.1 Loss Rate 0.3 Loss Rate
0.5 Loss Rate 0.7 Loss Rate
0.8 Loss Rate 0.9 Loss Rate

(a) Percentage of authenticated data packets

0

2

4

6

8

10

12

14

0 20 40 60 80 100
Channel Loss Rate

A
ve

ra
g

e
D

at
a

P
ac

ke
t

A
u

th
en

ti
ca

ti
o

n
 D

el
ay

 (
se

co
n

d
s)

20% Forged CDM Packets 50% Forged CDM Packets
99% Forged CDM Packets

(b) Average data packet authentication delay

Figure 3.8: Experimental results under different channel loss rate and percentage of forged
CDM packets. Assuming 3 data packet buffers, 39 CDM buffers and fixed data rate
(100 data packets/minute).

3.2 Tree-Based µTESLA

Despite the recent advances on broadcast authentication, several issues are still

not properly addressed. Some of them are listed below.

• Scalability (in terms of the number of senders): In addition to base stations, many

sensor network applications may have a large number of other potential senders (e.g.,

mobile sinks, soldiers). For example, in battlefield surveillance where a sensor network

is deployed to monitor the activities in an area, there may be a large number of soldiers

or tanks, and each of them entering this area may broadcast queries to collect critical

information from the network. Existing solutions require that each sensor node store

the initial µTESLA parameters (e.g., the key chain commitments) for all possible

senders. Although the EEPROM in sensor nodes is much more plentiful than the

RAM, accessing EEPROM is much more expensive than accessing RAM. In addition,

sensor nodes usually use EEPROM to store a large amount of sensed data. Thus, it is

not practical for resource-constrained sensor nodes to store all parameters when there

are a large number of senders.

• DOS attacks: The multi-level µTESLA schemes scale broadcast authentication up to

large networks by constructing multi-level key chains and distributing initial param-

eters of lower-level µTESLA instances with higher-level ones. However, multi-level

57

µTESLA schemes magnify the threat of DOS attacks. An attacker may launch DOS

attacks on the messages carrying the initial µTESLA parameters [40, 44]. Though

several solutions have been proposed in [44], they either use substantial bandwidth or

require significant resources at senders.

• Revocation: Some senders may be captured and compromised by adversaries in hostile

environments. As a result, an adversary may exploit the broadcast authentication

capabilities of the compromised nodes to attack the network (e.g., consume sensors’

battery power by instructing them to do unnecessary operations). Thus, it is necessary

to revoke the broadcast authentication capabilities of the compromised senders once

they are detected.

In this section, we develop a series of techniques to support a large number of

senders and to revoke broadcast authentication capabilities from compromised senders. The

proposed techniques use the µTESLA broadcast authentication protocol [62] as a building

block. In other words, these techniques use multiple µTESLA instances with different

parameters to provide additional capabilities related to broadcast authentication.

We assume there is an off-line central server with computation power and storage

equivalent to a regular PC. This server is used to pre-compute and store certain parameters.

We assume that the central server is well-protected. We assume that a sender has enough

storage to save, or enough computation power to generate, one or several µTESLA key

chains. We also assume that the clocks on sensor nodes are loosely synchronized, as required

by the µTESLA protocol [62].

3.2.1 The Basic Approach

The essential problem in scaling up µTESLA is how to distribute and authenti-

cate the parameters of µTESLA instances, including the key chain commitments, starting

time, duration of each time interval, etc. The previous approaches construct a multi-level

structure and use higher-level µTESLA instances to authenticate the parameters of lower-

level ones [40, 44], thus inheriting the authentication delay introduced by µTESLA during

the distribution of µTESLA parameters. The consequence of such authentication delay is

that an attacker can launch DOS attacks. Moreover, they cannot handle a large number of

senders. In the following, we propose to authenticate and distribute these µTESLA param-

58

eters using a Merkle hash tree [49]. This method removes the authentication delay as well

as the vulnerability to DOS attacks during the distribution of µTESLA parameters and at

the same time allows a large number of senders.

������ ���������� �� �¡¢ �£¤ �¥¦��¢ �£¦��¦
§�§�§� §�§�§�§�§�

Figure 3.9: Example of a parameter distribution tree

Assume a sensor network application requires m µTESLA instances, which may be

used by different senders during different periods of time. For convenience, assume m = 2k,

where k is an integer. Before deployment, the central server pre-computes m µTESLA

instances, each of which is assigned a unique, integer-valued ID between 1 and m. For

the sake of presentation, denote the parameters (i.e., the key chain commitment, starting

time, duration of each µTESLA interval, etc.) of the i-th µTESLA instance as Si. Suppose

the central server has a hash function H. The central server then computes Ki = H(Si)

for all i ∈ {1, ...,m}, and constructs a Merkle tree [49] using {K1, ...,Km} as leaf nodes.

Specifically, K1, ...,Km are arranged as leaf nodes of a full binary tree, and each non-leaf

node is computed by applying H to the concatenation of its two children nodes. We refer

to such a Merkle tree as a parameter distribution tree of parameters {S1, ..., Sm}. Figure

3.9 shows a parameter distribution tree for eight µTESLA instances, where K1 = H(S1),

K12 = H(K1||K2), K14 = H(K12||K34), etc.

The central server also constructs a parameter certificate for each µTESLA in-

stance. The certificate for the i-th µTESLA instance consists of the set Si of parameters

and the values corresponding to the siblings of the nodes on the path from the i-th leaf

node to the root in the parameter distribution tree. For example, the parameter certificate

for the 3rd µTESLA instance in Figure 3.9 is ParaCert3 = {S3,K4,K12,K58}. For each

sender that will use a given µTESLA instance, the central server distributes the µTESLA

key chain (or equivalently, the random number used to generate the key chain) and the

59

corresponding parameter certificate to the node. The central server also pre-distributes the

root of the parameter distribution tree (e.g., K18 in Figure 3.9) to regular sensor nodes,

which are potentially receivers of broadcast messages.

When a sender needs to setup an authenticated broadcast channel using the i-

th µTESLA instance (during a predetermined period of time), it broadcasts a message

containing the parameter certificate ParaCerti. Each receiver can immediately authenti-

cate it with the pre-distributed root of the parameter distribution tree. For example, if

ParaCert3 = {S3,K4,K12,K58} is used, a receiver can immediately authenticate it by ver-

ifying whether H(H(K12||H(H(S3)||K4))||K58) equals the pre-distributed root value K18.

As a result, all the receivers can get the authenticated parameters of this µTESLA instance,

and the sender may use it for broadcast authentication.

Security: According to the analysis in [60, 62], an attacker is not able to forge any

message from any sender without compromising the sender itself. However, the attacker

may launch DOS attacks against the distribution of parameters for µTESLA instances.

Fortunately, the parameter certificates in our technique can be authenticated immediately

and are immune to the DOS attacks. When a few senders are compromised, additional

techniques are required to remove these compromised senders. This will be addressed in

Section 3.2.4.

Overhead: In this approach, each sensor node (as a receiver) only needs to store

one hash value and remember the parameters for those senders that it may communicate

with. This is particularly helpful for those applications where a node only needs to com-

municate with a few senders or there are only a few senders staying in the network at one

time.

Each sender needs to store a parameter certificate, the key chain, and other param-

eters (e.g., starting time) for each instance it has. To establish an authenticated broadcast

channel with nodes using an instance j, a sender only needs to broadcast the corresponding

pre-distributed parameter certificate, which consists of ⌈log m⌉ hash values and the param-

eter set Sj . This is practical since such distribution only needs to be done once for each

instance. After receiving this parameter certificate, a sensor node only needs 1 + ⌈log m⌉
hash functions to verify the related parameters.

Comparison: Compared with the multi-level µTESLA schemes [40, 44], the most

significant gain of the proposed approach is the removal of the authentication delay in dis-

tributing the µTESLA parameters. The multi-level µTESLA schemes are subject to DOS

60

attacks against the distribution of µTESLA parameters because of the authentication delay.

Specifically, receivers cannot authenticate parameter distribution messages immediately af-

ter receiving them, and thus have to buffer such messages. An attacker may send a large

amount of bogus messages to consume receivers’ buffers and thus launch DOS attacks. To

mitigate or defeat such DOS attacks, the multi-level µTESLA schemes either use duplicated

copies of distribution messages along with a multi-buffer, random selection strategy, or re-

quire substantial pre-computation at the sender. In contrast, the proposed approach does

not have these problems. With the proposed approach, senders may still duplicate parame-

ter distribution messages to deal with communication failures. However, unlike multi-level

µTESLA schemes, a sender does not have to compete with malicious attackers in terms of

the number of messages with this approach. In other words, with the proposed approach it

is sufficient for a receiver to get one copy of each parameter distribution message.

In general, our approach allows late binding of µTESLA instances with senders.

For example, the central server may reserve some µTESLA instances during deployment

time and distribute them to mobile sinks as needed during the operation of the sensor net-

works. This allows us to add new senders dynamically by simply generating enough number

of instances at the central server for later joined senders. Thus, in our later discussion, we

will not discuss how to add new senders.

There are multiple ways to arrange senders, µTESLA instances, and their parame-

ters in a parameter distribution tree. Different ways may have different properties. Next we

investigate one specific scheme that has some additional attractive properties. We consider

other options as future work.

3.2.2 A Scheme for Long-Lived Senders

The following discussion presents a special instantiation of the basic approach

when there are up to m senders in the network and nj µTESLA instances for each sender

j. The purpose is to improve the parameter distribution for those senders that may stay

in the network for a long period of time. The protocol can be divided into two phases:

pre-distribution and establishment of authenticated broadcast channel.

Pre-Distribution: The central server first divides the (long) lifetime of each sender

into nj time intervals such that the duration of each time interval (e.g., 1 hour) is suitable

for running a µTESLA instance on a sender and sensor nodes efficiently. For convenience,

61

we denote such a time interval as a (µTESLA) instance interval, or simply an instance

interval. When nj = 1 for all j ∈ {1, ...,m}, the long-lived version becomes the basic

scheme. (Note that each instance interval should be partitioned into smaller time intervals

(e.g., 500ms intervals) to run the µTESLA protocol.)

For sender j, the central server generates one µTESLA instance for each instance

interval. The corresponding key chains are linked together by pseudo random functions.

Specifically, the central server generates the last key of the nj-th µTESLA key chain ran-

domly; for the i-th µTESLA key chain, the central server generates the last key by perform-

ing a pseudo random function F ′ on the first key (the key next to the commitment) of the

(i + 1)-th µTESLA key chain. Let Sj,i denote the parameters (e.g., key chain commitment,

starting time) of the i-th µTESLA instance for sender j. The parameters (such as the

duration of each µTESLA interval) that can be pre-determined do not need to be included

in Sj,i.

For each sender j, the central server generates a parameter distribution tree Treej

from {Sj,1, · · ·, Sj,nj
}. This tree is used to distribute the parameters of different µTESLA

instances for sender j. Let ParaCertj,i denote the parameter certificate for Sj,i in Treej .

Assume Rj is the root of Treej . The central server then generates the parameter distribution

tree TreeR for all senders from {S1, · · · , Sm}, where Sj consists of Rj and parameters that

are not included in {Sj,1, · · · , Sj,nj
} for sender j. If a parameter (e.g., nj) is the same for

all senders, it can be pre-distributed to all sensor nodes before the deployment of sensor

networks. Let ParaCertj denote the parameter certificate for Sj in TreeR. The central

server pre-distributes to each sender j the parameter certificate ParaCertj, the nj µTESLA

instances, and the parameter distribution tree Treej . The central server also pre-distributes

the root value of tree TreeR to each sensor node. Figure 3.10 shows an example of the above

construction.

Establishment of Authenticated Broadcast Channel: To establish an authenticated

broadcast channel with sensor nodes, a sender j first broadcasts ParaCertj to authenticate

the root Sj. The authenticity of Sj can be verified as discussed in the basic approach. To

distribute the parameters of the i-th µTESLA instance, sender j only needs to ParaCertj,i,

which can be verified by re-computing the root Rj from ParaCertj,i if Sj, which includes

Rj , is already verified. After this, the sender j can authenticate the messages using the

i-th µTESLA instance, and the sensor nodes having the authentic parameters can verify

the broadcast messages from sender j. To deal with message loss, a sender may broadcast

62

©̈ª̈«̈ ¬̈­̈®̈¯̈¨° ±²³ ±´µ ±¶· ±̧ ¹±²µ ±¶¹±²¹ º©ºªº« º¬º­º®º¯º° »¼½½¾
¿ÀÁÂ ÃÄÅÆÇÁ ÅÆÇÂ ÅÆÇÆ ÅÆÇÈ ÅÆÇÉ ÅÆÇÊ ÅÆÇË ÅÆÇÌ»¼½½Í¿ÀÈ¿ÀÆ ¿ÀÆÈ ¿ÀÉÊ ¿ÀËÌ¿ÀÉÌ¿ÀÁÈ ¿ÀÌ¿ÀË¿ÀÊ¿ÀÉ¿ÀÂ¿ÀÁ ÎÏÐÏÑÒÐÓÍÔÕÖ×ØÍÔÕÙÚÛÜÙÚÛÝÞÙÚÛßàáÎÏÐÏÑÒÐÓÍ Ö×ØÍÙÚàÙÚßâÙÚÕÞá

Figure 3.10: Example of a parameter distribution tree for long-lived schemes

ParaCertj and ParaCertj,i multiple times.

Security: In the long-lived scheme, different key chains are linked together. This

does not sacrifice security. The knowledge of the commitment of later key chain cannot

be used to recover the first key in the later key chain and thus cannot be used to recover

any key in earlier key chains since it is computationally infeasible to revert the pseudo

random function. Moreover, this instantiation is resistant to DOS attacks if each parameter

certificate can be delivered in one packet, similar to the basic approach. When it is necessary

to send a parameter certificate in multiple packets, there may be DOS attacks. We will

investigate this problem in Section 3.2.3.

Overhead: The above scheme requires each sender j to store nj key chains, a

parameter certificate ParaCertj, and a parameter distribution tree Treej. This storage

overhead is usually affordable at senders since they may be much more resourceful than

the sensor nodes. Similar to the basic scheme, each sensor node only needs to store one

hash value, the root of TreeR. To establish an authenticated broadcast channel with sensor

nodes, sender j needs to broadcast ParaCertj, which includes ⌈log m⌉ hash values and

parameters in Sj , and ParaCertj,i, which includes ⌈log nj⌉ hash values and parameters in

Sj,i. A sensor node needs to perform 1 + ⌈log m⌉ hash functions to verify the root Rj of

tree Treej and 1 + ⌈log nj⌉ hash functions to verify the corresponding parameters.

Comparison: Compared with the basic approach, this scheme has several ben-

efits. First, the parameters of the i-th µTESLA instance for each sender j is divided into

the distribution of the parameters common to all µTESLA instances (i.e., Sj) for the same

63

sender and those specific to each µTESLA instance (i.e., Sj,i). Thus, the communication

overhead can be reduced. Second, this scheme connects different µTESLA key chains to-

gether through pseudo random functions, and thus provides two options to verify a disclosed

µTESLA key. A sensor node can always verify disclosed keys with an earlier key. This is

suitable when there are no long term communication failures or channel jamming attacks

since a sensor node can usually authenticate a disclosed key with a few pseudo random

functions. Alternatively, a sensor node can authenticate any disclosed key using the com-

mitment derived from the most recently verified parameter certificate. This is suitable when

there are long term communication failures or channel jamming attacks, or for newly de-

ployed nodes. Third, when all µTESLA instances are linked together, a sensor node may

use a later key to derive an earlier key to authenticate a buffered message. Such a capability

is not available for independent µTESLA instances.

3.2.3 Distributing Parameter Certificates

As we mentioned earlier, the proposed technique is resistant to the DOS attacks

if each parameter certificate is delivered in one packet since a receiver can authenticate

such a certificate immediately upon receiving it. However, due to the low bandwidth and

small packet size in sensor networks, a certificate may be too large to be transmitted in a

single packet. As a result, it is often necessary to fragment each certificate and deliver it in

multiple packets.

A straightforward approach is to simply split those values in a certificate into

multiple packets. However, this simple idea suffers from DOS attacks, where an attacker

sends a large number of forged certificates and forces a sensor node to perform a lot of

computations to identify the right one from those fragments. To deal with this problem,

we adopt the idea in [31]. Intuitively, we fragment a parameter certificate in such a way

that a sensor node can authenticate each fragment independently instead of trying every

combination.

Assume a parameter certificate then consists of L values {h1, h2, · · · , hL}, and

each packet can carry b values. As shown in Figure 3.11, in the first step of fragmentation,

we put the first b−1 values in the first packet, the second b−1 values in the second packet,

and so on, until there are no more values left. If the last packet only includes one value,

we move it to the previous packet and remove the last packet. The previous packet then

64

ã ä å æ å ã ç è ä ã é ê ç è ä ë ì ä å æ å ã ê é ì ä ë ê ç è ä ë æ å ã íã ä å æ å ã í
î ï ð ñ ï ò ó ô ã ç è ä õ î ï ð ñ ï ò ó ô ã ê é ì ä ë ê ç è ä ë õö ö ö ö ö ö÷ ã ø ù ï ú û ü ý þ ÿ � ø ü ÷ ã ø ô ï � � õ � � ý þ ÿ � ø ü ÷ ã ø ñ þ û ü ý þ ÿ � ø ü

Figure 3.11: Example of fragmentation

becomes the last packet, containing b values. In the second step, we append in every packet

other than the last one the sibling (in the parameter distribution tree) of the last value

in this packet. By doing this, the first fragment can be authenticated immediately once

the sensor node receives an authentic fragment. After authenticating the first fragment,

the second fragment can be also authenticated immediately using the values in the first

fragment. This process will continue until the sensor node receives all authentic fragments.

For example, in Figure 3.9, ParaCert3 consists of 4 values, {K58,K12,K4, S3}.
Assume that each fragment can carry 3 hash values and S3 consists of 1 key chain commit-

ment. Using the above technique, the first packet includes {K58,K12,K34}, and the second

packet includes K4, S3. If a sensor node receives the first fragment, it can authenticate the

fragment by verifying whether H(H(K12|K34)|K58) equals the pre-distributed root value.

Once the first fragment is authenticated successfully, the second fragment can be authen-

ticated by verifying if H(H(S3)|K4) equals the hash value K34, which is contained in the

first fragment.

The above technique can significantly reduce the computation overhead required

to authenticate the certificate fragments when there are DOS attacks. In addition, if most

of fragments are received in order, there is no need to allocate a large buffer to store these

fragments since most of fragments can be authenticated immediately.

3.2.4 Revoking µTESLA Instances

In hostile environments, not only sensor nodes but also broadcast senders may

be captured and compromised by adversaries. Once a sender is compromised, the attacker

65

can forge any broadcast message using the secrets stored on this sender and convince other

sensor nodes to perform unnecessary or malicious operations. Thus, it is necessary to revoke

the broadcast authentication capability from compromised senders.

We do not consider the process or techniques to detect compromised or captured

broadcast senders here, but assume such results are given. The detection of compromised or

captured senders is in general difficult, but feasible at least in certain scenarios. For example,

in battlefields, broadcast senders may be carried by soldiers or unmanned vehicles. If a

soldier or an unmanned vehicle is captured, we need to revoke its broadcast authentication

capability.

We propose two approaches to revoke compromised senders. The first one uses

a revocation tree to take back the broadcast authentication capability from compromised

senders; the second one employs proactive refreshment to control the broadcast authenti-

cation capability of each sender. Revocation of compromised senders requires the central

server to be on-line when it broadcasts revocation messages; however, the central server can

still remain off-line in other situations.

Revocation Tree: When a sender is detected to have been compromised, the

central server broadcasts a revocation message with the IDs of the sender. This message

has to be authenticated; otherwise, an attacker may forge such messages to revoke non-

compromised senders. We may use another µTESLA instance maintained by the central

server to authenticate such messages. However, this instance has special functions and

may become an attractive target for DOS attacks due to the authentication delay. The

following discussion provides an alternative method that does not suffer from DOS attacks

or authentication delay.

The main idea of this method is to construct a Merkle tree similar to parameter

distribution trees, which is called a revocation tree, since its purpose is to revoke broadcast

authentication capabilities from compromised senders. The revocation tree is built from

sender IDs and random numbers. If the sender ID j and the corresponding random number

is disclosed in an authenticated way, sender j is revoked.

Assume there are potentially m senders. For simplicity, we assume m = 2k for

an integer k. The central server generates a random number rj for each sender with ID j,

where 1 ≤ j ≤ m. The central server then constructs a Merkle tree where the j-th leaf node

is the concatenation of ID j and rj . We refer to this Merkle tree as the revocation tree.

The central server finally distributes the root of the revocation tree to all sensor nodes.

66

We assume the central server is physically secure. Protection of the central server is an

important but separate issue, which is not addressed here.

When a sender j is detected to have been compromised, the central server broad-

casts the ID j and the random number rj. To authenticate these values, the central server

has to broadcast the sibling of each node on the path from “j||rj” (i.e., the leaf node for j in

the revocation tree) to the root. This is exactly the same as the parameter certificate tech-

nique used to authenticate µTESLA parameters. To distinguish from parameter certificate,

we refer to the above set of values as a revocation certificate, denoted RevoCertj. With

RevoCertj, any sensor node can recompute the root hash value and verify it by checking

whether it leads to the pre-distributed root value. If a sensor node gets a positive result

from this verification, it puts the corresponding sender into a revocation list and stops ac-

cepting broadcast messages from the sender. To deal with message loss, the distribution of

a revocation certificate may be repeated multiple times.

The revocation tree approach cannot guarantee the revocation of all compromised

senders in presence of communication failures, though traditional fault tolerant techniques

can provide high confidence. However, it guarantees that a non-compromised sender will

not be revoked. This is because the revocation of a sender requires a revocation certificate,

which is only known to the central server. An attacker cannot forge any revocation certificate

without access to the random numbers kept in the leaves of the revocation tree, due to the

one-way function used to generated the revocation tree [49].

In this approach, each sensor node needs to store an additional hash value, the

root of the revocation tree. To revoke a sender, the central server distributes a revocation

certificate, which consists of 1 + ⌈log m⌉ values. An overly long revocation certificate can

be transmitted in the same way as discussed in the previous subsection. To authenticate

the revocation certificate, a sensor node needs to perform 1 + ⌈log m⌉ hash functions.

The revocation tree approach has several limitations. First, due to the unreliable

wireless communication and possible malicious attacks (e.g., channel jamming), the revo-

cation messages are not guaranteed to reach every sensor node. As a result, an attacker

can convince those sensor nodes that missed the revocation messages to do unnecessary or

malicious operations using the revoked µTESLA instances. Second, each sensor node needs

to store a revocation list, which introduces additional storage overhead, especially when a

large number of senders are revoked.

Proactive Refreshment of Authentication Keys: To deal with the limi-

67

tations of the revocation tree approach, we present an alternative method to revoke the

authentication capability from compromised senders. The basic idea is to distribute a frac-

tion of authentication keys to each sender and have the central server update the keys for

each sender when necessary. A clear benefit is that if a sender is compromised, the central

server only needs to stop distributing new authentication keys to this sender; there is no

need to broadcast a revocation message and maintain a revocation list at each sensor node.

In addition, this approach guarantees that once compromised senders are detected, they

will be revoked from the network after a certain period of time. The authentication keys

for each sender can be distributed in a proactive way since we can predetermine the time

when a key will be used.

Specifically, during the pre-distribution phase, the central server distributes the

parameter certificates (but not the µTESLA instances) to each sender. For simplicity, we

assume that the central server gives a µTESLA instance to a sender each time. Before the

current µTESLA instance expires, the central server distributes the key used to derive the

next µTESLA key chain to the sender through a key distribution message encrypted with

a key shared between the central server and the sender if the sender has not been detected

to have been compromised. The sender may then generate the next µTESLA key chain

accordingly. To increase the probability of successful distribution of authentication keys

in presence of communication failures, the central server may send each key distribution

message multiple times.

As mentioned earlier, the revocation of a compromised sender is guaranteed (with

certain delay) in the proactive refreshment approach when it is detected to have been com-

promised. However, the broadcast authentication capability of a sender is not guaranteed

if there are message losses. A sender may miss all key distribution messages that carry

new authentication keys due to unreliable wireless communication and malicious attacks.

Thus, a sender may have no keys to authenticate new data packets. Moreover, there may

be a long delay between the detection and the revocation of a compromised sender, and the

compromised sender may still have keys that can be used to forge broadcast messages.

In the proactive refreshment approach, instead of storing nj µTESLA instances,

a sender j only needs to store a few of them. Thus, the storage overhead is reduced. How-

ever, the communication overhead between the central server and the senders is increased

since the central server has to distribute keys to each sender individually. Moreover, the

central server has to be on-line more often. There are no additional communication and

68

computation overheads for sensor nodes.

Both of the above approaches have advantages and disadvantages. In practice,

these two options may be combined to provide better performance and security. The re-

vocation certificates from the central server can mitigate the problem of the delay between

the detection and the revocation of a compromised sender, while the proactive refreshment

technique guarantees the future revocation of a compromised sender if the compromise is

detected.

3.2.5 Implementation and Evaluation

We have implemented the long-lived version of the proposed techniques on TinyOS

[25] and used Nido, the TinyOS simulator, to evaluate the performance. Our evaluation

is focused on the broadcast of data packets and the distribution of µTESLA parameters.

Since the number of senders does not affect these two aspects, we only consider a single

sender in the evaluation.

We compare our techniques with the multi-level µTESLA schemes in [40, 44],

where two schemes were proposed: multi-level DOS-tolerant µTESLA and multi-level DOS-

resistant µTESLA. Multi-level DOS-resistant µTESLA has as much communication over-

head as multi-level DOS-tolerant µTESLA and will fall back to multi-level DOS-tolerant

µTESLA at a receiver when the receiver misses all copies of a parameter distribution mes-

sage. Thus, we only compare our scheme with the multi-level DOS-tolerant µTESLA, which

can be obtained from http://discovery.csc.ncsu.edu/software/ML-microTESLA. For

convenience, we call the techniques proposed above as the tree-based scheme.

We adopt a setting similar to [40, 44]: the µTESLA key disclosure delay is 2

µTESLA time intervals, the duration of each µTESLA time interval is 100 ms, and each

µTESLA key chain consists of 600 keys. Thus, the duration of each µTESLA instance is 60

seconds. We assume that there are 200 µTESLA instances, which cover up to 200 minutes

in time. Each parameter set Sj,i only contains a µTESLA key chain commitment. This

means that each parameter certificate contains 9 hash values. Assume each hash value,

cryptographic key or MAC value is 8 bytes long. The parameter certificate can be delivered

with 4 packets, each of which contains a sender ID (2 bytes), a key chain index (2 bytes), a

fragment index (1 byte), and 3 hash values (24 bytes). As a result, the packet payload size

is 29 bytes, which is the default maximum payload size in TinyOS [25].

69

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40

#parameter distribution packets per minute

F
ra

ct
io

n
 o

f
au

th
en

ti
ca

te
d

 p
at

a
p

ac
ke

ts

Two-level DOS-tolerant

Tree-based

(a) 20 CDM buffers for multi-level µTESLA

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40
#buffers for parameter distribution packets

F
ra

ct
io

n
 o

f
au

th
en

ti
ca

te
d

 p
at

a
p

ac
ke

ts

Two-level DOS-tolerant

Tree-based

(b) 20 parameter distribution packets per minute

Figure 3.12: Authentication rate under 0.2 loss rate and 200 forged parameter distribution
packet per minute.

The multi-level µTESLA schemes use Commitment Distribution Messages (CDM)

to distribute parameters of µTESLA instances. According to the implementation we ob-

tained, each CDM message in multi-level DOS-tolerant scheme also contains 29 bytes

payload. For convenience, we call a parameter certificate fragment or a CDM packet a

parameter distribution packet.

We study and compare the performances of the tree-based technique and the multi-

level DOS-tolerant µTESLA scheme in terms of DOS attacks, channel loss rate, and storage

and communication overheads. We set the data packet rate from the sender as 100 data

packets per minute, and allocate 3 buffers for data packets at each sensor node. The metrics

we are interested in here are the authentication rate, which is the fraction of authenticated

data packets; the distribution rate, which is the fraction of successfully distributed parame-

ters; and the average failure recovery delay, which is the average number of µTESLA time

intervals needed to have the authenticated parameters for the next µTESLA instance after

a sensor node loses every authentic parameter distribution message for a given µTESLA

instance.

We use a simple strategy to rebroadcast a parameter certificate, where the re-

broadcasts of any certificate are non-interleaving, and the fragments of each certificate are

broadcast in order. Other strategies are also possible. However, we consider them as pos-

sible future work.

To investigate the authentication rate and the distribution rate under DOS attacks

70

0

100

200

300

400

500

600

700

0 10 20 30 40 50

#buffers for parameter distribution packets

#p
ar

am
et

er
 d

is
tr

ib
u

ti
o

n
 p

ac
ke

ts
 p

er

m
in

u
te

two-level DOS-tolerant

Tree-based

(a) Communication overhead v.s. storage overhead

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 10 20 30 40 50
#parameter distribution packets per minute

M
ax

im
u

m
 n

u
m

b
er

 o
f

ke
y

ch
ai

n
s

su
p

p
o

rt
ed

(b) Maximum number of key chains v.s. frequency

of distributing parameter distribution packets

Figure 3.13: Channel loss rate: 0.2; # forged commitment distribution: 200 per minute;
distribution rate: 95%.

and communication failures, we assume the attacker sends 200 forged parameter distribution

packets per minute. We also assume the channel loss rate is 0.2. Figure 3.12(a) illustrates

the authentication rate for both schemes as the frequency of parameter distribution packets

increases. We assume 20 CDM buffers at each receiver for the multi-level DOS-tolerant

µTESLA scheme. We can see that the tree-based scheme always has a higher authentication

rate than the multi-level DOS-tolerant µTESLA scheme. The reason is that in the tree-

based scheme, a sensor node is able to authenticate any buffered message once it receives a

later disclosed key since different key chains are linked together. Although in the multi-level

DOS-tolerant µTESLA scheme, lower-level µTESLA key chains are also linked to the higher-

level ones, a sensor node may have to wait for a long time to recover an authentication key

from the higher-level key chain when the corresponding lower-level key chain commitment

is lost due to severe DOS attacks or channel losses. During this time period, most of the

previous buffered data packets are already dropped.

Figure 3.12(b) shows the authentication rate for both schemes as the number of

buffers for parameter distribution packets increases. We assume that the sender distributes

20 parameter distribution packets per minute. We can see that the multi-level DOS-tolerant

µTESLA scheme has to allocate a large buffer to achieve a certain authentication rate when

there are severe DOS attacks, while the tree-based scheme can achieve a higher authen-

tication rate without any additional buffer. The reason is that in the tree-based scheme,

a sensor node can verify a parameter certificate immediately and thus there is no need to

71

0

500

1000

1500

2000

2500

3000

3500

4000

0 0.1 0.2 0.3 0.4 0.5

channel loss rate

F
ai

lu
re

 r
ec

o
ve

ry
 d

el
ay

 (
#t

im
e

in
te

rv
al

s)

two-level no attack
two-level 95% forged
two-level 99% forged
Tree-based

(a) 20 CDM buffers for multi-level µTESLA.

0

2000

4000

6000

8000

10000

12000

14000

0 10 20 30 40 50
#buffers for parameter distribution packets

F
ai

lu
re

 r
ec

o
ve

ry
 d

el
ay

 (
#t

im
e

in
te

rv
al

s)

two-level no attack
two-level 95% forged
two-level 99% forged
Tree-based

(b) 0.2 channel loss rate

Figure 3.14: Average failure recovery delay. Assume 20 parameter distribution packet per
minute.

buffer certificates; while in the multi-level DOS-tolerant µTESLA scheme, a sensor node

has to wait for a while before authenticating CDM messages.

Figure 3.13(a) focuses on the communication and storage overhead introduced

by both schemes to achieve high distribution rate. It shows that to achieve a desirable

distribution rate under severe DOS attacks, the multi-level DOS-tolerant µTESLA scheme

requires a large buffer and a high rebroadcast frequency, while the tree-based scheme is

more communication and storage efficient. Note that the number of µTESLA key chains

supported by the tree-based scheme affects the number of fragments for each certificate and

thus affects the distribution rate. Figure 3.13(b) shows that to achieve high distribution rate,

the number of key chains supported by the tree-based scheme increases dramatically when

the frequency of parameter distribution packets increases. This means that the tree-based

scheme can cover a very long time period by increasing a little communication overhead.

To investigate the average failure recovery delay, we assume that the sender dis-

tributes 20 parameter distribution packets per minute. (Note that the multi-level DOS-

resistant µTESLA scheme has to fall back to the multi-level DOS-tolerant µTESLA scheme

if a sensor node loses every authentic copy of a given CDM message.)

Figure 3.14(a) shows the average failure recovery delay for both schemes as the

channel loss rate increases. We assume 20 CDM buffers for the multi-level µTESLA scheme.

We can see that the average failure recovery delay of the tree-based scheme increases with

the channel loss rate, while the multi-level µTESLA scheme is not affected when the loss rate

72

is small. However, the recovery delay of the multi-level µTESLA scheme increases rapidly

when there are severe DOS attacks. In contrast, the tree-based scheme is not affected by

DOS attacks if the attacker does not jam the channel completely. Since the channel loss rate

is usually a small value, the tree-based scheme has shorter recovery delay than the multi-

level µTESLA scheme in most cases. Figure 3.14(b) shows the impact of storage overhead

on the average failure recovery delay. We assume that the channel loss rate is 0.2. The

average failure recovery delay of the multi-level µTESLA scheme increase quickly when the

number of buffers for parameter distribution packets decreases, while the tree-based scheme

has shorter delay and is not affected by the number of buffers for parameter distribution

packets.

3.3 Summary

In this chapter, we first developed a multi-level key chain scheme to efficiently

distribute the key chain commitments for the broadcast authentication scheme named

µTESLA. By using pre-determination and broadcast, our approach removed µTESLA’s

requirement of a unicast-based distribution of initial key chain commitments, which intro-

duces high communication overhead in large distributed sensor networks. We also proposed

several techniques, including periodic broadcast of commitment distribution messages and

random selection strategies, to improve the survivability of our scheme and defeat some

DOS attacks. The resulting protocol, named multi-level µTESLA, satisfies several nice

properties, including low overhead, tolerance of message loss, scalability to large networks,

and resistance to replay attacks as well as DOS attacks.

We then identified new challenges in broadcast authentication for wireless sensor

networks. Several practical tree-based broadcast authentication techniques were developed

to support multiple senders, distribute parameters for µTESLA instances, and revoke the

broadcast authentication capabilities of compromised senders in wireless sensor networks.

Our analysis and experiment show that the proposed techniques are efficient and practical

and have better performance than previous approaches.

Note that all the above proposed schemes require loosely time synchronization,

which may not be true in some applications. There are many mechanisms to disrupt the

time synchronization method. Thus, it may be desirable to have alternative ways of au-

73

thenticating broadcast messages without assumption of time synchronization.

74

Chapter 4

Polynomial Pool-Based Key

Pre-Distribution

In this chapter, we develop a number of key pre-distribution techniques to deal with

the pairwise key establishment in sensor networks. We first develop a general framework

for pairwise key establishment based on the polynomial-based key pre-distribution scheme

[5] and the probabilistic key pre-distribution scheme [19, 11]. This framework is called the

polynomial pool-based key pre-distribution scheme, which uses a polynomial pool instead

of a key pool in [19, 11]. The secrets on each sensor node are generated from a subset

of polynomials in the pool. If two sensor nodes have the secrets generated from the same

polynomial, they can establish a pairwise key based on the polynomial-based key pre-

distribution scheme. All the previous schemes in [5, 19, 11] can be considered as special

instances in this framework.

By instantiating the components in this framework, we further develop two novel

pairwise key pre-distribution schemes: a random subset assignment scheme and a hypercube-

based scheme. The random subset assignment scheme assigns each sensor node the secrets

generated from a random subset of polynomials in the polynomial pool. The hypercube-

based scheme arranges polynomials in a hypercube space, assigns each sensor node to a

unique coordinate in the space, and gives the node the secrets generated from the polyno-

75

mials related to the corresponding coordinate. Based on this hypercube, each sensor node

can then identify whether it can directly establish a pairwise key with another node, and if

not, what intermediate nodes it can contact to indirectly establish the pairwise key.

Our analysis indicates that our new schemes have some nice features compared

with the previous methods. In particular, when the fraction of compromised secure links

is less than 60%, given the same storage constraint, the random subset assignment scheme

provides a significantly higher probability of establishing secure communication between

non-compromised nodes than the previous methods. Moreover, unless the number of com-

promised nodes sharing a common polynomial exceeds a threshold, compromise of sensor

nodes does not lead to the disclosure of keys established between non-compromised nodes

using this polynomial.

Similarly, the hypercube-based scheme also has a number of attractive properties.

First, it guarantees that any two nodes can establish a pairwise key when there are no

compromised nodes, provided that the sensor nodes can communicate with each other.

Second, it is resilient to node compromise. Even if some sensor nodes are compromised,

there is still a high probability to re-establish a pairwise key between non-compromised

nodes. Third, a sensor node can directly determine whether it can establish a pairwise key

with another node and how to compute the pairwise key if it can. As a result, there is no

communication overhead during the discovery of directly shared keys.

To reduce the computation at sensor nodes, we provide an optimization technique

for polynomial evaluation. The basic idea is to compute multiple pieces of key fragments over

some special finite fields such as F28+1 and F216+1, and concatenate these fragments into a

regular key. A nice property provided by such finite fields is that no division is necessary for

modular multiplication. As a result, evaluation of polynomials can be performed efficiently

on low-cost processors on sensor nodes that do not have division instructions. Our analysis

indicates that such a method only slightly decreases the uncertainty of the keys.

We have implemented these algorithms on MICA2 motes [13] running TinyOS [25].

The implementation only occupies a small amount of memory (e.g. 416 bytes in ROM and

20 bytes in RAM for one of our implementations, excluding the memory for polynomial

coefficients). The evaluation indicates that computing a 64-bit key using this technique can

be faster than generating a 64-bit MAC (Message Authentication Code) using RC5 [66] or

SkipJack [57] for a reasonable degree of polynomial. These results show that our schemes

are practical for resource-constrained sensor networks.

76

4.1 Polynomial Pool-Based Key Pre-Distribution

The polynomial-based key pre-distribution scheme discussed in Section 2.2.1 has

some limitations. In particular, it can only tolerate the collusion of no more than t com-

promised nodes, where the value of t is limited by the available memory space and the

computation capability on sensor nodes. Indeed, the larger a sensor network is, the more

likely an adversary compromises more than t sensor nodes and then the entire network.

