
ABSTRACT

FENG, SHUO. 3D Integral Invariant Signatures And Their Application on Face
Recognition. (Under the direction of Professor Hamid Krim).

Curves are important features in computer vision and pattern recognition, and

their classification under a variety of transformations, such as Euclidean, affine or

projective, poses a great challenge. Invariant features of these curves turn out to be

crutial to simplifying any classification procedure. This, as a result, has recently led

to a renewed research interest in transformation invariants.

In this thesis, new explicit formulae for integral invariants for curves in 3D with

respect to the special and the full affine groups are presented.The development of

the 3D integral invariant are based on an inductive approach in terms of Euclidean

invariants. For the first time, a clear geometric interpretation of both 2D and 3D

integral invariants is presented. Since integration attenuates the effects of noise,

integral invariants have advantages in computer vision applications. We use integral

invariants to construct global and local signatures that characterize curves up to

the special affine transformations, subsequently extended to the full affine group.

Global Signatures are independent of parameterization, and Local Signatures are

independent of both parameterizationa and initial point selection. We analyze the

robustness of these invariants in their application to the problem of classification of

noisy spatial curves extracted as characteristics from a 3D object.

Our investigation of 2D and 3D integral invariants and signatures, originally mo-

tivated by Biometrics applications, are successfully implemented and applied to face

recognition to eliminate the effects of pose and facial expression. A high recognition

performance rate of 95% is achieved in the test with a large face data set.
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Chapter 1

Introduction

a human being can easily recognize an airplane, tell the difference between a horse

and an elephant, identify faces, and understand handwritten characters by “looking

at” them. The complicated underlying procedure is, of course, not so simple. Human

eyes first capture the scene, the brain then smartly selects the region of interest (ROI),

extracts features from the ROI, and makes a decision. It takes almost no time for

this procedure.

With the rapid development of computer technologies, it is natural to ask if ma-

chines can perform as efficiently. Although the answer is not a perfect “Yes” nowa-

days, under some reasonable assumptions, a computer is capable to carry out most

of the tasks listed above. They are actually typical computer vision problems, and

various solutions are available in the literatures.

A typical computer vision system architecture is illustrated in Fig. 1.1. It has

a total of five stages: sensing, ROI selection, feature selection, classification, and

postprocessing.‘

A real world scene has to be converted into a binary signal, so that a computer

is able to process it. To this end, the first stage is always sensing. Various sensors

may be required to convert real a world scene to different usable data. For example,

a 2D camera may capture a grayscale or a color 2D picture as shown in Fig. 1.2-a,

while a 3D scanner captures the full 3D geometry in Fig. 1.2-b. A thermal map (in

Fig. 1.2-c) may be achieved using an infrared camera, while signals from spectral
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Figure 1.1: Computer vision system architecture

bands (in Fig. 1.3) may be acquired by a multispectral camera.

(a)2D face (b) 3D face (c) Infrared face

Figure 1.2: 2D and 3D data

Oftentimes, a region of interest (ROI) is captured together with background noise

in the data, which makes ROI selection(or segmentation) a necessary step for future

processing. The segmented region, however, may not be used directly for classifi-

cation. The input of classifiers are a small subset of ROI containing characteristic

information, which is called “the feature”. An optimal feature selection would yield a

representation to maximally simplify an object classification. With a proper classifier,

an object may be identified, and post-processing may help interpret the classification

output and make a decision.

1.1 Motivation

Among the stages discussed in the previous section, feature selection is one of

the most critical stages. A good feature is the one that remains very similar for

objects from same class, very distinct for different classes, all the while invariant to
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Figure 1.3: Multispectral data from Landsat

geometric transformations on the objet. By selecting enough distinct features, the

whole problem may be simplified, and the system performance may be increased.

Features may include color of objects, size of object, or some geometrical charac-

teristics, such as points(in Fig. 1.4), or curves(in Fig. 3.4-a,b). In computer vision

and pattern recognition, curves/contours are important features. The objects may

undergo various transformations, such as translation, rotation, scaling, and shearing,

as a result, feature curves may subject to the same transformations. Their classifica-

tion under geometrical transformations is challenging. A direct comparison of feature

curves generally requires registration, and the ensuing complexity and difficulty in

its application in many important problems, have recently led to a renewed research

interest in “transformation invariant”.

Differential invariants, such as Euclidean curvature and torsion for space curves,

are the most classical. The affine and projective counterparts of curvature and torsion
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may also be defined. The practical utilization of differential invariants is, however,

limited due to their high sensitivity to noise. Indeed, Euclidean curvature and torsion

depend on derivatives of up to order 2 and 3 respectively, and their affine analogs

depend on derivatives of up to order 6[26]. If the original data is noisy, the numerical

differentiation amplifies the effects of noise. This motivated the high interest in

other types of invariants such as semi-differential, or joint invariants [48, 37, 4] and

various types of integral invariants [42, 30, 33, 21]. Integral invariants in the above

references depend on quantities obtained by integration of various functions along a

curve. Since integration reduces the effect of noise, integral invariants hold a clear

advantage in practical applications. The type of integral invariants that we consider

in the sequel was introduced by [21], and may be considered as the 1-dimensional

analogs of moment invariants [49].

Figure 1.4: feature points

While explicit expressions for integral invariants are known for plane curves in 2D,

they have thus far remained elusive for spatial curves in 3D, primarily on account of

their analytical tractability. With an increasing availability of 3D data acquisition

systems and subsequent emerging applications, interest in 3D analysis and in associ-

ated robust integral invariants for 3D curves in 3D is key. In this thesis, we develop
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(a)face feature curves (b) gun feature contour

Figure 1.5: Feature points of 2 planar shapes

3D integral invariants/signatures within the context of biometrics and for a natural

adaptation to 3D object recognition and face recognition.

1.2 Contribution

The contributions of this thesis are set of as following,

A hybrid integro-differential affine invariantwhich only uses only the first

order derivatives along with integrals was developed [15]. Although a performance

improvement over classical deferential invariants is achieved, the presence of first order

derivatives still affects the performance.

As first appeared in [16], we obtain for the first time explicit formulae of integral

Euclidean and affine invariants for spatial curves in 3D. The type of curve

integral invariants, computed in this paper, may be viewed as a 1-dimensional analog

of moment invariants [45, 49]. For plane curves they were introduced and computed

by Hann and Hickerman [21]. The standard action of the affine group on R
3 induces

an action on curves. Following the approach of [21] we prolong this action to certain
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integral expressions, called potentials, and then compute invariants that depend on

these integral variables. A direct extension of [21] to 3D, using Fels-Olver moving

frame construction [13] is conceptually straight forward, but the computational com-

plexity often makes the problem intractable. An inductive implementation of the

moving frame construction, proposed by Kogan [26], significantly simplifies the alge-

braic derivations, as it allows one to construct invariants for an entire group from the

invariants of its subgroup: in our case affine invariants in terms of Euclidean ones.

The integral invariants defined in [21] and [16] are sensitive to parametrization, or

sampling of the curve in the discrete case. A uniform parametrization is required for

two curves to be compared. In order to overcome this limitation, we develop local

and global 2D/3D integral invariant signatures for the special affine and

full affine group. The global signature depends on the choice of the initial point

and does not allow a comparison if fragments of the curves, and is therefore sensitive

to occlusions. The local signature, at a slight computational cost, is independent on

the choice of the initial point, and is insensitive to the occlusion in the image. It

allows to establish local equivalence of the curves.

In [14], we develop a matching techniques of 3D objects with articulated

parts using 3D Euclidean integral invariant signature. 3D objects are repre-

sented by a set of characteristic and intrinsic curves. The object matching is based

on comparing integral invariant signatures of corresponding iso-geodesic curves.

Euclidean/Affine Integral invariants/signatures are also shown to be

very useful to a biometric application–face recognition. A human face may

be represented by a set of vertical and horizonal planar curves [18], and 2D affine

integral invariants are introduced to mitigate the effect of pose on the facial curves.

Alternatively, a human face may also more robustly be represented by a set of char-

acteristic level curves starting from the nose tip [17]. 3D integral invariants and

signatures for space curves are used to eliminate both pose and facial expression.

Both approaches achieve accuracy greater than 90%.
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1.3 Organization of the thesis

The outline of this thesis is as follows:

We start the next chapter with some mathematical background to introduce the

basic concept of geometric transformation, geometric invariant, the moving frame ap-

proach to achieve invariant, and an example (2D integral invariant development) is

given to show how it works. In Chapter 3, we describe the first approach extending

the existing 2D integral invariant to 3D, and illustrate the difficulty–computation

complexity–and provide a solution to achieve a hybrid invariant which utilizes lower

order(only first order) derivatives and integral auxiliary variables. Although a per-

formance improvement over classical deferential invariants is obtained, the presence

of first order derivatives still affects the performance. In Chapter 4, an inductive ap-

proach developed by Kogan[26] is exploited to simplify the analytical tractability. As

an example, a 2D integral invariant is rederived. We then proceed to develop 3D inte-

gral invariants using this inductive approach in Chapter 5. Specifically, three special

affine integral invariants are derived. Since each individual integral invariant depends

on curve parameterization and initial point selection, we introduce in terms of global

and local signatures in Chapter 6 to cancel the parameterization and initialization

respectively. In Chapter 7, three interesting applications, namely face recognition

with 2D affine integral invariants, 3D object recognition using 3D Euclidean Integral

Invariant Signature, and 3D face recognition using 3D integral invariants and signa-

tures, are proposed. Some concluding remarks and future extensions are discussed in

Chapter 8.
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Chapter 2

Preliminary

This thesis discusses a systematic way of developing integral invariants/signatures

for Euclidean and Affine transformations in 2D and 3D. The following background

material is presented to provide a context for the remainder of the thesis. Geometric

transformations are first discussed, followed by that of geometric invariants and the

classical approach to achieve invariants. We finally provide a 2D integral invariant

development example to illustrate the moving frame technique.

2.1 Geometric transformation

Generally, when considering geometric transformations, one may refer to either

the object or the coordinate system being transformed. Although the two cases are

directly related, the transformation matrices are still quite different. In this thesis,

all transformations we are discussing are objects based.

The basic transformations of interest hence are: translation, rotation, scaling,

shearing, and their combinations (Euclidean transformation, affine transformation)

in 2D and 3D
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TRANSLATION

Let




x1

...

xn


 and




xi

...

xn


 be two vectors in R

n. The translation affected by a

vector (v1, . . . vn) ∈ R
n is as follow:




xi

...

xn


 =




x1

...

xn


+




v1

...

vn


 . (2.1)

ROTATION

Rotation is described by:




xi

...

xn


 = R




x1

...

xn


 , (2.2)

where a rotation matrix R is an orthogonal matrix, and det(R) = 1.

In a 2D case, a rotation matrix about the origin by an angle θ is given by:

R2D =




cos(θ) sin(θ)

−sin(θ) cos(θ)


 ,

where θ is the rotation parameter.

In a 3D case, a rotation matrix is given by:

R3D =




1 0 0

0 cos(ψ) −sin(ψ)

0 sin(ψ) cos(ψ)




·




cos(φ) 0 sin(φ)

0 1 0

−sin(φ) 0 cos(φ)




·




cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1



,

where ψ, φ, and θ specify the rotation angels with respect to x, y, z axis.

SCALING

A scaling transformation is featured by a diagonal transformation matrix. In 2D,
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it is defined as (
x

y

)
=

(
s1 0

0 s2

)(
x

y

)
, (2.3)

while a 3D scaling transformation is given by




x

y

z


 =




s1 0 0

0 s2 0

0 0 s3







x

y

z


 . (2.4)

SHEARING

A shearing transformation behaves as “pushing” an object in a direction parallel

to a coordinate plane in 3D or a coordinate axis in 2D. An examples is shown in

Fig. 2.1.

Figure 2.1: 3D shearing transformation on a cylindrical shape.

In a 2D case, a shearing transformation in the x direction with a shearing factor

shx and in the y direction with a shearing factor shy are defined as:

(
x

y

)
=

(
1 shx

0 1

)(
x

y

)
, (2.5)

(
x

y

)
=

(
1 0

shy 1

)(
x

y

)
. (2.6)



11

In 3D space, a shearing transformation with respect to x − y plane, x − z plane

and y − z plane are defined as:




x

y

z


 =




1 0 shx

0 1 shy

0 0 1







x

y

z


 , (2.7)




x

y

z


 =




1 shx 0

0 1 0

0 shz 1







x

y

z


 , (2.8)




x

y

z


 =




1 0 0

shy 1 0

shz 0 1







x

y

z


 . (2.9)

An example of these four basic transformations on 3D space curves is shown in

Fig. 2.2.

The two transformations we consider in this thesis, namely Euclidean transforma-

tion and affine transformation are a combination of the above basic transformations.

EUCLIDEAN TRANSFORMATION

A Euclidean transformation includes a translation and a rotation, and is defined

in 2D and 3D as:

(
x

y

)
=




cos(θ) sin(θ)

−sin(θ) cos(θ)



(
x

y

)
+

(
vx

vy

)
, (2.10)




x

y

z


 = R3D




x

y

z


+




vx

vy

vz


 , (2.11)

AFFINE TRANSFORMATION

An affine transformation may be viewed as a combination of a translation, a

rotation, a scaling and a shearing. The standard affine transformation in 2D is defined
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(a) translation (b) rotation

(c) scaling (d) shearing

Figure 2.2: Four basic transformations in 3D of a space curve

as:

(
x

y

)
=

(
a11 a12

a21 a22

)(
x

y

)
+

(
v1

v2

)
, det

(
a11 a12

a21 a22

)
6= 0. (2.12)

The standard affine transformation in 3D:




x

y

z


 =




a11 a12 a13

a21 a22 a23

a31 a32 a33







x

y

z


+




v1

v2

v3


 , det




a11 a12 a13

a21 a22 a23

a31 a32 a33


 6= 0,

(2.13)
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where det

(
a11 a12

a21 a22

)
= 1 or det




a11 a12 a13

a21 a22 a23

a31 a32 a33


 = 1, the transformation is

referred to as a special affine transformation (affine transformation without scaling).

2.2 Group action and geometric invariants

In this section we review the basic terminology of the group actions and invari-

ants, as well as the concept of prolonging the action to jet spaces and the notion of

differential invariants. We then introduce the notion of integral jet space and define

the corresponding prolongation of the action to give rise to integral invariants.

2.2.1 Definitions

Definition 2.2.1 An action of a group G on a set S is a map α : G × S → S that

satisfies the following two properties:

1. α(e, s) = s, ∀s ∈ S, where e is the identity of the group.

2. α(g1, α(g2, s)) = α(g1 g2, s), for all s ∈ S and g1, g2 ∈ G.

For g ∈ G and s ∈ S we write α(g, s) = g · s = s.

Definition 2.2.2 The orbit of a point s ∈ S is the set Os = {g · s|g ∈ G}.

Definition 2.2.3 A function f : S → R is called invariant if

f(g · s) = f(s), ∀g ∈ G and ∀s ∈ S (2.14)

Invariant functions are constant along each orbit and can be used to find equivalence

classes of objets undergoing various types of transformations.

Let GL(n) denote a group of non-degenerate n× n matrices with real entries. Its

subgroup of matrices with determinant 1 is denoted by SL(n). The orthogonal group

is O(n) = {A ∈ GL(n)|AAT = I}, while the special orthogonal group is SO(n) =
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{A ∈ O(n)| detA = 1}. The semi-direct product of GL(n) and R
n is called the

affine group: A(n) = GL(n) ⋉ R
n. Its subgroup SA(n) = SL(n) ⋉ R

n is called

the special affine group. The Euclidean group is E(n) = O(n) ⋉ R
n. Its subgroup

SE(n) = SO(n) ⋉ R
n is called the special Euclidean group.

Throughtout we consider the action of the affine group A(n) and its subgroups

on R
n by a composition of a linear transformation and a translation, for n = 2 and

n = 3: 


xi

...

xn


 = A




x1

...

xn


 +




v1

...

vn


 . (2.15)

where matrix A ∈ GL(n) defines a linear transformation and the vector (v1, . . . vn) ∈
R

n defines a translation.

2.2.2 Prolongation of a group action

A group action in Eq.(2.15) on R
n induces an action on curves γ(t) = (x1(t), . . . , xn(t)) →

γ(t) = (x1(t), . . . , xn(t)) in R
n. Our goal is to obtain invariants that classify curves

up to affine transformations. The classical method of obtaining such invariants is to

prolong the action to the set of derivatives {x(k)
1 , . . . , x

(k)
i |k = 1..l} of a sufficiently

high order l [1]:

x
(1)
i (t) =

dxi(t)

dt
, x

(k+1)
i (t) =

dx
(k)
i (t)

dt
. (2.16)

Definition 2.2.4 Functions of {x1, . . . , xn, x
(k)
i | i = 1..n, k = 1..l} that are invariant

under the prolonged action (2.16) are called differential invariants of order l.

