
ABSTRACT 

Zhao, Yuchao. Probabilistic Modeling of Variability and Uncertainty in Urban Air 

Toxics Emissions (Under the direction of Dr. H. Christopher Frey) 

Air toxic emission factor data often contain one or more censored points below a single 

or multiple detection limits. Such data sets are referred to as "censored." Conventional methods 

used to deal with censored data sets include removing non-detects, or replacing the censored 

points with zero, half of the detection limit or the detection limit. However, the estimated means 

of the censored data set by conventional methods are usually biased. Here, an approach to 

quantification of the variability and uncertainty of censored data sets is demonstrated. Empirical 

bootstrap simulation is used to simulate censored bootstrap samples from the original data. 

Maximum Likelihood Estimation (MLE) is used to fit parametric probability distributions to 

each bootstrap sample, thereby specifying alternative estimates of the unknown population 

distribution of the censored data sets. Sampling distributions for uncertainty in statistics such as 

the mean, median and percentile are calculated. The robustness of the method was tested by 

application to different degrees of censoring, sample sizes, coefficients of variation and numbers 

of detection limits. Lognormal, gamma and Weibull distributions were evaluated. The reliability 

of using this method to estimate the mean is proved. The application of MLE/Bootstrap was 

compared favorably to results obtained with the non-parametric Kaplan-Meier method, which 

verify the accuracy of this method.  

The MLE/bootstrap method is applied to 16 cases of censored air toxic emission factors, 

including benzene, formaldehyde, Benzo(a)pyrene, mercury, arsenic, cadmium, total chromium, 

chromium VI and lead with single or multiple detection limits from coal, fuel oil and/or wood 

waste  external combustion sources. The data differs regarding sample size, censoring degree, 



inter-unit variability and so on. The proportion of censored values in the emission factor data 

ranges from 4 to 80 percent. The largest range of uncertainty in the mean was obtained for the 

external coal combustion benzene emission factor, with a 95 percent probability range of minus 

93 to plus 411 percent of the mean.    

Probabilistic emission inventories were developed for benzene, formaldehyde, chromium, 

and arsenic for Houston 1996 emission inventory and for 1, 3-butadiene, mercury, arsenic, 

benzene, formaldehyde and lead. Parametric distributions for inter-unit variability were fit using 

maximum likelihood estimation (MLE) and uncertainty in mean emission factors was estimated 

using parametric bootstrap simulation.  For data sets containing one or more non-detected values, 

empirical bootstrap simulation was used to randomly sample detection limits for non-detected 

values and observations for sample values, and parametric distribution for variability were fit 

using MLE estimators for censored data.  Goodness-of- fit for censored data was evaluated using 

the Kolmogorov-Smirnov test applied to a modified data set and by comparison of cumulative 

distributions of bootstrap confidence intervals and empirical data.  The emission inventory 95 

percent uncertainty ranges are as small as minus 25 to plus 42 percent for chromium for Houston 

to minus 75 to plus 224 percent for arsenic for Jacksonville. Uncertainty was dominated by only 

a few source categories.  Recommendations are made for future improvements to the analysis.   
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1.0 Introduction 

In this section, the motivations and backgrounds regarding development of probabilistic 

estimates of urban air toxics emissions are given. The primary objectives of this research are 

addressed. Finally, an overview of this research and the organization of this dissertation are 

introduced.    

1.1 Urban Air Toxics Emissions  

Toxic air pollutants, also known as hazardous air pollutants, are those pollutants that are 

known or suspected to cause cancer or other serious health effects, such as reproductive effects 

or birth defects, or adverse environmental effects. Examples of toxic air pollutants include 

benzene, which is often found is gasoline, and heavy metals, such as cadmium, mercury, 

chromium and lead.   

The U.S. Environmental Protection Agency has developed an Integrated Urban Air Toxic 

Strategy, which includes a framework for addressing urban air toxics emissions. The 1990 Clean 

Air Act Amendments identified 189 HAPs and required maximum available control technology 

(MACT) on major sources of those chemicals. If the technology-based emissions controls are not 

sufficient, risk-based regulation is needed.1 EPA developed a list of 33 urban air toxics, which 

represent the priority for additional risk assessment of the health effects of air toxics in urban 

areas.1 In recent years, probabilistic risk assessment becomes more and more concerned. It 

provides quantitative information about the range and likelihood of risk analysis.  

Urban air toxics emission inventories will be the basis for urban air toxic emission 

regulation. Emission inventories (EIs) are commonly obtained by the product of emission factors 

and activity factors. EIs are used by federal, state, and local governments and by private 

corporations for: (a) characterization of temporal emission trends; (b) emissions budgeting for 
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regulatory and compliance purpose; (c) prediction of ambient pollutant concentrations using air 

quality models;2 and (d) development of exposure and risk analysis.3  

1.2 Variability and Uncertainty  

Variability is the heterogeneity of a quantity over time, space or members of a 

population.3, 8 For example, a given human individual has a body weight, intake rate, lifetime, 

exposure duration, and activity pattern that are different from that of other individuals. Another 

example is that emissions of a particular pollutant typically differ from one specific emission 

source to another within a given source category.  Variability can be represented by a frequency 

distribution showing the variation in a characteristic of interest over time, space.2 Variability and 

uncertainty can both be represented as distributions in a two-dimensional modeling framework.2, 

4, 6 For example, confidence intervals can be constructed with respect to a best estimate of the 

cumulative distribution function (CDF) for variability. The range of the confidence intervals for 

the CDF represents uncertainty.   

Uncertainty arises due to lack of knowledge regarding the true value of a quantity or 

regarding the true distribution for variability.3, 8 Uncertainty in emissions is typically attributable 

to the following: (1) random measurement errors (lack of precision); (2) random sampling error; 

(3) systematic errors (bias or lack of “accuracy”) such as would be caused by imprecise 

calibration or use of surrogate data (e.g., laboratory tests of vehicles rather than on-road 

measurements); and (4) human error such as random mistakes in entering or processing data. 

Uncertainty can be quantified as a probability distribution.6  

Air toxic emissions are subject to both variability and uncertainty.2, 4 If random errors and 

measurement error in the EIs are not quantified, erroneous inferences could be made regarding 

trends in emissions, source apportionment, compliance, the relationship between emissions and 
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ambient air quality and regulation decision based on risk analysis. Variability and uncertainty in 

air toxics emissions are a contributing factor to variability and uncertainty in estimates of 

exposure and risk. Quantification of variability and uncertainty in air toxics emissions is needed 

to identify high emitters or highly exposed populations as well as to characterize the quality of an 

emissions inventory and to target data collection to reduce uncertainty. 

There is a growing track record of the motivations for characterizing variability and 

uncertainty applied to emission factors, emission inventories, air quality modeling, exposure 

assessment, and risk assessment. For example, the National Research Council (NRC) 

recommends that quantifiable uncertainties be addressed in estimating mobile source emission 

factors and logically this recommendation should be extended to other source categories.7  The 

NRC has also addressed the need for quantification of uncertainties in emission inventories used 

in risk assessment.8  Probabilistic techniques have been applied to estimate uncertainty in 

emission factors for mobile sources, major stationary sources and area sources, particularly for 

criteria pollutants (e.g., NOx) and ozone precursors (e.g., volatile organic compounds).9-16 Now, 

it is necessary and technically feasible to quantify variability and uncertainty in urban air toxic 

emissions.   

1.3 Variability and Uncertainty in Censored Data 

Because of inherent limitations of chemical/analytical measurement methods, urban air 

toxics emission data often contain several observations reported as below a detection limit (DL), 

and are usually referred to as “censored.” 17 Many situations have a majority of measurements 

for urban air toxics that are below a detection limit.18  

Generally, censored data include right-censored, left-censored and interval-censored data. 

For right-censoring, the data points larger than the detection limit are non-detects. For left-
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censoring, the data points smaller than the detection limit are non-detects. For interval-censoring, 

the data points between two different detection limits are non-detects. For example, in many 

biomedical applications the primary endpoint of interest is time to a certain event, such as time to 

death. People are interested in characterizing the distribution of “time to event” for a given 

population. Typically, in biomedical applications the data are collected over a finite period of 

time and consequently the “time to event” may not be observed for all the individuals in the 

study sample.19 This results in right-censored data. Environmental censored data are usually left-

censored. For example, the non-parametric Kaplan-Meier estimator has been used to deal with 

left-censored pyrene concentration data collected from 20 Monitoring Stations in the Central 

Basin of Puget Sound from 1988-1990.20 Furthermore, left-censored data are characteristic of 

many bioassays due to inherent limit of detection in the assays.21 For example, plasma HIV RNA 

measurements collected for the Hemophilia Growth and Development Study are left censored 

data.21 Studies on emergence times of teeth are also most often faced with interval-censored 

data.22   The emergence time of a tooth is defined as the chronological age of a child when that 

tooth appears in the mouth.22 When the precise emergence time is not available, it is given as 

interval censored data between two detection limits.   

In statistics, the detection limit is a fixed value and a non-detect point x in a left-censored 

data set means x ∈ [0, DL] and a non-detect point x in right-censored data set means x ∈ 

[DL, ∞+ ). For example, in survival analysis, if the finite study time for event of “death” is 10 

years, then the detection limit is 10 years. The event of “death” after 10 years is non-detected or 

censored. However, from an engineering and analytical chemistry perspective, the terminologies 

of “non-detect” and “detection limit” for measurements are more complicated than those in 

statistics.  
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Scientists from the International Organization for Standardization (ISO) and International 

Union of Pure and Applied Chemistry (IUPAC) met in July 1993 in order to harmonize 

international terminology related to detection in chemical measurement processes in analytical 

chemistry.23 The following terminologies are recommended. For distinguishing a chemical 

amount from background noise — i.e., for making the detection decision, the critical value (Lc) 

of the appropriate chemical amount is used. As the measure of the inherent detection capability 

in chemical measurement process, the minimum detectable value (LD) of the appropriate 

chemical variable is used. The terminology of “detection limit” is used as an alternative to the 

“minimum detectable value”.24  

The decision “detected” or “not detected” is made by comparison of the estimated 

concentration )ˆ(L  with the critical value of the respective distribution, such that the probability 

of exceeding Lc is no greater than 0.05 if analyte is actually absent (L = 0, null hypothesis). Thus 

the critical value is the minimum significant value of an estimated net concentration, applied as a 

discriminator against background noise. The above definition of Lc can be expressed as follows, 

Pr ( L̂  > Lc | L = 0) ≤  0.05        

The minimum detectable value or detection limit LD is determined given Lc. LD is the true 

concentration for which the probability that the estimated concentration L̂ does not exceed Lc is 

0.05. The above definition of LD can be expressed as fo llows,24 

Pr ( L̂ � Lc | L = LD) ≤  0.05 

From the above definition, Lc is more comparable to the terminology of DL in statistics 

than LD. The difference is that in analytical chemistry, there is 5% probability that the non detect 

is larger than LD. In contrast, in statistics, the left censored non detect is assumed to be less than 

or equal to DL with 100% probability. From the definition, Lc is smaller than DL in value. 
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Therefore, if the reported detection limit for the censored data is actually Lc, while statistic 

method is used to analyze censored data and Lc is taken as DL in the analysis, the influence on 

the results associated with censoring is actually underestimated.  The reason is that a nominal 

smaller detection limit is used when taking the non detect x as x ∈ [0, Lc].  

A typical chemical measurement process consists of two primary substructures. The first 

one is sample preparation and instrumental measurement which converts the measured 

concentration to a signal or response.24 The second one is an evaluation process that transforms 

the signal into an estimated concentration for the analyte. The first step is associated with 

censoring. The use of a larger volume in the sample, improvement of the sensitivity of the 

instrument, or both, can decrease detection limits or avoid the occurrence of censored data.   

The censored data in urban air toxics emission factors are left-censored. For example, 

some measurements in data set for urban air toxics emission factors are reported as below a 

single detection limit or multiple detection limits. Multiple detection limits arise when data are 

collected by different sampling and analytical procedures or when data are collected with 

different gas sampling volumes.  

In terms of the reported non detected data points and the corresponding DLs in the 

emission factor data, no information regarding its precise definition is available. If the 

measurement procedure is standard, the reported DL may be the same as Lc defined by the 

National Institute of Standards and Technology.24 Thus statistical method is used to deal with 

censored urban air toxic emission factors, the influence by censoring is underestimated.     

Commonly used methods for dealing with environmental censored data are statistically 

biased and are limited in their usefulness. Such methods are typically aimed only at developing 

an estimate of the mean of the data set.  The several methods most often used include ignoring 
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the non-detected values, replacing non-detected values with zero, replacing non-detected values 

with the detection limit (DL) or replacing non-detected values with one-half of the detection 

limit.25-28 These methods cause biased estimation of the mean. For example, replacing non-

detected values with zero always underestimate the mean, while replacing non-detected values 

with DL always overestimate the mean. Ignoring the non-detected values and replacing the non-

detected values with DL/2 sometimes overestimate the mean and sometimes underestimates the 

mean based on different data set. Furthermore, they do not provide insight regarding the 

population distribution and uncertainty in the mean from which the measured data are a sample. 

For example, the benzene emission factor from residual oil combustion was reported as 2.14 ×10-

7 lb/gallon fuel combusted. It is the average of 12 data points. Two of them are detected points, 

and ten of them are censored points. For censored data, values equal to half of the detection 

limits were used to calculate the average emission factor.29 The possible bias in this estimate and 

the uncertainty in the mean was not quantified.         

As stated in Section 1.2, the quantification of variability and uncertainty for urban air 

toxics emissions is highly motivated. Since there is lack of information regarding the true value 

of a censored data point, variability and uncertainty associated with censoring needs to be taken 

into account for urban air toxics emission factors. This is different from the quantification of 

variability and uncertainty for typical emission factors for criteria pollutants. For criteria 

pollutants emission factors, since censored data issues do not commonly occur, the variability in 

the emission factors is reflected by the values of the detected data points. The apparent 

variability may include a component of random measurement error. The quantified uncertainty is 

explicitly caused by random sampling error, which is mainly caused by sample size. The 

uncertainty implicitly includes random measurement error, which is mainly influenced by inter-
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unit variability.6 For urban air toxic emission factor that contains non-detects, in order to get an 

unbiased estimate of the inter-unit variability, the censored data must be appropriately analyzed. 

The approach used here is to assume that each censored value would be between zero and its 

detection limit. Fur thermore, the factors that influence the uncertainty estimates of the statistics 

and CDF are not only sample size and inter-unit variability, but also issues related to censoring. 

These issues include the number of non-detects and the values of the detection limits. The key 

motivating questions regarding the quantification of variability and uncertainty in censored data 

include: 

1. How can the unbiased estimates of CDF and statistics (e.g. mean) for censored data be 

estimated? 

2. How can the uncertainty in the CDF and statistics for censored data be quantified? 

3. Is the uncertainty associated with censoring considerably large compared to other factors 

of sample size and inter-unit variability? In what situation it may be worthwhile to use a 

more sensitive instrument in order to reduce uncertainty associated with censoring? 

4. Can the method be applied to deal with censored data outside the urban air toxic fields, 

such as survival data?  

1.4 Probabilistic Urban Air Toxics Emission Inventories 

In recent years, urban air toxics emission inventories have become available based upon 

point estimates of specific pollutant emissions from different source categories. One example is 

the 1996 Houston emission inventory. This inventory has been selected for a variety of 

analyses.30 Another example is for Jacksonville, Florida, which includes 107 pollutants using 

2000 as a base year.31 The available air toxics city emission inventories are useful as a basis for 

development of probabilistic urban air toxic emission inventories. 
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The emission inventory is usually obtained by the product of emission factors and 

activity factors and  the uncertainty in the mean emission inventories is caused by the uncertainty 

in the mean emission factors and activity factors. The emission factor is defined as the average 

emission rate from a population of sources. Because of small sample size and large inter unit 

variability, there is large uncertainty in the reported emission factors. In this dissertation, the 

quantified uncertainty in the emission inventory includes uncertainty in the mean emission 

factors as well as a nominal uncertainty in the mean activity factors.  

The steps of the development of probabilistic emission inventory are to: (1) quantify 

variability and uncertainty in the urban air toxics emission factors for each source category; (2) 

quantify the uncertainty in urban air toxics emission inventory for each source category; and (3) 

quantify the uncertainty in the total emission inventory. In the first step, both uncensored data 

and censored data are dealt with. The motivating questions regarding the development of 

probabilistic urban air toxics emission inventory include: 

1. How large can the uncertainty in urban air toxic emission factors for a specific source 

category be? 

2. How large can the uncertainty in the total urban air toxic emission inventory be? 

3. When there is no directly relevant data available, can surrogate data be used? Is there 

extra uncertainty introduced by using surrogate data? 

4. When comparing results for different cities, are ranges of uncertainty similar for a given 

pollutant? 

1.5 Objectives 

Based on the backgrounds and motivations, the primary objectives of this research are: 
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1. To develop, test and verify a novel method to quantify variability and uncertainty in 

censored data; 

2. To apply the method to censored urban air toxic emission factors; 

3. To develop probabilistic urban air toxic emission inventories; 

4. To identify the key sources of uncertainty in urban air toxic emission inventories. 

1.6 Overview of Research 

The research of this dissertation mainly focuses on three aspects: methodologies 

regarding the quantification of variability and uncertainty in censored data, applications of the 

methodologies, and development of probabilistic urban air toxics emission inventories.    

The methodologies developed in this research include: (1) fit parametric distributions to 

censored data sets using MLE; (2) quantify variability and uncertainty for censored data sets 

using empirical bootstrap simulation; (3) test the robustness of the method in different situations 

with various coefficients of variation, percentages of censoring and sample sizes; (4) evaluate the 

reliability of MLE/Bootstrap method for estimating the mean and (5) verify the MLE/Bootstrap 

method with an independent method. 

The application of the method includes 16 cases studies of censored urban air toxics 

emission factors from external combustion sources, including benzene, formaldehyde, 

Benzo(a)pyrene, mercury, arsenic, cadmium, total chromium, chromium VI and lead with single 

or multiple detection limits from coal, fuel oil and/or wood waste  external combustion sources. 

The proportion of censored values in the emission factor data ranges from 4 to 80 percent. The 

key issues addressed with application of the MLE/Bootstrap method include: (1) How should 

inter-unit variability and uncertainty in emission factors be quantified for censored data sets? (2) 

What characteristics of censored data sets are important determinants of uncertainty in the mean? 
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(3) Are the mean estimate and the estimate of uncertainty in the mean sensitive to the choice of 

parametric distribution for inter-unit variability? (4) What is the relative range of uncertainty in 

the mean estimates of selected air toxic emission factors? 

Probabilistic urban air toxics emission inventories can be developed when the variability 

and uncertainty in the emission factors are known. Two cities are selected to develop 

probabilistic urban air toxic emission inventories: Houston, TX and Jacksonville, FL. 

Probabilistic benzene, formaldehyde, chromium and arsenic emission inventories are developed 

for Houston and probabilistic 1, 3-butadiene, mercury, arsenic, benzene, formaldehyde and lead 

EIs are developed for Jacksonville. The variability and uncertainty in the emission factors for 

these pollutants are reported for different source categories. The key sources of uncertainties are 

identified for the emission inventories of these pollutants.   

1.7 Organization  

The dissertation will first present the development, test and verification of 

MLE/Bootstrap method for censored data, which is in Chapter 2, and then present the 

applications of the MLE/Bootstrap method to censored urban air toxic emission factors, which is 

in Chapter 3. The development of the probabilistic urban air toxics emission inventories for 

Houston and Jacksonville are addressed in Chapters 4 and 5, respectively. Finally, the 

conclusions of this study and the recommendations for future studies are presented in Chapter 6. 

Chapters 2 through 5 are four manuscripts that the author has submitted or plans to submit for 

publication in peer-reviewed journals. Each chapter of this manuscript has its own list of 

references cited. 
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Abstract. Many environmental data sets, such as for air toxic emission factors, contain several 

values reported only as below detection limit. Such data sets are referred to as "censored." 

Typical approaches to dealing with censored data sets include replacing censored values with 

arbitrary values of zero, one-half of the detection limit, or the detection limit. Here, an approach 

to quantification of the variability and uncertainty of censored data sets is demonstrated. 

Empirical bootstrap simulation is used to simulate censored bootstrap samples from the original 

data. Maximum Likelihood Estimation (MLE) is used to fit parametric probability distributions 

to each bootstrap sample, thereby specifying alternative estimates of the unknown population 

distribution of the censored data sets. Sampling distributions for uncertainty in statistics such as 

the mean, median and percentile are calculated. The robus tness of the method was tested by 

application to different degrees of censoring, sample sizes, coefficients of variation and numbers 

of detection limits. Lognormal, gamma and Weibull distributions were evaluated. The reliability 

of using this method to estimate the mean is evaluated by averaging the best estimated means of 

20 cases for small sample size of 20. The confidence intervals for distribution percentiles 

estimated with bootstrap/MLE method compared favorably to results obtained with the non-

parametric Kaplan-Meier method. The bootstrap/MLE method is illustrated via an application to 

an empirical air toxic emission factor data set.  

Key Words:  Non-detects, Urban air toxics, Censored data sets, Maximum likelihood 

estimation, Bootstrap Simulation, Kaplan-Meier estimator, Monte Carlo Simulation 

1.0 Introduction 

The purpose of this paper is to demonstrate a methodology for quantifying variability and 

uncertainty in air toxic emission factors in situations in which one or more data values are not 

detected. Toxic air pollutants are estimated to pose human health risks in urban areas. The U.S. 
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Environmental Protection Agency has developed an Integrated Urban Air Toxic Strategy, which 

includes a framework for addressing urban air toxics emissions. EPA developed a list of 33 

urban air toxics, which represent the priority for additional assessment of the health effects of air 

toxics in urban areas.1  

Air toxic emissions are subject to both variability and uncertainty.2,3 Variability refers to 

diversity or heterogeneity among members of population. For example, emissions of a particular 

pollutant typically differ from one specific emission source to another within a given source 

category. Uncertainty arises due to lack of knowledge regarding the true value of a quantity or 

regarding the true distribution for variability. Variability and uncertainty can both be represented 

as probability distributions in a two-dimensional modeling framework.2, 4, 5  For example, 

confidence intervals can be constructed with respect to a best estimate of the cumulative 

distribution function (CDF) for variability. The range of the confidence intervals for the CDF 

represents uncertainty.  Information regarding variability in urban air toxic emissions is needed 

to identify high emitters or highly exposed populations. Information regarding uncertainty is 

needed to characterize the quality of an emissions inventory and to target data collection to 

reduce uncertainty.   

Because of inherent limitations of chemical/analytical measurement methods, emissions 

data sets often contain several observations reported as below a detection limit, and are usually 

referred to as “censored.” 6 For example, data sets for emission factors of urban air toxics are 

often reported as censored with a single detection limit or with multiple detection limits. 

Multiple detection limits arise when data are collected by different sampling and analytical 

procedures or when data are collected with different gas sampling volumes.   
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Commonly used methods for dealing with environmental data sets that contain detection 

limits are statistically biased and are limited in their usefulness. Such methods are typically 

aimed only at developing an estimate of the mean of the data set.  The several methods most 

often used include ignoring the non-detected values, replacing non-detected values with zero, 

replacing non-detected values with the detection limit (DL) or replacing non-detected values 

with one-half of the detection limit.7, 8, 9, 10, 11 These methods cause biased estimation of the 

mean. Furthermore, they do not provide insight regarding the population distribution from which 

the measured data are a sample. 

In contrast to commonly used methods, Maximum Likelihood Estimation (MLE) can be 

used to fit parametric distributions to censored data sets, including the portion of the distribution 

that is below one or more detection limits.7, 8, 9, 10, 11 Asymptotically unbiased estimates of 

statistics, such as the mean, can be estimated based upon the fitted distribution. In order to 

estimate uncertainty in statistics, the method of bootstrap simulation is employed in this work.12  

The objectives of this paper are: (1) to fit parametric distributions to censored data sets 

using MLE; (2) to quantify variability and uncertainty for censored data sets using empirical 

bootstrap simulation; (3) to test the robustness of the method in different situations with various 

coefficients of variation, percentages of censoring and sample sizes; (4) to evaluate the reliability 

of MLE/Bootstrap method for estimating the mean and (5) to verify the MLE/Bootstrap method 

with an independent method - Kaplan-Meier estimator.13  

2.0 MLE Parameter Estimates for Censored Lognormal, Gamma and 

Weibull Distributions  

For environmental data sets, such as concentrations or emission factors, lognormal, 

gamma and Weibull distributions are often chosen as parametric distributions to represent 
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variability in data.2, 3, 4, 5, 14, 15 Therefore, in this paper, lognormal, gamma and Weibull 

distributions are used to illustrate and evaluate the MLE-based method for fitting parametric 

distributions to censored data.  

The lognormal distribution is defined by the following probability distribution function: 

16  

 
x

e
xf

x )2/()(log
2

22

2

1
),|(

σµ

πσ
σµ

−−

=                                                                                 (1)      

Where ,0 ∞<≤ x ,+∞<<∞− µ 0>σ ; and µ  and σ  are the mean and standard deviation of 

ln(x). In this paper, µ  is defined as parameter 1 and σ  is defined as parameter 2. 

The gamma distribution is defined by the following probability distribution function: 16 

βα
αβα

βα /1

)(
1

),|( xexxf −−

Γ
=                                                                                                                               (2) 

Where ,0 ∞<≤ x  0, >βα . In this paper, α  is defined as parameter 1 and β  is defined as 

parameter 2.  

The Weibull distribution is defined by the following probability distribution function: 17 
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Where 0≤ x< ∞ , βα, > 0. In this paper, α  is defined as parameter 1 and β  is defined as 

parameter 2.  

The MLE technique is applicable to data sampled from various distributions and it is 

easily implemented in a computer program. The most general formulation of the likelihood 

function for censored data sets having multiple detection limits is: 18 
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Where, 

xi  = Detected data point, where, i = 1, 2, …, n 

θ θ θ, , ,2 K k = Parameters of the distribution 

NDm = Number of non-detects corresponding to detection limit DLm, where, m = 1, 2, …, 

P. 

P = Number of detection limits 

f =  Probability density function 

F = Cumulative distribution function 

For data that are below detection, the cumulative probability of the detection limit is used in lieu 

of the likelihood. 

For computational convenience, it is more common to work with the log- likelihood 

function instead of the likelihood function itself. According to equation (4), for the lognormal 

distribution, the log- likelihood function including left-censored data is given by: 18 
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Where, erf is the error function. For the gamma distribution, the log- likelihood function 

including left-censored data is given by: 18 
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For the Weibull distribution, the log-likelihoood function including left-censored data is given 

by: 18 
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Based upon earlier work by Frey and Rhodes (1996, 1998), a non- linear programming 

optimization algorithm was used to maximize the log- likelihood functions of Equations (5), (6) 

and (7).2, 19 Computer subroutines by Press et al. were used for optimization and for evaluation 

of the various special functions required in some of the log- likelihood functions, such as the 

gamma function, error function, and beta function.20 

3.0 Estimation Uncertainty in Statistics Using Bootstrap Simulation  

In Parametric bootstrap simulation is widely used to estimate confidence intervals for 

statistics of data sets or parameters of fitted distributions in cases without censoring.2, 3, 4, 5, 12, 14, 

19 In conventional parametric bootstrap simulation, a parametric probability distribution is fit to 

the original data set, which has a sample size of n and is referred to as a “mother” distribution. 

Monte Carlo simulation is used to randomly simulate bootstrap samples from the “mother” 

distribution, each of sample size n. Typically, B bootstrap samples are simulated. For each 

bootstrap sample, a replication of a given statistic is calculated. For example, one can obtain B 

estimates of the mean, standard deviation, or distribution parameters. The numerical value of 

each replication of a statistic will differ from tha t of other replications because of the effect of 

random sampling when comparing one bootstrap sample with another. The B estimates of a 

statistic are used to describe a probability distribution for the statistic. A probability distribution 

for a statistic is also referred to as a sampling distribution. The sampling distribution is used as 

the basis for estimating confidence intervals. For example, the 95 percent confidence interval for 

the mean is based upon the interval between the 2.5th and 97.5th percentiles of the sampling 

distribution for the mean.  
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In the case of a censored data set, the conventional approach to parametric bootstrap 

simulation cannot be directly applied. Specifically, it is necessary to generate bootstrap samples 

so that there can be random variation in the number of data points that are below detection limit. 

If the data set is a single detection limit case, the data points below the detection limit can be 

determined as “censored”. However, in a multiple-detection- limit case, a detected point may 

have a value larger than a detection limit of a censored value if they come from different test 

facilities or testing methods. In order to deal with this issue, an empirical bootstrap approach is 

used. In empirical bootstrap simulation, each of the original n data points is sampled with 

replacement and with equal probability of being sampled. In the original data set, either the value 

of data point is given for detected data or the detection limit is given for censored data. 

