
ABSTRACT

Park, Man Sik. Symmetry and Separability In Spatial-Temporal Processes. (Un-

der the direction of Dr. Montserrat Fuentes.)

Symmetry is one of most standard assumptions that are needed for a covari-

ance function in spatial statistics. However, many studies in spatial research fields

show that environmental data have complex spatial-temporal dependency struc-

tures that are difficult to model and estimate, due to the lack of symmetry and

other standard assumptions of a covariance function. So, not much literature

exists in statistics about asymmetric covariance functions and formal tests for

lack of symmetry in spatial-temporal processes. In this study, we introduce cer-

tain types of symmetry in spatial-temporal processes and propose new classes of

asymmetric spatial-temporal covariance models by using spectral representations.

We also clarify the relationship between symmetry and separability and introduce

nonseparable covariance models. Based on the proposed concept of symmetry in

spatial-temporal processes, new formal tests for lack of symmetry are proposed

in this study by employing spectral representations of the spatial-temporal co-

variance function. The advantage of the tests is that simple analysis of variance

(ANOVA) approaches are employed for detecting lack of symmetry inherent in

spatial-temporal processes. Our new classes of covariance models are applied to

the methods for the fine particulate matters with a mass median diameter less than

2.5 µm (PM2.5) observed from U.S. Environmental Protection Agency (EPA). We

evaluate the performance of the tests by a simulation study and, finally, apply to



the PM2.5 daily concentration calculated by the Models-3/Community Multiscale

Air Quality (CMAQ) modeling system with the spatial resolution of 36km×36km.
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Chapter 1

Introduction

The most common problem that researchers in diverse fields such as epidemiol-

ogy, ecology, climatology, and environmental health research are confronted with

is how to predict the observations at unobserved sites using the given data. To

do that, they estimate the underlying parameters in certain covariance structures

that are assumed to explain the given data very well. Most data are observed in

space and time. Both spatial and temporal effects are considered for the spatial

interpolation and the temporal forecast.

In general, the spatial-temporal processes have a much more complicated struc-

ture than spatial process alone. Since spatial structure and temporal structure are

entangled in the covariance structure, it is not easy to model these two parts simul-

taneously. In order to overcome the difficulty in modelling the spatial-temporal

covariance structure, the concept of “separability” has been applied. A spatial-

temporal process is separable if the spatial-temporal covariance structure can be
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divided into a spatial covariance and temporal covariance, separately. Separable

spatial-temporal classes give us many advantages, such as the simplified repre-

sentation of the covariance matrix and, consequently, important computational

benefits. But in real applications, it may not be reasonable to estimate the co-

variances that depend on space and time separately and combine them together

for predicting observations at unobserved sites or times. Many reseachers (Cressie

and Huang (1999), Gneiting (2002) and so on) have proposed nonseparable co-

variance classes for spatial-temporal processes. Recently Fuentes et al. (2005)

introduced a new nonseparable class with a unique parameter reflecting the de-

pendency between the spatial and temporal components.

“Isotropy” is also one of the common problems that the researchers should

take into account when analyzing data. A spatial process is isotropic if the co-

variance between any two arbitrary sites only depends on the distance no matter

what the relative position between them is. As you can see from Figure 1.1, un-

der the isotropic condition, the covariance between a and b is the same as the

covariance between a and b′ because of the same distance, r1. So, the isotropic

covariance in two-dimensional space does not depend on any direction. This con-

dition, however, is too unrealistic to apply to real conditions. We can enumerate

many examples that do not satisfy the isotropic condition. The dispersion of air

pollutants from a chemical factory is directly affected by the wind speed as well

as wind direction. The patterns of annual temperature in United States can be

somehow divided by some geographic information such as longitude and latitude.

2



r1

r1

a

b

b'
r2

r2
c'

c

X

Y

Figure 1.1: Isotropy in Two-Dimensional Space

So “anisotropy” should be considered. Anisotropic covariance depends not only

on distance between sites but also on their relative orientation. As one can see

from Figure 1.2, the covariance between a and b is different from the covariance

between a and b′ despite separation by the same distance, r1. In order to check

the existence of certain types of anisotropy, we make use of a “rose diagram” or

a “directional semivariogram”. Then, we transform the covariance structure to

achieve isotropy. Geometric anisotropy is the simplest case. We can make the

covariance structure satisfy isotropy by estimating the parameters for strength

and rotation. Zimmerman (1993) proposes three different kinds of nongeometric

anisotropy: 1) sill anisotropy; 2) nugget anisotropy; and 3) range anisotropy. Fig-

ure 2 shows another important infomation that has not been considered so far.

Under geometric anisotropy we find that the covariance between a and b∗ sepa-

rated by distance r1 is the same as the covariance between a and b′. The two lines
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Figure 1.2: Geometric Anisotropy in Two-Dimensional Space

between a and b∗ and between a and b′ are symmetric with respect to Z-axis. So

anisotropy may present some patterns of spatial or spatial-temporal dependency,

which can be specified by “symmetry”. A few researchers have dealt with sym-

metry in the environmental field. Scaccia and Martin (2005) introduced certain

types of symmetry in the spatial processes: 1) axial symmetry; 2) diagonal sym-

metry; and 3) complete symmetry, and proposed some tests for symmetry using

spectral methods. Their work, however, focuses on only two dimensional spatial

process ignoring time effect, and is applied to a complete regular lattice struc-

ture. In spatial-temporal processes there can be four different types of symmetry

in spatial-temporal processes: 1) axial symmetry in time; 2) axial symmetry in

space; 3) diagonal symmetry in time; and 4) diagonal symmetry in space.

Symmetry also has the same advantages as separability does. Symmetry can

4



provide some advantages to help researchers construct simplified covariance struc-

tures for spatial-temporal processes, and to make better interpretations of the un-

derlying characteristics of the processes. The differences between separability and

symmetry, however, are apparent. Separability only takes into account temporal

lag and spatial separation, which consists of the product of two covariance func-

tions. Symmetry, however, takes into account each spatial lag as well as temporal

lag. So, in spatial-temporal processes, separability does not always guarantee sym-

metry. Since it is difficult to statistically determine isotropy in spatial-temporal

processes, symmetry can play an important role as its substitute.

In this study, we characterize the aforementioned types of symmetry in spatial-

temporal processes, and develop a new testing method for each case of symmetry

with asymptotic properties of cross-spectral density function and coherency. Fi-

nally, we develop a new class of nonsymmetric spatial-temporal stationary covari-

ance models.

This study is organized as follows. In chapter 2, we introduce new concepts

of symmetry inherent to spatial-temporal processes, develop a new class of asym-

metric spatial-temporal stationary covariance models, and apply our new class to

the real application. In chapter 3, we propose new formal tests for lack of sym-

metry by employing the spectral representations of spatial-temporal covariance

function and validate the tests with the simulation study and the the application

to air-pollution datasets. Chapter 4 focuses on the conclusion and the further

research of this study.
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Chapter 2

New Classes of Asymmetric

Spatial-Temporal Covariance

Models

2.1 Introduction

Many studies in diverse fields such as climatology, ecology, and public health

research show that environmental data have complex spatial-temporal depen-

dency structures that are difficult to model and estimate. In general, the spatial-

temporal processes have more complicated structures than the spatial processes

alone. The main reason is that, since the spatial and the temporal structure are

entangled in the covariance function, it is not easy to take into account these

two structures simultaneously. In order to overcome the difficulty in building

the spatial-temporal processes, we usually employ two major concepts in spatial-

6



temporal processes: separability and symmetry.

Separability in spatial-temporal processes enables us to easily construct the

model due to advantages such as the simplified representation of the covariance

matrix, consequently, remarkable computational benefit. Suppose that {Z(s, t) :

s ∈ D ⊂ R
d, t ∈ [0,∞)} denote a stationary spatial-temporal process measured

at N sites and T times, and the covariance function is defined as

C(si − sj; tk − tl|θ) ≡ cov{Z(si, tk), Z(sj, tl)}; si, sj ∈ D, tk, tl ∈ [0,∞), (2.1)

where si = (si
1, · · · , si

d)
′ and C satisfies the positive definiteness for all θ ∈ Θ ⊂

R
p. Then the process is called separable if the covariance function in (2.1) can be

divided into a spatial covariance and temporal covariance, that is,

C(si − sj; tk − tl|θ) = Cs(si − sj|θs) · CT (tk − tl|θt), (2.2)

where Cs is a positive definite spatial covariance function in R
d, CT is a positive

definite temporal covariance function in R
1, and θ = (θ′

s,θ
′
t)

′. Under stationarity

condition, (2.2) is rewritten as

C(h;u|θ) = Cs(h|θs) · CT (u|θt), (2.3)

for all h ≡ (h1, · · · , hd)
′ = si − sj is a vector of spatial lags and all u = tk − tl is a

temporal lag (see Rodriguez-Iturbe and Majia (1974)). However, in real applica-

tions, it may not be reasonable to estimate the covariance functions that depend

on space and time separately, and then, combine them together for predicting

observations at unobserved sites or times. Especially, in air pollution data it is

7



not easy to capture the underlying pattern just by relying on separability. Many

reseachers have proposed nonseparable covariance classes for spatial-temporal pro-

cesses. Jones and Zhang (1997) develop a parametric family of spectral density

functions, with corresponding nonseparable stationary covariance functions, by

adapting stochastic partial differential equations. Cressie and Huang (1999) in-

troduce new classes of nonseparable, spatial-temporal stationary covariance func-

tions with space-time interaction. The separable covariance function is a special

case. Their main idea is to develop the nonseparable positive-definite covariance

function with spatial-temporal interaction by specifying two appropriate functions

each of which is expressed as a spectral representation in closed form. Gneiting

(2002) proposes general classes of nonseparable, stationary spatial-temporal co-

variance functions which are directly constructed in the space-time domain and

are based on Fourier-free implementation. This paper insists that any spatial-

temporal covariance function can be modeled without the Fourier transformation

as long as one finds appropriate functions. Recently Fuentes et al. (2005) in-

troduce a new class of nonseparable covariance models with a unique parameter

reflecting the dependency between the spatial and the temporal components. In-

stead of a covariance function which is the multiplication of spatial and temporal

covariances (see (2.3)), Myers and Journel (1990), and Rouhani and Myers (1990)

consider the separability under which the covariance function is the addition of

spatial and temporal covariances (see (2.2)), although the covariance matrix turns

out to be singular in some situations.

8



The other concept for relieving the difficulty in modeling is symmetry. Sym-

metry also has the same advantages as separability does. Symmetry plays an

important role in helping researchers construct simplified covariance structures

for spatial-temporal processes, and making better interpretations of the under-

lying characteristics of the processes. Due to these benefits symmetry has been

assumed and even, has been taken for granted. In these days, more attention

has been focused on lack of symmetry although only a few studies have been ac-

complished so far. One of the noteworthy studies is Scaccia and Martin (2005),

which, for a spatial process, {Z(s) : s ∈ D ⊂ R
d}, especially for two-dimensional

spatial lattice data, introduce two types of symmetry (axial symmetry; diagonal

symmetry) and separability which are, respectively, denoted by, for all h1 and h2

C(h1, h2) = C(−h1, h2), (2.4)

C(h1, h2) = C(h2, h1), (2.5)

and

C(h1, h2) = C1(h1) · C2(h2), (2.6)

where C(h1, h2) ≡ cov(Z(s1 + h1, s2 + h2), Z(s1, s2)), and C1 and C2 are the

positive-definite covariances of first and second spatial lag. They also develop

new tests for axial symmetry in (2.4) and separability in (2.6) based on pe-

riodograms. Using certain ratios of spatial periodograms, Lu and Zimmerman

(2005) propose new diagnostic tests for axial symmetry and complete symmetry

which means that (2.4) and (2.5) are both satisfied. However, there has been no
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trial for adapting symmetry to the general spatial-temporal setting except Stein

(2005), which proposes spatial-temporal covariance models with lack of axial sym-

metry in time presented in Section 2.2. The approach in this study is based on

generating asymmetric models from symmetric ones by taking derivatives. In

this study we introduce certain types of symmetry in spatial-temporal processes,

and propose new classes of nonseparable spatial-temporal covariance models with

spatial-temporal dependency parameters. These classes are directly derived from

a simple and valid spectral density function and, hence, are represented in closed

form.

This chapter is organized as follows. In Section 2.2, we define three types

of symmetry realized in the spatial-temporal setting. Based on the definition of

symmetry we develop new classes of nonseparable covariance models in Section 2.3.

