

ABSTRACT

TIPSUWAN, YODYIUM. Gain Scheduling for Networked Control System. (Under the

direction of Dr. Mo-Yuen Chow.)

Performances of closed-loop control systems operated over a data network are typically

degraded by network-induced delays. Furthermore, the closed-loop control systems can

become unstable. The purpose of this research has been to develop a control methodology to

handle network-induced delay effects using optimal gain scheduling on existing controllers.

The proposed gain scheduling technique adapts controller gains externally by modifying a

controller output to enable the controller for uses over a data network. Since existing

controllers can still be utilized, the proposed methodology can reduce control system

reinstallation and replacement costs. First, the effectiveness of the proposed gain scheduling

technique on networked DC motor speed control using a PI (Proportional-Integral) controller is

investigated. Also, the concept of network traffic condition measurement to select optimal

controller gains is presented. Then, a middleware framework to measure network traffic

conditions on an IP network based on delays and delay variations and to modify controller

gains is described. Suggestion of using neural network in the gain scheduling scheme is also

given. Finally, the gain scheduling technique with the middleware framework is then extended

to mobile robot path-tracking control.

GAIN SCHEDULING FOR NETWORKED

CONTROL SYSTEM

by

Yodyium Tipsuwan

A dissertation submitted to the Graduate Faculty of

North Carolina State University

in partial fulfillment of the

requirements for .the Degree of

Doctor of Philosophy

Department of Electrical and Computer Engineering

Raleigh

2003

APPROVED BY:

~~~~~9~A ~

Chair of Advisory Committee



 

 
ii

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To my parents for their endless love, support, and 

encouragement 



 

 
iii

BIOGRAPHY 

Yodyium Tipsuwan was born in Chiangmai, Thailand. He received the B.Eng. degree 

(with honors) in computer engineering in 1996 from Kasetsart University, Bangkok, 

Thailand, and the M.S. degree in electrical engineering in 1999 from North Carolina State 

University, Raleigh. 

After his graduation in the B.Eng., he joined the Department of Computer Engineering, 

Kasetsart University as an instructor to mainly teach digital system designs and 

microprocessor-based control systems in 1996, and has been awarded the Royal Thai 

Scholarship to continue his study in M.S. and Ph.D. degrees since 1998. During his M.S. 

study, he focused on intelligent control and its implementation. He is currently a Ph.D. 

candidate at North Carolina State University. His main interests are distributed networked 

control systems, mobile robotics, and computational intelligence. His current research topic 

is networked control over IP networks. 

Mr. Yodyium will join the Department of Computer Engineering, Faculty of Engineering, 

Kasetsart University, in August 2003 to teach students and conduct research there. 



 

 
iv

ACKNOWLEDGMENTS 

This dissertation could not be completed without many helpful suggestions and motivation 

from several faculties, friends, and my parents. First, I would like to express my utmost 

gratitude to my advisor Dr. Mo-Yuen Chow. Dr. Chow has spent his tireless effort and 

precious time to supervise, encourage, and inspire me on my research since I have been arrived 

at North Carolina State University. He has continuously educated and guided me from a person 

who was new in the research area to a person who knows a little more with inspiration to 

continue challenging research works. I would also thank to Dr. Douglas S. Reeves for his 

discussion and suggestion on computer network issues, Dr. James J. Brickley for his 

substitution in my preliminary examination, Dr. Griff L. Bilbro and Dr. Hamid Krim for the 

valuable comments on this dissertation at the final stages of my study. 

In addition, I would like to express my deepest appreciation to my parents, Mr. Prasit and 

Mrs. Chamaiporn Tipsuwan, for their endless love, support, understanding, and 

encouragement, and my closest friends, Ms. Saowanee Lertworasirikul, Mr. Somsak Pakpinyo, 

and Mr. Rangsarit Vanijjirattikhan, for their encouragement and support on various things 

during my study, and many other friends that I could not mention them all here. 

Finally, I thank the Royal Thai Government for the financial support of my study. 



 

 
v

TABLE OF CONTENTS 

LIST OF TABLES viii 

LIST OF FIGURES x 

CHAPTER I: INTRODUCTION 1 
I. Networked Control Systems...............................................................................................1 

II. Gain Scheduling..................................................................................................................5 

III. Neural Networks.................................................................................................................6 

IV. Middleware .........................................................................................................................8 

V. Gain Scheduler Middleware (GSM) ................................................................................10 

VI. Overview of the Dissertation............................................................................................11 

References ...............................................................................................................................13 

CHAPTER II: CONTROL METHODOLOGIES IN NETWORKED CONTROL 
SYSTEMS 17 
I. Introduction.......................................................................................................................18 

II. Overview of Networked Control System.........................................................................20 

III. Recent Networked Control Methodologies .....................................................................30 

IV. Conclusion ........................................................................................................................46 

Acknowledgement ..................................................................................................................48 

References ...............................................................................................................................48 

CHAPTER III: GAIN ADAPTATION OF NETWORKED DC MOTOR 
CONTROLLERS BASED ON QOS VARIATIONS 52 
I. Introduction.......................................................................................................................53 

II. Problem Formulation........................................................................................................58 

III. Case Study ........................................................................................................................60 



 

 
vi

IV. Simulation Setups .............................................................................................................63 

V. Conclusion ........................................................................................................................72 

Acknowledgement ..................................................................................................................73 

References ...............................................................................................................................73 

CHAPTER IV: METHODOLOGY OF USING NETWORKED PI CONTROLLER 
GAIN SCHEDULING OVER IP NETWORK: PART I – FOUNDATION 75 
I. Introduction.......................................................................................................................77 

II. System Description...........................................................................................................79 

III. Parameterization for Gain Scheduling: Constant Network Delay ..................................85 

IV. Conclusion ........................................................................................................................95 

Acknowledgement ..................................................................................................................96 

References ...............................................................................................................................96 

CHAPTER V: METHODOLOGY OF USING NETWORKED PI CONTROLLER 
GAIN SCHEDULING OVER IP NETWORK: PART I – NETWORKED CONTROL 
ON ACTUAL IP NETWORK 99 
I. Introduction.....................................................................................................................101 

II. Parameterization for Gain Scheduling: Actual IP Network Delay ...............................101 

III. Gain Scheduling Algorithm............................................................................................109 

IV. Case Study and Simulation Results................................................................................112 

V. Conclusion ......................................................................................................................119 

Acknowledgement ................................................................................................................120 

References .............................................................................................................................120 

APPENDIX FOR CHAPTER IV AND V: NEURAL-NETWORK-BASED GAIN 
SCHEDULING FOR NETWORKED PI CONTROLLER OVER IP NETWORK ̀122 

I. Relationship approximation by neural network.............................................................122 

II. Simulation result .............................................................................................................125 



 

 
vii

CHAPTER VI: GAIN SCHEDULER MIDDLEWARE FOR MOBILE ROBOT PATH-
TRACKING OVER IP NETWORK 129 
I. Introduction.....................................................................................................................130 

II. System Description.........................................................................................................132 

III. A Case Study: Mobile Robot Path-tracking...................................................................134 

IV. Use of GSM for Mobile Robot Path-Tracking Control over a Network ......................140 

V. Simulation and Experimental Results ............................................................................149 

VI. Conclusion ......................................................................................................................158 

Acknowledgement ................................................................................................................158 

References .............................................................................................................................159 



 

 
viii

LIST OF TABLES 

CHAPTER III 
1. DC motor parameters........................................................................................................61 

CHAPTER IV 
1. DC motor parameters........................................................................................................83 

2. ( )maxβ τ  of the networked DC motor PI speed control system with respect to τ . ........91 

3. Optimal β  from optimization using (2) and (3) to approximate delays with 1 1.64902, w =  

2 30.00833,  0.01395, 100,  10 secfw w M t= = = = : woc-(without constraint), wc-(with 

constraint 1 0.02J ≤ , 2 0.01J ≤ , 3 0.15J ≤ ), N/A-not available. ...................................94 

4. Percentage error between the optimal β  obtained by using (2) and (3) defined as actβ  and 

the optimal β  obtained by using denominator approximation defined as appβ  from 

simulations ........................................................................................................................94 

CHAPTER V 
1. Destinations to measure RTT delays from ADAC Lab at NCSU, their location, and 

distance: www,lib.ncsu.edu, www.visitnc.com, www.utexas.edu, and www.ku.ac.th.102 

2. Statistical measures (minimum, median, mean, and maximum) of RTT delays measured 

from ADAC Lab at NCSU to www.lib.ncsu.edu, www.visitnc.com, www.utexas.edu, and 

www.ku.ac.th ..................................................................................................................102 

3. Optimal β  with respect to 0.01,0.02,0.03,0.04,η =  and 0,0.001,0.002,...,0.009φ =  

obtained with 1 2 31.64902, 0.00833,  0.01395, 100,  10 secfw w w M t= = = = =  without 

constraint .........................................................................................................................109 

4. Cost J from the networked DC motor PI speed control system simulation with various η  

while holding  constant at 0φ = . ...................................................................................113 



 

 
ix

5. Cost J from the networked DC motor PI speed control system simulation with various φ  

while holding η  constant at 0.0232η = .......................................................................114 

6. Cost J from the networked DC motor PI speed control simulation using pre-computed RTT 

delays generated from (a) 0.0005η = , 0.0001φ = . (b) 0.0232η = , 0.0094φ = . (c) 

0.0627η = , 0.0002φ = , and (d) 0.3150η = , 0.0058φ = ..........................................115 

7. Cost J from network DC motor PI speed control simulation using RTT delays from ADAC 

Lab at NCSU to: (a) www.lib.ncsu.edu. (b) www.visitnc.com. (c) www.utexas.edu. (d) 

www.ku.ac.th ..................................................................................................................117 

APPENDIX FOR CHAPTER IV AND V 

1. Mean-squared error from applying the testing set on neural networks with h = 3, 5, 7, and 

10.....................................................................................................................................125 

2. Costs J from network DC motor PI speed control simulations using RTT delays from 

ADAC lab at NCSU to: (a) www.lib.ncsu.edu. (b) www.visitnc.com. (c) www.utexas.edu. 

(d) www.ku.ac.th. ...........................................................................................................127 

CHAPTER VI 
1. Controller parameters .....................................................................................................150 



 

 
x

LIST OF FIGURES 

CHAPTER I 
1. Networked control system data transfer.............................................................................1 

2. Altitude control system of airplane ....................................................................................2 

3. Remote control system of Mars rover................................................................................3 

4. Comparison of robot tracks with and without network delay in the feedback control loop  

...................................................................................................................................................4 

5. Block diagram of feedback control system with gain scheduling.....................................5 

6. Fundamental structure of a neuron.....................................................................................6 

7. Multilayer feedforward neural network .............................................................................7 

8. Fundamental structure of middleware................................................................................9 

9. Basic structure of gain scheduler middleware (GSM).....................................................10 

CHAPTER II 
1. NCS in the direct structure ...............................................................................................21 

2. NCS in the hierarchical structure .....................................................................................21 

3. General NCS configuration and network delays for NCS formulations.........................23 

4. Timing diagram of network delay propagations..............................................................23 

5. System performance degradations caused by delays in-the-loop: (a) Closed-loop control 

system example. (b) Step response with respect to various τ , where τ τ τ / 2ca sc= =  are 

constant, and 1.β = .........................................................................................................28 

6. Primary branches of the root locus of the system in Fig. 5 (a) with respect to β , where 

τ τ τ / 2ca sc= =  are constant .............................................................................................29 

7. Configuration of NCS in the deterministic predictor-based delay compensation 

methodology .....................................................................................................................32 



 

 
xi

8. Configuration of NCS in the probabilistic predictor-based delay compensation 

methodology. ....................................................................................................................33 

9. Configuration of NCS in the perturbation methodology.................................................36 

10. Windows of data transmissions in the sampling period 1T  of the sampling time scheduling 

methodology ....................................................................................................................37 

11. Configuration of NCS in the robust control methodology ..............................................40 

12. Configuration of NCS in the fuzzy logic modulation methodology ...............................41 

13. Membership functions of ( )e t .........................................................................................42 

14. Configuration of NCS in the event-based methodology .................................................43 

15. Cost surface with respect to controller gains under different QoS conditions................45 

16. Step responses of an actual networked DC motor speed control system in the end-user 

control adaptation methodology; ×: without adaptation, +: with adaptation .................46 

CHAPTER III 
1. Control system configurations using a shared data network: (a) Hierarchical structure. (b) 

Direct structure..................................................................................................................55 

2. An overall real-time networked control system...............................................................58 

3. Block diagram of the networked DC motor control system in the numerical simulation.. 

.................................................................................................................................................64 

4. (a) Block diagram of a peer-to-peer networked DC motor control system. (b) Actual 

networked DC motor control system setup......................................................................65 

5. Packet formats...................................................................................................................65 

6. Networked motor control performance with a sampling time of 2 ms and different PI gain 

values and without time delays ........................................................................................66 

7. Networked motor control performance given PI gain values under different QoS conditions

...........................................................................................................................................68 

8. Cost with respect to different PI gains and QoS..............................................................69 

9. A typical networked control system performance from the numerical setup with and 

without gain adaptation when network QoS deteriorates................................................71 



 

 
xii

10. A typical networked control system performance from the experimental setup with and 

without gain adaptation when network QoS deteriorates................................................72 

CHAPTER IV 
1. An overall distributed networked control system over IP network.................................79 

2. A point-to-point networked control system formulation.................................................81 

3. DC motor characteristics with respect to ( )0 0,P IK K : (a) Step response. (b) Open-loop poles 

and zeros (on real axis), and closed-loop poles (dotted cross signs)...............................84 

4. Adaptation of PI controller gains at the controller output by β ....................................85 

5. Typical behaviors of (a) 1J , (b) 2J , and (c) 3J  with respect to β ................................88 

6. Primary branches of the root locus of the networked DC motor PI speed control system 

using denominator approximation to approximate network delays ................................90 

7. (a) ( )maxβ τ  and (b) ( )max /β τ τ∆ ∆ of the networked DC motor PI speed control system 

with respect to τ ...............................................................................................................91 

8. Searching algorithm for the optimal β ...........................................................................92 

9. Cost J from optimization using (2) and (3) to delay ( )U s  and ( )Y s , respectively, with 

1 2 31.64902, 0.00833,  0.01395, 100,  10 sec,  0.1,0.2,0.6 secfw w w M t τ= = = = = = .. 

...........................................................................................................................................93 

CHAPTER V 
1. RTT delays measured from ADAC Lab at NCSU to: (a) www.lib.ncsu.edu. (b) 

www.visitnc.com. (c) www.utexas.edu. (d) www.ku.ac.th...........................................103 

2. Histograms of RTT delays measured from ADAC Lab at NCSU to: (a) www.lib.ncsu.edu. 

(b) www.visitnc.com. (c) www.utexas.edu. (d) www.ku.ac.th.....................................104 

3. Typical effect of various φ  on the optimal β  selecting while holding η  constant at 

0.01η = . .........................................................................................................................108 

4. Typical cost surfaces of J with respect to various η  and φ  without constraint. ..........108 

 



 

 
xiii

5. β  gain scheduler middleware operation .......................................................................110 

6. Possible UDP packet formats for β  scheduler middleware: (a) Control packet of ( ),u t i . 

(b) Output packet of ( ),y t i . ..........................................................................................111 

7. Effects of η  and φ  on the step response of the networked DC motor PI speed control 

system: (a) η  is varied while holding φ  constant at 0φ = . (b) φ  is varied while holding η  

constant at 0.0232η = . ..................................................................................................114 

8. Step responses from the networked DC motor PI speed control simulation using pre-

computed RTT delays generated from (a) 0.0005η = , 0.0001φ = . (b) 0.0232η = , 

0.0094φ = . (c) 0.0627η = , 0.0002φ = , and (d) 0.3150η = , 0.0058φ = . ..............116 

9. Step responses from the networked DC motor PI speed control simulation using RTT 

delays from ADAC Lab at NCSU to: (a) www.lib.ncsu.edu. (b) www.visitnc.com. (c) 

www.utexas.edu. (d) www.ku.ac.th. ..............................................................................118 

APPENDIX FOR CHAPTER IV AND V 
1. Mean-squared errors from network trainings. ...............................................................123 

2. Surfaces of the optimal β  with respect to η  and φ  from (a) the lookup table and from 

neural networks with the number of neurons: (b) 3, (c) 5, (d) 7, and (e) 10.................124 

3. Step responses from network DC motor PI speed control simulations using RTT delays 

from ADAC lab at NCSU to: (a) www.lib.ncsu.edu. (b) www.visitnc.com. (c) 

www.utexas.edu. (d) www.ku.ac.th. ..............................................................................127 

CHAPTER VI 
1. Structure of gain scheduler middleware (GSM)............................................................132 

2. Differential drive mobile robot: (a) Robot drawing. (b) Actual mobile robot platform.....

.........................................................................................................................................134 

3. Example of robot path ....................................................................................................137 

4. Procedures for determining the reference distance traveled ( )s i .................................138 

5. Data flow of networked mobile robot ............................................................................140 



 

 
xiv

6. Cost surfaces of ( )1̂ 1J i +  with respect to ( ) ,A i  ( )K i , and ( )ˆ 1iτ +  with 0.2ε = . ..145 

7. Optimal ( )K i  surface with respect to ( )A i  and ( )ˆ 1iτ +  with 0.2ε = : (a) Front view. (b) 

Side view of ( )A i . (c) Side view of ( )ˆ 1iτ + ................................................................146 

8. (a) Typical histogram of RTT delays measured between ADAC (Advanced Diagnosis And 

Control) lab at North Carolina State University and North Carolina Department of 

Commerce, NC. (b) Typical probability density function of the generalized exponential 

distribution ......................................................................................................................148 

9. (a) RTT delays between ADAC (Advanced Diagnosis And Control) lab at North Carolina 

State University and Kasetsart University, Thailand, measured for 24 hours (00:00-24:00). 

(b) Histogram of the corresponding RTT delays ...........................................................150 

10. Networked robot simulation setup in Matlab/Simulink ................................................151 

11. Comparison of robot tracks from simulations: (a) Solid line: The robot is controlled without 

IP network delay; (b) Dotted line: The robot is controlled with the existence of IP network 

delays from ADAC to Kasetsart University. The GSM is not applied; (c) Dashed line: The 

robot is controlled with the existence of IP network delays from ADAC to Kasetsart 

University. The GSM is applied.....................................................................................152 

12. Networked control robot experimental setup. (a) Hardware schematic diagram. (b) 

Software schematic diagram ..........................................................................................153 

13. Actual hardware setup ....................................................................................................154 

14. Comparison of robot tracks from experiments: (a) Solid line: The robot is controlled 

without IP network delay; (b) Dotted line: The robot is controlled with the existence of IP 

network delays from ADAC to Kasetsart University. The GSM is not applied; (c) Dashed 

line: The robot is controlled with the existence of IP network delays from ADAC to 

Kasetsart University. The GSM is applied. ...................................................................156 

 



 

1 

C H A P T E R  I  

INTRODUCTION 

 This chapter presents an overview of this dissertation including a brief introduction to 

networked control systems and applications, gain scheduling, neural networks, middleware, 

and gain scheduler middleware. A survey of the dissertation is given at the end of this chapter. 

I. Networked Control Systems 

A networked control system (NCS) [1] or a networked-based control system [2] is a closed-

loop control system operated over a data communication network. To perform closed-loop 

networked control operations, a controller needs to send control data to a system plant, while 

also receiving feedback data from the plant through a communication network to update 

control data as shown in Fig. 1.  

Network

Controller

Plant or remote
system

Feedback data

Control data

Feedback data

Control data

 

Fig. 1. Networked control system data transfer. 

There are several control applications usually configured as networked control systems. In 

general, these applications can be categorized in two major groups as: 

A.  Complex control systems 

 A complex control system is a large-scale system containing several subsystems [3], which 

perform and collaborate together to achieve an overall system task. An example of a complex 



 

2 

control system is an altitude control system in an airplane [4] as shown in Fig. 2. In order to 

maintain the altitude during an autopilot mode, three subsystems, which are the flaps, the 

elevator, and the engine, must cooperate synchronously. 

Subsystem:  Elevator
Controller:  Elevator controller
Sensor:        Position sensor
Actuator:     Hydraulic valve

Subsystem:  Flap
Controller:  Flap controller
Sensor:        Position sensor
Actuator:     Hydraulic valve

Subsystem:  Engine
Controller:  Fuel injection controller
Sensor:        Speed sensor
Actuator:     Fuel injection nozzle  

Fig. 2. Altitude control system of airplane. 

 Because an actual complex control system is typically large and sophisticated, connecting 

system components like sensors, actuators, and controllers together by direct electrical wiring 

usually results in complicated circuits. The system as a whole could be difficult to install and 

maintain. System connections can be even more cumbersome if system components are not 

closely located physically. Networked control system configuration can be applied on a 

complex control system to solve this problem by systematically organizing wiring connections 

into a shared data network. Several practical complex control applications have successfully 

utilized the networked control system concept for this purpose. These applications include 

automobiles [5, 6], chemical process [7], and manufacturing plants [8]. 



 

3 

B.  Remote control systems 

 Remote control systems have been used for two general reasons: convenience and safety. A 

remote control system saves human operator place-to-place traveling time and protects the 

operator from dangers in hazardous environments such as in the space and in a war zone. A 

widely known example is the Mars rover as shown in Fig. 3. 

SatelliteRemote site (Mars) Local site (Earth)

Control signal

Remote data

Mars rover

 

Fig. 3. Remote control system of Mars rover. 

In the past, a remote control system usually requires a specific connection link or media, 

which may be limited to a point-to-point connection and have an expensive set-up cost. With 

the evolving of communication technologies, an emerging alternative to expand remote 

systems for more connections is to utilize wired or wireless data network resources by 

configuring the system as networked control systems. Thus, the network media can be shared 

among several remote control systems for expansions. In addition, the prices of network 

devices for networks such as Ethernet have become affordable, while the performances are 

rapidly improving. Therefore, the set-up cost for a remote control system can be much reduced 

than before. Furthermore, with the widely-used Internet, the remote system could even be 

controlled across continents without too much extra cost. Practical examples of networked 

remote control systems are robot teleoperation [9] and distant learning laboratory [10, 11]. 

Because a networked control system transfers control and feedback data through a network, 

the network can induce delays on the transfer signals and affect the overall feedback control 



 

4 

system performance. The performance could be degraded and the system can even become 

unstable. The network delay effect and impacts on system performance degradation and 

instability are based on the characteristics of the networked control system. For example, for a 

remote DC motor speed control, an oscillatory behavior may occur at the speed output if there 

are network delays in the control loop. Likewise, on a remote networked mobile robot path-

tracking application, the robot may deviate from a desire position when it does not receive 

timely control data from a controller across a network. Fig. 4 shows a typical comparison of 

robot trajectories when the robot is controlled to track a path with and without network delays. 

Desired
position

Undesired
position

caused by
network
delays

-0.5 0 0.5 1 1.5 2 2.5
-0.5

0

0.5

1

1.5

2

2.5

x(m)

y(
m

)

No delay
With delay

Fig. 4. Comparison of robot tracks with and without network delay in the feedback control 
loop. 

Apparently, the robot with network delays cannot track the desired path closely. To 

maintain the networked control system performance as much as possible with the existence of 

network delays, a networked control methodology is required to compensate the network delay 

effect on the overall networked feedback control system. A survey on recent networked control 



 

5 

techniques and a novel networked control methodology using middleware gain adaptation will 

be presented in later chapters of this dissertation. 

II. Gain Scheduling 

 Gain scheduling is a special kind of nonlinear feedback control techniques. The concept of 

gain scheduling originated from flight control applications [12-13], in which operating 

conditions always change. In gain scheduling, controller parameters are functions of operating 

conditions so called scheduling functions, which can usually be represented in a lookup table. 

These operating conditions are usually parameterized into variables called auxiliary or 

scheduling variables [13], that correlate with changes in the dynamics of the system. Choosing 

appropriate auxiliary variables depends on the physics and characteristics of a system. In this 

dissertation, data network traffic conditions will be characterized into network variables and 

will be used as auxiliary variables. Fig. 5 shows the block diagram of a feedback control 

system with gain scheduling.  

Controller Plant

Scheduling
function

Controller
parameters

Operating
condition

Reference
signal Control

signal Output

 

Fig. 5. Block diagram of feedback control system with gain scheduling. 

 When the operating condition of the control system changes, the controller parameters will 

be adjusted with respect to the measurements of auxiliary variables. Nevertheless, there is no 

feedback from the system output to the controller parameters. Gain scheduling, therefore, is 



 

6 

typically not considered as an adaptive control technique. Because the parameters are updated 

in an open-loop manner, parameter adaptation by gain scheduling could be viewed as a kind of 

feedforward compensation. The performance and stability of the system with gain scheduling 

are usually analyzed by extensive simulations. Analysis at the transition among operation 

conditions is normally required more attention. Until now, gain scheduling has been applied on 