Therefore, for each data point, an indicator symbol δ  is given to indicate whether it is a detected 

value or below a detection limit. A value ofδ equal to 1 was used to represent a data point below 

a detection limit and δ  equal to 0 was used to represent a detected data point.  In the case of non-

detected data, the numerical value of the data point used in the bootstrap simulation was the 

detection limit itself.  When generating bootstrap samples from the original censored data set, 

both the data point value and its indicator symbol were sampled together. Therefore, for each 

bootstrap sample, it is known as to which data points are detected and which data points are 

censored. For each bootstrap sample, MLE was used to fit a parametric distribution. Thus, B 

estimates of the distribution parameters and of the fitted distributions were developed. Values of 

the mean and standard deviation were simulated by generating 500 random samples from each of 

the B fitted distributions. Because the statistics of a specific percentile can not be obtained from 

analytical solution, numerical method is used instead of analytical method. The overall scheme 

of the bootstrap simulation method for censored data is described in Figure 1. 
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4.0 Robustness Test of the Bootstrap Method for Quantifying Uncertainty     

in the Statistics of Censored Data Sets 

A controlled test was designed to evaluate the robustness of the MLE/Bootstrap method 

when applied to analyze variability and uncertainty of censored data sets with a single detection 

limit and with multiple detection limits. In order to do this, different population distributions 

were first specified for lognormal, gamma and Weibull distributions with mean equal to 1. In 

order to evaluate the impact of different levels of variability, for each type of parametric 

distribution cases were considered based upon coefficients of variation equal to 0.5, 1 and 2. In 

order to exactly match the assumed mean and coefficient of variation, the parameters of the  

assumed population distributions were determined using the Method of Matching Moments.5, 21 

The estimated parameters of each distribution are shown in Table 1. In order to evaluate different 

degrees of censoring with a single detection limit, different detection limits corresponding to 

30% and 60% cumulative probability of censoring were obtained based upon the inverse 

cumulative distribution function of each assumed population distribution. Bootstrap samples 

were obtained from the specified population distribution. All data values in the bootstrap samples 

below the assumed detection limit in each case were treated as non-detects. The censoring degree 

here is nominal since it actually varies for each bootstrap sample. In order to evaluate the effect 

of different data sample sizes, three sample sizes of 20, 40 and 100 were considered for each 

type of distribution, coefficient of variation and degree of censoring. The MLE/Bootstrap method 

was applied to each specified population distribution for each type of distribution, coefficient of 

variation, degree of censoring and sample size. In addition to test cases with only one detection 

limit, cases with two detection limits and three detection limits were considered. For the tests 
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with multiple detection limits, 60 percent of the data set was assumed to be below one or more 

detection limits.  

For cases with two detection limits, one detection limit was assigned to the 30 percent 

cumulative probability value, designated as DL2, and the other was assigned to the 60 percent 

cumulative probability value, designated as DL3. During bootstrap simulation, any randomly 

sampled value less than DL2 was treated as a non-detected value with a detection limit of DL2. 

Similarly, any sampled value greater than DL2 but less than DL3 was treated as a non-detected 

value with detection limit DL3. For cases with three detection limits, detection limits were 

assigned to the 10, 30 and 60 percentiles of the distribution, designated as DL1, DL2 and DL3, 

respectively.  

For multiple detection limits as described above, non-detected values greater than one 

detection limit but less than another (e.g., between DL2 and DL3) were handled as interval-

censored data.22 For example, for the lognormal distribution, the log- likelihood function for 

interval censoring with two detection limits is: 
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In interval censoring, the probability that a data point is between DL1 and DL2 is equal to the 

cumulative probability of DL2 minus the cumulative probability of DL1. The numerical values 

of the detection limits for each type of distribution and coefficient of variation are given in Table 

2.  
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The uncertainty in the cumulative distribution function of a specified parametric 

distribution is quantified based upon 95% confidence intervals obtained by bootstrap simulation. 

Figures 2 to 4 show uncertainty results for lognormal distributions with coefficients of variation 

of 0.5, 1 and 2, respectively. These figures show results for three sample size (10, 20 and 40) and 

for no censoring, 30% censoring and 60% censoring. Where applicable, the detection limit is 

shown by a vertical dashed line.  

From Figure 2, the range of uncertainty becomes larger for the portion of the distribution 

below the detection limit as the percentage of censoring increases. Thus, as expected, there is 

more uncertainty regarding the estimate of the portion of the distribution that is below detection 

than there would be if all of the data had been detected. Comparing the three charts in any row of 

Figure 2, the 95% confidence interval of the specified distribution becomes narrower as the 

sample size increases from 10 to 20 to 40. Figures 3 and 4 reveals similar trends with respect to 

the amount of censoring and sample sizes. A comparison of Figures 2, 3 and 4 for the same  

percentage of censoring and the same sample sizes, reveals that the 95% confidence interval of 

the distribution gets wider as the coefficient of the variation increases from 0.5 to 1 to 2. Thus, 

the range of uncertainty is shown to increase as the range of variability increases with all else 

held constant. Although not shown, similar comparison were done for the gamma and Weibull 

distributions as a function of amount of censoring, sample size and coefficient of variation and 

similar results were obtained regarding the influence of the these factors on uncertainty.   

In order to evaluate the influence of distribution type, sample size, coefficient of 

variation, and amount of censoring on the average value and 95 percent confidence interval of 

the mean, the MLE/Bootstrap method was conducted 10 times to each specified population 

distribution to get more stable results. B = 1000 were used each time. As shown in Table 3, the 
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estimated mean of the specified population distribution is 1.00 in each case. The MLE method 

does not guarantee that the moments of fitted distribution will be the same as the moments of the 

underlying population distribution. Nonetheless, for a sample size of 100, the average mean 

value from the bootstrap simulation was equal to 1.00 for the gamma and Weibull distributions 

for all cases considered. For the lognormal distribution and n = 100, the average mean value is 

1.00 for all cases with CV = 0.5 and for the 0% and 30% censoring cases with CV = 1. The 

average mean value for n =100 for the lognormal tends to deviate slightly from 1.00 as the 

coefficient of variation increases and as the amount of censoring increased as indicated by 

average mean values of 1.01 to 1.03 for the cases of n = 100 and for different amounts of 

censoring. As sample size decreases, there tends to be more variation in the average value of the 

mean compared to the population mean, particularly for CV = 2.0. For example, considering all 

cases for CV = 0.5 and CV = 1.0, the average means range from 1.00 to 1.03, with the largest 

deviation occurring at 60% censoring and the smallest sample size. In contrast, for CV = 2, the 

average means vary from 1.00 to 1.13, with the largest deviation occurring at a sample size of 20 

with 60% censoring. The gamma distribution appears to provide the most consistent estimate of 

the mean, with average mean values varying only from 1.00 to 1.01 over all cases considered 

compared to a range of 1.00 to 1.13 for the lognormal distribution and 1.00 to 1.04 for the 

Weibull distribution. Considering different distribution types and coefficients of variation, the 

worst case overall is for lognormal distribution with coefficient of variation equal to 2. 

Compared to other probability models, the lognormal distribution is “tail-heavy”.5 Because the 

results of MLE are highly influenced by values at the upper tail, the results tend to vary more for 

small sample size and for the lognormal distribution.  
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When interpreted with respect to the confidence intervals of the mean, the deviations of 

the average mean values compared to the population mean values are small. For example, the 

mean of 1.13 for the lognormal case with n = 20, CV = 2, and 60% censoring has a 95 percent 

confidence interval of 0.48 to 2.49. The similar case for the Weibull distribution has a mean of 

1.04 and a confidence interval of 0.38 to 2.22. Both confidence intervals well enclose the 

population mean of 1.00. As expected, for a given distribution, CV, and amount of censoring, the 

confidence intervals become narrower as the sample size increases. For a given sample size and 

CV, the confidence intervals tend to widen as the amount of censoring increases. However, the 

width of the confidence interval for any given distribution, sample size, and CV is relatively 

insensitive to the amount of censoring. As shown in Table 2, the detection limits for 30% and 

60% censoring are typically less than or approximately equal to the mean value of the 

distribution. However, because means are more sensitive to large values than to small values, 

additional uncertainty in the non-detected region of the distribution does not substantially 

influence the confidence interval for the mean in this case. The only apparent exception to this 

trend is for the lognormal distribution with n = 20 and CV = 2, for which the upper bound of the 

95 percent confidence interval changes with censoring. However, of all the cases considered 

these are numerically the least stable and the differences in results are only modest.  

The influence of multiple detection limits on the mean and 95 percent confidence interval 

of the mean are evaluated in Table 4. For sample sizes of 40 and 100, and particularly, for the 

gamma and Weibull distributions, the average mean values are typically equal to 1.00 except for 

a few cases, typically associated with only one detection limit, in which the average mean varies 

from 1.00 to 1.04. For the lognormal distribution, this type of result was obtained only for CV = 

0.5. For CV = 1 and especially for CV = 2, the average means for the lognormal case range from 
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1.00 to 1.13. The highest average means occur for smaller sample size and fewer detection 

limits. A detailed investigation of the bootstrap samples revealed that the MLE method produces 

fitted distributions that are sensitive to sample values obtained in the upper tail. The sensitivity to 

such samples is greater for smaller sample sizes. Furthermore, the sensitivity to artifacts of 

samples from the upper tail are more influential for cases with only one detection limit versus 

cases with multiple detection limits. With multiple detection limits, more is known regarding the 

shape of the distribution in the non-detected region because the cumulative probability of each 

detection limit is included in the likelihood function. Thus, more constraint is imposed upon the 

shape of the distribution as the number of detection limits increases and, correspondingly, there 

is less influence of samples in the tail. Thus, although the MLE method is unbiased as sample 

size increases, for small sample values there can be apparent biases in the mean, especially for 

large CV and a tail-heavy parametric distribution. However, even in the worst case shown in 

Table 4, the 99 percent confidence interval of the mean well encloses the population values of 

1.00.  

The MLE/Bootstrap method can also be used to estimate uncertainty in statistics other 

than the mean, such as the median and 90th percentile as illustrated in Table 5 for the example of 

the Weibull distribution with CV = 2 for n = 20 and n = 100. The analytical solutions for the 

median and 90th percentile of this distribution are 0.30 and 2.67 respectively. The average 

estimates of the statistics are equal or very close to the analytical solution for all levels of 

censoring, although the difference between the simulated and population value tends to increase 

slightly with more censoring for n = 20. The confidence intervals for the median tend to widen 

slightly as the percentage of censoring increase. This is expected since the median is below the 

detection limit associated with 60 percent censoring. Although not shown here, the cases for the 
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other coefficients of variation and distribution types were also studied and similar results were 

obtained.  

5.0 Evaluation of the Bootstrap Method for Estimating the Mean of 

Censored Data Sets 

The objective of this section is to verify that the MLE/Bootstrap method is reliable with 

respect to estimation of the mean even for small sample size. For this purpose, 20 synthetic data 

sets with sample size 20 were randomly generated from a gamma distribut ion with a mean of 1 

and standard deviation of 1. The samples in the synthetic data set were ranked in ascending 

order. Different detection limits were assigned to each synthetic data set in order to achieve 

different amounts of censoring including 30% and 60%. That is, for each synthetic data, the 

detection limit corresponding to 30% censoring is assigned a value equal to the average of the 6th 

and 7th ranked data points in the 20 data points, and the detection limit corresponding to 60% 

censoring is assigned a value equal to the average of the 12th and 13th ranked data points. The 

MLE/Bootstrap method was applied to get the best estimate of the mean. The t-test was applied 

to the 20 best estimates of means to test if their average was statistically significantly different 

from the population mean of 1. The results are shown in Table 6.  

For all three levels considered in Table 6, the p-values of the t test are larger than the 

significance level of 0.05. Therefore, the hypothesis can not be rejected which indicates that the 

best estimate of the means from the MLE/Bootstrap method are reliable for synthetic data sets.    

In order to compare the best estimate of the mean from the MLE/Bootstrap method with 

that from conventional methods, 5 methods were applied to the sample data sets as summarized 

in Table 7. For 0% censoring, the averages of the best estimates of the means from all of the 

conventional methods are the same and equal to the arithmetic average of the original data sets. 



 32

The MLE/Bootstrap result of 0.990 is slightly different than the arithmetic average because MLE 

does not preserve the moments. However, the estimated mean is within one percent of the 

population mean.  

The methods of ignoring non-detected values and averaging only detected data, and of 

replacing non-detected values with the detection limit, are shown to overestimate the mean. The 

bias becomes more pronounced as the amount of censoring increases. Conversely, the method in 

which non-detected values are assigned a value of zero clearly underestimates the mean. The 

commonly used method of replacing non-detected values with one-half of the detection limit 

appears to be unbiased for the example of 30% censoring but the bias inherent in this method 

becomes obvious at 60% censoring. In the latter case, the population mean is overestimated by 

6.5%. In contrast, the MLE/Bootstrap method provides consistent estimates of the mean 

regardless of the amount of censoring. The maximum deviation of the estimated mean from the 

population mean in these three cases of censoring is only 1.4 percent. Although not shown in the 

paper, the same tests for lognormal and gamma distributions were also done and similar 

conclusion can be drawn.  

6.0 Verification of the Uncertainty Estimates from the Bootstrap Method 

with the Kaplan-Meier Estimator Method 

The purpose of this section is to verify the accuracy of the novel method-MLE/Bootstrap 

method and the coded program for estimating the 95% confidence interval of the CDF when the 

population distribution is known. The confidence intervals for the CDF estimated from the 

MLE/Bootstrap method were compared with the results from the Kaplan-Meier estimator 

method. The Kaplan-Meier estimator is a non-parametric method which is used in analyzing 

right-censored data in survival analysis. However, with a simple transformation, the Kaplan-



 33

Meier estimator can be used in analyzing left-censored data sets.13 For this purpose, synthetic 

data sets with sample size of 40 were randomly generated from lognormal, gamma and Weibull 

distributions with mean equal to 1 and coefficients of variation equal to 0.5, 1 and 2. The 

samples in the randomly generated data set were ranked in ascending order. Different detection 

limits were assigned to the synthetic data sets in order to achieve 0%, 30% and 60% censoring. 

The MLE/Bootstrap method was applied to each synthetic data to get the CDF and the 95% 

confidence interval of the CDF.  

The test is to compare the 95% confidence interval of the CDF estimated by 

MLE/Bootstrap method and the Kaplan-Meier estimator. Since the Kaplan-Meier estimator 

method is a non-parametric method, 40 data points were evenly drawn from the CDF estimated 

by the MLE method and an empirical CDF and its 95% confidence interval were calculated for 

these 40 points using the Kaplan-Meier estimator method. Figures 5 to 7 show the comparison of 

the results of the confidence intervals of the CDF estimated from MLE/bootstrap and the Kaplan-

Meier estimator methods for lognormal, gamma and Weibull distributions, respectively.  

Both MLE and the Kaplan-Meier estimator are asymptotically unbiased methods. 

However, for finite sample size, the results of the estimated CDFs from both methods are 

different since their basic theories are different. The MLE is the parameter point for which the 

observed sample is most likely.16  The Kaplan-Meier estimator is based upon a conditional 

probability that a measurement after transformation will be greater than the ith ordered 

observation given that it is greater than the (i-1)th ordered observation used to estimate the 

survival function.13  The 95% confidence intervals estimated from the two methods are not 

exactly the same but they are similar. For example, for the lognormal distribution, when CV = 1 

and 30 percent censoring, the largest discrepancy of the results for the 95% confidence interval 
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of the CDF from these two methods is only 2.7 percent for the lower level and 2.9 percent for the 

upper level. Similar inferences can be made in other cases shown in the figures. 

7.0 Case Study for Estimation of Variability and Uncertainty in an 

Emission Factor Based Upon Censored Data  

As an example of an emission factor data set that contains censoring, a data set for 

formaldehyde emissions from external combustion sources fired with bituminous and 

subbituminous coal combustion was selected. The data set is given in Table 8. The data set 

contains 14 data points, of which 5 are censored.  Each of the five censored data points has a 

different detection limit. There are 2 data values that are greater than the largest of the five 

detection limits and 2 that are smaller than the smallest of the five detection limits. There are 

three detected data values that are greater than the smallest detection limit but smaller than the 

second smallest detection limit. There is one detected data value between the second and third 

detection limits. There is one detected data value between the fourth and fifth detection limits.  

When replacing censored data with DL/2, the lognormal distribution is the best fit for the 

data set based on Kolmogorov - Smirnov test at significance level of 0.05. As a screening step, 

lognormal distribution model was used to fit to the formaldehyde emission factor data set using 

MLE. It is shown as a dashed white line in Figure 8. In Figure 8, since there is uncertainty 

regarding what value of cumulative probability to assign to 7 of the detected data points that are 

less than the largest detection limit, the seven data points have possible cumulative probabilities.  

For example, the true but unknown values of the five non-detected data points could all be less 

than the numerical value of the smallest detection limit, which would imply that the smallest 

detected data point could have a rank of 6. However, it is also possible that the smallest detected 

data value could have a rank of 1 if the true but unknown values of all nondetected data points 
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are larger. The uncertainty regarding the possible cumulative probabilities of the detected data 

points is indicated by solid vertical lines in Figure 8. For the 2 values that are larger than the 

largest detection limit, there is no uncertainty regarding the cumulative probability in these cases. 

The five detection limits are indicated by dashed vertical line. 

From Figure 8, the fitted distribution agrees reasonably well with the observed data. The 

95 percent confidence interval on the fitted distribution encloses all of the detected values. The 

graphical comparison of the data points and fitted distribution and its confidence intervals further 

confirm that lognormal distribution is a reasonable model to represent the inter-unit variability in 

the formaldehyde emission factors.  

The detected formaldehyde emission factor data vary over almost two orders-of-

magnitude and the fitted distribution spans approximately three orders-of-magnitude.  Therefore, 

there is a large amount of uncertainty in the mean value associated with the small sample size, 

large amount of variability in the data, and the presence of non-detected measurements in the 

data set. The mean estimated based upon the fitted lognormal distribution was found to be 1.8 ×  

10-5 lb formaldehyde emitted per ton of coal combusted. The 95 percent confidence interval for 

the mean ranges from minus 77 percent to plus 209 percent of the mean value.  The asymmetry 

of this confidence interval is based upon the large amount of variability in the data, the relatively 

small sample size, and the fact that an emission factor must be non-negative. The mean could be 

estimated from the conventional methods as well. The estimated means are 2.7 ×  10-5, 1.7 ×  10-

5, 2.0 ×  10-5 and 2.2 ×  10-5 lb formaldehyde emitted per ton of coal combusted when using the 

methods of removing non-detects, replacing non-detects with zero, replacing non-detects with 

DL/2 and replacing non-detects with DL, respectively. The estimated mean from MLE/Bootstrap 

method is slightly larger than the results from replacing non-detects with zero, and smaller than 
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the result based upon removing the non-detects, replacing non-detects with DL/2 or DL in this 

case.  

8.0 Conclusions  

MLE is a flexible and reasonably robust method for fitting parametric distributions to 

censored data, based upon extensive case studies that address lognormal, gamma and Weibull 

distributions, sample sizes of 20 to 100, coefficients of variation of 0.5 to 2, and differing 

amounts and types of censoring, including single and multiple detection limits involving as much 

as 60 percent of the distribution. The capability of bootstrap simulation to estimate uncertainty in 

statistics of censored data sets represented by MLE fitted distributions was demonstrated for the 

cumulative distribution function, mean, median, and 90th percentile. The uncertainty estimate for 

a statistic is not substantially sensitive to censoring as long as the numerical value of the statistic 

is comparable to or greater than the largest detection limit. However, it is clear that the ranges of 

uncertainty of the portions of the CDF below the detection limit become larger with more 

censoring. Statistics that are sensitive to large values of a data set, such as the mean, may not be 

particularly sensitive to uncertainty associated with left-censoring. The MLE/Bootstrap method 

was shown to be asymptotically unbiased with respect to the mean and with respect to the 95 

percent confidence interval for the CDF in the non-censored region. Especially for larger sample 

size, the MLE/Bootstrap method was shown to give consistently unbiased estimates of the mean 

in comparison to conventional methods in which non detects are ignored or assigned arbitrary 

values of zero, one half of the detection limit, or the detection limit. The methodology for 

application of the MLE/Bootstrap method for dealing with censoring was illustrated by 

application to an empirical environmental data set for formaldehyde emissions.  
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The key advantages of the MLE/Bootstrap method is that it is a statistically rigorous, 

robust, and asymptotically unbiased method that can be used to make inferences for a wide 

variety of situations, including different types of distributions, coefficients of variation, sample 

sizes, and amounts of censoring with either single or multiple detection limits. Compared to 

simplified conventional methods, which are biased, the MLE/Bootstrap method is more 

computationally intensive. However, unlike conventional methods, the MLE/Bootstrap method 

enables estimation of uncertainty for any statistic, including the influence of uncertainty 

associated with censoring itself. The MLE/Bootstrap method can be incorporated as part of a two 

dimensional framework in which variability and uncertainty are distinguished. The 

MLE/Bootstrap method is recommended for consideration in environmental, risk assessment, 

and other policy relevant analyses in which censoring of data are present.  
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Table 1. Parameters of the Assumed Lognormal, Gamma and Weibull Population  
Distributions with Coefficients of Variation of 0.5, 1 and 2  

 Distribution CVa Parameter1b Parameter2b 

0.5 -0.112 0.472 
1 -0.347 0.833 

Lognormal 

2 -0.804 1.269 
0.5 4 0.25 
1 1 1 

Gamma 

2 0.25 4 
0.5 2.101 1.129 
1 1 1 

Weibull 

2 0.543 0.575 
  a Coefficient of Variation 
  b Refer to equations (1), (2) and (3) for parameter definitions 
 
 
Table 2. Detection Limits Associated with Different Cumulative Probabilities for 
Specified Population Distributions as a Function of Distribution Type and 
Coefficient of Variation 

Cumulative Probability for Detection Limit Distribution CVa 
10% 30% 60% 

0.5 0.488 0.698 1.008 
1 0.243 0.457 0.873 

Lognormal 

2 0.088 0.230 0.617 
0.5 0.436 0.691 1.044 
1 0.105 0.357 0.916 

Gamma 

2 0.00027 0.022 0.377 
0.5 0.387 0.691 1.083 
1 0.105 0.357 0.916 

Weibull 

2 0.0091 0.0861 0.490 
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  Table 3. Average and 95 Percent Confidence Intervals of Mean Estimated from Bootstrap Simulation for Lognormal, Gamma and           
  Weibull Distribution, Sample Sizes of 20, 40 and 100, Coefficients of Variation of 0.5, 1 and 2, and Censoring of 0,  
  30and 60 Percenta 

Lognormal Distribution Gamma Distribution Weibull Distribution CVb CPc Mean 
N = 20 N = 40 N = 100 N = 20 N = 40 N = 100 N = 20 N = 40 N = 100 

Average 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
2.5 percentile 0.80 0.85 0.90 0.79 0.85 0.90 0.79 0.85 0.89 

0% 

97.5 percentile 1.24 1.17 1.11 1.23 1.17 1.11 1.23 1.16 1.11 
Average 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.5 percentile 0.79 0.84 0.89 0.78 0.84 0.90 0.78 0.84 0.89 
30% 

97.5 percentile 1.24 1.17 1.11 1.23 1.17 1.11 1.23 1.16 1.11 
Average 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 

2.5 percentile 0.76 0.83 0.89 0.70 0.80 0.87 0.71 0.81 0.87 

0.5 

60% 

97.5 percentile 1.25 1.17 1.11 1.25 1.18 1.12 1.25 1.18 1.12 
Average 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.5 percentile 0.64 0.73 0.81 0.61 0.71 0.80 0.61 0.71 0.80 
0% 

97.5 percentile 1.52 1.36 1.23 1.51 1.36 1.23 1.50 1.35 1.23 
Average 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.5 percentile 0.65 0.73 0.81 0.61 0.71 0.80 0.61 0.71 0.80 
30% 

97.5 percentile 1.55 1.37 1.23 1.50 1.35 1.23 1.50 1.34 1.23 
Average 1.03 1.02 1.02 1.00 1.00 1.00 1.01 1.00 1.00 

2.5 percentile 0.63 0.72 0.82 0.56 0.68 0.78 0.58 0.69 0.79 

1.0 

60% 

97.5 percentile 1.58 1.39 1.26 1.51 1.36 1.23 1.51 1.35 1.23 
Average 1.04 1.01 1.01 1.00 1.00 1.00 1.02 1.01 1.00 

2.5 percentile 0.47 0.58 0.69 0.32 0.48 0.62 0.37 0.51 0.64 
0% 

97.5 percentile 2.13 1.73 1.45 2.08 1.73 1.47 2.15 1.77 1.48 
Average 1.08 1.04 1.03 1.00 1.00 1.00 1.03 1.01 1.00 

2.5 percentile 0.47 0.58 0.70 0.32 0.47 0.62 0.37 0.50 0.64 
30% 

97.5 percentile 2.38 1.85 1.52 2.05 1.75 1.48 2.17 1.79 1.49 
Average 1.13 1.05 1.03 1.01 1.00 1.00 1.04 1.01 1.00 

2.5 percentile 0.48 0.58 0.70 0.34 0.47 0.62 0.38 0.51 0.64 

2.0 

60% 

97.5 percentile 2.49 1.89 1.53 2.07 1.73 1.48 2.22 1.80 1.50 
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Table 3. Continued 
a The method was applied for 10 times, each with B = 1000. The average of the results for 10 times was reported. 
b CV = Coefficient of Variation, the population mean of each distribution is 1.00.  
c CP = Censoring Percentage 
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  Table 4. Average and 95 Percent Confidence Intervals of Mean Estimated from Bootstrap Simulation for Lognormal, Gamma and       
  Weibull Distributions, Sample Sizes of 20, 40 and 100, Coefficients of Variation of 0.5, 1 and 2, and Multiple Detection             
  Limits.a  

Lognormal Distribution Gamma Distribution Weibull Distribution CVb DLsc Mean 
N = 20 N = 40 N = 100 N = 20 N = 40 N = 100 N = 20 N = 40 N = 100 

Average 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 
2.5 percentile 0.76 0.83 0.89 0.70 0.80 0.87 0.71 0.81 0.87 1 
97.5 percentile 1.25 1.17 1.11 1.25 1.18 1.12 1.25 1.18 1.12 

Average 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
2.5 percentile 0.79 0.84 0.89 0.78 0.84 0.90 0.77 0.84 0.89 2 
97.5 percentile 1.25 1.17 1.11 1.23 1.17 1.11 1.24 1.16 1.11 

Average 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
2.5 percentile 0.79 0.84 0.90 0.78 0.84 0.90 0.78 0.84 0.89 

0.5 

3 
97.5 percentile 1.23 1.17 1.11 1.23 1.17 1.11 1.23 1.16 1.11 

Average 1.03 1.02 1.02 1.00 1.00 1.00 1.01 1.00 1.00 
2.5 percentile 0.63 0.72 0.82 0.56 0.68 0.78 0.58 0.69 0.79 1 
97.5 percentile 1.58 1.39 1.26 1.51 1.36 1.23 1.51 1.35 1.23 

Average 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
2.5 percentile 0.64 0.73 0.81 0.60 0.70 0.80 0.60 0.70 0.80 2 
97.5 percentile 1.55 1.37 1.23 1.51 1.34 1.23 1.50 1.35 1.23 

Average 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
2.5 percentile 0.64 0.73 0.81 0.60 0.70 0.80 0.61 0.71 0.80 

1.0 

3 
97.5 percentile 1.55 1.36 1.23 1.49 1.35 1.24 1.50 1.35 1.23 

Average 1.13 1.05 1.03 1.01 1.00 1.00 1.04 1.01 1.00 
2.5 percentile 0.48 0.58 0.69 0.34 0.47 0.62 0.38 0.51 0.64 1 
97.5 percentile 2.49 1.89 1.53 2.07 1.73 1.48 2.22 1.80 1.50 

Average 1.08 1.04 1.03 1.00 1.00 1.00 1.03 1.01 1.00 
2.5 percentile 0.47 0.58 0.70 0.32 0.47 0.63 0.37 0.50 0.64 2 
97.5 percentile 2.38 1.85 1.52 2.07 1.75 1.48 2.17 1.79 1.50 

Average 1.05 1.02 1.01 1.00 1.00 1.00 1.02 1.01 1.00 
2.5 percentile 0.46 0.57 0.69 0.32 0.47 0.62 0.36 0.50 0.65 

2.0 

3 
97.5 percentile 2.24 1.76 1.46 2.09 1.75 1.46 2.15 1.77 1.48 
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Table 4. Continued 
a The method was applied for 10 times, each with B = 1000. The average of the results for 10 times was reported. 
b CV = Coefficient of Variation, the population mean of each distribution is 1.00.  
c CP = Censoring Percentage 
 

 

Table 5. Average and 95 Percent Confidence Intervals of the Median and 90th Percentile Estimated from Bootstrap Simulation for the      
Weibull Distribution, Sample Sizes of 20 and 100, Coefficient of Variation = 2, and 0%, 30% and 60% Censoringa                                 

N = 20 N = 100 Censoring 
Percentage 

Statistics 
Median 90th Percentile Median 90th percentile 

Average 0.33 2.62 0.30 2.62 
2.5 percentile 0.11 0.94 0.18 1.67 0% 
97.5 percentile 0.72 5.50 0.46 3.90 

Average 0.33 2.62 0.30 2.61 
2.5 percentile 0.089 0.94 0.17 1.66 30% 
97.5 percentile 0.75 5.55 0.47 3.93 

Average 0.35 2.58 0.30 2.61 
2.5 percentile 0.055 0.91 0.15 1.65 60% 
97.5 percentile 0.81 5.50 0.50 3.91 

a The method was applied for 10 times, each with B = 1000. The average of the results for 10 times was reported. 
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Table 6. Test of Hypothesis that the Average of Bootstrap Means Are Not 
          Statistically Significantly Different from the Population Mean: 

                     Gamma Distribution, Population Mean = 1, Population Coefficient of 
     Variation = 1, Sample Size = 20, Three Levels of Censoring 

Best Estimate of Meanb 
Casea 

0% Censoring 30% Censoring 60% Censoring 
1 0.986 0.991 1.010 
2 0.996 1.000 1.160 
3 1.039 1.022 0.995 
4 1.005 1.025 1.034 
5 0.963 0.951 1.009 
6 1.031 1.035 1.101 
7 0.992 0.976 0.938 
8 1.000 0.980 0.939 
9 0.970 0.977 1.026 
10 0.946 0.946 0.967 
11 0.995 1.016 0.962 
12 0.956 0.940 0.903 
13 1.032 1.022 0.983 
14 1.024 1.008 0.977 
15 0.955 0.954 0.979 
16 1.013 1.012 1.125 
17 0.964 0.948 1.024 
18 0.964 0.957 0.918 
19 0.945 0.942 0.932 
20 1.027 1.016 1.033 

Average 0.990 0.986 1.001 
Standard 
Deviation 0.0309 0.0325 0.0678 

Min 0.945 0.940 0.903 
Max 1.039 1.035 1.160 

Hypothesis The average of the mean for the 20 cases = 1 
p-value for 

T-test 0.1701 0.0675 0.9610 

Conclusion Hypothesis Not Rejected 
                      a Synthetic data sets with sample size 20, generated from population  
                        distribution of Gamma (1,1)  
                      b Average value of the mean based upon bootstrap simulation with B = 500 
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Table 7. Comparison of the Average Mean Value Based Upon 20 Synthetic Data Sets from a Gamma Distribution with Mean = 1,    
 Coefficient of Variation = 1, and Sample Size = 20 for Three Levels of Censoring and Five Estimation Methodsa 

Percentage of Censoring Estimation Methods 
0% 30% 60% 

Ignoring non-detected values 0.995 1.351 1.921 
Replacing values below DL with zero 0.995 0.946 0.768 
Replacing values below DL with DL/2 0.995 0.996 1.065 

Replacing values below DL by DL 0.995 1.046 1.181 
MLE/Bootstrap methodb 0.990 0.986 1.001 

      a average on the best estimated means for the same data sets as in Table 6 with different methods     
      b based upon the average of bootstrap simulation for 20 data sets, each with B = 500 
 
Table 8. Input Data of Formaldehyde Emission Factors 

Rank Value (10-4 lb/ton) Indicator Symbol Note 
1 0.173 0 Detected 
2 0.224 0 Detected  
3 0.298 1 Censored, the value is DL 
4 0.346 0 Detected 
5 0.357 0 Detected  
6 0.607 0 Detected 
7 0.614 1 Censored, the value is DL 
8 0.95 0 Detected 
9 1.3 1 Censored, the value is DL 
10 1.41 1 Censored, the value is DL 
11 2.22 0 Detected 
12 3.08 1 Censored, the value is DL 
13 3.78 0 Detected 
14 15.6 0 Detected 
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Input original data sets, including values for detected data 
and detection limits for censored data. For non-detects, a 

data flag, δ , is set to 1, otherwise use 0. 

