
Abstract

GOYAL, LOVELY. Statistical Inference for Non-linear Mixed Effects Models Involving

Ordinary Differential Equations. (Under the direction of Dr. Sujit K. Ghosh.)

In the context of nonlinear mixed effect modeling, “within subject mechanisms” are

often represented by a system of nonlinear ordinary differential equations (ODE), whose

parameters characterize the different characteristics of the underlying population. These

models are useful because they offer a flexible framework where parameters for both

individuals and population can be estimated by combining information across all sub-

jects. Estimating parameters for these models becomes challenging in the absence of any

analytical solution for the system of ODEs involved in the modeling.

In this dissertation we proposed two estimation approaches (i) Bayesian Euler’s Ap-

proximation Method (BEAM) and (ii) Splines Euler’s Approximation Method (SEAM).

While we proposed SEAM only for the fixed effect models, BEAM is described for fixed

as well as mixed effects models. Both of these approaches involve the likelihood approx-

imation based on the naive Euler’s numerical approximation method, thereby providing

an analytic closed form approximation for the mean function. SEAM combines the Eu-

ler’s approximation with Spline interpolation to obtain the parameter estimates for each

subject separately. On the other hand, BEAM combines the likelihood approximation

with the existing Bayesian hierarchical modeling framework to obtain the parameter

estimates.

For illustration purposes, we presented the real data analyses and simulation studies

for both fixed and mixed effects models and compared the results with estimates from the

NLS method (fixed effects model) and from the NLME method (mixed effects model).

For both type of models, proposed methodologies provide competitive results in terms of

estimation accuracy and efficiency. The Bayesian Euler’s approximation method was also

used to estimate parameters involved in an HIV model, for which an analytical closed

form mean function is not available.
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Chapter 1

Preface

Nonlinear mixed effects (NLME) framework is widely used in modeling repeated mea-

surements data, where measurements are obtained for a number of individuals under

varying experimental conditions. Nonlinear mixed effects models incorporate population

(fixed) as well as individual specific (random) characteristics and hence enable to make

inferences for both random and fixed effects. The concept of a nonlinear mixed effects

model was first introduced in Sheiner et al. (1972) to analyze the data pooled over all

individuals and since then, there has been a great deal of further research (Davidian and

Giltinan, 1995) in population pharmacokinetics/pharmacodynamics (PK/PD) using non-

linear mixed effects models. Within the framework of nonlinear mixed effects (NLME)

models, much of the interest is focused on representing the mean function (or mean

trajectory) describing the dynamic relationship between the response and explanatory

variables (such as time), by a system of ordinary differential equations (ODEs) whose

parameters describe the different characteristics of the underlying population. A system

of ODEs provides an attractive modeling tool to describe a dynamic process, where the

interest is focused on modeling the rate of change over time rather than the static av-

erage value of the response variable, e.g., as in PK/PD models, viral dynamics etc. In

real applications, it turns out that there are very few cases where it is actually possible

to derive the closed form expression for the exact solution, for a well-posed differential

equation problem. The absence of a closed form analytical solution for the system of

ODEs makes parameter estimation in such models, challenging and computationally de-

manding. The objective of this research is to propose methodologies that approximate

the mean function and estimate the parameters involved in it, when an exact analytical

form of the mean function is not available.

In Chapter 2, we propose two methods based on likelihood approximation, for non-
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Chapter 1. Preface

linear fixed effects models and compare the performance of these two methods Bayesian

Euler’s Approximation Method (BEAM) and the Splines Euler’s Approximation Method

(SEAM) with other established methods in the literature by using a real data analysis

and a simulation study motivated by the real data analysis. In this case, the data sets

corresponding to several individuals/subjects were treated as separate data sets.

In Chapter 3, we extend the BEAM approach to the nonlinear mixed effects frame-

work, where population consists of several individuals and the individual specific char-

acteristics are incorporated within the model framework. A real data analysis and the

corresponding simulation study were performed to compare the performance of BEAM

with an established approach in the literature (Lindstrom and Bates, 1990). We imple-

mented BEAM to a real data example where no closed form analytical solution exist for

the system of ODEs, without assuming any assumption.

In Chapter 4, an additional simulation study was performed to illustrate the appli-

cation of BEAM to the multivariate data where data consists of (2 × 1) observation

vectors.

In Chapter 5, we summarized the results obtained in Chapters 2, 3 and 4 along with

the advantages and disadvantages of the proposed methodologies. Finally we concluded

this thesis with a brief discussion about some possible issues for future research.
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Chapter 2

Statistical Inference for Non-linear Fixed

Effects Models

2.1 Introduction

In the field of biomedical applications, data usually consists of repeated measurements

on individuals observed under varying experimental conditions. For example, in phar-

macokinetics, several blood samples are taken on participating individuals over a period

of time, following the administration of a drug. These individuals can be considered as a

random sample drawn from a population of interest. More often, the relationship between

the measured response and the varying experimental conditions is nonlinear and involves

unknown parameters of interest. The model is then fitted to data sets from different in-

dividuals, where the main interest is to make inferences about population characteristics

and in special cases, about individual characteristics which requires a mixed effects mod-

eling framework. However, in this chapter we will treat the data set for each individual

as a separate data set and therefore the scope of this chapter is restricted to nonlinear

fixed effects models.

Within the the framework of nonlinear models (NLM), much of the interest is fo-

cused on representing the mean function (or mean trajectory), describing the dynamic

relationship between the response and explanatory variables (such as time), by a sys-

tem of ordinary differential equations (ODEs) whose parameters describe the different

characteristics of the underlying population. A system of ODEs provides an attractive

modeling tool to describe dynamic process, where the interest is focused on modeling the

rate of change over time rather than the static average value of the response variable.

For example in Ho et al. (1995), HIV viral load data was analyzed using a system of

3



Chapter 2. Statistical Inference for Non-linear Fixed Effects Models

ODEs and their results led to the conclusion that HIV virus has a high rate of replica-

tion. In another example, a system of nonlinear ODEs was used to describe the temporal

expectation of virus and infected cell densities after initiation of anti-retroviral treatment

(Perelson et al., 1996). In the case of a HIV study, parameters involved in differential

equations, can characterize rates of production, infection, death of immune system cells

and viral production and clearance (Ding and Wu, 1999).

It is well-known that when a closed form analytic solution is available for the system

of ODEs, the parameters can be estimated using standard statistical packages, e.g.,

R, SAS, WinBUGS etc. For example, in Han et al. (2002), parameters involved in a system

of ODEs were estimated using an analytical solution of the ODEs. The closed form

analytical solution was obtained by assuming that the virus dynamics are in steady state

prior to the initiation of the anti-retroviral therapy. However, in practice it turns out

that such steady state assumptions may not hold and thus there are very few cases

where it is actually possible to derive the closed form expression for the exact solution

for a well-posed system of ODEs. The parameter estimation problems for such models

become challenging and computationally demanding in the absence of any analytically

closed form solution for the system of ODEs.

The objective of this research is to develop computationally efficient methods to

obtain statistical inference for parameters of a NLM that involves a system of ODEs, in

the absence of an analytical solution. In Section 2.2, we describe the nonlinear statistical

models and provide a brief review of the associated numerical methods. In Section 2.3, we

present the two proposed methods based on Euler’s approximation; (i) Bayesian Euler’s

approximation method (BEAM) in Section 2.3.1 and (ii) splines Euler’s approximation

method (SEAM) in Section 2.3.2. We then illustrate our methods in Section 2.4 by

applying it to the data on growth colonies of paramecium aurelium. A simulation study

motivated by the previous application is then presented in Section 2.5. Finally, in Section

2.6, we provide some general conclusions and directions for future research.

4



Chapter 2. Statistical Inference for Non-linear Fixed Effects Models

2.2 Nonlinear models involving ODEs

Let yj denote the jth observed response, measured at time point tj, for j = 1, 2, ..., n

individuals. To keep our description simple, we considered time as the only dynamic

explanatory variable in the model. However, methodologies proposed in this chapter can

be extended to a more general case with multiple dynamic covariates. The statistical

model can be written as,

yj = µ(tj,θ) + εj, j = 1, 2, ..., n. (2.1)

In equation (2.1), µ is the mean function describing the average dynamics of the response,

and depends on a vector θ = (θ1, . . . , θp)
T of p regression parameters.

In the context of many biological applications (e.g., PK/PD or PBPK models), µ can

be defined as the solution of a system of ODEs given by

dν

dt
= g(t,ν(t,θ)) for t 6= t0 (2.2)

and ν(t0,θ) = ν0(θ) (2.3)

where ν(·) = (ν1(·), . . . , νq(·))
T represents the underlying vector of dynamics and ν0(·)

provides a set of known initial conditions (often free of θ). The q-vector valued function

g(·) = (g1(·), . . . , gq(·))
T that describes the dynamics is completely known up to the

unknown parameter θ. Notice that (2.2) can equivalently be expressed with a set of q

ODEs, dνk

dt
= gk(t,ν(t,θ)) for k = 1, . . . , q.

The mean function, µ(·) is related to ν by a completely known function H : R
q → R

by µ(·) = H(ν(·)). In this chapter, for simplicity, we use single-compartmental system,

i.e., q = 1, for all our illustrations but methods proposed in this chapter can be applied

to the general case of q ≥ 1 (Chapter 3). The random errors εj’s correspond to the

measurement uncertainties associated with the observed response at different time points.

These random errors are assumed to be identically, independently distributed (iid) with

5
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zero mean and constant variance across all measurements, i.e.,

E(εj) = 0 and V ar(εj) = σ2, for j = 1, 2, ..., n. (2.4)

The iid assumption for the errors is clearly restrictive and in Section 2.6 we discuss how

our methods can be extended to the case when we allow the variance of errors to change

with time, i.e., V ar(εj) = σ2(tj,η) with unknown parameter η.

The objective is to estimate the parameter vector θ and the variance parameter, σ2.

The parameter estimates can be obtained by numerical methods, using packages like nlm

in R or proc nlin in SAS if an analytic closed form expression were available for the mean

function µ(·). However, as we discussed earlier, in most cases, such an analytic solution

for the system of ODEs either require restrictive assumptions or simply not available. The

lack of a closed form expression for the mean function makes the parameter estimation

problem challenging and this is the focus of our research work.

The usual approach to overcome this problem, is to solve the system of ODEs nu-

merically by using popular ODE solvers at a known set of values of the parameter θ.

However the success of most of these numerical approximation methods depends on a

“good” choice of a starting value for θ and some characteristics of the system (e.g., the

steepness etc.). A “bad” starting value often leads to an unstable solution and creates

numerical problems for the optimization method that is followed by these ODE solvers.

The popular odesolve package in R provides an interface to the Fortran ODE solver

lsoda (Petzold, 1987). The numerical solution obtained from these ODE solvers are

then used to obtain parameter estimates either by a Bayesian method (Gelman et al.,

1996; Wakefield, 1996; Lunn et al., 2002; Putter et al., 2002) or by the maximum like-

lihood method (Davidian and Giltinan, 1995; Racine-Poon and Wakefield, 1998). Even

though ODE solvers are widely used for estimating parameters in PK/PD modeling, it

may be difficult to implement or lack control of essential numerical subroutines required

to obtain the desired numerical solution for ODE. Moreover these numerical methods also

turn out to be unstable especially in case of censored or missing data (Putter et al., 2002).

Apart from such numerical instabilities, these methods are computationally intensive and

6
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iterative procedures in which the system of ODEs must be solved at each time point for

each individual and this becomes more complicated in the case of multi-compartmental

problems with censored or missing data.

An alternative approach, known as the “Integrated Data (ID)” method for parame-

ter estimation for models described by a system of ODEs, was proposed by Holte et al.

(2003). The idea behind the ID method is to simplify a nonlinear regression problem

by transforming a system of ODEs into a system of integral equations and fitting a lin-

ear regression model with “covariates” as the approximate integrals in these equations.

However, the ID method requires a set of dense measurements taken from each compart-

ment represented in the ODE system, which may be difficult or costly, if not impossible,

especially when the system consists of multi-compartments.

In this chapter, we propose two alternative methodologies to resolve the numerical

problems related to parameter estimation for the situation when there is no closed form

solution available for the system of ODEs.

The first approach will be termed as the “Bayesian Euler’s Approximation Method

(BEAM)” which is built on the existing Bayesian framework for parameter estimation

in PK/PD modeling (Gelman et al., 1996; Lunn et al., 2002; Han et al., 2002; Putter

et al., 2002; Wakefield, 1996; Huang et al., 2004) using the Euler’s method of solving

a system of ODEs and thus providing an analytic closed form approximation for the

likelihood function. The advantages of BEAM are in providing a closed form analytic

approximation for the likelihood as well as its ability to handle missing or censored data

by using data augmentation methods (Schafer, 1997). It also has the flexibility to handle

sparse and/or unbalanced data. The availability of entire posterior distributions for the

unknown parameter (θ, σ) also makes it straightforward to draw statistical inferences.

