Abstract

LADA, EMILY KATE. A Wavelet-Based Procedure for Steady-State Simulation Output Anal-
ysis. (Under the direction of Dr. James R. Wilson.)

The objective of this research is to develop an automated sequential procedure by which an
asymptotically valid confidence interval is constructed for the steady-state mean of a simulation
output process. This procedure, called WASSP, determines a batch size and a warm-up period
beyond which the computed batch means constitute an approximately stationary Gaussian pro-
cess. WASSP then uses wavelets to approximate the log of the smoothed periodogram of the
batch means process, from which an estimate of the steady-state variance constant (SSVC) of
the original (unbatched) process is obtained. Together with a sample mean that has been suit-
ably truncated to eliminate initialization bias, the SSVC estimator is used to construct a reliable
confidence-interval estimator of the steady-state mean that satisfies a user-specified absolute or
relative precision requirement. An extensive performance evaluation includes testing WASSP
on a suite of processes that include extreme examples of the warm-up and correlation problems.
The results indicate that WASS?P is successful in detecting and eliminating initialization bias as
well as in constructing an approximately stationary process so that an asymptotically valid con-

fidence interval for the steady-state mean can be generated even if the original process is highly



correlated and has a pronounced initial transient period. Furthermore, the performance evalu-
ation also includes a comparison of WASS?P to other methods for steady-state output analysis.
The results indicate that WASS?P is in general a more robust procedure than the other methods,
and we believe that WASSP represents an advance in spectral methods for steady-state output

analysis.
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Put all your soul into it, play the way you feel!
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Chapter 1

Introduction

Simulation is one of the most popular tools for studying the behavior of complex systems. Its
popularity is due in part to its applicability in a wide variety of fields, from manufacturing to
healthcare. Discrete-event stochastic simulation is a technique for modeling the operation of
a target system over time by a numerical (usually computer-based) representation—that is, a
simulation model— in which changes in the state of the model occur only at a countable set of
distinct points in time [39]. These state changes generally represent complex interactions among
several sequences of random variables that constitute the probabilistic input processes driving
the operation of the simulation model; and the modeling objective is to mimic the operation
of the target system with a degree of accuracy that is sufficient for the purpose of the study at
hand.

A nonterminating simulation is one in which we are interested in long-run (steady-state)
average performance measures. Let {X; : i = 1,2,...} denote a stochastic process representing
the sequence of outputs generated by a single run of a nonterminating probabilistic simulation.
For example, X; might represent the time in the system (cycle time) for the ith workpiece to
complete all its processing in a simulation of a production factility. If the simulation is in steady-
state operation, then the random variables {X;} will have the same steady-state cumulative
distribution function (c.d.f.), Fx(x) = Pr{X; < «} for all real z and for i = 1,2,....

Usually in a nonterminating probabilistic simulation, we are interested in constructing point
and confidence interval estimators for some parameter, or characteristic, of the steady-state
c.d.f. Fx(z). In this research, we are primarily interested in estimating the steady-state mean,
px = E[X] = [*_xdFx(x); and we limit the discussion to output processes for which E[X?] <
o0 so that the process mean py and process variance 0% = Var[X;] = E[(X; — ux)?] are well
defined. We let n denote the length of the time series {X;} of outputs generated by a single,

long run of the simulation; and we often refer to n as the run length.



The sample mean,
— 1
X=- ZX (1.1)

is an intuitively appealing point estimate of px. One might, however, question the amount of
uncertainty associated with this point estimate; and this consideration naturally leads to the
idea of building a confidence interval for px that is centered on X and has a half-length which
appropriately accounts for the variability (variance) of X. An estimate of the process variance

agf is the sample variance,

§% =

LS x - X
=1

n—1
(2

If the X;’s are independent and identically distributed (i.i.d.) normal random variables and if
0 < B < 1, then a standard 100(1 — 3)% confidence interval for px is

S
\/ﬁ?

where t,_g/9.,—1 is the 1 — 3/2 quantile of Student’s ¢-distribution with n — 1 degrees of

X +t1_g/2,n-1 (1.2)

freedom. Moreover, if the X;’s are i.i.d. but not necessarily normal, then an asymptotically

valid 100(1 — 3)% confidence interval for px is

— S
X+ 21—6/2%7

where z1_g/p is the 1 — 8 /2 quantile of the standard normal distribution; and this means that

(1.3)

the corresponding coverage probability satisfies

nli_}rroloPr{uX € X+ zl_ﬂﬂ%} =1-7. (1.4)

There are two fundamental problems associated with analyzing stochastic output from a
nonterminating simulation. The first problem is that it is usually impossible to start a simula-
tion in steady-state operation, thereby making it necessary to decide how long the “warm-up”
period should be so that for each simulation output X; generated after the end of the warm-up
period, the corresponding expected value E[X]] is sufficiently close to the steady-state mean px.
If observations generated prior to the end of the warm-up period are included in the analysis,
then the resulting point estimator X will be biased; and such bias in the point estimator (1.1)
can severely degrade the coverage probability of the corresponding confidence intervals (1.2)
and (1.3) [39, 70, 71]. This is known as the start-up or initialization bias problem.