Empirical bootstrap simulation to generate B replications of original data 
sets together with its indicator symbol. For detected data, the data value is 

sampled. For non-detected data, the detection limit is sampled. 

Fit parametric distribution to each bootstrap sample using MLE 

Monte Carlo simulation to generate p random samples from each 
parametric distribution to represent its variability 

Calculate statistics from p random samples from each distribution 

Based upon B replications of selected statistics (e.g., mean), estimate 
the sampling distribution of the statistics 

 

Figure 1. Scheme of Quantification of Variability and Uncertainty for Censored Data Sets 
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Figure 2. 95 Percent Confidence Intervals for Uncertainty in the Cumulative Distribution Function for Lognormal Distribution               
               with Coefficient of Variation of 0.5, Sample Sizes of 10, 20 and 40, With No Censoring, 30% Censoring, and 60%  
               Censoring (B=500) 

      Sample size = 10            Sample size = 20   Sample size = 40 
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Figure 3. 95 Percent Confidence Intervals for Uncertainty in the Cumulative Distribution Function for Lognormal Distribution  
               with Coefficient of Variation of 1, Sample Sizes of 10, 20 and 40, With No Censoring, 30% Censoring, and 60%  
               Censoring (B=500) 

 Sample size = 10  Sample size = 20 Sample size = 40 
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Figure 4. 95 Percent Confidence Intervals for Uncertainty in the Cumulative Distribution Function for Lognormal Distribution  
               with Coefficient of Variation of 2, Sample Sizes of 10, 20 and 40, With No Censoring, 30% Censoring, and 60%                           
               Censoring (B=500) 
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Figure 5. Comparison of 95 Percent Confidence Intervals of Cumulative Distribution Functions for the MLE/Bootstrap and Kaplan-    
               Meier Estimator Methods for Different Amounts of Censoring and Coefficients of Variation for Lognormal Distributions  
               (Results from MLE/Bootstrap Method Are Represented by Continuous Lines and Results from Kaplan-Meier Estimator Are     
               Represented by Dots, Sample Size = 40)  
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                                       CV = 0.5                                                         CV = 1                                                        CV = 2 
 
Figure 6. Comparison of 95 Percent Confidence Intervals of Cumulative Distribution Functions for the MLE/Bootstrap and Kaplan-             
                Meier Estimator Methods for Different Amounts of Censoring and Coefficients of Variation for Gamma Distributions  
                (Results from MLE/Bootstrap Method Are Represented by Continuous Lines and Results from Kaplan-Meier Estimator Are  
                Represented by Dots, Sample Size = 40)  
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                                     CV = 0.5                                                        CV = 1                                                              CV = 2 
 
Figure 7. Comparison of 95 Percent Confidence Intervals of Cumulative Distribution Functions for the MLE/Bootstrap and Kaplan-             
                Meier Estimator Methods for Different Amounts of Censoring and Coefficients of Variation for Weibull Distributions  
                (Results from MLE/Bootstrap Method Are Represented by Continuous Lines and Results from Kaplan-Meier Estimator Are  
                Represented by Dots, Sample Size = 40)  
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Abstract. Air toxic emission factor data often contain one or more censored points below a 

single or multiple detection limits. Conventional methods used to deal with censored data sets 

include removing non-detects, or replacing the censored points with zero, half of the detection 

limit or the detection limit. However, the estimated means of the censored data set by 

conventional methods are usually biased. Maximum likelihood estimation (MLE) and bootstrap 

simulation have been demonstrated as a statistically robust method to quantify variability and 

uncertainty of censored data set and can provide asymptotically unbiased mean estimates. Here, 

the MLE/bootstrap method is applied to 16 cases of censored air toxic emission factors, 

including benzene, formaldehyde, Benzo(a)pyrene, mercury, arsenic, cadmium, total chromium, 

chromium VI and lead with single or multiple detection limits from coal, fuel oil and/or wood 

waste  external combustion sources. The proportion of censored values in the emission factor 

data ranges from 4 to 80 percent. The largest range of uncertainty in the mean was obtained for 

the external coal combustion benzene emission factor, with a 95 percent probability range of 

minus 93 to plus 411 percent of the mean.    

Key Words:  Urban air toxics, Emission factor, Censored data sets, Maximum likelihood 

estimation, bootstrap simulation 

1.0     Introduction 

The U.S. Environmental Protection Agency (EPA) has developed a list of 33 urban air 

toxics that represent the priority for additional assessment of the health effects of human 

exposure to air toxics in urban areas (Smith et al. 1999). Emission estimates are one of the key 

inputs to an exposure assessment, and are the focus of this paper. Because exposure assessments 

require explicit quantification of variability and uncertainty (NAS, 1994; EPA, 1997; Cullen and 
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Frey, 1999), there is a need for methods and case studies or probabilistic emission estimates for 

air toxics.   

A key challenge to quantification of inter-unit variability in emissions is that, because of 

inherent limitations of chemical/analytical measurement methods, emission factor data sets of 

urban air toxics often contain several observations reported as below a detection limit (DL), and 

are referred to as “censored.” These data sets can have multiple detection limits. Multiple 

detection limits arise when individua l measurements are collected by different sampling and 

analytical procedures at different facilities within a source category. An ability to accurately 

estimate average emissions, and the variability and uncertainty in emissions, based upon 

censored data is a key need in urban air toxics exposure and risk assessment. If non-detected 

measurements are not properly accounted for, exposure and risk could be significantly 

misestimated (Patrick 1994).  

One of the important emission source categories for urban air toxics are external 

combustion sources. These sources include steam-electric generating plants, industrial boilers, 

and commercial and residential combustion systems, such as for space heating. External 

combustion sources, using fuels including coal, fuel oil, and wood waste, has been estimated to 

contribute 70 percent of mercury emissions and 85 percent of arsenic emissions in the case of 

Jacksonville, FL (Tilley 2003), and are considered to be significant emission sources of these and 

other pollutants in other urban areas. Emission factor data for these sources are available via 

EPA publications (EPA 1993a, b, 2001). These data include proportions of censoring ranging 

from 4 to 80 percent. Thus, there is a need to develop accurate estimates of the mean emission 

factors and their uncertainty.  
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Zhao and Frey (2003) demonstrated an asymptotically unbiased method based upon 

maximum likelihood estimation (MLE) and bootstrap simulation for quantifying inter-unit 

variability, and uncertainty in statistics such as the mean, for censored data sets.  In contrast, this 

paper demonstrates the use of the MLE/bootstrap method for estimation of variability and 

uncertainty for an extensive set of emission factors.  For each of the three fuel sources 

considered, the available emission factor data include one or more of benzene, formaldehyde, 

mercury, arsenic, cadmium, chromium, lead, and Benzo(a)pyrene (B(a)p), for a total of 16 

emission factor case studies.   

1.1       Sources of Variability and Uncertainty 

Variability refers to the heterogeneity across different elements of a population over time 

or space. Uncertainty is lack of knowledge regarding the true value of a quantity. Uncertainty is 

typically attributable to: (1) random measurement errors (lack of precision); (2) systematic errors 

(bias or lack of “accuracy”) such as would be caused by imprecise calibration or use of surrogate 

data; (3) lack of empirical basis such as would occur when measurements have not been taken or 

when estimating emissions for a future source; or (4) human error such as random mistakes in 

entering or processing data. Variability and uncertainty can both be represented as probability 

distributions in a two-dimensional modeling framework. For example, confidence intervals can 

be constructed with respect to a best estimate of the cumulative distribution function (CDF) for 

variability. The range of the confidence intervals for the CDF represents uncertainty (Bogen and 

Spear 1987; Frey and Rhode 1996; Webster and Shih 1996; Cullen and Frey 1999; Frey and 

Zheng 2002a, b; Frey and Bammi 2002; Sadiq et al 2002). 
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1.2       Variability and Uncertainty in Urban Air Toxic Emissions  

Air toxics emissions are subject to both variability and uncertainty (Patric 1994; Frey and 

Rhode 1996; Frey and Bharvirkar 2002). Variability and uncertainty in air toxics emissions are a 

contributing factor to variability and uncertainty in estimates of exposure and risk. Quantification 

of variability and uncertainty in air toxics emissions is needed to identify high emitters or highly 

exposed populations as well as to characterize the quality of an emissions inventory and to target 

data collection to reduce uncertainty.  

The objective of this paper is to demonstrate the use of the MLE/bootstrap method to 

quantify the variability and uncertainty in censored air toxics emission factor data, based upon 

case studies for 16 censored emission factor data sets for external combustion sources. The key 

questions addressed in this paper include: 

• How should inter-unit variability and uncertainty in emission factors be quantified 

for censored data sets? 

• Is the mean estimate and the estimate of uncertainty in the mean sensitive to the 

choice of parametric distribution for inter-unit variability? 

• What characteristics of censored data sets are important determinants of 

uncertainty in the mean? 

• What is the relative range of uncertainty in the mean estimates of selected air 

toxic emission factors? 

2.0 Methodology 

Conventional approaches for estimating the mean of censored data sets are briefly 

reviewed. The key elements of the MLE/bootstrap simulation, and the approaches used to assess 

goodness-of- fit of parametric distributions compared to the empirical data, are presented.   
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2.1 Conventional Approaches to Dealing with Censored Data 

Hass and Scheff (1990) have compared four conventional methods for estimating means 

of censored data:  

• Using values only above DL to calculate a mean value, and ignoring information 

regarding non-detects, which leads to a biased estimate of the mean; 

• Replacing values below DL with zero, which leads to an underestimate of the true mean; 

• Replacing values below DL by DL/2, which leads to an approximate but biased estimate 

of the true mean; 

• Replacing values below DL by DL, which leads to an overestimate of the true mean; 

The conventional methods produced biased estimates of the mean and of other statistics, such as 

the variance. The bias typically worsens as the amount of censoring increases. In contrast, bias-

corrected MLE estimates were found to be more accurate compared to other methods (Newman 

et al 1989; Gilliom and Helsel 1986; Elvira et al 1999; Burmaster and Wilson 2000; Frey and 

Zhao 2003). Moreover, an approach  based upon fitting distributions to data using MLE enables 

more accurate insight regarding the entire distribution of variability than can be obtained via the 

four conventional approaches (Zhao and Frey 2003). Bootstrap simulation can be applied to 

estimate uncertainty in any statistic of the fitted distribution.  

2.2 Method of Maximum Likelihood Estimation 

In order to fit a parametric distribution representing inter-unit variability to censored data, 

MLE is used to estimate the distribution parameters based upon the observed sample of data.  

When applying MLE to left-censored data, the cumulative probability of the detection limit is 

used in lieu of the likelihood for each non detected measurement. The likelihood function for 

censored data sets having multiple detection limits is  (Zhao and Frey 2003): 
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Where, 

           θ θ θ, , ,2 K k = Parameters of the distribution 

             xi                     = Detected data point, where, i = 1, 2, …, n 

             NDm             = Number of non-detects corresponding to detection limit DLm,      

                                 where, m = 1, 2, …, P. 

             P               = Number of detection limits 

             f( )            = Probability density function 

             F( )           = Cumulative distribution function 

2.3 Lognormal, Gamma and Weibull Distributions 

For environmental data sets, such as concentrations or emission factors, lognormal, 

gamma and Weibull distributions are often chosen as parametric distributions to represent 

variability in data (Seinfeld, 1986; Frey and Rhode 1996; Cullen and Frey 1999; Frey and Zheng 

2002a, b; Frey and Bharvirkar 2002; Frey and Bammi 2002). One of the most widely used 

distributional forms in probabilistic assessment is the lognormal distribution. The lognormal 

distribution describes random variables resulting from multiplicative processes (Ott 1990; Ott 

1995). The gamma distribution is non-negative, positively skewed, and similar to the lognormal 

distribution in many cases but it is less “tail heavy” (Cullen and Frey 1999). The Weibull 

distribution is a flexible distribution that can assume negatively skewed, symmetric, or positively 

skewed shapes (Cullen and Frey 1999). It also may be used to represent non-negative quantities. 

In this paper, these three distribution types are used to analyze censored air toxics emission 

factor data. The fitted parametric distribution is used to represent inter-unit variability.  
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2.4 Bootstrap Simulation 

Parametric bootstrap simulation is often used to estimate confidence intervals for 

statistics of data sets or parameters of fitted distribut ions in cases without censoring (Efron and 

Tibshirani 1993; Frey and Rhodes 1996; Cullen and Frey 1999; Frey and Bammi 2002; Frey and 

Zheng 2002a; Sadiq et al 2002; Frey and Bharvirkar, 2002; Zhao and Frey 2003; Faraggi, 2003). 

In conventional parametric bootstrap simulation, a parametric probability distribution 

representing variability is fit to the observed data, which has a sample size of n. To simulate 

random sampling error, Monte Carlo simulation is used to randomly simulate B synthetic data 

sets, referred to as bootstrap samples, each of sample size n. In the approach used here, 

parametric distributions are fit to each bootstrap sample. The sampling distribution of a given 

statistic, such as the mean, variance, or distribution percentiles are estimated based upon B 

replications of the statistic. For censored data set with only one detection limit that is smaller 

than all observed value in the data, parametric bootstrap simulation can also be used. In each 

bootstrap sample, simulated values below the detection limit are identified as non-detects. Thus, 

these bootstrap samples would be composed of censored data sets with the same detection limit 

as the original data set.  

However, in the case of censored data set with multiple detection limits, or with a single 

detection limit that is larger than at least one detected point, the parametric bootstrap simulation 

method discussed above can not be directly applied. In order to generate bootstrap samples with 

random variation in the number of non-detects and for which some detection limits may be larger 

than the sample values of some observations, empirical bootstrap simulation using bootstrap 

pairs is used. Each data point in the original data set is paired with a binary indicator variable. 

The binary indicator variable denotes whether the data point is an observation or a detection 
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limit. Both the data point and the indicator symbol are sampled together in an empirical bootstrap 

simulation. Therefore, the status of each data point is known. The MLE method for fitting 

distributions to censored data is applied to each bootstrap sample to get B replications of the 

CDF and of statistics of interest (Zhao and Frey 2003). In this way, the variability and 

uncertainty of multiply censored data can be quantified.  

2.5 Evaluation of Goodness-of-fit 

The Kolmogorov-Smirnov (K-S) test and graphical comparison of the CDF of the fitted 

distribution to the data are widely used to evaluate the goodness-of- fit of parametric distributions 

fit to uncensored data (Morgan and Henrion 1990; Cullen and Frey 1999; Lu, 2003). However, 

the K-S test cannot be directly applied to in the case of a censored data set. To gain semi-

quantitative insight regarding goodness-of-fit for a censored data set, an approximation 

procedure is used. For this purpose only, each non-detected measurement was replaced with one 

half of its detection limit to create a modified data set. The K-S test was applied to a distribution 

that was fit to the modified data set. If the fitted distribution was not rejected the K-S test at 

significance level of 0.05 for the modified data, it was taken as a reasonable candidate parametric 

distribution for the original censored data.  The candidate type of parametric distribution was 

then fit to the censored data taking into account the presence of non-detects, resulting in different 

parameter estimates than for the modified data set.  This is a semi-quantitative approach that can 

be used to guide the selection of several candidate probability distribution models to fit to 

censored data. A comparison of the bootstrap confidence intervals for the CDF of the fitted 

distribution to the observed data was applied to confirm the adequacy of the fit and to help guide 

the choice regarding a preferred distribution. The larger the proportion of data contained within 

the confidence intervals, the stronger the preference toward a particular candidate distribution.   
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3.0 Case Studies 

In this section, the variability and uncertainty of 16 censored air toxic emission factor 

data sets were quantified. The results regarding selection of a best fitting parametric distribution 

for inter-unit variability, the MLE parameter estimates of the fitted distribution, and the bootstrap 

confidence intervals for the mean, are given. The mean estimates were compared with those from 

conventional methods.    

3.1 Data 

Empirical censored air toxic emission factor data from external combustion sources were 

obtained from background documents of EPA’s report AP-42 that compiles emission factors for 

stationary sources (EPA 1993a, b; EPA 2001). Urban air toxic pollutants for which data were 

available for one or more of the three fuels considered include benzene, formaldehyde, 

benzo(a)pyrene (B(a)p), mercury, arsenic, cadmium, chromium and lead.  

Table 1 summarizes the available emission factor data with respect to the pollutant, fuel, 

sample size, percentage of censoring, multiple detection limits, variability factor, relative 

maximum detection limit and unit.  

There are a total of 16 censored data sets. Each data set is for a specific urban air toxic 

emitted from combustion of a specific fuel type. The sample sizes vary from 8 to 29. The 

censored data of Case Nos. 1, 2, 13 and 14 have a single detection limit, while the others have 

multiple detection limits. There are nine data sets in which less than 30% of the observations are 

censored. Four data sets have between 30% and 60% censoring and three have greater than 60% 

censoring. The latter are defined as highly censored data. The variability factor given in the table 

is defined as the largest detected value divided by the smallest detected value. The variability 

factor is an approximate relative indicator of variability in the data. The variability factors range 
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from 2 to more than 30,000. For Case Nos. 3, 7, 8 and 16, one or more detection limits are larger 

than the largest detected value.   

3.2 Quantification of Inter-Unit Variability and Graphical Evaluation of Goodness-of-

fit 

The approximation procedure for identifying promising candidate distributions to fit to 

the censored data was applied to 13 of the 16 emission factor data sets. Data sets for Case Nos. 3, 

5 and 8 were not included because the procedure was deemed to be unreliable in cases with a 

high degree of censoring.  Thus, for Case Nos. 3, 5 and 8, all three types of parametric 

distributions were considered for evaluation in the later step involving graphical analysis. Of the 

remaining 13 cases, for 12 of them two or more of the three types of parametric distributions fit 

to the modified data could not be rejected by the K-S test at a 0.05 significance level. For Case 9, 

for which all of the candidate distributions fit to the modified data were rejected, the difference 

between the critical and test values of the K-S statistic was considered small for both the 

lognormal and Weibull distributions; therefore, these two distributions were further evaluated 

graphically.  

The MLE method was used to fit each type of candidate parametric distribution identified 

based upon the first screening step to each original censored data set. As a second step for 

evaluating goodness-of- fit, the confidence intervals for the fitted distribution were evaluated 

using bootstrap simulation, as previously described. The inter-unit variability of the observed 

data, the detection limits, the fitted parametric distribution, and the confidence intervals of the 

fitted distribution were compared graphically. The confidence intervals represent uncertainty 

attributable to random sampling error. Distributions for which the confidence intervals enclose a 

larger proportion of the data were preferred over those that did not.  
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The procedure is illustrated with Case 7 as shown in Figures 1(a), 1(b) and 1(c) for the 

lognormal, gamma and Weibull candidate distributions. The emission factor data contain 29 data 

points, of which three are censored. Each of the three censored data points has a different 

detection limit. In order to plot the data as a cumulative distribution function, it is necessary to 

estimate the rank of each data point. In this case, all of the 26 detected data points are smaller 

than the largest detection limit. For example, the largest observed data point could have a rank as 

low as 26 or as high as 29 depending upon the true but unknown values of the non-detected data.  

Therefore, there is ambiguity regarding what rank to assign to each observed data point, which 

causes a range of possible ranks and corresponding cumulative probabilities for each of the 

detected values. The ranges of the cumulative probabilities of the detected points are represented 

by vertical lines in the figures.   

The 50, 90 and 95 percent confidence intervals of the estimated CDF are represented by 

dark grey, grey and white bands respectively. The CDF fit to the original data is represented by a 

white dashed line. The 95 percent confidence intervals enclose almost all of the detected points 

for all three candidate distributions. The exceptions are that portions of the ranges of the possible 

cumulative probabilities of six detected points for the lognormal distribution, three detected 

points for the gamma distribution and two detected points for the Weibull distribution are partly 

outside the 95 percent confidence interval. The lognormal distribution is “tail-heavy” and gives a 

shorter lower tail but a longer upper tail than the gamma and Weibull distributions. Of the three 

distributions evaluated, the Weibull distribution had a slightly better fit in that there were fewer 

data points for which a portion of possible range of cumulative probability extended outside of 

the 95 percent confidence interval of the CDF. Therefore, Weibull distribution is recommended 

as the best fit in this case.  
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For the other cases, a similar comparison of confidence intervals of the CDF to the 

detected points was applied in order to determine the best fit from the candidate parametric 

distributions. Generally, all of the candidate parametric distributions describe the data points 

well. Since the lognormal distribution has a heavier upper tail than the gamma and Weibull 

distributions, it is typically a better choice for more highly positively skewed data while the 

Weibull distribution is typically more suitable for less positively skewed data. The recommended 

distribution type for each case is given in Table 2. To illustrate typical results obtained, several 

examples are shown graphically. Figure 2 displays results for Case 11 which has a relatively 

large sample size of 28 and 5 censored data points. Case 9, as shown in Figure 3, has only one 

detected point larger than the largest detection limit. Case 13 is a single detection limit case as 

shown in Figure 4. As shown in Figure 5, Case 5 is an example with high censoring degree and 

for which there is large amount of uncertainty in the non-detected region.  

3.3 Estimation of the Mean and Quantification of Its Uncertainty 

Based on the MLE/bootstrap simulation method, an asymptotically unbiased best 

estimate of the mean and the uncertainty in the mean is quantified (Zhao and Frey, 2003). The 

best estimated mean is the average of the means from the replicates of the CDF in bootstrap 

simulation. The MLE/bootstrap method was applied to all of the cases in Table 2 for all of their 

candidate parametric distributions. The 95 percent confidence interval of the mean is shown as a 

relative percentage from the mean. MLE/bootstrap estimates of the mean and uncertainty in the 

mean were obtained for all of the candidate distributions for 13 of the emission factor data sets.  

For three of the emission factor data sets that had a large proportion of censoring, the 

approximation procedure for evaluation of goodness-of- fit was not applied as previously noted.  

Thus, for these three cases, all three of the candidate distributions were included for evaluation 
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using MLE/bootstrap simulation.  However, because of numerical instabilities associated with 

very high proportions of censoring, ranging from 64 to 85 percent for the three empirical data 

sets, it was not possible to obtain reliable parameter estimates for distributions fit to some of the 

bootstrap samples.  For example, for a Weibull distribution applied to Case 8, 10 out of 500 of 

the bootstrap parameter estimates were negative. Therefore, as a quality control step, the results 

of such simulations were not included in the final analysis.  Furthermore, for each of these three 

cases, there was at least one parametric distribution for which reliable results were obtained. 

In some cases, all of the candidate distributions were good fits when evaluated 

graphically, such as for Case Nos. 6, 7, 10, 14, and 16.  In such cases, the differences in the best 

estimated means were within 25% when comparing the results from alternative distributions to 

that from the preferred distribution. The differences in the absolute upper and lower level of 95 

percent confidence interval of the mean were within 10% when comparing the results from 

alternative distributions to that from the preferred distribution.     

For cases in which one of the candidate parametric distributions was clearly a better fit 

than the others, the mean values and the 95 percent confidence intervals for the mean would 

differ more substantially, such as for Case Nos. 1, 2, 5, 9, 11, 12, 13, and 15.  In most of these 

cases, the lognormal distribution was a better fit and was associated with a larger mean value and 

a larger upper bound to the 95 percent confidence interval on the mean than the other candidate 

distributions.   

Thus, the estimates of the mean and of uncertainty in the mean are not strongly sensitive 

to the choice of parametric distributions when all of the candidates are of approximately 

comparable goodness of fit.  In contrast, these estimates are more strongly sensitive to the choice 

of distribution when one distribution is clearly better than the others. The estimated mean from 
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MLE/bootstrap method based upon the lognormal distribution is larger than for the gamma and 

Weibull distributions and the confidence interval for the mean is also typically wider. 

The cases with a 95 percent confidence interval wider than 200 percent of the mean occur 

for Cases 1, 4, 5, 9, 11 and 12. Cases 1, 9, and 11 have large inter-unit variability. Cases 4, 5 and 

12 have relatively small sample sizes. The recommended 95 percent confidence intervals of the 

means that are narrower than 100 percent occur for Cases 7, 8, 14 and 16. Case 7 has the largest 

sample size of 29. Cases 8, 14 and 16 have small inter-unit variability.  

Case 10 and 12 are similar in terms of sample size, number of detection limits, proportion 

of censoring, and the estimated variability factor. However, they differ in terms of the relative 

range of uncertainty for the mean. The data of Case 12 are more positively skewed and are well-

described by a lognormal distribution, whereas the data for Case 10 are well-described by a less 

skewed and less tail-heavy Weibull distribution. Therefore, the 95 percent confidence interval for 

Case 12 is more than twice as wide, on a relative basis, than for Case 10.   

3.4 Comparison of Conventional and MLE/Bootstrap Methods for Mean Estimates  

A comparison of the estimated means from the conventional and MLE/Bootstrap 

methods is shown in Table 3. The variation in mean estimates among the various methods is 

typically small when the percentage of censoring is small, such as less than about 25 percent. 

However, for cases in which the largest detection limits are comparable to or larger than the 

largest observed data, there is more variation in the means estimated from the various methods. 