In Section 2.4, we clarify the relationship between symmetry and separability and

extend the proposed models to the nonseparable case. In Section 2.5, the proposed

covariance models will be fitted to spatial-temporal data on Particulate Matter

with a mass median diameter less than 2.5 µm (PM2.5) over the northeastern

region of U.S. Finally, we briefly discuss our approach in Section 2.6.

2.2 Symmetry in Spatial-Temporal Processes

In this section, we define three types of symmetry in spatial-temporal pro-

cesses; axial symmetry in time, axial symmetry in space, and diagonal symmetry

10



in space. In this article we assume that any covariance function is stationary in

time unless otherwise mentioned. The first type of symmetry is axial symmetry

in time.

Definition 2.2.1 A process is called axially symmetric in time if for any temporal

lag u �= 0,

C(si − sj;u) = C(si∗ − sj∗ ;−u), (2.7)

for arbitrary four locations (i, j, i∗, j∗) satisfying si − sj = si∗ − sj∗.

Under stationarity in space, (2.7) is reduced to

C(h;u) = C(h;−u), (2.8)

where si = sj +h and si∗ = sj∗ +h. What is important here is that the directions

and the distances on spatial domain are the same, and the temporal lags have

the same magnitudes but different signs. The second type of symmetry is axial

symmetry in space.

Definition 2.2.2 A process is called axially symmetric in space if

C(h;u) = C(h̊;u), (2.9)

where h̊ = (h1, · · · , hk−1,−hk, hk+1, · · · , hd)
′ for k fixed.

As can be seen in (2.9), for temporal lag u fixed, all the spatial lags are the same

except one spatial lag, which has different sign. The process can be also called

(k)-axially symmetric in space. h̊ = (h1,−h2)
′ is one possible case in case of d = 2.

The last one is diagonal symmetry in space.

11



Definition 2.2.3 A process is called (k-l) diagonally symmetric in space if

C(h;u) = C(ḧ;u), (2.10)

where ḧ = (h1, · · · , hk−1, hl, hk+1, · · · , hl−1, hk, hl+1, · · · , hd)
′ for k �= l.

From (2.10) we can see that only two spatial lags, hk and hl, are switched with

each other. Provided that d = 2, ḧ = (h2, h1)
′.

2.3 Classes of Asymmetric Stationary Covari-

ance Models

We defined three different types of symmetry in spatial-temporal processes

in Section 2.2. Now we propose new classes of asymmetric spatial-temporal sta-

tionary covariance models. In this section, we provide a new and simple method

to construct such covariance models. The main idea of our approach is to build

covariance functions directly derived from the corresponding spectral density func-

tions. In order to do that, we propose the spatial-temporal spectral density func-

tion given by

fv(ω; τ) = γ
(
α2β2 + β2‖ω + τv1‖2 + α2(τ + v′

2ω)2
)−ν

= f0(ω + τv1; τ + v′
2ω),

(2.11)

where f0(ω; τ) ≡ γ(α2β2 + β2‖ω‖2 + α2τ 2)−ν is the spectral density function

transformed from an simple stationary spatial-temporal covariance function, γ, α

and β are positive, ν > d+1
2

, and |v′
1v2| < 1. Here v1 = {v1i}d

i=1 and v2 = {v2i}d
i=1

are vectors satisfying certain types of asymmetry. The spectral density function

12



in (2.11) is always valid and its Fourier transformation always exists because the

following two conditions are satisfied:

C.1 fv(ω; τ) > 0 everywhere

C.2 fv(ω; τ) <∞ for all v1, v2 ∈ R
d satisfying |v′

1v2| < 1.

So, Cv(h;u) =
∫

Rd

∫
R

exp{ih′ω + iuτ}fv(ω; τ) dτ dω exists and has the positive-

definiteness. We can write the corresponding covariance function from the spectral

density function, fv in (2.11) as

Cv(h;u) =

∫
Rd

∫
R

exp{ih′ω + iuτ}f0(ω + τv1; τ + v′
2ω) dτ dω

=

∫
Rd

∫
R

exp

{
i
(h̃ − uv2)

′

1 − v′
1v2

ω + i
(u− h′v1)

1 − v′
1v2

τ

}
f0(ω; τ)

1 − v′
1v2

dτ dω

=
1

1 − v′
1v2

C0

(
h̃ − uv2

1 − v′
1v2

;
u− h′v1

1 − v′
1v2

)
,

(2.12)

where C0 is a simple stationary spatial-temporal covariance function, and

h̃ =
{
h̃i

}d

i=1
=

{(
1 −

∑
j �=i

v1jv2j

)
hi + v2i

∑
j �=i

v1jhj

}d

i=1

.

By straightforward derivation with help of Stein (2005), and Gradshteyn and

Ryzhik (2000) (see Appendix), we finally obtain the closed form of the (d + 1)

dimensional Matérn-type covariance function denoted by

Cv(h;u) =
1

1 − v′
1v2

× γπ(d+1)/2α−2ν+dβ−2ν+1

2ν−(d+1)/2−1Γ(ν)

×Mν− d+1
2

⎛⎜⎝
√√√√{

α‖h̃ − uv2‖
1 − v′

1v2

}2

+

{
β(u− h′v1)

1 − v′
1v2

}2

⎞⎟⎠ ,

(2.13)
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where Mν(r) = rνKν(r) and ‖ · ‖ denotes the Euclidean distance. Here Kν is

a modified Bessel function of the third kind of order ν. Before going further,

we explain the characteristics of the covariance parameters. α and β explain the

decaying rates of the spatial and the temporal correlations. So their inverses are

interpreted as spatial and temporal ranges. ν measures the degree of smoothness,

which means that the larger the ν is, the smoother a process is. What is more

important here are the asymmetry vectors v1 and v2. As one can see in (2.12)

and (2.13), u − h′v1 is a temporal lag adjusted by a vector of spatial lags and

h̃ − uv2 is a vector of spatial lags adjusted by a temporal lag. So, we can see

that the units of v1 are temporal lag divided by spatial lags, which are called the

inverse of speeds. We can also know that the units of v2 are spatial lags over

temporal lag, which are called the velocities. In the rest of this section, we regard

the space-time domain as three-dimensional space for the better understanding.

v1 and v2 take part in developing new classes of asymmetric covariance models

and yield the covariance models with the following types of symmetry:

T.1 axial symmetry in time if v1 = v2 = 0

T.2 axial symmetry in space if v11 �= 0 or v21 �= 0 and v12 = v22 = 0

T.3 diagonal symmetry in space if v11 = v12 �= 0 and v21 = v22 �= 0

T.4 asymmetry in space and time otherwise.

From the values of v = (v1, v2)
′ related to certain type of symmetry, we can know

that all types of symmetry proposed in this paper are mutually exclusive from the

14
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Figure 2.1: Contour plots for C(h;u) axially symmetric in time (v = 0), where
each number in plot indicates the corresponding percentile of the covariance with
γ = 1, and ν = d = 2. (a) Contour plot of C versus h1 and h2 for all u, where
α = 0.02 and β = 1; (b) contour plot of C versus h1 (or h2) and u, where α =

√
2

and β = 1; (c) contour plot of C with α = 0.02, 0.03, 0.04 and β = 1. Dotted line
is for the first case, solid line for the second, and dashed line for the third.

point of view of v = (v1, v2)
′ in T.1–T.4. For the simplification of an asymmetric

covariance function in (2.13), we can consider, as special cases, the two covariance

models as follow:

Cv1(h;u) =
γπ(d+1)/2α−2ν+dβ−2ν+1

2ν−(d+1)/2−1Γ(ν)

⎛⎝α
√{

β(u− h′v1)

α

}2

+ ‖h‖2

⎞⎠ν− d+1
2

×Kν− d+1
2

⎛⎝α
√{

β(u− h′v1)

α

}2

+ ‖h‖2

⎞⎠ ,

(2.14)

and

Cv2(h;u) =
γπ(d+1)/2α−2ν+dβ−2ν+1

2ν−(d+1)/2−1Γ(ν)

⎛⎝α
√(

βu

α

)2

+ ‖h − uv2‖2

⎞⎠ν− d+1
2

×Kν− d+1
2

⎛⎝α
√(

βu

α

)2

+ ‖h − uv2‖2

⎞⎠ .

(2.15)
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The corresponding spectral density functions are, respectively, given by

fv1(ω; τ) = γ
(
α2β2 + β2‖ω + τv1‖2 + α2τ 2

)−ν

= f0(ω + τv1; τ),

(2.16)

and

fv2(ω; τ) = γ
(
α2β2 + β2‖ω‖2 + α2(τ + v′

2ω)2
)−ν

= f0(ω; τ + v′
2ω).

(2.17)

It is certain that both fv1(ω; τ) and fv2(ω; τ) are valid, so the corresponding

covariance functions in (2.14) and (2.15) are always positive-definite.

Now we talk about the characteristics of an asymmetric stationary covariance

function in (2.14) derived from (2.16). As you can see, v1 controls the types of

symmetry inhereent in spatial-temporal processes. Figure 2.1 displays the behav-

iors of a spatial-temporal covariance function axially symmetric in time. As one

can see, under the axial symmetry in time, the covariance function with the center

of the origin always stays whatever h and u are (Figure 2.1(a),(b)). The decaying

rate parameters, α and β only change the shape (Figure 2.1(c)). Figure 2.2 shows

that the pattern of a covariance axially symmtric in space depends on temporal

lag, u as well as a spatial lag, h1 not h2. As one can see, a process with the covari-

ance function moves on the axes of longitudinal lag, h1 and temporal lag, u, and

the direction of movement depends on the signs of u and h1, respectively (Figure

2.2(a),(c)). From Figure 2.2(b), we know that the the term about temporal effect,

u− h′v1 does not depend on the latitudinal lag, h2 because v2 = 0. Figure 2.3

displays the behavior of the covariance function diagonally symmetric in space.
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Figure 2.2: Contour plots for C(h;u) axially symmetric in space (v1 = 0.01, v2 =
0), where γ = 1, ν = d = 2, α = 0.02 and β = 1. (a) Contour plot of C versus
h1 and h2 for u = −10, 0, 10; (b) contour plot of C versus h1 and u for all h2; (c)
contour plot of C versus h2 and u for h1 = −200, 0, 200.

Unlike the covariance function axially symmetric in space, this covariance func-

tion moves along a 45 degree line in the spatial domain (Figure 2.3(a)) and along

with the axis of u (Figure 2.3(b)). Figure 2.3(b) also says that the ratio of α to β

is strongly related to the obliqueness of the shape. The asymmetry vector v also

changes the shape and the centroid (Figure 2.3(c),(d)). Figure 2.4 through 2.6

display the patterns of a covariance function which is asymmetric in space and

time. From Figure 2.4, we see that the covariance function does not move along

with 45 degree line on spatial domain and the moving speed and the angle of line

connecting the centroids are influenced by each element of v (Figure 2.4(b)-(d)).

This figure also shows that the shape changes in comparison to that of a covari-

ance symmetric in time (Figure 2.4(a)). Figure 2.5 and 2.6 illustrate the contour

plots of a covariance function asymmetric in space and time versus each spatial

lag and u. These figures show that the covariance function moves along with the
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Figure 2.3: Contour plots for C(h;u) digonally symmetric in space (v1 = v2 =
v0 = 0.01), where γ = 1, ν = d = 2, α = 0.02 and β = 1. (a) Contour plot of C
versus h1 and h2 for u = −10, 0, 10; (b) contour plot of C versus h1 (h2) and u for
h2 (h1)= −200, 0, 200; (c) contour plot of C versus h1 and h2 for v0 = 0, 0.005, 0.01
and u = 10; (d) contour plot of C versus h1 and h2 for v0 = 0, 0.005, 0.01 and
u = −10.
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Figure 2.4: Contour plots for C(h;u) asymmetric in space and time versus h1

and h2 for u = −10, 0, 10, where γ = 1, ν = d = 2, α = 0.02, and β = 1. (a)
v = (0, 0)′; (b) v = (0.01, 0.005)′; (c) v = (0.01, 0.02)′; (d) v = (0.015, 0.02)′.
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Figure 2.5: Contour plots for C(h;u) asymmetric in space and time versus h1

and u for h2 = −400, 0, 400, where γ = 1, ν = d = 2, α = 0.02, and β = 1. (a)
v = (0, 0)′; (b) v = (0.01, 0.005)′; (c) v = (0.01, 0.02)′; (d) v = (0.015, 0.02)′.
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Figure 2.6: Contour plots for C(h;u) asymmetric in space and time versus h2

and u for h1 = −400, 0, 400, where γ = 1, ν = d = 2, α = 0.02, and β = 1. (a)
v = (0, 0)′; (b) v = (0.01, 0.005)′; (c) v = (0.01, 0.02)′; (d) v = (0.015, 0.02)′.
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axis of u, at different moving speed, which depends on the magnitude of v.

