
ABSTRACT

XU, PENG. QoS Provisioning and Pricing in Multiservice Networks:

Optimal and Adaptive Control over Measurement-based Scheduling. (Under the di-

rection of Professor Michael Devetsikiotis).

In order to ensure efficient performance under inherently and highly variable traf-

fic in multiservice networks, we propose a generalized adaptive and optimal control

framework to handle the resource allocation. Even though this framework addresses

rigid Quality of Service concerns for the deterministic delay-bound classes by re-

serving part of the link capacity and employing appropriate admission control and

traffic shaping schemes, our research actually emphasizes the adaptive and optimal

control of the shared resources for the flexible delay-bound classes. Therefore, the

resource allocation is delivered by a subsystem of this generalized framework, the

measurement-based optimal resource allocation (MBORA) system.

By applying a simple threshold (θ1, θ2) policy, we first validate the advantages

of the adaptivity of our proposed framework through extensive simulation results.

Then we introduce a generalized profit-oriented formulation inside decision module of

MBORA system, that supplies the network provider with criteria in terms of profit,

by leveraging the utility charge revenue and delay-incurred cost. The optimal resource

allocation will be affected by the various types of pricing models together with the

different levels of service guarantee constraints. As a case study, we investigate this

generalized profit-oriented formulation under generalized service models. Combining

further with a linear pricing model subject to average queue delay constraints, we

propose a fast algorithm for online dynamic and optimal resource allocation under

this specific scenario.

Finally, we propose a delay-sensitive nonlinear pricing model for the generalized

profit-oriented formulation, that realizes two-tier delay differentiation. By better

understanding the fluid queueing model, we propose a generalized solution strategy

for linear, nonlinear or mixed pricing models that is free of the dimensionality problem

and amenable to online implementation.
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Chapter 1

Introduction

Network technologies have evolved beyond expectation since the birth of the In-

ternet. Traditionally, the main applications in the Internet are best-effort type of

services, such as webpage browsing and email. However, the tendency of current ap-

plications is shifting to real-time applications (voice and video), that need guaranteed

QoS performance. Along with the growing variety of application types, we can also

be bold to predict the transition from the traditional wired networks to the wire-

less networks in the near future by observing the emergence of 3G systems [17, 27],

WLAN [1,8], WiMax and more. More generally, access networks including cable and

DSL systems, as well as wireless systems based on WiFi and WiMax are becoming

increasingly ambitious in terms of their multimedia/multiservice capabilities (data,

TV, voice, video and games), continuing on a path towards retailing of services on de-

mand. Hence, both in wired and wireless networks, QoS provisioning combined with

rationalizing resources and achieving viable finances via proper pricing, remains one

of the most critical and challenging issues for multi-service networks in the research

and industrial fields.

Another critical issue involved is the corresponding development of pricing schemes

[30,31,35,38,39], now that the differentiated services need to be delivered to the users

in such multi-service networks. It is more flexible and efficient to have the pricing
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scheme based on the usage and type of the service, instead of the flat pricing scheme

that only supports the single-type service networks.

In order to solve both challenging issues, researchers have performed comprehen-

sive studies and investigations on how to design efficient QoS provisioning and optimal

pricing schemes in multi-service networks from different perspectives, including ad-

mission control schemes for accessing the networks, traffic engineering schemes for

balancing the traffic loads through the networks, and the appropriate policing and

scheduling schemes for the traffic delivery. Through our studies, it is not difficult

to conclude that there always exist two contrasting approaches for each perspective,

static vs. dynamic. The static approach has the edge over the dynamic one due to its

simplicity, while dynamic approach has the advantage in terms of better QoS guar-

antees and optimal control for differentiated services, given the highly varied traffic

loads.

Inspired by the dynamic approach, we propose a generalized adaptive and opti-

mal control framework for measurement-based scheduling, in order to achieve QoS

requirements and differentiated pricing in multi-service networks.

In this chapter, we first discuss the motivation and objective behind our proposed

framework. Then our contributions on this topic are summarized. Finally, we provide

an outline of this thesis.

1.1 Motivation and Objective

In multi-service networks, differentiated QoS provisioning and pricing are the key

issues for efficient multiplexing of classes, connections or flows on a shared link.

Traditionally, a static resource allocation is designed to satisfy QoS requirements

by following the contract or agreement between the network provider and the users.

However, it also pushes the burden on the user side to characterize their traffic, which

is obviously not always convenient or practical. With the advent of bandwidth and

delay-sensitive applications such as voice over IP (VoIP), video-conferencing, online

gaming, interactive television, etc., a static scheme is far from the flexibility required
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given highly adaptive traffic load situations. It also implies that static bandwidth

reservation protocols accompanied by over-provisioning of network links lead to a

significant under-utilization of available resources, while QoS can not be guaranteed

otherwise.

Therefore, a dynamic resource allocation scheme has been put forward in order

to match the inherent high variability of the traffic characteristics. It is achieved

by allocating the corresponding resources (bandwidth) based on closely tracking the

prevailing traffic characteristics. Under this approach, QoS guarantees depend on the

two critical steps: first, traffic monitoring and estimation, and, second, decision policy

on the resource allocation. Traffic monitoring and estimation should be accurate

enough in order to make sound decisions for the resource allocation.

Dynamic resource allocation can be achieved by schedulers capable of differenti-

ating among traffic classes through our study. In weighed round-robin (WRR) and

weighted fair queuing (WFQ), the bandwidth for each class is determined by the

weights associated with this class. We can realize dynamic resource allocation by

simply updating the weights of the schedulers among the different classes over the

periodic traffic monitoring time.

Meanwhile, this dynamic scheme also needs to be “smart” enough to reach the

optimal decision for the resource allocation based on the specific optimization models,

which can be formulated from the combined consideration of pricing models and QoS

constraints. In this way, the dynamic scheme can react to the variation of the traffic

rate with optimal decisions for resource allocation. That is also our motivation for

putting forward a profit-oriented optimization model for the decision decision policy.

1.2 Contributions of this Dissertation

This dissertation is dedicated to the study on QoS provisioning and pricing schemes

for multi-service networks. Our main focus is to design an adaptive and optimal

framework and algorithms for online implementation, that can handle the problem of

QoS provisioning combined with economics. During the course of our study, we have
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made the following contributions:

1. Generalized Adaptive and Optimal Control Framework:

We introduced a generalized adaptive and optimization framework in order to

meet the variety of service requirements from end users. This framework pro-

vides an efficient mechanism to differentiate the resources for the deterministic

and flexible delay-bound classes. Targeting the shared resources for the flexible

delay-bound class, we motivated the need to investigate measurement-based op-

timal resource allocation (MBORA) system inside this generalized framework.

2. Simple Threshold Policy:

Starting from the emphasis on the adaptivity of the proposed framework, we

analyzed and investigated the performance by applying a simple threshold de-

cision policy, under the assumption that the QoS requirement for each class can

be satisfied by allocating the corresponding bandwidth a level no lower than

the measurement estimation.

Dynamic counterparts of WRR and WFQ are evaluated and compared with

the static ones by running extensive simulations. Finally, we concluded that

DWFQ achieves the best performance. Also from this conclusion and the basic

framework, we gained confidence to approach our next step: Generalized Profit-

Oriented Formulation.

3. Generalized Profit-Oriented Formulation:

In order to realize the optimal control of our proposed generalized framework,

we formulated a generalized profit center optimization model for a network node

that takes into consideration a pricing model for the various classes of users,

as well as service guarantee constraints, such as packet loss rates and queueing

delays.

From the network provider’s perspective, the model allows one to balance the

trade-off between the revenue of utility charge and delay-incurred cost, in order

to achieve the maximum profit from the system. Meanwhile, by varying the



5

adopted pricing models and optional service guarantee constraints, the network

provider achieves more flexibility in the control of the resources.

4. Profit-Oriented Formulation under Liner Pricing Models:

As a case study, we investigated the profit-oriented formulation under the as-

sumption of generalized service models. Also in this scenario, we adopted a

linear pricing model subject to average queue delay constraints. The properties

of the optimal solution under these assumptions were analyzed and a fast, low

complexity algorithm was proposed for the online dynamic resource allocation.

Finally, we validated the proposed scheme through simulation experiments un-

der different traffic scenarios.

5. Profit-Oriented Formulation under Nonlinear Pricing Models:

We proposed a new delay-sensitive nonlinear pricing model. Compared with

the linear counterpart, it realizes a two-tier differentiation pricing scheme, that

is the differentiation between the classes and the differentiation inside the class.

We also attempted to tackle the problem of calculating the optimal solution for

more generalized n classes, instead of the limited number of classes in general-

ized service models. With better understanding on the fluid queueing model, we

proposed a generalized solution strategy for linear, nonlinear or mixed pricing

models.

1.3 Outline

The rest of the dissertation is organized as follows: In Chapter 2, we will discuss

the background and the related work that led to our proposed scheme. Chapter 3

introduces our problem statement along with our proposed generalized adaptive and

optimal control framework. Our generalized framework under simple threshold policy

is analyzed and evaluated in Chapter 4. Chapter 5 presents our generalized profit-

oriented formulation. Subsequently, in Chapter 6, we begin our study of the profit-

oriented formulation with linear pricing scheme under generalized service models.
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Chapter 7 introduces the nonlinear pricing scheme for the generalized profit-oriented

formulation and gives the corresponding generalized solution strategy. And Chap-

ter 8 summarizes the conclusion for this dissertation. Finally, the extended study on

performance evaluation for Chapter 4 is discussed in Appendix A; the supermodular

definition and the related theorems for Chapter 6 are given in Appendix B; and the

related definitions and proofs for Chapter 7 are presented in Appendix C.
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Chapter 2

Background and Related Work

In this chapter, we will discuss the background of our research study from four

areas. They are traffic modeling, QoS, measurement estimation and scheduling algo-

rithms respectively. At the end, we introduce the related work that motivates us to

propose the generalized adaptive and optimal scheduling framework.

2.1 Traffic Modeling

2.1.1 Introduction

Traffic modeling is imperative to network design, management and simulation.

In the absence of real-time network traffic, accurate traffic modeling is the key for

performance evaluation, which is the most critical issue in providing QoS for different

users and applications in the wired network. A good traffic modeling can give the

accurate statistical characteristics of real network traffic, which in turn provides the

better insight of network to the researchers and engineers, thus the area of network

traffic modeling is well-studied in the past 20 years.

Traditionally, the network traffic is characterized by short ranged dependent (SRD)
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models, which can be characterized by the following properties:

1. The autocorrelation(ACF) decays exponentially i.e. r(k) ∼ ρk, (0 < ρ < 1).

2. The ACF is summable i.e.
∑
r(k) <∞.

3. The power spectral density(PSD) is finite at the origin.

4. The index of dispersion counts(IDC) converges to a constant value.

SRD models can be classified into the following categories: Renewal models,

Markov-based models, and Autoregressive-type models. All the details can be found

in [63].

SRD models are widely accepted owing to their analytical tractability until 1991,

because in that year Will Leland and Daniel Wilson presented the first analysis of

high resolution Ethernet LAN traffic [36], in which the famous Bellcore traces are

collected by the high-resolution measurement and the burstiness of Ethernet LAN

traffic in many time scales is concluded. Since then, the traditional SRD models

are challenged due to their incompetence in describing the burstiness of the network

traffic in multiple time scales.

For example, Figure 2.1 shows Poisson traffic in the different time scales, which

shows the large variation and burstiness in the fine scale, but smoothes or flattens

in the coarse scale. Leland et al. [55] introduced the self-similar concept, which is

coined by Mandelbrot, to describe the burstiness successfully based on their previ-

ous work on Ethernet LAN traffic in 1991. This can be regarded as the milestone

paper in the traffic modeling which lead to the new phase of research on long range

dependent (LRD) models. In 1994, Vern Paxson and Sally Floyd further verified the

self-similarity in Wide Area Network(WAN) [46]. Since then, LRD or fractal models

became the dominant research issues in the wired network, due to the validation in

both LAN and WAN.

Most recently, Reidi et al. [49] proposed the shift from the monofractal models to

the multifractal models due to the insufficiency of monfracal models in describing the

higher order of statistic of data traces.
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Figure 2.1: Poisson Traffic in Different Time Scales

In the following subsection, we first briefly review LRD models concepts and

definitions, then we discuss the LRD models in general, with the emphasis on the one

we adopted throughout our study and simulation validation, on-off Fractal Modulated

Poisson process (FMPP).

2.1.2 Long Range Dependent Models

Compared with SRD models, the ACF of LRD models decays slower than expo-

nential, which makes them capable to capture the real burstiness nature of network

traffic. Let us start with the concepts and definitions.

Concepts and Definitions

Let X = {Xt : t = 0, 1...} be a wide-sense stationary(WSS) process with mean µ

and variance σ2. The process X can be said to be long-range dependence [60]if:

r(k) ∼ k−DL1(k) as k →∞ (2.1)
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L1 varies slowly at ∞. Or equivalently,

f(λ) ∼ λ−αL2(λ) as λ→ 0 (2.2)

0 < α < 1 and L2 is a slowly varying function. And f(λ) =
∑

k r(k)e
jkλ denotes the

spectral density. Since f(0)→∞, or alternatively
∑

k r(k)→∞, the ACF for LRD

process is not summarable.

A continuous-time process Y = {Y (t), t ≥ 0} is self-similar with self-similarity

parameter H if it satisfies the condition [60]:

Y (t) = a−HY (at), ∀t ≥ 0, ∀a > 0, 0 < H < 1 (2.3)

where the equality is in the sense of finite-dimensional distributions and a is stretch-

ing factor. This definition can be interpreted in this way: the process a−HY (at) is

identical in distribution to the original process Y (t). Typical sample path of such a

process appear qualitatively the same, irrespective of the scale of the observation.

If X is a process defined as a series of independent increments of self-similar

process Y (t), the ACF of X can be obtained as the following:

r(k) =
1

2
[(k + 1)2H − 2k2H + (k − 1)2H ] for k ≥ 0 (2.4)

with r(k) = r(−k). For 0.5 < H < 1, r(k) can be approximated by

r(k) ∼ H(2H − 1)k2H−2 as k →∞ (2.5)

From (2.5), we can observe that increments of self-similar process with H > 0.5

exhibit long-rang dependence property in (2.1). While H ≤ 0.5, the process is SRD.

Hence the value of Hurst parameter(H) is commonly accepted as one of the important

parameters to differentiate LRD processes from SRD ones.

Consider a process X(m) = {Xm
k : k ≥ 1}, obtained by averaging the original

increment process X over non-overlapping blocks of size m.

X
(m)
k =

1

m

km∑

n=(k−1)m+1

Xn (2.6)
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The variance of this sample mean process decays slower than the reciprocal of

sample size,

V ar[X(m)] ∼ m−β as m→∞, 0 < β < 1 (2.7)

the parameter β is related to H by H = 1 − β/2. Equation(2.7) indicates the sec-

ond property of self-similar process: slow decaying variance. It also means that the

self-similar process is heavy-tailed according to heavy tail definition as the following

equation:

Pr{U ≥ u} ∼ m−α as u→∞, α > 0 (2.8)

Fractal Point Process (FPP) Models

In general, we can classify LRD models into the following types: fractional brow-

nian motion, Fractional ARIMA, and fractal point process based models [63]. How-

ever, the former two models require a high computation complexity in generating

the synthetic traces. And they do not provide a plausible physical explanation of

self-similarity of network traffic either. Therefore, we study and evaluate the network

performance based on fractal point process based models, first proposed by Ryu in

1996 [9].

A point process is said to fractal [9] when the number of relevant statistics exhibit

scaling with related scaling exponents, indicating that that represented phenomenon

contains clusters of points over all (or relatively large set of time scales.

The ACF of FPP is given by:

r(k;T ) =
Tα

Tα + Tα0

1

2
[(k + 1)α+1 − 2kα+1 + (k − 1)α+1] for k > 0 (2.9)

For T � T0, T
α/(Tα + Tα0 ) approaches zero and thus LRD is negligible at these

scales. However, T � T0, T
α/(Tα + Tα0 ) approaches to 1 and process exhibits the

LRD with H = (1 + α)/2. From equation (2.9), it also indicates that H parameter is

not sufficient to describe LRD of FPP. The another parameter T0 called fractal onset

time is also needed.

There are two methods defined by Ryu to build FPP models, namely Renewal

Point Process method and Doubly Stochastic Poisson Process(DSPP) method.
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• Renewal Point Process :

The interarrival time of renewal processes can follow any general distribution.

If the pdf decays as the power law:

p(t) =

{
γA−1e−γt/A 0 ≤ t ≤ A

γe−γAγt−(γ+1) t > A
(2.10)

where A is a cut-off parameter, γ is a fractal exponent, with 1 < γ < 2. And

such process is called Fractal renewal process(FRP).

The sup-FRP process consists of the superposition of M i.i.d FRP, which can

obtain more flexible value of H,λ, T0 due to the addition of M to the traffic

modeling equation.

• Doubly Stochastic Poisson Process (DSPP):

DSPP yields a variety of Fractal-Modulated Poisson Point Processes (FMPPs).

In this proposal, we will focus on on-off FMPP [4] models, that are implemented

for generating synthetic self-similar traces.

On-Off FMPP

The on-off FMPP model is composed of M i.i.d on-off processes, where both on

and off periods are i.i.d and at least one of these two states has power law distribution

for their average holding time with infinite variance. Through the different combina-

tions of distributions for on-off process, ON-OFF FMPP can be classified into three

cases: PowON-PowOFF, ExpON-PowOFF, PowOFF-ExpON. We have implemented

all three cases in C codes. To avoid the repetition, only PowON-PowOFF case is

discussed as example.

In this model, both on and off processes are applied, with a power law distribution.

Assume R as the rate of single source. H,λ, T0 are given by the following:

H = (3− γ)/2

λ = Mγ[1 + (γ − 1)−1e−γ]−1A−1

Tα0 = 1/2γ−2e−γ(γ − 1)−1(2− γ)(3− γ)[1 + (γ − 1)eγ]2Aα
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From the trace files generated from C code, Figure 2.2 is drawn by MATLAB to

illustrate the burstiness in the different time scales for PowON-PowOFF model, that

gives the pictorial validation against poisson process in Figure 2.1.

Figure 2.2: Self-Similar Traces generated from PowONPowOFF

Finally, another reason to implement on-off FMPP is the classical conclusion made

by Willinger et al. on the LRD models [57], stated as the following:

Many ON/OFF sources whose ON and OFF periods exhibit the Noah
Effect (heavy-tailed with infinite variance) produce aggregate traffic which
features from the Joseph Effect (LRD).

2.2 Quality of Service (QoS)

QoS is the abbreviation of Quality of Service. It can be defined as both the

performance of a network relative to application needs and the set of technologies

that enable a network to make performance assurances [29].

Specifically, QoS can be described by the following metrics [62]:
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• Service Availability: The reliability of users’ connection to the internet device.

• Delay: The time taken by a packet to travel through the network from one end

to another.

• Delay Jitter: The variation in the delay encountered by similar packets following

the same route through the network.

• Throughput: The rate at which packets go through the network.

• Packet loss rate: The rate at which packets are dropped, get lost or become

corrupted.

For better QoS, the objective is to maximize the service availability and through-

put, minimize the delay and eliminate the delay jitter and packet loss rate.

For the rest of the section, we will briefly introduce the control and data plane of

QoS. And QoS schemes in IP wired networks are reviewed at the end.

2.2.1 Control and Data Plane of QoS

The QoS in IP network can be correspond to two “planes”, namely the control

plane and data plane as shown in Figure 2.3.