The second problem associated with analyzing output from a nonterminating probabilistic



simulation is that the observations {X;} are typically correlated; and this phenomenon can also
invalidate the confidence intervals given by (1.2) and (1.3). In particular, it is assumed in (1.2)
and (1.3) that

— 0'2
Var[X ] = =X (1.5)

n
so that we can use S/y/n as an estimator of 1/ Var[X], the standard error of X, in the confidence
intervals (1.2) and (1.3) for px. If the observations are correlated, however, then equation (1.5)

for the variance of X is not generally true.

Before we can establish what the variance of X is when the {X;} are correlated, we first
need to state some basic definitions. The stochastic process {X;} is said to be weakly stationary

if it has finite second moments and a constant mean,
E[X?] < oo and E[X;] =pux for all i,
and if the covariance between two observations X; and X4y,
vx (1) = Cov[X;, X; 1] = E[(X; — pux)(Xipy — px)] for all ¢ and [ =0, £1,4£2,...,  (1.6)

depends only on the absolute value |I| of the time difference (or lag) (i +1) —¢ =I. Thus in a
weakly stationary process {X;}, we have a constant variance Var[X;] = yx(0) = o% for all i;

moreover, vx () = yx(—I) for [ = 1,2,.... The autocorrelation function at lag [ is defined as

_ax(@) _x(@)
x(0) 0%

for [=0,+£1,4+2,...,

which is a measure of the linear association between two random variables, X; and X;4;, for all
i.
If the process {X; : i = 1,...n} is weakly stationary, then
— 1

Var[X] = D) iiCOV[X“X]]

1+ znf (1 - %) pX(z)] , (1.7)



which clearly is not equal to the result obtained for i.i.d. {X;} in equation (1.5). However, if in

equation (1.7) we have
px(l)=0 for [=1,2,..., (1.8)

then (1.5) holds and under some weak-dependence conditions on the process {X;} that are
detailed below, the confidence interval (1.3) is asymptotically valid in the sense of (1.4) even
when the marginal c.d.f. Fx(z) is not normal. Unfortunately most output processes generated
by steady-state simulations do not statisfy (1.8); and thus we must seek a generalization of
(1.3) in which the term S/y/n is replaced by a suitable estimator of y/Var[X].

Random variables like the {X;} that are derived from a steady-state simulation are often
weakly dependent in the sense of ¢-mixing [6]. This means roughly that X;’s far from each
other in the sequence are almost independent, implying that the lag-l correlation px(l) — 0 as
|I| = oo. In order to construct a confidence interval for the steady-state mean of the output
process {X;}, we need an estimate of the variance of X. By applying an appropriate central
limit theorem for dependent processes (for example, Theorem 20.1 of [6]), we see that under

fairly general conditions on the process {X;}, the following limit results hold:

e We have the absolute summability property

> hx] <o (1.9)

l=—00

so that vx, the steady-state variance constant (SSVC) for the process {X;} is well defined
and given by

Tx = lim nVarlX] = 5 (@) = x(0) + 23" (D) (1.10)
=1

l=—
moreover, we have yx > 0.

e We have the key weak-convergence property

Vi X — px] D, N(0,vx) as n — oc. (1.11)

The limit results (1.10) and (1.11) provide a basis for constructing an asymptotically valid
confidence interval for px. From (1.10) we see that the variance of X is given asymptotically
by

— 1
Var[X| = ’YFX +O<E) as m — 00. (1.12)
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Combining (1.11) and (1.12), we see that in general an asymptotically valid 100(1 — 5)% con-

~ X
X + zl_g/m/%. (1.13)

Therefore, if it is possible to obtain a suitably behaved estimate of the SSVC vx as well as

fidence interval for px is given by

a version of the sample mean X that has been suitably truncated to eliminate the effects of
initialization bias, then a variant of display (1.13) might be used to construct asymptotically
valid confidence intervals for the steady-state mean of a simulation-generated output process

with correlated observations.