For example, both Cases 7 and 9 have 10.3 percent of censoring, but the variation in the means 

estimated from Case 7 is larger than that from Case 9 since the former has a large detection limit 

while the latter has small detection limits. In contrast, for cases with a high percentage of 

censoring, such as Case 8, there can be substantial variation in the mean estimates.   
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Replacing the non-detects with zero clearly produces estimates of the mean that are 

biased low, while replacing the non-detects with the detection limit clearly produces estimates of 

the mean that are biased high. An unbiased estimate of the mean is expected to be enclosed 

within the range of these two. This range is defined here as a “reference range.”  The MLE 

method is asymptotically unbiased as the sample size increases but can be biased high or low for 

an individual case with a small sample size.  Furthermore, the emission factor data usually have a 

small sample size. The best estimated mean from the MLE/bootstrap method is taken to be a 

good estimate if its value is enclosed by the “reference range.” The best estimated means from 

MLE/bootstrap method based on the recommended distribution for Case Nos. 3, 4, 6, 7, 8, 10, 15 

and 16 are included in the “reference range”. For all of the other cases, the 95 percent confidence 

intervals of the MLE/bootstrap means enclose the “reference range.”  

3.5 Comparison of Results for Censored Versus Modified Data 

In order to gain insight into whether the MLE/Bootstrap method applied to censored data 

produces estimates of the mean that are substantially different than a potentially simpler 

approximation method, a comparison was made to results from an alternative approach.  In the 

alternative approach, each non-detect was replaced with one-half of its detection limit, a 

parametric distribution was fit to describe inter-unit variability, and uncertainty was estimated in 

the mean using bootstrap simulation.  To facilitate comparisons, ratios of results are shown in 

Table 4 for the estimated means and for the width of the 95 percent confidence intervals for the 

mean.  These results are based upon the preferred distribution for each case as identified in Table 

2.  Differences in estimates of means between the two approaches of less than 10 percent and 

differences in the width of confidence intervals of less than approximately 25 percent were 

deemed not to be substantial.  This situation occurs for 10 cases. Conversely, differences in 
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estimated means of more than 10% were considered substantial, which occurred for Case Nos. 3, 

5, 7, 8, 9 and 12.  Case Nos. 3, 5 and 8 have greater than 60% censoring.   For Case Nos. 3, 7 and 

8, the detection limits for some censored values are much larger than the largest detected value.  

For these three cases, the estimated means for the modified data are much larger than those for 

the original censored data, which implies a tendency to overestimate the mean for large  

censoring, large detection limits, or both using the approximation approach.  In contrast, for Case 

Nos. 9, and 12, for which there are multiple detection limits but for which the percentage of 

censoring is only 23 percent or less and for which the largest detection limit is small in 

comparison to the largest detected measurement, the means from the approximation approach are 

underestimated.  However, these two cases involve substantial inter-unit variability in the 

detected values.  Thus, some situations are suggested in which the MLE/bootstrap method 

applied to censored data, rather than modified data, is clearly preferred:  (1) large percentage of 

censoring; and (2) large detection limits relative to observed values.  Furthermore, if there is a 

large proportion of variability in the data and multiple detection limits, the method applied to 

censored data is likely to be more reliable. 

 The with of the 95 percent confidence interval for the mean estimated based upon the 

modified data tends to be narrower than that based upon the original censored data.  This implies 

that failure to accurately account for censoring will typically lead to underestimation of 

uncertainty in the mean.   

There are some exceptions. For example, for Case 8, the width of the 95% confidence 

interval in the mean for the modified data is much wider than that for the censored data. This 

special case has a relative maximum detection limit larger than 75, and the uncertainty results are 
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more sensitive to the large detected data with a fixed value equal to half of the DL than to the 

large censored data with a possible value ranging from zero to DL.   

4.0 Conclusions and Recommendations 

This section answers the key questions posed in the introduction.  MLE was used to fit 

parametric distribution to quantify the inter-unit variability in censored urban air toxic emission 

factors. MLE is asymptotically unbiased and takes into account the presence of non detects. 

Combined with bootstrap pair simulation, the uncertainty in the statistics and CDF, including the 

influence of uncertainty associated with censoring itself, can be quantified for censored data.    

The simplified conventional methods provide biased estimates of the mean. The results 

with conventional methods worsen when there are large detection limits comparable to or larger 

than the largest observed data and for situations involving a large percentage of censoring. The 

MLE/Bootstrap provided consistent results for censored data with single or multiple detection 

limits in 16 cases. Even for data with censoring as high as 80 percent, the MLE/Bootstrap 

method provided reasonable results. For example, the 95 percent confidence interval encloses all 

the possible cumulative probabilities of the detected data partly or entirely. Furthermore, a point 

estimate of the mean may inspire a misleading sense of confidence. The MLE/Bootstrap method 

provides quantitative information about both the range and likelihood of the mean emission 

factors, which is a basis for probabilistic risk analysis. Although the MLE/bootstrap method is 

more computationally intensive, because it offers advantages of being asymptotically unbiased 

and of providing uncertainty estimates, it is recommended for purposes of analyzing censored 

urban air toxic emission factor data instead of using conventional methods.   

The estimates of the mean and uncertainty in the mean are relatively insensitive to the 

choice of parametric distribution when multiple types of distributions provide comparable 
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goodness-of- fit.  However, as the degree of discrimination with regard to goodness-of-fit 

becomes more pronounced among alternative distributions, the differences in estimates of the 

mean and uncertainty in the mean become more substantial.  In these latter cases, there is clearly 

a difference, for example, in results obtained for a lognormal distribution compared to the less 

tail-heavy gamma or Weibull distributions.   

Sample size and variability in the censored data sets influence the estimated uncertainty. 

The smaller the sample size and the larger the variability in the data, the larger the uncertainty is 

usually in the mean or in the CDF for the censored data set.  The nature of the censoring in a data 

set also has influence on the estimated mean and on the uncertainty results.  In particular, a large 

percentage of censoring, detection limits large relative to the largest detected value, multiple 

detection limits, or some combination of these three, typically leads to larger estimates of 

uncertainty in the mean that could be obtained with simplified approximation procedures.  

Generally, the uncertainty in the mean is enlarged by censoring compared to otherwise similar 

data sets that have no censoring.  

The width of the recommended 95 percent confidence interval of the mean ranges from 

62 percent to 504 percent relative to the mean value for the 16 cases.  When the range of 

uncertainty is large, the confidence intervals are asymmetric because emission factors must be 

non-negative.  The large uncertainty in the censored emission factor data sets suggests that it is 

important to quantify uncertainty and that this quantified portion of uncertainty should be taken 

into account when reporting and using censored emission factors.  

The best estimated mean from MLE/Bootstrap method maybe biased for a single case 

when the sample size is small.  However, for all of the 16 cases evaluated here, the best estimate 

means and their uncertainty ranges were consistent with the bounding ranges of results obtained 
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from conventional methods in which either zero or the detection limit was assigned to each non-

detect.  Thus, the MLE/bootstrap method is demonstrated to be a viable technique for 

quantification of inter-unit variability and uncertainty.   
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Table 1. Summary of Emission Factor Data for Selected Urban Air Toxics from External    
Combustion Emission Source Categories 

Case 
No. Air Toxics Fuela Nb 

Percentage 
of 

Censoringc 

Number  
of DL 

Variability 
Factord 

Relative 
Max. 
DLe 

Unit 

1 Benzene C 18 5.6 1 30459 0.07 g/ton 
2 Benzene W 10 10 1 127 0.006 g/ton 

3 Benzene FO 14 78.6 10 5 4.1 10-5 g/ 
liter 

4 Formaldehyde C 14 35.7 5 90 0.09 10-2 g/ 
ton 

5 Formaldehyde FO 14 64.3 8 118 0.27 10-3g/ 
liter 

6 B(a)p C 8 37.5 3 30 0.74 10-5g/ 
ton 

7 Mercury C 29 10.3 3 81 3.93 10-2g/ 
ton 

8 Mercury FO 13 84.6 11 2 75.5 10-6g/ 
liter 

9 Arsenic C 29 10.3 3 3366 0.004 g/ 
ton 

10 Arsenic FO 13 23.1 3 48 0.8 10-3g/ 
liter 

11 Cadmium C 28 17.9 5 984 0.09 10-2g/ 
ton 

12 Cadmium FO 13 23.1 3 43 0.1 10-4g/ 
liter 

13 Chromium C 28 3.6 1 1307 0.03 g/ 
ton 

14 Chromium FO 13 7.7 1 5 0.105 10-4g/ 
liter 

15 Chromium VI FO 10 50 5 3 0.5 10-4g/ 
liter 

16 Lead FO 13 30.8 4 11 0.09 10-4g/ 
liter 

a Fuel type; C = coal, W = wood waste, FO = fuel oil 
b Sample size 
c Percentage of data samples that are censored 
d Variability Factor of the detected values, represented by the largest detected value divided by  
   the smallest detected value 
e Relative maximum detection limit, represented by the largest detection limit divided by the      
  largest detected value 
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Table 2.  Results from MLE/Bootstrap Simulation for Candidate Distributions Fit to Urban Air 
Toxic Emission Factor Data from External Combustion Sources  

MLE/Bootstrap Case 
No. 

Air Toxics Fuel Unit 
Distributiona Average 95% C.I.(%, %)b 

lognormal 0.95 (-93, 411) 1 Benzene Coal g/ton 
Weibull 0.45 (-89, 228) 

lognormal 8.60 (-84, 259) 
gamma 4.16 (-74, 87) 2 Benzene 

Wood 
Waste g/ton 

Weibull 4.36 (-72, 98) 
3c Benzene Fuel Oil 10-5 g/liter gamma 1.56 (-60, 120) 

lognormal 0.74 (-77, 208) 4 Formaldehyde Coal 10-2 g/ton 
Weibull 0.70 (-75, 161) 
gamma 2.11 (-95, 118) 5c Formaldehyde Fuel Oil 10-3g/liter 
Weibull 7.05 (-94, 368) 

lognormal 1.40 (-72, 114) 
gamma 1.28 (-70, 91) 6 B(a)p Coal 10-5g/ton 
Weibull 1.28 (-70, 94) 

lognormal 3.83 (-28, 39) 
gamma 3.33 (-27, 33) 7 Mercury Coal 10-2g/ton 
Weibull 3.33 (-27, 35) 

8c Mercury Fuel Oil 10-6g/liter lognormal 5.87 (-31, 32) 
lognormal 0.34 (-91, 264) 9 Arsenic  Coal g/ton 

Weibull 0.13 (-79, 161) 
lognormal 0.16 (-45, 69) 

gamma 0.13 (-47, 57) 10 Arsenic  Fuel Oil 10-3g/liter 
Weibull 0.13 (-47, 59) 

lognormal 2.47 (-62, 156) 11 Cadmium Coal 10-2g/ton 
Weibull 1.81 (-55, 105) 

lognormal 0.56 (-69, 166) 
gamma 0.43 (-64, 99) 12 Cadmium Fuel Oil 10-4g/liter 
Weibull 0.43 (-64, 104) 

lognormal 0.12 (-59, 123) 
gamma 0.10 (-58, 85) 13 Chromium Coal g/ton 
Weibull 0.10 (-56, 79) 

lognormal 1.03 (-32, 36) 
gamma 0.98 (-33, 31) 14 Chromium Fuel Oil 10-4g/liter 
Weibull 0.98 (-33, 31) 

lognormal 0.61 (-70, 235) 
gamma 0.25 (-63, 63) 15 Chromium VI Fuel Oil 10-4g/liter 
Weibull 0.28 (-49, 50) 
gamma 0.17 (-52, 59) 16 Lead Fuel Oil 10-4g/liter 
Weibull 0.17 (-52, 53) 

a Candidate parametric distributions, the preferred one is shown in bold.   
b 95% confidence interval relative to the mean value.  
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Table 2. Continued.   
c For Cases 3, 5 and 8, all the three distributions are candidate parametric distributions. But based    
  on lognormal and Weibull distributions for Case 3, lognormal distribution for Case 5, gamma  
  and Weibull distributions for Case 8, the estimated parameters for some of the bootstrap  
  samples are out of their definition range, thus the results are nor reported.      
 
Table 3.  Comparison of Estimated Means from Conventional and MLE/Bootstrap Methods 

Means estimated from the 
conventional methodsb Case 

No. Air Toxics Fuela Unit 
1 2 3 4 

Mean from the 
MLE/Bootstrap 

Method 
1 Benzene C g/ton 0.53 0.53 0.53 0.53 0.95 
2 Benzene W g/ton 4.53 4.07 4.11 4.11 4.36 

3 Benzene FO 10-5 g/ 
liter 2.52 0.60 3.00 5.50 1.56 

4 Formaldehyde C 10-2 g/ 
ton 1.11 0.70 0.82 0.91 0.74 

5 Formaldehyde FO 10-3g/ 
liter 

5.88 2.10 2.37 2.64 7.05 

6 B(a)p C 10-5g/ 
ton 1.56 0.99 1.36 1.77 1.40 

7 Mercury C 10-2g/ 
ton 

3.54 3.17 4.20 5.18 3.33 

8 Mercury FO 10-6g/ 
liter 6.47 1.20 115 229 5.87 

9 Arsenic C g/ 
ton 

0.17 0.16 0.16 0.16 0.34 

10 Arsenic FO 10-3g/ 
liter 0.16 0.12 0.13 0.16 0.13 

11 Cadmium C 10-2g/ 
ton 

2.18 1.81 1.85 1.93 2.47 

12 Cadmium FO 10-4g/ 
liter 0.53 0.41 0.42 0.44 0.56 

13 Chromium C g/ 
ton 

0.11 0.10 0.10 0.10 0.12 

14 Chromium FO 10-4g/ 
liter 1.05 0.97 0.98 0.98 1.03 

15 Chromium VI FO 10-4g/ 
liter 0.46 0.23 0.28 0.31 0.28 

16 Lead FO 10-4g/ 
liter 0.24 0.17 0.17 0.17 0.17 

a Fuel type; C = coal, W = wood waste, FO = fuel oil 
b Estimation of mean based upon conventional methods: 1 = removal of non detects; 
  2 = replace nondetects with zero; 3 = replace nondetects with DL/2; 4 = replace nondetects with     
  DL 
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Table 4.  Ratio of the Estimated Means and Width of the 95 Perrcent Confidence Intervals for the 
Means for the MLE/Bootstrap Method Applied to Modified Versus Censored Data.  

Case 
No. Air Toxics Fuel Unit Ratio of Mean 

Ratio of Width 
of 95% C.I. 

1 Benzene Coal g/ton 1.09 1.19 
2 Benzene Wood waste g/ton 0.96 0.94 
3 Benzene Fuel Oil 10-5 g/liter 1.92 0.74 
4 Formaldehyde Coal 10-2 g/ton 0.94 0.78 
5 Formaldehyde Fuel Oil 10-3g/liter 0.35 0.16 
6 B(a)p Coal 10-5g/ton 1.09 0.88 
7 Mercury Coal 10-2g/ton 1.25 1.69 
8 Mercury Fuel Oil 10-6g/liter 21.0 62.1 
9 Arsenic Coal g/ton 0.65 0.63 
10 Arsenic Fuel Oil 10-3g/liter 1.00 0.89 
11 Cadmium Coal 10-2g/ton 0.92 0.76 
12 Cadmium Fuel Oil 10-4g/liter 0.89 0.81 
13 Chromium Coal g/ton 1.00 0.99 
14 Chromium Fuel Oil 10-4g/liter 1.01 1.03 
15 Chromium VI Fuel Oil 10-4g/liter 1.00 0.94 
16 Lead Fuel Oil 10-4g/liter 1.00 0.94 

a. Ratio of the estimated mean of modified data to that of censored data based on MLE/Bootstrap      
   method 
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(c)  Weibull Distribution 

                               Figure 1.  Variability and Uncertainty in Mercury Emission   
                        Factor from Coal Combustion Estimated Based Upon       

                                               Three Distributions 
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               Figure 2.  Variability and Uncertainty in Cadmium Emission Factor 
                               from Coal Combustion Estimated Based Upon a Lognormal 
                               Distribution 
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                          Figure 3.  Variability and Uncertainty in Arsenic Emission Factor 
                                          from Fuel Oil Combustion Estimated Based Upon a Weibull 
                                          Distribution 
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                         Figure 4.  Variability and Uncertainty in Chromium Emission Factor 
                                         from Coal Combustion Estimated Based Upon a Lognormal             
                                         Distribution 
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                   Figure 5.  Variability and Uncertainty in Formaldehyde Emission Factor from 
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Abstract. Probabilistic emission inventories were developed for urban air toxic 

emissions of benzene, formaldehyde, chromium, and arsenic for the example of Houston.  

Variability and uncertainty in emission factors were quantified for 71 to 97 percent of total 

emissions, depending upon the pollutant and data availability.  Parametric distributions for inter-

unit variability were fit using maximum likelihood estimation (MLE) and uncertainty in mean 

emission factors was estimated using parametric bootstrap simulation.  For data sets containing 

one or more non-detected values, empirical bootstrap simulation was used to randomly sample 

detection limits for non-detected values and observations for sample values, and parametric 

distribution for variability were fit using MLE estimators for censored data.  Goodness-of- fit for 

censored data was evaluated using the Kolmogorov-Smirnov test applied to a modified data set 

and by comparison of cumulative distributions of bootstrap confidence intervals and empirical 

data.  The emission inventory 95 percent uncertainty ranges are as small as minus 25 to plus 42 

percent for chromium to minus 75 to plus 224 percent for arsenic with correlated surrogates. 

Uncertainty was dominated by only a few source categories. Recommendations are made for 

future improvements to the analysis.   

Key Words:  Probabilistic emission inventory, Urban air toxics, Emission factors, Censored 

data, Maximum likelihood estimation, Bootstrap simulation 

1.0     Introduction 

The purpose of this paper is to demonstrate a method for quantification of variability and 

uncertainty for cases in which there are a substantial proportion of non-detected data.  The 

methods are illustrated via a case study.  The focus of the case study is on selected air toxic 

pollutants for a specific urban area.  The U.S. Environmental Protection Agency has developed a 

priority list of 33 urban air toxics for additional assessment of the health effects of air toxics in 
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urban areas.(1)  An urban area that has been the subject of extensive study by others using 

deterministic methods is Houston, TX.(2)  Pollutants for which sufficient data were available to 

support a probabilistic analysis of air toxic emissions include chromium, formaldehyde, benzene 

and arsenic, which have risk-related rankings of 5, 6, 10 and 17, respectively, on a nationwide 

basis, among the listed 33 urban air toxics.  

Urban air toxics emissions are subject to both variability and uncertainty. Variability 

refers to the heterogeneity across different elements of a population over time or space.(3,4) 

Variability in emissions arises because of differences in feedstocks, ambient conditions, design, 

or operational practices among facilities.(5-10)  Uncertainty is lack of knowledge about the true 

value of a quantity.(4,11)  Uncertainty in emissions is attributable to random sampling error, 

measurement error and non-representativeness.(5-10).  Variability and uncertainty can be 

quantified simultaneously using a two-dimensional probabilistic framework.(3,4,6-10,12)   

Emission inventories (EIs) are commonly obtained by the product of emission factors and 

activity factors. EIs are used by federal, state, and local governments and by private corporations 

for: (a) characterization of temporal emission trends; (b) emissions budgeting for regulatory and 

compliance purpose; and (c) prediction of ambient pollutant concentrations using air quality 

models. If random errors in the EIs are not quantified, erroneous inferences could be regarding 

trends in emissions, source apportionment, compliance, and the relationship between emissions 

and ambient air quality.(13)  

The National Research Council (NRC) recommends that quantifiable uncertainties be 

addressed in estimating mobile source emission factors (14) and logically this recommendation 

should be extended to other source categories.  The NRC has also addressed the need for 

quantification of uncertainties in emission inventories used in risk assessment.(15)  Probabilistic 
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techniques have been applied to estimate uncertainty in emission factors for mobile sources, 

major stationary sources and area sources, particularly for criteria pollutants (e.g., NOx) and 

ozone precursors (e.g., volatile organic compounds).(5-10,13,16-18).  Recent work regarding air 

toxics emissions estimates has focused on situations in which there was only one detection 

limit.(10,13)  However, many air toxic data sets have multiple measurements below several 

different detection limits, since the detection limit is a function of the sample volumes and 

analytical methods applied separately to each measurement.   

The objectives of this paper are: (1) to demonstrate the application of a methodology for 

quantification of variability and uncertainty in situations involving multiple detection limits; (2) 

to quantify variability and uncertainty in urban air toxic emission factors for a specific case 

study; (3) to develop probabilistic EIs for selected pollutants; and (4) to identify key sources in 

the probabilistic EIs. 

2.0     Methodology 

Air toxic emission factor data often include one or more measurements below a detection 

limit.  Such data are referred to as censored.(19)  Conventional methods to dealing with non-

detected measurements typically involve replacing non-detected values with zero, one-half of the 

detection limit, or the detection limit.  Such methods lead to biases in estimates of the mean and 

variance for inter-unit variability in emissions.(20,21).  In contrast, the use of maximum 

likelihood estimation (MLE) to fit parametric probability distributions to non-detected data is 

asymptotically unbiased.(20-22).  The likelihood functions used for candidate parametric 

distributions are given in the Supporting Information.(22,23)  For censored data, the likelihood 

function is based upon the cumulative probability of the detection limit, rather than the 

probability density of an observed value, conditional on parameter estimates.  A fitted parametric 
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distribution is an inference regarding the true but unknown population distribution of inter-unit 

variability in the emission factor.  The uncertainty in the mean or other statistics of the fitted 

distribution is estimated using bootstrap simulation.  Bootstrap simulation is a numerical method 

for estimation of confidence intervals based upon simulation of random sampling error using 

Monte Carlo simulation.(24)   

In order to apply bootstrap simulation to censored data, it is necessary to characterize 

whether each observation is a detected measurement or below a detection limit.  Thus, a binary 

indicator symbol is used for each observation.  For detected values, the binary indicator is set to 

zero.  For non-detected values, the binary indicator is set to one and the corresponding numerical 

value in the data is the detection limit.  Therefore, it is possible to quantify the existence of 

multiple non-detected values in the data, each of which may have a different detection limit.  In 

bootstrap simulation, the data and indicator symbol pairs are sampled together randomly with 

replacement n times to generate one bootstrap sample, where n is the sample size of the original 

data set.  The process is repeated B times.  To each of the B empirical bootstrap pair samples, the 

selected type of parametric distribution is fit using MLE.  The resulting B realizations of any 

statistic of interest, such as the mean, variance, or distribution percentiles, characterize the 

sampling distribution of the statistic associated with random sampling error.  These distributions 

are interpreted as uncertainty in the statistic associated with the variability in the data, sample 

size, and censoring. (22)  

2.1       Lognormal, Gamma and Weibull Distributions  

For environmental data sets, such as concentrations or emission factors, lognormal, 

gamma and Weibull distributions are often chosen to represent variability.(3,6-8,25)  The 

lognormal distribution is non-negative, positively skewed, and is based upon the Central Limit 
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Theorem applied to multiplicative processes; therefore, this distribution often well-describes data 

for physical quantities that arise from multiplicative processes, such as mixing or 

dilution.(26,27). The gamma distribution is non-negative, positively skewed, and similar to the 

lognormal distribution in many cases but it is less “tail heavy.”(3) The Weibull distribution is a 

flexible non-negative distribution that can assume negatively skewed, symmetric, or positively 

skewed shapes and that has been used to describe air pollutant concentrations.(3,25)  These three 

distribution types are used as candidates for describing inter-unit variability in censored air 

toxics emission factor data.  

2.2 Goodness-of-fit Test 

Standard methods for evaluation of the goodness-of- fit of a parametric distribution fit to 

non-censored data include the Kolmogorov-Smirnov (K-S) test.(3,11,28)  In the case of censored 

data, a two-step approach to evaluation of goodness-of-fit was used.  In the first step, an 

approximation procedure was used in which each non-detected sample in the data was replaced 

with one-half of the detection limit to create a modified data set.  A parametric distribution was 

fit to the modified data set using MLE for uncensored data, and the goodness-of- fit was 

evaluated using the conventional K-S test.  If the fitted distribution was not rejected by the K-S 

test, then that type of parametric distribution model was accepted as a candidate for 

consideration.  In the second step, the selected distribution model was fit to the original censored 

data and its parameters were estimated using MLE for censored data.  Thus, the parameter 

estimates in the second step are different than those of the first step.  The goodness-of- fit in the 

second step was evaluated by comparing the bootstrap confidence intervals of the fitted 

cumulative distribution function (CDF) with an empirical distribution of the original sample 

data.  The larger the proportion of data contained within the confidence intervals, the greater the 
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preference for the particular candidate distribution model.  The details of the procedure are 

illustrated in case studies. 

2.3 Monte Carlo Simulation of Uncertainty in the Emission Inventory Model  

The emission inventory for a pollutant is given by: 

                                         EI = ∑ × ii AFEF                                                                     (1) 

Where, 

           EFi = emission factor for source i (mass emissions per unit of activity) 

           AFi = activity factor for source i (unit of activity) 

Based upon selection of the preferred probability distribution model to represent inter-

unit variability in the emission factor, uncertainty was estimated for the mean emission factor 

using bootstrap simulation.  Uncertainty in the activity factor was estimated based upon 

judgment.  The uncertainty in the emission inventory was simulated using Monte Carlo 

simulation (3,11), resulting in an estimate of the probability distribution of uncertainty in the 

total inventory. 

2.4 Identification of Key Sources of Uncertainty  

The sensitivity of uncertainty in the total emission inventory for a pollutant to uncertainty 

in the individual inputs to the inventory was assessed using Spearman correlation coefficients, 

which measure the strength of the monotonic relationship between two random variables.(3) 

Inputs which had a statistical significant correlation with the outputs were identified as sensitive 

inputs. The larger the magnitude of the correlation, the greater the sensitivity.  Identification of 

the most highly sens itive inputs enables targeting of resources in future work to collect more or 

better information in order to reduce uncertainty. 
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3.0     Houston Emission Inventory 

A probabilistic emission inventory for benzene, formaldehyde, chromium and arsenic 

was developed for Houston based upon the deterministic 1996 inventory.  The 1996 inventory 

was selected because it has been used for a variety of analyses and was the most recent readily 

available. The focus of the uncertainty analysis was on major source categories. For example, for 

benzene, the sources emitting more than 20 tons/yr were defined as major source categories. 

There are 24 major source categories, and these account for 90 percent of the total estimated 

emissions. For formaldehyde, there are 12 major source categories accounting for 99 percent of 

total estimated emissions. For chromium and arsenic, there are 27 and 20 major source categories 

accounting for 71 and 81 percent of the total emissions, respectively. The point estimates of the 

emissions for each major source category are in Tables 1-4 for benzene, formaldehyde, 

chromium and arsenic, respectively. 

Data for the inter-unit variability in emission factors were identified for each pollutant 

and source category, where available, based upon information reported by EPA and others, such 

as the California Air Resources Board and the Coordinating Research Council (5,7,8,29-39).  A 

detailed summary of the sources of data for each source category are given in the Supporting  

Information in Tables S-1 to S-4 for benzene, formaldehyde, chromium and arsenic, 

respectively.  For many source categories, directly relevant data were available via which to 

estimate inter-unit variability and to infer uncertainty in the mean emission factor.  For other 

source categories, directly relevant data were not available. Therefore, judgments were made 

regarding surrogates for which uncertainty estimates were likely to be similar.  For example, 

directly relevant sample data were available for inter-vehicle variability in benzene emissions 

from light duty gasoline vehicles.  However, such data were not available for heavy duty 
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gasoline vehicles.  In this case, the relative range of uncertainty in mean benzene emissions for 

light duty gasoline vehicles was used as a surrogate to estimate the relative range of uncertainty 

in mean benzene emissions for heavy duty vehicles.  A detailed discussion of the judgments 

made regarding surrogates is given in the Supporting Information. 

The emissions for some source categories are estimated as the aggregation of several 

subcategories.  As an example, uncertainty in benzene emissions for petroleum refineries was 

estimated based upon weights assigned to uncertainties in emissions for gasoline loading racks at 

bulk terminals and bulk plants, storage losses at a typical gasoline bulk terminal, wastewater 

treatment, emissions from a typical bulk plant, storage losses at a typical pipeline breakout 

station, emissions for a typical service station for petroleum refinery, and storage tank for 

petroleum refinery.  For each of the subcategories, data were available from which to quantify 

relative uncertainty in mean emission rates.   

For mobile sources, uncertainty in emissions was estimated based upon the product of 

uncertainty in the emission rate of total hydrocarbons and of the uncertainty in the percentage of 

total hydrocarbons emitted as a specific air toxic.  Details are shown in the Supporting 

Information.   

Directly relevant uncertainty data were available for as little as 45 percent of the major 

source emissions for formaldehyde to as much as 82 percent in the case of arsenic.  When both 

direct and surrogate uncertainty data are considered, uncertainty was estimated for as little as 71 

percent of the nominal emission inventory in the case of chromium to 90 percent or more of the 

inventories in the cases of benzene and formaldehyde.  Thus, for all four pollutants, it was 

possible to quantify uncertainty for the majority of the emission inventories. 
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4.0     Results 

The variability and uncertainty in the urban air toxics emission factors for different 

source categories of Houston area were quantified.  Probabilistic emission inventories were 

developed considering the uncertainty in the emission and activity factors. The key sources of 

uncertainty were identified by sensitivity analysis.   