Control Plane—Global View of QoS

The functionalities of the control plane are( [28], [61]):

• Signaling : The information or message exchanged related to the establishment

and control of a connection and the management of the network for guaranteed

QoS , like RSVP.

• Admission Control : The decision process of whether to accept the new flow of

traffic or not according to given network resource and QoS requirement.
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Figure 2.3: QoS Big Picture

• Service Level Agreement(SLA) : A service contract between the customer and

the service provider that specifies the forwarding service the customer should

receive.

• Traffic Engineering :The process of arranging how traffic flows through the net-

work so that congestion caused by uneven network utilization can be avoided.

QoS routing belongs to this category.

Above all, the control plane of QoS works to ensure resource utilization and alloca-

tion, to balance the load along the traffic path, and to manage the traffic aggregation

and path flexibly.

Data Plane—Local View of QoS

The functionalities of the data plane are ( [28], [61]):

• Shaping : Delay the traffic so that it would conform to the predefined rate.

• Policing : Discard some packets when the incoming traffic violates the prede-

fined rule.
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• Marking : Set the DS (Differentiated Service) field in the packet, in which the

class of differentiated service is encoded.

• Traffic Classification : Sort the packets based on the content of the header

according to predefined rules.

• Scheduling : Send the packets in the order of the certain service rules.

• Queue Management : Control the length of queue by dropping the packets

based on the defined rules.

In addition, the packet encapsulation and de-encapsulation, and the packet frag-

mentation and reassembly are also functionalities in the data plane, but without QoS

features. Given the incoming traffic, the data plane of QoS is to realize the traffic

conditioning (shaping, policing, marking etc.) according to QoS requirements, and to

prioritize and differentiate among all incoming different classes of traffic by scheduling

and queue management. From the analysis above, it can be concluded that the data

plane of QoS focuses on the local scope.

2.2.2 QoS Schemes in IP Wired Networks

In the past decade, three main QoS schemes, MPLS, IntServ and DiffServ, have

been proposed by IETF. MPLS is originally designed for IP over ATM network,

which is essentially the hybrid of network (Layer 3) and transport (Layer 2) structure.

Explicit routing in MPLS, resemblance to end-to-end connection routing, improves

the traffic engineering since more predictable performance can be achieved. MPLS

focuses more on traffic engineering and backbone architecture than QoS definitions,

although QoS features are considered. In this subsection, we will give a short review

on IntServ and DiffServ schemes.
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IntServ

IntServ is a framework to provide QoS guarantees on the per-flow basis. Prior to

the connection establishment, the resource reservation is made between the sender

and the receiver by Resource Reservation Protocol (RSVP) and admission control in

the control plane so that the end-to-end QoS is guaranteed( [68], [59], [33]).

RSVP is the hop-by-hop and two-way signaling protocol riding on the top of the

routing protocols, which is intended to be applied in connectionless networks. It is

also the receiver-initiated reservation signaling protocol.

However, due to the property of a per-flow basis in IntServ, it is very difficult

to maintain the state of connections in the routers as the number of connections

increases. Huge storage and processing overhead that involved in accordingly means

the bad scalability in the fundamental design of IntServ. In addition, only two classes

of service make it inflexible for the more specified and differentiated QoS requirements.

In order to solve those difficulties in IntServ, DiffServ is proposed by IETF later.

DiffServ

Motivated by achieving scalability and flexibility, DiffServ adopts a per-class basis

for QoS, in which the traffic from different flows can be aggregated into the same class

due to the common QoS requirements at the edge of the network ( [68], [59], [33]).

In DiffServ, the DS (Differentiated Service) field in the packet header and the

corresponding set of Per-Hop-Behaviors(PHBs) are defined. Differentiated services

are realized by different treatment on the packets based on the value in DS fields and

corresponding PHBs. The different values of 6-digit Differentiated Service Codepoint

(DSCP) map the different PHBs.

In general, the whole network can be divided into the different DS (Differentiated

Service) domains in DiffServ, which are composed of the DS-capable edge and core

routers. The packets from DS-capable host would be classified and conditioned at

the edge routers of the DS domain according to the SLA, while core routers only

forward the traffic based on PHB and remark PHB possibly. When the packets move
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from one DS domain to another, the possible remarking might be involved following

the SLA between these two domains. SLA can be static or dynamic. In static SLA

scheme, no signaling protocol is needed.

The data plane of DiffServ, pushes the complexity to the edge of the network and

keeps the simplicity for the core routers of the network [15].

In the edge router, the traffic will go through the more complicated processes,

such as traffic conditioning, shaping, etc, while they are only simply forwarded by the

core routers based on PHB. PHB defines the different treatment in traffic forwarding

according to DS field in the packets. The specific scheduler should be implemented

to process the traffic forwarding based on PHBs, that is also one of our motivations

to propose an adaptive scheduling framework to guarantee QoS in the multiservice

networks, including DiffServ.

Two PHBs have been defined by IETF, equivalent to the concept of service models:

Expedited Forwarding(EF) PHB and Assured Forwarding(AF) PHB.

• Expedited Forwarding(EF) [16]: It is also called premium service, which pro-

vides a low loss, low latency and low jitter service to the users and guarantees

the performance if the incoming traffic is under the peak rate. An example

service of EF is the Virtual Leased Line service.

• Assured Forwarding(AF) [14]: It is also defined as assured service, intended for

providing the different levels of forwarding assurance for IP packets. There are 4

AF classes. Within each AF class there are three drop priorities which determine

the dropping of the packets while the congestion happens. An example service

of AF is the so called Olympic Service, in which three service classes, bronze,

silver and gold, are defined.

In control plane of DiffServ, a Bandwidth Broker(BB) [15] scheme is proposed to

handle the admission control. BB functions as a resource manager and determines if

the new request accepted, in light of current resource allocation of marked traffic and

the policies inside its policy database.
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2.3 Measurement Estimation

2.3.1 Overview

Network traffic measurement is very critical area in the field of network research.

Hence, it drew a lot attention and research enthusiasm from network researchers in

the past decade.

As discussed in Section 2.2, it is not difficult to see how crucial the accuracy of

the measurement is to QoS performance. From the data plane, the monitor function

block is implemented with measurement algorithms in order to provide the accurate

information of the traffic to the rest of blocks in the data plane, such as shaping.

From the input of measurement block, the network element (switch or router) can

shape and police the traffic according to the traffic profile or QoS requirement. It can

also be utilized for better scheduling and queue management.

Upon the control plane of QoS, the combination of measurement with admission

control is the most studied topic compared with the other combinations which the

measurement is involved with. This combination is often denoted as measurement-

based admission control (MBAC). The objective of MBAC is to make the admission

decision for the incoming flows, which is based on the estimation result of the specified

measurement algorithms, without violating QoS requirements for existing flows as well

as newly admitted ones.

Measurement is also frequently affiliated with the term “Self-Sizing” in the re-

search papers. Self-Sizing is an architecture which handles the dynamic resource

management for the different classes of traffic. Link partitioning or capacity alloca-

tion for a certain class of traffic depends on how good the measurement estimation

is.

However, how to choose the appropriate time scale for measurement remains a

haunting problem in dynamic resource management. If the time scale is too small,

the measurement estimation is too pessimistic, which results in an over-allocation of

resources; while if the time scale is too large, the measurement result will be under-

estimated. For very adaptive source traffic, an inappropriate time scale will lead to
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the dramatic oscillation of the resource allocation, which is not good for the stability

of the system. Fonseca et al. proposed a dynamic time scale to tame this effect [20].

The measurement estimation scheme can be divided into two parts in terms of

functionality: statistics collection and mathematic algorithms. In statistics collection,

the parameters or data needed for the input of mathematic algorithms are collected.

The most basic data collection unit is denoted as ”measurement slot”, namely, τ .

For statistics consideration, like mean and variance, multiple measurement slots are

often grouped into a measurement window, equal to W = T · τ . With the param-

eters needed, the estimation of traffic rate is given after the calculation of certain

mathematic algorithms.

The results of measurement estimation have been interpreted in two famous terms

in the area of the measurement research: equivalent capacity and effective bandwidth.

Equivalent capacity is defined as the value C(ε) such that the arrival rate for the

traffic exceeds C with probability at most ε [19]. Upon effective bandwidth, there is

no unified and formal definitions before the one Kelly proposed in [21]. However,

whatever it is denoted by effective bandwidth or equivalent capacity, it is in general

an estimation result with the stochastic consideration in order to meet the certain

QoS requirements, e.g., delay and loss probability.

Over the past decades, a variety of measurement algorithms have been proposed

and studied. And they can be classified into different categories based on the different

predefined criteria as the following:

• Granularity of Flows: They can be categorized into two groups: per-flow

based and aggregate based. Since a higher computation complexity is involved

in the per-flow measurement, while the measurement for aggregate traffic is a

good approach to differentiate among the different classes of traffic in order to

provide the differentiated QoS.

• Buffer Size: The measurement algorithms can be categorized as measurement

based on bufferless assumption and measurement based on large buffer assump-

tion. In respect with the bufferless assumption, Gaussian approximation and

Hoeffding bound methods are two representative ones [19]. And for large buffer
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assumption, it is often associated with large deviation theory [41]. Thus, it

can be also defined as a measurement based on large deviation theory. The

representative algorithms in this category are effective bandwidth proposed by

Kelly [21] and Courcoubetis algorithm [13]. All the details can be found in [63].

• Traffic Characteristics: The measurement algorithms can be regarded as

the ones good for the SRD and LRD traffic [32, 44]. For the latter, the typical

measurement algorithm is the one based on fBm traffic, proposed by Norros [44].

This algorithm considers the hurst parameter, H, to make it more friendly for

LRD traffic, however, it also shows inflexibility for the online version because of

the indispensable H estimation involved [3] and the related high computation

complexity.

In the next subsection, we will describe the measurement algorithm based on

traffic envelope, the one we normally implement in our simulation study.

2.3.2 Measurement based on Traffic Envelope (M-TE)

Measurement based on the traffic envelope concept was proposed by Qiu and

Knightly [47]. Traffic envelope is maximum traffic rate over the specified time scale

for the aggregate traffic. Whatever the aggregate traffic is LRD or SRD, this algorithm

performs with robustness due to its second order statistics nature. It characterizes the

traffic in different time scales: the burstiness in the small time scale and fluctuation

of aggregate in large time scale.

The most basic measurement unit is the measurement slot, τ . The measurement

window is adaptive, and composed of different number of measurement slots, varied

from 1 to T , Wk = kτ(k = 1, 2, · · · , T ).

In certain measurement window Wk, assume A[t, t + Wk] as the arrivals in the

interval[t, t +Wk], then A[t, t +Wk]/Wk is the rate over that interval. The maximal

rate for Wk over this time can be defined as Rk = maxtA[t, t+Wk]/Wk.

Suppose At = A[tτ, (t + 1)τ ] as the arrivals in the time slot starting from t. In

this way, the maximal rate over the certain measurement window with the size of kτ ,
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for the past Tτ from the current time t can be obtained by

R1
k =

1

kτ
max

t−T+k≤s≤t

s∑

u=s−k+1

Au for k = 1, 2, · · · , T. (2.11)

This equation is introduced for the consideration of the burstiness in the small time

scale.

The current envelope R1
k is measured and updated over every T · τ measurement

window, Rn
k ← R

(n−1)
k for k = 1, 2, · · · , T and n = 2, 3, · · · , N . The variance between

envelopes over the past N windows can be computed by the following equation:

σ2
k =

1

N − 1

N∑

n=1

(Rn
k − R̄k)

2 (2.12)

where R̄k = 1
N

∑N
n=1R

n
k is the mean of the past N envelopes.

The effective bandwidth in the traffic envelope can be calculated at the small and

large time scales according to [40].

For the large time scale, the effective bandwidth is obtained by

EBlarge = R̄T + αlargeσT (2.13)

where R̄T and σT are the mean and deviation for past N envelopes with the measure-

ment window size of T · τ . And αlarge is used to specify the confidence interval. It

cold be computed by the inverse of the complementary CDF of an N(0,1) Gaussian

distribution, αlarge = Q−1( εR̄T

σT
).

Upon the small time scale, the effective is computed by

EBsmall = max
k=1,2,··· ,T

(R̄k + αsmallσk)kτ

kτ −B/C
(2.14)

where B and C are buffer size and capacity respectively. The mean R̄k and deviation

σk is for measurement window k · τ .And αsmall = Q−1( εR̄k

σk
) is computed by using the

same approach as αlarge.

The algorithm can give the worst case effective bandwidth by choosing the maxi-

mum between the small-scale effective bandwidth and the large-scale one.

EB = max{EBlarge, EBsmall} (2.15)
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2.4 Scheduling Algorithms

2.4.1 Introduction

From the discussion in Section 2.2, one of the challenges to provide the guaranteed

Qos is how to handle the interaction among the packets from the different flows

which aggregate into the same switch. Such interaction can affect QoS of each other’s

adversely if no proper scheduling control scheme. For example, one misbehaving flow

is arriving in higher rate than defined, it will undermine the throughput and delay

bound requirements for the other well-behaving flows due to the malicious use of

resources (capacity) by the misbehaving flow.

Thus, the scheduling scheme is the one to handle all incoming packets based on

the predefined service order or priority, and to forward them later. A good schedul-

ing scheme should exhibit the following properties: efficiency, scalability, flexibility,

protection and fairness.

Regarding the fairness property, two important fairness metrics are widely ac-

cepted. They are service fairness index (SFI) proposed by Golestani [23] and worst-

case fairness index by Parkeh [45].

• Service Fairness Index (SFI): Fairness is represented by the maximum difference

between the normalized services received by two connections over the interval

(t1, t2], in which both sessions are continuously backlogged. The term “back-

logged” means that the queue for that session never empty during that specified

interval. The equation is given by: SFI = |Wi(t1, t2)/ri −Wj(t1, t2)/rj|, where

Wi(t1, t2) and Wj(t1, t2) denote the service received by session iandj during

(t1, t2], and ri, rj are allocated rates for session i, j respectively. The smaller the

SFI, the better the fairness.

• Worst-Case Fairness Index (WFI): WFI measures the discrepancy between the

service received under the service discipline and the fluid Generalized Processor

Sharing(GPS) discipline. It is defined as: (t2 − t1)ρi −Wi(t1, t2) ≤ ςi, where ρi

is service rate of corresponding fluid model and ςi is a constant. The minimum
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value of ςi is called WFI.

Among the various scheduling algorithms, First-Come-First-Serve (FCFS) is the

simplest. However, this simple algorithm is only suitable for best effort traffic. Be-

cause it can not differentiate between the different connections, any burst in the low

priority connections can result in the large delay for the high priority connections.

Priority scheduling is proposed to differentiate the various flows based on priority

levels. Under this service discipline, the packets in the higher priority level will be

always served before the ones in the lower priority level. But this simple differentiation

results in the starvation of the lower priority level. Hence, neither FCFS nor priority

scheduling can handle guaranteed and differentiated service in the network. That is

also the reason why more complicated and flexible scheduling algorithms are needed.

In general, the scheduling algorithms can be classified into two big categories:

working-conserving and non-work-conserving. A work-conserving scheduler is never

idle when there is the packet in the queue, while a non-work-conserving scheduler

can be idle even if there are packets in the queue waiting for the service. In the next

subsection, we will give the general discussion on the work conserving algorithms,

while emphasizing on weighted round robin and weighted fair queueing.

2.4.2 Work-Conserving Scheduling Algorithms

The work conserving algorithms can be divided into two types: round robin or

framed-based and service deadline or sorted priority-based.

• Round Robin: The service discipline serves the queue in round robin fashion

using frames or cycles. In each cycle, the every queue is given the chance

to transmit. Different throughput guarantee is achieved by different weights

associated with each queue. One of representative scheduling algorithms with

round robin style is weighted round robin (WRR). Also, deficit round robin

(DRR) was proposed in order to provide the better treatment for variable sizes

of packets [52].
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• Service Deadline: The service discipline calculates the service deadline, F j
i ,

for each packet of connection j at the instant i, and serves them in the increasing

order of the deadline. If there is a tie, the packets will be re-ordered randomly.

The general calculation function for service deadline is as the following:

F j
i = max{F j

i−1, v
j
i }+ 1/rj

where rj is the minimum service rate of connection j , and vji is the virtual

time for connection j at the instant i. Virtual clock [70], weighted fair queueing

, worst-case weighted fair queueing [5], self-clocked fair queueing [23], delay

earliest due date [18], are all in this category. The difference between them is

the way to calculate the service deadline.

Next we discuss weighted round robin and weighted fair queueing, two algorithms

chosen for our proposed adaptive and optimal scheduling framework.

Weighted Round Robin (WRR)

The integer value, called weight, is allocated to each queue or connection at the

initialization. In each service cycle, each queue is given the proportional slots based

on their weights and served in turn if it is nonempty. There are weight counters for

each queue, which will decrease by 1 after that queue is served. If the weight counter

or queue length in all queues are 0, that means one service cycle is done and all the

weight counters are reset to their weight values.

Under the WRR scheme, the ith queue can obtain its share of bandwidth equiv-

alent to, wi/
∑

j∈B(t)wj, where B(t) is the set of the backlogged queues at time t.

When the weights of all queues are equal, that corresponds to the well known Round

Robin scheduling, in which each queue receives an equal share of the bandwidth if

they are all backlogged. Since it is round robin style scheduling, the computation

complexity is just O(1).

However, there are two inherent drawbacks in this scheduling algorithm. First,

although it performs very well in dealing with a small number of connections or
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queues, it will result in the larger service cycle as the the number of queues increases,

which in turn causes a longer delay in each queue.

Second, it is difficult to handle the packets with variable size. One proposed

solution is the weight normalization through dividing the original weight of the queue

by its average packet size. However, the average packet size is often unpredictable at

advance. For the better solution, that gives the rise to deficit round robin (DRR).

Weighted Fair Queueing(WFQ)

Fluid fair queueing(FFQ), or equivalent generalized processor sharing (GPS),is

ideal scheduling policy. First, since N connections shares the same link, FFQ as-

sumes that N connections can be served simultaneously. And the service rate for

ith nonempty queue can be obtained from the equation: φi∑
j∈B(τ)

C, where φi is the

positive real number assigned to ith queue and B(τ) is the set of backlogged queues

at time τ . However, it is not feasible in a real implementation. Second, FFQ is based

on infinitesimal assumption of traffic, which is not realistic either.

Based on FFQ and GPS, separate but parallel research was performed to ap-

proximate these two ideal scheduling disciplines. The research result turns out to

be the same, or equivalent, scheduling discipline. The successor of FFQ developed

by Demers, Keshav, and Shenker [2] is called weighted fair queueing(WFQ), while

the successor of GPS proposed by Parekh and Gallager [45] is named packet-based

generalized packet sharing (PGPS).

The virtual time of WFQ is equivalent to the round number calculated from bit-

by-bit round robin scheduler. If the packet arrives in an inactive queue, the virtual

finish time is the sum of the recomputed virtual time (round number) and service

time for this packet. If the packet arrives in an active queue, the virtual finish time is

the sum of last packet finish time and service time for this packet. It can be written

in the following equation:

F k
i ← max{V (aki ), F

k−1
i }+ Lki /φi

where V (aki ) is the virtual time of kth packet of connection i, Lki is length of kth
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packet of connection i and φi is the service rate allocated to connection i.

A connection is defined as active in WFQ if the last packet served from it, or in

its queue, there is a packet with the finish number greater than the current round

number.

Since WFQ needs to keep track of active connections to calculate the virtual time,

the computation complexity of this algorithm is up to O(N). It is also proved that

the service provided by WFQ is no later than FFQ by at most one packet size.

2.5 Related Work

In this section, we will briefly review the related work, that inspires us to propose

the adaptive and optimal scheduling framework in multi-service networks.