To have secure and practical key establishment techniques, we develop a general

framework for key pre-distribution based on the scheme presented in Section 2.2.1. We call it

the polynomial pool-based key pre-distribution since a pool of random bivariate polynomials

are used in this framework. In this section, we focus on the discussion of this general

framework. In the next two sections, we will present two efficient instantiations of this

framework.

The polynomial pool-based key pre-distribution is inspired by the studies in [19,

11]. The basic idea can be considered as the combination of the polynomial-based key pre-

distribution and the key pool idea used in [19, 11]. However, our framework is more general

in that it allows different choices to be instantiated within this framework, including those

in [19, 11] and our later instantiations in sections 4.2 and 4.3.

Intuitively, this general framework generates a pool of random bivariate polynomi-

als and assigns shares on a subset of bivariate polynomials in the pool to each sensor node.

The polynomial pool has two special cases. When it has only one polynomial, the gen-

eral framework degenerates into the polynomial-based key pre-distribution. When all the

polynomials are 0-degree, the polynomial pool degenerates into a key pool used in [19, 11].

Pairwise key establishment in this framework has three phases: setup, direct key

establishment, and path key establishment. The setup phase is performed to initialize the

nodes by distributing polynomial shares to them. After being deployed, if two sensor nodes

need to establish a pairwise key, they first attempt to do so through direct key establish-

ment. If they can successfully establish a common key, there is no need to start path key

establishment; otherwise, these two nodes start path key establishment, trying to establish

a pairwise key with the help of other sensor nodes.

77

4.1.1 Phase 1: Setup

The setup server randomly generates a set F of bivariate t-degree polynomials

over the finite field Fq. To identify different polynomials, the setup server may assign

each polynomial a unique ID. For each sensor node i, the setup server picks a subset of

polynomials Fi ⊆ F and assigns the shares of these polynomials to node i. The main issue

in this phase is the subset assignment problem, which specifies how to pick a subset of

polynomials from F for each sensor node.

Here we identify two ways to perform subset assignments: random assignment and

predetermined assignment.

Random Assignment

With random assignment, the setup server randomly picks a subset of F for each

sensor node. This random selection should be evenly distributed in F for security concerns;

otherwise, some polynomials may have higher probability of being selected and higher fre-

quency of being used in key establishment than the others and thus become the primary

targets of attacks. Several parameters may be used to control this process, including the

number of polynomial shares assigned to a node and the size of F . In the simplest case, the

setup server assigns the same number of random selected polynomial shares to each sensor

node.

Predetermined Assignment

When predetermined assignment is used, the setup server follows a certain scheme

to assign subsets of F to sensor nodes. A predetermined assignment should bring some nice

properties that can be used to improve direct and path key establishment.

4.1.2 Phase 2: Direct Key Establishment

A sensor node starts Phase 2 if it needs to establish a pairwise key with another

node. If both sensor nodes have shares on the same bivariate polynomial, they can establish

the pairwise key directly using the polynomial-based key pre-distribution discussed in Sec-

tion 2.2.1. The main issue in this phase is the polynomial share discovery problem, which

78

specifies how to find a common bivariate polynomial of which both nodes have polynomial

shares. For convenience, we say that two sensor nodes have a secure link if they can es-

tablish a pairwise key through direct key establishment. A pairwise key established in this

phase is called a direct key.

Here we identify two types of techniques to solve this problem: pre-distribution

and real-time discovery.

Pre-Distribution

The setup server pre-distributes certain information to the sensor nodes so that

given the ID of another sensor node, a sensor node can determine whether it can establish

a direct key with the other node. A naive method is to let each sensor node store the IDs

of all the sensor nodes with which it can setup direct keys. However, this naive method

has difficulties in dealing with the sensor nodes that join the network on the fly, because

the setup server has to inform some existing nodes about the addition of new sensor nodes.

Alternatively, the setup server may map the ID of each sensor node to the IDs of polynomial

shares it has so that given the ID of a sensor node, anybody can derive the IDs of polynomial

shares it has. Thus, any sensor node can determine immediately whether it can establish a

direct key with a given sensor node by only knowing its ID. Note that this method requires

the predetermined assignment strategy in the setup phase.

The drawback of pre-distribution methods is that an attacker may also know the

distribution of the polynomial shares. As a result, the attacker may precisely target certain

sensor nodes, attempting to learn the shares of a particular bivariate polynomial. The

following alternative way may avoid this problem.

Real-time Discovery

Intuitively, real-time discovery requires two sensor nodes to discover on the fly

whether they have shares on a common bivariate polynomial. As one possible way, two

nodes may first exchange the IDs of polynomials of which they both have shares and then

try to identify the common polynomial. To protect the IDs of the polynomials, the sensor

node may challenge the other party to solve puzzles instead of disclosing the IDs of the

polynomials directly. Similar to the the method in [19], when node i needs to establish

79

a pairwise key with node j, it sends node j an encryption list, α,EKv(α), v = 1, ..., |Fi|,
where Kv is computed by evaluating the vth polynomial share in Fi on point j (a potential

pairwise key node j may have). When node j receives this encryption list, it first computes

{K ′
v}v=1,...,|Fj|, where K ′

v is computed by evaluating the vth polynomial share in Fj on point

i (a potential pairwise key node i may have). Node j then generates another encryption

list {EK ′

v
(α)}v=1,...,|Fj |. If there exists a common encryption value that is included in both

encryption lists, node i and node j can establish a common key, which is the key used to

generate this common value.

The drawback of real-time discovery is that it introduces additional communica-

tion overhead that does not appear in the pre-distribution approaches. If the polynomial

IDs are exchanged in clear text, an attacker may gradually learn the distribution of polyno-

mials among sensor nodes and selectively capture and compromise sensor nodes based on

this information. However, it is more difficult for an adversary to collect the polynomial dis-

tribution information in the real-time discovery method than in the pre-distribution method

since the adversary has to monitor the communication among sensor nodes. In addition,

when the encryption list is used to protect the IDs of polynomial shares in a sensor node,

an adversary has no way to learn the polynomial distribution among sensor nodes and thus

cannot launch selective node capture attacks.

4.1.3 Phase 3: Path Key Establishment

If direct key establishment fails, two sensor nodes need to start Phase 3 to establish

a pairwise key with the help of other sensor nodes. To establish a pairwise key with node j,

a sensor node i needs to find a sequence of nodes between itself and node j such that any

two adjacent nodes in this sequence can establish a direct key. For the sake of presentation,

we call such a sequence of nodes a key path (or simply a path) since the purpose of such a

path is to establish a pairwise key. Then either node i or j initiates a key establishment

request with the other node through the intermediate nodes along the path. A pairwise

key established in this phase is called an indirect key. A subtle issue is that two adjacent

nodes in the path may not be able to communicate with each other directly. In this work,

we assume that they can always discover a route between themselves so that the messages

from one node can reach the other.

The main issue in this phase is the path discovery problem, which specifies how to

80

find a path between two sensor nodes. Similar to Phase 2, there are two types of techniques

to address this problem.

Pre-Distribution

Similar to the pre-distribution technique in phase 2, the setup server pre-distributes

certain information to each sensor node so that given the ID of another node, each node

can determine at least one key path to the other node directly. The resulting key path

is called the predetermined key path. For convenience, we call the process to compute the

predetermined key paths key path predetermination. The drawback is that an attacker may

also take advantage of the pre-distributed information to attack the network. Moreover, it

is possible that none of the predetermined key paths is available to establish an indirect key

between two nodes due to compromised (intermediate) nodes or communication failures.

To deal with the above problem, the source node needs to dynamically find other

key paths to establish an indirect key with the destination node. For convenience, we call

such a process dynamic key path discovery. For example, the source node may contact

a number of other nodes with which it can establish direct keys using non-compromised

polynomials, attempting to find a node that has a path to the destination node to help

establish an indirect key.

Real-time discovery

Real-time discovery techniques have the sensor nodes discover key path on the

fly without any predetermined information. The sensor nodes may take advantage of the

direct keys established through direct key establishment. For example, to discover a key

path to another sensor node, a sensor node picks a set of intermediate nodes with which it

has established direct keys. The source node may send requests to all these intermediate

nodes. If one of the intermediate nodes can establish a direct key with the destination

node, a key path is discovered. Otherwise, this process may continue with the intermediate

nodes forwarding the request. Such a process is similar to a route discovery process used

to establish a route between two nodes. The drawback is that such methods may introduce

substantial communication overhead.

81

4.2 Key Pre-Distribution Using Random Subset Assignment

In this section, we present the first instantiation of the general framework by

using a random strategy for the subset assignment during the setup phase. That is, for

each sensor node, the setup server selects a random subset of polynomials in F and assigns

the corresponding polynomial shares to the node.

4.2.1 The Random Subset Assignment Scheme

The random subset assignment scheme can be considered an extension to the

basic probabilistic scheme in [19]. Instead of randomly selecting keys from a large key pool

and assigning them to sensor nodes, our method randomly chooses polynomials from a

polynomial pool and assigns their polynomial shares to sensor nodes. However, our scheme

also differs from the scheme in [19]. In [19], the same key may be shared by multiple

sensor nodes. In contrast, in our scheme, there is a unique key for each pair of sensor

nodes. If no more than t shares on the same polynomial are disclosed, none of the pairwise

keys constructed using this polynomial between two non-compromised sensor nodes will be

disclosed.

Now let us describe this scheme by instantiating the three components in the

general framework.

1. Subset assignment: The setup server randomly generates a set F of s bivariate

t-degree polynomials over the finite field Fq. For each sensor node, the setup server

randomly picks a subset of s′ polynomials from F and assigns shares as well as the

IDs of these s′ polynomials to the sensor node.

2. Polynomial share discovery: Since the setup server does not pre-distribute enough

information to the sensor nodes for polynomial share discovery, sensor nodes that need

to establish a pairwise key have to find a common polynomial with real-time discovery

techniques. To discover a common bivariate polynomial, the source node discloses a

list of polynomial IDs to the destination node. If the destination node finds that

they have shares on the same polynomial, it informs the source node the ID of this

polynomial; otherwise, it replies with a message that contains a list of its polynomial

IDs, which also indicates that the direct key establishment fails.

82

3. Path discovery: If two sensor nodes fail to establish a direct key, they need to start

the path key establishment phase. During this phase, the source node tries to find

another node that can help it setup a pairwise key with the destination node. Basically,

the source node broadcasts two list of polynomial IDs. One includes the polynomial

IDs at the source node, and the other includes the polynomial IDs at the destination

node. These two lists are available at both the source and the destination nodes after

the polynomial share discovery. If one of the nodes that receives this request is able

to establish direct keys with both the source and the destination nodes, it replies

with a message that contains two encrypted copies of a randomly generated key: one

encrypted by the direct key with the source node, and the other encrypted by the

direct key with the destination node. Both the source and the destination nodes can

then get the new pairwise key from this message. (Note that the intermediate node

acts as an ad hoc KDC in this case.) In practice, we may restrict that a sensor node

only contact its neighbors within a certain range.

4.2.2 Performance

Similar to the analysis in [19], the probability of two sensor nodes sharing the same

bivariate polynomial, which is the probability that two sensor nodes can establish a direct

key, can be estimated by

p = 1 −
s′−1
∏

i=0

s − s′ − i

s − i
. (4.1)

Figure 4.1(a) shows the relationship between p and the combinations of s and s′. It is easy

to see that the closer s and s′ are, the more likely two sensor nodes can establish a direct

key. Our later security analysis (in Section 4.2.4) shows that small s and s′ can provide

high security performance. This differs from the the basic probabilistic scheme [19] and

the q-composite scheme [11], where the key pool size has to be very large to meet certain

security requirement. The reason is that there is another parameter (i.e., the degree t of

the polynomials) that affects the security performance of the random subset assignment

scheme. In Equation 4.1, the value of s′ is affected by the storage overhead and the degree

t of the polynomials. In fact, we have t = C
s′ − 1, where C is the number keys a sensor node

can store.

Now let us consider the probability that two nodes can establish a key through

83

either the polynomial share discovery or the path discovery. Let d denote the average

number of neighbor nodes that each sensor node contacts. Consider any one of these d

nodes. The probability that it shares direct keys with both the source and the destination

nodes is p2, where p is computed by Equation 4.1. As long as one of these d nodes can act as

an intermediate node, the source and the destination nodes can establish a common key. It

follows that the probability of two nodes establishing a pairwise key (directly or indirectly)

is Ps = 1 − (1 − p)(1 − p2)d. Figure 4.1(b) shows that the probability Ps of establishing a

pairwise key between two sensor nodes increases quickly as the probability p of establishing

direct keys or the number d of neighbor nodes it contacts increases.

4.2.3 Overheads

Each node has to store s′ t-degree polynomials over Fq, which introduces s′(t +

1) log q bits storage overhead. In addition, each node needs to remember the IDs of revoked

nodes with which it can establish direct keys. Assume the IDs of sensor nodes are chosen

from a finite field Fq′ . The storage overhead introduced by the revoked IDs is at most

s′t log q′ bits since if t + 1 shares of one bivariate polynomial are revoked, this polynomial

is compromised and can be discarded. Thus, the overall storage overhead is at most s′(t +

1) log q + s′t log q′ bits.

In terms of communication overhead, during the polynomial share discovery, the

source node needs to disclose a list of s′ IDs to the destination node. The communication

overhead is mainly due to the transmission of such lists. During the path discovery, the

source node broadcasts a request message that consists of two lists of polynomial IDs.

This introduces one broadcast message at the source node and possibly several broadcast

messages at other nodes receiving this request if they further forward this request. However,

due to the small values of s and s′ in our scheme, all the broadcast messages are small and

can be replayed efficiently in resource-constrained sensor networks. If a node receiving this

message shares common polynomials with both the source and the destination nodes, it only

needs to reply with a message consisting of two encrypted copies of a randomly generated

key.

In terms of computational overhead, the polynomial share discovery requires one

polynomial evaluation at each node if two nodes share a common polynomial. During the

path discovery, if a node receiving the request shares common polynomials with both the

84

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

Size of polynomial pools (s)

P
ro

b
ab

ili
ty

 o
f

sh
ar

in
g

 a

p
o

ly
n

o
m

ia
l

s'=2 s'=3 s'=4 s'=5

(a) The probability p that two nodes share a poly-

nomial v.s. the size s of the polynomial pool

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

Probability of sharing a polynomial

P
ro

b
ab

ili
ty

 o
f

es
ta

b
lis

h
in

g

a
ke

y

d=20 d=40 d=60 d=80 d=100

(b) The probability Ps of establishing a pairwise key

v.s. the probability p that two nodes share a polyno-

mial

Figure 4.1: Probabilities about pairwise key establishment

source and the destination nodes, it only needs to perform two polynomial evaluations and

two encryptions. If there exists at least one intermediate node that can be used in the

establishment of an indirect key, both the source and the destination nodes only need one

decryption.

4.2.4 Security Analysis

According to the security analysis in [5], an attacker cannot determine keys estab-

lished with a particular polynomial if he/she has compromised no more than t sensor nodes

that have shares of this polynomial. Assume an attacker randomly compromises Nc sensor

nodes, where Nc > t. Consider any polynomial f in F . The probability of f being chosen

for a sensor node is s′

s , and the probability of this polynomial being chosen exactly i times

among Nc compromised sensor nodes is

P [i compromised shares] =
Nc!

(Nc − i)!i!
(
s′

s
)i(1 − s′

s
)Nc−i.

Thus, the probability of a particular bivariate polynomial being compromised can be esti-

mated as Pcd = 1 − ∑t
i=0 P [i compromised shares]. Since f is any polynomial in F , the

fraction of compromised links between non-compromised nodes can be estimated as Pcd.

85

Figure 4.2(a) includes the relationship between the fraction of compromised links for non-

compromised nodes and the number of compromised nodes for some combinations of s and

s′. We can see that the random subset scheme provides high security guarantee in terms

of the fraction of compromised links between non-compromised nodes when the number

of compromise nodes does not exceed certain threshold. (To save space, Figure 4.2 also

includes the performance of the basic probabilistic scheme [19] and the q-composite scheme

[11], which will be used for the comparison in Section 4.2.5.)

If an attacker knows the distribution of polynomials over sensor nodes, he/she

may target specific sensor nodes in order to compromise the keys derived from a particular

polynomial. In this case, the attacker only needs to compromise t+1 sensor nodes. However,

targeting specific nodes is generally more difficult than randomly compromising sensor nodes

since the attacker has to compromise the selected nodes.

An easy fix to remove the above threat is to restrict that each polynomial be used

for at most t + 1 times. As a result, an attacker cannot recover a polynomial unless he/she

compromises all related sensor nodes. Though effective at improving the security, this

method also puts a limit on the maximum number of sensor nodes for a given combination

of s and s′. Indeed, given the above constraint, the total number of sensor nodes cannot

exceed (t+1)·s
s′ .

To estimate the probability of any (direct or indirect) key between two non-

compromised nodes being compromised, we assume that the network is fully connected

and each pair of nodes can establish a direct or indirect key. Thus, among all pairwise keys,

there are a fraction p of direct keys and a fraction 1−p of indirect keys on average. For each

indirect key, if the intermediate node and the two polynomials used in the establishment

of this key are not compromised, the key is still secure; otherwise, it cannot be trusted.

Moreover, each direct key has the probability Pcd of being compromised. Thus, the prob-

ability of an indirect key being compromised can be estimated by 1 − (1 − pc)(1 − Pcd)
2,

where pc = Nc

N . Therefore, the probability of any (direct or indirect) key between two

non-compromised nodes being compromised can be estimated by

Pc = p × Pcd + (1 − p)[1 − (1 − pc)(1 − Pcd)
2].

Figure 4.2(b) includes the relationship between the fraction of compromised (direct

or indirect) keys for non-compromised nodes and the number of compromised nodes for some

combinations of s and s′. We can see that the random subset scheme also provides high

86

security guarantee in terms of the fraction of compromised (direct or indirect) keys between

non-compromised nodes when the number of compromise nodes does not exceed a certain

threshold.

Two non-compromised sensor nodes may need to re-establish an indirect key when

the current pairwise key is compromised. The knowledge of the identities of compromised

nodes is generally a difficult problem, which needs deep investigation. However, when such

detection mechanism is available and the node compromises are detected, it is always desir-

able to re-establish the pairwise key. Thus, we assume that the detection of compromised

nodes is done through other techniques, and is not considered in this work.

Assume the source node contacts d neighbor nodes to re-establish an indirect key

with the destination node. Among these d nodes, the average number of non-compromised

nodes can be estimated by d(N−Nc)
N for simplicity. If one of these non-compromised nodes

shares common non-compromised polynomials with both the source and the destination

nodes, a new pairwise key can be established. Thus, the probability of re-establishing an

indirect key between two non-compromised nodes can be estimated by

Pre = 1 − [1 − p2(1 − Pcd)
2]

d(N−Nc)
N .

Figure 4.3 includes the relationship between the probability of re-establishing an

indirect key for non-compromised nodes and the number of compromised nodes in the

network. It shows that there is still a high probability to re-establish a pairwise key between

two non-compromised nodes when the current key is compromised, given that the network

still provides certain security performance (e.g., less than 60% compromised links).

4.2.5 Comparison with Previous Schemes

The random subset assignment scheme has a number of advantages compared with

the basic probabilistic scheme [19], the q-composite scheme [11], and the random pairwise

keys scheme [11]. In this analysis, we first compare the communication and computational

overheads introduced by these schemes given certain storage constraint, and then compare

their security performance under attacks.

We do not compare the random subset assignment scheme with the multiple-

space key pre-distribution scheme in [17] since these two schemes are actually equivalent

to each other. In fact, in the multiple-space key pre-distribution scheme, the elements in

87

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000

Number of compromised nodes

F
ra

ct
io

n
 o

f
co

m
p

ro
m

is
ed

 li
n

ks
RS(s'=2,s=11,t=99) RS(s'=3,s=25,t=66)
RS(s'=4,s=43,t=49) q-composite(q=1)
q composite(q=2) q composite(q=3)
Basic probabilistic

(a) Fraction of compromised links between non-

compromised nodes v.s. number of compromised

nodes

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000

Number of compromised nodes

F
ra

ct
io

n
 o

f
co

m
p

ro
m

is
ed

 k
ey

s

RS(s'=2,s=11,t=99) RS(s'=3,s=25,t=66)
RS(s'=4,s=43,t=49) q-composite(q=1)
q composite(q=2) q composite(q=3)
Basic probabilistic

(b) Fraction of compromised keys (direct or indi-

rect) between non-compromised nodes v.s. number

of compromised nodes. Assume N = 20, 000

Figure 4.2: Performance of the random subset assignment scheme under attacks. RS refers
to the random subset assignment scheme. Assume each node has available storage for 200
keys and p = 0.33.

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000

Number of compromised nodes

P
ro

b
ab

ili
ty

 t
o

 r
e-

se
tu

p
 a

ke

y

RS(s'=2,s=11,t=99) RS(s'=3,s=25,t=66)
RS(s'=4,s=43,t=49)

Figure 4.3: The probability of re-establishing a pairwise key using path discovery. Assume
each node has available storage equivalent to 200 keys, and contacts 30 neighbor nodes
d = 30. Assume N = 20, 000

the second row of matrix G can be considered as the IDs of sensor nodes in the random

subset assignment scheme; each matrix Di can be considered as the coefficients of a bivariate

polynomial; each row in a matrix Ai can be considered as a polynomial share; computing a

key through Ac(i) × G(j) can be considered as evaluating a polynomial share.

After the direct key establishment, the basic idea of the path key establishment is

to find an intermediate node that shares direct keys with both the source and the destination

88

nodes. This is similar in all the previous schemes and the random subset assignment scheme.

For simplicity, we focus on the overheads in direct key establishment. Note that each

coefficient in our scheme takes about the same amount of space as a cryptographic key

since Fq is a finite field that can just accommodate the keys. We assume that each sensor

node can store up to C keys or polynomial coefficients.

The communication and computational overheads for different schemes are sum-

marized in Table 4.1. The communication overhead is calculated using the size of the list

of key or polynomial IDs; the computational overhead is calculated using the number of

comparisons in identifying the common key or polynomial and the number of polynomial

evaluations, assuming that the IDs of keys or polynomials are stored in ascend order in each

node and binary search is used to locate the ID of the common key or polynomial.

Comparison with the Basic Probabilistic and the q-Composite Scheme

According to Table 4.1, we can see that the random subset assignment is usually

much more efficient than the basic probabilistic scheme [19] and the q-composite scheme

[11] in terms of communication overhead due to small s and s′. Indeed, this overhead is

reduced by a factor of at least t + 1. However, the computation overhead is more expensive

in the random subset assignment scheme since it has to evaluate a t-degree polynomial.

Figures 4.2(a) and 4.2(b) compare the security performance of the random subset

assignment scheme with the basic probabilistic scheme [19] and the q-composite scheme [11].

These figures clearly show that before the number of compromised sensor nodes reaches a

certain point, the random subset assignment scheme performs much better than both of

the other schemes. When the number of compromised nodes exceeds a certain point, the

other schemes have fewer compromised links or keys than the random subset assignment

scheme. Nevertheless, under such circumstances, none of these schemes provide sufficient

security, due to the large fraction of compromised links (over 60%) or the large fraction

of compromised (direct or indirect) keys (over 80%). Thus, the random subset assignment

scheme clearly has advantages over the basic probabilistic scheme [19] and the q-composite

scheme [11].

89

Table 4.1: Communication and computational overheads for direct key establishment in
different schemes. sk is the key pool size in the basic probabilistic scheme and the q-
composite scheme. s′ = C

t+1 . The last row will be discussed in Section 4.3.

Communi-
cation

Computation

Basic probabilistic
scheme [19]

C log sk
2C+p−pC

2 log C com-
parisons

q-composite scheme
[11]

C log sk C log C comparisons

Random pairwise keys
scheme [11]

0 0

Random subset assign-
ment scheme

s′ log s 2s′+p−ps′

2 log s′ com-
parisons + 1 polyno-
mial evaluation

Grid-based scheme 0 1 polynomial evalua-
tion

Comparison with the Random Pairwise Keys Scheme

As shown in Table 4.1, the random pairwise keys scheme [11] does not have any

communication and computational overheads in direct key establishment since it stores the

IDs of all other nodes with which it can establish direct keys.

In terms of security performance, the random pairwise keys scheme does not allow

reuse of the same key by multiple pairs of sensor nodes [11]. Thus, the compromise of

some sensor nodes does not lead to the compromise of direct keys shared between non-

compromised nodes. As we discussed earlier, with a restriction that no polynomial be used

more than t + 1 times, our scheme can ensure the same property.

Now we compare the performance between the random subset assignment scheme

under the above restriction and the random pairwise keys scheme. The maximum number of

nodes that the random subset assignment scheme supports can be estimated as N = s×(t+1)
s′ .

Assuming the storage overhead in each sensor node is C = s′ · (t + 1), we have s = N×s′2

C .

Together with Equation 4.1, we can derive the probability of establishing a direct key

between two nodes with a given storage constraint. Figure 4.4 plots the probability of two

sensor nodes sharing a direct key in terms of the maximum network size for the random

pairwise keys scheme [11] and the random subset assignment scheme under restriction. We

can easily see that the random subset assignment scheme under restriction has lower but

90

0

0.2

0.4

0.6

0.8

1

1.2

0 1000 2000 3000 4000

Maximum supported network size
P

ro
b

ab
ili

ty
 o

f
sh

ar
in

g
 a

co

m
m

o
n

 k
ey

RS(s'=2,t=99) RS(s'=6,t=32)
RS(s'=10,t=19) Random pairwise keys

Figure 4.4: The relationship between the probability of establishing a common key and the
maximum supported network size in order to be resilient against node compromise.

almost the same performance as the random pairwise keys scheme.

The random subset assignment scheme has several advantages over the random

pairwise keys scheme [11]. In particular, in the random subset assignment scheme, sensor

nodes can be added dynamically without having to contact the previously deployed sensor

nodes. In contrast, in the random pairwise keys scheme, if it is necessary to dynamically

deploy sensor nodes, the setup server has to either reserve space for sensor nodes that

may never be deployed, which reduces the probability that two deployed nodes share a

common key, or inform some previously deployed nodes of additional pairwise keys, which

introduces additional communication overhead. Moreover, given certain storage constraint,

the random subset assignment scheme (without the restriction on the reuse of polynomials)

allows the network to grow, while the random pairwise keys scheme has an upper limit on

the network size. Thus, the random subset assignment scheme would be a more attractive

choice than the random pairwise keys scheme in certain applications.

4.3 Hypercube-based Key Pre-Distribution

In this section, we give another instantiation of the general framework, which

we call the hypercube-based key pre-distribution. This scheme has a number of attractive

properties. First, it guarantees that any two sensor nodes can establish a pairwise key

when there are no compromised sensor nodes, assuming that the nodes can communicate

with each other. Second, this scheme is resilient to node compromises. Even if some nodes

91

are compromised, there is still a high probability of re-establishing a pairwise key between

two non-compromised nodes. Third, a sensor node can directly determine whether it can

establish a direct key with another node, and if it can, which polynomial should be used.

As a result, there is no communication overhead during polynomial share discovery.

Note that in the preliminary version of this work [41], we studied a key pre-

distribution technique named grid-based key pre-distribution. Hypercube-based key pre-

distribution is a generalization of grid-based key pre-distribution. The grid-based key pre-

distribution scheme is interesting due to its simplicity. However, we do not explicitly discuss

it here because of space reasons. Please refer to [41] for details.

4.3.1 The Hypercube-Based Scheme

Given a total of N sensor nodes in the network, the hypercube-based scheme con-

structs an n-dimensional hypercube with mn−1 bivariate polynomials arranged for each di-

mension j, {f j
〈i1,...,in−1〉(x, y)}0≤i1,...,in−1<m, where m = ⌈ n

√
N⌉. Figure 4.5(a) shows a special

case of the hypercube-based scheme when n = 2 (i.e., the grid-based scheme). In this figure,

each column i is associated with a polynomial f1
i (x, y), and each row i is associated with a

polynomial f2
i (x, y). The setup server then assigns each node in the network to a unique

coordinate in this n-dimensional space. For the sensor node at coordinate (j1, ..., jn), the

setup server pre-distributes the polynomial shares of {f1
〈j2,...,jn〉(x, y) ,..., fn

〈j1,...,jn−1〉(x, y)}
to this node. As a result, sensor nodes can perform share discovery and path discovery

using this pre-distributed information.

For convenience, we encode a node’s coordinate in the hypercube into a single-

valued node ID. Every valid coordinate in the hypercube is first converted into n l-bit

binary strings (one from each dimension), where l = ⌈log2 m⌉. These n binary strings are

then concatenated to generate an integer value which is used as the ID of the node. In

our discussion, we conceptually represent each ID j as 〈j1, ..., jn〉, where ji is called the

sub-index of ID j in dimension i, which also represents the ith l bits of j.

1. Subset assignment: The setup server randomly generates n×mn−1 t-degree bivari-

ate polynomials F = {f j
〈i1,...,in−1〉(x, y) | 1 ≤ j ≤ n, 0 ≤ i1, ..., in−1 < m} over a finite

field Fq. For each sensor node, the setup server selects an unoccupied coordinate

(j1, ..., jn) in the n-dimensional space and assigns it to this node. This coordinate

〈j1, ..., jn〉 is then used as the ID of this node. The setup server then distributes

92

� � �
),(2

0 yxf

),(2
1 yxf

),(2

2
yxf i

),(2
2 yxfm−

),(2
1 yxfm−

� � �)
,

(
1 0

y
x

f

)
,

(
1 1

y
x

f

)
,

(
1 1

y
x

f i

)
,

(
1

2
y

x
f m

−

)
,

(
1

1
y

x
f m

−

� � � � � � >< 21, jj>< 21, ji

>< 21,ii >< 21,ij

>−< 2,1 mi >−< 2,1 mj

(a) An example of hypercube when n = 2

� � �
),(2

0 yxf

),(2
1 yxf

),(2

2
yxfi

),(2
2 yxfm−

),(2
1 yxfm−

� � �)
,

(
1 0

y
x

f

)
,

(
1 1

y
x

f

)
,

(
1 1

y
x

f i

)
,

(
1

2
y

x
f m

−

)
,

(
1

1
y

x
f m

−

� � � � � ���	

� �
� � �

�� � �
(b) An example order of node assignment

Figure 4.5: Hypercube-based key pre-distribution when n = 2

{ID, f1
〈j2,...,jn〉(j1, y), ..., fn

〈j1,...,jn−1〉(jn, y)} to this sensor node. To facilitate path dis-

covery and guarantee that at least one key path exists when there are no compro-

mised nodes and any two nodes can communicate with each other, we always select

the coordinate corresponding to the smallest unassigned ID. Specifically, the setup

server assigns the ith sensor node that requests for polynomial shares the coordinate

(a1, a2, · · · , an), where aj = ⌊ i
mn−j ⌋ mod mn−j+1 for 1 ≤ j ≤ n. Figure 4.5(b) shows

a possible order to assign coordinates to sensor nodes when n = 2. It is easy to see

that if there exist nodes at 〈i, j〉 and 〈i′, j′〉, then there must be a node at either 〈i, j′〉
or 〈i′, j〉, or both.

2. Polynomial share discovery: To establish a pairwise key with node j, node i checks

whether they have the same sub-indexes in n−1 dimensions. In other words, it checks

the Hamming distance dh between their IDs i and j. If dh = 1, nodes i and j share a

common polynomial, and they can establish a direct key using the polynomial-based

key pre-distribution scheme; otherwise, they need to go through path discovery to

establish an indirect key. For example, if jk = ik for all 1 ≤ k ≤ n − 1 (dh = 1),

both nodes i and j have polynomial shares of fn
〈j1,...,jn−1〉(x, y) and thus can use this

polynomial to establish a direct key.

93

3. Path discovery: If nodes i and j cannot establish a direct key, they need to find a

key path between each other in the hypercube. Indeed, if there are no compromised

nodes and any two nodes can communicate with each other, it is guaranteed that there

is at least one key path which can be used to establish a session key between any two

nodes, due to the node assignment algorithm. In fact, nodes i and j can predetermine

such a key path using the following key path predetermination algorithm without

communicating with others. For example, in Figure 4.5(a), both of node 〈i1, j2〉 and

〈j1, i2〉 can help node 〈i1, i2〉 establish a pairwise key with node 〈j1, j2〉. Assume i > j

if we consider node IDs i and j as integer values. The following algorithm can be

performed on either of them.

(a) The source node maintains a set L = {d1, ..., dw}d1<d2···<dw
that records the

dimensions that nodes i and j have different sub-indexes, a list P that records

the key path computed by this algorithm, a most recently computed intermediate

node u and the largest ID having been assigned. Initially, P is a list with a single

node i and u = i.

(b) Given u and L, the next intermediate node v is computed by randomly selecting

an element d′ in L so that v = 〈u1, · · · , ud′−1, jd′ , ud′+1, · · · , un〉 is not larger than

the largest ID having been assigned (or i if this is not available). The algorithm

then removes d′ from L, appends v to P, and lets u = v. If L is empty, it appends

j to P and returns P as the discovered key path; otherwise it repeats this step.

The correctness of the above key path predetermination algorithm is guaranteed

by Lemma 4.3.1. Once such a key path is computed, the source node i can send a request

to the destination node j along the key path to establish an indirect key. For example, if

i = 〈1, 3, 5〉 and j = 〈0, 2, 4〉, the key path “〈1, 3, 5〉, 〈0, 3, 5〉, 〈0, 2, 5〉, 〈0, 2, 4〉” is one of

those paths. To establish an indirect key with j, the source node i sends a key establishment

request to node 〈0, 3, 5〉 and node 〈0, 3, 5〉 forwards the request to node 〈0, 2, 5〉, which further

forwards the request to the destination node j. Every message transmitted between two

adjacent nodes in the key path is encrypted and authenticated with the direct key shared

between them.

Lemma 4.3.1 The above key path predetermination algorithm guarantees to compute a key

path between any two sensor nodes.

94

Proof: We first show the size of L is reduced by 1 each time Step (b) is executed. To prove

this, we need to prove that given u and L, there exists at least one element d′ in L so that

v = 〈u1, · · · , ud′−1, jd′ , ud′+1, · · · , un〉 is not larger than the largest ID having been assigned.

Note that every ud′ is either id′ or jd′ . Consider d1. Since i > j, we have id1 > jd1 . Thus, if

ud1 = id1 , we choose d′ = d1 and compute the next node v. It is easy to verify that v < i.

If ud1 = jd1 (d1 has been chosen before), we have ud1 < id1 . This implies that v < i for any

d′ in L. Thus, we can choose any value in L. As a result, u can always find the next node

v, and the size of the set L is reduced by 1 each time Step (b) is executed. Eventually, the

above key predetermination algorithm will output a sequence of nodes with node j as the

last node. Moreover, the Hamming distance between u and v in the second step is exactly

1. This implies that every two adjacent nodes in P can establish a direct key. Thus, we can

conclude that the above key path predetermination algorithm guarantees to compute a key

path between any two sensor nodes.

4.3.2 Dynamic Key Path Discovery

Though the path discovery algorithm described above can predetermine a key path

with a number of intermediate nodes, the intermediate nodes may have been compromised,

or are out of communication range in some situations. However, there are alternative key

paths. In particular, we may reuse the predetermined paths at other nodes to find a secure

key path. For example, in Figure 4.5(a), besides node 〈i1, j2〉 and 〈j1, i2〉, node 〈i1,m − 2〉
has a predetermined path to node 〈j1, j2〉 through node 〈j1,m− 2〉. Thus, it can help node

i setup a common key with node j.

Though it is possible to flood the network to find a key path, the resource con-

straints on sensor nodes make this method impractical. Instead, we propose the following

algorithm to find a key path between nodes S and D dynamically. The basic idea is to

have the source node and each intermediate node contact a non-compromised node that

is “closer” to the destination node in terms of the Hamming distance between their IDs.

Indeed, if there are no compromised nodes in the network, the above key path predeter-

mination algorithm can always find a key path if any two nodes can communicate with

each other. In practice, we may use the dynamic path discovery instead to achieve better

performance when there are attacks or communication failures. To increase the chance of

success, the following algorithm may be performed multiple rounds. It is assumed that

95

every message between two nodes in the algorithm is encrypted and authenticated with the

direct key between them.

1. In order to establish an indirect key with node D, node S generates a random number

r and maintains a counter c with initial value 0. In each round, it increments c and

computes Kc = F (r, c), where F is a pseudo random function [22]. Then, it constructs

a message M = {S,D,Kc, c, f lag} with flag = 1 and goes to the next step.

(The flag in message M indicates whether the Hamming distance is reduced by

forwarding M to the next intermediate node. The purpose is to control the length of

the path discovered by this algorithm and the number of messages.)

2. Consider a sensor node u having the message M = {S,D,Kc, c, f lag}. Node u first

tries to find a non-compromised node v that can establish a direct key with u using

a non-compromised polynomial and has a smaller Hamming distance to D than u. If

this succeeds, u sets flag in M to 1 and sends the modified message M to v. We can

see that the Hamming distance between v and D is one smaller than that between u

and D.

If u cannot find such a node and flag in M is 0, the path discovery stops. Otherwise,

it selects a non-compromised node v that can establish a direct key with u using a

non-compromised polynomial and has the same Hamming distance to D as u. If u

finds such a node v, it sets flag in message M to 0 and sends to v the modified

message M . If it cannot find such a node, the path discovery protocol at this node

stops.

3. When the destination node D receives the key establishment request, it knows that

node S wants to setup a pairwise key with it. Node D then sets the pairwise key as

KS,D = Kc and informs node S the counter value c. As a result, these sensor nodes

share the same pairwise key.

Lemma 4.3.2 For any two nodes S and D, the above dynamic key path discovery algorithm

guarantees to find a key path with dh − 1 intermediate nodes if there are no compromised

nodes and any two nodes can communicate with each other, where dh is the Hamming

distance between S and D.

96

Proof: Let L = {d1, ..., dw}d1<d2···<dw
records the dimensions in which nodes u and D have

different sub-indexes. If L only has one element, S and D can establish a direct key and

the path discovery succeeds.

Now assume L contains more than one element. We show that any intermediate

node u can find a dimension e so that u and D have different sub-indexes in this dimension

and the node 〈u1, ..., ue−1,De, ue+1, ..., un〉 exists. Consider dimension d1. If u > D, we have

ud1 > Dd1 . Thus, u can choose node v = 〈u1, ..., ud1−1,Dd1 , ud1+1, ..., un〉. Since v < u, v

must be the ID of an existing node. If u < D, we can choose any value in L other than d1

since we always have v < D and v must be the ID of an existing node. Thus, if there are no

compromised nodes and any two nodes can communicate with each other, any intermediate

node will succeed in finding the next closer node v. Since each v has one more common

sub-index than the corresponding u, the Hamming distance between each v and D will be

smaller than that between u and D by 1. Therefore, there will be dh−1 intermediate nodes

between S and D.

