
ABSTRACT

PONNALA, LALIT Analysis of Genetic Translation using Signal Processing. (Under the
direction of Dr. D. L. Bitzer, Dr. M. A. Vouk and Dr. A. Stomp).

A series of free energy estimates can be calculated from the ribosome’s progressive

interaction with mRNA sequences during the process of translation elongation in eubacteria.

A sinusoidal pattern of roughly constant phase has been detected in these free energy

signals. Frameshifts of the +1 type occur when the ribosome skips an mRNA base in

the 5’-3’ direction, and can be associated with local phase-shifts in the free energy signal.

We propose a mathematical model that captures the mechanism of frameshift based on

the information content of the signal parameters and the relative abundance of tRNA in

the bacterial cell. The model shows how translational speed can modulate translational

accuracy to accomplish programmed +1 frameshifts and could have implications for the

regulation of translational efficiency. Results are presented using experimentally verified

frameshift genes across eubacteria.
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Chapter 1

Introduction

The complexity of living organisms makes them information-rich systems. As such,

many processes are available for the application of signal processing analysis to reveal un-

derlying mechanisms of information encoding and decoding. The mathematical methods of

signal processing are well established and are used to extract encoded information from en-

ergetic patterns. These methods yield estimates of parameters that characterize the signal.

Examples of the most basic parameters include frequency, phase and magnitude. Through

study of system response to signal parameter change, the information content of signal

parameters can be identified and the encoding and decoding rules can be defined. The

application of signal processing analysis to a biological process requires the identification

of a signal that could arise followed by characterization of signal parameters that correlate

with process behavior.

It is well established that nucleic acid molecules, i.e. DNA and RNA, encode in-

formation in their nucleotide sequences that is essential to a number of cellular processes.

Therefore, it is reasonable to use a signal processing approach to further our understanding

of the rules and mechanisms of information encoding and decoding. The process of pro-

tein synthesis, or translation, is the most-studied biological process in which information

encoded in the nucleotide sequence of mRNA is decoded into the correct sequence of amino

acids in a polypeptide. Nucleic acids are long polymers of four nucleotide bases: adenine

(A), guanine (G), cytosine (C) and thymidine (T, DNA) or uracil (U, mRNA). The chemical

structure of the nucleotides provides for the formation of hydrogen bonds (hybridization)

between pairs of nucleotide bases following specific rules. In Watson-Crick type hybridiza-
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tion the rules are that adenine forms two hydrogen bonds with either thymidine or uracil

and guanosine forms three hydrogen bonds with cytosine. If two single-stranded nucleic

acid sequences can spatially align such that the hybridization can occur, they will form a

stable, double helical structure and are said to be complementary. Hybridization of two

nucleic acid molecules results in a change in free energy that is proportional to the num-

ber of hydrogen bonds formed between the two molecules. Watson-Crick hybridization can

be thought of as a signal generating process in which the signal is the free energy change

associated with nucleic acid alignment. Variation in the signal arises from the sequence

variation which determines the degree to which the two sequences are complementary.

There are a number of biological processes in which nucleic acids participate that

involve Watson-Crick hybridization including tRNA hybridization to mRNA during transla-

tion, recognition of the correct site for Okazaki fragment polymerization by primase during

DNA replication [1], snRNA hybridization to pre-mRNA sequences during intron splic-

ing [2], and siRNA hybridization to mRNAs during gene silencing [3]. In translation, the

precision of hybridization between the anti-codon sequence of a tRNA molecule, carrying a

specific amino acid, and the codon sequence of an mRNA molecule determines if that amino

acid is polymerized into the polypeptide chain.

Two more examples of RNA-RNA hybridization encoding translation process in-

formation also exist. In 1974, Shine and Dalgarno [4] observed sequence complementarity

between the 3’-terminal, single-stranded nucleotide sequence of the 16S rRNA (rRNA tail)

and a window of mRNA sequence upstream of the start codon and hypothesized that the

resulting hybridization could stabilize the mRNA/30S ribosome subunit complex. This

observation was confirmed experimentally [5][6] and established 30S ribosome subunit re-

cruitment as a role for the rRNA tail in translation initiation. More than a decade later,

Weiss and co-workers [7][8] showed that hybridization between the rRNA tail and the mRNA

was a critical component regulating a shift of reading frame during bacterial translation of

the mRNA encoding the RF2 protein in E. coli. This was the first direct evidence of a

role for hybridization of the rRNA tail with the mRNA during translation elongation. The

requirements for exact sequence and exact spacing of sequence lead the investigators to

conclude that the rRNA tail “. . . scans the mRNA during elongation . . . ” [8].
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The idea of one nucleic acid molecule, the rRNA tail, “scanning” a second nu-

cleic acid molecule, the mRNA, suggested to us the structure of a decoding algorithm from

which a signal could arise. Each scanning alignment step would produce a free energy

of hybridization value whose magnitude would be proportional to the degree of sequence

complementarity. The linear series of these free energy values could constitute a signal

indexed by nucleotide position on the mRNA molecule. The work of Weiss and co-workers

[8] suggested to us that such a signal could encode information that the translation process

utilizes for the maintenance of reading frame.

In considering this hypothesis, two expectations seemed critical. If information for

the maintenance of reading frame exists in the rRNA tail signal, such an information signal

would be expected to arise in the coding regions of a majority, if not all mRNA sequences.

Additionally, if the signal did supply information for the maintenance of reading frame, it

could exist across many species of bacteria if they employed the same mechanisms as E. coli.

If the signal were found to exist across species, it would need to be maintained regardless of

(G+C) content, known to vary across bacterial species. In Chapter 2, we establish that a

free energy signal can be decoded from mRNA sequences utilizing an algorithm that mod-

els the mechanical movement of the mRNA through the ribosome during translation. Our

study then characterizes this signal in terms of frequency, phase and magnitude. Our results

indicate that coding regions of species tend to a mean species phase. Finally, we show that

signal phase is a function of sequence (G+C) content, an indirect measure of codon bias.

This last finding suggests the possibility that regulation of translational efficiency through

codon usage could be mediated by signal phase.

To progress towards a model for control of reading frame, we applied electrical

engineering concepts used for control system design. In electrical devices, input signals

control device states. If the translating ribosome followed this design, its reading frame

states, Frame 0, Frame +1 and Frame +2 (or -1), would be controlled by an input signal.

In electrical devices, control system design takes the form of a mathematical model of a

control system algorithm which decodes input signals to determine device state. The an-

alytical tools of signal processing provide methods for detecting signals, extracting them

from noise, characterizing signal parameters, and identifying the parameters and parameter

behaviors that are predictive of device states. To use these tools requires a mathematical
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model of the machine and an algorithm that simulates the machine process.

Our hypothesis is that the free energy signal arising from hybridization of the 16S

rRNA tail with the mRNA is the input signal that controls reading frame. Modulation of

reading frame could be accomplished through this signal if it supplied a force that adjusted

the position of the mRNA relative to the ribosome. The first step towards validation of this

hypothesis is the development of a mathematical model that defines ribosome position as a

function of free energy signal parameters. The second step involves experimental testing of

model predictions.

In Chapter 3 and Chapter 4, we develop the mathematical model describing control

system design. In Chapter 5 we present an extensive set of results from applying our model

to a variety of eubacterial species having known frameshifts. In Chapter 6 we summarize

our findings and present avenues for further research.
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Chapter 2

Free Energy Signal

Characterization

2.1 Free energy calculation

A simple algorithm has been developed by Starmer and co-workers [9][10] and

utilized for this study which generates a free energy signal as a function of nucleotide posi-

tion (the decoding algorithm). Briefly, the algorithm requires a short nucleic acid sequence

as the “decoder” that is successively aligned with a longer “message” sequence in which

information is encoded (Figure 2.1). At each alignment, the algorithm calculates a free

energy of nucleotide hybridization, ∆G° , for the optimal helical structure between the

“decoder”, for this study the 3’-terminal, single-stranded, nucleotides of the 16S rRNAs of

bacterial species (16S rRNA tails), and the “message”, the mRNA sequence that would be

aligned with the 16S rRNA tail as the mRNA moves through the ribosomal complex as it

is translated. The actual free energy calculation utilizes dynamic programming extended to

allow for internal loops, to identify the minimal free energy conformation and the Individual

Nearest Neighbor Hydrogen Bond model [11] to estimate the associated free energy value

for that conformation. Adjustments to the free energy values for loop penalties [12] and for

G/U mis-matches [13] are also incorporated. Bulges, more complex secondary structures

involving only one of the two strands of RNA, are not considered in the calculation. This

assumption was made based on structural models of the 70S ribosomal complex [14][15] in

which the estimated space of the mRNA channel is thought to be insufficient for bulges
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Position 0. Free energy value = 0.0
rRNA: a u u c c u c c a c u a g
mRNA: G G U A A A A G A A U A A U G G C ...

Position 1. Free energy value = 0.0
rRNA: a u u c c u c c a c u a g
mRNA: ... G G U A A A A G A A U A A U G G C ...
...

Position 63. Free energy value = -1.7
rRNA: a u u c c u c c a c u a g
mRNA: ... U C A C C G A G A U C C U G G U C ...

...

Position N-2. Free energy value = 0.0
rRNA: a u u c c u c c a c u a g
mRNA: ... G C C G U C U G G U G A U G U A A

Position N-1. Free energy value = -0.7
rRNA: a u u c c u c c a c u a g
mRNA: ... G C C G U C U G G U G A U G U A A

Figure 2.1: Alignment of the 16S rRNA tail with the mRNA sequence of gene aceF in E.
coli. Free energy values of 0 indicate unfavorable binding. The length of the gene is N=1893
nucleotides.

and secondary structures to exist. The algorithm assigns the free energy value to a mRNA

nucleotide. The alignment is then shifted one nucleotide downstream (in the 3’ direction

along the mRNA) and the free energy value of the new alignment is calculated and as-

signed. This approach generates a set of free energy values for an entire mRNA sequence

indexed by nucleotide position. Our analysis assumes that the linear array of free energy

values constitutes a discrete signal. This signal was examined using methods of time series

analysis, with signal points indexed by nucleotide position, instead of time.