The second approach will be termed as the “Splines Euler’s Approximation Method

(SEAM)”, that uses a suitable class of interpolating spline functions (Wahba, 1990) to

pre-process the data before applying the Euler’s method to approximate the likelihood

function. The advantages of SEAM are in relaxing the distributional assumptions for the

errors and a huge computational efficiency over the competing methods.

7
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2.3 Likelihood approximation using the Euler’s method

Many different numerical approximation methods are available for computing approxi-

mate solutions to a system of ODEs with a given set of initial conditions such as the

generic problem given by (2.2) and (2.3).

According to the Lambert (1991), a numerical approximation method is basically a

prescription for replacing the system of ODEs by a system of linear algebraic equations

that can be solved on a computer using software written in a standard programming lan-

guage. A detailed discussion of these methods can be found in the literature (Shampine,

1994; Lambert, 1991; Atkinson, 1978). All the numerical approximation methods involve

discretizing the time points by an amount h known as the “step size,” which is the dis-

tance between two consecutive time points. This step size may or may not be the same

for all consecutive time points, but for our description we assume h to be constant over

the range of time points, i.e. we assume that t0k = t0 + hk for k = 0, 1, 2, . . ., represent

the discretized time points. It is easy to see that the solution to the system of ODEs in

equation (2.2) can be expressed as

ν(t,θ) =

∫ t

t0

g(s,ν(s,θ))ds + ν0(θ) (2.5)

which suggests the approximation, as h → 0,

ν(t + h,θ) − ν(t,θ) =

∫ t+h

t

g(s,ν(s,θ))ds ≈ hg(t,ν(t,θ)) (2.6)

and hence an approximation for µ(t,θ) = H(ν(t,θ)), where H is a completely known

continuous function. Thus, using (2.6) we can obtain a recurrence relation to approxi-

mate the mean function. We now describe a method based on (2.6) to approximate the

likelihood that arise from the model given by equations (2.1-2.4). Let t1 < t2 < · · · < tn

denote the observed time points in the data set and we observe the response values

{Yj = Y (tj) : j = 1, 2, . . . , n}. As the observed time points can be unevenly distributed,

we first consider a discretization by N fixed time points t0 = t01 < t02 < ... < t0N such that

8
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t0k+1 − t0k = h for k = 1, 2, ..., (N − 1). In order to cover the range of observed time points

we choose the maximum value for these fixed time points to be larger than tn. In other

words, we assume t0N > tn. The choice of h (and hence that of N) will depend on the

sample size n. Letting ν̃k ≡ ν̃(t0k,θ) and µ̃k ≡ µ̃(t0k,θ) = H(ν̃k) for k = 1, 2, . . . , N − 1,

we can write

ν̃k+1 = ν̃k + hg(t0k,νk)

µ̃k = H(ν̃k), (2.7)

with initial condition, ν̃1 = ν0(θ). This simple approximation defined by equation (2.7),

forms the basis of our analytical approximation. Now to define µ̃(t,θ) for any value of

t ∈ [t01, t
0
N ], we use a linear interpolation. More precisely, given a time point t ∈ [t01, t

0
N ],

we define the labels,

L(t) =
N

∑

k=1

I(t0k ≤ t). (2.8)

Notice that for any t ∈ [t01, t
0
N ], the function L(t) takes the values in the range {1, . . . , N}

and determines that how many t0k’s are less than t which in turn provides the lower limit

of the interval that contains t, i.e., t0L(t) ≤ t < t0L(t)+1. The value of approximate mean

function at t ∈ [t01, t
0
N ] is then given by,

µ̃(t,θ) ≡ µ̃h(t,θ) = µ̃L(t) +
t − t0L(t)

t0L(t)+1 − t0L(t)

(µ̃L(t)+1 − µ̃L(t)), (2.9)

where L(t) is defined in (2.8) and µ̃k’s are defined in (2.7). Thus we can approximate the

true likelihood function of (θ, σ) using the µ̃(t,θ) function. Notice that µ̃h(t,θ) → µ(t,θ)

as h → 0 (Lambert, 1991). In fact, µ̃h(t,θ) = µ(t,θ) + o(h) if we use the above method

known as the “naive” Euler’s method. If we use the “improved” Euler’s method (see

Appendix A), then µ̃h(t,θ) = µ(t,θ) + o(h2) and more generally Runge-Kutta method

yields µ̃h(t,θ) = µ(t,θ) + o(h4). Thus, it follows that as h → 0, the likelihood function

based on true mean function µ(t,θ) can be well approximated by the likelihood function

9
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based on the approximating µ̃(t,θ) function as defined above.

We now use (2.7) and (2.9) as the basis to propose two methods which can be further

improved using other numerical recipies as described in Appendix A at the cost of com-

putational time.

2.3.1 The Bayesian Euler’s Approximation Method (BEAM)

In order to construct a likelihood based on (2.9) we assume that the errors are iid

and normally distributed with mean zero and variance σ2. Given the observed data

D = {(Yj, tj) : j = 1, 2, . . . , n} the model described by equations (2.1-2.4) can now be

approximated by the following hierarchical model:

yj|(θ, σ2)
indep
∼ N(µ̃j(θ), σ2) for j = 1, 2, ..., n (2.10)

where µ̃j(θ) = µ̃(tj,θ) as defined in (2.9). For practical applications, the yj’s may be the

log-transformed (or more generally Box-Cox transformed) values depending on whether

normality or log-normality is the more appropriate assumption for the data (Lunn et al.,

2002).

Second and the final stage of this hierarchical model consists of the specifying prior

distributions for parameters as follows:

θ|σ−2 ∼ MVNp(θ0, H0) and σ−2 ∼ G(a0, b0), (2.11)

where MVNp(θ0, H0) denotes a multivariate normal distribution with mean θ0 and vari-

ance matrix H0 and G(a0, b0) denotes a gamma distribution with mean a0b0. The values

of a0, b0, θ0, H0, are assumed to be known, which are used to elicit prior information

when available. In the lack of prior information, we choose these known quantities to

reflect on prior ignorance by choosing these values to yield vague priors (i.e., priors with

large variances). For a detailed discussion about the choice of prior distribution, see

Natarajan and Kass (2000). The joint posterior distribution for parameters θ and σ−2

10
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based on the model (2.10-2.11) can be written as:

p(θ, σ−2|D) ∝ p(Y|θ, σ−2)p(θ)p(σ−2). (2.12)

where Y = (Y1, . . . , Yn). Clearly the above posterior density is analytically intractable

as it is highly nonlinear in θ. In order to use sampling based methods, such as Markov

chain Monte Carlo (Robert and Casella, 2005) we obtain the full conditionals of θ and

σ−2, which are given by,

p(θ|σ−2,D) ∝ p(Y|θ, σ−2)p(θ) (2.13)

and p(σ−2|θ,D) ∝ p(Y|θ, σ−2)p(σ−2). (2.14)

If the right hand side of above equations have densities of the standard form then we

can use Gibbs sampling (Geman and Geman, 1984) to simulate values from the posterior

distribution of (θ, σ−2). For instance a standard form is available for the full conditional

of σ−2:

σ−2|θ,D ∝ G







a0 +
n

2
,

(

1

b0

+
1

2

n
∑

j=1

(yj − µ̃j(θ))2

)−1






, (2.15)

and therefore we can easily draw samples from the full conditional of σ−2. Since we do not

have a standard form for the conditional distribution of θ, we can use the Metropolis-

Hastings algorithm (Hastings, 1970) to draw samples. Though we used WinBUGS to

generate approximate samples from posterior distribution of (θ, σ−2), here we give a

brief outline of the iterative MCMC algorithm suitable for BEAM.

1. Initialize the iteration of the chain at l = 0 and start with some initial values,

S(0) = (σ−2(0),θ(0))

2. Obtain S(l) from S(l−1) in two steps:

(a) Draw σ−2(l) ∼ π(σ−2|θ(l−1),Y ) using (2.15) and

(b) For θ(l), generate a new value φ from a symmetric proposal density q(φ|θ(l−1)).

11
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Evaluate the acceptance probability of the move, given by,

α(φ|θ(l−1)) = min

{

1,
π(φ|σ−2(l),Y)

π(θ(l−1)|σ−2(l),Y)

}

Also, independently sample a u from the uniform (0, 1) and if u ≤ α(φ|θ(l−1))

the move is accepted else stay at θ(l−1). In other words, if the move is accepted

then θ(l) = φ otherwise θ(l) = θ(l−1).

3. Move from chain l to l+1 using step (2) and repeat until the Markov chain {S(l), l =

1, 2, . . .} converges (to p(θ, σ−2|D)).

In practice, WinBUGS uses a Metropolis algorithm based on a normal proposal distribution

with the mean as the current value of the parameter and variance determined by tuning

over the first 4000 iterations to achieve an acceptance rate between 20% and 40%. In

order to diagnose convergence of algorithms, we used graphical techniques such as history

plots (available in WinBUGS) of the values of the multiple chains for each parameter. Based

on these plots we decided upon an initial number of burn-in iterations (e.g., at least 4000)

followed by say B = 2000 samples per chain drawn afterwards. We performed MCMC

sampling based on three parallel chains, therefore all the posterior summaries are based

on a total of 3B = 6000 samples. Mean of posterior distribution for each of unknown

parameters was taken to be the posterior estimate of that unknown parameter along with

a 95% posterior interval formed by 2.5% and 97.5% posterior percentiles.

2.3.2 The Splines Euler’s Approximation Method (SEAM)

Interpolation is a method of constructing a smooth curve from a discrete set of known

data points, which is a specific case of curve fitting, in which the function must go ex-

actly through the data points. Spline interpolation is a form of interpolation where the

interpolant is a special type of piecewise polynomial function called a spline. Spline inter-

polation is preferred over regular polynomial interpolation because the interpolation error

can be made small even when using low degree polynomials for the spline. The motiva-

12
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tion behind the second approach, “Splines Euler’s Approximation Method (SEAM)” is to

obtain a smooth estimate of the mean using interpolating spline by regressing observed

response on observed time points. Given the observed data D (as defined in previous

section), we fit a cubic spline interpolation passing through each of the time points tj’s.

More specifically for each interval [tj, tj+1], there is a separate cubic polynomial each with

its own coefficients:

Sj(t) = aj(t − tj)
3 + bj(t − tj)

2 + cj(t − tj) + dj for t ∈ [tj, tj+1]

together, these segments constitute the spline S(t) which must satisfy the following con-

ditions:

(i) Piecewise continuous: Sj(tj) = yj, Sj(tj+1) = yj+1 and

(ii) First and second derivatives continuous: S ′
j−1(tj) = S ′

j(tj) and S ′′
j−1(tj) =

S ′′
j (tj).

A detailed discussion about splines and interpolation can be found in literature (Wahba,

1990).

In order to construct the approximating mean function µ̃(t,θ), we use the following

steps:

1. Fit an interpolating spline Ŷ (t) by regressing observed data Yj’s on observed time

points tj’s for j = 1, 2, ..., n and obtain the predicted values Ŷk = Ŷ (t0k), correspond-

ing to each of the fixed time points t0k = t0 + hk, for k = 1, . . . , N. This creates a

pseudo-data set {(Ŷk, t
0
k) : k = 1, 2, . . . , N} suitable for Euler’s approximation.

2. Next, use Euler’s method (2.7) to construct an approximate mean function µ̃(t0k,θ).

3. Finally, obtain the least square estimate θ̂ by minimizing

SS(θ) =
N

∑

k=1

(Ŷk − µ̃(t0k,θ))2, (2.16)

and then obtain σ̂2 = 1
N−p

∑N
k=1(Ŷk − µ̃(t0k, θ̂))2.

13
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The first advantage of this approach lies in the fact that no parametric distribution as-

sumption is necessary for the errors. Another advantage comes from the use of splines

for curve fitting, since splines can be used to fit data observed over sparsely and unevenly

spaced time points, the SS(θ) defined by (2.16) becomes a smooth function of θ facili-

tating the minimization problem in (2.16). Moreover, this approach is computationally

very efficient and easy to implement requiring no iterative procedure. Therefore, SEAM

provides an attractive tool in comparison of other computationally intensive procedures.

2.4 Analysis of Growth Colonies of Paramecium Au-

relium

Diggle (1990) presents a data set that describes the growth of three closed colonies

of paramecium aurelium in a nutritive medium on a 19 days period. For a detailed

description of this experiment, we encourage readers to refer to Diggle (1990, p. 8). One

of the main goals of this experiment was to develop a dynamic model for the growth

count (say xj’s) of paramecium aurelium, as a function of time t. The data is assumed

to follow a log-normal distribution, with

yj = log{xj} = log{ν(tj,θ)} + εj

= µ(tj,θ) + εj, εj ∼ N(0, σ2) (2.17)

where xj is the observed growth count at time point tj (measured in days) and µ(tj,θ) =

log{ν(tj,θ)}.