Lemma 4.3.3 The number of intermediate nodes in the key path discovered in the above

dynamic key path discovery algorithm never exceeds 2(dh − 1).

Proof: Consider the flag values in the sequence of unicast messages in the path discovery

{flag1, ..., flagi}. First, it contains at most dh ones since otherwise the request message

should have already reached the destination node before the last message containing flag =

1. Second, there are no two consecutive zeros in this sequence since the second step will

stop if it cannot find the next closer node and the flag in the current message is zero. Third,

the last two values (flagi−1 and flagi) in this sequence are always 1 for a successful path

discovery. Consider the last three nodes in the key path u, v,D, where D is the destination

node. It is obvious that flagi is always 1 for a successful discovery. If flagi−1 = 0, the

Hamming distance between u and D is 1, and there is no intermediate node between u and

D. Thus, we know that both flag values are 1. Hence, we can conclude that the maximum

length of this sequence is dh − 2 + dh − 1 + 2 = 2dh − 1. This indicates that the maximum

number of intermediate nodes in the key path is 2(dh − 1).

97

4.3.3 Performance

Each sensor node stores n polynomial shares and each polynomial is shared by

about m different nodes, where m = ⌈ n
√

N⌉. Thus, each node can establish direct keys

with n(m − 1) other nodes. This indicates that the probability to establish direct keys

between sensor nodes can be estimated by n(m−1)
mn−1 = n(⌈ n

√
N⌉−1)

N−1 . Figure 4.6(a) shows that

the probability of establishing a direct key between two nodes decreases as the number

of dimensions n or the network size N grows. However, according to the path discovery

algorithm, if there are no compromised nodes and any two nodes can communicate with

each other, it is guaranteed that any two nodes can establish a pairwise key (directly or

indirectly).

4.3.4 Overhead

Each node has to store n polynomial shares and the IDs of revoked nodes with

which it can establish direct keys. The former introduces n(t+1) log q bits storage overhead.

For the latter part, a node only needs to remember up to t compromised node IDs for each

polynomial since if t+1 shares of one bivariate polynomial are compromised, this polynomial

is already compromised and can be discarded. In addition, a sensor node i only needs to

remember one sub-index of each revoked ID because the IDs of node i and the revoked

node only differ on one sub-index. Thus, at most ntl bits storage overhead is required to

keep track of revoked node IDs. Totally, the storage overhead at senor nodes is at most

n(t + 1) log q + ntl bits, where l = ⌈log2 m⌉. To establish a direct key, a sensor node only

needs the ID of the other node, and there is no communication overhead. However, if two

nodes cannot establish a direct key, they need to find a number of intermediate nodes to

help them establish a temporary session key. When key path predetermination is used,

discovering a key path does not introduce any communication overhead. However, when

dynamic key path discovery is used, this process involves a number of unicast messages.

From Lemma 4.3.3, we know that the dynamic path discovery introduces at most 2dh − 1

unicast messages if every unicast message is successfully delivered.

Now let us estimate the communication overhead during the path key establish-

ment, assuming the key path is already discovered. In sensor networks, sending a unicast

message between two arbitrary nodes may involve the overhead of establishing a route.

98

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

2 4 6 8 10

Number of dimensions

P
ro

b
ab

ili
ty

 t
o

 e
st

ab
lis

h
 d

ir
ec

t
ke

ys

N=1000 N=10000 N=100000

(a) Probability of establishing direct keys.

0

1

2

3

4

5

6

7

2 4 6 8 10

Number of dimensions

A
ve

ra
g

e
ke

y
p

at
h

 le
n

g
th

 (
L

)

N=1000 N=10000 N=100000

(b) Average key path length

Figure 4.6: Performance of the hypercube-based scheme

However, finding a route in a sensor network depends on routing protocol, which is also

required by other schemes to do path discovery. In fact, we are unable to give a precise

analysis on this overhead because of the undecided routing protocol. Thus, for simplicity,

we use the number of unicast messages to estimate the communication overhead involved in

the path key establishment. In fact, there are L+1 unicast messages for the path key estab-

lishment using a key path with length L if every unicast message is successfully delivered.

If there are no compromise sensor nodes and any two nodes can communicate with each

other, there exists at least one key path with dh − 1 intermediate nodes, which is indeed

one of the the shortest key paths.

Consider two nodes u (〈u1, ..., un〉) and v (〈v1, ..., vn〉). The probability of having

ue = ve for any e ∈ {1, · · · , n} is 1
m , and the probability of having exactly i different

sub-indexes is

P [i different sub-indexes] =
n!

i!(n − i)!

1

mn−i
(1 − 1

m
)i.

Thus, the average key path length can be estimated by

L =

n
∑

i=1

(i − 1) × P [i different sub-indexes].

Figure 4.6(b) shows the relationship between the the average key path length and

the number of dimensions given different network sizes. We can see that the average key

path length (and thus the communication overhead) increases as the number of dimensions

or the network size grows.

99

In terms of computational overhead, each unicast message requires one polynomial

evaluation, one authentication and one encryption at the source node; and one polynomial

evaluation, one authentication and one decryption at the destination node. Since L +

1 unicast messages are needed for a key path with length L, there are totally 2(L + 1)

polynomial evaluations, 2(L + 1) authentications, L+ 1 encryptions, and L + 1 decryptions

involved in the path key establishment if every message is successfully delivered.

4.3.5 Security Analysis

An adversary may launch two types of attacks against the hypercube-based scheme.

First, the attacker may target the pairwise key between two particular sensor nodes. The

attacker may either try to compromise the pairwise key or prevent the two sensor nodes

from establishing a pairwise key. Second, the attacker may target the entire network to

lower the probability or to increase the cost to establish pairwise keys.

Attacks Against a Pair of Nodes

We focus on the attacks on the communication between the two particular sensor

nodes u and v. Assume neither of them is compromised by the attacker. If these two nodes

can establish a direct key, the only way to compromise the key without compromising the

related nodes is to compromise the shared polynomial between them, which requires the

attacker to compromise at least t + 1 sensor nodes. If these two nodes have established

an indirect key through path key establishment, the attacker may compromise one of the

polynomials or the nodes involved in this establishment so that the attacker can recover the

key if he has the message used to deliver this key. However, even if the attacker compromises

the current pairwise key, the related sensor nodes may still re-establish another pairwise

key with a different key path. To prevent u from establishing a pairwise key with v, the

attacker has to compromise all those n polynomial shares on u (or v) so that node u (or

v) is unable to use any polynomial to setup a pairwise key; otherwise, there may still exist

non-compromised sensor nodes that can help establish a new pairwise key. For each of

these polynomial shares, the attacker has to compromise at least t + 1 nodes. This means

that the attacker has to compromise at least n(t + 1) sensor nodes to prevent u and v from

establishing another pairwise key.

100

Attacks Against the Network

Since the adversary also knows the distribution of polynomials over sensor nodes,

it may systematically attack the network by compromising the polynomials in F one by

one in order to compromise the entire network. Assume the attack compromises b bivariate

polynomials. There are up to bm sensor nodes with at least one compromised polynomial

share. Among all the remaining N − bm sensor nodes, none of the secure links between

them is compromised since the polynomials used to establish direct keys between them are

not compromised. However, the indirect keys in the remaining part of the network could

be affected since the common polynomial between two intermediate nodes in the key path

might be compromised. Nevertheless, there is still a high probability of re-establishing a new

indirect key between the two nodes even if an indirect key between two non-compromised

nodes is compromised.

Alternatively, the adversary may randomly compromise sensor nodes to attack

the path discovery process in order to make it more expensive to establish pairwise keys.

In the following, we first investigate the probability of a direct key (secure link) being

compromised, and then investigate the probability of any (direct or indirect) key being

compromised under node compromises.

Assume a fraction pc of sensor nodes in the network are compromised. Then, the

probability that exactly i shares on a particular bivariate polynomial have been disclosed is

P [i compromised shares] =
m!

i!(m − i)!
pi

c(1 − pc)
m−i,

where m = ⌈ n
√

N⌉. Thus, the probability of a particular bivariate polynomial being com-

promised is Pcd = 1−∑t
i=0 P [i compromised shares]. If m ≫ t+1, this is equivalent to the

probability of any link (direct key) between non-compromised nodes being compromised.

For a small m, Pcd only represents the fraction of compromised bivariate polynomials. For

example, when n = 4 and N = 20, 000, we have m = 12 and t = 11. In this case, we

do not use the fraction of compromised bivariate polynomial to estimate the fraction of

compromised links between non-compromised nodes. Instead, we note that the fraction of

compromised links between non-compromised nodes in this situation is zero, which implies

perfect security against node compromises.

Figure 4.7(a) shows the relationship between the fraction of compromised links

for non-compromised nodes and the fraction of compromised sensor nodes with a different

101

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

Fraction of compromised nodes

F
ra

ct
io

n
 o

f
co

m
p

ro
m

is
ed

lin

ks
 b

et
w

ee
n

 n
o

n
-

co
m

p
ro

m
is

ed
 n

o
d

es

n=2 n=3 n=4

(a) Fraction of compromised links v.s. fraction of

compromised nodes.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

Fraction of compromised nodes

F
ra

ct
io

n
 o

f
co

m
p

ro
m

is
ed

ke

ys
 b

et
w

ee
n

 n
o

n
-

co
m

p
ro

m
is

ed
 n

o
d

es

n=2 n=3 n=4

(b) Fraction of compromised direct and indirect keys

v.s. fraction of compromised nodes.

Figure 4.7: Security performance of the hypercube-based scheme. Assume each sensor has
available storage equivalent to 50 keys, N = 20, 000, m = n

√
N , and t = ⌊50

n − 1⌋.

number of dimensions.1 We can see that given the fixed network size and storage overhead,

the hypercube-based scheme with more dimensions has higher security performance.

Now let us compute the probability of any (direct or indirect) key between two non-

compromised nodes being compromised. Suppose sensor nodes u and v have different sub-

indexes in i dimensions. The key path discovered between them involves i− 1 intermediate

nodes and i bivariate polynomials. If none of these i− 1 intermediate nodes and i bivariate

polynomials is compromised, the pairwise key is still secure; otherwise, this key cannot be

trusted. This means that the probability of this pairwise key being compromised can be

estimated by

P [compromised | i different sub-indexes] = 1 − (1 − pc)
i−1 × (1 − Pcd)

i.

Thus, the probability of any (direct or indirect) key between two non-compromised

nodes being compromised can be estimated by

Pc =

n
∑

i=1

P [compromised | i different sub-indexes] × P [i different sub-indexes].

1We assume there are totally 20, 000 sensor nodes in the following simulations. Thus, for a 4-dimensional
hypercube, we have m = ⌈ 4

√
20, 000⌉ = 12. This means that the degree of bivariate polynomial t is not

necessarily larger than 11, and the sensor node needs to store at most 4 × (11 + 1) = 48 coefficients.
Therefore, we assume that the storage constraint at sensor nodes is equivalent to storing 50 keys instead of
200 keys in the analysis of the earlier schemes.

102

100

1000

10000

100000

1000000

10000000

100000000

2 4 6 8 10 12 14 16 18 20 22

Number of dimensions (n)
M

ax
im

u
 s

u
p

p
o

rt
ed

 n
et

w
o

rk

si
ze

 (
N

)

Figure 4.8: Maximum supported network size for different number of dimensions. Assume
each sensor has available storage equivalent to 50 keys.

Figure 4.7(b) shows the relationship between the probability Pc and the fraction of

compromised nodes for a different number of dimensions. We can still see the improvements

of the security when we have more dimensions. This is because the probability of a poly-

nomial being compromised decreases quickly when we have more dimensions. We also note

that when the fraction of compromised sensor nodes is less than a certain threshold, having

more dimensions decreases the security of the scheme. The reason is that having more

dimensions increases the average key path length, which in turn increases the probability

of at least one intermediate node in the key path being compromised.

Maximum Supported Network Size

Let us consider the maximum supported network size when perfect security against

node compromises is required. Figure 4.8 shows the maximum supported network size as a

function of the number of dimensions given a fixed memory constraint and the guarantee

of perfect security against node compromises. We can see that the maximum supported

network size increases dramatically when we have more dimensions within the range shown

in the figure. (Note that once the number of dimensions passes a certain threshold, this

maximum supported network size will start to drop.) Indeed, when the number of dimen-

sions is smaller, the hypercube-based scheme can support a larger network by adding more

dimensions without increasing the storage overhead or sacrificing the security performance.

103

Probability of Re-Establishing a Pairwise Key

The following analysis estimates the probability of re-establishing an indirect key

between two non-compromised nodes with the dynamic path discovery algorithm when

all predetermined key paths cannot be used due to compromised intermediate nodes or

communication failures.

Let Ii denote the probability of establishing a pairwise key between two non-

compromised nodes having different sub-indexes in i different dimensions (i.e., the Hamming

distance between the two node IDs is dh = i). For a particular node u, we refer to a non-

compromised intermediate node as its closer node to the destination node if this node can

establish a direct key with node u using a non-compromised polynomial and is closer to

the destination node in terms of the Hamming distance between their IDs. According to

the dynamic key path discovery algorithm, the pairwise key can be established if either of

the following two cases is true. In the first case, the source node finds a closer node and

the selected closer node finds a key path to the destination node. This probability can be

estimated by

P1 = [1 − [1 − (1 − Pcd)(1 − pc)]
i]Ii−1.

In the second case, the source node cannot find any closer node but can establish a

direct key using a non-compromised polynomial with a non-compromised node that is able

to find a closer node that can find a key path to the destination node. This probability can

be estimated by

P2 = (1 − P1)(1 − P i
cd)[1 − [1 − (1 − Pcd)(1 − pc)]

i−1]Ii−1.

Overall, we have Ii = P1+P2 for i > 1 and I1 = 1−Pcd. Therefore, the probability

of re-establishing an indirect key between two non-compromised nodes can be estimated by

Pre =

n
∑

i=1

Ii × P [i different sub-indexes].

Figure 4.9 shows this probability for different fractions of compromised sensor nodes. It

shows that even if a pairwise key is compromised, there is still a high probability of re-

establishing a new key if the compromised nodes are detected. In addition, we note that

the probability of re-establishing a key increases when there are more dimensions. This is

because the probability of a polynomial being compromised decreases quickly as the number

of dimensions grows.

104

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

Fraction of compromised nodes
P

ro
b

ab
ili

ty
 t

o
 r

e-
es

ta
b

lis
h

 a

ke
y

n=2 n=3 n=4

Figure 4.9: Probability of re-establishing a pairwise key between non-compromised nodes
v.s. the fraction of compromised nodes. Assume that each sensor node has available storage
equivalent to 50 keys and N = 20, 000.

4.3.6 Comparison with Previous Schemes

This subsection compares the hypercube-based key pre-distribution scheme with

the basic probabilistic scheme [19], the q-composite scheme [11], the random pairwise keys

scheme [11], and the random subset assignment scheme presented in Section 4.2. In the

comparison, we use the hypercube-based scheme with n = 2 (i.e., the grid-based scheme)

for simplicity.

The communication and computational overheads for direct key establishment in

the grid-based scheme and the other schemes are summarized in Table 4.1. We can see that

the grid-based scheme is generally much more efficient than the basic probabilistic scheme

[19], the q-composite scheme [11], and the random subset assignment scheme in terms of

the communication and computational overhead. Compared with the random pairwise keys

scheme [11], the grid-based scheme involves only one more polynomial evaluation, which

can be done very efficiently by using the optimization technique in Section 4.4.

To compare the security between different schemes, we assume that the network

size is N = 20, 000 and each node can store up to 200 keys or polynomial coefficients. In

the grid-based scheme, we have m = 142 and p = 0.014. The four curves in the right part

of figures 4.10(a) and 4.10(b) show the fraction of compromised links and the fraction of

compromised (direct or indirect) keys between non-compromised nodes as a function of the

number of compromised sensor nodes given p = 0.014. Similar to the comparison in Section

4.2, the random subset assignment scheme and the grid-based scheme perform much better

105

0

0.2

0.4

0.6

0.8

1

1.2

0 4000 8000 12000 16000 20000
Number of compromised nodes

F
ra

ct
io

n
 o

f
co

m
p

ro
m

is
ed

lin

ks

Basic probabilistic(p=0.014) Basic probabilistic(p=0.33)
q-composite(q=1,p=0.014) q-composite(q=1,p=0.33)
RS(s'=2,s=287,t=99,p=0.014) RS(s'=2,s=11,t=99,p=0.33)
Grid-based(N=20000,p=0.014)

(a) Fraction of compromised links between non-

compromised nodes v.s. number of compromised

nodes.

0

0.2

0.4

0.6

0.8

1

1.2

0 4000 8000 12000 16000 20000
Number of compromised nodes

F
ra

ct
io

n
 o

f
co

m
p

ro
m

is
ed

ke

ys

Basic probabilistic(p=0.014) Basic probabilistic(p=0.33)
q-composite(q=1,p=0.014) q-composite(q=1,p=0.33)
RS(s'=2,s=287,t=99,p=0.014) RS(s'=2,s=11,t=99,p=0.33)
Grid-based(N=20000,p=0.014)

(b) Fraction of compromised (direct or indirect)

keys between non-compromised nodes v.s. number

of compromised nodes.

Figure 4.10: Performance of the grid-based key pre-distribution scheme under attacks.
Assume each sensor node has available storage equivalent to 200 keys.

when there are a small number of compromise nodes. In fact, these two scheme always

have better performance when the number of compromised nodes is less than 14,000. When

there are more than 14,000 compromised nodes, none of the schemes can provide sufficient

security because of the large fraction of compromised links (over 60% compromised links)

or the large fraction of compromised (direct or indirect) keys (over 90% compromised keys).

Though p = 0.014 is acceptable for the grid-based scheme, for the basic prob-

abilistic, the q-composite, and the random subset assignment schemes, p should be large

enough to make sure the whole network is fully connected. Assume that p = 0.33. This

requires about 42 neighbor nodes for each sensor node to make sure the whole network

with 20,000 nodes is connected with a high probability. The three curves in the left part

of figures 4.10(a) and 4.10(b) show the fraction of compromised links and the fraction of

compromised (direct or indirect) keys between non-compromised nodes as a function of the

number of compromised sensors for the above three schemes when p = 0.33. We can see that

a small number of compromised nodes reveal a large fraction of secrets in the network in

these schemes; however, the fraction of compromised links and the fraction of compromised

(direct or indirect) keys are much lower in the grid-based scheme for the same number of

compromised nodes.

To compare with the random pairwise keys scheme [11], we set m = t + 1, so

106

that the grid-based scheme can provide the same degree of perfect security guarantee as

the random pairwise keys scheme. Assume that the storage overhead on sensor nodes is

2(t + 1) = 2m. The grid-based scheme can support a network with m2 nodes, and the

probability that two sensor nodes share a direct key is p = 2
m+1 . With the same number

sensor nodes and storage overhead, the random pairwise keys scheme [11] has p = 2m
m2 = 2

m ,

which is approximately the same as our scheme.

In addition to the above comparisons, the grid-based scheme has some unique

properties that the other schemes do not provide. First, when there are no compromised

sensor nodes in the network, it is guaranteed that any pair of sensor nodes can establish a

pairwise key either directly without communication or through the help of an intermediate

node when the sensor nodes can communicate with each other. Besides the efficiency in

determining the key path, the communication overhead is substantially lower than the

previous schemes which require real-time path discovery even in normal situations. Second,

even if there are compromised sensor nodes in the network, there is still a high probability

that two non-compromised sensor nodes can re-establish a pairwise key. Our earlier analysis

indicates that it is very difficult for the adversary to prevent two non-compromised nodes

from establishing a pairwise key. Finally, due to the orderly node assignment, this scheme

allows optimized deployment of sensor nodes so that the sensor nodes that can establish

direct keys are close to each other, thus greatly decreasing the communication overhead in

path key establishment.

4.4 Implementation and Evaluation

We have implemented the random subset assignment scheme and the grid-based

scheme 2 on MICA2 motes [13] running TinyOS [25], which is an operating system for

networked sensor nodes. These implementations were written in nesC [20], a C-like pro-

gramming language used to develop TinyOS and its applications. A critical component

in our implementations is the algorithm to evaluate a t-degree polynomial, which is used

to compute pairwise keys. In the following, we first present an optimization technique for

polynomial evaluation on sensor nodes and then report the evaluation of this optimization

technique and our key pre-distribution schemes.

2These implementations are included in our tiny key management (TinyKeyMan) package, which is
available online at http://discovery.csc.ncsu.edu/software/TinyKeyMan.

107

4.4.1 Optimization of Polynomial Evaluation on Sensor Nodes

Evaluating a t-degree polynomial is essential in the computation of a pairwise key

in our schemes. This requires t modular multiplications and t modular additions in a finite

filed Fq, where q is a prime number that is large enough to accommodate a cryptographic

key. This implies that q should be at least 64 bits long for typical cryptosystems such as RC5.

However, processors in sensor nodes usually have a much smaller word size. For example,

ATmega128, which is used in many types of sensors, only supports 8-bit multiplications

and has no division instruction. Thus, in order to use the basic scheme, sensor nodes have

to implement some large integer operations.

Nevertheless, in our schemes, polynomials can be evaluated in much cheaper ways

than polynomial evaluation in general. This is mainly due to the observation that the points

at which the polynomials are evaluated are sensor IDs, and these IDs can be chosen from

a different finite field Fq′ , where q′ is a prime number that is larger than the maximum

number of sensors but much smaller than a typical q.

During the evaluation of a polynomial f(x) = atx
t + at−1x

t−1 + · · ·+ a0, since the

variable x is the ID of a sensor, the modular multiplication is always performed between an

integer in Fq and another integer in Fq′ . For example, to compute the product of two 64-bit

integers on an 8-bit CPU, it takes 64 word multiplications with the standard large integer

multiplication algorithm and 27 word multiplications with the Karatsuba-Ofman algorithm

[35]. In contrast, it only takes 16 word multiplications with the standard algorithm to

compute the product of a 64-bit integer and a 16-bit integer on the same platform. Similarly,

reduction of the later product (which is an 80-bit integer) modulo a 64-bit prime is also

about 75% cheaper than the former product (which is a 128-bit integer).

Considering the lack of a division instruction in typical sensor processors, we fur-

ther propose to use q′ in the form of q′ = 2k +1. Because of the special form of q′ = 216 +1,

no division operation is needed to compute modular multiplications in Fq′ [75]. Two natural

choices of such prime numbers are 257 = 28 + 1 and 65, 537 = 216 + 1. Using the random

subset assignment scheme, these two special finite fields can accommodate up to 256 and

65,536 sensors, respectively; using the grid-based scheme, these two special finite fields can

accommodate up to 2562 = 65, 536 and 65, 5362 = 4, 294, 967, 296 sensors, respectively.

To take full advantage of the special form of q′, we propose to adapt the basic

polynomial-based key pre-distribution in Section 2.2.1 so that a large key is split into pieces

108

and each piece is distributed to sensors with a polynomial over Fq′ . The same technique

can be easily applied to all polynomial pool-based schemes with slight modification.

Assume that each cryptographic key is n bits. The setup server divides the n-bit

key into r pieces of l-bit segments, where l = ⌊log2 q′⌋ and r = ⌈n
l ⌉. For simplicity, we

assume that n = l ·r. The setup server randomly generates r t-degree bivariate polynomials

{fv(x, y)}v=1,···,r over Fq′ such that fv(x, y) = fv(y, x) for v = 1, · · · , r. The setup server

then gives the corresponding polynomial shares on these r polynomials to each sensor node.

Specifically, each sensor node i receives {fv(i, x)}v=1,···,r. With the basic scheme, each of

these r polynomials can be used to establish a common secret between a pair of sensors.

These sensors then choose the l least significant bits of each secret value as a key segment.

The final pairwise key can simply be the concatenation of these r key segments.

It is easy to verify that this method requires the same number of word multiplica-

tions as the earlier one; however, because of the special form of q′, no division operation is

necessary in evaluating the polynomials. This can significantly reduce the computation on

processors that do not have any division instruction.

The security of this scheme is guaranteed by Lemma 4.4.1.

Lemma 4.4.1 In the adapted key pre-distribution scheme, the entropy of the key for a

coalition of no more than t other sensor nodes is r · [log2 q′ − (2− 2l+1

q′)], where l = ⌊log2 q′⌋

and r = ⌈n
l ⌉.

Proof: Assume that nodes u and v need to establish a pairwise key. Consider a coalition

of no more than t other sensor nodes that tries to determine this pairwise key. According

to the security proof of the basic key pre-distribution scheme [5], the entropy of the shared

secret derived with any polynomial is log q′ for the coalition. That is, any value from the

finite field Fq′ is a possible value of each of {fj(u, v)}j=1,...,r for the coalition. Since each

piece of key consists of the last l = ⌊log2 q′⌋ bits of one of the above values, values from 0

to q′ − 2l − 1 have the probability 2
q′ to be chosen, while the values from q′ − 2l to 2l − 1

have the probability 1
q′ to be chosen. Denote all the information that the coalition knows

109

as C. Thus, for the coalition, the entropy of each piece of key segment Kj , j = 1, · · · , r, is

H(Kj |C) =

q′−2l−1
∑

i=0

2

q′
log2

q′

2
+

2l−1
∑

i=q′−2l

1

q′
log2 q′

=
2(q′ − 2l)

q′
log2

q′

2
+

2l+1 − q′

q′
log2 q′

= log2 q′ − (2 − 2l+1

q′
)

Because the r pieces of key segments are distributed individually and indepen-

dently, the entropy of the pairwise key for the coalition is

H(K|C) =

r
∑

j=1

H(Kj |·) = r · [log2 q′ − (2 − 2l+1

q′
)].

Consider a 64-bit key. If we choose q′ = 216 + 1, the entropy of a pairwise key for

a coalition of no more than t compromised sensor nodes is 4× [log2(2
16 +1)− (2− 217

216+1
)] =

63.9997 bits. If we choose q′ = 28 + 1, this entropy is then 8× [log2(2
8 + 1)− (2− 29

28+1)] =

63.983 bits. Thus, the adapted scheme still provides sufficient security despite the minor

leak of information.

4.4.2 Evaluation

We first evaluate the performance of our optimization technique for polynomial

evaluation. This optimization forms the basis of pairwise key computation in our imple-

mentation. We provide two options for this component: one with q′ = 28 + 1 and the other

with q′ = 216 + 1. The typical length of a cryptographic key in resource constrained sensor

nodes is 64 bits. To compute a 64-bit pairwise key, a sensor node has to evaluate 8 t-degree

polynomials if q′ = 28 + 1 and 4 t-degree polynomials if q′ = 216 + 1. The code sizes for

the implementations of these two options are shown in Table 4.2. The bytes needed for

polynomial coefficients are not included in the code size calculation since it depends on the

applications. Obviously, these two implementations occupy only a small amount of memory

at sensor nodes.

The cost of our optimization technique in computing a 64-bit cryptographic key

on a MICA2 mote [13] is shown in Figure 4.11, which also includes the cost of generating a

110

Table 4.2: Code sizes for our optimized polynomial evaluation schemes.

Scheme ROM (bytes) RAM (bytes)

q′ = 28 + 1 288 11

q′ = 216 + 1 416 20

0

10000

20000

30000

40000

50000

60000

10 20 30 40 50 60 70 80 90 100

Degree of polynomial: t

C

P
U

 C
yc

le

8-bit 16-bit RC5 SkipJack

Figure 4.11: Comparison with RC5 and SkipJack.

64-bit MAC (Message Authentication Code) for a 64-bit long message using RC5 [66] and

SkipJack [57] with a 64-bit long key. These two symmetric cryptographic techniques are

generally believed to be practical and efficient for sensor networks. The result shows that

computing a pairwise key in our schemes can be faster than generating a MAC using RC5

or SkipJack for a reasonable polynomial degree t; and in practice, it is not necessary for

the value of t to be a very large number due to the storage and security concerns, which

can be seen from previous analysis in sections 4.2 and 4.3. The result demonstrates the

practicality and efficiency of our proposed schemes.

Table 4.3: The code size for random subset assignment and grid-based scheme. The storage
for the polynomial coefficients and the list of compromised nodes are not included in the
calculation of code size.

Scheme ROM (bytes) RAM (bytes)

Random Subset Assignment 2824 106

Grid-Based 1160 67

According to the result in Figure 4.11, the 16-bit version is slightly slower than the

111

8-bit version. However, the 16-bit version can accommodate a lot more sensor nodes than

the 8-bit version. Thus, we use the 16-bit option for both the random subset assignment

scheme and the grid-based scheme. The code sizes for these two schemes are shown in Table

4.3, which only includes the size of code loaded on sensor nodes, since the components for

the setup server are not installed on sensor nodes. In fact, the setup server is not necessary

to be a sensor node. We can see that the code size for the grid-based scheme is much

smaller than that for the random subset assignment scheme since the grid-based scheme

can directly determine the direct key shared or the key path involved; while the random

subset assignment scheme has to contact other nodes and maintain many more states.

Considering the analysis in previous sections and the evaluation of computational

and storage cost, we can conclude that our schemes are practical and efficient for the current

generation of sensor networks.

4.5 Summary

In this chapter, we developed a general framework for polynomial pool-based

pairwise key pre-distribution in sensor networks based on the basic polynomial-based key

pre-distribution in [5]. This framework allows study of multiple instantiations of possi-

ble pairwise key establishment schemes. Two possible instantiations developed were the

key pre-distribution scheme based on random subset assignment and the hypercube-based

key pre-distribution scheme. Our analysis of these schemes demonstrated that all those

schemes have significant advantages over the existing approaches. The experiment results

also demonstrate its practicality and efficiency in real sensor networks.

As one of possible future directions, we observe that sensor nodes have low mobility

in many applications. Thus, it may be desirable to develop location-based schemes so that

the nodes that can directly establish a pairwise key are close to each other. In addition,

the grid-based scheme or the hypercube-based scheme can also be extended to a more

general scheme which has a different number of bivariate polynomials arranged in different

dimensions.

112

Chapter 5

Improving Key Pre-Distribution

Using Deployment Knowledge

In this chapter, we first exploit the prior deployment knowledge of sensor nodes

to improve key pre-distribution in static sensor networks. The techniques are based on

the observation that in static sensor networks, although it is difficult to precisely pinpoint

sensor nodes’ positions, it is often possible to approximately determine their locations. For

example, when trucks are used to deploy static sensor nodes, the nodes can usually be

kept within a certain distance (e.g., 100 yards) from their target locations – even though

it is difficult to place the sensor nodes in their expected locations precisely. By taking

advantage of this observation, our techniques provide better security and performance than

the previous techniques.

We then propose to take advantage of post deployment knowledge and investigate

a new approach, which we refer to as key prioritization, to improve the performance of key

pre-distribution schemes in static sensor networks. The main idea is to use the memory

for applications (e.g., EEPROM on MICA2 motes [13]) to store an excessive amount of

keying materials, prioritize the keying materials based on sensor nodes’ post deployment

information, and discard low priority keying materials to thwart node compromise attacks,

as well as return memory to the applications. For example, a sensor application may be

113

designated to collect temperature, humidity, etc. at a certain frequency and buffer the data

before transmitting it back to the central processing system. During the key pre-distribution

phase (before the deployment of the sensor nodes), we may use a large amount of available

memory (e.g., in EEPROM) to store pre-distributed keying materials. After a sensor node is

deployed, it may first examine its environment to assess the likelihood of using each keying

material, prioritize the keying materials accordingly, and then discard the low priority ones.

We also develop a group-based key pre-distribution framework when the locations

of sensor nodes cannot be pre-determined or discovered after deployment. Compared to

the previous techniques for improving key pre-distribution, this approach has the following

two advantages. First, it does not require any prior knowledge of sensors’ locations, which

greatly simplifies the deployment of sensor networks. Second, the proposed framework can

be easily combined with any of the existing key pre-distribution techniques, while previous

techniques can only be used to improve a certain type of key pre-distribution techniques.

The analysis indicates that the framework improves the security as well as the performance

of existing key pre-distribution techniques substantially.

5.1 Improving Key Pre-Distribution with Prior Deployment

Knowledge

In static sensor networks, it may be possible to predetermine the locations of

sensor nodes to a certain extent. These predetermined locations can be used to improve the

performance of pairwise key pre-distribution. In this section, we first introduce a simple

location-aware deployment model for this purpose, and then develop two pairwise key pre-

distribution schemes that can take advantage of the predetermined location information.

5.1.1 A Location-Aware Deployment Model

We assume that sensor nodes are deployed in a two dimensional area called target

field, and two sensor nodes can communicate with each other if they are within each other’s

signal range. The location of a sensor node can be represented by a coordinate in the target

field. Each sensor node has an expected location that can be predicted or predetermined.

After the deployment, a sensor node is placed at a deployment location that may be different

114

from its expected location. We call the difference between the expected location and the

deployment location of a sensor node the deployment error for this sensor node. This

deployment model can be characterized by the following three parameters:

1. Signal range dr: A sensor node can receive messages from another sensor node if

the former is located within the signal range of the latter. We model the signal range

of a sensor node as a circle centered at its deployment location with the radius dr.

For simplicity, we assume that the radius dr defining the signal range is a network-

wide parameter, and denote the signal range with dr. We say two sensor nodes are

neighbors if they are physically located within each other’s signal range.

2. Expected location (Lx, Ly): The expected location (Lx, Ly) of a sensor node is a

coordinate in the two dimensional target field; it specifies where the sensor node is

expected to be deployed. Sometimes, a sensor node may be expected to be deployed

within an area instead of a particular location. In this case, we assume that the sensor

node is expected to be deployed at any location in that area with equal probability.

3. Deployment pdf ǫ: We model the actual deployment location of a sensor node with

a probability density function ǫ. The sensor node expected to be deployed at (Lx, Ly)

may appear at a particular area with a certain probability, which is calculated by the

integration of a probability density function ǫ over this area. In some cases, the sensor

node may have certain mobility and appear somewhere near its expected location with

a certain probability. The deployment location of this sensor node at any point in

time may also be modeled by the probability density function.

Although our techniques can be applied to any deployment model, we always evalu-

ate the performance of our techniques with a simple model, where each sensor node

randomly appears anywhere at a distance of no more than e away from the expected

location. We call e the maximum deployment error. Thus, the deployment pdf ǫ for

a sensor node u with expected location (Lx, Ly) can be expressed as

ǫ(Lx,Ly)(x, y) =







1
πe2 , ||(Lx, Ly), (x, y)|| ≤ e

0, otherwise.

where || · || denotes the distance between two locations.

115

Obviously, this model can be easily extended to a three dimensional space. How-

ever, we focus on pairwise key establishments in the two dimensional case here. Extending

our results to the three dimensional model would be straightforward.

5.1.2 Closest Pairwise Keys Scheme

In this subsection, we develop a pairwise key establishment scheme named closest

pairwise keys scheme to take advantage of the expected location information. The basic idea

is to have each sensor node share pairwise keys with a number of other sensor nodes whose

expected locations are closest to the expected location of this sensor node. The following

discussion starts with a basic version, which can be considered as the combination of the

random pairwise keys scheme [11] and the expected location information, and then gives an

extended version to further reduce the storage overhead and facilitate dynamic deployment

of new sensor nodes.

We assume a setup server is responsible for key pre-distribution. This setup server

is aware of the expected location of each sensor node. However, it does not require the

network-wide signal range dr and the deployment pdf ǫ since these two pieces of information

are not used in our technique. We assume each sensor node has a unique, integer-valued ID.

We also use this node ID to refer to the sensor node. For convenience, we call a pairwise

key shared directly between two neighbor nodes a direct key and a pairwise key established

through other intermediate nodes an indirect key.

The Basic Version

The basic idea of the closest pairwise keys scheme is to pre-distribute pairwise keys

between pairs of sensor nodes that have high probabilities to be neighbors. Though reason-

able, this idea is difficult to implement since it is non-trivial to determine the probability

that two sensor nodes are neighbors. Indeed, this probability depends on the deployment

pdf ǫ, which is generally not available and may vary in different applications. To simplify

the situation, we pre-distribute pairwise keys between pairs of sensor nodes whose expected

locations are close to each other, hoping that the closer the expected locations of two sensor

nodes, the more likely they are to be physically located in each other’s signal range.

116

1. Pre-Distribution. Based on the expected locations of sensor nodes, the setup

server pre-distributes pairwise keys for each sensor node to facilitate the pairwise key

establishment during the normal operation. Specifically, for each sensor node u, the

setup server first discovers a set S of c other sensor nodes whose expected locations

are closest to the expected location of u – where c is a system parameter determined

by the memory constraint. For each node v in S, the setup server randomly generates

a unique pairwise key Ku,v if no pairwise key between u and v has been assigned. The

setup server then assigns (v,Ku,v) and (u,Ku,v) to sensor nodes u and v, respectively.

2. Direct Key Establishment. After the deployment of the sensor network, if two

sensor nodes u and v want to establish a pairwise key to secure the communication

between them, they only need to check whether there is a pre-distributed pairwise

key between them. This information is obtained from the setup server in the pre-

distribution phase. The algorithm to identify such a common key is trivial because

each pairwise key in a particular sensor node is associated with a node ID.

3. Indirect Key Establishment. When two neighbor nodes cannot establish a direct

key, they need to find one or more intermediate nodes to help them setup an indirect

session key. A simple way is to have one node (called source node) send a request to

a number of nodes that share direct keys with it. If one of those contacted nodes also

shares a direct key with the other node (called destination node), this contacted node

can be used as an intermediate node to help establish a common session key. In our

later schemes, we will omit the indirect key establishment phase since it is not directly

related to our techniques. Indeed, indirect key establishment can be done with any of

the previous schemes (e.g., [41, 11, 19]).

4. Sensor Addition and Revocation. During the lifetime of a sensor network, new

sensor nodes may be added to replace damaged or compromised sensor nodes. To add

a new node, the setup server performs the above pre-distribution process for the new

sensor node and then informs the deployed sensor nodes chosen for the new sensor

node the corresponding pairwise keys through secure channels. (Here we assume the

communication between each sensor node and the setup server is secured with a unique

pairwise key shared between the node and the setup server.) The setup server may

know the deployment locations of the deployed sensor nodes. In this case, the setup

117

Table 5.1: Notations

N network size
m average number of neighbor sensor nodes
c number of keys pre-distributed to sensor nodes
p probability of sharing a direct key between neighbors
Pc fraction of compromised direct keys between non-compromised nodes

server may use these deployment locations (instead of their expected locations) to

select neighbors for the new sensor node.

The detection of compromised nodes is generally a difficult problem, which is beyond

our scope. However, there are several methods that could be used to identify com-

promised sensor nodes to revoke (e.g., [48, 7, 18, 46]). Once the compromised nodes

are detected, it is usually necessary to revoke them from the network. To revoke a

sensor node, each sensor node that shares a pairwise key with the revoked node simply

deletes the corresponding key from its memory.