Sequence information and the genome databases used for this study are given in

Table 2.1. Gene sequences for 12 eubacterial species, including E. coli K-12, were ob-

tained from the NCBI GENBANK database (http://www.ncbi.nlm.nih.gov/). Using

GENBANK annotation, the coding sequences were sorted into two categories: 1) verified
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Table 2.1: List of eubacteria used in our study

Species Name GENBANK 16S tail (G+C)%

Buchnera aphidicola NC 004545 auuccuccacuag 26

Borrelia burgdorferi NC 001318 uuuccuccacuag 28

Bacillus licheniformis NC 006322 uuuccuccacuag 46.2

Clostridium perfringens NC 003366 uuuccuccacuag 27

Deinococcus radiodurans NC 001263 uuuccuccacuag 66.6

Escherichia coli K-12 NC 000913 auuccuccacuag 50

Mycoplasma hyopneumoniae NC 006360 uuuccuccacuag 28.6

Pseudomonas syringae NC 005773 auuccuccacuag 55.6

Rhodobacter sphaeroides NC 007493 uuuccuccacuag 68.8

Shigella boydii NC 007613 auuccuccacuag 47.4

Salmonella enterica NC 006511 auuccuccacuag 52.2

Thermus thermophilus NC 005835 uuuccuccacuag 69.4

sequences, i.e. genes with a clearly annotated function and 2) hypothetical sequences, i.e.

genes listed as hypothetical or putative. For E. coli, sequences encoding the 16S and 23S

rRNAs were also used, designated as “non-coding” sequences to indicate that they do not

encode amino acid sequence information. The 3’-terminal nucleotide sequences of the 16S

rRNA (16S rRNA tails) for each species are also presented in Table 2.1. When calculating

the free energy signals from a species population of mRNAs, the species’ own 16S rRNA

tail was used. These tails are the 3’, single-stranded rRNA sequences that are potentially

available for hybridization to the mRNA as it moves across the ribosome during translation.

A sample free energy signal, computed using the gene aceF sequence in E. coli,

is shown in Figure 2.2. The estimated free energy for the alignment of the 5’-terminal

nucleotide of the tail with the first base of the start codon is plotted at position 0 on the

horizontal axis. The free energy estimates calculated for downstream alignments are plot-

ted at positive indices while negative indices on the horizontal axis indicate free energy

estimates for upstream alignments.

Two features of this variable free energy pattern are of note. There is a trough of

negative free energy at nucleotide position −6. Earlier studies have identified the presence
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Figure 2.2: Free energy signal for gene aceF in E. coli

of an upstream free energy trough in genes of E. coli [16] and other bacteria [17]. This

trough is interpreted as the signal feature for the Shine-Dalgarno region [18] [16] [19] [20]

[17] [21] [22]. The other noteworthy feature is the pattern of negative free energy troughs

that occur roughly every third nucleotide throughout the coding sequence. The suggestion

of periodicity can be quantitatively confirmed using signal processing methodology.

2.2 Detection of periodicity

The set of free energy estimates are assumed to be a discrete signal, denoted as

y = [y0, y1, . . . , yN−1] (2.1)

The periodogram is defined as [23]

Ik =
1
N
|Yk|2 , k = 0 . . . (N − 1) (2.2)

where

Yk =
N−1∑

n=0

yne−j2πkn/N , k = 0 . . . (N − 1) (2.3)

The periodogram of the free energy signal for a sample gene aceF reveals a dom-

inant frequency of 1/3 cycles/base (Figure 2.3). The absence of other strong periodic

components suggests that this signal can be modeled as the sum of a sine wave of frequency

f = 1/3 and noise. A model for the signal can be written as

yn = µ + Asin(2πfn + φ) + en (2.4)
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Figure 2.3: Periodogram for gene aceF in E. coli

where A is the amplitude, φ is the phase, f = 1/3 is the specified frequency and en is Gaus-

sian white noise with variance σ2. As per this model, if a periodic component of frequency

f = 1/3 does not exist, the signal would be interpreted as white noise. To test the hypoth-

esis that a free energy signal can be modeled from the variable free energy pattern arising

from hybridization of the rRNA tail with the mRNA, the assumption is made that such a

signal exists in the majority of coding regions. However, coding regions vary in length and

signal length will affect the power of the statistical test. To ensure that the statistical test

has sufficient power, the relationship between signal length, defined as nucleotide sequence

length, and power was determined for a signal-to-noise ratio (SNR) of -18 dB, the mean

SNR for E. coli K-12 coding regions (Table 2.3). As shown in Figure C.5, a power of 0.92

can be achieved using a signal length of greater than or equal to 900 nucleotides. Therefore,

only coding regions of 900 nucleotides or greater were used to insure a robust statistical test.

The statistical test was performed with the null hypothesis that the free energy

pattern contains only white noise, versus the alternate hypothesis that a signal does exist

and it contains a dominant frequency component of f = 1/3 [24]. The signal model can be

written in the equivalent form

yn = µ + C1 sin(2πfn) + C2 cos(2πfn) + en (2.5)

where C1 = A cos(φ) and C2 = A sin(φ) are non-random constants.

The signal sum-of-squares, |y|2 can be partitioned by periodic components, allow-
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ing the construction of a test of hypothesis [24]. Our null hypothesis is

H0 : C1 = C2 = 0

and our alternate hypothesis is

H1 : C1 and C2 are both not zero

From [24], we know that under H0,

(2IN/3) ∼ σ2χ2(2) (2.6)

and IN/3 is independent of

(
N−1∑

i=0

y2
i − I0 − 2IN/3) ∼ σ2χ2(N − 3) (2.7)

We may reject H0 in favor of H1 at level α if

[
(N − 3)IN/3

]
/

[
N−1∑

i=0

y2
i − I0 − 2IN/3

]
> F1−α(2, N − 3) (2.8)

The results of this test for the verified and hypothetical sequences greater than

900 nucleotides in various eubacteria are given in Table 2.2. The test is performed at level

α = 0.05. “Sample Size” indicates the number of sequences in each category. “Passed”

indicates the number of sequences whose free energy signal shows only one periodic compo-

nent of the assumed frequency for the hidden periodicity statistical test, i.e., f = 1/3. We

observe that 95.9% of the selected verified sequences and 90.4% of the chosen hypothetical

sequences in E. coli demonstrate strong periodicity at f = 1/3 in their free energy signals.

For the other bacterial species in our study, whose genomic (G+C) contents ranged from

26% to 69.4% (Table 2.1), the majority of their verified and hypothetical sequences were

also found to demonstrate strong periodicity at f = 1/3.

If the information encoded by the periodic signal is relevant to translation, we

might expect that it would only be present in the coding sequences and not in the sequences

that are not translated. To test this hypothesis would require applying our algorithm to

non-coding sequences minimally 750 to 900 nucleotides in length, based on estimated re-

lationship of statistical power and SNR, to have sufficient statistical power (Figure C.5).
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Figure 2.4: Periodogram calculated using the free energy signal for a 23S rRNA sequence
in E. coli

In bacteria, the rRNA sequences are the only sequences that are sufficiently long to satisfy

these considerations. Therefore, we used the 16S and 23S rRNA gene sequences, of which

there are 7 each in E. coli, to test the hypothesis. The free energy patterns calculated

using these sequences did not show periodicity at f = 1/3, consistent with the correlation

between signal presence and periodicity and sequences that are translated. Figure 2.4 shows

an example of the periodogram of a non-coding sequence, 23S rRNA.

2.3 Estimation of signal parameters

For those free energy signals for which our model (Equation (2.4)) is valid, we can

evaluate the power of the 1/3 harmonic and estimate the noise variance using trigonomet-

ric regression [25][26]. The regression procedure performs a least-squares fit of the model

described by Equation (2.5) to the free energy signal y. Detailed mathematical derivations

are shown in Appendix D.

The best-fit values of C1 and C2, denoted Ĉ1 and Ĉ2 respectively, can be used to

estimate the magnitude and phase of the signal using Equations (2.9) and (2.10). It can be

shown that the regression procedure is equivalent to maximum-likelihood estimation, under

the assumption that the i.i.d. noise, en, follows a normal distribution [25].

Â =
√

Ĉ2
1 + Ĉ2

2 (2.9)
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Table 2.2: Detection results

Species Sequence Type Sample Size Passed

Buchnera Verified 206 197

aphidicola Hypothetical 34 32

Borrelia Verified 265 242

burgdorferi Hypothetical 140 99

Bacillus Verified 1318 1068

licheniformis Hypothetical 375 272

Clostridium Verified 489 484

perfringens Hypothetical 679 648

Deinococcus Verified 577 573

radiodurans Hypothetical 490 475

Escherichia Verified 1193 1144

coli Hypothetical 758 685

Mycoplasma Verified 186 173

hyopneumoniae Hypothetical 164 131

Pseudomonas Verified 1919 1888

syringae Hypothetical 472 440

Rhodobacter Verified 977 972

sphaeroides Hypothetical 359 357

Shigella Verified 875 838

boydii Hypothetical 715 653

Salmonella Verified 995 952

enterica Hypothetical 771 684

Thermus Verified 654 654

thermophilus Hypothetical 197 194
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Figure 2.5: Histogram of Phase of verified sequences

Table 2.3: E. coli signal parameters

Parameter Mean Std Dev

Phase (degrees) −14.53 23.26

SNR (dB) −18.35 1.84

φ̂ = arctan(Ĉ2/Ĉ1) (2.10)

The power of the sinusoidal component can be calculated using Equation (2.11). The mean-

squared error (MSE) from regression yields an estimate of the noise variance σ̂2. The power

of the noise and the signal-to-noise ratio (SNR) are calculated using Equations (2.12) and

(2.13) respectively.

Psignal = 10 log10

(
(Â2)/2

)
dB (2.11)

Pnoise = 10 log10

(
σ̂2

)
dB (2.12)

SNR = (Psignal − Pnoise) dB (2.13)

Histograms for signal phase and SNR for verified genes in E. coli are shown in Figure 2.5

and Figure 2.6, respectively. The mean and standard deviation of the estimated parameter

values are shown in Table 2.3. These values are calculated using verified genes in E. coli

that pass our detection test (1144 in number).

The revelation of free energy periodicity embedded in coding regions provides the

foundation for further studies to determine if the signal could provide information for the

maintenance of reading frame. If this is its function, it would be reasonable to expect the
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Figure 2.7: Phase as a function of (G+C) across eubacterial species

signal to be present in coding regions of eubacterial species in general. To determine if this

is true, we selected 12 eubacteria of varying (G+C) content, listed in Table 2.1. The verified

genes that passed the detection test for each species were used for analysis. The free energy

signals for each species were calculated using its specific 16S tail, shown in Table 2.1. We

found that a periodic signal is present in the coding regions of genes in all the species tested

and that the mean phase of these signals is roughly proportional to the (G+C) content

(Figure 2.7). An ANOVA test indicated a significant effect of (G+C) content on the signal

phase.
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2.4 Discussion

Our algorithm models the movement of the ribosome relative to the mRNA during

translation. This model assumes that a continual series of mRNA sequence windows are

accessible for hydrogen bond formation to occur between the 16S rRNA tail and the mRNA

as they move by each other during the translation process. The free energy associated

with each of these windows is a function of the degree of complementarity between the 16S

rRNA tail and the mRNA sequence window. Using this model, it is clear that a periodic

signal is encoded in the free energy variation. Standard signal processing and statistical

analyses show that this signal has a dominant frequency 1/3 and that it is encoded in the

majority of protein-encoding sequences of genes in a diverse group of eubacterial species,

including E. coli. This periodic signal is not present in genomic sequences that encode

rRNAs which do not participate in translation. Although this result is consistent with the

signal being present only in sequences that are translated, the limited sample size (there

are only 7, rRNA encoding genes in E. coli) prevents meaningful statistical confirmation

of the hypothesis that the signal exists only in sequences encoding proteins. These results

reveal a signal and provide a signal decoding mechanism, however they do not explain what

parameters contribute to signal structure and what role it could play in translation.