4.1      Quantification of Variability and Uncertainty in Emission Factors   

Lognormal, gamma, and Weibull distributions were fit to the available emission factor 

data for inter-unit variability.  For noncensored data, the results of the K-S test were used to 

choose the best fitting distribution and the adequacy of fit was further assessed graphically based 

upon comparison of bootstrap confidence intervals of the fitted CDF to the empirical distribution 

of the data.  For censored data, the two step procedure previously described was used to choose 

the best fitting distribution. In most of the cases, one or more of the distributions could not be 

rejected by the K-S test and therefore were judged to provide a good fit. There were only 2 cases 

for benzene, 2 cases for formaldehyde, 1 case for chromium and 1 case for arsenic for which all 

three of the candidate distribution models were rejected by the K-S test. In those six cases, the 

model with the smallest K-S test value was selected as the candidate distribution and the fits 

were judged to be adequate based on graphical comparison of the fitted distribution and its 

bootstrap confidence intervals with an empirical distribution of the data. The preferred 

distributions for inter-unit variability are given in Tables 1-4 for benzene, formaldehyde, 

chromium, and arsenic, respectively, including the parameter estimates. The inter-unit variability 

in the urban air toxics emission factors is typically large. For example, 13 out of 16 empirical 

benzene emission factor data sets have a 95 percent probability ratio larger than 2 order-of-

magnitude based upon the preferred distribution type as given in the supporting information. The 
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95% probability ratio is defined as the ratio of the upper level to the lower level of the 95% 

probability range for inter-unit variability.  

Uncertainty in the mean was estimated using parametric bootstrap simulation for the 

cases with no censoring and with the empirical bootstrap pair approach previously described for 

cases with censoring.  The resulting estimates of the 95 percent confidence intervals for the 

means are summarized in Tables 1-4.    

To illustrate the details of the approach via which variability and uncertainty in an 

emission factor was quantified; an example case study is given for chromium emission factors 

for Case 26, industrial residual oil boilers. The emission factor data contain 12 detected values 

and 1 censored values. All the detected values are larger than the detection limit. The lognormal, 

gamma and Weibull distributions pass the K-S test and thus are taken as candidate parametric 

distributions. Simulation of bootstrap pairs coupled with fitting of distributions to each bootstrap 

pair was used to estimate the confidence intervals of the fitted CDF. Figures 1, 2 and 3 compare 

an empirical distribution of the data, the CDF for the distribution fitted to the original data, and 

the bootstrap confidence bands for the cases of a lognormal, a gamma and a Weibull distribution, 

respectively. The detected points are plotted using the Hazen plotting position and the detection 

limit is shown for the censored point.   

From Figures 1, 2 and 3, both the lognormal, gamma and Weibull distributions are 

adequate fits. However, the 95 percent confidence interval for the CDF based on the lognormal 

distribution enclosed the largest proportion of data points compared to the gamma and Weibull 

distributions. Therefore, the lognormal distribution was selected as the preferred distribution in 

this case. Thus the resulting 95 percent confidence interval in the emission factor data ranges 

from minus 32 percent to plus 36 percent relative to the mean value.   
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As previously described, specific procedures detailed in the supporting information were 

used for mobile sources and for sources comprised of a weighted combination of subcategories. 

4.2       Development of Probabilistic Emission Inventories 

 Probabilistic emission inventories were developed based upon probabilistic mean 

emission factors and activity factors. Data regarding uncertainty in the activity were not 

available. It is expected that there is uncertainty in the activity factors. However, in the absence 

of empirical data, a judgment was made to assign at least a minimal range of uncertainties to 

these activity factors. For each source category, a 95 percent confidence interval in the mean of 

activity factor was assumed ranging from minus 10 percent to plus 10 percent.  Therefore, the 

normalized uncertainty estimates of the activity factors were generated from independent normal 

distributions with a mean of 1.0 and standard deviation of 0.05. The total uncertainty for each 

source category was calculated by multiplying the recommended uncertainty estimates of the 

emission factor by the uncertainty estimates of the corresponding activity factor. The resulting 95 

percent confidence interval in the emission inventory of each source category is given in Tables 

1 and 4 for benzene, formaldehyde, chromium and arsenic, respectively. Based on the 

uncertainty of each source category, a probabilistic emission inventory was developed:  
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where, 

                      UFEF, i     = Normalized uncertainty factor of emission factors for source i  

                      UFAF, i     = Normalized uncertainty factor of activity factors for source i 

                      EIi            = Emission inventory from source i (tons/yr) 

In estimating the probabilistic emission inventory, two cases were considered in order to 

gain insight regarding whether the use of surrogate uncertainty estimates has a significant effect 
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on the results for uncertainty in the total inventory.  In the first case, 100 percent correlation 

between surrogates was assumed.  For example, for benzene the uncertainty in the emission 

factor for light duty gasoline trucks was correlated with that for light duty gasoline vehicles.  In 

the second case, statistical independence was assumed. The 95 percent uncertainty range for the 

total inventory for benzene is 2,500 to 9,700 tons/yr versus 2,700 to 8,200 tons/yr when 

comparing the correlated and uncorrelated surrogates, respectively.  For formaldehyde, 

chromium, and arsenic, there was no difference in the ranges between the two cases.  For 

formaldehyde, the range of uncertainty in either case was from 1,700 to 4,600 tons.  For 

chromium, the range was 3.7 to 7.0 tons/yr and for arsenic the range was 0.6 to 7.1 tons/yr.  

Thus, there was not a substantial difference when comparing correlated versus uncorrelated 

surrogates, which indicates that the source categories for which surrogate data were used are not 

the most important contributors to overall uncertainty.   

4.3       Sensitivity Study to Identify the Key Sources of Uncertainty 

The rank correlation between the uncertainties in total emissions and the uncertainty in 

the emission factors of each source category was calculated considering both correlated and 

uncorrelated surrogates. The results are given in Tables 1-4 for the four pollutants. 

For benzene, gasoline onroad mobile sources are the dominate source of uncertainty in 

the inventory.  For formaldehyde, the onroad and nonroad mobile sources are the key sources of 

uncertainty.  For chromium, the key sources of uncertainty are chemical manufacturing-fuel fired 

equipment-process heaters, external utility coal combustion boilers and hard chromium 

electroplating.  For arsenic, external coal combustion utility boilers are the dominate source of 

uncertainty in the inventory.  The other statistically significant correlations are smaller than 0.2 

for each of the pollutants, indicating only weak sensitivity. 
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5.0     Discussion 

Probabilistic emission inventories based primarily on uncertainty in emission factors 

were developed for benzene, formaldehyde, 1,3-butadiene, and chromium using the 1996 

Houston inventory as a basis.  A methodology for quantification of uncertainty in the mean 

emission factors was demonstrated for situations involving censored data.  For many source 

categories, directly relevant data were not available and judgments were made regarding 

surrogate relative uncertainty estimates.  For some source categories, it was necessary to weight 

data from subcategories; however, the results for uncertainty in the total inventory were not 

sensitive to judgments regarding these weights.  In particular, either the ranges of uncertainty 

were similar among many of the subcategories or the source category was not important with 

regard to overall uncertainty in the inventory. 

The key characteristics of the probabilistic analysis include:  (1) large ranges of inter-unit 

variability in emission factors for specific source categories; (2) mean emission factor 

uncertainty ranges from as small as approximately plus or minus 10 percent to as large as -99 to 

plus 600 percent; (3) relative uncertainty ranges in total emissions ranging from as small as 

approximately minus 20 to plus 34 percent, as in the case of chromium, to as large as minus 69 

to plus 203 percent, in the case of arsenic; and (4) identification of a small number of key 

sources of uncertainty for each pollutant. Better data collection and reporting should be 

prioritized for the key source categories.   

The quantified ranges of uncertainty for benzene, formaldehyde, chromium and arsenic 

emissions in the Houston area take into account random sampling error and measurement error in 

emission factors. The former is influenced by the sample size and inter-unit variability for each 

emission source category. Random measurement error is accounted for because the observed 
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variability in the data includes both the true variability and the random component of 

measurement error, which in turn influences the range of the sampling distribution of the 

mean.(40)  

The averaging times of the emissions measurements vary among the source categories 

and in many cases are not documented in the references from which the data were obtained.  It is 

likely that most of the measurements are for relatively short averaging times on the order of 

minutes (e.g., for some mobile sources) to perhaps days (e.g., stack testing).  Although the 

desired averaging time for exposure assessment purposes is one year or longer, the uncertainty in 

the mean emissions estimates is influenced by the limited averaging time of the available data.   

The probabilistic emission inventory developed here could be improved in several ways 

pending availability of additional data or the incorporation of a more extensive expert elicitation 

component.  For example, although biases in the mean emission factors are suspected, especially 

for fugitive emissions and as a result of process upset, insufficient data were available via which 

to quantify such biases.  Other possible sources of bias include lack of representative data (e.g., 

measurements may have been for load or operating conditions not typical of annual average in-

use activity) and the use of surrogate data for source categories in which data were lacking or not 

readily available. Expert elicitation could be used to encode judgments regarding the additional 

uncertainty associated with nonrepresentative or surrogate data. As new data become available, 

the assessment can be updated.  A key obstacle to quantification of uncertainty based upon 

statistical data analysis is obtaining the necessary data. Often, data are measured and reported by 

multiple organizations.  In the long term, the development of a protocol for archiving such data 

and making the data available would facilitate probabilistic analysis.   
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The uncertainty in the activity factors here is based on an approximate judgment, mostly 

as an acknowledgement that uncertainty exists and as a placeholder pending better information.  

In the long term, the quantifiable uncertainty in the activity factors should be incorporated based 

upon expert judgment.     

The results of this work demonstrate that random sampling error and measurement error 

in emission factors are substantial sources of quantifiable uncertainty in the emission inventories 

of benzene and formaldehyde in the Houston area. The positively skewed ranges of uncertainty 

appropriately account for the fact that emissions must be non-negative. The MLE/bootstrap 

methodology used here provides asymptotically unbiased estimates of the mean, including for 

cases that involve non-detected data.  The substantial ranges of uncertainty estimated here should 

be taken into account when conducting air quality modeling and exposure assessment.  

Furthermore, the identification of key sources of uncertainty in the inventory serves as an aid to 

prioritizing resources for additional data collection or research in order to reduce uncertainty. 
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7.0 Supporting Information 

The supporting information (SI) contains text, tables, and figures pertaining to details of 

the MLE parameter estimation method for censored data, specific sources of data for each 

emission factor, the methods used for quantification of uncertainty in mobile source emission 

factors and for source categories based upon aggregation of subcategories, and a graphical 

summary of the relative range of uncertainty in total emissions for each pollutant for both 

correlated and uncorrelated surrogates.     
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Table 1.  Quantification of Variability and Uncertainty for Benzene Emission Inventory 

Case 
No. Emission Source Description 

EIa 

(tons/yr) nb 
Variability in 

Emission 
Factorc 

Uncertainty 
in Emission 

Factor 
(%, %)d 

Uncertainty  
in 

Emission  
Inventory 
(%, %)e 

Rank 
Correlation 

1f 

Rank 
Correlation 

2g 

1 Mobile Source – Light Duty 
Gasoline Vehicles 1164.40 --- --- (-87, 236) (-88, 249) 0.909 0.672 

2 Mobile Source – Light Duty 
Gasoline Trucks 846.19 --- --- (-87, 236) (-88, 252) 0.909 0.514 

3a Gasoline loading racks at bulk 
terminals and bulk plants --- 3 L (-3.62, 1.40) (-89, 345) (-90, 327) --- --- 

3b Storage losses at a typical gasoline 
bulk terminal (non Winter) 

--- 11 L (-3.86, 1.44) (-72, 185) (-72, 212) --- --- 

3c Storage losses at a typical gasoline 
bulk terminal (winter) --- 11 L (-3.53, 1.43) (-71, 195) (-74, 196) --- --- 

3d For a typical bulk plant --- 6 L (-3.02, 1.67) (-86, 342) (-87, 349) --- --- 

3e Storage losses at a typical pipeline 
breakout station (non-winter) 

--- 11 L (-2.97, 1.77) (-84, 226) (-84, 284) --- --- 

3f Storage losses at a typical pipeline 
breakout station (winter) --- 11 L (-2.64, 1.75) (-82, 285) (-84, 279) --- --- 

3g For typical Service 
Station for petroleum refinery 

--- 7 L (-3.93, 1.35) (-78, 213) (-77, 213) --- --- 

3h Petroleum Refinery wastewater --- 19 G (0.53, 
65.54) (-52, 71) (-53, 70) --- --- 

3i Storage tank for petroleum refinery --- 5 L (4.48, 2.57) (-98, 562) (-99, 596) --- --- 
3 Petroleum refinery 714.30 --- --- (-55, 158) (-55, 170) 0.169 0.215 
4 4-stroke lawn and garden engines 686.87 --- --- (-34, 46) (-33, 50) 0.125 0.137 
5 2-stroke lawn and garden engines 234.01 --- --- (-32, 40) (-32, 41) 0.057 0.055 

6 Construction, farm and industrial 
engine (diesel 4 Stroke) 142.48 --- --- (-26, 30) (-28, 32) 0.023 0.023 

7 Oil and natural gas production 140.62 --- --- (-10, 10) (-13, 14) 0.066 0.053 
(Continued) 
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Table 1.  Continued 

Case 
No. Emission Source Description 

EIa 

(tons/yr) nb 
Variability in 

Emission 
Factorc 

Uncertainty 
in Emission 

Factor 
(%, %)d 

Uncertainty  
in 

Emission  
Inventory 
(%, %)e 

Rank 
Correlation 

1f 

Rank 
Correlation 

2g 

8 
Storage and transport, Natural Gas 

Transmissions and Marine 
Transport 

100.38 --- --- (-10, 10) (-14, 14) 0.066 -0.007 

9 Mobile source-Heavy Duty 
Gasoline Vehicle 78.95   (-87, 236) (-88, 255) 0.909 0.057 

10 Other combustion-forest wildfires 54.40 6 W (1.82, 
1.61)h (-40, 45) (-47, 50) 0.044 0.031 

11 Solid waste disposal- sewage 
treatment 49.47 16 L (0.32, 3.27) (-98, 328) (-98, 323) 0.015 0.098 

12 
Industrial Processes; Chemical 

Manufacturing; Acetylene 
production 

47.85 --- --- (-10, 10) (-14, 13) 0.066 -0.021 

13 Fuel oil external combustion 45.32 14 
(11) 

G (0.28, 3.27) (-68, 120) (-68, 122) 0.051 0.021 

14 Typical ethylene plant 43.29 8 L (-4.18, 2.85) (-99, 221) (-99, 216) 0.015 0.026 

15 
Storage and Transport; Petroleum 
Product Storage; Gasoline Service 

Stations; Stage 1: Total 
40.09 --- --- (-78, 213) (-73, 180) 0.043 0.121 

16 Industrial Processes; 
Petroleum Industry; Fugitive 38.64 --- --- (-10, 10) (-13, 14) 0.066 0.019 

17 Other combustion-managed 
prescribed burning 33.92 7 G (2.21, 

0.59)h,i (-43, 53) (-45, 52) 0.038 0.076 

18-1 Total Hydrocarbon from Heavy 
Duty Diesel Vehicle 

--- 24 L (0.46, 1.46) (-58, 150) ---   

18-2 Benzene fraction in THC from 
Heavy Duty Diesel Vehicle --- 24 W (3.36, 

0.009) (-13, 13) ---   

(Continued) 
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Table 1.  Continued 

Case 
No. Emission Source Description 

EIa 

(tons/yr) nb 
Variability in 

Emission 
Factorc 

Uncertainty 
in Emission 

Factor 
(%, %)d 

Uncertainty  
in 

Emission  
Inventory 
(%, %)e 

Rank 
Correlation 

1f 

Rank 
Correlation 

2g 

18 Benzene emission factor from 
Heavy Duty Diesel Vehicle 33.87 --- --- (-59, 166) (-59, 182) -0.028 0.021 

19 
Industrial Processes; Chemical 

Manufacturing; Fugitive 
Emissions 

30.47 --- --- (-10, 10) (-14, 14) 0.066 -0.026 

20 Mobile source-aircraft 26.15 --- --- (-51, 72) (-50, 79) 0.099 0.086 

21 

Industrial Processes; Petrolem 
Industry; Fugitive Emissions; 

Miscellaneous: Sampling/Non-
Asphalt 

26.00 --- --- (-10, 10) (-13, 13) 0.066 -0.003 

22 Petroleum refinery-process vent in 
refinery product 24.89 13 G (0.32, 2.37) (-73, 113) (-72, 127) -0.065 -0.007 

23 Loading, ballasting and transit 
losses from marine vessels 

21.59 9 L (-4.17, 0.54) (-31, 37) (-33, 39) 0.105 0.107 

24 
Industrial Processes; Chemical 

Manufacturing; Processes; 
Fugitive leaks 

20.73 --- --- (-10, 10) (-13, 14) 0.066 0.077 

a. Point estimate of benzene emission inventory 
b. Sample size, for censored data set, the number of non-detects is shown in parenthesis 
c. Inter-unit Variability in emission factor. L: lognormal distribution; G: gamma distribution; W: Weibull distribution. 
   The parameters of the distribution are given in parenthesis 
d. The 95 % confidence interval relative to the mean is given. 
e. The 95% confidence interval relative to the mean is given. For the cases in which there is no information of variability in emission  
   factors while there is information of uncertainty in the emission factor, the latter is based upon surrogate or previous work.   
f. Rank correlation between the uncertainty in the total emissions and the uncertainty in the emission factors for each source category  
   with correlated surrogates. Statistically significant correlations are shown in boldface. 
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Table 1.  Continued 
g. Rank correlation between the uncertainty in the total emissions and the uncertainty in the emission factors for each source category  
   with uncorrelated surrogates. Statistically significant correlations are shown in boldface. 
h. Rejected by the K-S test, but the fit is judged to be adequate. 
i.  Fit parametric distribution with MOMM method instead of MLE since MOMM results in a smaller K-S test 
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Table 2.  Quantification of Variability and Uncertainty for Formaldehyde Emission Inventory 

Case 
No. Emission Source Description 

EIa 

(tons/yr) nb 
Variability in 

Emission 
Factorc 

Uncertainty 
in Emission 

Factor 
(%, %)d 

Uncertainty  
in 

Emission  
Inventory 
(%, %)e 

Rank 
Correlation 

1f 

Rank 
Correlation 

2g 

1a Nonroad - 4-stroke lawn and 
garden engines --- --- (-39, 59) (-40, 56) --- --- 

1b Nonroad - 2-stroke lawn and 
garden engines 

182.79 
--- --- (-36, 51) (-37, 53) --- --- 

1c Nonroad-CFI engine (diesel 4S) 934.99 --- --- (-32, 43) (-35, 44) --- --- 
1d Nonroad-Aircraft 163.75 --- --- (-53, 80) (-53, 83) --- --- 
1 Noroad mobile source 1281.54 --- --- (-26, 35)  (-29, 35) 0.306 0.305 
2a Onroad gasoline 763.53 --- --- (-87, 224) (-88, 242) --- --- 

2b-1 Onroad diesel engines-THC --- 24 L (0.46, 1.46) (-58, 150)  --- --- 

2b-2 Onroad diesel engines-
formaldehyde fraction 

--- 24 W (1.43, 
0.086)h (-28, 30)  --- --- 

2b Onroad diesel engines 212.55 --- --- (-63, 166) (-62, 157) --- --- 
2 Onroad mobile source 976.08 --- --- (-75, 177) (-76, 176) 0.892 0.893 

3a 
Stationary reciprocating internal 

combustion engines (material type: 
liquid) 

--- 12 L (-2.21, 1.58) (-74, 217) (-76, 222) --- --- 

3b 
Stationary reciprocating internal 

combustion engines (material type: 
gas) 

--- 12 L (1.12, 2.59) (-96, 409) (-96, 408) --- --- 

3 Internal combustion engines 143.92 --- --- (-77, 269) (-76, 179) 0.136 0.136 
4 Oil and gas extraction 99.51 --- --- (-10, 10) (-13, 13) 0.030 0.024 
5 Chemical and allied processes 69.71 --- --- (-10, 10) (-13, 14) 0.030 0.006 

6a Stationary combustion turbines 
(material type: liquid) --- 3 L (-3.18, 0.38) (-36, 50) (-36, 47) --- --- 

6b Stationary combustion turbines 
(material type: gas) 

--- 10 L (-0.12, 
0.98)h (-55, 100) (-53, 98) --- --- 

(Continued) 
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Table 2.  Continued 

Case 
No. Emission Source Description 

EIa 

(tons/yr) nb 
Variability in 

Emission 
Factorc 

Uncertainty 
in Emission 

Factor 
(%, %)d 

Uncertainty  
in 

Emission  
Inventory 
(%, %)e 

Rank 
Correlation 

1f 

Rank 
Correlation 

2g 

6 Combustion turbines 66.62   (-36, 56) (-37, 58) 0.072 0.071 
7 Petroleum refineries 64.09 3 L (0.057, 0.58) (-51, 93) (-52, 80) 0.099 0.097 
8 Open burning, forest and wildfires 39.92 --- --- --- --- --- --- 
9 Open burning, prescribed burnings 24.74 --- --- --- --- --- --- 
10 Utility boilers 7.59 --- --- (-55, 152) (-62, 154) 0.086 0.083 

11a External combustion- coal 
combustion 

--- 14 
(5) 

L (-0.59, 1.44) (-77, 208) (-77, 209) --- --- 

11b External combustion-wood fired 
waste --- 20 L (1.11, 1.34) (-58, 129) (-57, 119) --- --- 

11c External combustion-fuel oil --- 14 
(9) 

W (0.24, 1.42) (-94, 368) (-93, 367) --- --- 

11 Industrial boilers 5.06 --- --- (-55, 152) (-60, 151) 0.086 0.041 
12 Structure fires 4.78 --- --- --- --- --- --- 

a. Point estimate of formaldehyde emission inventory 
b. Sample size, for censored data set, the number of non-detects is shown in parenthesis 
c. Variability in emission factor. L: lognormal distribution; G: gamma distribution; W: Weibull distribution. 
   The parameters of the distribution are given in parenthesis 
d. The 95 % confidence interval relative to the mean is given. 
e. The 95% confidence interval relative to the mean is given. For the cases in which there is no information of variability in emission  
   factors while there is information of uncertainty in the emission factor, the latter is based upon surrogate or previous work.   
f. Rank correlation between the uncertainty in the total emissions and the uncertainty in the emission factors for each source category  
   with correlated surrogates. Statistically significant correlations are shown in boldface 
g. Rank correlation between the uncertainty in the total emissions and the uncertainty in the emission factors for each source category  
   with uncorrelated surrogates. Statistically significant correlations are shown in boldface. 
h. Rejected by K-S test, but the fit is judged to be adequate 
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Table 3.  Quantification of Variability and Uncertainty for Chromium Emission Inventory 

Case 
No. Emission Source Description 

EIa 

(tons/yr) nb 
Variability 
in Emission 

Factorc 

Uncertainty 
in Emission 

Factor 
(%, %)d 

Uncertainty  
in 

Emission  
Inventory 
(%, %)e 

Rank 
Correlation 

1f 

Rank 
Correlation 

2g 

1 PETROLEUM REFINERIES - 
CATALYTIC CRACKI 1.868 3 W (121.8, 

5.01) (-1.5, 1.0) (-10, 9.7) 0.092 0.090 

2 Marine Vessels, Commercial 1.026       

3 CHEM MFG-FUEL FIRED EQ-
PROCESS HEATERS 0.810 3 L (-2.24, 

1.02) (-79, 211) (-78, 201) 0.649 0.664 

4 EXTERNAL COMB BOILERS-
UTILITIES-COAL 1.124 28 

(1) 
L (-0.13, 

1.51) (-59, 123) (-60, 130) 0.576 0.610 

5 All Off-highway Vehicle: Diesel 0.339       

6 HAZARDOUS WASTE 
INCINERATION 0.276 48 L (1.80, 

0.84) (-26, 32) (-28, 33) 0.115 0.112 

7 HARD CHROMIUM 
ELECTROPLATING 0.230 12 W (0.58, 

0.48)h (-71, 137) (-71, 137) 0.356 0.206 

8 ORG. SOLV. EVAPORATION-
SURF. COATG-GENL 

0.181 10 L (1.39, 
1.13) 

(-60, 130) (-61, 129) 0.059 0.076 

9 CHROMIUM METAL PLATING 0.160   (-71, 137) (-72, 130) 0.356 0.057 

10 FABRICATED PLATE WORK 
(BOILER SHOPS) 0.120       

11 
NONCLAY REFRACTORIES (NOT 

SUBJECT TO REFRACTORIES 
MANUFACTURING MACT) 

0.120       

12a Fuel Oil  13 
(1) 

L (1.91, 
0.69) 

(-32, 36)    

12b Refinery gas and landfill gas  3 W (1.86, 
2.48) (-59, 69)    

12 OIL AND GAS FIELD 
MACHINERY MANUFACTURING 

0.120   (-33, 34) (-33, 34) 0.099 0.104 

(Continued) 
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Table 3.  Continued 

Case 
No. Emission Source Description 

EIa 

(tons/yr) nb 
Variability 
in Emission 

Factorc 

Uncertainty 
in Emission 

Factor 
(%, %)d 

Uncertainty  
in 

Emission  
Inventory 
(%, %)e 

Rank 
Correlation 

1f 

Rank 
Correlation 

2g 

13 Light Duty Gasoline Vehicles 
(LDGV) 0.107       

14 SECONDARY METAL PROD-
STEEL FOUNDRIES 0.057 12 L (-0.21, 

1.10) (-55, 110) (-54, 111) -0.074 -0.056 

15 ASPHALT ROOFING:  DIPPING 
ONLY 0.053 5 L (1.83, 

1.72) (-91, 424) (-91, 388) 0.124 0.196 

16 Light Duty Gasoline Trucks 1 & 2 
(LDGT) 

0.046       

17 PORTLAND CEMENT 
MANUFACTURING 0.042       

18 MFG-VINYL ACETATE 0.030       

19 RESIDENTIAL HEATING: 
WOOD/WOOD RESIDUE 

0.030 8 W (1.46, 
0.86) 

(-62, 108) (-62, 107) -0.043 -0.047 

20 All Off-highway Vehicle: Gasoline, 2-
Stroke 0.025       

21 All Off-highway Vehicle: Gasoline, 4-
Stroke 

0.024       

22 PRIMARY METAL PROD-STEEL 
PRODUCTION 0.023 3 L (0.74, 

0.55) (-49, 75) (-49, 80) -0.085 -0.079 

23 RESIDENTIAL HEATING: 
DISTILLATE OIL 

0.016       

24 EXTERNAL COMB BOILERS-
COMML/INSTIT.-LIQ. 0.015       

25 INSTITUTIONAL/COMMERCIAL 
HEATING:  DISTILLATE OIL 

0.011       

(Continued) 
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Table 3.  Continued 

Case 
No. Emission Source Description 

EIa 

(tons/yr) nb 
Variability 
in Emission 

Factorc 

Uncertainty 
in Emission 

Factor 
(%, %)d 

Uncertainty  
in 

Emission  
Inventory 
(%, %)e 

Rank 
Correlation 

1f 

Rank 
Correlation 

2g 

26 INDUSTRIAL BOILERS:  
RESIDUAL OIL 0.011 13 

(1) 
L (1.91, 

0.70) (-59, 69) (-33, 38) 0.051 -0.016 

27 PULP/PAPER IND.-KRAFT 
PULPING 0.010       

a. Point estimate of formaldehyde emission inventory 
b. Sample size, for censored data set, the number of non-detects is shown in parenthesis 
c. Variability in emission factor. L: lognormal distribution; G: gamma distribution; W: Weibull distribution. 
   The parameters of the distribution are given in parenthesis 
d. The 95 % confidence interval relative to the mean is given. 
e. The 95% confidence interval relative to the mean is given. For the cases in which there is no information of variability in emission  
   factors while there is information of uncertainty in the emission factor, the latter is based upon surrogate or previous work.   
f. Rank correlation between the uncertainty in the total emissions and the uncertainty in the emission factors for each source category  
   with correlated surrogates. Statistically significant correlations are shown in boldface 
g. Rank correlation between the uncertainty in the total emissions and the uncertainty in the emission factors for each source category  
   with uncorrelated surrogates. Statistically significant correlations are shown in boldface. 
h. Rejected by the K-S test, but the fit is judged to be adequate 
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Table 4.  Quantification of Variability and Uncertainty for Arsenic Emission Inventory 

Case 
No. Emission Source Description 

EIa 

(tons/yr) nb 

Variability 
in 

Emission 
Factorc 

Uncertainty 
in 

Emission 
Factor 

(%, %)d 

Uncertainty  
in 

Emission  
Inventory 
(%, %)e 

Rank 
Correlation 

1f 

Rank 
Correlation 

2g 

1 EXTERNAL COMB BOILERS-
UTILITIES-COAL 1.77 29 

(3) 
L (-1.28, 

2.34) (-91, 264) (-91, 272) 0.986 0.985 

2 HAZARDOUS WASTE 
INCINERATION  0.347 45 L (0.63, 

1.09)h (-33, 52) (-33, 50) 0.105 0.103 

3 PORTLAND CEMENT 
MANUFACTURING 0.243       

4 PETROLEUM REFINERIES - 
CATALYTIC CRACKI 

0.209       

5 Marine Vessels, Commercial 0.199       

6 PULP/PAPER IND.-KRAFT 
PULPING 0.0394       

7 RESIDENTIAL HEATING: 
DISTILLATE OIL 

0.0275 3 W (2.63, 
2.28) 

(-51, 92) (-52, 96) -0.043 -0.049 

8 RESIDENTIAL HEATING: 
WOOD/WOOD RESIDUE 0.0152   (-71, 71) (-73, 76) -0.046 -0.008 

9 INDUSTRIAL BOILERS:  
RESIDUAL OIL 

0.0136 13 
(3) 

W (1.03, 
1.07) 

(-46, 59) (-46, 61) 0.101 0.095 

10 INSTITUTIONAL/COMMERCIAL 
HEATING:  DISTILLATE OIL 0.0123   (-51, 92) (-53, 77) -0.043 -0.086 

11 INSTITUTIONAL/COMMERCIAL 
HEATING:  RESIDUAL OIL 

0.011   (-46, 59) (-47, 71) 0.101 -0.003 

12 
INSTITUTIONAL/COMMERCIAL 
HEATING:  BITUMINOUS AND 

LIGNITE 
0.008   (-91, 264) (-91, 261) 0.986 0.022 

13 WOOD PRESERVING 0.005       
(Continued) 
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Table 4.  Continued. 

Case 
No. 