Though the above scheme looks similar to the previous methods [19, 11], it can

achieve better performance if the predetermined location information is available. In the

following, we show the improvement over the previous methods through analysis. Table 5.1

lists several notations that are often used in our analysis.

Probability of Establishing Direct Keys

For simplicity, we assume that the sensor nodes in the network are expected to be

evenly distributed in the target field. Thus, if u is one of v’s closest c sensor nodes, v is very

likely to be one of u’s closest c sensor nodes. We use u̇ and ū to represent the deployment

location and the expected location of node u, respectively. As discussed in Section 5.1.1,

we model the deployment location of node u as a probability density function ǫū(x, y).

Consider two sensor nodes u and v. Since they are deployed independently, given

the expected locations of u and v, the conditional probability that they are neighbors can

be calculated by

p(||u̇, v̇|| ≤ dr|ū, v̄) =

∫ ∫ ∫ ∫

||u̇,v̇||≤dr

ǫū(x1, y1)ǫv̄(x2, y2)dx1dy1dx2dy2,

where || · || denotes the distance between two locations.

118

Since sensor nodes are evenly distributed in the target field, the densities of sensor

nodes in different small areas are approximately equal. Assume there are on average m

nodes in each sensor node’s signal range. The density of the network can be estimated by

D = m+1
πd2

r
, where dr is the radius of the signal range. Thus, on average, each node will get

pre-distributed pairwise keys with the sensor nodes whose expected locations are no more

than d′ away from it, where d′ =
√

γ × dr, and γ = c
m+1 . We call γ = c

m+1 the capacity

density ratio. For any v having a pre-distributed pairwise key with u, the probability that

v falls into u’s signal range can be calculated by

p(||u̇, v̇|| ≤ dr|ū) =

∫ ∫

||ū,v̄||≤d′2

p(||u̇, v̇|| ≤ dr|ū, (x, y))

πd′2
dxdy.

Among the sensor nodes that have pre-distributed pairwise keys with sensor node

u, the average number of sensor nodes that fall into its signal range can be estimated by

c × p(||u̇, v̇|| ≤ dr|ū). Thus, the probability of establishing a common key between node u

and its neighbor sensor node can be estimated by

p =
c × p(||u̇, v̇|| ≤ dr|ū)

m
≈ γ × p(||u̇, v̇|| ≤ dr|ū).

The above p can usually be used to estimate the probability of any node having

a direct key with its neighbor node when the target field is infinite. For a limited field in

our simulation, we simply use the probability p of the node expected to be deployed at the

center of this field having a direct key with its neighbor node to estimate the probability of

having a direct key between any two neighbor nodes.

In the following analysis, we always use the radius of signal range, dr, as the

basic unit of distance measurement (dr = 1). For example, a distance 2 implies that the

distance is twice as far as dr. Thus, the deployment error in our discussion also represents

the ratio of the deployment error to the signal range. Figure 5.1 shows the probability of

establishing direct keys between neighbor sensor nodes for different values of e and γ. We

can see that this probability is not only affected by the maximum deployment error, but also

by the capacity density ratio γ. In general, the increase of γ will increase the probability

p given certain deployment pdf. However, this probability decreases when the maximum

deployment error increases. In practice, we expect to see better performance than that in

Figure 5.1 since the probability of having a smaller deployment error is typically higher

than the probability of having a larger one.

119

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10

e - maximum deployment error

p

CPKS(�=1) CPKS(�=5) CPKS(�=10)

CPKS(�=15) CPKS(�=20) CPKS(�=25)

Figure 5.1: Probability of establishing direct keys between two neighbor nodes given differ-
ent values of e and γ. CPKS denotes the closest pairwise keys pre-distribution scheme.

Security Against Node Captures

There are several attacks against sensor networks, such as DoS attacks [78], Sybil

attacks [52], and Wormhole attacks [28]. These attacks may affect the security of pairwise

key establishment in sensor networks. For example, an attacker may create wormholes

between different areas so that a node establishes unnecessary keys with other nodes that

will disappear once the wormholes are gone. However, these attacks are not unique to

the pairwise key establishment in sensor networks. In addition, using expected location

information does not reduce the security of any existing key pre-distribution scheme. For

simplicity, we focus on the node compromise attacks in the following.

In node compromise attacks, an adversary may physically capture one or more

sensor nodes and learn all the secrets stored on these nodes. We assume the compromised

sensor nodes may collude together to attack the communication between non-compromised

sensor nodes. That is, the adversary may try to figure out the pairwise keys established

between non-compromised nodes based on the secrets learned from the compromised ones.

From the scheme it is easy to see that each pre-distributed pairwise key between

two sensor nodes is randomly generated. Thus, no matter how many sensor nodes are

compromised, the direct keys between non-compromised sensor nodes are still secure. We

call this property perfect security against node captures. However, once a sensor node is

compromised, the session keys that this sensor node helps establish may be compromised.

For example, an attacker may have saved a copy of an indirect session key encrypted by a

direct key and thus will be able to decrypt the session key once she gets the corresponding

direct key from a compromised node. Thus, if either of the source or destination sensor

120

nodes notices that the intermediate sensor node is compromised, it should remove the

corresponding pre-distributed pairwise key and initiate a request to establish a new session

key. The delay in detecting compromised sensor nodes still poses a threat. One way to

mitigate this threat is to derive the session key by combining (e.g., XOR) the keys generated

from multiple paths, as suggested in [11].

Overhead

Ideally, each sensor node stores c pairwise keys. However, this does not necessarily

happen because of the asymmetry in sensor nodes’ locations. Consider a pair of sensor

nodes u and v. In the pre-distribution step, v is one of u’s closest c sensor nodes; however,

u is not necessarily one of v’s closest c sensor nodes. In this case, v has to store the pairwise

key between u and v in addition to its own pre-distributed c pairwise keys. Thus, the

storage overhead in each sensor node comes from two parts: one consists of the pairwise

keys generated for itself, and the other consists of the pairwise keys generated for other

sensor nodes. Hence, each sensor node has to store at least c keys and c sensor IDs. The

actual number of pairwise keys stored in a particular sensor node may be much larger than

c. Nevertheless, if the sensor nodes are approximately evenly distributed in the target field,

it is very likely that if sensor node u is among sensor node v’s closest c sensor nodes, then

v is among u’s closest c sensor nodes.

To establish a common key with a given neighbor node, a sensor node only needs

to check whether it has a pre-distributed pairwise key with the given node (because each

pairwise key is associated with a node ID). Thus, there is no communication and computa-

tion overhead during direct key establishment. The establishment of an indirect session key

requires one broadcast request message, and potentially a number of unicast reply messages

with the techniques in [19, 11, 41].

Improvements

Our basic scheme can be considered as an extension to the random pairwise keys

scheme. These two schemes have some common properties. In both schemes, the com-

promise of sensor nodes does not lead to the compromise of direct keys shared between

non-compromised sensor nodes. However, our scheme further takes advantage of expected

121

0

0.2

0.4

0.6

0.8

1

1.2

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4

e - maximum deployment error

p

Random Pairwise Keys CPKS(m=10)

CPKS(m=20) CPKS(m=30)

Figure 5.2: Probability of establishing direct keys in random pairwise keys scheme and the
closest pairwise keys scheme for different m and e given c = 200 and N = 600.

location information and thus is able to achieve better performance than the random pair-

wise keys scheme. First, the random pairwise keys scheme has a restriction on the network

size, while our scheme has no direct restriction on the network size. Second, given the same

storage capacity c for pairwise keys and the total number N of sensor nodes, the probability

of establishing direct keys in our scheme is always better than the random pairwise keys

scheme. This is illustrated in Figure 5.2, which compares the probability of establishing

direct keys in both schemes for different m and e given that c = 200 and N = 600. It shows

that the probability p of establishing direct keys is improved significantly in our scheme, es-

pecially when e is less than two times of the signal range. When the maximum deployment

error e increases, this probability gradually decreases. In the extreme case, when there is no

knowledge about where the nodes may reside, the technique degenerates into the original

random pairwise keys scheme.

Comparison with Previous Methods

Now let us compare our scheme with the basic probabilistic scheme [19], the q-

composite scheme [11], and the random subset assignment scheme [41]. As discussed earlier,

our proposed scheme has a high probability to establish direct keys between neighbor sensor

nodes given reasonable capacity density ratio γ and maximum deployment errors. At the

same time, our scheme does not put any limitation on the network size.

Note that the closest pairwise keys scheme provides perfect security against node

capture attacks, while the basic probabilistic scheme and the q-composite scheme cannot

122

0

0.2

0.4

0.6

0.8

1

1.2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Number of compromised sensor nodes

P c

q-composite(q=1) q-composite(q=3)
Basic probabilistic RS(s=11,s'=2,t=99)
CPKS

Figure 5.3: Fraction of compromised pairwise keys between non-compromised sensor nodes
v.s. number of compromised sensor nodes. RS denotes the random subset assignment scheme

achieve the perfect security guarantee. Although the random subset assignment scheme can

be configured to achieve the perfect security guarantee, it can only support a limited number

of sensor nodes to ensure a certain probability of having direct keys between sensor nodes.

Thus, a more direct and reasonable way to make comparisons between different schemes

is to show the security against node compromise attacks given the same probability of

establishing direct keys between sensor nodes.

Figure 5.3 shows that given the same storage overhead and the same probability

of establishing direct keys between sensor nodes, our scheme does not lead to compromise

of direct keys belonging to non-compromised sensor nodes, while in the other three schemes

[19, 11, 41], the direct keys shared between non-compromised sensor nodes are compromised

quickly when the number of compromised sensor nodes increases.

Compared with the grid-based scheme [41], the closest pairwise keys scheme has

some advantages. First, the closest pairwise keys scheme provides the perfect security

guarantee. Though the grid-based scheme can also provide perfect security guarantee, it

has limitations on the maximum supported network size given a certain storage constraint

[41]. In contrast, the closest pairwise keys scheme has no limitations on the maximum

supported network size. Second, the closest pairwise keys scheme can achieve a higher

probability of establishing direct keys between two neighbor nodes than the grid-based

scheme. Though the grid-based scheme can guarantee to establish a direct or indirect key

between any two sensor nodes, it requires that any two sensor nodes can communicate with

each other, which may not be true in real applications.

123

The Extended Version

The basic scheme described above has two limitations. First, if the sensor nodes

are not evenly distributed in the target field, it is possible for a sensor node to have a large

number of neighbor nodes that are not among the closest c sensor nodes of u but consider u

as one of their closest c sensor nodes. As a result, node u has to store a lot of pairwise keys

generated by the setup server. Second, to add a new sensor node after deploying the sensor

network, the setup server has to inform a number of existing sensor nodes in the network

about the addition of the new sensor node, which may introduce a lot of communication

overhead.

We propose an alternative way to pre-distribute the secret information so that

(1) the storage overhead in each node is small and fixed no matter how the sensor nodes

are deployed, and (2) no communication overhead is introduced during the addition of new

sensor nodes. The technique is based on a pseudo random function (PRF) [22] and a master

key shared between each sensor node and the setup server.

1. Pre-Distribution: For each sensor u, the setup server first randomly generates

a master key Ku and determines a set S of c other sensor nodes whose expected

locations are closest to that of u. The setup server then distributes to sensor u a

set of pairwise keys (together with the IDs) with those selected sensor nodes. These

keys are generated by the setup server in the following way: For each v ∈ S, the

setup server generates a pseudo random number ku,v = PRFKv(u) as the pairwise

key shared between u and v, where Kv is the master key for v. As a result, for each

v ∈ S, node u stores the pairwise key ku,v, while node v can compute the same key

with its master key and the ID of node u. We call v a master sensor node of u if the

direct key ku,v shared between them is derived by ku,v = PRFKv(u). Accordingly, we

call u a slave sensor node of v if v is a master sensor node of u.

2. Direct Key Establishment: The direct key establishment stage is similar to the

basic scheme. The only difference is that one of two sensor nodes has a pre-distributed

pairwise key and the other only needs to compute the key using its master key and the

ID of the other party. For example, if u finds that it has the pre-distributed pairwise

key PRFKv(u) with v, it then notifies sensor v that it has such a key. Sensor node v

only needs to compute PRFKv(u) by performing a single pseudo random function.

124

3. Sensor Addition and Revocation: To add a new sensor node u, the setup server

selects c sensor nodes closest to the expected location of u. For each of these c sensor

nodes, the setup server retrieves v’s master key Kv and computes ku,v = PRFKv(u),

and then distributes v and ku,v to u. Revoking a sensor is a little more complex than

in the basic scheme. To revoke sensor v, all its slave sensor nodes need to remove the

corresponding keys from their memory. Moreover, v’s master sensor nodes have to

remember v’s ID in order to avoid establishing a direct key with v later.

In this extension, each sensor node needs to store a master key which is shared

with the setup server and c pre-distributed pairwise keys. Thus, the storage overhead for

keys in each sensor node is at most c+1. To establish a pairwise key, one of them can initiate

a request by informing the other party that it has the pre-distributed pairwise key. (Note

that this message only indicates the existence of such a key, and the exact value is never

disclosed in the communication channel.) Once the other party receives such a message, it

can immediately compute the pairwise key by performing one PRF operation. Thus, the

communication overhead in the above scheme involves only one short request message, and

the computation overhead only involves one efficient PRF operation.

Based on the security of PRF [22], if a node’s master key is not disclosed, no

matter how many pairwise keys generated with this master key are disclosed, it is still

computationally infeasible for an attacker to recover the master key and the non-disclosed

pairwise keys generated with different IDs. Thus, node compromise does not lead to the

compromise of the direct keys shared between non-compromised nodes.

The extended scheme introduces some additional overhead by requiring master

sensor nodes to remember the IDs of their revoked slaves. We consider this an acceptable

overhead due to the following reasons. First, the storage overhead for a node ID is much

smaller than that for one cryptographic key. Second, in normal situations when authentica-

tion of the revocation information is ensured, the number of revoked slave nodes is usually

less than m, the average number of sensor nodes in each sensor’s signal range. One may

argue that if the authentication of revocation information can be bypassed, an attacker may

convince a sensor node to store many node IDs to exhaust its memory. However, in this

case, the node can be convinced to do anything and should be considered compromised.

125

5.1.3 Closest Polynomials Pre-Distribution Scheme

The scheme presented earlier still has some limitations. In particular, given the

constraints on the storage capacity, node density, signal range and deployment pdf, the

probability of establishing direct keys is fixed. For a particular sensor network, it is not

convenient to adjust the last three parameters. Thus, one has to increase the storage

capacity for pairwise keys to increase the probability of establishing direct keys. This may

not be a feasible solution in certain sensor networks given the memory constraints on sensor

nodes.

This subsection presents a key pre-distribution scheme, called closest polynomials

pre-distribution scheme, by combining the expected locations of sensor nodes with the ran-

dom subset assignment scheme in [41]. The resulting technique allows trade-offs between

the security against node captures and the probability of establishing direct keys with a

given memory constraint. Moreover, it does not require that the setup server be aware of

the global network topology, making the deployment much easier.

In the following, we first review the random subset assignment scheme in [41],

then present an improved key pre-distribution scheme using expected locations, and finally

analyze the security and performance of this scheme.

Overview of The Random Subset Assignment Scheme

We choose the random subset assignment scheme because it can be considered as

a generalization of several key pre-distribution schemes. Indeed, the basic probabilistic key

pre-distribution scheme [19] is a special case of the random subset assignment scheme when

each key is considered as a 0-degree polynomial [41]. Moreover, the key pre-distribution

scheme in [17] is essentially equivalent to the random subset assignment scheme in [41].

Since most key pre-distribution schemes (except for the random pairwise keys scheme [11])

are based on the random and independent distribution of key units to sensor nodes, the

results obtained through improving the random subset assignment scheme can be easily

generalized to those schemes.

Before reviewing the random subset assignment scheme developed in [41], we first

review a polynomial-based key pre-distribution scheme in [5], which was developed for group

key pre-distribution. Though using this scheme for group key pre-distribution is generally

not practical because of its overhead, its special case for pairwise keys is feasible in sensor

126

networks. For simplicity, we only discuss the special case of pairwise key establishment.

To pre-distribute pairwise keys, the setup server randomly generates a bivariate

t-degree polynomial f(x, y) over a finite field Fq, where q is a prime number that is large

enough to accommodate a cryptographic key, such that it has the property of f(x, y) =

f(y, x). (In the following, we assume all the bivariate polynomials have this property

without explicit statement.) It is assumed that each sensor node has a unique ID. For each

node i, the setup server computes a polynomial share of f(x, y), f(i, y). Thus, for any two

sensor nodes i and j, node i can compute the common key f(i, j) by evaluating f(i, y) at

point j, and node j can compute the same key (f(j, i) = f(i, j)) by evaluating f(j, y) at

point i.

In this approach, each sensor node needs to store a t-degree polynomial, which

occupies (t + 1) log q storage space. To establish a pairwise key, both sensor nodes need to

evaluate the polynomial at the ID of the other sensor node. There is no communication

overhead during the pairwise key establishment process. The security proof in [5] ensures

that this scheme is unconditionally secure and t-collusion resistant. That is, the collusion of

no more than t compromised sensor nodes knows nothing about the direct key between any

two non-compromised nodes. However, the polynomial-based key pre-distribution scheme

can only tolerate no more than t compromised nodes, where the value of t is limited by the

storage capacity for pairwise keys in a sensor node. Indeed, the larger a sensor network is,

the more likely that an adversary will compromise more than t sensor nodes and then the

entire network.

The random subset assignment scheme combines the idea of key pool in [19] with

the polynomial-based key pre-distribution scheme in [5]. Specifically, a setup server first

randomly generates a pool of bivariate polynomials, each of which is uniquely identified by

a polynomial ID. The setup server then chooses a random subset of polynomials and dis-

tributes the polynomial shares and the polynomial IDs to each node. To establish pairwise

keys after the deployment, two sensor nodes need to identify a common polynomial they

share by exchanging their polynomial IDs and use the polynomial-based scheme to compute

the pairwise key if such a common polynomial is identified. The indirect key establishment

can be achieved in the same way as in [19, 11], where two sensor nodes try to find a number

of intermediate nodes to help them setup a temporary session key. The analysis in [41]

shows that the random subset assignment scheme has better performance and security than

the techniques in [19, 11].

127

� � �� � � �� � � �� � � �� � � ��� � �� � � �� � � �� � � �� � � ��� � �� � � �� � � �� � � �� � � ��� � �� � � �� � � �� � � �� � � ��� � �� � � �� � � �� � � �� � � ��
�

Figure 5.4: Partition of a target field

The Closest Polynomials Pre-Distribution Scheme

Instead of randomly selecting polynomials for each sensor node as in the original

random subset assignment scheme, the main idea of the proposed technique is to select

polynomials for each sensor node based on the node’s expected location. Specifically, we

partition the target field into small areas called cells, each of which is associated with

a unique random bivariate polynomial. Then, we distribute to each sensor node a set of

polynomial shares that belong to the cells closest to the one that this sensor node is expected

to locate in. For simplicity, we assume that the target field is a rectangle area that can be

partitioned into equal-sized squares.

1. Pre-Distribution: The target field is first partitioned into a number of equal-sized

squares {Cic,ir}ic=0,1,...,C−1,ir=0,1,...,R−1, each of which is a cell with the coordinate

(ic, ir) denoting row ir and column ic. For convenience, we use s = R × C to denote

the total number of cells. The setup server randomly generates s bivariate t-degree

polynomials {fic,ir(x, y)}ic=0,1,...,C−1,ir=0,1,...,R−1 and assigns fic,ir(x, y) to cell Cic,ir .

Figure 5.4 shows an example partition of a target field.

For each sensor node, the setup server first determines its home cell, in which this

128

node is expected to locate. The setup server then discovers four cells adjacent to

this node’s home cell. Finally, the setup server distributes to the sensor node its

home cell coordinate and the shares of the polynomials for its home cell and the four

selected cells. For example, in Figure 5.4, node u is expected to be deployed in cell

C2,2. Obviously, cell C2,2 is its home cell, and cells C2,1, C1,2, C2,3 and C3,2 are

the four cells adjacent to its home cell. Thus, the setup server gives this node the

coordinate (2, 2) and the polynomial shares f2,2(u, y), f2,1(u, y), f1,2(u, y), f2,3(u, y),

and f3,2(u, y).

2. Direct Key Establishment: After deployment, if two sensor nodes want to setup

a pairwise key, they first need to identify a shared bivariate polynomial. If they can

find at least one such polynomial, a common pairwise key can be established directly

using the basic polynomial-based key pre-distribution presented in Section 5.1.3. A

simple way is to let the source node disclose its home cell coordinate to the destination

node. From the coordinate of the home cell of the source node, the destination node

can immediately determine the IDs of the polynomial shares the source node has.

3. Sensor Addition and Revocation: To add a new sensor node, the setup server

only needs to pre-distribute the related polynomial shares and the home cell coordinate

to the new node, in the same way as in the pre-distribution phase. The revocation

method is also straightforward. Each node only needs to remember the IDs of the

compromised sensor nodes that share at least one common bivariate polynomial with

itself. Thus, in addition to the polynomial shares, the sensor node also needs to store

a number of compromised sensor node IDs. If more than t nodes that share the same

bivariate polynomial are compromised, a non-compromised sensor node that has a

share of this polynomial simply removes the corresponding share and all the related

compromised sensor node IDs from its memory.

Probability of Establishing Direct Keys

Similar to the analysis for the closest pairwise keys scheme, we also use u̇ and ū to

represent the actual deployment location and the expected location of node u, respectively.

Consider two sensor nodes u and v. Since they are deployed independently, given

the expected location of u and v, the conditional probability that they are neighbors can

129

be calculated by

p(||u̇, v̇|| ≤ dr|ū, v̄) =

∫ ∫ ∫ ∫

||u̇,v̇||≤dr

ǫū(x1, y1)ǫv̄(x2, y2)dx1dy1dx2dy2,

where || · || denotes the distance between two locations.

Assume these two sensor nodes u and v are expected to be deployed in cell Cic,ir

and Cjc,jr , respectively. To simplify our analysis, we assume that a sensor node is expected

to locate randomly in its home cell. In other words, if sensor v is expected to be in cell

Cjc,jr , then the probability density function for the expected location of v is 1
L2 for any

location in the cell, and 0 otherwise. Therefore, the conditional probability that u and v

are in each other’s signal range given that u is expected to be deployed at location ū and v

is expected to be deployed in cell Cjc,jr can be calculated by

p(||u̇, v̇|| ≤ dr|ū, Cjc,jr) =

∫ ∫

Cjc,jr

p(||u̇, v̇|| ≤ dr|ū, (x, y))

L2
dxdy.

Hence, given u and v’s home cells Cic,ir and Cjc,jr , the probability of nodes u and

v being able to directly communicate with each other can be estimated by

p(||u̇, v̇|| ≤ dr|Cic,ir , Cjc,jr) =

∫ ∫

Cic,ir

p(||u̇, v̇|| ≤ dr|(x, y), Cjc,jr)

L2
dxdy.

Assume that on average, Ncell sensor nodes are expected to be deployed in each

cell. Thus, among all the sensor nodes with home cell Cjc,jr , the average number of sensor

nodes that the sensor node u with home cell Cic,ir can directly communicate with can be

estimated by Ncell × p(||u̇, v̇|| ≤ dr|Cic,ir , Cjc,jr). Therefore, overall, the average number of

sensor nodes that u can directly communicate with can be estimated by

nu = Ncell ·
∑

∀Cjc,jr

p(||u̇, v̇|| ≤ dr|Cic,ir , Cjc,jr).

Let Sic,ir denote the set of the home cells of the sensor nodes that share at least

one common polynomial with the node whose home cell is Cic,ir . According to the pre-

distribution procedure, there are 13 such cells in each Sic,ir . For example, Figure 5.4 shows

S2,2, which consists of all the shaded cells. Thus, the average number of neighbor sensor

nodes that can establish a common key with u directly can be estimated by

n′
u = Ncell ·

∑

Cjc,jr∈Sic,ir

p(||u̇, v̇|| ≤ dr|Cic,ir , Cjc,jr).

130

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5

L - side length of cell

p

e=0 e=0.5 e=1 e=5 e=10

(a)

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10

e - maximum deployment error

p

L=0.5 L=1 L=2 L=3 L=4 L=5

(b)

Figure 5.5: Probability of establishing direct keys between two neighbor nodes given differ-
ent cell side length L and maximum deployment error e

Hence, the probability of establishing a common key directly between u and a

neighbor node of u can be estimated by

p =
n′

u

nu
=

∑

Cjc,jr∈Sic,ir
p(||u̇, v̇|| ≤ dr|Cic,ir , Cjc,jr)

∑

∀Cjc,jr
p(||u̇, v̇|| ≤ dr|Cic,ir , Cjc,jr)

.

Similar to the analysis for the closest pairwise keys scheme, the above p can be

used to estimate the probability of any node having a direct key with its neighbor node

when the target field is an infinite field. For a limited field in our simulation, we simply use

the probability p of the node with home cell CC/2,R/2 having a direct key with its neighbor

node to estimate the probability of having a direct key between any two neighbor nodes.

We use the simple deployment model described before to evaluate the performance,

with signal range dr as the basic unit for distance measurement (dr = 1). Figure 5.5 shows

the probability of establishing direct keys for different cell side length L and maximum

deployment error e. Obviously, the probability of establishing direct keys increases as the

cell side length L grows and decreases as the maximum deployment error e grows.

In general, the larger L is, the higher the probability of establishing a direct key

between two neighbor nodes. However, the larger cell side length also leads to a larger

number of sensor nodes sharing the same bivariate polynomial, which in turn degrades

the security performance. Thus, we have to find the minimum value of L to meet the

other constraints so that we can maximize the security performance. Figure 5.5 provides a

guideline to determine the minimum value of L given the other constraints.

131

Security against Node Captures

According to the result of the polynomial-based key pre-distribution in [5], as long

as no more than t polynomial shares of a bivariate polynomial are disclosed, an attacker

knows nothing about the pairwise keys established through this polynomial between non-

compromised nodes. Thus, the security of our scheme depends on the average number of

sensor nodes sharing the same polynomial, which is equivalent to the number of sensor

nodes that are expected to be located in a cell and its four adjacent cells.

As discussed in Section 5.1.2, the density of the sensor nodes in the network can

be estimated by D = m+1
πd2

r
. The average number of sensor nodes that are expected to

be located in a cell is (m+1)L2

πd2
r

. Thus, the average number of sensor nodes that share the

polynomial of a particular cell can be estimated by Ns = 5(m+1)L2

πd2
r

. Using the signal range

as the basic unit of distance measurement (dr = 1), we have Ns = 5(m+1)L2

π .

We consider two types of attacks against the closest polynomials pre-distribution

scheme. One is the localized attack, which targets the sensor nodes in a particular area in

order to compromise the communication security in this area. The other is the random

attack, which randomly selects sensor nodes to compromise.

In a localized attack, the attacker must compromise more than t out of Ns sensor

nodes in order to compromise the direct keys between non-compromised sensor nodes in

that area. In addition, the compromise of a particular area does not affect the direct keys

in any other area because all bivariate polynomials are chosen randomly and independently.

Consider a random attack. We assume a fraction pc of sensor nodes in the network

have been compromised by an attacker. This means that each sensor node has the proba-

bility of pc being compromised. Thus, among Ns sensor nodes that have polynomial shares

of a particular cell, the probability that exactly i sensor nodes have been compromised can

be estimated by

Pc(i) =
Ns!

(Ns − i)!i!
pi

c(1 − pc)
Ns−i.

Therefore, the probability that the bivariate polynomial assigned to this cell is

compromised, which is equivalent to the probability of a direct key between two non-

compromised nodes being compromised, can be estimated by Pc = 1 − ∑t
i=0 Pc(i). Figure

5.6 includes the relationship between the fraction of compromised direct keys for non-

compromised sensor nodes and the fraction of compromised nodes under different combi-

nations of m and L given the storage capacity that is equivalent to 200 cryptographic keys

132

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fraction of compromised sensor nodes

P c

m=20 m=30 m=40

(a) L=1

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fraction of compromised sensor nodes

P c

L=1 L=1.5 L=2 L=2.5 L=3

(b) m=40

Figure 5.6: Fraction of compromised direct keys between non-compromised sensor nodes v.s.
fraction of compromised sensor nodes. Assume each node has available storage equivalent
to 200 cryptographic keys.

(t = 39). An interesting result is that regardless of the total number of sensor nodes in the

network, the less the density of the sensor network, the higher the security guarantee it can

provide.

Overhead

In this scheme, each sensor node needs to store the coordinate of its home cell and

the polynomial shares of five cells. The storage overhead for the coordinate of its home cell

is negligible. Thus, each sensor node needs to allocate 5(t + 1) log q memory space to store

the secret. When there are compromised sensor nodes, each non-compromised sensor node

also needs to store the IDs of the compromised sensor nodes with which it shares at least one

common polynomial. However, for each of the 5 polynomials, a non-compromised sensor

node only needs to store up to t IDs; it can remove the corresponding polynomial share

and all the related IDs if the number of compromised sensor nodes sharing the polynomial

exceeds t.

To establish a common key between two neighbor nodes, one of them initiates a

request by disclosing its home cell coordinate. Once the other party receives such a message,

it can immediately determine the common pairwise key and reply a message to identify the

corresponding key. Thus, the communication overhead includes two short messages.

To compute the common key with a given sensor node, each sensor node needs

to evaluate a t-degree polynomial. Thus, the computation overhead in each sensor node

133

mainly comes from the evaluation of this polynomial, which can be done efficiently by using

the optimization technique in [41].

Improvements

Compared with the original random subset assignment scheme in [41], the clos-

est polynomials pre-distribution scheme can achieve better performance due to the explicit

usage of expected locations. First, given certain storage constraint and the required proba-

bility of sharing direct keys between sensor nodes, the random subset assignment can only

tolerate a small number of compromised sensor nodes, while the closest polynomials pre-

distribution scheme can tolerate a large fraction of compromised nodes. Figure 5.7 shows

that the security can be improved significantly by using prior deployment knowledge of

sensor nodes. (To save space, this figure also includes the security performance of other

techniques, which will be discussed in the later comparison.) Second, the probability of

sharing direct keys between sensor nodes in the random subset assignment scheme is fixed

given certain polynomial pool size and the storage constraint on sensor nodes; while for the

closest polynomials pre-distribution scheme, this probability is independent from the total

number of polynomials in the pool. Indeed, it can be further improved by increasing cell

side length L for a given maximum deployment error e as shown in Figure 5.5.

Comparison

Now let us compare our scheme in this subsection with the previous methods

(the basic probabilistic scheme [19], the q-composite scheme [11], the random pairwise keys

scheme [11], the grid-based scheme [41], and the closest pairwise keys scheme). Evaluation

of those schemes requires the network size. To be fair, we use the following method to

estimate the network size. Assume that on average, there are m sensor nodes that fall into

each sensor’s signal range. Based on the analysis in [11], we estimate the total number of

sensor nodes in the network is N = 2mp to make sure the network is fully connected with

a high probability if the node only contacts its neighbor nodes, where p is the probability

of establishing a direct key between two neighbor sensor nodes.

Let us first compare our new scheme with the basic probabilistic scheme [19] and

the q-composite scheme [11]. Figure 5.7 compares the fraction of compromised direct keys

134

0

0.2

0.4

0.6

0.8

1

1.2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Number of compromised sensor nodes

P c

CPPS(e=2,L=0.7) CPPS(e=3,L=1.05)
CPPS(e=4,L=1.4) CPPS(e=5,L=1.7)
RS (s=11,s'=2,t=99) q-composite(q=1)
q-composite(q=3) Basic probabilistic

Figure 5.7: Fraction of compromised direct keys between non-compromised sensor nodes v.s.
number of compromised sensor nodes. Assume each node has available storage equivalent
to 200 cryptographic keys. Assume p = 0.33 and m = 40. CPPS denotes the closest
polynomials pre-distribution random scheme.

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10

e - maximum deployment error

p

CPKS(m=30) CPKS(m=40)

CPPS(L=0.89,m=30) CPPS(L=0.77,m=40)

Figure 5.8: Probability of establishing pairwise key directly between two neighbor nodes
given different e and m. The length of cell side in CPPS is configured so that it is perfectly
resistant to the node captures. Assume each node has available storage equivalent to 200
cryptographic keys.

shared between non-compromised sensor nodes given the same p, m, and storage overhead.

We can see that our scheme performs significantly better than the other two schemes. It also

shows that the more precise the sensor deployment is, the higher security it can guarantee.

We then compare our new scheme in this subsection with the random pairwise keys

scheme [11]. By limiting the number of sensor nodes sharing the same bivariate polynomial,

our proposed scheme can be modified to provide perfect security against node captures. In

this case, we have Ns = 5(m+1)L2

π ≤ (t + 1). From the previous result, we know that the

value of p only depends on L and e. Thus, given the same probability of establishing direct

keys between sensor nodes, our proposed scheme has no limit on the total number of sensor

135

nodes it can support. However, the random pairwise key scheme can only support at most

c
p sensor nodes, where c is the number of cryptographic keys a sensor node stores [11]. Thus,

our new scheme can achieve better performance when the expected location information is

available.

Similar to the closest pairwise keys scheme, the closest polynomials pre-distribution

scheme has some advantages over the grid-based scheme in [41]. First, in order to provide

certain security guarantee against node compromise attacks, the grid-based scheme has

limitations on the maximum supported network size given certain storage constraint as

pointed out in [41]. However, the closest polynomials pre-distribution scheme has no lim-

itations on the maximum supported network size given reasonable maximum deployment

errors. Second, the closest polynomials pre-distribution scheme provides higher probability

of establishing direct keys between sensor nodes than the grid-based scheme. Though the

grid-based scheme can guarantee to establish a direct or indirect key between any two sensor

nodes, it requires that any two sensor nodes can communicate with each other, which may

not be true in real applications.

Now we compare our new scheme proposed in this subsection with the closest

pairwise keys scheme in Section 5.1.2. For the closest pairwise key pre-distribution, given

a fixed storage capacity c, signal range dr, node density D, and the maximum deployment

error e, the probability of establishing direct keys between sensor nodes is fixed. However, for

our new scheme proposed in this subsection, given the above constraints, it can still achieve

arbitrary high probability to establish direct keys between sensor nodes by increasing the

cell side length L as shown in Figure 5.5. For example, in the closest pairwise keys scheme,

if γ = 5, e = 3, the probability of having a common pairwise key between two neighbor

nodes is 0.4. In contrast, our new scheme allows us to increase cell side length to achieve

a higher probability of establishing direct keys between neighbor sensor nodes and still

provide certain degree of security.

An advantage of the closest pairwise key scheme is that the compromise of sensor

nodes does not lead to the compromise of direct keys shared between non-compromised

sensor nodes. By having Ns ≤ (t + 1), the closest polynomials pre-distribution scheme

can also provide this security property. To further compare these two schemes under this

condition, Figure 5.8 shows the probabilities of establishing direct keys under different node

densities and maximum deployment errors, assuming the storage capacity is equivalent to

200 cryptographic keys. We can see that although the closest pairwise keys scheme has a

136

higher probability to establish direct keys between neighbor sensor nodes, our new scheme

is not significantly worse. Considering the flexibility to trade-off security and performance

in the closest polynomials pre-distribution scheme, we conclude that this scheme is more

desirable than the closest pairwise keys scheme in certain applications.

5.2 Improving Key Pre-Distribution with Post Deployment

Knowledge

In this section, we propose to take advantage of the post deployment knowledge

of sensor nodes to improve the pairwise key pre-distribution in static sensor networks. The

main idea is to assign each sensor node an excessive amount of pre-distributed keys by

using the memory for sensing applications, prioritize the pre-distributed keys based on post

deployment knowledge, and discard low priority keys to thwart node compromise attacks

and return memory to the applications. We call this process key prioritization.

We do not assume any prior knowledge of sensors’ locations. However, we assume

that every sensor node can discover its real deployment location securely after the deploy-

ment of sensor networks. This assumption is practical. As pointed out in [1], “most of the

sensing tasks require the knowledge of positions,” and “location finding systems are also

required by many of the proposed sensor network routing protocols.” Indeed, there have

been a series of recent advances in determining individual sensor nodes’ positions (with a

global positioning system (GPS) or local references) [39, 54], as well as securing location

discovery [69, 38, 18, 45, 46]. Thus, we believe that in many sensor network applications,

it is possible for the sensor nodes to determine their deployment locations securely.

Using memory for applications to store an excessive amount of pre-distributed keys

is practical in sensor networks. Though sensor nodes are memory constrained, EEPROM,

which is usually used to save sensed data, is much more plentiful than RAM on a sensor

node. For example, a typical MICA2 mote [13] comes with 512KB EEPROM, but only

4KB RAM. Thus, we may store an excessive amount of keying materials. However, in

this situation, the compromise of a sensor node reveals more secrets in the network. To

deal with this problem, we propose to remove the keying materials that are less likely to

be used (based on the post deployment knowledge). We further assume that an attacker

137

cannot recover the removed keys at sensor nodes even if these nodes are compromised later.

Moreover, the removal of low priority keys also returns memory to sensing applications,

which may be desirable in certain scenarios.

Note that accessing EEPROM is more expensive than accessing RAM in a typical

sensor node. It takes more energy to delete cryptographic keys from the EEPROM than

to delete keys in RAM. Based on the results in [73], the energy consumed by writing 16

bytes to EEPROM is close to the energy consumed by computing for 237,360 clock cycles

(about 29.67 ms). Nevertheless, the key prioritization technique only requires such deletion

operations once for each node during the entire lifetime. Therefore, we believe that such

deletion operations are feasible in the current generation of sensor networks.

For the sake of presentation, we refer to the pre-distributed keying materials used

in a key pre-distribution scheme (e.g., [19, 11, 17, 41, 80, 42]) as key units. More specifically,

a key unit is a minimal piece of keying material from which a valid key can be derived. A

key unit in the probabilistic key pre-distribution scheme [19], the q-composite scheme [11],

or the random pairwise keys scheme [11] is simply a pre-distributed key. In the polynomial

pool-based key pre-distribution schemes [41], a key unit is a t-degree polynomial from which

a node can compute keys shared with others. In the pairwise key pre-distribution scheme

presented in [17], a key unit is a row of the secret matrix Ai in a key space Si. A common

property of the key units in all these schemes is that two sensor nodes sharing the same or

relevant key units can derive a common key.

In the following, we first present an approach of key prioritization in static sensor

networks and then show how to improve the random subset assignment scheme [41] using

this approach.

5.2.1 Key Prioritization Using Post Deployment Knowledge

By using memory for sensing applications, a sensor node can keep a large number

of key units during key pre-distribution. By prioritizing these key units based on post

deployment knowledge, a sensor node can give up the key units that are less likely to be

used for pairwise key establishment to thwart node compromise attacks and return the

memory to the sensing applications. As a result, it has a higher probability to keep those

key units that may be required for secure communications with its neighbor nodes.