In our model, the energetic variation of the signal arises from the variation in

mRNA nucleotide sequence. That the signal has a frequency 1/3 implies that the mRNA

nucleotide sequence has a frequency 1/3. Periodicity in the coding regions of genes has

been observed prior to our results using statistical correlation analysis of coding regions.

Lio and co-workers [27] have investigated prokaryotic and eukaryotic DNA sequences for the

presence of sub-codes following a periodicity rule based on the ideas of several investigators

[28] [29]. The analysis of individual gene sequences from both prokaryotes and eukaryotes

revealed period-three recurrence of (G+C) bases in the codon third position, coherent with

the reading frame for the gene ((G+C)−3 periodicity). This period-three recurrence was

found in some translated sequences in both prokaryotes and eukaryotes but was not found

in introns, repetitive DNA or sequences encoding rRNAs or tRNAs [27]. These results are

consistent with ours. The analysis of Lio and co-workers also identified translated sequences

in which (G+C)−3 periodicity could not be resolved however they did not exclude the pos-

sibility that a weaker period-three signal could be present. This result is consistent with a
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relatively low SNR for their signal, impairing resolution of all but the strongest signals.

The new observation of a mean phase for E. coli genes suggested the subsequent

study to determine if the presence of coding region periodicity with constant phase is a

feature peculiar to E. coli or that is a more general feature of prokaryotic genomes. Our re-

sults indicate that each bacterial genome does have a distribution of signal phase, however,

the mean phase for each species is different. Knowing that the (G+C) content of genomes

varies, and that this variation is a reflection of the species preference for certain codons

(generally referred to as Synonymous Codon Bias [30]), we hypothesized that signal phase

is a function of (G+C) content. Our regression results indicate that phase is a function of

(G+C) content and that there is a significant difference in the signal phase of species that

are widely distributed across (G+C) content. The functional relationship between phase

and (G+C) content means that signal phase can be manipulated through codon selection.

The role of Watson-Crick hybridization between 16S rRNA sequences, including

the tail, and the mRNA during translation has long been the subject of investigation. Tri-

fonov [31] suggested that this hybridization could play a role in maintenance of reading

frame during translation. The elegant work of Weiss and co-workers [7][8] using mutant

analysis of both the mRNA and the 16S rRNA clearly showed that hybridization between

these two molecules was critical in the shift of reading frame that regulates the production

of RF2 protein in E. coli. Our results suggested that parameters of the energetic signal,

i.e. phase, could supply the translational process information for maintenance of reading

frame.

Our findings are consistent with this hypothesis. To maintain the correct reading

frame, the ribosome must translocate three nucleotides after each amino acid is incorporated

into the polypeptide product of the translation process. Therefore, it would be expected

that a signal encoding reading-frame information would have a dominant 1/3 frequency,

as our signal does. In addition, using a robust statistical test, we found the signal to be

present in genomic sequences that encode proteins, again an expected result. Our results

also imply that specific manipulation of codon usage, which would modify (G+C) content,

could locally adjust phase and potentially impact reading frame fidelity.
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Chapter 3

Ribosomal Memory Model

Our free energy signal is noisy, resulting in a low signal-to-noise ratio (SNR). In

order to extract information from the signal, some way of boosting the SNR is required.

Since the signal pattern repeats itself every 3 bases, we could remove some of the noise

by calculating base-wise averages of free energy triplets. Note that the ribosome reads the

mRNA in steps of 3 bases. Therefore, we should be able to keep track of the ribosome’s

reading frame by tracking changes in the noise-reduced free energy signal pattern, specifi-

cally, its phase. Our hypothesis is that the ribosome needs to “see” a specific phase in order

to stay in frame. This is in agreement with the “shifty sites” model of frameshifting [8].

3.1 Method of accumulation

Let us imagine a hypothetical memory for the ribosome system, consisting of a

stack of 3 registers. Assuming that the interaction between the 16S rRNA tail and the

mRNA sequence is indicative of reading frame, the memory system should maintain up-

dates of the free energy released due to this interaction. As the energy flows into memory,

information pertaining to the reading frame gets updated. Since frameshifting is a “local-

ized” phenomenon triggered by short sequences [32][33], this memory model has potential

utility. We will now present some details of our accumulation method.

We denote the register contents by the vector R(k), k = 1 . . . L
3 , where L

3 is the

number of codons. We store the first three energy values (corresponding to the first codon)
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in consecutive registers i.e.

R(1) =




y0

y1

y2




We then accumulate the free energies corresponding to the second codon, resulting

in

R(2) =




y0 + y3

y1 + y4

y2 + y5




After accumulating the signal for length of k codons, the register contents will be

R(k) =




R
(k)
1

R
(k)
2

R
(k)
3


 =




k−1∑

p=0

y3p

k−1∑

p=0

y3p+1

k−1∑

p=0

y3p+2




We repeat this procedure until we reach the last codon of the mRNA sequence,

i.e. until k = L
3 .

3.2 Cumulative magnitude and phase

The register contents R(k) represent a snapshot of the free energy signal pattern.

The three points have a sinusoidal nature due to the dominant periodicity of the energy

pattern. This allows us to calculate the cumulative magnitude Mk and phase θk by inter-

polation. As a result, R(k) can be represented as a complex phasor Vk = Mke
jθk [34]. We

equate the contents of the registers, after subtracting their mean, to points on a sine-wave

and solve Equations (3.1), (3.2) and (3.3) for Mk and θk.

r
(k)
1 = R

(k)
1 −




3∑

n=1

R(k)
n

3




= Mksin (θk) (3.1)
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r
(k)
2 = R

(k)
2 −




3∑

n=1

R(k)
n

3




= Mksin

(
θk +

2π

3

)
(3.2)

r
(k)
3 = R

(k)
3 −




3∑

n=1

R(k)
n

3




= Mksin

(
θk +

4π

3

)
(3.3)

3.3 Signal-to-Noise Ratio

Based on our free energy signal model (2.4), the register contents take the form

r
(k)
1 = (kA) sin (φ) +




k−1∑

j=0

z3j


− 1

3

3k−1∑

j=0

zj (3.4)

r
(k)
2 = (kA) sin

(
2π

3
+ φ

)
+




k−1∑

j=0

z3j+1


− 1

3

3k−1∑

j=0

zj (3.5)

r
(k)
3 = (kA) sin

(
4π

3
+ φ

)
+




k−1∑

j=0

z3j+2


− 1

3

3k−1∑

j=0

zj (3.6)

Therefore,

Mk = kA

and

σ2
k =

(
2k

3

)
σ2

where σ2
k is the noise variance of the contents of the memory register R(k). The SNR of the

register contents is given by

Γk =
M2

k

2σ2
k

=
3k

2

(
A2

2σ2

)

Thus, the accumulation of points corresponding to the same sinusoidal pattern

causes the SNR to grow linearly with the number of codons.
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Figure 3.1: Thick lines indicate phase boundaries for each reading frame, relative to an
initial signal phase of -20°

3.4 Visualization using polar plots

The magnitude Mk and phase θk of the register contents can be visualized on a

polar plot, with the radial coordinate representing magnitude and the angular coordinate

representing phase. Because the free energy signal frequency equals 1/3 cycles/nucleotide,

each 120° sector of the polar plot represents one nucleotide (see Figure 3.1). For the free

energy signal to play a role in reading frame determination, it would be expected that

variation in Mk and/or θk would correlate with shifts in reading frame. To determine if

such a correlation might exist, two genes were selected: aceF, a gene which does not encode

a frameshift, and prfB, a well-studied gene whose mRNA sequence is known to encode a

programmed frameshift at codon 26 [35].

Although the polar plot for aceF (Figure 3.2) shows some variation, the cumula-

tive phase stays roughly constant at about -15°, within the sector of one nucleotide. Similar

phase constancy was observed in all the 1673 verified genes in E. coli of length 200 codons

or greater [36]. However, considerable variation in track within the nucleotide sector can

occur (see Figure 3.3). By comparison, the polar plots of prfB (Figures 3.4 and 3.5) are

quite different. The plot starts in the same nucleotide sector as that for aceF, but around

codon 26 it swings through approximately 240°. When the phase change is complete, the

plot re-establishes itself within a different nucleotide sector and remains there, with small



21

  100

  200

  300

  400

30

210

60

240

90

270

120

300

150

330

180 0

Figure 3.2: Polar plot for gene aceF in E. coli

variation, to the end of the gene. Although provocative and consistent with our hypothesis,

analysis of other genes known to encode frameshifts would strengthen the correlation.

In a 1984 paper, Schoner et al [37] discussed their investigation of the condi-

tions necessary for high-level expression of methionyl bovine growth hormone (Met-bGH)

in E.coli. They found that by the introduction of additional codons 3’ to the initiating

AUG codon, expression levels of bGH get boosted to 30% of total cell protein. They at-

tributed this high level of expression to variation in the efficiency of mRNA translation. We

calculated free energy signals for bGH derivatives shown in the paper and examined them

using our cumulative analysis (Figures 3.6 - 3.9). Note the difference between the plot for

the sequence that yielded the highest amount of bGH, and the others that failed. All the

sequences show a phase change in their polar plots. But in the case of the high-yielding

sequence, it appears as though the ribosome is being drawn back into its original reading

frame. In the others, the polar plot shows no sign of restoration to the species phase angle

- the ribosome continues to pick the wrong codons and probably encounters a premature

stop. We agree that the lengths of the sequences are small, leading to noisy estimates for

cumulative phase. Nevertheless, the results support the utility of our methods, in a broad

sense.
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Figure 3.3: Polar plot for gene tsf in E. coli

codon 26 

Figure 3.4: Partial polar plot for gene prfB in E. coli : arrow points to the location of
frameshift, marked by a *
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Figure 3.5: Polar plot for gene prfB in E. coli
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Figure 3.6: Sequence that yields 30% bGH
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Figure 3.7: Sequence that yields 1.7% bGH
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Figure 3.8: Sequence that yields 0.5% bGH
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Figure 3.9: Sequence that yields 0.5% bGH

RECODE1 is a database of non-canonical translational events such as frameshifts,

ribosomal hops and codon redefinition [38][39]. Experimentally verified prfB gene sequences

for twelve prokaryotes other than E. coli were obtained and their free energy signals were

calculated using the corresponding species’ 16S tail, and signal parameters were generated

using the cumulative method. The prfB polar plots for all the examined species are shown

in Chapter 4. A significant phase change is observed around the frameshift location in all

these genes, consistent with the results obtained using the prfB gene in E. coli.