1.1. Scope and Objectives of Research

The primary objective of this research is to develop a completely automated sequential proce-
dure by which an asymptotically valid confidence interval is constructed for the steady-state
mean py of a simulation output process {X;}. This procedure, called WASS?P, will address

both the initialization bias and correlation problems and deliver an approximate 100(1 — 3)%

~ Ax
X+t g, ,/7, (1.14)

where t_g/5 ,, is the (1—/2)-quantile of the Student’s t-distribution with v degrees of freedom.

confidence interval of the form

The performance evaluation phase of the research will focus primarily on processes for
which the theoretical steady-state parameters px, a§<, and yx are known, such as the sequence
{X;} of queueing times in the M/M/1 queue. In this case, X; is the waiting time for the
ith customer in a single-server queueing system with the following characteristics that induce
highly significant effects on the {X;} due to initialization bias and correlation among successive
outputs: i.i.d. exponential interarrival times; i.i.d. exponential service times; a steady-state
server utilization that is sufficiently high (say, 90%); and an initial condition that is sufficiently
atypical of steady-state operation (say, an empty-and-idle initial condition so that X; = 0).

The specific objectives of this research can be summarized as follows:
(a) Develop a sequential independence test that can be used to—

i) construct a set of spaced batch means such that the interbatch spacer preceding each
batch is sufficiently large to ensure all computed batch means are approximately
independent and identically distributed so that the batch means can subsequently

be tested for normality; and



(b)

1.2.

ii) determine an appropriate warm-up period—that is, the “interbatch” spacer pre-
ceding the first batch—beyond which all computed batch means are approximately

independent of the simulation model’s initial conditions.

Develop a sequential normality test for determining an appropriate batch size so that if we
also use the spacer size determined in item (a).i) above, then the resulting set of spaced

batch means forms an approximately i.i.d. Gaussian process.

Develop an automated procedure to compute a wavelet-based estimator of the power
spectrum of the adjacent (nonspaced) batch means that are computed beyond the end of
the warm-up period determined in item (a).ii) above using the batch size determined in
item (b) above. The wavelet-based spectrum estimator can then be used to compute an
estimator of the SSVC ~x.

Formulate a sequential confidence-interval estimation procedure that delivers an approxi-
mate 100(1 — 3)% confidence interval of the form (1.14) and that satisfies a user-specified

absolute or relative precision requirement. This procedure will incorporate

— the truncated sample mean X that is obtained by averaging all the adjacent (non-
spaced) batch means beyond the end of the warm-up period identified in item (a).ii)

above; and

— the wavelet-based SSVC estimator 7y developed in item (c) above.

Conduct an extensive performance evaluation of the overall procedure for confidence in-
terval estimation (that is, WAS8®), including a comparison of WASS®P to other methods
for steady-state output analysis. The performance evaluation phase will consist of testing
WASSP on a suite of problems that include extreme examples of the warm-up and corre-
lation problems. Many of the test problems will also exhibit the same characteristics as

a variety of practical simulation applications.

Develop, verify (debug), and document user-friendly, computationally efficient software
that will automatically apply WASSP to a given set of observations and construct a
confidence interval for the mean. The software will be designed so that it can be used in

conjunction with popular simulation packages like Arena [36].

Organization of the Dissertation

The rest of this dissertation is organized as follows. The first part of Chapter 2 reviews existing

nonspectral methods for steady-state simulation output analysis, followed by a discussion of

Fourier methods and wavelet theory. Chapter 2 concludes with a discussion of existing spectral



methods for steady-state simulation output analysis. Chapter 3 presents a detailed algorithmic
statement of WASSP together with a complete justification of the statistical and numerical
results on which WASS?P is based. In Chapter 4, we present the results of applying WASSP and
its competitors to a suite of five test processes that were designed specifically to explore the
robustness of the selected procedures against the statistical anomalies commonly encountered
in the analysis of outputs generated by large-scale steady-state simulation experiments. Finally,
conclusions and recommendations for future research are detailed in Chapter 5.

The appendices provide complete technical details on the formulation, evaluation, and prac-
tical application of WASSP. Appendices A and B contain derivations of some statistical proper-
ties of the log of the smoothed periodogram that form the basis for the wavelet-based spectrum
estimator used in WASSP. Appendices C and D contain derivations of numerical methods that
we implemented to evaluate key steady-state characteristics of the test problems used in the
experimental performance evaluation of WASS®P. Finally Appendix E provides a user’s manual

for WASSP, including instructions on downloading, installing, and running the WASS® software.



Chapter 2

Literature Review

In this chapter we will first give a brief overview of several nonspectral methods for steady-
state simulation output analysis. We will then present standard results from Fourier and wavelet
analysis; and we introduce the power spectrum of a stationary stochastic process, explaining
how it can be estimated using wavelets. Finally, we will review spectral methods for steady-state

simulation output analysis.