various applications, and also in many cases along with other technologies such as robust 

control, optimal control, and fuzzy control. Example of these applications are flight control 

[14], arc welding [15], diesel engine [16], magnetic bearing [17], suspension system [18], and 

DC motor [19]. 

III. Neural Networks 

 An artificial neural network (ANN) is a mathematical structure designed to model a brain 

function of interests. In general, an ANN architecture is composed of processing elements 

called neurons or nodes [20]. Fig. 6 shows the fundamental structure of a neuron. 

Neuron

1x 0w

1w

Nw

1x

Nx

Input ∑
Activation
function

f

o

b

p
Output

 

Fig. 6. Fundamental structure of a neuron. 



 

7 

The neuron receives the inputs 1 2, , , Nx x x… , which are scaled by the weights 1 2, , ,w w …  

Nw , respectively. The summation of these inputs and the bias b is then applied as the input of 

an activation function or a transfer function. This operation of a neuron can be described by: 

 ( ) ( )
1

,
n

i i
i

o f p p w x b
=

= = +∑  (1) 

An activation function can be a linear or nonlinear function. However, popular choices of 

activation functions are usually nonlinear functions, which are monotonically non-decreasing 

and differentiable functions. Such activation functions include the sigmoid or logistic function, 

and the hyperbolic tangent function. 

One of the most widely-used ANN structures is the multilayer feedforward network with 

one hidden layers illustrated in Fig. 7. Multilayer feedforward neural networks have been 

successfully applied to solve several nonlinear and complicated problems such as fault 

detection and diagnosis [21] and thermal modeling [22]. 

1

K

k

o1

ok

oK

w
k1

w
Kj

w
K1

wkj

wKJ

y1

yj

yJ=1

jth row
of neurons

kth row
of neurons

w11
1

J

j

x1

xi

xN=1
ith row

of neurons

v
j1

v11

vjiv 1i

dummy neuron

vJI

Fig. 7. Multilayer feedforward neural network. 

A prominent feature of an ANN is its ability to approximate a highly nonlinear mapping by 

learning from a set of training data. This ability makes ANN very useful to approximate a 

scheduling function from a collection of simulation or experimental data. A training data set is 

composed of a set of input data and a set of the associated output data, which may be sampled 

from simulations or experiments. After being trained successfully by a training algorithm using 



 

8 

the training set, the ANN can represent the mapping between the inputs and outputs including 

the points that were not acquired in the training set. This learning process of the ANN is called 

supervised learning, which can be performed by a variety of training algorithms such as the 

highly popular error-backpropagation algorithm [23]. 

IV. Middleware 

Middleware is an implementation to seamlessly manage connections among applications, 

hardware and software resources such as CPU processing time and data network resources. 

The interfaces of middleware to applications and resources are performed through abstract 

levels, while actual hardware and software implementations and operations are hidden inside 

the middleware. Applications developed from different platforms, languages, or procedures, 

can communicate together or access resources using the same abstraction. This framework 

provides modularity for application research and development, and ease to use and extend 

resources. The fundamental structure of middleware is illustrated in Fig. 8. 



 

9 

Middleware

Resource management

Controller

End-to-End application requirement

Remote
system

Interface abstraction

Resource monitoring

QoS negotiation

Network

Local
hardware

and
software
resources Middleware

Resource management

Interface abstraction

Resource monitoring

QoS negotiation

Application 1
(Controller)

Application 2
(Mobile robot)

Local
hardware

and
software
resources

 

Fig. 8. A fundamental structure of middleware. 

Middleware must have effective managing strategies for applications to access resources 

through abstraction. In general, an application can access resources by negotiating with 

middleware for its end-to-end application requirement. The requirement has to be mapped into 

specifications so called QoS (Quality-of-Service) specifications, which indicate the quantity of 

resource requirement such as required processing time, network bandwidth, delay bound, and 

jitter. For example, if we would like a robot to track a path over a data network to reach a 

destination in 15 s, the requirement can be mapped to the bandwidth and delay bound that the 

robot needs in order to complete the task. Middleware then check if there are adequate 

resources based on the resource monitoring measurements. If the requirement cannot be 

granted, the application may need to lower its performance and performs as best as possible. 

This action is called graceful performance degradation [24]. 



 

10 

Middleware has been applied for control applications using various implementations such 

as RTPOOL [24] and CORBA (Common Object Request Broker Architecture) [25]. The main 

objective of middleware usages in these applications is to provide convenient interfaces and to 

guarantee QoS. Especially, middleware can offer appropriate network conditions, for example, 

bounds of delays and delay variations, for a networked control system. These applications 

include flight control [24], robot control [26-28], and factory automation [29, 30].  

V. Gain Scheduler Middleware (GSM) 

In this dissertation, a novel methodology to adapt controller gain parameters by a gain 

scheduling technique externally at the controller output through middleware is introduced. This 

methodology is developed based on the requirement to enable existing controllers for 

networked control purposes such that the controllers need not be redesigned or replaced by a 

complete new networked control system. Otherwise, the installations of new network control 

system are typically costly, inconvenient, and time consuming. The proposed methodology 

could benefit major industries in factory automation and industrial electronics because a major 

amount of existing controllers can be enabled or upgraded to be used over a data network. 

Therefore, these industries can save much investment and time for controller upgrades. The 

proposed methodology is defined as the gain scheduler middleware (GSM). The basic structure 

of a GSM is shown in Fig. 9. 

Controller

Gain scheduler middleware

Network
traffic

estimator

Feedback
preprocessor

Gain
scheduler

Network
Remote
system

Probing

Control
signal

Feedback
signal

 

Fig. 9. Basic structure of gain scheduler middleware (GSM). 



 

11 

A GSM is composed of three main parts: a network traffic estimator, a feedback 

preprocessor, and a gain scheduler. The network estimator unit measures the current network 

traffic conditions by periodically sending probing packets to a remote system in order to 

characterize the network traffic conditions. The network traffic conditions and network 

variables can be thought of as operating conditions and auxiliary variables in gain scheduling. 

The feedback preprocessor unit preprocesses the feedback data such as filtering noise or 

prediction of remote system states, and forwards the preprocessed data to an existing controller. 

Note that the feedback preprocessor may not be necessary if the controller does not require 

preprocessing. The controller then computes the updated control data. The gain scheduler then 

captures the output of the controller, and modifies it by a gain scheduling algorithm with 

respect to the network variables in order to compensate network delay effects. Illustrations of 

GSM methodology applied on two applications: DC motor speed control system and mobile 

robot path tracking will be described in this dissertation.  

VI. Overview of the Dissertation 

This dissertation contains several manuscripts that have been submitted for publication to 

several journals. Chapter II of this dissertation is published in Control Engineering Practice, 

Special Issue on Control Methods for Telecommunication Networks [31]. Chapter III is 

published in IEEE Transactions on Industrial Electronics [32]. Chapter IV and V are the 

companion papers that have been submitted to an IEEE Transactions and are currently under 

review. Chapter VI is the paper to be submitted to another IEEE Transactions. There are also 

several other conference papers have been published along the research investigated in this 

dissertation [33-38]. 

Chapter II provides an introduction on networked control system technologies. General 

information about networked control systems including system configuration, data transfers, 

and network protocol characteristics for networked control systems are described. This chapter 

then provides a discussion on network delay effects on network control systems, and current 



 

12 

techniques to compensate network delays. Suggestion of using these techniques on different 

network protocol characteristics is also given. 

Chapter III introduces the feasibility of using a gain scheduling technique to handle 

network delays based on network traffic conditions. The network considered in this chapter is 

assumed to be a QoS-enabled network, which can guarantee network traffic conditions for a 

networked control system. A PI (Proportional-Integral) DC motor speed control problem is 

used as an example to verify the feasibility and performance of the proposed gain scheduling 

technique. A method to adapt controller gain parameters by gain scheduling is described. 

Simulation and experimental results to show the effectiveness of the proposed approach are 

also provided. 

Chapter IV and V are companion chapters. In these chapters, the concept of using gain 

scheduler middleware to adapt controller gains externally at the controller output with respect 

to the current IP network traffic conditions is introduced. Chapter IV provides the fundamental 

of network delay formulation in the frequency domain with the assumption that IP network 

delays are constant. Control system formulation for gain scheduling, sensitivity analysis, and 

optimal gain parameter finding are also described. Chapter V describes the generalization of 

the approach in chapter IV for actual IP network delays. The characteristics of actual IP 

network delays and characterization of IP network delays by a generalized exponential 

distribution are analyzed in this chapter. Optimal gain finding based on the generalized 

exponential distribution is then explained. The gain scheduler middleware concept for 

networked control is then described. Performance verification of the proposed approach on a PI 

DC motor speed control problem in simulations is also described in this chapter. 

Chapter VI presents the use of gain scheduler middleware on a mobile robot application 

controlled with the existence of IP network delays. An example to illustrate the effectiveness of 

middleware in this chapter is a mobile robot path-tracking problem. Likewise, the gain 

scheduler middleware is used to adjust the output of the robot path-tracking controller with 



 

13 

respect to the current network traffic conditions. However, the structure of gain scheduler 

middleware is slightly different from chapter IV and V. The gain scheduler middleware in this 

chapter preprocesses the feedback data before forwarding preprocessed data to the robot path-

tracking controller. Simulation and experimental results to verify the effectiveness of the gain 

scheduler middleware are described and presented at the end of this chapter. 

References 
[1] G. C. Walsh, H. Ye, and L. Bushnell, "Stability analysis of networked control systems," 

in American Control Conference, San Diego, CA, 1999, pp. 2876-2880. 

[2] Y. H. Kim, H. S. Park, and W. H. Kwon, "Stability and a scheduling method for 
network-based control systems," in IEEE IECON 96, Taipei, Taiwan, 1996, pp. 934-
939. 

[3] H. Chan and Ü. Özgüner, "Closed-loop control of systems over a communication 
network with queues," International Journal of Control, vol. 62, no. 3, pp. 493-510, 
1995. 

[4] B. Etkin and L. D. Reid, Dynamics of Flight: Stability and Control. New York: Wiley, 
1996. 

[5] Ü. Özgüner, H. Göktas, H. Chan, J. Winkelman, M. Liubakka, and R. Krotolica, 
"Automotive suspension control through a computer communication network," in IEEE 
Control Applications, Dayton, OH, 1992, pp. 895-900. 

[6] N. Boustany, M. Folkerts, K. Rao, A. Ray, L. Troxel, and Z. Zhang, "A simulation 
based methodology for analyzing network-based intelligent vehicle control systems," in 
Intelligent Vehicles Symposium, 1992, pp. 138-143. 

[7] B. P. Zeigler and J. Kim, "Extending the DEVS-Scheme knowledge-based simulation 
environment for real-time event-based control," IEEE Transactions on Robotics and 
Automation, vol. 9, no. 3, pp. 351-356, 1993. 

[8] G. Kaplan, "Ethernet's winning ways," IEEE Spectrum, vol. 38, no. 1, pp. 113-115, 
2001. 

[9] K. Brady and T.-J. Tarn, "Internet-based teleoperation," in IEEE ICRA 2001, Seoul, 
South Korea, 2001, pp. 644-649. 

[10] J. W. Overstreet and A. Tzes, "An Internet-based real-time control engineering 
laboratory," IEEE Control Systems Magazine, vol. 19, no. 5, pp. 19-34, 1999. 



 

14 

[11] G. V. Kondraske, R. A. Volz, D. H. Johnson, D. Tesar, J. C. Trinkle, and C. R. Price, 
"Network-based infrastructure for distributed remote operations and robotics research," 
IEEE Transactions on Robotics and Automation, vol. 9, no. 5, pp. 702-704, 1993. 

[12] G. Stein, "Adaptive flight control-A pragmatic view," in Applications of Adaptive 
Control, K. S. Narendra and R. V. Monopoli, Eds. New York: Academic Press, 1980, 
pp. 291-312. 

[13] K. J. Åström and B. Wittenmark, Adaptive Control. Reading, MA: Addison-Wesley, 
1989. 

[14] R. A. Nichols, R. T. Reichert, and W. J. Rugh, "Gain scheduling for H-infinity 
controllers: a flight control example," IEEE Transactions on Control Systems 
Technology, vol. 1, no. 2, pp. 69-79, 1993. 

[15] J. B. Bjorgvinsson, G. E. Cook, and K. Andersen, "Microprocessor-based arc voltage 
control for gas tungsten arc welding using gain scheduling," IEEE Transactions on 
Industry Applications, vol. 29, no. 2, pp. 250-255, 1993. 

[16] J. Jiang, "Optimal gain scheduling controller for a diesel engine," IEEE Control 
Systems Magazine, vol. 14, no. 4, pp. 42-48, 1994. 

[17] F. Matsumura, T. Namerikawa, K. Hagiwara, and M. Fujita, "Application of gain 
scheduled H∞  robust controllers to a magnetic bearing," IEEE Transactions on Control 
Systems Technology, vol. 4, no. 5, pp. 484-493, 1996. 

[18] S.-H. Lee, S.-G. Kim, and J.-T. Lim, "Fuzzy-logic-based fast gain-scheduling control 
for nonlinear suspension systems," IEEE Transactions on Industrial Electronics, vol. 
45, no. 6, pp. 953-955, 1998. 

[19] M. R. Matausek, B. I. Jeftenic, D. M. Miljkovic, and M. Z. Bebic, "Gain scheduling 
control of DC motor drive with field weakening," IEEE Transactions on Industrial 
Electronics, vol. 43, no. 1, pp. 153-162, 1996. 

[20] M.-Y. Chow and J. Teeter, Methodologies of Using Artificial Neural Network and 
Fuzzy Logic Technologies for Motor Incipient Fault Detection, 1 ed. Farrer Road, 
Singapore: World Scientific, 1997. 

[21] B. Li, M.-Y. Chow, Y. Tipsuwan, and J. C. Hung, "Neural-network-based motor rolling 
bearing fault diagnosis," IEEE Transactions on Industrial Electronics, vol. 47, no. 5, 
pp. 1060-1069, 2000. 

[22] M.-Y. Chow and Y. Tipsuwan, "Neural plug-in motor coil thermal modeling," in IEEE 
IECON 2000, Nagoya, Japan, 2000, pp. 1586-1591. 



 

15 

[23] D. E. Rumelhart and J. L. McClelland, Parallel Distributed Processing: Explorations 
in the Microstructure of Cognition. Cambridge, MA: MIT Press, 1986. 

[24] T. F. Abdelzaher, E. M. Atkins, and K. G. Shin, "QoS negotiation in real-time systems 
and its application to automated flight control," IEEE Transactions on Computers, vol. 
49, no. 11, pp. 1170-1183, 2000. 

[25] D. G. Schmidt and F. Kuhns, "An overview of the Real-Time CORBA specification," 
Computer, vol. 33, no. 6, pp. 56-63, 2000. 

[26] D. Brugali and M. E. Fayad, "Distributed computing in robotics and automation," IEEE 
Transactions on Robotics and Automation, vol. 18, no. 4, pp. 409-420, 2002. 

[27] O. Kubitz, M. O. Berger, and R. Stenzel, "Client-server-based mobile robot control," 
IEEE/ASME Transactions on Mechatronics, vol. 3, no. 2, pp. 82-90, 1998. 

[28] H. Utz, S. Sablatnog, S. Enderle, and G. Kraetzschmar, "Miro-middleware for mobile 
robot applications," IEEE Transactions on Robotics and Automation, vol. 18, no. 4, pp. 
493-497, 2002. 

[29] Z. Yang, G. Huang, R. L. Y. Guan, and R. Gay, "CORBA as object-oriented 
infrastructure for factory communication and control," in APCC/OECC 1999, Beijing, 
China, 1999, pp. 1083-1086. 

[30] S. Song, J. Huang, P. Kappler, R. Freimark, and T. Kozlik, "Fault-tolerant Ethernet 
middleware for IP-based process control networks," in IEEE Local Computer 
Networks, Tampa, FL, 2000, pp. 116-125. 

[31] Y. Tipsuwan and M.-Y. Chow, "Control methodologies in networked control Systems," 
to be published in Control Engineering Practice, vol. 10, no. 11, pp. 1099-1111, 2003. 

[32] M.-Y. Chow and Y. Tipsuwan, "Gain adaptation of networked DC motor controllers 
based on QoS variations," to be published in IEEE Transactions on Industrial 
Electronics, vol. 50, no. 5, 2003. 

[33] M.-Y. Chow and Y. Tipsuwan, "Network-based control adaptation for network QoS 
variation," in IEEE MILCOM 2001, Vienna, VA, 2001, pp. 257-261 

[34] N. B. Almutairi, M.-Y. Chow, and Y. Tipsuwan, "Network-based controlled DC motor 
with fuzzy compensation," in IEEE IECON 2001, Denver, CO, 2001, pp. 1844-1849. 

[35] Y. Tipsuwan and M.-Y. Chow, "Network-based controller adaptation based on QoS 
negotiation and deterioration," in IEEE IECON 2001, Denver, CO, 2001, pp. 1794-
1799. 



 

16 

[36] Y. Tipsuwan and M.-Y. Chow, "Gain adaptation of networked mobile robot to 
compensate QoS deterioration," in IEEE IECON 2002, Sevilla, Spain, 2002, pp. 3146-
3151. 

[37] Y. Tipsuwan and M.-Y. Chow, "On the gain scheduling for networked PI controller 
over IP Network," in IEEE/ASME AIM, Kobe, Japan, 2003, pp. 640-645. 

[38] Y. Tipsuwan and M.-Y. Chow, "Neural network middleware for model predictive path 
tracking of networked mobile robot over IP network," to be published in IEEE IECON 
2003, Roanoke, VA, 2003. 



 

17 

C H A P T E R  I I  

CONTROL METHODOLOGIES IN NETWORKED CONTROL 

SYSTEMS 

 

 

 

 

 

 

 

 

 

 

This chapter is published in Control Engineering Practice, Special Issue on Control Methods 

for Telecommunication Networks, vol. 10, no. 11, pp. 1099-1111. 

Yodyium Tipsuwan                                            Mo-Yuen Chow 

                    ytipsuw@unity.ncsu.edu                                     chow@eos.ncsu.edu 

Advanced Diagnosis And Control Lab 

Department of Electrical and Computer Engineering 

North Carolina State University, Raleigh NC 27606, USA 

Tel: (919) 515-7360, Fax: (919) 515-5108 

 



 

18 

CONTROL METHODOLOGIES IN NETWORKED CONTROL 

SYSTEMS 

Abstract—The use of a data network in a control loop has gained increasing attentions in 

recent years due to its cost effective and flexible applications. One of the major challenges in 

this so called networked control system (NCS) is the network-induced delay effect in the 

control loop. Network delays degrade the NCS control performance and destabilize the system. 

A significant emphasis has been on developing control methodologies to handle the network 

delay effects in NCS. This survey paper presents recent NCS control methodologies. The 

overview on NCS structures and description of network delays including characteristics and 

effects are also covered. 

Keywords—communication control applications, communication networks, communication 

protocols, distributed control, factory automation, delay analysis, delay compensation. 

I. Introduction 

The research and developments on shared data networks have a long history. Principle data 

networks such as Slotted ALOHA [1], and ARPANET [2], which were specially developed 

around 30-40 years ago, evolved to widely used modern network protocols like Ethernet and 

Internet for general usages, respectively. Data networking technologies provide several benefits 

on linking data points like computers. Networks enable remote data transfers and data 

exchanges among users, reduce the complexity in wiring connections and the costs of medias, 

and provide ease in maintenance. 

 Because of these attractive benefits, many industrial companies and institutes have shown 

interest in applying networks for remote industrial control purposes and factory automation. As 

a result of extensive research and development, several network protocols for industrial control 



 

19 

have been released. For example, CAN (Controller Area Network) was originally developed in 

1983 by the German company Robert Bosch for use in car industries, and is also being used 

now in many other industrial control applications. Another example of industrial networks is 

Profibus developed by six German companies and five German institutes in 1987. Profibus is a 

broadcast bus protocol that operates as a multi-master/slave system. Many other industrial 

network protocols including Foundation Fieldbus and DeviceNet were also developed about 

the same time period. Most of these protocols are typically reliable and robust for real-time 

control purposes. 

Meanwhile, the technologies on general computer networks especially Ethernet have also 

progressed very rapidly. With the decreasing price, increasing speed, widespread usages, 

numerous software and applications, and well-established infrastructure, these networks 

become major competitors to the industrial networks for control applications [3]. Furthermore, 

the popularity of the Internet has brought these networks into various organizations. Thus, the 

control applications can utilize these networks to connect to the Internet in order to perform 

remote control at much farther distances than in the past without investing on the whole 

infrastructure. Although the industrial networks have been enhanced for Internet connectivity, 

the cheaper price and widespread usages of the general networks are still attractive for use in 

control applications. 

Regardless of the type of network used, the overall networked control system performance 

is always affected by network delays since the network is tied with the control system. Delays 

are widely known to degrade the performance of a control system. Network delays may not 

significantly affect an open-loop control system such as on-off relay systems in industrial 

plants. However, the open-loop control configuration may not be appropriate and adequate for 

time-sensitive high performance control applications such as telerobotics and telesurgery. 

These applications require feedback data sent across the network in order to correct the output 

error. Existing constant time-delay control methodologies may not be directly suitable for 



 

20 

controlling a system over the network since network delays are usually time-varying, 

especially in the Internet. Therefore, to handle network delays in a closed-loop control system 

over a network, an advanced methodology is required. 

This survey paper provides recent control methodologies for a closed-loop control system 

over a data network. This closed-loop system configuration is known as a network-based 

control system [4] or networked control system (NCS) [5]. The two terms are somewhat 

interchangeable depending on different authors’ preferences. The methodologies described in 

this paper have been applied and have shown promising results in many applications ranging 

from DC motors [6, 7] to automobiles [8, 9], aircrafts [10], mobile robots [11, 12], robotic 

manipulator [13], and distance learning [14, 15]. This paper provides the overview of NCS 

including system configuration, network delay characteristics, and the effects of networked 

delays in section II. The control methodologies for NCS will then be described in section III. 

The paper is concluded in section IV. 

II. Overview of Networked Control System 

A.  Networked control system configuration 

There are two general networked control system configurations listed as follows: 

� Direct structure 

The NCS in the direct structure is composed of a controller and a remote system containing 

a physical plant, sensors and actuators. The controller and the plant are physically located at 

different locations and are directly linked by a data network in order to perform remote closed-

loop control as illustrated in Fig. 1. 



 

21 

Network

Control signal

Sensor measurement
Controller Plant

Actuator

Sensor
,    : Packet

 
Fig. 1. NCS in the direct structure. 

 The control signal is encapsulated in a frame or a packet and sent to the plant via the 

network. The plant then returns the system output to the controller by putting the sensor 

measurement into a frame or a packet as well. In a practical implementation, multiple 

controllers can be implemented in a single hardware unit to manage multiple NCS loops in the 

direct structure. Some examples of NCS in the direct structure are a distance learning lab [15] 

and a DC motor speed control system [6]. 

� Hierarchical structure 

 The basic hierarchical structure consists of a main controller and a remote closed-loop 

system as depicted in Fig. 2. 

,    : Packet
Remote system

Network

Reference signal

Sensor measurement

Main
controller

PlantActuator SensorRemote
controller-

+

 

Fig. 2. NCS in the hierarchical structure. 

Periodically, the main controller computes and sends the reference signal in a frame or a 

packet via a network to the remote system. The remote system then processes the reference 

signal to perform local closed- loop control and returns to the sensor measurement to the main 

controller for networked closed-loop control. The networked control loop usually has a longer 

sampling period than the local control loop since the remote controller supposes to satisfy the 

reference signal before processes the newly arrival reference signal. Similar to the direct 



 

22 

structure, the main controller can be implemented to handle multiple networked control loops 

for several remote systems. This structure is widely used in several applications including 

mobile robots [12], and teleoperation [13]. 

The use of either the direct structure or the hierarchical structure is based on application 

requirements and designer’s preferences. For example, a robotic manipulator usually requires 

several motors at the joints of the robot to simultaneously and smoothly rotate together. It may 

be more convenient and more robust to use an existing robot controller and formulate the 

networked control problem in the hierarchical structure. On the other hand, a designer may 

require a networked DC motor speed control system [6] to have a faster control response over 

the network. The direct structure may be preferred in this case. 

This survey paper mainly focuses on the fundamental and control methodologies for NCS 

in the direct structure. Nevertheless, control and analysis methodologies for the direct structure 

could also be applied for the hierarchical structure by treating the remote closed-loop system as 

a pure plant. In this case, the remote closed-loop system is represented by a state-space model 

or a transfer function similar to the plant. 

B. Delays in-the-loop 

Since an NCS operates over a network, data transfers between the controller and the remote 

system will induce network delays in addition to the controller processing delay. Fig. 3 shows 

network delays in the control loop, where r is the reference signal, u is the control signal, y is 

the output signal, k is the time index, and T is the sampling period. Most of networked control 

methodologies use the discrete-time formulation shown in Fig. 3. Fig. 4 shows the 

corresponding timing diagram of network delay propagations. 



 

23 

Remote system
( ) ( )k kTu u�

Actuator
( )ty

( ) ( )k kTy y� T( )τsckT −y

( ) ( )k kTr r� ( )τcakT −u

Z.O.H

Controller

Network

Plant Sensor

Fig. 3. General NCS configuration and network delays for NCS formulations. 

T

τsc τcaτc

τ

kT

Control signal

( )ku ( )τcakT −u

set cst rst

Output signal

( )ky ( )τsckT −y

( )1k T+

τsc
Actual output
signal

Delayed output
signal (by      )

Control signal with
respect to ( )ky

Delayed control
signal (by      )τca

time

time
cet

τW τF τP

 

Fig. 4. Timing diagram of network delay propagations. 



 

24 

Network delays in an NCS can be categorized from the direction of data transfers as the 

sensor-to-controller delay τsc  and the controller-to-actuator delay τca . The delays are 

computed as: 

 τsc cs set t= − , (1) 

 τca rs cet t= − , (2) 

where set  is the time instant that the remote system encapsulates the measurement to a frame or 

a packet to be sent, cst  is the time instant that the controller starts processing the measurement 

in the delivered frame or packet, cet  is the time instant that the main controller encapsulates the 

control signal to a packet to be sent, and rst  is the time instant that the remote system starts 

processing the control signal. In fact, both network delays can be longer or shorter than the 

sampling time T. The controller processing delay τc  and both network delays can be lumped 

together as the control delay τ  for ease of analysis. This approach has been used in some 

networked control methodologies. Although the controller processing delay τc  always exists, 

this delay is usually small compared to the network delays, and could be neglected. In addition, 

the sampling periods of the main controller and of the remote system may be different in some 

cases. 

The delays τsc  and τca  are composed of at least the following parts [16]. 

� Waiting time delay τW  

The waiting time delay is the delay, of which a source (the main controller or the remote 

system) has to wait for queuing and network availability before actually sending a frame or a 

packet out.  

� Frame time delay Fτ  

The frame time delay is the delay during the moment that the source is placing a frame or a 

packet on the network. 



 

25 

� Propagation delay Pτ  

The propagation delay is the delay for a frame or a packet traveling through a physical 

media. The propagation delay depends on the speed of signal transmission and the distance 

between the source and destination. 

These three delay parts are fundamental delays that occur on a local area network. When 

the control or sensory data travel across networks, there can be additional delays such as the 

queuing delay at a switch or a router, and the propagation delay between network hops. The 

delays τsc  and τca  also depend on other factors such as maximal bandwidths from protocol 

specifications, and frame or packet sizes.  

Higher layer network protocols such as TCP may require retransmission if an error occurs 

in a packet, or a switch or a router drops the packet. This incident is a trade-off for an NCS. 

Even though some control or sensory signals are lost due to network transmissions, some NCS 

may operate acceptably. In this case, retransmission may be undesirable because the NCS may 

be severely affected by the extending delays as a result from retransmission. 

C.  Delay characteristics 

The delay characteristics on NCS basically depend on the type of a network used, which 

are described as follows. 

� Cyclic service network 

In local area network protocols with cyclic service such as IEEE 802.4, SAE token bus, 

PROFIBUS, IEEE 802.5, SAE token ring, MIL-STD-1553B, and FIP, control and sensory 

signals are transmitted in a cyclic order with deterministic behaviors. Thus, the delays are 

periodic and can be simply modeled as a periodic function such that 1τ τsc sc
k k +=  and 1τ τca ca

k k += , 

where τsc
k  and τca

k  are the sensor-to-controller delay and the controller-to-actuator delay at the 

sampling time period k [17]. The models work perfectly in the ideal case. In practice, NCS may 

experience small variations on periodic delays due to several reasons. For examples, the 



 

26 

discrepancies in clock generators on a controller and a remote system may result in delay 

variations. 

� Random access network 

Random access local area networks such as CAN and Ethernet involve with more uncertain 

delays. The significant parts of random network delays are the waiting time delays due to 

queuing and frame collision on the networks. When an NCS operates across networks, several 

more factors can increase the randomness on network delays such as the queuing time delays at 

a switch or a router, and the propagation time delays from different network paths. In addition, 

a cyclic service network connected to a random access network also results in random delays. 

In the networking area, random network delays have been modeled by using various 

formulations based on probability and the characteristics of sources and destinations. The 

techniques range from simple approaches such as the Poisson process to more sophisticated 

approaches such as Markov chain [18], fluid flow model [19], ARMA model [20], etc. These 

techniques have been brought to NCS formulations in several studies, but may have to be 

modified or reformulated for specific networked control methodologies. For example, Markov 

chain is applied in [21, 22], and simple independent transfer-to-transfer probability distribution 

models are used in [22] as follows. 

 ( ) ( ) ( ) ( )τ δ τ 1 δ τca ca ca
k k ca k caf a p b p= − ⋅ − + − ⋅τ , (3) 

 ( )
( ) ( )

( ) ( ]
[ ]

δ τ 1 ,       τ ,

τ ,                  τ , , ,

0,                                     τ , ,

sc sc
k sc k

sc sc
k sc k

sc
k

a p a

f p b a a b a b

a b

+

 − ⋅ − =
= − ∈ <


∉

τ  (4) 

where ( )δ ⋅  is the Dirac delta function, a and b are constants, and [ ], 0,1sc cap p ∈  are 

parameters of the network. 



 

27 

D. Effects of delays in-the-loop 

� Performance degradation 

Delays in a control loop are widely known to degrade system performances of a control 

system, so are the network delays in an NCS. The closed-loop PI (Proportional-Integral) 

control system with delays in Fig. 5 (a) is used to briefly illustrate system performance 

degradations by delays in-the-loop, where ( )R s , ( )U s , ( )Y s , and ( ) ( ) ( )E s R s Y s= −  are 

the reference, control, output, and error signals in Laplace domain according to the reference, 

control, output, and error signals in time domain, respectively.  

The transfer functions of the controller and the plant are described, respectively, as follows:  

 ( ) , 0.1701, 0.378

I
P

P
C P I

KK s
K

G s K K
s

β
 

+ 
 = = = , (5) 

 ( ) ( )( )
2029.826

26.29 2.296PG s
s s

=
+ +

, (6) 