3.5 Drawbacks

Our cumulative model of signal phase, although useful for revealing frameshift

sites encoded in gene sequences, has one significant drawback. For every additional codon,

a greater perturbation of the free energy signal will be needed to shift the cumulative phase.

This means that the model will have difficulty identifying frameshifts if they occur towards

the end of a long gene sequence. Also, there is no experimental evidence that indicates

that the entire gene sequence upstream of a frameshift site has a controlling influence

on the frameshift. The sequence elements that result in a shift in reading frame during

translation are small and can be localized in a short sequence within the coding region [35].

To accommodate these concerns we developed a new model that estimates instantaneous
1http://recode.genetics.utah.edu/



26

signal phase at each codon.
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Chapter 4

Displacement Model

4.1 Conceptual framework

Let us first summarize our findings thus far. For a gene without a frameshift, the

polar plot lengthens itself radially (due to growth in magnitude) but stays at a roughly

constant phase angle (θk ≈ θsp). When a +1 frameshift happens, the phase moves to a

new nucleotide sector, +240° or -120° away. From the prfB polar plot, we see that the

phase shifts about 60° before it gets to the frameshift location (from approximately -20° to

approximately +40°), the equivalent of one-half of a nucleotide. Then it begins its track at

the angle that re-establishes it in the new nucleotide sector, +240° from where it originated.

We designate x = 0 as the initial state, i.e., reading frame 0, as one of the two

stable states of the ribosome-mRNA system. We assign unit increments in x for every 60°
increment in phase, i.e. for every 1

2 nucleotide-shift in the mRNA sequence. If the ribosome

shifts a whole nucleotide, as it does in the +1 frameshift, we have x = 2. So a +1 frameshift

can be modeled as a state transition from x = 0 to x = 2. The intermediate value x = 1

can be thought of as a boundary point, where there is equal likelihood of picking either

the codon in Frame 0 or the codon in Frame +1. The value of displacement x reflects the

proportion of the out-of-frame codon being viewed by the ribosome in its A-site. When

x = 1, half of the first nucleotide of the +1 frame codon is exposed in the A-site (see Figure

4.1).

The angle θk estimates the true signal phase φ (from Equation (2.4)). As k gets



28

Reading frame 0, Perfect exposure, x = 0

-------------
| | | |
| U | G | A |
| | | |
-------------

Imperfect exposure, x = 1

-------------
| | | |

| U | G | A | C
| | | |
-------------

Reading frame +1, Perfect exposure, x = 2

-------------
| | | |
| G | A | C |
| | | |
-------------

Figure 4.1: Exposure of the codon in the A-site and its relationship to displacement x.
Shown here is the 26th codon of the prfB gene where a shift into the +1 frame occurs.
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larger, i.e. as we accumulate more of the signal, θk gives an increasingly accurate estimate

of φ. From the polar plot for prfB, we observe that a +1 frameshift is accompanied by

a 240° phase-shift. At first this seems counter intuitive. It might be expected that a +1

frameshift would result in a shift in phase of +120° (counter-clockwise) or one nucleotide

sector, rather than a shift of +240° (counter-clockwise) or a shift of two nucleotide sectors.

We will now lay the foundations of a model that captures this behavior.

4.2 The differential vector

As stated earlier, the cumulative energy signal, owing to its sinusoidal nature, can

be represented as Vk = Mke
jθk . We will refer to Vk as the cumulative vector. The contents

of Vk contain a summation of the entire free energy signal up to codon k. The derivative

of Vk with respect to codon position k gives the instantaneous energy available at codon k.

Dk =
d

dk

(
Mke

jθk

)
= Mk

d

dk

(
ejθk

)
+ ejθk

dMk

dk
(4.1)

The magnitude and phase of the differential vector Dk, referred to as differential

magnitude and differential phase, are given by Equation (4.2) and Equation (4.3) respec-

tively.

|Dk| =
√(

dMk

dk

)2

+
(

Mk
dθk

dk

)2

(4.2)

∠Dk = θk + arctan

(
Mk

dθk
dk

dMk
dk

)
(4.3)

To calculate |Dk| and ∠Dk, we will need the derivatives (dMk
dk and dθk

dk ), which can

be evaluated using function approximation techniques [40]. A second order polynomial can

be fitted to a window of points centered around Mk, to evaluate its derivative, dMk
dk . An

identical procedure is followed for computing dθk
dk .

We observe that for a signal that stays roughly in phase, dθk
dk ≈ 0, and so,

|Dk| ≈ dMk
dk and ∠Dk ≈ θk. We know, from previous work that the free energy signals

in a given eubacterium have a roughly constant phase [41]. For E. coli, that angle is

θsp ≈ −20°. For a normal, non-frameshifting gene of length L nucleotides in E. coli, we

see that θk → θsp as k → L
3 . Within the context of our hypothesis, the differential vector



30

Dk represents a force acting on the ribosome at codon k that adjusts the position of the

ribosome relative to the mRNA, i.e., that modulates reading frame.

Another element believed to play an integral part in programmed frameshifts is

ribosomal pausing [35]. Sipley and Goldman [42] provide experimental evidence that sup-

ports a frameshift model in which ribosomal pause time is a major determinant of frameshift

probability, with pause time a function of tRNA availability. Therefore, we introduce the

concept of wait-time, a measure of how long the ribosome waits for the tRNA to associate

with the ribosome A-site, into our displacement model.

4.3 Estimating wait-time

The actual availability of tRNA, estimated using two-dimensional polyacrylamide

gel electrophoresis, was found to be proportional to codon frequency for moderately ex-

pressed genes [43]. Using a set of mRNA sequences in E. coli that have N codons in all,

the frequency of each codon (except the stop codons) can be calculated as

fi =
Ni

N
, i = 1 . . . 61 (4.4)

where Ni is the number of codons of type i. If a particular tRNA recognizes only one codon,

then the codon frequency would be indicative of its availability. If there is more than one

codon recognized by a tRNA isoacceptor, then the availability of that isoacceptor will be

the sum of the individual codon frequencies. We estimate the availability of each tRNA

isoacceptor using

γp =
np∑

i=1

fi, p = 1 . . . 20 (4.5)

where np is the number of codons that code for amino acid p.

Codons having abundant tRNAs would have short wait-times, and vice-versa. We

assume a decreasing linear relationship between the wait-time τ and the tRNA availability

γ, as shown in Equation (4.6). The wait-time gives an approximate number of cycles for

which the ribosome can adjust itself while waiting for the appropriate tRNA. The number

of wait cycles for a few sample codons are shown in Table 4.1.

τp =
max(γ)− γp

min(γ)
(4.6)
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Table 4.1: Wait-times for a few sample codons in E. coli
Codon Amino-acid Number of wait-cycles
aac Asn 7
ccu Pro 16
acg Thr 13
cuu Leu 13
uuc Phe 7
gca Ala 2

4.4 The complete model

The vector Dk represents a force that could produce a linear movement of the

ribsome one way or the other until the corresponding tRNA is found for the codon in the

A-site. The displacement at each codon position is calculated incrementally (∆x), with the

sign of ∆x indicating the direction of movement (+ = downstream, - = upstream). The

total displacement xk is obtained by accumulating ∆x for the corresponding number of wait

cycles. When the ribosome is in reading frame 0, we define x = 0 and when it moves into

the +1 frame, we define x = 2. We claim that the following equation captures the behavior

in both reading frame states:

∆xk = −C |Dk| sin
(
∠Dk +

πxk

3
− θsp

)
(4.7)

The argument of the sine function contains the instantaneous measurement of phase:

θ∆x =
πxk

3
− θsp (4.8)

Observe that when x = 0, the cumulative phase is at the species angle i.e.,

∠Dk = θsp, leading to ∆x = 0. When x = 2, we have ∠Dk = θsp + 4π
3 , again leading

to ∆x = 0. To calculate ∆x, we introduce a constant of proportionality C, and calibrate it

using the prfB signal. Mathematically, C measures the rate at which the ribosome adjusts

itself to perturbations in x. For each unit of wait-time (also referred to as a wait-cycle),

the incremental displacement ∆xj
k gets added onto the current position xj

k. The total dis-

placement is then assigned to the next codon k + 1. Note that we are using the superscript

j to index increments made during the wait-time of the ribosome. If the ribosome waits for

τ cycles at codon k, the total initial displacement at codon k + 1 would be assigned as
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Figure 4.2: Vector field generated by Equation (4.7)

x0
k+1 =

τ∑

j=1

∆xj
k (4.9)

4.5 Stability

In practice, all the above equations hold approximately, so it is important to

establish stability of the ribosome-mRNA system in a rigorous manner [44]. Equation (4.7)

can be written as a recursive relation

xj+1
k = xj

k − C |Dk| sin
(

∠Dk +
πxj

k

3
− θsp

)
(4.10)

Stability at x∗ = 0 :

When the ribosome is in reading frame 0, xj
k = 0 and ∠Dk = θsp. Substituting

xj
k = 0 into Equation (4.10) leads to xj+1

k = xj
k, and hence, x∗ = 0 is a fixed point. Let

ηj = xj
k−x∗ be a small perturbation away from x∗. To see whether the perturbation grows

or decays, we substitute xj
k = ηj + x∗ into Equation (4.10). The recursive relation can now

be written as

x∗ + ηj+1 = x∗ + ηj − C |Dk| sin
(

∠Dk +
π(x∗ + ηj)

3
− θsp

)
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Substituting x∗ = 0, we get

ηj+1 = ηj − C |Dk| sin
(πηj

3

)
(4.11)

Since ηj is small, we have

ηj+1 ≈ ηj − C |Dk| πηj

3
=

(
1− C

π |Dk|
3

)
ηj

By making C fairly small, it can be ensured that
(
C π|Dk|

3

)
< 1 ∀k. This implies that ηj

decays to zero as j gets large, since
(
1− π|Dk|

3

)
< 1. Thus, small perturbations cause the

displacement to converge to the fixed point x∗ = 0. The idea is illustrated in Figure 4.2.

Stability at x∗ = 2 :

When the ribosome is in reading frame +1, xj
k = 2 and ∠Dk = θsp + 4π

3 . Substi-

tuting these into Equation (4.10) yields xj+1
k = xj

k, so x∗ = 2 is a fixed point. For a nearby

point xj
k = x∗ + ηj , the recursive relation takes the form

x∗ + ηj+1 = x∗ + ηj − C |Dk| sin
(

∠Dk +
π(x∗ + ηj)

3
− θsp

)

Substituting x∗ = 2, we get an equation identical to Equation (4.11). Following identical

steps, we may establish the stability of the fixed point x∗ = 2.