In this section, we have proposed new classes of asymmetric spatial-temporal

covariance models by using a valid spectral density function, which guarantees the

positive-definiteness of the corresponding covariance function. Symmetry or lack

of symmetry are controled by the asymmetry parameter vectors v1 and v2 in that

magnitude and sign of each element are quitely related to degree and direction

of movement in the modeled field. They also play an important role in changing

shape of covariance functions. However, the interpretation of asymmetry vectors

are different in that the units of v1 are time divided by distance, that is, the

reciprocals of speed, not kinds of velocity whereas the units of v2 are distance

divided by time, which can be called velocities.

2.4 Symmetry and Separability

In this section, we clarify the relationship between symmetry and separability

in spatial-temporal processes and, based on a separable spectral density function,

extend the models proposed in Section 2.3 to the nonseparable case. Symmetry

and separability are the main assumptions that are frequently taken for granted

in most applications in the environmental research. The common advantage of

symmetry and separability is the simplification attained for modeling purpose.

Symmetry and separability in spatial or spatial-temporal processes are highly

related to each other.
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Taking symmetry and separability into account, we now propose another new

class of asymmetric spatial-temporal stationary covariance models, in which sep-

arability is a special case. In order to build the covariance functions asymmetric

as well as nonseparable, we consider the following spectral density function:

fv(ω; τ) = γ
(
α2 + ‖ω + τv1‖2

)−ν (
β2 + (τ + v′

2ω)2
)−ν

= f0(ω + τv1; τ + v′
2ω),

(2.18)

where f0(ω; τ) ≡ γ (α2 + ‖ω‖2)
−ν

(β2 + τ 2)
−ν

is the spectral density function

transformed from an simple stationary separable covariance function. Based on

the setting of (2.18), we can express the corresponding covariance function as

Cv(h;u) =

∫
Rd

∫
R

exp{ih′ω + iuτ}f0(ω + τv1; τ + v′
2ω) dτ dω

=

∫
Rd

∫
R

exp

{
i
(h̃ − uv2)

′

1 − v′
1v2

ω + i
(u− h′v1)

1 − v′
1v2

τ

}
f0(ω; τ)

1 − v′
1v2

dτ dω

=
1

1 − v′
1v2

Cs

(
h̃ − uv2

1 − v′
1v2

)
CT

(
u− h′v1

1 − v′
1v2

)
,

(2.19)

where Cs is two-dimensional spatial covariance function and CT is one-dimensional

temporal covariance function. By direct derivation from (2.19) (see Stein (2005)),

we can obtain the closed form of asymmetric nonseparable covariance function

given by

Cv(h;u) =
1

1 − v′
1v2

× γπ(d+1)/2α−2ν+dβ−2ν+1

2ν−(d+1)/2−2Γ2(ν)

×Mν−d/2

(
α

∥∥∥∥∥ h̃ − uv2

1 − v′
1v2

∥∥∥∥∥
)
Mν−1/2

(
β

∣∣∣∣u− h′v1

1 − v′
1v2

∣∣∣∣) . (2.20)

From (2.20), we can see that the asymmetry vectors v1 and v2 control separability

as well as symmetry. Under the setting of (2.19), the following types of symmetry

are defined:
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T.1∗ axial symmetry in time and separable if v1 = v2 = 0

T.2∗ axial symmetry in space but nonseparable if v11 �= 0 or v21 �= 0 and v12 =

v22 = 0

T.3∗ diagonal symmetry in space but nonseparable if v11 = v12 �= 0 and v21 =

v22 �= 0

T.4∗ asymmetry in space and time, and nonseparable otherwise.

As forementioned, the main difference between the two asymmetric covariance

models, (2.12) in Section 2.3 and (2.19) is whether separability can be a special

case or not. (2.12) is always nonseparable for all posssible v ∈ R
d whereas (2.19)

can be separable (see T.1∗). By the similar way that we applied in the previ-

Isotropy

Separability

Symmetry

Stationarity

Nonstationarity

Figure 2.7: Relationship between symmetry and separability

ous class denoted in (2.12), we can also consider the following two asymmetric
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nonseparable spatial-temporal covariance models:

Cv1(h;u) =
γπ(d+1)/2α−2ν+dβ−2ν+1

2ν−(d+1)/2−2Γ2(ν)
Mν−d/2 (α‖h‖)Mν−1/2 (β|u− h′v1|) , (2.21)

and

Cv2(h;u) =
γπ(d+1)/2α−2ν+dβ−2ν+1

2ν−(d+1)/2−2Γ2(ν)
Mν−d/2 (α‖h − uv2‖)Mν−1/2 (β|u|) . (2.22)

The corresponding spectral density functions are, respectively, given by

fv1(ω; τ) = γ
(
α2 + ‖ω + τv1‖2

)−ν (
β2 + τ 2

)−ν

= f0(ω + τv1; τ),

(2.23)

and

fv2(ω; τ) = γ
(
α2 + ‖ω‖2

)−ν (
β2 + (τ + v′

2ω)2
)−ν

= f0(ω; τ + v′
2ω).

(2.24)

Now we visualize the relationship among separability, symmetry, stationarity

in the spatial-temporal setting. Figure 2.7 displays the Venn diagram describing

how these fundamental characteristics are mutually related to one another. As

one can see, symmetry and separability are mostly overlapped with stationarity

although separable covariance models (Fuentes et al. 2005) and symmetric ones

can be extended to nonstationary case. What is interesting here is that separa-

bility can possibly be a subset of symmetry, especially in terms of the covariance

function presented in (2.19). posssible expressions of a spectral density function

yielding a nonstationary symmetric covariance function are as follow:

fsj
(ω; τ) = γj

(
α2

jβ
2
j + β2

j ‖ω + τv1‖2 + α2
j (τ + v′

2ω)2
)−νj ,

25



or

fsj
(ω; τ) = γj

(
α2

j + ‖ω + τv1‖2
)−νj

(
β2

j + (τ + v′
2ω)2

)−νj ,

where j = 1, · · · , k is the index of subregion satisfying stationarity, and sj is the

center of the j-th subregion.

2.5 Real Application

In this section, we apply the class of asymmetric stationary spatial-temporal

covariance models to an air-pollution dataset, which is PM2.5 daily concentration

aquired by the U.S. Environmental Protection Agency (EPA)’s Federal Reference

Method (FRM) monitoring stations. The main reason why we are interested in

PM2.5 concentrations is that this air-pollutant is one of the important factors in the

public health problem and, according to many environmenal studies, has complex

spatial or spatial-temporal dependency structure (Zidek (1997) and Golam Kibria

et al. (2002)). The spatial domain for this dataset is the northeastern U.S (Figure

2.8), which is almost the same region as the northeastern census division. The

measurements were obtained from August 1st to August 31st, 2003. First we

remove spatial trend by considering the second order polynomial function with

geodesic distances transformed from the orginal longitudes and latitudes in order

to take the earth’s curvature into account.

Now we briefly introduce the weighted least squares (WLS) estimation method

which can be applied to asymmetric spatial-temporal covariance models. Let

26



−80 −78 −76 −74 −72

36
38

40
42

44
46

longitude

la
tit

ud
e

Figure 2.8: The map of the 18 monitoring stations in the northeastern U.S.

Z(si, t) be the observed PM2.5 concentration for time t at site i; t = 1, · · · , 31,

i = 1, · · · , 18, andX(s) and Y (s) be the geodesic distances with unit of kilometers.

Then we consider the spatial-temporal structure as follows:

Z(si, t) = g(X(si), Y (si)|δ) + ε(si, t),

where g is the second-order polynomial function with coefficient parameters δ,

ε ∼ MN(0, σI + Σ(θ)), σ is the nugget effect, and θ = (φ, α, β,v′
1,v

′
2)

′, where

φ is a partial sill. The variance-covariance matrix Σ(θ) is based on the following

Gaussian covariance functions:

M.1 C0(h;u) = φ exp
{
α2‖h‖2 + β2u2

}
M.2 Cv1(h;u) = φ exp

{
α2‖h‖2 + β2(u− v′

1h)2
}
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M.3 Cv2(h;u) = φ exp
{
α2‖h − uv2‖2 + β2u2

}
M.4 Cv(h;u) =

φ

1 − v′
1v2

exp
{

(1 − v′
1v2)

−2
(
α2‖h̃ − uv2‖2 + β2(u− v′

1h)2
)}

.

In order to estimate the covariance parameters, Θ = (σ,θ′)′, we propose the

empirical spatial-temporal semivariogram, γ̂(h(p, q);u) given by

γ̂(h(p, q);u) ≡ 1

N(h(p, q);u)

∑
(i,j,t,t∗)∈N(h(p,q);u)

(
Z̃(si, t) − Z̃(sj, t

∗)
)2

, (2.25)

where

N(h(p, q);u) ≡ {(i, j, t, t∗) : si − sj ∈ T (h(p, q)); |t− t∗| = u},

{h(p, q)} = {−h1(P ), · · · ,−h1(1), 0, · · · , h1(P )}

× {−h2(Q), · · · ,−h2(1), 0, · · · , h2(Q)},

and Z̃(s, t) = Z(s, t)−g
(
X(s), Y (s)|δ̂

)
and δ̂ is the oridinary least squares (OLS)

estimator. Here T (h(p, q)) is prespecified tolerance region with centroid of h(p, q).

Then the weighted-least squares (WLS) method (see Cressie (1993), pp.96) based

on the empirical semivariogram in (2.25) is employed to obtain the estimates of

the covariance parameters, Θ, which minimize the weighted sum of squares error

(WSSE), which is defined as

W (Θ) ≡
P∑

p=−P

Q∑
q=−Q

U∑
u=0

|N(h(p, q);u)|
{

γ̂(h(p, q);u)

γ(h(p, q);u|Θ)
− 1

}2

, (2.26)

where γ(h(p, q);u|Θ) is the theoretical spatial-temporal semivariogram with pa-

rameters Θ. Here hj(p) ≡ {2I(p>0) − 1} × hj(|p|) for j = 1, 2 where I(·) is an
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indicator function. We also consider the maximum likelihood (ML) estimation

method for obtaining the covariance parameter estimates.

Now we explain the result from the analysis of PM2.5 daily concentration

dataset. The parameter estimation methods are performed with the spatially

detrended PM2.5 concentrations, {Z̃(s, t)}. In order to gain some computational

benefit, we employ the estimates from the WLS method as initial values for ob-

taining the estimates from the ML method. The WSSE in (2.26) and the negative

log-likelihood are minimized using the routine optim in R. The Table 2.2 shows

the estimates of Θ from the WLS and the ML methods for each model (see M.1

through M.4). As one can see, there does not exist any big difference of param-

eter estimates between the estimation methods for all the models. The estimates

for the components of v1 in M.2 have the same signs as those of v2 in M.3 re-

gardless of the estimation methods. What is interesting here is that the signs of

the estimates for the last two components, v21 and v22 in M.4 are opposite to the

ones in M.3. One possible reason is that, as we mentioned before, the parameter

vectors v1, v2 and v control the shape of a spatial-temporal covariance function as

well as symmetry or lack of symmetry inherent in spatial-temporal processes. So,

the shape of the asymmetric covariance function employed in M.4 is determined

by adjustments from v11 and v21, and from v12 and v22. From the WSSE and the

negative log-likelihoods based on the estimates from the corresponding methods,

we can know that, as the number of parameters increases, the given dataset gets

explained well though the simple model M.1 is not always bad from point of view
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Figure 2.9: Kriging maps based on the ML estimates in Table 2.2 for each model.
Note that the interpolation is performed at the regular grids on August 31, 2003.

Based on the ML estimates for each model, we predict the PM2.5 concentrations

at the preassigned grids on August 31, 2003. As you can see from Figure 2.9,
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Table 2.1: Square-root of mean squared prediction errors based on the WLS and
the ML estimation methods at the two reserved stations.