Specifically, we prioritize pre-distributed key units based on the deployment loca-

138

tions of sensor nodes. In order to do so, we map each key unit to a location in the sensor

network field before deployment. After the sensor network is deployed, if a sensor node can

discover its location, it can prioritize the pre-distributed key units based on this location.

The node may rank all the key units according to the distances between its location and the

locations of key units so that the closer a key unit is to the sensor node, the higher priority

it has. As a result, sensor nodes close to each other are more likely to keep a common key

unit than those that are far away from each other, and thus have a higher probability to

establish a common key.

An attractive feature of using deployment locations is that there is almost no

overhead. Once determining its location, a node only needs to perform simple computation

to rank the pre-distributed key units, and no communication with other sensor nodes is

required. Moreover, this approach allows incremental deployment of sensor nodes since the

only information a sensor node needs to prioritize its key units is its own location.

The approach described above can be used to improve many key pre-distribution

techniques (e.g. the basic probabilistic scheme [19], the q-composite scheme [11], the random

subset assignment scheme in [41]). However, the random pairwise keys scheme is based on a

different approach [11], where each key is related to two particular sensor nodes. This makes

it useless to apply the above approach in such a scheme. Nevertheless, the random pairwise

keys scheme can still have a better performance by loading an excessive amount of keys

in the memory for sensing applications. Since it provides the perfect security guarantee,

it is unnecessary to thwart node compromise attacks by removing low priority keys from

memory when the applications have enough memory.

5.2.2 Improving Random Subset Assignment Scheme with Deployment

Locations

In the random subset assignment scheme, the more polynomial shares a node has,

the more likely it can establish a common key with other sensor nodes. The improved

scheme reuses the memory for sensing applications to keep more polynomial shares during

key pre-distribution, gives higher priority to the polynomial shares that are most likely to

be used after the deployment location is known, and discards low-priority polynomial shares

to thwart node compromise attacks and returns memory to the applications.

139

The Improved Scheme

The details of the improved scheme are described below. The improvements are

mainly in the key pre-distribution and key prioritization phases.

1. Key Pre-Distribution: The key pre-distribution phase consists of two stages. In

the first stage, the setup server randomly generates a set F of bivariate t-degree

polynomials and associates each polynomial with a unique location in the target field.

These locations are evenly distributed over the entire target field. For the sake of

presentation, we use fx,y to denote the bivariate polynomial in F associated with the

location coordinate (x, y). For convenience, we also use the location coordinates as

the IDs of the corresponding bivariate polynomials. In the second stage, for each

sensor node, the setup server randomly picks a set of c bivariate polynomials from the

polynomial pool and distributes the corresponding polynomial shares as well as their

locations to the sensor node.

2. Key Prioritization: After deployment, each sensor node first determines its loca-

tion. Then based on this location and the locations associated with the pre-distributed

polynomial shares, the sensor node ranks the polynomial shares in terms of their dis-

tances to its deployment location. The closer a polynomial share to this sensor node,

the higher priority it has. For simplicity, we assume the sensor node chooses the

highest c′ polynomial shares to save, where c′ is the number of shares it keeps in the

memory reserved for keys. (A sensor node may keep more polynomial shares until the

sensing applications require the corresponding memory. However, as we will show in

our analysis, this makes the sensor network more vulnerable to node compromises.)

3. Direct Key Establishment: This phase can be performed in the same way as in

the original random subset assignment scheme [41]. To establish a direct key between

two sensor nodes, they only need to identify a common bivariate polynomial shared

between them, which can be achieved by exchanging the IDs of polynomial shares

that they have.

4. Addition and Revocation: To add a new sensor node, the setup server only needs

to perform the above key pre-distribution and key prioritization in the same way.

The revocation method is also straightforward. Each node only needs to remember

140

� �� � � � !�
Figure 5.9: Shared circles of neighbor sensor nodes

the IDs of the compromised sensor nodes that share at least one common bivariate

polynomial with itself. If more than t nodes that share the same bivariate polynomial

are compromised, a non-compromised sensor node that has a share of this polynomial

simply removes the corresponding share and all the related compromised sensor node

IDs from its memory.

Probability of Establishing Direct Keys between Neighbor Nodes

The ideas of using prior deployment and post deployment knowledge to improve

the performance of key pre-distribution are two independent techniques. They can combine

together easily to achieve better performance and security. In the rest of this subsection,

we only analyze the improvements on the performance and security introduced by using

key prioritization based on post deployment knowledge.

Similarly, we use the signal range dr as the basic unit to measure distances (dr = 1).

Assume each sensor node has m neighbor sensor nodes on average. In other words, there

are (m + 1) sensor nodes on average in an area of π · d2
r = π. We further assume the size of

the target field is S. Then the total number of sensor nodes in the network can be estimated

as S×(m+1)
π .

Consider a sensor node u that gets a set of c polynomial shares during the pre-

distribution phase and keeps c′ of them after key prioritization. Based on the key prioritiza-

tion process, node u keeps c′ polynomial shares whose associated locations are no more than

r away from u’s location, where r =
√

S×c′

πc =
√

c′×N
c×(m+1) . In other words, all the bivariate

polynomial shares that fall into the circle centered at this node’s location with radius r are

141

still in the sensor node’s memory. For convenience, we call such a circle the share circle.

The left part of Figure 5.9 illustrates the share circle and the signal range of node u. The

inner solid circle represents the area in which u can communicate with other sensor nodes

directly, while the outer dashed circle represents the area in which the c′ polynomial shares

that u keeps fall.

Consider a pair of neighbor sensor nodes u and v. As illustrated in the right part

of Figure 5.9, the polynomials that u and v share fall into the outer circles of both u and

v. In the following, we first estimate how many polynomial shares u or v has in this area,

and then estimate the probability that u and v have shares of a common polynomial (i.e.,

the probability that they can establish a direct key).

Assume the distance between u and v is d. Since they are neighbors, we have

d < dr = 1. It is easy to see that in a large sensor network, the total number of sensor

nodes in the network is usually much larger than the number of neighbor nodes for a

particular sensor node. Thus, we usually have c′ × N ≥ c × (m + 1), which implies r ≥ 1

(since r =
√

c′×N
c×(m+1)). Then we can estimate the size of the overlapped area of the share

circles of u and v as

So(d) = 2 × 2 × arccos(d/2r)

2π
× π × r2 − d ×

√

r2 − d2/4.

On average, the number of pre-distributed polynomial shares that fall into this

overlapped area for both u and v can be estimated by n(d) = ⌊c × So(d)
S ⌋. In other words,

both u and v have shares of about n(d) polynomials that fall into this area. We can

further estimate the total number of polynomials that are distributed over this area as

nt(d) = ⌊|F|× So(d)
S ⌋. Therefore, the probability that sensor nodes u and v share a common

polynomial can be estimated by

p(d) = 1 −
n(d)−1
∏

i=0

nt(d) − n(d) − i

nt(d) − i
.

Thus, the (average) probability of sharing a polynomial between neighbor sensor

nodes, which is equivalent to the probability of establishing a common direct key between

two neighbor sensor nodes, can be estimated by

p =

∫ dr

0

∫ 2π

0

p(ρ)ρ

πd2
r

dρdθ = 2

∫ 1

0
p(ρ)ρdρ.

Figure 5.10 shows the probabilities of establishing direct keys between neighbor

sensor nodes using key prioritization with different parameters. We assume the sensor

142

0

0.2

0.4

0.6

0.8

1

1.2

0% 200% 400% 600% 800% 1000%

Percentage of additional memory
P

ro
b

ab
ili

ty
 o

f
sh

ar
in

g
 a

 k
ey

b

et
w

ee
n

 n
ei

g
h

b
o

r
n

o
d

es

t=98,c'=2,|F|=11 t=65,c'=3,|F|=25 t=38,c'=5,|F|=67

t=18,c'=10,|F|=259 t=8,c'=20,|F|=1018

Figure 5.10: Probability of sharing a direct key between neighbor sensor nodes.

network has N = 10, 000 sensor nodes, the average number of neighbor sensor nodes is m =

30, and each sensor node’s memory for key units after key prioritization (c′) is equivalent to

200 cryptographic keys. The number of polynomials in the polynomial pool F is chosen to

make the probability of sharing a direct key between two neighbors be 0.33 if no additional

memory is allocated to store polynomial shares in the key pre-distribution phase. We can

clearly see that the probability of sharing a direct key between two neighbor sensor nodes

is improved significantly as the memory (c) allocated for pre-distributed polynomial shares

(before key prioritization) increases.

Security Analysis

Note that there are more polynomial shares stored in a sensor node before key

prioritization than after it. Thus, compromising sensor nodes before the key prioritization

phase reveals more secrets than compromising the same set of sensor nodes after it. An

attacker may take advantage of this observation and attack the network between the key

pre-distribution and key prioritization phases. However, once a sensor node determines

its location, it can finish key prioritization instantly. For convenience, we refer to the time

period between pre-distributing key units to a sensor node and completing key prioritization

in the sensor node as the window of vulnerability. Intuitively, the shorter the window of

vulnerability is, the fewer secrets may be disclosed due to compromised sensor nodes.

In the following, we evaluate the ability of the improved scheme to tolerate com-

promised sensor nodes in two situations.

Situation 1: No node compromises during the window of vulnerabil-

143

0

0.2

0.4

0.6

0.8

1

1.2

0 1000 2000 3000 4000 5000 6000

Number of compromised sensor nodes
F

ra
ct

io
n

 o
f

co
m

p
ro

m
is

ed

d
ir

ec
t

ke
ys

 b
et

w
ee

n
 n

o
n

-
co

m
p

ro
m

is
ed

 n
o

d
es

c=2,|F|=11 c=3,|F|=17 c=4,|F|=23

c=6,|F|=35 c=10,|F|=58 c=18,|F|=104

Figure 5.11: Security performance of the improved scheme in Situation 1.

ity. In this situation, we assume the sensor network is well-protected during the window

of vulnerability. That is, the sensor network is assumed to be secure and have none of its

sensor nodes compromised between key pre-distribution and key prioritization. After this

time period, the network may be exposed to attacks.

Assume an attacker randomly compromises Nc sensor nodes in the network after

the window of vulnerability. Consider any polynomial f in F . The probability that a sensor

node has a polynomial share of f is c′

|F| . Then we can estimate the probability that exactly

i out of Nc compromised sensor nodes have shares of this polynomial by

Pc(i) =
Nc!

(Nc − i)!i!
(

c′

|F|)
i(1 − c′

|F|)
Nc−i.

According to the results in [5], an attacker can compute any key generated using a

t-degree polynomial if he/she has at least t + 1 distinctive shares of this polynomial. Thus,

the probability of f being compromised is Pc = 1 −
∑t

i=0 Pc(i). Since f is any polynomial

in F , the fraction of compromised direct keys between non-compromised sensor nodes can

be estimated as Pc. The ratio c′

|F| in this formula also implies that given the same value of

t, the security performance against random node compromises will be the same if the ratio

between the number of shares stored in one sensor node after key prioritization and the total

number of polynomials in the polynomial pool is the same. Let us revisit Figure 5.10. Every

line in this figure has the same ratio c′

|F| (and thus the same security performance against

random node compromises). The shape of each line indicates that by using more extra

memory for key units before key prioritization, we can significantly improve the probability

of sharing common keys between neighbor sensor nodes without reducing the security.

144

Figure 5.11 shows the security performances of the improved scheme under differ-

ent conditions. Following [41], we evaluate the security performance using the fraction of

compromised direct keys between non-compromised sensor nodes given a number of com-

promised sensor nodes. We assume each sensor node keeps key materials equivalent to 200

keys after key prioritization, the probability of sharing a common key between two sensor

nodes is 0.33, and each sensor node only keeps c′ = 2 key units after key prioritization.

Parameter c represents the number of key units distributed to each sensor node during key

pre-distribution. In the special case of c = 2, the improved scheme becomes the original

random subset assignment scheme proposed in [41]. (Note that for different values of c,

we need a different number of polynomials in the polynomial pool to maintain the same

probability of sharing common keys between neighbor sensor nodes.) Figure 5.11 shows

that when c increases by 1, the vertical line shifts to the right significantly. This means

the security is improved significantly as the additional memory for polynomial shares at the

pre-distribution stage increases.

Situation 2: Limited node compromises during the window of vulner-

ability. In the second situation, we assume an attacker is able to compromise up to

Nt sensor nodes after key pre-distribution but before key prioritization. We consider the

worst case in the following analysis; that is, the attacker has compromised Nt sensor nodes.

Assume the attacker randomly compromises Nc sensor nodes after the key prioritization

phase. Consider any polynomial f in F . The probability that a sensor node compromised

before key prioritization has a polynomial share of f is c
|F| . Similarly, the probability that a

sensor node compromised after key prioritization has a polynomial share of f is c′

|F| . Thus,

the probability that exactly i compromised sensor nodes have polynomial shares of f can

be calculated by

Pc(i) =
∑

j+k=i

Nt!

(Nt − j)!j!
(

c

|F|)
j(1 − c

|F|)
Nt−j Nc!

(Nc − k)!k!
(

c′

|F|)
k(1 − c′

|F|)
Nt−k.

Therefore, the probability of this polynomial being compromised can be estimated as

Pc = 1 − ∑t
i=0 Pc(i). Since f is any polynomial in the polynomial pool, the fraction of

compromised direct keys between non-compromised sensor nodes can be also estimated as

Pc.

Figure 5.12 shows the security performance of the improved scheme when an at-

tacker compromises a few sensor nodes before the sensor nodes finish key prioritization.

Similar to Situation 1, we assume each sensor node keeps key materials equivalent to 200

145

0

0.2

0.4

0.6

0.8

1

1.2

100 1100 2100 3100 4100 5100 6100

Number of compromised sensor nods

F
ra

ct
io

n
 o

f
co

m
p

ro
m

is
ed

d

ir
ec

t
ke

ys
 b

et
w

ee
n

 n
o

n
-

co
m

p
ro

m
is

ed
 n

o
d

es

c=2,|F|=11 c=3,|F|=17 c=4,|F|=23
c=6,|F|=35 c=10,|F|=58 c=18,|F|=104

(a) Nt = 100

0

0.2

0.4

0.6

0.8

1

1.2

500 1000 1500 2000 2500

Number of compromised sensor nodes

F
ra

ct
io

n
 o

f
co

m
p

ro
m

is
ed

d

ir
ec

t
ke

ys
 b

et
w

ee
n

 n
o

n
-

co
m

p
ro

m
is

ed
 n

o
d

es

c=2,|F|=11 c=3,|F|=17 c=4,|F|=23
c=6,|F|=35 c=10,|F|=58 c=18,|F|=104

(b) Nt = 500

Figure 5.12: Security performance of the improved scheme in Situation 2.

keys after key prioritization, the probability of sharing a common key between two sensor

nodes is 0.33, and each sensor node only keeps c′ = 2 key units after key prioritization.

When there are only a small number of compromised sensor nodes before the key prior-

itization phase (e.g., 100 nodes in Figure 5.12(a)), the security performance is enhanced

significantly by increasing the number of pre-distributed polynomial shares at the pre-

distribution phase. When there are too many compromised sensor nodes before the key

prioritization phase (e.g., 500 nodes in Figure 5.12(b)), the security performance can still

be improved by increasing the number of polynomial shares at the pre-distribution phase,

but it is not as significant as in the previous case. In general, the fewer sensor nodes com-

promised before key prioritization, the more improvement we can achieve by increasing the

number of pre-distributed polynomial shares in the key pre-distribution phase.

Since a sensor node can finish key prioritization almost instantly after it determines

its location, we believe the sensor nodes can be protected fairly well during the window of

vulnerability. Indeed, a sensor node is not vulnerable at the same level during the entire

window of vulnerability. The most vulnerable period of time is the period after deployment

and before key prioritization, which is actually quite short due to the ease of completing

key prioritization. Thus, we believe that it is unlikely that an attacker can compromise a

large number of sensor nodes before they finish key prioritization.

146

Overheads

Since the improved scheme uses application memory only before key prioritization,

it has almost the same overheads as the original scheme. Specifically, each sensor node

has to store c polynomial shares and the locations associated with these shares in the

key pre-distribution phase, and only keeps c′ of them after determining its deployment

location. A location coordinate can be represented with integers much smaller than a

polynomial share (e.g., 4 bytes to encode x or y coordinate). Each location coordinate

takes approximately the same space as one key. Thus, the storage overhead in a sensor

node is approximately c(t + 2) log q in the key pre-distribution phase. Similarly, after key

prioritization, the storage overhead for key units is about c′(t + 2) log q. In addition, each

sensor node needs to remember the IDs of compromised sensor nodes with which this node

shares at least one common polynomial. This introduces at most c′t log q′ storage overhead

after key prioritization, where q′ is a number that is large enough to accommodate all

sensor nodes in the network. To establish a common key with a given neighbor node, two

sensor nodes only need to exchange their polynomial IDs. To compute a pairwise key, both

sensor nodes need to evaluate a t-degree polynomial, which can be done efficiently with the

optimization technique in [41].

5.3 Improving Key Pre-Distribution with Group-Based De-

ployment

In this section, we introduce a practical deployment model, where sensor nodes are

only required to be deployed in groups. The knowledge used to improve the performance of

key pre-distribution is the assumption that the sensor nodes belonging to the same group

are deployed close to each other. This assumption is generally true since the sensor nodes

in the same group are supposed to be deployed from the same point at the same time. For

example, a group of sensor nodes are dropped from the helicopter during the deployment.

For the sake of presentation, we call such a group of sensor nodes a deployment group.

We assume that sensor nodes are static once they are deployed. We define the

resident point of a sensor node as the point location where this sensor node finally resides.

Sensors’ resident points are generally different from each other. However, we assume the

147

resident points of the sensor nodes in the same group follow the same probability distribution

function. The detailed description of the deployment model is given below.

5.3.1 Group-Based Deployment Model

The sensor nodes to be deployed are divided into n groups {Gi}i=1,...,n. The nodes

in the same deployment group Gi are deployed from the same place at the same time with

the deployment index i. During the deployment, the resident point of any node in group Gi

follows a probability distribution function fi(x, y), which we call the deployment distribution

of group Gi. An example of the pdf fi(x, y) is a two-dimensional Gaussian distribution.

Figure 5.13 illustrates a two-dimensional Gaussian distribution at the center (150, 150).

0
50

100
150

200
250

300

0

50

100

150

200

250

300
0

1

2

3

4

5

6

7

x 10
−5

Figure 5.13: Deployment Distribution

The actual deployment distribution is affected by many factors. For simplicity,

we model the deployment distribution as a Gaussian distribution (also called Normal dis-

tribution). Gaussian distribution is widely studied and proved to be useful in practice.

Although we only employ the Gaussian distribution, our methodology can be applied to

other distributions as well.

We assume that the deployment distribution for any node in group Gi follows a

two-dimensional Gaussian distribution centered at a deployment point (xi, yi). Different

from the deployment models in [16, 29], where the deployment points of groups are pre-

determined, we do not assume any prior knowledge of such deployment points. In fact, we

only assume the existence of such deployment points. The mean of the Gaussian distribution

148

µ equals (xi, yi), and the pdf for any node in group Gi is the following:

fi(x, y) =
1

2πσ2
e−[(x−xi)2+(y−yi)2]/2σ2

= f(x − xi, y − yi),

where σ is the standard deviation, and f(x, y) = 1
2πσ2 e−(x2+y2)/2σ2

.

According to the deployment model discussed before, the sensor nodes in the

same deployment group have high probability of being neighbors. To take advantage of this

observation, the pairwise key pre-distribution techniques should at least benefit the sensor

nodes in the same deployment group. Hence, we first employ an in-group key pre-distribution

method, which enables the sensor nodes in the same deployment group to establish pairwise

keys between each other with high probability. To handle the pairwise key establishment

between sensor nodes in different deployment groups, we then employ a cross-group key pre-

distribution method, which enables selected sensor nodes in different deployment groups to

establish pairwise keys and thus bridges different deployment groups together.

In the above idea, as long as a key pre-distribution technique can provide pairwise

key establishment between sensor nodes in a group, it can be used as the basic building

block to construct the group-based scheme. This implies that our framework can be applied

to any existing key pre-distribution technique.

5.3.2 A General Framework

Without loss of generality, let D denote the key pre-distribution technique used in

the framework. This subsection shows how to construct an improved key pre-distribution

technique by applying the group knowledge to D.

A key pre-distribution technique can usually be divided into three phases, pre-

distribution, which specifies how to pre-distribute keying materials to each sensor node,

direct key establishment, which specifies how to establish a pairwise key shared between two

sensor nodes directly, and path key establishment, which specifies how to find a sequence of

nodes to help two given nodes establish a temporary session key. The key established in

the direct key establishment phase is called the direct key, while the key established in the

path key establishment phase is called the indirect key.

We refer to an instantiation of D for a group of sensor nodes as a key pre-

distribution instance. A key pre-distribution instance D includes a set of target sensor

nodes G, a set of keying materials K (e.g., keys [19, 11], polynomials [41], or matrixes [17]),

149

and a function g that maps an ID in G to a subset of keying materials in K. In such an

instance, each sensor node i in group G is pre-distributed with a set of secrets that are

computed from the mapping result of ID i under function g. This set of secrets could be

keys [19, 11], polynomial shares [41], or a row of elements on a matrix [17].

We also define the following property functions to characterize the typical proper-

ties of a key pre-distribution instance.

• M(D): the memory requirements on sensor nodes for a key pre-distribution instance

D.

• pdk(D): the probability of sharing a direct key between any two sensor nodes in a key

pre-distribution instance D.

• pcd(D,x): the probability of a direct key between two non-compromised sensor nodes

being compromised in a key pre-distribution instance D when the adversary has ran-

domly compromised x sensor nodes.

Our group-based framework is built upon a number of key pre-distribution in-

stances. For simplicity, we assume there are n equal size deployment groups with m sensor

nodes in each of those groups. The details of the our framework are described below.

Pre-Distribution

For each deployment group Gi, we randomly generate a key pre-distribution in-

stance Di. The pairwise key establishment between sensor nodes in group Gi is based on

instance Di. For the sake of presentation, these randomly generated instances are called

the in-group (key pre-distribution) instances.

To handle the pairwise key establishment between sensor nodes in different de-

ployment groups, we further generate m key pre-distribution instances {D′
i}i=1,...,n. These

instances are called the cross-group (key pre-distribution) instances. The set of sensor nodes

having the same cross-group instance D′
i form a cross group G′

i. The requirements on these

cross groups {G′
1, ..., G

′
m} are: (1) each cross group includes exactly one sensor node from

each deployment group, and (2) there are no common sensor nodes between any two dif-

ferent cross groups. In other words, for any i and j with i 6= j, we have G′
i ∩ G′

j = φ

and |G′
i ∩ Gj | = 1. By doing this, each cross group provides a potential link for any two

deployment groups.

150

In the following, we propose a simple way to construct deployment groups and

cross groups. Basically, each deployment group Gi contains the sensor nodes with IDs

{(i − 1)m + j}j=1,...,m, while each cross group G′
i contains the sensor nodes with IDs {i +

(j − 1)m}j=1,...,n. Figure 5.14 shows an example of such a construction when n = 4 and

m = 3. In the figure, G′
1 includes nodes 1, 4, 7 and 10, G′

2 includes nodes 2, 5, 8 and 11,

and G′
3 includes nodes 3, 6, 9 and 12." # $ " %& ' (" ") * + " &

, - , . , / , 0 , 1 -, 1., 1/
Figure 5.14: Example of group construction

Direct Key Establishment

After pre-distribution, each sensor node belongs to two key pre-distribution in-

stances, an in-group instance and a cross-group instance. Hence, the direct key establish-

ment between two sensor nodes is simple and direct. If they are in the same deployment

group, for example Gi, they can follow the direct key establishment of the in-group instance

Di. If they are not in the same deployment group but belong to the same cross group G′
j ,

they can follow the direct key establishment of the cross-group instance D′
j . To determine

if two sensor nodes are in the same deployment group or the same cross group, they only

need to exchange the IDs of groups that they belong to. In our framework, they only need

to know the ID of the other party due to our group construction method.

151

Path Key Establishment

If two nodes cannot establish a direct key, they have to go through path key

establishment to find a number of other sensor nodes to help them establish an indirect

key. Similar to the direct key establishment, if two nodes are in the same deployment group

Gi, they can follow the path key establishment in Di. The indirect keys between sensor

nodes in the same group are called the in-group indirect keys. When two nodes belong

to two different groups Gi and Gj , we use a different method to establish an indirect key.

Basically, we need to find a “bridge” between these two deployment groups in order to setup

a cross-group indirect key. A bridge between group Gi and Gj is defined as a pair of sensor

nodes 〈a, b〉 (a ∈ Gi and b ∈ Gj) that belong to the same cross group G′
k (a, b ∈ G′

k). A

bridge is valid when the two sensor nodes involved in this bridge can establish a direct key.

According to the pre-distribution step, there are m potential bridges (one from

each cross group) that can be used to establish an indirect key. In addition, due to our

group construction method, a sensor node can easily compute all possible bridges between

any two deployment groups. Specifically, the possible bridges between group Gi and Gj are

{〈(i − 1)m + k, (j − 1)m + k〉}k=1,...,m. For example, there are 3 bridges between group G1

and G4 in Figure 5.14: 〈1, 10〉, 〈2, 11〉, and 〈3, 12〉.
Assume every message between two sensor nodes is encrypted and authenticated

by the pairwise key established between them. The path key establishment for the sensor

nodes in different deployment groups works as follows.

1. The source node u first tries the bridge involving itself to establish an indirect key

with the destination node v. Assume this bridge is 〈u, v′〉. Node u first sends a request

to v′ if it can establish a direct key with v′. If node v′ can also establish a (direct

or indirect) key with the destination node v, node v′ forwards this request to the

destination node v to establish an indirect key.

2. If the first step fails, node u tries the bridge that involves the destination node v.

Assume the bridge is 〈u′, v〉. In this case, node u sends a request to node u′ if it can

establish a (direct or indirect) key with u′. If node u′ can establish a direct key with

node v, it forwards the request to the destination node v to establish an indirect key.

Note that if node u and v are in the same cross group, this step can be skipped since

step 1 and step 2 compute the same bridge.

152

3. When both of the above steps fail, node u has to try other bridges. Basically, it

randomly chooses a bridge 〈u′, v′〉 other than the above two, assuming u′ is in the

same deployment group with u, and v′ is in the same deployment group with v. Node

u then sends a request to u′ if it can establish a (direct or indirect) key with u′. Once

u′ receives this request, it forwards the request to v′ in the bridge if they share a

direct key. If v′ can establish a (direct or indirect) key with the destination node v,

it forwards the request to node v to establish an indirect key.

To show an example, we use the same configuration as in Figure 5.14. When node

1 wants to establish a pairwise key with node 12, it first tries the bridge 〈1, 10〉. If this fails,

it tries the bridge 〈3, 12〉. If both bridges fail, it needs to try the bridge 〈2, 11〉. If none of

these bridges works, the path key establishment fails. In our later analysis, we will see that

it is usually very unlikely that none of those bridges works.

Note that in the above approach, the path key establishment in a cross-group

instance has never been used. The reason is that the sensor nodes in a cross group usually

spread over the entire deployment field, which may introduce significant communication

overhead in path key establishment.

5.3.3 Performance Analysis

For simplicity, we assume all those in-group and cross-group key pre-distribution

instances have the same property functions (M(D), pdk(D), and pcd(D,x)). Indeed, this

assumption is true for the key pre-distribution techniques in [19, 11, 17, 41] given the same

storage overhead, group size, and keying material size. Thus, we use M , pdk, and pcd(x) to

represent the three property functions, respectively. Table 5.2 lists the notations that are

used frequently in our analysis.

Overhead

Obviously, the storage overhead on a sensor node can be estimated as 2M . The

communication overhead to establish a direct key is the same as the communication overhead

to establish a direct key in an in-group or cross-group key pre-distribution instance. When

two nodes need to establish an indirect key, there are two cases. If these two nodes are

in the same deployment group, the path key establishment only involves the sensor nodes

153

Table 5.2: Notations

n number of deployment groups
m number of nodes in a deployment group
c number of compromised sensor nodes

M memory required for one key pre-distribution instance
pdk probability of having a direct key in a key pre-distribution instance
pcd(x) probability of a direct key being compromised in a key pre-

distribution instance when the adversary has randomly compromised
x nodes

pgdk probability of having a direct key in the group-based scheme
pgcd(x) probability of a direct key being compromised in the group-based

scheme when the adversary has randomly compromised x nodes
pgci−in(x) probability of an indirect key between two nodes in the same deploy-

ment group being compromised when the adversary has randomly
compromised x nodes

pgci−cr(x) probability of an indirect key between two nodes in different deploy-
ment groups being compromised when the adversary has randomly
compromised x nodes

in this deployment group. If these two nodes are in different deployment groups, the path

key establishment only involves those in the same deployment group with the source node

or the destination node. In other words, the communication is limited in two deployment

groups. In addition, we also note that if two sensor nodes in two deployment groups are

neighbors, the corresponding deployment groups have high probability of being close to each

other, which may reduce the overall communication overhead significantly in their path key

establishment.

Establishing Direct Keys

Consider a particular sensor node u in the deployment group Gi at position (x′, y′).

Let A denote its communication area in which any other sensor node can directly commu-

nication with node u. We assume A is a circle centered at (x′, y′) with radius R, where

R is the radio range of a sensor node. Thus, the average number of sensor nodes in the

deployment group Gj that finally reside in A can be estimated as

ni,j(x
′, y′) = m

∫∫

A
f(x − xj , y − yj)dxdy.

For any deployment group Gj other than Gi, we know that there is only one sensor

154

node u′ in Gj that shares the same cross group G′
k with node u. Thus, the probability of

this node u′ being deployed in A can be estimated as
ni,j(x′,y′)

m . This indicates that among

all those sensor nodes deployed in A, the average number of senor nodes that belong to the

deployment groups other than Gi but share the same cross group G′
k with node u can be

estimated as

n′
i(x

′, y′) =

∑n
j=1,j 6=i ni,j(x

′, y′)

m
.

When sensor nodes are evenly distributed in the deployment field, it is possible

to further simplify the above equation. Suppose the average number of sensor nodes in the

communication range of a sensor node is nA. We have
∑n

j=1,j 6=i ni,j(x
′, y′) = nA−ni,i(x

′, y′).

Thus,

n′
i(x

′, y′) =
nA − ni,i(x

′, y′)

m
.

In addition, the probability of having a direct key between u and any sensor

node that shares the same key pre-distribution instance with u is pdk. Thus, the average

number of sensor nodes in A that can establish direct keys with node u can be estimated

as (ni,i(x
′, y′) + n′

i(x
′, y′)) × pdk. This means that the probability of u having direct keys

with its neighbor nodes can be estimated as

pi(x
′, y′) =

(ni,i(x
′, y′) + n′

i(x
′, y′)) × pdk

nA
.

Hence, for any node in group Gi, the probability of having direct keys with its

neighbor nodes can be estimated as

pgdk =

∫∫

S
f(x − xi, y − xi)pi(x, y)dxdy,

where S denotes the entire deployment field.

pgdk can also be used to estimate the probability of any node in any deployment

group having a direct key with its neighbor node when S is an infinite field. For a given

deployment field S, we simply configure the deployment point of Gi as its geometric centroid

and use the probability of a node in Gi having a direct key with its neighbor node to represent

the probability of having a direct key between any two neighbor nodes.

To evaluate the performance of our approach when it is combined with a particular

key pre-distribution technique (e.g., the random pairwise keys scheme), we use the following

155

configuration. We assume there are totally 10,000 sensor nodes deployed on a 1000m ×
1000m area. These sensor nodes are divided into 100 deployment groups with 100 sensor

nodes in each group (n = m = 100). We assume sensor nodes are evenly distributed in the

deployment field so that the probability of finding a node in each equal size region can be

made approximately equal. In other words, the density of sensor nodes is approximately one

sensor node per 100 square meters. We always assume the radio range is R = 40m. Thus,

there are π×40×40
100 ≈ 50.27 sensor nodes on average in the communication range of a given

sensor node. We also set σ = 50m in all those deployment distributions {fi(x, y)}i=1,...,n.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.2 0.4 0.6 0.8 1

Probability of having direct keys in a instance

P
ro

b
ab

ili
ty

 o
f

h
av

in
g

 d
ir

ec
t

ke
ys

b
et

w
ee

n
 n

ei
g

h
b

o
r

n
o

d
es

Figure 5.15: Probability of having a direct key between two neighbor nodes.

Figure 5.15 shows the probability of having a direct key between two neighbor

nodes under the above configuration. We can see that the probability pgcd increases almost

linearly as pdk increases. Since pdk can be made quite large with small storage overhead

for a small group of sensor nodes, we expect that the group-based schemes can improve the

performance of existing key pre-distribution techniques significantly. To illustrate this point,

we investigate the improvements we can achieve by combining the framework with the basic

probabilistic key pre-distribution scheme in [19], the random pairwise keys scheme in [11],

and the polynomial-based key pre-distribution in [5]. The result of combination generates

three novel key pre-distribution schemes: a group-based EG scheme, which combines the

framework with the basic probabilistic scheme; a group-based RK scheme, which combines

the framework with the random pairwise keys scheme; and a group-based PB scheme, which

combines the framework with the polynomial-based scheme.

For the basic probabilistic key pre-distribution scheme, we assume the key pool

size is 100, 000. This key pool is divided into 200 small equal size key pools in the group-

156

based EG scheme (500 keys in each small key pool). Each key pre-distribution instance uses

a unique key pool. Each sensor node selects the same number of keys from the key pools in

its in-group instance and cross-group instance. Figure 5.16 shows that the group-based EG

scheme improves the probability of having a direct key between two neighbor sensor nodes

significantly when there are severe memory constraints (e.g., 50 keys on each sensor node).

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100 150 200

Memory usage

P
ro

b
ab

ili
ty

 o
f

h
av

in
g

 d
ir

ec
t

ke
ys

b
et

w
ee

n
 n

ei
g

h
b

o
r

n
o

d
es

Basic probabilistic

Group-based EG

Figure 5.16: Probability of having a direct key between two neighbor sensor nodes. Memory
usage is measured by counting the number of keys stored on each node.

Figure 5.17 compares the probability of having direct keys between neighbor nodes

for both the random pairwise keys scheme in [11] and the group-based RK scheme under the

same memory constraint. We can clearly see that our framework can significantly improve

the probability of having a direct key between two neighbor sensor nodes for the random

pairwise keys scheme. This indicates that the group-based RK scheme can support larger

sensor networks than the random pairwise keys scheme given the same configuration.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100 150 200

Memory usage

P
ro

b
ab

ili
ty

 o
f

h
av

in
g

 d
ir

ec
t

ke
ys

b
et

w
ee

n
 n

ei
g

h
b

o
r

n
o

d
es

Random pairwise keys

Group-based extension

Figure 5.17: Probability of having a direct key between two neighbor sensor nodes. Memory
usage is measured by counting the number of keys stored on each node.

Figure 5.18 shows the probability of having direct keys between neighbor sensor

157

nodes for the group-based PB scheme, the random subset assignment scheme [41], and the

grid-based scheme [41]. For all these schemes, we assume the same number of bivariate

polynomials in the system and the same number of polynomial shares stored on each sensor

node. Specifically, there are 100 deployment groups and 100 cross groups for the group-

based PB scheme. Each of these groups is assigned one unique bivariate polynomial for the

corresponding key pre-distribution instance. Each sensor node gets assigned the polynomial

shares on its in-group instance and cross-group instance. Similarly, there are 200 bivariate

polynomials in the polynomial pools of the random subset assignment scheme and the grid-

based scheme. The random subset assignment scheme assigns the polynomial shares of

two randomly selected polynomials from the pool to each sensor node, while the grid-based

scheme arranges 200 polynomials on a 100×100 grid. We can clearly see that the probability

of having a direct key between two neighbor sensor nodes in the group-based PB scheme is

much higher than that in the random subset assignment scheme and the grid-based scheme.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100 150 200

Memory usage

P
ro

b
ab

ili
ty

 o
f

h
av

in
g

 d
ir

ec
t

ke
ys

b
et

w
ee

n
 n

ei
g

h
b

o
r

n
o

d
es

Random subset assignment
Grid-based scheme
Group-based PB

Figure 5.18: Probability of having a direct key between two neighbor sensor nodes. Memory
usage is measured by counting the number of polynomial coefficients stored on each node.

Establishing Indirect Keys

In the following, we estimate the probability of having an indirect key between

two neighbor sensor nodes if they cannot establish a direct key.

Obviously, if two neighbor sensor nodes are in the same deployment group Gi, they

can follow the path key establishment of Di to establish an indirect key. We note that a

deployment group usually has a limited number of sensor nodes (e.g., 100). Since the nodes

in the same deployment group are usually close to each other, a sensor node can easily

158

contact most of the other nodes in the same deployment group. For example, a sensor node

can launch a group flooding, where only the sensor nodes in the same group participate in

the flooding, to contact other nodes. Thus, we believe that it is usually possible to configure

the key pre-distribution instance for a deployment group with small storage overhead so

that any two sensor nodes in this group can either share a direct key or establish an indirect

key at a very high probability with reasonable communication overhead. For example, we

employ the random pairwise keys scheme in [11] for a group of 100 sensor nodes and assign

50 keys to each sensor node. In this case, a sensor node can establish a direct key with

its neighbor node at a probability of 0.5. After contacting half of the sensor nodes in this

group, the probability of finding one node that shares direct keys with both the source and

destination nodes can be estimated as 1 − (1 − 0.5 × 0.5)50 ≈ 0.999999. Hence, we always

assume two sensor nodes in the same deployment group can always establish an indirect

key.

The situation becomes more complicated if two sensor nodes are in different de-

ployment groups. In this case, they have to find a valid bridge between these two deployment

groups to establish an indirect key. Since there are m cross groups, there are m potential

bridges. As long as one of them works, the source node can establish an indirect key with

the destination node through this bridge. The probability that none of these bridges works

can be estimated as (1− pdk)
m. Thus, the probability that at least one bridge works, which

is equivalent to the probability of having an indirect key between two neighbor nodes in

different deployment groups, can be estimated as 1 − (1 − pdk)
m.

Figure 5.19 illustrates the probability of having an indirect key between two neigh-

bor sensor nodes that are in different deployment groups, assuming the same configuration

as in Section 5.3.3 for the group-based EG scheme, the group-based RK scheme, and the

group-based PB scheme. We can see that two neighbor sensor nodes in different deployment

groups can usually establish an indirect key even if there are severe memory constraints on

sensor nodes (e.g., 10 keys per sensor node).