The above arguments have established that the Equations (4.7) and (4.8) are

structured so that the states x = 0 and x = 2 represent stable fixed points of the ribosome-

mRNA system. Transition between the states is governed by the differential vector Dk and

the time τ for which the ribsome waits at codon k.
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Chapter 5

Results

5.1 Using E. coli

5.1.1 prfB gene

Two model parameters, the species phase angle, θsp, and the constant, C, must be

specified to generate displacement values. The species phase angle θsp is the mean phase

angle estimated from the set of verified genes as annotated in GENBANK, using the method

described in [41]. For E. coli, the estimated value is θsp = −13°. For gene prfB in E. coli,

the value of C = 0.005 gave the highest resolution of a jump in displacement at codon 26.

These values of θsp and C were used for subsequent analyses of other genes in E. coli. The

values of these parameters for other bacteria are listed in Section 5.2. At the first codon of

a gene sequence, the ribosome is locked into Frame 0, so we use x1 = 0. The stop codons

are assigned a large number of wait-cycles, typically 1000.

The displacement plots for the aceF and prfB genes of E. coli are given in Figures

5.1 and 5.2, respectively. Several features of these plots are of note. The displacement

plot for aceF (Figure 5.1), a gene lacking a frameshift, shows that x ≈ 0 for the entire

length of the coding region. This behavior of x indicates that our method does not detect

a frameshift in this gene, the expected result. In contrast, the displacement plot for the

prfB gene (Figure 5.2) shows a sudden shift in x at codon 26, the absolute value of which is

slightly greater than 2 and it is in the positive direction. Notice also that the displacement

goes negative before shooting to the +2 position. This happens because of the way the
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Figure 5.1: Displacement plot for gene aceF in E. coli
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Figure 5.2: Displacement plot for gene prfB in E. coli
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equation (4.7) is written. As (∠Dk + πx
3 ) gets larger than θsp, ∆x goes negative. After a

certain point, the argument of the sine function exceeds 180°, driving ∆x positive.

Our algorithm is scaled such that a displacement value of x = 2 indicates a shift of

one nucleotide, so in this case, the displacement indicates a +1 nucleotide shift in reading

frame. This is also an expected result given that codon 26 is the location of a +1 frameshift

in the prfB gene. For the remainder of the sequence, i.e., from codon 27 to the end of the

gene, the value of x remains roughly at x = 2. This indicates that the gene stays in the

new reading frame.

The prfB displacement plots for the remaining bacteria that we analyzed are given

in Section 5.2.

5.1.2 Link Genes

Link et al. [45] assessed the in vivo abundances of proteins in E. coli using electr-

phoresis, and ranked the genes in decreasing order of yield. We calculated the free energy

signals for 87 such genes in E. coli, and analyzed them using our model. We found that

for 86 of these genes, −1 < xk < 1 for all values of k, indicating that the ribosome stays in

frame for the entire length of each sequence. For the one remaining gene, we found slight

deviation from the boundary value of xk = 1 at k = 70, indicating a low probability of

picking the in-frame codon at that location. The polar plots and displacement plots for 10

of these genes are included below.
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Figure 5.3: Analysis of gene atpD in E. coli
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Figure 5.4: Analysis of gene malE in E. coli
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Figure 5.5: Analysis of gene manX in E. coli
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Figure 5.6: Analysis of gene mglB in E. coli
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Figure 5.7: Analysis of gene osmC in E. coli
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Figure 5.8: Analysis of gene rbsB in E. coli
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Figure 5.9: Analysis of gene rplF in E. coli
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Figure 5.10: Analysis of gene rpoA in E. coli
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Figure 5.11: Analysis of gene rpsJ in E. coli
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Figure 5.12: Analysis of gene sdhA in E. coli
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Figure 5.13: Alignment of 16S rRNA tail with the mRNA

Figure 5.14: A, P, E sites of the ribosome

5.1.3 Issue of spacing

In our model, we have assumed the depicted alignment (Figure 5.13) of the 16S

tail with the mRNA sequence at the frameshift codon. This alignment seems unrealistic

since it leaves no room for the P-site (see Figure 5.14 showing the 3 sites of the ribosome).

In the absence of clear experimental evidence, this assumption is doubtful in ac-

curacy [46][47][48][49]. In order to shed some light on this issue, we repeated our analysis

by changing the spacing in the tail-mRNA alignment. By moving the tail backwards by

a codon, we have a spacing of 1 codon, enough to accommodate the P-site (Figure 5.15).

By moving it backwards by one more codon, we have a spacing of 2 codons, which could
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Figure 5.15: Alignment of 16S rRNA tail with the mRNA, 1 codon spacing

Figure 5.16: Alignment of 16S rRNA tail with the mRNA, 2 codon spacing

accommodate both the P-site and the E-site (Figure 5.16).

As mentioned previously, the following condition needs to be satisfied for the

frameshift to be detected by our model:

(
∠Dk +

πxk

3
− θsp

)
> π

For E. coli, the above condition is satisfied even when the spacing is increased to

1 codon, but fails for a spacing of 2 codons. As we increase the spacing, we are making an

attempt to detect the frameshift by using a lesser portion of the free energy signal. The

angle of the differential vector ∠Dk may not reach the desired value for the above condition

to be satisfied. But, by shifting the value θsp a little, we may still be able to satisfy the

condition, thereby making the model work. This may be all right, since there is a variance

of about 25 ° associated with the estimate of θsp.
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The estimated value of θsp = −15° works for prfB in E. coli for a spacing of 1

codon. For a spacing of 2 codons, the value must be decreased to at least θsp = −50°. This

is not intuitively satisfying, since we have changed the angle quite a bit.
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Figure 5.17: Parameter values for which prfB works in E. coli, spacing=0

5.1.4 Sensitivity Analysis

The two relevant parameters in our model are the species-specific phase angle θsp

and the initial displacement x0. These are unknown beforehand, and while θsp can be

estimated from a sample of verified genes [41], there is no intuitive way to estimate x0. To

evaluate the sensitivity of our model to these parameters, we create a grid of values and

proceed with the following two-step analysis:

1. First evaluate if prfB shows the expected frameshift at the known location. The

criteria used to judge if the model works for prfB are:

• Displacement changes from x ≈ 0 to x ≈ 2 at the right location

• Displacement stays at x ≈ 2 until the end of the gene sequence

• The magnitude of the jump in displacement at the frameshift codon should be

larger than the shift in displacement at other codons

Using these conditions, we arrive at a set of points at which the model works for each

value of spacing (see Figures 5.17, 5.18 and 5.19).

2. At each of these points, we evaluate how the model performs using a set of verified

genes. We form a test dataset of N = 100 genes picked from Link et al.’s findings

[45] and some long genes as per GENBANK annotation. As we noted earlier, if the



46

−35 −30 −25 −20 −15 −10 −5 0 5 10
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Phase angle (degrees)

In
it
ia

l 
d

is
p

la
c
e

m
e

n
t

spc=1, Parameter values for which prfB works

Figure 5.18: Parameter values for which prfB works in E. coli, spacing=1
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Figure 5.19: Parameter values for which prfB works in E. coli, spacing=2
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Figure 5.20: Success ratio as a function of parameter values in E. coli, spacing=0

model parameters are right, then for a normal (non-frameshift) gene, we must have

|xk| < 1∀k. Using each pair of parameter values identified in the previous step, we

find the number of genes in our dataset that satisfy this condition (say, Ns). The

success ratio R = Ns
N is plotted as a function of parameter values. The analysis is

repeated for all three values of spacing (see Figures 5.20, 5.21 and 5.22).

We observe that, using our original spacing (spc=0), we obtain a number of points

at which prfB works in E. coli. The success ratio varies somewhat, but not too much over

the parameter space. As seen from the above figures, the surface is roughly convex around

the value of θsp and reaches a peak at x0 = 0. This indicates that the model works best

when the value of phase is close to the estimated value θsp and the initial displacement is

close to zero. These results lend support to the assumption that the ribosome is locked in

to Frame0 almost perfectly when elongation starts.

If the spacing were correct, then we would expect that the success ratio R is

maximized around the estimated value of θsp and the surface is roughly concave about both

θsp and x0 = 0. Based on these considerations, the spacing of 1 codon as shown in Figure

5.15 seems to be optimal.
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Figure 5.21: Success ratio as a function of parameter values in E. coli, spacing=1
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Figure 5.22: Success ratio as a function of parameter values in E. coli, spacing=2
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5.2 Other eubacteria

A set of 11 eubacteria (apart from E. coli) have been selected for analysis, based

on the following factors:

• Matching of accession number between RECODE (http://recode.genetics.utah.

edu/) and GENBANK (http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi)

• Availability of a consensus sequence for the last 13 bases of the 16S rRNA, also referred

to as the 16S tail

For each species, Table 5.1 indicates

• its name

• its GENBANK accession number

• the 13 base-long 16S tail

• the GC-content of the species, expressed as a percentage

• the mean species phase angle, θsp, in degrees

• the value of the parameter C, as defined in the model

• the number of the codon at which frameshift (FS) occurs, according to the RECODE

database (following the convention that the first codon in the sequence, i.e. the start

codon is numbered 1)

The analysis illustrated in Section 5.1 is performed for each of the species listed

in Table 5.1.
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Table 5.1: Table of selected eubacteria
Name GENBANK 16S tail (G+C) θsp C FS codon

B. burgdorferi NC 001318 uuuccuccacuag 28.2 −63 0.005 20
B. halodurans NC 002570 uuuccuccacuag 43.7 −23 0.005 25

B. subtilis NC 000964 uuuccuccacuag 43.5 −24 0.01 25
C. pneumoniae NC 000922 uuuccuccacuag 40.6 −54 0.005 24
C. trachomatis NC 000117 uuuccuccacuag 41.3 −55 0.005 24
H. influenzae NC 000907 auuccuccacuag 38.1 −58 0.005 26
P. multocida NC 002663 auuccuccacuag 40.4 −48 0.01 26
S. mutans NC 004350 uuuccuccacuag 36.8 −57 0.005 28

S. typhimurium NC 003197 auuccuccacuag 52.2 3 0.005 26
T. pallidum NC 000919 uuuccuccacuag 52.8 −8 0.005 25
X. fastidiosa NC 002488 uuuccuccacuag 52.6 −15 0.005 26
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5.2.1 Borrelia burgdorferi

  20

  40

  60

  80

30

210

60

240

90

270

120

300

150

330

180 0

50 100 150 200 250 300 350
−4

−3

−2

−1

0

1

2

3

4

Codon number k

D
is

pl
ac

em
en

t x
(k

)

Polar plot Displacement plot

Figure 5.23: Analysis of gene prfB in B. burgdorferi
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Figure 5.24: Sensitivity analysis using normal genes in B. burgdorferi
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5.2.2 Bacillus halodurans
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Figure 5.25: Analysis of gene prfB in B. halodurans
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Figure 5.26: Sensitivity analysis using normal genes in B. halodurans
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5.2.3 Bacillus subtilis
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Figure 5.27: Analysis of gene prfB in B. subtilis
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Figure 5.28: Sensitivity analysis using normal genes in B. subtilis



57

5.2.4 Chlamydophila pneumoniae
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Figure 5.29: Analysis of gene prfB in C. pneumoniae
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Figure 5.30: Sensitivity analysis using normal genes in C. pneumoniae
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5.2.5 Chlamydia trachomatis
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Figure 5.31: Analysis of gene prfB in C. trachomatis
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Figure 5.32: Sensitivity analysis using normal genes in C. trachomatis
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5.2.6 Haemophilus influenzae
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Figure 5.33: Analysis of gene prfB in H. influenzae
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Figure 5.34: Sensitivity analysis using normal genes in H. influenzae
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5.2.7 Pasteurella multocida
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Figure 5.35: Analysis of gene prfB in P. multocida
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Figure 5.36: Sensitivity analysis using normal genes in P. multocida
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5.2.8 Streptococcus mutans
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Figure 5.37: Analysis of gene prfB in S. mutans
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Figure 5.38: Sensitivity analysis using normal genes in S. mutans
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5.2.9 Salmonella typhimurium
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Figure 5.39: Analysis of gene prfB in S. typhimurium
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Figure 5.40: Sensitivity analysis using normal genes in S. typhimurium
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5.2.10 Treponema pallidum
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Figure 5.41: Analysis of gene prfB in T. pallidum
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Figure 5.42: Sensitivity analysis using normal genes in T. pallidum
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5.2.11 Xylella fastidiosa
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Figure 5.43: Analysis of gene prfB in X. fastidiosa
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Figure 5.44: Sensitivity analysis using normal genes in X. fastidiosa
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5.3 Discussion

From the results presented in the previous section, we observe that

• For 5 of the species, the model does not work when the spacing is changed to 2 codons.