Station
M.1 M.2 M.3 M.4

WLS ML WLS ML WLS ML WLS ML

#1. 1.984 1.995 2.002 2.025 1.975 2.043 1.984 2.002

#2. 3.452 3.370 3.480 3.235 3.473 3.143 3.489 3.270

the prediction patterns are quite similar except portion of the region having the

negative predicted values. That is, M.2 through M.4 can be preferred to M.1 in

that only nonnegative PM2.5 concentrations are measured in pratice.

Now we evaluate the performances of the asymmetric spatial-temporal co-

variance models, M.1 through M.4 by means of the classical cross-validation

technique. We first remove two stations from the spatial domain of our interest,

analyze the data from the remaining stations, and compare the observed values

at the reserved stations with the predicted ones based on the estimation. Table

2.1 shows the square-root of mean squared prediction errors (RMSPE) at each

reserved station for every estimation method. In terms of the RMSPE, M.3 is

slightly better than the other asymmetric covariance models (M.2 and M.4) ex-

cept the case of the ML estimation for the first reserved station although there is

no clear evidence that the general asymmetric covariance models (M.2-M.4)yield

more reliable predictions than the symmetric model (M.1), that is, the model

with v1 = v2 = 0. Based on the predictions from the classical cross-validation

technique, Figure 2.10 and Figure 2.11 display the scatterplots of the observed
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values and the corresponding predicted values based on the ML estimates for

each reserved station. As one can see from these two figures, there is not any

big difference of the relationship between the observations and the corresponding

predictions among the covariance models and the prediction at the first reserved

station is done much better than the prediction at the second reserved station,

where every model produces slightly overestimated predicted values in comparison

to the observations.

In this section, we have applied a new class of asymmtric spatial-temporal co-

variance models to the PM2.5 daily concentrations at the FRM monitoring stations

in the northeastern U.S. From the data analysis, we can know that the spatial-

temporal processes based on asymmetric covariance functions explain the given

dataset better than the process based on simple covariance function in terms of

the WSSE and the likelihood whereas, for the performance of prediction matter,

the number of stations is not enough for an asymmetric covariance function to

capture the spatial-temporal dependency structures.

2.6 Discussion

In this chapter, we introduced new concepts of symmetry in spatial-temporal

processes and proposed classes of asymmetric stationary spatial-temporal covari-

ance models. Since these covariances are just Fourier transformations of the corre-

sponding valid spectral density functions, they can easily be shown to be positive
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definite. Unlike a process with separable, even nonseparable covariance, an asym-

metric spatial-temporal proecess is influenced by spatial-temporal dependencies,

which are mainly controled by asymmetry parameters. This characteristic is very

helpful to analyze the air-pollution data affected by some external metheological

conditions, for instance, wind speed, wind direction, air pressure and so on.

The asymmetric covariance models can be extended to the spatial domain with

d > 2 although our results presented in this study are based on the two dimensional

spatial domain. For example, in case of spatial domain with longitude, latitude

and altitude, the asymmetric covariance models are constructed in R
3×R. As part

of our further research, we are estimating the parameters by means of Bayesian

approach taking into account uncertainties in the covariance models.
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Table 2.2: Parameter Estimates based on Gaussian Asymmetric Spatial-Temporal
Covariance from WLS and ML methods. Note that (−4) ≡ 10−4.

Θ
M.1 M.2 M.3 M.4

WLS ML WLS ML WLS ML WLS ML

σ 5.920 5.935 6.046 5.748 5.637 5.111 5.517 4.259

φ 105.7 105.3 106.5 105.3 105.5 105.5 103.2 109.2

α 0.003 0.003 0.003 0.004 0.003 0.004 0.003 0.005

β 0.838 0.888 0.842 0.847 0.826 0.800 0.821 0.978

v11 6.(-4) 1.(-4) 1.(-3) 2.(-3)

v12 -6.(-4) -3.(-4) -1.(-3) 1.(-3)

v21 20.07 20.07 -59.84 -59.82

v22 -45.10 -45.10 -59.98 -59.81

WSSE 686.1 641.1 678.8 580.4

− log(L) 1617 1613 1613 1608
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Figure 2.10: Scatter plots of the observed values at the first reserved station and
the ML predicted values obtained from each covariance model. Note that the
dashed line stands for the perfect relationship.
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Figure 2.11: Scatter plots of the observed values at the second reserved station
and the ML predicted values obtained from each covariance model. Note that the
dashed line stands for the perfect relationship.
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Chapter 3

Testing Lack of Symmetry in

Spatial-Temporal Processes

3.1 Introduction

Symmetry and separability are the main assumptions used in spatial statistics

about a covariance function. Symmetry and separability in spatial or spatial-

temporal processes are highly related to each other. Separability provides many

advantages, such as the simplified representation of the covariance matrix and,

consequently, important computational benefits. Symmetry is related to the spa-

tial or spatial-temporal dependencies. This characteristic has been assumed be-

cause of mathematical convenience, modeling parsimony or calculational efficiency.

The common advantage of symmetry and separability is the simplification attained

for modeling purpose. However, many studies in environmental sciences show that

real data have such complex spatial-temporal dependency structures that are diffi-
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cult to model and estimate by using just separability, symmetry or other standard

assumptions of the covariance function.

Lots of research about separability has been done so far while symmetry has

not been in the spotlight yet. Modeling nonseparable covariance functions is one

of the keys for the more reliable prediction in the environmental research fields.

Cressie and Huang (1999) introduce a new class of nonseparable, spatial-temporal

stationary covariance functions with space-time interaction, which have the sepa-

rable covariance function as a special case. Gneiting (2002) also proposes general

classes of nonseparable, stationary spatial-temporal covariance functions which

are directly constructed in the space-time domain and are based on Fourier-free

implementation. Fuentes at al. (2005) propose a new class of nonseparable and

nonstationary spatial-temporal covariance models, which have a unique param-

eter indicating spatial-temporal dependency. In addition to the modeling issue,

many studys about testing lack of separability have been accomplished. Shitan

and Brockwell (1995) use an asymptotic χ2 test for stationary spatial autoregres-

sive processes. Guo and Billard (1998) propose the Wald test for testing lack of

a doubly-geometric process under the temporal setting. A likelihood ratio test

for lack of separability for i.i.d multivariate processes is proposed by Mitchell

(2002), and Mitchell et al. (2002). Fuentes (2006) developes a formal test for

lack of separability and lack of stationarity of spatial-temporal covariance func-

tions by applying a two-factor analysis of variance (ANOVA) procedure, which is

applicable to more general spatial-temporal covariance models.
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The most relevant works about symmetry have been done by Scaccia and

Martin (2005), and Lu and Zimmerman (2005). For a spatial process, {Z(s) :

s = (s1, s2)
′ ∈ D ⊂ R

2}, especially for two-dimensional rectangular lattice data

Scaccia and Martin (2005) developed new tests of axial symmetry and separability

which are, respectively, defined by

C(h1, h2) = C(−h1, h2), ∀h1, h2,

and

C(h1, h2) = C(h1) · C(h2), ∀h1, h2,

where C(h1, h2) ≡ Cov (Z(s1 + h1, s2 + h2), Z(s1, s2)), h1 and h2 are the first and

the second spatial lags. Their tests are performed in two stages: testing axial

symmetry first and then, if the hypothesis of axial symmetry is not rejected,

testing separability. Under an n1 × n2 rectangular lattice data, their tests are

based on the periodogram denoted by

I(ω1, ω2) =
1

(2π)2

n1−1∑
h1=−n1+1

n2−1∑
h2=−n2+1

C(h1, h2) cos(h1ω1 + h2ω2).

One of the tests concerned in this paper is as following:

D = −2
∑
ω1,ω2

[
log

I(ω1, ω2)

Ī(ω1, ω2)
+ log

I(ω1,−ω2)

Ī(ω1, ω2)

]
,

where Ī(ω1, ω2) = [I(ω1, ω2) + I(ω1,−ω2)]/2. Lu and Zimmerman (2005) also

proposed diagnostic tests of axial symmetry and complete symmetry which is

defined by

C(h1, h2) = C(−h1, h2) = C(−h2, h1) = C(h2, h1), ∀h1, h2.
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Their tests of symmetries are also based on certain ratios of spatial periodograms.

These noteworthy studies, however, are only applicable for spatial processes, not

spatial-temporal ones. The extension of symmetry to spatial-temporal processes

has been tried by Stein (2005), who proposes spatial-temporal covariance models

with lack of full symmetry (see Gneiting (2002)). His approach is based on gener-

ating asymmetric models from symmetric ones by taking derivatives. No formal

tests for lack of symmetry in spatial-temporal processes have been developed yet.

In this study we propose new formal tests by using spectral representations of the

covariance function. The advantage of the tests is that simple analysis of variance

(ANOVA) approaches are employed for detecting lack of symmetry inherent in

spatial-temporal processes (see Fuentes (2006)).

This chapter is organized as follows. In Section 3.2, we introduce the spectral

representation under the spatial-temporal setting. Based on the spectral represen-

tation, we propose new tests for lack of symmetry in spatial-temporal processes

in Section 3.3. In Section 3.4 and Section 3.5, the performances of the tests are

evaluated by simulation study and by the analysis of air pollution data. Finally

we briefly discuss our approach in Section 3.6.
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3.2 Spectral Representation of Stationary Spatial-

Temporal Processes

In this section, we talk about the spectral representation of stationary spatial-

temporal processes, which is a major key for building new tests for lack of symme-

try. A stationary spatial-temporal process {Z(s; t) : s ∈ D ⊂ R
d; t ∈ T ⊂ R} can

be expressed in the spectral domain by sinusoidal forms with different frequencies

(ω, τ), where ω is d-dimensional spatial frequency, and τ is temporal frequency. If

Z(s, t) is a stationary spatial-temporal process with the corresponding covariance

C(h;u), then we can rewrite the process in the following Fourier-Stieltjes integral

(Yaglom (1987)):

Z(s, t) =

∫
Rd

∫
R

exp(is′ω + iτ t) dY (ω, τ),

where Y is a random process with complex symmetry except for the constraint,

dY (ω, τ) = dY c(−ω,−τ), which ensures that Z(s; t) is real-valued. Using the

spectral representation of Z, the covariance function C(h;u) can be represented

as

C(h;u) =

∫
Rd

∫
R

exp(ih′ω + iτu) G(dω; dτ), (3.1)

where (h;u) = (si − sj; tk − tl) for {si, sj} ⊂ D and {tk, tl} ⊂ T, and the function

G is a positive finite measure called the spectral measure or spectral distribution

function for Z. The spectral measure G is the expected squared modulus of the

process Y denoted by

E{|Y (ω, τ)|2} = G(ω; τ).
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We can easily see that C(h;u) in (3.1) is always positive definite for any finite pos-

itive measure G. If G has a density with respect to Lebesgue measure, the spectral

density g is the Fourier transform of the spatial-temporal covariance function:

g(ω; τ) =
1

(2π)d+1

∫
R

∫
Rd

exp(−ih′ω − iτu)C(h;u) dh du, (3.2)

and the corresponding covariance function is given by

C(h;u) =

∫
Rd

∫
R

exp(ih′ω + iτu) g(ω; τ) dω dτ. (3.3)

3.3 Tests for Lack of Symmetry In Spatial-Temporal

Processes

In Section 3.2, we summarized the spectral representation of a stationary

spatial-temporal processes. Now we talk about new tests for lack of symmetry

in spatial-temporal processes based on the spectral representation. Before going

further, we define three types of symmetry under the spatial-temporal setting.

For a stationary spatial-temporal process, {Z(s, t) : s ∈ D ⊂ R
d; t ∈ [0,∞)}, we

can define the covariance as follows:

Cov{Z(si, tk), Z(sj, tl)} = C(si − sj; tk − tl) ≡ C(h;u), (3.4)

where h = (h1, h2, · · · , hd)
′ and u are called spatial lags and time lag, respectively.

Based on (3.4), we can define the types of symmetry.

Definition 3.3.1 A process is called axially symmetric in time if for any temporal
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lag u �= 0,

C(si − sj;u) = C(si∗ − sj∗ ;−u), (3.5)

for arbitrary four locations (i, j, i∗, j∗) satisfying si − sj = si∗ − sj∗.

Under stationarity in space, (3.5) is reduced to

C(h;u) = C(h;−u), (3.6)

where si = sj + h and si∗ = sj∗ + h. What is important in (3.5) and (3.6) is that

the directions and the distances on spatial domain are the same, and the time

lags have the same magnitudes but different signs. The second type of symmetry

is axial symmetry in space.