For the Euclidean action on curves in 3D, the two lowest order invariants are called

curvature and torsion, and are classically known in differential geometry. Analogous

invariants for the affine and projective groups are also known [26].

Differential invariant may be achieved by regularization[13]. For a r(r < l∗(k+1))

dimensional group, r prolonged group may be normalized to r random constants

(c1, · · · , cr), so that the group parameters are fixed by solving the resulting system of
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equations. The invariants are achieved by replacing the fixed group parameters into

the rest l ∗ (k + 1) − r of prolonged group.

As noted in the introduction, differential invariants of particularly high order

derivatives are highly sensitive to noise. To alleviate this sensitivity, we extend the

approach of [21] from planar curves to curves in a space of arbitrary dimension. Let

the curve γ(t) be parametrized by t ∈ [a, b]. To that end, we define integral variables

X
(α1,...,αn)
i (t) =

∫ t

a

x1(t)α1 · · ·xn(t)αndxi(t), (2.17)

where the integrals are taken along the curve γ(t), (α1, . . . , αn) are non-negative

integers such that α1 + · · ·+αi−1 +αi+1 + · · ·+αn 6= 0. We call l = α1 + · · ·+αn the

order of integral variables. There are relations among the integral variables dictated

by the integration by parts formulas. Examples of such relations for n = 2 are given

in Section 2.3 below.

Definition 2.2.5 An integral jet space of order l (denoted S l) is the space parametrized

by the coordinates x1, . . . xn, of an arbitrary point on a curve γ(t), t ∈ [a, b], coordi-

nates x0
1, . . . x

0
n of the initial point γ(a) on the curve, and all independent integral

variables X
(α1,...,αn)
i of order l and less.

The action (2.15) can be prolonged to the initial point and to the integral variables

of order l:




xi

...

xn


 = A




x1

...

xn


 +




v1

...

vn







x0
i

...

x0
n


 = A




x0
1

...

x0
n


 +




v1

...

vn


 , (2.18)

X
(α1,...,αn)
i =

∫

γ

x1
α1 · · ·xn

αndxi.
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It is important that the relations among the integral variables be respected under the

prolonged action, and therefore the action of the integral jet space S l is well defined.

Definition 2.2.6 A function on S l which is invariant under the prolonged action

(2.18) is called integral invariant of order l.

By introducing new variables

Xi = xi − x0
i , i = 1, . . . , n (2.19)

and making the corresponding substitution into the integrals, we reduce the problem

of finding invariants under the action (2.18) to an equivalent but simpler problem of

finding invariant functions of variables {X1, . . . , Xn, X
(α1,...,αn)
i | i = 1 . . . n} under the

action of GL(n) defined by




Xi

...

Xn


 = A




X1

...

Xn




X
(α1,...,αn)
i =

∫

γ

X1
α1 · · ·Xn

αn

dXi.

Invariants with respect to (2.18) may be obtained from invariants with respect to

(2.20) by making substitution (2.19). As an example, 2D integral Invariant develop-

ment is discussed in the next section.

2.3 2D integral invariant development

The standard affine group action on R
2:

(
x

y

)
=

(
a11 a12

a21 a22

)(
x

y

)
+

(
v1

v2

)
, det

(
a11 a12

a21 a22

)
6= 0.
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induces the action on the plane curve γ(t) = (x(t), y(t)) t ∈ [a, b]. We prolong this

action to integral variables up to second order. Among 6 such variables

X(ij)(t) =

∫ t

a

x(t)iy(t)jdx(t), j 6= 0, i+ j ≤ 2

Y (ij)(t) =

∫ t

a

x(t)iy(t)jdy(t), i 6= 0, i+ j ≤ 2 (2.20)

we choose 3 independent: Y (10), Y (11), X(11).

We start by translating the initial point γ(a) to the origin and make the corre-

sponding substitution X(t) = x(t) − x(a), Y (t) = y(t) − y(a) in the integrals. This

reduces the problem to finding invariants under the GL(2)-action on R
5 by prolonging

the group action in R
5 as follow:

X = a11X + a12Y, Y = a21X + a22Y,

Y (10) = (a11a22 − a12a21) Y (10 ) +
a11a21X

2

2
+
a12a22Y

2

2
+ a12a21XY,

Y (11) =
a11X

3a21
2

3
+ a11a21a22X

2Y − a11a22a21X
(11 ) + a11a22

2Y (11 )

+a12a21
2X (11 ) − a12a21a22Y

(11 ) + a12a22a21XY
2 +

a12Y
3a22

2

3
,

X(11) =
a11

2X3a21

3
+ a11a21a12X

2Y − a12a21a11X
(11 ) + a11

2a22X
(11 ) (2.21)

−a11a22a12Y
(11 ) + a12

2a21Y
(11 ) + a12a22a11XY

2 +
a12

2Y 3a22

3
.

The regularization approach allows the parameters a11, a12, a21, a22 to be normal-

ized by setting

(X, Y , Y (10), Y (11)) = (1, 1, 0, 0)

Solving the system of equation above, the normalized parameters follow:

a11 =
4 Y (10 )2Y − 2 Y 2XY (10 ) + 6 Y (11 )XY − 6 Y (11 ) Y (10 ) − 2X2Y 3 + 3 Y 2X (11 )

(−3 Y (11 ) X + 2X2Y 2 − 3 YX (11 )) (−XY + 2 Y (10 ))

a12 = −4 Y (10 )2X − 6 Y (10 )X2Y + 6 Y (10 ) X (11 ) + 3 Y (11 ) X2

(−3 Y (11 )X + 2X2Y 2 − 3 YX (11 )) (−XY + 2 Y (10 ))
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a21 =
2 Y (10 ) Y − 3 Y (11 )

−3 Y (11 )X + 2X2Y 2 − 3 YX (11 )

a22 = − 2 Y (10 )X − 2X2Y + 3 X (11 )

−3 Y (11 )X + 2X2Y 2 − 3 YX (11 )

One integral invariant may be achieved by substituting the group parameters in

to X(11):

I =
3 YX (11 ) − 8 Y10 XY + 8 Y (10 )2 + 3 Y (11 )X

(XY − 2 Y (10 ))
2 (2.22)

The invariant above is equivalent to the one obtained in [21].
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Chapter 3

First trial to extend Integral

Invariant from 2D to 3D-3D Mixed

Invariants

2D integral invariants, as proposed in [21], are conceptually easy to develop by

simply extending the moving frame idea in the integral jet space as shown in the

previous section. A natural question is if the same idea works in 3D. In this section,

we provide a first attempt to develop 3D integral invariants, show the analytical

difficulty which arised in a 3D integral invariant development, and propose an integro-

differential solution.

3.1 A naive 3D extension of 2D integral invariant

The standard affine group action on R
3:




x

y

z


 =




a11 a12 a13

a21 a22 a23

a31 a32 a33







x

y

z


+




v1

v2

v3


 , det




a11 a12 a13

a21 a22 a23

a31 a32 a33


 6= 0.

induces the action on a space curve γ(t) = (x(t), y(t), z(t)) t ∈ [a, b].
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Three types of integral variables are defined at level l:

X(ijk)(t) =

∫ t

a

x(t)iy(t)jz(t)kdx(t), j + k 6= 0, i+ j + k = l

Y (ijk)(t) =

∫ t

a

x(t)iy(t)jz(t)kdy(t), i + k 6= 0, i+ j + k = l (3.1)

Z(ijk)(t) =

∫ t

a

x(t)iy(t)jz(t)kdz(t), i+ j 6= 0, i+ j + k = l

We prolong the affine group action to integral variables up to the second order.

Among 21 such variables, we choose 11 independent ones:

Z(100), Z(010), Y (100), Z(011), Z(020), Z(101), Z(110), Y (101), X(110), X(101), X(020).

The rest of the invariants may be expressed in terms of above by way of the integration

by parts. We translate the initial point γ(a) to the origin and make the corresponding

substitution X(t) = x(t)−x(a), Y (t) = y(t)−y(a), Z(t) = z(t)−z(a) in the integrals.

This reduces the problem to computing GL(3)-invariants.

The integral jet space is constructed as:

(X, Y, Z, Z(100), Z(010), Y (100), Z(011), Z(020), Z(101), Z(110), Y (101), X(110), X(101), X(020))

The next step is to prolong the group action to the integral jet space:
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X = a11X + a12Y + a13Z,

Y = a21X + a22Y + a23Z,

Z = a31X + a32Y + a33Z,

Z(100) =
a11a31X

2

2
+ a12a31XY − a12a31Y

(100 ) + a13a31XZ − a13a31Z
(100 )

+a11a32Y
(100 ) +

a12a32Y
2

2
+ a13a32Y Z − a13a32Z

(010 ) + a11a33Z
(100 )

+a12a33Z
(010 ) +

a13a33Z
2

2

Z(010) =
a21a31X

2

2
+ a22a31XY − a22a31Y

(100 ) + a23a31XZ − a23a31Z
(100 )

+a21a32Y
(100 ) +

a22a32Y
2

2
+ a23a32Y Z − a23a32Z

(010 ) + a21a33Z
(100 )

+a22a33Z
(010 ) +

a23a33Z
2

2
,

Y (100) =
a11a21X

2

2
+ a12a21XY − a12a21Y

(100 ) + a13a21XZ − a13a21Z
(100 )

+a11a22Y
(100 ) +

a12a22Y
2

2
+ a13a22Y Z − a13a32Z

(010 ) + a11a23Z
(100 )

+a12a23Z
(010 ) +

a13a23Z
2

2
,

Z(011) = −1

2
a32

2a21X
(020 ) + a33a21a31X

2Z +
1

3
a32

2a22Y
3 + a33

2a21Z
(101 )

+a31
2a22X

(110 ) + a33
2a22Z

(011 ) +
1

3
a31

2a21X
3 − a31a21a33X

(101 )

+
1

3
a33

2a23Z
3 + a31

2a23X
(101 ) − 1

2
a32

2a23Z
(020 ) +

1

2
a32a22a31XY

2

+a31a22a33XY Z − a33a23a32Z
(011 ) + a31a23a32XY Z − a31a22a33Y

(101 )

+
1

2
a32

2a23Y
2Z +

1

2
a33a22a32Z

(020 ) − a33a23a31Z
(101 ) +

1

2
a32

2a21XY
2

+a31a23a33XZ
2 − a31a23a32Z

(110 ) +
1

2
a31a22a32X

(020 ) + a32a21a33Y
(101 )

+
1

2
a32a22a33Y

2Z − a31a21a32X
(110 ) + a33a21a32Z

(110 ) + a32a23a33Y Z
2

+a32a21a31X
2Y
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X(110) =
1

2
a12

2a23Y
2Z + a11a12a23XY Z + a13

2a22Z
(011 ) − a11a13a21X

(101 )

+
1

2
a12a11a22XY

2 − a11a12a23Z
(110 ) + a11

2a23X
(101 ) + a12a13a21Y

(101 )

+
1

2
a11a12a22X

(020 ) − 1

2
a12

2a23Z
(020 ) + a13a11a21X

2Z +
1

3
a12

2Y 3a22

+
1

3
a13

2Z3a23 + a11a13a22XY Z +
1

3
a11

2a21X
3 − a11a12a21X

(110 )

+a11a13a23XZ
2 +

1

2
a12

2a21XY
2 − a11a13a22Y

(101 ) + a11
2a22X

(110 )

+
1

2
a13a12a22Z

(020 ) +
1

2
a12a13a22Y

2Z + a13
2a21Z

(101 ) + a13a12a21Z
(110 )

−1

2
a12

2a21X
(020 ) − a13a12a23Z

(011 ) − a13a11a23Z
(101 )

+a12a11a21X
2Y + a12a13a23Y Z

2,

Z(020) = −a32a21a22X
(020 ) − 2 a33a21

2X (101 ) − 2 a32a21
2X (110 ) − 2 a31a22a23Z

(110 )

+a32a22a23Y
2Z + 2 a33a21a23Z

(101 ) + 2 a31a23a21X
(101 ) − a32a22a23Z

(020 )

+
1

3
a32a22

2Y 3 + a33a21
2X2Z + 2 a32a21a23Y

(101 ) + 2 a31a22a23XY Z

+a33a22
2Z (020 ) +

1

3
a31a21

2X3 + 2 a33a21a22Z
(110 ) − 2 a32a23

2Z (011 )

+2 a31a22a21X
(110 ) − 2 a31a23

2Z (101 ) + a32a23
2Y Z2 +

1

3
a33a23

2Z3

+a31a23
2XZ2 + 2 a33a23a22Z

(011 ) + a32a21
2X2Y + a32a21a22XY

2

+a31a22
2X (020 ) − 2 a31a22a23Y

(101 )

(3.2)

We may set:

(X, Y , Z, Z(100), Z(010), Y (100), Z(011), X(010), Z(020)) = (c1, c2, c3, c4, c5, c5, c6, c7, c8, c9),
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where ci’s may be any constant. In theory, we may solve the above system of equations

to get the group parameters (aij) in order to calculate 3D integral invariants. The

system of equations, being so highly nonlinear, complicates its solution. Solving the

resulting system for all group parameters in this space, and in fact quickly becomes

intractable.The difficulty encountered even using Maple and Mathematica quickly

indicates that such a direct approach is unusable.

3.2 A practical solution-mixed invariant

As indicated in [13][26], while a differential invariant is achievable, the higher

order derivatives(up to 6th) present a serious numerical challenge. Upon accounting

for all the constraints, a tradeoff between the computational complexity of solving the

system of equations to obtain an integral invariant, and the numerical sensitivity to

noise of computing differential invariants, we propose a hybrid invariant which utilizes

lower order(first order) derivatives and integral auxiliary variables. The solution

of such a system equations dramatically simplifies, and the use of only first order

derivatives greatly improve the noise sensitivity.

To that end, we define,

Y ′ =
dY

dX
,Z ′ =

dZ

dX
,

to in turn specify the jet space as a Euclidean space with coordinates,

(X, Y, Z, Z(100), Z(010), Y (100), Z(011), Z(020), Z(101), Z(110), Y (101), X(110), X(101),

X(020), Y ′, Z ′)

By prolonging the group action onto the new mixed jet space, we achieve:

Y ′ =
a21X

′ + a22Y
′ + a23Z

′

a11X ′ + a12Y ′ + a13Z ′

Z ′ =
a31X

′ + a32Y
′ + a33Z

′

a11X ′ + a12Y ′ + a13Z ′
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The two equations above are much simpler than the second and third order pro-

longed integral variables. By replace two complicated third order equations (Z(011)

Z(020))with Y ′ and Z ′, the complexity of the system of equation will be dramatically

dropped since only one third order equation is present.