As mentioned previously, the angle-condition is not satisfied even when θsp is varied

within reasonable bounds. For S. typhimurium, the model does not give the expected

result even for a spacing of 1 codon.

• In some species (B. halodurans, C. trachomatis, S. mutans), the model is highly

sensitive, i.e. only a few values of (θsp, x0) would work.

• In some species, to make prfB work, the value of θsp needs to be decreased, while in

some others, it needs to be increased (especially for spc=1,2)

• In general, the success ratio R peaks at the estimated value of θsp

• For 5 of the species, no clear concavity is observed about the value of θsp. Out of

these, 3 species show a peak in success ratio at a phase θsp. For the remaining 8

species, the success ratio drops off with changing phase angle, showing the sensitivity

of the model to θsp.

• The success ratio varies strongly with initial displacement in C. pneumoniae, C. tra-

chomatis, S. typhimurium and T. pallidum. A reasonable amount of variation is seen

in the remaining species, except for B. halodurans and S. mutans.

In summary, we have observed that our model is reasonably sensitive to its pa-

rameters, but also works over a wide range. Errors made in estimating the value of θsp

(up to 20°) would not hamper the performance of our model greatly. The parameters work

together, in the sense that small offsets in the value of one parameter may be compensated

in some cases by offsets in the other. On the whole, our model is fairly robust and serves

as a good indicator of frameshift tendency within bacterial genes.
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Chapter 6

Conclusion

6.1 Summary

Our work defines an algorithm that simulates possible hybridization between the

3’-terminal nucleotides of the 16S rRNA and the mRNA. The algorithm revealed a periodic,

free energy signal in the coding regions of the genes in a number of bacterial species [41].

Based on the ideas of Weiss et al. [8], Trifonov [50] and others, we hypothesized that this

free energy signal could be supplying the information to modulate reading frame. Standard

signal analysis methods were used to estimate the signal parameters, magnitude and phase.

Signal phase was shown to be a function of coding region (G+C) content. We performed

further analysis of the free energy signal, based on the hypothesis that the it could be sup-

plying information used to maintain or shift translational reading frame.

This hypothesis is supported by three lines of prior evidence. Using statistical

analysis of nucleotide frequency, Lio et al. [27] also detected periodicity in coding regions of

both prokaryotic and eukaryotic genes. They suggested that this periodicity could function

as a “reading frame correcting” signal in agreement with Grosjean et al. [51] and Trifonov

[52]. Mutagenesis experiments of Weiss et al. [8] showed that a mutation which presumably

decreased hybridization between the 16S rRNA tail and mRNA could alter frameshift fre-

quency, and that a second sequence change restoring complementarity could largely restore

frameshift frequency. The recent work of Yusupova et al. [48] has shown that the degree

to which the 16S rRNA tail undergoes conformational change was correlated with the de-

gree of complementarity between the tail and the mRNA sequence. The assumption in our
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algorithm is that there is continual interaction of the 3’-terminal nucleotide tail of the 16S

rRNA during translation that could produce a variable free energy pattern (signal). Signal

variation would arise from the degree of complementarity between the fixed, 16S rRNA tail

sequence and windows of mRNA sequence, made spatially accessible for hybridization due

to the movement of the mRNA through the ribosomal complex during translation. Our

approach assumes this free energy signal supplies the information needed to control reading

frame: either to maintain reading frame through each elongation cycle or to change reading

frame through a programmed frameshift.

Using the free energy signal we developed a mathematical model optimized to

precisely predict the codon location of the frameshift site within the prfB coding sequence.

The model is an adaptive algorithm that estimates the displacement of the ribosome from

its original reading frame (Frame 0). This algorithm enables us to track the state of the

ribosome-mRNA system. The physical interpretation of the differential vector, Dk, in the

model is that it represents the amount of force available at codon k to adjust the position

of the mRNA. The amount of this adjustment potential that is actually realized is propor-

tional to the time the ribosome waits for a tRNA to occupy the A-site. If the tRNA is

relatively abundant, little of the adjustment is realized; if the tRNA is rare implying a long

pause before the A-site is occupied, more adjustment of the mRNA relative to the ribosome

occurs. The displacement x, captures the position adjustment. In a recursive form, the

model starts with the previous position, derived from the energy signal for all the codons

up to but not including the current codon, and uses the new displacement value to update

the position, or state, of the mRNA relative to the ribosome.

In the course of developing our model, we have made several approximations and

assumptions. One model assumption is that the presence of rare codons is the only factor

modulating elongation rate. This assumption is consistent with Spirin [53] who asserts that

the wait time due to the relative abundance of the tRNA can be assumed to be a domi-

nating factor in inducing frameshifts. Although mRNA secondary structure is believed to

result in ribosomal pausing, its absence from our model is based on the observation that a

strong correlation has not been observed in all cases between mRNA secondary structure

and frameshifting [54].
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A second assumption concerns the proportionality between frequency of tRNA

isoacceptor (calculated using Equation (4.5)) and actual tRNA availability. This propor-

tionality is found to break down at low frequencies for genes encoding highly abundant

proteins [43]. The codon bias in such genes is extreme, and this implies that the actual

tRNA availability may be more than that estimated using our simple frequency calculation.

This introduces a small error into the wait-time estimated using Equation (4.6). However,

this small error would not significantly impact our overall results obtained by assuming

that the wait-time is inversely proportional to our estimated tRNA availability. Another

approximation involves the calculation of species mean phase angle θsp. We have used all

the coding sequences annotated as “verified” in the GENBANK database, leading to a large

variance in the estimate of θsp. A more confident estimate may be obtained by using genes

whose authenticity has a greater degree of certainty, such as the genes studied by Link et

al. [45]. The final approximation is the initial value of displacement. This value can be

better estimated using the free energies computed for the “run-up” of the ribosome from

the binding site to the start codon.

The utility of our model from the mechanistic perspective is that it suggests how

both reading frame maintenance and reading frame shifts could be encoded in mRNA se-

quences using translational speed to modulate positional accuracy. The model captures the

idea that the instantaneous component of hybridization energy, Dk (whose amount is a func-

tion of the mRNA sequence), is available to the ribosomal complex to adjust the position

of the mRNA relative to the ribosomal decoding center by an amount that is proportional

to the time required for a tRNA or release factor to fully occupy the A-site. The model

implies that the codon bias of mRNAs could reflect the existence of a position-adjusting

mechanism to maintain reading frame. Through codon selection, each mRNA sequence

carries the information to fine-tune the position of each codon in the decoding center taking

into consideration variable translational speed.

One consequence of our interpretation of the functional significance of codon bias

is that it could give insight into the empirically demonstrated connection between native

and recombinant protein yields and codon bias. Using the free energy signal parameters

as indicators of elongation accuracy, one way to think about our model is that it yields a

qualitative estimate of the frameshift tendency within a coding sequence. To the degree
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that protein yield losses are determined by elongation errors, such as incorrect recruitment

of tRNA, our model can show where such errors are most likely to occur in the coding se-

quence. Our model can also determine which possible sequence modifications would reduce

the likelihood of such errors. By fitting a likelihood function to the displacement data xk,

we could quantify the “correctness” of a coding sequence for translation. These predictions

would then need to be experimentally tested.

Our model also illustrates the value of applying engineering concepts to biologi-

cal systems. The translation process operates with high reliability in potentially variable

environments. As such, it can be considered a dynamic process in which the existence of

a control system for reading frame maintenance is a reasonable engineering assumption.

Mathematical modeling of control systems for dynamic processes has been the subject of

considerable research [55]. Signal processing techniques have been used with considerable

success to estimate the various states of a dynamic process using noisy measurements. The

Kalman filter [56][57] is one of the most useful control system models. This filter uses

recursive updating of the process state based on discrete sampling of input signal informa-

tion. One example application is maintaining a ship’s geographical position despite drift,

a problem that bears some similarity to the problem faced by the ribosomal complex in

maintaining reading frame.

6.2 Future Work

Our model has utility as both a tool that could be used for sequence annotation and

for its implications as to the mechanism of reading frame maintenance and frameshifting.

Sequence annotation is an early objective for genome sequencing projects. Frameshift sites

are difficult to recognize [58] for current gene annotation programs such as GENMARK [59]

and GLIMMER [60]. Our model implies that a free energy signal that is used to maintain

reading frame is encoded in the coding regions of authentic genes. The existence of this

signal can be visualized using either polar plots of signal phase and magnitude or in dis-

placement plots. We are currently exploring this approach with the objective of developing

an annotation program that can identify authentic coding regions and frameshift locations.