Definition 3.3.2 A process is called (k) axially symmetric in space if

C(h;u) = C(h̊;u), (3.7)

where h̊ = (h1, · · · , hk−1,−hk, hk+1, · · · , hd)
′ for k fixed.

As can be seen in (3.7), for temporal lag u fixed, all the spatial lags are the same

except one spatial lag, which has a different sign. For example, h̊ = (−h1, h2)
′ is

one possible case in case of d = 2. The last one is diagonal symmetry in space.

Definition 3.3.3 A process is called (k-l) diagonally symmetric in space if

C(h;u) = C(ḧ;u), (3.8)

where ḧ = (h1, · · · , hk−1, hl, hk+1, · · · , hl−1, hk, hl+1, · · · , hd)
′ for k �= l.

From (3.8) we can see that only two spatial lags, hk and hl, are switched with

each other. Provided that d = 2, ḧ = (h2, h1)
′.
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3.3.1 Test for Lack of Axial Symmetry in Time

Now we explain the analytical aspect of axial symmetry in time (Definition

3.3.1) in spatial-temporal process. By Bochner’s theorem, we can always write the

positive-definite spatial-temporal covariance in (3.3) in terms of the corresponding

valid spectral density function, g in (3.2):

C(h;u) =

∫
R

∫
Rd

exp{ih′ω + iuτ}g(ω; τ) dω dτ.

If C is integrable, then (3.2) can be expressed as

g(ω; τ) = (2π)−(d+1)

∫
R

∫
Rd

exp{−ih′ω − iuτ}C(h;u) dh dτ

= (2π)−d

∫
Rd

exp{−ih′ω}f(h; τ) dh,

where for h fixed and τ ∈ [0,∞), f(h; τ) is called the cross-spectral density

function of Z(a, t), and Z(a + h, t) and is defined as follows:

f(h; τ) = (2π)−1

∫
R

exp{−iuτ}C(h;u) du = f c(−h; τ), (3.9)

where the complex conjugate of f(h; τ), f(−h; τ) is represented as

f(−h; τ) = (2π)−1

∫
R

exp{−iuτ}C(−h;u) du = (2π)−1

∫
R

exp{−iuτ}C(h;−u) du

= (2π)−1

∫
R

exp{iuτ}C(h;u) du.

If, however, a spatial-temporal process is not stationary in space, then the cross-

spectral density function depends not only on distance between arbitrary two

stations, but also on their position. The cross-spectral density function in (3.9)

44



can be also written as

fab(τ) = (2π)−1

∫
R

exp{−iuτ}Cov{Z(a, t), Z(b, t+ u)} du = f c
ba(τ). (3.10)

If a process is axially symmetric in time, that is, C(h;u) = C(h;−u), then the

cross-spectral density function and the coherency are represented as following:

fba(τ) = (2π)−1

∫
R

exp{−iuτ}C(a − b;−u) du

= (2π)−1

∫
R

exp{−iuτ}C(a − b;u) du = fab(τ).

(3.11)

From (3.10) and (3.11), we can easily show that, if the spatial-temporal process

Z is axially symmetric in time, then fab(τ) is real-valued. We can also see that,

under axial symmetry in time, the phase, φab(τ) between Z(a; t) and Z(b; t) is

represented as follows:

φab(τ) = φba(τ) = 0.

Now we propose a new test for lack of axial symmetry in time by using the

asymptotic properties of the cross-spectral density function and the phase. For

any arbitrary site a, we can define the tapered Fourier transform, Ja(τ), as

Ja(τ) =
T−1∑
t=1

K

(
t

T

)
Z (a; t) exp{−iτ t},

where K is a tapering function and, in this study, is considered constant, i.e.

K(x) = 1 for all x. The spectral window W (α) can be estimated by

Ŵ (α) =
1

BT

∞∑
t=−∞

W

(
[α+ 2πt]

BT

)
, (3.12)
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where BT is a bandwidth parameter. In the real application, following weight

function is considered,

Ŵ

(
2πs

T

)
=

T

2π
(2M + 1)−1,

where M = BTT and s ≤ M . We can finally estimate the cross-spectral density

function between Z(a; t) and Z(b; t) by

f̂ab(τ) =
2π

T

T−1∑
t=1

Ŵ

(
τ − 2πt

T

)
Îab

(
2πt

T

)
, (3.13)

where the sample cross-periodogram Îab(τ) is defined by

Îab(τ) =

[
2π

T−1∑
t=1

K2

(
t

T

)]−1

Ja(τ)J
c
b(τ).

Here we introduce some assumptions:

A.1 The weight function W (α) is real-valued, even and of bounded variation

such that, for −∞ < α <∞, ∫
R

W (α) dα = 1

and ∫
R

|W (α)| dα <∞.

A.2 The temporal covariance is summable, that is, for each h,

∞∑
u=−∞

|u||C(h;u)| <∞,
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which implies

∞∑
u=−∞

|C(h;u)| <∞

and also

A.3 BTT → ∞ and BT → 0 as T → ∞.

Under the assumptions A.1 through A.3, the expected value of the estimated

cross-spectral density function, f̂ab(τ) can be obtained as

E
{
f̂ab(τ)

}
=

2π

T

T−1∑
t=1

Ŵ

(
τ − 2πt

T

)
f̃ab(τ)

(
2πt

T

)
+O(T−1)

=

∫
R

W (α)f̃ab(τ −BTα) dα+O(B−1
T T−1),

where the error term is uniform in τ , and

f̃ab(τ) =

∫
Rd

gρ(a − s)gρ(b − s)fa+s,b+s(τ) ds,

for −∞ < τ <∞. Here we consider {gρ(s)} for s = (s1, s2) to be a tensor product

of two one-dimensional filters, gρ(s) = g1(s1)g2(s2), where g1 is of the form

g1(s) = 1/ρ · I{|s| ≤ ρ/2},

where I is an indicator function. f̃ab(τ) is the smoothed cross-spectral density

function within a band of frequencies in the region of τ and a region in space in

the neighborhood of a and b. And the covariance between f̂aibi
(τ) and f̂ajbj

(λ)

is expressed by

lim
T→∞

BTT cov
{
f̂aibi

(τ), f̂ajbj
(λ)

}
= 2π

(∫
R

W 2(α) dα

)
×
(
η {τ − λ}

[
f̃aiaj

(τ)f̃bibj
(τ)

]
+ η {τ + λ}

[
f̃aibj

(τ)f̃ajbi
(τ)

])
,

(3.14)
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where

η{τ} =

{
1 if τ ≡ 0(mod 2π)

0 otherwise.

If we define the distance between pairs (ai,bi) and (aj,bj) as the minimum dis-

tance between any of the two sites in the first pair and any of the two sites in the

second pair, then the the estimated cross-spectral density functions, f̂aibi
(τ) and

f̂ajbj
(λ), are approximately independent if either

C.1 ‖τ − λ‖ is sufficiently large so that∫
R

|W (α+ τ)|2|W (α+ λ)|2 dα = 0,

i.e. if ‖τ − λ‖ � bandwidth of |W (α)|2 or

C.2 the distance between pairs (ai,bi) and (aj,bj) is greater than the bandwidth

of the function {gρ(s)}.

In practice, we can make the covariance in (3.14) almost zero by having the

frequencies τ and λ and the pairs (ai,bi) and (aj,bj) sufficiently apart. As men-

tioned above, the phase is zero in the case of axial symmetry in time. So we

can get asymptotic normality of the estimated phase, φ̂ab(τ), with mean 0 and

covariance defined as

lim
T→∞

BTT cov
{
φ̂ab(τ), φ̂ab(λ)

}
= π

(∫
R

W 2(α) dα

)
× [η{τ − λ} − η{τ + λ}]

[
|Rab(τ)|−2 − 1

]
,

(3.15)

where the coherency between between Z(a; t) and Z(b; t), Rab(τ) is defined as

Rab(τ) = f̃ab(τ)

/√
f̃aa(τ)f̃bb(τ).
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From (3.15), the asymptotic variance is simply denoted as

lim
T→∞

BTT Var
{
φ̂ab(τ)

}
= π

(∫
R

W 2(α) dα

)
[1 − η{2τ}]

[
|Rab(τ)|−2 − 1

]
.

(3.16)

In general, we can not use the asymptotic result of φ̂ab(τ) for the development of a

testing method because the asymptotic variance in (3.16) depends on the relative

position of a and b. So an appropriate transformation is needed. To stabilize the

asymptotic variance, we transform φ̂ab(τ) to φ̃ab(τ) given by

φ̃ab(τ) = φ̂ab(τ)

/[
|Rab(τ)|−2 − 1

]1/2
. (3.17)

Then we derive the asymptotic normal distribution of φ̃ab(τ) with mean 0 and

variance given by

lim
T→∞

BTTVar
[
φ̃ab(τ)

]
=
[
|Rab(τ)|−2 − 1

]−1
lim

T→∞
BTTVar

{
φ̂ab(τ)

}
= π

(∫
R

W 2(α) dα

)
[1 − η{2τ}] .

Rab(τ) is, however, unknown in practice, so we newly define φ̂∗
ab(τ) as

φ̂∗
ab(τ) = φ̂ab(τ)

/[
|R̂ab(τ)|−2 − 1

]1/2

. (3.18)

By the Slutsky’s theorem, we can obtain the same asymptotic normal distri-

bution of φ̃ab(τ) in (3.17) as the one of φ̂∗
ab(τ) in (3.18). Based on the as-

sumptions, C.1 and C.2, we implicitly know that, under the null hypothesis

H0 : φ∗
ab(τ) = φab(τ)/ [|Rab(τ)|−2 − 1]

1/2
= 0, φ̃∗ evaluated at different pairs and

different frequencies can be treated independent approximately (see Appendix).
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With the information of asymptotic distribution of the adjusted phase, φ̂∗
ab(τ)

in (3.18), we propose a formal test for lack of axial symmetry in time by employing

analysis of variance (ANOVA) procedure. First we compute φ̂∗
aibi

(τj) at arbitrary

two sites, {(ai,bi)}m
i=1 and a set of temporal frequencies, {τj}n

j=1 that cover the

domain. What is important here is that arbitrary two sites should be selected

based on the condition given by

ai − bi = h = (h1, h2, · · · , hd)
′, i = 1, · · · ,m

for given h, and the selected pairs of two sites where the distance between the

nearest two sites is set greater than the bandwidth of gρ(s) in C.2 in order to

make the phase asymptotically independent of each other. In order to apply to

two-way ANOVA procedure, we rewrite φ̂∗
aibi

(τj) as follows:

φ̂∗
aibi

(τj) = φ∗
aibi

(τj) + εaibi
(τj), (3.19)

where φ∗
aibi

(τj) = φaibi
(τj)/ [|Raibi

(τj)|−2 − 1]
1/2

. Here εaibi
(τj) asymptotically

has the following assumptions; E{εaibi
(τj)} = 0, ∀i, j, Var{εaibi

(τj)} = σ2
ε , ∀i, j,

and Cov{εaibi
(τj), εakbk

(τl)} = 0, ∀i, j, k, l satisfying C.1 and C.2. We also ex-

press (3.19) as

φ̂∗
aibi

(τj) = αi + βj + εaibi
(τj), (3.20)

where the parameters αi and βj are spatial location effects and temporal frequency

effects, respectively. Suppose that the spatial-temporal process is stationary, then

we know that spatial location effect does not depend on the relative position of
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the sites, so (3.20) is reduced to

φ̂∗
aibi

(τj) = βj + εaibi
(τj), (3.21)

If the axial symmetry in time is true under stationarity, then (3.21) can be pre-

sented to

φ̂∗
aibi

(τj) = εaibi
(τj).

So the technique for testing lack of axial symmetry in time under stationarity is

just one-way ANOVA with null hypothesis

H0 : βj = 0, ∀j = 1, · · · , n

against the alternative hypothesis

H1 : βj �= 0, ∃j = 1, · · · , n.

From (3.20), we can also check the axial symmetry in time as well as the station-

arity for the same time by using the two-way ANOVA procedure with the null

hypothesis

H0 : αi = 0, and βj = 0, ∀i = 1, · · · ,m, ∀j = 1, · · · , n.