Significant contributions have been made already in related areas such as measurement-

based admission control (MBAC), self-sizing network frameworks and QoS adaptive

routing.

Traffic measurement and estimation has been widely studied in the past decade

due to the importance of its accuracy and efficiency on QoS performance, as we

discussed in Section 2.3. Again, effective bandwidth (EB) [21] is a well-known con-

cept that aims to allocate an efficient amount of bandwidth in order to satisfy QoS

requirements of the incoming traffic.

Approaches to QoS can be differentiated by the combination of traffic measure-

ment with different components under control and data plane of QoS [61]. MBAC

[32, 34, 47, 50] is one of the first approaches to utilize the traffic measurement and

estimation in order to make admission decisions based on QoS requirements.

In regard to traffic engineering, a QoS routing mechanism based on global control

was proposed in [10, 71]. Alternatively, self-sizing frameworks in which online mea-

surements are utilized for optimization and QoS routing (under global control) have

been proposed in [25,69]. Recently, due to the large overhead involved in signaling for

global control, Z. Zhang et al. proposed QoS routing based on local control [43]. And

the counterpart of self-sizing framework based on local control is studied by Nalatwad
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and Devetsikiotis in [42].

In QoS scheduling, Shin et al. have proposed the adaptive allocation of weights

according to the average queue length of the premium service, in which only QoS

constraints of premium service are considered [58]. Most recently, Chandra et al [12]

describe a dynamic resource allocation technique that uses on-line measurements.

However, other than [12], there have been limited advances in formally defined,

control-theoretic closed-loop methodologies. Thus, we are motivated to propose the

more generalized, flexible and optimal-control oriented scheduling framework, with

more complete QoS and pricing considerations.
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Chapter 3

MBORA System: Problem

Formulation

In Chapter 1, we clarified our motivation and objective, that is to design a gen-

eralized adaptive scheduling framework in multi-service networks that meets QoS

requirements while making optimal decisions through dynamic resource allocation.

Before we start the discussion on our proposed generalized framework, we want

to further clarify the following two issues.

First, our proposed generalized framework is assumed to run on single basic net-

work elements, such as a router, switch, etc. Unlike the global optimization and

adaptation that traffic engineering characterizes, it originates from the the local point

of view, emphasizing the traffic delivery on a single node, for example an access point

or concentrator (e.g., DSLAM in cable systems).

Second, our optimization model for the decision policy is formulated from the

perspective of the network provider, therefore it is the revenue or profit, instead of

the incurred cost for the user side, that is emphasized in our proposed framework.

Next, we will introduce our proposed generalized adaptation and optimization

framework over measurement-based scheduling.
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3.1 Measurement-Based Optimal Resource Allo-

cation (MBORA) System

In this section, we will introduce our proposed generalized framework for a network

node that can accommodate multiple classes (see Figure 6.1). Suppose m determinis-

tic delay-bounded classes and n flexible delay-bounded classes share the link capacity,

C. Due to the rigidity of the deterministic delay-bound classes, such service level re-

quirements can only be guaranteed by the appropriate traffic shaping and admission

control schemes ( [22,34,45]), together with a certain amount of reserved bandwidth,

Cr. Hence, these classes are excluded from our proposed Measurement Based Optimal

Resource Allocation (MBORA) system.

A MBORA system is responsible of optimally allocating the excess bandwidth,

C ′ = C − Cr, shared by the n flexible delay-bound classes. The proper allocation

between the reserved bandwidth and the excess bandwidth can be achieved by a

generic scheduler, such as Hierarchical Packet Fair Queueing mechanism proposed

by [6].
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Figure 3.1: General proposed framework to deliver service guarantees for flexible
multi-class networks.

Next, we focus on the main components and related coordinations of a MBORA

system shown in Figure 3.2. Its main components are: a traffic measurement module

that provides an accurate estimation of the future traffic load of the different classes

under consideration over a pre-specified time interval (window), a decision module

that determines how bandwidth is distributed among the various classes of traffic

based on the information acquired from traffic measurement module and a scheduling
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module that deals with the packet forwarding mechanism.
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Figure 3.2: Illustration of the adaptive framework under consideration and its
components.

The coordination of these three components is described next: when a job/customer

of class i arrives at the scheduler, it is assigned the queue of the corresponding queue,

waiting to receive service from the scheduling module. At the same time, the measure-

ment module updates the arrival rate statistics of the corresponding traffic class, and

provides an estimate of the arrival rate. It should be noted that the measurement

module performs the above operation over a pre-specified time interval (window).

Next, the decision module allocates the service rate (bandwidth) to the queues using

information about the estimated arrival rate and the queue length processes. For the

decision module, we focus on the problem that module solves at every decision time

instant (at the end of a W -duration window). Regarding the scheduling module, it

updates the weights for the different classes of the generalized scheduler (WRR or

WFQ), in order to accommodate the service rates determined by the decision module.

In general, we can describe our proposed framework from two respects: the adap-

tiveness and optimum. The adaptiveness respect is more focused on the functionality

and coordination of the components in the proposed framework, while the optimum

respect is more associated with what the optimal decision modelings are formulated

and how to reach the optimal solution in the decision module, given the various

pricing models and QoS considerations.
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Chapter 4

MBORA System under Simple

Threshold Policy

4.1 Introduction

Regardless of the specific QoS delivery mechanism, present or future, there are

great efficiency and robustness advantages to be gained from enhanced, measurement-

based algorithms for adaptation of scheduler settings. Our adaptive technique for

generalized schedulers and its analysis presented here, apply equally well to any of

these QoS mechanisms. In this chapter, we introduce our first investigation on the

adaptiveness of the proposed framework, where the simple threshold decision policy

is applied without considering its optimum respect.

In this first and simple approach, we examine the performance extensively via

simulation in order to validate the advantage of the adaptiveness of the proposed

framework. Another objective is to evaluate the capability of the proposed framework

to maximize the fairness of resource allocation among all classes of traffic, while

satisfying their own QoS requirements.
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In this chapter, we will discuss the preliminaries for our proposed framework first.

Next, we introduces the kernel of this framework, the threshold policy purely based on

the measurement estimation. Part of performance evaluation study of the proposed

approach will be presented in Section 4.4 and the rest can be found in Appendix A.

Finally, some concluding remarks are drawn.

4.2 Preliminaries

Without loss of generality, we assume that our proposed scheme operates under

the DiffServ mechanism, where the various traffic flows can be classified as: Expedited

Forwarding (EF) service, Assured Forwarding (AF) service and Best Effort (BE) ser-

vice. At an appropriate level of abstraction, these three service classes can be thought

of as delay-sensitive, loss-sensitive and best effort, respectively, a characterization that

we adopt for the remainder of this chapter.

We focus on WFQ and WRR-like scheduling algorithms, which are well discussed

in Section 2.4. Moreover, the definition of WRR shows that the class weights corre-

spond to the number of slots to be served in a single scheduling cycle. Hence, for both

WRR and WFQ, the bandwidth allocated to class i at decision time τ is given by

φi = wiC/
∑

j∈N(τ)wj, where wi is the weight allocated to the i-th class and N(τ) is

the number of backlogged queues at time instant τ . With respect to the measurement

algorithm, we adopt the traffic envelope algorithm proposed by Qiu and Knightly in

Section 2.3.2 [47].

4.3 Simple Threshold Policy (θ1, θ2)

Notice that transient phenomena, such as traffic burstiness, coupled with imbal-

ances in the traffic load over classes, would result in performance degradations, unless

the class capacity allocations are accordingly adjusted. A simple and intuitive rule

that satisfies the QoS requirements is that at every point in time we have φiC
′ ≥ EBi,
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where φi is the share of the bandwidth of traffic class i and EBi the estimated ef-

fective bandwidth for the i-th class. In practice, we require that the above relation

holds for a time interval of length W , appropriately chosen (for more on the choice

of W see Appendix A).

Nevertheless, in many instances, the sum of the estimated arrival rates could be

greater than C ′, which corresponds to the under-provisioning case in this disserta-

tion. In such instances, the QoS requirements of the delay-sensitive class should be

satisfied at the expense of the remaining two classes, provided that it does not ex-

ceed a prespecified threshold θ1. Furthermore, if the under-provisioning is due to the

temporal traffic pattern of the best effort class, then the QoS requirement of the loss

sensitive class should also be satisfied, provided that it does not exceed a different

prespecified threshold θ2. Summarizing the above requirements, the queue weights

are determined as follows:

1. Obtain the effective bandwidth, EBi for the i-th class from the measurement

module.

2. If the sum of the three effective bandwidths is less than the link capacity (i.e.,
∑
EBi < C ′), then each class’ share of bandwidth is given by φiC

′ ≥ EBi;

otherwise, go to step 3.

3. If
∑
EBi > C ′, then provide bandwidth to the delay-sensitive class up to φ1C

′ ≤

θ1C
′, to the loss-sensitive class up to φ2 ≤ θ2(EB2/C

′) and the remainder to

the best effort class.

4. If the scheduling module is based on WRR, then normalize the share of band-

width for each class in order to get the integer weights allocated to them. If

it is based on WFQ, then the share of bandwidth for each class corresponds to

the weights.

Finally, notice that the proposed approach also decreases the computational com-

plexity of the resulting DWFQ scheme, since it is determined by the number of classes,

as opposed to the number of connections.
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4.4 Performance Evaluation

4.4.1 Simulation Scenarios

The model used in our experimental investigations is based on the architecture

shown in Figure 4.1. The network element is a processor sharing system with three

input queues that map to the delay-sensitive, the loss-sensitive and best effort class,

respectively. Each queue is associated with a certain weight whose value is controlled

Delay Sensitive


Loss Sensitive


Best Effort


Scheduler


w1


w2


w3


Figure 4.1: The architecture of the simulation model.

by the scheduling module. Our proposed scheduling scheme changes the weights

dynamically over the adaptive time window, after their values are initially set at

w1 = 2, w2 = 2, and w3 = 1, reflecting the importance of the respective classes, for

all scheduling algorithms in our simulation study. The excess bandwidth is 64kbps

and the buffer sizes for the three classes are set to 500 (delay-sensitive), 5000 (loss-

sensitive), and 10000 (best effort) bytes, respectively.

The effective bandwidth is recalculated for every adaptive window N · T · τ , with

τ = 0.01, T = 10, and N = 10. The queue management mechanism used corresponds

to Drop-Tail.

The traffic generation model follows the on-off Fractal Modulated Poisson process

(FMPP) proposed in [4]. The FMPP produces long-range dependent traffic, by using

a power-law distribution for the “on” or “off” periods, while the packet distribution

Over the “on” is Poisson. The traffic rate varies over time due to the changing

number of flows in the “on” state. Furthermore, in our setting additional variability

is introduced through changes in the composition of traffic over the three classes. For
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the sake of simplicity the packet size was fixed to 50 bytes and the Hurst parameter

of the traffic process to 0.7.

Given the excess bandwidth, the system’s available capacity (stability) constraint

is at 6.25 msec. That is, if the mean packet inter-arrival time is larger than this

value, the system is over-provisioned and relatively few packet losses are expected to

occur. On the other hand, for mean packet inter-arrival times smaller than 6.25 msec,

the system is unstable and highly backlogged queues together with frequent packet

losses are expected. The case where the mean time is exactly 6.25 corresponds to the

critical regime.

Finally, the policies to be compared in the simulation study are the Static Weighted

Round Robin (SWRR), the Static Weighted Fair Queue (SWFQ) and their dynamic

counterparts DWRR and DWFQ. Their main difference is that for the static policies

the set of weights do not change over time. The performance metrics used in our

study are packet loss probabilities and average queue delays.

4.4.2 Results and Analysis

We start by providing a picture of the traffic patterns used in our study. Figure 4.2

shows how the total traffic rate and that of the three classes changes over time. Every

100 seconds, the traffic pattern of each class changes, which induces a transient bursty

behavior for the traffic of each class. And Figures 4.3–4.5 demonstrate the traffic rate

and allocated capacity by different scheduling policy schemes in under-provisioned

case. We assume that the queues are always backlogged over each adaptive window.

The plots indicate that, in our simulation scenarios, the delay and loss sensitive

classes should be adequately provisioned under the proposed QoS scheme. We turn

our attention next to evaluating the performance of our scheme. In order to be able

to examine a large range of performance the mean inter-arrival packet time is varied

from 5 ms to 9.1 ms, thus covering both the under and the over-provisioned cases. In

the following figures the class loss probabilities and average queue delays are plotted

as functions of the input rate for the two dynamic and the two static policies.

Figures 4.6 (a) and 4.6 (b) show the substantial decrease in loss and delay obtained
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Figure 4.2: Pictorial view of total traffic rate vs. traffic rate for each class in the
under-provisioned case.
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Figure 4.3: Pictorial view of traffic rate vs. resource allocated by different scheduling
algorithms for delay-sensitive class of traffic in the under-provisioned case.
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Figure 4.4: Pictorial view of the traffic rate vs. resource allocated by different schedul-
ing algorithms for the loss-sensitive class of traffic in the under-provisioned case.
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Figure 4.5: Pictorial view of the traffic rate vs. resource allocated by different schedul-
ing algorithms for best effort class of traffic in the under-provisioned case.



39

from the DWFQ policy for the delay sensitive class in the under-provisioned scenario.

This policy also achieves the best performance in the well provisioned case, but the

gains are smaller in the over-provisioned case because the bandwidth will be auto-

matically redistributed among the rest of the nonempty queues whenever any queue

becomes empty due to the work-conserving nature of the static scheduling policy. It

is also worth noting that the DWRR policy outperforms both static policies under

the loss performance metric for the same class, although this comes at the expense

of larger delays. The latter is a consequence of the integer weight normalization for

DWRR.
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Figure 4.6: Comparison of scheduling algorithms on (a) packet loss probability and
(b) average queue delay for delay-sensitive class.

Analogous conclusions can be reached for the loss-sensitive class by examining

Figures 4.7 (a) and 4.7 (b). However, since queueing delays are not that important

for this class, it can be concluded that DWRR outperforms the static policies, as well.

Finally, the dynamic policies prove competitive with respect to the best effort

class, as Figures 4.8 (a) and 4.8 (b) illustrate for the over-provisioned scenario, while

they exhibit an up to 50% degradation in performance for the under-provisioned case.

This result is expected, given the fact that this class receives the lowest priority under

the proposed scheme.
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Figure 4.7: Comparison of scheduling algorithms on (a) packet loss probability and
(b) average queue delay for loss-sensitive class.
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Figure 4.8: Comparison of scheduling algorithms on (a) packet loss probability and
(b) average queue delay for best effort class.
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The main conclusions are: (i) that the dynamic scheduling algorithms perform as

well as their static counterparts for all classes in the over-provisioned scenario and

(ii) they significantly outperform the static policies for the delay and loss sensitive

classes under the remaining scenarios.

We also investigate the performance of our proposed scheme by tuning the follow-

ing parameters: the threshold (θ1, θ2), pattern change interval (PCI), the unbalanced

factor (σ), and the adaptive window (W ). The details are shown in Appendix A, by

which our conclusion is further validated.

4.5 Conclusions

In this chapter our generalized framework based on the threshold policy, is in-

troduced to provides QoS guarantees for different traffic classes under the DiffServ

mechanism. The proposed scheme, due to its dynamic and adaptive nature exhibits

a superior performance to static algorithms. Two dynamic algorithms DWFQ and

DWRR have been investigated and the former outperforms the latter in almost all

scenarios examined, due to its inherent flexibility on determining the weights. Our

proposed scheme proves robust to the underlying load distribution of the traffic classes

and to the changing nature of traffic characteristics over time.

The proposed scheme relies on two, externally set parameters (e.g. by the ISPs)

(θ1, θ2), that determine the relative importance of the traffic classes. It also utilizes an

adaptive sampling window, whose optimal determination is a topic of current work.
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Chapter 5

MBORA System as a Profit

Maximization Center

After the validation of the advantage of the generalized proposed framework in

the adaptiveness respect, we further explore our framework from the optimality point

of view in this chapter.

The objective is to formally investigate optimal settings based on profit-oriented

formulation that also take into account all the relevant QoS considerations, such as

loss probability and delay.

5.1 Generalized Profit-Oriented Formulation

We generally describe our optimal scheduler as a profit center, that is the core

of the proposed framework for bandwidth allocation [56]. The provider’s long-term

profit consists of a revenue based on usage charge,
∑
Ri(φi), and a cost component

related to the delay congestion,
∑
C′i(φi), for all the classes, where φi is the proportion

of the excess bandwidth allocated to class i. The objective is to maximize the usage
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charge while minimizing the delay penalty cost incurred by the congestion. Thus,

our generalized profit-oriented model can be formulated as the following optimization

problem:

max
φ

f(φ) =
∑

i

Ui(φi) =
∑

i

Ri(φi)−
∑

i

C′i(φi) (5.1)

s.t. ∑
φi ≤ 1

Based on this formulation, the system can achieve the optimal allocation of re-

sources in terms of financial and QoS concerns. Furthermore, the network provider

also achieves greater flexibility in controlling the shared resources by means of varying

the pricing models and additional service guarantees constraints in this generalized

formulation.

Next, we briefly discuss how our generalized formulation is affected by the char-

acteristics of the pricing models adopted and by the nature of service guarantee

constraints.

• Pricing Models:

The pricing model can have a linear or a non-linear functional form, which

affects the sensitivity of the bandwidth allocated with respect to price changes.

In the linear case, the cost component is given by C′i(φi) = biDi, whereas an

example of a nonlinear pricing function is C′i(φi) = bie
(Di−di)Di. In the latter

case, the penalty cost increases exponentially when the desired delay cannot be

met, compared with the linear pricing model. The details about pricing model

will be discussed later in Chapter 7.

• Service Guarantees Constraints:

In the case that the network provider wants to take an aggressive approach in

satisfying QoS requirements, it can be achieved by adding more service guar-

antees constraints in the generalized profit-oriented formulation, such as the
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following:

f1(φi) ≤ P i
loss

Di = f2(φi) ≤ di

where P i
loss, Di and di are the loss probability, expected queue delay and desired

queue delay of class i, respectively. Furthermore, f1(φi) and f2(φi) represent

the functions that provide the desired loss probability and delay, respectively.

Similarly, in the profit center model, the type of service level requirements used

has a significant impact on the amount of allocated bandwidth. Notice that the

constraint functions f1(φi) and f2(φi) can have either a deterministic form –

e.g., average queue delay, D̄i < di – or a stochastic one – e.g., P{Di > di} ≤ εi

[53,72]. It can also be seen that the constraints we allow in our formulation can

correspond to any statistic of interest of the delay (or loss) distribution, such

as the mean, the median or any other quantile of interest.
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Chapter 6

MBORA System under Linear

Pricing Models

Given the generalized profit-oriented formulation, our first study will be focused

on sub-case of special interest in this chapter, under the assumption of the generalized

service models for the multi-service networks [51].

This chapter is organized as follows: We first introduce the generalized service

models in Section 6.1. In Section 6.2 the optimization problem under linear pricing

model and average queue delay is formulated. In Section 6.3.1 we discuss in detail

the form of the solution in different cases depending on the binding constraints for

the stable case, while our proposed relaxation and threshold scheme for the unstable

case are presented in Section 6.3.2. Section 6.4 further derives the calculation of

the optimal values for the stable case and presents a complete solution algorithm for

both the stable and the unstable cases. Section 6.5 contains a sensitivity analysis

of the optimization problem with respect to the prices charged to the various traffic

classes, while in Section 6.6 a similar analysis is presented for choosing the adaptive

window over which the scheduling decision is implemented, W . Simulation results

are presented in Section 6.7. We also summarize and conclude with open issues and
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future research directions in Section 6.8. Finally, for the sake of completeness, we

give the definition of supermodularity [54] which is used in this dissertation and some

related proofs in Appendix B.