Next, it is assumed that ν(t) follows the standard 2 parameter logistic growth curve

described by the non-linear differential equation

dν

dt
= g(t, ν(t,θ))

≡ ν(θ1 − θ2ν), and ν(0) = y0 = 2. (2.18)

14
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Equivalently, we can express the equation(2.18) in terms of µ(·):

dµ

dt
= g∗(t, µ(t,θ)))

≡ θ1 − θ2e
µ and µ(0) = log(2). (2.19)

In a logistic growth curve model, θ1 represents the growth per capita, θ1/θ2 measures the

carrying capacity of the population, and y0 represents the initial size of the population.

There are three data sets consisting of individual counts, corresponding to three

replications of the same experiment and here we analyzed all three data sets separately.

Although we proposed our estimation methods for situations where an analytical closed

form solution is not available for the system of differential equations, here an analytically

closed form solution is actually available. The reason behind the choice of this simple

growth curve model is that it will allow us to compare the performance of the estima-

tion based on our proposed approaches to that based on the ideal nonlinear regression

approach, which requires a closed form mean function be available. A detailed descrip-

tion of nonlinear regression techniques can be found in a classic book by Davidian and

Giltinan (1995). We will also perform ID method (Holte et al., 2003) on these three data

sets.

To approximate the likelihood using BEAM, we chose N = 19 and for SEAM we

chose N = 40. These choices of the tuning parameter N (or equivalently, h =
t0N−t0

1

N
) are

not based on any analytical work, rather the choices are mainly driven by computational

convenience. In general, the finer the grid points (with large N and hence small h) is

chosen, the better the likelihood will be approximated. Alternatively, one may also use

improved numerical approximation methods (such as those described in the Appendix

A) at the cost of computing time.

To implement the BEAM on this log transformed data, we followed the same steps

as described in Section 2.3.1, coupled with equations (2.17) and (2.19). For the MCMC

runs required within BEAM, we generated samples based on three parallel Markov chains

with an initial burn-in of 4000 iterations followed by 2000 post-burn-in samples per
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chain, giving us a total of 6000 approximate samples from the posterior distribution of

(θ, σ), where samples for σ were observed by calculating σ = 1√
σ−2

. Convergence of

the chains was diagnosed visually by inspecting simultaneous trace and acf plots of the

values of all three chains, for each parameter. Plots showing a good mixing of chains

were a reasonable indication for convergence. The software WinBUGS freely available

at the website http://www.mrc-bsu.cam.ac.uk/bugs/ was used to perform all of the

computations for this data analysis. The following values were used to elicit priors:

θ0 = (0, 0)T , H0 = 10I2×2 for the prior on θ and a0 = b0 = 0.01 for the prior on

σ−2. Finally, the MC estimate of the mean and standard deviation of the posterior

distributions for these parameters were used as point estimates and standard errors,

respectively.

In a similar approach, to implement SEAM to fit the model to these data sets we

followed the same steps as described in Section 2.3.2. The function “interpSpline” in

R was used to obtain the spline interpolation followed by the use of the optim function

available in R to perform the minimization of SS(θ) function in (2.16). Finally, to fit the

NLM, we used nlm function in R to obtain parameter estimates and associated standard

errors (SE).

Results from all four estimation approaches are presented in Table 2.1. In Table

2.1, we presented estimates and standard errors for parameters θ = (θ1, θ2) and σ, cor-

responding to nonlinear least square (NLS) method, BEAM, SEAM and ID method.

Estimated standard errors for the parameter σ are not presented in the table, because of

its unavailability with the statistical software used to minimize the likelihood functions in

“NLS”, “SEAM” and “ID” methods. Additionally, in order to compare the performance

of these estimation approaches, we plotted estimated mean function corresponding to

four approaches along with the observed data points in Figure 2.1. From Figure 2.1,

all four approaches seem to perform very similarly in capturing the trajectory of mean

function reasonably well. It can also be observed from Figure 2.1 that both BEAM and

SEAM provide data fits close to the fits obtained by using the NLS method, which uses

the exact analytical form of the mean function. It can be observed from Table 2.1, that
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Table 2.1: Parameter estimates and standard errors (SE) based on the logistic growth model
for colonies of the bacteria paramecium aurelium using NLS, BEAM and SEAM methods to fit
three data sets.

Data Set Estimates Method

NLS BEAM SEAM ID

I θ̂1 0.789 0.760 0.783 0.767

ESE 0.025 0.029 0.044 0.015

θ̂2(∗10−3) 1.446 1.470 1.464 1.369

ESE 0.120 0.152 0.238 0.055

σ̂ 0.218 0.266 0.233 0.187

ESE - 0.049 - -

II θ̂1 0.837 0.803 0.827 0.792

ESE 0.025 0.034 0.049 0.015

θ̂2(∗10−3) 1.672 1.678 1.685 1.548

ESE 0.126 0.175 0.265 0.057

σ̂ 0.201 0.266 0.207 0.164

ESE - 0.049 - -

III θ̂1 0.892 0.857 0.875 0.856

ESE 0.018 0.025 0.051 0.011

θ̂2(∗10−3) 1.594 1.596 1.579 1.489

ESE 0.078 0.118 0.246 0.063

σ̂ 0.132 0.201 0.137 0.135

ESE - 0.037 - -
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Figure 2.1: Plots of observations on growth colonies of paramecium aurelium (in log scale) and
the estimated mean trajectories obtained by NLS, BEAM and SEAM for each of the three data
sets.
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estimated standard errors (ESE) for parameters θ1 and θ2 are smaller for ID method

than remaining other three approaches which may appear to suggest that ID method

provides more precise estimates than other approaches. However this situation seems

to arise from the estimation approach for σ by ID method. ID method estimates the

population variance beforehand and then plugs in that estimated variance in the model.

This estimated variance is then treated as a known parameter while estimating rest of

the parameters in the model. Here an estimate is being considered as a known value for

rest of the estimation procedure and therefore uncertainty associated with this estimate

is not being accounted. Therefore, this plug-in variance estimator leads to the underes-

timation of variance of θ1 and θ2 both. Mathematically, estimated variance of θ̂i can be

expressed as
V (θ̂i) = E[V (θ̂i|σ̂)] + V [E(θ̂i|σ̂)], i = 1, 2 (2.20)

Now under the ID method, since σ̂ is treated as known while estimating θ, the second

term on the right hand side of equation (2.20) becomes zero. This leads to the under-

estimation of V (θ̂i) for i = 1, 2. It can be noticed in next section that the simulation

standard error for parameters, in Table 2.2 are in accordance for all four methods. We

also used BEAM to calculate the point estimates based on the posterior distribution of

the carrying capacity per capita (θ1/θ2) for all three data sets, along with the correspond-

ing 95% posterior credible interval. These point estimates were obtained by calculating

the mean of ratio of posterior samples for θ1 and θ2. For the data set (1), the esti-

mated carrying capacity is 523.91 and the corresponding 95% posterior credible interval

is (445.80, 606.92). For the data set (2), the estimated carrying capacity is 526.88 and the

corresponding 95% posterior credible interval is (448.19, 612.83). Similarly, for the data

set (3), the estimated carrying capacity is 533.74 and the corresponding 95% posterior

credible interval is (453.38, 616.70).
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2.5 Simulation Study

A simulation study, motivated by the above real data analysis was carried out to compare

the performance of the two proposed methods, BEAM and SEAM, to the NLS procedure,

in terms of estimation accuracy and efficiency. The true values of parameters for data

generation are chosen based on the estimates obtained for the real data application. For

the simulation study, data is generated using the model (2.19) with µ(t,θ) given by the

closed form solution:

µ(t,θ) = log(ν(t,θ))

= log(θ1) + µ(0) + tθ1 − log[θ2e
µ(0)(etθ1 − 1) + θ1] (2.21)

We chose the time points as given in the real data set and simulated data sets using

equation (2.17) and (2.21) with true values of the parameter set at θ1 = 0.8, θ2 = 0.0015

and σ = 0.25.

We chose the sample size same as the real data set, i.e., n = 19 and replicated the

data generations for 1000 Monte Carlo runs. To fit the model by BEAM we chose N = n

and the same prior distribution as used in the real data analysis and used same number

of burn-in and MCMC samples for each of the 1000 data sets as was used in the real

data application. Similarly for SEAM we used N = 40 to fit the models to each of the

simulated data sets.

A summarization of the comparative study of the four procedures based on this simu-

lation study are given in Table 2.2 and Figure 2.2. In Table 2.2, we summarize our finding

in terms of (i) the bias, which is the difference between the MC mean of the point esti-

mates and the true value of a parameter; (ii) the estimated standard error (ESE), which

is the MC mean of the standard errors of the parameter estimates, (iii) the Monte Carlo

simulation standard error (MCSE), which is the standard deviation of the estimates and

(iv) the mean square error (MSE) obtained as Bias2+ MCSE2.

From Table 2.2, it is evident that all four methods performed equally well in terms of

bias, standard errors and MSE’s. For a better understanding of MC distribution of the
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Table 2.2: Simulation Results for the logistic growth model for colonies of paramecium aurelium
using NLS, BEAM, SEAM and ID Methods with 1000 MC Runs.

Parameters Estimates Method

NLS BEAM SEAM ID

θ1 Bias 0.002 -0.014 -0.008 -0.007

MCSE 0.029 0.028 0.029 0.035

ESE 0.029 0.029 0.233 0.017

MSE 0.001 0.001 0.001 0.001

θ2(∗10−3) Bias 0.005 0.036 0.017 -0.024

MCSE 0.146 0.149 0.149 0.152

ESE 0.140 0.152 0.235 0.063

MSE 0.021 0.024 0.022 0.024

σ Bias -0.005 0.014 -0.017 -0.002

MCSE 0.042 0.044 0.044 0.045

ESE - 0.048 - -

MSE 0.0018 0.0021 0.0022 0.0021

parameter estimates in comparing the BEAM and SEAM with the NLS and ID method,

we present box plots of the estimates obtained by each of the four methods in Figure 2.2.

The horizontal solid line in each case represents the true value of the parameter. Figure

2.2 reveals that although BEAM and SEAM tend to underestimate θ1, the inter-quartile

range of the estimates from all four methods contain the true value of θ1. Similarly for

θ2, we observe from Figure 2.2 and Table 2.2 that in this case as well, all four methods

perform almost identically. For σ, Figure 2.2 apparently indicates that BEAM tends to

overestimate and SEAM tends to underestimate the true value but none of these biases are

statistically significant. Finally, in terms of comparing the MSEs (see Table 2.2) obtained

by these four methods, we find that, as expected NLS has the minimum MSE compared

to the two proposed methods and ID method, but the gain is very nominal considering

the fact that NLS uses exact analytical form of the mean function. In practice, when
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Figure 2.2: Box plots of point estimates: (i) θ̂1’s (ii) θ̂2’s (iii) σ̂’s based on 1000 simulated data
sets. (The horizontal solid line in each case represents the true value of the parameters.)
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an analytically closed form for the mean function is not available, NLS is not applicable,

but BEAM and SEAM will still work.

2.6 Discussion

The main objective of the data analysis (in Section 2.4) and simulation study (in Section

4) was to compare the performance of BEAM and SEAM with NLS for situations where

a closed form analytical solution for system of differential equations is available. Results

of data analysis and simulation study suggest that both of these methods provide results

very close to the results obtained by the NLS method and therefore the Euler’s approxi-

mation to the mean function described in Section (2.4) works quite accurately. Also the

strikingly similar values of the MSE’s of the parameters suggest that the proposed meth-

ods are as efficient as the NLS method when an analytic solution is available. Though

for the model considered in this chapter, ID method also provided similar results, it re-

quires certain assumptions to be satisfied. For example, this method requires that the

maximum interval length between two consecutive time points should be O(n−1), which

may or may not be true, specially for large longitudinal studies.

In this chapter we assumed that random errors are identically, independently dis-

tributed but methodologies presented here are not restricted to this assumption. This

assumption can be relaxed by using a generalized nonlinear modeling framework (David-

ian and Giltinan, 1995) with µ̃(t,θ) as the mean function and σ2(t,η) as the variance

function, which is assumed to be a known function up to the unknown parameter η. In

order to implement BEAM with this generalized nonlinear modeling framework we need

to use suitable priors for the parameter η of the variance function. For the SEAM we

have to replace the SS(θ) in (2.16) by a weighted least square criteria, where say the

weights can be chosen to be inversely proportional to the variance function.

Further, in most of biomedical applications, data constitutes of several individuals

and modeling of such data involves population specific parameters as well as individual-

specific parameters, and that requires a mixed effects modeling framework. Future work
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for this research consists of extending the proposed methodologies to the mixed effects

model framework where data are subject to missingness and censoring.