5.3.4 Security Analysis

The main threat we consider in the security analysis is the compromise of sensor

nodes. We assume an adversary randomly compromises c sensor nodes in the network. This

subsection focuses on the impact of compromised sensor nodes on the direct key establish-

159

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

Memory usage

P
ro

b
ab

ili
ty

 o
f

h
av

in
g

 in
d

ir
ec

t
ke

ys
b

et
w

ee
n

 d
ep

lo
ym

en
t

g
ro

u
p

s

Group-based EG
Group-based RK
Group-based PB

Figure 5.19: Probability of having indirect keys between sensor nodes in different deploy-
ment groups. Memory usage is measured by counting the number of keys or polynomial
coefficients stored on each node.

ment and the path key establishment.

Similar to the analysis in the previous subsection, we investigate the security of

the proposed framework after combining it with the basic probabilistic key pre-distribution

scheme in [19], the random pairwise keys scheme in [11], and the polynomial-based key

pre-distribution in [5].

It is easy to see that the grid-based scheme in [41] can be considered as a group-

based PB scheme if a row or a column of sensor nodes in the grid are deployed in the same

group. This means that the grid-based scheme and the group-based PB scheme have the

same security performance against node capture attacks given the same configuration (e.g.,

storage overhead, network size). Thus, in our later security analysis, we simply skip the

security comparison between the grid-based scheme and the group-based PB scheme. On

the other hand, we noticed in Figure 5.18 that the group-based PB scheme can achieve

much higher probability of establishing direct keys between neighbor sensor nodes than the

grid-based scheme. This implies that the group-based PB scheme is more desirable than

the grid-based scheme when the group-based deployment model is made possible.

During the evaluation, we always assume that the memory usage at each sensor

node is equivalent to storing 100 cryptographic keys. According to the previous configura-

tion, there are 10, 000 sensor nodes in the network, and n = m = 100. Thus, for the random

pairwise keys scheme, the probability of having a direct key between two neighbor nodes is

0.01, while for the group-based RK scheme, the probability of having a direct key between

two neighbor nodes is 0.15 as shown in Figure 5.17.

160

In addition to the above key pre-distribution schemes, we configure all other

schemes in such a way that the probability of having a direct key between two neighbor

sensor nodes is 0.3.

• Basic probabilistic scheme in [19]: The key pool size is 28,136. Each sensor node

randomly selects 100 keys from this pool.

• Random subset assignment scheme in [41]: The polynomial pool size is 13, and each

polynomial has the degree of 49. Each sensor node randomly selects 2 polynomials

from the pool and stores the corresponding polynomial shares.

• Group-based EG scheme: The key pool size in each instance is 500. Each sensor node

randomly selects 50 keys from its in-group instance and 50 keys from its cross-group

instance.

• Group-based PB scheme: Each instance includes a 49-degree bivariate polynomial.

Each sensor node gets assigned the polynomial shares from its in-group instance and

cross-group instance.

Impact on Direct Key Establishment

Consider a direct key between two non-compromised sensor nodes in the same

deployment group Gi. Since there are totally c compromised sensor nodes, the probability

of j sensor nodes in group Gi being compromised can be estimated as c!
(c−j)!j!

(n−1)c−j

nc for

j ≤ m−2. When j sensor nodes in group Gi are compromised, the probability of this direct

key being compromised can be estimated as pcd(j). Hence, the probability of any direct key

between two non-compromised sensor nodes in a deployment group being compromised can

be estimated as

pgcd(c) =
m−2
∑

j=0,j<=c

c!

(c − j)!j!

(n − 1)c−j

nc
pcd(j)

Since n = m, the above pgcd(c) can also be used to estimate the probability of

a direct key between two non-compromised sensor nodes in the same cross group being

compromised.

Figure 5.20 compares the probability of a direct key between two non-compromised

sensor nodes being compromised for the basic probabilistic key pre-distribution scheme in

161

[19] and the group-based EG scheme. We can see that the security of direct keys can be

significantly improved by applying our framework.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200

Number of compromised nodes

P
ro

b
ab

ili
ty

 o
f

a
d

ir
ec

t
ke

y
b

ei
n

g
co

m
p

ro
m

is
ed

Basic probabilistic
Group-based EG

Figure 5.20: Probability of a direct key between two non-compromised nodes being com-
promised. Assume the probability of having a direct key between two neighbor nodes is
0.3.

For the random pairwise keys scheme [11], the compromise of sensor nodes does not

affect any of the direct keys established between non-compromised sensor nodes (pcd(j) = 0)

since every key is generated randomly and independently. Thus, if we apply our framework

to the random pairwise keys scheme, the resulting scheme still has the perfect security

guarantee against node capture attacks (pgcd(c) = 0), which means that the compromise of

sensor nodes does not affect direct keys between non-compromised nodes. Together with

the result in Figure 5.17, we can conclude that our framework can improve the probability

of having direct keys between neighbor sensor nodes significantly without sacrificing the

security of direct keys.

Figure 5.21 shows the probability of a direct key between two non-compromised

sensor nodes being compromised for the group-based PB scheme and the random subset

assignment scheme in [41]. We can see that the group-based PB scheme has much better se-

curity performance than the random subset assignment scheme in terms of the compromised

direct keys.

Impact on Path Key Establishment

In the following, we first study the impact of compromised sensor nodes on the

indirect keys established between sensor nodes in the same deployment group (in-group

indirect keys), and then study the impact of compromised sensor nodes on the indirect

162

0

0.2

0.4

0.6

0.8

1

1.2

0 1000 2000 3000 4000 5000 6000

Number of compromised nodes

P
ro

b
ab

ili
ty

 o
f

a
d

ir
ec

t
ke

y
b

ei
n

g
co

m
p

ro
m

is
ed

Random subset assignment
Group-based PB

Figure 5.21: Probability of a direct key between two non-compromised nodes being com-
promised. Assume the probability of having a direct key between two neighbor nodes is
0.3.

keys established between sensor nodes in different deployment groups (cross-group indirect

keys).

Note that when the compromised nodes can be detected, two non-compromised

nodes can always re-establish an indirect key through path key establishment and avoid

those compromised sensor nodes or compromised key pre-distribution instances. However,

it is usually very difficult to detect compromised sensor nodes. When the compromised

nodes cannot be detected, the indirect key between two non-compromised nodes may be

disclosed to the attacker without being noticed. In the following analysis, we focus on

the probability of a given indirect key between two non-compromised sensor nodes being

compromised when the node capture attacks cannot be detected.

Probability of compromised in-group indirect keys: When there are c com-

promised sensor nodes, the probability of a particular sensor node being compromised can

be estimated as c
nm−2 . According to our earlier analysis, the probability of establishing an

in-group indirect key that only involves one intermediate node is usually very high. For

simplicity, we assume the in-group indirect key can always be established through one inter-

mediate node. Thus, the establishment of an in-group indirect key involves an intermediate

node, a direct key for the link between the source node and the intermediate node, and

a direct key for the link between the intermediate node and the destination node. Thus,

if the intermediate node and the two direct keys are not compromised, the indirect key

is still secure. This means that the probability of an in-group indirect key between two

non-compromised nodes being compromised can be estimated as

163

pgci−in(c) = 1 − (1 − c

nm − 2
)(1 − pgcd(c))

2

Figure 5.22 shows the probability of an in-group indirect key between two non-

compromised nodes being compromised for the group-based EG scheme. It also includes

the probability of a given indirect key (involving only one intermediate node) between two

non-compromised nodes being compromised for the basic probabilistic scheme in [19]. We

can see that the group-based EG scheme has higher security guarantee for the indirect keys

between the sensor nodes in the same deployment group.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200

Number of compromised nodes

P
ro

b
ab

ili
ty

 o
f

in
d

ir
ec

t
ke

ys
 in

 t
h

e
sa

m
e

g
ro

u
p

 b
ei

n
g

 c
o

m
p

ro
m

is
ed Basic probabilistic

Group-based EG

Figure 5.22: pgci−in(c) for the group-based EG scheme and the probability of an indirect
key being compromised for the basic probabilistic scheme. Assume the probability of having
a direct key between two neighbor nodes is 0.3.

For the group-based RK scheme, since pgcd(c) = 0, we have pgci−in(c) = c
nm−2 .

This means that given the same network size, the probability of an in-group indirect key

being compromised for the group-based RK scheme will be equal to the probability of a

given indirect key (involving only one intermediate node) being compromised in the random

pairwise keys scheme in [11]. However, we note the probability of having a direct key

between two neighbor nodes in the random pairwise keys scheme is much lower than that

in the group-based RK scheme. In fact, given a large sensor network and small storage

overhead, it is very difficult and expensive for the random pairwise keys scheme to establish

an indirect key (not to mention the indirect key that involves only one intermediate node)

between two neighbor nodes. On the other hand, according to the analysis in Section 5.3.3,

we know that the probability of having an indirect key between two neighbor nodes is

almost 1 for the group-based RK scheme even if there are severe memory constraints on

164

sensor nodes. Hence, in later discussion, we will also skip the security comparison between

these two schemes.

Figure 5.23 shows the probability of an in-group indirect key between two non-

compromised nodes being compromised for the group-based PB scheme. It also includes the

probability of a given indirect key (involving only one intermediate node) between two non-

compromised nodes being compromised for the random subset assignment scheme in [41].

We can see that the group-based PB scheme has much better security performance than

the random subset assignment scheme in terms of the compromised indirect keys between

nodes in the same deployment group.

0

0.2

0.4

0.6

0.8

1

1.2

0 1000 2000 3000 4000 5000 6000

Number of compromised nodes

P
ro

b
ab

ili
ty

 o
f

in
d

ir
ec

t
ke

ys
 in

 t
h

e
sa

m
e

g
ro

u
p

 b
ei

n
g

 c
o

m
p

ro
m

is
ed

Random Subset Assignment

Group-based PB

Figure 5.23: pgci−in(c) for the group-based PB scheme and the probability of an indirect
key being compromised for the random subset assignment scheme. Assume the probability
of having a direct key between two neighbor nodes is 0.3.

Probability of compromised cross-group indirect keys: Though the estab-

lishment of an in-group indirect key involves one intermediate node, the establishment of an

indirect key between sensor nodes in different groups may involve up to four intermediate

nodes.

Assume the source node u in group Gi wants to setup an indirect key with the

destination node v in group Gj . Assume the indirect key is established through a bridge

〈u′, v′〉, where u′ ∈ Gi and v′ ∈ Gj . Since the key established between u and v is an indirect

key, we have either u 6= u′ or v 6= v′. Thus, we need to consider the following three cases:

1. u and v share the same cross group: The probability of this case can be estimated as

1
m . In addition, we also note that u 6= u′ and v 6= v′. Thus, the probability of the path

key establishment involving two intermediate nodes can be estimated as p2
dk, which

means that u shares a direct key with u′, and v shares a direct key with v′. Similarly,

165

the probability of the path key establishment involving three intermediate nodes can

be estimated as 2(1 − pdk)pdk, and the probability of the path key establishment

involving four intermediate nodes can be estimated as (1 − pdk)
2.

2. u and v belong to different cross groups with either u = u′ or v = v′: The probability

of this case can be estimated as m−1
m (1−(1−pdk)2). Similar to the analysis in the first

case, the probability of the path key establishment involving one intermediate node

can be estimated as pdk, and the probability of the path key establishment involving

two intermediate nodes can be estimated as 1 − pdk.

3. u and v belong to different cross groups with neither u′ = u nor v′ = v: The probability

of this case can be estimated as m−1
m (1 − pdk)

2. Similar to the analysis in the first

case, the probability of the path key establishment involving two intermediate nodes

can be estimated as p2
dk, the probability of the path key establishment involving three

intermediate nodes can be estimated as 2(1− pdk)pdk, and the probability of the path

key establishment involving four intermediate nodes can be estimated as (1 − pdk)
2.

Consider an indirect key established between two sensor nodes in different deploy-

ment groups. Let pi denote the probability of the establishment of this key involving i

intermediate nodes; we have







































p1 = m−1
m [1 − (1 − pdk)

2]pdk

p2 = 1
mp2

dk + m−1
m [(1 − (1 − pdk)

2)(1 − pdk)

+(1 − pdk)
2p2

dk]

p3 = 2(1 − pdk)pdk[1
m + m−1

m (1 − pdk)
2]

p4 = 1
m(1 − pdk)

2 + m−1
m (1 − pdk)

2(1 − pdk)
2

When the path key establishment involves i intermediate nodes, the indirect key

will be still secure if all of these i nodes and the related i+1 direct keys are not compromised.

Thus, for an indirect key that involves i intermediate nodes, the probability of it being

compromised can be estimated as 1− (1− pgcd(c))
i+1(1− c

nm−2)i. Hence, the probability of

a cross-group indirect key between two non-compromised sensor nodes being compromised

can be estimated as

pgci−cr(c) =

4
∑

i=1

pi × [1 − (1 − pgcd(c))
i+1(1 − c

nm − 2
)i].

166

Figure 5.24 shows the probability of a cross-group indirect key between two non-

compromised sensor nodes being compromised for the group-based EG scheme. It also

includes the probability of an indirect key (involving only one intermediate node) between

two non-compromised nodes being compromised for the basic probabilistic scheme [19]. We

can see that the security of these two schemes are very close to each other in terms of the

indirect keys between sensor nodes in different deployment groups.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200

Number of compromised nodes

P
ro

b
ab

ili
ty

 o
f

in
d

ir
ec

t
ke

ys
 b

et
w

ee
n

g
ro

u
p

s
b

ei
n

g
 c

o
m

p
ro

m
is

ed

Basic probabilistic
Group-based EG

Figure 5.24: pgci−cr(c) for the group-based EG scheme and the probability of an indirect key
being compromised for the basic probabilistic scheme. Assume the probability of having a
direct key between two neighbor nodes is 0.3.

Figure 5.25 shows the probability of a cross-group indirect key between two non-

compromised sensor nodes being compromised for the group-based PB scheme. It also

includes the probability of an indirect key (involving only one intermediate node) between

two non-compromised nodes being compromised for the random subset assignment scheme

in [41]. We can still see that the group-based PB scheme has much better security perfor-

mance than the random subset assignment scheme in terms of the indirect keys between

nodes in different deployment groups.

According to the above security analysis and the performance analysis in the pre-

vious subsection, we can easily conclude that the proposed framework can significantly

improve the security as well as the performance of existing key pre-distribution techniques.

5.4 Summary

In this chapter, we presented several techniques to utilize sensor nodes’ prior de-

ployment knowledge, post deployment knowledge, or group-based deployment knowledge to

167

0

0.2

0.4

0.6

0.8

1

1.2

0 1000 2000 3000 4000 5000 6000

Number of compromised nodes

P
ro

b
ab

ili
ty

 o
f

in
d

ir
ec

t
ke

ys
 b

et
w

ee
n

g
ro

u
p

s
b

ei
n

g
 c

o
m

p
ro

m
is

ed

Random Subset Assignment
Group-based PB

Figure 5.25: pgci−cr(c) for the group-based PB scheme and the probability of an indirect
key being compromised for the random subset assignment scheme. Assume the probability
of having a direct key between two neighbor nodes is 0.3.

improve pairwise key establishment in static sensor networks. The analysis shows that when

certain deployment knowledge is available, we can improve the performance of existing key

pre-distribution techniques significantly.

Several research directions are worth further study, including detailed performance

evaluation through simulation and the implementation of these techniques on real sensor

platforms.

168

Chapter 6

Secure Location Discovery

In this chapter, we first develop two techniques to tolerate malicious attacks against

the location discovery in wireless sensor networks. Our first technique, an attack-resistant

Minimum Mean Square Estimation (MMSE) technique, is based on the observation that

malicious location references introduced by attacks are intended to mislead a sensor node

about its location and thus are usually inconsistent with the benign ones. To take advantage

of this observation, our attack-resistant MMSE method identifies malicious location refer-

ences by examining the inconsistency among location references (which is indicated by the

mean square error of location estimation) and defeats malicious attacks by removing such

malicious data. Our second technique, a voting-based location estimation method, quantizes

the deployment field into a grid of cells and has each location reference “vote” on the cells

in which the node may reside. This method then filters out the effects of malicious location

references by choosing the geometric centroid of the cell(s) with the highest vote as the

estimated location. We have implemented the proposed techniques on MICA2 motes [13]

running TinyOS [25] and evaluated the security and performance through both simulation

and field experiments. The experimental results indicate that the proposed techniques are

not only effective but practical.

We then introduce a suite of techniques to detect and remove compromised bea-

con nodes that supply misleading location information to the regular sensors, aiming at

providing secure location discovery services in wireless sensor networks. We first develop

an efficient method to detect malicious beacon signals using redundant beacon nodes in

169

the sensing field. The basic idea is to take advantage of the (known) locations of beacon

nodes and the constraints that these locations and the measurements (e.g., distance, angle)

derived from their beacon signals must satisfy to detect malicious beacon signals. With this

method, we then propose a serial of techniques to detect replayed beacon signals to avoid

false positives in detecting malicious beacon nodes. We also present a simple method to rea-

son about the suspiciousness of each beacon node and revoke malicious beacon nodes based

on the distributed detection results from beacon nodes. Finally, we provide detailed anal-

ysis and simulation to evaluate the performance of the proposed techniques. The results

show that the proposed techniques are practical and effective in detecting and removing

malicious beacon nodes.

6.1 Pitfalls of Current Localization Schemes in Presence of

Malicious Attacks

All of the current localization schemes become vulnerable when there are malicious

attacks. In all these schemes, the accuracy of location estimation depends on the accuracy

of the origins of the beacon signals (which are assumed to be the locations in the beacon

packets) and certain measurements obtained from the beacon signals, including distances

and/or angles in range-based schemes, and the existence of beacon signals in range-free

schemes. Though the above measurements are directly obtained from the physical signals,

the locations of the beacon signals’ origins can be easily forged, as discussed earlier (See

Figure 1.1). As a result, a malicious attacker may introduce large errors when a node

estimates its location.

Most of the localization schemes for sensor networks have certain ability to tolerate

measurement errors (e.g., by averaging the effect of problematic location references over all

location references). For example, Minimum Mean Square Estimation (MMSE) has been

used in most of the range-based and some range-free localization schemes [70, 71, 55, 51,

15, 56] to improve the accuracy of location estimation when a sensor node has redundant

location references. However, these methods cannot properly handle malicious location

references, which typically include very large errors not seen in natural faults.

To demonstrate the impact of malicious attacks, we performed an experiment

170

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30
Location error introduced by a malicious beacon

L
o
c
a
t
i
o
n

e
s
t
i
m
a
t
i
o
n

e
r
r
o
r e_max=0

e_max=2
e_max=4

Figure 6.1: Location estimation error of a MMSE-based method in presence of malicious
attacks

through simulation with the MMSE-based location estimation method in [70]. We used 9

honest beacon nodes and 1 malicious beacon node randomly deployed in a 30m×30m field.

The node that estimates location is positioned at the center of the field. The malicious

beacon node always declares a false location x meters away from its real location, where

x is a parameter representing the location error. To model the distance measurement

error, we assume such an error is uniformly distributed between −emax and emax. Figure

6.1 shows the location estimation error (i.e., the distance between a sensor’s real location

and the estimated location) introduced by the malicious beacon node. We can clearly see

that the malicious node affects the estimated location significantly by declaring incorrect

locations. Indeed, the location estimation error at the sensor node increases almost linearly

with the error introduced by the malicious node. Since an attacker can introduce arbitrarily

large errors by declaring false locations in beacon packets, the above result implies that the

attacker can introduce arbitrarily large errors into a non-beacon node’s location estimation.

Such malicious attacks will generate similar impacts on the other localization

schemes. This is because an attacker may introduce arbitrary errors into the location

estimation process, while all the existing localization techniques assume bounded errors,

which are only true in benign environments. As discussed in the Introduction, such attacks

cannot be simply prevented by cryptographic techniques due to the threat of compromised

nodes and replay attacks.

171

6.2 Attack-Resistant Location Estimation

In this section, we present two approaches to dealing with malicious attacks against

location discovery in wireless sensor networks. The first approach is extended from the

minimum mean square estimation (MMSE). It uses the mean square error as an indication

to identify and remove malicious location references. The second one adopts an iteratively

refined voting scheme to survive malicious location references introduced by attackers.

In the following, we clarify several assumptions of the proposed techniques before

describing these methods.

6.2.1 Assumptions

We assume that all the beacon packets are authenticated. With authentication,

beacon packets forged by external attackers who do not have access to keying materials can

be easily filtered out without being considered for location estimation. Authentication is

practical in the current sensor networks. For example TinySec [32], developed by the UC

Berkeley group, can provide packet authentication on MICA motes [13] running TinyOS

[25].

We also assume that all beacon nodes are uniquely identified. In other words, each

non-beacon node can identify the sender of each beacon packet, based on the cryptographic

key used to authenticate the packet. There are two possible ways to do this. First, each

non-beacon node may share a pairwise key with each beacon node from which it may receive

a beacon signal. Several pairwise key pre-distribution schemes [19, 11, 17, 41] have been

proposed to establish pairwise keys in sensor networks; they can be potentially used for our

application. Second, the beacon nodes may use a broadcast authentication protocol such as

µTESLA [62]. In either case, a non-beacon node that receives a beacon signal can identify

the generator of the message authentication code (MAC) in the beacon packet and then the

sender.

Finally, we assume that each non-beacon node uses at most one location reference

derived from the beacon signals sent by each beacon node. As a result, even if a beacon node

is compromised, the attacker that has access to the compromised key can only introduce at

most one malicious location reference.

172

6.2.2 Attack-Resistant Minimum Mean Square Estimation (MMSE)

Intuitively, a location reference introduced by a malicious attack is aimed at mis-

leading a sensor node about its location. Thus, it is usually “different” from benign location

references. When there are redundant location references, there must be some “inconsis-

tency” between the malicious location references and the benign ones. To take advantage

of this observation, we propose to use the “inconsistency” among the location references

to identify the malicious ones, and discard them before finally estimating the locations at

sensor nodes.

We assume that a sensor node uses a MMSE-based method to estimate its own

location. Thus, most of the current range-based localization techniques can be used with

this technique. To specifically harness the above observation about inconsistent location

references, we first estimate the sensor node’s location with the MMSE-based method, and

then assess whether the estimated location could be derived from a set of consistent location

references. If yes, we accept the estimated location; otherwise, we identify and remove the

most “inconsistent” location reference, and repeat the above process. This process may

continue until we find a set of consistent location references or it is not possible to find such

a set.

For simplicity, we assume the distances measured from beacon signals are used

for location estimation. (This approach can certainly be modified to accommodate other

measurements such as angles.) For the sake of presentation, we denote a location reference

obtained from a beacon signal as a triple 〈x, y, δ〉, where (x, y) is the location of the beacon

node declared in the beacon packet, and δ is the distance measured from the beacon signal.

We use the mean square error ς2 of the distance measurements based on the

estimated location as an indication of the degree of inconsistency, since all the MMSE-

based methods estimate a sensor node’s location by (approximately) minimizing this mean

square error.

Definition 1 Given a set of location references L = {〈x1, y1, δ1〉, 〈x2, y2, δ2〉, ..., 〈xm, ym,

δm〉} and a location (x̃0, ỹ0) estimated based on L, the mean square error of this location

173

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30
Location error introduced by a malicious beacon

M
e
a
n

s
q
u
a
r
e

e
r
r
o
r

e_max=0
e_max=2
e_max=4

Figure 6.2: The effect of malicious attacks on the mean square error ς2

estimation is

ς2 =

m
∑

i=1

(δi −
√

(x̃0 − xi)2 + (ỹ0 − yi)2)
2

m
.

Intuitively, the more inconsistent a set of location references is, the greater the

corresponding mean square error should be. To gain further understanding, we plot in

Figure 6.2 the mean square error ς2 corresponding to the location estimation errors shown

in Figure 6.1. As Figure 6.2 shows, if a malicious beacon node increases the location

estimation error by introducing greater errors in beacon packets, it also increases the mean

square error ς2 at the same time. This further demonstrates that the mean square error ς2

is potentially a good indicator of inconsistent location references.

In this chapter, we choose a simple, threshold-based method to determine whether

a set of location references is consistent. Specifically, a set of location references L =

{〈x1, y1, δ1〉, 〈x2, y2, δ2〉, ..., 〈xm, ym, δm〉} obtained at a sensor node is τ -consistent w.r.t. a

MMSE-based method if the method gives an estimated location (x̃0, ỹ0) such that the mean

square error of this location estimation

ς2 =

m
∑

i=1

(δi −
√

(x̃0 − xi)2 + (ỹ0 − yi)2)
2

m
≤ τ2.

The threshold τ is clearly a critical parameter in our approach. We will discuss

how to determine τ in Section 6.2.2. In the following, we first describe the algorithm for

the attack-resistant MMSE method, assuming the threshold τ is already set properly.

Though it is necessary to remove malicious location references to defeat malicious

attacks, the MMSE-based location estimation methods can deal with measurement errors

174

better if there are more benign location references. Thus, we should keep as many benign

location references as possible once the malicious location references are removed. This

implies we should get the largest set of consistent location references.

Given a set L of n location references and a threshold τ , a naive approach to

computing the largest set of τ -consistent location references is to check all subsets of L with

i location references about τ -consistency, where i starts from n and drops until a subset of

L is found to be τ -consistent or it is not possible to find such a set (when i becomes 3).

Thus, if the largest set of consistent location references consists of m elements, a sensor

node has to use the MMSE method
(

n
m

)

/2 +
(

n
m+1

)

+ · · ·+
(

n
n

)

times on average to find the

right one. If n = 10 and m = 5, a sensor node needs to perform the MMSE method for

about
(10

5

)

/2+
(10

6

)

+
(10

7

)

+
(10

8

)

+
(10

9

)

+
(10
10

)

= 512 times. It is certainly desirable to reduce

the computation for resource-constrained sensor nodes.

To reduce the computation on sensor nodes, we adopt a greedy algorithm, which

is simple but suboptimal. This greedy algorithm works in rounds. It starts with the set of

all location references in the first round. In each round, it first verifies if the current set of

location references is τ -consistent. If yes, the algorithm outputs the estimated location and

stops. Optionally, it may also output the set of location references. Otherwise, it considers

all subsets of location references with one fewer location reference and chooses the subset

with the least mean square error as the input to the next round. This algorithm continues

until it finds a set of τ -consistent location references or it is not possible to find such a set.

The details of this greedy algorithm are given below.

1. The algorithm starts with a set L of n (n > 3) location references. The algorithm

uses a MMSE-based location estimation method to estimate the location using L and

compute the mean square error ς2. If ς2 < τ2, the algorithm outputs the estimated

location and returns SUCCESS. Otherwise, it goes to the next step.

2. Assume there are i location references left in set L. If i = 3, the algorithm returns

FAIL and stops. Otherwise, for each (i−1)-element subset of L, it estimates a location

with the MMSE-based method and computes the corresponding mean square error.

It then chooses the subset with the least mean square error. If this value is less than

τ2, the algorithm outputs the corresponding location estimate and returns SUCCESS.

Otherwise, it replaces L with the chosen subset and repeats this step.

The greedy algorithm significantly reduces the computational overhead in sensor

175

nodes. To continue the earlier example, a sensor node only needs to perform MMSE opera-

tions for about 1+10+9+8+7+6+5+4 = 50 times using this algorithm, which is about

10% of the cost introduced by the naive approach mentioned earlier. In general, a sensor

node needs to use a MMSE-based method for at most 1+n+(n−1)+· · ·+4 = 1+ (n−3)(n+4)
2

times.

Determining Threshold τ

As discussed earlier, the threshold τ is a critical parameter in our method. In the

following, we investigate how to determine the value of τ .

Our basic idea is to study the distribution of the mean square error ς2 when there

are no malicious attacks, and use this information to help determine the threshold τ . Before

we investigate the distribution of ς2, we first clarify what are benign location references in

normal situations.

Definition 2 A location reference 〈x, y, δ〉 at a sensor node is considered as benign if it

satisfies |δ −
√

(x − x0)2 + (y − y0)2| ≤ ǫ, where (x0, y0) is the real location of the sensor

node and ǫ is the maximum measurement error (which occurs when measuring the distance

δ from the physical beacon signal).

Intuitively, Definition 2 says that a location reference is benign if the distance

between the node’s real location and the location claimed by the corresponding beacon

signal is not very different from the distance measured from the beacon signal. Intuitively,

a benign location reference represents a location reference obtained from a beacon signal

when there are no malicious attacks; the error introduced by a benign location reference is

mainly due to the measurement of the physical signals, which is bounded by ǫ. A malicious

attacker can certainly introduce benign location references by having small errors in beacon

packets; however, this will not generate big impact on the location estimation as suggested

by Figure 6.1. Thus, such location references can be subsumed into the benign ones.

All the localization techniques are aimed at estimating a location as close to the

sensor node’s real location as possible. Thus, we may assume that the estimated location is

very close to the real location when there are no attacks. Next, we derive the distribution

176

of the mean square error ς2 using the real location as the estimated location and compare

it with the distribution obtained through simulation when there are location estimation

errors.

When there are no malicious attacks, the location estimation error is all intro-

duced by the measurements of beacon signals. For a location reference Li = 〈xi, yi, δi〉,
the measurement error ei can be computed as ei = δi −

√

(x0 − xi)2 + (y0 − yi)2, where

(x0, y0) is the real location of the sensor node. Assuming that the measurement errors in-

troduced by different benign location references are independent and identical, we can get

the distribution of the mean square error through the following Lemma.

Lemma 6.2.1 Let {e1, ..., em} be a set of identical, independent random variables and µ,

σ be the mean and variance of the random variable e2
i , 1 ≤ i ≤ m. If the estimated location

of a sensor node is its real location, the probability distribution of ς2 is

lim
m→∞

F[ς2 ≤ ς2
0] = Φ(

mς2
0 − mµ

σ
√

m
),

where Φ(x) is the probability that a standard normal random variable is less than x.

Proof: For a sensor node, we model the measurement error of location reference i as a

probability density function fi(ei), where ei ≤ ǫ. Thus, we have the following equation:

ς2 =

m
∑

i=1

(δi −
√

(x0 − xi)2 + (y0 − yi)2)
2

m
=

m
∑

i=1

e2
i

m

The cumulative distribution function can thus be calculated by

F (ς2 ≤ ς2
0) = F (

m
∑

i=1

e2
i ≤ mς2

0) (6.1)

Since {e2
1, e

2
2, · · · , e2

m} are independent random variables with mean µ and variance σ2,

according to the central limit theorem, we have

lim
m→∞

P (
Sm − mµ

σ
√

m
≤ x) = Φ(x),

where Sm =
∑m

i=0(e
2
i). Together with Equation 6.1, we have

limm→∞ F (ς2 ≤ ς2
0) = limm→∞ F (Sm ≤ mς2

0)

= limm→∞ P (Sm−mµ
σ
√

m
≤ mς20−mµ

σ
√

m
)

= Φ(
mς20−mµ

σ
√

m
)

177

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

c

C
u
m
u
l
a
t
i
v
e

d
i
s
t
r
i
u
b
t
i
o
n

m=4 theoretical
m=5 theoretical
m=9 theoretical
m=4 simulated
m=5 simulated
m=9 simulated

Figure 6.3: Cumulative distribution function for the mean square error of location estima-
tion on benign location references. Let c = ς0

ǫ .

Let us further assume a simple model for measurement errors, where the measure-

ment error is evenly distributed between −ǫ and ǫ. Then the mean and the variance for

ei are 0 and ǫ2

3 , respectively, and the mean and the variance for any e2
i are ǫ2

3 and 4ǫ4

45 ,

respectively. Let ς0 = c × ǫ; we have F (ς2 ≤ (c × ǫ)2) = Φ(
√

5m(3c2−1)
2).

Lemma 6.2.1 describes the probability distribution of ς2 based on a sensor’s real

location. Though it is different from the probability distribution of ς2 based on a sensor’s

estimated location, it can be used to approximate such distribution in most cases.

Figure 6.3 shows the probability distribution of ς2 derived from Lemma 6.2.1 and

the simulated results using sensors’ estimated locations. We can see that when the number

of location references (m) is large (e.g., m = 9), the theoretical result derived from Lemma

6.2.1 is very close to the simulation results. However, when m is small (e.g., m = 4), there

are observable differences between the theoretical results and the simulation.

The reason is twofold. First, our theoretical analysis is based on the central limited

theorem, which is only an approximation of the distribution when m is a large number; it

may not catch the real distribution when m is small (e.g. 4). Second, we used the MMSE-

based method proposed in [70] in the simulation, which estimates a node’s location by only

approximately minimizing the mean square error. (Otherwise, the value of ς2 for benign

location references should never exceed ǫ2.)

Figure 6.3 gives three hints about the choice of the threshold τ . First, when

there are enough number of benign location references, a threshold less than the maximum

measurement error is enough. For example, when m = 9, τ = 0.8ǫ can guarantee the nine

178

benign location references are considered consistent with high probability. Besides, a large

threshold may lead to the failure to filter out malicious location references. Second, when

m is small (e.g. 4), the cumulative probability becomes flatter and flatter when c > 0.8.

This means that setting a large threshold τ for small m may not help much to guarantee

the consistency test for benign location references; instead, it may give an attacker high

chance to survive the detection. Third, the threshold cannot be too small; otherwise, a

set of benign location references has high probability to be determined as a non-consistent

reference set.

Based on the above observations, we propose to choose the value for τ with a

hybrid method. Specifically, when the number of location references is large (e.g., more

than 8), we determine the value of τ based on the theoretical results derived from Lemma

6.2.1. Specifically, we choose a value of τ corresponding to a high cumulative probability

(e.g., 0.9). When the number of location references is small, we perform simulation to

derive the actual distribution of the mean square error and then determine the value of

τ accordingly. Since there are only a small number of simulations to run, we believe this

approach is practical.

We have evaluated the attack-resistant MMSE method through both simulation

and field experiments, which will be reported in Sections 6.2.5 and 6.2.6, respectively.

6.2.3 Voting-Based Location Estimation

In this approach, we have each location reference “vote” on the locations at which

the node of concern may reside. To facilitate the voting process, we quantize the target

field into a grid of cells and have each sensor node determine how likely the node is located

in each cell based on each location reference. We then select the cell(s) with the highest

vote and use the “center” of the cell(s) as the estimated location.

After collecting a set of location references, a sensor node should determine the

target field. The node does so by first identifying the minimum rectangle that covers all

the locations declared in the location references and then extending this rectangle by Rb,

where Rb is the maximum transmission range of a beacon signal. This extended rectangle

forms the target field, which contains all possible locations for the sensor node. The sensor

node then divides this rectangle into M small squares (cells) with the same side length L,

as illustrated in Figure 6.4. (The node may need to further extend the target field to have

179

2 2 32 4 56 77 773333333
3333 3 333 3333 33 333 322 2 22222222 22 22222 22 2 222 22222 2 22 2 22 222 222 222 222 2222 22 2 22 222 222 2222222 222

822 2
Figure 6.4: The voting-based location estimation

square cells.) The node then keeps a voting state variable for each cell, initially set to 0.

Consider a benign location reference 〈x, y, δ〉. The node that has this location

reference must be in a ring centered at (x, y), with the inner radius max{δ − ǫ, 0} and the

outer radius δ + ǫ. For the sake of presentation, we refer to such a ring a candidate ring

(centered) at location (x, y). For example, in Figure 6.4, the grey ring centered at point

A is a candidate ring at A, which is derived from the location reference with the declared

beacon node location at A.

For each location reference 〈x, y, δ〉, the sensor node identifies the cells that overlap

with the corresponding candidate ring and increments the voting variables for these cells

by 1. After the node processes all the location references, it chooses the cell(s) with the

highest vote and uses its (their) geometric centroid as the estimated location of the sensor

node.

Overlap of Candidate Rings and Cells

A critical problem in the voting-based approach is how to determine whether a

candidate ring overlaps with a cell. We discuss how to determine this efficiently below.

Assume we need to determine whether the candidate ring at A overlaps with the

cell shown in Figure 6.5(a). We denote the minimum distance from a point in the cell to

point A as dmin(A), and the maximum distance from a point in the cell to point A as

dmax(A). It is easy to see that the candidate ring does not overlap with the cell only when

180

dmin(A)

d m a
x
(A)

A

(a) Overlap of a ring and a cell

x

y

x1 x2

y1

y2

1 2 3

4 5 6

7 8 9

d
m i n (A)

d
m
ax (A)

dmin(B)

d
m
a x (B)

d m
a x
(C)

A B

C

(b) Computing the minimum (dmin) and the maxi-

mum distance (dmax) between a cell and the center

of a ring

A
2/)(εδ −

)(εδ +

(c) Limiting the examinations of

cells

Figure 6.5: Determine whether a ring overlaps with a cell

dmin(A) > ro or dmax(A) < ri, where ri = max{0, δ − ǫ} and ro = δ + ǫ are the inner and

the outer radius of the candidate ring, respectively. Thus, if we can compute dmin(A) and

dmax(A) for a cell and a candidate ring centered at A, we can easily determine whether they

overlap.

To compute dmin and dmax, we divide the target field into 9 regions based on the

cell, as shown in Figure 6.5(b). It is easy to see that given the center of any candidate

ring, we can determine the region in which it falls with at most 6 comparisons between the

coordinates of the center and those of the corners of the cell. When the center of a candidate

181

ring is in region 1 (e.g., point A in Figure 6.5(b)), it can be shown that the closest point

in the cell to A is the upper left corner, and the farthest point in the cell from A is the

lower right corner. Thus, dmin(A) and dmax(A) can be calculated accordingly. These two

distances can be computed similarly when the center of a candidate ring falls into regions

3, 7, and 9.

Consider point B that falls into region 2. Assume the coordinate of point B is

(xB , yB). We can easily see that dmin(B) = yB −y2. The computation of dmax(B) is a little

more complex. We first need to check if xB − x1 > x2 − xB . If yes, the farthest point in

the cell from B must be the lower left corner of the cell. Otherwise, the farthest point in

the cell from B should be the lower right corner of the cell. Thus, we can get dmax(B) =
√

(max{xB − x1, x2 − xB})2 + (yB − y1)2. These two distances can be computed similarly

when the center of a candidate ring falls into regions 4, 6, and 8.

Consider a point C that falls into region 5. Obviously, dmin(C) = 0 since point C

itself is in the cell. Assume the coordinate of point C is (xC , yC). The farthest point in the

cell from C must be one of its corners. Similarly to the above case for point B, we may check

which point is farther away from C by checking xC − x1 > x2 − xC and yC − y1 > y2 − yC .

As a result, we get dmax(C) =
√

(max{xC − x1, x2 − xC})2 + (max{tC − y1, y2 − yC})2.
According to the above discussion, we can determine whether a cell and a candidate

ring overlap with at most 10 comparisons and a few arithmetic operations. To prove the

correctness of the above approach only involves elementary geometry; we omit the proofs

from the chapter.