6.1 Generalized Service Models

First, we start by introducing a generalized service model for the various applica-

tions in multi-service networks, that can also similarly apply to other QoS schemes,

such as IntServ and DiffServ.

Following Shenker [51], service models can be differentiated by the related utility

function, that reflects the mapping relationship between the service delivered and

the performance of the application. Pure data applications are defined as an elas-

tic class that can tolerate packet drops and delays and is characterized by a strictly

concave and differentiable utility function. On the other hand, real-time applications

can be further differentiated into three classes; hard real-time, delay-adaptive, and

rate-adaptive. The hard real-time class needs to adhere to strict deterministic delay

bounds, whereas the delay-adaptive and the rate-adaptive classes are more tolerant

and require delay guarantees on the average, with the former being significantly more

demanding than the latter. Mapping these classes accordingly into Figure 3.1, we

study the special scenario with m = 1 and n = 3. Accordingly, the proposed frame-

work and MBORA system under the generalized service models can be shown in

Figure 6.1 and 6.2.
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Figure 6.1: General proposed framework to deliver QoS under the generalized service
models.
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6.2 Problem Formulation

Applied with the linear pricing model and average queue delay consideration, the

profit-oriented problem in this scenario can be expressed as

max
φ
{
∑

Ri −
∑
C′i} = max

φ
{

3∑

i=1

piφiC
′ −

2∑

i=1

biq̄i
φiC ′
}, (6.1)

subject to

∑3
i=1 φi ≤ 1, φi ≤ 1

φi ≥ max{ ri
C′ ,

q̄i
C′di
}, i = 1, 2 , φ3 ≥

r3
C′

where q̄i is the average queue length, pi is the price per unit of the utilization of the

system’s resources for class i and bi is the cost per unit of time incurred by class

i, and with φ = (φ1, φ2, φ3). Since the higher priority class requests a better QoS

than the lower priority classes, it should be charged with a higher price for per unit of

resource utilization and the cost per unit of time due to the premium service expected

to receive, over the remaining classes; therefore, pi > pj and bi > bj for i < j. Note

that the delay cost for the elastic class is not considered.

In equation 6.1, ri is a estimated generalized traffic rate for class i. It could be

selected as the mean rate, peak rate, or effective bandwidth (of one of many possible

definitions), depending on the different QoS requirements for different classes and

how conservatively the capacity is allocated among them for the shared-link system.

Effective bandwidth is defined by Kelly as the bandwidth required to satisfy QoS
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constraints via large deviation theory [21], that is a value between the mean rate

and the peak rate. It is an efficient measure to allocate bandwidth in order to make

their loss probability under a given bound [24]. For those classes without strict QoS

constraints, like our “elastic” class, the mean rate is adequate for bandwidth allocation

purposes, whereas the effective bandwidth rate might be too conservative.

The average queue length plays an important role in the above formulation and

can be derived from the fluid model given in [37]. Notice that the instantaneous queue

length process at time t for class i can be obtained through the formula

qi(t) = max[q0
i + (ri − φiC

′)t, 0] (6.2)

where q0
i is the initial queue length of the i-th class and t denotes the length of the

time interval. The max operator prevents the process from taking negative values.

In our proposed scheme, the share of system resources (bandwidth) allocated to

the various classes would be dynamically assigned over an adaptive window W . Thus,

the average queue length of class i during an adaptive window W is given by

q̄i =
1

W

∫ τi

0

qi(t)dt

=
τi
W

[q0
i +

τi
2

(ri − φiC
′)] (6.3)

where [0, τi] is the time interval during which the queue length process remains positive

during an adaptive window W and τi is determined by τi = min{t0i ,W} with t0i being

the time it takes to empty the queue. In turn, t0i can be obtained by t0i = q0
i /(φiC

′−ri),

given the initial queue length q0
i . It can be seen that the average queue length depends

on τi and therefore we distinguish the following cases:

Condition 1: if t0i < W , we obtain the following relationships from the QoS

constraints.

φi >
q0
i

WC ′
+
ri
C ′

= ϕ1
i (6.4)

On the other hand, the average queue length q̄i can be written as:

q̄i =
[q0
i ]

2

2W
×

1

φiC ′ − ri
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Then, the delay component of the QoS can be rewritten as follows:

φi ≥
ri

2C ′
+

√

(
ri

2C ′
)2 + (

q0
i

C ′
)2 ×

1

2diW
= ϕ2

i (6.5)

Hence, equations 6.4 and equation 6.5, imply that φi ≥ max[ϕ1
i , ϕ

2
i ], while the

constraint φi ≤ 1 has to be satisfied.

We next examine the relationship between the variables ϕ2
i and ϕ1

i .

In Figure 6.3, we plot the relationship between between ϕ2
i and ϕ1

i as a function

of the initial queue length of class i, q0
i . It can be seen that

max[ϕ1
i , ϕ

2
i ] =





ϕ1
i if q0

i ≤
riW
W
2di

−1

ϕ2
i , otherwise

There are only two intersection points for the curves of ϕ2
i and ϕ1

i ; one at q0
i = 0

and the other one at q0
i = riW

W
2di

−1
. Intuitively, when q0

i is less than the threshold riW
W
2di

−1
,

the system’s first priority is to empty the queue, while the desired queue delay is

met. However, when q0
i is larger than the above threshold value, the system needs

to allocate a larger share of its bandwidth to meet the desired delay requirement

rather than trying to empty the queue. As the duration of the scheduling window W

increases, the value of the threshold will decrease. When W � di, this threshold can

be approximately written as 2ridi.

Condition 2: if t0i ≥ W , we analogously obtain

φi ≤
q0
i

WC ′
+
ri
C ′

= ϕ1
i (6.6)

In addition,

q̄i = q0
i +

W

2
(ri − φiC

′)

which in turn gives that

φi ≥

q0i
WC′ + ri

2C′

1
2

+ di

W

= ϕdi (6.7)

However, in some cases ϕdi may be greater than ϕ1
i , which creates a conflict between

the constraints. In such a case we must at least have φi ≥
ri
C′ , whereas if ϕdi is no
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Figure 6.3: Relationship between ϕ1
i and ϕ2

i .

greater than ϕ1
i , then the lower bound of φi should be given by the maximum of ri

C′

and ϕdi . In summary we have:

ϕ3
i =

{
ri
C′ if ϕdi > ϕ1

i

max[ ri
C′ , ϕ

d
i ] if ϕdi ≤ ϕ1

i

Hence, under condition 2 we get the following constraint ϕ3
i ≤ φi ≤ ϕ1

i .

We explore next the relationship between ϕdi and ϕ1
i .

In Figure 6.4, we plot the relationship between between ϕdi and ϕ1
i as a function

of q0
i . The threshold value of q0

i that makes ϕdi = ϕ1
i is exactly the same as the one

we discussed in Figure 6.3. Moreover, there is also only intersection point between

the two curves. From Figure 6.4, when ϕdi > ϕ1
i , the delay constraint can not be met

due to the conflict with the assumption that φi ≤ ϕ1
i for Condition 2. Thus, we must

at least have φi ≥
ri
C′ . For max[ ri

C′ , ϕ
d
i ], we finally obtain the following equation from

Figure 6.4:

max[
ri
C ′
, ϕdi ] =

{
ri
C′ if q0

i ≤
ridi

WC′

ϕdi , otherwise
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6.3 Optimal Allocation of Resources

6.3.1 The Over-Provisioned Case

Equation 6.1 shows that the problem under consideration is a nonlinear optimiza-

tion one with inequality constraints. In the ensuing discussion it is assumed that the

system is over-provisioned, in the sense that the sum of the expected input rates does

not exceed the excess bandwidth of the router; i.e.
∑3

i=1 ri < C ′.

In this subsection we outline how the optimal solution is obtained. It is important

to note that the constraints change the nature of the objective function over different

regions of the parameter space. We start by considering the nature of the constraints.

Notice that at the optimum we must have
∑3

i=1 φi = 1; otherwise, resources would

be wasted. Furthermore, since the best effort class (3rd class) pays the lowest price

and has no constraints on its delay, we get that at the optimum φ3 = r3
C′ . These two

facts show that the optimal solution satisfies

φ1 + φ2 = 1−
r3
C ′
.

Furthermore, the problem has been reduced to one involving only two decision vari-

ables, namely φ1 and φ2.
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The relationship between the duration of the measurement window W and the

duration of emptying the queue τi imposes QoS constraints, that in turn translate to

the following four cases for our optimization problem:

1. Case 1: Suppose that both decision variables (i.e. φ1 and φ2) satisfy condition

1. The optimization problem can then be written as:

max
φ1,φ2

f(φ1, φ2) =p1φ1C
′ + p2φ2C

′

−
b1 × [q0

1]
2

2W (φ1C ′ − r1)φ1C ′

−
b2 × [q0

2]
2

2W (φ2C ′ − r2)φ2C ′

subject to the constraints

∑2
i=1 φi = 1− r3

C′

φ1 ≥ max[ϕ1
1, ϕ

2
1]

φ2 ≥ max[ϕ1
2, ϕ

2
2]

2. Case 2: Suppose that φ1 satisfies condition 1, whereas φ2 satisfies condition 2.

In this case the optimization problem can be written as:

max
φ1,φ2

f(φ1, φ2) =p1φ1C
′ + p2φ2C

′

−
b1 × [q0

1]
2

2W (φ1C ′ − r1)φ1C ′

− b2 × (
q0
2 + W

2
r2

φ2C ′
−
W

2
)

subject to the constraints

∑2
i=1 φi = 1− r3

C′

φ1 ≥ max[ϕ1
1, ϕ

2
1]

ϕ3
2 ≤ φ2 ≤ ϕ1

2
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3. Case 3: Suppose that φ1 satisfies condition 2, whereas φ2 satisfies condition 1.

Thus, the optimization problem can be written as:

max
φ1,φ2

f(φ1, φ2) =p1φ1C
′ + p2φ2C

′

− b1 × (
q0
1 + W

2
r1

φ1C ′
−
W

2
)

−
b2 × [q0

2]
2

2W (φ2C ′ − r2)φ2C ′

subject to the constraints

∑2
i=1 φi = 1− r3

C′

ϕ3
1 ≤ φ1 ≤ ϕ1

1

φ2 ≥ max[ϕ1
2, ϕ

2
2]

4. Case 4: Suppose that both decision variables satisfy condition 2. The optimiza-

tion problem becomes:

max
φ1,φ2

f(φ1, φ2) =p1φ1C
′ + p2φ2C

′

− b1 × (
q0
1 + W

2
r1

φ1C ′
−
W

2
)

− b2 × (
q0
2 + W

2
r2

φ2C ′
−
W

2
)

subject to the following constraints

∑2
i=1 φi = 1− r3

C′

ϕ3
1 ≤ φ1 ≤ ϕ1

1

ϕ3
2 ≤ φ2 ≤ ϕ1

2

Insight about the nature of the problem under consideration is obtained by exam-

ining the following plots. Suppose that the intersection of the constraints from case

1 occurs inside the region determined by the inequality φ1 + φ2 ≤ 1− r3
C′ (see Figure
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6.5), we can then conclude case 1 is feasible. It is also then easy to see that we do

not have to consider the optimization problem given in case 4. To summarize briefly,

the sufficient condition for case 1 is max[ϕ1
1, ϕ

2
1] + max[ϕ1

2, ϕ
2
2] ≤ 1− r3

C′ .
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Figure 6.5: Structure of the overall optimization problem when case 1 is feasible.

If, on the other hand, the intersection of the constraints from case 1 occurs outside

the region determined by φ1 + φ2 ≤ 1 − r3
C′ (see Figure 6.6), then case 1 becomes

infeasible and we have only to consider the optimal solutions for the remaining 3

cases. In the latter case, we need to further examine the constraints used in case 2, 3

φ
2

1φ

],max[ϕ1

2
ϕ

2

2

],ϕ1

1
ϕ

1

2max[
3/C’1−r

Case 4
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3/C’1−r

Figure 6.6: Structure of the overall optimization problem when case 1 is not feasible.

and 4. Given the magnitude of the lower bounds (ϕ3
1 and ϕ3

2) and the upper bounds

(ϕ1
1 and ϕ1

2), the detailed sufficient conditions for the feasibility regions of different

cases are the following:

1. If max[ϕ1
1, ϕ

2
1] + ϕ3

2 ≤ 1− r3
C′ , case 2 is feasible.
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2. If max[ϕ1
2, ϕ

2
2] + ϕ3

1 ≤ 1− r3
C′ , case 3 is feasible.

3. If ϕ3
1 + ϕ3

2 ≤ 1− r3
C′ , case 4 is feasible.

In Figure 6.7, we give an example for the constraints that renders cases 2 , 3, and

4 feasible, while a different set of constraints, shown in Figure 6.8 makes case 4 the

only feasible one.
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6.3.2 The Under-Provisioned Case

In many instances, the sum of the estimated arrival rates can be greater than

C ′, which leads to an under-provisioned system. In such a case, it often leads to
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an exponential increase in the queue length process and correspondingly in the delay

process. In this case, the system is not capable (even by ignoring the QoS constraints)

to accommodate all three traffic classes. It becomes then necessary to sacrifice some

of QoS requirements of the lower priority classes. However, we also need to ensure

that every class is going to obtain some percentage of the available bandwidth, in

order to avoid starvation phenomena.

In our proposed scheme we allocate all the necessary bandwidth to the higher

priority classes, in order to satisfy their QoS requirements first, and the remaining

bandwidth is given to the best effort class. Hence, we have for the unstable φ3 =

1− φQoS1 − φQoS2 .

For the unstable case, the previously presented maximization problem is infeasible

due to the conflict between the constraints. According to the above discussed rule

for the best effort class we have that if φ3C
′ ≥ r3 is relaxed, then the maximization

problem is still solvable. In this case, we have 0 < φ3 <
r3
C′ ; or equivalently, 1− r3

C′ <

φ1 + φ2 < 1. The maximization problem is fairly complicated to solve, although the

constraints can be obtained if φ3 is given. To simplify the problem, only the bounds

of the feasible regions for each case are considered while the interior optimal solution

is ignored.

However, for the profit maximization problem the relaxation of the constraints

is critical in allocating the available bandwidth. This relaxation takes place in two

stages: relaxation between the classes (large scale) and relaxation within a class (small

scale).

For the relaxation within a class, the relationships between those constraints for

i-th class can be written as follows:

max[ϕ1
i , ϕ

2
i ] ≥ min[ϕ1

i , ϕ
2
i ] ≥ ϕ3

i ≥
ri
C ′
.

Hence, our proposed scheme should relax the constraints recursively in the above

descending order. Regarding the relaxation of the constraints between the classes,

our rules imply that the constraints of the higher class are not relaxed until all of the

constraints of the lower classes in the above order are relaxed. In this way, the higher

classes of traffic can be guaranteed with the best service that the system can provide.
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Finally, in order to avoid starvation of a particular class (that would happen for the

best effort class, if for example,
∑2

i=1 ri ≥ C ′), the network provider can implement

prespecified thresholds to discipline the allocation for each class, as studied in our

previous work [64]. In such instances, the QoS requirements of the delay-adaptive

class should be satisfied at the expense of the remaining two classes, provided that

it does not exceed a prespecified threshold θ1. Furthermore, the QoS requirement of

the loss sensitive class should also be satisfied, provided that it does not exceed a

different prespecified threshold θ2.

6.4 Calculating the Optimal Solution

In this section we continue our investigation into the solution of the optimization

problems given in cases 1-4 under the stable case. In principle, the problem can be

solved by nonlinear optimization methods. For the objective function derived in cases

1-4 it can be shown that the Hessian matrix of second partial derivatives is negative

definite. For example, for the objective function in case 4 the Hessian is given by

H =


 −

2b1(q01+W
2
r1)

φ3
1C

′
0

0 −
2b2(q02+W

2
r2)

φ3
2C

′




which, under the feasibility constraints, is negative definite (since all its eigenvalues

are negative). Therefore, it can be concluded that the objective function is jointly

concave and hence possesses a unique maximum (maybe at a boundary point), which

can be obtained by solving for the classical Kuhn-Tucker conditions.

However, by further exploring the structure of the problem at hand we can obtain

the optimal solution in a more inexpensive and easy to implement manner. We

illustrate the main steps of the proposed approach on the problem defined in case 4.

The other optimization problems (cases 1-3) can be solved in an analogous manner

(the details can be found in [65–67]). By solving the feasibility constraint φ1 + φ2 =

1 − r3
C′ for φ2 and substituting that value in the objective function we find a new
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objective function of a single variable given by

g(φ1) =p1φ1C
′ + p2(1−

r3
C ′
− φ1)C

′ − b1(
q0
1 + W

2
r1

φ1C ′
−
W

2
)

− b2(
q0
2 + W

2
r2

(1− r3
C′ − φ1)C ′

−
W

2
)

Its first and second derivatives are given next:

g′(φ1) = (p1 − p2)C
′ +

b1(q
0
1 + W

2
r1)

φ2
1C

′
−

b2(q
0
2 + W

2
r2)

(1− r3
C′ − φ1)2C ′

g′′(φ1) = −2b1 ×
q0
1 + W

2
r1

φ3
1C

′
− 2b2 ×

q0
2 + W

2
r2

(1− r3
C′ − φ1)3C ′

It can easily be seen that g′′(φ1) < 0, which implies that g(φ1) is a concave function.

Plots of the objective function g(φ1) and its first derivative g′(φ1) are shown in Figure

6.9. The derivation of the g′(φ1) helps us determine the optimal solution, as follows.
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Figure 6.9: The graph of g(φ1) and g′(φ1)

First denote the lower bound of the feasible region by BL and the upper bound by

BU . If g′(BL) > 0 and g′(BU) ≥ 0, then the optimal solution is given at the boundary

by BU , whereas if g′(BL) ≤ 0 and g′(BU) < 0, then the optimal solution is given at

the other boundary point BL. Finally, if g′(BL) > 0 and g′(BU) < 0, then the optimal
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solution lies in the interior of the interval (BL, BU) and must be found by numerical

root finding methods, such as the bisection method, or Newton’s method [11].

The globally optimal solution is then obtained by calculating first the optimal

solution φ∗
1(k), k = 1, 2, 3, 4 for the 4 cases and then keeping the maximum amongst

the four. As discussed in the previous section, some of the cases may not be feasible,

a fact that leads to a speed-up of the algorithm. Finally, combined with our unstable

case solution, the algorithm for the optimal solution is given in pseudo-code form

next.

6.5 Sensitivity Analysis of the Optimal Solution

In this subsection we briefly explore the effect of the prices charged to the users

(p1, p2) and the costs associated with queueing delays (b1, b2) on the optimal solution.

By regarding the objective function g(φ1) as a function of two arguments , i.e.

g̃(φ1, p1), and taking its partial derivative with respect to the decision variable φ1 and

the price charged p1 we get (for case 4 and analogously for all the other cases as well)

∂2g̃(φ1, p1)

∂p1∂φ1

= C ′ > 0.

Based on Theorem 4, we can conclude that g̃(φ1, p1) is supermodular (proof given

in Appendix I [54]). Analogously we get that ∂2g̃(φ1,p2)
∂p2∂φ1

= −C ′ < 0, thus g̃(φ1, p2)

is submodular [54]. Notice that due to the similarities between the supermodular

and submodular cases, only the definition for supermodularity and the corresponding

proof are given in Appendix B.