3.3.2 Test for Lack of Axial Symmetry in Space

Now we talk about the second type of symmetry, axial symmetry in space

in Definition 3.3.2. The process is axially symmetric in space provided that the

following condition is satisfied:

C(h;u) = C(h̊;u),
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where h̊ = (h1, · · · , hk−1,−hk, hk+1, · · · , hd)
′ �= 0 for k fixed. For the simplifica-

tion of developing the test, we only consider h̊ = (−h1, h2)
′ for d = 2. Then we

introduce a new version of the cross-spectral density function between Z(a1, a2, t)

and Z(a1, a2 + h2, t+ u), k(ω1, h2;u) given by

k(ω1, h2;u) =

∫
R

∫
R

exp{ih2ω2 + iuτ}g(ω; τ) dω2 dτ, (3.22)

for fixed a2, h2, t and u. If C is integrable, then

g(ω; τ) = (2π)−3

∫
R

∫
R2

exp{−ih′ω − iuτ}C(h;u) dh dτ

= (2π)−2

∫
R

∫
R

exp{−ih2ω2 − iuτ}k(ω1, h2;u) du dh2.

Since the function k in (3.22) is the Fourier transform of the spatial-temporal

covariance function with respect to one of the spatial frequencies, we can also

write k in an alternative form denoted by

k(ω1, h2;u) = (2π)−1

∫
R

exp{−ih1ω1}C(h1, h2;u) dh1.

If a process is axially symmetric in space, that is, C(h1, h2;u) = C(−h1, h2;u),

then

k(ω1, h2;u) = (2π)−1

∫
R

exp{−ih1ω1}C(h1, h2;u) dh1

= (2π)−1

∫
R

exp{−ih1ω1}C(h1,−h2;u) dh1 = k(−ω1h2;u)

= (2π)−1

∫
R

exp{ih1ω1}C(h1, h2;u) dh1.
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So, in case of the axial symmetry in space, the following condition is always

satisfied:

k(ω1,h2;u) − k(ω1, h2;u)

= (2π)−1

∫
R

[exp{ih1ω1} − exp{−ih1ω1}]C(h1, h2;u) dh1

=
i

π

∫
R

sin(h1ω1)C(h1, h2;u) dh1 = 0.

(3.23)

From (3.23), we know that, if the spatial-temporal process Z is axially symmetric

in space, then the function, k is always real-valued. So we can get the following

result:

ψ(ω1;h2, u) = tan−1

{
Im.k(ω1, h2;u)

Re.k(ω1, h2;u)

}
= tan−1

{
Im.k(−ω1, h2;u)

Re.k(−ω1, h2;u)

}
= ψ(−ω1;h2, u) = 0,

where ψ(ω1;h2, u) is a new version of the phase between Z(a1, a2, t) and Z(b1, a2+

h2, t+ u) for fixed a2, h2, t and u.

Now we propose a new testing method for the asymptotic properties of the

functions k and ψ. If Z is observed only at N(= N1N2) sites on regular grids and

at the measuring times T , then, for a2 and t fixed, we can define J∆1(ω1; a2, t),

J∆1(ω1; a2, t) = ∆1

N1−1∑
n1=1

K

(
n1

N1

)
Z (∆1n1, a2; t) exp {−i∆1n1ω1} ,

where ∆1 is the unit distance of the first spatial coordinate. We also define the

sample spectral window Ŵ (α) by

Ŵ (α) =
1

BN1

∞∑
j=−∞

W

(
[α+ 2πj]

BN1

)
, (3.24)
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where −∞ < α <∞. Then k̂∆1(ω1, h2;u) is represented by

k̂∆1(ω1, h2;u) =
2π

N1

N1−1∑
n1=1

Ŵ

(
ω1 −

2πn1

N1

)
Î∆1

(
2πn1

N1

;h2, u

)
, (3.25)

where

Î∆1 (ω1;h2, u) =

[
2π

N1−1∑
n1=1

{
K2

(
n1

N1

)
∆1

}]−1

× J∆1 (ω1; a2, t) J
c
∆1

(ω1; a2 + h2, t+ u) .

Here we introduce some additional assumptions:

A.4 The spatial covariance is summable, that is, for fixed h2 and u,∫
R

|h1||C(h1, h2;u)| dh1 <∞,

which also implies ∫
R

|C(h1, h2;u)| dh1 <∞.

A.5 BN1N1 → ∞ and BN1 → 0 as N1 → ∞.

Under the assumptions A.1, A.4 and A.5, we can obtain the asymptotic proper-

ties of the esimated phase, ψ̂∆1(ω1;h2, u) with mean ψ∆1(ω1;h2, u) and the vari-

ance defined as

lim
N2→∞

BN1N1Var
{
ψ̂∆1(ω1;h2, u)

}
= π

(∫
R

W 2(α) dα

)
[1 − η{2ω1}]

[
|Q∆1(ω1;h2, u)|−2 − 1

]
,

(3.26)
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where a new version of the coherency, Q(ω1;h2, u) between two arbitrary points

in two-dimensional space, (a2, t) and (a2 + h2, t+ u), is defined by

Q(ω1;h2, u) = k(ω1, h2;u)

/
|k(ω1, 0; 0)|.

Here a2 is the second spatial coordinate of a site a and t is a measure of time. In

general, we can not directly use the asymptotic result of ψ̂∆1(ω1;h2, u) in order

to make a new test for lack axial symmetry in space because the asymptotic

variance in (3.26) depends on h2 and u. In order to make the asymptotic variance

independent of h2 and u we transform ψ̂∆1(ω1;h2, u) to ψ̃∆1(ω1;h2, u) defined by

ψ̃∆1(ω1;h2, u) = ψ̂∆1(ω1;h2, u)

/[
|Q∆1(ω1;h2, u)|−2 − 1

]1/2
. (3.27)

In practice, however, Q∆1(ω1;h2, u) is a unknown parameter, so, by using the

estimated coherency, Q̂∆1(ω1;h2, u), we newly define ψ̂∗
∆1

(ω1;h2, u) as

ψ̂∗
∆1

(ω1;h2, u) = ψ̂∆1(ω1;h2, u)

/[
|Q̂∆1(ω1;h2, u)|−2 − 1

]1/2

. (3.28)

If we use an appropriate Q̂∆1(ω1;h2, u) as an estimate of Q∆1(ω1;h2, u), then we

can get the same asymptotic distribution of ψ̂∗
∆1

(ω1;h2, u) in (3.28) as the one of

ψ̃∆1(ω1;h2, u) in (3.27).

Now we propose a formal test for axial symmetry in space for spatial-temporal

processes. For them pairs,
{(
ai

2, t
a
i ; b

i
2, t

b
i

)}m

i=1
, in two-dimensional space consisting

of the second spatial and the temporal coordinates, and a set of first spatial

frequencies, {ωj}n
j=1, we can get ψ̂�

i (ωj) ≡ ψ̂∗
∆1

(
ωj; (a

i
2, t

a
i ; b

i
2, t

b
i)
)
. Arbitrarily, the

pairs of two points in two-dimensional space are selected based on the conditions
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given by

ai
2 − bi2 = h2, and tai − tbi = tci − tdi = u,

for i = 1, · · · ,m and for the given first spatial lag h2 and time lag u. It is

important for the minimum distance between arbitrary two pairs to be larger

than the bandwidth, gρ(s) in order for ψ̂�
i (ωj) to be asymptotically independent.

In order to apply to traditional two-way ANOVA procedure, we rewrite ψ̂�
i (ωj) as

follows:

ψ̂�
i (ωj) = ψ�

i (ωj) + ei(ωj), (3.29)

where

ψ�
i (ωj) = ψ∆1

(
ωj; (a

i
2, t

a
i ; b

i
2, t

b
i)
)/[∣∣∣∣Q∆1

(
ωj; (a

i
2, t

a
i ; b

i
2, t

b
i)
) ∣∣∣∣−2

− 1

]1/2

,

E{ei(ωj)} = 0 and Var{ei(ωj)} = σ2
e , asymptotically, and Cov{ei(ωj), ek(ωl)} =

0, ∀i, j, k, l approximately. We also express (3.29) as

ψ̂�
i (ωj) = γi + δj + ei(ωj), (3.30)

where the parameters γi and δj are the space-time interaction and the spatial

frequency effect, respectively. Since we know that, under the stationarity, the

covariance between any two measurements is not dependent on their relative pos-

tion, it is quite reasonable to assume that the space-time interaction effect, γi, is

equal to 0. So, under stationarity, (3.30) is reduced to

ψ̂�
i (ωj) = δj + ei(ωj). (3.31)
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If axial symmetry in space holds under stationarity, then (3.31) is presented by

ψ̂�
i (ωj) = ei(ωj).

From (3.31), we can easily construct a new test for axial symmetry in space

under stationarity by applying to the one-way ANOVA technique with the null

hypothesis

H0 : δj = 0, ∀j = 1, · · · , n

against the alternative hypothesis

H1 : δj �= 0, ∃j = 1, · · · , n.

From (3.30), we can also check the space-time interaction effect if we consider the

one-way ANOVA structure with the null hypothesis

H0 : γi = 0, ∀i = 1, · · · ,m

against the alternative hypothesis

H0 : γi �= 0, ∃i = 1, · · · ,m.

3.4 Simulation Study

In Section 3.3, we proposed new formal tests for lack of axial symmetry in

time and lack of axial symmetry in space in spatial-temporal processes. In this

section, we evaluate the performance of these tests by simulation study where the
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underlying covariance is an asymmetric exponential stationary spatial-temporal

one. Now we introduce the simulation steps for checking the behaviours of the

new tests. Here we examine the case for the axial symmetry in time.

1) Find m pairs of sites which are far from each other as specified by the spatial

lags, h = (h1, h2)
′. Keep the minimum spatial distance between the nearest

two sites in arbitrary two pairs greater than the bandwidth of gρ(s) in C.2

to make their processes asymptotically independent.

2) Compute the test statistic shown in (3.18) for each pair.

3) Apply this setup to the traditional ANOVA procedure by considering the

calculated value, temporal frequency, spatial direction, and subregion in-

cluding a pair.

In case of axial symmetry in space, one of the major differences from the previous

case occurs in step 1). The steps for testing the axial symmetry in space are as

follow:

1) Find m pairs of points which are far from each other as specified by the

second spatial lag (latitudinal lag) and the temporal lag, (h2, u)
′. Keep the

minimum distance between the nearest two points in arbitrary two pairs

larger than or equal to the spatial and the temporal ranges enough to make

their processes asymptotically independent.

2) Compute the test statistic proposed in (3.28) for each pair.
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3) Apply this setup to the traditional ANOVA procedure by considering the

calculated value, first spatial frequency, and subregion including a pair..

For the simplification of the simulation setup, we consider the spatial bandwidth

gρ(0), that is, we only focus on the cross spectral density functions at the selected

pairs.

Before presenting the simulation study, we briefly explain the asymmetric

spatial-temporal covariance given by

C(h;u) = σ1 exp
{
−
√
β2(u− h′v)2 + α2‖h‖2

}
+ σ0I(‖h‖ = u = 0), (3.32)

where σ0 is the nugget, σ1 is the partial sill, α is the decaying rate of spatial

correlation, β is the decaying rate of temporal correlation, and v ∈ R
2 is the

asymmetry parameter vector. This vector, v = (v1, v2)
′ controls the types of

asymmetry realized in spatial-temporal processes. For example, v = 0 yields the

covariance satisfying axial symmetry in time. If only one element in v is zero,

then axial symmetry in space is satisfied. Diagonal symmetry in space is called

in case that v1 = v2 �= 0. We call asymmetry in space and time, otherwise.

Now we explain the fundamental simulation setup for realizing the tests for

lack of symmetry. The number of iterations is set to 100 and, at each iteration,

the observations are generated from the multivariate normal distribution with the

mean 0 and the variance-covariance matrix extended from (3.32). The covariance

parameters are preassigned as follows; σ0 = 0.01, σ1 = 1, α = 0.02, β = 0.75.

Here the spacing unit for locations is 10 and the unit for time is 1.
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3.4.1 Testing Lack of Axial Symmetry in Time

column index
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Figure 3.1: Selection of Pairs for the Test for Lack of Axial symmetry in Time.
Note that we consider four different directions in spatial domain; ENE (D1), NNE
(D2), NNW (D3), and WNW (D4).