Set

(X, Y , Z, Z(100), Z(010), Y (100), Y ′, Z ′, X(110)) = (0, 0, 1, 1, 1, 1, 1, 1, 0),

to obtain a solution of the corresponding system of equations for

(a11, a12, a13, a21, a22, a23, a31, a32, a33),
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which are used in the invariants,

a11 = (6ZY (011)X − 6ZX(011)Y + 6 Y Z(011)X + 3Z2X(020) + 3 Y 2X(002)

−4Z2XY 2)n4/((n1 + n2)n3)

a12 = (3XX(002)Y + 6X(110)Z2 + 6XY (101)Z − 6X(101)Y Z − 5X2Y Z2

+6X2Z(011))n4/((n1 + n2)n3)

a13 = (X2Y 2Z − 6X(110)Y Z + 6 Y (011)X2 + 3XX(020)Z + 6X(101)Y 2

−6X(011)XY − 6 Y (101)XY )n4/((n1 + n2)n3)

a31 = (Y 2Z2 − 4 Y 2Y (001)Z ′X(001) − Y 2XY (001)Z ′ Z + 2 Y ZX(010)Y (001)Z ′

+2 Y XY (001)Z ′ Y (001) − 4 Y ZY (001) + Y Z2Y (001)Y ′X

+6 Y (001)Y ′X(001)Y Z + 4X(010)Y (001)Z ′ Y (001) + 4 Y (001)2

−2 Y (001)Y (001)Y ′ ZX − 4 Y (001)Y ′X(001)Y (001)

−4 Y (001)Y ′ Z2X(010))/(n3n4)

a32 = (X2Y (001)Z ′ Y Z + 6X(001)Y (001)Z ′ Y X − 2X(001)Y Z − 3 Y Z2X

−4 Y (001)X2Y (001)Z ′ − 4 Y (001)Z ′X(001)X(010) − 2X(010)XY (001)Z ′ Z

+6 Y (001)ZX + 4X(010)Z2 − 4XX(001)Y (001)Y ′ Z

−4X(001)Y (001) + 4X(001)2Y (001)Y ′ + Y (001)Y ′ Z2X2)/(n3n4)

a33 = (X2Y (001)Z ′ Y 2 − 3X2Y (001)Y ′ Y Z + 4X2Y (001)Y (001)Y ′

−4XY Y (001)Z ′X(010) + 3XY 2Z + 6XX(010)Y (001)Y ′ Z − 6XY Y (001)

−2XYX(001)Y (001)Y ′ + 4X(010)2Y (001)Z ′ − 6X(010)ZY

+4X(001)Y 2 + 4X(010)Y (001) − 4 Y (001)Y ′X(001)X(010))/(n3n4)
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n1 = −3XY (001)Z ′ ZX(020) + 3Z2X(020) −X2Y (001)Z ′ ZY 2 + 6ZY (011)X

+6 Y (001)Y ′ ZZ ′ − 6 Y (001)Z ′X(101)Y 2 + 3 Y 2X(002) − 6X2Y (001)Z ′ Y (011)

+6XY (001)Z ′ Y (101)Y + 6XY (001)Z ′X(011)Y

n2 = 5 Y (001)Y ′ Z2X2Y − 3 Y (001)Y ′XX(002)Y − 6ZX(011)Y

−6 Y (001)Y ′ Z2X(110) − 4Z2XY 2 + 6 Y Z(011)X − 6 Y (001)Y ′ ZXY (101)

+6 Y (001)Z ′ ZX(110)Y − 6 Y (001)Y ′X2Z(011)

n3 = XY Z − 2 Y (001)X + 2X(001)Y − 2X(010)Z

n4 = 2 Y (001)Y ′X(001) + Y XY (001)Z ′ + Y Z − 2X(010)Y (001)Z ′ − 2 Y (001)

−Y (001)Y ′ ZX,

which may be directly used to define our desired 3D affine invariant as:

X(002) = a11(
1

3
a31

2X3 + a32
2X(020) + a33

2X(002) + 2 a31a32X
(110) + 2 a31a33X

(101)

+ 2 a32a33X
(011)) + a12(a31

2
(
X2Y − 2X(110)

)
+

1

3
a32

2Y 3

+ a33
2
(
Y Z2 − 2Z(011)

)
+ a31a32

(
XY 2 −X(020)

)
+ 2 a31a33Y

(101)

+ 2 a32a33Y
(011)) + a13(a31

2
(
X2Z − 2X(101)

)
+ a32

2
(
Y 2Z − 2 Y (011)

)

+ 1/3 a33
2Z3 + 2 a31a32

(
XY Z − Y (101) −X(011)

)

+ a31a33

(
XZ2 −X(002)

)
+ 2 a32a33Z

(011))

3.2.1 An example

Consider two 3D spatial curves Fig. 6.6-a ( β(t) = (sin t−1/5 cos2 t+1/5, 1/2 sin t−
cos t + 1, sin2 t + cos t − 1), )and Fig. 6.6-b for comparison. Fig. 6.6-b is related to

Fig. 6.6-a by a full affine transformation




1 2 3

4 6 6

9 8 7


. Since the invariant is a ratio

derived as shown in section above, a zero denominator will yield an infinite invariant.
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To better visualize local features which are important for comparison, we selectively

remove all numerical instability due to these effects to result in the invariants shown

in Fig. 3.2. It is clear that no obvious deviation between the two invariants can be

detected.
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Figure 3.2: the mixed invariant for curves 1 and 2

The appeal of our proposed approach is in representing a 3D curve curve which

is subjected to an affine transformation by a 2D invariant. Such problems arise in

biometrics [18], where such a technique was successfully adapted. One may contrast

this approach to fourier descriptors or moment invariants, as our proposed technique

is a one-to-one mapping of the local feature. A direct application of this technique in
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3D object clustering, is discussed next to demonstrate the robustness of this mixed

invariant.

3.3 Robustness analysis

Tasks of comparing curves arise in many applications and using their invariants

expedites the test for their similarity, even when subjected to affine transformations.

In the present example, we consider applications such as classifications of 3D objects

based on a set of characteristic spatial curves.

3.3.1 Experimental design

The Princeton Shape Benchmark[44] provides a repository of 3D models. We select

a subset of four models as shown in Fig. 3.3. We may assume that the characteristic

curves [2] (which will be explained later in Chapter 7.2) have already been extracted

from 3D models in Princeton Shape Benchmark, as shown in Fig. 3.4. There are a to-

tal of 50 characteristic curves, and each of them are re-sampled to 5000 points. Apply

10 randomly generated 3D affine transformations to these curves, and 10 variations

for each curve are generated (Fig. 3.5)1. The problem is to classify all of these curves.

To make this problem even more challenging and to illustrate the noise sensitivity,

gaussian noise with distribution N(0, σ2) is added to each of the variations.

A baseline differential invariant as proposed in [26] and the proposed mixed invari-

ant are implemented. The discrimination power and sensitivity to noise are analyzed

using the error rate of classification. Two sets are required for classification purpose,

namely a training set and a classification set. The training set is obtained by ran-

domly selecting three variations out of ten from each characteristic curve. The 7 left

for each characteristic curve automatically form the testing set. Such a classifier is

implemented as a Nearest Neighbor (NN) Classifier in a Euclidean Space using a L2

distance as a metric.

1These curves would undergo such transformations when the 3D object is subjected to a trans-
formation.
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Figure 3.3: 3D models from The Princeton Shape Benchmark(Best visualized in color)

Table 3.1: error rate for mixed invariant

Mixed Invariant Differential Invariant
σ = 0.1 0.0971 0.6086
σ = 1 0.1829 0.7314

3.3.2 Experimental results

Two experiments are carried out with different noise variance, namely σ = 0.1

and σ = 1. The error rates of the two sigma settings are shown in Table.I.

Due to higher order derivative terms presents in differential invariants, the classi-

fication error rates which result render these practically useless. On the other hand,

the mixed invariants with a fist order derivative dramatically reduce the classification

error rate from 60% to 10%. The presence of the first order derivatives in the Mixed

Invariant, results in a modest increase of error rate as the noise variance is increased

by an order of magnitude.

A direct and straightforward elaboration of the moving frame approach clearly

turns into analytical difficulties, and we show in the next chapter that some of the

difficulty may be alleviated by cleverly rewriting the transformation matrix.
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Chapter 4

An alternative approach: inductive

construction of moving frames

The direct approach to derive 3D integral invariants was not successful on account

of due to the complexity of solving the system of equations. The mixed invariant was

proposed as a compromise solution in the last chapter. While a performance im-

provement over classical differential invariants is obtained, the presence of first order

derivatives still affect the overall performance. Our ultimate goal is still to find in-

tegral invariants with no differential variables. To that end, an alternative approach

is in order. Specifically exploiting an inductive implementation of the moving frame

construction, proposed by Kogan [26], we can dramatically simplify algebraic deriva-

tions, by constructing invariants for the entire group from invariants of its subgroups:

in our case affine invariants may be obtained in terms of Euclidean ones.

We will briefly discuss the inductive approach in this chapter, and reinterpret the

2D integral invariants by the inductive approach to illustrate how it works. A more

intuitive geometric meaning of the each 2D integral invariant is provided.

4.1 Inductive approach

It is well known that the moving frame method works well for groups with a small

number of group parameters, such as 2D affine group, 3D Euclidean group etc. As the
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number of group parameters increases, the practical implementation becomes difficult

as we showed in Chapter 3 for the 3D affine group.

Since the high dimensional groups are difficult to tackle, the natural intuition is

to use a divide and conquer method, such as dividing the high dimensional group

into some low dimensional subgroups, and the implementation of the moving frame

method for each subgroup may be much simpler. A systematic algorithm of inductive

construction of moving frames is introduced and proved in [26]. The invariants of a

group may be found by exploring the invariants of its subgroups using the moving

frame method. The algorithm proceeds as follows:

1. Decompose the high dimensional group

In order to simplify the invariant development procedure, a high dimensional group

G should be decomposed into the product of two subgroup A and B

G = AB,A ∩ B = φ

So for each element g ∈ G, there must exist a ∈ A and b ∈ B to satisfy g = ab.

As an example, a 2D affine group may be written as a product of a Euclidean

group and a group featured by an upper triangular matrix.

2. Calculate invariants for group A by the moving frame method

The procedure in this step is very similar to what we discussed in Chapter 2:

define a transformation, construct a “jet” space, prolong the group action to the jet

space, solve the system of equations to get all group parameters, and obtain invariants

in the prolonged variables used resulting group parameters.

The difference with Chapter 2, where arbitrary constants for the system equations

were chosen to achieve a solution, is the latters have to be preserved when passing

from group A to the action of group B.

3. Calculate invariants for group B by the moving frame method

The procedure in this step is also very similar as what we discussed in chapter

2. In this stage, the constant selection is exactly the same as chapter 2, which is

arbitrarily, but the jet space is constructed differently. Instead o using the variables

in the jet space in stage 2, we prolong the action of group A on them, and the
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prolonged variables are used to construct the jet space. The invariants we achieve in

this stage are invariant to group B. Since each of the variables in the jet space are

are invariant to group A, we actually achieve the invariants for group G = AB.

A example is given in next section to shown how this algorithm works.

4.2 An example: reinterpreting 2D integral invari-

ants

4.2.1 Integral Affine invariants for 2D curves.

The standard affine group action on R
2,

(
x

y

)
=

(
a11 a12

a21 a22

)(
x

y

)
+

(
v1

v2

)
, det

(
a11 a12

a21 a22

)
6= 0.

induces the action on the plane curves γ(t) = (x(t), y(t)) t ∈ [a, b]. Proceeding

similarly to Chapter 2, we prolong this action to integral variables up to third order.

Among 12 such variables

X(ij)(t) =

∫ t

a

x(t)iy(t)jdx(t), j 6= 0, i+ j ≤ 3

Y (ij)(t) =

∫ t

a

x(t)iy(t)jdy(t), i 6= 0, i+ j ≤ 3 (4.1)

we choose 6 independent: Y (10), Y (11), X(11), Y (12), Y (21), X(21), and construct the in-

tegral jet space:

(X, Y, Y (10), Y (11), X(11), Y (12), Y (21), X(21)).

We start by translating the initial point γ(a) to the origin with a corresponding

substitution X(t) = x(t)− x(a), Y (t) = y(t)− y(a) in the integrals. This reduces the
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problem to finding invariants under the following GL(2)-action on R
8.

X = a11X + a12Y, Y = a21X + a22Y,

Y (10) = Y (10) + a11a21
X2

2
+

1

2
a12a22Y

2 +
1

2
a12a21XY,

Y (11) = a22Y
(11) − a21X

(11) +
1

3
a21

2a11X
3 + a22a11a21X

2Y − a21a12a22XY
2

+
1

3
a22

2a12Y
3,

X(11) = a11X
(11) − a12Y

(11) + a11a12a22XY
2 +

1

3
a11

2a21X
3 + a12a11a21X

2Y

+
1

3
a12

2a22Y
3,

Y (12) =
1

4
a11X

4a21
3 + a11Y

(30 ) a21
2a22 + 2 a11X

(21 ) a21
2a22 + 2 a11Y

(21 ) a21a22
2

+a11X
(12 ) a22

2a21 + a11Y
(12 ) a22

3 + a12X
(21 ) a21

3 + a12Y
(21 ) a21

2a22

+2 a12X
(12 ) a21

2a22 + 2 a12Y
(12 ) a21a22

2 + a12X
(03 ) a22

2a21 +
1

4
a12Y

4a22
3,

Y (21) =
1

4
a11

2X4a21
2 + a11

2Y (30 ) a21a22 + a11
2X (21 ) a22a21 + a11

2Y21 a22
2

+2 a11X
(21 ) a12a21

2 + 2 a11Y
(21 ) a12a21a22 + 2 a11X

(12 ) a12a22a21

+2 a11Y
(12 ) a12a22

2 + a12
2X (12 ) a21

2 + a12
2Y (12 ) a21a22

+a12
2X (03 ) a22a21 +

1

4
a12

2Y 4a22
2,

X(21) =
1

4
a11

3X4a21 + a11
2Y (30 ) a21a12 + a11

3X (21 ) a22 + a11
2Y (21 ) a22a12

+2 a11
2X (21 ) a12a21 + 2 a11Y

(21 ) a12
2a21 + 2 a11

2X (12 ) a12a22

+2 a11Y
(12 ) a12

2a22 + a12
2X (12 ) a21a11 + a12

3Y (12 ) a21

+a12
2X (03 ) a22a11 + 1/4 a12

3Y 4a22. (4.2)

By defining an invariant for SL(2), an invariant for GL(2) may simply be obtained

as a ratio of two SL(2) invariants

SL(2) may be decomposed as a product SL(2) = B · A, where

B =

{(
b11 b12

0 1
b22

)
|b11 > 0

}
and A = SO(2) is a group of rotations. The

intersection B ∩A = φ.

Following the inductive method, we are now focusing on the subgroup SO(2) of
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rotation matrices, and trying to derive invariants for it. 2D rotation matrix is defined

as:

A =

(
cos φ sinφ

sinφ cos φ

)

The action of the SO(2) group may be prolonged into the integral jet space by simply

setting a11 = cosφ, a12 = − sinφ, a21 = sin φ, a22 = cosφ. Since we only have one

parameter, we may pick Y = 0, X > 0 serves as a cross-section, which is:

YSE = sin φX + cosφ Y = 0

XSE = cosφX − sinφ Y > 0

The solution is

cos φ =
X√

X2 + Y 2
, sinφ =

Y√
X2 + Y 2

The invariants for SO(2) are achieved by replacing the group parameter above in

the prolonged space as:

XSE =
√
X2 + Y 2, Y

(10)
SE = Y(SE) −

XY

2
,

Y
(11)
SE = −2 Y 2X2 − 3XY (11) − 3 Y X(11)

3
√
X2 + Y 2

, (4.3)

X
(11)
SE = −Y X

3 − 3XX(11) −XY 3 + 3 Y Y (11)

3
√
X2 + Y 2

,

Y
(12)
SE = ,

1

4

Y 3X3 + 4 Y (12)X2 − 4 Y (21) Y X − 4X(21) Y 2

X2 + Y 2
,

Y
(21)
SE =

1

4

4X6Y − 12X3X(21) + 4X2Y Y (21) − 4XY 2Y (12) − Y 7

(X2 + Y 2)3/2
,

X
(21)
SE =

1

4

X7 + 4X2X(21) Y − 2X3Y 4 + 4XY 2Y (21) − 4 Y 6X + 12 Y 3Y (12)

(X2 + Y 2)3/2
.

We notice that since denominators of Y
(11)
SE and X

(11)
SE are invariant, so are their

numerators.
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Our next step is to seek invariants for the group B affected by a transformation

matrix

{(
b11 b12

0 1
b22

)
|b11 > 0

}
. At this stage, the jet space is:

(XSE , YSE, Y
(10)
SE , Y

(11)
SE , X

(11)
SE , Y

(12)
SE , Y

(21)
SE , X

(21)
SE ).

Prolonging the group action may be simply carried out by setting

a11 = b11, a12 = b12, a21 = 0, a22 =
1

b11

We notice that the cross section(YSE = 0) in the previous section is preserved

since YSA = 0 after the transformation.

Since we have two parameters, the cross section may be chosen as: XSE =

1, X
(11)
SE = 0, which is prolonged as:

XSA = b11XSE = 1

X
(11)
SA = b11X11SE − b12Y11SE = 0

The solution follows as:

b11 =
1

XSE
, b12 =

X11SE

XSEY11SE

.

The integral invariants for group B are:

Y
(10)
SA = Y

(10)
SE ,

Y
(11)
SA = XSEY

(11)
SE ,

Y
(12)
SA = Y

(12)
SE X2

SE, (4.4)

Y
(21)
SA =

Y
(21)
SE Y

(11)
SE + 2X

(11)
SE Y

(12)
SE

Y
(11)
SE XSE

,

X
(21)
SA =

X
(21 )
SE

Y
(11)
SE

2
+ 2X

(12)
SE X

(11)
SE Y

(11)
SE − 3X

(11)
SE

2
Y

(12)
SE

Y
(11)
SE

2
SSE

,
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The full special affine integral invariants are achieved by replacing all of the vari-

able in Eq. 4.5 with those in Eq. 4.4 to result in three invariants which are useful

later.

Y
(10)
SA = Y

(10)
SE = Y (10) − XY

2
,

Y
(11)
SA = XSEY

(11)
SE = X Y (11) + Y X(11) − 2

3
Y 2X2,

Y
(12)
SA = Y

(12)
SE X2

SE = X2 Y (12) −XY Y (21) − Y 2X(21) +
1

4
X3Y 3. (4.5)

By replacing (X, Y ) with (x−x0, y−y0) in Eq. (4.5), we return to the integral jet space

coordinates. In particular, Y
(10)
SA = Y (10) − 1

2
XY =

∫
γ

(x− x0) dy− 1
2
(x− x0)(y− y0).