Each cycle of translation elongation requires the ribosomal complex to return to the
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same “position”, i.e., the positioning of the tRNA carrying the nascent polypeptide chain in

the P-site. The precision of this position is critical as the P-site tRNA spatially defines the

A-site boundary in the ribosomal complex [61]. The translational process must accomplish

precise positioning of the P-site tRNA in the face of considerable process variation, includ-

ing potentially changing environmental conditions of salt concentration, temperature, pH,

and variable process components such as tRNAs and mRNA sequences. The requirement

for the ribosomal complex to return to position in the face of environmental perturbations

is analogous to the drift problem encountered in the ship example. In our model the equa-

tion for calculating instantaneous phase (Equation (4.8)) is analogous to the measurement

equation of a Kalman filter, and the recursive relation (Equation (4.10)) is analogous to its

state update equation. We have identified two states x = 0 and x = 2 corresponding to

reading frames 0 and +1, respectively. The ribosome-mRNA system is shown to be stable

in each of these two states, i.e., small perturbations to the state xk arising from minor signal

deviations will die out eventually. Our algorithm lays the ground work for using adaptive

filtering techniques to detect frameshifts in coding sequences. The logical next step is to

design an algorithm that describes the transition into the -1 frame, and thereby develop a

generalized model of reading frame maintenance in bacteria.
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Appendix A

Extracting sequences

A.1 GENBANK

This section describes the method of downloading sequences from GENBANK

(illustrated using E. coli as an example). It is highly recommended to use Internet Explorer

(IE7) for the following tasks:

• Searching for the GENBANK accession number (NC 000913 for E. coli) on the NCBI

homepage (http://www.ncbi.nlm.nih.gov/) should take you to a page displaying

database-wide search results. Click on the “Genome” link to go to the description

page, and then click on the accession number to go to the summary page.

• Use the “RefSeq” link in the Genome Info column on the summary page to get the

complete sequence. If sequence not displayed, uncheck the hide boxes and click the

refresh button on the page.

• Download the GENBANK data (http://www.ncbi.nlm.nih.gov/entrez/viewer.

fcgi??db=nucleotide&val=NC_000913) into a text file. Use the File→SaveAs (or

Page → SaveAs in IE7) option to save as type: Text file (*.txt).

• Remove stuff from the top (before LOCUS) and bottom (after //) and save it as a

.gbk file (Ecoli.gbk).

• Copy the sequence portion (after ORIGIN and before //) and save it as the sequence

file (Ecoli seqfile.txt)
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• Go back to the summary page, and click on the “Protein coding” link in the Features

column.

• Copy the entire protein coding table temporarily into an Excel file. If using IE7,

just right-click on the top-left corner of the web-table and choose “Export to Mi-

crosoft Excel”. If the right-most column of the table (the one containing diamonds)

appears in the Excel file, just delete it. Make sure to remove any column-headings

- the first row of the file should contain protein annotation, not stuff like “Protein

Name”, “Start”, “End”, etc. An easy way to remove the first row is to right-click and

select Delete→Entire row. Save the resulting file in Excel95 format (Ecoli 95.xls) by

selecting Save as type “Microsoft Excel 5.0/95 Workbook”. If an annoying pop-up

box appears asking if you really want to save in this format (and warning you that

some features might be lost if you do), just click “Yes”.

• Copy the structural RNA table into an Excel file. Follow the same instructions as for

the protein coding table.

A.2 RECODE

In what follows,

• GENBANK refers to the list of complete microbial genomes (http://www.ncbi.nlm.

nih.gov/genomes/lproks.cgi)

• RECODE refers to the list of +1 frameshifters (http://recode.genetics.utah.edu/

type.cfm)

There are 48 cases of +1 frameshift among prokaryota listed in RECODE, spread

across 47 distinct species. E. coli is the only species that has two cases of +1 frameshift,

argI and prfB). The remaining 46 species have prfB alone. Out of these 47 species:

• 25 have unique name-matches in GENBANK, out of which

– 20 have matching accession numbers in RECODE and GENBANK

– 3 do not have an accession number listed in RECODE

– 2 have an accession number mismatch between RECODE and GENBANK
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• 12 have multiple name-matches in GENBANK, out of which

– 8 have matching accession numbers in RECODE and GENBANK

– 1 has 3 matching accession numbers in RECODE and GENBANK

– 1 links to a species with a different name

– 2 have an accession number mismatch between RECODE and GENBANK

• 10 do not have name-matches in GENBANK

In our analysis, we use those species that have matching accession numbers in RECODE

and GENBANK. For each of these species, the listed prfB sequence is copied manually into

a text file (prfB seq RECODE.txt).

The RECODE database lists only the AE number for each species, not the NC xxxxxx

number. Click on the AE number to go to GENBANK, and make sure the name of the

species matches completely with the species whose NC xxxxxx data you are using.
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Appendix B

Calculating signals using free2bind

The software to calculate free energy signals is written and maintained by J.

D. Starmer [9][10], and can be downloaded from http://sourceforge.net/projects/

free2bind/.

The free scan program has certain output options that the user can specify. For

analysis of several free energy signals, it is best to have one signal per line in a text file.

This requirement can be specified on the command line as follows:

>> ./free_scan.pl -r -e -q auuccuccacuag EcoliSeq.fasta
EcoliIndexData.txt > EcoliSignals.txt

The output file EcoliSignals.txt would contain the signals corresponding to indi-

vidual genes on separate rows. The detailed procedure is as follows:

• Copy the .gbk file (Ecoli.gbk) and the index file (EcoliIndexData) to the directory

where free scan.pl is stored

• Run gbk2fasta.pl to extract the sequence in FASTA format (command:

./gbk2fasta.pl Ecoli.gbk > EcoliSeq.fasta)

• Run free scan.pl to calculate signals in one-signal-per-row format. To calculate signals

with a preset of 30, use the command:

./free_scan.pl -r -e -q -L 30 auuccuccacuag EcoliSeq.fasta
EcoliIndexData > EcoliSignals.txt
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Table B.1: Signal preset to be used for MATLAB-analysis, indicates number of points before
position zero as per signal indexing scheme

Tail Length PERL command Signal Preset
8 −L 30 23
11 −L 30 20
13 −L 30 18
n −L 30 30− (n− 1)

To use FREIER energy values, give the command:

./free_scan.pl -r -e -q -L 30 -p FREIER auuccuccacuag EcoliSeq.fasta
EcoliIndexData > Ecoli_FREIER_Signals.txt

To know more about sequence presets and signal presets, see Table B.1.

• Remove the top line in the output file EcoliSignals.txt

• Delete: Ecoli.gbk, EcoliIndexData
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Appendix C

Power of detection test

A free energy signal is obtained from the binding pattern of the ribosome tail with

the mRNA sequence. The periodogram of such a signal shows activity at frequency f = 1/3.

We wish to formally test for the presence of a sinusoid with specified frequency in such free

energy signals. We use a statistical hypothesis test to detect the presence of periodicity and

analyze the power of the test as a function of signal-to-noise ratio (SNR) and signal length

(L).

We have verified that the signal is stationary, by doing the Augmented Dickey-

Fuller Test [26]. This allows us to analyze the periodogram of the signal. Based on the

statistical properties of the periodogram, we perform a test for the presence of a sinusoid

of frequency f = 1/3 (see [24], pp 324-325 for test description, pp 323 for harmonic decom-

position of the sum-of-squares).

We create a pure sinusoid of frequency f = 1/3 with length L = 1023. We add

a fixed amount of noise to it, and produce a set of N signals, all having the same signal-

to-noise ratio (SNR). We subject all of them to the periodicity test using a fixed value of

α and determine the number of signals that pass the test i.e. show periodicity at f = 1/3,

say Np. The probability of correct detection PD is calculated as

PD = Np/N

We remove the periodic component and repeat the procedure. Let N0 be the number of
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Table C.1: Detection results using α = 0.05, N = 1000
SNR PD PF

−5 1.0 0.05
−10 1.0 0.05
−15 1.0 0.05
−18 0.96 0.05
−20 0.82 0.05

Table C.2: Detection results using α = 0.01, N = 1000
SNR PD PF

−5 1.0 0.01
−10 1.0 0.01
−15 0.995 0.01
−18 0.88 0.01
−20 0.63 0.01

genes that show periodicity at f = 1/3. The probability of false alarm PF is calculated as

PF = N0/N

We repeat the procedure using varying levels of SNR and α. The results are

summarized in Table C.1 and Table C.2.

The power of a statistical hypothesis test measures the test’s ability to reject the

null hypothesis when it is actually false - that is, to make a correct decision. In other words,

the power of a hypothesis test is the probability of not committing a type II error. It is

calculated by subtracting the probability of a type II error from 1, usually expressed as:

Power = 1− P (typeIIerror) = (1− β)

The maximum power a test can have is 1, the minimum is 0. Ideally we want a

test to have high power, close to 1.

We perform a set of simulations (Pass1) to calculate the power of our hypothesis

test under varying values of SNR and L, at α = 0.05. The typical SNR for the free-energy

signals in E.coli K-12 is about −18dB. We only choose signals that are greater than 300

codons, i.e., 900 nucleotides for our experiments. Simulations show that at these parameter
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Figure C.1: (Pass1) Power Vs. Length at SNR = -18 dB

values, the power of the hypothesis test is 0.912. This is assumed to be good enough for

our experiment.

Another run using more replications with closer-spaced lengths was performed

(Pass2).

We find that our statistical test is a fairly powerful one for signals longer than 900

points, i.e. for genes longer than 300 codons.
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Figure C.2: (Pass1) Power Vs. Length at SNR = -20 dB
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Figure C.3: (Pass1) Power Vs. SNR at Length = 900 points
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Figure C.4: (Pass1) Power Vs. SNR at Length = 1200 points
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Figure C.5: (Pass2) Power Vs. Length at SNR = -18 dB
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Figure C.6: (Pass2) Power Vs. Length at SNR = -19 dB
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Figure C.7: (Pass2) Power Vs. Length at SNR = -20 dB
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Appendix D

Signal Parameter Estimation

We are interested in estimating the phase and magnitude of a sinusoid corrupted

by additive noise. We will describe statistical methods of estimation and give the bias and

variance of the estimates as a function of the noise. We will rely heavily on material in

Chapters 3, 7 and 8 of [25].

We will henceforth refer to the pure sinusoid as the “signal”. All our experiments

will be done using a signal of fixed frequency f0 = 1/3. The following assumptions seem

reasonable:

• The noise is IID, and has variance σ2

• The noise is independent of the signal

So, we represent the model as

y [n] = µ + Asin(2π(1/3)n + φ) + w [n] n = 0, 1, ...(N − 1) (D.1)

where we are interested in estimating magnitude A and phase φ. The estimates of

these quantities will be denoted by Â and φ̂ respectively. We have explored the following

methods:

1. Maximum likelihood

2. Least Squares
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The concept of identifiability is important here. For our estimation techniques to

work, we must have A > 0 and 0 < f0 < 1/2 (see pp 56 of [25] for explanation). The

frequency condition is satisfied in our case since f0 = 1/3, but the amplitude condition may

not be if the model is incorrect, i.e. if we use sin instead of a cos or vice-versa.

D.1 Maximum Likelihood Estimation

Almost all practical estimators are based on the maximum likelihood principle.

We now derive the MLE for amplitude and phase of a sinusoid. The derivation is based on

Example 7.16 of [25], but modified for the sin model with fixed frequency f0 and non-zero

mean µ.