where ( )CG s  is a PI controller, PK  is the proportional gain, IK  is the integral gain, ( )PG s  is 

the plant of a DC motor in [23], β  is a parameter to adjust PK  and IK . In this case, 1.β =  As 

shown in Fig. 5 (b), obvious system performance degradations are the higher overshoot and the 

longer settling time when the delays τ τ τ / 2ca sc= =  are longer. Other kinds of performance 

degradations can be evaluated based on different performance measures. Analyses on the 

effects of delays on system performance measures can be used for developing appropriate 

networked control methodologies [6, 24]. 



 

28 

τca( )CG s
( )R s

( )PG s
( )Y s

τsc

( )U s( )E s

 

(a) 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

Time(s)

y 

τ =0.0005
τ =0.0232
τ =0.0627
τ =0.3150

 

(b) 

Fig. 5. System performance degradations caused by delays in-the-loop: (a) Closed-loop 
control system example. (b) Step response with respect to various τ , where τ τ τ / 2ca sc= =  

are constant, and 1.β =  

� Destabilization 

Delays in-the-loop including network delays in an NCS can destabilize the system by 

reducing the system stability margin. Again, the system in Fig. 5 (a) is used to illustrate how 

the delays can reduce the stability region. Fig. 6 shows the branches of the root locus of the 

system in Fig. 5 (a) with respect to the parameter β . In this case, increasing β  is equivalent to 

increasing PK  and IK  while maintaining the same ratio between both controller gains. Only 



 

29 

primary branches are shown because they are sufficient to approximate the stability region 

[25]. 

-8 -6 -4 -2 0 2 4
-15

-10

-5

0

5

10

Real

Im
ag

in
ar

y

β>1.16 

β<1.16 β>0.677

β>0.313 

β>0.313

β<0.677 

β<0.313

β<0.313 
β<0.677

β=1.16 

β>1.16 

β<1.16 
β=1.16 

β>0.677

β=0.677

β=0.677

β=0.313

τ=0.1
τ=0.2
τ=0.5

β=0.313 

 

Fig. 6. Primary branches of the root locus of the system in Fig. 5 (a) with respect to β , 
where τ τ τ / 2ca sc= =  are constant. 

As shown in Fig. 6, when the delay τ  is longer, the primary branches of the root locus 

bend toward the right of the imaginary axis, and β , at the point at which the branches cross 

the imaginary axis, is smaller. This result indicates the narrower stability region since the PI 

controller has the smaller range of feasible values to use for a stable closed-loop control. 

There have been several studies to derive stability criteria for an NCS in order to guarantee 

that the NCS can remain stable in a certain condition. However, there is no generic stability 

analysis that can be applied on every NCS. Most of stability analysis techniques are subject to 

network configurations, network protocols, assumptions, and control techniques used.  

Simple stability analysis for a discrete-time delayed system in [26] can be applied to a 

constant delay NCS. A periodic delay NCS requires more sophisticated analysis based on 



 

30 

various system formulations. For example, an NCS on a periodic delay network in [17] is 

stable if all eigenvalues of a specific formulation are contained in a unit circle. Another 

formulation in [27] uses a general frequency domain analysis for checking stability, but the 

stability criterion is limited to a single-dimensional system. 

Stability analysis for an NCS with random network delays is more challenging, since more 

advanced algorithms are usually required. Varieties of techniques have been used for different 

NCS formulations. For example, in [22] and [21], stabilities of NCS were analyzed based on 

stochastic stability analysis, but with different formulations. Nonlinear control and perturbation 

theories were applied for NCS stability analysis in [5] using Bellman-Gronwall Lemma. A 

hybrid system technique is used to analyze the stability of an NCS in [28]. 

III. Recent Networked Control Methodologies 

Due to network delay concerns, the methodologies to control an NCS have to maintain the 

stability of the system in addition to controlling and maintaining the system performance as 

much as possible. Various methodologies have been formulated based on several types of 

network behaviors and configurations in conjunction with different ways to treat the delay 

problems. Some assumptions may be required. For example: 

� Network transmissions are error-free. 

� Every frame or packet always has the same constant length. 

� The difference between the sampling times of the controller and of the sensor, called 

time skew k∆ , is constant. 

� The computational delay τc  is constant and is much smaller than the sampling period 

T. 

� The network traffic cannot be overloaded. 

� Every dimension of the output measurement or the control signal can be packed into 

one single frame or packet. 



 

31 

 Some methodologies are denoted by some specific terminologies defined by the authors of 

this paper in order to unify and distinguish them. 

A. Augmented deterministic discrete-time model methodology 

 Halevi and Ray [17] proposed a methodology named here as the augmented deterministic 

discrete-time model methodology to control a linear plant over a periodic delay network. The 

structure of the augmented discrete-time model is straightforward and easy. In addition, this 

methodology can be modified to support non-identical sampling periods of a sensor and a 

controller as mentioned in [29]. The linear plant used in this methodology has the following 

form: 

 ( )1k +x ( ) ( )k k= +Φx Γu , (7) 

 ( )ky ( )k= Cx , (8) 

where ( )exp T=Φ A , ( )
0

exp ζ ζ
T

d= ∫Γ A B , and { }A,B,C  is the realization of the system. 

With requiring a set point to be zero, the dynamics of the linear controller used in this 

methodology can be described by: 

 ( )1k +ξ ( ) ( )k k= −Fξ Gz , (9) 

 ( )ku ( ) ( )k k= −Hξ Jz , (10) 

where ξ  is the controller state vector, ( ) ( ) ,k k i= −z y  { }1,...,i j=  is the past measurement at 

the instant when ( )ku  is processed by the controller, and F, G, H, and J are constant matrices 

describing the dynamics of the controller. The control u in (10) is the output of this controller. 

The main idea to handle network delays in this methodology is to combine and rearrange 

(7)-(10) into an augmented state-space equation as follows: 

 ( ) ( ) ( )1 1k k k+ = +X Ω X , (11) 

where ( ) ( ) ( ) ( ) ( ) ( ) ( ), 1 , , , , 1 ,
TT T T T T Tk k k k j k k k l = − − − − X x y y ξ u u… is the augmented 

state vector, and ( )1k +Ω  is the augmented state transition matrix computed from Φ , Γ , C, 

F, G, H, and J.  



 

32 

For periodic delays, there exists a positive integer M such that τ τsc sc
k M k+ = . Using this 

property, the authors of [17] proved that the system in (11) is asymptotically stable if all 

eigenvalues of ( )
1

M
M
k

j

k M j
=

Ξ = + −∏Ω  are contained within the unit circle. Ray and Halevi 

also suggested an approach to improve the networked control methodology by appropriately 

selecting k∆  [30]. 

B.  Queuing methodology 

Queuing mechanisms can be used to reshape random network delays on an NCS to 

deterministic delays such that the NCS becomes time-invariant. The methodologies to control 

an NCS that is based on queuing mechanisms are defined here as the queuing methodologies. 

These methodologies have been developed by utilizing some deterministic or probabilistic 

information of an NCS for the control algorithm formulation.  

An early queuing methodology was developed by Luck and Ray [31, 32] denoted here as 

the deterministic predictor-based delay compensation methodology. This methodology uses an 

observer to estimate the plant states and a predictor to compute the predictive control based on 

past output measurements. The control and past output measurements are stored in a FIFO 

(First-In-First-Out) queue and a shift register defined as Q1 and Q2, where the sizes of Q1 and 

Q2 are µ  and θ , respectively, as depicted in Fig. 7. 

Network

Controller
Q2

PlantSensor
Q1

Actuator
( )ku

( )Z k
Observer Predictor

( )ky

µ

θ

( )ˆ θ 1k − +x ( )ˆ µk +x ( )µk +u

 

Fig. 7. Configuration of NCS in the deterministic predictor-based delay compensation 
methodology. 



 

33 

The steps for applying the delay compensation methodology are listed as follows. 

� Using the set of past measurements ( ) ( ) ( ){ }, 1 ,Z k y k y kφ φ= − − − …  in Q2, where φ  

is the number of packets in Q2, the observer estimates the plant state ( )ˆ θ 1k − +x . 

� The predictor uses ( )ˆ θ 1k − +x  to predict the future state ( )ˆ µk +x . 

� The controller computes the predictive control ( )µk +u  from ( )ˆ µk +x , and then sends 

( )µk +u  to be stored in Q1. 

Since the performances of the observer and the predictor highly depend on the model 

accuracy, the dynamic model of the plant has to be very precise. 

Chan and Özgüner [33] developed another queuing methodology for controlling an NCS 

on random delay networks. This methodology, named here as the probabilistic predictor-based 

delay compensation methodology, utilizes probabilistic information along with the number of 

packets in a queue to improve state prediction. Nevertheless, this queuing methodology itself is 

not really a control algorithm, but is more likely a scheme to predict state variables. The 

configuration of the NCS in probabilistic predictor-based delay compensation methodology is 

illustrated in Fig. 8. 

Network

Controller
Q2

PlantSensor
Q1

Actuator

( )kω
Predictor

( )ky

µ

( )ˆ kx ( )ku

1

 

Fig. 8. Configuration of NCS in the probabilistic predictor-based delay compensation 
methodology. 



 

34 

As shown in Fig. 8, the queue Q1 at the sensor has a capacity of µ , while the shift register 

Q2 can store only one packet. The output ( )ky  is stored in Q1 waiting to be sent to Q2 when the 

network is available for a transmission. To describe the compensation methodology, let the 

number of packets stored in Q1 and the output from Q2 be defined as i and ( )kω , respectively. 

At the sampling time k, if the sensor cannot send ( )ky  before Q2 is read, ( )kω  is set to the 

previous value ( )1 .k −ω  Otherwise, ( )kω  can be identical to any value in 

( ) ( ) ( ){ }, 1 , , µk k k− −y y y… . However, the possible choices of ( )kω  can be reduced to 

either ( )k i−y  or ( )1k i− +y , if 1, ,µ,i = …  defined as the delay index, is known. This 

condition requires that the value of i has to be attached to every packet of ( )ky . The predictor 

then estimates the current state ( )ˆ kx  by: 

 ( ) ( )( ) ( )( )1
0 1 1ˆ ω ωi i

i ik k k−
+= + + +x P Φ W P Φ W , (12) 

 
( ) ( ) ( )2

0,                                                                                                         , 1,

1 2 1 , 1,
Ti i T T T

i

k k k i i−

== 
   ⋅ − − − + ≠   

W
Γ ΦΓ Φ Γ u u u… …

  (13) 

where 0P  and 1P  are weighting matrices. The weighting matrices are computed from the 

probabilities of the occurrences of ( )k i−y  and ( )1k i− +y . These equations require full state 

information (i.e., ( ) ( )k k=y x ). If the full state information is not available, an observer can 

also be applied with minor modification. With the predictive states, a control law from various 

control algorithms can be applied in this methodology. 

C.  Optimal stochastic control methodology 

Nilsson [22] proposed the optimal stochastic control methodology to control an NCS on 

random delay networks. The optimal stochastic control methodology treats the effects of 

random network delays in an NCS as an LQG (Linear-Quadratic-Gaussian) problem. Other 

than the assumptions mentioned earlier, this methodology assumes that τ T< . 

The dynamics of a remote system plant in this methodology is described by: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )0 11 1k kk k k k k+ = + + − +x Φx Γ τ u Γ τ u v , (14) 



 

35 

 ( ) ( ) ( )k k k= +y Cx w , (15) 

where τ , τ
Tsc ca

k k k =  τ  indicates network delays at the sampling time k, ( )exp T=Φ A , 

( )0 k =Γ τ  ( )
τ τ

0
exp ζ ζ

sc ca
k kT

d
− −

∫ A B , and ( )1 k =Γ τ ( )
τ τ

exp ζ ζ
sc ca
k k

T

T
d

− −∫ A B . The stochastic processes 

( )kv  and ( )kw  are uncorrelated Gaussian white noises with zero means. These equations are 

modified from the constant delay system in [26]. 

The goal of the optimal stochastic control methodology is to minimize the following cost 

function in the case that full state information is available. 

 ( ) ( ) ( ) ( )
( )

( )
( )

1

0

T
N

T
N

k

k k
J k E N N E

k k

−

=

   
 = +     

   
∑

x x
x Q x Q

u u
, (16) 

where [ ]E ⋅  is the expected value, and NQ  and Q  are weighting matrices. The control law for 

the optimal state feedback is derived by using dynamic programming and is described as: 

 ( ) ( ) ( )
( )

,
1k

k
k k

k
 

= −  − 

x
u L τ

u
, (17) 

where L is the optimal gain matrix after solving the formulated LQG problem. The network 

delay kτ  is assumed to be independent. The past information of the delay is also required. If 

the full state information is not available, an optimal estimator such as the Kalman filter can be 

applied for (17). Nevertheless, this case requires the past information of output and input 

( ) ( ) ( ){ 0 , , , 0 ,ky y u…  ( )}, 1k −u…  in conjunction with the past information of the delay. 

Another control law to use with the delays modeled by a Markov Chain is also derived in the 

same study. Based on (16), the optimal stochastic control methodology has shown to give 

better performance than the deterministic predictor-based delay compensation methodology. 

D. Perturbation methodology 

Walsh, Beldiman, Ye, and Bushnell [5, 34] used non-linear and perturbation theory to 

formulate network delay effects in an NCS as the vanishing perturbation of a continuous-time 

system under the assumption that there is no observation noise. This methodology, denoted 

here as the perturbation methodology, can be applied on an NCS on periodic delay networks 



 

36 

and random delay networks at the sensor-to-controller transmission. However, these networks 

are restricted to be priority-based networks, which can assign different priorities to data 

transmissions. These priorities can be managed by priority scheduling algorithms proposed in 

[35]. In addition, this methodology requires a very small sampling time so that an NCS can be 

approximated as a continuous-time system. A control loop in the perturbation methodology 

consists of a nonlinear controller and a nonlinear plant, but the analysis and derivations used 

can be similarly applied to linear systems, as described in [5]. Fig. 9 shows the block diagram 

of the NCS in this methodology. 

Network

Controller

PlantSensor Actuator
( )ky ( )ku

( )ˆ ky

 

Fig.9. Configuration of NCS in the perturbation methodology. 

The dynamics of the NCS in the perturbation methodology is represented by: 

 ( ) ( ) ( )( ), ,t t t t=x f x e� , (18) 

where ( ) ( ) ( ),
TT T

p ct t t =  x x x  is the augmented state vector containing the plant state vector 

( )p tx  and the controller state vector ( )c tx . The error of the NCS is described by:  

 ( ) ( ) ( )ˆt t t= −e y y , (19) 

where ( )ty  is the plant output, and ( ) ( )ˆ τsct t −y y�  is the most updated output which the 

controller receives. Also, ( )te  is assumed to have certain dynamics as follows. 

 ( ) ( ) ( )( ), ,t t t t=e g x e� . (20) 



 

37 

The dynamics equation in (20) is treated as the vanishing perturbation to derive a delay 

bound ρ  such that the NCS remains stable if τ ρsc < .  

E. Sampling time scheduling methodology 

Hong [27] developed the sampling time scheduling methodology to appropriately select a 

sampling period for an NCS such that network delays do not significantly affect the control 

system performance, and the NCS remains stable. This methodology is originally used for 

multiple NCS on a periodic delay network, in which all connections of every NCS on the 

network are known in advance. However, it was also modified to apply on random delay 

networks such as CAN in [36]. This methodology requires τ T< , and is applicable to only a 

single-dimensional NCS.  

To briefly describe the sampling time scheduling methodology, let the number of NCS on 

the network be M. The sampling times of all M NCS on the network are calculated from the 

sampling time of the most sensitive NCS based on the general frequency domain analysis on its 

worst-case delay bound. The most sensitive NCS, denoted as NCS1, has the shortest delay 

bound defined as 1ϕ . The sampling time scheduling algorithm is formulated from the window 

concept illustrated in Fig. 10, where L and σ  are the transmission periods of a pure data 

message and its overhead, respectively; 1T  is the sampling time of NCS1, and r is the number of 

data messages that can be served by the network during the worst-case network traffic. 

Message 1 Message 2 Message  r

1T
L σ

 

Fig. 10. Windows of data transmissions in the sampling period 1T  of the sampling time 
scheduling methodology. 



 

38 

The sampling time 1T  is computed from: 

 1
1 3

LT ϕ +
= . (21) 

In order to find the sampling times of other NCS on the same network, these systems have 

to be indexed from the worst-case delay bounds of the systems in an ascending order as NCS2, 

…, NCSM. For example, the system NCS2 has the worst-case delay bound longer than the 

worst-case delay bound of NCS1, but is shorter than then the worst-case delay bound of NCS3. 

The sampling times of NCS2, …, NCSM are determined from 1T  using different rules with 

respect to network conditions. In a generic case, all other sampling times are multiples of 1T  as 

expressed by: 

 1,  2,3, , ,i iT k T i M= = …  (22) 

 ( )1

12
i

i

T L
k

T
ϕ − − 

= Λ  
 

, (23) 

where iT  is the sampling time of NCSi, and ( )a b= Λ  indicates that { }2 , 0,1, 2, ,i
ia ν ν= ∈ …  

which is the “closest” to, but does not exceed b.  

In a special case, in which the number of NCS and other resources connected on the same 

network is less than r, the sampling times of NCS2, …, NCSM are determined by: 

 ( )1 ,  2,3, , .
2

i
i

T L
T i M

ϕ − −
= = …  (24) 

In addition, the optimality of the network utilization can be achieved by this methodology, 

which is an advantage among other methodologies. The condition for the optimality is: 

 1

1

2
M

i i

T r
T=

=∑ . (25) 

Kim, Kwon, and Park [4, 7] enhanced the concept of sampling time scheduling to develop 

another algorithm for the multi-dimensional NCS in. In this work, the delay bound of each 

system is obtained from different stability criteria. The dynamics of such a multi-dimensional 

NCS is briefly expressed as follows: 

 ( ) ( ) ( ) ( ) ( )1 2 3τ τ τ  τ τsc sc c ca ct t t t t= + − + − − + − −x Ax A x A x A x� , (26) 



 

39 

where ( ) ( ) ( ),
TT T

p ct t t =  x x x , ( )p tx  is the plant state vector, ( )c tx  is the controller state 

vector. The matrices A, 1,A 2 ,A  and 3A  are calculated from the realizations of the plant and 

the controller. Two existing asymptotically stability criteria based on Lyapunov function can be 

used to find the delay bound in this generalized methodology. 

F. Robust control methodology 

Göktas [37] designed a networked controller in the frequency domain using robust control 

theory. This methodology is denoted here as the robust control methodology. A major 

advantage of this methodology is that it does not require a priori information about the 

probability distributions of network delays. In the robust control methodology, the network 

delays τca  and τsc  are modeled as simultaneous multiplicative perturbation. Both delays τsc  

and τca  are also assumed to be bounded and able to be approximated by the fluid-flow model 

[19]. The network delay formulation is described as follows: 

 τn  ( ) ( )max min max min
1 1τ τ τ τ ,  1 1,
2 2

δ δ= + + − − ≤ ≤  

  ( ) max max1 τ τ ,  0 1/ 2,α α δ α= − + ≤ ≤  (27) 

where τn  can be τsc  and τca , maxτ  is the upper bound of τn , minτ  is the lower bound of τn , α  

and δ  are real numbers to be determined based on an application. The first term in (27) 

represents a constant delay, whereas the second term represents the uncertain delay varying 

from the first term. The delay in (27) is converted for use in the frequency domain, and 

approximated by the first-order Padé approximation as:  

 ( ) ( )
( )

max max1 τ maxττ max

max max

1 1 τ / 2 1 τ / 21 τ / 2
1 τ / 2 1 1 τ / 2 1 τ / 2

n
n

s ss
n

s sse e e
s s s

α α δ α α δ
α α δ

− − −−  − −  −−
= ≈ ≈    + + − +  

. (28) 

The uncertain delay part is then treated as the simultaneous multiplicative perturbation 

expressed as follows: 

 ( )max

max

1 τ / 2 1
1 τ / 2 m

s W s
s
α δ
α δ

 −
= + ∆ + 

. (29) 



 

40 

where ∆  is the perturbation function, and ( ) max

max

τ
1 τ / 3.465m

sW s
s

α
α

=
+

 is a multiplicative 

uncertainty weight which covers the uncertain delay. The factor 3.465 is selected based on a 

designer’s preference. This formulation is then put in H∞  framework, and µ -synthesis is used 

to design a continuous time controller ( )CG s  for a plant ( )PG s . The control loop in the robust 

control methodology using this formulation is depicted in Fig. 11, where ( )R s , ( )U s , ( )Y s , 

and ( ) ( ) ( )E s R s Y s= −  are the reference, control, output, and error signals in the frequency 

domain, respectively. 

τcase−

τscse−

( )CG s
( )R s

( )PG s
( )Y s

( )
( )

max

max

1 1 τ / 2
1 1 τ / 2

s
s

α
α

 − −
  + − 

∆

( )maxτmW α

 

Fig. 11. Configuration of NCS in the robust control methodology. 

The controller is discretized using the bi-linear transformation on an actual network. The 

author also suggested an approach to apply the robust control methodology with network 

Quality-of-Service on an ATM network in order to achieve the maximum tolerable error on a 

mobile robot application. 



 

41 

G.  Fuzzy logic modulation methodology 

Almutairi, Chow, and Tipsuwan [38] proposed the fuzzy logic modulation methodology for 

an NCS with a linear plant and a modulated PI controller to compensate the network delay 

effects based on fuzzy logic [39]. In this methodology, the PI controller gains are externally 

updated at the controller output with respect to the system output error caused by network 

delays. Thus, the PI controller needs not to be redesigned, modified, or interrupted for use on a 

network environment. A DC motor speed control problem is used to illustrate the proposed 

methodology. The system configuration of the fuzzy logic modulator methodology is depicted 

in Fig. 12, where ( )r t , ( )e t , ( )y t , are the reference, error, and output of the system. The 

output of the PI controller is defined as ( )PIu t , and the modified PI controller output by the 

fuzzy logic modulation methodology is defined as ( )Cu t . 

PI
controller

DC
motor

)(tr )(te ( )PIu t ( )y t

+
−

( τ )ca
Cu t −

( τ )scy t −

×

Fuzzy
modulator

β

( )Cu t

Network

 

Fig. 12. Configuration of NCS in the fuzzy logic modulation methodology. 

The fuzzy logic modulation methodology can be implemented in a unit called the fuzzy 

logic modulator, which modifies the control ( )PIu t  by: 

 ( ) ( )
0

( ) ( )
t

C PI P I
t

u t u t K e t K e dβ β β ξ ξ= = + ∫ . (30) 

The multiplicative factor β  is used to externally adjust the controller gains at the output 

without interrupting the original PI controller. The value of β  is selected from two fuzzy rules 

based on the network delay effects as follows: 

If ( )e t  is SMALL, then 1β β= , 



 

42 

If ( )e t  is LARGE, then 2β β= , 

where 1 20 1β β< < < . The membership functions of ( )e t  are depicted in Fig. 13, where 

SMALLµ  and LARGEµ  are the membership functions representing the degrees of memberships for 

the linguistic variable SMALL and LARGE, respectively; 1α  and 2α  are factors to adjust the 

shapes of the membership functions. 

1α 2α0

( )LARGE eµ( )SMALL eµ

( )eµ

e

1

 

Fig. 13. Membership functions of ( )e t . 

The shapes of the membership functions and the values of 1β  and 2β  are fine tuned by on-

line and off-line optimization using the steepest descent algorithm based on cost functions. The 

cost functions for the on-line optimization are: 

 ( ) ( )2J k e k= , (31) 

 ( ) ( )2
k

i k m
J k e i

= −

= ∑ , (32) 

where the costs (31) and (32) indicate the instantaneous error, and the summing error evaluated 

from a moving window with the size of m. On the other hand, the off-line optimization uses the 

different cost function as follows: 

 1 2(1 )λ λ= + −J J J , (33) 

where ( ) ( )

2

0
1

1

( )
,

N

k
e k

=

∞

=
∑

J p
J p

 (34) 



 

43 

 ( ) ( )

2

1
2

2

( )
,

M

b
i

e i
=

∞

∆
=

∑
J p

J p
 (35) 

and { } { }( ) ( ) | ( ) ( ) 0be i e k e k e k∆ = ∆ ∆ > . The cost 1J  places the penalty on the system response 

time and poor convergence; the cost 2J  gives the extra penalty on the system overshoot, 

undershoot, and oscillatory behaviors, and λ  is a weighting factor. The parameter vector p 

represents the membership function parameters and 1β  and 2β . 

H. Event-based methodology 

Tarn and Xi [13] introduced the event-based methodology for networked control of a 

robotic manipulator over the Internet. This methodology was originally developed for the 

hierarchical structure, but could be applied for the direct structure as well. The concept of the 

event-based methodology is quite different from all the previously mentioned methodologies. 

Instead of using time, this methodology uses a system motion as the reference of the system. 

The motion reference defined as s can be, for example, the distance traveled by an end-effector 

of a robotic manipulator. The motion reference s has to be a non-decreasing function of time in 

order to guarantee the system stability. The configuration of NCS in the event-based 

methodology is depicted in Fig. 14. 

Controller Plant+
-

Planner

Motion
reference
mapping

s

( )ty( )sr
Actuator Sensor

( )se
N
e
t
w
o
r
k

 

Fig. 14. Configuration of NCS in the event-based methodology. 

 The output measurement ( )y t  sent across a network is used as an input for a motion 

reference mapping. The mapping converts ( )y t  to the motion reference s, which is then used 



 

44 

as the input for the planner to compute the reference ( )sr . Thus, ( )sr  becomes a function of 

( )y t , and is updated in real-time to compensate all disturbances and unexpected events 

including network delays. Because the overall system is not based on time, network delays will 

not destabilize the system. 

I. End-user control adaptation methodology 

Tipsuwan and Chow [6] proposed the end-user control adaptation methodology. The main 

concept of end-user control adaptation is to adapt controller parameters (e.g., controller gains) 

with respect to the current network traffic condition or the current given network QoS (Quality-

of-Service). In this methodology, the controller and the remote system are assumed to be able 

to measure network traffic conditions. The traffic condition measurement in this case could be 

measured through middleware [40]. The end-user control adaptation methodology is originally 

designed to cooperate with real-time QoS negotiation scheme [41], in which the controller can 

request and update network QoS requirements from the network. If the desired QoS 

requirements cannot be granted, the controller will adapt the parameters to aim for the best 

possible performance. The parameters are optimal with respect to the current traffic condition. 

An application used to demonstrate the end-user control adaptation methodology is a DC 

motor speed control system controlled over a network link with random network delays. The 

DC motor speed is controlled by a PI controller, and the parameters to be adapted are the 

proportional gain PK  and the integral gain IK . The system performance is measured by using 

the mean-squared error as follows: 

 
1

1 ( ) ( )
N

k
J r k y k

N =

= −∑ . (36) 

The network QoS measure used in this case is defined as [ ]( )
1 2

TnQoS QoS QoS= , where 

n is the index to indicate a QoS condition, and:  

� QoS1: point-to-point network throughput. 

� QoS2: point-to-point maximal delay bound of the largest packet. 



 

45 

The optimal controller parameters with respect to controller gains under different ( )nQoS  

are pre-computed by simulations and stored in a look-up table. The controller gains will be 

updated when the network traffic condition changes. An example of the cost surface of (36) 

with respect to PI controller gains is shown in Fig. 15. 

 

Fig.15. Cost surface with respect to controller gains under different QoS conditions. 

The authors illustrated the performance of the end-user control adaptation methodology by 

letting the network condition changes from [ ](1) 38400 bps,5 msQoS =  to 

[ ](2) 19200 bps,8 msQoS =  when the reference changes from 200 rad/s to 300 rad/s at 3.5t =  

sec. The step response of the actual DC motor speed control system is shown in Fig. 16. 

QoS(1)=[4800 bps, 24 ms] QoS(2)=[9600 bps, 12 ms] 

QoS(3)=[19200 bps, 6 ms] 

QoS(4)=[38600 bps, 3 ms] 



 

46 

0 2 4 6 8
0

50

100

150

200

250

300

350

Time(s)

Motor Speed (rad/s)

Without adaptation
With adaptation   

 

Fig.16. Step responses of an actual networked DC motor speed control system in the end-user 
control adaptation methodology; ×: without adaptation, +: with adaptation. 

As shown in Fig. 16, the networked DC motor speed control system with control gain 

adaptation has superior performance than without gain adaptation as indicated by the lower 

overshoot. The end-user control gain adaptation methodology can also be applied for the 

hierarchical structure as shown in [12]. 

IV. Conclusion 

This survey paper has introduced the fundamental and recent control methodologies for 

NCS. An NCS can be designed in the direct structure and/or the hierarchical structure 

depending on the application requirements and the designer’s preferences. Regardless of the 

structure used, the system performance of NCS will degrade due to the existences of network 

delays in the control loop. In the worst case, the network delays can destabilize the NCS by 

reducing the system stability region. Random network delays in-the-loop are more difficult to 

QoS(1)



 

47 

handle than constant or periodic delays because there is no existing criterion to generally 

guarantee the stability of an NCS. Stability criteria for NCS are usually subject to specific 

methodologies and network protocols. Therefore, to design an NCS with a certain networked 

control methodology, a designer has to clearly understand an application whether it is feasible, 

acceptable, and reliable enough to be controlled by the methodology under a selected network 

protocol. There are also additional factors of concern including the price for the network 

protocol, and the size and distance of the application. The control methodologies described in 

this paper cover a large variety of systems and protocols. For example: 

� If a plant in NCS is linear, every methodology can be applied. However, if a plan is 

nonlinear, only the perturbation methodology, robust control methodology, and event-

based control methodology can be used at this stage. 

� The queuing methodology should not be used on a cyclic service network since the 

methodology will result in longer delays unnecessarily. 

� If the network delays are unbounded, and the final time of the system is not critical, the 

event-based methodology is preferred because the system can remain stable. 

� The end-user adaptation methodology is preferred when the network QoS can be 

provided or monitored. 

Even though the methodologies described in this paper are mostly applied on wired local 

area networks, the networked control applications and research can be extended on progressing 

network technologies including wireless networks, ad hoc networks, and Internet technologies. 

Furthermore, certain issues in NCS can be investigated such as the effect of packet loss on 

NCS, QoS requirements of NCS, stability analysis on various wired and wireless protocols in 

order to advance and strengthen networked control applications. With the rapid spreading of 

network applications to every place including homes, offices, and manufacturing plants, the 

research and reward in NCS could be substantial in the near future. 



 

48 

Acknowledgement 

 The authors would like to thank the Royal Thai Government for partially supporting this 

study. 

References 
[1] W. Stallings, Data & Computer Communication, 6 ed. Upper Saddle River, NJ: 

Prentice Hall, 2000. 

[2] D. Minoli and A. Schmidt, Internet Architectures: John Wiley & Sons, 1999. 

[3] G. Kaplan, "Ethernet's winning ways," IEEE Spectrum, vol. 38, no. 1, pp. 113-115, 
2001. 

[4] Y. H. Kim, H. S. Park, and W. H. Kwon, "Stability and a scheduling method for 
network-based control systems," in IEEE IECON 96, Taipei, Taiwan, 1996, pp. 934-
939. 

[5] G. C. Walsh, H. Ye, and L. Bushnell, "Stability analysis of networked control systems," 
in American Control Conference, San Diego, CA, 1999, pp. 2876-2880. 

[6] Y. Tipsuwan and M.-Y. Chow, "Network-based controller adaptation based on QoS 
negotiation and deterioration," in IEEE IECON 2001, Denver, CO, 2001, pp. 1794-
1799. 

[7] Y. H. Kim, H. S. Park, and W. H. Kwon, "A scheduling method for network-based 
control systems," in American Control Conference, Philadelphia, Pensilvania, USA, 
1998, pp. 718-722. 

[8] N. Boustany, M. Folkerts, K. Rao, A. Ray, L. Troxel, and Z. Zhang, "A simulation 
based methodology for analyzing network-based intelligent vehicle control systems," in  
Intelligent Vehicles Symposium, Detroit, MI, 1992, pp. 138-143. 

[9] Ü. Özgüner, H. Göktas, H. Chan, J. Winkelman, M. Liubakka, and R. Krotolica, 
"Automotive suspension control through a computer communication network," in IEEE  
Control Applications, Dayton, OH, 1992, pp. 895-900. 

[10] A. Ray, "Performance Evaluation of Medium Access Control Protocols for Distributed 
Digital Avionics," Journal of Dynamic systems, Measurement, and Control, vol. 109, 
pp. 370-377, 1987. 



 

49 

[11] M. Wargui, M. Tadjine, and A. Rachid, "Stability of real time control of an 
autonomous mobile robot," in IEEE International Workshop on Robot and Human 
Communication, Tsukuba, Japan, 1996, pp. 311-316. 

[12] Y. Tipsuwan and M.-Y. Chow, "Gain adaptation of networked mobile robot to 
compensate QoS deterioration," in IEEE IECON 2002, Sevilla, Spain, 2002, pp. 3146-
3151. 

[13] T.-J. Tarn and N. Xi, "Planning and control of internet-based teleoperation," in 
Proceedings of SPIE: Telemanipulator and Telepresence Technologies V, Boston, MA, 
1998, pp. 189-193. 

[14] G. V. Kondraske, R. A. Volz, D. H. Johnson, D. Tesar, J. C. Trinkle, and C. R. Price, 
"Network-based infrastructure for distributed remote operations and robotics research," 
IEEE Transactions on Robotics and Automation, vol. 9, no. 5, pp. 702-704, 1993. 

[15] J. W. Overstreet and A. Tzes, "An Internet-based real-time control engineering 