The effect of the prices on the shape of the function g(φ1) and its first derivative

g′(φ1) is illustrated in Figures 6.10-6.11. The above simple derivations (as well as

the plots) indicate that the higher the price charged to the delay sensitive class, the

higher the bandwidth allocated to that class would be, if the optimal solution is

located in the interior of the feasibility region. The proof of this observation is also

given in the Appendix B based on Lemma 1 [54]. Analogously, the higher the price

of the loss sensitive class, the lower the bandwidth allocated to the delay sensitive
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class and consequently the higher the bandwidth allocated to the loss sensitive case,

in the presence of an optimal solution in the interior of the feasible region.
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Figure 6.10: The graph of g(φ1) and g′(φ1) for different prices of the delay-adaptive
class.
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Figure 6.11: The graph of g(φ1) and g′(φ1) for different prices of the loss sensitive
class.

We now turn our attention to the cost component. Defining a function of two

variables g̃(φ1, b1) (for case 4) and taking its second partial derivative with respect to

both arguments we get
∂2g̃(φ1, b1)

∂b1∂φ1

=
q0
1 + W

2
r1

φ2
1C

′
> 0.
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which shows that g̃(φ1, b1) is supermodular. An analogous derivation shows that

g̃(φ1, b2) is submodular, since ∂2g̃(φ1,b2)
∂b2∂φ1

< 0. It is easy then to conclude that the

higher the cost of the delay for the delay sensitive case, the higher the bandwidth

allocated to it, as Figure 6.12 also indicates. The intuitive explanation behind this

result goes as follows: the higher the delay cost for the 1st class, the bigger the

incentive of the provider to decrease the delay of that class’ customers; hence, the

higher the bandwidth allocated to the delay sensitive class. A similar reasoning

applies to the loss sensitive class, which shows that the higher its delay cost, the

higher the bandwidth allocated to it should be, which in turn implies the lower the

bandwidth allocated to the delay sensitive class (as can also be seen from Figure

6.13).
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Figure 6.12: The graph of g(φ1) and g′(φ1) for different values of the cost of the delay
sensitive class.

6.6 The Choice of W

The choice of W is crucial in determining the performance of our proposed scheme.

Intuitively, if the value of W is too small, it can capture the burstiness of the incom-

ing traffic and result in an appropriate allocation of resources. The QoS requirements

will be satisfied, but the computational requirements of the proposed scheme can
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Figure 6.13: The graph of g(φ1) and g′(φ1) for different values of the cost of the loss
sensitive class.

become rather high. On the other hand, if the value of W is too large, the measure-

ments cannot capture well the fluctuations in the traffic processes, thus compromising

performance.

We can do a similar sensitivity analysis for W to that presented in the previous

section. Consider the objective function g(φ1) as a function of two arguments, i.e.

g̃(φ1,W ), and taking its partial derivative we get (for case 4 and analogously for all

the other cases as well)

∂2g̃(φ1,W )

∂W∂φ1

=
b1 × r1
2φ2

1C
′
−

b2 × r2
2(1− r3

C′ − φ1)2C ′
(6.8)

From the above equation, it is hard to tell whether this partial cross derivative is

greater or less than 0; therefore, it is hard to conclude whether the function is submod-

ular or supermodular, which in turn implies that W does not share the monotonically

increasing or decreasing property with the optimal value of φ1 for the over-provisioned

(stable) case.

Nevertheless, we can obtain the critical point of equation 6.8 as follows:

φ1 =
1− r3

C′

1 +
√

b2r2
b1r1

When φ1 is larger than this threshold value, the function is supermodular, the

optimal value of φ1 increases as W increases; otherwise, it is submodular and the
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optimal value of φ1 decreases as W increases. Given the value of r3
C′ , the value of this

threshold value depends on
√

b2r2
b1r1

, which can be interpreted as the ratio of the traffic

loads of the two higher priority classes. As the ratio between these classes becomes

more unbalanced,
√

b2r2
b1r1

increases so that the threshold decreases. The cost prices

b1 and b2 can be used to counteract the effect of the increase in the traffic unbalance

between the delay-adaptive and rate-adaptive classes.

However, we also know that as W increases, the effective bandwidth estimation

decreases [47], and all the constraints decrease too. For the under-provisioned case,

the increase of W will turn out the more conservative value for the constraints, ac-

cordingly affecting the allocated bandwidth. It will result in an inferior performance

for our adaptive scheduling scheme.

6.7 Performance Evaluation

The model used in our experimental investigations is a processor sharing system

with three input queues that map to the delay-adaptive, the rate-adaptive and elastic

class, respectively. The link capacity is set at 1 Mb/s and the model parameters

employed in the simulation are given in table 6.1.

For the adaptive algorithms proposed in this dissertation, the measurement win-

dow was set to 1 sec. An on-off input Fractal Modulated Poisson process (FMPP)

model, proposed in [4], was employed. Finally, for simplicity purposes, the packet size

was fixed to 50 bytes and the Hurst parameter of the traffic process to 0.75. Several

other simulation scenarios were considered in [64] that produced analogous results.

Table 6.1: Parameters for Different Classes

Delay-Adaptive Rate-Adaptive Elastic Class
Initial Weight 2 2 1

Buffer Size (bytes) 500 5000 10000
p (cents/kbps) 5 1 –
b (cents/ms) 0.5 0.1 –
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Given the links speed, the system’s capacity (stability) constraint is at 0.4 ms.

That is, if the mean packet inter-arrival time is larger than this value, the system is

over-provisioned and relatively few packet losses are expected to occur. On the other

hand, for mean packet inter-arrival times smaller than 0.4 ms, the system is unstable

and highly backlogged queues together with frequent packet losses are expected. The

case where the mean time is exactly 0.4 corresponds to the critical regime.

In the ensuing discussion, the classical WRR and WFQ with static allocated

weights are denoted by SWRR and SWFQ, respectively, whereas their dynamic coun-

terparts described in Scheme I are denoted by DWRQ (Dynamic Weighted Round

Robin) and DWFQ (Dynamic Weighted Fair Queue).

Finally, the profit based optimization policy presented in Scheme II is denoted as

ODWFQ (Optimized Dynamic Weighted Fair Queue). The performance metrics used

in our study are packet loss probabilities and average queue delays. In order to facil-

itate the presentation of the results we separate the under- from the over-provisioned

cases, due to the incorporation of ’non-starvation’ thresholds in the proposed policies.

In the plots that follow, the class average loss probability and average delay together

with 95% confidence intervals obtained from 50 replications are shown.

In the four panels of Figure 6.14, the performance of all 5 algorithms under study

for the delay-adaptive class is shown. Specifically, in Figures 6.14 (a) and (b) show

that the adaptive versions of the WRR and WFQ outperform with respect to losses

their static counterparts, for both the under- and over-provisioned scenarios. The

ODWFQ exhibits the best performance in all cases, and in particular for stable but

heavily loaded systems (range between 0.42 and 0.44 ms). Finally, as the system

becomes more lightly loaded (0.48 ms and beyond) all policies become essentially

equally efficient. Regarding the average delay metric (Figures 6.14 (c) and (d)), the

ODWFQ dominates all other policies in the stable case and performs very well in

the under-provisioned scenario. From the remaining policies, we notice the strong

performance of the DWFQ policy, and the inferior performance of the DWRR policy.

The latter finding is due to the inaccuracy involved with the normalization of the

weights.

In the panels of Figure 6.15, the performance of the rate-adaptive class is ex-
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Figure 6.14: Comparison of scheduling algorithms on packet loss probability in (a)
under-provisioned and (b) over-provisioned cases; on average queue delay in (c) under-
provisioned and (d) over-provisioned cases for the delay-adaptive class.

amined. For this class the ODWFQ policy clearly outperforms all its competitors,

for both performance metrics in the under- and over-provisioned cases. Among the

remaining policies the DWFQ outperforms its static counterpart in all cases. On the

other hand, the pattern for the round robin policies is more involved. For exam-

ple, the DWRR clearly outperforms the SWRR policy for both performance metrics

in the under-provisioned case and for the loss metric in the over-provisioned case;

however, the SWRR policy exhibits a better performance with respect to delay for

the over-provisioned case. Finally, it should be noted that as the incoming traffic’s

rate decreases (the mean interarrival time increases) and the system’s load becomes

lighter, the performance of all three policies become fairly similar.

In the panels of Figure 6.16 the results for the elastic class are shown. For this

class the ODWFQ exhibits the worst performance for all cases and metrics, due to

the fact that this class yields very low profits and hence less bandwidth is allocated to

it under this policy. For this class, the static policies achieve the best performance in

terms of loss and average queue delay for the elastic class in both under-provisioned

and over-provisioned cases, since the dynamic policies allocate less bandwidth to this

class, in order to meet the QoS requirements of the higher priority classes.
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Figure 6.15: Comparison of scheduling algorithms on packet loss probability in (a)
under-provisioned and (b) over-provisioned cases; on average queue delay in (c) under-
provisioned and (d) over-provisioned cases for the rate-adaptive class.
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Figure 6.16: Comparison of scheduling algorithms on packet loss probability in (a)
under-provisioned and (b) over-provisioned cases; on average queue delay in (c) under-
provisioned and (d) over-provisioned cases for the elastic class.
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For the over-provisioned case, profit maximization is an important objective. In

Figure 6.17 the results of the profits obtained by the ODWFQ, DWFQ and SWFQ

policies are shown. Notice that for the ODWFQ policy the profit is calculated both

analytically and by simulation. It can be seen that the profit obtained by the ODWFQ

policy is significantly larger than those obtained from the other two policies. In

addition, the adaptive version of the WFQ policy exhibits a small advantage over the

static one.
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Figure 6.17: Comparison of scheduling algorithms on maximum of profit

In conclusion, we have that the proposed ODWFQ policy exhibits the best and

most robust performance for both the over- and under-provisioned scenarios for the

high paying traffic classes.

6.8 Conclusions

Adaptive scheduling based on measurements of traffic and queueing state has the

potential of greatly improving the efficiency of resource allocation techniques. In

our previous work on this topic, we have introduced a measurement-based adaptive

scheduler and validated its performance with extensive simulation results. In this

chapter, we have formulated the online setting of adaptive schedulers as a formal
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optimization problem taking into account QoS constraints and the underlying pricing

scenario. We then proceeded to study its solutions on a case-by-case basis, thus

obtaining fundamental insights regarding the implementation and use of such schemes.

Continuing and extending our efforts in this area, we are working to analyze

the behavior of the adaptive scheduler over time. In this chapter the optimization

problem given in Section 6.3.1 is solved at every decision instant – which corresponds

to the beginning of a new window W . Notice that the window size affects which

constraints become binding in our optimization problem. In our previous work [64]

we have empirically investigated the problem of dynamically adapting the size of the

window W to changing traffic conditions. A topic of current research is to study the

dynamics over time of the window size, as well as the long-term performance of the

system under changing traffic patterns.
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Algorithm 1 Obtaining the optimal solution

if
∑3

i=1 ri < C ′ then

Identify the N feasible cases by checking the underlying feasibility constraints

while N > 0 do

Obtain Bi
L, Bi

U for case i

if g′(Bi
L) > 0 and g′(Bi

U) ≥ 0 then

φi∗1 = Bi
U

else if g′(Bi
L) ≤ 0 and g′(Bi

U) < 0 then

φi∗1 = Bi
L

else

Use root finding method for solving g′(φ1) = 0 to obtain φi∗1 .

end if

Obtain the maximum for case i, max f i∗(φi∗1 , φ
i∗
2 )

N = N − 1

end while

max f ∗(φi∗1 , φ
i∗
2 ) = maxi∈N f

i∗(φi∗1 , φ
i∗
2 )

else

if ( r1
C′ + r2

C′ ) < 1 then

Constraints relaxation in Section 6.3.2

else

The threshold (θ1, θ2) in 4

end if

end if
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Chapter 7

MBORA System under Nonlinear

Pricing Models

7.1 Introduction

In chapter 6, a linear pricing model for the cost component of the profit maxi-

mization center was used and the bandwidth allocation problem studied. However,

one shortcoming of the model is that it is not sensitive enough to the requirements

of the more delay sensitive classes and also to the prices charged. Hence, a new

delay-sensitive nonlinear pricing model that incorporates an exponential component,

is examined. The exponential component proves sensitive to delay considerations and

in addition the tuning parameters of the model (α and β) give additional flexibility

to the network provider for allocating bandwidth optimally and balancing profits and

costs due to incurred delays. Furthermore, in order to address the scalability issues

a new solution strategy is examined. In particular, the fluid queueing model used

to derive the average expected delay and its properties are examined in more detail.

The ensuing analysis established the concavity of the objective function and hence
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the existence of a global maximum that can be located through the quasi-Newton

method. This in turn reduces the computational complexity and makes an online

implementation feasible as outlined later on.

The remainder of the chapter is organized as follows. We first introduce linear

and nonlinear pricing models for the generalized profit-oriented formulation. In Sec-

tion 7.3, the new solution strategy is discussed, in which we present the concavity

proofs for both pricing models and solution procedures. Section 7.4 gives more dis-

cussion and analysis on elasticity and complexity issues, while numerical studies are

presented in Section 7.5. We give our concluding remarks in Section 7.6.

7.2 Pricing Models

In this section, two models for the cost component of the profit maximization

center are discussed. The first model, a linear one already presented in the previous

chapter, is included for completeness purposes.

7.2.1 Linear Pricing Model

The profit maximization problem is defined as:

max
φ

f(φ) =
∑

i

Ui(φi) =
∑

i

Ri(φi)−
∑

i

C′i(φi) (7.1)

s.t. ∑
φi ≤ 1

If the linear pricing model is applied for both the utility-based revenue component

and delay-incurred component, then the objective function can be written as:

max
φ

flp(φ) =
∑

i

piφiC
′ −

∑

i

biDi (7.2)

s.t. ∑
φi ≤ 1
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where pi is the price per unit of the utilization of the system’s resources for class

i and bi is the cost per unit of time incurred by class i, and with φ = [φ1 φ2 · · ·φN ].

The objective of the linear pricing model is to realize QoS differentiation among

the classes by the simple pricing discrepancies between the classes with the different

priorities. In other words, since the higher priority class requests a better service

level than the lower priority classes, it should be charged with a higher price, while

at the same time the provider has to reimburse the users at a higher rate for delay

violations; therefore, pi > pj and bi > bj for i < j.

7.2.2 Nonlinear Pricing Model

We present next a nonlinear model for the cost component that proves significantly

more sensitive to delay considerations than the linear model. The model is given next.

C′i,np(φi) = bie
βi(Di(φi)−αidi)Di(φi) (7.3)

where βi is a positive number and 0 < αi ≤ 1.

As it can be seen from equation 7.3, the nonlinear pricing model is transformed

from the linear pricing one by inserting the exponential factor. We also introduce the

aggressive factor, βi, and the proactive factor, αi, for class i. These two factors will

be discussed in our elasticity analysis for the nonlinear pricing model.

The advantage of this formulation is that it takes into consideration the magnitude

of the violation of the delay constraint. To see this, let C′i,lp denote the delay-incurred

cost function under the linear pricing model and C′i,np as the one under the nonlinear

pricing model. It is easy to obtain the first derivative of the linear pricing model with

respect to Di,
∂C′

i,lp

∂Di
= bi. It remains unchanged with no reference to the expected

delay, Di and the desired delay bound, di. On the other hand, the first derivative of

the nonlinear model is given by:

∂C′i,np
∂Di

= bi(βiDi + 1)eβi(Di−αidi) (7.4)

It can be shown that it is monotonically increasing with respect to Di. Based on

this property, we can conclude that the nonlinear pricing model is sensitive to the
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desired delay bound, di, because ∆C′i,lp for Di > di is much larger than ∆C′i,lp for

Di < di given the same ∆Di. Hence, this model is sensitive to QoS considerations.

Further, the delay-incurred cost based on the nonlinear pricing model is lower than

the one under the linear pricing scheme when the delay bound is satisfied; on the

other hand, it will be significantly higher (with an exponential increasing rate) when

the delay bound is violated.

The objective function is then given by:

max
φ

fnp(φ) =
∑

i

piφiC
′ −

∑

i

bie
βi(Di(φi)−αidi)Di(φi) (7.5)

s.t. ∑
φi ≤ 1

7.3 Solution Strategy

We discuss next a general solution strategy for both models in the presence of n

flexible delay-bound classes.

7.3.1 Some properties of the Fluid Queueing Model

First, we will discuss a key property of the fluid queueing model, since it proves

useful in calculating Di for both pricing models.

In the fluid queueing model, the average queue length of class i, q̄i(φi), is calculated

by the following equation.

q̄i =
1

W

∫ τi

0

qi(t)dt

=
τi
W

[q0
i +

τi
2

(ri − φiC
′)] (7.6)

where τi = min{t0i ,W} with t0i being the time it takes to empty the queue.
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Figure 7.1: The function of average queue length, q̄i.

Therefore, we can obtain

q̄i(φi) =

{
(q0i )2

2W
× 1

φiC′−ri
if φi > ψci

q0
i + W

2
(ri − φiC

′) if φi ≤ ψci
(7.7)

where ψci =
q0i
WC′ + ri

C′ . It is obvious that q̄i(φi) is a continuous piecewise function

from equation 7.7, given φi ∈ (0, 1). Also, q̄i(φi) has the following properties:

1. q̄i(φi) is differentiable everywhere for φi ∈ (0, 1), and twice-differentiable except

the point φi = ψci .

2. q̄i(φi) is convex for φi ∈ (0, 1).

The proofs of these properties can be found in Appendix C.

In our system, the expected delay of class i is calculated by Di(φi) = q̄i
φiC′ . Thus,

we can obtain Di based on equation 7.7 as follows:

Di(φi) =





(q0i )2

2Wri
× [ 1

φiC′−ri
− 1

φiC′ ] if φi > ψci
q0i +W

2
ri

φiC′ −
W
2

if φi ≤ ψci
(7.8)

Next, we will investigate the properties of Di(φi) in order to obtain better insight,

useful for coming up with a solution strategy for the underlying optimization problem.
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Proposition 1. Di(φi) is differentiable everywhere for φi ∈ (0, 1), and twice differ-

entiable except the point φi = ψci .

Proof. For both sides of the piecewise function except the point, φi = ψci , it is obvious

differentiable, thus we can obtain the first derivative ofDi(φi) for both sides as follows:

∂Di

∂φi
=





−
(q0i )2C′

2Wri
× [ 1

(φiC′−ri)2
− 1

(φiC′)2
] if φi > ψci

−
q0i +W

2
ri

φ2
iC

′
if φi ≤ ψci

(7.9)

Based on definition 3 in Appendix C, we can derive that the left derivative and

right derivative at the point φi = ψci are equal, D−Di(ψ
c
i ) = D+Di(ψ

c
i ). Therefore,

Di(φi) is the differentiable for ∀φi ∈ (0, 1).

Then we can get the second derivative of Di for both sides as follows:

∂2Di

∂φ2
i

=





(q0iC
′)2

Wri
× [ 1

(φiC′−ri)3
− 1

(φiC′)3
] if φi > ψci

2q0i +Wri
φ3

iC
′

if φi ≤ ψci

(7.10)

However, at the point of φi = ψci , it is easy to prove that the left second derivative

is not equal to the right second derivative, thus Di is not twice differentiable at this

point but twice differentiable for all others points in the domain (0, 1).

Proposition 2. Di(φi) is convex for φi ∈ (0, 1).

Proof. ¿From equation 7.10, it can be seen that

[
1

(φiC ′ − ri)3
−

1

(φiC ′)3
] > 0 and

2q0
i +Wri
φ3
iC

′
> 0



76

for ∀φi ∈ (0, 1). This implies that both sides of the first derivative, ∂Di

∂φi
, are mono-

tonically increasing.