Assume that the noise w [n] has a normal distribution, i.e. w ∼ N(0,C) where

C = σ2I. The PDF of the data y is given by

p(y;A, φ) =
1

(2πσ2)N/2
exp

[
− 1

2σ2

N−1∑

n=0

(y [n]− µ−Asin(2π(1/3)n + φ))2
]

The MLE of amplitude A and phase φ is found by minimizing

J(A,φ) =
N−1∑

n=0

(y [n]− µ−Asin(2π(1/3)n + φ))2

We first expand the sine to yield

J(A,φ) =
N−1∑

n=0

(y [n]− µ− (Acosφ)sin(2π(1/3)n) + (Asinφ)cos(2π(1/3)n))2

We may transform J to a quadratic function by letting

α1 = Acosφ, α2 = Asinφ

which is a one-to-one transformation. The inverse transformation is given by

A =
√

α2
1 + α2

2, φ = arctan(
α2

α1
) (D.2)

Also, let

s = [0 sin(2π(1/3)) . . . sin(2π(1/3)(N − 1))]T
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c = [1 cos(2π(1/3)) . . . cos(2π(1/3)(N − 1))]T

1 = [1 1 1 . . . 1]T

Then, we have

J(α1, α2) = (y− µ1− α1s− α2c)T (y− µ1− α1s− α2c)

J(α1, α2) = (y−Hα)T (y−Hα)

where α = [µ α1 α2]
T and H = [1 s c]. The minimizing solution is given by

α̂ = (HTC−1H)−1HTC−1y

Substituting C = σ2I, we get

α̂ = (HTH)−1HTy

HTH =




1T

sT

cT




[
1 s c

]

HTH =




1T1 1T s 1Tc

sT1 sT s sTc

cT1 cT s cTc




An approximate MLE can be obtained in this case since f0 is not near 0 or 1/2.

We have
1
N

1T s ≈ 0,
1
N

1Tc ≈ 0,
1
N

cT s ≈ 0

1
N

cTc ≈ 1/2,
1
N

sT s ≈ 1/2

Note that the above approximations become exact when the length of the signal

is an integral number of cycles, i.e. N = 3p (in general, for N = p/f0), where p is a positive

integer. We now have
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HTH =




N 0 0

0 N/2 0

0 0 N/2




(HTH)−1 =




1/N 0 0

0 2/N 0

0 0 2/N




α̂ =




1
N

N−1∑

n=0

y [n]

2
N

N−1∑

n=0

y [n] sin(2π(1/3)n)

2
N

N−1∑

n=0

y [n] cos(2π(1/3)n)




and thus finally we have

µ̂ =
1
N

N−1∑

n=0

y [n]

α̂1 =
2
N

N−1∑

n=0

y [n] sin(2π(1/3)n), α̂2 =
2
N

N−1∑

n=0

y [n] cos(2π(1/3)n)

Â =
√

(α̂2
1 + α̂2

2), φ̂ = arctan(
α̂2

α̂1
)

Note that for the linear model, MLE is an efficient estimator in that it attains the

CRLB and hence is the MVU estimator (see Theorem 7.5 on pp 186 of [25]). In the present

case, the PDF of α̂ is

α̂ ∼ N(α, σ2(HTH)−1)

This gives us

E(µ̂) = µ, var(µ̂) = σ2/N

E(α̂1) = α1, var(α̂1) = 2σ2/N

E(α̂2) = α2, var(α̂2) = 2σ2/N

We will now derive the Cramer-Rao Lower Bound (CRLB) for the variance of the

amplitude and phase estimators for a sinusoid of known frequency immersed in noise. The
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derivation is based on Example 3.14 on pg 56 of [25]. Our model equation (D.1) may be

written as

y [n] = s [n;θ] + w [n] n = 0, 1, ...(N − 1)

where θ = [µ A φ]T . Under the assumption that w [n] is white Gaussian noise, the ele-

ments of the Fisher information matrix (see Example 3.9 leading to Equation 3.33 on pg 49

of [25]) are given by

[I(θ)]ij =
1
σ2

N−1∑

n=0

∂s [n; θ]
∂θi

∂s [n; θ]
∂θj

We have

[I(θ)]11 =
1
σ2

N−1∑

n=0

(1)(1) =
N

σ2

[I(θ)]12 =
1
σ2

N−1∑

n=0

(1)(sin(2πn/3 + φ)) ≈ 0

[I(θ)]13 =
1
σ2

N−1∑

n=0

(1)(Acos(2πn/3 + φ)) ≈ 0

[I(θ)]22 =
1
σ2

N−1∑

n=0

(sin(2πn/3 + φ))(sin(2πn/3 + φ)) ≈ N

2σ2

[I(θ)]23 =
1
σ2

N−1∑

n=0

(sin(2πn/3 + φ))(Acos(2πn/3 + φ)) ≈ 0

[I(θ)]33 =
1
σ2

N−1∑

n=0

(Acos(2πn/3 + φ))(Acos(2πn/3 + φ)) ≈ NA2

2σ2

The Fisher information matrix now becomes

[I(θ)] =




N
σ2 0 0

0 N
2σ2 0

0 0 NA2

2σ2




We have upon inversion

var(µ̂) ≥ σ2

N

var(Â) ≥ 2σ2

N
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var(φ̂) ≥ 1
ηN

where η = A2

2σ2 is the SNR. Note that the CRLB for each parameter decreases as

1/N and the bound for phase decreases as the SNR increases. Given that the MLE attains

this bound, we can expect to have better estimates of amplitude and phase for longer signals

with higher SNRs.

D.2 Least Squares Estimation

This method makes no probabilistic assumptions about the data, only a signal

model is assumed. It is widely used in practice due to its ease of implementation, though

its performance cannot be assessed without some assumptions about the structure of the

data [25]. The LS procedure estimates model parameters θ by minimizing

J = (y− s(θ))T (y− s(θ))

where s(θ) is the signal model for y. Our model (D.1) can be simplified by transforming

the parameters similar to the MLE method discussed above. If (y− s(θ)) ∼ N(0, σ2I), the

LSE is also the MLE (see pp 254 of [25]).

D.3 Discussion

We need to be careful about the angle φ, since some methods require that it be

within certain limits. If it is not, then the method will yield a spurious estimate. To avoid

this problem, we do a series of tests (multiple confirmations) which will ensure that the

phase angle we estimated is correct. One suggested approach is:

• Calculate phase angle using Least Squares, and write the full model equation

• Compare the above phase estimate with the MLE

• Compare the estimate with our cumulative calculation

• If the angle is coming out to be more than 90°, the model equation might need to be

changed from sin to cos or vice-versa
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Appendix E

Software Toolbox

The GSP toolbox contains software written in MATLAB for the analysis of free

energy signals arising from nucleotide hybridization between rRNA and mRNA sequences

during translation. It can be downloaded at: http://www4.ncsu.edu/~lponnal/toolbox.

htm

The ’GSPtools’ directory contains functions that perform specific tasks, such as

detecting the f = 1/3 pattern, estimating signal parameters and calculating displacement.

Type ’help function name’ at the MATLAB command prompt for more information on each

function.

The ’GSPdemos’ directory contains scripts that demonstrate some of the things

one would want to do with free energy signals. Type ’help demo name’ at the MATLAB

command prompt to see what each script demonstrates.

In order to examine a gene using the GSP tools, you will need three things:

• The sequence, stored in RNA or DNA format, either as a .fasta, .txt or .mat file (see

Appendix A)

• The free energy signal for the above sequence, calculated using the appropriate 16S

tail (see Appendix B)

• The availability of each tRNA in the species, expressed as a fraction (not a percentage).
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At run-time, the sequence will need to be supplied as a character string in lower-

case RNA format. Use either getseq or readfasta to load your sequence into a character

string. A sequence (seq) is identified by its case (0 = small, 1 = capital) and type (0 =

DNA, 1 = RNA). Use the trick

seq = num2char(char2num(seq,Case,Type),0,1)

to convert any sequence to lower-case RNA format.

The signal will need to be supplied as a row-vector, one free energy value for each

consecutive alignment. See Appendix B for details.

Use the function calctav (see demo3.m) for calculating tRNA availability. You

will need a set of verified sequences from the species, see Appendix A and B to learn how

to get them. See the directory GSP/GSPdemos for sample files generated from the E. coli

genome.

If you have everything ready, write a MATLAB script similar to demo4.m for

analysis.

E.1 Storing sequence information

The GSP toolbox contains functions for storing sequence-related information per-

taining to a species in easily-retrievable form (see demo1.m):

• getanno for extracting annotation from the protein coding table (Excel spreadsheet)

and storing it as information matrices. An information matrix contains the follow-

ing fields for each gene: function, strand (+/-), name, start, stop. Storing all this

information in a matrix simplifies the task of finding a specific gene.

• getseq for extracting the sequence data into a .MAT file

• writeseqs (or writeseqs2) for writing verified and hypothetical sequences to separate

text-files

• checkwrseqs for checking if the sequences have been written out correctly
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• calcgc for calculating (G+C) content of the genes

• writeindexfile for writing index-files to be used with free scan

• gettails for examining the 16S rRNA tails in the species

Functions that enable quick sequence retrieval are:

• findgene: search for a gene by its name

• findgenes: search for a set of genes by their names supplied in a text file

General-purpose functions included in the toolbox are:

• char2num: convert character sequence to numeric representation

• num2char: convert sequence from numeric to character form

• codon2aacid: name the amino acid corresponding to a codon

• listcharbycodon: list the codons in the input sequence and identify the correspond-

ing amino acids

• findaacid: returns 3-letter abbreviation for a 1-letter amino acid

• nseq2aaseq: convert nucleotide sequence to amino-acid sequence

• revcomp: get the reverse-complement of an input sequence

• seqdiff2: locate differences between two character sequences

• write2fasta: write sequence to a file in FASTA format

E.2 Preliminary analysis of free energy signals

The purpose of preliminary signal analysis is to calculate the mean phase angle of

the genes in the species and the variation in SNR across the genes. The following functions

serve this purpose (see demo2.m):

• checkwrsigs: checks if the lengths of the signals written out to the text-file are correct
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• pickgg: picks good genes based on signal criteria, calls the detectf function for

testing the significance of the f = 1/3 component, and the est_par function for

estimating signal parameters.

The procedure of model-fitting and parameter estimation has been described in

[41]. Other useful functions are:

• getseqsig1: quickly extract the sequence and signal pertaining to a specific gene

• est_par_res: estimate parameters and return the residuals from model-fit

E.3 Polar plots and Displacement plots

The script demo3.m demonstrates the calculation of tRNA availability based on

the relative abundance of each codon.

The following functions are used to examine each gene (see demo4.m):

• cumm_mag_phase: calculate the cumulative magnitude-phase profile of an input signal

• calcmpx: calculate the cumulative magnitude-phase profile, and the displacement

profile for a gene

• nloopcalc: calculate the looping number (i.e., number of wait-cycles) based on the

tRNA availability for each codon

Other useful functions are:

• pplots: produce polar plots for signals stored in a text-file

• vecadd(d/r): add vectors with angles in (degrees/radians)

• vecdiff(d/r): subtract vectors with angles in (degrees/radians)