laboratory," IEEE Control Systems Magazine, vol. 19, no. 5, pp. 19-34, 1999. 

[16] F.-L. Lian, J. R. Moyne, and D. M. Tilbury, "Performance evaluation of control 
networks: Ethernet, ControlNet, and DeviceNet," IEEE Control Systems Magazine, vol. 
21, no. 1, pp. 66-83, 2001. 

[17] Y. Halevi and A. Ray, "Integrated communication and control systems : Part I - 
Analysis," Journal of Dynamic Systems, Measurement, and Control, vol. 110, pp. 367-
373, 1988. 

[18] S. Shakkottai, A. Kumar, A. Karnik, and A. Anvekar, "TCP performance over end-to-
end rate control and stochastic available capacity," IEEE/ACM Transactions on 
Networking, vol. 9, no. 4, pp. 377-391, 2001. 

[19] J. Filipiak, Modelling and Control of Dynamic Flows in Communication Networks. 
Berlin, Germany: Springer-Verlag, 1988. 

[20] Q. Li and D. L. Mills, "Jitter-based delay-boundary prediction of wide-area networks," 
IEEE/ACM Transactions on Networking, vol. 9, no. 5, pp. 578-590, 2001. 

[21] R. Krtolica, Ü. Özgüner, H. Chan, H. Göktas, J. Winkelman, and M. Liubakka, 
"Stability of linear feedback systems with random communication delays," 
International Journal of Control, vol. 59, no. 4, pp. 925-953, 1994. 

[22] J. Nilsson, “Real-time control systems with delays,” Ph.D. dissertation, Lund Institute 
of Technology, Lund, Sweden, 1998. 

[23] Y. Tipsuwan and M.-Y. Chow, "Fuzzy logic microcontroller implementation for DC 
motor speed control," in IEEE IECON 99, San Jose, CA, 1999, pp. 1271-1276. 



 

50 

[24] J. K. Yook, D. M. Tilbury, and N. R. Soparkar, "A design methodology for distributed 
control systems to optimize performance in the presence of time delays," in American 
Control Conference, Chicago, IL, 2000, pp. 1959-1964. 

[25] B. C. Kuo, Automatic Control Systems, 5 ed. Englewood Cliffs, NJ: Prentice-Hall, 
1987. 

[26] K. J. Åström and B. Wittenmark, Computer-controlled systems: Theory and Design, 2 
ed. Englewood Cliffs, NJ: Prentice-Hall, 1990. 

[27] S. H. Hong, "Scheduling algorithm of data sampling times in the integrated 
communication and control systems," IEEE Transactions on Control Systems 
Technology, vol. 3, no. 2, pp. 225-230, 1995. 

[28] W. Zhang, M. S. Branicky, and S. M. Phillips, "Stability of networked control 
systems," IEEE Control Systems Magazine, vol. 21, no. 1, pp. 84-99, 2001. 

[29] L.-W. Liou and A. Ray, "Integrated communication and control systems: Part III - 
Nonidentical sensor an controller sampling," Journal of Dynamic Systems, 
Measurement, and Control, vol. 112, pp. 357-364, 1990. 

[30] A. Ray and Y. Halevi, "Intergrated communication and control systems: Part II - 
Design considerations," Journal of Dynamic Systems, Measurement, and Control, vol. 
110, pp. 374-381, 1988. 

[31] R. Luck and A. Ray, "An observer-based compensator for distributed delays," 
Automatica, vol. 26, no. 5, pp. 903-908, 1990. 

[32] R. Luck and A. Ray, "Experimental Verification of a delay compensation algorithm for 
integrated communication and control systems," International Journal of Control, vol. 
59, no. 6, pp. 1357-1372, 1994. 

[33] H. Chan and Ü. Özgüner, "Closed-loop control of systems over a communication 
network with queues," International Journal of Control, vol. 62, no. 3, pp. 493-510, 
1995. 

[34] G. C. Walsh, O. Beldiman, and L. Bushnell, "Asymptotic behavior of networked 
control systems," IEEE Control Applications, Kohala Coast-Island, Hawaii, 1999, pp. 
1448-1453. 

[35] G. C. Walsh, O. Beldiman, and L. Bushnell, "Error encoding algorithms for networked 
control systems," in IEEE Decision and Control, Phoenix, AZ, 1999, pp. 4933-4938. 

[36] S. H. Hong and W.-H. Kim, "Bandwidth allocation scheme in CAN protocol," IEE 
Proceeding-Control Theory and Applications, vol. 147, no. 1, pp. 37-44, 2000. 



 

51 

[37] F. Göktas, "Distributed control of systems over communication networks," Ph.D. 
dissertation, University of Pennsylvania, Philadelphia, 2000. 

[38] N. B. Almutairi, M.-Y. Chow, and Y. Tipsuwan, "Network-based controlled DC motor 
with fuzzy compensation," in IEEE IECON 2001, Denver, CO, 2001, pp. 1844-1849. 

[39] L. A. Zadeh, "Outline of a new approach to the analysis complex systems and decision 
processes," IEEE Transactions on Systems, Man, and Cybernatics, vol. SMC-3, pp. 28-
44, 1973. 

[40] B. Li and K. Nahrstedt, "A control-based middleware framework for quality-of-service 
adaptations," IEEE Journal on Selected Areas in Communications, vol. 17, no. 9, pp. 
1632-1650, 1999. 

[41] T. F. Abdelzaher, E. M. Atkins, and K. G. Shin, "QoS negotiation in real-time systems 
and its application to automated flight control," IEEE Transactions on Computers, vol. 
49, no. 11, pp. 1170-1183, 2000. 

 



 

52 

C H A P T E R  I I I  

GAIN ADAPTATION OF NETWORKED DC MOTOR 

CONTROLLERS BASED ON QOS VARIATIONS 

 

 

 

 

 

 

 

 

 

 

This chapter is published in IEEE Transactions on Industrial Electronics, vol. 50, no. 5, 

Oct. 2003. 

Mo-Yuen Chow                                            Yodyium Tipsuwan 

                     chow@eos.ncsu.edu                                     ytipsuw@unity.ncsu.edu 

Advanced Diagnosis And Control Lab 

Department of Electrical and Computer Engineering 

North Carolina State University, Raleigh NC 27606, USA 

Tel: (919) 515-7360, Fax: (919) 515-5108 

 



 

53 

GAIN ADAPTATION OF NETWORKED DC MOTOR 

CONTROLLERS BASED ON QOS VARIATIONS 

Abstract—Connecting a complex control system with various sensors, actuators, and 

controllers as a networked control system by a shared data network can effectively reduce 

complicated wiring connections. This system is also easy to install and maintain. The recent 

trend is to use networked control systems for time-sensitive applications, such as remote DC 

motor actuation control. The performance of a networked control system can be improved if 

the network can guarantee QoS (Quality-of-Service). Due to time-varying network traffic 

demands and disturbances, QoS requirements provided by a network may change. In this case, 

a network has to reallocate its resources and may not be able to provide QoS requirements to a 

networked control application as needed. Therefore, the application may have to gracefully 

degrade its performance and perform the task as best as possible with the provided network 

QoS. This paper proposes a novel approach for networked DC motor control systems using 

controller gain adaptation to compensate for the changes in QoS requirements. Numerical and 

experimental simulations, and prototyping, are presented to demonstrate the feasibility of the 

proposed adaptation scheme to handle network QoS variation in a control loop. The effective 

results show the promising future of the use of gain adaptation in networked control 

applications. 

Keywords—communication networks, control systems, adaptive control, real time systems, 

distributed control, decentralized control, DC motors, stability. 

I. Introduction 

 DC motors have been widely utilized in many industrial applications and have a large 

interest in the industrial electronics community for control applications. Thus, a DC motor 



 

54 

system will be used to illustrate the gain adaptation in a networked control system through out 

this paper. In an application composed of a small number of DC motors, such as a robotic 

manipulator, a conveyor belt, or a CNC milling machine, DC motors can be connected to 

controllers, drivers and sensors by directly wiring these devices together to perform closed-

loop control without much complication. Nevertheless, direct wiring becomes more 

complicated and is not cost-effective for installation and maintenance of a large number of DC 

motors in large-scale or complex systems such as automobiles, aircrafts, and manufacturing 

plants. The wiring can be organized systematically by applying a shared data network instead 

of hardwired connections. Moreover, this network-based wiring provides much more 

modularity, remote-control capability, and ease in diagnosis for the control systems.  

 Conceptually, there are two approaches to utilize a data network [1, 2] for control of DC 

motors. In the first approach, each DC motor has its own controller. The controller and the DC 

motor are physically located close to each other. This controller receives a set point remotely 

from the main controller through the network, and then uses the given set point to perform 

closed-loop control locally as shown in Fig. 1 (a). A status or a sensor measurement of the DC 

motor is sent back to the main controller via the network. This approach provides modularity 

for each DC motor system. Each system is easy to be reconfigured. However, poor interaction 

between the main controller and each DC motor controller is a major drawback of this 

approach. 

On the other hand, as shown in Fig. 1 (b), the second approach uses a network as a medium 

to directly transfer control signals and sensor measurements between a DC motor and a 

controller. Closed-loop control of the DC motor is communicated over the network. Each DC 

motor in this case is attached to a simple interface unit (middleware). This unit converts a data 

frame from the controller to an actual control signal and the sensor measurement to a data 

frame for sending back to the controller. In fact, this interface can also be thought of as a  

 



 

55 

 

CM

S1
A1

C1

Set point

Status or sensor
measurement

Network

S3
A3

C3S3
A3

C3

S2
A2

C2

S2

A2

C2

A: Motor
C: Controller
S: Sensor
CM: Main controller

 

(a) 

S2
A2

C2

S1

A1

C1 Network
Control signal

Sensor measurement

I1

I: Interface unit
 

(b) 

Fig. 1. Control system configurations using a shared data network: (a) Hierarchical structure. 
(b) Direct structure. 

 



 

56 

simple remote controller. Systems formulated by this approach are so-called network-based or 

networked control system [3, 4], which can provide better interaction and higher flexibility for 

controlling DC motors. 

Several standard industrial networks such as CAN, Profibus, etc.[5-7], have been widely 

used for networked control systems for years. Mostly, these networks have deterministic delays 

and enough bandwidth to perform networked closed-loop control using available control 

techniques without causing significant performance degradation or instability. However, 

investment on expensive network devices of these protocols is a problematic factor in today’s 

competitive market environment.  

 Because of the affordability, simplicity, rapid development, and widespread usage, general-

purpose networks such as Ethernet have been studied and suggested as alternatives for 

networked control applications [8]. Moreover, their connectivity to the Internet using Internet 

Protocol (IP) or Asynchronous Transfer Mode (ATM), can provide great benefits for remote 

access, control, and monitoring [9, 10] in industrial electronics [11, 12] and factory automation 

[13] applications. Applying networked control on these networks require more sophisticated 

control algorithms to handle random network delay problems. Various control techniques and 

stability criteria have been proposed to solve the delay problems. For examples, Luck and Ray 

suggested using buffers to reduce the variation of network delays [14]; Chan and Özgüner also 

used buffers [15], but they included some information about the amount of data in a queue to 

improve the results; Nilsson and Wittenmark formulated the effects of network delays as an 

LQG (Linear-Quadratic-Gaussian) problem and applied optimal control to handle the delays 

[16]; Walsh, et. al. applied non-linear control and perturbation theory to treat a network delay 

as a vanishing perturbation [17]; Hong introduced sampling time scheduling methods to obtain 

a large sampling time such that a networked control system remains stable [18]. Nevertheless, 

these algorithms require many assumptions, such as no communication error, which may not 

be feasible in real-world applications.  



 

57 

 The networked control system performance does not only depend on the control algorithm 

used, but also on the network conditions. Several network conditions such as bandwidth, end-

to-end delay, and packet loss rate are major impacts on networked control systems. The overall 

control performance can be improved if QoS (Quality-of-Services) requirements of these 

conditions can be provided. QoS can be viewed as bounds and limits of an end-to-end network 

application requirement on network conditions. The concepts of QoS have led to the 

development of many protocols such as ATM, RSVP, IP V6, and MPLS, which can provide 

even better platforms for networked control applications. 

 Due to changes in network user demands to or disturbances in network environments, such 

as the loss of a link, the availability of network resources may change unexpectedly. Therefore, 

the end-to-end control devices may have to renegotiate with the network resource counterparts 

for reallocation. If the QoS requirements cannot be provided as needed, the networked system 

may need to lower its performance and use the available QoS requirements to perform a 

control task as best as it can. In many cases, when anomalies happen, the first issue is to 

stabilize the closed-loop control system (with a network in the loop in this case), then aim for 

the best control performance under the given QoS conditions. Recent works on this issue have 

been extended to real-time QoS negotiation and graceful performance degradation [19], and the 

application of control theory on middleware QoS resource management and scheduling [20, 

21]. 

 This paper proposes a novel approach for networked DC motor control by using controller 

gain adaptation to compensate for the changes in QoS requirements through a real-time QoS 

negotiation process. In this paper, the gains of a networked PI controller are the main focus. 

These gains are adapted with respect to the given QoS conditions. A numerical simulation is 

set up to investigate the network delay issues and the performance of the adaptation scheme 

under fully control environments. We then develop a hardware prototype to verify the 

adaptation scheme experimentally. The successful results obtained from both numerical and 



 

58 

experimental prototyping show the promising future of gain adaptation in networked control 

technologies for industrial applications and factory automation. 

II. Problem Formulation 

 A networked control system can be divided into three parts: (1) the remote systems and 

remote controllers, (2) the central controller, and (3) the data network. A general block diagram 

of the networked control system under investigation is shown in Fig. 2. Each component is 

described in the following sections. 

Central controller

Communication
network

( )C tu

( )C ty
DC

motor

Remote unit i

Remote
controller

Rx�

( )R tu

( )R ty

Remote unit 1Remote unit 1

Remote unit N
 

Fig. 2. An overall real-time networked control system. 

A. Remote system and remote controller 

 Each distributed remote controller can be assumed to have enough computing power to do 

relatively simple pre-programmed control – such as converting the control signal received from 

the central controller via the network into a PWM signal to drive a motor (the remote process). 

Each remote controller can send local measurements, such as motor current, speed, 

temperature, and local environment information, back to the central controller via the network. 

Each remote process has its own system dynamics that can be described by the state-space 

description [11] shown in Eq. (1), where the state vector [ ]T

1, ,R R Rnx x=x " nX∈ , the state 

space; 
T

1, , q
R R Rqp p = ∈ℜ p "  are the system parameters; the input vector 



 

59 

[ ]T
1, , r

R R Rru u U= ∈u " , the input space; t +∈ℜ  is the time parameter; and n
R ∈ℜf  is the state 

transfer function of the remote plant: 

 ( ), , , .R R R R R t=x f x p u�  (1) 

 Depending on the design of the networked control system, the remote controller, RC , 

performs a certain task, such as regulating the performance of the plant RP , as described by Eq. 

(2): 

 ( ),R R R= ⋅u g α , (2) 

where [ ]T
1, ,R R Raα α= "α  is the adjustable controller parameter vector and ( ⋅ ) represents 

other appropriate information. The combination of the remote controller and the remote plant 

can be viewed as a remote system, RS , which has its own system dynamics that can be 

described by a set of differential equations: 

 ( )( ), , , ,R R R R R R t= ⋅x f x p g� α . (3) 

 We denote the quality of service provided by the network as a function of time, as ( )QoS t , 

which can be varied. 

B.  Central controller 

 The central controller can be a highly sophisticated controller that requires lots of 

computing power and memory, and is therefore not suitable to be installed at the remote site. 

The central controller is powerful and can provide advanced real-time control laws to all 

remote units, including fault diagnosis and accommodation control, network traffic condition 

monitoring and adaptation to the QoS provided by the network. The central controller will 

provide the control signal ( )C tu  to each of the remote systems. The control signal is assumed 

to be the result of optimizing a cost function C, described as: 

 
( )

( )min ,
C

Rt
C ⋅

u
x . (4) 



 

60 

 Let z τ−  be a time delay operator, and let ( )QoS t  be the current QoS provided by the 

network. We define: 

 ( ) ( )( ),R
R Ct z QoS tτ−=u u , (5) 

 ( ) ( )( ),C
C Rt z QoS tτ−=y y , (6) 

where Rτ  is the time delay in transmitting a signal from the central site to the remote site, and 

Cτ  is the time delay in transmitting a signal from the remote site to the central site. The time 

delays z τ− and ( )QoS t  are functions of network variables such as the type and number of 

signals to be transmitted, the network traffic congestion condition, the network throughput, the 

network protocol used, the network management/policy used, and the controller processing 

time. 

III. Case Study 

 In order to focus our discussion on how the QoS conditions can affect the closed-loop 

control performance, and how the central control can adapt its control parameters to 

compensate for the QoS variation and deficiency to provide the best control performance with 

a given QoS requirement, we select a simple central controller and a simple remote system 

(end-user to end-user) connected via a shared network with different QoS levels as a case 

study. With the simple networked control system, the effects of the QoS conditions are more 

obvious for illustration than a complicated system. 

A.  Remote system description 

 This section briefly describes the dynamics of our remote process: a dc motor driving a 

load. The load can be a robot arm or an unmanned electric vehicle, for instance. The loop 

equation for the electrical circuit is [11,12]: 

 ( ) a
a a b

diu t e L Ri e
dt

= = + + . (7) 

 The mechanical torque balance based on Newton's law is: 



 

61 

 l e a
dJ B T T Ki
dt
ω ω+ + = = , (8) 

where au e=  is the armature winding input voltage; b be K ω=  is the back-EMF voltage; L is 

the armature winding inductance; ai  is the armature winding current; R is the armature winding 

resistance; J is the system moment of inertia; B is the system damping coefficient; K and bK  

are the torque constant and the back-EMF constant, respectively; lT  is the load torque; and ω  

is the rotor angular speed. 

 By letting 1 ax i=  and 2x ω= , the electro-mechanical dynamics of the dc motor can be 

described by the following state-space description: 

 1 1 2
1bKRx x x u

L L L
= − − +� , (9) 

 2 1 2
1

l
K Bx x x T
J J J

= − −� . (10) 

 The parameters of the motor used in this paper are shown in Table 1. 

Table 1. DC motor parameters. 

J  Inertia 42.6 e-6 Kg-m2 
L  Inductance 170 e-3 H 
R  Resistance  4.67 Ω  
B  Damping coefficient 47.3 e-6 N-m-sec/rad 
K  Torque Constant 14.7 e-3 N-m/A 

BK  Back-EMF Constant 14.7 e-3 V-sec/rad 
 

 To keep the illustration simple, we assume that the remote controller is used to simply 

convert the control voltage data sent from the central controller into a PWM signal to drive the 

dc motor. The remote control value Ru  can be mathematically expressed as: 

 ( ) ( )R C Ru t u t τ= − , (11) 

where Rτ  is the time delay to transmit the control signal Cu  from the central controller to the 

remote controller. The remote controller also sends the monitored signals ( )Ry t of the remote 

system back to the central controller, ( )Cy t , and these two signals are related as: 



 

62 

 ( ) ( )C R Cy t y t τ= − , (12) 

where Cτ  is the time delay to transmit the measured signal from the remote controller to the 

central controller. 

 In fact, there are also processing delays, denoted as PCτ  and PRτ , at the central and remote 

controllers, respectively. However, both PCτ  and PRτ  could be approximated as small 

constants, or even neglected because these delays are usually small compared to Cτ  and Rτ . 

B. Central control system description 

 The central controller will monitor the QoS conditions of each remote system link and 

provide appropriate control signals to each remote system. In this paper, the central controller 

uses a PI control algorithm to compute the control to the remote system for step tracking, based 

on the monitored system signals sent from the remote system via the network link. The PI 

controller used has the form [11,12]: 

 ( ) ( ) ( )
0

t

p Iu t K e t K e s ds= + ∫ , (13) 

where PK  is the proportional gain; IK  is the integral gain; ( )r t  is the reference signal for the 

system to track; ( )y t  is the system output; and ( ) ( ) ( )e t r t y t= −  is the error function. In our 

case, y ω=  is the motor speed, and ( )u t  is the input voltage to the motor system. 

C.  Network link QoS conditions 

 There are different ways to define Quality-of-Service for end-to-end (from the central 

control to a specific remote system) user conditions. Two of the most popular QoS measures, 

which are used in this paper, are defined as follows: 

� 1QoS  denotes the point-to-point (from the central controller to the remote controller) 

network throughput; it is used to indicate how fast the signal can be sampled and sent 

as a packet through the network. 



 

63 

� 2QoS  denotes the point-to-point maximal delay bound of the largest packet; it is used 

to indicate how long of a packet is expected to be delivered from the central controller 

to the remote controller. 

 One factor of interest in this paper is the sampling time h.  In this paper, we set the periodic 

sampling time h with respect to the following criterion: 

 C PC R PRh τ τ τ τ> + + + . (14) 

 This criterion is used to guarantee that packet transfers between the central and remote 

controllers can be processed in a sampling period. 1QoS  and 2QoS  are significant factors to 

determine h with knowledge of packet sizes used in order to satisfy the criterion. With given 

1QoS  and 2QoS , Cτ  and Rτ  can be estimated by computing delays such as transmission delay 

and propagation delay. If this criterion cannot be satisfied, the central controller will not have 

the measured signals to process. This situation is not discussed in this paper. 

IV. Simulation Setups 

 Both numerical and experimental simulations are set up to illustrate the effects of QoS 

variations on networked control, as explained in the following sections. 

A. Numerical simulation 

 In the numerical simulation scenario, the networked DC motor control system is simulated 

using MATLAB/ SIMULINK under fully controlled environments. The motor equations in Eq. 

(9) and Eq. (10) are used as the main model, and it is controlled by the PI controller in Eq. (13) 

with the insertions of network delays according to Eq. (11) and Eq. (12). These delays can be 

varied according to different effects of interests. The numerical system setup is illustrated in 

Fig. 3. 



 

64 

Zero-Order_Hold2

Zero-Order_Hold1

SignalDelay ed signal

Remote controller to
central controller delay

E U

PID_controller Motor speed

Input

Input signal

u y

DC motor

Signal Delay ed signal

Central controller to 
remote controller delay

 
Fig. 3. Block diagram of the networked DC motor control system in the numerical 

simulation. 

B. Experimental simulation 

 A simple peer-to-peer networked DC motor control system is set up to experimentally 

demonstrate the effects of interests. The block diagram of the networked system is shown Fig. 

4 (a), and the actual system setup is depicted in Fig. 4 (b). 

The central controller is implemented on a PC running RT-Linux, while the remote 

controller is implemented on a Siemens C-515C microcontroller board. Mainly, the remote 

controller is used for two tasks. The first task is to convert the instantaneous motor speed 

measurement to a packet and send it to the central controller. This packet is then used at the 

central controller to compute the input voltage by the PI control algorithm. The second task is 

to convert the input voltage in a packet form from the central controller to a duty cycle of a 

PWM signal, and then send it to the motor. 

The network between the central and remote controllers in the setup is simulated by an RS-

232 serial link. The baudrate of the serial link is assigned as 1QoS . Three packet formats used 

in this case are shown in Fig. 5. 



 

65 

Central controller RS-232

A/D
converter

PWM
output

Remote controller

PWM
Driver

DC motorTachometer

PWM signal
(TTL level)

Amplified
PWM signal

Motor speed
(analog)

 

(a) 

  

(b) 

Fig. 4. (a) Block diagram of a peer-to-peer networked DC motor control system. (b) Actual 
networked DC motor control system setup. 

 

FF Value of duty cycle (in ASCII)

Fx Baudrate code

Motor speed

1 byte

00

4 byte 1 byte

1 byte 1 byte

PWM packet

Baudrate  packet

Speed packet

1 byte

Note: x can be any
value other than F.

 

Fig. 5. Packet formats. 



 

66 

 A PWM packet is used for sending the control voltage signal as the duty cycle of the PWM 

signal from the central controller to the remote controller. After the remote controller processes 

the PWM packet, it returns the motor speed using the speed packet format. The A/D converter 

used for sampling and quantization of the motor speed in the experimental setup has the 

resolution of 8 bits. Therefore, one byte is enough to represent the motor speed in the 

experimental simulation. On the other hand, the central controller sends the baudrate packet to 

the remote controller when the central and remote controllers are negotiating for a new 

baudrate used. Therefore, the maximal packet size with respect to our custom protocol is set to 

be 6 bytes, and 2QoS  in this case is determined by the maximal delay bound of the 6-byte 

packet transmission.  

C.  Simulation results and discussions 

� System response with different PI gains 

 In the networked control system under consideration, both the control gains and the 

network QoS can significantly affect the closed-loop system performance. Fig. 6 shows typical 

closed-loop responses of a networked control system from the numerical simulation, subject to 

tracking a 200 rad/s reference signal with respect to different PI gains, given a sampling period 

of 2 ms and without time delays. 

0 0.2 0.4 0.6 0.8
0

100

200

300

Motor speed (rad/s): KI=1

KP=0.3
KP=0.5
KP=0.9

0 0.5 1 1.5 2
0

50

100

150

200

Motor speed (rad/s): KP=0.1

KI=0.1 
KI=0.15
KI=0.2 

 
 

Fig. 6. Networked motor control performance with a sampling time of 2 ms and different PI 
gain values and without time delays. 

Time(s) Time(s) 



 

67 

� System response with different QoS 

 The closed-loop system will respond differently given a controller gain and different 

network QoS conditions. To demonstrate this case, we assume: 

 2 1  ( )QoS Maximal packet size bits QoS= . (15) 

 Also, the sum of PCτ  and PRτ  is estimated to be 0.1 ms based on the equipment settings. 

Applying these estimations in conjunction with Eq. (14), the sampling time is estimated by: 

 22 0.1h QoS> +  ms. (16) 

 With the largest packet size of 6 bytes, possible valid sampling times for 1QoS = {4800, 

9600, 19200 and 38400} bps can be set to {24, 12, 6, and 3} ms, respectively. These settings 

are applied in the numerical simulation using a 6-byte packet size for the input voltage 

transmission and a single-byte size for the measured signal transmission. The network delays 

are set to be random, ranging from 90% to 100% of the maximal delays with respect to the 

packet size used in different settings. This delay variation is generated using a uniform 

distribution. Fig. 7 clearly indicates that sampling times and network delays, which are 

determined from different QoS, can significantly influence the closed-loop control system 

performance by increasing the maximum overshoots and the settling times in the step 

responses, sometimes to the point of destabilizing the system. 



 

68 

 
 

0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

250

300

350

Time (s)

Motor speed (rad/s): KI=1, KP=0.7

h=3 ms 
h=6 ms 
h=12 ms
h=24 ms

0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

250

300

350

Time (s)

Motor speed (rad/s): KI=1, KP=0.7

h=3 ms 
h=6 ms 
h=12 ms
h=24 ms

 
Fig. 7. Networked motor control performance given PI gain values under different QoS 

conditions. 

D.  Performance measure and gain adaptation 

 In many cases, an end-user cannot control the network QoS, while the end-user can 

monitor the network QoS via appropriate middleware. Thus, the end-user can then adapt its 

controller gains to provide the best closed-loop control performance possible while the network 

QoS is varying or deteriorating. In this paper, we use a cost function approach to proactively 

adapt the PI gains in response to the change in network QoS. Different performance measures 

can be used to construct the cost function. In this paper, we define the cost function as: 

 ( ) ( )
1

1 N

k
C r k y k

N =

= −∑ , (17) 

where N is the appropriate time index such that the tracking has arrived at the steady state, 

( )r k  and ( )y k  are the measurements on r and y at time k. The cost function C considers how 

different the transient and steady-state system response is from the reference signal. Fig. 8 

With network delays determined from 
different QoS Without network delays 



 

69 

shows a typical cost for different PI gains under different QoS conditions, from the numerical 

simulation. 

 

 
 

Fig. 8. Cost with respect to different PI gains and QoS. 

 Each arrow points to a cost surface with respect to each QoS setting. The shading in Fig.8 

indicates the overlapped parts of the surfaces. The lighter shading of the surface lines implies 

more parts of surfaces overlap the lines. The figure clearly indicates that given a QoS and the 

maximal packet size, there are certain values of PK  and IK  that can provide the optimal cost, 

hence the optimal system performance. Different types of optimization techniques can be used 

to find the optimal values of PK  and IK . For instance, we can construct the cost function C 

with respect to the influential factors PK , IK , 1QoS  and 2QoS . Note that if there is a closed-

form relationship among network QoS conditions, controller gains, and the cost function, the 

QoS(4)=[38400 bps,3 ms] 

QoS(3)=[19200 bps,6 ms] 

QoS(2)=[9600 bps,12 ms] 

QoS(1)=[4800 bps,24 ms] 

Maximal packet size = 6 bytes 

KP KI 



 

70 

problem can be formulated as an optimal control problem such as the LQG problem. However, 

such the relationship is usually difficult to find and may not be able to obtain analytically. 

 Analytical searching techniques, such as steepest descent, may take a long time to find the 

optimal solution and may not be suitable for real-time applications. Other searching techniques, 

such as Newton Raphson, may provide significant faster earching results, yet it can be sensitive 

to the cost function model error. In this paper, we use a look-up table technique to perform the 

searching and to show the feasibility of the proposed proactive gain adaptation algorithm with 

respect to network QoS. The cost values are stored in a table form with respect to 1QoS , 2QoS , 

PK , and IK . Using the monitored network QoS, we search for the best PK  and IK  from the 

stored table that can provide the optimal cost. Linear interpolation is used when the exact entry 

cannot be found from the table with the given inputs. For other high dimensional problems, the 

size of the lookup table may be very large due to the curse of dimensionality. Computational 

intelligence approaches such as fuzzy logic and neural networks can be applied to construct the 

mapping from the controller gains to the network QoS conditions by using the lookup table as a 

priori knowledge. 

 In order to show the effects of network QoS variations on the networked control system, 

different network QoS and control gains with and without adaptation were simulated and 

analyzed in both numerical and experimental simulations.  

� Numerical Simulation 

 Fig. 9 shows a typical networked control response from the numerical simulation when the 

network QoS deteriorates from (1) (1)
1 ,QoS QoS=   (1)

2QoS  [ ]38400 bps,3 ms=  to 

[(2) 19200 bps,QoS =  ]6 ms , and to [ ](3) 9600 bps,12 msQoS = . Step references are issued for 

the controller to track when the network changes QoS so that we can obviously see how the 

network QoS variation affects the networked control response with and without gain 

adaptation. The solid line represents the reference signal for the networked controller to track; 

the dotted line represents the closed-loop system response without gain adaptation; and the 



 

71 

dashed line represents the closed-loop system response with gain adaptation to compensate for 

the QoS deterioration. The numerical simulation results clearly show the advantages and 

improved performance of using gain adaptation to maintain the system performance while the 

network QoS is varying or deteriorating.  

0 0.5 1 1.5 2 2.5 3
0

50

100

150

200

250

Time(s)

Motor Speed (rad/s) Step references   
Without adaptation
With adaptation   

 

Fig. 9. A typical networked control system performance from the numerical setup with and 
without gain adaptation when network QoS deteriorates. 

� Experimental Simulation 

 A networked control response from the experimental simulation is depicted in Fig. 10. Due 

to the processing delays at the central and remote controllers, the network QoS in this case is 

modified to deteriorate from [ ](1) 38400 bps,5 msQoS =  to [ ](2) 19200 bps,8 msQoS =  

instead, with respect to the new step references. The solid line represents the reference signal 

for the networked controller to track; the cross-sign line represents the closed-loop system 