2.1. Nonspectral Methods For Steady-State Output Analysis

A number of methods have already been developed for steady-state simulation output analysis.

The following subsections provide a brief overview of several nonspectral methods.

2.1.1 Replication/Deletion

Suppose we want to estimate the steady-state mean E[X] = px of the output process X1, ..., X,,.
Using the replication/deletion approach [39], we make k replications of the simulation, each of
length n, and delete the first [ observations from each replication. Let X;; denote the ith

observation from the jth replication and let

n
i=l+1 Xj,i

X = n—I

denote the truncated sample mean of the jth replication, j = 1,..., k. Note that the initial
bias problem is addressed by using only those observations X;; 1,..., X}, that correspond to
a (nearly) steady-state situation. By deleting those observations at the beginning of the simula-
tion run, we eliminate the initial bias due to the choice of initial system conditions [39]. Also note

that the X ;’s are independent and identically distributed random variables with E[X ] = ux;
and if n is sufficiently large, the Central Limit Theorem implies X; ~ N(ux, Var(X;)), where



the symbol ~ means “is approximately distributed as” and [39]

Var(X,;) = nll{ +2Z<1——>7X(U)}

0.6
—— as n—1— oo.
n—1

%

Taking the grand mean computed over all truncated replications,

— 15
PP
7j=1
as a point estimate for pux and
XX
Var|X| =
ar[X] k(k—1)

as an estimate for the variance of ?, for 0 < B < 1, we can construct an asymptotically valid

100(1 — )% confidence interval for px in the following way:

X £t pjon1V Var[X].

In order to determine the length of the warm-up period I, Welch [68] proposes a graphical

method that requires making & initial pilot runs, each of length n’. Let
L
;= o > X
j=1

be an estimate of the transient mean function p; = E[X;] for the ith observation X;,i =1,...,n’
and let Z = {0,£1,42,...} denote the set of integers. Compute the corresponding moving

average of w observations centered at the ith observation

Tl_l Z ﬁi-ﬁ-l) ZZlavaT_lJ
I=—(i—1)
[47+)
fii(w) = 2[”T‘llj+1 Z fist, =[5+ 1. n— 45 (2.1)
=1

s D Hiw,  i=n— [ 4Ln,
I=—(n—1)




where w € Z,w > 0 is the window size for the moving average. Choose [ to be the value of ¢
beyond which the plot of the {f;(w) : i =1,2,...} appears to converge.

The popularity of the replication/deletion approach is due in part to its simplicity. The
method is easy to understand and implement, making it especially attractive to those who do not
have the statistical background needed to implement some of the other techniques for steady-
state output analysis. Furthermore, we are able to achieve truly independent observations
{X,;:1<j <k}. The replication/deletion method is computationally inefficient, however, in
the sense that it requires the deletion of a total of [k observations. In addition, the method can
potentially require an excessive sample size n to achieve approximate normality of the replicate
means, {X,;}. Finally, there is no definitive method for determining how large ! should be.
Since Welch’s graphical procedure is only approximate, it is possible that some observations
close to the deletion point [ may still contain initialization bias, thereby resulting in a biased

estimate of .

2.1.2 Regenerative Method

The main premise behind the regenerative method is the fact that many stochastic systems
“start afresh probabilistically” at certain points in time, called regeneration times, resulting
in independent and identically distributed blocks of data [14]. The sequence of observations
between two regeneration times is referred to as a regeneration cycle. To illustrate the idea of
regeneration cycles, consider the system sojourn times for an M /M /1 queue with traffic intensity
less than one. We can define a regeneration cycle for this system to be a busy period followed
by an idle period. Each new cycle begins when a customer arrives to the system and finds the
server idle, since in the associated customer-arrival event, all the stochastic processes driving
the simulation must be independently resampled when that event occurs—namely, (a) the delay
to the next customer arrival must be randomly sampled from the exponential distribution of
interarrival times; and (b) the delay in service for the current customer must be randomly
sampled from the exponential distribution of service times. Thus at each point in the sequence
of customer sojourn times where the current arrival finds the server idle, we know that the
current and future customer sojourn times are independent of the customer sojourn times up to
that point. The same probabilistic structure as in previous cycles is followed, thereby resulting
in random-length blocks of independent and identically distributed observations. One class
of problems for which it is easy to identify regeneration times is the class of generalized semi-
Markov processes (GSMPs) with single states. For a discussion on how to apply the regenerative
method to these types of systems, see Henderson and Glynn [29].