Since we prove Di(φi) is differentiable everywhere in the proposition 1, we can

conclude that the first derivative of Di(φi) is monotonically increasing for φi ∈ (0, 1).

Thus, Di(φi) is convex on (0, 1).

Based on the discussion of the fluid queueing model and Di(φi), we can conclude

the piece-wise characteristics for the objective functions under both pricing models.

However, the main concern is that Di(φi) is not twice-differentiable at the point

φi = ψci . Therefore, optimization based on Newton’s method is not feasible; in

addition, calculating the Hessian matrix is an expensive task.

Nevertheless, a naive approach that would overcome this technical difficulty would

be to evaluate Di from both sides of the critical point, φi = ψci , respectively. In this

way, the corresponding objective functions can be guaranteed to be twice-differentiable

and solved by Newton’s method later. Subsequently, the maximal values of all the

objective functions are compared, and the maximum among them corresponds to

the optimal solution. However, in the presence of n classes, this approach proves

non-scalable, since O(2n) evaluations would be required.

To overcome the scalability problem, we propose to evaluate Di as the whole

function in our objective functions, relying on the concavity of the objective function.

7.3.2 Concavity Proofs under Linear Pricing Model

Definition 1. (Monotone Function): The mapping f : R
N → R

N is said to be

monotone on R
N when, for all u and u′ in R

N

〈f(u)− f(u′), u− u′〉 ≥ 0 (7.11)

where 〈., .〉 represents the inner product operator.
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Theorem 1. Suppose f is a differentiable function on R
N . Then f is convex on R

N

if and only if its gradient ∇f is monotone on R
N .

Proposition 3. Assume f 2
lp = −

∑N
i=1 biDi(φi). Then it is concave for φ ∈ RN ,

where Di(φi) = q̄i
φiC′ .

Proof. Suppose f 2
lp = −f̃ 2

lp, then the function f̃2 =
∑N

i=1 bi
q̄i
φiC′ . In this way, the

concavity proof of f2 is equivalent to the convexity proof of f̃ 2
lp.

We can see that q̄i is one of factors in f̃ 2
lp. According to proposition 8, it is easy

to prove that f̃ 2
lp is differentiable everywhere for φi ∈ (0, 1) and twice-differentiable

except the vector of φ with one of elements equal to φi = ψci .

First, we can obtain the gradient of f̃ 2
lp as following:

∇f̃ 2
lp = [

∂f̃ 2
lp

∂φ1

∂f̃ 2
lp

∂φ2

· · ·
∂f̃ 2

lp

∂φN
]

= [b1
∂D1

∂φ1

b2
∂D2

∂φ2

· · · bN
∂DN

∂φN
]

Computing the gradient inner product (GIP)

GIP(φ, φ′) , 〈∇f̃ 2
lp(φ)−∇f̃ 2

lp(φ
′), φ− φ′〉

where φ, φ′ ∈ R
N , we obtain

GIP(φ, φ′) =
∑

gip(φi, φ
′
i) (7.12)

where

gip(φi, φ
′
i) = [(

∂f̃ 2
lp

∂φi
(φi)−

∂f̃ 2
lp

∂φi
(φ′

i)]× [φi − φ
′
i]
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As proved in proposition 2, Di is convex and its first derivative is monotonously

increasing for φi ∈ (0, 1).

Therefore, given φi > φ′
i,

∂f̃2
lp

∂φi
(φi) >

∂f̃2
lp

∂φi
(φ′

i). Then we can derive that

gip(φ, φ′) > 0 and correspondingly, GIP(φ, φ′) > 0.

Using Theorem 1, we see that f̃ 2
lp is convex, and correspondingly, f 2

lp is concave.

Theorem 2. Let f1, · · · fm be concave/convex on R
N , a1, · · · am be nonnegative num-

bers, and assume that there is a point where all the fj’s are finite. Then the function

f ,

m∑

j=1

ajfj

is concave/convex on R
N .

Proposition 4. The objective function of linear pricing model flp(φ) is concave on

R
N .

Proof. We can rewrite the objective function under linear pricing model, composed

by the following two parts:

flp = f 1
lp + f 2

lp

where f 1
lp =

∑N
i=1 piφiC

′ and f 2
lp = −

∑N
φi=1 bi

q̄i
φiC′ .

Since f 1
lp is an linear function, it is concave on R

N . Also we prove that f 2
lp is concave

in Proposition 3. Applying Theorem 2, we can see that the objective function flp is

concave.
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7.3.3 Concavity Proofs under Nonlinear Pricing Model

Proposition 5. Let I be a nonempty interval of R. A function f : I → R is convex

if and only if, for all x0 ∈ I, the slope function

x 7→
f(x)− f(x0)

x− x0

=: s(x)

in increasing on I\{x0}.

Theorem 3. Let f be defined on R. Then the function g(x) := xf(x) is convex on

R if and only if f is also convex on R.

Proof. Suppose f is convex on R; the slope-function of g can be obtained as

sg(x) :=
g(x)− g(x0)

x− x0

=
xf(x)− x0f(x0)

x− x0

Then we have

sg(x) =
f(x0)[x0 − x] + x[f(x)− f(x0)]

x− x0

= f(x0) + x ·
f(x)− f(x0)

x− x0

= f(x0) + x · sf (x)

When x increases, sf (x) increases according to proposition 5, thus sg(x) increases

and g is convex on R
+.

Proposition 6. If g(y) is a nondecreasing, single-variable convex function, and h(x)

is convex, f(x) , g(h(x)) is convex.
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Proposition 7. Under nonlinear pricing model, C′np(φ) =
∑
C′i,np(φi) is convex on

R
N for ∀bi, βi > 0 and 0 < αi ≤ 1, where C′i,np(φi) , biDi(φi)e

βi(Di(φi)−αidi) for

Di(φi) : R→ R, φi ∈ R.

Proof. Suppose gi(Di) = eβi(Di−αidi), then we can rewrite C′i,np in terms of gi.

C′i,np(Di) = biDigi(Di)

It is obvious that gi(Di) is convex on R with respect to Di. By applying Theorem 3,

we can prove that C′i,np(Di) is convex on R.

Also, since Di is a nonnegative value and the first derivative of C′i,np(Di) is posi-

tive, we can conclude that C′i,np(Di) is a nondecreasing function with respect to Di.

And from the previous subsection, we proved that the first derivative of Di(φi) is

monotonously increasing, therefore Di(φi) is convex on R. According to proposition

6, we can prove that C′i,np(Di(φi)) is convex on R.

Finally, since C′i,np is only function of φi and it is convex on φi, we can prove that

C′np(φ) is convex on R
N by applying Theorem 2.

¿From proposition 7, we proved that C′np(φ) is convex on R
N . Similar to the

proofs for the linear pricing case, we can prove that fnp(φ) is concave on R
N , with

the application of Theorem 2, etc.

7.3.4 Solution Procedures

Next, after we prove the concavity for both linear and nonlinear pricing models,

the global maximizer can be easily found by the existing standard algorithms, such
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as Newton’s method [26]. In this subsection, we will discuss the solution procedures

to obtain the global maximizer for both pricing models, due to the similarity of their

procedures.

First, it is obvious that our generalized profit oriented problem in equation 7.1 is

a nonlinear optimization problem with inequality constraints, which can be solved by

ensuring that the Karush-Khun-Tucker (KKT) conditions are satisfied.

According to the KKT conditions, we first need to transform the constrained

problem into an unconstrained one, so that we can obtain the new objective function

in terms of the Lagrangian function:

L(φ, λ1) = f(φ)− λ1(
∑

φi − 1) (7.13)

where φ = [φ1 φ2 · · ·φN ].

Its optimal solution should satisfy the following equations:

∇φL(φ∗, λ∗1) = 0

λ∗1 ≥ 0,
∑

φi ≤ 1, and λ∗1(
∑

φi − 1) = 0

where ∇φL = [ ∂L
∂φ1

∂L
∂φ2
· · · ∂L

∂φN
].

Specifically, each element of the vector, ∇φL, should be equal to 0 as follows:

∂L

∂φi
=

∂f

∂φi
− λ∗1 = 0, ∀i = 1, · · · , N (7.14)

Now, we want to investigate the property of ∂f
∂φi

. For the linear pricing model, we

obtain
∂flp
∂φi

= piC
′ − bi ×

∂Di

∂φi

As was proved in equation 7.9 in the previous section, we know that ∂Di

∂φi
< 0. Thus,

∂flp

∂φi
> 0.

Similarly, we can obtain the following for the nonlinear pricing model:

∂fnp
∂φi

= piC
′ − bi × (βiDi + 1)× eβi(Di−αidi) ×

∂Di

∂φi

Also, we can find that ∂Di

∂φi
< 0 and the rest of factors in this equation are positive.

Therefore, ∂fnp

∂φi
> 0.
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The observations of ∂f
∂φi

for both pricing models indicate that λ∗1 > 0, in order to

make equation 7.14 equal to 0. Thus, we obtain an important conclusion that the

optimal solutions for both pricing models satisfy

∑
φ∗
i = 1

Now the optimization problems actually become the classical Lagrange multiplier

problems with equality constraints.

This global maximizer can be obtained by the well-know Newton’s method [7,48].

However, considering that the function f is not twice differentiable for the vector φ

for one of its elements, φi = ψci , we can apply Quasi-Newton method to solve the

problem [7]. An advantage of the Quasi-Newton method is that it avoids calculating

the very computationally expensive Hessian. Instead, it constructs an approximation

of the inverse Hessian matrix in order to converge fast to the optimal solution, given

first derivative information and an initial positive definite matrix [7]. In this paper,

we adopt the Broyden-Fetcher-Goldfarb-Shanno (BFGS) method regarded as one of

the best Quasi-Newton method solvers.

Remark: By designating linear and nonlinear pricing models to different priority of

classes, we can obtain the generalized profit formulation under the mixed pricing

model. In such a case, it is still very easy to prove its concavity based on the analysis

on the previous section. Moreover, it remains the Lagrange multiplier problem with

the equality constraints, since ∂f
∂φi

> 0, that in turn can be solved by Quasi-Newton

method. Therefore, we can conclude the following as our generalized solution strategy:

For any pricing scheme that makes the objective function f concave and ∂f
∂φi

>

0, we can adopt the Quasi-Newton method to obtain the global maximizer for the

generalized profit-oriented formulation under that pricing scheme.
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7.4 Properties of the Optimal Solution and some

Discussion

In this section, we will continue our analysis and discussion of elasticity and com-

putational complexity issues.

7.4.1 Elasticity Analysis

In this subsection, we will discuss the elasticity effect of the proactive factor αi

and the aggressive factor βi under the nonlinear pricing model.

Let us start with the analysis on the proactive factor αi. Given βi = 1, we can

plot a group of nonlinear pricing based cost functions by varying αi, against a linear

pricing based function as shown in Figure 7.2.

Our first observation is that C′i,np decreases accordingly as αi increases with the

order of α′′
i < α′

i < 1. Mathematically, if we derive the first derivative of C′i,np with

respect to αi, we obtain the following:

∂C′i,np
∂αi

= −biβidie
βi(Di(φi)−αidi)Di(φi) < 0

Therefore, it validates that C′i,np decreases as αi increases.

Moreover, from equation 7.4, we can conclude that the increasing rate of C′i,np is

greater as αi is becoming smaller given the same Di. Thus, the smaller αi is, the more

aggressive the nonlinear pricing scheme is. We also observe that the crossing point

that nonlinear pricing function over linear counterpart is right-shifted as αi increases

in Figure 7.2. And this crossing point gives the helpful insight for the network provider

to leverage the delay-incurred cost against the desire delay requirement by tuning the

proactive factor, αi.

Due to the multiplexing nature for the shared resources in this system, a deter-

ministic delay bound is beyond our control without an appropriate admission control

and traffic shaping mechanism. Thus, the stochastic nature of the delay bound is

inherent for our proposed MBORA system. In order to prevent QoS violations due
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to a possible fluctuation of delays in the neighborhood of the desired delay bound,

the network provider can choose a smaller value of αi, less than 1. In this way, the

more aggressive nonlinear delay-incurred cost function is applied in the optimization

problem, that in turn results in higher bandwidth allocation. Overall, the value of αi

determines the degree that the network provider is willing to protect/guarantee QoS

constrains for class i.

D
i

D
i

b
i

D
i

D
i

i
αd

i

d

C’

b
i

e
−

d
i

α"
i i i

α d
i

’

Figure 7.2: Elasticity analysis on αi, where α′′
i < α′

i < 1 and βi = 1.

Next, we analyze the elasticity of the progressive factor βi. Assuming αi = 1, we

can plot a group of nonlinear cost functions by varying βi, against a linear one as

shown in Figure 7.3.

Since αi is fixed, we can see that all three nonlinear pricing based cost functions

cross over the linear function at the same point, Di = di. With the analogous ap-

proach, we can obtain the first derivative of C′i,np with respect to βi as follows:

∂C′i,np
∂βi

= bi(Di(φi)− αidi)e
βi(Di(φi)−αidi)Di(φi)

Therefore, it is easy to conclude that C′i,np decreases as βi increases when Di(φi) <

αidi; while C′i,np increases as βi increases when Di(φi) > αidi. And this property is

reflected in Figure 7.3 with αi = 1.

For each class i, the βi factor reflects the fact that system is charged less for

satisfying the QoS requirements, while it is charged more for violating them. From
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the other perspective, if we map the value of βi to the priority of class i, βi can be

interpreted as the aggressive factor in the nonlinear pricing function. The larger βi is,

the higher priority the class will be given. Therefore, the higher priority class can be

marked with a bigger value of βi to demonstrate its aggressiveness. In such a scheme,

the network provider can have a low delay-incurred cost for QoS guarantee to the

high priority class, and risk the high penalty involved for violation at the same time.
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Figure 7.3: Elasticity analysis on the different values of βi with αi = 1.

Our analysis shows how to control the combination of αi and βi. Given the

priority of the class, we can choose the appropriate αi and βi in order to realize

the corresponding level of the aggressiveness in the nonlinear pricing scheme and

stochastic concerns in terms of QoS guarantees.

7.4.2 Complexity Analysis

In this subsection, we will explore the computational complexity for our proposed

solution strategy, given a system with n classes.

As we discussed in the previous section, the simple solution approach attempts

to calculate and evaluate the optimal solutions for up to 2n cases, that leads to its

computation complexity to be O(2n).

In our proposed solution strategy, the advantage is to eliminate this dimensionality

problem by considering Di as the whole function together. Moreover, for Quasi-
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Newton method adopted in our approach strategy, it only requires roughly O(n2) in

general, compared with O(n3) of Newton method [7]. It is a huge drop in computation

complexity, in contrast with the one of the simple solution approach.

Therefore, our proposed solution strategy is more friendly for online adaptive

algorithms, that can be easily implemented in the real-time environment for the

access networks.

7.5 Performance Evaluation

In this section, a comprehensive numerical study of all the parameters involved

in our pricing schemes is undertaken, in order to understand they affect the optimal

allocation rates, given the various scenarios. Besides the analytical study in our

approach, we also attempt to interpret it from the engineering perspective.

For simplicity, we assume that two classes of traffic share an access node (or

edge point) in the access networks, with the link having capacity of 10 Mbps. It is

accordingly two-queue system and class 1 is designated with higher priority than class

2. Also, the desired delays are given by (d1 = 5, d2 = 10) ms. Under the adaptive and

optimal scheduling scheme introduced in the previous chapters, we set the adaptive

window, W = 1 ms.

For clarity purposes, we will discuss two acronyms for the important variables

used in our case study. Given the initial queue length of class i, we can obtain the

initial delay at best scenario if the whole link capacity is devoted to serve the queue,

that can be calculated by q0
i /C. By dividing this initial delay with the desired delay

of class i, di, we define this result as initial projected delay ratio, that can be denoted

as our first acronym, IPDR. This ratio is used to describe the initial delay latency at

the best scenario compared with the desired delay for the same class i. The larger

this ratio is, the higher possibility of QoS violation is in delay respect. Therefore, we

attempt to designate IPDR with the level of QoS violation tendency. If IPDRi ≥ 0.5,

we define it as ‘High’, otherwise we tag it as ‘Low’, for class i = 1, 2.

Similarly, we can define EGRR as the acronym of the variable, estimated gen-
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eralized rate ratio, calculated by the estimated generalized rate of class i over the

link capacity, ri/C. The larger the ratio is, the higher traffic volume is expected

for the next adaptive window. In our numerical study, we tag this ratio as ‘High’

if EGRRi ≥ 0.5, otherwise we interpret it as ‘Low’, for class i = 1, 2. Furthermore,

when
∑

i EGRRi > 1, the system can be described as under-provisioned, otherwise,

it can be interpreted as over-provisioned.

Under the described architecture, we evaluate the following metrics under both

the linear and nonlinear pricing schemes: the maximum of the objective function,

the optimal allocation, φ∗, and the analytical expected delay, D using the Matlab

platform. And these evaluation are studied based on the solo effect of p, b, α and β,

or the combination of them. It should be noticed that p is the unit price charged per

Mbps and b is the unit price charged per ms for the classes.

Before the case studies for the above parameters, we want to give the pictorial view

of the objective function f(φ1, φ2) vs. (φ1, φ2), with the global maximizer around the

region of (φ1 = 0.5, φ2 = 0.5) in Figure 7.5. Clearly, the arch shape of the objective

function demonstrates its joint concavity in the plot.
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Figure 7.4: The objective function f(φ1, φ2) vs. (φ1, φ2) with the global maximizer
around the region of (φ1 = 0.5, φ2 = 0.5).
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7.5.1 Case Study I – The Effect of p

We begin our case study with the effect of p(p1, p2) and discuss it under the two

pricing models considered in this chapter. In order to evaluate the effect of p only,

we assume the equivalent conditions for all the other parameters, such as (b1 = 1,

b2 = 1) and (IPDR1 = 0.2, IPDR2 = 0.1)∼ (Low, Low).

Linear Pricing Model

First, by fixing p2 = 1, we investigate the effect ∆p1 on the optimal allocation of

φ∗, as given in table 7.1. In this table, we list the corresponding optimal solutions by

doubling the price of p1 under the different combinations of EGRR for two classes.

Under a (Low, Low) pattern for EGRR, we can find a huge gain in φ∗
1, about

25% more bandwidth, for class 1 when p1 is doubled from 1 to 2, while the gain of

φ∗
1 becomes smaller, and even lower than 1%, although the price of p1 continues to

be doubled. Meanwhile, we can observe similarly increasing tendencies for φ∗
1 under

(Low, High) and (High, Low) patterns for EGRR, although the gain in φ∗
1 is relatively

smaller upon each double price of p1, compared with the case of (Low, Low) pattern.

Finally, for the last case with (High, High) pattern for EGRR, the gain of φ∗
1 is

consistently small for each double price of p1.

Based on these observations, we can conclude the following: First, for the first

three cases, the optimal allocations are mainly determined by the estimated general-

ized rates for the classes with (p1 = 1, p2 = 1), since there is no price differentiation or

bias between the classes. Second, the system is in the under over-provisioned state for

these 3 cases and the price change of p1 does give class 1 the leverage in the optimal

allocation solution as p1 doubles from 1 to 2. However, the more aggressive charging

in p1 (from 2 to 8) does not guarantee the equivalent or huge gain in the optimal

bandwidth allocation, once the optimal solution reaches a saturation point. That is

because our generalized profit model will guarantee the estimated generalized rates

of all classes first when the system is in an over-provisioned state, while the rest of

the bandwidth is shifted depending on the prices of the higher priority classes. Third,
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the system is clearly in an under-provisioned state for the last case; hence, p does

not make a difference in terms of bandwidth allocation, given the already saturated

nature of the system and no delay differentiations between the classes in this setting

are observed.