For the test for lack of axial symmetry in time, we consider the spatial domain

with 16 pairs of two sites as shown in Figure 3.1 and we generate 51 observations

over time at each selected site. The spatial distance between any pairs is set to

as much as or greater than the effective spatial range, 3/α = 15. The temporal

frequencies, τj are selected as follows; τj = πj/25 with j = 3 (5) 23. We then

construct the test statistic for lack of axial symmetry in time, φ̂∗
aibi

(τj) in (3.20)

at the following temporal frequencies; 3π/25, 8π/25, 13π/25, · · · , 23π/25. As

can be seen in Figure 3.1, we also consider four different directions as well as 16

subregions in spatial domain.
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Figure 3.2: The Contour Plots of Empirical Powers Under General Asymmetry
in Space and Time for Main Effects from ANOVA Technique. Note that the
dotted lines are about axial symmetry in space and the dashed line is for diagonal
symmetry in space, and the null hypothesis is located on the origin (v = 0). (a)
Empirical powers for the effect of “Direction”; (b) empirical powers for the effect
of “Temporal Frequency”; (c) empirical powers for the effect of “Subregion”.

Figure 3.2 displays the contour plots of empirical powers for the main effects

of “Direction” and of ”Temporal Frequency” under asymmetry in space and time,

that is, under v �= 0. Figure 3.2 (a) confirms that the nonzero temporal frequency

in terms of the directions is well detected in case that v1 �= 0 but v2 = 0 (the

horizontal dotted line) rather than in case that v1 = 0 but v2 �= 0 (the vertical

dotted line) although these two dotted lines mean the same alternative hypothesis,

axial symmetry in space. The reason is that all the directions we considered are

roughly in north direction not E-W direction. However, Figure 3.2 (b) shows

the opposite performance of the effect of “Direction”. Detecting Lack of axial

symmetry in time is much better under the siutation where v1 = 0 but v2 �= 0.

So, there exists some complementary relationship between direction in spatial

domain and temporal frequency. Here, if we are interested in the alternative

61



hypothesis, axial symmetry in space where v1 = 0 but v2 �= 0 (the vertical dotted

line), the performance of the test statistic is almost perfect. In addition, from

the low empirical powers of the effect of “Subregion” in Figure 3.2 (c), informs us

that lack of stationarity is rarely detected, which is a reasonable result because the

spatial-temporal covariance function used in this simulation study is stationary.

Table 3.1: Empirical Powers of an Alternative Hypothesis that v1 = 0 but v2 �= 0.
Note that the situation that v1 = 0 but v2 �= 0 is the vertical dotted line in each
plot of Figure 3.2.

Main Effects
v2

-.08 -.06 -.04 -.02 0.00 0.02 0.04 0.06 0.08

Locations 0.03 0.04 0.03 0.04 0.03 0.03 0.06 0.05 0.00

Directions 0.02 0.15 0.22 0.13 0.06 0.09 0.21 0.10 0.03

Frequencies 0.99 1.00 0.96 0.52 0.02 0.46 0.98 0.98 0.93

Table 3.1 shows the empirical powers under one of the alternative hypotheses,

that is, in case that v1 = 0 but v2 �= 0. We see that, from the effect of temporal

frequencies, lack of axial symmtry in time is well detected even when v2 slightly

moves from 0 and there is not any big difference of powers in terms of the direction.

3.4.2 Testing Lack of Axial Symmetry in Space

What we have to consider next is to check whether lack of axial symmetry

in space, C(h1, h2;u) �= C(−h1, h2;u) is in the spatial-temporal process or not.

For testing lack of axial symmetry in space, we consider 16 pairs of two points

where the position of each point is represented by a spatial index and a time
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index (Figure 3.3). The spatial frequencies, ωj are selected as follows; ωj =
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Figure 3.3: Selection of Pairs for the Test for Lack of Axial symmetry in Space.
Note that we consider the two different directions in two dimensional (spatial-
temporal) domain; D5 and D6.

πj/30 with j = 2 (9) 29. We then construct the test statistic for lack of axial

symmetry in space, ψ̂�
i (ωj) in (3.31) at the following spatial frequencies; 2π/30,

11π/30, 20π/30, and 29π/30. Figure 3.3 also shows that four different directions

as well as 16 subregions defined in two dimensional domain, which consists of one

dimensional spatial domain and a temporal domain, are considered. The reason

why the directions are taken into account is that we want to check spatial-temporal

interaction.

Now we explain the results obtained from the ANOVA approach including

the three effects; “Direction”, “Subregion”, and “Spatial Frequency”. Figure 3.4
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Figure 3.4: The Contour Plots of Empirical Powers Under General Asymmetry in
Space and Time for Main Effects from ANOVA Technique. Note that the vertical
dotted line is the null hypothesis, axial symmetry in space (v1 = 0, v2 �= 0). (a)
Empirical powers for the effect of “Direction”; (b) empirical powers for the effect
of “Spatial Frequency”; (c) empirical powers for the effect of “Subregion”.

displays the empirical power for each main effect under general asymmetry in

space and time with v �= 0. From Figure 3.4 (a), we see that, in case of the effect

of “Direction”, the empirical powers under the null hypothesis are well maintained

and nonzero spatial frequency is detected under the situation where v1 �= 0 and

v2 �= 0. We can also know that, from Figure 3.4 (b), the performance of the

test is only explained well in that the power increases as v1 goes far from 0 only

if −0.5 < v2 < 0.5. Figure 3.4 (c) informs that there seems no big difference

of spatial frequencies among the the positions of two points in spatial-temporal

domain. This is quite related to the existence of stationarity.

Figure 3.4(a) and (b) confirm that the test for lack of axial symmetry in space

really depends on how the directions are assigned in the spatial-temporal domain.

So we need focus on the behaviour of spatial frequencies in terms of each direction
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shown in Figure 3.3. Since lack of stationarity is not detected for all v we now
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Figure 3.5: The Contour Plots of Empirical Powers Under General Asymmetry
in Space and Time for the “Spatial Frequency” Effect from ANOVA Technique
in terms of each direction. (a) Empirical powers under the direction, D5; (b)
empirical powers under the direction, D6.

consider the ANOVA model with just the effect of “Spatial Frequency” for each

direction. From Figure 3.5(a) and (b), we can see that the actual null hypotheses

are located on v = (0, 0.1)′ for D5 and on v = c(0,−0.1)′ for D6. The reason is

that these two combinations are the solutions of u − h′v = 0. For example, the

spatial and temporal lags between two points on the direction, D5 are h2 = −10

and u = −1, and then u−h′v = 0. What is interesting here is that the empirical

power increases as v goes far from the correponding null hypothesis along the

dashed lines, which is quite related to what the direction is considered.

Table 3.2 displays the empirical powers under the alternative hypotheses shown
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Table 3.2: Empirical Powers of an Alternative Hypothesis meaning the dashed
lines in the plots of Figure 3.5.

v = (v1, v2)
′

v1 -.20 -.16 -.12 -.08 -.04 0.00 0.04 0.08 0.12

v2 -.12 -.08 -.04 0.00 0.04 0.08 0.12 0.16 0.20

Frequencies 1.00 1.00 1.00 1.00 1.00 0.04 0.73 1.00 1.00

v1 -.20 -.16 -.12 -.08 -.04 0.00 0.04 0.08 0.12

v2 0.12 0.08 0.04 0.00 -.04 -.08 -.12 -.16 -.20

Frequencies 1.00 1.00 1.00 1.00 0.96 0.07 0.83 1.00 1.00

in Figure 3.5 (the dashed lines). As one can see, lack of axial symmtry in space

is well detected even when v slightly moves from v = (0,−0.1)′ or v = c(0, 0.1)′.

We have presented the simulation results of the two tests for lack of symmetry

in spatial-temporal processes so far. Both of the tests performs well in terms

of the empirical powers. However, each test depends on how the directions are

considered.

3.5 Real Application

In Section 3.4, we evaluated the performances of the two tests for lack of

symmetry proposed in Section 3. As the results from the simulation study, the

tests detect the corresponding lack of symmetry under general situation with

asymmetry in space and time. In this section, we apply the new testing methods
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Figure 3.6: The map of the locations of 3721 (= 61 × 61) centroids of grid cells
where each cell is size of 36km × 36km. Note that the numbers on the right of
grid cells are row indice and the ones on the top are column indice.

to the real air-pollution dataset. Here we consider the daily PM2.5 concentrations

which were the averages of hourly values, which are obtained from the Models-

3/Community Multiscale Air Quality (CMAQ) modeling system with the spatial

resolution of 36km×36km. These data were provided by the U.S EPA The spatial

domain of our interest is the eastern U.S and the southern Canada, and the time

domain is January 1st through December 29th, 2001. The main reason why we are

interested in PM2.5 concentrations is that this air-pollutant is one of the important

factors in the public health problem and, according to many environmenal studies,

has complex spatial or spatial-temporal dependency structure (Zidek (1997) and

Golam Kibria et al. (2002)).
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Before applying the test for lack of axial symmetry in time, we remove the

spatial and the temporal trends. For a PM2.5 concentration at location s and

time t, Z(s, t), we remove the average over time at each location and the average

over space at each time. Then we employ our tests for lack of symmetry to the

PM2.5 anomaly concentrations subtracted by the spatial and temporal trends.

Here the spatial bandwidth gρ(0) is considered for the simplicity for analyzing the

data.

3.5.1 Testing Lack of Axial Symmetry in Time
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Figure 3.7: The plot of the locations of the selected 16 pairs. Note that four dif-
ferent directions are considered; ENE direction (D1), NNE direction (D2), NNW
direction (D3), and WNW (D4).

We obtain the estimates of phase and coherency, φ̂ab(τ) and R̂ab(τ) by calcu-
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lating the estimated cross-spectrum in (3.13) where the spectral window, Ŵ (α)

in (3.12) has a bandwidth of 2πBT with BT = 1/28. In order to make the es-

timates uncorrelated approximately, we choose the temporal frequencies τj for

j = 1, · · · , n = �BTT � satisfying that the spacings between the τj are at least

π/14, the distance between any pairs, (ai,bi) and (aj,bj) for i �= j is set larger

than or equal to the spatial range, 1/α and the distance within any pair is also

set much smaller than the spatial range. Here �a� means the integer nearest to a.

The temporal frequencies, τj are selected as follows; τj = πj/181 with j =

6 (13) 175, where the uniform spacing of 13π/181 is slightly longer than π/14.

We then construct the test statistic, for lack of axial symmetry in time, φ̂∗
aibi

(τj)

in (3.20) at the following temporal frequencies; τ1 = 6π/181, τ2 = 19π/181,· · · ,

τ13 = 175π/181. We consider the 16 pairs, {ai,bi}, i = 1, · · · , 16 shown in Figure

3.7. It can be seen, from Figure 3.7, that the spatial distance between pairs is

at least 13 spacing units (unit=36km) and the distance within each pair is set to

√
5 units. We also take into account the effect of the directions decided by two

locations consisting of each pair.

Table 3.3: Analysis of variance

Item Degree of freedom Sum of squares F value Pr(F )

Directions 4 1.6028 15.9463 0.0000

Locations 12 0.9811 3.2537 0.0003

Frequencies 12 0.1681 0.5576 0.8736

Residuals 180 4.5229
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Table 3.3 shows the result of the test for lack of axial symmetry in time. The

effect of “temporal frequency” is not significant under 5% significance level, so it

is clear evidence of axial symmetry in time, that is, C(h1, h2;u) = C(h1, h2;−u).

However, the other main effets, “Locations” (p-value< 0.0000) and “Directions”

(p-value< 0.001) are statistically significant. Thus, there exists nonstationarity,

which might influence the effect of “Directions”. Here we investigate existence of

lack of axial symmetry in time more in detail in terms of directions in order to

understand how much contribution each direction has.

Table 3.5 displays the result from two-way ANOVA technique for each direction

given. We can see that for most of the directions, nonstationarity problem exists

except NNW direction (D3), but lack of axial symmetry in time exists in case of

ENE direction (D1) and WNW direction (D4). This phenomenon implies that the

flow of the external conditions such as wind direction might be in E-W direction

or W-E direction.

Figure 3.8 shows QQplots to check whether the residuals from the ANOVA

in Table 3.5 have lack of normality. We can conclude that the deviation of the

residuals from normality does not seem to be serious for either case of directions.

The p-values calculated from the Kolmogorov-Smirnov normality test are 0.27 and

0.28, respectively.
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Figure 3.8: The QQplots of the residuals (a) The quantiles from N(0, 1) versus
the residuals in case of ENE direction (D1); (b) the quantiles from N(0, 1) versus
the residuals in case of WNW direction (D4).