Let 11,15, ... denote the random sequence of regeneration times for the simulation-generated
process {X;}, and let {X}, : Tj < k < Tj;1} denote the jth regeneration cycle. As an example,
for the system sojourn time process {X; : i > 1} in the M/M/1 queue, T} is the customer

10



number of the first customer with no wait and 7} is the customer number of the jth customer

with no wait. We also define the “length” of the jth regenerative cycle j in the following way,
TjETj_H—Tj for jZl

Thus in a regenerative simulation of M /M/1 sojourn times, 7; is the number of customers
served in the jth regenerative cycle. In order to apply the regenerative method to a process, the
following conditions must hold: Pr(77 < oo) = 1;Pr(0 < 7; < 0o) = 1 for j > 1; the initial cycle
{Xk :0 <k < T} is independent of {X}, : k > T1}; and the jth cycle {X}, : T; <k < Tj41}is
an independent, identically distributed replicate of the first cycle {Xj : 71 < k < Ty} [31].

Defining
Tjy1—1

}/j: Z Xi>
=T

as the accumulated “reward” on the jth regenerative cycle, we see that the sequence {(Yj,7;),j >
1} consists of i.i.d. random vectors. For example in a regenerative simulation of M /M /1 sojourn
times, Y; represents the total customer-hours (“manhours”) in the system that are accumulated
over the jth cycle. If E[|Y1]] < oo and E[r1] < oo then the steady-state mean of the process
{X;:i=1,...,n}is

by the renewal-reward theorem [50]. To construct an asymptotically valid confidence interval
for pux using a regenerative approach, we simulate m regeneration cycles using one long run of

length n = n(m). Taking

1 m
Y==)Y
m 2
J=1
and
_ 1 &
T
J=1
we see that a point estimate for px is
Y
nx = —. 2.2
fix = = (2.2)

Now, to obtain an estimate of the variance of jix, we define
Vi=Y; —pxtj, for j=1,...,m,

and
V=Y - WXT.

11



Notice that E[V;] = 0 and
oy = Var[Vj] = E[(Y; — ux7))’] = B[Y] = 2uxE[5; Y] + pXE[r]].

Since the V;’s are functions of i.i.d. random variables, they are also i.i.d.; and if 0 < 0‘2/ < 00,

then the Central Limit Theorem holds, implying

vmV b,

oy

— N(0,1) as m — oo, (2.3)

where 25 denotes convergence in distribution. To estimate 0‘2/, we compute the following

sample estimates,

1 m —
— Yy —Y)?
j=1

and

Sy, = zm: F).

]

Using these sample estimates and equation (2.2), we obtain a strongly consistent estimate for
2

o,

m
6% = S% — 2fix Sy, + 1% S? = Z Y —fix7j)?

Now, substituting into equation (2.3) and applying Slutsky’s theorem [5], we have

—\/m(gx - x) 2, N(0,1) as m — oo;
ov/T
and for m sufficiently large, an asymptotically valid 100(1 — )% confidence interval for the

steady-state mean px is
oy
bx £21-g/2 —F—= Jm7

where 2,_g/5 is the (1 — 3/2)-quantile of the standard normal distribution.

What makes the regenerative method appealing in practice is that it is relatively simple to
implement, the initialization bias problem is not an issue, and the random vectors {(Y}, ;) :
j =1,...,m} are truly i.i.d. Like the replication/deletion method, however, a regenerative
approach could possibly require an enormous run length n(m) in order to obtain a sufficiently

large number of regenerative cycles m (generally we need m > 100 [30]). Furthermore, there

12



are a number of simulation problems of interest where the expected time between successive
regeneration times is extremely long and therefore do not admit a regenerative analysis—type
approach. The M/M/1 queue with traffic intensity close to one is one example of such a

problem.

2.1.3 Method of Batch Means

Assume the output process X1, Xo, ..., is stationary so that the joint distribution of the X;’s
is insensitive to time shifts and E[X;] = pux. Also assume the process is weakly dependent in
the sense that X;’s far from each other in the sequence are almost independent. That is, the
lag-l correlation px(I) — 0 as |[| — co. In the classical nonoverlapping batch means (NOBM)
method, we make one long simulation run of length n and divide the observations Xi,..., X,
into k adjacent nonoverlapping batches, each of size m (so that n = km).
Let .
mj
X;j=— Y X; for j=1,...,k
m ,
i=m(j—1)+1

denote the sample mean of the jth batch and let the grand mean

be a point estimate of the steady-state mean px. If the batch size m is chosen large enough,
then we can treat the batch means {Yj : 1 < j < k} as approximately independent and

normally distributed random variables with E[X;] = ux and

m—1
varl¥;] = - [mm r2y (1-2) vXa)]
=1

X
— as m — oo,
m

Q

where vx is the SSVC of the process and vx(l) is as defined in (1.6). The sample variance of
the k£ batch means,