QoS(1) QoS(2) QoS(3) 



 

72 

response without gain adaptation; and the plus-sign line represents the closed-loop system 

response with gain adaptation to compensate for the QoS deterioration. The experimental 

results explicitly support the advantages and performance of using gain adaptation. 
 

0 2 4 6 8
0

50

100

150

200

250

300

350

Time(s)

Motor Speed (rad/s)

Without adaptation
With adaptation   

 
Fig. 10. A typical networked control system performance from the experimental setup with 

and without gain adaptation when network QoS deteriorates. 

V. Conclusion 

 Networks and their applications are promising for wide deployment of real-time high 

performance networked control in industrial applications. However, one of the major concerns 

is the QoS that can be provided by the network and how it affects the performance of the 

networked control system. This paper has described, formulated, and shown promising results 

on the use of a proactive gain adaptation in a networked DC motor control system by the end-

user in response to network QoS variations and deteriorations. Both the numerical and 

experimental results have shown that this is a promising and feasible approach in performing 

network QoS negotiation and graceful performance degradation and in maintaining networked 

QoS(1) QoS(2)



 

73 

control system availability. The analysis on more advanced issues such as packet losses can 

improve and strengthen the gain adaptation approach for more practical uses in the future. 

Acknowledgement 

 The authors would like to thank the Royal Thai Government for partially supporting this 

study. 

References 
[1] J. W. Overstreet and A. Tzes, “An Internet-based real-time control engineering 

laboratory,” IEEE Control Systems Magazine, vol. 19, no. 5, pp. 19-34, 1999. 

[2] G. V. Kondraske, R. A. Volz, D. H. Johnson, D. Tesar, J. C. Trinkle, and C. R. Price, 
“Network-based infrastructure for distributed remote operations and robotics research,” 
IEEE Transactions on Robotics and Automation, vol. 9, no. 5, pp. 702-704, 1993. 

[3] G. C. Walsh, O. Beldiman, and L. Bushnell, “Error encoding algorithms for networked 
control systems,” in IEEE Decision and Control, Phoenix, AZ, 1999, pp. 4933-4938. 

[4] Y. H. Kim, H. S. Park, and W. H. Kwon, “Stability and a scheduling method for 
network-based control systems,” in IEEE IECON 96, Taipei, Taiwan, 1996, pp. 934-
939.   

[5] J. M. Lee, S. Lee, M. H. Lee, and K. S. Yoon, “Integrated wiring system for 
construction equipment,” IEEE/ASME Transactions on Mechatronics, vol. 4, no. 2, pp. 
187-195, 1999. 

[6] P. Sink, “A comprehensive guide to industrial networks,” Sensors, vol. 18, no. 6, pp. 
28-43, 2001. 

[7] W. T. Strayer and A. C. Weaver, “Performance measurement of data transfer services 
in MAP,” IEEE Network, vol. 2, no. 3, pp. 75-81, 1988. 

[8] G. Kaplan, “Ethernet's winning ways,” IEEE Spectrum, vol. 38, no. 1, pp. 113-115, 
2001. 

[9] A. C. Weaver, J. Luo, and X. Zhang, “Monitoring and control using the Internet and 
Java,” in IEEE IECON 99, San Jose, CA, 1999, pp. 1152-1158. 

[10] A. Malinowski, T. Konetski, B. Davis, and D. Schertz, “Web-controlled robotic 
manipulator using Java and client-server architecture,” IEEE IECON 99, San Jose, CA, 
1999, pp. 827-830. 



 

74 

 [11] Y. Tipsuwan and M.-Y. Chow, “Fuzzy logic microcontroller implementation for DC 
motor speed control,” in IEEE IECON 99, San Jose, CA, 1999, pp. 1271-1276. 

[12] J. T. Teeter, M.-Y. Chow, and J. J. Brickley, Jr., “A novel fuzzy friction compensation 
approach to improve the performance of a DC motor control system,” IEEE 
Transactions on Industrial Electronics, vol. 43, no. 1, pp. 113-120, 1996. 

[13] R. Zurawski, “Verifying correctness of interfaces of design models of manufacturing 
systems using functional abstractions,” IEEE Transactions on Industrial Electronics, 
vol. 44, no. 3, pp. 307-320, 1997. 

[14] R. Luck and A. Ray, “An observer-based compensator for distributed delays,” 
Automatica, vol. 26, no. 5, pp. 903-908, 1990. 

[15] H. Chan and Ü. Özgüner, “Closed-loop control of systems over a communications 
network with queues,” International Journal of Control, vol. 62, no. 3, pp. 493-510, 
1995. 

[16] J. Nilsson, B. Bernhardsson, and B. Wittenmark, “Stochastic analysis and control of 
real-time systems with random time delays,” Automatica, vol. 34, no. 1, pp. 57-64, 
1998. 

[17] G. C. Walsh, O. Beldiman, and L. Bushnell, “Asymptotic behavior of networked 
control systems,” in IEEE Control Applications, Kohala Coast, HI, 1999, pp. 1448-
1453. 

[18] S. H. Hong, “Scheduling algorithm of data sampling times in the integrated 
communication and control systems,” IEEE Transactions on Control Systems 
Technology, vol. 3, no. 2, pp. 225-230, 1995. 

[19] T. F. Abdelzaher, E. M. Atkins, and K. G. Shin, “QoS negotiation in real-time systems 
and its application to automated flight control,” IEEE Transactions on Computers, vol. 
49, no. 11, pp. 1170-1183, 2000. 

[20] B. Li and K. Nahrstedt, “A control-based middleware framework for quality-of-service 
adaptations,” IEEE Journal on Selected Areas in Communications, vol. 17, no. 9, pp. 
1632-1650, 1999. 

[21] D. C. Schmidt, V. Kachroo, Y. Krishnamurthy, and F. Kuhns, “Developing next-
generation distributed applications with QoS enabled DPE middleware,” IEEE 
Communications Magazine, vol. 38, no. 10, pp. 112-123, 2000. 



 

75 

C H A P T E R  I V  

METHODOLOGY OF USING NETWORKED PI CONTROLLER 

GAIN SCHEDULING OVER IP NETWORK:  

PART I – FOUNDATION 

 

 

 

 

 

 

 

This chapter and chapter V were submitted for publication to an IEEE Transactions, as parts I 

and II. 

Yodyium Tipsuwan                                            Mo-Yuen Chow 

                    ytipsuw@unity.ncsu.edu                                     chow@eos.ncsu.edu 

Advanced Diagnosis And Control Lab 

Department of Electrical and Computer Engineering 

North Carolina State University, Raleigh NC 27606, USA 

Tel: (919) 515-7360, Fax: (919) 515-5108 

 



 

76 

METHODOLOGY OF USING NETWORKED PI CONTROLLER 

GAIN SCHEDULING OVER IP NETWORK: PART I – 

FOUNDATION 

Abstract—The potential use of networks for real-time high performance control and 

automation is enormous and appealing. Replacing a widely used PI controller by a new 

networked controller for networked control capability can be costly and time-consuming. This 

paper proposes a methodology based on gain scheduling to enhance the PI controller so it can 

be used over IP networks with a general computer protocol like Ethernet. Part I of this paper 

presents the foundation of the proposed approach. Problem formulation by using a rational 

function to approximate constant network delays is described, and a DC motor speed control 

problem is used to illustrate the proposed methodology. Simulation results also indicate that the 

delay approximation can provide good enough accuracy with about 1% error compared to the 

actual delay. This paper also describes PI controller parameterization by a single parameter for 

gain scheduling at the controller output. Performance of the proposed approach is measured 

from a defined cost function. The cost function indicates performance degradation from a 

nominal condition when there is no network in the control loop. A searching algorithm is 

presented to find the optimal parameter to schedule the control gains based on the root locus 

analysis with the constant delay approximation. The sensitivity of the parameter used with 

respect to the network delay is also analyzed and illustrated. In addition, Part I of this paper 

shows that the optimal parameter decreases and becomes more sensitive to the delay with more 

performance degradation when the delay is longer. Part II of this paper will extend the 

foundation in Part I for practical implementation on actual IP network delays. 



 

77 

Keywords—Internet, networks, adaptive control, control systems, DC motors, distributed 

control, real time system. 

I. Introduction 

 Computer networks and their applications have undergone major changes in the last two 

decades. Recently, a new and promising use of networks is in the area of high performance 

distributed control and automation, which is developing into an attractive market with wide 

applications in factory automation, teleoperation, and industrial electronics. The potential use 

of networks for real-time high performance control and automation is enormous and appealing. 

Before networks can be widely and efficiently used for real-time high performance control and 

automation, certain issues need to be addressed, including time delays, delay variations, and 

bandwidth constraints. Time delays are well known to degrade system performance and reduce 

the stability region. The system performance can be further aggravated with the existence of 

delay variations. Specialized networks such as Profibus [1] and CAN (Controller Area 

Network) [2] have been developed for networked control applications, in which both the 

network delays and bandwidth constraints are relatively easy to predict, and the delay 

variations are low. 

 A recent and advancing trend in the networked control area is to substitute specialized 

industrial networks with a general computer network such as Ethernet and wireless Ethernet in 

order to control a system remotely over the Internet or IP (Internet Protocol) network [3, 4]. A 

general protocol like Ethernet has several advantages due to its affordability, widespread usage, 

and well-developed infrastructure for Internet connection. Nevertheless, once a networked 

control system is connected through the Internet, the network delays induced by IP are no 

longer constant and can vary depending on traffic conditions. Several methodologies have been 

developed to handle the time-varying network delay effects, and some promising results have 

been reported. These control methodologies are based on different techniques such as state 

augmentation [5], optimal stochastic control [6], nonlinear control and perturbation theory [7], 



 

78 

robust control [8], buffering and prediction [9, 10], Smith predictor [11], event-based control 

[12], sampling time scheduling [13, 14], and fuzzy logic [15, 16]. Many of these techniques 

require a completely redesigned controller to handle network delays. Practical controllers that 

exist in many industrial applications such as a PI controller have to be replaced with a new 

controller. This replacement is usually time-consuming, which implies high installation cost. 

 An alternative choice to maintain the system performance under random IP network delays 

is to provide an appropriate IP network traffic condition for supporting a networked control 

system by applying QoS (Quality-of-Service) concepts to impose network delays, delay 

variations, and bandwidth constraints [17, 18]. Several QoS concepts can be used. For 

example, applying an IP QoS protocol [19] such as RSVP to reserve network resources [20], 

providing differentiate service (Diff-Serv) to prioritize packets [21], or using middleware to 

handle QoS negotiation and resource reservation [22, 23]. Nevertheless, these methods cannot 

totally guarantee IP network QoS measures likes packet loss, delay bound, or delay variation 

bound, since IP network does not design for perfect real-time performance. Anomalies such as 

changes in user demands and a loss of a link may affect the IP network traffic. Therefore, the 

controller may still need to adapt itself to handle these anomalies in addition to relying on the 

network protocol used. 

 The main goal of this paper is to propose a methodology that enhances the widely used PI 

(Proportional-Integral) controller so it can be used over IP network with a general computer 

protocol like Ethernet. The proposed approach is based on PI controller gain scheduling. The 

optimal PI controller gains are scheduled in real-time with respect to the monitored IP network 

traffic condition in order to maintain the best possible system performance. Therefore, changes 

in IP network traffic conditions are always captured by the proposed approach. Furthermore, 

the controller gains are not directly adapted or scheduled, but are instead adjusted by modifying 

the output of the PI controller. Without requiring redesign and reinstallation of a new 

networked control system, the proposed approach could save much cost and time for practical 



 

79 

uses. This paper is organized as follows. Section II provides the system description including 

system configuration, mathematical system formulation, and case study. Section III describes 

PI controller parameterization, performance measures, and a searching algorithm to find the 

optimal controller gains. Part I concludes in section IV. The generalization of this paper for 

actual IP network delays is continued in Part II. 

II. System Description 

A.  System configuration 

 In this paper, we consider a distributed networked control system configuration over an IP 

network. An overall setup of the distributed networked control system shown in Fig. 1 is 

composed of: 

IP
network

Email, FTP, Video

Control agent 1

Email, FTP, Video

Action agent 1

Action agent i

Action agent
Controller

DC Motor

Action agent
plant

Action agent N
Control agent M  

Fig. 1. An overall distributed networked control system over IP network. 

� IP network 

 The IP network under consideration links all networked control devices including the 

control agent and action agents together by sharing the same communication media. The 

network can be also shared with other end-to-end applications ranging from email and FTP to 



 

80 

video streams. In this paper, we assume that the networked control devices use UDP (User 

Datagram Protocol) as the layer-4 protocol on IP network to avoid additional delays from 

retransmissions. 

� Control agent 

 In general, the control agent is a high performance computing unit to manage operations of 

action agents, and also make some critical “group” decisions for some of the action agents. 

There can be many different control agents for different control purposes in a distributed 

control system. Without loss of generality, this paper uses one of the control agents as an 

illustration to demonstrate the proposed control technique. The control agent can handle high 

level overall networked system control with advanced features such as fault detection and gain 

scheduling on the low level control to aim for the best possible performance when anomalies 

happen. The control agent uses a PI controller to control each action agent in the low level. 

Periodically, the control agent converts the sensory signals in a packet sent across IP network 

from each action agent to numerical feedback data for a PI control response. The control signal 

from the PI controller is then sent back as a packet to each action agent via the IP network as 

well. We also assumed that the control agent is capable of monitoring an IP network condition 

such as measuring delay and delay variation. Several actual IP traffic delays and statistics will 

be shown in later sections. 

� Action agent 

 Each action agent contains an action agent controller and an action agent plant. The action 

agent controller is a simple hardware unit to periodically convert the control signal in a packet 

from the control agent to an actual signal to drive the action agent plant. The action agent plant 

used as an example in this paper is a DC motor, which has many applications in industry such 

as for process control and robot control. The sensory output of the action agent plant such as 

the motor speed is also monitored and sent back to the control agent.  



 

81 

B. Mathematical formulation 

 In order to analyze how to schedule the PI controller gains on the control agent with respect 

to an IP network traffic condition, let us formulate the problem mathematically in a continuous-

time approach by first assuming IP network delays are constant. A typical single networked 

control system is formulated as shown in Fig. 2, where ( )R s , ( )U s , ( )Y s , and 

( ) ( ) ( )E s R s Y s= −  are the reference, control, output, and error signals in Laplace domain 

according to the reference, control, output, and error signals in time domain defined as ( )r t , 

( )u t , ( )y t , and ( )e t , respectively. The other action agents can be controlled using the similar 

formulation.  

( )DCPG s( )CG s
( )R s

( )PG s
( )Y s

( )DPCG s

( )U s( )E s

 

Fig. 2. A point-to-point networked control system formulation. 

 The action agent plant dynamics is expressed as a transfer function ( )PG s , where the PI 

controller ( )CG s  is described by: 

 ( ) ( )
I

P
P CP

C

KK s
K s zK

G s
s s

 
+  + = = , (1) 

where PK  and IK  are the proportional gain and integral gain, respectively, and C I Pz K K=  

is a constant. The IP network delays for sending the control ( )U s  to the action agent plant 

( )PG s , and for sending the system output ( )Y s  to the PI controller ( )CG s , are represented by 

( )DCPG s  and ( )DPCG s , respectively, of which the analytical forms are: 

 ( ) DCPs
DCPG s e τ−= , (2) 



 

82 

 ( ) DPC s
DPCG s e τ−= , (3) 

where DCPτ  and DPCτ  are the delay from the controller to the plant, and the delay from the plant 

to the controller in time domain, respectively. The closed-loop transfer function including the 

network delays becomes: 

 ( )
( )

( ) ( ) ( )
( ) ( ) ( ) ( )1

C DCP P

C DCP P DPC

Y s G s G s G s
R s G s G s G s G s

=
+

. (4) 

 Transfers functions in the exponential form like (2) and (3) have infinite dimensions 

because the exponential form has infinite order as expressed in a series. In order to analyze the 

closed-loop control system with network delay effects, a typical approach is to use a rational 

function with the numerator degree zero to approximate the delays as follows [24]: 

 1

1

s
ne

s
n

τ

τ
− ≅

 + 
 

, (5) 

where τ  can be DCPτ  or DPCτ . Using (5), the system dynamics can be only partially realized. 

For example, only the primary branches of the root locus can be plotted, whereas there are 

infinite branches of the root locus for the system with (2) and (3). Therefore, the characteristic 

of the approximated model using (5) will not be exactly the same as the actual one. However, 

(5) is adequate for many practical applications, because the primary branches usually contain 

the dominant eigenvalues of the system [24]. There are also other popular delay 

approximations such as the following power series: 

 
2 2 3 3

1 ...
2! 3! !

n n
s s s se s

n
τ τ τ ττ− ≅ − + − + + , (6) 

and Padé approximation: 

 ( )
( )

rs

r

N s
e

D s
τ τ

τ
− ≅ , (7) 

where ( )
( ) ( )

0

2 !
! !

r
n

r
n

r n
N s

n r n
τ

=

−
= −

−∑ , and ( )
( ) ( )

0

2 !
! !

r
n

r
n

r n
D s

n r n
τ

=

−
=

−∑ . To distinguish (5) from other 

delay approximations, we name (5) as denominator approximation for future reference. The 

delay approximations in (6) and (7) are more difficult to analyze because the system poles are 



 

83 

more difficult to find computationally. Padé approximation is even more complicated since it 

gives additional zeros, which further complicates the overall closed-loop system analysis. In 

addition, Padé approximation may even give a negative value of se τ−  if τ  is significantly large 

and the degree of approximation is not adequate. More important, (5) is more suitable for real-

time application analysis due to its computational simplicity. Thus, we will use (5) to 

approximate time delay effects on the networked control system. A later section will show that 

(5) gives good enough accuracy for the practical problem under our investigation. 

C. Case study 

 A DC motor speed control problem is used as an action agent for a case study to 

demonstrate the proposed approach throughout this paper. The DC motor parameters obtained 

from [25] are shown in Table 1.  

Table 1. DC motor parameters. 

J  Inertia 42.6 e-6 Kg-m2 
L  Inductance 170 e-3 H 
R  Terminal Resistance 4.67 Ω  
B  Damping coefficient 47.3 e-3 N-m-sec/rad 
K  Torque Constant 14.7 e-3 N-m/A 

BK  Back-EMF Constant 14.7 e-3 V-sec/rad 

 The corresponding action agent plant dynamics can be derived and described by the 

following transfer function. 

 ( ) ( )( )
2029.826

26.29 2.296PG s
s s

=
+ +

. (8) 

 Let us assume that the practically utilized DC motor PI speed controller is designed and 

tuned without concerning for the network delays for the following step function as the 

reference signal: 

 ( )
0,  0,
,  0,

t
r t

c t
<

=  ≥
 (9) 



 

84 

where c is the steady-state value. The overall closed-loop system performance is required to 

have the relative damping ratio of 0.707 and to satisfy the following specifications with the 

step response. 

1) Percentage overshoot (P.O.): P.O. ≤  5%. 

2) Settling time ( st ): 0.309st ≤  sec. 

3) Rise time ( rt ): 0.117rt ≤  sec. 

 Using the root locus design approach without considering network delays, a feasible choice 

of ( ) ( ) ( )0 0, , 0.1701,0.378P I P IK K K K= � , and these gains satisfy all the design specifications 

as listed. We will use ( )0 0,P IK K  as a baseline reference to compare with the proposed gain 

scheduling algorithm when network delay effects are considered. The DC motor step response 

with ( )0 0,P IK K  is illustrated in Fig. 3 (a), where the open-loop poles and zeros, and closed-loop 

poles are depicted Fig. 3 (b). 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time(s)

y

 

Real 

Im
ag

in
ar

y 

-30 -25 -20 -15 -10 -5 0
-15

-10

-5

0

5

10

15

30 25 20 15 10 5 

0.985

0.94

0.87 0.78 0.66 0.52 0.36 0.18

0.985

0.94

0.87 0.78 0.66 0.52 0.36 0.18

 

 (a) (b) 

Fig. 3. DC motor characteristics with respect to ( )0 0,P IK K : (a) Step response. (b) Open-loop 
poles and zeros (on real axis), and closed-loop poles (dotted cross signs). 



 

85 

III. Parameterization for Gain Scheduling: Constant Network Delay 

A. PI controller parameterization 

 With the existence of network delays in the control loop, the initial ( )0 0,P IK K  may no 

longer satisfy the design specifications. The system performance will also degrade, and the 

system may become unstable. To remain the best possible system performance with network 

delays, the controller gains need to be adapted with respect to the current network condition. In 

this section, we introduce the β  gain, where 0β ≥ , as a multiplicative factor to externally 

adapt ( )0 0,P IK K  without completely redesigning the existing controller. The idea of β  gain 

adaptation is adopted from [26]. The β  gain has to be greater than zero to avoid positive 

feedback. The β  gain is placed in front of the initial PI controller as depicted in Fig. 4. 

( )CG s
( )U s( )E s

β
 

Fig. 4. Adaptation of PI controller gains at the controller output by β . 

 Analytically, β  adjusts both 0
PK  and 0

IK , while keeping the ratio between both gains at 

Cz  as follows: 

 ( ) ( )0
P C

C

K s z
G s

s
β β

+
= . (10) 

 This parameterization enables PI gain scheduling to be tractable for real-time on-line 

analysis with existing theories such as root locus so that the control agent could quickly 

analyze the system to perform additional advanced control schemes such as fault detection and 

diagnosis. Adjusting PK  and IK  separately with no concern about the ratio Cz  could maintain 

equivalent or better system performance than adjusting β . However, separately adjusting 0
PK  

and 0
IK  requires a more complicated approach like root contour, which is quite tedious and 

time-consuming. Thus, this approach may not be suitable for real-time on-line analysis. In 

addition, without β  parameterization, ( ),P IK K  has to be chosen for adjustment from a two 



 

86 

dimensional feasible region. By searching for β  instead, the feasible region is only single 

dimensional, which is easier to search for the optimal value. 

B.  Optimizing β  gain 

 In order to evaluate the best possible system performance with respect to β  under different 

IP network conditions, we use a cost function approach to find the optimal β . The cost 

function to be minimized is defined as follows. 

 1 1 2 2 3 3J w J w J w J= + + , (11) 

 

 ( )2
0 0

1
0

,  ,
0                        ,  ,
MSE MSE MSE MSE

J
MSE MSE

 − >= 
≤

 (12) 

 ( )2
0 0

2
0

. . . . ,  . . . . ,
0                      ,  . . . . ,
P O P O P O P O

J
P O P O

 − >= 
≤

 (13) 

 ( )2
0 0

3
0

,  ,
0             ,  ,

r r r r

r r

t t t t
J

t t

 − >= 
≤

 (14) 

where  ( )2

0

1 N

k

MSE e k
N =

= ∑   (15) 

is the mean-squared error, 0MSE  is the nominal mean-squared error, 0. .P O  is the nominal 

percentage overshoot, and 0rt  is the nominal rise time. The error ( ) ( ) ( )e k y k r k= −  is 

computed by sampling ( )y t  at t kT= , where T is the sampling period, and k is the time index. 

The costs 1J , 2J , and 3J  are mainly used to provide the penalty when the system performance 

degrades from the nominal system performance. In this case, the nominal performance can be 

adopted from the design specifications mentioned earlier such that 0. .P O =  5%, 0 0.117rt = , 

whereas 0MSE  has to be determined from a simulation or an experiment. In this paper, we use 

0 0.00595MSE = . Therefore, when 1β =  without network delays in the system, 0J = . The 

cost 1J  gives the penalty on poorer response time and convergence, while the cost 3J  provides 



 

87 

an extra penalty on the slower response. The cost 2J  gives the particular penalty on the higher 

value of the percentage overshoot. These costs will increase if the networked control system 

performs worst than the nominal condition. If the system performs equally to the nominal 

condition or better, the costs are zero.  

 The weights 1w , 2w , and 3w  are used to specify the relative significance of 1J , 2J , and 

3J , respectively, on the overall system performance. These weights are determined from 

different application requirements. For example, a precision machine like a wirecut EDM 

(Electrical Discharge Machine) requires more concern on . .P O  when cutting a piece of metal 

over a pre-defined path. Thus, 2w  should be higher among the others. On the other hand, a 

magnetic stirrer requires more accuracy on the steady-state value so that a chemical solution 

can be mixed appropriately by giving the significance to 1w . In addition, the costs 1J , 2J , and 

3J  represent different physical meanings, and may be in different ranges. Therefore, weights to 

adjust these costs to have the same significances at a nominal condition could be considered as 

initial weights first. Then, the weights can be later adjusted to support application requirements. 

 The initial weights could be determined by normalizing 1J , 2J , and 3J  from simulation 

data at the nominal condition to the same interval. To find the weights by normalization, we 

can run simulations at the nominal condition for different values of β  in a certain range (e.g., 

[ ]0, 2β ∈ ), and record 1J , 2J , and 3J  for each simulation with respect to β . Then, 1J , 2J , 

and 3J  from all simulations can be normalized into [0,1] by using the weight: 

 ( )1 max min , 1,2,3i i iw J J i
ββ

= − = , (16) 

where max iJ
β

 and min iJ
β

 are the maximal and minimal cost iJ  obtained from the simulations 

with different β  in the range. Because 1β =  always satisfies the performance requirements at 

the nominal condition, 1min J
β

=  2 3min min 0J J
β β

= = .  

 Typical behaviors of 1J , 2J , and 3J  with respect to β  at the nominal condition are shown 

in Fig. 5.  



 

88 

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10-3

β

J 1

0 0.5 1 1.5 2
0

20

40

60

80

100

120

β

J 2

 

                                    (a)                                                                      (b) 

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

β

J 3

 

  (c) 

 Fig. 5. Typical behaviors of (a) 1J , (b) 2J , and (c) 3J  with respect to β . 

As shown in Fig. 5, 1J  and 3J  are large when β  is low. In this case, the system feedback 

response is slower than in the nominal condition in order to reduce ( )e t . These costs decrease 

when β  increases, and becomes zero at 1β = . On the other hand, 2J  is large when β  is large 

due to the higher P.O. than in the nominal condition. The cost 2J  is smaller when β  



 

89 

decreases, and becomes zero at 1β = . Thus, with any positive 1w , 2w , and 3w , 1β =  is the 

optimal β  if there is no network delay. 

With the existence of network delays, 1β =  may no longer be optimal. Thus, the optimal 

gain has to be obtained by evaluating J with concern for current network delays. Unfortunately, 

J  usually does not have a closed-form relationship with β . Unlike the LQG problem, this 

optimization problem may not be solved analytically. Therefore, a feasible approach to search 

for the optimal β  is to rely on a simulation according to the feasible set of β . We define F  

as the feasible set containing all β  that do not cause system instability. The feasible set F  can 

be estimated by the root locus analysis and the denominator approximation in (5). The 

characteristic equation of the DC motor speed control system with network delays can then be 

approximated as: 

     ( ) ( ) ( ) ( )1 C DCP P DPCG s G s G s G sβ+  ( )
( )( )

02029.826
26.29 2.296

P Cs K s z
e

s s s
τ β− +

=
+ +

, 

 ( )

( )( )

02029.826

26.29 2.296

n
P C

n
n

K n s z
ns s s s

β

τ
τ

+
≅

 + + + 
 

, (17) 

where τ  is defined as CP PCτ τ τ= + . For example, setting 4n = , the root locus of (17) with 

respect to 0.1,0.2,τ =  and 0.5 are shown in Fig. 6. Only the primary branches of the root locus 

are shown in Fig. 6 to determine the stability of the closed-loop system. As discussed in [24], 

the primary branches are sufficient to be used for stability region approximation. 



 

90 

-8 -6 -4 -2 0 2 4
-15

-10

-5

0

5

10

Real

Im
ag

in
ar

y

β>1.16 

β<1.16 β>0.677

β>0.313 

β>0.313

β<0.677 

β<0.313

β<0.313 
β<0.677

β=1.16 

β>1.16 

β<1.16 
β=1.16 

β>0.677

β=0.677

β=0.677

β=0.313

τ=0.1
τ=0.2
τ=0.5

β=0.313 

 

Fig. 6. Primary branches of the root locus of the networked DC motor PI speed control 
system using denominator approximation to approximate network delays. 

 In a stable system, β  can range from 0 to the value, of which the root locus crosses the 

imaginary axis. Thus, F  can be defined as ( )){ }max0,β β β τ= ∈ F , where ( )maxβ τ  is 

the β  gain at the point that the root locus crosses the imaginary axis with respect to τ . In fact, 

( )maxβ τ  does not need to be very precise since the optimal β  is unlikely to be close to 

( )maxβ τ . If β  is close to ( )maxβ τ , 1J  and 2J  can be very large because the closed-loop 

system is nearly unstable. Table 2 shows ( )maxβ τ  of the networked DC motor PI speed control 

system in addition to Fig. 6. Also, ( )maxβ τ  and the change in ( )maxβ τ  with respect to τ  

defined as ( )max /β τ τ∆ ∆  are illustrated in Fig. 7. These ( )maxβ τ  values were obtained by 

observing the root locus branches of (17) with respect to β  that cross the imaginary axis. The 

root locus calculation is performed in MATLAB 6.1. 



 

91 

Table 2. ( )maxβ τ  of the networked DC motor PI speed control system with respect to τ . 

τ  (sec) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

( )maxβ τ  1.16 0.677 0.483 0.378 0.313 0.261 0.229 0.205 0.185 0.168 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

τ (s)

β m
ax

 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

τ (s) 

∆
 β  m

 a  x  /  ∆  τ
 

 

 (a) (b) 

Fig. 7. (a) ( )maxβ τ  and (b) ( )max /β τ τ∆ ∆ of the networked DC motor PI speed control 
system with respect to τ . 

 As indicated in Table 2 and Fig. 7, ( )maxβ τ  becomes smaller and less sensitive to τ  when 

τ  increases. This implies that a longer delay τ  gives a smaller feasible set F . Simple search 

for the optimal β  for a specific τ  can be easily accomplished according to the algorithm with 

flowchart depicted in Fig. 8, where β∆  is the bin size, minJ  is the minimal cost, *β  is the 

optimal β , M is the number of bins, and i is the searching index. The gain searching is divided 

into two stages to easily investigate the influence of 1w , 2w , and 3w , on the cost J. The first 

stage of the algorithm outlined in Fig. 8 (a) is to compute 1J , 2J , and 3J . The second stage of 

the algorithm, as outlined in Fig. 8 (b), is to compute J and find β . However, both stages can 

be combined to save computation time when 1w , 2w , and 3w  are exactly chosen. 



 

92 

Start

Simulate the DC motor system
with network delays for

t = 0 to t = tf

0i =
( )max

M
β τ

β∆ =

Compute and record J1,  J2,
and J3

iβ β= ∆

No
i M=

Yes

1i i= +

End
                                

No

1i i= +

minJ J<

*β β=

Yes

minJ J=

Compute J from J1, J2, and J3 from ith
simulation with w1, w2, and w3

No
i M=

End

Yes

Start

0i =
minJ = ∞

 

 (a) (b) 

Fig. 8. Searching algorithm for the optimal β . 

 As shown in Fig. 8 (a), at the beginning of gain searching, β∆  is computed as the 

searching step. The searching index i is set to zero to begin the first iteration. Then, β  is 

calculated, and used in a DC motor simulation from 0t =  to ft t= , where ft  is the final time, 

with a constant delay τ . After a simulation is completed, 1J , 2J , 3J  for the iteration i are 

evaluated and recorded. The index i and β  are increased by one and β∆ , respectively for the 

next iteration. The simulation is repeated until i M= . 

 To determine *β , the searching index i is again set to zero, and minJ  is set to infinity to be 

replaced later as shown in Fig. 8 (b). The cost J  of the ith simulation is computed from 1w , 2w , 



 

93 

and 3w , and is compared with minJ . If the new cost J is less than minJ  and constraints are not 

violated, minJ  and *β  are then replaced by J and β  of the ith simulation, respectively. The 

constraints in this case can be bounds of 1J , 2J , and 3J . The index i is then increased by one. 

The comparison continues until i M= .  

 For example, we optimize J using (2) and (3) as delays for ( )U s  and ( )Y s , respectively, 

with 1 2 31.64902, 0.00833,  0.01395,  100,  10 sec,  0.1,0.2,0.6 sec.fw w w M t τ= = = = = =  

The weights are obtained by (16). The cost J from this optimization is shown in Fig. 9. 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.02

0.04

0.06

0.08

0.1

β

J

τ=0.1
τ=0.2
τ=0.6

 

Fig. 9. Cost J from optimization using (2) and (3) to delay ( )U s  and ( )Y s , respectively, 
with 1 2 31.64902, 0.00833,  0.01395, 100,  10 sec,  0.1,0.2,0.6 secfw w w M t τ= = = = = = . 

 As shown in Fig. 9, when the delay τ  is longer, the optimal β  shifts to the left, and J 

becomes more sensitive to β . Table 3 shows the optimal β  from the optimization without 