For a given candidate ring, a sensor node does not have to check all the cells for

which it maintains voting state variables. As shown in Figure 6.5(c), with simple compu-

tation, the node can get the outer bounding box centered at A with side length 2(δ + ǫ).

The node only needs to consider the cells that intersect with or fall inside the bounding

box. Moreover, the node can get the inside bounding box with simple computation, which

is centered at A with side length
√

2(δ − ǫ), and all the cells that fall into this bounding

box need not be checked.

Iterative Refinement

The number of cells M (or equivalently, the quantization step L) is a critical

parameter for the voting-based algorithm. It has several implications to the performance

182

of our approach. First, the larger M is, the more state variables a sensor node has to

keep, and thus the more storage is required. Second, the value of M (or L) determines the

precision of location estimation when there are no attacks. The larger M is, the smaller

each cell will be. As a result, a sensor node can determine its location more precisely based

on the overlap of the cells and the candidate rings. Finally, the value of M also has direct

implication for the ability to tolerate malicious attacks. To demonstrate this, Figure 6.6

shows the cumulative probability of location estimation errors when M has different values,

where there is a malicious location reference declaring a wrong location with a 20m error.

It is shown that a larger M does result in higher probability to achieve a given precision

under malicious attacks.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8

Location estimation error

C
u
m
u
l
a
t
i
v
e

D
i
s
t
r
i
b
u
t
i
o
n

M=10
M=50
M=100
M=200

Figure 6.6: Cumulative probability distribution of location estimation error for different
partition configurations. Assume the location error created by a malicious beacon node is
20m, and the measurement error is ǫ = 4m.

Due to the resource constraints on sensor nodes, the granularity of the partition

is usually limited by the memory available for the voting state variables on the nodes. This

puts a hard limit on the accuracy of location estimation. To address this problem, we

propose an iterative refinement of the above basic algorithm to achieve fine accuracy with

reduced storage overhead.

In this iterative refinement version, the number of cells M (or equivalently, the

side length of each cell L) is chosen according to the memory constraint in a sensor node,

so that the node has enough memory to have a voting state variable (normally one byte)

for each cell. After the first round of the algorithm, the node may find one or more cells

having the largest vote. To improve the accuracy of location estimation, the sensor node

then identifies the smallest rectangle that contains all the cells having the largest vote, and

183

performs the voting process again. For example, in Figure 6.4, the same algorithm will be

performed in a rectangle which exactly includes the 4 cells having 3 votes. Note that in

a later iteration of the basic voting-based algorithm, a location reference does not have to

be used if the corresponding candidate ring does not overlap with any of the cells with the

highest vote.

In a later iteration, due to a smaller rectangle to quantize, the size of each cell

can be reduced. This leads to a higher precision and better ability to deal with malicious

attacks. Moreover, a malicious location reference will most likely be discarded, since the

corresponding candidate ring usually does not overlap with those derived from benign lo-

cation references. For example, in Figure 6.4, the candidate ring centered at point D will

not be used in the second iteration since it does not overlap with the 3-vote cells.

The iterative refinement process should terminate when a desired precision is

reached or the estimation cannot be refined. The former condition can be tested by check-

ing the side length of a cell in an iteration. In other words, if in one iteration the side

length of each cell is less than a predefined threshold (which indicates the desired precision

of location estimation), the algorithm should output the geometric centroid of the cell(s)

with the highest vote as the estimated location of the node. However, there may be cases

that the iterative refinement cannot further refine the precision of the location estimation.

This can be determined also by checking the side length of each cell; if this side length

remains the same as the last iteration, the location estimation cannot be further refined.

The algorithm should simply stop and output the estimated location obtained in the last

iteration as the result. It is easy to see that the algorithm will fall into either of these two

cases, and thus will always terminate. In practice, we may set the desired precision to 0 in

order to get the best precision.

The iterative voting-based location estimation allows a resource-constrained sensor

node to gradually refine its location estimation to a desired precision. When the majority

of the location references are benign, it is highly likely that the few malicious location

references are filtered out in the second iteration since these malicious location references

are intended to mislead the sensor node about its location and very possibly do not overlap

with the cells with the highest vote. Even if the majority of the location references are

malicious, they have to be consistent with each other in order not to be discarded. This

greatly increases the level of coordination and thus the difficulty of malicious attacks.

184

6.2.4 Security Analysis

Based on the descriptions of the proposed techniques, it is easy to see that when

there are more benign location references than the malicious ones introduced by attackers,

the effect of the malicious ones will be removed from the final location estimation. Moreover,

the attacker must carefully control the beacon packets and the beacon signals in order to

keep them consistent with each other and to overwhelm the benign beacon signals. Indeed,

to defeat the attack-resistant MMSE approach, the attacker needs to control the declared

locations in beacon packets and the physical features (e.g., signal strength) of beacon signals

so that the malicious location references are considered consistent and overwhelm the benign

location references. To defeat the voting-based approach, the attacker needs to control

beacon packets and beacon signals similarly so that the cell containing the attacker’s choice

gets more votes than the cell(s) containing the sensor node’s real location.

To further understand the difficulty of malicious attacks, let us consider specific

approaches an attacker may use to launch the above attacks. An attacker has two ways to

transmit the above malicious beacon signals. First, the attacker may compromise beacon

nodes and use the compromised beacon nodes or the compromised keys to generate malicious

beacon signals. Since all beacon packets are authenticated, and a sensor node uses at most

one location reference derived from the beacon signals sent by each beacon node, the attacker

needs to compromise more beacon nodes than the benign beacon nodes from which a target

sensor node may receive beacon signals, besides carefully crafting the forged beacon signals.

Second, the attacker may launch wormhole [28] or replay attacks to tunnel benign

beacon signals from one area to another. In this case, the attacker does not have to com-

promise any beacon nodes. However, the attacker will have to face several other difficulties.

Let us first consider wormhole attacks. First, the attacker has to use multiple wormholes so

that the beacon signals from the wormholes suppress the benign ones a sensor node receives

locally. Moreover, the attacker has to carefully arrange the starting points and the ending

points of the wormholes to maintain the consistency among the tunneled beacon signals.

Finally, the wormhole attacks have to bypass potential wormhole detections such as those

proposed in [28, 27]. When replay attacks are used, the attacker will have to face the same

difficulties in coordinating multiple beacon signals.

Based on the above analysis, we can see that though it is theoretically possible for

an attacker to defeat the proposed location estimation techniques, it takes substantial effort

185

1

10

100

0 20 40 60 80 100

Location error created by a malicious beacon

L
o
c
a
t
i
o
n

e
s
t
i
m
a
t
i
o

e
r
r
o
r

MMSE9=0.60:9=0.64:9=0.80:9=1.00:
(a) a single malicious location references

1

10

100

0 20 40 60 80 100

Location error created by malicious beacons

L
o
c
a
t
i
o
n

e
s
t
i
m
a
t
i
o

e
r
r
o
r

MMSE;=0.60<;=0.64<;=0.80<;=1.00<
(b) 3 random malicious location references

1

10

100

0 20 40 60 80 100

Location error created by malicious beacons

L
o
c
a
t
i
o
n

e
s
t
i
m
a
t
i
o

e
r
r
o
r

MMSE==0.60>==0.64>==0.80>==1.00>
(c) 3 colluding malicious location references

Figure 6.7: Performance of attack-resistant MMSE (with 9 benign location references)

to launch such attacks in practice. Thus, we can conclude that the proposed techniques

significantly increase the security of location estimation in wireless sensor networks.

In the following sections, we further examine the security, performance, and prac-

ticality of the proposed techniques through simulation and field experiments.

6.2.5 Simulation Evaluation

This section presents the simulation results of both attack-resistant schemes pro-

posed in the previous section. The evaluation focuses on the performance under different

choices of parameters and the improvement on the accuracy of location estimation in hostile

environments. A comparison between these two schemes is also provided.

186

Three attack scenarios are considered in the evaluation. The first scenario con-

siders a single malicious location reference that declares a wrong random location that is e

meters away from the beacon node’s real location. In the second scenario, there are multiple

malicious location references, and each of them declares a wrong random location that is e

meters away from the beacon node’s real location. In the third scenario, multiple colluding

malicious location references are considered. In this case, the malicious location references

declare false locations by coordinating with each other to create a virtual location e meters

away from the sensor’s real location. Thus, a set of malicious location references may appear

to be consistent to a victim node.

In all simulations, a set of benign beacon nodes and a few malicious beacon nodes

are randomly deployed in a 30m× 30m target field. The non-beacon sensor node is located

at the center of this target field. We assume the maximum transmission range of beacon

signals is Rb = 22m, so that the non-beacon node can receive the beacon signal from every

beacon node located in the target field. We assume the entire deployment field is much larger

than this target field so that an attacker can create a very large location estimation error

inside the deployment field. Each malicious beacon node declares a false location according

to the three attack scenarios discussed above. We assume a simple distance measurement

error model. That is, the distance measurement error is uniformly distributed between −ǫ

and ǫ, where the maximum distance measurement error ǫ is set to ǫ = 4m.

Evaluation of Attack-Resistant MMSE

In our simulation, we use the MMSE-based method proposed in [70], which we

call the basic MMSE method, to perform the basic location estimation. Our attack-resistant

MMSE method is then implemented on the basis of the basic MMSE method, as discussed

in Section 6.2.2.

We first evaluate the performance of the attack-resistant MMSE scheme under

different threshold τ and show the improvement over the basic MMSE method in the pres-

ence of malicious attacks. In the simulation, we selected 4 thresholds according to Figure

6.3: 0.6ǫ, 0.64ǫ, 0.8ǫ, and ǫ. These four choices guarantee 9 benign location references are

considered consistent with probabilities of 0.6, 0.8, 0.999, and 1, respectively.

Figure 6.7 illustrates the performance of the attack-resistant MMSE method under

the four selected thresholds when there are malicious location references. For comparison,

187

Figure 6.7 also includes the performance of the basic MMSE-based method. This figure

shows that when there are malicious attacks, the attack-resistant MMSE reduces the lo-

cation estimation error significantly compared with the basic MMSE-based method. It is

worth noting that the performance becomes worse when there are multiple malicious loca-

tion references. The reason is that multiple malicious location references, especially when

they collude together, make the filtering of malicious location references more difficult. It

is also possible that a few benign location references are removed.

0

1

2

3

4

5

6

7

8

9

10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2?/ @#
r
e
m
o
v
e
d

l
o
c
a
t
i
o
n

r
e
f
e
r
e
n
c
e
s #Total removed- 1 malicious

#Total removed- 3 non-colluding
#Total removed- 3 colluding
#Malicious removed- 1 malicious
#Malicious removed- 3 non-colluding
#Malicious removed- 3 colluding

Figure 6.8: Average number of removed location references v.s. the value of threshold
τ . Assume there are 9 benign location references and each malicious location reference
introduces 40m location error.

Figure 6.8 shows the average number of location references removed by the attack-

resistant MMSE method under different thresholds when malicious location references in-

troduce 40m location errors. As indicated by this figure, malicious location references are

not always removed, and benign location references may be mistakenly removed – especially

when there are multiple colluding malicious location references. However, as the threshold

is around ǫ, fewer benign location references are removed. When the threshold increases

beyond ǫ, not only are fewer benign location references removed, but also some malicious

ones are kept. This is consistent with our earlier discussion. In practice, a trade-off between

removing malicious and benign location references needs to be made.

Despite the fact that some benign location references may be removed and some

malicious ones may be used for location estimation, the attack-resistant MMSE method

still performs much better than the basic MMSE method, as shown in Figure 6.7.

188

Evaluation of Voting-Based Scheme

The partition granularity M and the desired precision of location estimation S are

two important parameters in the voting-based scheme. Both have impacts on the accuracy

of the estimated location. However, S is a parameter that allows a user to get less precision

when a high precision is not necessary. Thus, in the simulation, we set S = 0 to get the

minimum location estimation error achievable by this method.

0

0.5

1

1.5

2

2.5

3

3.5

0 25 50 75 100 125 150 175 200
The granularity of partition (M)

L
o
c
a
t
i
o
n

e
s
t
i
m
a
t
i
o
n

e
r
r
o
r e=0

e=10

e=50

Figure 6.9: Performance for different M (e: error introduced by a malicious location
reference)

We first study the impact of parameter M on the voting-based method. Figure 6.9

shows the performance of the voting-based scheme with different values of M when there is

only one malicious location reference. We can see that the location estimation error initially

decreases when M increases but does not decrease much when M is greater than 100.

Moreover, the parameter M also has implications in computational cost. Since the voting-

based method is finally reduced to checking whether a candidate ring derived from a location

reference overlaps with the cells in the grid, we use the number of cells being examined as

an indication of the computational cost. Figure 6.10 shows the computational costs of

the voting-based method for different values of M when there is one malicious location

reference. As this figure shows, the computational cost increases almost linearly with the

value of M . When there are no or more malicious location references, the computational

cost will increase similarly as M increases. Based on these results, we set M = 100 in the

later simulations to trade-off the accuracy with the storage and computation overhead.

Now let us examine the performance of the voting-based scheme against malicious

attacks. Figure 6.11 compares the accuracy of the basic MMSE method and our voting-

189

0

1000

2000

3000

4000

5000

6000

7000

0 25 50 75 100 125 150 175 200
The granularity of partition (M)

#
c
e
l
l
s

b
e
i
n
g

c
h
e
c
k
e
d

e=0

e=10

e=50

Figure 6.10: Computational cost for different M (e: error introduced by a malicious location
reference)

based scheme under different types of attacks. We can clearly see that the accuracy of

location estimation is improved significantly in our scheme. In addition, unlike the attack-

resistant MMSE scheme, the voting-based scheme can tolerate multiple (colluding or non-

colluding) malicious location references more effectively.

1

10

100

0 10 20 30 40 50 60 70 80 90 100

Location error introduced by malicious beacons

L
o
c
a
t
i
o
n

e
s
t
i
m
a
t
i
o
n

e
r
r
o
r MMSE without malicious

MMSE with 1 malicious
MMSE with 3 non-colluding
MMSE with 3 colluding
Voting with 1 malicious
Voting with 3 non-colluding
Voting with 3 colluding

Figure 6.11: Performance of the voting-based scheme (M = 100 and S = 0)

Note that the curves for the voting-based scheme in Figure 6.11 have a bump

when the location error introduced by malicious location references is around 10m. This

is because the malicious location references are not significantly different from the benign

location references around this point, and our scheme cannot completely shield the effect of

malicious location references. Nevertheless, the attacker will not be able to introduce large

location estimation errors if they do not introduce large location errors. As a result, the

location estimation errors are always bounded, even if there are malicious attacks.

190

Comparison between Two Proposed Schemes

Now let us compare the attack-resistant MMSE and the voting-based methods.

Based on the earlier results, we choose threshold τ = 0.8ǫ for the attack-resistant MMSE,

and set M = 100 and S = 0 for the voting-based scheme.

1
10

100

0 10 20 30 40 50 60 70 80 90 100

Location error created by malicious beacon

L
o
c
a
t
i
o
n

e
s
t
i
m
a
t
i
o
n

e
r
r
o
r

AR-MMSE with 1 malicious
AR-MMSE with 3 non-colluding
AR-MMSE with 3 colluding
Voting with 1 malicious
Voting with 3 non-colluding
Voting with 3 colluding

Figure 6.12: Attack-resistant MMSE scheme v.s. the voting-based scheme

Figure 6.12 shows that the voting-based scheme is more resilient than the attack-

resistant MMSE scheme. Moreover, Figure 6.13 shows that when the distance measurement

errors are small, the attack-resistant MMSE scheme could be more accurate than the voting-

based scheme. However, the voting-based scheme still has higher performance in most cases.

0.001

0.01

0.1

1

10

0 0.5 1 1.5 2 2.5 3 3.5 4
Maximum distance measurement error

L
o
c
a
t
i
o
n

e
s
t
i
m
a
t
i
o
n

e
r
r
o
r

Voting with 1 malicious
Voting with 3 non-colluding
Voting with 3 colluding
AR-MMSE with 1 malicious
AR-MMSE with 3 non-colluding
AR-MMSE with 3 colluding

Figure 6.13: Performance under different distance measurement errors (assume that the
location error introduced by each malicious location references is 10m)

191

6.2.6 Implementation and Field Experiments

We have implemented both proposed schemes on TinyOS [25] (version 1.1.0), an

operating system for networked sensors. These implementations are targeted at MICA2

motes [13] running TinyOS. As discussed in Section 6.2.5, the attack-resistant MMSE im-

plementation is based on the MMSE method proposed in [70]. However, our implementation

of the basic MMSE method is simplified by only using the location coordinates (without

the ultrasound propagation speed, which is not necessary in our study).

Scheme ROM (bytes) RAM (bytes)

MMSE 2034 286

AR-MMSE 3226 396

Voting-Based 4488 174

Table 6.1: Code size for different schemes (assume a maximum of 12 location references;
M = 100)

Table 6.1 gives the code size (ROM and RAM) for these implementations on

MICA2 platform. Table 6.1 is obtained by assuming at most 12 location references. More

location references will increase the RAM size of the program, but the increased RAM

is only required to save the additional location references. These numbers indicate the

proposed schemes are practical on the current generation of sensor nodes, such as MICA2

motes.

0.001

0.01

0.1

1

10

4 6 8 10 12 14 16 18 20 22 24 26

Number of location references

T
i
m
e

(
s
e
c
)

MMSE

AR-MMSE

Voting

Figure 6.14: Average execution time on MICA2 motes (ǫ = 4m, τ = 0.8ǫ, M = 100 and
S = 0)

Figure 6.14 shows the average execution time of the basic MMSE, the attack-

resistant MMSE, and the voting-based schemes on MICA2 motes. These data are collected

192

00 1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Sensor
ID=0

Beacon
ID=1
(1,3) Beacon

ID=2
(2,6)

Beacon
ID=3
(4,4)

Beacon
ID=4
(4,9)

Beacon
ID=5
(9,5)

Beacon
ID=6
(7,1) Beacon

ID=7
(8,8)

Figure 6.15: Target area of field experiment.

by counting the number of CPU clock cycles spent on location estimation. The location

references used in the experiment are generated from the simulation in Section 6.2.5. We

can see that the basic MMSE method requires the least execution time. The attack-resistant

MMSE scheme has less computational cost than the voting-based scheme when the number

of location references is small; however, when there are large numbers of location references

(e.g., 20), it takes the voting-based method less time to finish than the attack-resistant

MMSE method.

To further study the feasibility of the proposed techniques, we performed an out-

door field experiment. In the field experiment, eight MICA2 motes were deployed in a

10 × 10 target field, where each unit of distance is 4 feet, as shown in Figure 6.15. The

sensor node with ID 0 is configured as a non-beacon sensor node which is located at the

center of the field. All the other sensor nodes are configured as beacon nodes.

We considered three attack scenarios in the field experiment. In the first scenario,

the beacon node with ID 1 is configured as a malicious beacon node. This node always

declares a location e feet away from from its real location, in the direction away from the

non-beacon node. (The arrow marked on the beacon node 1 in Figure 6.15 shows this

direction.) In the second scenario, beacon nodes 1, 2 and 3 are configured as malicious

beacon nodes. Similar to the first scenario, each of these three nodes declares a location

193

that is e feet away from its real location in the directions away from the non-beacon node.

In the third scenario, three malicious beacon nodes 1, 2, and 3 work together to create

a virtual location. Each of these three nodes declares a false location by increasing its

horizontal coordinate by e feet. This actually creates a virtual location in the horizontal

axis that is e feet away from the non-beacon node’s real location. This is illustrated in

Figure 6.15 by the horizontal arrow starting from the non-beacon node.

To measure the distance between sensor nodes, we use a simple RSSI (Received

Signal Strength Indicator) based technique. Note that the Active Message protocol in the

current version of TinyOS provides a reading in the strength field for the MICA2 platform.

This value is returned in every received packet and can be used to compute the received

signal strength. To take advantage of this field, we performed an experiment before the

actual field experiment in the test field to estimate the relationship between the values of

this field and the distance between two nodes. For each given distance, we computed the

average of these values on 20 observations. By doing this, we built a table which contains

distances (from 0 to 30 feet with step size of 2 feet) and the corresponding average readings.

During the field experiments, when a sensor node receives 20 packets from a beacon node, it

computes the average of the values contained in the strength field and estimates the distance

with interpolation according to this table. For example, if the average reading v falls in

between two adjacent points (vi, di) and (vi+1, di+1) in the table, the sensor computes the

corresponding distance d = di +
(v−vi)×(di+1−di)

vi+1−vi
.

In the field experiment, the observed maximum distance measurement error is

about 4 feet. Thus, we set ǫ to 4 feet.

Figure 6.16 shows the performance of the attack-resistant methods as well as the

basic MMSE method in the field experiment. For the first two attack scenarios, we can

see that the attack-resistant methods can filter out or tolerate malicious location references

quite effectively. The performance in the third scenario is worse than in the first two

cases. The reason is that the non-beacon node has only 4 benign location references, but

3 colluding location references. This is almost the worst situation we can deal with by

purely using the location references. However, we can still see that the location estimation

error drops when the location errors introduced by the malicious attacks are above certain

thresholds. Overall, the location estimation errors caused by malicious attacks are bounded

when the proposed techniques are used, while the errors can be arbitrarily large when the

basic MMSE method is used.

194

0.1
1

10
100

0 20 40 60 80 100 120

Location error created by malicious beacon

L
o
c
a
t
i
o
n

e
s
t
i
m
a
t
i
o
n

e
r
r
o
r

MMSE
AR-MMSE
Voting

(a) A single malicious location reference
0.1

1
10

100

0 20 40 60 80 100 120

Location error created by malicious beacon

L
o
c
a
t
i
o
n

e
s
t
i
m
a
t
i
o
n

e
r
r
o
r

MMSE
AR-MMSE
Voting

(b) 3 non-colluding malicious location references

0.1
1

10
100

0 20 40 60 80 100 120

Location error created by malicious beacon

L
o
c
a
t
i
o
n

e
s
t
i
m
a
t
i
o
n

e
r
r
o
r

MMSE
AR-MMSE
Voting

(c) 3 colluding malicious location references

Figure 6.16: Performance of the attack-resistant schemes in the field experiment (M = 100
and S = 0 for the voting-based scheme; τ = 0.8ǫ = 3.2 feet for attack-resistant MMSE)

The field experiment further confirms that the proposed attack-resistant location

estimation methods are efficient and effective. Moreover, it shows these techniques are

practical on the current generation of sensor networks.

6.3 A Detector for Malicious Beacon Nodes

In hostile environments, a compromised beacon node or an attacking node that

has access to compromised cryptographic keys may send out malicious beacon signals that

include incorrect locations or manipulate the beacon signals so that a receiving node obtains,

for example, incorrect distance measurements. Sensor nodes that use such beacon signals for

195

location determination may estimate incorrect locations. In this section, we first describe a

simple but effective method to detect malicious beacon signals. With this method, we then

develop techniques to filter out replayed beacon signals and thus detect malicious beacon

nodes.

We assume that two communicating nodes share a unique pairwise key. A number

of random key pre-distribution schemes (e.g., [11, 41, 17]) can be used for this purpose. We

assume that a beacon node cannot tell if it is communicating with a beacon or non-beacon

node simply from the radio signal or the key used to authenticate the packet. We also

assume that communication is two way; that is, if node A can reach node B, then node

B can reach node A as well. Moreover, we assume beacon signals are unicasted to non-

beacon nodes, and every beacon packet is authenticated (and potentially encrypted) with

the pairwise key shared between two communicating nodes. Hence, beacon packets forged

by external attackers that do not have the right keys can be easily filtered out.

We assume location estimation is based on the distances measured from beacon

signals (through, e.g., RSSI). Nevertheless, our approach can be easily revised to deal with

location estimation based on other measurements.

6.3.1 Detecting Malicious Beacon Signals

The technique to detect malicious beacon signals is the basis of detecting malicious

beacon nodes. The basic idea is to take advantage of the (known) locations of beacon nodes

and the constraints that these locations and the measurements (e.g., distance, angle) derived

from the beacon signals must satisfy to detect malicious beacon signals.

A beacon node can perform detection on the beacon signals it hears from other

beacon nodes. For the sake of presentation, we call the node making this detection the

detecting (beacon) node, and the node being detected the target (beacon) node. Note that

if a malicious beacon node knows that a detecting beacon node is requesting for its beacon

signal, it can send out a normal beacon signal that does not lead to incorrect location

estimation and thus pass the detection mechanism without being noticed. To deal with

this problem, the detecting node uses a different node ID, called detecting ID, during the

detection. This ID should be recognized as a non-beacon node ID. The detecting node also

has all keying materials related to this ID so that it can communicate securely with other

beacon nodes as a non-beacon node. To increase the probability of detecting a malicious

196

malicious beacon
node n

a

(x, y)
 beacon
node n

I’m n
a
; my location
is (x’, y’)

errort measuremen maximum
distance measured2)'(2)'(

>

−−+− yyxx

(x’, y’) d

Figure 6.17: Detect malicious beacon signals

beacon node, we may allocate multiple detecting IDs as well as the related keying materials

to each beacon node. With the help of these detecting IDs, it is very difficult for an attacker

to distinguish the requests generated by detecting beacon nodes from those generated by

non-beacon nodes when sensor nodes are densely deployed. If sensor nodes have certain

mobility and/or the detecting node can carefully craft its request message (e.g., adjust the

transmission power in RSSI technique), it will become even more difficult for the attacker

to determine the source of a request message. For simplicity, we assume that the attacker

cannot tell if a request message is from a beacon node or a non-beacon node.

The proposed method works as follows. The detecting node n first sends a request

message to the target node na as a non-beacon node. Once the target node na receives

this message, it sends back a beacon packet (beacon signal) that includes its own location

(x′, y′). The detecting node n then estimates the distance between them from the beacon

signal upon receiving it. Since the detecting node n knows its own location, it can also

calculate the distance between them based on its own location (x, y) and the target node’s

location (x′, y′). The detecting node n then compares the estimated distance and the

calculated one. If the difference between them is larger than the maximum distance error,

the detecting node can infer that the received beacon signal must be malicious. Figure 6.17

illustrates this idea.

A potential problem in the above method is that even if the calculated distance

is consistent with the estimated distance, it is still possible that the beacon signal comes

from a compromised beacon node or is replayed by an attacking node. However, a further

investigation reveals that this will not generate impact on location estimation. Consider a

197

malicious beacon node that declares a location (x′, y′). If the estimated distance from its

beacon signal is consistent with the calculated one, it is equivalent to the situation where a

benign beacon node located at (x′, y′) sends a benign beacon signal to the requesting node.

In fact, to mislead the location estimation at a non-beacon node, the attacker has to manip-

ulate its beacon signal and/or beacon packet to make the estimated distance inconsistent

with the calculated one. This manipulation will certainly be detected if the requesting node

happens to be a detecting node.

6.3.2 Filtering Replayed Beacon Signals

Suppose a beacon signal from a target node is detected to be malicious, it is still

not clear if this node is malicious since an attacker may replay a previously captured beacon

signal. However, if we can determine that a malicious beacon signal indeed comes directly

from this target node, this target node must be malicious. Thus, it is necessary to filter out

as many replayed beacon signals between benign beacon nodes as possible in the detection.

A beacon signal may be replayed through a wormhole attack [28], where an attacker

tunnels packets received in one part of the network over a low latency link and replays

them in a different part [28]. Wormhole attacks generate big impacts on the security of

many protocols (e.g., localization, routing). A number of techniques have been proposed

recently to detect such attacks, including geographical leashes [28], temporal leashes [28],

and directional antenna [27]. These techniques can be used to filter out beacon signals

replayed through a wormhole.

A beacon signal received from a neighbor beacon node may also be replayed by an

attacking node. We call such replayed beacon signals locally replayed beacon signals. Most

wormhole detectors cannot deal with such attacks, since they can only tell if two nodes

are neighbor nodes. It is possible to use temporal leashes [28] to filter out locally replayed

beacon signal since replaying a beacon signal may introduce delay that is detectable with

temporal leashes. However, this technique requires a secure and tight time synchronization

and large memory space to store authentication keys. Instead, we study the effectiveness

of using round trip time to filter out locally replayed beacon signals and demonstrate that

using round trip time does not require the time synchronization method but can detect

locally replayed beacon signals effectively.

198

Replayed Beacon Signals from Wormholes

We assume that there is a wormhole detector installed on every beacon and non-

beacon node. This wormhole detector can tell whether two communicating nodes are neigh-

bor nodes or not with certain accuracy. The purpose of the following method is to filter

out the replayed beacon signals due to the wormhole between two benign beacon nodes

that are far away from each other. An observation regarding such replayed beacon signals

is that the distance between the location of the detecting node and the location contained

in the beacon packet is larger than the communication range of the target node. Thus, we

combine the wormhole detector with the location information in the following algorithm.

Once a beacon signal is detected to be a malicious beacon signal, the detecting

node begins to verify if it is replayed through a wormhole with the help of the wormhole

detector. The detecting node first calculates the distance to the target beacon node based

on its own location and the location declared in the beacon packet. If the calculated distance

is larger than the radio communication range of the target node and the wormhole detector

determines that there is a wormhole attack, the beacon signal is considered as a replayed

beacon signal and is ignored by the detecting node. Otherwise, the beacon signal will go

through the process to filter locally replayed signals in Section 6.3.2.

Let us briefly study the effectiveness of this method. Since a malicious target node

can always manipulate its beacon signals to convince the detecting node that there is a

wormhole attack and they are far from each other even if they are neighbor nodes, it is

possible that the beacon signal from a malicious target node is removed. Fortunately, non-

beacon nodes in the network are also equipped with this wormhole detector. This means

that a malicious target node cannot convince all detecting nodes that there are wormhole

attacks and at the same time convince all non-beacon nodes that there are no wormhole

attacks so that its beacon signals are not removed by non-beacon nodes. This is because a

malicious beacon node does not know if a requesting node is a detecting beacon node.

It is also possible that a replayed beacon signal through a wormhole from a benign

target node is not removed. The reason is that the wormhole detector cannot guarantee

that it can always detect wormhole attacks.

199A B C D D D
A B C D D D

E F
E G E H

E IJ K L M K N E J K O PQR F E S FR GE S G A B C D D DE S HR H
A B CR IE S I D D D

Figure 6.18: Round trip time

Locally Replayed Beacon Signals

The method to filter out locally replayed beacon signals is based on the observation

that the replay of a beacon signal introduces extra delay. In most cases, this delay is

large enough to detect whether there is a locally replayed beacon signal through the round

trip time (RTT) between two neighbor nodes. In the following, we first investigate the

characteristics of RTT between two neighbor sensor nodes in a typical sensor network, and

then use this result to filter out locally replayed signals between benign beacon nodes.

To remove the uncertainty introduced by the MAC layer protocol and the process-

ing delay, we measure the RTT in the following way. As shown in Figure 6.18, the sender

sends a request message to the receiver, and the receiver responds with a reply message. t1

is the time of finishing sending the first byte of the request from a sender, t2 is the time

of finishing receiving the first byte of this request at a receiver, t3 is the time of finishing

sending the first byte of the reply from the receiver, and t4 is the time of finishing receiving

the first byte of this reply at the original sender. The sender estimates RTT by computing

RTT = (t4 − t1) − (t3 − t2), where t4 and t1 are available at the sender, and t3 − t2 can be

obtained from the receiver by exchanging messages.

Characteristics of RTT between neighbor nodes: We may perform experi-

ments on an actual sensor platform to obtain the characteristics of RTT . To gain further

insights and examine our approach, we performed experiments on MICA2 motes [13] run-

ning TinyOS [25]. For simplicity, we assume the same type of sensor nodes in the sensor

network. Nevertheless, our technique can be easily extended to deal with different types of

nodes in the network.

200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000 7000 8000
Round trip time (CPU clock cycles)

C
u

m
u

la
ti

ve
 d

is
tr

ib
u

ti
o

n

Figure 6.19: Cumulative distribution of round trip time

In the experiment, t1 is measured by recording the time right after the commu-

nication module (CC1000) moves the second byte of the request message to the SPDR

register, which is used to store the byte being transmitted over the radio channel. In other

words, t1 is the time of finishing shifting the first byte of the request message out of this

register. Assume the absolute time of finishing sending the first byte of the request message

is ta1. We have t1 + d1 = ta1, where d1 is the delay between shifting the data byte out of the

SPDR register and finishing sending this byte over the radio channel. Similarly, we have

t3 + d3 = ta3. Similarly, t2 is measured by recording the time right after the first byte of

the request message is ready at the SPDR register. Assume the absolute time of finishing

receiving this byte from the radio channel is ta2. We have t2 = ta2 + d2, where d2 is the delay

between receiving this byte from the radio channel and reading this byte from the SPDR

register. Similarly, we have t4 = ta4 + d4. Since the radio signal travels at the speed of light,

we have ta4 − ta1 − (ta3 − ta2) = 2D
c , where D is the distance between two neighbor nodes and

c is the speed of light. Thus, we have RTT = d1 + d2 + d3 + d4 + 2D
c .

Note that d1, d2, d3 and d4 are mainly affected by the underlying radio com-

munication hardware. Since two neighbor nodes are usually close to each other, the

value of 2D
c in the above equation is negligible. Hence, the RTT measured by comput-

ing RTT = (t4 − t1)− (t3− t2) is not affected by the MAC protocol or any processing delay.

This means that the distribution of RTT should be within a narrow range. Let F denote

the cumulative distribution function of RTT when there are no replay attacks, xmin denote

the maximum value of x such that F (x) = 0, and xmax denote the minimum value of x such

that F (x) = 1.

201

Figure 6.19 shows the cumulative distribution of RTT when there are no replay

attacks. We use one CPU clock cycle as the basic unit to measure the time. This figure

is derived by measuring RTT 100, 000 times. The result shows that xmin = 1, 951 and

xmax = 7, 506. Since the transmission time of one bit is about 384 clock cycles, we can detect

any replayed signal if the delay introduced by this replay is longer than the transmission

time of 7506−1951
384 ≈ 14.5 bits.

The detector for locally replayed beacon signals: With RTT ’s cumulative

distribution, we can detect locally replayed signals between benign beacon nodes effectively.

The basic idea is to check if there is any significant difference between the observed RTT

and the range of RTT derived during our experiments. For example, if the observed RTT

at the requesting node is larger than the maximum RTT in Figure 6.19, it is very likely that

the reply signal is replayed. The following local replay detector will be installed on every

beacon and non-beacon node.

The requesting node u communicates with a beacon node v following the request-

reply protocol shown in Figure 6.18. As a result, node u can compute RTT = (t4 − t1) −
(t3 − t2). There are two cases: (1) When RTT ≤ xmax, the beacon signal is considered

as not locally replayed. If the requesting node is a detecting node, it will report an alert

when the beacon signal is detected to be malicious. If the requesting node is a non-beacon

node, this beacon signal will be used in its location estimation. (2) When RTT > xmax,

this beacon signal is considered as locally replayed and will be ignored by the requesting

node.

When the target node is a benign beacon node and is a neighbor of the detecting

node, but the beacon signal is replayed by a malicious node, the detecting node will report

an alert if the delay introduced by the locally replayed signal is less than the transmission

time of 14.5 bits data. However, this is very difficult for the attacker to achieve since the

attacker has to replay the beacon signal to the detecting node when the target node is

still sending its beacon signal. This implies that the attacker has to physically shield every

signal to the detecting node and replay the intercepted packet at the same time. When the

target benign beacon node is not a neighbor node of the detecting node, the detecting node

will report an alert if the delay introduced by the undetected wormhole attack is less than

the transmission time of 14.5 bits data. Note that this implies this replayed beacon signal

has bypassed the wormhole detector.

Note that the purpose of the above method is to filter the replayed beacon signals

202

between benign beacon nodes to avoid false positives. This method becomes trivial when

the target node is a malicious beacon node, since it can easily convince a detecting node that

the beacon signal is locally replayed and thus prevent the detecting node from reporting

an alert. However, the malicious target node cannot convince all detecting nodes that the

beacon signals are locally replayed and at the same time convince all non-beacon nodes

that its beacon signals are not locally replayed so that its beacon signals are accepted by

non-beacon nodes.

Security and Performance Analysis

Theoretically, the proposed techniques can be used to provide security for any

existing localization scheme based on location references from beacon nodes. However, when

TDoA technique is used for measuring distances to beacon nodes, the proposed techniques

do not work as effectively as in other techniques (e.g., RSSI, ToA, and AoA) since it is

usually more difficult to protect ultrasound signals – especially when ultrasound signals

cannot carry data packets.

In some cases, a non-beacon node may become a beacon node to supply location

references once it discovers its own location. Localization errors may accumulate when more

and more non-beacon nodes turn into beacon nodes. However, there are still constraints

between estimated measurements and calculated measurements; otherwise, it is impossible

to estimate locations with required accuracy. With these constraints, we can still apply the

proposed detector to catch possible malicious beacon nodes, though the specific solutions

need further investigation.

Overheads: Since beacon signals are unicasted from beacon nodes to their neigh-

bor non-beacon nodes, our techniques sacrifice a certain amount of communication overhead

for security. This trade-off is practical, since location estimation only needs to be done once

for each non-beacon node in most cases, and a sensor node (beacon or non-beacon node)

usually only needs to communicate with a few other nodes within its communication range.

The computation and storage overheads are mainly introduced by key establishment pro-

tocol and cryptographic operations.

False positives: Our techniques cannot prevent a malicious detecting node from

reporting alerts against other beacon nodes. The techniques are aimed at reducing the

probability of a benign beacon node reporting alerts against other benign beacon nodes

203

and increasing the probability of a benign beacon node reporting alerts against malicious

beacon nodes.

For simplicity, we assume that when a node A is sending a beacon signal to its

neighbor node B during time period T , node B either receives the original signal or receives

nothing (in case of collision) at the end of T . Thus, the delay of replaying a signal between

two neighbor nodes is at least the transmission time of one entire packet, which is typically

much larger than 14.5 bits. This means that our detector can always detect locally replayed

beacon signals between two benign neighbor nodes. Hence, the situation where a benign

beacon node reports an alert against another benign beacon node only happens when (1)

they are not neighbor nodes, (2) the attacker creates a wormhole between them, (3) this

wormhole cannot be detected by the detecting node, and (4) the delay introduced by this

wormhole is less than the transmission time of 14.5 bits. Assume the detection rate of the

wormhole detector is pd. The probability that a replayed beacon signal through a wormhole

from a benign beacon node is not removed can be estimated by 1−pd. Thus, the probability

of a benign beacon node reporting an alert on another benign beacon node is at most 1−pd

if there is a wormhole between them, and 0 otherwise.