One of the main advantages of BEAM and SEAM is that these do not require any

restrictive assumptions other than those typically considered in nonlinear modeling. The

proposed likelihood approximation method also provides a closed form approximation of

the mean function, µ̃(t,θ). Therefore these methods can be used to estimate the mean

function at any time point lying within the close vicinity of the observed time range. This

is a huge advantage as it avoids evaluating the numerical solution of the mean function

at the parameter estimate again and again for interpolation/extrapolation. Because of

the Bayesian framework, one of the key advantages of BEAM also lies in its ability to

handle missing data that is very common in longitudinal studies. The availability of

posterior distributions for the unknown parameters, also makes it straightforward to

draw statistical inferences. At the same time advantage of SEAM comes from not only

from its accuracy of estimation and weaker distributional assumptions but also from its

computational convenience as compared to BEAM. Although BEAM provides estimates

that are not only accurate but applicable with missing or censored data, there is no

denying that this is a computationally intensive procedure. In comparison to BEAM,

SEAM takes much less computation time, but SEAM is limited to handling only un-

censored data. At the end, we will leave the choice between BEAM and SEAM up to

readers, as both have their pros and cons.

For our proposed methods, we used the “naive” Euler’s approximation method in

both cases. We chose Euler’s approach just for the sake of simplicity and also because it

provided reasonable estimates for parameters in our simulation studies. However, other

improved numerical methods (see Appendix A) can also be implemented within proposed

methods, though that will mostly likely increase the computational time.
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Chapter 3

Bayesian Inference in Non-linear Mixed

Effect Models involving ODEs

3.1 Introduction

Nonlinear mixed effects (NLME) models are widely used in practice involving data sets,

where repeated measurements are obtained for a number of individuals under varying

experimental conditions. Nonlinear mixed effects models incorporate population level

(fixed) effects as well as individual specific (random) characteristics and hence enable

to make inferences for both random and fixed effects. The conceptual framework of a

nonlinear mixed effects model was first introduced by Sheiner et al. (1972) to analyze

the data pooled over all individuals and since then, there has been an explosion of fur-

ther research (Davidian and Giltinan, 1995) with application to population pharmacoki-

netics/pharmacodynamics (PK/PD) models and physiologically based pharmacokinetic

(PBPK) models based on nonlinear mixed effects modeling framework. Within the frame-

work of NLME models, much of the interest is focused on representing the mean function

(or mean trajectory), describing the dynamic relationship between the response and ex-

planatory variables (such as time), by a system of ordinary differential equations (ODEs)

whose parameters describe the different characteristics of the underlying population. A

system of ODEs provides an attractive modeling tool to describe dynamic processes,

where the interest is focused on modeling the rate of change over time rather than the

static average value of the response variable, e.g., as in PK/PD models, viral dynamics

etc. As an illustrative example, consider a very commonly used system of differential

equations (Perelson et al., 1996; Han et al., 2002; Holte et al., 2003), which is used to

describe the temporal expectation of virus and infected cell densities after initiation of
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anti-retroviral treatment given by:

dν1

dt
= −δν1 + kT0ν2, ν1(0) = T ∗

0 ,

dν2

dt
= −cν2, ν2(0) = VI0 , (3.1)

dν3

dt
= Nfvδν1 − cν3, ν3(0) = VNI0 .

In this model, ν1(t), ν2(t) and ν3(t) represent the density of infected cells at time t,

the density of infectious virus at time t and the density of non-infectious virus at time

t respectively. k is the infectivity constant, T0 is the density of un-infected cells at

the initiation of treatment, δ is the death rate for infected cells, c is the clearance rate

for free virus, and Nfv is the number of free virions produced per infected cell in its

lifetime. T ∗
0 , VI0 , and VNI0 are the known initial values (at t=0) for ν1(t), ν2(t) and ν3(t)

respectively. If unknown, these initial values can be treated as parameters in the model

and can be estimated along with other parameters involved in the model. Assuming that

the virus dynamics are in quasi-steady state prior to the initiation of the treatment i.e.,

NfvkT0 = c, Perelson et al. (1996) solved this system of ODEs for total viral density

V (t) = ν2(t) + ν3(t) at time t and the solution is given by

V (t) = V0exp(−ct) +
cV0

c − δ

[

c

c − δ
{exp(−δt) − exp(−ct)} − δtexp(−ct)

]

, (3.2)

where V0 = VI0 + VNI0 . However, in practice it turns out that this steady state assump-

tion usually holds only during a short period after the initiation of treatment (Wu, 2005)

and thus there are very few cases where it is actually possible to derive the closed form

expression for the exact solution for a well-posed differential equation problem. The

absence of a closed form analytical solution for the system of ODEs makes parameter

estimation in such models, challenging and computationally demanding.

In this chapter, we aim to extend the Bayesian Euler’s approximation method (BEAM)

proposed in the previous chapter, to the nonlinear mixed effects framework involving a

system of ODEs, for which an analytical solution is not available. In Section 3.2, we

26



Chapter 3. Bayesian Inference in Non-linear Mixed Effect Models involving ODEs

describe a statistical framework for nonlinear mixed effects models followed by the de-

scription of BEAM for mixed effects models in Section 3.3. We then illustrate the method

in Section 3.4 by applying it to a data on growth colonies of paramecium aurelium and

a simulation study motivated by the real data analysis is then presented in Section 3.5,

followed by the application of BEAM to the motivating example described by equation

(1), in Section 3.6. Finally, in Section 3.7, we provide some general conclusions and

directions for future research.

3.2 Nonlinear mixed effects models involving ODEs

The problem in hand can be described as follows. Let yij denotes the jth observed

response, for the ith individual measured at timepoint tij, for i = 1, 2, ...,m and

j = 1, 2, ..., ni. For example, in the pharmacokinetic settings, tij can be the time

associated with the jth drug concentration for subject i. To keep our description simple,

we considered time as the only dynamic explanatory variable in the model. However,

methodologies proposed in this chapter can be extended to a more general case with

multiple dynamic covariates. A statistical model can be written as,

yij = µ(tij,θi) + εij, for i = 1, 2, . . . m and j = 1, 2, ..., ni (3.3)

In equation (3.3), µ is the mean function describing the within-individual behavior, which

depends on a vector of p parameters, θi, specific to individual i. The random effects θi’s

are assumed to arise from a common distribution with mean θ and variance Σθ. More

specifically we can write

θi = θ + ei; E(ei) = 0, V (ei) = Σθ (3.4)

For example, in case of the model described by equation (3.1), the parameter vector

in the model is θi = (ci, δi, ki, T0i, Nfvi). Some of these parameters may have known

values or may be constant for all individuals and in such a case θi will be the sub-
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vector of remaining unknown individual specific parameters. For an individual i, the

intra-individual error εij corresponds to the measurement uncertainty associated with the

observed response at time point tij. These random errors are assumed to be independently

distributed with zero mean and constant variance across all measurements, i.e.,

E(εij) = 0 and V ar(εij) = σ2 for i = 1, 2, ...,m and j = 1, 2, ..., ni (3.5)

For simplicity, errors are assumed to be iid though this assumption is clearly restrictive.

However, the method described in this chapter can be extended to the case when we allow

variance of errors to be of the form, V (εi) = σ2Di where Di is a ni × ni positive definite

matrix, that may or may not depend on additional parameters and εi = (εi1, εi2, ..., εini
)T .

We will discuss this aspect briefly in Section 3.7. Further ei and εi are assumed to

be independent. Then the likelihood function for this modeling framework assuming

normality of the responses and random effects can be written as ,

L(θ, Σθ, σ) ∝
m
∏

i=1

∫ ni
∏

j=1

1

σ
e−

1

2σ2
(yij−µ(tij ,θi))

2

|Σθ|
−1/2e−

1

2
(θi−θ)T Σ−1

θ
(θi−θ)dθi

=
m
∏

i=1

(

1

σ2

)

ni
2

|Σθ|
−1/2

∫

e

− 1

2σ2

ni
∑

j=1

(yij − µ(tij,θi))
2 −

1

2
(θi − θ)T Σ−1

θ (θi − θ)

dθi (3.6)

Ideally, the parameters involved in the NLME model can be estimated by maximizing

the likelihood function, given by equation (3.6). If µ is a linear function in terms of

parameters θi, the intergral in equation (3.6) can be evaluated to obtain an analytic

expression. However, more often in case of NLME models, µ is a nonlinear function

of parameters θi, making it impossible to obtain an analytic expression for the integral

described in equation (3.6) and therefore classical approach such as maximum likelihood

method for parameter estimation becomes analytically intractable. A common approach

to handle the integral (with respect to θi) in (3.6) involves linearization of the nonlinear

model by using either Taylor’s series expansion (Beal and Sheiner, 1982; Lindstrom and

Bates, 1990) or by applying Laplace’s approximation to the likelihood (Wolfinger, 1993)
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and then estimating parameters from the resulting approximated likelihood functions.

A detailed description of these procedures is presented in Davidian and Giltinan (1990,

p.151). A common feature of these approximation procedures is the availability of a

closed form expression for the mean function µ(·,θ). In the context of many biological

applications (e.g., PK/PD models) µ is obtained as the solution to a system of ODEs

given by,

d(ν(t,θ))

dt
= g(t,ν(t,θ)) ∀ θ and t 6= t0 (3.7)

and ν(t0,θ) = ν0(θ) (3.8)

where ν(·) = (ν1(·), . . . , νq(·))
T represents the underlying vector of dynamics and ν0(·)

provides a set of known initial conditions (often free of θ). The q-vector valued function

g(·) = (g1(·), . . . , gq(·))
T that describes the dynamics, is completely known up to the

unknown parameter θ. Notice that (3.7) can equivalently be expressed with a set of q

ODEs, dνk

dt
= gk(t,ν(t,θ)) for k = 1, . . . , q. The mean function, µ(·) is related to ν by a

completely known function H : R
q → R by µ(·) = H(ν(·)). For instance, in the case of the

model described by equation (3.1), the mean function µ(t,θi) = log(ν2(t,θi) + ν3(t,θi)).

In the absence of a closed form solution to the system described by equation (3.7),

the usual approach to overcome this problem, is to solve the system of ODEs numerically

by using popular ODE solvers at a given set of values of the random effects θi’s and

use those numerical solutions in the estimation procedure (Davidian and Giltinan, 1995).

These numerical solutions obtained from the ODE solvers can also be used in nonlinear

hierarchical Bayesian framework (Gelman et al., 1996; Wakefield, 1996; Lunn et al., 2002;

Putter et al., 2002), to estimate the parameters involved in the model. The Fortran ODE

solver lsoda (Petzold, 1987) and the odesolve package in R that provides an interface

to the Fortran ODE solver are commonly used for this purpose. However, the success

of most of these numerical approximation methods depends on a “good” choice of a

starting value for θi’s and some characteristics of the system (e.g., the steepness). A

“bad” starting value often leads to an unstable solution and creates numerical problems
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for the optimization method that is followed by these ODE solvers.

Even though ODE solvers are widely used for estimating parameters in PK/PD mod-

eling, it may be difficult to implement or lack control of essential numerical subroutines

required to obtain the desired numerical solution for ODE and sometimes also turn out

to be unstable especially in case of censored or missing data (Putter et al., 2002). Apart

from such numerical instabilities, these methods are computationally intensive iterative

procedure in which the system of ODEs must be solved at each time point for each

individual and this becomes more complicated in the case of multi-compartmental prob-

lems with censored or missing data. For situations where the use of ODE solvers is

combined with approximated likelihood using Taylor’s series expansion (Lindstrom and

Bates, 1990) or using Laplace’s approximation (Wolfinger, 1993), the system of ODEs as

well as the derivatives of the mean function (obtained by solving the system of differential

equations), need to be evaluated for all random effects parameters, at each time point.

The extent of computational burden increases with the increase in number of random

effects parameters.

The objective of this research is to estimate the parameters involved in the NLME

model (3.3-3.5) by providing a closed form approximation to the mean function described

by the system of ordinary differential equations. In this research, we are mainly interested

in the estimates of the “mean” of the random effects (θ), intra-individual variability (σ2)

and the variability associated with the random effects (Σθ).

In this chapter, we extend the Bayesian Euler’s approximation method (BEAM), ear-

lier proposed for nonlinear fixed effects models (Chapter 2), to the nonlinear mixed effect

framework. This approach combines the existing Bayesian framework for parameter es-

timation in PK/PD modeling (Gelman et al., 1996; Lunn et al., 2002; Han et al., 2002;

Putter et al., 2002; Wakefield, 1996; Huang et al., 2004) with a numerical approximation

method, providing an analytical closed form approximation for the system of ordinary

differential equations. The advantages of this method lies in providing a closed form

approximation for the solution of system of ordinary differential equations thus removing

the need to repeat the use of numerical methods to solve the system of differential equa-
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tions for every random effects parameter separately. This is a great advantage because

not only this saves a lot of computational difficulty but also the approximated mean

function can be incorporated in nonlinear Bayesian hierarchical modeling to obtain pa-

rameter estimates, without imposing any restrictive condition about the mean function.