Emission Source Description EIa 

(tons/yr) 
nb 

Variability in 
Emission 
Factorc 

Uncertainty 
in Emission 

Factor 
(%, %)d 

Uncertainty  
in Emission  
Inventory 
(%, %)e 

Rank 
Correlation 

1f 

Rank 
Correlation 

2g 

14 EXTERNAL COMB BOILERS-
INDUSTRIAL-WOOD 0.00495 7 

(2) 
W (0.59, 

0.61) (-71, 71) (-71, 73) -0.045 -0.053 

15 
RESIDENTIAL HEATING: 

BITUMINOUS AND LIGNITE 
COAL 

0.0044   (-91, 264) (-91, 271) 0.986 -0.121 

16 MFG-INORGANIC CHEMICALS-
GENERAL PROCESSE 0.0034       

17 PRIMARY NONFERROUS 
METALS PRODUCTION 

0.003       

18 INDUSTRIAL BOILERS:  
WOOD/WOOD RESIDUE  0.00266 7 

(2) 
W (0.59, 

0.61) (-71, 71) (-72, 76) 0.058 0.058 

19 INDUSTRIAL BOILERS:  
WASTE OIL 

0.00222   (-46, 59) (-45, 63) 0.101 0.022 

20 
FOOD AND AGRICULTURAL 

PRODUCTS:  COTTON 
GINNING 

0.00208       

a. Point estimate of formaldehyde emission inventory 
b. Sample size, for censored data set, the number of non-detects is shown in parenthesis 
c. Variability in emission factor. L: lognormal distribution; G: gamma distribution; W: Weibull distribution. 
   The parameters of the distribution are given in parenthesis 
d. The 95 % confidence interval relative to the mean is given. 
e. The 95% confidence interval relative to the mean is given. For the cases in which there is no information of variability in emission  
   factors while there is information of uncertainty in the emission factor, the latter is based upon surrogate or previous work.   
f. Rank correlation between the uncertainty in the total emissions and the uncertainty in the emission factors for each source category  
   with correlated surrogates. Statistically significant correlations are shown in boldface 
g. Rank correlation between the uncertainty in the total emissions and the uncertainty in the emission factors for each source category  
   with uncorrelated surrogates. Statistically significant correlations are shown in boldface. 
h. Rejected by the K-S test, but the fit is judged to be adequate
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             Figure 1.   Variability and Uncertainty in Chromium Emission Factor for  
        Case 26 (Industrial boilers: residual oil) Estimated Based  

                              Upon a Lognormal Distribution 
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           Figure 2.  Variability and Uncertainty in Chromium Emission Factor for    
                           Case 26 (Industrial boilers: residual oil) Estimated Based  
                           Upon a Gamma Distribution 
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                   Figure 3.  Variability and Uncertainty in Chromium Emission Factor for    
                                   Case 26 (Industrial boilers: residual oil) Estimated Based  
                                   Upon a Weibull Distribution 
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Supporting Information 

The objective of this project is to develop probabilistic emission inventories (EI) of 

benzene, formaldehyde and chromium for the Houston area. A key step is to quantify variability. 

In this supporting information, the likelihood functions of Maximum Likelihood Estimation for 

censored data are given for lognormal, gamma and Weibull distributions. Empirical emission 

factor data and data source for benzene, formaldehyde, chromium and arsenic are shown in 

Tables S-1 to S-4. The method and results of quantification of uncertainty in emission factors for 

mobile sources and aggregation source categories are addressed. The uncertainties in the total 

emission inventories are given graphically for benzene, formaldehyde, chromium and arsenic.    

            Maximum Likelihood Estimation  

The likelihood function for data without censoring is: 

                                  ),,(),,,( 2
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Where, 

θ θ θ, , ,2 K k = Parameters of the distribution 

             xi = Values of random variable, for, i = 1, 2, …, n 

                                       n = Number of data points in the data set 

                                       f( ) = Probability density function 

The likelihood function for censored data sets having multiple detection limits is: (19, 38) 
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Where, 

                  θ θ θ, , ,2 K k = Parameters of the distribution 
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                                xi                     = Detected data point, where, i = 1, 2, …, n 

             NDm             = Number of non-detects corresponding to detection limit DLm,      

                                                   where, m = 1, 2, …, P. 

                    P               = Number of detection limits 

                    f( )            = Probability density function 

                    F( )           = Cumulative distribution function 

According to equation (2), for the lognormal distribution, the log-likelihood function 

including left-censored data is given by:  (22, 23) 
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For the gamma distribution, the log- likelihood function including left-censored data is 

given by: (22, 23) 
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For the Weibull distribution, the log- likelihoood function including left-censored data is 

given by: (22, 23) 
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            Empirical Emission Factor Data 

Empirical emission factor data of benzene, formaldehyde, chromium and arsenic are 

obtained. For some source categories, reasonable surrogate data are used. The data status to 
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indicate direct or surrogate data are in given in Tables S-1 to S-4 for each source category for the 

four pollutants. The references of the data sources are also given in Tables S-1 to S-4.             

            Quantification of Uncertainty in Emission Factors for Mobile Sources                                                                                              

For benzene and formaldehyde, data are available to quantify uncertainty in emission 

factors from mobile sources. For mobile source emission factors, previous work regarding 

uncertainty estimates has been done for total hydrocarbon emissions for both onroad and 

nonroad sources (5, 7, 8). The uncertainty in the fraction of benzene and formaldehyde in total 

organic gas emissions has also been estimated for onroad LDGV sources (37). Therefore, 

quantification of uncertainty in benzene and formaldehyde emission factors in gasoline mobile 

sources is based upon the results from previous work. For diesel mobile sources, the 

uncertainties in the THC emission factors and the fraction of benzene and formaldehyde in THC 

emissions were quantified based upon empirical data using bootstrap simulation. The uncertainty 

in benzene and formaldehyde emission factors was quantified based on the products of the 

uncertainties in THC emissions and percent of THC emitted as an air toxic. Here, the model used 

to quantify the uncertainty for benzene and formaldehyde from mobile sources is introduced.  

The air toxic emission factors for gasoline mobile sources for either benzene or 

formaldehyde is given by: 

                            EFtoxic = EFTHC × Ftoxic/TOG / 100 × FTOG/THC                                     (6) 

Where, 

            EFtoxic        = Toxic Emission factor (unit: g/mi for onroad mobile  

                                  sources; g/hp-hr for nonroad lawn and garden engines;    

                                  g/kWh for nonroad construction, farm and industrial   

                                  engines) 
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            EFTHC        = THC emission factor (unit: g/mi for onroad mobile  

                                  sources; g/hp-hr for nonroad lawn and garden engines;    

                                 g/kWh for nonroad construction, farm and industrial   

                                 engines) 

            Ftoxic/TOG    = Toxic emission fraction (unit: % of TOG mass emitted as the       

                                 selected air toxic) 

            FTOG/THC    = Mass Ratio of TOG to THC emissions 

The air toxic emission factors for diesel mobile sources for either benzene or 

formaldehyde is given by: 

                            EFtoxic = EFTHC × Ftoxic/THC                                                                     (7) 

Where,  

            Ftoxic/THC    = Toxic mass emission fraction in THC emitted as the                         

                                 selected air toxic) 

Most hydrocarbon emission data from mobile sources is measured as total hydrocarbon. 

THC is measured using a Flame Ionization Detector (FID) calibrated with propane (SI-1). The 

FID is assumed to respond to all hydrocarbons identically as it responds to propane in 

determining the concentration of carbon atoms in a gas sample. Most hydrocarbons respond 

nearly identically as propane with notable exceptions being oxygenated hydrocarbons such as 

alcohols and aldehydes commonly found in engine exhaust. Because alcohols and especially 

aldehydes are chemically reactive and therefore ozone-forming hydrocarbons, the California Air 

Resources Board defined a measurement that adds the THC and oxygenated compounds into a 

new measurement called total organic gas. The oxygenated components are measured by 

collecting aldehydes on dinitro-phenylhydrazine impregnated filter traps and alcohols in chilled 
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water impingers. The aldehydes and alcohols are extracted and measured using chromatography 

to determine emission rates. The mass ratio of TOG/THC is approximately equal to 1 for mobile 

sources (SI-1). EPA often uses the toxic fraction, developed as a percentage of the toxic 

compound of interested contained in TOG, to calculate the toxic emission estimates fo r mobile 

source. Previous work was done by Bammi to analyze the ratio of toxics emission in total TOG 

for LDGV (37). Therefore, Ftoxic/TOG is used instead of Ftoxic/THC for gasoline mobile sources. For 

diesel mobile sources, empirical emission factor data for THC, benzene and formaldehyde were 

available. A similar procedure as for gasoline mobile sources was applied in order to quantify the 

uncertainty in the benzene and formaldehyde emission factors. However, since no data were 

reported by CRC for TOG from diesel mobile sources, Ftoxic/THC is used (35).  

Since the objective of this work is to quantify the relative uncertainty in emission factors, 

each input in Equations (6) and (7) was normalized to its respective mean value to obtain:    

                            UFtoxic = UFTHC × UFtoxic/TOG × UFTOG/THC                                       (8) 

                            UFtoxic = UFTHC  × UFtoxic/THC                                                            (9) 

Where, 

            UFtoxic        = Normalized uncertainty factor for EFtoxic    

            UFTHC        = Normalized uncertainty factor for EFTHC                   

            UFtoxic/TOG  = Normalized uncertainty factor for Ftoxic/TOG 

            UFTOG/THC  = Normalized uncertainty factor for FTOG/THC         

            UFtoxic/THC  = Normalized uncertainty factor for Ftoxic/THC                          

Figure S-1 illustrates the use of Equation (9) to calculate the uncertainty in benzene 

emission factors from onroad diesel mobile sources.  
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Quantification of Uncertainty in Aggregation Source Categories 

Case 3 for benzene, Cases 1, 2, 3, 6 and 11 for formaldehyde and Case 12 for chromium 

are aggregations of several subcategories. For such categories, the uncertainty for the main 

source category was obtained based on the weighted average uncertainty from the subcategories. 

The weight assigned to each subcategory is based on the relationship between the subcategories. 

However, the information to determine the relationship is not available for most cases and thus 

assumptions were made.  

For Case No. 3 of the petroleum refinery source category in Table 1, an approximate 

weight for each subcategory was defined based on the gasoline marketing distribution system in 

the United States (33). The scheme of the distribution system is shown in Figure S-2. According 

to the scheme and the subcategories for which empirical data are available, including Case Nos. 

3a to 3i in Table 1, Source No. 3 was taken as the combination of the following six 

subcategories:  

1. Petroleum refinery storage tanks (PRST) represented by Case No. 3i; 

2. Bulk terminal (BT) represented by Case Nos. 3a, 3b and 3c; 

3. Typical bulk plant (TBP) represented by Case Nos. 3a and 3d; 

4. Storage losses at typical pipeline breakout station (TPBS) represented by Case Nos. 

3e and 3f; 

5. Service station (TSS) represented by Case No. 3g; and 

6. Emissions from wastewater (WW) represented by Case No. 3h.  

For the subcategories of BT, TBP and TPBS, there are several subcomponents. First, the 

weights for the six subcategories were defined. Then, the weights were defined for the 

subcomponents in BT, TBP and TPBS.  
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According to the scheme of the distribution system, PRST and BT are on the main flow 

of the distribution system, and TBP, TPBS, and TSS are with respect to partial flow of the 

distribution system. The subcategories on the main flow of the distribution system were assigned  

weights of one unit, and the emission sources on the partial flow were assigned weights of one- 

half. Wastewater collection and treatment is no t shown in Figure S-2 and there is no available 

information to determine the emissions of air toxics from WW relative to the total emissions 

from petroleum refinery. According to EPA, air emissions from petroleum refinery wastewater 

collection and treatment are one of the largest sources of VOC emissions at a refinery. (33) 

Therefore, for purpose of calculation, the WW subcategory was assigned a weight of one. The 

weighted uncertainty factor for Source 3 is calculated as:  

   UF3 = (UFPRST  + UFBT  + 0.5 × UFTBP  + 0.5 × UFTBPS + 0.5 × UFTSS + UFww)/4.5               (10) 

Where, UF3, UFPRST , UFBT , UFTBP , UFTBPS, UFTSS and UFww are normalized uncertainty factors 

of benzene emission factors from Emission Sources 3, PRST, BT, TBP, TBPS, TSS and WW, 

respectively.  

Since subcategories BT, TBP and TBPS are each composed of several subcomponents, a 

weight was needed for each subcomponent. For components that represent different processes, 

equal weights were assigned to each component. For example, weights of 0.5 were assigned to 

subcomponents 3a and 3d in subcategory TBP. If the components represent different seasons, a 

weight of ¾ was assigned to the non-winter season and ¼ was assigned to winter season on the 

assumption that winter corresponds to three winter months per year. For example, a weight of ¾ 

was assigned to 3e and ¼ was assigned to 3f in TBPS. For BT, there are two levels of 

subcomponents. In the first level, gasoline loading racks at bulk terminal, 3a, was one 

subcomponent and was assigned a weight of ½. Storage losses at gasoline bulk terminal 
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(SLGBT) composed of Case Nos. 3b and 3c was other subcomponent and was assigned a weight 

of 1/2. In the second level, weights were assigned to 3b and 3c in SLGBT. Since 3b is for the 

nonwinter season, it was assigned a weight of 3/4. Similarly, since 3c is for the winter season, it 

was assigned a weight of 1/4.  

Based on the weighted average, the 95 percent confidence interval of the mean emission 

factors for Source No. 3 was obtained as minus 55 percent to plus 158 percent. This is less than 

the range of uncertainty for most of the subcategories. The reason is that there is no correlation 

of the uncertainty factors among the subcategories and the uncertainties from the subcategories 

tend to offset each other when using Equation (10). For comparison, uncertainty was also 

estimated for a straight arithmetic average of all subcategories. The resulting 95 percent relative 

confidence interval of the mean is from minus 53 percent to plus 127 percent. Although there is 

some difference in the two results at the upper level of the range, the two results are comparable 

in magnitude. Therefore, although the method for determining the weight of each subcategory is 

approximate, the final results are not strongly sensitive to the weights for this case.  

For formaldehyde mobile sources, such as Source Nos. 1 and 2 in Table 2, the emission 

of each subcategory from Houston is available except regarding the breakdown values of 2-

stroke and 4-stroke nonroad gasoline lawn and garden mobile sources as shown in Table S-2. In 

these two cases, the emission fraction of each subcategory is assigned as the weight to calculate 

the weighted average uncertainty of the aggregation category. For 2-stroke and 4-stroke nonroad 

gasoline lawn and garden mobile sources, the formaldehyde emission fractions are available 

from Jacksonville, Florida and are used here for the weights. For example, for Source No. 1 in 

Table 6, the ratio of the emissions from 1a to 1b is 5:27 according to Jacksonville emission 

inventory (SI-2). Therefore, the weight for 1a is assigned to be 5/(5+27), which is 0.156, and the 
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weight for 1b is assigned to be 0.844 to get the weighted average uncertainty for gasoline 

nonroad mobile sources. The weights of gasoline nonroad mobile source, diesel nonroad mobile 

source and aircraft source are assigned according to the emissions from Houston. That is, the 

weight of gasoline nonroad mobile source is equal to 182.79/1281.54, which is 0.143. The 

weights of diesel nonroad mobile sources and aircraft are equal to 0.729 and 0.128, respectively.  

For Source Nos. 3, 6 and 11 in Table 2, there is no breakdown available regarding the 

formaldehyde emissions for each subcategory in Houston. As an approximate assumption, equal 

weights were assigned to each subcategory within these three major categories. That is, for 

Source Nos. 3 and 6, it is assumed that liquid fuel and gas fuel contribute equally to uncertainty.  

For Source No. 11, it is assumed that coal combustion, wood fired waste combustion and fuel oil 

combustion contribute equally to the uncertainty in the emissions. For Source No. 3, the 

uncertainty in subcategories 3a and 3b are relatively large compared to other source categories; 

thus, the resulting weighed average uncertainty for Source No. 3 will still be relatively large no 

matter what weights are assigned for each subcategory. Therefore, the uncertainty results are 

insensitive to the choice of a weight and are robust in the absence of data regarding what the 

weight should be. For Source Nos. 6 and 11, from the sensitivity study, the uncertainty in the 

total emissions has a small correlation to the emission factor uncertainty in these two cases. 

Therefore, the uncertainties associated with weights for these cases are not important to the 

uncertainty in total emissions.  

For Source No. 12 of Chromium emission factors from oil and gas fired machinery 

manufacturing, there is no breakdown available for oil and gas fired sources from Houston, the 

fractions of the emissions for oil industry combustion source and gas industry combustion source 

from Jacksonville are used as the weights, which are 0.55 and 0.45, respectively (SI-2).    



 131

Based on the approaches described here, the 95 percent confidence intervals of the mean 

of benzene, formaldehyde and chromium emission factors were obtained for the source 

categories composed of several subcategories. The results are shown in Tables 1, 2 and 3.  

Uncertainty in Total Emission Inventories 

The uncertainties in the total urban air toxics emissions are shown by the cumulative 

probability distributions of the normalized uncertainty factors in Figures S-3 to S-10 for the four 

pollutants. The results based on both correlated surrogates and uncorrelated surrogates are given.  
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        Table S-1.  Data and Data Source for Benzene Emission Factors 
Case 
No. 

Emission Source Description Data 
Statusa Data Source 

1 Mobile Source – LDGV D References: 7 & 35 
2 Mobile Source – LDGT S Surrogate: Case 1 

3a Gasoline loading racks at bulk terminals 
and bulk plants D 

3b Storage losses at a typical gasoline bulk 
terminal (non Winter) 

D 

3c Storage losses at a typical gasoline bulk 
terminal (winter) D 

3d For a typical bulk plant D 

3e Storage losses at a typical pipeline 
breakout station (non-winter) 

D 

3f Storage losses at a typical pipeline 
breakout station (winter) D 

3g For typical Service 
Station for petroleum refinery 

D 

3h Petroleum Refinery wastewater D 
3i Storage tank for petroleum refinery D 
3 Weighted average from 3a to 3i D 

References: 30 & 31 

4 4-stroke lawn and garden engines D/S References: 3 & 35 
5 2-stroke lawn and garden engines D/S References: 3 & 35 

6 Construction, farm and industrial engine 
(diesel 4S) D/S References: 32 & 33 

7 Oil and natural gas production S 

Surrogate: methane 
fugitive emissions 
from gas and oil 

industry 
Reference: 34 

8 
Storage and transport, Natural Gas 

Transmissions and Marine Transport S 

Surrogate: methane 
fugitive emissions 
from gas and oil 

industry 
Reference: 34 

9 Mobile source-HDGV S Surrogate: Case 1 
10 Other combustion-forest wildfires D Reference: 30 
11 Solid waste disposal- sewage treatment D Reference: 30 

12 Industrial Processes; Chemical 
Manufacturing; Acetylene production S Reference: 34 

13 Fuel oil external combustion D Reference: 28 
14 Typical ethylene plant D Reference: 30 

15 Storage and Transport; Petroleum Product 
Storage; Gasoline Service Stations; D Reference: 30 

         (Continued)
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         Table S-1.  Continued. 
Case 
No. 

Emission Source Description Data 
Statusa Data Source 

16 
Industrial Processes; 

Petroleum Industry; Fugitive S 

Surrogate: methane 
fugitive emissions 
from gas and oil 

industry 
Reference: 34 

17 Other combustion-managed prescribed 
burning D Reference: 30 

18-1 THC from HDDV D Reference: 32 
18-2 Benzene fraction in THC from HDDV D Reference: 32 
18 Benzene emission factor from HDDV D Reference: 32 

19 
Industrial Processes; Chemical 

Manufacturing; Fugitive Emissions S 

Surrogate: methane 
fugitive emissions 
from gas and oil 

industry 
Reference: 34 

20 Mobile source-aircraft D/S Reference: 35 

21 
Industrial Processes; Petrolem Industry; 

Fugitive Emissions; Miscellaneous: 
Sampling/Non-Asphalt 

S 

Surrogate: methane 
fugitive emissions 
from gas and oil 

industry 
Reference: 34 

22 Petroleum refinery-process vent in 
refinery product D Reference: 32 

23 Loading, ballasting and transit losses 
from marine vessels D Reference: 32 

24 Industrial Processes; Chemical 
Manufacturing; Processes; Fugitive leaks 

S Reference: 34 
            a D = directly relevant data; S = surrogate data; D/S = Directly relevant data for THC,   
           surrogate data for % of TOG (or THC) emitted as benzene. 
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         Table S-2.  Data and Data Source for Formaldehyde Emission Factors 
Case 
No. 

Emission Source Description Data 
Statusa Data Source 

1a Nonroad - 4-stroke lawn and garden 
engines D/S Reference: 3 & 35 

1b Nonroad - 2-stroke lawn and garden 
engines D/S Reference: 3 & 35 

1c Nonroad-CFI engine (diesel 4S) D/S Reference: 32 & 33 
1d Nonroad-Aircraft D/S Reference: 35 

1 Nonroad D/S Reference: 3, 32, 33 
and 35 

2a Onroad gasoline D Reference: 7 & 35 
2b-1 Onroad diesel engines-THC D Reference: 32 

2b-2 Onroad diesel engines-formaldehyde 
fraction D Reference: 32 

2b Onroad diesel engines D Reference: 32 

2 Onroad D Reference: 7, 32 and 
35 

3a 
Stationary reciprocating internal 

combustion engines (material type: 
liquid) 

D Reference: 31 

3b Stationary reciprocating internal 
combustion engines (material type: gas) 

D Reference: 31 

3 Internal combustion engines D Reference: 31 

4 

Oil and gas extraction 

S 

Surrogate: methane 
fugitive emissions 
from gas and oil 

industry 
Reference: 34 

5 

Chemical and allied processes 

S 

Surrogate: methane 
fugitive emissions 
from gas and oil 

industry 
Reference: 34 

6a Stationary combustion turbines (material 
type: liquid) 

D Reference: 31 

6b Stationary combustion turbines (material 
type: gas) D Reference: 31 

6 Weighted average of 6a and 6b D Reference: 31 
7 Petroleum refineries D Reference: 26 
8 Open burning, forest and wildfires --- --- 
9 Open burning, prescribed burnings --- --- 
10 Utility boilers S Surrogate: Case 11 
11a External combustion- coal combustion D Reference: 27 

          (Continued)
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         Table S-2.  Continued.    
Case 
No. 

Emission Source Description Data 
Statusa Data Source 

11b External combustion-wood fired waste D Reference: 29 
11c External combustion-fuel oil D Reference: 28 

11 Industry boilers D Reference: 27, 28 
and 29 

12 Structure fires --- --- 
            a D = directly relevant data; S = surrogate data; D/S = Directly relevant data for THC,   
           surrogate data for % of TOG (or THC) emitted as formaldehyde. 
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        Table S-3.  Data and Data Source for Chromium Emission Factors 
Case 
No. 

Emission Source Description Data 
Statusa Data Source 

1 PETROLEUM REFINERIES - 
CATALYTIC CRACKI D Reference: 31 

2 Marine Vessels, Commercial   

3 CHEM MFG-FUEL FIRED EQ-
PROCESS HEATERS 

D Reference: 37 

4 EXTERNAL COMB BOILERS-
UTILITIES-COAL S 

Surrogate: industrial 
boilers 

Reference: 27 
5 All Off-highway Vehicle: Diesel   

6 HAZARDOUS WASTE 
INCINERATION D Reference: 36 

7 HARD CHROMIUM 
ELECTROPLATING 

D Reference: 31 

8 ORG. SOLV. EVAPORATION-SURF. 
COATG-GENL D Reference: 31 

9 CHROMIUM METAL PLATING S Surrogate: Case7 

10 FABRICATED PLATE WORK 
(BOILER SHOPS) 

  

11 
NONCLAY REFRACTORIES (NOT 

SUBJECT TO REFRACTORIES 
MANUFACTURING MACT) 

  

12a Fuel Oil  Reference: 28 
12b Refinery gas and landfill gas  Reference: 31 

12 OIL AND GAS FIELD MACHINERY 
MANUFACTURING S Reference: 28 and 

31 
13 Light Duty Gasoline Vehicles (LDGV)   

14 SECONDARY METAL PROD-STEEL 
FOUNDRIES 

D Reference: 31 

15 ASPHALT ROOFING:  DIPPING 
ONLY S 

Surrogate: asphalt 
concrete 

Reference: 31 

16 Light Duty Gasoline Trucks 1 & 2 
(LDGT)   

17 PORTLAND CEMENT 
MANUFACTURING   

18 MFG-VINYL ACETATE   

19 RESIDENTIAL HEATING: 
WOOD/WOOD RESIDUE S Surrogate: boilers 

Reference: 29 

20 All Off-highway Vehicle: Gasoline, 2-
Stroke   

21 All Off-highway Vehicle: Gasoline, 4-
Stroke 

  

         (Continued)
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         Table S-3.  Continued.  
Case 
No. 

Emission Source Description Data 
Statusa Data Source 

22 PRIMARY METAL PROD-STEEL 
PRODUCTION D Reference: 31 

23 RESIDENTIAL HEATING: 
DISTILLATE OIL 

  

24 EXTERNAL COMB BOILERS-
COMML/INSTIT.-LIQ.   

25 INSTITUTIONAL/COMMERCIAL 
HEATING:  DISTILLATE OIL 

  

26 INDUSTRIAL BOILERS:  RESIDUAL 
OIL D Reference: 28 

27 PULP/PAPER IND.-KRAFT PULPING   
            a D = directly relevant data; S = surrogate data; 
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         Table S-4.  Data and Data Source for Arsenic Emission Factors 
Case 
No. 