constraint, and with constraints 1 0.02J ≤ , 2 0.01J ≤ , 3 0.15J ≤  for comparison. 

Longer delay



 

94 

Table 3. Optimal β  from optimization using (2) and (3) to approximate delays with 

1 2 31.64902, 0.00833,  0.01395, 100,  10 secfw w w M t= = = = = : woc-(without constraint), 
wc-(with constraint 1 0.02J ≤ , 2 0.01J ≤ , 3 0.15J ≤ ), N/A-not available. 

τ  (sec) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Optimal β  wc 0.293 0.171 N/A N/A N/A N/A N/A N/A N/A N/A 

Optimal β  woc 0.293 0.171 0.121 0.094 0.077 0.064 0.056 0.049 0.044 0.040 

 Noticeably, with some values of τ  such as 0.3τ = , there can be no β  that can satisfy the 

constraints. The performance degradation caused by such a long delay is too much to handle 

with adjusting ( )0 0,P IK K  by β  in order not to violate the constraints. 

 To verify whether the denominator approximation can provide enough accuracy for the 

delay approximation, we rerun the same simulations without constraint except the delays are 

approximated by denominator approximation. If the denominator approximation is accurate, J 

from this case will be similar to the previous simulation such that the optimization will give the 

similar optimal β . Table 4 shows the percentage error between the optimal β  from the 

previous simulation defined as actβ  and the simulation using denominator approximation 

defined as appβ . Both actβ  and appβ  are truncated to fit into Table 4. 

Table 4. Percentage error between the optimal β  obtained by using (2) and (3) defined as 

actβ  and the optimal β  obtained by using denominator approximation defined as appβ  from 
simulations. 

τ  (sec) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

actβ  0.293 0.171 0.121 0.094 0.077 0.064 0.056 0.049 0.044 0.040 

appβ  0.291 0.170 0.120 0.093 0.076 0.064 0.055 0.049 0.043 0.039 

100%act app

act

β β
β
−

×

 
0.791 0.791 0.797 0.807 1.225 0.810 1.230 1.250 1.261 1.266 



 

95 

 As shown in Table 4Table , the largest percentage error is not over 1.3%. These small 

percentage errors can be accurate enough for many practical requirements. However, if more 

accuracy is required, the degree n in (5) can be increased to fulfill the requirement. 

 In Part II of this paper, we will extend the concepts, methods, and results, from Part I to 

actual IP network delays for networked PI controller gain scheduling. Part II will also describe 

the proposed gain scheduling algorithm. The performance of the gain scheduling approach will 

be verified by simulations in Part II. 

IV. Conclusion 

Part I of the two companion papers presented the foundation for the proposed gain 

scheduling scheme for a networked PI control system over IP networks. The networked PI 

control system is initially formulated with constant network delays, which are approximated by 

a rational function denoted as denominator approximation. The accuracy of the delay 

approximation can be improved by increasing the order of the rational function. In a case study 

using a DC motor speed control problem, the fourth-order approximation is reasonably 

accurate. 

Scheduling the PI controller gains with respect to a network delay by using a multiplicative 

factor β  to adjust PK  and IK  allows the control agent to perform tractable real-time on-line 

analysis. Moreover, the PK  and IK  gains can be updated externally at the controller output 

without interrupting the original PI controller. By using the root locus analysis on the system 

transfer function including the transfer function of the network delay approximation model to 

estimate stability regions, the bounds of feasible regions to search for the optimal β  for gain 

scheduling can be obtained. An iterative searching method can be used to find the optimal β  

as suggested. When the network delay is longer, the stability region and the bound of the 

feasible region of β  are smaller as well as the optimal β . On the other hand, with a longer 

delay, the bound becomes less sensitive to the delay, whereas the optimal β  is more sensitive. 

In addition, when a constraint is enforced into gain searching, there may be no solution due to 



 

96 

too much performance degradation by the network delay. The foundation described in Part I 

will be extended to networked control with random IP network delays and described in Part II 

of the two companion papers along with gain scheduling algorithm and simulation results. 

Acknowledgement 

The authors would like to thank the Royal Thai Government for partially supporting this 

study, and Dr. Douglas S. Reeves for his helpful comments related to this paper. 

References 
[1] E. Tovar and F. Vasques, “Real-time fieldbus communications using Profibus 

networks,” IEEE Transactions on Industrial Electronics, vol. 46, no. 6, pp. 1241-1251, 
1999. 

[2] M. Farsi, K. Ratcliff, and M. Barbosa, “An overview of controller area network,” 
Computing & Control Engineering Journal, vol. 10, no. 3,  pp. 113-120, 1999. 

[3] G. Kaplan, “Ethernet's winning ways,” IEEE Spectrum, vol. 38, no. 1, pp. 113-115, 
2001. 

[4] F.-L. Lian, J. R. Moyne, and D. M. Tilbury, “Performance evaluation of control 
networks: Ethernet, ControlNet, and DeviceNet,” IEEE Control Systems Magazine, vol. 
21, no. 1, pp. 66-83, 2001. 

[5] Y. Halevi and A. Ray, “Integrated communication and control systems: Part I-
Analysis,” Journal of Dynamic Systems, Measurement, and Control, vol. 110, pp. 367-
373, 1988. 

[6] J. Nilsson, “Real-time control systems with delays,” Ph.D. dissertation, Lund Institute 
of Technology, Lund, Sweden, 1998. 

[7] G. C. Walsh, H. Ye, and L. G. Bushnell, “Stability analysis of networked control 
systems,” IEEE Transactions on Control Systems Technology, vol. 10, no. 3, pp. 438-
446, 2002. 

[8] F. Göktas, “Distributed control of systems over communication networks,” Ph.D. 
dissertation, University of Pennsylvania, Philadelphia, PA, 2000. 

[9] R. Luck and A. Ray, “An observer-based compensator for distributed delays,” 
Automatica, vol. 26, no. 5, pp. 903-908, 1990. 



 

97 

[10] H. Chan and Ü. Özgüner, “Closed-loop control of systems over a communication 
network with queues,” International Journal of Control, vol. 62, no. 3, pp. 493-510, 
1995. 

[11] M. L. Sichitiu, “Control of data networks: models, stability and controllers,” Ph.D. 
dissertation, University of Notre Dame, Notre Dame, IN, 2001. 

[12] T.-J. Tarn and N. Xi, “Planning and control of internet-based teleoperation,” in 
Proceedings of SPIE: Telemanipulator and telepresence technologies V, Boston, MA, 
1998, pp. 189-193. 

[13] S. H. Hong, “Scheduling algorithm of data sampling times in the integrated 
communication and control systems,” IEEE Transactions on Control Systems 
Technology, vol. 3, no. 2, pp. 225-230, 1995. 

[14] Y. H. Kim, H. S. Park, and W. H. Kwon, “Stability and a scheduling method for 
network-based control systems,” in IEEE IECON 96, Taipei, Taiwan, 1996, pp. 934-
939. 

[15] S. Lee, S. H. Lee, and K. C. Lee, “Remote fuzzy logic control for networked control 
system,” in IEEE IECON 2001, Denver, CO, 2001, pp. 1822-1827. 

[16] N. B. Almutairi, M.-Y. Chow, and Y. Tipsuwan, “Network-based controlled DC motor 
with fuzzy compensation,” in IEEE IECON 2001, Denver, CO, 2001, pp. 1844-1849. 

[17] Y. Tipsuwan and M.-Y. Chow, “Network-based controller adaptation based on QoS 
negotiation and deterioration,” in IEEE IECON 2001, Denver, CO, 2001, pp. 1794-
1799. 

[18] S. Soucek, T. Sauter, and T. Rauscher, “A scheme to determine QoS requirements for 
control network data over IP,” in IEEE IECON 2001, Denver, CO, 2001, pp. 153-158. 

[19] C. Metz, “IP QOS: Traveling in first class on the Internet,” IEEE Internet Computing, 
vol. 3, no. 2, pp. 84-88, 1999. 

[20] T. P. Barzilai, D. D. Kandlur, A. Mehra, and D. Saha, “Design and implementation of 
an RSVP-based quality of service architecture for an integrated services Internet,” 
IEEE Journal on Selected Areas in Communications, vol. 16, no.3, pp. 397-413, 1998. 

[21] J. Shin, J. W. Kim, and C.-C. J. Kuo, “Quality-of-service mapping mechanism for 
packet video in differentiated services network,” IEEE Transactions on Multimedia, 
vol. 3, no. 2,pp. 219-231, 2001. 

[22] T. F. Abdelzaher, E. M. Atkins, and K. G. Shin, “QoS negotiation in real-time systems 
and its application to automated flight control,” IEEE Transactions on Computers, vol. 
49, no. 11, pp. 1170-1183, 2000. 



 

98 

[23] B. Li and K. Nahrstedt, “A control-based middleware framework for quality-of-service 
adaptations,” IEEE Journal on Selected Areas in Communications, vol. 17, no. 9, pp. 
1632-1650, 1999. 

[24] B. C. Kuo, Automatic Control Systems, 5 ed. Englewood Cliffs, NJ: Prentice-Hall, 
1987. 

[25] Y. Tipsuwan and M.-Y. Chow, “Fuzzy logic microcontroller implementation for DC 
motor speed control,” in IEEE IECON 99, San Jose, CA, 1999, pp. 1271-1276. 

[26] N. B. Almutairi and M.-Y. Chow, “A modified PI control action with a robust adaptive 
fuzzy controller applied to DC motor,” in IJCNN'01, Washington, DC, 2001, pp. 503-
508. 



 

99 

C H A P T E R  V  

METHODOLOGY OF USING NETWORKED PI CONTROLLER 

GAIN SCHEDULING OVER IP NETWORK:  

PART II – NETWORKED CONTROL ON ACTUAL IP 

NETWORK 

 

 

 

 

 

 

This chapter and chapter IV were submitted for publication to an IEEE Transactions, as parts I 

and II. 

Yodyium Tipsuwan                                            Mo-Yuen Chow 

                    ytipsuw@unity.ncsu.edu                                     chow@eos.ncsu.edu 

Advanced Diagnosis And Control Lab 

Department of Electrical and Computer Engineering 

North Carolina State University, Raleigh NC 27606, USA 

Tel: (919) 515-7360, Fax: (919) 515-5108 

 



 

100 

METHODOLOGY OF USING NETWORKED PI CONTROLLER 

GAIN SCHEDULING OVER IP NETWORK: PART II – 

NETWORKED CONTROL ON ACTUAL IP NETWORK 

Abstract—This paper is the second of two companion papers. The foundation for the proposed 

gain scheduling approach to enhance a PI controller for use with constant network delays was 

given in Part I. Part II extends the concepts and methods in Part I to networked control on 

actual IP networks. Actual IP network RTT (Round-Trip Time) delays are analyzed by 

statistical measures and histograms. Parameterization of actual IP network delays by extending 

the constant network delay concept in Part I to a generalized exponential distribution model is 

described. The searching algorithm to find the optimal parameter for gain scheduling is also 

extended to support the distribution model. This paper also covers the gain scheduling 

algorithm with respect to the monitored current IP traffic condition by estimating the 

probabilistic parameters of the distribution model in real-time. Simulation results show that the 

high values of the parameters of the distribution model can degrade the networked system 

performance and reduce the optimal parameter for gain scheduling. With reasonably long IP 

network delays, the proposed gain scheduling scheme can substantially maintain the system 

performance and stabilize the system based on a real-time IP traffic condition satisfactorily as 

illustrated by simulations using artificial data and actual IP network measurements. The PI 

controller with gain scheduling provides the overall networked control system performance 

significantly better than the system using the nominal gains without the delay concern. 

Keywords—Internet, networks, adaptive control, control systems, DC motors, distributed 

control, real time system. 



 

101 

I. Introduction 

 Part I [1] of this paper introduces the foundation of a methodology that enhances the widely 

used PI (Proportional-Integral) controller so it can be used over IP networks. The proposed 

approach is based on PI controller gain scheduling, where the PI controller gains are updated at 

the controller output. The approach could save much cost and time for practically existing PI 

controllers because the controllers can still be used without requiring redesign and 

reinstallation of a new networked control system. In order to maintain the best possible system 

performance, the optimal PI controller gains are scheduled in real-time with respect to the 

monitored IP network traffic condition. The foundation for the proposed approach including 

parameterization of a networked PI control system for gain scheduling and stability region 

approximation with respect to constant network delays will be extended for actual IP network 

delays here in Part II. An algorithm to search for the optimal parameter to schedule the PI 

controller gains in Part I is also continually utilized. Characterization and parameterization of 

actual IP network delays based on the foundation in Part I are described in Section II. Section 

III presents the real-time gain scheduling algorithm. Simulation results to verify the 

performance of the proposed gain scheduling approach are shown in Section IV. The paper is 

concluded in Section V. 

II. Parameterization for Gain Scheduling: Actual IP Network Delay 

A. IP network delay characteristics 

 Actual IP network delays are not constant, but stochastic in nature. In addition, because 

packets are sent in discrete-time according to the applications and protocols used, the network 

delays are not necessarily continuous. The time-varying characteristic in IP network delays is 

caused by several factors such as physical media (e.g., wire or wireless), network 

configuration, routing protocols, traffic conditions, and network usages. To illustrate actual IP 

network delays, RTT (roundtrip time) delays measured for 24 hours (00:00-24:00) from an 



 

102 

Ethernet network in ADAC (Advanced Diagnosis And Control) Lab at North Carolina State 

University (NCSU) to the destinations listed in Table 1 are shown in Fig. 1. Statistical 

measures of the RTT delays are shown in Table 2. The corresponding histograms of the RTT 

delays to approximate probability densities are shown in Fig. 2. Note that the scales of delays 

on the x-axis in Fig 2 (a), (b), (c), and (d) are different, which are [4e-4, 9e-9], [0.022, 0.034], 

[0.062, 0.0645], and [0,1] sec, respectively. 

Table 1. Destinations to measure RTT delays from ADAC Lab at NCSU, their location, and 
distance: www,lib.ncsu.edu, www.visitnc.com, www.utexas.edu, and www.ku.ac.th. 

Destination host Description Location 
Distance 

from ADAC 
Lab (miles) 

www.lib.ncsu.edu NCSU library NCSU, Raleigh, NC, 
USA 

0.15 
 

www.visitnc.com Department of 
Commerce, NC 

Releigh, NC, USA 1.5 

www.utexas.edu University of Texas at 
Austin 

Austin, TX, USA 1169 

www.ku.ac.th Kasetsart University Bangkok, Thailand 9015 
 

Table 2. Statistical measures (minimum, median, mean, and maximum) of RTT delays 
measured from ADAC Lab at NCSU to www.lib.ncsu.edu, www.visitnc.com, 

www.utexas.edu, and www.ku.ac.th. 

Destination host minτ  (sec) medianτ  (sec) meanτ  (sec) maxτ  (sec) 
www.lib.ncsu.edu 0.000435 0.000471 0.000580 0.0862 
www.visitnc.com 0.0166 0.0232 0.0326 0.7562 
www.utexas.edu 0.0622 0.0627 0.0629 0.1187 
www.ku.ac.th 0.0045 0.3150 0.3730 227.7095 

 
 
 
 
 



 

103 

 
 
 
 

 

0 5 10 15 20
0 

0.005 
0.01 

0.015 
0.02 

0.025 
0.03 

0.035 
0.04 RTT : NCSU 

hour 

R
TT

(s
)  

 

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

RTT : NC 

hour 
R

TT
(s

)  
 

 (a) (b) 

 

0 5 10 15 20
0 

0.05 

0.1 

RTT : TX 

hour 

R
TT

(s
)  

 

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

RTT : TH 

hour 

R
TT

(s
)  

 
 (c) (d) 

Fig.1. RTT delays measured from ADAC Lab at NCSU to: (a) www.lib.ncsu.edu. (b) 
www.visitnc.com. (c) www.utexas.edu. (d) www.ku.ac.th. 

 

 



 

104 

4 5 6 7 8 9

x 10-4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 10
4 Histogram: NCSU

Delay (s)

N
um

be
r o

f p
ac

ke
ts

0.022 0.024 0.026 0.028 0.03 0.032 0.034
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
Histogram: NC

Delay (s)

N
um

be
r o

f p
ac

ke
ts

 
 (a) (b) 

0.062 0.0625 0.063 0.0635 0.064 0.0645
0

1000

2000

3000

4000

5000

6000

7000

8000

Histogram: TX

Delay (s)

N
um

be
r o

f p
ac

ke
ts

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
Histogram: TH

Delay (s)

N
um

be
r o

f p
ac

ke
ts

 
 (c) (d) 

Fig. 2. Histograms of RTT delays measured from ADAC Lab at NCSU to: (a) 
www.lib.ncsu.edu. (b) www.visitnc.com. (c) www.utexas.edu. (d) www.ku.ac.th. 

 As shown in Fig. 1 (a), (b), and (c), the RTT delay in each case can be considered to vary 

above a constant delay. The constant delay is the minimal RTT delay in Table 1. The minimal 

delay is mainly caused by the propagation delay and the necessary transmission delay in a 

minimal-hop transmission. RTT delay that is greater than the minimal delay may be induced by 

various causes including queuing delays and congestion conditions in routers. The RTT delay 

characteristic in Fig. 1 (d) is quite different from the other cases. The RTT delay in this case 

could not be considered to vary above a constant delay. Changes of medias used to link IP 



 

105 

networks between the USA and Thailand at different time frames such as different fiber optic 

lines of several country gateways may be a reason for this situation. 

 The physical distance between ADAC Lab and a destination is a factor for RTT delays, and 

the distance in general directly relates to the propagation delay among the sites. As shown in 

Table 2, the further destinations have longer minimal, median, and mean RTT delays. 

However, the distance does not always imply a longer delay. For example, www.visitnc.com 

has a longer maximal RTT delay than www.utexas.edu that is much further actually. Packets 

from ADAC Lab to www.visitnc.com may take more hops than packets to www.utexas.edu. 

 Furthermore, the RTT delay may depend on other factors like local activities on the 

destination site and demands to access the site. For example, www.lib.ncsu.edu may be 

routinely backing up data around midnight so that the RTT delay increases during this time 

period. Likewise, not many people would access NC information on www.visitnc.com 

overnight. Thus, the RTT delay at this time period is lower than the RTT delay measured 

during the daytime. In this paper, we assume that the control agent only performs the control 

tasks including monitoring IP traffic conditions, computing control signals, and exchanging 

control packets and sensory output packets with action agents as mentioned in Part I. Likewise, 

the activities of action agents are limited to data conversion and packet exchanges with the 

control agent. The control agent and action agents are not allowed to perform other 

unnecessary local activities to limit RTT delays. 

B. Parameterization of IP network delay characteristics for gain scheduling 

Fig. 2 shows that the histograms skew to the left. These shapes of the histograms indicate 

the higher probability to have RTT delay that is shorter than the median and mean. RTT delay 

can be much longer than the median and mean, but with much lower probability. In this paper, 

we will focus more on well-regulated traffic IP networks with a small number of hops that have 

the probability density of RTT delay similar to Fig. 2 (a) and (b). To investigate how this 

stochastic behavior can affect the optimality of β , RTT delay is modeled by a random 



 

106 

probability distribution. The random distribution model should be simple in order to estimate in 

real-time for gain scheduling, while providing reasonable accuracy in representing different IP 

network conditions. Based on these reasons, we propose to use the generalized exponential 

distribution to describe IP network delays as follows: 

 [ ]
( )1 , ,

0,             ,

e
P

τ η φ τ η
φτ

τ η

− − ≥= 
 <

 (1) 

where the expected value of the RTT delay [ ]E τ φ η= + , and variance 2 2σ φ= . If η  is known, 

φ  can be easily approximated from η , and an experimental value of [ ]E τ  or the mean µ . 

Some researchers have also used the exponential distribution to approximate IP network delays 

for control over IP networks [2]. An important concern is how to select η  in real-time. Both η  

and φ  parameters have to be updated frequently with respect to the current IP traffic condition. 

This concern relates to how to generalize the approach based on a constant τ  in the previous 

section. RTT delay can be treated as the delay τ  except that RTT delay is stochastic and 

happens as discrete events. In this paper, we treat the IP network stochastic behavior as a 

parameter variation of the system transfer function. Therefore, η  should be an appropriate 

value to serve as a base for the parameter variation described as τ η τ= + ∆ , where τ∆  is the 

delay parameter variation. Also, based on (1), [ ]P τ η=  should be the peak of the probability 

density function. A feasible choice of η  is the median of RTT delay. The median can be easily 

computed in real-time and is representative for a majority of RTT delay. For example, the 

medians in Table 2 are very representative because they locate closely to the peaks of the 

histograms in Fig. 2, which are the majority of RTT delays. We ignore the case 0τ∆ <  

(i.e.τ η< ) since this variation is relatively small. In addition, [ ]P τ η=  could be used as the 

worst-case RTT delay distribution for τ η< . Based on (1) and the RTT delay statistics in 

Table 2, we also assume that the ideal RTT delays have µ η> . 



 

107 

C. Optimizing β  with actual IP network delay concern 

 The controller used in the real IP network environment has to be a discrete-time PI 

controller to support actual IP packet transmissions. The PI controller in Part I can be 

discretized by several approximation methods such as forward Euler, backward Euler, or 

Tustin approximations. In part II of this paper, we use a discrete-time PI controller 

approximated by forward Euler approximation as an example. With the forward Euler 

approximation, a stable continuous-time system could be possibly mapped in an unstable 

discrete-time system [3]. The optimal β  obtained by the procedure in Part I with a continuous-

time PI controller may cause instability when the corresponding discrete-time PI controller is 

used. Therefore, the optimal β  for a discrete-time PI controller should be obtained by using 

the discrete-time controller in the searching algorithm directly, where ( )maxβ τ  obtained from 

the root locus in the continuous-time domain can still be used. The sampling time of the 

controller is defined as 1T =  msec so that the discrete-time PI controller behaves closely to the 

continuous-time controller at the nominal condition without violating the performance 

specifications mentioned in Part I.  

 If RTT delay is constant, φ  will be zero, and the optimal β  for τ η=  can be immediately 

applied. With the stochastic behavior of actual IP networks, φ  could affect the optimal setting 

of the PI controller as the delay transfer functions in the control loop are changed. Thus, the 

optimal β  under different actual IP network traffic conditions has to be evaluated with respect 

to the updated η  and φ . To find the optimal β  with respect to the updated η  and φ , the same 

procedure in Part I can be used in simulations except that the delay τ  has to vary by the 

generalized exponential distribution in (1) with given η  and φ . Fig. 3 shows the cost J with 

respect to 0,0.002,0.004,0.006φ = , while holding 0.01η = . The surface of J with respect to 

0.01,0.02,0.03, ,0.1,η = …  and 0,0.001,0.002,...,0.009,φ =  is also shown in Fig. 4. The cost 

J uses 1 2 31.64902, 0.00833,  0.01395, 100,w w w M= = = =  10 secft =  as used in Part I 

without constraint. Some of the optimal β  found from J are shown in Table 3. 



 

108 

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10-5

β

J

η=0.01

φ=0
φ=0.002
φ=0.004
φ=0.006

 

Fig. 3. Typical effect of various φ  on the optimal β  selecting while holding η  constant at 
0.01η = . 

 

Fig. 4. Typical cost surfaces of J with respect to various η  and φ  without constraint.  

η=0.01 

η=0.02 

η=0.03 

η=0.04 
η=0.05 
η=0.06 

η=0.07 
η=0.08 
η=0.09 
η=0.1 

φ 
β 



 

109 

Table 3. Optimal β  with respect to 0.01,0.02,0.03,0.04,η =  and 0,0.001,0.002,φ =  
...,0.009  obtained with 1 2 31.64902, 0.00833,  0.01395, 100,  10 secfw w w M t= = = = =  

without constraint. 

    η       
φ  0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 

0.01 0.83 0.68 0.58 0.51 0.45 0.40 0.37 0.34 0.31 0.29 
0.02 0.79 0.65 0.56 0.49 0.44 0.39 0.36 0.33 0.30 0.28 
0.03 0.78 0.65 0.55 0.48 0.43 0.39 0.36 0.33 0.30 0.28 
0.04 0.76 0.64 0.55 0.48 0.43 0.39 0.35 0.32 0.30 0.28 

 As shown in Fig. 3 and Table 3, the optimal β  shifts to the left and decreases in value 

when there is more delay variation indicated by a higher value of φ . A higher η  also lowers 

the optimal β  as shown in Table 3 and Fig. 4.  

III. Gain Scheduling Algorithm 

 Since the traffic condition on actual IP networks does not always remain the same, the 

networked PI controller has to adapt itself to handle this time-varying traffic condition. A 

possible solution to adapt the networked PI controller is to adjust ( )0 0,P IK K  by scheduling β  

with respect to the current traffic condition characterized by η  and φ . We assume that the gain 

scheduling approach is implemented as a hardware or software part of the control agent called 

the β  scheduler middleware, which is physically (in hardware) or virtually (in software) 

attached in front of the original PI controller, respectively. The β  scheduler middleware must 

have enough memory to store the optimal β  with respect to η  and β  as a lookup table. In 

addition, the β  scheduler middleware must have IP network interface for RTT monitoring and 

packet exchanges between the PI controller and an action agent plant without interrupting the 

original PI controller. An output queue is also required in the β  scheduler middleware to store 

outgoing packets when the IP network is not ready for a network transmission. The gain 

scheduling procedure is depicted in Fig. 5 with steps 1, 2, 3, 4, and 5, to be described as 

follows. 



 

110 

PI controller

β scheduler
middleware

IP network

Action agent

21 34

Start

1 : Initialize variables: i, m, n = 0.

2 : Send control packet with u(t), i, tS(i), and increase i by i = i + 1.

3 : Return output packet with y(t), i, tS(i).

4 : Compute RTT delay: rtt(t) = tA(i) - tS(i), and increase m
and n by m = m+rtt(i) , n = n+1.

5 : If n = N, compute µ, η,  and φ, and update β

5

n=N

 

Fig. 5. β  gain scheduler middleware operation. 

1)  The β  gain scheduler middleware initializes the packet index defined as 0, , ,i N= …  

to 0i = , the summation of RTT delay defined as m to 0m = , and the number of successful 

packet roundtrips defined as n to 0n =  to be used in later steps. 

2) To send ( )u t  out to an action agent according to the original controller operation, the 

β  scheduler middleware captures and puts ( )u t  in a UDP packet at every sampling time T 

with i, and the current time defined as the sending time ( )St i . The control ( )u t  in the packet i 

is defined as ( ),u t i  for future reference. The packet i should be sent out immediately. 

However, the IP network may not be always available for a transmission. Thus, the packet i 

may have to be stored in the output queue to wait for sending at the instant that the IP network 

is ready. Once the packet i is pushed in the queue, or sent out immediately without being 



 

111 

stored, the β  scheduler middleware will increase the packet index by 1i i= + . A possible 

control packet format used is illustrated in Fig. 6 (a). 

 

UDP header u(t,i) i ts(i)
                        

UDP header y(t,i) i ts(i)
 

 (a) (b) 

Fig. 6. Possible UDP packet formats for β  scheduler middleware:  
(a) Control packet of ( ),u t i . (b) Output packet of ( ),y t i . 

3)  The action agent will return the output ( )y t , i, and ( )St i , as a packet shown in Fig. 6 

(b) back to the β  scheduler middleware once it receives and processes ( ),u t i  periodically 

using the sampling period T. This corresponding feedback is defined as ( ),y t i . Likewise, we 

assume the action agent has the same queuing mechanism to handle outgoing packets. The 

feedback packet will arrive at the β  scheduler middleware with a random IP network delay. 

4)  When the β  scheduler middleware receives a packet containing ( ),y t i  from the 

action agent at time t during a sampling period, the β  scheduler middleware will compute: 

 ( ) ( ) ( )A Srtt i t i t i= − , (2) 

 ( )m m rtt i= + , (3) 

 1n n= + , (4) 

where ( )rtt i  is the RTT delay of the packet roundtrip i, and ( )At i  is the arrival time of the 

corresponding feedback packet i. The summation m is used to later compute the mean µ . The 

β  scheduler middleware will store ( )rtt i  in memory along with other RTT denoted as 

( )rtt j , j i∀ ∈ <`  that are previously computed. The RTT delay ( )rtt i  is placed in the 

memory, at which ( ) ( ) ( ) ,rtt a rtt i rtt b< ≤  ,a b i∀ ∀ ∈ ≤`  for sorting RTT delays in the 

memory to later compute η . For future reference, the RTT delay stored at position l in the 

memory is defined as [ ]RTT l . 

 Packets transmitted between the β  scheduler middleware and an action agent may be lost 

because of reasons such as IP network congestion and a router’s packet dropping policy. 



 

112 

Therefore, there would be some unsuccessful packet roundtrips. In this case, the PI controller 

and the action agent will opt to use the most updated data to compute ( ),u t i  and ( ),y t i , 

respectively. In this paper, we focus on the effect of IP network delay and variation, and 

assume that the number of unsuccessful packet roundtrips is small such that it does not 

significantly affect the control performance. 

5)  Once n N= , the β  scheduler middleware will calculate:  

 m Nµ = , (5) 

 
( ) ( )( )/ 2 / 2 1 2,   is even,

/ 2                                      ,  is odd,

RTT N RTT N N

RTT N N
η

 + +      = 
     

 (6) 

 
,  ,

0      ,  ,
µ η µ η

φ
µ η

− >
=  ≤

 (7) 

where N is the number of packets used to approximate the characteristic of RTT delay. When 

µ η≤ , 0φ =  and η  becomes the representative worst-case delay to avoid a negative φ , which 

violates the shape of (1). The β  scheduler middleware then updates β  by picking the optimal 

β  from the table with respect to η  and φ . Steps 1-5 will be repeated for the next iteration. 

 Before the proposed gain scheduling is practically applied, the β  scheduler middleware 

should first probe the network traffic condition to pick up an appropriate initial β  from the 

look-up table. The probing can be performed by informing the action agent for probing, and 

following steps 1-5 for a single iteration without actually controlling the action agent. 

IV. Case Study and Simulation Results 

 The performance of the proposed β  scheduler middleware approach on the networked DC 

motor PI speed control system described in section II of Part I of this paper [1] is verified by 

simulations implemented on Matlab/Simulink 6.1. The following environment is used to 

illustrate the effectiveness of the proposed β  scheduler middleware control scheme. 

� The steady-state reference value: 1c = . 



 

113 

� The final simulation time: 10ft =  sec. 

� The size of the optimal β  lookup table η φ×  is 14 26× , where 0.01,0.02,0.03, ,η = …  

0.09,0.1,0.2,0.3, ,0.5… , and 0,0.001,0.002, ,0.019,0.02,0.03,0.04, ,0.07φ = … … . The 

optimal β  from η  and φ  that is not in the table is obtained by the linear-interpolation 

technique. The optimal β  is computed by following the procedure in Part I using the 

number of bins 100M = . 

� The sampling time of the PI controller, the β  scheduler middleware and the action 

agent controller: 1T =  msec. 

� The number of packets to evaluate the characteristic of RTT delay: 100N = . 

� The DC motor parameters are picked up from [4] as same as in Table 1 of Part I. 

� The nominal PI controller gains: ( ) ( )0 0, 0.1701,0.378P IK K � . 

 Multiple RTT delay data sets are prepared for the simulations by pre-computing with 

certain values of η  and φ  and also obtaining from actual measurements. In this paper, we 

assume that the delay from the β  scheduler middleware to the DC motor ( CPτ ) and the delay 

from the DC motor to the β  scheduler middleware ( PCτ ) have similar characteristics. 

Therefore, we prepare these delays for the simulation by dividing all data points in a RTT delay 

data set by two, and selecting some values from this set to apply as CPτ , and PCτ . Each value 

of CPτ  chosen from data points in the RTT data set is different from the data points used for 

PCτ .  

 Both η  and φ  have effects on the step response of the networked DC motor PI speed 

control system as shown in Table 4, Table 5, and Fig. 7. The η  and φ  parameters shown in the 

tables and figure are adopted from medianτ  and mean medianτ τ−  in Table , respectively. The RTT 

delay data sets used are pre-computed from these parameters by using Matlab 6.1. 

Table 4. Cost J from the networked DC motor PI speed control system simulation with 
various η  while holding  constant at 0φ = .  

η  0.0005 0.0232 0.0627 0.3150 
J 0 1.6171 28.0574 4.6974e+033 



 

114 

Table 5. Cost J from the networked DC motor PI speed control system simulation with 
various φ  while holding η  constant at 0.0232η = .  

φ  0.0001 0.0002 0.0058 0.0094 
J 1.6171 1.6219 2.4693 2.7568 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0 

0.2 
0.4 
0.6 

0.8 

1 
1.2 

1.4 
1.6 

Time(s) 

y  

η=0.0005
η=0.0232
η=0.0627
η=0.3150

0 0.2 0.4 0.6 0.8 1 1.2
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Time(s)

y

φ=0.0001
φ=0.0002
φ=0.0058
φ=0.0094

 
 (a) (b) 

Fig. 7. Effects of η  and φ  on the step response of the networked DC motor PI speed control 
system: (a) η  is varied while holding φ  constant at 0φ = . (b) φ  is varied while holding η  

constant at 0.0232η = . 

 As demonstrated in Table 4, Table 5, and Fig. 7, higher values of η  and φ  can degrade the 

system step response performance, and result in higher J. The obvious performance 

degradation in Fig. 7 is the increasing P.O. However, when φ  is very small, a small increment 

in φ  (i.e., 0.0001 to 0.0002) may not obviously result in system performance degradation. As 

shown in Fig. 7 (b), the step response for 0.001φ =  is almost identical to the step response for 

0.002φ = . 

 To investigate the performance of the β  scheduler middleware, three scenarios are tested 

and compared in the simulations: 

 1.  The DC motor is controlled over IP networks by the PI controller with the nominal 

gains ( )0 0,P IK K . 



 

115 

 2.  The DC motor is controlled over IP networks by the PI controller with a fixed β . The 

fixed β  is obtained by pre-estimating η  and φ  from an RTT delay data set. 

 3.  The DC motor is controlled over IP networks by the PI controller with β  gain 