Due to its Bayesian framework this approach has the ability to handle the missing data

by using data augmentation methods (Schafer, 1997) and the flexibility to handle sparse

and unbalanced data by utilizing information across individuals sampled from the pop-

ulation. The availability of posterior distributions for the unknown parameters involved

in the model, also makes it straightforward to draw statistical inferences. This method

involves a numerical approximation method, viz. naive Euler’s approximation method

that provides reasonably good results in this case but there are more accurate numerical

approximation methods, which can be used in place of Euler’s method, without any loss

of generality.

3.3 The Bayesian Euler’s Approximation Method

Many different numerical approximation methods are available for computing approxi-

mate solutions to system of ODEs with a given initial condition such as the problem

given by (3.7) and a detailed discussion of these methods can be found in the literature

(Shampine, 1994; Lambert, 1991; Atkinson, 1978). The algorithm for BEAM is based

on the Euler’s approximation method. All the numerical approximation methods involve

discretizing the time points by an amount h known as the “step size,” which is the dis-

tance between two consecutive time points. This step size may or may not be same for

all consecutive time points, but for our description we assume h to be constant over the

range of time points, i.e., we assume that tk = t0 + kh for k = 0, 1, 2, .... Mostly, a

uniform step size is used to simplify programming. It is easy to see that the solution to

the system of ODEs given by equation (3.7) can be expressed as

ν(t,θ) =

∫ t

t0

g(s,ν(s,θ))ds + ν0(θ) (3.9)
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which suggests the approximation, as h → 0,

ν(t + h,θ) − ν(t,θ) =

∫ t+h

t

g(s,ν(s,θ))ds ≈ hg(t,ν(t,θ)) (3.10)

and hence an approximation for µ(t,θ) = H(ν(t,θ)) for all values of the parameter θ,

where H is a completely known continuous function. Thus, using (3.10) we can obtain a

recurrence relation to approximate the mean function.

We now describe a method based on (3.10) to approximate the likelihood that arise

from the model given by equations (3.3-3.7) and the observed data D = {(Yij, tij) : i =

1, 2, . . . ,m and j = 1, 2, . . . , ni}. Here ti1 < ti2 < · · · < tini
, denote the observed time

points for the ith individual in the data set and {Yij = Y (tij) : i = 1, 2, . . . ,m and j =

1, 2, . . . , ni} denote the response values. As the observed time points can be unevenly

distributed we first consider a discretization by N fixed time points t0 = t01 < t02 < ... < t0N

such that t0k+1−t0k = h for k = 1, 2, ..., (N−1). In order to cover the range of observed time

points we choose the maximum value for these fixed time points such that t0N ≥ max
1≤i≤m

tini
.

The choice of N (and hence that of h) will depend on ni. Letting ν̃k(θ) ≡ ν̃(t0k,θ) and

µ̃k(θ) ≡ µ̃(t0k,θ) = H( ˜νk(θ)) for k = 1, 2, . . . , N − 1, we can write

ν̃k+1(θ) = ν̃k(θ) + hg(t0k,νk(θ)) (3.11)

µ̃k(θ) = H(ν̃k(θ)) (3.12)

with initial conditions ν̃1(θ) = ν0(θ). This simple approximation defined by equations

(3.11) and (3.12) is known as the naive Euler’s approximation and forms the basis for most

of the numerical approximation methods available in the literature. A brief description

of some refined and numerically more accurate approximation methods that are used in

practice is given in Appendix A. We now use (3.11) as the basis to a method which can

be further improved using other numerical recipies at the cost of computational time.

Now to define µ̃(t,θi) for any value of t ∈ [t01, t
0
N ], we use a linear interpolation. More
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precisely, given a time point t ∈ [t01, t
0
N ], we define the labels,

L(t) =
N

∑

k=1

I(t0k ≤ t). (3.13)

Notice that for any time point t ∈ [t01, t
0
N ], the function L(t) takes the values in the range

{1, . . . , N} and determines that how many t0k’s are less than the time point t which in

turn provides the lower limit of the interval that contains t, i.e., t0L(t) ≤ t < t0L(t)+1. The

value of approximate mean function at any time point t ∈ [t01, t
0
N ] is then given by,

µ̃(t,θ) ≡ µ̃h(t,θ) = µ̃L(t)(θ) +
t − t0L(t)

t0L(t)+1 − t0L(t)

(µ̃L(t)+1(θ) − µ̃L(t)(θ)) (3.14)

where L(t) is defined in (3.13) and µ̃k(θ)’s are obtained from equation (3.11). It should

be noticed that this approximation of mean function described by the equation (3.14)

holds for all values of θ, therefore the approximation for an individual specific mean

function can be obtained by substituting the individual specific parameter vector in the

equation (3.14). Hence, we can approximate the true likelihood function of (θ, Σθ, σ)

using the µ̃h(t,θi) function in equations (3.3-3.5).

Notice that µ̃h(t,θ) → µ(t,θ) as h → 0 (Lambert, 1991; p.151). In fact, µ̃h(t,θ) =

µ(t,θ)+o(h) if we use the above method known as the “naive” Euler’s method (eq 3.11).

If we use the “improved” Euler’s method (see Appendix A), then µ̃h(t,θ) = µ(t,θ)+o(h2)

and more generally Runge-Kutta method yields µ̃h(t,θ) = µ(t,θ)+o(h4). Thus, it follows

that as h → 0, the likelihood function based on true mean function µ(t,θ) can be well

approximated by the likelihood function based on the approximating µ̃(t,θ) function as

defined by equation (3.14). Finally the approximated mean function is incorporated in

the Bayesian framework to obtain estimates for parameters involved in the model. By

using this approximated mean function (3.14), the first stage of Bayesian hierarchical

model can be written as,

yij|(θi, σ
2)

indep
∼ N(µ̃(tij,θi), σ

2); i = 1, 2, ...,m and j = 1, 2, ..., ni, (3.15)
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where µ̃(t,θ) is as defined in equation (3.14). For practical applications, the yij’s may

be the log-transformed (or more generally Box-Cox transformed) values depending on

whether normality or log-normality is the more appropriate assumption for the data

(Lunn et al., 2002).

The second stage of the Bayesian hierarchical model in this case, involves making distri-

butional assumptions regarding the individual specific random effects θi:

θi|(θ, Σθ) ∼ MVNp(θ, Σθ), i = 1, 2, ...,m (3.16)

where MVNp(., .) represents a p-dimensional multivariate normal distribution with mean

θ which is a vector of p fixed effect parameters and variance-covariance matrix Σθ. The

third and the final stage of this hierarchical model consists of the prior distributions given

as,

θ|(Σ−1
θ , σ−2) ∼ MVNp(θ0, H0); Σ−1

θ |σ−2 ∼ Wp(R0, ρ0); σ−2 ∼ G(a0, b0) (3.17)

where G(·, ·) represents the gamma distribution with shape parameter a0, scale parameter

b0 with mean a0b0, Wp(·, ·) denotes a p-dimensional Wishart distribution with a positive

definite scale matrix R0 and degrees of freedom ρ0 with mean ρ0R0. The values of

a0, b0, θ0, H0, R0, ρ0 are assumed to be known, and are used to elicit prior information

when available. In the lack of prior information, we choose these known quantities to

reflect on prior ignorance by imposing priors with large variances. When the number of

subjects is not too small, the prior distribution of θ will have relatively little influence

on the posterior distribution of θ. A detailed discussion about the choice of prior values

are given in Natarajan and Kass (2000). From the literature (Gelfand and Smith, 1990;

Wakefield et al., 1994; Wakefield, 1996; Huang et al., 2004), it has been established that

for model described by equations (3.15-3.17), the full conditional distributions for the

parameters σ2,θ and Σθ are given by,

σ−2|(θ, Σθ,Θ,D) ∼ G

(

a0 +

∑m
i=1 ni

2
, A−1

)

(3.18)
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θ|(σ−2, Σ−1
θ ,Θ,D) ∼ MVNp(B

−1C,B−1) (3.19)

Σ−1
θ |(θ, σ−2,Θ,D) ∼ Wp(D

−1,m + ρ0) (3.20)

where A = b−1
0 + 1

2

∑m
i=1

∑ni

j=1[yij − µ̃(tij,θi)], B = mΣ−1
θ + H−1

0 , C = Σ−1
θ

∑m
i=1 θi +

H−1
0 θ0, D = R−1

0 +
∑m

i=1(θi − θ)(θi − θ)T and Θ = {θi : i = 1, . . . ,m} denote the set

of all individual specific random effects.

The full conditional distribution of each θi, given the remaining parameters and the data,

is proportional to

exp

{

1

2σ2

ni
∑

j=1

[yij − µ̃ij(θi)]
2 −

1

2
(θi − θ)Σ−1

θ (θi − θ)T

}

(3.21)

This framework allows us to use Gibbs sampling to draw samples for σ−2,θ and Σ−1
θ , from

the posterior distributions, while we need to use Metropolis-Hastings algorithm to draw

samples for θi. Though we used WinBUGS to draw samples from posterior distributions,

here we give a brief outline of the iterative MCMC algorithm (Huang et al., 2004) for

our models.

1. Initialize the iteration of the chain at l = 0 and start with some initial values,

S(0) = (σ−2(0),θ(0), Σ
−1(0)
θ ,Θ(0))T

2. Obtain S(l) from S(l−1) in the following way:

(a) Draw σ−2(l) ∼ π(σ−2|(θ(l−1), Σ
−1(l−1)
θ ,Θ(l−1),D)) using equation (3.18).

(b) Draw θ(l) ∼ π(θ|(σ−2(l), Σ
−1(l−1)
θ ,Θ(l−1),D)) using equation (3.19).

(c) Draw Σ
−1(l)
θ ∼ π(Σ−1

θ |(θ(l), σ−2(l),Θ(l−1),D)) using equation (3.20) and

(d) For θ
(l)
i , generate a new value φ from a symmetric proposal density q(φ|θ

(l−1)
i ).
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Evaluate the acceptance probability of the move, given by,

α(φ|θ
(l−1)
i ) = min

{

1,
π(φ|σ−2(l),θ(l), Σ

−1(l)
θ ,Θ

(l−1)
{i} ,D)

π(θ
(l)
i |σ−2(l),θ(l), Σ

−1(l)
θ ,Θ

(l−1)
{i} ,D)

}

Also, independently sample a u from the uniform (0, 1) and if u ≤ α(φ|θ
(l−1)
i )

the move is accepted else stay at θ
(l−1)
i . In other words, if the move is accepted

then θ
(l)
i = φ and otherwise θ

(l)
i = θ

(l−1)
i . Set Θ(l) = (θ

(l)
1 , . . . ,θ(l)

m ).

3. Move from chain l to l+1 using step (2) and repeat until the Markov chain {S(l), l =

1, 2, . . .} converges to the true conditional posterior distribution of θi (3.21).

In practice, WinBUGS uses a Metropolis algorithm based on a normal proposal distribution

with mean as the current value of the parameter and variance determined by tuning over

the first 4000 iterations to achieve an acceptance rate between 20% and 40%. In order to

diagnose convergence of algorithms, we used graphical techniques such as history plots

(available in WinBUGS) of the values of the multiple chains for each parameter. Based on

these plots we decided upon an initial number of burn-in iterations (e.g., at least 4000)

followed by say B = 2000 samples per chain drawn afterwards. We performed MCMC

sampling based on three parallel chains, therefore all the posterior summaries are based

on a total of 3B = 6000 samples. Mean of posterior distribution for each of unknown

parameters was taken to be the posterior estimate of that unknown parameter along with

a 95% posterior interval formed by 2.5% and 97.5% posterior percentiles.

3.4 Analysis of Growth Colonies of Paramecium Au-

relium

In this section we will illustrate the application of BEAM to the data set used in Chapter

2 (Section 2.4), in a mixed effects set up. For a detailed description of this experiment,

we encourage readers to read the book by Diggle (1990). This data set describes the

growth of three closed colonies of paramecium aurelium in a nutritive medium on a 19
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days period and one of the main goals of this experiment was to develop a dynamic

model for the growth count (say xij’s) of paramecium aurelium, as a function of time t.