Emission Source Description Data 
Statusa Data Source 

1 EXTERNAL COMB BOILERS-
UTILITIES-COAL D Reference: 27 

2 HAZARDOUS WASTE 
INCINERATION  

D Reference: 36 

3 PORTLAND CEMENT 
MANUFACTURING D Reference: 31 

4 PETROLEUM REFINERIES - 
CATALYTIC CRACKI 

  

5 Marine Vessels, Commercial   
6 PULP/PAPER IND.-KRAFT PULPING   

7 RESIDENTIAL HEATING: 
DISTILLATE OIL S 

Surrogate: distillate 
oil turbine 

Reference: 31 

8 RESIDENTIAL HEATING: 
WOOD/WOOD RESIDUE S Surrogate: Case 14 

9 INDUSTRIAL BOILERS:  RESIDUAL 
OIL 

D Reference: 28 

10 INSTITUTIONAL/COMMERCIAL 
HEATING:  DISTILLATE OIL S Surrogate: Case 7 

Reference: 28 

11 INSTITUTIONAL/COMMERCIAL 
HEATING:  RESIDUAL OIL S Surrogate: Case 9 

12 
INSTITUTIONAL/COMMERCIAL 
HEATING:  BITUMINOUS AND 

LIGNITE 
S Surrogate: Case 1 

13 WOOD PRESERVING   

14 EXTERNAL COMB BOILERS-
INDUSTRIAL-WOOD 

D Reference: 29 

15 RESIDENTIAL HEATING: 
BITUMINOUS AND LIGNITE COAL S Surrogate: Case 1 

16 MFG-INORGANIC CHEMICALS-
GENERAL PROCESSE 

  

17 PRIMARY NONFERROUS METALS 
PRODUCTION   

18 
INDUSTRIAL BOILERS:  
WOOD/WOOD RESIDUE  

(area source) 
D Reference: 29 

19 INDUSTRIAL BOILERS:  WASTE OIL S Surrogate: Case 9 

20 FOOD AND AGRICULTURAL 
PRODUCTS:  COTTON GINNING 

  
            a D = directly relevant data; S = surrogate data; 
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Figure S-1.  Quantification of Uncertainty in the Mean of the Benzene Emissions Factor for Onroad Diesel Mobile Sources 
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Figure S-2.  The Gasoline Marketing Distribution System in the United States 
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               Figure S-3.  Weighted Average Uncertainty Factor for Benzene Emissions for  
                                    All Source Categories with Correlated Surrogates   
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Figure S-4.  Weighted Average Uncertainty Factor for Benzene Emissions for 
                                    All Source Categories with Uncorrelated Surrogates         
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            Figure S-5.  Weighted Average Uncertainty Factor for Formaldehyde Emissions for  
                                 All Source Categories with Correlated Surrogates 
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             Figure S-6.  Weighted Average Uncertainty Factor for Formaldehyde Emissions for  
                                  All Source Categories with Uncorrelated Surrogates 
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            Figure S-7.  Weighted Average Uncertainty Factor for Chromium Emissions for  
                                 All Source Categories with Correlated Surrogates 
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            Figure S-8.  Weighted Average Uncertainty Factor for Chromium Emissions for  
                                 All Source Categories with Uncorrelated Surrogates 
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            Figure S-9.  Weighted Average Uncertainty Factor for Arsenic Emissions for  
                                 All Source Categories with Correlated Surrogates 

 

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5
Normalized Values

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

95 percent 
probability range: 
(0.26 to 3.22)

 

            Figure S-10.  Weighted Average Uncertainty Factor for Arsenic Emissions for  
                                  All Source Categories with Uncorrelated Surrogates 
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Abstract. Probabilistic emission inventories were developed for 1, 3-butadiene, mercury, 

arsenic, benzene, formaldehyde and lead for Jacksonville, Florida. Maximum Likelihood 

Estimation (MLE) or Method of Matching Moments (MOMM) is used to fit parametric 

distributions to empirical emission factor data to represent inter-unit variability. Parametric 

bootstrap simulation and empirical bootstrap simulation are respectively applied to uncensored 

and censored data to quantify the uncertainty in urban air toxics emission factors. The 

probabilistic emission inventories were developed based on the product of the uncertainties in 

the emission factors and in the activity factors. The uncertainties in the urban air toxics emission 

inventories are typically large. For example, the 95 percent confidence interval ranges from 

minus 83 percent to plus 243 percent for arsenic. The key sources of uncertainty in the emission 

inventory for each toxic are identified by sensitivity study.   

Key Words:  Probabilistic emission inventory, Urban air toxics, 1,3-butadiene, Mercury, 

Arsenic, Benzene, Formaldehyde, Lead, Maximum likelihood estimation, Bootstrap simulation 

1.0     Introduction 

Quantification of uncertainty in emissions factors and emission inventories (EIs) is 

increasingly recognized as a need and there are a growing number of examples of such efforts.  

The National Research Council has repeatedly recommended that uncertainty in emissions be 

quantified.1-3  The Intergovernmental Panel on Climate Change (IPCC) has developed good 

practice guidelines for quantification of uncertainty in greenhouse gas emissions estimates.4  The 

U.S. Environmental Protection Agency has developed guidance regarding methods for 

uncertainty analysis.  Uncertainties have been assessed quantitatively for emission factors, 

including source categories such as power plants, wood furniture coating, onroad mobile, 
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nonroad mobile, and natural gas engines, primarily with regard to ozone precursors or 

greenhouse gases.5-16  Uncertainty has been quantified for selected emission inventories,17-20 

although in several cases simplifying assumptions were made regarding normality.17, 19  Methods 

for distinguishing between variability and uncertainty and for dealing with various cases of 

practical significance, such as mixtures of distributions and data that contain non-detects, have 

been developed.21-24   

A critical need for uncertainty analysis is with respect to urban air toxic emissions. EPA 

has developed a list of 33 urban air toxics, that represent the priority for additional assessment of 

the health effects of air toxics in urban areas.25  There is a need to develop emission inventories 

of such pollutants for individual urban areas and to perform exposure and risk analysis with 

regard to human health effects.  The National Research Council has strongly recommended a 

probabilistic approach to quantification of variability and uncertainty in exposure assessment,2 

and EPA has responded with guidelines on Monte Carlo analysis.26  Therefore, there is a need to 

develop probabilistic emission inventories of urban air toxics in order to support probabilistic 

exposure assessment. 

The purpose of this paper is to demonstrate methods for the development of probabilistic 

emission factors and inventories based upon case studies for selected urban air toxics for a 

specific urban area.  The following pollutants were selected based upon consideration of their 

priority and data availability:  1, 3-butadiene, mercury, benzene and formaldehyde are ranked in 

the top 10 of EPA’s list of 33 urban air toxics, and mercury, arsenic and lead are included in the 

list and are acute toxic agents of significant environmental and public health interest.27, 28  A key 

challenge in dealing with air toxics emissions data is that many of the attempted measurement 

results are reported as below a detection limit.  Therefore, there is a need to apply rigorous 
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statistical methods for dealing with non-detects in the process of quantification of inter-unit 

variability and uncertainty in the mean for emission factors of individual source categories.  

Among urban areas, Jacksonville, Florida has developed an extensive deterministic air toxic 

emission inventory, including 107 pollutants using 2000 as a base year.29  The Jacksonville 

inventory is selected as the basis for case studies demonstrating the development of probabilistic 

emission inventories for the six selected urban air toxics.   

The specific objectives of this paper are to: (1) quantify variability and uncertainty in air 

toxics emission factors for the largest emission sources of selected urban air toxics; (2) to 

develop probabilistic emission inventories for a specific urban area; (3) to identify key sources of 

uncertainty in the emission inventories for purposes of prioritizing future data collection. 

2.0     Methodology  

In this section, the candidate parametric distribution types used to represent the  inter-unit 

variability of the emission factors are introduced. Then the methods to quantify the variability 

and uncertainty in the emission factors and to guide the choice of the preferred distribution, 

including the maximum likelihood estimation (MLE) and the method of matching moments 

(MOMM), bootstrap simulation, and goodness-of-fit test are addressed respectively. Finally, the 

method regarding developing probabilistic emission inventories and sensitivity study to identify 

key sources of uncertainty are addressed.  

Because of inherent limitations of sampling and analytical chemistry measurement 

methods, urban air toxics data often contain several observations reported as below detection 

limits, referred to as “censored”.30  These data sets can have multiple detection limits. Multiple 

detection limits arise when individual measurements are collected by different sampling and 
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analytical procedures at different facilities within a source category. How to apply the methods 

to censored emission factor data was also discussed in this section.  

2.1 Candidate Parametric Distributions for Inter-Unit Variability in Emission Factors  

For environmental data sets, such as for concentrations or emission factors, lognormal, 

gamma and Weibull distributions are often chosen as parametric distributions to represent 

variability in data.5, 11, 31-33 One of the most widely used distributional forms in probabilistic 

assessment is the lognormal distribution. The lognormal distribution describes random variables 

resulting from multiplicative processes.34, 35 The gamma distribution is non-negative, positively 

skewed, and similar to the lognormal distribution in many cases but it is less “tail heavy”. The 

Weibull distribution is a flexible distribution that can assume negatively skewed, symmetric, or 

positively skewed shapes.31 It may be used to represent non-negative quantities. Since the 

emission factors are often non-negative and positively skewed, it is typically not reasonable to 

use normal distributions to describe variability in the emission factors. The lognormal, gamma 

and Weibull distributions are selected here as candidate distributions. 

2.2 Maximum Likelihood Estimation and Method of Matching Moment 

Two of the most common approaches to estimating the parameters of a distribution are 

MLE and MOMM.31 MLE involves selecting values of the distribution parameters that are most 

likely to yield the observed data set.  MLE can also be applied to fit distributions to censored 

data taking account of the non detect part.24  MLE is asymptotically unbiased for both types of 

the data sets.  MLE is used to fit distributions to all censored and most of the uncensored 

emission factor data sets.  In MOMM, the parameters of a probability distribution model are 

selected so that the moments (e.g., mean, variance) of the model match the moments of the data 

set.  MOMM is used to estimate distribution parameters for uncensored data when it gives a 
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better result than MLE in that it results in a smaller K-S test value. The estimated parametric 

distribution represents the inter-unit variability of the emission factor data.  

2.3 Bootstrap Simulation 

To quantify the uncertainty in the inter-unit variability and in selected statistics, such as 

the mean, for emission factors, conventional parametric bootstrap simulation is applied to 

uncensored data and empirical bootstrap simulation is applied to censored data.24 In conventional 

parametric bootstrap simulation, a parametric probability distribution is fit to the original data 

set, which has a sample size of n. Monte Carlo simulation is used to randomly simulate synthetic 

data sets, referred to as bootstrap samples, each of sample size n. Typically, B bootstrap samples 

are simulated. For each bootstrap sample, a replication of a given statistic and its parametric 

distribut ion are estimated. Therefore, the confidence intervals for the given statistics or for the 

population distribution can be obtained based on the B replications.11, 32, 36   

In the case of a censored data set, the conventional approach to parametric bootstrap 

simulation cannot be directly applied. Specifically, it is necessary to generate bootstrap samples 

so that there can be random variation in the number of data points that are below detection limit. 

In order to do this, an empirical bootstrap approach is used. In empirical bootstrap simulation, 

each of the original n data points is sampled with replacement and with equal probability of 

being sampled. In the original data set, either the value of data point is given for detected data or 

the detection limit is given for censored data. Therefore, for each data point, an indicator symbol 

δ  is given to indicate whether it is a detected value or below a detection limit. A value ofδ equal 

to 1 was used to represent a data point below a detection limit and δ  equal to 0 was used to 

represent a detected data point. In the case of non-detected data, the numerical value of the data 

point used in the bootstrap simulation was the detection limit itself. When generating bootstrap 
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samples from the original censored data set, both the data point value and its indicator symbol 

were sampled together. Therefore, for each bootstrap sample, it is known as to which data points 

are detected and which data points are censored. For each bootstrap sample, MLE was used to fit 

a parametric distribution. B estimates of the distribution parameters and of the fitted distributions 

were developed. Therefore, the sampling distribution of a given statistics are obtained based on 

the B estimates of the fitted distributions.24 

2.4 Goodness-of-fit Test 

The Kolmogorov-Smirnov (K-S) test is used to evaluate goodness-of- fit for data without 

censoring.31, 37, 38 The fitted lognormal, gamma or Weibull distribution that has the smallest K-S 

test value was determined as the recommended parametric distribution. For censored data, a 

graphical comparison of the bootstrap confidence intervals for the cumulative distribution 

function (CDF) of the fitted distribution versus the empirical distribution of the data is used to 

evaluate goodness-of- fit. The larger the proportion of data contained within the confidence 

intervals, the more comfort an analyst will typically have regarding the goodness-of- fit.  The 

distribution type whose bootstrap confidence intervals enclose the largest proportion of empirical 

data, especially for the upper percentiles that have the most influence on the mean estimate, is 

recommended as the preferred distribution.  

2.5 Monte Carlo Simulation of Uncertainty in the Emission Inventory Model 

The emission inventory for a pollutant is given by: 

                                         EI = ∑ × ii AFEF                                                                     (1) 

Where, 

           EFi = emission factor from source i (mass emissions percent of activity) 

           AFi = activity factor from source i (unit of activity) 
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Based upon selection of the preferred probability distribution model to represent inter-

unit variability in the emission factor, uncertainty was estimated for the mean emission factor 

using bootstrap simulation. Uncertainty in the activity factor was estimated based upon 

judgment.  The uncertainty in the emission inventory was simulated using Monte Carlo 

simulation31, 38, resulting in an estimate of the probability distribution of uncertainty in the total 

inventory. 

2.6 Sensitivity Analysis to Identify the Key Sources of Uncertainty 

Sensitivity analysis based on rank correlation is used to identify the key sources of 

uncertainty. Rank correlation is a measure of the strength of the monotonic relationship between 

random variables.31 Inputs that have a statistically significant correlation with the uncertainty in 

total inventory emissions were identified as sensitive inputs. The larger the magnitude of the 

correlation, the greater the sensitivity.  Identification of the most highly sensitive inputs enables 

targeting of resources in future work to collect more or better information for specific source 

categories in order to reduce uncertainty in the total inventory. 

3.0     Jacksonville Emission Inventory and Emission Factor Data 

 The Jacksonville point estimates of the total emissions for each of the six selected urban 

air toxics are given in Table 1.  For each pollutant, between 11 and 16 source categories were 

identified as the priorities for uncertainty estimation, representing between 94 to 100 percent of 

total estimated emissions.  Emission factor sample data upon which to base a statistical analysis 

were obtained for most but not all of these source categories.  The specific emission source 

categories considered, the availability of data, and the results of the estimation of variability and 

uncertainty are summarized in Tables 2-7 for 1, 3-butadiene, mercury, arsenic, benzene, 
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formaldehyde and lead, respectively.  The emission factor source categories are numbered 

separately for each pollutant based upon the highest to lowest contribution to total emissions. 

Information sources for empirical sample data for emission factors include AP-42 

background documents, EPA locating and estimating documents, the California Air Toxics 

Emission Factors data base and the Coordinating Research Council E55/E59 project report.39-49 

For some source categories, uncertainty was estimated based upon the product of two factors.  

For example, for onroad mobile sources, Frey and Zheng reported uncertainty in total 

hydrocarbon (THC) for gasoline engines and Bammi reported the uncertainty in the fraction of 1, 

3-butadiene, benzene and formaldehyde in THC emissions.13, 51 For nonroad mobile sources, 

Frey and Bammi reported the uncertainty in the THC emissions.11, 14 For nonroad sources, the 

fraction of THC emitted as a given air toxic was estimated based upon the available data for 

onroad mobile sources.   

For some source categories, directly relevant data were not available and surrogate data 

were used. For example, for 1, 3-butadiene, data for emission factors for wild fires are not 

available and uncertainty in the emission factors from forest fires were used as surrogates since 

both of the categories are large-scale natural combustion process that consumes various ages, 

sizes and types of outdoor vegetation42. For arsenic and lead, the uncertainty in the emission 

factors of external residual oil combustion sources is used as surrogate for that of external waste 

oil combustion sources considering the similarities between the fuel types. For benzene, emission 

factor sample data for gasoline use and architecture surface coating are not available. For the 

former, the uncertainty in a similar source category of bulk terminal gasoline solvent evaporation 

is used as surrogate. For the latter, assuming that the uncertainty in the fraction of VOC emitted 

as benzene is constant, the relative uncertainty in the VOC emission factors from architecture 
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surface coating is used as surrogate.52 For formaldehyde, emission factor sample data for 

consumer/commercial solvent use and natural gas industrial combustion are not available. The 

uncertainty in VOC emission factors from consumer/commercial solvent use52 is used as 

surrogate for the former and the uncertainty in formaldehyde emission factors from internal 

natural gas combustion engines is used as surrogate for the latter. The information sources for 

direct and surrogate data are cited for each source category in Tables 2-7 for the six pollutants.  

As summarized in Table 1, the source categories for which directly relevant or surrogate 

data were available account for 80% to 99% of the total emission inventories.    

4.0     Results 

Inter-unit variability and uncertainty in the mean was quantified for each source category 

for which emission factor sample data or surrogates were available.  Probabilistic emission 

inventories were developed considering the uncertainty in the emission factors and activity 

factors. The key sources of uncertainty were identified using sensitivity analysis.   

4.1      Quantification of Variability and Uncertainty in Emission Factors  

Each of the three candidate parametric distributions was fit to each emission factor data 

set, and a preferred distribution was selected per the methods previously discussed.  The results 

for the uncensored case are described first, followed by results for the censored cases.  The 

preferred distribution and their parameters for inter-unit variability, and the uncertainty in the 

mean emission factors are summarized in Tables 2-7 for the six pollutants for cases in which 

directly relevant data were available.  Situations in which surrogate data were used are indicated.  

For some source categories, no sample data were available to support statistical analysis, but 

these comprise a small portion of the total inventory.   
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In most cases for uncensored data, the recommended distributions fit using MLE are not 

rejected by the K-S test.  An example comparison of a fitted parametric distribution, its bootstrap 

confidence intervals, and the empirical data is given in Figure 1 for mercury emissions from 

pathological waste disposal (Case No. 6 in Table 3). The inter-unit variability is represented by a 

Weibull distribution and the data range over approximately five orders-of-magnitude.  More than 

95 percent of the data are enclosed by the 95 percent confidence interval and slightly more than 

half of the data are enclosed by the 50 percent confidence interval.  Therefore, the Weibull 

distribution is deemed to be a good fit to the data.   

For 1, 3 –butadiene Case Nos. 5 and 7 and benzene Case Nos. 3 and 10, MOMM was 

used instead of MLE to estimate the parameters since the former resulted in a smaller K-S test 

statistic. 

For 1, 3-butadiene Case No. 11, no parametric distribution types were adequate fits and 

an empirical distribution was used instead in which each observed data point was assigned equal 

probability.   For 1,3-butadiene Case No. 3, no single parametric distribution fit the data and a 

mixture lognormal distribution was used.23  Figure 2 shows the bootstrap confidence intervals of 

the fitted mixture distribution in comparison to the sample data.  Approximately 90 percent of 

the data are enclosed by the 95 percent confidence interval, with the largest significant 

discrepancies occurring in the lower portion of the distribution.  This is a case in which a two 

component mixture substantially improves the accuracy of characterizing the upper tail of the 

distribution compared to a single component distribution. Although additional accuracy might be 

captured at the low end of the distribution with more components, the mean emission factor is 

more sensitive to the upper tail than to the lower tail. Therefore, refinements based upon more 

components would not lead to substantial improvements in the mean uncertainty estimate. 
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Moreover, with only 17 data points, the algorithms for fitting mixture distributions are likely to 

become unstable as more components are added, and the additiona l weights associated with more 

components will lead to addition uncertainty for portions of the fitted CDF.23  

There were three uncensored cases, including Case Nos. 5 and 7 for 1, 3-butadience and 

Case No. 3 for benzene, for which the candidate distribution with the lowest K-S test statistic 

was rejected by the K-S test. For example, all these three cases have K-S test values about 0.32 

compared to the critical K-S values equal to 0.30 at significance level of 0.05. However, a 

graphical comparison of the distribution with the smallest K-S test statistic similar to that of 

Figure 1 revealed adequate fits. For these three cases, all the empirical data were enclosed in the 

95 percent confidence interval of the CDF and 3 out of 7 data points were enclosed in the 50 

percent confidence interval.   

For censored data sets, all the fits are good based on the graphical comparison of the 

fitted distribution and its confidence intervals to the data points.  As an example, Figure 3 shows 

the variability and uncertainty in arsenic Case No. 1, external coal combustion boilers, estimated 

based upon a lognormal distribution. The data contain 26 detected and 3 censored values. Each 

censored value has a different detection limit; therefore, three detection limits are indicated. 

Twelve detected data are larger than the largest detection limit. They have exact ranks and exact 

cumulative probabilities.  For detected data that are smaller in value than one or more detection 

limits, there is ambiguity in their respective ranks as well as cumulative probabilities.  For 

example, an observed sample smaller than all three detection limits could have a rank as low as 

one or as large as four, depending upon the true but unknown values for each of the nondetected 

measurements.  This ambiguity is depicted by a vertical solid line, instead of a point. The fitted 

distribution representing the inter-unit variability is shown as a white dashed line and it is 
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entirely enclosed in the 50 percent confidence interval. All the detected data points with exact 

cumulative probabilities and possible cumulative probabilities are enclosed in the 95 percent 

confidence interval.   

The procedure of quantification of uncertainty in mobile source emission factors is 

different from other sources which have direct or surrogate data. Mobile sources contribute the 

most to 1, 3 – butadiene, benzene and formaldehyde emissions but are not reported as significant 

sources for arsenic and lead. For mercury, nonroad mobile source is the second largest source 

category but there is no available data for mercury emission factor from nonroad mobile source. 

For mobile source emission factors, previous work regarding uncertainty estimates has been 

done for THC for gasoline onroad sources as well as gasoline and diesel nonroad sources. The 

uncertainty in the fraction of 1, 3 –butadiene, benzene and formaldehyde in total organic gas 

emissions has also been estimated for onroad light duty gasoline vehicles (LDGV) and is used as 

the surrogate for other onroad and nonroad gasoline mobile sources. For diesel onroad mobile 

sources, the uncertainties in the THC emission factors and in 1, 3 – butadiene, benzene and 

formaldehyde fraction in THC emissions were quantified respectively based upon the empirical 

data with bootstrap simulation. The uncertainties in the toxics fractions were also used as the 

surrogates for nonroad diesel mobile sources. The variability and uncertainty in the THC 

emission factors and in 1, 3 – butadiene, benzene and formaldehyde fraction in THC emissions 

for diesel engines are given in Tables 2, 5 and 6 respectively. Based on available information, the 

uncertainty in the toxic emission factors were quantified based on the product of the uncertainty 

in THC emission factors and the uncertainty in the fraction of the toxics emissions in THC 

emissions. For gasoline mobile sources, only the uncertainty in the fraction of the toxics 
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emissions in TOG emissions is available; therefore, the uncertainty in the ratio of TOG to THC 

should be multiplied.   

For benzene, Case 7 of bulk terminal gasoline solvent evaporation is an aggregation 

source category composed of subcategories for non-winter and winter time. For this case, the 

uncertainty in the emission factors of the aggregation source category was obtained by the 

weighted average uncertainties in the emission factors of the subcategories. Assuming winter 

time accounts for 3 months in a year, the weights assigned to non-winter and winter time are 

respectively equal to 0.75 and 0.25.  

4.2      Development of Probabilistic Emission Inventories 

Probabilistic emission inventories for the six pollutants in Jacksonville were developed 

based upon probabilistic mean emission factors and activity factors. The activity factor data of 

Jacksonville were not available. It is expected that there is uncertainty in the activity factors. 

However, in the absence of empirical data, a judgment was made to assign at least a minimal 

range of uncertainties to these activity factors. For each source category, a 95 percent confidence 

interval in the mean of activity factor was assumed ranging from minus 10 percent to plus 10 

percent. Therefore, the normalized uncertainty estimates of the activity factors were generated 

from independent normal distributions with a mean of 1.0 and standard deviation of 0.05. The 

total uncertainty for each source category was calculated by multiplying the recommended 

uncertainty estimate of the emission factors by the uncertainty estimate of the corresponding 

activity factors. The resulting 95 percent confidence intervals in the emission inventory of each 

source category is given in Tables 2-7 for each pollutant, respectively. Probabilistic emission 

estimates were developed for source categories that have direct or surrogate data. The following 

equation was used to develop probabilistic emission inventory (PEI).  
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where, 

                     PEI         = Probabilistic emission inventory for sources which have direct or  

                                       surrogate data 

                      UFEF, i     = Normalized uncertainty factor of emission factors for source i  

                      UFAF, i     = Normalized uncertainty factor of activity factors for source i 

                      EIi            = Emission inventory from source i  

In order to have insight on the influence of the correlation in the surrogates on the 

uncertainty results, two situations were assumed about the surrogates in the calculation: 100% 

correlated and uncorrelated. That is, the uncertainty factors of the emission factors using the 

same surrogates are randomized in the same order or different orders for different categories 

during Monte Carlo Simulation. Based on the source categories which have directly relevant or 

surrogate data, the quantified relative 95 percent confidence intervals were obtained for the six 

pollutants for the two situations. The results are shown in Table 8. From Table 8, the correlation 

between the surrogates does not have significant influence on the results. The largest uncertainty 

in the emission inventory occurs for arsenic with relative 95 percent confidence interval ranging 

from minus 83 percent to plus 243 percent, the smallest uncertainty in the emission inventory 

occurs for mercury with relative 95 percent confidence interval ranging from minus 25 percent to 

plus 30 percent.  

4.3      Sensitivity Study of Identify Key Sources of Uncertainty 

The results of sensitivity analysis are given in Tables 2-7 for each of the six pollutants, 

respectively, based upon the case study assuming that surrogates are correlated.  
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For 1, 3-butadiene, benzene and formaldehyde, the most sensitive source categories are 

onroad mobile sources. For mercury, arsenic and lead, the most sensitive source categories are 

external combustion boilers-electric generation-bituminous coal. These categories contribute the 

most to emissions and have the largest absolute uncertainty in the emission factors. The rank 

correlations for the most important categories range from 0.92 to 0.99 among the six pollutants, 

which indicate strong correlations.  

Categories of secondary importance were identified.  For formaldehyde, the second most 

important source category is aircraft with a rank correlation of 0.3. For lead, other significant 

source categories are external combustion with fuel oil or waste oil. Other source categories for 

each of the six pollutants typically have weak, such as less than 0.2, or statistically insignificant 

correlations. Therefore, the uncertainty in the emissions is primarily attributable to uncertainty in 

only one, two, or three source categories, depending upon the pollutant.  

Since the calculation is based on the assumption that there is 100% correlation among the 

surrogates, the rank correlations of the source categories using the same surrogates are the same. 

For example, for lead, the uncertainty in the emission factors for waste oil external combustion 

uses that for fuel oil external combustion as surrogate and the two source categories have rank 

correlation of 0.244. Both of them are identified as key sources of uncertainty. Better data 

collection and reporting on fuel oil external combustion can reduce uncertainties in both source 

categories.     

5.0     Discussion 

In this paper, probabilistic emission inventories for six important urban air toxics were 

developed. The uncertainties in the emission inventories are quantified based upon available 

data. The source categories which have directly relevant or surrogate data account for more than 
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90% of the total emissions for 1, 3-butadiene, arsenic, benzene and formaldehyde, and account 

for more than 80% of the total emissions for mercury and lead. Therefore, the quantified 

uncertainty in the emissions which have data can be taken as a sufficient estimate of the 

uncertainty in the total emission inventory for all the pollutants.  

Except for mercury, the 95 percent confidence intervals are on the order of minus 50 to 

plus 100 percent or more, indicating a factor of two or more for other 5 pollutants. The largest 

uncertainty occurs for arsenic with the 95 percent confidence interval ranging from minus 83 

percent to plus 243 percent for arsenic. The large range of quantified uncertainty suggests that it 

is important to quantify uncertainty and that this portion of uncertainty should be taken into 

account when reporting and using emission factors. 

Based on sensitivity study, for 1, 3-butadiene, mercury, arsenic and benzene, only one 

source category was identified as the major contributor to uncertainty in total emission inventory. 

For formaldehyde and lead, respectively two and four cases are identified as sensitive source 

categories. Onroad mobile sources are the dominate source for the three VOCs and external coal 

combustion sources are the dominate source for the three heavy metals. The reason is that these 

source categories are the largest source category and also have relative large uncertainty in the 

emission factors. Better data collection and reporting work should be prioritized for the key 

source categories.   

The probabilistic emission inventory developed here could be improved in several ways 

pending availability of additional data or the incorporation of a more extensive expert elicitation 

component.  For example, although biases in the mean emission factors are suspected, especially 

for fugitive emissions and as a result of process upset, insufficient data were available via which 

to quantify such biases.  Other possible sources of bias include lack of representative data (e.g., 
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measurements may have been for load or operating conditions not typical of annual average in-

use activity) and the use of surrogate data for source categories in which data were lacking or not 

readily available. Expert elicitation could be used to encode judgments regarding the additional 

uncertainty associated with nonrepresentative or surrogate data. As new data become available, 

the assessment can be updated.  A key obstacle to quantification of uncertainty based upon 

statistical data analysis is obtaining the necessary data. Often, data are measured and reported by 

multiple organizations.  In the long term, the development of a protocol for archiving such data 

and making the data available would facilitate probabilistic analysis.   

The uncertainty in the activity factors here is based on an approximate judgment to 

develop probabilistic emission inventory. In the long term, the quantifiable uncertainty in the 

activity factors should be incorporated when empirical data for activity factors are available for 

statistical analysis. For the cases lack of sample data, expert judgment may be required.    

The results of this work demonstrate that random sampling error and measurement error 

are substantial sources of quantifiable uncertainty in the emission inventories of the example 

urban air toxics in Jacksonville area, especially for 1, 3-butadiene, arsenic, benzene, 

formaldehyde and lead. The positively skewed ranges of uncertainty appropriately account for 

the fact that emissions must be non-negative. The substantial ranges of uncertainty estimated 

here should be taken into account when conducting air quality modeling and exposure 

assessment.  Furthermore, the identification of key sources of uncertainty in the inventory serves 

as an aid to prioritizing resources for additional data collection or research in order to reduce 

uncertainty.   
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        Table 1.  Summary of Available Data for 1, 3-butadiene, Mercury, Arsenic, Benzene,  
                        Formaldehyde and Lead Emission Inventories  

Pollutant Point Estimate of Emission 
Inventory 

Percentage of Available Data 
Accounting for Total Emissions 

1, 3-butadiene 173 tons/yr 99.1% 
Mercury 500 lbs/yr 80% 
Arsenic 1994 lbs/yr 98.5% 
Benzene 764 tons/yr 97.4% 

Formaldehyde 548 tons/yr 91.4% 
Lead 2964 lbs/yr 83.5% 
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Table 2.  Quantification of Variability and Uncertainty for 1, 3-butadiene Emission Inventory  

Case 
No. 