) 1 & =2
S ZHZI(X]-—X) , (2.4)
]:

is used as an estimate for Var[X;]. With m — oo and k fixed so that n — oo, we can construct

an asymptotically valid 100(1 — 3)% confidence interval for the steady-state mean py in the

13



following way,

= S
X =+ tl—ﬁ/?,k—lﬁ'

The main difficulty with any NOBM procedure is the determination of an adequate batch

(2.5)

size m so that the batch means {X;} are approximately uncorrelated and normal. In Steiger
and Wilson [57], an improvement to the classical NOBM confidence interval (2.5) is developed.
Their method is based on the observation that the batch means {X;} often achieve approximate
joint multivariate normality at a batch size m that is substantially smaller than the batch size
required to ensure approximate independence of the batch means. Their method for steady-
state simulation output analysis, called ASAP (Automated Simulation Analysis Procedure),
addresses both the initial bias problem and the correlation problem. Furthermore, ASAP is
equipped with a scheme for controlling the simulation run length in order to deliver a confidence
interval satisfying a user-specified precision requirement. The precision requirement can either
be specified as a maximum absolute half-length A* or a maximum fraction r* of the magnitude
of the final estimate of the mean.

Once the user has supplied a simulation-generated sequence {X; : i = 1,...,n}, a confidence
coefficient 1 — 3 specifying that the desired confidence interval coverage probability is 1— 3, and
an absolute or relative precision requirement, ASAP delivers a nominal 100(1 — 3)% confidence
interval for ux that satisfies the specified absolute or relative precision requirement, provided
no additional simulation is required; or otherwise, ASAP requires a new, larger sample size n

to be supplied to the algorithm. Iteration i of ASAP executes the following steps:

[1] Divide the total simulation output {X; : j = 1,...,n;} required so far into k; batches of
size m; (where k1 = 96 and m; = 16 so that ny = kym; = 1,536 by default) and compute
the corresponding batch means {X1, ..., Xy, }.

[2] Discard the first two batches (to address the warm-up problem).

[3] If the remaining k, = k; — 2 batch means have already passed the independence test,
then compute the updated confidence interval (2.5)—(2.6) and go to step [6]; otherwise,
test the remaining k; = k; — 2 batch means for independence using von Neumann’s ratio
of the sample mean square successive difference to the sample variance [20], using the
level of significance ay,q = 0.2 for the two-sided independence test. If the batch means
{X3,..., Xk, } pass the test for independence, then the classical NOBM confidence interval
(2.5) is constructed with midpoint X and half-length

S

H=t_gpr-1—F,
R \/l{:{

14

(2.6)



[4]

[5]

where S is as defined in (2.4); and control passes to step [6]. If the batch means
{X3,..., Xk, } fail the test for independence, then go to step [4].

If the remaining batch means have already passed the multivariate normality test, then
compute the updated confidence interval (2.8)—(2.9) and go to step [6]; otherwise, the
batch means are tested for multivariate normality. Sixteen four-dimensional vectors
are constructed by inserting a spacer consisting of two adjacent batch means after each
group of four adjacent batch means to obtain approximately independent 4 x 1 vectors
{y; = [X61-3, X61-2, X61-1,Xe] : I = 1,...,16}. The Shapiro-Wilk test for multivariate
normality [40] is applied to the data set {y; : | = 1,...,16} with level of significance

Qmyn = 0.10. If the batch means fail the test for multivariate normality, then

/
kivi — 96,kipq — kip1 — 2,
miv1 —  [V2m],
nip1 <  kipimiga,

1 — 141
and control returns to step [1].

If the 4 x 1 vectors of batch means {y; : [ = 1,...,16} pass the test for normality, then
an adjustment is made to the classical NOBM confidence interval (2.5) by taking into
account the deviation of the distribution of the NOBM t-ratio,

<l

— KX
\/S2 /K]

from the usual Student’s ¢-distribution with &, — 1 degrees of freedom. The adjust-

t= (2.7)

ment to the critical value t;_g J2,k—1 of Student’s t-distribution is based on an inverted
Cornish-Fisher expansion for (2.7) that involves the first four cumulants of (2.7). This
type of adjustment will take into account the dependence between the batch means. An
estimate of the variance of the grand mean, ?, is then computed by first fitting an
autoregressive-moving average (ARMA) time series model [8] to the sequence of k batch
means {X3,..., Xy, }. The estimator @[?] is then derived from the maximum likeli-
hood estimators of the parameters of the fitted ARMA process. A confidence interval of

the form

X + H, (2.8)



[6]

where

Ro—1 Ry Ry 4 Var(X)
H = |:<1 + 9 - g) 21_6/2 + ﬂ Zl—ﬂ/2:| T, (29)

is computed. In (2.9), Ry and K4 are estimates of the second and fourth cumulants,
respectively, of the NOBM ¢-ratio (2.7).