Here, the three closed colonies of paramecium aurelium are considered as three subjects

in nonlinear mixed effects set up. The data is assumed to follow a log-normal distribution

and is described as,

yij = log{xij} = log{ν(tij,θi)} + εij, for i = 1, 2, 3 and j = 1, 2, . . . , 19

= µ(tij,θi) + εij, εij ∼ N(0, σ2) (3.22)

where xij is the observed growth count corresponding to the ith subject, at the time point

tij (measured in days) and µ(tij,θi) = log{ν(tij,θi)}. Next, it is assumed that for all

individuals i = 1, . . . ,m, ν(t,θ) follows the standard 2 parameter logistic growth curve

described by the non-linear differential equation

dν(t,θ)

dt
= g(t, ν(t,θ))

= ν(t,θ)(θ1 − θ2ν(t,θ)), ∀ t and ν(t1,θ) = y0 = 2 (3.23)

where t1 = t0 = 0 is the initial time point for all three subjects. Equivalently, we can

express the equation(3.23) in terms of µ(·):

dµ(t,θ)

dt
= g∗(t, µ(t,θ))

≡ θ1 − θ2 exp(µ(t,θ)), ∀ t and µ(t0,θ) = log(2) (3.24)

Although we proposed our estimation methods for situations where an analytical closed

form solution is not available for the system of differential equations, here an analytically

closed form solution is actually available. This choice of the simple growth curve model

allows us to compare the performance of the estimates based on the proposed approach,

to the estimates obtained by the iterative generalized least square method (GLS) pro-

posed by Lindstrom and Bates (1990). This approach is based on conditional first order

linearization and requires a closed form mean function be available. For a detailed de-
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scription of this iterative GLS approach involving a closed form nonlinear mean function

and mixed effects framework, one may read the article by Lindstrom and Bates (1990) or

a classic book by Davidian and Giltinan (1995). For this data analysis and the simulation

studies presented in next section, we used nlme function in R to obtain parameter esti-

mates using the iterative GLS approach which is based on the analytical solution given

by

µ(t,θ) = log(ν(t,θ))

= log(θ1) + µ(0) + tθ1 − log[θ2e
µ(0)(etθ1 − 1) + θ1] (3.25)

To approximate the likelihood using BEAM, we chose N = 19. This choice of the tuning

parameter N (or equivalently, h =
t0N−t0

1

N
) is not based on any analytical work, rather

the choice is mainly driven by computational convenience. In general, the finer the

grid points (with large N and hence small h) is chosen, the better the likelihood will

be approximated. Alternatively, one may also use improved numerical approximation

methods (such as those described in the Appendix A) at the cost of computing time.

To implement the BEAM on this log transformed data, we followed exact same steps

as described in Section 3.3, coupled with equations (3.22) and (3.24). Assuming that

the random effects involved in the model θi = (θ1i, θ2i) follows log normal distribution

or equivalently assuming θ∗
i = log(θi) = (log(θ1i), log(θ2i))

T normally distributed with

mean vector θ∗ = (θ∗1, θ
∗
2)

T , the Bayesian framework assumed for parameter estimation

can be written as,

θ∗
i ∼ MVN2(θ

∗,Σθ∗)

θ∗ ∼ MVN2(θ0, H0) (3.26)

Σ−1
θ∗ ∼ W2(R0, ρ0) and σ−2 ∼ G(a0, b0)
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Where Σθ∗ is the (2 × 2) variance-covariance matrix associated with the random effects

vector θ∗
i . The values for hyper-parameters are chosen as follows,

a0 = 0.01, b0 = 100, ρ0 = 2,θ0 = (0, 0)T , H0 = diag(10, 10), R0 = diag(0.1, 0.1)

For the MCMC runs required within the BEAM, we generated samples based on three

parallel Markov chains with an initial burn-in of 4000 iterations followed by 2000 post-

burn-in samples per chain, giving us a total of 6000 approximate samples from the

posterior distributions of θ∗, σ−2, and Σ−1
θ∗ . Samples for Σθ∗ can be obtained by

Σθ∗ = (Σ−1
θ∗ )−1 and similarly samples for σ2 can be obtained by σ2 = (σ−2)−1. Con-

vergence of the chains was diagnosed visually by inspecting simultaneous trace and acf

plots of the values of all three chains, for each parameter. Plots showing a good mix-

ing of chains were a reasonable indication for convergence. The software WinBUGS freely

available at the website http://www.mrc-bsu.cam.ac.uk/bugs/ was used to perform

all of the computations for this data analysis. Finally, the MC estimate of the mean and

standard deviation of the posterior distributions for these parameters were used as point

estimates and standard errors, respectively. Results from BEAM and NLME estima-

tion approaches are presented in Table 3.1. For NLME estimation approach, estimated

standard errors (SE) of the variance parameters are not given in the table due to the

unavailability of these estimates by using the NLME function in R. It can be observed from

Table 3.1 that estimated standard errors for θ∗1 and θ∗2 using NLME are smaller than those

obtained by using BEAM. This difference in estimated standard errors may be attributed

to the fact that the NLME function uses iterative generalized least-square method based

on the standard asymptotic theory, while the estimates from BEAM are based on finite

sample calculations. We investigate this aspect again in the next section in the context

of results from the simulation study. For the real data analysis, the estimated covariance

between the random effects was found to be approximately zero and therefore we only

reported the squared root of the variance estimates of random effects θ∗1 and θ∗2, denoted

by
√

Σθ∗
1

and
√

Σθ∗
2

respectively . Additionally, in order to compare the performance

of these estimation approaches, we plotted estimated mean function corresponding to
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Table 3.1: Results of estimation of parameters in the logistic growth model to the data set on
growth colonies of the bacteria Paramecium Aurelium using NLME and BEAM.

Parameters Method

NLME BEAM

θ
∗
1 -0.177 -0.217

SE 0.029 0.182

θ
∗
2 -6.459 -6.463

SE 0.043 0.209

σ 0.185 0.223

SE - 0.022
√

Σθ∗
1

0.042 0.210

SE - 0.236
√

Σθ∗
2

0.022 0.223

SE - 0.287

BEAM and NLME approaches along with the observed data points corresponding to

three subjects, in Figure 3.1.

From Figure 3.1, both approaches seem to perform very similarly in capturing the

trajectory of mean function reasonably well. It can also be observed from Figure 3.1

that BEAM provides data fits close to the fits obtained by using the nonlinear likelihood

estimation approach that uses the exact form analytical solution of the mean function.

Because of its Bayesian framework, BEAM provides mean estimates along with its pos-

terior distribution and Figure 3.1 shows that 95% confidence band (posterior credible

interval) for estimated mean trajectory by using BEAM, covers the observed data points

corresponding to all three subjects. This 95% posterior band was formed by calculating

2.5% and 97.5% posterior percentiles of the function µ̃(t, θ) at each observed time point.
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Figure 3.1: Plots of observations on growth colonies of paramecium aurelium (in log scale)
and the estimated mean trajectories obtained by NLME and BEAM along with 95% posterior
confidence band from BEAM.

3.5 Simulation Study

A simulation study, motivated by the above real data analysis was carried out to compare

the performance of the proposed BEAM to the NLME procedure, in terms of estimation

accuracy and efficiency. For the simulation study, data is generated using the model

(3.24) with µ(t,θi) given by the closed form solution defined in equation (3.25). We
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chose the observed time points in the simulated data set same as given in the real data

set and hence the sample size same as the real data set, i.e., ni = 19 for i = 1, 2, 3.

True values of the parameter were set at θ∗ = (log(0.8), log(0.0015)), Σθ∗ = 0.1I2×2 and

σ = 0.25. These true values of parameters for data generation are chosen based on the

estimates obtained for the real data application. To fit the model by BEAM, we chose

same number of fixed time points as observed time points and the same prior distributions

as used in the real data analysis. This simulation setup was replicated for 500 Monte

Carlo runs. For the MCMC runs required within BEAM, we generated samples based on

three parallel Markov chains with an initial burn-in of 4000 iterations followed by 2000

post-burn-in samples per chain, giving us a total of 6000 approximate samples from the

posterior distributions of θ∗1, θ∗2, σ, Σθ∗
1

and Σθ∗
2
. Initial simulation runs showed that the

covariance between random effects is close to zero and hence we did not include results

corresponding to that in the table. A summarization of the comparative study of BEAM

and NLME approach, based on this simulation are given in Table 3.2 and Figure 3.2.

In Table 3.2, we summarize our finding in terms of (i) the bias, which is the difference

between the MC mean of the point estimates and the true value of a parameter; (ii) the

estimated standard error (ESE), which is the the MC mean of the standard errors of the

parameter estimates, (iii) the Monte Carlo simulation standard error (MCSE), which is

the standard deviation of the estimates and (iv) the mean square error (MSE) obtained

as Bias2+ MCSE2.

From Table 3.2, it seems that both BEAM and NLME performed almost same in terms

of MSE’s. It can be noticed that for NLME, the ESEs for fixed effects are smaller than

the MCSEs. This supports the conclusion drawn in the previous section that NLME

underestimates the standard errors associated with the parameter estimates. On the

other hand in case of BEAM, we observe that the corresponding ESEs are larger than the

corresponding MCSEs and this overestimation can be result of finite sample uncertainty

with only m = 3 subjects.

For a better understanding of the MC distribution of the parameter estimates in

comparing the BEAM with the NLME method, we present box plots of the estimates
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Table 3.2: Simulation Results for the logistic growth model for colonies of paramecium aurelium
(on log scale) using NLME and BEAM, with 500 MC Runs.

Parameters Estimates Method

NLME BEAM

θ
∗
1 Bias 0.010 -0.035

MCSE 0.136 0.136

ESE 0.121 0.186

MSE 0.0180 0.0200

θ
∗
2 Bias 0.015 0.016

MCSE 0.145 0.147

ESE 0.129 0.202

MSE 0.0210 0.0220

σ Bias -0.002 0.009

MCSE 0.019 0.021

ESE - 0.020

MSE 0.0004 0.0005
√

Σθ∗
1

Bias -0.050 0.014

MCSE 0.098 0.126

ESE - 0.189

MSE 0.0120 0.0120
√

Σθ∗
2

Bias -0.051 0.012

MCSE 0.111 0.133

ESE - 0.214

MSE 0.0150 0.0140

obtained by both methods in Figure 3.2. The horizontal solid line in each case represents

the true value of the parameter. Figure 3.2 (i) reveals that the inter-quartile range of the

θ∗1 estimates from both BEAM and NLME contain the true value of parameters. Similarly

for θ∗2, we observe from Figure 3.2 (ii) that both methods perform almost identically. For
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Figure 3.2: Box plots of point estimates: (i) θ̂
∗
1’s (ii) θ̂

∗
2’s (iii) σ̂’s (iv)

√

Σ̂θ∗
1
’s (v)

√

Σ̂θ∗
2
’s based

on 500 simulated data sets. (The horizontal solid line in each case represents the true value of
the parameters.)

σ, Figure 3.2 (iii) indicates that BEAM tends to slightly overestimate whereas NLME

tends to underestimate the true value, but the inter-quartile range of the estimates from

both BEAM and NLME contain the true value of parameters in this case as well. It

can also be noticed that in terms of MSE, NLME is slightly more efficient (with smaller
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MSE) than BEAM for estimating θ∗1, θ∗2 and σ. However, the gain is very nominal

considering the fact that NLME uses exact analytical form of the mean function. On

the other hand, box plots for estimated inter-individual variance parameters
√

Σθ∗
1

and
√

Σθ∗
2

show that the BEAM seems to perform better than NLME (Figure 3.5 (iv) and

(v)), where NLME tends to underestimate the inter-individual variance parameters. This

advantage of BEAM is significant considering the fact that NLME uses exact analytical

form of the mean function and in practice, when an analytically closed form for the mean

function is not available, NLME is not applicable, but BEAM will still work.

3.6 HIV Model Revisited

In this section we revisit the HIV model described by equation (3.1) and apply the

BEAM to estimate the parameters involved in this model. Han et al. (2002) presented

the data set consisting of observations for total viral density measured at 0, 2, 4, 6, 12, 18,

24, 30, 36, 42, 48 hours, and at days 3, 4, 5, 6. These observations were measured on five

individuals and the data follows a log-normal distribution with mean function described

by the system of ODEs (3.1). As described in the Section 3.1, the total viral density

(V (t)) can be expressed as a sum of the density of infectious virus ν2(t) and the density

of non-infectious virus, ν3(t) at time t. The statistical model for the log transformed data

can be written as,

log(yij) = µ(tij,θi) + εij, for i = 1, 2, . . . 5 and j = 1, 2, ..., 15

= log(V (tij,θi)) + εij, (3.27)

where V (t,θi) = ν2(t,θi) + ν3(t,θi) for all time points in the data set. We are assuming

ci and δi as random effects denoted by the parameter vector θi = (ci, δi) and rest of

the parameters (Nfv, k, T0) involved in the system of ODEs are assumed to be known.

Assuming that the virus dynamics are in quasi-steady state prior to the initiation of the

treatment i.e., NfvkT0 = c, Perelson et al. (1996) solved this system of ODEs for total
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viral density V (t) = ν2(t) + ν3(t) at time t and the solution is given by,

V (t) = V0exp(−ct) +
cV0

c − δ

[

c

c − δ
{exp(−δt) − exp(−ct)} − δtexp(−ct)

]

, (3.28)

where V0 = VI0 + VNI0 . Han et al. (2002) used this closed form expression of the total

viral density to estimate the parameters involved in the model. However, in practice it

turns out that this steady state assumption usually holds only during a short period after

the initiation of treatment (Wu, 2005) and in the absence of this assumption, the system

of ODEs described by equation (3.1) does not have the closed form solution given by

equation (3.28). For our model fitting, we do not assume the steady state assumption

and therefore the closed form mean function given by equation (3.28) is not being used

by the Bayesian Euler’s approximation method.