Table 7.1: The effect of ∆p1 on the optimal solutions for linear pricing model

(EGRR1 = 0.3,EGRR2 = 0.2) ∼ (Low, Low)
p(p1, p2) (1 , 1) (2 , 1) (4 , 1) (8 , 1)
φ∗(φ∗

1, φ
∗
2) (0.5357,0.4643) (0.7842,0.2158) (0.7909,0.2091) (0.7940,0.2060)

(EGRR1 = 0.2,EGRR2 = 0.6) ∼ (Low, High)
p(p1, p2) (1 , 1) (2 , 1) (4 , 1) (8 , 1)
φ∗(φ∗

1, φ
∗
2) (0.3234,0.6766) (0.3909,0.6091) (0.3936,0.6064) (0.3947,0.6053)

(EGRR1 = 0.7,EGRR2 = 0.1) ∼ (High, Low)
p(p1, p2) (1 , 1) (2 , 1) (4 , 1) (8 , 1)
φ∗(φ∗

1, φ
∗
2) (0.7632,0.2368) (0.8780,0.1220) (0.8843,0.1157) (0.8872,0.1128)

(EGRR1 = 0.7,EGRR2 = 0.6) ∼ (High, High)
p(p1, p2) (1 , 1) (2 , 1) (4 , 1) (8 , 1)
φ∗(φ∗

1, φ
∗
2) (0.5192,0.4808) (0.5202,0.4798) (0.5221,0.4779) (0.5259,0.4741)

Moreover, Figure 7.5 is drawn for 4 cases by changing p1 from 0.6 to 1.5, in order

to further understand the relationship between p1 and p2. Besides the (High, High)

case, we can observe that φ∗
1 stays close to its EGRR1 when p1 < p2. On the other

hand, there is a dramatic bandwidth shift once p1 is larger than p2, then φ∗
1 reaches

the saturation due to the limit of capacity and guarantee for EGRR2 in the system.

And the (High, High) case shows no difference along the changes as expected. Figure

7.5 further strengthens our understanding of the effect of p under the linear pricing

model.

Finally, given the (Low, Low) scenario for (EGRR1,EGRR2), we plot how the

optimal φ∗
1 changes with (p1, p2) in Figure 7.6(a) and the maximum value of the

objective function varies against (p1, p2) in Figure 7.6(b).

Figure 7.6(a) can be regarded as a 3D extension of Figure 7.5. It demonstrates

that the huge gain in φ∗
1 happens only if p1 > p2 for an over-provisioned system. In
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Figure 7.5: The effect of p1 on φ∗
1 with p2 = 1 for linear pricing model.

this case, the surplus bandwidth tends to switch over to the class with the higher

price charge on the bandwidth. Figure 7.6(b) demonstrates that the maximum profit

of the objective function for the linear pricing model monotonically increases as p1

and p2 increase.

Nonlinear Pricing Model

Next, we discuss the effect of p under the nonlinear pricing model, given the

same settings as for the linear case. In addition, we set (α1 = 1, α2 = 1) and

(α1 = 1, α2 = 1) in order to investigate the solo effect of p under this nonlinear pricing

scheme by weakening the effect of the exponential component in the nonlinear pricing

model.

We obtain the results of the optimal solutions in table 7.2 as p1 doubles. As

expected, φ∗
1 shows very similar trends for all four cases as the ones under the linear

pricing model. There is only a slight difference for φ∗
1 for a certain value of (p1, p2),

compared with the one under the linear pricing model. However, this slight difference

is due to the addition of the exponential component in the nonlinear pricing model,

even though its effect is lessened in the present setting.
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Figure 7.6: (a) φ∗
1 and (b) maximum value vs. (p1, p2) given (Low, Low) type for

(EGRR1,EGRR2) and (b1 = 1, b2 = 1).
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Table 7.2: The effect of ∆p1 on the optimal solutions for nonlinear pricing model

(EGRR1 = 0.3,EGRR2 = 0.2) ∼ (Low, Low)
p(p1, p2) (1 , 1) (2 , 1) (4 , 1) (8 , 1)
φ∗(φ∗

1, φ
∗
2) (0.5383,0.4617) (0.7850,0.2150) (0.7913,0.2087) (0.7943,0.2057)

(EGRR1 = 0.2,EGRR2 = 0.6) ∼ (Low, High)
p(p1, p2) (1 , 1) (2 , 1) (4 , 1) (8 , 1)
φ∗(φ∗

1, φ
∗
2) (0.3246,0.6754) (0.3913,0.6087) (0.3950,0.6050 ) (0.3967,0.6033)

(EGRR1 = 0.7,EGRR2 = 0.1) ∼ (High, Low)
p(p1, p2) (1 , 1) (2 , 1) (4 , 1) (8 , 1)
φ∗(φ∗

1, φ
∗
2) (0.7642,0.2358) (0.8790,0.1210) (0.8877,0.1123) (0.8919,0.1081)

(EGRR1 = 0.7,EGRR2 = 0.6) ∼ (High, High)
p(p1, p2) (1 , 1) (2 , 1) (4 , 1) (8 , 1)
φ∗(φ∗

1, φ
∗
2) (0.5360,0.4640) (0.5360,0.4640) (0.5361,0.4639) (0.5361,0.4639)

Similarly, Figure 7.7 depicts the effect of p1 on φ∗
1 for the nonlinear pricing model.

It obviously shows almost the same tendency on φ∗
1 for all 4 cases.

In all, we can conclude the following: First, p has the similar effect on the optimal

solution for both linear and nonlinear pricing models; Second, in the over-provisioned

case, the distribution of the surplus bandwidth will be in favor of the higher-paying

classes; Third, simple aggressive charging on bandwidth can not guarantee the cor-

responding return in the bandwidth due to the limit of the link capacity and mul-

tiplexing nature in this system; Fourth, p is not a good factor to use for allocation

differentiation in the under-provisioned case.

7.5.2 Case Study II – The Effect of b

In this subsection, we continue our investigation and analysis of the effect of

b(b1, b2) under the two pricing models. In order to evaluate b’s effect only, we as-

sume similar conditions for all the other parameters, such as (p1 = 1, p2 = 1) and

(EGRR1 = 0.2, EGRR2 = 0.2)∼ (Low, Low).
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Figure 7.7: The effect of p1 on φ∗
1 with p2 = 1 for nonlinear pricing model.

Linear Pricing Model

Adopting the same approach as we did in the p case, we begin with the analysis

about the effect ∆b1 on the optimal allocation of φ∗ by fixing b2 = 1. In table 7.3,

we give the corresponding optimal solutions by doubling the price of b1 under the

different combinations of IPDR for two classes.

Under a (Low, Low) pattern for IPDR, class 2 obtains more bandwidth allocation

than class 1 when (b1 = 1, b2 = 1). That is because the system tends to allocate

more bandwidth to class 2, the one with the larger initial queue size, given the same

delay-incurred unit pricing for two classes. But as b1 doubles, the delay differentiation

is activated and we can observe that φ∗ increases consistently. For the rest of cases,

we find the similar increasing tendencies of φ∗ as b1 doubles, even though the pattern

of IPDR changes.

Next, Figure 7.5.2 shows how φ∗
1 reacts to the change of b1 from 1 to 20 for all

4 cases, with the fixed b2 = 1 and (Low, Low) type for (IPDR1, IPDR2). As we

discussed in table 7.3, it depicts the similar increasing trends of φ∗
1 for all 4 cases as
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Table 7.3: The effect of ∆b1 on the optimal solutions for linear pricing model

(IPDR1 = 0.2, IPDR2 = 0.2) ∼ (Low, Low)
b(b1, b2) (1 , 1) (2 , 1) (4 , 1) (8 , 1)
φ∗(φ∗

1, φ
∗
2) (0.4168,0.5832) (0.4578,0.5422) (0.4999,0.5001) (0.5422,0.4578)

(IPDR1 = 0.2, IPDR2 = 1) ∼ (Low, High)
b(b1, b2) (1 , 1) (2 , 1) (4 , 1) (8 , 1)
φ∗(φ∗

1, φ
∗
2) (0.2736,0.7264) (0.2964,0.7036) (0.3239,0.6761) (0.3559,0.6441)

(IPDR1 = 1, IPDR2 = 0.2) ∼ (High, Low)
b(b1, b2) (1 , 1) (2 , 1) (4 , 1) (8 , 1)
φ∗(φ∗

1, φ
∗
2) (0.6081,0.3919) (0.6440,0.3560) (0.6761,0.3239) (0.7035,0.2965)

(IPDR1 = 0.8, IPDR2 = 0.9) ∼ (High, High)
b(b1, b2) (1 , 1) (2 , 1) (4 , 1) (8 , 1)
φ∗(φ∗

1, φ
∗
2) (0.4037,0.5963) (0.4437,0.5563) (0.4856,0.5144) (0.5279,0.4721)

b1 increases. It should be noted that the system is in an over-provisioned state for all

4 cases; thus, the optimal allocation of the bandwidth is more affected by the initial

queue size of the class and the delay-incurred pricing differentiation involved. With

the higher price of b1, class 1 can benefit more from the optimal bandwidth allocation

by the system.
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Figure 7.8: The effect of b1 on φ∗
1 with b2 = 1 for linear pricing model.

Finally, given a (Low, Low) scenario for (IPDR1, IPDR2), we plot how the optimal
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φ∗
1 changes upon (b1, b2) in Figure 7.9(a) and the maximum value of the objective

function varies against (b1, b2) in Figure 7.9(b).

Figure 7.9(a) demonstrates that φ∗
1 increases as b1 increases and b2 decreases. The

difference between b1 and b2 is becoming bigger, the more bandwidth allocation is

distributed towards class 1. In Figure 7.6(b), we can observe that the maximum

profit of the objective function for the linear pricing model decreases as both b1 and

b2 increase.

Nonlinear Pricing Model

We continue our discussion of the effect of b under the nonlinear pricing model,

given the same settings as in the linear case. As before, we set (α1 = 1, α2 = 1) and

(α1 = 1, α2 = 1) in order to evaluate the solo effect of b under this nonlinear pricing

scheme.

In the similar approach, we obtain the results of the optimal solutions in table 7.4

as b1 doubles. Again, φ∗
1 increases in similar ways for all four cases as in the linear

pricing model. The slight difference of φ∗
1 between the linear and nonlinear pricing

models is observed, given the certain value of (b1, b2). It is still derived from the

addition of the exponential component in the nonlinear pricing model.

Table 7.4: The effect of ∆b1 on the optimal solutions for nonlinear pricing model

(IPDR1 = 0.2, IPDR2 = 0.2) ∼ (Low, Low)
b(b1, b2) (1 , 1) (2 , 1) (4 , 1) (8 , 1)
φ∗(φ∗

1, φ
∗
2) (0.4198,0.5802) (0.4608,0.5392) (0.5031,0.4969) (0.5452,0.4548)

(IPDR1 = 0.2, IPDR2 = 1) ∼ (Low, High)
b(b1, b2) (1 , 1) (2 , 1) (4 , 1) (8 , 1)
φ∗(φ∗

1, φ
∗
2) (0.2750,0.7250) (0.2982,0.7018) (0.3260,0.6740) (0.3582,0.6418)

(IPDR1 = 1, IPDR2 = 0.2) ∼ (High, Low)
b(b1, b2) (1 , 1) (2 , 1) (4 , 1) (8 , 1)
φ∗(φ∗

1, φ
∗
2) (0.6108,0.3892 ) (0.6465,0.3535) (0.6783,0.3217) (0.7053,0.2947)

(IPDR1 = 0.8, IPDR2 = 0.9) ∼ (High, High)
b(b1, b2) (1 , 1) (2 , 1) (4 , 1) (8 , 1)
φ∗(φ∗

1, φ
∗
2) (0.4063,0.5937) (0.4465,0.5535) (0.4884,0.5116) (0.5307,0.4693)
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Figure 7.9: (a) φ∗
1 and (b) maximum value vs. (b1, b2) given (Low, Low) type for

(IPDR1, IPDR2) and (b1 = 1, b2 = 1).
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Moreover, the effect of b1 on φ∗
1 for the nonlinear pricing model is demonstrated

in Figure 7.10. As in the linear case, similar increasing patterns are shown for all 4

cases.
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Figure 7.10: The effect of b1 on φ∗
1 with b2 = 1 for nonlinear pricing model with

(α1 = 1, α2 = 1) and (β1 = 1, β2 = 1).

Overall, we conclude that the increase of b for a certain class also increases its

competitiveness for the shared resources in the system. Further, it will lead to better

sharing of bandwidth for the class and a better delay performance. To some extent,

it achieves the differentiation among the classes from the delay perspective.

7.5.3 Case Study III – The Effect of α

In this subsection, we will discuss the effect of α under the nonlinear pricing model.

In its initial setting, we assume that (p1 = 1, p2 = 1), (b1 = 1, b2 = 1), (β1 = 1, β2 = 1)

and (Low, Low) type for IPDR1, IPDR2. Furthermore, we set the desired delays at 5

ms for both classes, so that we can more accurately evaluate the solo effect of α.

For clarification, our discussion is classified into two cases: the over- and under-

provisioned ones.
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Over-provisioned Case

By fixing α2 = 1, we first analyze the effect of ∆α1 on the optimal allocation of

φ∗ and expected delay, D, for the over-provisioned case.

In table 7.5, we give the corresponding optimal solutions and expected delays as α1

decreases. It is not difficult to see that the optimal allocation φ∗
1 slightly increases and

D1 slightly decreases as α1 decreases. Under this setting, the delay should be relatively

small for the over-provisioned case. And considering it together with the small value

in β, α effect is neutralized to some extent so that the exponential component of

nonlinear pricing model is not that effective.

Table 7.5: The effect of ∆α1 on φ∗ and D (measured in ms) for over-provisioned case

(EGRR1 = 0.4,EGRR2 = 0.3) ∼ (Low, Low)
α(α1, α2) (1 , 1) (0.7, 1) (0.4 , 1) (0.1 , 1)
φ∗(φ∗

1, φ
∗
2) (0.5415,0.4585) (0.5416,0.4584) (0.5416,0.4584 ) (0.5417,0.4583)

D(D1, D2) (0.6524,0.6882) (0.6521,0.6885) (0.6518,0.6888) (0.6515,0.6891)

We plot φ∗
1 and the corresponding D1 against α1 for both models in Figure 7.11.

Figure 7.11(a) shows that φ∗
1 under the nonlinear model is decreasing as α1 increases,

but still is higher than its value under the linear pricing model. Accordingly, D1 is

increasing consistently as α1 increases, but still lower than the one under the linear

model. It should be noticed that the expected delays for both linear and nonlinear

cases are well below the desired delays, since the system is in the over-provisioned

state.

Under-provisioned Case

Next, we will discuss the effect of ∆α1 for the under-provisioned case.

In table 7.6, we can observe that φ∗
1 increases slightly as α1 decreases. And

expected delays for both classes are much bigger than their expected delays. This huge

delay violation is inevitable due to the insufficient bandwidth in the system. Moreover,
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Figure 7.11: The effect of α1 on (a) φ∗
1 and (b) corresponding D1 compared with linear

pricing model for over-provisioned case, where (EGRR2 = 0.4,EGRR2 = 0.3)∼(Low,
Low).

under this optimal allocation, we can see that the desired delay is almost negligible

compared with the expected delay for class 1 and 2. Therefore, the exponential factors

are more decided by β and the expected delays and that is why ∆α1 has small effect

on the optimal solutions. Finally, considering (β1 = 1, β2 = 1), φ∗
1 and φ∗

2 are close to

be even since there is little differentiation in the delay-incurred cost.

Table 7.6: The effect of ∆α1 on φ∗ and D (measured in ms) for under-provisioned
case

(EGRR1 = 0.7,EGRR2 = 0.6) ∼ (High, High)
α(α1, α2) (1 , 1) (0.7, 1) (0.4 , 1) (0.1 , 1)
φ∗(φ∗

1, φ
∗
2) (0.5268,0.4732) (0.5270,0.4730) (0.5271,0.4729) (0.5272,0.4728)

D(D1, D2) (166.24,136.15) (166.09,136.30) (165.94,136.46) (165.80,136.62)

Figure 7.12 demonstrates the different patterns in φ∗
1 and D1 against α1 for the

nonlinear pricing model, as we discussed in table 7.6. We also observe that the φ∗
1 for

the nonlinear pricing model is larger than the one for the linear pricing model, which

in turn results in a better D1.
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Figure 7.12: The effect of α1 on (a) φ∗
1 and (b) corresponding D1 compared with

linear pricing model for under-provisioned case, where (EGRR1 = 0.7,EGRR2 =
0.6)∼(High, High).

Overall, we conclude that the decrease of α for one class leads to a higher band-

width allocation to the class, no matter whether the system is under- or over-provisioned.

Even thought its solo effect seems small, it will be certainly magnified by the combi-

nation with β, the one we discuss in the next subsection.

7.5.4 Case Study IV – The Effect of β

In this subsection, we will investigate the effect of another factor in our nonlinear

pricing model, the aggressive factor β. Except setting (α1 = 1, α2 = 1), we use the

same set of parameters as the one for the study of α, in order to validate the solo

effect of β more accurately. In the same way, we attempt to discuss the effect of β

under two cases: over-provisioned and under-provisioned cases.

Over-provisioned Case

Let us start our study with β1 effect on the optimal solutions and expected delays

for over-provisioned case.
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In table 7.7, we can find that φ1 decreases as β1 increases with β2 = 1. Accordingly,

the expected delay for class 1, D1, is increasing slightly. As we can see, the analytical

expected delays are well below the desired delays for both classes, since the system

is capable to handle the incoming traffic. This will result in the negative sign for

Di − αidi, where αi = 1. As β1 is becoming bigger in this scenario, the exponential

factor of class 1 is getting even smaller, compared with the one of class 2. Therefore,

our nonlinear pricing model tends to allocate higher bandwidth to the second class,

in order to increase the provider’s profit.

Table 7.7: The effect of ∆β1 on φ∗ and D (measured in ms) for over-provisioned case

(EGRR1 = 0.4,EGRR2 = 0.3) ∼ (Low, Low)
β (β1, β2) (1 , 1) (13, 1) (25 , 1) (37 , 1)
φ∗ (φ∗

1, φ
∗
2) (0.5415, 0.4585) (0.540, 0.460) (0.5385, 0.4615) (0.5369, 0.4631)

D (D1, D2) (0.652, 0.688) (0.662, 0.679) (0.6707, 0.6706) (0.6799, 0.6622)

Then we plot the effect β1 on φ∗
1 and correspondingD1 and also compare them with

ones under linear pricing model for over-provisioned case, as shown in Figure 7.13.

The degrading φ∗
1 is observed as β1 increases, and it is even worse than the one under

linear pricing model after β1 is larger than 3. Meanwhile, D1 increases accordingly,

but still well below the desired delay of 5ms. Thus, for the over provisioned case,

the more aggressive β is, the more that class risks to give in the part of its share of

bandwidth to the class with a less aggressive value of β.

Under-provisioned Case

Next, we continue our study on β effect for under-provisioned case.

In table 7.8, we can see the huge increase on φ∗
1 and dramatic drop-down on D1

as β increases; this is a marked difference from the results obtained for the over-

provisioned case. Since the system can not handle the incoming traffic, the expected

delays for both classes are extremely high. Now, the exponential factor of class i

will have a huge effect since Di − αidi > 0 becomes positive. With the increasing
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Figure 7.13: The effect of β1 on (a) φ∗
1 and (b) corresponding D1 compared with linear

pricing model for over-provisioned case, where (EGRR1 = 0.4,EGRR2 = 0.3)∼(Low,
Low).

aggressiveness of β1, the system will switch more bandwidth to class 1 in order to

lower its huge penalty cost caused by exponential factor. Finally, QoS and priority

differentiation is achieved by the aggressive value of β, as the better service and QoS

guarantee to class 1 in table 7.8 shows.