Determine if the current confidence interval satisfies the user’s precision requirement,

H<H", (2.10)
where
0, for no user-specified precision level;
H* = ¢ r*|X]|, for a user-specified relative precision level r*;
h*, for user-specified absolute precision level h*.

If (2.10) is satisfied, then ASAP terminates, returning the current confidence interval.
If the precision requirement (2.10) is not satisfied, then ASAP computes the additional
number of batches k::r with batch size m; that are required to satisfy (2.10),

K= {(5)24 K

If for iteration ¢ 4+ 1 the total number of batches k; 4+ k‘f > 1502, then a new batch size is

calculated,

mip1 = {\@sz
and the batch count remains fixed so that
kiv1 < k.
If k; + k:r < 1502, then a new batch count is computed,
kiv1 = ki +k;

and the batch size remains fixed,

Mi41 < My.

The iteration index is updated,
1—1+1,

and control passes to step [1].
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Notice that in general, iteration i + 1 of ASAP begins by deleting the first two batches of
size mj;1 from the data set {X; : ¢ = 1,...,n;41}, where n;41 = m;;11k;+1. Batch means are
computed for the remaining kj ; = kj;1 — 2 batches. Iterations of ASAP that are executed to
fulfill the precision requirement (3.55) do not involve retesting the batch means for independence
or normality. If a correlation-adjusted confidence interval was constructed on iteration ¢, then
an updated ARMA model is fit to the current set of £}, ; batch means. A new estimate of Var [?]
is computed from the ARMA model and the updated confidence interval (2.8) is computed. If
the classical NOBM confidence iterval (2.5) was used on iteration 4, then (2.5) is recomputed
using the current set of batch means. If the precision requirement (3.55) is satisfied on iteration
i+ 1, then ASAP terminates. If the precision requirement is not satisfied, then ASAP computes
a new total number of batches k; o and a new batch size m; 2 as described above and procedes
to iteration ¢ + 2.

One advantage of ASAP is it is completely automated and requires no user intervention.
Experimental results indicate the method performs well for a variety of problems. However,
there are certain stochastic systems for which significant departures from normality of the
batch means are observed even for batch sizes sufficiently large to ensure negligible dependence
between the batch means. That is, if the batch means pass the test for independence, then
the classical confidence interval (2.5) is constructed, even though it is possible the batch means
may exhibit significant departures from normality. In order to avoid the anomalous behavior
of ASAP in such cases, an improved variant of ASAP, ASAP2, was developed [58]. Like ASAP,
ASAP2 is a sequential procedure for steady-state simulation output analysis where a user-
specified precision requirement is used to control the run-length of the simulation. The main
difference between ASAP and ASAP2, however, is that ASAP2 does not require a test for
independence. Step [3] in the above algorithm for ASAP is eliminated in ASAP2, and the
batch means are only tested for multivariate normality. Upon acceptance of the hypothesis of
joint multivariate normality of the batch means, the correlation-adjusted confidence interval
(2.8) is constructed. Another difference between ASAP2 and ASAP is the first four batches
are removed in ASAP2 to account for the warm-up period and the spacer used to separate the
batch means used in the multivariate normality test consists of four batches, as opposed to the
two batches used in ASAP. Furthermore, instead of having a fixed level of significance apyn
in the multivariate normality test like the ASAP algorthim has, ASAP2 reduces the level of

significance on iteration ¢ of the normality test after each failed test according to,
Cmen (i) = e (Dexp [—7(i = 1)?] for i=1,2,..., (2.11)

where ayyn(1) = 0.10 and 7 = 0.18421. This scheme for reducing the level of significance on
each iteration of the normality test is designed so that ASAP2 avoids the excessive variability in

the final sample size and confidence-interval half-length that is sometimes observed with ASAP.

17



An extensive performance evaluation indicates that ASAP2 frequently outperforms ASAP in
terms of confidence interval coverage, the mean and variance of the half-length of its confidence
intervals, and its total sample size. It should be recognized, however, that ASAP2 was designed
for use with a user-specified precision requirement; and in the absence of a precision requirement,

ASAP2-generated confidence intervals can be highly variable in their half-lengths.