To implement BEAM for estimating parameters, we followed the exact same steps as

described in Section 3.3, coupled with equations (3.27) and the log-transformed ODEs

given by,

d log(ν1)

dt
= −δ + kT0

ν2

ν1

, log(ν1(0)) = log(T ∗
0 ),

d log(ν2)

dt
= −c, log(ν2(0)) = log(VI0), (3.29)

d log(ν3)

dt
= Nfvδ

ν1

ν3

− c, log(ν3(0)) = log(VNI0).

Further we assumed that the random effects vector θi also follows a log-normal dis-

tribution with the restriction (ci > δi) and the Bayesian framework for the parameter

estimation is as follows.

θ∗
i = (log(ci), log(δi))

T ∼ MVN2(θ
∗,Σθ∗)

θ∗ = (log(c), log(δ))T ∼ MVN2(θ0, H0) (3.30)

Σ−1
θ∗ ∼ W2(R0, ρ0) and σ−2 ∼ G(a0, b0)

Where Σ−1
θ∗ is the (2× 2) inverse variance-covariance matrix associated with the random

46



Chapter 3. Bayesian Inference in Non-linear Mixed Effect Models involving ODEs

effects vector θ∗
i . The values for hyper-parameters are chosen as follows,

a0 = 4.5, b0 = 9, ρ0 = 3,θ0 = (1.1,−1.0)T , H0 = diag(10, 10), R0 = diag(2.5, 2.5)

For this study, the initial values for the system of ODEs were assumed to be known

and are given by log(T ∗
0 ) = 8.006, log(VI0) = 12.101, log(VNI0) = 11 and to avoid

the problem of identifiability we assumed kT0 = 0.015. We also estimated parameters

involved in this model by using informative priors and the values for hyper-parameters

in case of informative prior are chosen as follows,

a0 = 4.5, b0 = 9, ρ0 = 3,θ0 = (1.1,−1.0)T , H0 = diag(0.1, 0.01), R0 = diag(2.5, 2.5)

These values for prior parameters and other known parameters were chosen based on the

priors used in Han et al. (2002) and Holte et al. (2003), for the same HIV experiment.

Estimation results from BEAM along with the estimates presented in Han et al. (2002)

for the same data set, using NLME estimation approach (Lindstrom and Bates, 1990)

and the Bayesian hierarchical modeling with mean function given by equation (3.28)

are given in the Table 3.3. The Bayesian Euler’s approximation method was used with

Table 3.3: Results of estimation of parameters in the HIV model using BEAM, NLME and
Bayesian hierarchical modeling involving a closed form expression for the mean function.

Parameters Steady State Assumption No Assumption

NLME Han et al. (2002) BEAM

Info. Prior Noninfo. Prior Info. Prior

θ
∗
1 0.935 1.01 0.643 0.983

SE 0.282 0.237 0.519 0.264

θ
∗
2 -0.730 -0.946 -0.868 -0.980

SE 0.175 0.094 0.632 0.097

15000 MCMC samples followed by a burn-in of 10000 iterations using a single chain and
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therefore all posterior estimates are thus based on 15000 MCMC samples. Here, a large

single chain was used rather than multiple parallel chains for MCMC sampling to save

the computational time.

Table 3.3 shows that BEAM provides estimates for the log of the clearance rate of

free virus (θ∗1) and for the log of the death rate for infected cells (θ∗2) without assuming

the steady state assumption and therefore estimates the parameters, in the absence of a

closed form solution for the mean function. It should be noticed that BEAM can also be

used in the presence of a closed form solution for the system of ODEs, as illustrated in

the Section 3.4 and therefore provides an estimation framework for both situations. On

the other hand, results reported in Han et al. (2002) holds only for the model assuming

the closed form mean function described by equation (3.28).

Although BEAM in combination with non-informative priors tends to provide es-

timates with larger standard errors (SE) as compared to the other two approaches, it

should be noticed that in case of the NLME estimation SE’s reported in the Table 3.3

are the asymptotic standard errors and in case of Bayesian estimation, all the estima-

tion summaries are calculated based on 150, 000 samples and relatively informative priors.

With informative priors, BEAM gives parameter estimates and estimated standard errors

similar to the estimates obtained by NLME and Bayesian hierarchical estimation method

that assume steady-state assumption. These results may suggest that for this data set,

steady state assumption seems to be a valid assumption. BEAM is advantageous because

estimates from BEAM will remain applicable even for situations for which the above men-

tioned assumption may not hold and hence can be used to test the assumption.

We also estimated σ and the variance components associated with the random effects

and their estimates using BEAM are as follows: σ̂ = 0.824 with SE=0.069,
√

Σ̂θ∗
1

= 1.088

with SE=0.293 and
√

Σ̂θ∗
1

= 1.030 with SE=0.366.
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3.7 Discussion

In this chapter, we extended the Bayesian Euler’s Approximation Method (BEAM) to

the nonlinear mixed effects (NLME) framework. We first illustrated the application of

BEAM in a model when there is a closed form mean function available, through a real

data analysis and a simulation study. The model with the known closed form mean

function was chosen to compare the performance of BEAM with the iterative GLS esti-

mation approach (Lindstrom and Bates, 1990), implemented in nlme function in R. For

the real data analysis and the corresponding simulation study, we compared the results

from BEAM to those from the iterative GLS estimation approach described in Lindstrom

and Bates (1990) and found that the both approaches provide very similar estimation

of the mean function (see Figure 3.1) and also parameter estimates of the fixed effects

and variance components with very similar MSE’s (Table 3.2). From Figure 3.2 we also

observed that for fixed effects parameters (θ∗), MC distributions of estimates from both

NLME and BEAM look similar however NLME seems to underestimate variance param-

eters considerably. This is a significant advantage for BEAM mainly because NLME uses

exact analytical solution for the mean function as compared to BEAM which uses only

the system of ODEs to approximate the mean function.

We also applied BEAM to estimate the parameters involved in the HIV model (3.1),

when there is no closed form solution available i.e. when the steady state assumption

described in Section 3.1 does not hold.

Because of the Bayesian framework, one of the key advantages of BEAM also lies in

its ability to handle missing data that is very common in longitudinal studies. We will

briefly discuss this in the next chapter. The availability of posterior distributions for the

unknown parameters, also makes it straightforward to draw statistical inferences. Al-

though BEAM provides estimates that are not only accurate but applicable with missing

or censored data, there is no denying that this is a computationally intensive procedure.

However, the computational intensive nature of BEAM should not be an issue with its

applications to the real data sets, considering its several other advantages.

In this chapter we assumed that random errors are identically, independently dis-
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tributed but methodologies presented here are not restricted to this assumption. This

assumption can be relaxed by using a generalized nonlinear modeling framework with

µ̃(t,θi) as the mean function and σ2Di(t,η) as the variance covariance matrix, which is

assumed to be a known matrix up to the unknown parameter η. A detailed description

of the available estimation approaches for this generalized model is presented in (David-

ian and Giltinan, 1995). In order to implement BEAM with this generalized nonlinear

modeling framework we just need to use a suitable prior for the parameter η in the

Bayesian model setup. The Bayesian Euler’s approimation method provides a closed

form approximation of the mean function, µ̃(t,θ), without imposing any restrictive as-

sumptions regarding the system of ODEs. Therefore, due to the availability of a closed

form approximated mean function, this method can be used to estimate the mean func-

tion at any time point lying within the close vicinity of the observed time range. This is

a huge advantage as it avoids evaluating the numerical solution of the mean function at

the parameter estimate again and again for interpolation/extrapolation.

50



Chapter 4

An Extension of BEAM to the Mutivariate

Response NLME Models

4.1 NLME Models with Multivariate Responses

In the previous chapter we illustrated the application of BEAM to the NLME models

where for every individual, only one observation is available at each time point. In other

words we considered models where data consists of measurements taken on one response

variable. For example in Han et al. (2002), data consists of observations corresponding

to the total viral density which is the sum of density of infectious and non-infectious

virus described by equation 3.1. In this chapter we consider the NLME models which

involves data observed for more than one type of response on each individual (Davidian

and Giltinan, 1995, p. 110). The model setup for this case can be described as follows.

yij = µ(tij,θi) + εij, for i = 1, 2, . . . m and j = 1, 2, ..., ni, (4.1)

where yij = (yij1, . . . , yijl)
T is the (l× 1) response vector with elements corresponding to

the different response variables, observed at the same time point tij for the ith individual.

µ(·) = (µ1(·), . . . , µl(·))
T represents the mean vector such that µl(·, ·) is the mean function

corresponding to the response variable yijl for all i = 1, 2, . . . m and j = 1, 2, ..., ni

and depends on a vector of p parameters, θi, specific to individual i. Next, the random

effects θi’s are assumed to arise from a common distribution with mean θ and variance

Σθ. More specifically we can write

θi = θ + ei; E(ei) = 0, V (ei) = Σθ (4.2)
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For an individual i, the intra-individual error vector εij = (εij1, . . . , εijl)
T corresponds to

the measurement uncertainty associated with the observed response vector yij at time

point tij. The random error vector εij is assumed to be independently distributed with

mean vector 0 and variance-covariance matrix Σ, i.e.,

E(εij) = 0(l×1) and V (εij) = Σ(l×l) for i = 1, 2, ...,m and j = 1, 2, ..., ni (4.3)

As described in Chapter 3 (Section 3.2), the mean vector µ can be defined as a solution

to a given system of ODEs as follows,

d(ν(t,θ))

dt
= g(t,ν(t,θ)) ∀ θ and t 6= t0 (4.4)

and ν(t0,θ) = ν0(θ) (4.5)

and the mean function µ(·) is related to ν by a completely known function H : R
q → R

q

by µ(·) = H(ν(·)). It can be noticed here that we are assuming the availability of the

data corresponding to all states of the system of ODEs. Once again the objective is to

estimate the parameters (θ, Σ, Σθ), when no exact form solution is available for µ(·).

In the next section we perform a simulation study based on the first two differential

equations involved in the model (3.1), to illustrate the application of BEAM in this case.

4.2 HIV Model Simulation Study for Multivariate

Data

This simulation study is motivated from the HIV experiment described in Perelson et

al. (1996) that involved the administration of a drug (in this case, a protease inhibitor)

to five HIV-infected patients. Measurements corresponding to the plasma HIV RNA

concentration were taken at time points, 0, 2, 4, 6, 12, 18, 24, 30, 36, 42, 48 hours, and at

days 3, 4, 5, 6. In the experiment data was observed corresponding to the total viral

density, which is the sum of the density of infectious virus ν2(t) and the density of
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non-infectious virus, ν3(t) at time t. Assuming that viral dynamics is in the quasi-

steady state prior to the initiation of treatment, the analytic solution of this system

of ODE is given by equation (3.2). However, this simulation study was performed to

illustrate the application of BEAM for a multivariate response and for that purpose,

we considered differential equations corresponding to the density of infected cells, ν1(t)

at time t and corresponding to the density of infectious virus, ν2(t) at time t only and

generated the data corresponding to both differential equations. This data follows a log-

normal distribution and therefore we used the logarithm of the data as our response and

the transformed differential equations are given as,

d{log(ν1)}

dt
= −δ + kT0

ν2

ν1

, log{ν1(0)} = log(T ∗
0 ) (4.6)

d{log(ν2)}

dt
= −c, log{ν2(0)} = log(VI0) (4.7)

To keep this example simple, we assumed the parameters c and δ to be the random

effects, and the remaining parameters were assumed to be known. Also to avoid the

problem of identifiability in equation (3.1), we assumed kT0 as one parameter and its

value was considered to be known. This simulation study was performed with the data

for the log of infected cells (yij1), and for the log of infectious virus (yij2) simulated as,

log(yij) = µ(tij,θi) + εij, εij ∼ MVN2(0, I2) (4.8)

where

log(yij) = (log(yij1), log(yij2))
T ,

µ(·) = (log(ν1), log(ν2))
T , (4.9)

εij = (εij1, εij2)
T ,

for i = 1, 2, . . . , 20 individuals and j = 1, 2, ..., 15 time points.

The analytical expressions for the mean functions as given in Holte et al. (2003), were
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used for the data generation purposes and are given as following,

log(ν1(t)) = log

(

{kT0VI0 + T ∗
0 (c − δ)} ∗ e−δt − kT0VI0e

−ct

c − δ

)

(4.10)

log(ν2(t)) = log(VI0e
−ct) (4.11)

The initial values for the differential equations are given by log(ν1(0)) = log(3000) and

log(ν2(0)) = log(100000). The Bayesian framework assumed for estimation of parameters

log(ci) and log(δi) with the restriction (ci > δi), is as follows,

θ∗
i = (log(ci), log(δi))

T ∼ MVN2(θ
∗,Σθ∗)

θ∗ = (log(c), log(δ))T ∼ MVN2(θ0, H0) (4.12)

Σ−1
θ∗ ∼ W2(R0, ρ0) and σ−2 ∼ G(a0, b0)

Where Σ−1
θ∗ is the (2× 2) inverse variance-covariance matrix associated with the random

effects vector θ∗
i . The values for hyper-parameters are chosen as follows,

a0 = 0.01, b0 = 0.01, ρ0 = 2,θ0 = (1.1,−1.0)T , H0 = diag(10, 10), R0 = diag(0.1, 0.1)

We assumed kT0 = 0.015 for the data generation and simulated the data corresponding to

20 individuals. For the data generation process, we used θ∗T = (1.1,−1.0) and Σ = 0.2I2.