scheduler middleware using η  and φ  from real-time measurements as described in the 

previous section. 

 First, the three scenarios are simulated by using pre-computed RTT delay data sets. The 

RTT data sets are generated for 4 sets to simulate 4 cases: 1) 0.0005η = , 0.0001φ = , 2) 

0.0232η = , 0.0094φ = , 3) 0.0627η = , 0.0002φ = , 4) 0.3150η = , 0.0058φ = . The 

parameters in cases 1 to 4 are computed from medianτ  and mean medianτ τ−  of www.lib.ncsu.edu, 

www.visitnc.com, www.utexas.edu, and www.ku.ac.th, in Table 2, respectively, in order to 

simulate the networked control system in similar environments to the actual IP networks. The 

costs J from the simulations on the three scenarios are shown in Table 6, whereas the step 

responses from all 4 cases are illustrated in Fig. 8. 

Table 6. Cost J from the networked DC motor PI speed control simulation using pre-
computed RTT delays generated from (a) 0.0005η = , 0.0001φ = . (b) 0.0232η = , 

0.0094φ = . (c) 0.0627η = , 0.0002φ = , and (d) 0.3150η = , 0.0058φ = . 

Parameters for RTT delay generation 
Control 
scheme 0.0005η = , 

0.0001φ =  
0.0232η = , 
0.0094φ =  

0.0627η = , 
0.0002φ =  

0.3150η = , 
0.0058φ =  

Nominal gains 0 2.7568 28.0577 6.5781e+033 
Fixed β  0 4.5827e-005 2.0504e-004 0.0063 
β  scheduler 0 5.0967e-005 2.0195e-004 0.0101 



 

116 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time(s)

y
Without sch
With fixed β
With β sch

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time(s)

y

Without sch
With fixed β
With β sch

 
 (a) (b) 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time(s)

y

Without sch
With fixed β
With β sch

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time(s)

y

Without sch
With fixed β
With β sch

 
 (c) (d) 

Fig. 8. Step responses from the networked DC motor PI speed control simulation using pre-
computed RTT delays generated from (a) 0.0005η = , 0.0001φ = . (b) 0.0232η = , 

0.0094φ = . (c) 0.0627η = , 0.0002φ = , and (d) 0.3150η = , 0.0058φ = . 

 As shown in Table 6 and Fig. 8 (a), the networked PI controller with the nominal ( )0 0,P IK K  

can still meet the design specifications listed in section II when RTT delay and its variation is 

very low (e.g., 0.0005η = , 0.0001φ = ). In this case, 0J =  because the nominal ( )0 0,P IK K  

meets the design specifications at the nominal condition. There is still a gap for the networked 

control system to degrade by IP network delays before violating the performance requirements. 

However, when RTT delay is longer and with more variation (e.g. 0.0232η = , 0.0094φ =  and 

0.0627η = , 0.0002φ = ), the system performance obviously degrades as shown in Table 6, 



 

117 

and Fig. 8 (b) and (c). Moreover, the system can become unstable when RTT delay is very long 

with very high variation (e.g. 0.3150η = , 0.0058φ = ) as shown in Table 6 and Fig. 8 (d). 

 On the other hand, the networked PI control system using fixed β  and β  scheduler 

middleware could maintain the system performance well. As shown in Table 6 and Fig. 8 (a), 

both control schemes can satisfy the performance requirements by resulting in 0J =  because 

RTT delay and its variation is relatively low. With longer RTT delay and more delay variation, 

the requirements cannot be satisfied as shown in Table 6, and Fig. 8 (b) and (c). Nevertheless, 

both schemes can still maintain the system performance in a satisfactory level. The 

performance is much better than the system with the nominal ( )0 0,P IK K  since the PI controller 

gains in this case are adapted to be more suitable for the network traffic conditions. 

Nevertheless, as shown in Table 6 and Fig. 8 (d), both schemes cannot perfectly maintain the 

system performance to meet the specifications, but still can reasonably stabilize the networked 

control system. 

 To investigate the effectiveness of the β  scheduler middleware on actual RTT delays, the 

same simulations are repeated except that the RTT delay data sets in cases 1 to 4 are replaced 

by actual RTT delays measured from ADAC Lab at NCSU to the destinations in Table 1. The 

costs J from the simulations with actual RTT delays on the three scenarios are shown in Table 

7, whereas the step responses from the simulations are illustrated in Fig. 9. 

Table 7. Cost J from network DC motor PI speed control simulation using RTT delays from 
ADAC Lab at NCSU to: (a) www.lib.ncsu.edu. (b) www.visitnc.com. (c) www.utexas.edu. 

(d) www.ku.ac.th. 

Destination host 
Control scheme 

www.lib.ncsu.edu www.visitnc.com www.utexas.edu www.ku.ac.th 

Nominal gains 0 1.7634 28.0574 7.1413e+033 

Fixed β  0 4.9965e-005 2.0517e-004 0.0062 

β  gain scheduling 0 3.6111e-005 2.0147e-004 0.0208 



 

118 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time(s)

y
Without sch
With fixed β
With β sch

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time(s)

y

Without sch
With fixed β
With β sch

 
 (a) (b) 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time(s)

y

Without sch
With fixed β
With β sch

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time(s)

y

Without sch
With fixed β
With β sch

 
 (c) (d) 

Fig. 9. Step responses from the networked DC motor PI speed control simulation using RTT 
delays from ADAC Lab at NCSU to: (a) www.lib.ncsu.edu. (b) www.visitnc.com.  

(c) www.utexas.edu. (d) www.ku.ac.th. 

 As shown in Table 7 and Fig. 9, the networked DC motor PI speed control system 

simulations with measured RTT delays give similar step response behaviors and costs J to the 

simulations with pre-computed RTT delays. Therefore, the same discussion on the control 

scheme performance can be drawn. There are small differences in the costs J in Table 6 and 

Table 7, which implies imperfect matching between RTT delays generated exactly by η  and φ  

and RTT delays on actual IP networks. However, the similar behaviors of the step responses 



 

119 

can still indicate that the generalized exponential distribution is a good enough approximation 

for IP network delays to find the optimal β  for a current traffic condition.  

 In addition, the PI controllers using the pre-computed optimal β  and β  gain scheduler 

middleware with respect to real-time RTT delay characteristics have similar performance. The 

only exception in these examples is that when RTT delays are very long with high variation 

(e.g., RTT delays from ADAC Lab to www.ku.ac.th). In actual IP networks, the probability 

density of RTT delay may vary, and sometimes the variation can be large. Therefore, the fixed 

optimal β  gain approach may no longer be suitable in some situations such as IP network 

congestion. Using the β  gain scheduling middleware to adjust the PI controller gains provides 

an acceptable and flexible control scheme in real IP network environment. 

V. Conclusion 

 This paper has extended the concepts and methods described in Part I of the companion 

paper to enhance a PI controller for use over actual IP network delays based on RTT (Round-

Trip Time) delay measurements and the generalized exponential distribution model. The 

generalized exponential distribution model is chosen for parameterization of IP networks RTT 

delays because this model can provide reasonably good accuracy and be quickly estimated in 

real-time to support the gain scheduling algorithm. Simulation results from the networked DC 

motor PI speed control problem using the generalized exponential distribution model as RTT 

delays and using actual RTT delays are similar, which indicates the good model accuracy. 

 The concept of finding the optimal β  to schedule the PI controller externally at the 

controller output is extended to the distribution model by considering the median of RTT 

delays η  as the constant delay in Part I and letting the delay variation be parameterized by φ . 

The same iterative gain searching algorithm can be applied, but the PI controller in this case 

has to be converted to a discrete-time controller. As indicated in simulations, higher η  and φ  

parameters imply the smaller optimal β  similar to the case with a longer constant delay in Part 

I.  



 

120 

 The proposed gain scheduling approach iteratively estimates the parameters η  and φ  of 

the distribution model from a number of RTT delay measurements in real-time. The real-time 

gain scheduling has an advantage over a PI controller with fixed gains because the suitable PI 

gains can always be updated when the IP network traffic changes. When the IP network delay 

is low with a small variation, the gain scheduling approach does not result in the superior 

system performance than the controller with the nominal gains since the nominal gains can still 

satisfy the design specification. Under reasonably long random IP network delays, the gain 

scheduling can adapt the controller gain suitably for the current traffic condition and maintain 

the system performance in a satisfactory level much better than does the controller with the 

nominal gains. 

 The proposed approach promisingly permits PI controllers that are already available in 

industries to be used over IP networks. The research can be extended to include several 

concerns such as the optimal number of packet roundtrips to approximate the parameters η  

and φ , packet loss effects, and the experimental performance in order to improve and 

strengthen the gain scheduling approach. In addition, the system performance under different 

IP network QoS protocols as mentioned in Section I of Part I of this paper should be studied 

since the gain scheduling approach has the potential to gain advantages from an improved real-

time IP traffic condition by IP QoS. 

Acknowledgement 

 The authors would like to thank the Royal Thai Government for partially supporting this 

study, and Dr. Douglas S. Reeves for his helpful comments related to this paper. 

References 
[1] Y. Tipsuwan, and M.-Y. Chow, "Methodology of using networked PI controller gain 

scheduling over IP network: Part I – Foundation,".  

[2] J. W. Park and J. M. Lee, “Transmission modeling and simulation for Internet-based 
control,” in IEEE IECON 2001, Denver, CO, 2001, pp. 165-169. 



 

121 

[3] K. J. Åström and B. Wittenmark, Computer-Controlled Systems: Theory and Design, 2 
ed. Englewood Cliffs, NJ: Prentice-Hall, 1990. 

[4] Y. Tipsuwan and M.-Y. Chow, “Fuzzy logic microcontroller implementation for DC 
motor speed control,” in IEEE IECON 99, San Jose, CA, 1999, pp. 1271-1276.



 

122 

APPENDIX FOR CHAPTER IV AND V  

NEURAL-NETWORK-BASED GAIN SCHEDULING FOR 

NETWORKED PI CONTROLLER OVER IP NETWORK 

I. Relationship Approximation by Neural Network 

Although the optimal β  may not have a closed form relationship with respect to η  and φ , 

computational techniques such as artificial neural networks can be used to approximate this 

relationship with adequate accuracy. Artificial neural networks are composed of simple 

mathematical elements called neurons, which operate in parallel. Neural networks can be 

trained so that they can provide target output values with a specific set of input values. Both 

input and output sets for training are called together as a training set. Different types of neural 

networks can be used to approximate the relationship among the optimal β ,η , and φ . A 

widely used 3-layer feedforward neural network is used for the approximation in this paper. 

The numbers of hidden neurons is defined as h. We have used h = 3, 5, 7, and 10 in the section 

to evaluate its performance with respect to different hidden neurons used. 

To avoid a neural network to over fit a training set, and improve generalization to new 

situations, the optimal β , η  and φ  data collected from simulations can be divided into three 

sets. The first set is the training set. The second set is the validation set, which is used to check 

the performance of the neural network during training. While a network is trained, the error 

from the validation set as well as from the training set will usually decrease. However, the error 

from the validation set will begin to increase when the neural network over fits the training set. 

The third set is used as the testing set for a trained network. The size of the optimal β  with 

respect to η φ×  to form the training, validation, and testing sets is 14 26 364× =  patterns, 



 

123 

where 0.01,0.02,0.03, ,0.09,0.1,0.2,0.3, ,0.5η = … …  and 0,0.001, ,0.019,0.02,0.03,φ = …  

0.04, ,0.07.…  The data is separated as the training set for 243 patterns, as the validation set for 

121 patterns, and as the testing set for 121 patterns. The network is trained by using 

Levenberg-Marquardt algorithm [1] with the mean-squared error tolerance of 4e-5. The 

training errors and validation errors during network training using different numbers of hidden 

neurons are shown in Fig. 1. 
 

10 
0 

10
1

10
2

10 
3 10 

-5 

10 
-4 

10 
-3 

10 
-2 

10 
-1 

10 
0 

epoch 

M
ea

n-
sq

ua
re

d 
er

ro
r  

 

Fig. 1. Mean-squared errors from network trainings. 

All network training can reach the training goal except the network with 3h = . This results 

indicate that three hidden neurons may not be enough to approximate the relationship among 

β , η , and φ  in this case. The surfaces of the optimal β  with respect to η  and φ  from the 

original 364 patterns used as a lookup table, and from the neural network with 3,5,7,h =  and 

Training, h = 3
Training, h = 5
Training, h = 7
Training, h = 10 
Validation, h = 3 
Validation, h = 5 
Validation, h = 7 
Validation, h = 10 

Goal 4e-5 



 

124 

10 using the same set of η  and φ  are shown in Fig. 2. The mean-squared error from applying 

the testing set on these neural networks are shown in Table 1.  
 

0 0.1 0.2 0.3
0.4 0.5 0

0.02
0.04

0.06
0.080 

0.2 
0.4 

0.6 

0.8 
1 

φη

β * 

 
(a) 

 

0 0.1 0.2 0.3 0.4 0.5 0 0.02
0.04

0.06
0.080 

0.2 
0.4 
0.6 
0.8 

1 

φη 

β *

 

0 0.1 0.2 0.3
0.4 0.5 0 0.02 0.04 0.06

0.080

0.2

0.4

0.6

0.8

1

φ η

β*

 
(b)                                                                       (c) 

 

0 
0.1 0.2 

0.3 
0.4 0.5 0 0.02

0.04
0.06

0.080 
0.2 
0.4 
0.6 
0.8 

1 

φη 

β *

 

0
0.1

0.2 0.3
0.4

0.5 0 0.02 0.04 0.06
0.080

0.2

0.4

0.6

0.8

1

φ η

β*

 
(d)                                                                      (e) 

Fig. 2. Surfaces of the optimal β  with respect to η  and φ  from (a) the lookup table and 
from neural networks with the number of neurons: (b) 3, (c) 5, (d) 7, and (e) 10.  



 

125 

Table 1. Mean-squared error from applying the testing set on neural networks with h = 3, 5, 
7, and 10. 

Number of neurons 3 5 7 10 

MSE× e-5 5.438 5.058 4.201 6.106 

 

The similar shape of the surfaces in Fig. 1 (b)-(e) to the lookup table surface in Fig. 1 (a) 

imply that the neural networks could provide reasonably good approximation for the lookup 

table. Nevertheless, as shown in Table 1, the mean-squared errors from the neural networks 

with 3,5h =  and 10 are higher than the training error tolerance. Thus, we will use the neural 

network with 7h =  to represent the relationship among the optimal β , η , and φ . Another 

consideration is the computational performance of the neural network. In Matlab, the 

computation time for finding the optimal β  using any of four neural networks takes about 0.02 

s, whereas the lookup table approach uses about 0.01 s. The lookup table approach has shorter 

computation time in this case due to the relatively small table size. However, the lookup table 

approach may not be effective when the size of the table is large. The neural network approach 

should be more effective since the order of computational iteration is ( )1O , which implies the 

computation is finished in one iteration by its parallel structure. The lookup table approach 

usually uses more number of iterations to search for the optimal β . For example, a linear 

search algorithm for the optimal may have the order of ( )2O n . In addition, a neural network 

usually requires less memory than a lookup table to store parameters and variables especially 

when the size of the table is large. For example, the neural network with h=7 needs to store 

only 7 3 24× =  parameter values as the weights of the network, whereas the lookup table needs 

to store 364 parameter values. 

II. Simulation result 

The performance of the proposed β  scheduler middleware approach using a neural 

network on the networked DC motor PI speed control system is verified by simulations 



 

126 

implemented on Matlab/Simulink 6.1. The following environment is used to illustrate the 

effectiveness of the proposed approach: 

� The steady-state reference value: 1c = .  

� The final simulation time: 10ft =  sec. 

� The sampling time of the PI controller, the β  scheduler middleware, and the plant: 

1T =  msec. 

� The number of packets to evaluate the characteristic of RTT delay: 100N = . 

To investigate the effectiveness of the β  scheduler middleware on actual RTT delays, the 

four scenarios are simulated by the RTT delay data sets measured from ADAC Lab at NCSU 

to the destinations in chapter V: 

1. The DC motor is controlled over IP networks by the PI controller with the nominal gains 

( )0 0,P IK K . 

2. The DC motor is controlled over IP networks by the PI controller with a fixed β . The 

fixed β  is obtained by pre-estimating η  and φ  from an RTT delay data set. 

3. The DC motor is controlled over IP networks by the PI controller with β  scheduler 

middleware using the lookup table, and η  and φ  from real-time measurements. 

4. The DC motor is controlled over IP networks by the PI controller with β  scheduler 

middleware using the network with 7h = , and η  and φ  from real-time measurements. 

In this paper, we assume that the delay from the β  scheduler middleware to the DC motor 

( CPτ ) and the delay from the DC motor to the β  scheduler middleware ( PCτ ) have similar 

characteristics. Therefore, we prepare these delays for the simulations by dividing all data 

points in an RTT delay data set by two, and selecting some values from this set to apply as CPτ , 

and PCτ . Each value of CPτ  chosen from data points in the RTT data set is different from the 

data points used for PCτ . The costs J from the simulations are shown in Table 2, whereas the 

step responses from the simulations are illustrated in Fig. 3. 



 

127 

Table 2. Costs J from network DC motor PI speed control simulations using RTT delays 
from ADAC lab at NCSU to: (a) www.lib.ncsu.edu. (b) www.visitnc.com. (c) 

www.utexas.edu. (d) www.ku.ac.th. 

               Control 
                scheme 
Destination 
host 

Nominal 
gains 

Fixed β  β  gain 
scheduling 

Neural 
network with 

7h =  

www.lib.ncsu.edu 0 0 0 0 
www.visitnc.com 1.7634 4.997e-5 3.611e-5 3.611e-5 
www.utexas.edu 28.1036 2.052e-4 2.015e-4 2.027e-4 
www.ku.ac.th 7.14e+33 0.0062 0.0070 0.0061 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time(s)

y

Without sch
With fixed β
With β sch
With 7 neurons

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time(s)

y

Without sch
With fixed β
With β sch
With 7 neurons

 
 (a) (b) 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time(s)

y

Without sch
With fixed β
With β sch
With 7 neurons

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time(s)

y

Without sch
With fixed β
With β sch
With 7 neurons

 
 (c) (d) 

Fig. 3. Step responses from network DC motor PI speed control simulations using RTT 
delays from ADAC lab at NCSU to: (a) www.lib.ncsu.edu. (b) www.visitnc.com. (c) 

www.utexas.edu. (d) www.ku.ac.th. 



 

128 

The performance of the PI controller using the nominal gains is significantly lower when 

RTT delay is longer and its variation is larger as shown in Table 2 and Fig. 3. The networked 

PI control system using fixed β  and β  scheduler middleware with the lookup table and the 

neural network could maintain the system performance much better. As shown in Table 2 and 

Fig. 3 (a), all control schemes can satisfy the performance requirements by resulting in 0J =  

because RTT delay and its variation are relatively low. With longer RTT delay and more delay 

variation, the requirements cannot be satisfied as shown in Table 2, and Fig. 3 (b) and (c). 

However, the performances from the fixed β  and both β  scheduler middleware schemes are 

satisfactorily maintained and is much better than the system with the nominal ( )0 0,P IK K . The 

PI controller gains in these case are adapted to be more suitable for the network traffic 

conditions. However, as shown in Table 2 and Fig. 3 (d), both schemes cannot perfectly 

maintain the performance to meet the specifications with very long RTT delay and high 

variation, but can still stabilize the system. 

Noticeably, the PI controllers using the pre-computed optimal β  and both β  scheduler 

middleware schemes have similar performance. However, in actual IP networks, the 

probability density of RTT delay may vary, and sometimes the variation can be large. 

Therefore, this approach may no longer be suitable in some situations such as IP network 

congestion. Real-time adaptation by either β  scheduler middleware schemes should be able to 

handle these situations better since the network traffic is always monitored. Nevertheless, the 

β  scheduler middleware scheme with the lookup table may operate slowly if the table size is 

large. The neural-network-based approach could be a good alternative. 

References 
[1] M. T. Hagan and M. B. Menhaj, "Training feedforward networks with the Marquardt 

algorithm," IEEE Transactions on Neural Networks, vol. 5, no. 6, pp. 989-993, 1994. 
 



 

129 

C H A P T E R  V I  

GAIN SCHEDULER MIDDLEWARE FOR MOBILE ROBOT 

PATH-TRACKING OVER IP NETWORK 

 

 

 

 

 

 

 

 

 

 

 

This chapter was submitted to an IEEE Transactions. 

Yodyium Tipsuwan                                            Mo-Yuen Chow 

                     ytipsuw@unity.ncsu.edu                                     chow@eos.ncsu.edu  

Advanced Diagnosis And Control Lab 

Department of Electrical and Computer Engineering 

North Carolina State University, Raleigh NC 27606, USA 

Tel: (919) 515-7360, Fax: (919) 515-5108 



 

130 

GAIN SCHEDULER MIDDLEWARE FOR MOBILE ROBOT 

PATH-TRACKING OVER IP NETWORK 

Abstract—For robotic control applications to be used over a data network, conventionally, the 

robot controller needs to be redesigned or replaced by a new controller system and algorithms 

in order to compensate network delay effects. These processes are usually costly, inconvenient, 

and time-consuming. In this paper, a novel methodology to enable an existing robot controller 

for networked control by middleware is introduced. The proposed methodology uses 

middleware to modify the output of an existing robot controller based on a gain scheduling 

algorithm with respect to the current network traffic conditions. Since the existing robot 

controller can still be utilized, this approach could save much time and investment cost. A 

mobile robot path-tracking problem over an IP network is used as a case study to illustrate the 

effectiveness of the middleware approach. Simulation and experimental results on a mobile 

robot path-tracking platform show that the middleware approach can significantly maintain the 

robot path-tracking performance with the existence of IP network delays. The research results 

indicate the promising future of using middleware approach for IP network teleoperations. 

Keywords—Internet, networks, adaptive control, control systems, DC motors, distributed 

control, real time system, mobile robots, telerobotics. 

I. Introduction 

Due to the rapid advancement in data and communication network technologies, especially 

the Internet, real-time networked control applications including teleoperation and remote 

mobile robots have gained increasing attentions in industries such as factory automation and 

industrial electronics. By organizing wiring connections among control system devices via 

network resources, networked control systems can be conveniently and systematically 



 

131 

maintained. Furthermore, this configuration also enables remote control operations. 

Nevertheless, the networked control system performance could be degraded and even become 

unstable by network-induced delays. The performance can be aggravated if the network delays 

are time-varying and random (e.g., IP network delays). Several techniques have been 

developed to handle network delay effects, and some promising results have been reported. 

These control methodologies are based on different techniques such as buffering [1, 2], 

nonlinear and perturbation theory [3], optimal stochastic control [4], optimal gain scheduling 

[5], and sampling time scheduling [6]. Some control techniques are developed for a specific 

kind of applications such as robots. These techniques include robust gain scheduling [7], wave 

variables [8, 9], and event-based control [10]. However, applying and implementing these 

control techniques on existing systems that are extensively being used in industrial plants could 

be costly, inconvenient, and time-consuming. The main reason is that all existing controllers 

may have to be redesigned, replaced, or, reinstalled in order to be used over data networks. 

Recently, there have been several efforts to apply middleware to assist networked control 

systems [11, 12]. Middleware is an implementation to seamlessly link applications and/or 

function calls together. In several implementations, middleware could also handle network 

resource allocation and reservation between two applications over a data network [13-16]. A 

networked control system can utilize middleware to achieve certain network conditions such as 

guaranteed bandwidth, delay bound, or loss rate, by negotiating with the network counterpart 

for resource reservation. However, the network requirements may not always be granted due to 

several reasons such as network traffic congestion, inadequate resources, or loss of a link. 

This paper proposed a novel methodology to utilize middleware to enable an existing non-

network-based mobile robot controller so it can be used for networked control. The proposed 

methodology applies middleware to modify the controller output with respect to the current 

network traffic condition. Controller output modification is performed based on gain 

scheduling. Since the controller does not need to be replaced, reinstalled, or redesigned, the 



 

132 

proposed approach can be cost-effective, and conveniently applied on existing systems [17]. To 

illustrate the effectiveness of the proposed middleware approach for complex industrial 

applications, a mobile robot path-tracking problem over an IP network is used as a case study. 

The structure of middleware is discussed in section II. The system description of the case study 

is described in section III. Use of middleware for the case study is explained in section IV. The 

effectiveness of the proposed approach is verified in section V. Finally, the paper concludes in 

section VI. 

II. System Description 

The middleware in this paper is defined as the Gain Scheduler Middleware (GSM). We 

assume that the GSM handles all network connections between the controller and the remote 

system to be controlled over a network. These include typical network operations such as 

sending and receiving packets, and other general middleware operations such as negotiation 

and resource reservation. The structure of the GSM is shown in Fig. 1. 

Controller

Gain scheduler Middleware

Network
traffic

estimator

Feedback
preprocessor

Gain
scheduler

Network
Remote
system

Probing

Control
signal

Feedback
signal

 

Fig. 1. Structure of gain scheduler middleware (GSM). 

The basic components of the GSM shown in Fig. 1 are: 

1. Network traffic estimator 

The function of the network traffic estimator unit is to estimate the current network traffic 

conditions, which can be characterized into a set of network variables. For example, the 



 

133 

network variables in this case can be the statistics of the IP traffic data such as mean delay and 

loss rate. These network variables are then utilized by feedback preprocessor and gain 

scheduler, depending on the control algorithm used. After initialization at the beginning of the 

teleoperation process, network traffic estimator will periodically monitor the network 

conditions by sending a probing packet to the remote system with sampling time PT . The 

estimator then characterizes the network conditions with the updated network variables based 

on the monitored probing packet roundtrip measurement.  

2. Feedback preprocessor 

The feedback preprocessor unit is used to preprocess the feedback data such as motor speed 

and current from the remote system before forwarding the signal to the controller. 

Preprocessing in this case can be, for example, filtering noises in the feedback data, or 

prediction of remote system states. Necessity of these operations depends on the gain-

scheduling algorithm used in the gain scheduler. Thus, this part may or may not be required. In 

some cases of the GSM for a PI (Proportional-Integral) DC motor speed controller in [17], 

feedback preprocessor was not applied.  

3.  Gain scheduler 

 By using a gain-scheduling algorithm, the gain scheduler unit modifies the controller 

output with respect to the current network conditions (characterized by network variables). The 

algorithm to modify the controller output depends on the overall system configuration of the 

controller and the remote system. 

 The overall GSM operations for networked control can be summarized as follows:  

1) Feedback preprocessor waits for feedback data from the remote system. Once the 

feedback data arrives, the preprocessor processes the data using the current values of network 

variables and passes the preprocessed data to the controller. 

2) The controller computes the control signals and sends them to the gain scheduler. 



 

134 

3) The gain scheduler modifies the controller output based on the current values of 

network variables and sends the updated control signals to the remote system. 

III. A Case Study: Mobile Robot Path-tracking 

A mobile robot path-tracking problem is used to illustrate the GSM concept and its 

effectiveness. The robot model and path-tracking algorithm are described as follows: 

A.  The mobile robot model 

The robot used to illustrate the proposed approach is a differential drive mobile robot with 

two driving wheels and two caster wheels [18] as shown in Fig. 2. 

x

y

ωL
v

θ ,ω
W

ωR

yM xM

ρ

 

Fig. 2. Differential drive mobile robot: (a) Robot schematic drawing. (b) Actual mobile robot 
platform. 

The mobile robot model can be described by the following equations: 

 2 2 R

L

v

W W

ρ ρ
ω
ωρ ρω

 
    

=     
    −  

, (1) 



 

135 

 ,

,

R r RR

L r LL

ω εω
ω εω

+  
=    +   

, (2) 

 cosx v θ=� , (3) 

 siny v θ=� , (4) 

 θ ω=� , (5) 

where ( ),x y  is the position in the inertial coordinate, ( ),M Mx y  is the position in the robot 

coordinate, θ  is the azimuth angle of the robot, v is the linear velocity of the robot, W is the 

distance between the two wheels, ρ  is the radius of the wheels, ω  is the angular velocity of 

the robot, Lω  and Rω  are the angular velocities of the left and right wheels, ,L rω  and ,R rω  are 

the reference angular velocities for wheel speed controllers at the left and right wheels, and Lε  

and Rε  are the differences between the reference velocities and the actual velocities of the left 

and right wheels, respectively. The speed of each wheel is controlled by a PI controller: 

 ( ) ( ) ( )
0

t

P Iu t K e t K e dξ ξ= + ∫ , (6) 

where PK  is the proportional gain, IK  is the integral gain, ( )u t  is the input voltage to a DC 

motor, and ( )e t  is the error, which can be either Lε  or Rε . 

B.  Path-tracking algorithm 

 A generalization of the quadratic curve approach proposed in [18] is used as the path-

tracking algorithm in our illustration. The main concept of this path-tracking algorithm is to 

move the robot along a quadratic curve to a reference point on a desired path. A point on the 

path is described in the inertial coordinate as ( ) ( )( ),p px s y s , where s is the distance traveled 

on the path. By assuming that the orientation of the mobile robot moves close to the desired 

value in the motion along the reference path, this algorithm controls only the position of the 

robot regardless to its orientation. This algorithm is suitable for real-time usage because of its 

simple computation with minimal amount of information compared to other approaches. The 

algorithm is outlined as: 



 

136 

 1)  Based on the current robot position ( ) ( ) ( ) ( ) T
i x i y i iθ=   x , where i +∈`  is the 

iteration number, optimize: 

 ( ) ( )( ) ( ) ( )( )2 2
min p ps

x s x i y s y i− + − , (7) 

to find 0s s=  for the i-th iteration that gives the closest distance between the robot and the 

path. Depending on the forms of ( )px s  and ( )py s , this optimization could be performed in 

real-time by using a closed-form solution, or a lookup table and a numerical technique such as 

linear interpolation. The iteration number i can be thought of as the sampling time index of the 

path-tracking controller if 1i it t+ −  is constant. 

 2)  Compute the reference point for the robot to track. Without loss of generality, in this 

paper, the path is constructed by a combination of lines and curves with different curvatures. 

Each line or curve has a constant curvature. Fig. 3 shows an example of a robot path, which is 

the combination of: 

• Segment 1: Straight line: 

 ( ) 0px s = , ( )py s s= , if ,0 ,1 ,0 ,1, 0, 1e e e es s s s s≤ ≤ = = , (8) 

• Segment 2: Arc with a radius of 1:  

 ( ) ( )1 cos 1px s s= − − , ( ) ( )1 sin 1py s s= + − , if ,1 ,2 ,2, 1e e es s s s π< ≤ = + , (9) 

• Segment 3: Arc with a radius of 0.2: 

 ( ) ( )2.2 0.2cos5 1px s s π= − − − , ( ) ( )1 0.2sin 5 1py s s π= − − − , if ,2 ,3 ,e es s s< ≤

 ,3 1 1.2es π= + , (10) 



 

137 

 

0 0.5 1 1.5 2 2.5 
0 

0.5 

1 

1.5 

2 

x(m) 

y(
m

)  

Segment 1

Segment 2

Segment 3

,0 (starting position)es

,3 (Final position)es

,1es ,2es

 
Fig. 3. Example of robot path. 

where j is the index of the j-th segment of the path, 
( )p

j

d s
ds

θ
κ =  is the curvature of the j-th 

segment, ,e js  is the endpoint of the j-th segment. The reference position 

( ) ( ) ( ) ( ) T
r r r ri x i y i iθ=   x  is computed from ( ) ( )( ) ,r px i x s i=  ( ) ( )( ) ,r py i y s i=  

( ) ( )( )r pi s iθ θ= , where ( )s i  is the reference distance traveled and is determined by the 

procedures shown in Fig. 4. 



 

138 

Start

If

0t js s γ= +

,t e js s≤

( ) ,e js i s=( ) ts i s=

If
,t e js s<

End

Yes

No

Yes

No
0 1t js s γ += +

( ) ts i s=

 

Fig. 4. Procedures for determining the reference distance traveled ( )s i . 