We introduce a simpler notation for the special affine invariants which will be

subsequently used to solve the classification problem with respect to both the special

and the full affine groups:

I1 = Y
(10)
SA = Y (10) − 1

2
XY ,

I2 = Y
(11)
SA = X Y (11) + Y X(11) − 2

3
Y 2X2, (4.6)

I3 = Y
(12)
SA = X2 Y (12) −XY Y (21) − Y 2X(21) +

1

4
X3Y 3.

Consider a planar curve γ(t) = (1/2 sin t − cos t + 1, sin2 t + cos t − 1), shown in

Figure 6.1-a. A curve γ(t) (Figure 6.1-b) is obtained from γ(t) by a special affine

transformation

(
2 1

2 1.5

)
.

The integral invariants I1, I2 and I3 for both curves with same parametrization

coincide and are shown in Figure 6.2-a, Figure 6.2-b, and Figure 6.2-c .

To obtain invariants with respect to the full affine group we need to consider

the effect of reflections and arbitrary scaling on the above invariants. We note that

the transformation x → λx and y → −λy induces the transformation I1 → −λ2I1,

I2 → λ4I2 and I3 → −λ6I3. one may hence easily deduce that the following rational
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Figure 4.1: (a) original curve γ(t) (b) transformed curve γ(t)

expressions are invariant with respect to the full affine group:

IA2 =
I2
I2
1

=
X Y (11) + Y X(11) − 2

3
Y 2X2

(Y (10) − 1
2
XY )2

,

IA3 =
I3
I3
1

=
X2 Y (12) −XY Y (21) − Y 2X(21) + 1

4
X3Y 3

(Y (10) − 1
2
XY )3

(4.7)

The first of the above invariants is equivalent to the one obtained in [21].

4.2.2 Geometric interpretation of planar invariants

The first two integral invariants in Eq.(4.6) readily lend themselves to a geometric

interpretation. Invariant I1 is the area Ab between the curve segment and the secant

(see Figure 4.3). Indeed the term Y10 in the invariant I1 is the signed area between

the curve γ(t) (whose initial point is translated to the origin) and the secant, while

XY
2

is the signed area of the triangle Aa. Their difference is the area Ab. Since the

SA(2) action preserves areas, I1 is clearly an invariant.

The interpretation of I2 is slightly more subtle. By rearranging terms we have,

I2 = −1

3
((X2Y 2−3X Y11)+(X2Y 2−3Y X11)), where X = x−x0, Y = y−y0. (4.8)

Further, the curve γ(t) is lifted from 2D to 3D by defining z(t) = x(t)y(t) (similar to
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the kernel idea), and Eq. (4.8) is rewritten as

I2 = −1

3
((XY Z − 3X

∫ t

a

ZdY ) + (XY Z − 3Y

∫ t

a

ZdX)), (4.9)

where Z = XY = (x−x0)(y−y0). The geometric meaning of (XY Z−3X
∫ t

a
ZdY ) is

illustrated in Figure 4.4. The term
∫ t

a
ZdY is the signed area “under” the plane curve

(Y (t), Z(t)) ( this is the area Aa plus Ab in Figure 4.3 with X replaced by Z). Thus

X
∫ t

a
ZdY is the signed volume Vc under the surface F in Figure 4.4. Since XY Z is the

signed volume of a rectangular prism (Vc +Vd in Figure 4.4), then XY Z−3X
∫ t

a
ZdY

is the signed volume of the rectangular prism (Vc +Vd) minus three times the volume

Vc “under” the surface (Y (t), Z(t)) × [0, X(t)]. Interchanging X and Y we obtain a

similar interpretation for XY Z − 3Y
∫ t

a
ZdX.
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(a) Invariant I1 for γ(t) and γ(t)
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(c) Invariant I3 for γ(t) and γ(t)

Figure 4.2: Integral invariants for 2D curves
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Figure 4.3: Geometric interpretation of invariant I1

V
c

V
d

Figure 4.4: Geometric interpretation of invariant I2
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Chapter 5

Extending integral invariant from

2D to 3D

In Chapter 4, the 2D integral invariants development is simplified by way of the

inductive method. To address the earlier failed attempt to obtain fully integral invari-

ants in Chapter 3, we call upon the inductive decomposition approach of transforma-

tions to simplify the analytical tractability of our development of 3D affine integral

invariants.

Following the 2D inductive case, we start from a special affine transformation,

and decompose it into a product of the special orthogonal transformation matrix and

an upper triangular transformation matrix with determinant 1. Invariants for SO(3)

are first developed. These in turn serve as basis to inductively develop the special

affine invariants. The full affine invariants are based on the ratio of the special affine

invariants.
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5.1 Transformation decomposition

The standard affine group action on R
3 is written as,




x

y

z


 =




a11 a12 a13

a21 a22 a23

a31 a32 a33







x

y

z


+




v1

v2

v3


 , det




a11 a12 a13

a21 a22 a23

a31 a32 a33


 6= 0.

We start by considering the action of SL(3) defined by Eq.(3.2) on the inte-

gral variables up to order 2. Taking into account the relations that arise from an

integration by parts, it is sufficient to consider the following 11 integral variables:

Z100, Z010, Y100, Z011, Z020, Z101, Z110, Y101 X110, X101X020. We therefore obtain an

action of SL(3) on R
14. The integral jet space is constructed as,

(X, Y, Z, Z100, Z010, Y100, Z011, Z020, Z101, Z110, Y101X110, X101 X020)

A direct implementation of the moving frame in R
14 doesn’t work. Thus we have

a product decomposition SL(3) = B ·A, where B =








b11 b12 b13

0 b22 b23

0 0 1
b11b22


 |b11 > 0





and A = SO(3) is a group of rotations. The intersection B ∩A = φ is trivial.

5.2 Special Euclidean invariant

We first restrict the action Eq.(3.2) to A whose elements can be represented as

the product of three rotations:

A =




1 0 0

0 cos(ψ) −sinψ

0 sinψ cosψ







cosφ 0 sinφ

0 1 0

−sinφ 0 cosφ







cosθ −sinθ 0

sinθ cosθ 0

0 0 1



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=




cos (φ) cos (θ) cos (φ) sin (θ) − sin (φ)

sin (ψ) sin (φ) cos (θ) − cos (ψ) sin (θ) sin (ψ) sin (φ) sin (θ) + cos (ψ) cos (θ) sin (ψ) cos (φ)

cos (ψ) sin (φ) cos (θ) + sin (ψ) sin (θ) cos (ψ) sin (φ) sin (θ) − sin (ψ) cos (θ) cos (ψ) cos (φ)



.

We may prolong this group action on the integral jet space by replacing

a11 = cos (φ) cos (θ) ,

a12 = cos (φ) sin (θ) ,

a13 = − sin (φ) ,

a21 = sin (ψ) sin (φ) cos (θ) − cos (ψ) sin (θ) ,

a22 = sin (ψ) sin (φ) sin (θ) + cos (ψ) cos (θ) ,

a23 = sin (ψ) cos (φ) ,

a31 = cos (ψ) sin (φ) cos (θ) + sin (ψ) sin (θ) ,

a32 = cos (ψ) sin (φ) sin (θ) − sin (ψ) cos (θ) ,

a33 = cos (ψ) cos (φ) .

in Eq.(3.2). The three angles( or the “sin” and “cos” of these three angles) may be

solved by setting Y = 0, Z = 0, Z011 = 0 as a cross-section. This still remaining

complex, we can adopt the inductive method for deriving a Euclidean Invariant. A

may be further decomposed into a product of A1A2, where

A1 =




1 0 0

0 cos(ψ) −sinψ

0 sinψ cosψ



,
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A2 =




cosφ 0 sinφ

0 1 0

−sinφ 0 cosφ







cosθ −sinθ 0

sinθ cosθ 0

0 0 1




=




cos2φ θ cos φ sin θ − sin φ

− sin θ cos θ 0

cos φ sin θ sin2φ θ cos φ



.

We may prolong the group action A2 in the integral jet space by replacing

a11 = cos2φ θ, a12 = cos φ sin θ, a13 = − sin φ,

a21 = − sin θ, a22 = cos θ, a23 = 0,

a31 = cos φ sin θ, a32 = sin2φ θ, a33 = cos φ. (5.1)

in Eq.(3.2) and the the “sin” and “cos” of these two angles (φ and θ) may be

solved by setting Y = 0, Z = 0, X > 0 serves as a cross-section, which is

Y = − sin θX + cos θ Y = 0,

Z = cos φ sin θ X + sinφ sin θ Y + cos φZ = 0,

X = cosφ cos θ X + cos φ sin θ Y − sin φZ > 0. (5.2)

The solution is:

cos θ =
X√

X2 + Y 2
, sin θ = − Y√

X2 + Y 2
,

cosφ =

√
X2 + Y 2

√
X2 + Y 2 + Z2

, cosφ =
Z√

X2 + Y 2 + Z2
. (5.3)

The invariants for A2 is achieved by replacing Eq.(5.3) into the prolonged integral

variables:
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XR =
√
X2 + Y 2 + Z2,

Z
(010)
R = −1

2

XY Z − 2XZ (010 ) + 2 Y Z (100 ) − 2ZY (100 )

√
X2 + Y 2 + Z2

,

Z
(100)
R = −1

2

X2Z − 2XZ (100 ) + Y 2Z − 2 Y Z (010 )

√
X2 + Y 2

,

Y
(100)
R = −1

2

Y X3 +XY 3 − 2 Y 2Y (100 ) − 2ZY Z (100 ) − 2X2Y (100 ) + 2ZXZ (010 )

√
X2 + Y 2

√
X2 + Y 2 + Z2

,

Z
(011)
R =

2 Y X3Z2 − 6X3Z (011 ) + 6X2Y Z (101 ) − 6X2ZY (101 ) − 6XZ (011 ) Y 2

−6(
√
X2 + Y 2 (X2 + Y 2 + Z2))

+
6XY ZX (101 ) − 6XZ2X (110 ) − 6 Y 2ZZ (110 ) − 6 Y 2ZY (101 )

−6(
√
X2 + Y 2 (X2 + Y 2 + Z2))

+
4Z2Y 3X + 3XY ZZ (020 ) + 6 Y 3Z (101 ) − 3Z2YX (020 )

−6(
√
X2 + Y 2 (X2 + Y 2 + Z2))

,

Z
(020)
R = −1

3

−3X2Z (020 ) − 2 Y 2X2Z + 6XY Z (110 ) + 3XZX (020 ) + 6 Y 2X (101 )

√
X2 + Y 2

√
X2 + Y 2 + Z2

−1

3

−6ZYX (110 )

√
X2 + Y 2

√
X2 + Y 2 + Z2

,

Z
(101)
R =

−4Z2X4 + 6 Z (101 )X3 + 6X2Y Z (011 ) − 2X2Z2Y 2 + 6ZX2X (101 )

(6X2 + 6 Y 2)
√
X2 + Y 2 + Z2

+
6XZ (101 ) Y 2 − 3 Y 2ZZ (020 ) + 6 Y 3Z (011 ) − Z2Y 4 − 6XY ZZ (110 )

(6X2 + 6 Y 2)
√
X2 + Y 2 + Z2

,
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Z
(110)
R =

6Z2XYX (101 ) − 6ZXY 2X (110 ) − 3ZX2YX (020 ) + 6Z2Y 2Y (101 )

(6X2 + 6 Y 2 + 6Z2) (X2 + Y 2)

+
6X4Z (110 ) − 6 Y 4Z (110 ) − 6ZY Z (101 )X2 + 6ZXZ (011 ) Y 2

(6X2 + 6 Y 2 + 6Z2) (X2 + Y 2)

+
−6ZX3X (110 ) − 3X3Y 3Z + 12X3Y X (101 ) + 12XY 3X (101 )

(6X2 + 6 Y 2 + 6Z2) (X2 + Y 2)

+
6X3Y Z (020 ) + 6XY 3Z (020 ) + 6ZX3Z (011 ) − 6X3Z3Y + 6X2Z2Z (110 )

(6X2 + 6 Y 2 + 6Z2) (X2 + Y 2)

+
6X2Z2Y (101 ) − 3ZY 3X (020 ) − 3Z3Y 3X

(6X2 + 6 Y 2 + 6Z2) (X2 + Y 2)

+
3Z2XY Z (020 ) − 4ZX5Y + ZY 5X − 6ZY 3Z (101 )

(6X2 + 6 Y 2 + 6Z2) (X2 + Y 2)
,

Y
(101)
R =

−6X4Y (101 ) − 12ZXY 2X (110 ) + 6Z2Y 2Y (101 ) − 6ZX2YX (020 )

−6 (X2 + Y 2 + Z2) (X2 + Y 2)

+
−6 Y 2Z (110 )X2 − 12ZY Z (101 ) X2 + 6 Y 2Z2Z (110 ) − 12 Y 2X2Y (101 )

−6 (X2 + Y 2 + Z2) (X2 + Y 2)

+
−6ZY 3X (020 ) − 12ZX3X (110 ) − 3Z3Y 3X + 9X3Y 3Z + 4ZX5Y

−6 (X2 + Y 2 + Z2) (X2 + Y 2)

+
12ZX3Z (011 ) + 3XY 3Z (020 ) − 3Z2XY Z (020 ) + 12ZXZ (011 ) Y 2

−6 (X2 + Y 2 + Z2) (X2 + Y 2)

+
−6Z2XYX (101 ) + 6XY 3X (101 ) + 6X3Y X (101 ) + 6X2Z2Y (101 )

−6 (X2 + Y 2 + Z2) (X2 + Y 2)

+
3X3Y Z (020 ) + 5ZY 5X − 12ZY 3Z (101 ) − 6 Y 4Y (101 ) − 6 Y 4Z (110 )

−6 (X2 + Y 2 + Z2) (X2 + Y 2)
,
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X
(110)
R =

−Y 5X + 3Z2Y 3X − 6ZY 2Y (101 ) − 6ZX2Y (101 ) − 6ZY 2Z (110 )

(6X2 + 6 Y 2 + 6Z2)
√
X2 + Y 2

+
6X3X (110 ) + 3XY ZZ (020 ) + 3X2YX (020 ) + 6XY ZX (101 ) − 2X5Y

(6X2 + 6 Y 2 + 6Z2)
√
X2 + Y 2

+
3 Y 3X (020 ) − 3X3Y 3 − 6Z2Y Z (101 ) + 6Z2XZ (011 ) + 6XY 2X (110 )

(6X2 + 6 Y 2 + 6Z2)
√
X2 + Y 2

,

X
(101)
R =

−2ZX4 + 6X2X (101 ) + 2 Y 2X2Z + 2X2Z3 − 6XY Z (110 )

6
√
X2 + Y 2

√
X2 + Y 2 + Z2

+
−6ZXZ (101 ) − 6ZY Z (011 ) + 2 Y 2Z3 + Y 4Z − 3 Z (020 ) Y 2

6
√
X2 + Y 2

√
X2 + Y 2 + Z2

,

X
(020)
R =

−X4Y 2 − Y 4X2 − 3XY 2X (020 ) − 3X2Z2Y 2 + 6 Y 2ZX (101 )

−3
√
X2 + Y 2 + Z2 (X2 + Y 2)

+
6XY ZZ (110 ) − 3ZX2Z (020 ) + 6X2YX (110 ) − 3X3X (020 ) + 6 Y 3X (110 )

−3
√
X2 + Y 2 + Z2 (X2 + Y 2)

.

(5.4)

The next step is to extend group action of A1 into the invariants of A2 by replacing

a11 = 1, a12 = 0, a13 = 0, a21 = 0, a22 = cosψ, a23 = −sinψ, a31 = 0, a32 = sinψ,

a33 = cosψ in Eq.(3.2). Since there is only one group parameter ψ, we may set up

Z
(011)
R = 0, and the solution for sinψ and cosψ is:

cosψ =
Z

(020)
R√

Z
(020)
R

2
+ 4Z

(011)
R

2
, sinψ =

−2Z
(011)
R√

Z
(020)
R

2
+ 4Z

(011)
R

2

Substituting the solution into the prolonged variable, we obtain the invariants for
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A

XSE = XR,

Z
(010)
SE = Z

(010)
R ,

Z
(100)
SE = −2 Z

(011 )
R

Y
(100 )
R

− Z
(020 )
R

Z
(100 )
R√

Z
(020 )
R

2
+ 4 Z

(011 )
R

2
,

Y
(100)
SE =

Z
(020 )
R

Y
(100 )
R

+ 2 Z
(011 )
R

Z
(100 )
R√

Z
(020 )
R

2
+ 4 Z

(011 )
R

2
, (5.5)

Y
(101)
SE = −−2 Z

(020 )
R

Z
(011 )
R

Z
(101 )
R

− Z
(011 )
R

Z
(020 )
R

X
(020 )
R

+ 4 Z
(011 )
R

2
Z

(110 )
R

Z
(020 )
R

2
+ 4 Z

(011 )
R

2

− Z
(020 )
R

2
Y

(101 )
R

Z
(020 )
R

2
+ 4 Z

(011 )
R

2 ,

Z
(020)
SE =

√
Z

(020 )
R

2
+ 4 Z

(011 )
R

2
,

Z
(101)
SE = −2 Z

(020 )
R

Z
(011 )
R

Z
(110 )
R

− Z
(020 )
R

2
Z

(101 )
R

+ 2 Z
(011 )
R

2
X

(020 )
R

Z
(020 )
R

2
+ 4 Z

(011 )
R

2

+
2 Z

(011 )
R

Z
(020 )
R

Y
(101 )
R

Z
(020 )
R

2
+ 4 Z

(011 )
R

2 ,

Z
(110)
SE =

2 Z
(020 )
R

Z
(011 )
R

Z
(101 )
R

+ Z
(011 )
R

Z
(020 )
R

X
(020 )
R

− 4 Z
(011 )
R

2
Y

(101 )
R

Z
(020 )
R

2
+ 4 Z

(011 )
R

2

+
Z

(020 )
R

2
Z

(110 )
R

Z
(020 )
R

2
+ 4 Z

(011 )
R

2 .