Detection rate (Pr): The detection rate, which is the probability of a malicious

target node being detected by a detecting node, is an important metric to evaluate the

performance of our detector. Assume a malicious beacon node u sends normal beacon

signals to a fraction pn of the requesting nodes, convinces a fraction pw of requesting nodes

that its beacon signals are replayed from wormholes and convinces a fraction pl of requesting

nodes that its beacon signals are locally replayed. We also assume the malicious beacon

node u behaves in the same way for the same requesting node, which is the best strategy for

the node to avoid being detected. Thus, using one detecting ID, a benign detecting node

v that hears beacon signals from this malicious node u will detect malicious beacon signals

with a probability of 1−pn. If a malicious beacon signal from malicious node u is detected,

the probability of going through the process of filtering locally replayed beacon signals is

1 − pw. During the process of filtering locally replayed beacon signals, the probability of

node v reporting an alert against a malicious node u is 1 − pl. Hence, the probability of

malicious node u being detected by node v can be estimated by (1 − pn)(1 − pw)(1 − pl).

When each detecting node has m detecting IDs. The probability Pr of a malicious beacon

node being detected by a benign detecting node can be estimated by Pr = 1 − (1 − (1 −
pn)(1 − pw)(1 − pl))

m.

204

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1
P

Pr
m=1

m=2

m=4

m=8

Figure 6.20: Relationship between Pr and P .

We denote P as the probability that (1) a requesting non-beacon node receives a

malicious beacon signal from a malicious beacon node, and (2) this malicious beacon signal

is not removed by the replay detector. For a requesting non-beacon node w, the probability

of hearing malicious beacon signals from node u is (1−pn). If w receives a malicious beacon

signal, the probability of going through the detection of locally replayed signals is 1 − pw.

During the detection of locally replayed signals, the probability of this malicious beacon

signal not being filtered out is 1 − pl. Since the above three events are independent from

each other, the probability P can be estimated by P = (1 − pn)(1 − pw)(1 − pl). Thus, we

have Pr = 1 − (1 − P)m.

Figure 6.20 shows the relationship between the detection rate Pr and P . It in-

dicates that an attacker cannot increase P without increasing the probability of being

detected. On the other hand, a benign detecting node can always increase m to have higher

detection rate Pr.

6.3.3 Revoking Malicious Beacon Nodes

With the detector in the previous section, a detecting beacon node may report

alerts about other suspicious beacon nodes. In this section, we propose to use the base

station to further remove malicious beacon nodes from the network to reduce their impact

on the location discovery service. We assume that the base station has mechanisms to

revoke malicious beacon nodes when it determines what nodes to remove.

205

The Revocation Scheme

We assume each beacon node shares a unique random key with the base station.

With this key, a beacon node can report its detecting results securely to the base station.

The basic idea is to evaluate the suspiciousness of each beacon node based on the

alerts from detecting nodes. The beacon nodes with high degree of suspiciousness will be

considered as being compromised. We measure the suspiciousness of a beacon node with

the number of alerts against this beacon node. Since malicious beacon nodes may report

many alerts against benign beacon nodes, we limit the number of alerts each beacon node

can report to mitigate this effect. The detail of the algorithm is described below.

Every alert from a detecting node includes the ID of the detecting node and the

ID of the target node. The base station maintains an alert counter and a report counter for

each beacon node. The alert counter records the suspiciousness of this beacon node, while

the report counter records the number of alerts that are reported by this node and accepted

by the base station. Whenever a detecting node determines that a particular beacon node

is compromised, it reports an alert to the base station. Once the base station receives the

alert, it checks if the report counter of the detecting node has not exceed a threshold τ ′

and the target node is not revoked. If this is true, it increases both the alert counter of the

target node and the report counter of the detecting node by 1; otherwise, the base station

ignores this alert. The base station then checks if the alert counter of the target node

exceeds another threshold τ . If yes, the target node is considered as a malicious beacon

node and revoked from the network.

Note that the alert from a revoked detecting node will still be accepted by the

base station if its report counter does not exceed threshold τ ′ and the target node is not

revoked. The purpose is to prevent malicious beacon nodes from reporting a lot of alerts

against benign beacon nodes and having these benign beacon nodes revoked before they

can report any alert.

Analysis

For simplicity, we assume beacon nodes and non-beacon nodes in the network are

randomly deployed in the field. We assume there are N sensor nodes, Nb beacon nodes,

and Na malicious beacon nodes in the network. Thus, there are N − Nb non-beacon nodes

and Nb −Na benign beacon nodes. We assume malicious beacon nodes do not report alerts

206

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1
P

D
et

ec
ti

o
n

 r
at

e T=0T=1T=2T=4

(a) m=1

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1
P

D
et

ec
ti

o
n

 r
at

e

m=1

m=2

m=4

m=8

(b) τ=4

Figure 6.21: Detection rate v.s. probability of non-beacon nodes being affected. Nc = 100.

against other malicious beacon nodes, since this will increase the probability of a malicious

beacon node being detected. We also assume that every alert from beacon nodes can be

successfully delivered to the base station using some standard fault tolerant techniques (e.g.,

retransmission) when there are message losses. When it is necessary to evaluate a certain

aspect with specific numbers (e.g., in figures), we always assume 10% of sensor nodes are

benign beacon nodes (Nb−Na

N = 0.1).

Overheads: The revocation scheme requires beacon nodes to report their obser-

vations to the base station, which introduces additional communication overhead. However,

a beacon node usually only needs to monitor a small number of other beacon nodes that

it can communicate with. Thus, only a limited number of alerts need to be delivered to

the base station. There is no additional computation overhead and storage overhead intro-

duced by the above algorithm for the beacon nodes in the network. For the base station, it

is usually not a problem to run the above algorithm, since the base station is much more

resourceful than a beacon node.

Detection rate (Pd): The detection rate studied here is the probability of a

malicious beacon node being revoked by the base station. Consider any requesting node u

of a particular malicious beacon node v. The probability that u is a benign beacon node

can be estimated by Nb−Na

N . If node u is a benign beacon node, the probability of reporting

an alert is Pr. Hence, for any requesting node, the probability of the base station having an

alert reported against the malicious beacon node v can be estimated by Pa = (Nb−Na)×Pr

N .

Suppose there are Nc requesting nodes for node v. The probability of having exactly i

207

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200
Nc

D
et

ec
ti

o
n

 r
at

e

P=0.1

P=0.2

P=0.3

P=0.4

Figure 6.22: Detection rate. m = 8 and τ = 2.

alerts reported can be estimated by P (i) = Nc!
(Nc−i)!i!P

i
a(1 − Pa)

Nc−i. Assume the threshold

τ ′ is large enough so that an alert from a detecting node will not be ignored by the base

station simply because its report counter exceeds τ ′. (The method to determine τ ′ will be

discussed later.) The probability of the number of alerts against the malicious beacon node

v exceeding τ can be estimated by Pd = 1 − ∑τ
i=0 P (i), which is the expected detection

rate.

Figure 6.21(a) and Figure 6.21(b) illustrate the effect of m, τ and P on the detec-

tion rate, assuming Nc = 100. We can see that the detection rate increases quickly when

a malicious beacon node behaves maliciously more often (a larger P). In addition, the

detection rate decreases with a larger threshold τ , since we need more alerts to revoke a

malicious beacon node. Finally, the detection rate also increases with more detecting IDs at

each beacon node, since each detecting node has more chances to detect a malicious beacon

node and report an alert.

Figure 6.22 shows the effect of Nc on the detection rate, assuming m = 8 and

τ = 2. We can see that the detection rate increases when more requesting nodes contact

a malicious beacon node. This is because the more requesting nodes contact a malicious

beacon node, the more alerts are reported.

Average number of affected non-beacon nodes (N ′): An important target of

attacks is to mislead the location estimate at as many non-beacon nodes as possible. Thus,

it is necessary to study the average number of non-beacon nodes that are really affected by

malicious beacon nodes. We assume that a malicious beacon signal will not be used in the

location estimation if the corresponding beacon node is revoked. This can be achieved by

208

0

1

2

3

4

5

6

7

0 0.2 0.4 0.6 0.8 1
P

N'

U=1,m=8 U=1,m=4U=2,m=8 U=2,m=4U=4,m=8 U=4,m=4

Figure 6.23: Average number of affected non-beacon nodes after all detected malicious
beacon nodes are revoked from the network. m = 8 and Nc = 100.

using some standard fault tolerance techniques (e.g., retransmission) so that the revocation

message from the base station can reach most of the sensor nodes.

After all detected malicious beacon nodes are revoked, the probability of a non-

beacon requesting node accepting the malicious beacon signal from a malicious beacon node

can be estimated by P ′ = P × (1 − Pd). Thus, the average number of non-beacon nodes

that have been really affected can be estimated by N ′ = P ′×Nc×(N−Nb)
N . Since τ and m are

system parameters, the attacker may adjust P to maximize P ′ and thus N ′. (Note that

the attacker is able to control P .) Figure 6.23 shows that in practice, there are only a few

non-beacon nodes accepting the malicious beacon signals. It also shows that N ′ as well as

P ′ increases with a larger τ , and decreases with a larger m. This is because a malicious

beacon node has a higher chance to be detected with a larger m, and a higher chance not

to be revoked with a larger τ .

Figure 6.24 shows the relationship between N ′ and P when the attacker can always

choose P to maximize N ′. We can see that N ′ increases dramatically at the beginning.

However, when Nc reaches a certain point (about 20), N ′ begins to drop quickly and finally

remains at certain level. This is because after the number of request nodes reaches a certain

point, a malicious beacon node has a higher chance of being revoked from the network if

it is contacted by more requesting nodes. We also note that N ′ decreases when threshold

τ decreases. This is because the probability of a malicious beacon node being revoked

increases with a smaller τ .

Number of false positives (Nf): Assume there are wormhole attacks between

Nw pairs of benign beacon nodes in the network. For any wormhole created between

209

0

2

4

6

8

10

12

14

0 50 100 150 200

Nc

N'

m=8,V=2 m=8,V=0

m=4,V=2 m=4,V=0

m=2,V=2 m=2,V=0

Figure 6.24: Average number of affected non-beacon nodes when P is chosen in such a way
that P ′ is maximized.

two benign beacon nodes, the probability of one of them reporting an alert against the

other is 1 − pd, where pd is the wormhole detection rate. Thus, on average, there are

2(1−pd)Nw alerts reported between benign beacon nodes. We consider the worst case where

each beacon node reports τ ′ + 1 alerts. Thus, the total number of alerts against benign

beacon nodes can be estimated by 2(1 − pd)Nw + Na(τ
′ + 1), and the average number of

benign beacon nodes revoked by the base station (the number of false positives) is at most

Nf = 2(1−pd)Nw+Na(τ ′+1)
τ+1 .

According to the above equation, we note that the number of false positives de-

pends on Nw, Na, and the two thresholds. Thus, to reduce the number of false positives,

we have to decrease τ ′ and/or increase τ . However, decreasing τ ′ implies a smaller number

of alerts against a malicious node, while increasing τ imples more alerts needed to revoke a

malicious node. Both of these two options will decrease the probability of malicious beacon

nodes being detected. In practice, we have to make trade-offs between the number of false

positives and the detection rate. The next part of the analysis will show a possible way to

deal with this problem.

Thresholds τ and τ ′: Thresholds τ and τ ′ are two critical parameters. Threshold

τ can be configured according to similar constraints in Figure 6.24. Intuitively, we may

derive the relationship between N ′ and Nc as shown in Figure 6.24 given expected values

of N , Nb, Na, pd and m. We can then choose a set of τ that makes the maximum number

of affected non-beacon nodes remain under a given value.

For each of the selected thresholds τ , we configure threshold τ ′ in the following

way so that most of the alerts from benign beacon nodes will not be ignored by the base

210

station simply because their report counters exceed τ ′.

We assume malicious nodes are also randomly deployed in the network. Consider

a particular benign beacon node u. The probability of a particular malicious beacon node v

being contacted by node u can be estimated by Nc

N . Since the probability of node u reporting

an alert against node v is Pr and the probability of node v having not been revoked can be

approximately estimated by 1 − Pd, the probability of the report counter of node u being

increased by 1 for node v can be estimated by P1 = Pr×Nc×(1−Pd)
N if this report counter has

not exceeded τ ′ yet. In addition, the probability of a particular wormhole being created

for node u can be estimated by 2
Nb−Na

, and the probability of node u reporting an alert

due to this wormhole can be estimated by 1 − pd. Since the probability of the node at the

other side of the wormhole being revoked can be approximately estimated by
Nf

Nb−Na
, the

probability of the report counter of node u being increased by 1 due to the wormhole attack

can be estimated by P2 =
2(1−pd)(Nb−Na−Nf)

(Nb−Na)2 if this report counter has not exceeded τ ′ yet.

Hence, the probability that the report counter of node u is i (i ≤ τ ′) can be estimated by

P ′(i) =
∑

j+k=i

Na!Nw!P j
1 (1 − P1)

Na−jP k
2 (1 − P2)

Nw−k

(Na − j)!j!(Nw − k)!k!
.

Therefore, the probability of the report counter of a benign node exceeding τ ′

can be estimated by Po = 1 −
∑τ ′

i=0 P ′(i). Figure 6.25 plots this probability when τ = 2,

assuming N = 10, 000,Nb = 1100, Na = 100, Nw = 100, pd = 0.9, m = 8, and P = 0.1.

We can see that the probability of the report counter of a benign beacon node exceeding

2 is close to zero. Thus, we can chose τ ′ = 2 and have a pair of candidate thresholds

(τ = 2, τ ′ = 2). We also note that malicious beacon nodes cannot increase this probability

by simply having more requesting nodes contact it, since this will increase the chance of

being revoked.

After the above analysis, we can find a proper threshold τ ′ for each selected τ .

We then choose a pair of thresholds τ and τ ′ that satisfy the constraints on the number of

false positives Nf or simply choose a pair of thresholds that lead to the minimum Nf given

certain pd, Nw and Na.

6.3.4 Simulation Evaluation

We have implemented the proposed techniques on TinyOS [25], an operation sys-

tem for networked sensors. In this section, we present the results obtained through the

211

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 2 4 6 8 10W'
Po

Nc=20
Nc=50
Nc=100
Nc=200
Nc=400

Figure 6.25: Probability of the report counter of a benign beacon node exceeding τ ′. Assume
N = 10, 000, Nb = 1100, Na = 100, Nw = 100, pd = 0.9, τ = 2, m = 8, and P = 0.1.

TinyOS simulator Nido, with a focus on the detection rate and the false positive rate (i.e.,

#incorrect revoked beacons
#total benign beacons) of the proposed schemes.

We assume 1,000 sensor nodes (N = 1000) randomly deployed in a sensing field of

1000×1000 square feet. Among these sensor nodes, there are 100 beacon nodes (Nb = 100)

with 10 compromised beacon nodes (Na = 10). Figure 6.26 shows the randomly generated

deployment used in our simulation, where each blank circle (◦) represents a benign beacon

node and each solid circle (•) represents a malicious beacon node. We assume the maximum

communication range of a beacon or non-beacon node is 150 feet and a malicious beacon

node only contacts the nodes within its communication range.

In the simulation there is a wormhole between location A (100,200) and location

B (800,700), which forwards every message received at one side immediately to the other

side. We assume malicious beacon nodes collude together to report alerts against benign

beacon nodes. Thus, they can always make the base station revoke about Na×(τ ′+1)
τ+1 benign

beacon nodes by simply reporting alerts. We always assume m = 8 and pd = 0.9. We also

assume that there is a technique (e.g., RSSI) used to estimate the distance to the beacon

node that has the maximum error of 10 feet.

Figure 6.27 shows the detection rate when τ ′ = 2 and τ = 2. The result conforms

to the theoretical analysis. We can clearly see the increase in the detection rate when

a malicious beacon node tries to increase P to affect more non-beacon nodes. Figure

6.28 shows the average number N ′ of requesting non-beacon nodes accepting the malicious

beacon signals from a malicious beacon node. We note that the simulation result has

observable but small difference from the theoretical analysis. The simulation result and the

212

XYXXZXX[XX\XX]XX^XX_XX`XXaXXYXXX

X YXX ZXX [XX \XX]XX ^XX _XX `XX aXX YXXX
Figure 6.26: Deployment of beacon nodes in a sensing field.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

P

D
et

ec
ti

o
n

 r
at

e

Simulation result

Theoretical result

Figure 6.27: Detection rate v.s. P . Assume τ ′ = 2 and τ = 2.

theoretical result are in general close to each other.

Based on our earlier analysis, both the detection rate and the false positive rate

are affected by τ and τ ′ given certain pd, Nw and Na. Figure 6.29 shows the ROC (Receiver

Operating Characteristic) curves for the proposed techniques under different choice of τ

and τ ′, assuming P is configured in such a way that N ′ is maximized. (The various points

in the figure are obtained by using different values of τ .) It includes the performance when

there are either 5 (Na = 5) or 10 (Na = 10) compromised beacon nodes. We can see

that our technique can detect most of malicious beacon nodes with small false positive rate

(e.g., 5%) when there are a small number of compromised beacon nodes. However, when

213

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1
P

N'

Simulation result

Theoretical result

Figure 6.28: Average number of requesting non-beacon nodes accepting the malicious bea-
con signals from a malicious beacon node. Assume τ ′ = 2 and τ = 2.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1
False positive rate

D
et

ec
ti

o
n

 r
at

e

Na=5,b'=2
Na=5,b'=3
Na=5,b'=4
Na=10,b'=2
Na=10,b'=3
Na=10,b'=4

Figure 6.29: ROC curves. Assume P is chosen to maximize N ′.

the number of compromised beacon nodes increases, the performance decreases accordingly.

For example, when there are 10 malicious beacon nodes, the false positive rate will reach

20% in order to detect most of malicious beacon nodes. Nevertheless, the figure still shows

that our techniques are practical and effective in detecting malicious beacon nodes. In

addition, this figure also gives a way to set τ and τ ′ to meet the security requirement of

different applications.

6.4 Summary

Sensors’ locations are critical to many wireless sensor network applications. In

this chapter, we identified the vulnerabilities of current localization schemes for sensor net-

works in hostile environments where there are malicious attacks. To deal with such attacks,

214

we proposed an attack-resistant MMSE-based location estimation and a voting-based loca-

tion estimation technique. When beacon packets are authenticated and beacon nodes are

uniquely identified, these techniques substantially improve the security and the robustness

of location estimation in wireless sensor networks. We have implemented the proposed

techniques on MICA2 motes [13] running TinyOS [25] and evaluated them through both

simulation and field experiments. Our experiences indicate that the proposed techniques

are practical solutions for securing location discovery in wireless sensor networks.

Our future research is two-fold. First, we will study alternative and potentially

more efficient and effective ways for secure localization in wireless sensor networks. Second,

we will study how to combine the proposed techniques with other protection mechanisms

such as wormhole detection.

215

Chapter 7

Conclusions and Future Work

7.1 Contributions

In this dissertation, I study the problems in the following two areas: (1) funda-

mental cryptographic mechanisms in wireless ad-hoc and sensor networks, and (2) security

of fundamental services (e.g., location discovery) in sensor networks.

1. Fundamental cryptographic mechanisms in wireless ad-hoc and sensor networks: Wire-

less ad-hoc and sensor networks have received a lot of attention recently due to the

wide range of potential applications in civilian and military operations. Some unique

features of these networks, such as lack of infrastructural support, node capture at-

tacks, and resource constraints, make traditional security mechanisms not as effective

as in wired networks.

In sensor networks, it is usually desirable for base stations to broadcast commands and

data to sensor nodes. µTESLA protocol has been proposed to remove the dependency

on expensive public key operations for broadcast authentication in wireless sensor

networks [62]. However, to bootstrap receivers, the base station has to unicast initial

parameters to sensor nodes individually. This feature severely limits the application of

µTESLA in large sensor networks. By constructing a multi-level key chain structure,

we developed a series of techniques to extend the capabilities of µTESLA [40, 44].

In our methods, the initial parameters are broadcasted to sensor nodes instead of

216

unicast-based transmission.

Pairwise key establishment enables sensor nodes to communicate securely with each

other using cryptographic techniques. Due to the resource constraints on sensor nodes,

it is not desirable, and sometimes infeasible, for them to use traditional pairwise key

establishment techniques such as public key cryptography and key distribution center

(KDC). We developed a number of key pre-distribution techniques to deal with this

problem [41, 47]. We first presented a general framework for pairwise key establish-

ment based on the polynomial-based key pre-distribution [5] and the probabilistic key

distribution [19]. By instantiating the components in this framework, we further de-

veloped two novel pairwise key pre-distribution schemes: a random subset assignment

scheme and a hypercube-based scheme. Both of them can achieve better performance

than the previous methods. In addition, we also studied how to take advantage of the

prior deployment knowledge, post deployment knowledge and group-based deployment

knowledge of sensor nodes to improve the performance of existing key pre-distribution

techniques [42, 43].

2. Security of fundamental services in sensor networks: Fundamental services such as

location discovery and time synchronization are critical for the normal operations

of sensor networks. However, these services are vulnerable to malicious attacks in

hostile environments. Sensors’ locations are of particular importance in many sensor

network applications. A number of techniques have been proposed recently to discover

the locations of sensors based on a few special nodes called beacon nodes, which

are assumed to know their own locations (e.g., through GPS receivers or manual

configuration). However, most of these techniques cannot work properly when there

are malicious attacks, especially when some of the beacon nodes are compromised.

We developed two methods to survive malicious attacks against the location discovery

in sensor networks [45]. The first method filters out malicious beacon signals on the

basis of the “consistency” among multiple beacon signals, while the second method

tolerates malicious beacon signals by adopting an iteratively refined voting scheme.

Both methods can survive malicious attacks even if the attacks bypass traditional

cryptographic protections such as authentication, as long as the benign beacon signals

constitute the majority of the “consistent” beacon signals.

In addition, we also proposed a suite of techniques to detect and remove the com-

217

promised beacon nodes that supply misleading location information to regular sensor

nodes [46]. We first developed a simple but effective method to detect malicious

beacon signals by using the known locations of beacon nodes. To identify malicious

beacon nodes and avoid false detection, we also presented several techniques to detect

replayed beacon signals. We then proposed a method to reason about the suspicious-

ness of each beacon node based on distributed detection results, and revoke malicious

beacon nodes accordingly.

7.2 Future Work

Despite the substantial advances in techniques for securing wireless sensor net-

works, many security problems still haven’t been fully addressed. These problems still need

further investigation.

1. Fundamental cryptographic mechanisms: It is worth further studying those funda-

mental cryptographic mechanisms in wireless sensor networks. One example could be

broadcast authentication. Though the µTESLA protocol removes the dependency on

public key cryptography for broadcast authentication in sensor networks, it requires

loose time synchronization between a sender and multiple receivers. Hence, providing

a practical broadcast authentication protocol without depending on time synchroniza-

tion is of particular interest for sensor networks. In addition, some other problems

such as group key establishment, key update and key revocation also need further

investigation.

On the other hand, several recent experiments show that sensor nodes are able to

compute a few optimized public key operations. This leads to an interesting research

direction: how to provide efficient broadcast authentication protocols using optimized

public key cryptography. In particular, we need to further reduce the storage and

communication overheads and mitigate the DOS attacks introduced by the public key

operations.

2. Security of fundamental services: In my earlier studies, I only looked at the problem

of secure location discovery. However, there are many other fundamental services that

need protection; for example, time synchronization, data management and routing.

218

Moreover, secure location discovery is still a challenging problem in wireless sensor

networks. I believe that there is still room for improving the resilience of current secure

location discovery techniques. For example, we may use additional knowledge such as

topology information to further improve the detection and revocation of compromised

beacon nodes.

3. Detection of attacks: Many attacks have been identified in sensor networks; for exam-

ple, node capture attacks, sybil attacks, and wormhole attacks. Due to the resource

constraints on sensor nodes and node capture attacks, the detection of attacks in sen-

sor networks is different and potentially more difficult than the intrusion detection

in traditional networks. An important question that we need to address is how to

distinguish malicious behavior from normal behavior. One possible approach is to use

the application semantics. In addition, we also need to study how to conduct such

detection in a distributed and localized fashion and how to cooperate with each other

to improve the detection result.

219

Bibliography

[1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor net-

works: A survey. Computer Networks, 38(4):393–422, 2002.

[2] R. Anderson, F. Bergadano, B. Crispo, J. Lee, C. Manifavas, and R. Needham. A new

family of authentication protocols. In Operating Systems Review, October 1998.

[3] S. Basagni, K. Herrin, D. Bruschi, and E. Rosti. Secure pebblenets. In Proceedings

of ACM International Symposium on Mobile ad hoc networking and computing, pages

156–163, 2001.

[4] F. Bergadano, D. Cavagnino, and B. Crispo. Individual single source authentication on

the mbone. In IEEE International Conference on Multimedia & Expo (ICME), August

2000.

[5] C. Blundo, A. De Santis, Amir Herzberg, S. Kutten, U. Vaccaro, and M. Yung.

Perfectly-secure key distribution for dynamic conferences. In Advances in Cryptology

– CRYPTO ’92, LNCS 740, pages 471–486, 1993.

[6] B. Briscoe. FLAMeS: Fast, loss-tolerant authentication of multicast stream. Technical

report, BT Research, 2000.

[7] S. Buchegger and J. L. Boudec. Performance analysis of the CONFIDANT protocol

(cooperation of nodes: Fairness in dynamic ad-hoc networks). In Proceedings of The

Third ACM International Symposium on Mobile Ad Hoc Networking and Computing,

pages 226–236, June 2002.

[8] N. Bulusu, J. Heidemann, and D. Estrin. GPS-less low cost outdoor localization for

220

very small devices. In IEEE Personal Communications Magazine, pages 28–34, October

2000.

[9] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas. Multicast secu-

rity: A taxonomy and some efficient constructions. In Proceedings of IEEE INFOCOM

’99, pages 708–716, 1999.

[10] D.W. Carman, P.S. Kruus, and B.J.Matt. Constrains and approaches for distributed

sensor network security. Technical report, NAI Labs, 2000.

[11] H. Chan, A. Perrig, and D. Song. Random key predistribution schemes for sensor

networks. In IEEE Symposium on Research in Security and Privacy, pages 197–213,

2003.

[12] S. Cheung. An efficient message authentication scheme for link state routing. In 13th

Annual Computer Security Applications conference, San Diego, California, December

1997.

[13] Crossbow Technology Inc. Wireless sensor networks. http://www.xbow.com/

Products/Wireless_Sensor_Networks.htm. Accessed in May 2005.

[14] J. Deng, R. Han, and S. Mishra. Security support for in-network processing in wireless

sensor networks. In 2003 ACM Workshop on Security in Ad Hoc and Sensor Networks

(SASN ’03), October 2003.

[15] L. Doherty, K. S. Pister, and L. E. Ghaoui. Convex optimization methods for sensor

node position estimation. In Proceedings of INFOCOM’01, 2001.

[16] W. Du, J. Deng, Y. S. Han, S. Chen, and P. Varshney. A key management scheme

for wireless sensor networks using deployment knowledge. In Proceedings of IEEE

INFOCOM’04, March 2004.

[17] W. Du, J. Deng, Y. S. Han, and P. Varshney. A pairwise key pre-distribution scheme

for wireless sensor networks. In Proceedings of 10th ACM Conference on Computer

and Communications Security (CCS’03), pages 42–51, October 2003.

[18] W. Du, L. Fang, and P. Ning. Lad: Localization anomaly detection for wireless sen-

sor networks. In Proceedings of the 19th IEEE International Parallel & Distributed

Processing Symposium (IPDPS ’05), April 2005.

221

[19] L. Eschenauer and V. D. Gligor. A key-management scheme for distributed sensor net-

works. In Proceedings of the 9th ACM Conference on Computer and Communications

Security, pages 41–47, November 2002.

[20] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. The nesC

language: A holistic approach to networked embedded systems. In Proceedings of

Programming Language Design and Implementation (PLDI 2003), June 2003.

[21] R. Gennaro and P. Rohatgi. How to sign digital streams. Technical report, IBM

T.J.Watson Research Center, 1997.

[22] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Jour-

nal of the ACM, 33(4):792–807, October 1986.

[23] N. M. Haller. The S/KEY one-time password system. In Proceedings of the ISOC

Symposium on Network and Distributed System Security, pages 151–157, 1994.

[24] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. F. Abdelzaher. Range-free

localization schemes in large scale sensor networks. In Proceedings of ACM MobiCom

2003, 2003.

[25] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D.E. Culler, and K. S. J. Pister. System

architecture directions for networked sensors. In Architectural Support for Programming

Languages and Operating Systems, pages 93–104, 2000.

[26] L. Hu and D. Evans. Secure aggregation for wireless networks. In Workshop on Security

and Assurance in Ad Hoc Networks, January 2003.

[27] L. Hu and D. Evans. Using directional antennas to prevent wormhole attacks. In

Proceedings of the 11th Network and Distributed System Security Symposium, pages

131–141, February 2003.

[28] Y.C. Hu, A. Perrig, and D.B. Johnson. Packet leashes: A defense against wormhole

attacks in wireless ad hoc networks. In Proceedings of INFOCOM 2003, April 2003.

[29] D. Huang, M. Mehta, D. Medhi, and L. Harn. Location-aware key management scheme

for wireless sensor networks. In Proceedings of the 2nd ACM workshop on Security of

ad hoc and sensor networks (SASN ’04), pages 29 – 42, October 2004.

222

[30] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A scalable and

robust communication paradigm for sensor networks. In Proceedings of the sixth annual

international conference on Mobile computing and networking (Mobicom ’00), pages

56–67, Nov 2003.

[31] C. Karlof, N. Sastry, Y. Li, A. Perrig, and J. Tygar. Distillation codes and applications

to dos resistant multicast authentication. In Proceedings of the 11th Network and

Distributed Systems Security Symposium (NDSS), 2004.

[32] C. Karlof, N. Sastry, and D. Wagner. TinySec: Link layer encryption for tiny devices.

http://www.cs.berkeley.edu/~nks/tinysec/.

[33] C. Karlof and D. Wagner. Secure routing in wireless sensor networks: Attacks and

countermeasures. In Proceedings of 1st IEEE International Workshop on Sensor Net-

work Protocols and Applications, May 2003.

[34] B. Karp and H. T. Kung. GPSR: Greedy perimeter stateless routing for wireless

networks. In Proceedings of ACM MobiCom 2000, 2000.

[35] D.E. Knuth. The Art of Computer Programming, volume 2: Seminumerical Algorithms.

Addison-Wesley, third edition, 1997. ISBN: 0-201-89684-2.

[36] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-hashing for message authen-

tication. IETF RFC 2104, February 1997.

[37] L. Lamport. Password authentication with insecure communication. Communications

of the ACM, 24(11):770–772, 1981.

[38] L. Lazos and R. Poovendran. Serloc: Secure range-independent localization for wireless

sensor networks. In ACM workshop on Wireless security (ACM WiSe 2004), Philadel-

phia, PA, October 1 2004.

[39] L. Li and J.Y. Halpern. Minimum-energy mobile wireless networks revisited. In Pro-

ceedings of IEEE International Conference on Communications (ICC ’01), June 2001.

[40] D. Liu and P. Ning. Efficient distribution of key chain commitments for broadcast

authentication in distributed sensor networks. In Proceedings of the 10th Annual Net-

work and Distributed System Security Symposium (NDSS’03), pages 263–276, February

2003.

223

[41] D. Liu and P. Ning. Establishing pairwise keys in distributed sensor networks. In

Proceedings of 10th ACM Conference on Computer and Communications Security

(CCS’03), pages 52–61, October 2003.

[42] D. Liu and P. Ning. Location-based pairwise key establishments for static sensor

networks. In 2003 ACM Workshop on Security in Ad Hoc and Sensor Networks (SASN

’03), pages 72–82, October 2003.

[43] D. Liu and P. Ning. Improving key pre-distribution with deployment knowledge in

static sensor networks. Submitted for publication, 2004.

[44] D. Liu and P. Ning. Multi-level µTESLA: Broadcast authentication for distributed

sensor networks. ACM Transactions in Embedded Computing Systems (TECS), 3(4),

2004.

[45] D. Liu, P. Ning, and W.K. Du. Attack-resistant location estimation in wireless sen-

sor networks. In Proceedings of the Fourth International Conference on Information

Processing in Sensor Networks (IPSN ’05), April 2005.

[46] D. Liu, P. Ning, and W.K. Du. Detecting malicious beacon nodes for secure loca-

tion discovery in wireless sensor networks. In Proceedings of the 25th International

Conference on Distributed Computing Systems (ICDCS ’05), June 2005.

[47] D. Liu, P. Ning, and R. Li. Establishing pairwise keys in distributed sensor networks.

ACM Transactions on Information and System Security (TISSEC), 2004. To appear.

[48] S. Marti, T. J. Giuli, K. Lai, and M. Baker. Mitigating routing misbehavior in mobile ad

hoc networks. In Proceedings of the Sixth annual ACM/IEEE International Conference

on Mobile Computing and Networking, pages 255–265, 2000.

[49] R. Merkle. Protocols for public key cryptosystems. In Proceedings of the IEEE Sym-

posium on Research in Security and Privacy, Apr 1980.

[50] R. Nagpal, H. Shrobe, and J. Bachrach. Organizing a global coordinate system from

local information on an ad hoc sensor network. In IPSN’03, 2003.

[51] A. Nasipuri and K. Li. A directionality based location discovery scheme for wireless

sensor networks. In Proceedings of ACM WSNA’02, September 2002.

224

[52] J. Newsome, R. Shi, D. Song, and A. Perrig. The sybil attack in sensor networks:

Analysis and defenses. In Proceedings of IEEE International Conference on Information

Processing in Sensor Networks (IPSN 2004), Apr 2004.

[53] J. Newsome and D. Song. GEM: graph embedding for routing and data-centric storage

in sensor networks without geographic information. In Proceedings of the First ACM

Conference on Embedded Networked Sensor Systems (SenSys ’03), pages 76–88, Nov

2003.

[54] D. Niculescu and B. Nath. Ad hoc positioning system (APS). In Proceedings of IEEE

GLOBECOM ’01, 2001.

[55] D. Niculescu and B. Nath. Ad hoc positioning system (APS) using AoA. In Proceedings

of IEEE INFOCOM 2003, pages 1734–1743, April 2003.

[56] D. Niculescu and B. Nath. DV based positioning in ad hoc networks. In Journal of

Telecommunication Systems, 2003.

[57] NIST. Skipjack and KEA algorithm specifications. http://csrc.nist.gov/

encryption/skipjack/skipjack.pdf, May 1998.

[58] A. Perrig. The BiBa one-time signature and broadcast authentication protocol. In

Proceedings of the ACM Conference on Computer and Communications Security, pages

28–37, November 2001.

[59] A. Perrig, R. Canetti, Briscoe, J. Tygar, and D. Song. TESLA: Multicast source

authentication transform. IRTF draft, draft-irtf-smug-tesla-00.txt, November 2000.

[60] A. Perrig, R. Canetti, D. Song, and D. Tygar. Efficient authentication and signing of

multicast streams over lossy channels. In Proceedings of the 2000 IEEE Symposium on

Security and Privacy, May 2000.

[61] A. Perrig, R. Canetti, D. Song, and D. Tygar. Efficient and secure source authentication

for multicast. In Proceedings of Network and Distributed System Security Symposium,

February 2001.

[62] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and D. Tygar. SPINS: Security protocols

for sensor networks. In Proceedings of Seventh Annual International Conference on

Mobile Computing and Networks, July 2001.

225

[63] R. D. Pietro, L. V. Mancini, and A. Mei. Random key assignment for secure wireless

sensor networks. In 2003 ACM Workshop on Security in Ad Hoc and Sensor Networks

(SASN ’03), October 2003.

[64] B. Przydatek, D. Song, and A. Perrig. SIA: Secure information aggregation in sensor

networks. In Proceedings of the First ACM Conference on Embedded Networked Sensor

Systems (SenSys ’03), Nov 2003.

[65] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker. GHT: A

geographic hash table for data-centric storage. In Proceedings of 1st ACM International

Workshop on Wireless Sensor Networks and Applications, Sep 2002.

[66] R. Rivest. The RC5 encryption algorithm. In Proceedings of the 1st International

Workshop on Fast Software Encryption, volume 809, pages 86–96, 1994.

[67] R.L. Rivest, A. Shamir, and L.A. Adleman. A method for obtaining digital signatures

and public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

[68] P. Rohatgi. A compact and fast hybrid signature scheme for multicast packet authenti-

cation. In 6th ACM Conference on Computer and Communications Security, November

1999.

[69] N. Sastry, U. Shankar, and D. Wagner. Secure verification of location claims. In ACM

Workshop on Wireless Security, 2003.

[70] A. Savvides, C. Han, and M. Srivastava. Dynamic fine-grained localization in ad-hoc

networks of sensors. In Proceedings of ACM MobiCom ’01, pages 166–179, July 2001.

[71] A. Savvides, H. Park, and M. Srivastava. The bits and flops of the n-hop multilateration

primitive for node localization problems. In Proceedings of ACM WSNA ’02, September

2002.

[72] S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and D. Estrin. Data-centric storage

in sensornets. In Proceedings of the First ACM Workshop on Hot Topics in Networks,

October 2002.

[73] V. Shnayder, M. Hempstead, B. Chen, G. Werner-Allen, and M. Welsh. Simulating the

power consumption of large-scale sensor network applications. In Proceedings of the

226

Second ACM Conference on Embedded Networked Sensor Systems (SenSys’04), Nov

2004.

[74] F. Stajano and R. Anderson. The resurrecting duckling: security issues for ad hoc

networks. In Proceedings of the 7th International Workshop on Security Protocols,

pages 172–194, 1999.

[75] W. Stallings. Cryptography and Network Security: Principles and Practice. Prentice

Hall, 2nd edition, 1999.

[76] C.K. Wong and S. S. Lam. Digital signatures for flows and multicasts. In Proc. IEEE

ICNP’98, 1998.

[77] D. Wong and A. Chan. Efficient and mutually authenticated key exchange for low

power computing devices. In Proceedings of ASIA CRYPT, Dec 2001.

[78] A. D. Wood and J. A. Stankovic. Denial of service in sensor networks. IEEE Computer,

35(10):54–62, 2002.

[79] Y. Yu, R. Govindan, and D. Estrin. Geographical and energy aware routing: A re-

cursive data dissemination protocol for wireless sensor networks. Technical Report

UCLA/CSD-TR-01-0023, UCLA, Department of Computer Science, May 2001.

[80] S. Zhu, S. Setia, and S. Jajodia. LEAP: Efficient security mechanisms for large-scale

distributed sensor networks. In Proceedings of 10th ACM Conference on Computer and

Communications Security (CCS’03), pages 62–72, October 2003.

[81] S. Zhu, S. Setia, S. Jajodia, and P. Ning. An interleaved hop-by-hop authentication

scheme for filtering false data in sensor networks. In Proceedings of 2004 IEEE Sym-

posium on Security and Privacy, May 2004.