Emission Source 
Description 

EIa 

(tons/yr) 
Data 

Statusb Reference nc Variability in 
Emission Factord 

Uncertainty 
in Emission 
Factor (%)e 

Uncertainty 
in Emission 

Inventory(%)f  

Rank 
Correlationg 

1 

Onroad 
Gasoline 
Diesel 

b-1. THC 
b-2. 1, 3- butadiene/ 

        THC  

86.6 
77.9 
8.7 

D 
D 
D 
D 
D 

 
31, 32 

30 

 
 
 

24 
24 

 
 
 

L (0.46, 1.46) 
W(1.66, 0.005) 

(-81, 210) 
(-87, 235) 
(-61, 187) 
(-58, 151) 
(-23, 35) 

(-82, 215) 
 
 
 

0.975 

2 

Nonroad 
2-stroke gasoline 
4-stroke gasoline 

diesel 

33.1 
7.0 
24.8 
1.3 

D/S 
D/S 
D/S 
D/S 

 
1, 32 

 
1, 32 

 
30, 33 

  (-29, 44) 
(-35, 45) 

 
(-35, 51) 

 
(-31, 39) 

(-31, 44) 
 

-0.08 

3 Ships 30.6 D 23 17 
ML: 0.82 

(-1.09, 0.15) 
 (-0.02, 0.20) 

(-23, 27) (-22, 28) 0.108 

4 Aircraft 13.4 D/S 32   (-53, 76) (-54, 79) 0.168 
5 Prescribed Burning 6.45 D 23 7 G (2.26, 0.21)h, i (-45, 57) (-43, 52) 0.082 
6 Trains 1.1        
7 Forest Fires 0.63 D 23 7 G (2.26, 0.21)h, i (-41, 59) (-44, 62) -0.03 

8 Wild Fires 0.63 S Surrogate: 
Case 7 

  (-41, 59) (-42, 58) -0.03 

9 Publicly Owned 
Treatment Works 0.483        

10 Vehicle Fires 0.0352        

11 Internal Combustion 
Engines 0.00062 D 20 16 Empirical (-19, 16) (-22, 19) 0.01 

(Continued) 
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Table 2.  Continued 
a. Point estimate of emission inventory. 
b. D = direct data; S = surrogate data; D/S = Direct data for THC, surrogate data for % of TOG (or THC) emitted as toxic. 
c. Sample size, for censored data set, the number of non-detects is shown in parenthesis. 
d. Inter-unit variability in emission factor. L: lognormal distribution; G: gamma distribution; W: Weibull distribution. 
   The parameters of the distribution are given in parenthesis; ML: mixture lognormal distribution. 1st component = 0.82, 
   parameters for the first component are (-1.09, 0.15), 2nd component = 1-0.82 = 0.18, parameters for the second component are  
   (-0.02, 0.20).  
e. The 95 % confidence interval relative to the mean is given. For the cases in which there is no information of variability in emission  
   factors while there is information of uncertainty in the emission factor, the latter is based upon surrogate or previous work.   
f. The 95 % confidence interval relative to the mean is given. 
g. Rank correlation between the uncertainty in the total emissions and the uncertainty in the emission factors for each source category  
   with correlated surrogates. Statistically significant correlations are shown in boldface. Correlation of less than 0.088 in magnitude  
   are not statistically significant based upon the inverse Fisher transformation.    
h. Rejected by K-S test, but the fit is judged to be adequate. 
i.  Fit parametric distribution with MOMM method instead of MLE since MOMM results in a smaller K-S test. 
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Table 3.  Quantification of Variability and Uncertainty for Mercury Emission Inventory*  

Case 
No. 

Emission Source 
Description 

EIa 

(lbs/yr) 
Data 

Statusb Reference nc 
Variability in 

Emission 
Factord 

Uncertainty 
in Emission 
Factor (%)e 

Uncertainty in 
Emission 

Inventory(%)f  

Rank 
Correlationg 

1 

External Combustion 
Boilers - Electric 

Generation - 
Bituminous Coal 

352.62 D 20 29 
(3) 

W (1.17, 
8.56) 

(-28, 34) (-28, 34) 0.934 

2 Nonroad 40        

3 

Internal Combustion 
Engines - Electric 

Generation/Industrial - 
Natural Gas 

33.56        

4 

Waste Disposal - Solid 
Waste Disposal - 

Government - Other 
Incineration 

18.93 D 26 5 W (1.15, 
0.79) (-62, 88) (-60, 91) 0.034 

5 

External Combustion 
Boilers - Electric 

Generation/Industrial/
Commercial - Residual 

Oil 

16.07 D 21 
13 

(11) L (1.66, 1.07) (-31, 32) (-35, 30) 0.100 

6 

Waste Disposal - Solid 
waste disposal - 

Commercial/Institution
al – Pathological 

10.67 D 22 40 W (0.40, 
14.5) (-67, 136) (-68, 142) 0.073 

7 Human Crematory 8.32        

8 Distillate Oil – 
Industrial 5.52        

* The footnotes are the same as Table 2 
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Table 4.  Quantification of Variability and Uncertainty for Arsenic Emission Inventory*  

Case 
No. 

Emission Source 
Description 

EIa 

(lbs/yr) 
Data 

Statusb Reference nc 
Variability in 

Emission 
Factord 

Uncertainty 
in Emission 
Factor (%)e 

Uncertainty in 
Emission 

Inventory(%)f  

Rank 
Correlationg 

1 

External Combustion 
Boilers - Electric 

Generation - 
Bituminous Coal  

1741.87 D 20 29 
(3) 

L (-1.28, 
2.35) 

(-91, 246) (-91, 272) 0.992 

2 

External Combustion 
Boilers - Electric 

Generation/Industrial/ 
Commercial - Residual 

Oil  

187.66 D 21 
13 
(3) 

W (1.03, 
1.07) (-47, 59) (-48, 56) 0.187 

3 
External Combustion 

Boilers - Electric 
Generation - Waste Oil  

22.8 S Surrogate: 
Case 2 

  (-47, 59) (-48, 63) 0.187 

4 Residual Oil – 
Industrial 10.32 S Surrogate: 

Case 2   (-47, 59) (-46, 59) 0.187 

5 

Internal Combustion 
Engines - Electric 

Generation - Distillate 
Oil 

7.58        

6 Distillate Oil – 
Industrial 7.36        

7 Ships 4.9        

8 

External Combustion 
Boilers - Electric 

Generation/Industrial/ 
Commercial/Space 

Heaters - Natural Gas 

3.21        

(Continued)
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Table 4.  Continued 

Case 
No. 

Emission Source 
Description 

EIa 

(lbs/yr) 
Data 

Statusb Reference nc 
Variability in 

Emission 
Factord 

Uncertainty 
in Emission 
Factor (%)e 

Uncertainty in 
Emission 

Inventory(%)f  

Rank 
Correlationg 

9 

External Combustion 
Boilers - Electric 

Generation/Industrial/ 
Commercial - Distillate 

Oil 

3.10        

10 Distillate Oil – 
Commercial 2.08        

11 Natural Gas – 
Industrial 

1.40        

12 
Industrial Processes - 
Minerals Production - 

Asphalt Concrete 
0.51 D 27 4 L (1.62, 0.57) (-44, 73) (-46, 72) -0.02 

* The footnotes are the same as Table 2 
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Table 5.  Quantification of Variability and Uncertainty for Benzene Emission Inventory*  

Case 
No. 

Emission Source 
Description 

EIa 

(tons/yr) 
Data 

Statusb Reference nc 
Variability in 

Emission 
Factord 

Uncertainty 
in Emission 
Factor (%)e 

Uncertainty in 
Emission 

Inventory(%)f  

Rank 
Correlationg 

1 

Onroad 
Gasoline 
Diesel 

b-1. THC 
b-2. 1, 3- butadiene/ 

        THC  

435.0 
391.5 
43.5 

D 
D 
D 
D 
D 

 
31, 32 

30 

 
 
 

24 
24 

 
 
 

L (0.46, 1.46) 
W (3.36, 0.01) 

(-81, 218) 
(-87, 237) 
(-59, 166) 
(-58, 151) 
(-13, 13) 

(-88, 249) 0.984 

2 

Nonroad 
2-stroke gasoline 
4-stroke gasoline 

diesel 

247.68 
84.21 
148.61 
14.86 

D/S 
D/S 
D/S 
D/S 

 
1, 32 
1, 32 
30, 33 

  (-25, 33) 
(-32, 40) 
(-34, 46) 
(-26, 30) 

(-25, 37) 0.166 

3 Prescribed burning 17.93 D 24 7 G (2.21, 0.59)h, i (-45, 53) (-46, 56) 0.034 

4 Gasoline use 17.27 S Surrogate: 
Case 7   (-62, 155) (-62, 156) -0.026 

5 Aircraft 15.10 D/S 32    (-50, 79) 0.088 

6 Surface 
cleaning/decreasing 15.06        

7 

Petroleum and solvent 
evaporation-bulk 
terminal gasoline 

a.    non winer 
b.    winter 

4.51 D 
 
 

D 
D 

24 
 
 

24 
24 

 
 
 

11 
11 

 
 
 

L (-3.86,1.44) 
L (-3.53,1.43) 

(-62, 155) (-62, 151) -0.026 

8 Surface coating-auto 
refinishing 

3.29        

9 

External combustion 
boilers – electronic 

generation – 
bituminous coal 

2.76 D 20 18 
(1) L (-2.38, 2.36) (-93, 411) (-93, 422) 0.020 

(Continued) 



 178

Table 5.  Continued 

Case 
No. 

Emission Source 
Description 

EIa 

(lbs/yr) 
Data 

Statusb Reference nc 
Variability in 

Emission 
Factord 

Uncertainty 
in Emission 
Factor (%)e 

Uncertainty in 
Emission 

Inventory(%)f  

Rank 
Correlationg 

10 Wildfires 1.76 D 24 6 W (1.54, 1.67)i (-47, 54) (-47, 58) 0.086 

11 Surface coating - 
architecture 

1.60 S Surrogate: 
VOC 

  (-8.4, 8.6) (-13, 13) -0.08 

12 Vehicle fires 0.47        

13 

Petroleum and solvent 
evaporation – storage – 

fuels other than 
gasoline 

0.45        

14 Publicly Owned 
Treatment Work 0.32        

15 
Industrial processes – 
minerals production – 

asphalt concrete 
0.22 D 24 5 G (1.14, 1.74) (-60, 90) (-62, 93) -0.04 

16 

Petroleum and solvent 
evaporation – 

transportation and 
marketing of petroleum 

products – marine 
vessels 

0.13 D 24 9 L (-4.17, 0.54) (-32, 40) (-33, 39) 0.07 

* The footnotes are the same as Table 2 
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Table 6.  Quantification of Variability and Uncertainty for Formaldehyde Emission Inventory*  

Case 
No. 

Emission Source 
Description 

EIa 

(tons/yr) 
Data 

Statusb Reference nc 
Variability in 

Emission 
Factord 

Uncertainty 
in Emission 
Factor (%)e 

Uncertainty in 
Emission 

Inventory(%)f  

Rank 
Correlationg 

1 

Onroad 
Gasoline 
Diesel 

b-1. THC 
b-2. 1, 3- butadiene/ 

        THC  

216.0 
194.4 
21.6 

D 
D 
D 
D 
D 

 
31, 32 

30 

 
 
 

24 
24 

 
 
 

L (0.46, 1.46) 
W (1.43, 0.09) 

(-80, 210) 
(-87, 224) 
(-63, 166) 
(-58, 151) 
(-28, 30) 

(-82, 217) 0.919 

2 

Nonroad 
2-stroke gasoline 
4-stroke gasoline 

diesel 

167.8 
8.4 
45.3 
114.1 

D/S 
D/S 
D/S 
D/S 

 
1, 32 
1, 32 
30, 33 

  (-26, 36) 
(-36, 51) 
(-39, 59) 
(-34, 42) 

(-27, 33) 0.090 

3 Aircraft 111.0 D/S 32   (-53, 80) (-53, 84) 0.328 
4 Prescribed burning 41.04        
5 Wild fires 4.02        

6 

External combustion 
boilers – electric 

generation/industrial/c
ommercial-residual oil 

2.34 D 21 13 
(8) W (0.30, 3.29) (-95, 164) (-95, 169) 0.003 

7 

Internal combustion 
engines – electric 

generation/industrial-
natural gas-turbinesc 

1.05 D 29 7 W (1.41, 2.01)i (-50, 60) (-49, 58) -0.02 

8 
Industrial processes – 
minerals production – 

asphalt concretec 
0.94 D 29 6 G (8.53, 0.33) (-25, 29) (-27, 30) -0.02 

9 Structure fires 0.70        
(Continued) 
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Table 6.  Continued 

Case 
No. 

Emission Source 
Description 

EIa 

(lbs/yr) 
Data 

Statusb Reference nc 
Variability in 

Emission 
Factord 

Uncertainty 
in Emission 
Factor (%)e 

Uncertainty in 
Emission 

Inventory(%)f  

Rank 
Correlationg 

10 

External combustion 
boilers – electric 

generation/industrial/ 
commercial/space 

heaters – natural gas 

0.60        

11 

Internal combustion 
engines – engines 
testing – aircraft 
engine testing 

0.58        

12 

External combustion 
boilers – electric 

generation – 
bituminous coal 

0.51 D 20 14 
(5) 

L (-0.59, 1.44) (-77, 209) (-78, 211) 0.018 

13 Consumer/commercial 
solvent use 

0.49 S Surrogate: 
VOC 

  (-7.8, 8.5) (-17, 18) 0.06 

14 Natural gas – industrial 0.26 S Surrogate: 
Case 7   (-50, 60) (-50, 61) -0.02 

15 

External combustion 
boilers – electric 

generation/industrial/ 
commercial – distillate 

oil 

0.17 D 29 18 
L 

(-1.65, 1.20) (-50, 96) (-50, 109) 0.07 

16 Residual oil - industrial 0.13 D 21 13 
(8) W (0.30, 3.29) (-95, 164) (-95, 172) 0.003 

* The footnotes are the same as Table 2 
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Table 7.  Quantification of Variability and Uncertainty for Lead Emission Inventory*  

Case 
No. 

Emission Source 
Description 

EIa 

(lbs/yr) 
Data 

Statusb Reference nc 
Variability in 

Emission 
Factord 

Uncertainty 
in Emission 
Factor (%)e 

Uncertainty in 
Emission 

Inventory(%)f  

Rank 
Correlationg 

1 

External combustion 
boilers – electric 

generation – 
bituminous coal 

1780 D 20 27 L (-0.065, 1.82) (-69, 258) (-69, 249) 0.956 

2 
External combustion 

boilers – electric 
generation – waste oil 

457 S Surrogate: 
Case 4   (-52, 53) (-52, 56) 0.244 

3 Miscellaneous organics 260        

4 

External combustion 
boilers – electric 

generation/industrial/ 
commercial – residual 

oil 

215 D 21 
13 
(4) W (0.85, 1.28) (-52, 53) (-52, 55) 0.244 

5 
Industrial processes-
minerals production - 

glass manufacture 
103        

6 

Internal combustion 
engines – electric 

generation – distillate 
oil 

89.7        

7 Distillate oil – 
industrial 

16.54        

8 Residual oil – 
industrial 11.82 S Surrogate: 

Case 4   (-52, 53) (-52, 54) 0.244 

(Continued) 
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Table 7.  Continued 

Case 
No. 

Emission Source 
Description 

EIa 

(lbs/yr) 
Data 

Statusb Reference nc 
Variability in 

Emission 
Factord 

Uncertainty 
in Emission 
Factor (%)e 

Uncertainty in 
Emission 

Inventory(%)f  

Rank 
Correlationg 

9 

External combustion 
boilers – electric 

generation/industrial/ 
commercial – distillate 

oil 

6.97        

10 Ships 5.74        

11 

Waste disposal – solid 
waste disposal – 

commercial/institution
al – pathological 

4.90 D 22 48 L (1.62, 1.02) (-29, 45) (-30, 46) -0.038 

12 Distillate oil – 
commercial 

4.68        

13 Natural gas – industrial 1.89        

14 
Industrial processes – 
minerals production – 

asphalt concrete 
1.43 D 28 5 W (1.35, 1.54) (-52, 78) (-53, 79) -0.040 

* The footnotes are the same as Table 2 
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        Table 8.  Results of the Uncertainties in The Total Emission Inventories for 1, 3-butadiene,  
                       Mercury, Arsenic, Benzene, Formaldehyde and Lead  

95 Percent Confidence Interval in the 
Emission Inventories (%) Pollutant 

Correlated  
Surrogates 

Uncorrelated 
Surrogates 

1, 3-butadiene (-46, 108) (-46, 108) 
Mercury (-25, 30) (-25, 30) 
Arsenic (-83, 243) (-83, 243) 
Benzene (-56, 146) (-54, 141) 

Formaldehyde (-42, 89) (-42, 89) 
Lead (-54, 175) (-52, 177) 
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                          Figure 1.  Variability and Uncertainty in Mercury Emission Factor 
                                           from Pathological Waste Disposal Estimated Based Upon a  
                                           Weibull Distribution  
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                         Figure 2.  Uncertainty in 1, 3-butadiene Emission Factor from Ships  
                                         Estimated Based Upon Mixture Lognormal Distribution 
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                           Figure 3.  Variability and Uncertainty in Arsenic Emission Factor 
                                            from Coal Combustion Estimated Based Upon a Lognormal 
                                            Distribution 
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1.0     Conclusions and Recommendations 

In this section, the conclusions and implications regarding the development and 

application of the MLE/Bootstrap method are first drawn and the motivating questions regarding 

censored data issues are answered. Second, the conclusions and implications regarding the 

development of probabilistic urban air toxics emission inventories are drawn and the motivating 

questions are answered. Finally, the recommendations for future work are presented.  

1.1       Conclusions Regarding MLE/Bootstrap Method for Censored Data 

The MLE method is a flexible and robust method for fitting parametric distributions to 

censored data. The fitted parametric distribution represents the inter-unit variability in censored 

data. It provides asymptotically unbiased estimate of statistics, such as the mean for censored 

data. It has been demonstrated by application to different distribution types, including the 

lognormal, gamma and Weibull distributions, and to data with different statistical characteristics, 

such as sample sizes from 20 to 100, coefficients of variation from 0.5 to 2, and differing 

amounts and types of censoring, including single and multiple detection limits involving as much 

as 60 percent of the distribution.  

With using “bootstrap pair s” in empirical bootstrap simulation, the uncertainty in the 

estimated CDF and statistics for censored data can be quantified. The capability of bootstrap 

simulation to estimate uncertainty in statistics of censored data sets represented by MLE fitted 

distributions was demonstrated for the cumulative distribution function, mean, median, and 90th 

percentile. The MLE/Bootstrap method for quantification of censored data takes into account 

uncertainty associated with random sampling error, measurement error and censoring issues.  

The same as for uncensored data, the sample size and inter-unit variability influence the 

estimated uncertainty for censored data. The smaller the sample size and the larger the variability 



 187

in the data, the larger the uncertainty is in the mean and in the CDF for censored data. However, 

the uncertainty associated with censoring is more complicated for different situations. In Part II, 

the factors that influence uncertainty results for censored data with one, two and three detection 

limits are evaluated. It is found that the statistics that are sensitive to large values of a data set, 

such as the mean, may not be particularly sensitive to uncertainty associated with left-censoring. 

It is clear that the ranges of uncertainty of the portions of the CDF below detection limit become 

larger with more censoring. In Part III, insights regarding uncertainty factors for censored data 

are obtained based on the comparison of the uncertainty in the mean for the censored data and 

modified data for 16 different cases with single or multiple detection limits. When the 

uncertainty associated with censoring becomes considerable, it maybe worthwhile to consider 

approaches for reducing the detection limit in future data collection such as by increasing the 

sample volume or by using more sensitive instruments. The censoring issues become critical in 

the following situations:  

• When there are some detection limits that are larger than the largest detected value ;  

• When there is a large amount of censoring; 

• When the data set are not very positively skewed and thus the influence by censoring on 

the mean is more considerable; 

• When statistics not sensitive to large values are of interest, such as the median and the 

uncertainty in the median.  

In Part III, the MLE/bootstrap method is applied to 16 cases of urban air toxics emission 

factors with different sample sizes, degree of censoring and inter-unit variability. The 

MLE/Bootstrap provides consistent results for censored data with single or multiple detection 
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limits. Even for data with censoring degrees as high as 80%, the MLE/bootstrap method gives 

reliable results.  

The MLE/bootstrap method can be applied to left-censored data sets in other fields 

except urban air toxics data. For example, the MLE/bootstrap method can be used to analyze the 

left-censored pyrene concentration data mentioned in Section 1.3. Compared to the non-

parametric Kaplan-Meier estimator, the MLE/bootstrap method is more reliable for small sample 

sizes and for the results in the tail of the distributions.  

The MLE/bootstrap method can be applied to the bioassay data for which left censoring 

is a characteristic. It can provide the best estimated statistics of interest as well as the uncertainty 

result in the estimated statistics for the bioassay data.     

Furthermore, there are large amount of right censored data in survival analysis. With a 

simple transformation, right-censored data can be transformed to left-censored data, thus, the 

MLE/bootstrap method can be applied to right-censored data as well. For example, right 

censored survival data can be transformed to left censored data if each detected and censored 

point in the data set is subtracted by a large value. The MLE method for interval-censored data is 

also available. For example, Equation 8 in Part II is the log-likelihood function for interval-

censored data. After changing the code of log- likelihood function to interval-censoring, the 

MLE/bootstrap method can also be applied to interval-censored data as well.       

1.2       Conclusions Regarding the Development of Probabilistic Urban Air Toxics  

            Emission Inventories for Houston, TX and Jacksonville, FL 

 Probabilistic emission inventories were developed for benzene, formaldehyde, 1,3-

butadiene, and chromium based on the 1996 Houston inventory as well as for 1, 3-butadiene, 

mercury, arsenic, benzene, formaldehyde and lead based on the 2000 Jacksonville inventory.   
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The uncertainty in the mean emission factor for different source categories and different 

pollutants ranges from as small as approximately plus or minus 2 percent to as large as minus 99 

to plus 600 percent. Typically, there is a factor of two uncertainty in the mean emission factors 

for urban air toxics. The relative uncertainty in the total emission inventories range from as small 

as approximately minus 20 to plus 34 percent, as in the case of chromium for Houston, to as 

large as minus 83 to plus 243 percent, as in the case of arsenic for Jacksonville. The typical large 

uncertainty in the urban air toxics emission factors and emission inventories indicate it is 

important to quantify uncertainty when collecting urban air toxics emission factor and inventory 

data. Efforts of better data collection and reporting work to reduce uncertainty should be 

prioritized on the identified key sources.    

The quantified ranges of uncertainty for urban air toxics emissions take into account 

random sampling error and measurement error in emission factors. The former is influenced by 

the sample size and inter-unit variability for each emission source category. Random 

measurement error is accounted for because the observed variability in the data includes both the 

true variability and the random component of measurement error, which in turn influences the 

range of the sampling distribution of the mean. 

Surrogate data were used to develop probabilistic urban emission inventories when 

directly relevant data were not available. In fact, in this procedure, uncertainty caused by using 

surrogate is introduced. Now there is not enough information to quantify uncertainty caused by 

using surrogate data based upon statistical analysis of empirical data. Since the source categories 

for the surrogate data and target data are all reasonably similar to each other in all the cases, such 

as utility boilers versus industrial boilers, nonroad mobile source versus onroad mobile source, 

and the correlation among the surrogates does not influence the uncertainty results significantly, 
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it is reasonable to assume that the uncertainty caused by using surrogate data does not contribute 

much to the uncertainty in the total emission inventories. It is recommended that the uncertainty 

caused by using surrogate data should be quantified by expert judgment and taken into account 

in the quantified uncertainty in the total emission inventories in the future.    

Although the distributions of the source categories for the two cities are different for a 

given pollutant, the uncertainty results for a given pollutant were comparable to each other. For 

example, with correlated surrogates, the uncertainty in benzene emission ranges from minus 46 

percent to plus 108 percent from the mean value in Houston area and ranges from minus 56 

percent to plus 146 percent from the mean value in Jacksonville. The uncertainty in 

formaldehyde emission inventory ranges from minus 36 percent to plus 69 percent in Houston 

and ranges from minus 42 percent to plus 89 percent for Jacksonville. The key sources of 

uncertainty for benzene and formaldehyde emission inventories for both of the cities are 

identified as onroad mobile source. For arsenic, the uncertainty in the emission inventories 

ranges from minus 75 percent to plus 224 percent for Houston and ranges from minus 83 percent 

to plus 243 percent for Jacksonville. The key source of uncertainty for arsenic emission 

inventories for both of the cities is identified as external combustion boilers. This indicates that 

the uncertainties in the total emission inventories for a given pollutant mainly result from the key 

source categories and are not significantly influenced by other source categories. 

1.3       Recommendations for Future Work 

Based on the research of this dissertation, key recommendations for future work are: 

(1) MLE/Bootstrap has been proved as a statistically rigorous, robust and asymptotically 

unbiased method that can be used to make inferences for a wide variety of situations, including 

different types of distributions, coefficients of variation, sample sizes, and amounts of censoring 
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with either single or multiple detection limits. Compared to simplified conventional methods, 

which are biased, the MLE/bootstrap method is more computationally intensive. However, 

unlike conventional methods, the MLE/bootstrap enables estimation of uncertainty for any 

statistic, including the influence of uncertainty associated with censoring itself. The 

MLE/bootstrap method can be incorporated as part of a two dimensional framework in which 

variability and uncertainty are distinguished. The MLE/Bootstrap method is therefore 

recommended to estimate the mean for censored urban air toxic emission factor data and to 

quantify the variability and uncertainty in censored urban air toxic emission factors.  

(2) The wide range of quantified uncertainty in urban air toxic emission factors indicates 

the importance of quantifying this uncertainty. Therefore, information on which statistical 

analysis is based needs to be tested and well documented for urban air toxic emissions factors. 

For example, petroleum refineries-catalytic cracking is the largest source category for chromium 

emission inventory in Houston, but the quantified uncertainty in this category is suspiciously 

small based on the available data. For this category, future work needs to be done when new data 

becomes available.  

(3) In the procedure of development of a probabilistic urban air toxic emission inventory, 

the uncertainty in the activity factors estimated here is based on an approximate judgment.  In the 

long term, the quantifiable uncertainties in the activity factors should be incorporated based upon 

expert judgment.     

(4) The probabilistic emission inventory developed here could be improved in several 

ways pending availability of additional data or the incorporation of a more extensive expert 

elicitation component.  For example, although biases in the mean emission factors are suspected, 

especially for fugitive emissions and as a result of process upset, insufficient data were available  



 192

via which to quantify such biases. Other possible sources of bias include lack of representative 

data and the use of surrogate data for source categories in which data were lacking or not readily 

available. Expert elicitation is recommended to be used to encode judgments regarding the 

additional uncertainty associated with nonrepresentative or surrogate data. As new data become 

available, the assessment can be updated.   

(5) A key obstacle to quantification of uncertainty based upon statistical data analysis is 

obtaining the necessary data. Often, data are measured and reported by multiple organizations.  

In the long term, the development of a protocol for archiving such data and making the data 

available is recommended to facilitate probabilistic analysis.   

 (6) In this project, the uncertainty in the total emission inventory is quantified based 

upon the source categories which have directly relevant or surrogate data. However, since the 

uncertainty in the emission inventory is caused by only a few source categories, it is actually not 

necessary to quantify the uncertainty in the emission inventories for all the source categories. For 

example, for all of the ten probabilistic emission inventories which have been developed, the key 

sources of uncertainty are among the largest five source categories. The other source categories 

either have insignificant correlation or have weak correlation to the uncertainty in the total 

emission inventories even if the uncertainty in the emission inventory from that source category 

is large. Thus, if just considering the largest five source categories to quantify the uncertainty in 

the total emission inventories, the results of the uncertainty in the total emission inventory will 

not be significantly different from that when considering all the source categories. Furthermore, 

based on the ten available emission inventories, it is found that the amounts of the urban air 

toxics emissions are quite different from source to source and the sum of the emissions from the 

largest five source categories contributes more than 78% to the total emissions even if there are 
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27 major source categories in the emission inventory. Thus if the emissions from the several 

largest source categories are considerably larger than the others, it is possible to quantify the 

uncertainty in the total emission inventory just based on the largest several source categories. 

Therefore, the amount of work will be reduced.    

(7) For some source categories, such as for mobile sources, some urban air toxics (e.g. 

heavy metals) emissions are very low, all the data points may be censored. The available 

optimization program for MLE method can not provide stable results for this situation. Further 

study regarding statistical and engineering method to deal with censored data with 100% 

censoring needs to be carried on.  

In concise summary, the innovative MLE/bootstrap method is a robust method to deal 

with left, right and interval censored data even if the censoring degree is as high as 80% and the 

sample size is as small as eight. Since censored data is a common problem in urban air toxic 

emission inventories, the MLE/bootstrap method is recommended to analyze censored urban air 

toxics data and to develop probabilistic urban air toxics emission inventories.       

 

     

 