The value of ( )s i  is initially determined from 0s  as: 

 ( ) max
0 ,

1t j j
j

ss i s s γ γ
βκ

= = + =
+

, (11) 

where ts  is a temporary variable, jγ  is the projecting distance, max , , 1,e j e js s s j+≤ − ∀ , is the 

maximal projecting distance, and β +∈\  is a positive constant. The projecting distance 

indicates how far the reference distance traveled should be projected ahead from 

( ) ( )( )0 0,p px s y s . The values of the constants maxs  and β  depend on the robot path, the robot 

configuration, and the designer’s preference, whereas the curvature jκ  depends only on the j-th 

segment of the path to track. The reference point will be closer to ( ) ( )( )0 0,p px s y s  if jκ  is 

high. 

However, if ( ) ,t e js i s s= > , ( )s i  will not be on the j-th segment. In this case, the controller 

needs to evaluate if the robot should track the path based on segment j or segment 1j + . For 

evaluation, ts  is recomputed by: 

 ( ) 0 1.t js i s s γ += = +  (12) 

When ( ) ,t e js i s s= < , ( )s i  may be less than ( )1s i − , which causes the robot to move 

backtrack if ( )( ) ( )( )( ),p px s i y s i  is used as the reference position. Therefore, the better choice 

of ( )s i  in this case should be ,e js  in order to guarantee that the robot will not move backtrack. 



 

139 

 3)  Compute the error ( ) ( )r i i−x x , and transform the error from the inertial coordinate to 

the robot coordinate as: 

 ( ) ( ) ( )( )T
cos sin 0
sin cos 0
0 0 1

x y ri e e e i iθ

θ θ
θ θ

 
  = = − −   
  

e x x . (13) 

4)  Find a quadratic curve that links between ( )ix  and ( )r ix  from: 

 ( ) 2
M My A i x= , where ( ) ( ) 2sgn y

x
x

e
A i e

e
= . (14) 

The robot will move forward if ( )r ix  is in front of the robot ( 0xe > ). On the other hand, 

the robot will move backward if ( )r ix  is behind of the robot ( 0xe < ). 

5) Compute the reference linear and angular velocities of the robot along the quadratic 

curve. The original equations of the velocities are: 

 ( ) ( ) ( )( )2 2 2sgn 1 4r x M Mv i e x A i x= +� , (15) 

 ( ) ( )
( )

3

2

2 M
r

r

A i x
i

v i
ω =

�
. (16) 

Let Mx  at 1i it t t +≤ <  be given by: 
 ( )( )M ix K i t t= − ,  (17) 

where  ( ) ( ) ( )
sgn

1xK i e
A i
α

=
+

,  (18) 

and α  is a positive constant used as a speed factor. The robot will move fast if α  is set to a 

high value, and vice versa. If it t−  is small (e.g., in the order of ms), ( )rv i  can be 

approximated during 1i it t t +≤ <  by: 

 ( ) ( ) ( ) ( )( )( ) ( )22 2 2 2 21 4r iv i K i A i K i t t K i= + − � . (19) 

 Thus, (15) and (16) can be approximated by: 

 ( ) ( )ˆrv i K i� , (20) 

 ( ) ( ) ( )ˆ 2r i A i K iω � . (21) 



 

140 

The reference speeds of both wheels are then calculated by: 

 ( ) ( ) ( )
,

ˆˆ
2

r r
R r

v i W i
i

ω
ω

ρ ρ
= + , (22) 

 ( ) ( ) ( )
,

ˆˆ
2

r r
L r

v i W i
i

ω
ω

ρ ρ
= − . (23) 

6) Repeat steps 1)-5) and set 1i i= + . 

IV. Use of GSM for Mobile Robot Path-Tracking Control over a Network 

 In order to control a mobile robot to track a predefined path over a network, the path-

tracking controller computes and sends the reference speed ( ),L r iω  and ( ),R r iω  in a packet 

across the network at every iteration i to the robot as shown in Fig 5.  

IP Network

Mobile
robot( )CR iτ

( )RC iτ

( )T iτ ( )txController
( )( )i RCt iτ−x ( ),R r iω

( ),L r iω

( ), 1L r iω −
( ), 1R r iω −

 

Fig. 5. Data flow of networked mobile robot. 

 The path-tracking computation at iteration i starts when the controller receives the feedback 

data in a packet from the mobile robot at time it t= . Compared with the network delays, the 

computation time at the controller is usually and relatively insignificant. Thus, the computation 

could be assumed to finish at it t=  as well. The basic arrival feedback data in this case are the 

reference speeds ( ), 1L r iω −  and ( ), 1R r iω − , and the robot position ( )( )i RCt iτ−x , where 

( )RC iτ  is the network delay from the robot to the controller at i. The controller then sends 

( ),L r iω  and ( ),R r iω  to the robot once the computation is finished. Likewise, ( ),L r iω  and 

( ),R r iω  are also delayed by the network. The network delay to send these reference speeds to 

the mobile robot is defined as ( )CR iτ . The robot then periodically monitors and updates the 



 

141 

reference speeds by the newly arrival data of ( ),L r iω  and ( ),R r iω  at every sampling time 

period T. The waiting time to update the reference speeds is defined as ( )T iτ . 

A.  Network delay effect on path-tracking algorithm 

 To modify the controller output with respect to network conditions characterized by the 

GSM, the effects of network delays on the mobile robot have to be analyzed. There are two 

concerns in the use of the original path-tracking algorithm due to ( )CR iτ  and ( )RC iτ : 

 1.  Due to ( )RC iτ , the controller does not have the current robot position ( )itx , but 

( )( )i RCt iτ−x . 

 2. The reference speeds ( ),L r iω  and ( ),R r iω  are computed at it t= , but will be applied at 

( ) ( )i CR Tt t i iτ τ= + + .  

 If the controller directly uses ( )( )i RCt iτ−x  as ( )ix  to compute ( ),L r iω  and ( ),R r iω , and 

if ( )( )i RCt iτ−x  and ( )itx  are very different, then the result may be far away from what it 

actually should be. In addition, even if the controller uses ( )itx  to compute ( ),L r iω  and 

( ),R r iω , the robot might have already moved to another position at it t= +  ( ) ( )CR Ti iτ τ+  

when ( ),L r iω  and ( ),R r iω  are applied. Thus, the robot response can be undesirable. The delay 

of ( ),L r iω  and ( ),R r iω  is crucial if the robot moves far away from a desired position. In 

addition, with long network delays, it t−  may be large, and the approximation in (19) may be 

no longer valid. Thus, the robot may not follow the desired quadratic trajectory. 

B.  Feedback preprocessor  

 In this paper, we use feedback preprocessor to predict the future position of the mobile 

robot at ( ) ( )i CR Tt t i iτ τ= + + . The predicted position is then forwarded to the path-tracking 

controller. A future position at ( ) ( )i CR Tt t i iτ τ= + + , defined as ( ) ( )( )i CR Tt i iτ τ+ +x , is 

predicted from ( )( )i RCt iτ−x . This predicted position, defined as ( ) ( )( )ˆ i CR Tt i iτ τ+ +x , is 

then used instead of ( )ix  for the path-tracking controller. Thus, ( ),L r iω  and ( ),R r iω  should be 



 

142 

properly applied when the packet containing the reference speeds reaches the robot 

( ) ( )i CR Tt t i iτ τ= + + . 

 Before the mobile robot receives the reference speeds ( ),L r iω  and ( ),R r iω , both left and 

right wheels have been controlled by using ( ), 1L r iω −  and ( ), 1R r iω −  as the reference speeds. 

Thus, the robot can be assumed to move with constant linear and angular velocities if the wheel 

speed controllers of both wheels work perfectly such that 0, 0L Rε ε→ →  quickly, and the 

weight of the robot is light. From this assumption, (3)-(5), (20), and (21), we can approximate 

the robot movement during ( ) ,i RCt iτ−  ( ) ( )i CR Tt i iτ τ+ +   using: 

   ( )iτ∆ x  ( ) ( )( ) ( )( )i CR T i RCt i i t iτ τ τ= + + − −x x , 

  ( ) ( ) ( ) T
x i y i iτ τ τθ= ∆ ∆ ∆   , (24) 

where 

   ( )iτθ∆  ( ) ( ) ( ) ( ) ( ) ( )ˆ 1 ,r CR T RCi i i i i iω τ τ τ τ τ− = + +� , (25) 

1)  If ( )ˆ 1 0r iω − ≠ : 

   ( )x iτ∆  ( )
( ) ( ) ( )( ) ( )( )ˆ 1

sin sin
ˆ 1
r

i CR T i RC
r

v i
t i i t i

i
θ τ τ θ τ

ω
−

 + + − − −
� , (26) 

   ( )y iτ∆  ( )
( ) ( )( ) ( ) ( )( )ˆ 1

cos cos
ˆ 1
r

i RC i CR T
r

v i
t i t i i

i
θ τ θ τ τ

ω
−

 − − + + −
� , (27) 

2)  If ( )ˆ 1 0r iω − = : 

   ( )x iτ∆  ( ) ( ) ( )( )ˆ 1 cosr i RCv i i t iτ θ τ− −� , (28) 

   ( )y iτ∆  ( ) ( ) ( )( )ˆ 1 sinr i RCv i i t iτ θ τ− −� . (29) 

 The delay variable ( )iτ  is estimated by the network traffic estimator. The predicted 

position ( ) ( )( )ˆ i CR Tt i iτ τ+ +x  is then computed from: 

 ( ) ( )( ) ( )( ) ( )ˆ ˆi CR T i RCt i i t i iττ τ τ+ + = − + ∆x x x . (30) 

where ( )ˆ iτ∆ x  is the approximation of ( )iτ∆ x  computed from (24)-(29). 

C.  Gain scheduler  

To avoid the robot deviating far from a desired position, gain scheduler is used to first 

evaluate the predictive movement of the robot. If the robot tends to move too fast and could be 



 

143 

farther from the desired position because of network delays, gain schedule will modify ( ),L r iω  

and ( ),R r iω  to compensate network delays ( )iτ  before sending the reference speed signals 

out. To evaluate the robot movement with respect to ( ),L r iω  and ( ),R r iω  ahead of time, we 

could utilize (24)-(30) to define the following cost function: 

 Min  ( )1̂ 1J i +  ( )
2

ˆ 1iτ= +∆ x , (31) 

  ( ) ( )( ) ( )( )1 1 2
ˆ ˆ1 1 1i CR T i RCt i i t iτ τ τ+ += + + + + − − +x x , 

 Min ( )2
ˆ 1J i +  ( )K i= − , (32) 

where 
2
i  is the Euclidean norm, ( )( ) ( ) ( )( )1ˆ ˆ1i RC i CR Tt i t i iτ τ τ+ − + ≈ + +x x , and 

( ) ( )( )1ˆ 1 1i CR Tt i iτ τ+ + + + +x  is the predicted position, which can be determined by using 

( )( )1ˆ 1i RCt iτ+ − +x  and a predicted delay ( ) ( ) ( ) ( )ˆ 1 1 1 1RC CR Ti i i iτ τ τ τ+ ≈ + + + + + . Likewise, 

assume that ( )ˆ 1iτ +  is estimated by the network traffic estimator. The cost function ( )1̂ 1J i +  

represents the amount of robot movement with respect to the predicted network delay after the 

robot receives the reference speed signals ( ),L r iω  and ( ),R r iω . A large value of ( )1̂ 1J i +  

implies that the robot could significantly be affected by network delays. On the other hand, 

( )2
ˆ 1J i +  is linearly proportional to the speed of the robot since both ( ),L r iω  and ( ),R r iω  are a 

linear function of ( )K i . Minimizing ( )2
ˆ 1J i +  is equivalent to maximizing ( )K i . Depending 

on the actual robot performance requirement (e.g., maximal efficiency control, minimal time 

control), other cost functions could be also used.  

From (25)-(29), ( )1̂ 1J i +  could be also expressed as: 

1)  If ( )ˆ 0rv i =  and ( )ˆ 0r iω = : 

 ( )1̂ 1 0J i + = , (33) 

2) If ( )ˆ 0rv i =  and ( )ˆ 0r iω ≠ : 

 ( ) ( ) ( )1̂ ˆ ˆ1 1rJ i i iω τ+ = + , (34) 

3)  If ( )ˆ 0rv i ≠  and ( )ˆ 0r iω ≠ : 

 ( ) ( ) ( )
( ) ( ) ( )( )2

1 2

ˆ ˆ1 cos 1ˆ ˆ ˆ1 1
2

r
r

i i
J i i i

A i
ω τ

ω τ
− +

+ = + + , (35) 



 

144 

4)  If ( )ˆ 0rv i ≠  and ( )ˆ 0r iω = : 

 ( ) ( ) ( )1̂ ˆ ˆ1 1rJ i v i iτ+ = + . (36) 

In a vigorous approach, to find the optimal ( ),L r iω  and ( ),R r iω , a weighted cost function 

based on ( )1̂ 1J i +  and ( )2
ˆ 1J i +  can be formed and an optimal control strategy can be applied 

to minimize ( )1̂ 1J i +  and ( )2
ˆ 1J i + . However, this approach may not be suitable for the path 

tracking algorithm used in real-time because the algorithm is highly nonlinear with uncertain 

delays and disturbances. A heuristic approach can provide a feasible solution by maximizing 

( )K i  while maintaining ( )1̂ 1J i ε+ ≤ , where ε  is defined as the tracking performance 

degradation tolerance. In this case, ( ),L r iω  and ( ),R r iω  are modified based on their original 

values so that the robot will move as fast as possible by minimizing ( )2
ˆ 1J i +  while ( )1̂ 1J i +  

is maintained at an acceptable small value. This approach does not minimize ( )1̂ 1J i +  as in the 

vigorous approach, but can provide feasible ( ),L r iω  and ( ),R r iω , which are optimal under the 

condition ( )1̂ 1J i ε+ ≤ . In practice, gain scheduler will optimally modify ( ),L r iω  and ( ),R r iω  

when ( )1̂ 1J i ε+ >  so that the robot will move as fast as possible based on ( )ˆ 1iτ + .  

Because ( )A i  is fixed by the path-tracking algorithm as the requirement of the robot 

trajectory in (21), the speed modification is equivalent to adjusting the gain ( )K i  in (20) and 

(21). The optimal values of ( ),L r iω  and ( ),R r iω  in (34) and (36) can be determined by solving 

( )ˆr iω  and ( )ˆrv i , respectively, whereas (35) requires a numerical method to solve (35) for 

( )ˆr iω  to find the optimal ( ),L r iω  and ( ),R r iω . Since ( ) ( ) ( )ˆ 2r i A i K iω � , (35) could be 

viewed as a function of ( ) ,A i ( )K i  and ( )ˆ 1iτ + . Because ( )A i  and ( )ˆ 1iτ +  are given, 

( )1̂ 1J i +  will be determined by ( )K i . The optimal values of ( )K i  with respect to ( )A i  and 

( )ˆ 1iτ +  subject to ( )1̂ 1J i ε+ ≤  can be found by computing ( )1̂ 1J i +  from various 

combinations of ( ) ,A i ( )K i  and ( )ˆ 1iτ +  in actual ranges of operating conditions. Then, by 

fixing ( )A i  and ( )ˆ 1iτ + , we can search for the optimal ( )K i  with an iterative approach that 

gives ( )1̂ 1J i ε+ ≤ . These optimal ( )K i  values are then stored in a lookup table and will be 



 

145 

utilized by gain scheduler to compute the optimal ( ),L r iω  and ( ),R r iω . For example, Fig 6 

shows the cost surfaces of ( )1̂ 1J i +  with respect to ( ) ,A i  ( )K i , and ( )ˆ 1iτ +  with 0.2ε = . 
 

 

Fig. 6. Cost surfaces of ( )1̂ 1J i +  with respect to ( ) ,A i  ( )K i , and ( )ˆ 1iτ +  with 0.2ε = . 

As shown in Fig. 6, ε  can be thought of as a plane cutting through multiple surfaces of 

cost ( )1̂ 1J i +  with different values of ( )K i . The optimal ( )K i  with respect to ( )A i  and 

( )ˆ 1iτ +  chosen to modify ( ),L r iω  and ( ),R r iω  in this case is the largest ( )K i  that has to be 

under or at the ε  plane. 

Fig. 7 shows the surface of the optimal ( )K i  with respect to ( )A i  and ( )ˆ 1iτ +  with 

0.2ε = . 

0 0.2 0.4 0.6 0.8 1 0
5

100

10

20

30

40

50

60

( )1̂ 1J i +

ε 

( ) 4K i =

( ) 1.4K i =

( ) 0.1K i =

( )A i ( )ˆ 1iτ +



 

146 

0
0.2

0.4
0.6

0.8
1

0

2

4

6

8

0

1

2

3

4

 
(a) 

 
 (b) (c) 

Fig. 7. Optimal ( )K i  surface with respect to ( )A i  and ( )ˆ 1iτ +  with 0.2ε = : (a) Front view. 

(b) Side view of. ( )A i . (c) Side view of ( )ˆ 1iτ + . 

0

0.5

1 0 1 2 3 4 5 6 7

0

0.5

1

1.5

2

2.5

3

3.5

4

00.20.40.60.81

0

5

10

0

0.5

1

1.5

2

2.5

3

3.5

4

O
pt

im
al

 K
(i)

O
pt

im
al

 K
(i)

( )A i

( )ˆ 1iτ +

( )ˆ 1iτ +

( )A i

( )A i ( )ˆ 1iτ +

O
pt

im
al

 K
(i)



 

147 

As indicated in Fig. 7 (a), (b), and (c), if ( )A i  and ( )ˆ 1iτ +  are low, the optimal ( )K i  is 

large. This implies that the robot can move very fast if the curvature of the quadratic curve is 

small and the network delay is short. According to Fig. 7 (b), a larger ( )A i  enforces the 

optimal ( )K i  to be small because the GSM has to reduce the robot speed in order to follow the 

quadratic guideline with the higher curvature closely. Likewise, as shown in Fig. 7 (c), with a 

longer delay ( )ˆ 1iτ + , the GSM has to apply a small optimal ( )K i  to reduce the robot speed so 

that the robot will not deviate far from the guideline and will still satisfy ( )1̂ 1J i ε+ ≤ . 

D.  Network traffic estimator 

 Network variables representing network traffic conditions are typically subjective to the 

algorithm used in the feedback preprocessor and in the gain scheduler. Characterization of 

network conditions to network variables for use in both parts also depends on typical behaviors 

and characteristics of the network used. In this paper, we illustrate the GSM concept using 

delays from an actual IP network. As mentioned in earlier sections, the required network 

variable is the delay τ , which is estimated from the roundtrip time (RTT) delay measurements 

between the controller and the mobile robot on an IP network. 

 Several papers have proposed to approximate the RTT delay on IP networks by a 

generalized exponential distribution [17, 19]: 

 [ ]
( )1 , ,

0,             ,

e
P

τ η φ τ η
φτ

τ η

− − ≥= 
 <

 (37) 

where the expected value of the RTT delay [ ]E τ φ η= + , and variance 2 2σ φ= . If η  is known, 

φ  can be easily approximated from η , and an experimental value of [ ]E τ  or the mean µ  by 

[ ]Eφ τ η= − . A typical shape of (36) is depicted in Fig. 8. 



 

148 

0.022 0.024 0.026 0.028 0.03 0.032 0.034
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
Histogram: NC

Delay (s)

N
um

be
r o

f p
ac

ke
ts

η

P[τ]

τ

φ

 
 (a) (b) 

Fig. 8. (a) Typical histogram of RTT delays measured between ADAC (Advanced Diagnosis 
And Control) lab at North Carolina State University and North Carolina Department of 
Commerce, NC. (b) Typical probability density function of the generalized exponential 

distribution. 
 

An important concern is what should be a good representative value of RTT delays to be 

used as the network variable τ . The feedback processor requires a delay value that is closed to 

the actually delay as much as possible. If RTT delays on an actual IP network are assumed to 

have the distribution similarly to the generalized exponential distribution, the median of RTT 

delays defined as ( )Med τ  can be a good representative value [12]. In this case, a majority of 

RTT delays should not be much different from ( )Med τ , and could be used in the feedback 

preprocessor. On the other hand, the gain scheduler requires the value of the delay τ  so the 

networked mobile robot does not violate ( )ˆ 1J i ε+ ≤ . We can relax this value by using a 

slightly larger τ  for some purposes such as reducing the effects from robot modeling errors or 

delay prediction errors in case that an actual RTT delay is larger than ( )Med τ . By assuming 

the network traffic distribution is the generalized exponential distribution, we proposed to use 

the mean of RTT delays µ  in this case, which is ideally larger than ( )Med τ . However, in 

actual real-time traffic measurements with a limited number of probing packets, we may have 



 

149 

( )Med τ µ> . To handle this case, we propose to use the larger value between ( )Med τ  and 

µ :: 

 ( ){ }ˆ max Med ,τ τ µ= , (38) 

Both ( )Med τ  and µ  in a specific time interval can be computed by sending probing 

packets as mention in section II. 

V. Simulation and Experimental Results 

A.  Testing environment and parameters used for the simulation and experiment 
of the mobile robot path-tracking control over a network 

1. IP network delay 

 To verify the effectiveness of the GSM concept, the RTT network delays of UDP (User 

Datagram Protocol) packets between ADAC (Advanced Diagnosis And Control) lab at North 

Carolina State University and Kasetsart University, Thailand, are measured for 24 hours 

(00:00-24:00). The reason to use UDP for networked control is to avoid additional delays from 

retransmission. The use of UDP is a common practice for real-time networked control 

applications. The measured RTT delay data is illustrated in Fig. 9 (a), whereas the histogram of 

the RTT delays is depicted in Fig. 9 (b). This data are used in the simulation and experimental 

setups of the networked mobile robot path-tracking control with the assumption that there is no 

packet loss. Each value of these RTT delays is divided by 2 and is utilized as RCτ  and CRτ . 



 

150 

 

1 2 3 4 5 6 7 8

x 10 4

0.2 
0.4 
0.6 
0.8 

1 
1.2 
1.4 
1.6 
1.8 

Samples 

R
TT

 d
el

ay
(s

) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
Histogram: TH

Delay (s)

N
um

be
r o

f p
ac

ke
ts

 

Fig. 9. (a) RTT delays between ADAC (Advanced Diagnosis And Control) lab at North 
Carolina State University and Kasetsart University, Thailand, measured for 24 hours (00:00-

24:00). (b) Histogram of the corresponding RTT delays. 

 

2. Path for the robot to track 

The path of the robot used for simulation and actual experimental verification is the same 

path described in section III. 

3. Controller and robot parameters 

The controller and robot parameters used for the proposed GSM verification are listed in 

Table 1. 

Table 1. Controller parameters 

Parameter Description Value 

maxs  Maximal projecting distance 0.5 
α  Speed factor 0.25 
β  Projecting factor 0.5 
ε  Cost tolerance 0.2 
W Distance between two wheels 0.4826 m 
ρ  Radius of the wheels 0.073 m 

PT  Sampling time of probing packet transmission 0.01 s 

CT  Sampling time of path-tracking controller 0.1 s 
T  Sampling time for robot to update reference speeds 0.002 ms 



 

151 

B.  Simulation results 

 The networked mobile robot path-tracking simulation program is setup in a 

Matlab/Simulink environment to investigate the effectiveness of the GSM and is shown in Fig. 

10.  

Sampling time for controll ing 
delay resolution

Out1

sim_T

delay_p_c_out

delay_c_p_out

InOut

Time Latch

Switch

STOP

Stop Simulation

Step

Ctrl_act

State control2

Sim_s

 S/H

 S/H

 S/H

netdelay3_2ed

netdelay5_2ed

Pck_in

K

A

x

y

theta

An
Kn

Pck_proc

Df rac

Robot

step delay

Pck_in

Md_RTT

Mn_RTT

RTT

In

RC Monitor1

In

RC Monitor

Memory1

Inv

Initial condition
setting

[x,y ]'Yes/No

Does robot reach the end point ?

em

delay_p_c

Delay_p_c from Workspace

delay_c_p

Delay_c_p from Workspace

D_frac

Ctrl_act

Fd_dat
Md_RTT

Mn_RTT

Actual T_RC

Actual T_CR

Ctrl_dat

Controller and GSM

In

CR Monitor

<, , , , >

<signal6>

<signal5>

 
Fig. 10. Networked robot simulation setup in Matlab/Simulink. 

The robot path-tracking program has five main blocks: Controller and GSM, Robot, 

Netdelay3_2ed, Netdelay5_2ed, and RTT. The Controller and GSM block computes and 

adjusts the reference speeds with respect to the mean and the median of RTT delays. The Robot 

block simulates the robot dynamics. The Netdelay3_2ed and Netdelay5_2ed blocks delay the 

outputs from the Controller and GSM block and the robot block, respectively, by using the 

delay data in section V.A preloaded from a text file. The RTT block computes the mean and 

median of RTT delays using the delay data from the Netdelay3_2ed and Netdelay5_2ed. 



 

152 

 Three scenarios are compared: 

 1.  The robot is controlled without IP network delay. 

 2.  The robot is controlled with the existence of IP network delays from ADAC to 

Kasetsart University. GSM is not applied. 

 3.  The robot is controlled with the existence of IP network delays from ADAC to 

Kasetsart University. GSM is applied. 

 The network traffic estimator is set to compute the mean and median of RTT delays for 

every 10 probing packet roundtrips. The initial position of the robot is arbitrarily set to 

( )0.01, 0.01− − . The robot will stop if: 

 ( ) ( )( ) ( ) ( )( )2 2

,3 ,3 0.05p e p ex s x i y s y i− + − ≤ . (39) 

 Fig. 11 shows the results from simulations. 
 

-0.5 0 0.5 1 1.5 2 2.5 
-0.5 

0 

0.5 

1 

1.5 

2 

2.5 

x(m) 

y(
m

)  

Path to track 
No delay 
With delay, no GSM 
With delay and GSM 

 

Fig. 11. Comparison of robot tracks from simulations: (a) Dashed-dotted: The robot is 
controlled without IP network delay; (b) Dotted line: The robot is controlled with the existence 

of IP network delays from ADAC to Kasetsart University. GSM is not applied; (c) Dashed 
line: The robot is controlled with the existence of IP network delays from ADAC to Kasetsart 

University. GSM is applied. 



 

153 

 As shown in Fig. 11, the original path-tracking controller performs superbly when there is 

no IP network delay. The robot track is basically overlaps with the path to be tracked. With the 

existence of RTT network delays, the robot without GSM fails to track the path closely because 

the position feedback and the reference speeds are delayed by IP network delays. On the 

contrary, the robot with GSM can track the path much better. The predicted position applied 

for path-tracking computation and the gain scheduling scheme have compensated the network 

delay effects on the networked mobile robot system. 

C. Experimental results 

 An experimental mobile robot platform is built to verify the effectiveness of the proposed 

GSM using the same delay scenario as in the simulations. The block diagram of the robot setup 

is illustrated in Fig. 12. The actual hardware setup is shown in Fig. 13. 

Celeron
notebook

C515C
microcontrollerParallel port

Reference
speeds

Feedback data

DC Motor
(Left wheel)Encoder

Motor
driver

Motor
driver

PWM signal

PWM signal

Encoder pulse

Encoder pulse DC Motor
(Right wheel)Encoder

Driving voltage

Driving voltage

 

(a) 

Delay
simulation
program

Robot
interface
program

Path tracking
controller
program

Reference
speeds

Delayed
feedback data

Delayed
reference
speeds

Feedback data

C515C
microcontroller

boardFeedback data

Delayed
reference
speeds

 
(b) 

 
Fig. 12. Networked control robot experimental setup. (a) Hardware schematic diagram,  

(b) Software schematic diagram. 



 

154 

 

Fig. 13. Actual hardware setup. 

The mobile robot platform is composed of a Celeron 1.5 GHz notebook computer, a 

C515C Siemens/Infineon microcontroller board, two LMD18200 motor driver chips, and two 

DC motors with two 500 pulses/rev optical encoders. The DC motors are Maxon A-max 

236668 donated by Maxon Motor, USA. Each motor has a gearhead ratio 1:111. The notebook 

computer performs path-tracking computation and simulates IP network delay effects by using 

the actual IP network delay data collection, whereas the microcontroller board controls the 

speeds of the two DC motors by PI control algorithm. 

The microcontroller board reads the motor rotations from the encoders and converts them 

to the feedback data. The feedback data is then sent to the notebook computer via a parallel 

port. The notebook computer uses this feedback data to compute the reference speeds of both 

DC motors, and sends them back to the microcontroller board via the parallel port as well. The 



 

155 

microcontroller board then applies these references to perform PI control computation, and 

send control signals in the forms of TTL-level PWM signals out to the motor drivers. The 

motor drivers will amplify the TTL-level signals to 0-12 V signals for driving the DC motors.  

To focus specially on the effects of network delays, we create an experimental simulation 

scenario of IP network delays by delaying data transfers between the notebook computer and 

the microcontroller board using real-time software and a hardware timer. The reasons of using 

the collected IP delay data rather than using the real IP network are:  

1) The experimental results can be compared with the simulation results using the same 

delay data. 

2) The experiment is ensured to be repeatable for various future investigations. 

This scenario is implemented by using three real-time programs running on RTLinux 3.2, a 

real-time operating system: 

 1.  Delay simulation program  

 The delay simulation program delays data transfers between the path-tracking controller 

program and the robot interface program by using two linked-list structures. The delay applied 

in this program is the actual measured IP network delays in section V. A. The delay can range 

from 0 s to the maximal delay measurement with the resolution about 0.1 ms. 

 2.  Robot interface program 

 The robot interface program handles parallel port communication between the notebook 

computer and the microcontroller board. The interface program receives the reference speeds 

from the path-tracking controller program via the delay simulation program. Likewise, it 

forwards the feedback data from the microcontroller board through the delay simulation 

program to the path-tracking controller program. 

 3. Path-tracking controller program 

This program contains two parts: path-tracking implementation and the GSM. The path-

tracking implementation performs the basic path-tracking algorithm computation as discussed 



 

156 

in Section II. The GSM is responsible for data communication with the robot interface program 

through the delay simulation program, for position prediction, and for the gain scheduling. 

 Fig. 14 shows the experimental results of the IP-based robot path-tracking. In addition, Fig. 

15 shows the distance from the robot to the path. This distance indicates how close the robot is 

to the path when the robot is tracking the path. 
 

-0.5 0 0.5 1 1.5 2 2.5 
-0.5 

0 

0.5 

1 

1.5 

2 

2.5 

x(m) 

y(
m

)  

Path to track 
No delay 
With delay, no GSM 
With delay and GSM 

 

Fig. 14 Comparison of robot tracks from experiments: (a) Dashed-dotted line: The robot is 
controlled without IP network delay; (b) Dotted line: The robot is controlled with the existence 
of IP network delays from ADAC to Kasetsart University. The GSM is not applied; (c) Dashed 
line: The robot is controlled with the existence of IP network delays from ADAC to Kasetsart 

University. The GSM is applied. 



 

157 

 

Fig. 15 Closest distances from the robot to the path obtained from experiments: (a) Solid line: 
The robot is controlled without IP network delay; (b) Dotted line: The robot is controlled with 

the existence of IP network delays from ADAC to Kasetsart University. The GSM is not 
applied; (c) Dashed line: The robot is controlled with the existence of IP network delays from 

ADAC to Kasetsart University. The GSM is applied. 

As shown in Fig. 14, the experimental results are similar to the results obtained from the 

simulations. Without IP network delay, the original path-tracking controller performs superbly 

as well. When there are IP network delays, the robot without the GSM cannot track the path 

closely because the position feedback and the reference speeds are delayed by IP network 

delays. The GSM can improve the path-tracking performance by using predicted position and 

gain scheduling to compensate the delay effects so the robot can track the path more effectively 

as shown in Fig. 14. Fig. 15 also shows that the robot without the GSM deviates from the path 

relatively more than the other two cases, and spends a longer time to reach the final destination. 

0 10 20 30 40 50 60 70
0

0.02 

0.04 

0.06 

0.08 

0.1 

0.12 

Time(s)

D
(m

) 
No delay
With delay, no GSM 
With delay and GSM 

The time that the robot arrives
at the end point (2.4,1). 



 

158 

On the other hand, the robot with the GSM can track the path much closer to the robot without 

delay. 

VI. Conclusion 

 This paper has proposed the concept of gain scheduling by using middleware to enable an 

existing robot controller for networked control over IP network. The middleware called gain 

scheduler middleware (GSM), adjusts the controller output with respect to the current network 

traffic conditions without interrupting the internal design or structure of the existing controller. 

Therefore, The GSM allows convenient installation and cost-effective upgrade for an existing 

controller without redesign or replacement by a whole new networked control system. The 

effectiveness of the GSM is verified by using a mobile robot path-tracking problem. The GSM 

approach has shown significant improvement on the mobile robot path-tracking performance 

with the existence of IP network delays. Because the GSM can be implemented separately 

from the controller, modification of the GSM by using other types of prediction algorithms or 

applying a different cost function for different applications could be achieved easily. In 

addition, since the GSM adapts the controller output based on the current network traffic 

conditions, the GSM concept can also take advantages from IP network QoS (Quality-of-

Service). Furthermore, the GSM concept may be able to be applied on other robot control 

algorithms, but reformulation on the problem may be required. Future studies such as the 

effects of packet loss on networked control robots and the performance of GSM on a QoS-

enabled network can be used to improve the effectiveness of GSM for more practical uses. 

Acknowledgment 

The authors would like to acknowledge the Royal Thai Government for partially 

supporting this study and Maxon Precision Motor, Inc. for the motor donation. 



 

159 

References 
[1] R. Luck and A. Ray, "An observer-based compensator for distributed delays," 

Automatica, vol. 26, no. 5, pp. 903-908, 1990. 

[2] H. Chan and Ü. Özgüner, "Closed-loop control of systems over a communication 
network with queues," International Journal of Control, vol. 62, no. 3, pp. 493-510, 
1995. 

[3] G. C. Walsh, H. Ye, and L. G. Bushnell, "Stability analysis of networked control 
systems," IEEE Transactions on Control Systems Technology, vol. 10, no. 3, pp. 438-
446, 2002. 

[4] J. Nilsson, B. Bernhardsson, and B. Wittenmark, "Stochastic analysis and control of 
real-time systems with random time delays," Automatica, vol. 34, no. 1, pp. 57-64, 
1998. 

[5] Y. Tipsuwan and M.-Y. Chow, "Network-based controller adaptation based on QoS 
negotiation and deterioration," in IEEE IECON 2001, Denver, CO, 2001, pp. 1794-
1799. 

[6] S. H. Hong, "Scheduling algorithm of data sampling times in the integrated 
communication and control systems," IEEE Transactions on Control Systems 
Technology, vol. 3, no. 2, pp. 225-230, 1995. 

[7] A. Sano, H. Fujimoto, and M. Tanaka, "Gain-scheduled compensation for time delay of 
bilateral teleoperation systems," in IEEE ICRA, Leuven, Belgium, 1998, pp. 1916-
1923. 

[8] S. Munir and W. J. Book, "Internet based teleoperation using wave variables with 
prediction," IEEE/ASME Transactions on Mechatronics, vol. 7, no. 2, pp. 124-133, 
2002. 

[9] C. Benedetti, M. Franchini, and P. Fiorini, "Stable tracking in variable time-delay 
teleoperation," in IEEE IROS, Maui, HI, 2001, pp. 2252-2257. 

[10] K. Brady and T.-J. Tarn, "Internet-based teleoperation," in IEEE ICRA, Seoul, South 
Korea, 2001, pp. 644-649. 

[11] H. Utz, S. Sablatnog, S. Enderle, and G. Kraetzschmar, "Miro-middleware for mobile 
robot applications," IEEE Transactions on Robotics and Automation, vol. 18, no. 4, pp. 
493-497, 2002. 

[12] D. Brugali and M. E. Fayad, "Distributed computing in robotics and automation," IEEE 
Transactions on Robotics and Automation, vol. 18, no. 4, pp. 409-420, 2002. 



 

160 

[13] D. C. Schmidt, "Middleware techniques and optimizations for real-time, embedded 
systems," in International Symposium on System Synthesis, San Jose, CA, 1999, pp. 
12-16. 

[14] B. Li and K. Nahrstedt, "A control-based middleware framework for quality-of-service 
adaptations," IEEE Journal on Selected Areas in Communications, vol. 17, no. 9, pp. 
1632-1650, 1999. 

[15] S. Song, J. Huang, P. Kappler, R. Freimark, and T. Kozlik, "Fault-tolerant Ethernet 
middleware for IP-based process control networks," in IEEE Local Computer 
Networks, Tampa, FL, 2000, pp. 116-125. 

[16] T. F. Abdelzaher, E. M. Atkins, and K. G. Shin, "QoS negotiation in real-time systems 
and its application to automated flight control," IEEE Transactions on Computers, vol. 
49, no. 11, pp. 1170-1183, 2000. 

[17] Y. Tipsuwan and M.-Y. Chow, "On the gain scheduling for networked PI controller 
over IP Network," in IEEE/ASME International Conference on Advanced Intelligent 
Mechatronics, Kobe, Japan, 2003. 

[18] K. Yoshizawa, H. Hashimoto, M. Wada, and S. M. Mori, "Path tracking control of 
mobile robots using a quadratic curve," in IEEE Intelligent Vehicles Symposium, 
Tokyo, Japan, 1996, pp. 58-63. 

[19] J. W. Park and J. M. Lee, "Transmission modeling and simulation for Internet-based 
control," in IEEE IECON 2001, Denver, CO, 2001, pp. 165-169. 