5.3 Special and Full Affine Invariant

We now restrict the action of Eq.(3.2) to the action of a subgroup B based on the

invariants we achieved in the section above. By substituting

a11 = b11, a12 = b12, a13 = b13, a21 = 0, a22 = b22, a23 = b23, a31 = 0, a32 = 0, a33 =
1

a11a22

,

the following transformations are obtained:
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XSA = b11 XSE ,

Z
(010)
SA = b22 b33 Z

(010 )
SE

,

Z
(100)
SA = b11 b33 Z

(100 )
SE

+ b12 b33 Z
(010 )
SE

,

Y
(100)
SA = b11 b22 Y

(100 )
SE

− b13 b22 Z
(010 )
SE

+ b11 b23 Z
(100 )
SE

+ b12 b23 Z
(010 )
SE

,

Z
(020)
SA = b22

2b33 Z
(020 )
SE

,

Z
(101)
SA = b11 b33

2Z
(101 )
SE

,

Z
(110)
SA = b33 b11 b22 Z

(110 )
SE

+ b33 b11 b23 Z
(101 )
SE

+ b33 b12 b22 Z
(020 )
SE

,

Y
(101)
SA = Y

(101)
SE +

b23Z
(101)
SE

b22
− b12Z

(020)
SE

2b11
. (5.6)

We choose a cross-section defined by the equations

Z
(010)
SA = 1, Z

(100)
SA = 1, Y

(100)
SA = 1, Z

(020)
SA = 1, Z

(110)
SA = 1,

to yield the following group parameters,

b11 = Z010
SE ,

b12 = −Z
(020)
SE Z

(100)
SE − Z

(010)
SE

Z
(020)
SE

,

b13 = −−Z(010)
SE

2
Z

(020)
SE Z

(100)
SE + Z

(010)
SE

3
Z

(110)
SE − Z

(020)
SE Z

(101)
SE Z

(010)
SE

2
Y

(100 )
SE

Z
(020)
SE Z

(101)
SE Z

(010)
SE

2

+
Z

(101)
SE Z

(020)
SE

2

Z
(020)
SE Z

(101)
SE Z

(010)
SE

2 ,

b22 =
Z

(010)
SE

Z
(020)
SE

,

b23 =
−Z(010)

SE Z
(110)
SE + Z

(020)
SE Z

(100)
SE

Z
(020)
SE Z

(101)
SE

. (5.7)
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We use them to construct the invariants with respect to the SA(3) actions,

XSA = Z
(010)
SE XSE,

Y
(101)
SA =

2Y
(101)
SE Z

(010)
SE − 2Z

(010)
SE Z

(110)
SE + 3Z

(020)
SE Z

(100)
SE

2Z
(010)
SE

− 1

2
, (5.8)

Z
(101)
SA =

Z
(101)
SE Z

(020)
SE

2

Z
(010)
SE

3 .

For clarity sake, we introduce a simpler notation for the special affine invariants

which will be subsequently used in a classification problem with respect to both special

and full affine groups in terms of the original integral variables:

J1 = XSA = n1X + n2Z − n3Y

J2 = −4

(
Y

(101)
SA +

1

2

)
XSA = 2n2(XY Z

2 − 3Z(011)X + 3 Y Z(101) − ZZ(110 − 2ZY (101)

+ n3(2XY 2Z + 3XZ(020) − 3ZX(020) − 4 Y Z(110) − 2 Y Y (101)

− 2n1(3 Y X
(101) − 3ZX(110 +XZ(110) −XY (101)) (5.9)

J3 =
27

8
Z

(101)
SA X3

SA.

where X = x− x0, Y = y− y0, Z = z− z0 and n1 = Y Z
2
− Z010, n2 = XY

2
− Y100, n3 =

XZ
2

− Z100.

For example, a space curve β(t) = (sin t − 1/5 cos2 t + 1/5, 1/2 sin t − cos t +

1 sin2 t + cos t − 1), is shown in Figure 6.6-a. A curve β(t) is obtained from β by a

special affine transformation




0.3816 0.7631 1.1447

1.9079 1.5263 2.2894

2.6710 3.0526 3.4341


.

The integral invariants I1, I2 and I3 for both curves with the matching parametriza-

tion coincide and are shown in Figure 5.2-a, Figure 5.2-b, and Figure 5.2-c .

To obtain the invariants with respect to the full affine group we have to consider

the effect of reflection and scaling on these invariants. For λ ∈ R scaling (x, y, z) →
(λx, λy,−λz) induces scaling J1 → −λ3J1, J2 → λ6J2 and J3 → −λ6J3. Therefore
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Figure 5.1: (a) original curve β(t) (b) special affine transformed curved β(t)

we obtain invariants with respect to the full affine group of transformations:

JA
2 =

J2

J2
1

(5.10)

JA
3 =

J3

J2
1

5.4 Geometric interpretation

The first invariant J1 may be viewed as 3D extension of the 2D invariant I1.

In detail, n1, n2, and n3 represent exactly the same area as the 2D invariant I1(in

Figure4.3) in three coordinate planes. They are extended from 2D area to 3D volume

by multiplying by X, Z, and Y respectively. For example, n1X is the volume C under

surface F in Figure 4.4, and n2Z and n3Y are similar volumes obtained by relabelling

X, Y , Z axis. Therefore, the invariant J1 is the summation of two volumes n1X and

n2Z minus the volume n3Y . The geometric interpretation of the second and third

invariants J2 and J3, however, remains at the present time unclear to us.
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Table 5.1: Classification error rate with same parametrization, same initial points

Noise variance I1 I2
σ = 0.5 0.0022 0.0472
σ = 1 0.04 0.12
σ = 2 0.0789 0.2233

5.5 Robustness analysis

5.5.1 Design of experiment

We follow the same procedure in Section 3.3 to carry out a robust analysis for

integral invariants. We extract a total of 100 characteristic curves, and each of them

are re-sampled to 5000 points with the same arch-length. We applied to each curve

9 randomly generated 3D special affine transformations. To make this problem even

more challenging and to illustrate the noise sensitivity of the proposed approach, gaus-

sian noise with distribution N(0, σ2) is added to each of the variations. We therefore

obtain a classification set of 900 curves that has to be separated into 100 equivalent

classes under affine transformations. The training set consists of 100 original curves

without any noise and transformation. The discrimination power and sensitivity to

noise are analyzed using the error rate of classification. We implemented a Nearest

Neighbor (NN) Classifier in a Euclidean Space using Euclidean distance.

5.5.2 Experimental results

The experiment is carried out with different noise variance, namely σ = 2(Fig.

5.5.2), σ = 1, and σ = 0.5. The error rates of the three sigma settings with same

parametrization are shown in Table 5.1.

In Table 5.1, both integral invariants perform well as indicated by the error rates.

For comparison, the classical differential invariants have a classification error rate of

more than 80%, which makes the differential invariants practically useless. Since the

order of integral variables involved in I2 is higher than I1, as well as the explicit form

of I2 is more complicated than that of I1, the performance of I2 is not as good as I1.

As for the mixed invariant that we proposed in Chapter 3, the error rate is 0.0971 at
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σ = 0.1 and 0.1829 at σ = 1. Integral invariants (both I1 and I2) outperform their

counterparts primarily due to the elimination of first order derivatives.
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Figure 5.2: Integral invariants for curves in 3D
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Figure 5.3: (a) A spatial curve without noise (b)with Gaussian Noise N(0, 4),
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Chapter 6

Integral Invariant Signature

In Chapters 4 and 5, we developed three special affine integral invariants and two

full affine invariants in 2D and 3D. They may be used to classify curves subjected to

special affine or full affine transformations. There exists however a critical restriction

for these invariants, depending on parameterization and initial point selection. In this

chapter, we first address this problem in detail, and the notion of invariant signature

is proposed as a solution. Parameterization independent invariants, 2D and 3D global

integral invariant signatures, are developed, and the initialization problem is solved

by 2D and 3D local integral invariant signatures.

6.1 Invariant Signature

Curves, with similar parameterization/similar sampling for a discrete case, un-

der special affine and full affine transformations will have similar integral invariant

(as shown in Fig. 5.2). These in turn may be efficiently used to classify curves un-

der transformation. These invariants, however, depend on the choice of the initial

point and the parameterization of the curve. For instance, consider a planar curve

γ(t) = (1/2 sin t−cos t+1, sin2 t+cos t−1), shown in Figure 6.1-a. A curve γ(t) (Fig-

ure 6.1-b) is obtained from γ(t) by a special affine transformation

(
2 1

2 1.5

)
. The

integral invariants I1 and I2 for both these curves with the same parametrization are
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Figure 6.1: (a) original curve γ(t) (b) transformed curve γ(t)

shown to coincide in Fig. 6.2-a and Fig. 6.2-b. As illustrated in Fig. 6.2-c and Fig. 6.2-

d these invariants change under reparametrization τ =
√
t+ 1. Therefore invariants

with arbitrary parameterization may not be used for curves classification. In theory

one can achieve a uniform affine invariant curve parameterization by using an affine

analog of the Euclidean arc-length parameter dα = κ1/3ds, where κ is Euclidean cur-

vature and ds is Euclidean arc-length. We would, however, like to keep our approach

derivative free. Even when uniform parameterization is achieved, the dependence of

the invariants on the choice of the initial point presents another comparison challenge

for matching closed curves, or for matching parts of the contours.

The construction of a signature, proposed in this chapter, leads to classification

methods which are independent of parameterization and initial point. Inspired by sig-

natures based on differential invariants [7], we use integral invariants to construct two

types of signatures that classify curves under affine transformation: the global signa-

ture and the local signature. Global integral signature is independent of parametriza-

tion, but is dependent on the choice of the initial point and can not be used to

compare parts of the contours. Local integral signature is independent of both the

initial point of a curve and its parametrization. They can be used to compare parts of

the curves and can therefore be used on images with occlusions. As our experiments

illustrate, they are slightly more sensitive to noise than global signatures, but still
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Figure 6.2: Dependence of invariants on re-prametrization: τ =
√
t + 1

provide robust classification results.

6.2 Global Integral Affine Signature

A global integral signature of a curve is achieved by evaluating one independent

integral invariant against the other on the curve. If a curve is mapped to another

curve by a group transformation, their signatures will coincide independently of the

selected parametrization. The global signature does, however, depend on the choice

of an initial point.
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6.2.1 Global affine signature for curves in 2D

The special affine signature of a plane curve γ(t) is constructed by, first, evaluating

invariants I1 and I2 (4.5) on this curve, and then plotting the parameterized curve

(I1(t), I2(t)) in R
2. For instance, the signature of the planar curve γ(t) shown in

Figure 6.1-a is a plane curve shown in Figure 6.3. Moreover the signature of the

curve γ(t) related to γ(t) by an affine transformation (Figure 6.1-b), as well as their

reparameterization γ(τ) and γ(τ) coincide with the signature of γ(t).
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Figure 6.3: Signature for γ(t), γ(t),γ(τ), and γ(τ)

Similarly a full affine signature can be defined as a parameterized plane curve
(
IA2 , I

A
3

)
defined by invariants (4.7). Alternatively we normalize the two special affine

invariants to cancel the affects of reflection and arbitrary scaling:

Ĩ1(t) =
|I1(t)|

maxt |I1|
, Ĩ2(t) =

|I2|
maxt(I2

1 )
. (6.1)

Both invariants are normalized relative to the range of |I1| due to the simplicity of I1.

It is not difficult to show that maxt |I1| = 0 on γ if and only if γ is a straight line. In

this case the affine signature does not exits, but the straight line regions can easily be

detected by other means. The range of Ĩ1 is from 0 to 1. The full affine signature of

a spatial curve γ(t) is obtained by, first, evaluating Ĩ1 and Ĩ2 on this curve and then
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by plotting the parameterized curve
(
Ĩ1(t), Ĩ2(t)

)
in R

2. As an example, curves in

Fig. 6.4-a and Fig. 6.4-b are related by a full affine transformation

(
2 2

4 3

)
. Their

special affine signatures are shown difference in Fig. 6.5-a(better to view in color),

while the full affine signatures are coincident in Fig. 6.5-b.
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Figure 6.4: (a) original curve γ(t) (b) full affine transformed curve γ̂′(t)
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Figure 6.5: (a) special affine signature (b) full affine signature γ′(t)
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6.2.2 Global Affine Signatures for Curves in 3D

To construct special affine signatures for spatial curve we use invariants J1 and

J2 given by Eq.(5.9). Similarly to 2D case, the special affine signature of a spatial

curve β(t) is obtained by, first, evaluating J1 and J2 on this curve and then plotting

the parameterized curve (J1(t), J2(t)) in R
2.
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Figure 6.6: (a) original curve β(t) (b) special affine transformed curved β(t)
(c) full affine transformed curved βa(t)

For example, the signature of a space curve β(t) = (sin t−1/5 cos2 t+1/5, 1/2 sin t−
cos t+1, sin2 t+cos t−1), shown in Figure 6.6-a, is the planar curve shown on Fig 6.7.

A curve β(t) (shown in Figure 6.6-b) is obtained from β by a special affine transfor-
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mation




0.3816 0.7631 1.1447

1.9079 1.5263 2.2894

2.6710 3.0526 3.4341


, and a curve βa(t) (shown in Figure 6.6-c) is

obtained from β by a full affine transformation




1 2 3

4 5 6

9 8 7


. As Fig 6.7 illustrates,

the special affine signatures of β(t) and β(t) coincide. The full affine signatures of all

three curves are shown in Fig 6.8.
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Figure 6.7: Signatures for β(t) and β(t) coincide.

As for the 2D case, the full affine signature is obtained by normalizing the special

affine invariants by the range of |J1|.

J̃1(t) =
|J1(t)|

maxt |J1|
, J̃2(t) =

J2(t)

maxt(J
2
1 )
. (6.2)

The full affine signature of a spatial curve β(t) is obtained by, first, evaluating J̃1

and J̃2 on this curve and then by plotting the parameterized curve
(
J̃1(t), J̃2(t)

)
in

R
2.

The advantage of global signatures is their independence of parametrization,

whereas the result of evaluation of invariants J1 and J2 on a curve depends on the
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Figure 6.8: Full Signatures for γ(t), β(t), βa(t)

choice of parametrizations similarly to I1 and I2 in 2D case. The disadvantage of

global signatures is in their dependence on the choice of the initial point. The local

signature construction proposed in the next section overcomes this dependence.

6.3 2D and 3D Local Affine Integral Invariant Sig-

natures
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Figure 6.9: A planar curve with two different choices of the initial points

The signatures defined in the previous section can not be used for classification



65

purpose unless the initial point of a curve is known. This becomes an obstacle for

closed curves comparison or for matching parts of contours. For illustration let us

choose two different initial points, a black circle or a red star, on the planar curve

in Figure 6.9. The resulting global affine signatures are different as illustrated in

Figures 6.10-a and Figures 6.10-b. We overcome the dependence on the initial point
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Figure 6.10: (a) The global signature for the curve in Fig. 6.9 whose initial point is
the black circle (b)The global signature for the curve in Fig. 6.9 whose initial point
is the red star

by introducing local signatures. To proceed with the local signature construction, we

replace the integration from an initial point by an integration on local segments. To

retain an affine invariant property of the signatures, we have to partition the curve

while preserving an invariants. Such partition may be achieved using the notion

of affine arc-length from classical differential geometry, which is preferably to avoid

in practical computations. We propose to use the lowest order integral invariants,

namely I1 for plane curves and J1 for spatial curve to obtain an equi-affine partition

of a given curve. The details are described next.