These parameter values were chosen based on estimates from the similar models, available

in the literature (Han et al., 2002; Huang et al., 2004). As described above, we performed

the simulation using BEAM, with 1000 replicates and with number of fixed time points

N = 15. Results from this simulation study are presented in the Table 4.1.

The Bayesian Euler’s approximation method was used with 2000 MCMC samples

followed by a burn-in of 4000 iterations using three parallel chains. All posterior estimates

are thus based on 6000 MCMC samples generated for each of the 1000 MC runs. In

this case BEAM provides unbiased parameter estimates for the parameters θ∗1 and σ

(p-values=0.246 and 0.146 respectively), while the bias in case of the parameters θ∗2,
√

Σθ∗
1

and
√

Σθ∗
2

was found to be significant (p-values < 0.0001). Table 4.1 lists the bias
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Table 4.1: Simulation Results for HIV model using BEAM with 1000 MC Runs.

Parameters Estimates Method

BEAM

θ
∗
1 Bias 0.001

MCSE 0.046

ESE 0.050

θ
∗
2 Bias 0.085

MCSE 0.070

ESE 0.069

σ Bias 0.001

MCSE 0.030

ESE 0.029
√

Σθ∗
1

Bias 0.014

MCSE 0.034

ESE 0.031
√

Σθ∗
2

Bias 0.020

MCSE 0.045

ESE 0.039

of estimates along with estimated standard errors (ESE) and Monte Carlo simulation

standard errors (MCSE). Box plots of estimates from this simulation study are presented

in Figure 4.1.

The horizontal line in each box plot represents the true value of the respective pa-

rameter, used for data generation. It can be observed from these box plots that for all

parameters except θ̂∗2, interquartile range of estimates cover the true value of correspond-

ing parameters and even in that case, the distribution range of estimates obtained from

BEAM covers the true value. We also estimated the posterior credible intervals for all

parameters by computing the 2.5% and 97.5% percentiles of the posterior distributions of

all parameters and calculated coverage probability based on above defined 95% posterior
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Figure 4.1: Box plots of point estimates: (i) θ̂∗1’s (ii) θ̂∗2’s (iii) σ̂’s (iv)
√

Σ̂θ∗
1
’s (v)

√

Σ̂θ∗
2
’s based

on 1000 simulated data sets for HIV model. (The horizontal solid line in each case represents
the true value of the parameters.)

credible intervals. This probability gives us the percentage of posterior credible inter-

vals of parameter estimates that contain the true value of the corresponding parameters.

Based on this simulation study, coverage probability for all parameter estimates is of

about 96.2% for all parameters.
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4.3 Discussion

The objective of the simulation study described in this chapter was to present an ex-

tension of the BEAM to estimate the parameters in the NLME models where multiple

responses are available for each individual. For simplicity we assumed a case study

where observations were available for each response type at the same time points for

every individual. However, BEAM can be used without loss of generality, with models

where different time points were considered for different individuals as well as for differ-

ent response types. Results from the simulation study presented in the previous section

suggests that BEAM seems to perform well in terms of unbiasedness for θ∗1 and σ and

provide reasonably good estimates in terms of coverage probabilities for all parameters.

Even though BEAM seems to slightly over estimate the variability associated with the

random effects, Figure 4.2 (iv) and (v) suggests the availability of the reasonable poste-

rior interval estimates using BEAM. However, further investigation is needed to explain

the over estimation of θ∗2 in the simulation study.
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Conclusion and Future Work

The objective of this research was to propose estimation techniques that provide esti-

mates of the parameters involved in the mean function described by a system of ODEs

when there is no closed form solution available for the system of ODEs. We proposed two

methodologies namely “Bayesian Euler’s approximation method (BEAM)” and “Splines

Euler’s approximation method (SEAM)”. In Chapter 2, we proposed the algorithms for

these two methods, for fixed effects models and illustrated the use of two approaches by

applying BEAM and SEAM to the real data (Section 2.3.1) and by means of a simulation

study (Section 2.3.2) based on the real data. We also compared results from these two ap-

proaches with the established iterative GLS approach (Lindstrom and Bates, 1990) which

is implemented in the “nlme” package of R and with “Integrated data (ID)” approach

(Holte et al., 2003). Our results showed that both BEAM and SEAM provide competitive

estimates for parameters as compared to the NLME and ID estimation approaches.

For the illustration purpose, we used a model for which the mean function has a closed

form expression available or equivalently a closed form solution for the system of ODEs

is achievable. This choice of model enabled us to compare results from the proposed

two estimation approaches with the NLME estimation approach which requires a closed

form expression for the mean function. Competitive results from the proposed estimation

approaches, with respect to NLME estimation approach, show the usefulness of proposed

methodologies. Since for most of the real data applications, it is impossible to derive a

closed form solution of the system of differential equations and therefore for all such

situations NLME is not applicable while BEAM and SEAM still provide approximately

unbiased and efficient estimates.

Next in Chapter 3, we extended the BEAM to the nonlinear mixed effects modeling

framework where mean function for each individual depends on the individual specific pa-

58



Chapter 5. Conclusion and Future Work

rameters (random effects). This class of models is commonly used in HIV data modeling,

PK/PD modeling and other dynamic mean modeling and more often the mean function

involved in these models is defined as the solution of a given system of ODEs. As in case

of fixed effects models, for situation where there is no closed form solution available for

the system of ODEs, parameter estimation becomes challenging and that was the focus

of our research. For the mixed effect framework, the algorithm of BEAM is very similar

to the one used in fixed effects framework in terms of mean function approximation.

However, for the NLME models, we estimated individual specific mean functions by sub-

stituting the values of random effects parameters for all individuals, in the expression for

approximated mean function given by equations 3.14 and incorporated these individual

specific approximated mean functions into the Bayesian nonlinear hierarchical modeling

framework to obtain the posterior summaries of the parameters of interest.

In Chapter 3, first we used the same data as used in Chapter 2 but unlike Chapter

2 where we treated the data corresponding to different subjects as separate data sets, in

this case we combined all subjects and considered the combined data set as the single

dataset. Both NLME estimation technique and BEAM were applied to this real data set

under the mixed effects framework and a simulation study was also performed to compare

the performance of these two estimation approaches. We did not compare BEAM with

ID method in this case since it was not obvious to us about how to extend ID method to

the mixed effects models. Results again showed that BEAM appears to provide similar

estimates as compared to the NLME approach and this is more evident when we look at

the plots of approximated mean function provided by both NLME and BEAM (Figure

3.4).

In Section 3.6 we illustrated the application of BEAM to the HIV model described

in Section 3.1, for the situation when no closed form expression for the mean function

is available. This real data analysis was significant because it achieves our objective of

estimating parameters involved in the given system of ODEs, for which an analytical

closed form solution is unavailable.

In Chapter 4, we performed a simulation study to illustrate the application of BEAM
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to the case when more than one observation is available at each observed time point. For

this purpose we used the first two differential equations of the HIV model described by

equations 3.1.

An extension of the SEAM to the NLME modeling is an issue for future research

although we did some preliminary investigation into this matter. We combined the in-

dividual estimates obtained by applying SEAM to the real data corresponding to the

paramecium growth model as described in Chapter 3 (Section 3.4), by using the “ stan-

dard two stage method” (Davidian and Giltinan, 1995) and results showed that SEAM

also provided similar estimates as NLME and BEAM. The parameter estimates obtained

by using SEAM for nonlinear mixed effects model along with the results from BEAM

and NLME approach (presented in the Table 3.1) are summarized in the Table 5.1. Even

Table 5.1: Results of estimation of parameters in the logistic growth model to the data set on
growth colonies of the bacteria Paramecium Aurelium using NLME, BEAM and SEAM.

Parameters Method

NLME BEAM SEAM

θ
∗
1 -0.177 -0.217 -0.189

ESE 0.029 0.182 0.006

θ
∗
2 -6.459 -6.463 -6.455

ESE 0.043 0.209 036

σ 0.185 0.223 0.192

ESE - 0.022 -

though these estimates look very similar to the results we obtain by using NLME and

BEAM, a more formal approach to implement SEAM with in the classical nonlinear

mixed effects modeling framework is desirable. However, results from the preliminary

investigation (Table 5.1) definitely give hope for the possible good results.

At this stage, we will summarize a list of potential statistical questions that have the

ability to motivate the future research in this field. Future research may include:
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• Extension of SEAM to the mixed effects models to obtain parameter esti-

mates.

• Illustration of the application of BEAM with missing or censored data.

• Derivation of a formal approach to determine the number of fixed time points

in the proposed approaches.

• A formal proof for the consistency of the estimates obtained by BEAM and

SEAM.

One of the main advantages of both BEAM and SEAM is that, these methods provide

estimates for the parameters involved in the system of ODEs, without imposing any

restrictive assumptions regarding the dynamics of the data set. The proposed likelihood

approximation method also provides a closed form approximation of the mean function,

µ̃(t,θ). Therefore these methods can be used to estimate the mean function at any time

point lying within the close vicinity of the observed time range. This is a huge advantage

as it avoids evaluating the numerical solution of the mean function at the parameter

estimate again and again for interpolation/extrapolation.

Because of the Bayesian framework, one of the key advantages of BEAM also lies

in its ability to handle missing or censored data that is very common in longitudinal

studies. Suppose that the observation corresponding to the ith individual, at the time

point tij is missing, then this missing observation can be generated using (3.15). In case

of the censored data, a suitable truncated distribution can be used to replace the censored

observations. Next, this imputed data can be included in the Gibbs sampling algorithm

described by equations (2.13-2.15) in case of fixed effects models and by equations (3.18-

3.21) in case of the mixed effects models. A detailed discussion of the problem of censored

data with in the nonlinear modeling framework and the Bayesian approach to tackle this

problem is presented in Banks et al. (2005). The availability of posterior distributions

for the unknown parameters, also makes it straightforward to draw statistical inferences.

At the same time advantage of SEAM comes not only from its accuracy of estimation

and weaker distributional assumptions but also from its computational convenience as

compared to BEAM. Although BEAM provides estimates that are not only accurate but
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applicable with missing or censored data, there is no denying that this is a computation-

ally intensive procedure. In comparison to BEAM, SEAM takes much less computation

time, but SEAM is limited to handling only completely observed data and hence restrict-

ing its application in comparison to BEAM. Finally we conclude that for mixed effects

models we proposed BEAM as the approach to estimate the parameters in the absence

of a closed form mean function however, for the fixed effects models, the choice between

BEAM and SEAM is up to the readers to decide.
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Appendix A

Numerical methods to solve a system of

ODEs

To describe few popular approximation methods, for simplicity, we assume µ ≡ ν with

q = 1.

1. Naive Euler’s method: This method is based on the following sequence of solutions,

µ(tn) = µn ≈ µn−1 + g(tn−1, µn−1)h (A.1)

The order of accuracy for this method is o(h). Recall that the order of accuracy of a

method is the order of accuracy with which the solution function is approximated.

An approximation to a solution of a system of ODEs is said to be rth order accurate

and is denoted by o(hr), if the term corresponding to hr in the Taylor expansion of

the solution is correctly reproduced.

2. Improved Euler’s method: This second algorithm improves the naive Euler’s method

by modifying the algorithm as follows:

µ(tn) ≈ µn = µn−1 +
1

2
[g(tn−1, µn−1) + g(tn, µn−1 + g(tn−1, µn−1)h)]h (A.2)

The order of accuracy for the improved Euler’s method is o(h2).
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3. Runge-Kutta method: This algorithm uses the Simpson’s rule:

∫ tn+h

tn

g(t, µ(t))dt ≈
h

6
[g(tn, µ(tn)) + 4g(tn +

h

2
, µ(tn +

h

2
)) + g(tn + h, µ(tn + h))]

The final algorithm, after approximating µ(tn), µ(tn + h
2
) and µ(tn + h) is given by

following sequence of steps:

Kn,1 = g(tn, µn)

Kn,2 = g(tn +
h

2
, µn +

h

2
Kn,1)

Kn,3 = g(tn +
h

2
, µn +

h

2
Kn,2)

Kn,4 = g(tn + h, µn + hKn,3)

µn+1 = µn +
h

6
[Kn,1 + 2Kn,2 + 2Kn.3 + Kn,4] (A.3)

This method has an accuracy of o(h4) which is much better compared to previous

two approximation methods, but is also more computationally intensive than the

previous two methods.

There is a huge literature on numerical methods to solve ODEs and an extensive

review of these numerical methods can be found in a classic book by Butcher (2003).
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