Table 7.8: The effect of ∆β1 on φ∗ and D (measured in ms) for under-provisioned
case

(EGRR1 = 0.7,EGRR2 = 0.6) ∼ (High, High)
β (β1, β2) (1 , 1) (13, 1) (25 , 1) (37 , 1)
φ∗ (φ∗

1, φ
∗
2) (0.527, 0.473) (0.622, 0.378) (0.646, 0.354) (0.701, 0.299)

D (D1, D2) (166.24, 136.15) (64.60 295.63) (43.29, 350.43) (0.71, 506.69)

In Figure 7.14, we can see the consistent increase of φ∗
1 and decrease in D1 as β1

increases. Around the region of β1 = 27, we can observe even a dramatic jump in

φ∗
1, then its increase reaches saturation after that value. That is because after that

point, the expected delay of class is well controlled under the desired delay and the

exponential factor of class 1 is no more effective. Thus, the system is not rewarded

with more profit after that critical point.
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Figure 7.14: The effect of β1 on (a) φ∗
1 and (b) corresponding D1 compared with

linear pricing model for under-provisioned case, where (EGRR1 = 0.7,EGRR2 =
0.6)∼(High, High).

Overall, we have the following general remarks: First, the aggressiveness of β can

degrade QoS performance a little but still satisfy QoS requirements when the system

is over-provisioned. Second, this aggressiveness can also reward the class with more

bandwidth and better QoS performance when the system is under-provisioned. Third,

it can use empirical method to set the appropriate value of β in order to guarantee

QoS and realize differentiation between classes. Fourth, the network provider can

also make β adaptive, that is to make it small when the sum of EGRR shows the

system is over-provisioned and make it big when the sum of EGRR shows the system

is under-provisioned. In this way, the high priority class can always be guaranteed to

obtain better service.

7.5.5 Case Study V – The Joint Effects of the α and β Pa-

rameters

After studying the individual effects of α and β, we investigate next their combined

effect. By fixing (p1 = 1, p2 = 1), (b1 = 1, b2 = 1), we will discuss one case example,
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that is (High, Low) pattern for (EGRR1 = 0.7,EGRR2 = 0.4) when the system is

under-provisioned.

Figure 7.15 to Figure 7.17 demonstrate the combo effect of α1 and β1 on the

maximum value, φ∗
1, and D1 respectively.

In Figure 7.15, the maximum value increases as β1 increases. With the same β1,

it increases as α1 decreases. This combination effect further strength our previous

judgement on α and β.
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Figure 7.15: An example of the combo effect of α1 and β1 on the maximum value for
under-provisioned case, where (EGRR1 = 0.7,EGRR2 = 0.4)∼(High, Low).

Figure 7.17 shows φ∗
1 changes at the same rate as the maximum value, thus val-

idating the result from a different angle. In Figure 7.17, D1 varied in the reverse

trend, contrast with one of φ∗
1. Overall, we conclude that the combination of α and

β achieves the better QoS performance than the individual effect of either factor.

7.5.6 Case Study VI – The Comparison Between Linear and

Nonlinear Pricing Models

Finally, after understanding the behavior and the impact of all the parameters

involved in the linear and nonlinear pricing models, we compare them with respect
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to maximum profit, optimal allocation and the expected delays.

For sake of comparison, we set (p1 = 1.2, p2 = 1) and (b1 = 2, b2 = 1) for

both linear and nonlinear pricing models. In addition, (α1 = 0.8, α2 = 1) and

(β1 = 30, β2 = 1) are set for the nonlinear pricing model. By changing the pair

of (EGRR1,EGRR2), we can evaluate maximum profit, the optimal allocation and

the expected delays from under-provisioned and over-provisioned cases.

In Figure 7.18, we can observe a similar maximum profit for both pricing models

when the system is over-provisioned, but actually the maximum profit of the nonlinear

one is slightly larger. However, the maximum value under the nonlinear pricing model

is dramatically greater than the one for the linear pricing model. That is because the

exponential effect of nonlinear pricing model is in charge and makes the differentiation

between the classes when the system is over-provisioned.
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Figure 7.18: The comparison of the maximum value for objective function between
linear and nonlinear pricing models.

Figure 7.19 also shows the similar value of φ∗
1 under both pricing models for over-

provisioned case, while demonstrates the huge difference when the system is under-

provisioned. That is nonlinear pricing model gives the favor to higher priority of class

1 in the case that the system is short of resources.

In Figure 7.19, D1 values are close for both pricing models for over-provisioned

case while the nonlinear one demonstrates much lower than the linear one when the
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system is under-provisioned.

Overall, we can conclude that when the system is over-provisioned, the nonlinear

pricing model can show a slightly better QoS performance and service; it demon-

strates much better QoS guarantee and differentiation when the system is under-

provisioned. Therefore, differentiation and priority are achieved by the appropriate

pricing schemes.

7.6 Conclusion

In this chapter, we investigated a new nonlinear pricing model that is sensitive to

the desired delay requirement of each class. Under this pricing model, the network

provider has more flexibility in optimal control of the shared resources. Moreover,

computationally complexity issues were successfully addressed by establishing the

global concavity of the objective function as a function of the delay.

The numerical evaluation shows that the nonlinear pricing model guarantees bet-

ter QoS performance compared to its linear counterpart, especially when the system

is under-provisioned. Also, some interesting observations on tuning parameters give
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the insights on the implementation from the engineering perspective.
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Chapter 8

Concluding Remarks

The evolution of network technology will ultimately touch every respect of human

life, that drives the network provider or carrier to provide a variety of services for end

users who access the networks. In such multi-service networks, QoS provisioning and

pricing schemes are important issues for researchers to investigate. In this disserta-

tion, a efficient approach addressing these issues has been proposed and analytically

and numerically investigated.

MBORA System


(Chapter 3)


 Adaptiveness
 Optimality


Simple Threshold Policy


(Chapter 4)


Generalized Profit-


Oriented Formulation


(Chapter 5)


Linear Pricing


Models


(Chapter 6)


Nonlinear


Pricing Models


(Chapter 7)


Figure 8.1: The evolution of our research and contributions.
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In Figure 8.1, we demonstrate the evolution of our research and contributions

during the course of study.

Based on the modeling of multi-service networks, we classify the end users into two

major categories: the classes that demand deterministic delay-bound and the classes

that require a flexible delay-bound. Accordingly, we proposed a generalized adaptive

and optimal control framework to differentiate the resource allocation for these two

categories. After excluding the deterministic delay-bound classes that require strict

bandwidth reservation, we focus on the adaptive and optimal control for the flexible

delay-bounded classes that are multiplexed using shared resources. Therefore, the

resource allocation is in fact delivered by the subsystem of this generalized framework,

measurement-based optimal resource allocation (MBORA) system. For the rest of

the dissertation, we attempt to evaluate this system in terms of its adaptiveness and

optimality regarding resource allocation.

Then we validated the benefits of the adaptivity of our proposed framework, based

on a simple threshold decision policy and measurement estimations. Under this sce-

nario, we also employed WRR and WFQ as the scheduling algorithms to execute the

resource allocation. After extensive simulations, we concluded that Dynamic WFQ

achieves the best performance, in contrast to its static counterpart.

In the next phase of our research, we formulated a generalized profit center opti-

mization model in order to address the optimal control component of our proposed

framework. Besides the delivery of QoS, this model also provided the network provider

with a reference measure in terms of profit, while distributing the resources to the

classes.

Using generalized service models, we investigated a profit-oriented formulation,

specifically under a linear pricing model, subject to average queue delay constraints.

A fast, low complexity algorithm was developed accordingly, for the online dynamic

resource allocation problem. The excellent performance of this approach was validated

through simulation experiments under different traffic scenarios.

Finally, we proposed a delay-sensitive nonlinear pricing model for the generalized

profit-oriented formulation. Its effect on the objective function and the optimal so-

lution were analyzed. Moreover, we successfully solved the dimensionality problem
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we encountered previously, by proposing a generalized solution strategy valid for all

linear, nonlinear or mixed pricing models. An extensive numerical study of our strat-

egy’s performance demonstrated that the nonlinear pricing model is superior to the

linear one, especially when the system is under-provisioned.

Overall, it was established that the proposed framework provides an effective and

efficient mechanism, that can be applied for online implementation in multi-service

networks. Some issues that require additional research include the incorporation

of other delay constraints (beyond the average delay case) and non-linear revenue

schemes.
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Appendix A

Extended Study on Performance

Evaluation of Chapter 4

In this appendix, we will continue our performance evaluation study of Chapter

4.

First, we examine the effect of the pre-specified threshold parameters (θ1, θ2) on

the performance of the proposed scheme. It is easy to see that the higher the threshold

θ1 (for the delay-sensitive class), the better performance our proposed scheduling

algorithms would achieve for that particular class. We thus briefly turn our attention

to the loss-sensitive class, and explore the effect of θ2 on the various classes. Two

values are investigated, namely, θ2 = 0.90 and 0.95. Figures A.1 (a) and A.1 (b)

show that the proposed scheduling algorithms achieve a better performance for the

underlying loss-sensitive class, as expected, but more importantly the performance of

the remaining classes is not significantly affected. A more extensive evaluation of the

effect of the thresholds is currently under study.

We evaluate next how the interval over which traffic patterns change over time

affects the performance of the proposed scheme in the under-provisioned case. We do

this by defining an interval, called the pattern change interval (PCI), over which the
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Figure A.1: Comparison of DWFQ and DWRR on (a) packet loss probability and (b)
average queue delay with θ2 = 0.90 and θ2 = 0.95.

traffic load distribution for each class changes.

In this evaluation all the other tuning parameters remain fixed for the duration

of the experiment. The PCI ranges for 10 to 90 sec, while the adaptive window size

is 1 sec. Therefore, the dynamic policies have enough time to adapt to the changing

traffic conditions and thus deliver good performance.

It can be seen from Figures A.2 (a) and A.2 (b), that the performance of DWFQ

is not affected at all by changes in the PCI for the delay-sensitive class and similar

conclusions can be reached to a large extent for the loss-sensitive one. On the other

hand, the DWRR class exhibits an improving performance over larger PCIs for the

delay-sensitive class and a degrading one over the loss sensitive (see Figure A.3).

Finally, both policies exhibit some variability for the best effort class over the range

of PCI (see Figure A.4). In terms of relative performance with respect to the static

policies, the conclusion previously reached still apply. A topic that is currently under

investigation is at what point the performance of the proposed dynamic allocation

scheme degrades significantly as a function of PCI, or in other words for what values

of the ratio of W/PCI the performance exhibited is deemed satisfactory.

Next, we briefly report on our investigations regarding the composition of the
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Figure A.2: Comparison of scheduling algorithms on (a) packet loss probability and
(b) average queue delay for delay-sensitive class over pattern change interval.
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Figure A.4: Comparison of scheduling algorithms on (a) packet loss probability and
(b) average queue delay for best effort class over pattern change interval.

traffic and its effect on performance. The benchmark is a uniform distribution over

the classes (i.e., equal proportions of 1/3, 1/3, and 1/3) and we also report the results

for other unbalanced distribution such as those given in Table A.1, where over non-

overlapping time intervals of length 100 sec, the composition of traffic follows those

proportions; namely, at some point in time approximately 17% of the total traffic

would come from the delay-sensitive class, an equal proportion from the loss-sensitive

class and the remaining from the best effort class, while at another point in time,

approximately 67% of the traffic would belong to the delay-sensitive class, and 17%

to the other two classes. The various traffic load distributions examined are given in

Table A.1, where σ =(max proportion/min proportion). A plot of the distribution

of traffic as it is varying over time is given in Figure A.5, that provides some insight

into the changing nature of traffic.

Figure A.7 (a), shows that the performance of the dynamic algorithms is superior

to that of the static ones for unbalanced traffic distributions for the delay-sensitive

class, regarding losses. It is also clear that the DWFQ enjoys a large margin over

its competitors with respect to both performance metrics. On the other hand, the

performance of DWRR with respect to delays is rather problematic, due to the nor-
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Table A.1: Initial Proportions of Traffic distribution and corresponding σ values.

Delay-Sensitive Class Loss-Sensitive Class Best Effort Class
σ = 1 1

3
1
3

1
3

σ = 2 1
4

1
4

1
2

σ = 3 1
5

1
5

3
5

σ = 4 1
6

1
6

2
3
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Figure A.5: Total traffic rate and traffic rates for different classes when σ = 4.
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malization step used. Analogous conclusions can be reached for the loss-sensitive case

for unbalanced distributions as Figure A.8 shows. For the best effort class, due to

its low priority given by the dynamic scheme, the static algorithms outperform their

dynamic counterparts, although the differences become smaller for more unbalanced

load distributions.
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Figure A.6: Traffic rates for delay-sensitive class with different σ.

In Figures A.9 (a) and (b) the performance of the DWRR and the DWFQ policies

is inferior to their static counterparts, as expected, due to the allocation of a large

percentage of the available bandwidth to higher priority classes.

Overall, for very unbalanced composition of the traffic, our proposed scheme sig-

nificantly outperforms the static algorithms, due to its flexibility and adaptiveness

over time.

Finally, we briefly report on preliminary results obtained about the effect on per-

formance of the adaptive window W . In [47], the adaptive window was chosen as a

multiple of the measurement slot τ . Thus, the choice of τ is a key factor in determin-

ing the accuracy of the obtained measurements, which in turn affect the performance

of the proposed scheme. If the value of τ is too small, it can capture the burstiness of

the coming traffic and result in over-allocation of resources. The QoS requirements
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Figure A.7: Comparison of scheduling algorithms on (a) packet loss probability and
(b) average queue delay for delay-sensitive class as σ changes.
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Figure A.8: Comparison of scheduling algorithms on (a) packet loss probability and
(b) average queue delay for loss-sensitive class as σ changes.
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Figure A.9: Comparison of scheduling algorithms on (a) packet loss probability and
(b) average queue delay for best effort class as σ changes.

would be satisfied, but the computational requirements of our scheme become quite

high. On the other hand, if the value of τ is too large, the measurements cannot

capture well the fluctuations in the traffic processes, thus compromising performance.

It should be noted that in a rapidly changing traffic environment a near-optimal

selection of τ becomes crucial; however, this represents a topic of current research.

In this dissertation, the objective is to demonstrate the effect of τ on performance.

In Figures A.10 (a) and A.10 (b), the loss probability and average queue delay

increase as τ increases, which is consistent with our intuition and our analysis. More-

over, the confidence intervals for the performance of the proposed scheme, and in

particular for the DWFQ policy, are significantly narrower than those for the static

algorithms. This reflects the more robust nature of our scheme.

Figures A.11 (a) and A.11 (b) show analogous results for the loss-sensitive class.

However, for windows larger than 1.5 sec the delay performance of the DWFQ policy

becomes inferior to that of the static algorithms. This indicates that the choice of

W (and its relationship with the time scale over which traffic patterns change) is

important for delivering the required QoS.

Finally, in Figures A.12 (a) and A.12 (b) it can be seen that for small values of
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Figure A.10: Comparison of scheduling algorithms on (a) packet loss probability and
(b) average queue delay for delay-sensitive class as W changes.
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Figure A.11: Comparison of scheduling algorithms on (a) packet loss probability and
(b) average queue delay for loss-sensitive class as W changes.
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τ , the over-allocation for the higher priority classes results in an under-allocation for

the best effort class. As τ increases, the proportion of bandwidth reserved for the

higher priority classes gradually shifts to the best effort class, which yields a better

QoS performance.
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Figure A.12: Comparison of scheduling algorithms on (a) packet loss probability and
b) average queue delay for best effort class as W changes.
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Appendix B

Supermodular Definition and

Related Theorems for Chapter 6

Definition 2. A function f : S → < is supermodular if for all x, y ∈ S, f(x)+f(y) ≤

f(x ∧ y) + f(x ∨ y).

Theorem 4. Let S = [x, x] be an interval in <n. Suppose that f : <n → < is twice

differentiable on some open set containing S. Then f is supermodular on S if and

only if for all x ∈ S and all i 6= j, ∂2f
∂xi∂xj

≥ 0.

Proof. The function, g̃(φ1, p1), is obviously twice differentiable. Since ∂2g̃(φ1,p1)
∂p1∂φ1

=

C ′ > 0, it is supermodular based on Theorem 4.

Lemma 1. Let f : X×< → < be supermodular function and define x∗ ≡ arg maxx∈S(t) f(x, t).

If t ≥ t′ and S(t) ≥ S(t′), then x∗(t) ≥ x∗(t′).
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Proof. The function, g̃(φ1, p1), was shown above to be supermodular. For the optimal

value φ∗
1, it can be written as φ∗

1(p1), a function of p1. Suppose there is p′1 > p1; then

from the discussion about the constraints given in Section 3, it is easy to conclude

that the feasible range of φ1 is independent of p1, thus S(p1) = S(p′1). From Lemma

1, φ∗
1(p1) ≥ φ∗

1(p
′
1).
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Appendix C

Related Definitions and Proofs for

Chapter 7

Definition 3. Suppose f ∈ R and all x0 in the interior of its domain, the left-

derivative and right-derivative at x0 can be defined as:

D−f(x0) := lim
x↑x0

f(x)− f(x0)

x− x0

D+f(x0) := lim
x↓x0

f(x)− f(x0)

x− x0

Proposition 8. Suppose φi ∈ (0, 1), the function of q̄i(φi) is differentiable everywhere

in domain, and it is twice-differentiable except the point φi = ψci .

Proof. For both sides of the piecewise function except the point, φi = ψci , it is obvious

differentiable, thus we can obtain the first derivative of q̄i(φi) for both sides as the
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following:

∂q̄i(φi)

∂φi
=





−
(q0i )2C′

2W
× 1

(φiC′−ri)2
if φi > ψci

−WC′

2
if φi ≤ ψci

Meanwhile, at the point of φi = ψci , we can derive the left-derivative is equivalent

to the right-derivative as the following equation:

D−q̄i = D+q̄i = −
WC ′

2
(C.1)

Thus, q̄i is differentiable at the point, φi = ψci and it is differentiable everywhere

on φi ∈ (0, 1).

Similarly, we can get the second derivative of q̄i for both sides as the following:

∂2q̄i(φi)

∂φ2
i

=





(q0iC
′)2

W
× 1

(φiC′−ri)3
if φi > ψci

0 if φi ≤ ψci

(C.2)

However, at the point of φi = ψci , it is easy to prove the left second derivative

is not equal to the right second derivative, thus q̄i is not twice differentiable at this

point but twice differentiable for all others points in the domain (0, 1).

Proposition 9. The function of q̄i(φi) is convex for φi ∈ (0, 1).

Proof. When φi ∈ (0, ψci ), q̄i is a linear function, therefore its first derivative is con-

stant and we can get the following relationship:

q̄i(ψ
c
i )− q̄i(0)

ψci − 0
= sup

φi∈(0,ψc
i )

D+q̄i(φi) = D+q̄i(ψ
c
i ) = −

WC ′

2



134

While φi ∈ (ψci , 1), the right derivative in this range has the increasing property:

D+q̄i(ψ
c
i ) ≤ inf

φi∈(ψc
i ,1)

D+q̄i(φi) ≤
q̄i(1)− q̄i(ψ

c
i )

1− ψci

Therefore, the right derivative of q̄i on (0, 1) is increasing. Then q̄i is convex on

(0, 1).