6.3.1 Local Affine Signatures for curves in 2D

We will use I1 to partition a given curve into equi-affine sub-segments. Assume

that γ is parametrized by t ∈ [a, b]. For this purpose, we define an evaluation of
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invariants on sub-segments of γ. Recall that integration in the integral variables is

performed from an initial point γ(a) to a current point on the curve γ(t). For instance,

I1(t) =
∫ t

a
XdY − 1

2
XY , where X = x(t) − x(a) and Y = y(t) − y(a). Thus I1(t) is a

function from [a, b] to R:

I1 : [a, b] 7→ R

We define the evaluation of an invariant on sub-segments of γ by defining the starting

point of a segment as the initial point and the end as the upper limit of the inte-

gral. In particular, for a sub-segment defined by a parameter range [p, q] ⊂ [a, b] the

localization

I
[p,q]
1 =

∫ q

p

(x(t) − x(p)) dy(t) − 1

2
(x(q) − x(p)) (y(q) − y(p))

, and similarly for invariants I2 and I3 defined by Eq.(4.5). We note that the evaluation

of an invariant on a segment is a real number.

We first choose a sufficiently small ∆ > 0, and define an equi-affine partition

a = t0 < t1 < · · · < tN = b of the curve γ(t), t ∈ [a, b], to obtain sub-segments

satisfying the condition

|I [ti−1,ti]
1 | = ∆.

In practice, we choose ∆ proportionally to the maximum of the absolute value of I1,

i.e. we choose an integer N and set ∆ = maxt|It|
M

. Note that the total number N of

segments that we obtain generally differs from M . The local discrete special affine

signature of γ is defined by evaluation of I2 and I3 on the intervals [ti−1, ti], i = 1..N ,

that is a set of points with coordinates
(
I

[ti−1,ti]
2 , I

[ti−1,ti]
3

)
i = 1..N . Figure 6.11

illustrates that the local discrete special affine signature for the curve shown in Fig 6.9,

with different starting points coincides.

To obtain local discrete affine invariant signature of γ we need to use scaling

invariant normalizations of I2 and I3, that is to plot

(
I
[ti−1,ti]

2

maxt(I2
1 )
,

I
[ti−1,ti]

3

maxt|I1|

)
i = 1..N .
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Figure 6.11: Local invariants based signature for curves in Fig. 6.9

6.3.2 Local Affine Invariant Signatures for curves in 3D

For spatial curves we proceed in a similar manner as for plane curves. We use

invariant J1 to partition a curve γ(t), t ∈ [a, b] into N sub-intervals defined by a =

t0 < t1 < · · · < tN = b defined by the condition J
[ti−1,ti]
1 = ∆, i = 1..N , where ∆ > 0

is proportional to the maximum of the absolute value of J1. We define a local special

affine signature by evaluation of J2 and J3 on the intervals [ti−1, ti], i = 1..N , that is

by a set of points on the plane with coordinates
(
J

[ti−1,ti]
2 , J

[ti−1,ti]
3

)
i = 1..N .

Figure 6.12-b shows the local special affine signature for a curve shown on Figure

6.12-a. The signature does not depend on our choice of initial point.
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(a) Two choices of the initial point (b) Local special affine signature

Figure 6.12: A curve and its local special affine signature
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6.3.3 Local Euclidean Invariant Signature in 3D

Local Affine Invariant Signature was defined in the previous subsection, and may

be used to classify curves in 3D up to affine transformation. However, many objects

may only undergo Euclidean transformation. An Affine invariant signature is over

qualified to classify curves under Euclidean transformation, and may in fact affect

the numerical accuracy due to the complexity of J2. A much simpler Euclidean

Invariant Signature is required. A 2D Euclidean Intelgral Invariant Signature has

been developed in [33], while 3D counterpart has yet to appear.

For a closed/open space curve in 3D, the scaling effect may be canceled by normal-

izing the total arch length to be 1. Similarly to [33], we also focus on local regions to

make the signature independent of the starting point of a curve. The local regions are

obtained by dividing a curve into small segments of equal arch length. To construct

a signature, two invariants are required for each segment. However, the area criterion

in [33] is not easily defined for space curves in 3D, requiring us to adopt a different

strategy, namely the Moving Frame approach [13].

In our development of 3D special affine invariants, we have several Euclidean

invariants in Eq.(5.4). Two of them are picked to construct a Euclidean Invariant

Signature:

ie1 = X =
√
X2 + Y 2 + Z2,

ie2 = Z010 =
(XY Z − 2XZ010 + 2 Y Z100 − 2ZY100)

2

4
√
X2 + Y 2 + Z2

.

Simplifying ie1 and ie2 yield two Euclidean Invariants IE1 and IE2:

IE1 = ie1 =
√
X2 + Y 2 + Z2

IE2 =
√

4ie1ie2 = XY Z − 2XZ010 + 2 Y Z100 − 2ZY100

Since one end of the segment coincides with the origin, IE1 is the Euclidean

distance between two end points. Instead of area in [33], IE2 is some volume defined
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for the segment.

The integral signature of a space curve in 3D is the variation of one independent

invariant I1, evaluated on the curve, relative to another I2.
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Figure 6.13: (a) Original curve (b) Transformed curved (Rotation angles θ =
φ = ψ = π

9
)

The signature of two versions (in Fig. 6.13) of a curve under a Euclidean trans-

formation is shown in Fig. 6.14.
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Figure 6.14: Integral Invariant Signature for curves in Fig. 6.13.
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Table 6.1: Classification error rate with same parametrization, same initial points

Noise variance I1 I2 Global signature Local signature
σ = 0.5 0.0022 0.0472 0.06 0.07
σ = 1 0.04 0.12 0.15 0.17
σ = 2 0.0789 0.2233 0.28 0.32

Table 6.2: Classification error rate with different parametrization, same initial points

Noise variance I1 I2 Global signature Local signature
σ = 0.5 0.42 0.61 0.06 0.07
σ = 1 0.48 0.70 0.15 0.17
σ = 2 0.56 0.83 0.28 0.32

6.4 Robustness Analysis

Similarly to Section 5.5.2, we analyze the robustness of both invariants and signa-

tures in the same experimental setting. Three classification experiments are carried

out with different noise variance, namely σ = 2(Fig. 5.5.2), σ = 1, and σ = 0.5. The

first experiment uses a common parametrization and initial point for both the training

and testing, while in the second experiment, we choose different parameterizations

(samplings) for the testing data. In the third experiment, we choose both different

parameterizations (samplings) and different initial points for the testing data. The

classification error rates of the three experiments with are shown in Table 6.1,Table

6.2,Table 6.3.

In Table 6.1, both integral invariants and the signatures perform well as indicated

by the error rates. Since the order of integral variables involved in I2 is higher than I1,

as well as the explicit form of I2 is more complicated than that of I1, the performance

of I2 is not as good as I1. And the global signature is constructed with both I1 and

I2, and the local signature is based on I2 and I3. The performance of signatures is

Table 6.3: Classification error rate with different parameterization, and different ini-
tial points

Noise variance I1 I2 Global signature Local signature
σ = 0.5 0.87 0.95 0.95 0.07
σ = 1 0.91 0.97 0.97 0.17
σ = 2 0.94 0.98 0.98 0.32
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therefore slightly worse than I2.

If the parameterizations are not the same, the plot of invariants I1 and I2 with

respect to a parameter can not be used for classification purposes, as illustrated in

Table. 6.2. Even with the lowest noise variance, the error rates are greater than 0.4

for I1 and 0.6 for I2. However, both the global signature and a local signature are

not affected.

If the initial points of a curve are selected differently, both individual invariants(I1

and I2) and a global signature have poor performance as shown in Table 6.3. Only

local signature may be used to characterize a curve.

As a conclusion, if the training data and testing data have similar parameterization

and same initial point, either invariants or signatures may be used. Under different

parameterization, the global signature is the best choice. With an unknown starting

point, the local signature is the only solution.
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Chapter 7

Applications of Integral Invariants

and Signatures

The motivation of the integral invariant development is its import to specific ap-

plications, namely finding invariant features of 2D/3D facial images for classification.

We have derived 3D integral invariants and signature in Chapters 5 and 6, for appli-

cations where objects may be subject to geometric transformations. So long as the

features are curves, the geometric transformations of feature curves may be eliminated

by the corresponding integral invariants or signatures.

In this chapter, we introduce several 3D applications. The first one is biometric

application in face recognition, where 2D integral invariants are used to eliminate the

pose effect. In the second application, a 3D Euclidean integral invariant signature

is used to match objects with articulated parts. 3D Euclidean and affine integral

invariant signatures are reapplied to face recognition to eliminate both the pose effect

and the facial expression effect, and a dramatic performance improvement is achieved.
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7.1 Application of 2D Affine Integral Invariant:

pose invariant face recognition

7.1.1 Face recognition

Face recognition has been extensively studied for over 30 years, and its complexity

together with its timely relevance in security and surveillance problems have recently

led to a renewed research interest. Techniques in 2D face recognition abound, and

Zhao and Chellappa [52] provide a fairly comprehensive account of the state of the

art. Lighting and pose in 2D face recognition are widely recognized to be major

impediments to the deployment of robustly performing algorithms. Specifically, the

performance of many existing algorithms greatly deteriorates when the training and

testing sets do not share a significant number of common viewing and lighting con-

ditions. The recently developed 3D scanning techniques are believed to provide a

potential to alleviate the limitation due to lighting and pose, and their rapid deploy-

ment would go far in paving the way for a viable recognition system. Exploiting such

data amounts to extracting intrinsic geometric information of faces and utilizing it as

the basis for characterizing and distinguishing them.

Recent research activity in 3D and multi-modal face recognition techniques is

reviewed in Chang et al.[9]. We can distinguish two main classes of data driven

techniques:

• A 3D (geometric-only) approach includes a curve and profile-based description

of a face by Nagamine et al.[35] and Baumier [3], a curvature feature-driven

technique by Gordon [19], a registration and mean differences of depth compar-

ison approach by Lao [28], a volumetric approximative representation of a face

proposed by Irganoglu et al. [24] and a Iterative Closest Point based algorithm

by Cook et al. [10] .

• A multi-model (geometric and photometric) approach includes several PCA

based methods. Chang et al.[8] implement PCA for both 3D and 2D images,

Tsalakanidou et al.[46] extract depth and color eigenfaces, and Bronstein, Bron-
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stein and Kimmel [5] use an eigen decomposition of flattened textures and Mul-

tidimensional scaling (MDS)-based canonical images. Also related is 3D Point

Signatures and 2D Garbor Filter responses based technique proposed by Wang

[50]. Lu and Jain [31] jointly exploit range and texture information with a

Linear Discriminant Analysis to construct a hierarchical system.

We propose in the next subsection a novel technique which bases an accurate

description of a face range image on a set of curves intrinsic to the 3D surface. To

better contend with face pose variability, we propose to derive in subsection 7.1.3

integral invariants as associated features to characteristic curves of a face . The affine

invariance provides robustness of curves to rotation, scaling and shearing. With a set

of such invariants in hand, we demonstrate that a relatively small set of such features

for a face, is sufficient for its accurate representation. Subsection 7.1.4 discusses the

use of these features in a face comparison task by way of Discrimination Analysis and

Jensen-Shanon divergence measure. A photometric invariant is proposed in subsection

7.1.5. To take advantages of both this and the geometric invariants, we discuss fusion

in three steps in subsection 7.1.6. Illustrating examples are provided in subsection

7.1.7.

7.1.2 Facial Curve Feature Extraction

Data Set

The experimental data we are using in this paper consists of three data subsets

from the University of Notre Dame Biometrics database[38]. One subset henceforth

referred to as S1, comprised of 10 subjects, each with 2 3D range images along with

corresponding 2D color images per subject, is selected as the experimental set to be

analyzed by way of its extracted features. Another subset S2 of 105 range images

and gray-scale images from 35 subjects is used as the testing set to validate the

feature selection procedure in S1 and to test its performance in a recognition task.

The performance is analyzed on the basis of the population size. The third set S3

contains all of the subjects in UND database with more than 3 scans. There is a total
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of 120 subjects. The performance is evaluated with the help of Set S3.

Facial Curve Extraction

The 3D range image data from the database are in a form of a point cloud as

shown in Fig. 7.1-a. Using the 3D coordinates for all points in a given cloud (or face),

we process the raw data to obtain a 3D triangular mesh as shown in Fig. 7.1-b.

(a) (b) (c)

Figure 7.1: (a)Typical Range image in the database, (b) Face triangulated mesh and
(c) Feature points location.

The curve feature extraction proceeds in the vertical and horizontal directions for

each representative mesh image embedded in a Euclidean reference frame. The region

of interest is delineated by five feature points, namely two outer corners of the eyes,

the tip of the nose, the upper end of the eyebrows, and the lower end of the lower

lip as illustrated in Fig. 7.1-c. While the localization of these feature points may be

achieved automatically, we carry it out manually in the sequal.

A feature curve is defined as the intersection of a plane with the surface of a

face. A total of 35 vertical and 35 horizontal planes are used. The vertical planes are

perpendicular to the straight line joining the two eye corners A and B as illustrated

in Fig. 7.1-c. These are uniformly placed at equal distance from the the left corner

of the face to the center of the face. The two eye corners A, B and the nose tip C

define a reference plane. The Horizontal planes (Fig. 7.2) are perpendicular to the

intersection line of the reference plane and the vertical plane (Fig. 7.2), which range
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Figure 7.2: Vertical planes and horizontal planes

from the eyebrows D to the mouth E. The 70 vertical and horizontal curves which

are collected for each face are shown in Fig. 7.3.

(a) (b)

Figure 7.3: Vertical(a) and Horizontal(b) Curves of a face surface.

7.1.3 Integral Invariant

Curves may be subjected to transformations as a result of a variation in pose of

a subject. The transformations include translation, scaling, rotation and shearing.
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This clearly impacts the performance of any face recognition procedure, whenever

a different set of reference templates are invoked. It is hence important to rather

describe these feature curves by invariants which are insensitive to any potential

transformation.

The feature curves of interest here are plane curves, hence necessitating affine

transformations. Affine Integral invariants were proposed by Hann and Hickman

[21], and reinterpreted in this effort in Chapter 4.

(a) (b)

Figure 7.4: (a)Various affine transformations of a curve (b) Corresponding and coin-
ciding affine integral invariants

An example is shown in Fig. 7.4-a. The solid line curve is the original face profile

curve whereas all other styled line curves correspond to its various affine transforms.

The associated affine integral invariants are computed and displayed in Fig. 7.4-b,

and shown to coincide.

As previously noted, a total of 70 curves are extracted for each face in set S1 and

70 corresponding invariants are computed. The vertical set of invariants is shown in

Fig. 7.5. Due to regions of missing data on the face range image, large (noise) spikes

may appear as may be seen in Fig. 7.5(a). Smoothing of these spikes may be effected

in one of two ways: interpolating the raw data domain to smooth over the missing

data regions, or by thresholding the invariants and thereby eliminating the spikes

directly as demonstrated in Fig. 7.5(b).
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(a) (b)

Figure 7.5: Integral invariant for one vertical curve set(a) Spike removal results(b).

7.1.4 Feature curve selection and analysis

As previously noted, a total of 70 curves are extracted for each face in set S1 and

70 corresponding invariants are computed. The vertical set of invariants is shown

in Fig. 7.5. Due to regions of missing data on the face range image, large (noise)

spikes may appear as may be seen in Fig. 7.5(a). Smoothing of these spikes, as noted

above, may be effected in one of two ways: interpolating in the raw data domain to

smooth over the missing data regions, or by thresholding the invariants and thereby

eliminating the spikes directly as demonstrated in Fig. 7.5(b).

Upon obtaining the set of invariants, a natural question which arises is about

the discrimination power of such features among different faces as well as how to

quantitatively evaluate such a measure. To that end, we propose a statistical robust

approach which effectively evaluates the clustering of features for a given subject

face. Two measures will be specifically exploited, one being that of a scatter ratio

in Discriminant Analysis and the other is Jensen Shannon Divergence measure of

dissimilarity between invariant curves [22, 29].
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Discriminant Analysis

Discriminant analysis unveils directions that are efficient for discrimination. The

entire invariant curve set is

{~κk
i,j |i ∈ [1, N ], j ∈ [1,M ], k ∈ [1, K]}

where i is the subject index set, k is the observation index for each subject, and j

is the index of extracted curves of each face. For set S1, N is 10, K is 2 and M is

70. The vertical invariant set is {~κk
i,j|k ∈ [1, 35]} and the horizontal invariant set is

{~κk
i,j|k ∈ [36, 70]}.

The overall mean of each feature invariant curve set is defined as:

~mj =

∑N
i=1

∑K
k=1(~κ

k
i,j)

KN
.

The mean of a feature invariant curve set for each subject is:

~mi,j =

∑K
k=1 ~κ

k
i,j

K
.

The inter-class scatter S̃Bj and the intra-class scatter S̃Wj are defined as

S̃Bj =
N∑

i=1

K(~mi,j − ~mj)
T (~mi,j − ~mj), (7.1)

S̃Wj =
N∑

i=1

K∑

k=1

(~κk
i,j − ~mi,j)

T (~κk
i,j − ~mi,j). (7.2)

A good characteristic measure will exhibit a large inter-class scatter to better distin-

guish subjects, and a small intra-class scatter to reflect the similarity/coherence of

feature for the same subject. The ratio Jj is hence a good candidate measurement
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for the quality of each feature.