3.5.2 Testing Lack of Axial Symmetry in Space

In order to obtain the estimates of phase and coherency, ψ̂∆1 and Q̂∆1 in (3.28),

we estimate the new version of cross-spectrum in (3.25) where the spectral window,

Ŵ (α) in (3.24) has a bandwidth of 2πBN1 with BN1 = 1/12. In order to make the

estimates uncorrelated approximately, we choose the temporal frequencies ωj for

j = 1, · · · , n = �BN1N1� satisfying that the spacings between the ωj are at least

π/6, the distance between any pairs, {(ai
2, t

a
i ), (b

i
2, t

b
i)} and {(aj

2, t
a
j ), (b

j
2, t

b
j)} for

i �= j is set larger than or equal to the spatial range as well as the temporal range,

1/β and the distance within each pair, for example,
√

(ai
2 − bi2)

2 + (tai − tbi)
2 for

ith pair, is set much smaller than the spatial and the temporal ranges.
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Figure 3.9: The plot of the locations of the selected 16 pairs. Note that two
directions are considered; D5, D6.

We consider the following spatial frequencies, ωj; ωj = πj/10 with j = 1 (2) 9,

where the uniform spacing of π/5 is slightly longer than π/6. The test statistic for

lack of axial symmetry in space, ψ̂�
i (ωj) in (3.29) is constructed at the following

temporal frequencies; ω1 = π/10, ω2 = 3π/10, · · · , ω5 = 9π/10. We consider

the 16 pairs, {(ai
2, t

a
i ), (bi2, t

b
i)}, i = 1, · · · , 16 shown in Figure 3.9. It can be

seen, from Figure 3.9, that the minimum temporal distance between pairs is at

least 100 units (unit=1 day) and the minimum spatial distance in terms of col-

umn index is more than 15 units (unit=36km). The distance within each pair is

set to
√

12day2 + 722km2. The effect of the directions decided by two locations

consisting of each pair is also taken into account.

Table 3.4 displays the result of the test for lack of axial symmetry in space.
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Table 3.4: Analysis of variance

Item Degree of freedom Sum of squares F value Pr(F )

Directions 2 0.0263 0.0273 0.9730

Interactions 14 4.8976 0.7262 0.7400

Frequencies 4 6.6600 3.4564 0.0132

Residuals 60 28.9032

The effect of “Space-Time Interactions” is not significant under 5% significance

level. Since we know that, under stationarity, the covariance between any two

measurements does not depend on their relative position, nonsignificance of this

effect fails to reject that this spatial-temporal process satisfies stationarity. We

also know that the “Directions” effect has no significant contribution to testing

lack of axial symmetry in space. However, the effect of “Spatial Frequencies”

is statistically significant. That strongly implies that there exists lack of axial

symmetry in space, that is, C(h1, h2;u) �= C(−h1, h2;u).

Now we check whether lack of axial symmetry in space depends on the effect

of “Directions” by performing the ANOVA technique for each directions; D5, and

D6. From Table 3.6, we can see that, in the D6 direction, the effect of “Spatial

Frequencies” is significant (p-value< 0.05). Thus, we conclude that, under certain

direction lying in the two dimensional domain consisting of latitude and measuring

time, lack of axial symmetry in space exists.

We check the lack of normality of residuals from the ANOVA technique in

Table 3.6 by comparing with the quantiles from normal distribution with mean
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Figure 3.10: The QQplot of the residuals from the ANOVA technique in case of
the D5 direction.

0 and variance 1. Figure 3.10 shows that the normality assumption seems to be

reasonable. The p-value calculated from the Kolmogorov-Smirnov normality test

is 0.89.

Based on the results from the tests for lack of axial symmetry in time and lack

of axial symmety in space (see Table 3.5 and Table 3.6), we make the conclusion

that the spatial-temporal process of PM2.5 anomaly concentration is influenced by

some external meteorological condition of which flow might be in E-W direction or

W-E direction, and its spatial-temporal covariance has totally different behaviour

in terms of the sign of first spatial distance.
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3.6 Discussion

In this chapter, we introduced new concept of symmetry in spatial-temporal

processes and proposed new formal tests for lack of axial symmetry in time and

for lack of axial symmetry in space. We evaluated the performances of the tests

by simulation study and applied to the real air-pollution data. The main advan-

tages of these tests are that we can understand not only the existence of lack of

symmetry but also the potential flow causing asymmetry.

As part of our further research, we are developing a formal test for lack of

diagonal symmetry in space. This test could also be approached by the spectral

representation that we have used in this study.
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Table 3.5: Analysis of variance

Direction Item Degree of Sum of F value Pr(F )
Freedom Squares

D1
Locations 4 1.3933 25.8807 0.0000
Frequencies 12 0.4283 2.6519 0.0118
Residuals 36 0.4845

D2
Locations 4 0.4026 4.0371 0.0083
Frequencies 12 0.1201 0.4016 0.9536
Residuals 36 0.8974

D3
Locations 4 0.3358 2.5233 0.0578
Frequencies 12 0.2819 0.7059 0.7354
Residuals 36 1.1979

D4
Locations 4 0.4522 5.3382 0.0018
Frequencies 12 0.5186 2.0406 0.0491
Residuals 36 0.7624

Table 3.6: Analysis of variance

Direction Item Degree of Sum of F value Pr(F )
Freedom Squares

D5
Interactions 8 1.5599 0.3106 0.9555
Frequencies 4 3.7268 1.4842 0.2336
Residuals 28 17.5772

D6
Interactions 8 3.3641 1.2229 0.3222
Frequencies 4 4.6309 3.3668 0.0227
Residuals 28 9.6284
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Chapter 4

Conclusion

In this study, we introduced new concepts of symmetry in spatial-temporal pro-

cesses and proposed classes of asymmetric stationary spatial-temporal covariance

models. Since these covariances are just Fourier transformations of the corre-

sponding valid spectral density functions, they can easily be shown to be positive

definite. Unlike a process with separable, even nonseparable covariance, an asym-

metric spatial-temporal proecess is influenced by spatial-temporal dependencies,

which are mainly controled by asymmetry parameters. This characteristic is very

helpful to analyze the air-pollution data affected by some external metheological

conditions, for instance, wind speed, wind direction, air pressure and so on.

The asymmetric covariance models can be extended to the spatial domain with

d > 2 although our results presented in this study are based on the two dimensional

spatial domain. For example, in case of spatial domain with longitude, latitude

and altitude, the asymmetric covariance models are constructed in R
3×R. As part
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of our further research, we are estimating the parameters by means of Bayesian

approach taking into account uncertainties in the covariance models.

we also introduced new concept of symmetry in spatial-temporal processes and

proposed new formal tests for lack of axial symmetry in time and for lack of axial

symmetry in space. We evaluated the performances of the tests by simulation

study and applied to the real air-pollution data. The main advantages of these

tests are that we can understand not only the existence of lack of symmetry but

also the potential flow causing asymmetry. As part of our further research, we are

developing a formal test for lack of diagonal symmetry in space. This test could

also be approached by the spectral representation that we have used in this study.
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Chapter 5

Appendix

5.1 The derivation of the asymmetric stationary

spatial-temporal covariance function

Suppose that the (d+ 1) dimensional spectal density function is defined as

f0(ω; τ) ≡ γ(α2β2 + β2‖ω‖2 + α2τ 2)−ν ,

γ, α and β are positive, and ν > d+1
2

. Then the corresponding covariance function

can be derived like the following way:

C0(h;u) =

∫
R

∫
Rd

f0(ω; τ) exp{ih′ω + iuτ}dω dτ

= γ

∫
R

exp{iuτ}
∫

Rd

{
α2
(
β2 + τ 2

)
+ β2‖ω‖2

}−ν
exp{ih′ω}dω dτ.
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By Stein (2005),∫
Rd

{
α2
(
β2 + τ 2

)
+ β2‖ω‖2

}−ν
exp{ih′ω}dω

=
πd/2β−2ν

2ν−d/2−1Γ(ν)

{
α

β

√
β2 + τ 2

}−2ν+d

Mν−d/2

(
α

β

√
β2 + τ 2‖h‖

)
,

where Mν(r) = rνKν(r). And, by Gradshteyn and Ryzhik (2000, pp.730, Eq.6.726

4),

Lν(h;u) ≡
∫

R

(
β2 + τ 2

)−(ν−d/2)/2 Kν−d/2

(
α

β

√
β2 + τ 2‖h‖

)
exp{iuτ}dτ

= 2

∫ ∞

0

(
β2 + τ 2

)−(ν−d/2)/2 Kν−d/2

(
α

β

√
β2 + τ 2‖h‖

)
cos{uτ}dτ

=
√

2π(α‖h‖)−ν+d/2β−ν+d/2+1Mν− d+1
2

(
β

√
α2

β2
‖h‖2 + u2

)
.

Then we can obtain the closed form of the (d+1) dimensional covariance function

given by

C0(h;u) =
γπd/2‖h‖ν−d/2

2ν−d/2−1Γ(ν)
α−ν+d/2β−ν−d/2Lν(h;u)

=
γπ(d+1)/2α−2ν+dβ−2ν+1

2ν−(d+1)/2−1Γ(ν)
Mν− d+1

2

(
β

√
α2

β2
‖h‖2 + u2

)
.

5.2 The asymptotic normality of φ̂∗ab(τ ) in (3.18)

Fuentes (2005) provides the asymptotic normality and independence of the

cross-spectral density function, f̂ab(τ) evaluated at different frequencies and lo-

cations. The approximate independence between f̂aibi
(τ) and f̂ajbj

(λ) is also

obtained under either of the conditions, C.1 and C.2. Based on the information

from Fuentes (2005), we try to find the asymptotic distribution of φ̂∗
ab(τ) in (3.18).
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Suppose that φ̂∗
ik ≡ φ̂∗

aibi
(τk), Θ̂ ≡

(
φ̂∗

ik, φ̂
∗
jl

)′
, and θ̂ ≡

(
φ̂ik, R̂ik, φ̂jl, R̂ik

)′
,

where φ̂ik and R̂ik are the phase and the coherency at the ith pair at the temporal

frequency τk. Then, by Taylor-series expansion,

Θ̂ = Θ +
∂Θ̂

∂θ

(
θ̂ − θ

)
+ op(B

−1
T T−1),

where Θ =
(
φ∗

ik, φ
∗
jl

)′
, and θ = (φik, Rik, φjl, Rik)

′. Under the null hypothesis that

φik = 0 and φjl = 0, we can reexpress the previous equation as

Θ̂ = Θ0 +
∂Θ̂

∂θ0

(
θ̂ − θ0

)
+ op(B

−1
T T−1),

where Θ0 = (0, 0)′, θ0 = (0, Rik, 0, Rjl)
′, and

∂Θ̂

∂θ0

=

⎛⎜⎝ 1

[|Rik|−2−1]
1/2 0 0 0

0 0 1�
|Rjl|−2−1

�1/2 0

⎞⎟⎠ .

Under the assumptions A.1 through A.3, we asymptotically obtain the mean and

the variance ΣΘ, which is denoted by

ΣΘ = (BTT )

(
∂Θ̂

∂θ0

)
Σθ

(
∂Θ̂

∂θ0

)′

=

⎛⎜⎜⎜⎜⎜⎜⎝
BTTVar

(
φ̂ik

)
[
|Rik|−2 − 1

] BTT cov
(
φ̂ik, φ̂jl

)
[
|Rik|−2 − 1

]1/2 [|Rjl|−2 − 1
]1/2

BTT cov
(
φ̂jl, φ̂ik

)
[
|Rik|−2 − 1

]1/2 [|Rjl|−2 − 1
]1/2

BTTVar
(
φ̂jl

)
[
|Rjl|−2 − 1

]

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where Σθ = E

[(
θ̂ − θ0

)(
θ̂ − θ0

)′]
. If either of the conditions C.1 and C.2 is

satisfied, then φ̂aibi
(τk) is approximately independent of φ̂ajbj

(τl) if and only if

f̂aibi
(τk) is apprximately independent of f̂ajbj

(τl). Therefore, we finally compute
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the following asymptotic variance:

ΣΘ =

⎛⎜⎜⎝ π

(∫
R

W 2(α) dα

)
[1 − η{2τk}] 0

0 π

(∫
R

W 2(α) dα

)
[1 − η{2τl}]

⎞⎟⎟⎠ .
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