Jj =
S̃Bj

S̃Wj

(7.3)

Jensen-Shannon Divergence Analysis

As a special case of Jensen-Renyi Divergence[22], Jensen-Shannon Divergence is a

powerful tool to measure the similarity of Probability Density Functions(pdf). Invari-

ant curves may easily be normalized (e.g., by translation and scaling) to satisfy the

non-negativity and the integrability properties of a pdf. Such processing simplifies

the comparison of invariant curves to subsequently yield a quantitative measure of

clustering of intra-class features relative to inter-class features. Thus identifying each

~κk
i,j with pk

i,j, we may proceed to compute such a measure which we would expect to

be large for two different subjects and small for a positive recognition. An inter-class

divergence JSDBj , and an intra-class divergence JSDWi,j yield a divergence ratio

JSDj. It is an alternative measurement for feature quality.

JSDBj = S

(
N∑

i=1

2∑

k=1

πip
k
i,j

)
−

N∑

i=1

2∑

k=1

πiS(pk
i,j), (7.4)

JSDWi,j = S

(
2∑

k=1

πip
k
i,j

)
−

2∑

k=1

πiS(pk
i,j), (7.5)

where S(p) = −
L∑

l=1

pllogpl, 0 ≤ πi ≤ 1,
N∑

i=1

πi = 1,

JSDj =
JSDBj∑N

i=1 JSDWi,j

, (7.6)
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Feature Invariant Selection

Scatter and divergence ratios reflect the importance of each feature. The number

of relevant and required curve invariants to fully represent a face is also an important

parameter to determine. The classification performance of a face recognizer may

for instance be used to unravel this parameter. Such a classifier is implemented as

a Nearest Neighbor (NN) Classifier in Euclidean Space using a  L2 distance as the

metric. On account of the small size of the data set, Leave-One-Out Cross (LOOC)-

validation[27] is adopted as the procedure of choice.

Starting with an invariant corresponding to the largest scatter ratio Jj , we progres-

sively increase the set of accounted features by one in correspondence to a decreasing

J , and simultaneously monitor the performance of the NN classifier with Leave-One-

Out Cross-validation. We note that this performance dramatically changes with the

first few features and subsequently reaches a state of small fluctuations as illustrated

in Fig. 7.6-a.

(a) (b)

Figure 7.6: (a) Classification performance as a function of feature selection by Scatter
ratio and (b) Classification performance using a JSD ratio.

Carrying out the same procedure using Jensen Shannon Divergence ratio yields

similar results shown in Fig. 7.6-b.

In comparing Figs. 7.6-a and Figs. 7.6-b, it is interesting to see that the graphs,

albeit different both indicate that a best performance is achieved with a total of 12

curve invariants. The 12 curves selected by both approaches coincide albeit chosen
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in a different order. 10 out of the 12 feature curves are vertical curves, namely curves

10, 12, 15, 25, 27, 29, 30, 32, 33 and 35. The two horizontal curves are curves 15 and

30. The feature curve locations are depicted in Fig. 7.7.

Figure 7.7: feature curve locations.

That the vertical curves contribute to the classification more significantly as indi-

cated by the above results, is an interesting point. Most of the distinguishable vertical

feature are located near the face center profile (32, 33, 35), center (10, 12, 15) and

corner (27, 29, 30) of eye regions. The two horizontal curves (15,30) also characterize

the eye and nose. While the psychophysical interpretation of this result is certainly

significant, we defer this discussion to a future study.

Dimension Reduction

The dimension of each vertical and horizontal feature vector is 200, making each

of the 12 feature curve invariants a 1x2400 long feature vector. Fully realizing the

presence of redundant information in such a vector, and towards reducing the com-

putational load of our approach, we proceed to project our feature data onto a lower

dimensional space with no loss in classification performance. To that end, we first

construct a covariance matrix of feature vectors Kj for each curve set (at a location),

Kj =
[
~κ1

1,j, · ··, ~κK
1,j , · ··, ~κ1

N,j, · ··, ~κK
N,j

]
.
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We subsequently define a matrix D (mean) whose columns are given by the fol-

lowing vector

~mj =
1

NK

N∑

i=1

K∑

k=1

~κk
i,j.

A covariance matrix may hence be constructed as

Cj = (Kj −M)T (Kj −M) , (7.7)

where T denotes the transpose operation on a matrix.

Performing a PCA analysis on the covariance matrix, and identifying the most

significant Eigen values, defines our non-redundant space of interest. Our Experi-

ments show that the first 8 eigenvectors may be used to characterize every feature

invariant curve set to achieve the same performance as that using the full feature

space. This procedure effectively reduces the complexity from a 2400 dimension to a

96 dimension.

7.1.5 Photometric Invariant

In the UND Biometric face database, each 3D range image has a corresponding 2D

intensity image. The five feature points marked in both the 3D range image and the

2D intensity image guide the mapping of photometric information to the 3D surface.

Thus, each of the feature curves is associated with its color information.

The intensity values may change dramatically as a result of variation of lighting

conditions. It is important to have a photometric invariant to improve the recognition

performance.

Towards obtaining a photometric invariant, we adopt a Lambertian model assump-

tion, which is effectively a simplified BRDF (Bidirectional Reflectance Distribution

Function). It defines the image intensity as a product of surface texture or albedo

(ρ), a surface normal (~n) and a lighting source (~s): I = ρ(x, y)~n · ~s.
We may also assume the normals of neighboring points at a smooth and continuous

surface to be nearly equal (~nk ≈ ~nk−1), which makes the ratio of the intensity values
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of two neighboring points a good approximation of the ratio of albedos [36]. Along

a sampled feature curve with n points, the photometric invariant is the reflectance

ratio of neighboring points, which is defined as:

pk =
Ik
Ik−1

=
ρk~nk · ~s

ρk−1~nk−1 · ~s
≈ ρk

ρk−1
, k ∈ [2, n] (7.8)

An intensity ratio does not carry chromatic information. The chromatic informa-

tion also characterizes the human face, which has a great potential to improve the

recognition rate. A conceptual similar idea may be used to to define the ratio in

RGB color space. The albedo at each point is redefined as a tuple: (ρR, ρG, ρB). Each

primary, R, G or B could be presented in the same form with corresponding ρR, ρG,

and ρB in the following equations:

R = ρR(x, y)~n · ~s, (7.9)

G = ρG(x, y)~n · ~s, (7.10)

B = ρB(x, y)~n · ~s. (7.11)

The lighting effect is canceled in the ratio of each primary due to the similarity

of the norms of neighboring points. And a new photometric feature is R, G and B

ratios, namely, pR
k pG

k and pB
k .

pR
k =

ρR
k

ρR
k−1

, k ∈ [2, n], (7.12)

pG
k =

ρG
k

ρG
k−1

, k ∈ [2, n], (7.13)



85

pB
k =

ρB
k

ρB
k−1

, k ∈ [2, n]. (7.14)

Another color space option is XYZ space, which is based on direct measurements

of the human eye, and serves as the basis from which many other color spaces are

defined. Since the transformation between XYZ space and RGB space is linear, it is

easy to show that the ratio property still holds in XYZ space. Similar ratios pX
k pY

k

and pZ
k may therefore be defined.

For each geometric feature vector/curve, we now have a corresponding photometric

feature vector, which could be either the intensity ratio, or ratios for various primaries

in RGB or XYZ space.

7.1.6 Fusion

Geometric features and Photometric features are complementary with each other.

Taking advantage of both is expected to dramatically improve the performance. Fu-

sion of such information may be implemented in three stages [39], namely feature

extraction level, matching score level and decision level.

Geometric and photometric invariants are independent. Thus, a newly constructed

vector using a combined geometric (~fG) and photometric (~fP ) features has a great

potential to improve the performance. Scaling factors α and (1 − α) balance the

geometric and photometric features for optimized performance to result in,

~f =

[
α~ff

(1 − α)~fP

]
. (7.15)

At the matching score level, the dissimilarity measure is a Euclidean Distance. A

linear combination of the geometric dissimilarity (DG) and photometric dissimilarity

(DP ) is a good dissimilarity measure containing both information:

D = αDG + (1 − α)DP (7.16)
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At the decision level, a strategy is designed on the basis of recognition results from

the geometric classifier and photometric classifier. The confidence level of the geomet-

ric classifier makes the decision. Geometric classifier dominates if the confidence level

is high, which is equivalent to choosing α = 1 in the first two levels. Low confidence

results in photometric classifier dominance (α = 0). Fig. 7.8 shows the architecture of

the decision level fusion system. The definition of confusion is discussed in the next

section.

Figure 7.8: Decision level fusion architecture

7.1.7 Performance Analysis

The analysis of set S1 indicates that a 3D face may be represented by a geometric

invariant feature vector together with a photometric invariant feature vector. The

performance is to be evaluated using the testing set S2.

Geometric Only Classifier

Out of the 70 feature curves for each face in set S2, the invariants of 12 feature

curves are calculated and projected onto eigenvectors as described in Sec. 4.4 to
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Table 7.1: Accuracy for Geometric feature based recognition.

Training:Testing 1:4 2:3 3:2 4:1
1NN Max 0.8714 0.9143 0.9429 1.0000

Min 0.7500 0.7810 0.8000 0.8000
Mean 0.8061 0.8571 0.8857 0.9143

3NN Max 1.0000 1.0000
Min 0.8429 0.8571

Mean 0.9214 0.9286

generate a 96 dimensional feature vector.

The ratios between the training data and testing data are set to be 1 : 4, 2 : 3,

3 : 2, and 4 : 1. We randomly pick the training set on the basis of this ratio and

implement the 1NN and 3NN classifier to test the performance. For each ratio, the

experiment is repeated 100 times. As a result, the maximum, minimum and average

performances are listed in Table. 7.1.

Table 7.1 indicates that 3NN classifier outperforms 1NN classifier. As the training

set size increases, the performance is dramatically improved. With 3 or 4 training 3D

scans per subject, the accuracy can reach 92%.

Fusion System

Using the geometric only classifier, 3NN with more than 3 training data per subject

achieves the best performance. Thus, the same setting is applied to the fusion system.

All of the three level fusions in the previous section are tested.

The class label is assigned by majority voting rule, which helps to define the con-

fusion in the decision level fusion. If in the geometric system, all the the three nearest

neighbors are from the same class (subject), no confusion is considered (α = 1). Oth-

erwise the geometric system is considered as confused, and the photometric system is

called upon to help disambiguate the geometric system output. The performance is

listed in Table 7.2. The average performance is greater than 98%, which outperforms

the geometric system alone.

Balancing the α in Eq. 2.16 affects the matching level fusion accuracy as shown

in Fig. 7.9. The best performance (around 99%) is achieved when α is between 0.35
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Table 7.2: Accuracy for fusion at decision level.

Training:Testing 3:2 4:1
3NN Max 1.0000 1.0000

Min 0.9286 0.9429
Mean 0.9829 0.9886

and 0.5. The feature extraction level fusion could also achieve the same performance

with different α range.
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Figure 7.9: accuracy for similarity level fusion

The accuracy for a fusion system at every level is around 99%. Since nearest

Neighbor is a very basic classifier, the performance may be further improved by e.g.,

a Support Vector Machine Classifier.

Large data set verification

The set S3 has 120 subjects and four scans for each subject. The same procedure

described above is applied to S3. Three scans from each subject are randomly selected

as training data and the forth is testing data. The decision level fusion experiment is

repeated for 100 times, and the accuracy is listed in Table 7.3.

As the number of subjects increases, the accuracy decreases slightly. When chro-

matic information is added, the performance increases. And the performance in the

XYZ space is slightly better then the RGB space. Our results are numerically com-

parable with recently proposed geometry and photometry driven techniques[38].
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Table 7.3: Accuracy for face set S3.

3NN 3D 3D+2D(I) 3D+2D(RGB) 3D+2D(XYZ)
Min 0.8583 0.9333 0.9417 0.9417
Max 0.9833 1.0000 1.0000 1.0000

Average 0.9175 0.9745 0.9853 0.9867

As a conclusion, we presented a new geometric and photometric invariants based

method for 3D face recognition. An affine integral invariant of each facial curve is

not affected by translation, scaling, rotation and shearing distortion of 3D faces. The

reflectance ratio cancels the lighting factors to remain the albedo property. Our ex-

periments indicate that the human face can be characterized by 12 affine invariant

curves along with the corresponding reflectance ratio curves, which are located near

the face center profile, center and corner of eye regions. Fusion of geometric informa-

tion and photometric information at any of the three levels results in a performance

better than 98% by a 3-NN classifier. However, in this approach, only pose has been

taken care of. Facial expression may still affect the performance. A more robust

approach will be discuss in Section 7.3.

7.2 3D Euclidean Signature: 3D object matching

7.2.1 Application Background

3D Object representation and classification have been extensively studied. How-

ever, geometric transformations, such as Euclidean, Isometric, or affine transforma-

tion, on objects often constitute a great challenge to the problem. Geometric Invari-

ants have, as a result, been of great research interest.

2D invariants for Euclidean group, affine group and projective group have been

developed for 2D computer vision and pattern recognition problems. The most classi-

cal Euclidean invariants are the Curvature and Torsion, whose practical utilization is

limited due to their high sensitivity to noise. To smooth noise out, a variety of integral

invariants [42, 30, 32, 21] were proposed. Among them, [32] developed a robust inte-

gral invariant signature, which is independent of parameterization and initialization
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of curves.

Recently developed 3D scanning techniques have offered increased accuracy and

wider availability of 3D data. It has resulted in an increasing research interest in

3D applications. However, 3D invariants has far less been studied than 2D. To the

best of our knowledge, no 3D integral invariants have been proposed in the past, and

our goal here is to propose such invariants, which are not only robust to noise, but

also quite amenable to applications where 3D Euclidean transformations and, then

isometric transformations are involved.

To that end, and inspired by [32], we derived in Section 6.3.3 a novel integral

invariant signature for 3D Euclidean transformation, which may in turn be used to

classify curves undergoing isometric transformation as discussed next. In Section

7.2.3, we discuss a potential application of this signature to extracted iso-geodesic

curve features from 3D objects for a subsequent object matching application. Exper-

imental results are shown in Section 7.2.4. We provide some concluding remarks in

Section 7.2.5.

7.2.2 3D Integral Invariant Signature

A 3D object may be represented by a set of space curves [23] [40], implying that

invariants of 3D object/2D surface may be investigated by way of invariants of space

curves in 3D. For a closed/open space curve in 3D, the scaling effect may be cancelled

by normalizing the total arch length to be 1, and an integral invariant signature devel-

oped in Section 6.3.3 may be used to classify curves (objects) undergoing Euclidean

transformations.

The integral Invariant Signature is developed for Euclidean transformations. For

objects under isometric transformations, such as those in Fig. 7.12, curves on the sur-

faces of objects also undergo isometric transformation globally (Fig. 7.10). However,

locally, most segments are under Euclidean transformation. And only the articulated

parts, such as the region near the two stars in Fig. 7.10, are transformed isometrically.

In this case, we can still use the integral invariant signature to characterize surfaces.

The Euclidean transformed segment will display a similar signature. The only dif-
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ference will be in the isometric transformed segment, which highlights an important

additional information, the location of the articulation. For example, the signatures

of the two curves in Fig. 7.10 are shown in Fig. 7.11. Note that the signatures for

the most parts overlap. The only different regions near the star correspond to the

articulate regions in Fig. 7.10. Any similarity measurement may indicate that these

two signatures are highly similar. An application of matching iso-geodesic curves

from isometric transformed objects is presented in the next section.
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7.2.3 Matching Iso-geodesic Curves

Problems of curve matching under transformations arise in many applications. In

the present example, we consider an application of matching 3D objects based on a

set of characteristic spatial curves.

Data set

The McGill 3D Shape Benchmark[51] provides a repository of 3D shapes,which

includes models with articulating parts. We pick a subset of 25 models from 5 objects

(in Fig. 7.12) in data set I (Objects with articulating parts). This subset is picked to

verify the robustness of the integral invariant signature to match objects under both

Euclidean Transformation and Isometric transformation.

Figure 7.12: a subsets of objects under Isometric transformation
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Curve Based Object Representation

3D object representation has been extensively studied, and various approaches

[11] have been proposed in the literature. When 3D objects are subject to transfor-

mations, especially Isometric transformation, most representations will vary for the

same object. It is well known that a Geodesic distance between points on the surface

is invariant to isometric transformation. This property has been exploited in several

approaches [12] [47] [25][20]. Most of them, however, require predefined feature points.

[23] and [2] characterized a 2D surface by integrated distance, which is independent

of any feature point. We adopt here the Global Geodesic Function(GGF) defined in

[2] to guide the curve extraction, i.e., object characterization.

Global Geodesic Function

A Global Geodesic Function(GGF) is proposed in [2] to characterize a surface

invariantly to arbitrary isometric transformation.

A 3D object may be represented by a triangular mesh with a m ∗ 3 vertex matrix

V and face matrix F . For any two vertices vi ∈ V and vj ∈ V , the geodesic distance

between them is written as d(vi, vj). The integrated distance for a vertex vi is defined

as,

g(vi) =

m∑

j=1

d(vi, vj)δSj.

GGF is defined as a normalized integrated distance function, and written as,

gn(vi) =
g(vi)

maxj=1,...,m g(vj)

=

∑m
j=1 d(vi, vj)δS

maxj=1,...,m

∑m
k=1 d(vj, vk)δS

=

∑m
i=1 d(vj, vi)

maxi=1,...,m

∑m
k=1 d(vi, vk)

, (7.17)

where the subscript n denotes normalization. Normalization bounds the GGF be-
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tween 0 and 1. And the GGF of several objects in Fig. 7.12 are shown in Fig. 7.13

with a color code. The color of the object in Fir. 7.13 indicates the GGF value at

each point on the surfaces of the object. One may observe that no isometric trans-

formations on an object will affect its GGF distribution. This will in fact help us in

extracting the iso-geodesic curves, irrespectively of the changes.

Figure 7.13: GGF for objects in Fig. 7.12

Iso-Geodesic Curves

GGF is a continuous function on the surface of an object. Within the surface,

iso-geodesic curves of level ci are defined as curves satisfying the following condition,

gn(v) = ci.

For a discrete surface, the vertex with the exact level ci may not exist. However,

under a reasonable assumption that the GGF is distributed linearly along each edge,

the vertex with an exact level ci may be interpolated linearly. Specifically, it follows
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two steps:

1) Locate the edge

For any edge starting from vs and ending at ve, calculate,

S = (gn(vs) − ci)(gn(ve) − ci)

Under the linearly distributed assumption of a GGF, it is easy to see that ci is located

on the edge where S ≤ 0.

2) Locate the vertex by linear interpolatation

Once an edge is selected in step 1, the exact location of a vertex may be linearly

determined as:

vci
=

ci − gn(vs)

gn(ve) − gn(vs)
(ve − vs) + vs.

The iso-geodesic curves at level ci may be generated by connecting the vertices

on the same face and nearby faces sharing the same vertex. Several examples of

iso-geodesic curves of surfaces are shown in Fig. 7.14 as space curves in 3D. Each

color indicates one level ci = max(gn(v)) i
n

for a total of 20 levels, where n = 20 and

i = 1, 2, ..., n.

Curve Matching

The Iso-geodesic curves capture the same sets of points under translation, rota-

tion, scaling and isometric transformations. As such, it is a robust to representation

of 3D objects, and the object matching problem is solved by comparing the similarity

of space iso-geodesic curves. Comparing curves under transformations is not so triv-

ial. And a direct comparison requires registration, which is usually time consuming,

especially for object under isometric transformation. Using an integral invariant sig-

nature, space curves in 3D are mapped to a 2D invariant space, where there are no

transformation effects, and the curve matching is reduced to matching signatures. A

signature curve is parameterized by arch-length starting at the min(I1) point, and the

signature may be represented by a vector. The Euclidean distance is used to measure
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Figure 7.14: Examples of iso-geodesic curves of 3D articulated objects

the similarity between signatures.1 And the similarity between objects is obtained as

a weighted sum of similarities between sets of curves.

Experimental Result

Following the above three steps, we may achieve a similarity matrix of all objects

in Fig. 7.12 (normalized by the largest Euclidean distance for display purpose). The

darker color of the blocks indicates a large similarity between the same objects under

transformations. Although the objects themselves have articulated parts and the

global transformation is an isometric transformation, most local regions are under

Euclidean Transformations. Integral Invariant signatures characterize well the local

1An improved metric would be a geodesic metric in the space of signature curves.
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features of the iso-geodesic curves for object matching.

We add Gaussian noise (N(0, 0.01)) to the objects and repeat the experiment to

yield the result shown in Fig. 7.16. As a reference, the similarity matrix based on

differential signature (curvature v.s. torsion) is shown in Fig. 7.17. In the noisy data

case, it is easy to observe that the differential signature has a worse object matching

performance, with the integral signature still matching objects successfully.

As a short conclusion, Integral Invariant Signature may be used to character-

ize space curves in 3D. Integral signatures obviate effects of a transformation, of

parametrization, and also provide additional information, such as locations of the

non-Euclidean isometric changes. An application to matching of iso-geodesic curves

of a 3D object as they are subjected to isometric transformation is considered. And

the matching similarity matrixes are shown to verify the robustness of 3D Integral

Signature.

7.3 3D face signature: affine invariance to pose

and facial expression invariant face recognition

7.3.1 Face representation

A general 3D object representation has been extensively studied, and various ap-

proaches [11] have been proposed in the literature. When faces are subjected to

transformations, especially Isometric transformation (under effect of pose and facial

expression), most representations will vary for the same subject. The vertical and

horizontal curves-based representation we proposed in Section 7.1 is only pose invari-

ant, and the effect of facial expression will hence affect its performance. It is well

known that a Geodesic distance between points on a surface is invariant to isometric

transformations. This property has been exploited in several approaches [12] [47]

[25][20],[2] and [6] , [41], [34] extend this idea to face recognition since it is invariant

to facial expression as verified in [6], [34]. We exploit here a similar idea to guide the

curve extraction, and construct a curve-based 3D face representation.
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Figure 7.15: The color coded similarity matrix for integral signature in a noise free
scenario

Geodesic Distance Function

A geodesic distance between two points on a manifold is the shortest path be-

tween these two points along the manifold. Although the Euclidean distance between

two points may change under different facial expressions, the geodesic distance, only

changes very slightly [6], [34], and the changes may be ignored. We, hence, may pre-

define the nose tip as a reference point, and the Geodesic Distance Function(GDF) at

any point on the 3D face is defined as the geodesic distance between this point and

the nose tip.

The movement of the mouth poses a practical problem in that an opening mouth
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Figure 7.16: The color coded similarity matrix for integral signature in a noisy
scenario

may generate a hole to change the topology of the face. The geodesic distance from

the nose tip to the area under the mouth may hence change as a result of the opening

mouth. One possible solution is suggested in [6] to remove the mouth region, and

to always assume there is a hole. As such, a mouth is easy to locate with texture

information, and the test data we are using provides both the geometrical and textural

information. Using a level set approach [43], the mouth region may be located in the

2D images (as shown in Fig. 7.19). We map each vertex in 3D back to 2D. If it

is located within the mouth contour, we simply delete it from 3D. As a result, the

mouth region is removed from the face.
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Figure 7.17: The color coded similarity matrix for differential signature in a noisy
scenario

The GDF of several faces in Fig. 7.18 are shown in Fig. 7.20 (best viewed in

color). The color of the object in Fig. 7.20 indicates the GDF value at each point on

the surfaces of the object.

Iso-Geodesic curves

GDF (denoted as g) is a continuous function on the surface of an object. Within

the surface, iso-geodesic curves of level c are defined as curves satisfying the following

condition:

g(x, y, z) = c.
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Figure 7.18: 3D faces

Figure 7.19: Mouth region of 2D faces

Let n be the total number of iso-geodesic curves extracted from a face. In our

current approach, we set the maximum level cn to be the curve bounded by the outer

corner of the eyes, so that we are only focused on the n curves from the nose tips to

the outer corner of the eyes. This covers most of the region of interest in a 3D face.

For a triangulated mesh surface, the vertex with the exact level c may not exist

as noted earlier. Under a reasonable assumption that the GDF is a linear function

along each edge, the vertex with exact level c may, however, be interpolated linearly.

Specifically, it follows the same two steps of Section 7.2.3.

The iso-geodesic curves at level c may be generated by connecting the vertices

on the same face and nearby faces sharing the same vertex. Several examples of iso-

geodesic curves of surfaces are shown in Fig.7.21 as space curves in 3D. Each color

indicates one level ci = max(gnv) i
n

for a total of 20 levels (we chose n = 20) and

i = 1, 2, ..., n in our current experiment.
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Figure 7.20: Geodesic Distance Function of 3D faces

Figure 7.21: Iso-Geodesic curves of different 3D faces

7.3.2 Invariant features

The Iso-geodesic curves capture the same sets of points on a face under different

pose and facial expression. As such, it is a robust representation of 3D faces, and

the face recognition may be carried out by comparing the space iso-geodesic curves.

Space curves undergo transformations, which makes the comparison difficult. A di-

rect comparison of curves, as noted earlier, generally requires registration, further

complicating an already difficult task for many important problems. A geometric

Invariant is, as a result, a great tool.

In this application, we implement all of the 3D integral invariants and signatures

we derived in Chapters 5 and 6, namely invariants J1 and J2, Global Affine Signature,

Local Affine Signature, and Local Euclidean Signature. The invariants and signatures
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serve as Invariants features. The best feature will be determined by the classification

performance.

The invariants J1 and J2 require an initial point on a curve. In order to define

the initial points, we need to use use the nose tip as one reference point. The second

reference point is the one located on the mouth contour, which has the shortest

Geodesic Distance to the nose tip. With these two reference points, a geodesic path

between between the points is constructed, and the initial point for a given level curve

is defined as the intersection of the level curve and the geodesic path, as shown in

Fig. 7.22.

Figure 7.22: Initial points selection

Curve matching

With the integral invariants and signatures, the space curves in 3D are mapped to

the 2D invariant space, where there is no transformation effects, and matching space
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Table 7.4: Accuracy for face recognition using invariants and signatures.

Invariant Type J1 J2 Global Affine Sig. Local Euclidean Sig. Local Affine Sig.

Accuracy 94.81% 89.32% 91.50% 95.75% 84.01%

curves under transformation in 3D is reduced to matching signatures. A signature

curve is parameterized by arch-length starting at the min(I1) point, and the signature

may be represented by a vector. The cosine similarity is used to measure the similarity

between signatures. And the similarity between objects is the sum of similarities

between sets of curves.

7.3.3 Experimental result

The experimental data we are using in this paper is FRGC2 [38]. The data from

spring 2003 are the training set, which contains 222 subjects, and the number of

scans of each subject varies between 1 to 10. The data from the same 222 subjects

are selected from spring 2004, serving as testing data. The number of 3D scans per

subject varies from 1 to 12.

Following the procedures in the above two sections, each face is represented by 20

curves and the signature of each curve is constructed and sampled to a 200 dimen-

sional vector. The cosine similarity between corresponding signatures is calculated

as the similarity measurement. In this experiment, we use One Nearest Neighbor

classification rule, and the accuracy is listed in Table 7.4.

Among them, the best performance (95%) is achieved with 3D Local Euclidean

Invariant Signature, which verifies our intuition that facial curves globally undergo a

Isometric Transformation, and locally undergo a Euclidean Transformation. In the-

ory, 3D Local Affine Invariant Signature should also work since affine transformation

includes Euclidean ones. However, the numerical complexity of the invariants is a

practical problem and somewhat affects the performance.

Our result is numerically comparable with the most recently proposed geometry

driven techniques in FRVT 2006 Large-Scale Results. By using the integral invariant

signature, we successfully avoid the time consuming registration procedure, hence

theoretically making our approach more amenable to a fast real time system.
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In summary, we presented a new geometric invariant-based method for 3D face

recognition. Each face may be represented by 20 iso-geodesic curves, which gives

us a systematic way to capture the same sets of points under iso-metric transforma-

tions. The pose and facial expression effect may be eliminated by mapping the space

iso-geodesic curves to Euclidean integral invariant signature space. Substantiating

examples are provided with an achieved classification accuracy of 95%.
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Chapter 8

Conclusion and Future work

In this thesis, we reinterpret 2D affine integral invariants, and present a novel

3D development, namely affine mixed invariant and integral invariants. Based on

3D integral Invariants, local signatures and global signatures are proposed. Due

to the reduced noise sensitivity properties of integration, the robustness of integral

invariants and signatures is a clear advantage. 2D and 3D integral invariants and

signatures have been successfully implemented and applied to face recognition and

3D object matching.

In the next section, we summarize the contributions in each of the previous chap-

ters and present the conclusions made from the research work. Potential research

directions following this work are discussed in Section 8.2.

8.1 Contribution of the thesis

8.1.1 3D Affine Mixed Invariant

In Chapter 3, we presented a new 3D affine mixed invariant. Compared with the

existing differential invariants, its sensitivity to noise reduced since it is based on

integrals and only first order derivatives. The computation is in addition simplified

with the introduction of first order derivatives. Such invariants present gains in

classifying curves in contrast to differential invariants as verified in Chapter 3.3.
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8.1.2 2D and 3D Affine Integral Invariants

In Chapter 5, we used an inductive approach to construct affine integral invariants

for curves in 2D and 3D in terms of Euclidean invariants. In the 2D case this lad

to a new geometric interpretation of previously known invariants, areas and volumes

defined by a curve in 2D, whereas the integral invariants for curves in 3D are derived

for the first time. One of the 3D affine integral invariants has a clearly defined

geometric meaning, volume defined by curves in 3D. Integral invariants were proved

to have significantly lower classification error rate than classical differential invariants

and mixed invariants.

8.1.3 Integral Invariant Signature

Integral invariants depend on paramterization and initial point selection. In Chap-

ter 6, we present two solutions: Global Integral Invariant Signature and Local Inte-

gral Invariant Signature. Global Integral Invariant Signature provides a classification

method independent of parameterization (curve sampling). However, Global Integral

Invariant Signature still depends on the choice of the initial point. Local Integral

Invariant Signature provides a classification method independent of the choice of the

initial point, they can be used on images with occlusions and for comparing fragments

of the contours. It is slightly more sensitive to noise than Global Integral Invariant

Signature.

If the parameterizations are not the same, the integral invariants with respect to

a parameter can not be used for classification purpose. However, both the global sig-

nature and local signature are not affected. If the initial points of a curve are selected

differently, both individual invariants and global signature have poor performance.

Only local signature may be used to characterize a curve.

8.1.4 Face Recognition Using 2D Integral Invariants

In Chapter 7.1, we presented a new geometric and photometric invariants based

method for 3D face recognition. A 2D affine integral invariant of each facial curve
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is not affected by translation, scaling, rotation and shearing distortion of 3D faces.

The reflectance ratio cancels the lighting factors to remain the albedo property. Our

experiments indicate that the human face can be characterized by 12 affine invari-

ant curves along with the corresponding reflectance ratio curves, which are located

near the face center profile, center and corner of eye regions. Fusion of geometric

information and photometric information at any of the three levels could result in

performance more than 98% by a 3-NN classifier.

8.1.5 3D Object Matching Using 3D Euclidean Integral In-

variant Signature

Euclidean Integral Invariant Signature is successfully used to characterize a space

curve in 3D. Integral signatures obviate effects of a transformation, a parametrization,

and also provide additional information, such as the locations of the non-Euclidean

isometric changes. An application to matching of iso-geodesic curves of a 3D object

as they are subjected to isometric transformation is considered. And the matching

similarity matrices are shown to verify the robustness of 3D Integral Signature.

8.1.6 3D Face Recognition Using 3D Integral Invariants and

Signatures

3D face recognition is improved in Chapter 7.3. We presented a new geometric

invariant-based method. Each face may be represented by 20 iso-geodesic curves,

which gives us a systematic way to capture the same sets of points under iso-metric

transformations. The pose and facial expression effect may be eliminated by mapping

the iso-geodesic space curves to the Euclidean integral invariant signature space.

Substantiating examples are provided with an achieved classification accuracy of 95%

with a large data set.
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8.2 Future Research

Motivated by this thesis, there are several interesting research directions, which

we intend to accomplish in future.

8.2.1 Projective Integral Invariant

Following the development of Euclidean and Affine Integral Invariants, the natural

idea is if it is possible to develop projective invariant. Projective Integral Invariant

development is one of the potential future research directions. It may help us to

better correlate 2D information with 3D data.

8.2.2 Statistical Analysis of Integral Invariant Signature

With the integral invariant signature, the space curves in 3D are mapped to the

2D invariant space as discussed in Chapter 7.2, where there is no transformation

effects, and the matching curves is reduced to matching signatures. 3D objects may

be represented by a set of iso-geodesic curves. Matching object under transformations,

hence, becomes a problem of matching a set of signature curves in 2D.

It seems to be a perfect solution, but the establishment of correspondence may

not always be easy. Assume at level ci in the GGF function, object A has m curves,

while object B has n curves. If m is not equal to n, it may not be trivial to establish

the best correspondence. One may only compare the k(k = min(m,n)) most similar

pairs, but the leftover curves may result in lowing accuracy.

The cardinality difference motivates us to isolate the entire set of curves at a

certain level and seek a method to characterize them as such. A potential solution is

to construct a probability density function(PDF) of the integral invariant signatures

for curves at the same level. The comparison of two set of curves, which may have

different cardinalities, is now simplified to comparing between two PDFs. Jensen-

Shannon Divergence is an option to measure similarity.
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