2.1.4 Standardized Time Series Analysis

Let X;; denote the ith observation from the jth replication of a steady-state simulation, 1 <

i < m;let
m

> X

- 1
X;=—
mizl

be the sample mean for the jth replication, j = 1,...,k (or alternatively, X;; may be interpreted
as the ith observation within the jth batch of size m for a single, prolonged simulation run so

that X is the jth batch mean for batches of size m in a run of length n = km); and finally let

be the grand mean over all replications (or batches). We will assume that the output process
from the jth replication (or batch) {X;; : 1 < ¢ < m} is stationary and X;; and X ;4 are
asymptotically independent as | — oo in the sense of ¢-mixing [6].

Define the standardized process

L]
1 —
Ty(t) = —— > (X - X)) for 0<t<1, (2.12)
=1

where [-| denotes the greatest integer function and ~x is the SSVC. It has been proved that
as m — oo, the function 7}(-) converges in distribution to a Brownian bridge process [22].

Furthermore, we define

u=1 m u=1i=1
and
12 k ) k - .9
A:leAjerZl(Xj—X) . (2.13)
1= )=
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Since T}j(-) converges to a Brownian bridge process as m — oo, it can be shown that:

k
12
mZA? 2, vxx2(k) as m — oo, (2.14)
j=1

where x2(k) denotes a chi-square random variable with k degrees of freedom;
o =2 p
mZ(Xj—X) = yxxX*(k—1) as m — oo; (2.15)
j=1

and finally that (2.14) and (2.15) are independent. These results imply that

A p X*(2k—1)
— = 2= as m — o0.
x (2k — 1) 2%k — 1
If m is sufficiently large so that the sample means {X; : 1 < j < k} are (approximately)

independent, identically distributed normal random variables, then

?—,ux d A
2 Vx(2k —1)

are stochastically independent.

We are now in a position to construct a Student t-ratio in the following way. Since

>l

4 —Hx N(0,1),
x
km
we have
T
Va5 X _
b fX ~top 1 S M — 00, (2.16)
\ 7x(2k—1) \/ Em(2k—1)

where to_1 denotes a random variable having Student’s ¢t-distribution with 2k — 1 degrees of
freedom. This implies that for 0 < 8 < 1, we have

<l

m—00

— KX
—— < t1—6/2,2k—1} =1-4.

lim Pr {_tl—ﬂ/2,2k—1 <
km(2k—1)

Therefore, a 100(1 — 3)% asymptotically valid confidence interval for the steady-state mean px
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is

prm— .A
X £t p/20k-1 2k — 1)

Notice that in equation (2.16) in the above analysis, the SSVC ~x cancels out, thereby
eliminating the problem of having to estimate it. This is one of the appealing aspects of a
standardized time series approach. There are several disadvantages to this method, however.
First, the entire method is based on the fact that as m — oo, the standardized process Tj(-)
converges to a Brownian bridge process. It can take extremely large values of m for such a
convergence to take place, however. Second, the method is complicated, making it more difficult

to implement in practice than other methods for steady-state simulation output analysis.

2.2. Fourier Methods

Fourier analysis plays a key role in the development of spectral methods for steady-state out-
put analysis, as well as wavelet theory. Therefore, we will first introduce some basic Fourier
results before discussing spectral methods for simulation output analysis. Let R denote the real

numbers. Any periodic function f(t),t € R, with period 27 satisfying

2m
I718= [ 7P < o (217)

is said to belong to the space Lo[—m, 7] of square-integrable, real-valued functions on the interval
[—7,7]; and any f(t) staisfying (2.17) can be expressed as a linear combination of sine and cosine

functions in the following way,

1
flit) = 540 + E ancos(nt) + E bpsin(nt) almost everywhere, (2.18)
neN neN

where N = {1,2,...} denotes the set of natural numbers [10]. Equation (2.18) is called the

Fourier series for f(t); and the Fourier coefficients a,, and b, are evaluated as follows,
1 ™
a, = —/ f(u) cos(nu) du, n e NU{0},
-
1
b, = —/ f(u) sin(nu) du, n € N.
™ J-m
Equivalently, the Fourier series for f(t) can be written

fit) = Z f(n) exp(nty/—1) for almost all ¢,

ne”L
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where the Fourier coefficients f(n) are computed as follows,
R 1 7
fln) = %/ f(u) exp(—nuv—1) du, neZ

[3]. The term corresponding to n = 1 in (2.18) is called the fundamental, and represents a
cosine/sine wave whose period is exactly that of the function f(¢). The next term, corresponding
to n = 2, is called the first harmonic and represents a cosine/sine wave whose period is exactly
half that of f(¢). The terms corresponding to n = 3,4, 5, ... are called the second, third, fourth,
etc., harmonics [47].

Suppose f(t),t € R, is now any function (that is not necessarily periodic) satisfying

I18= [ 1Pt < .

so that f € La(R), the space of square-integrable, real-valued functions on the real line R. We

define the Fourier transform of f(t) as follows,

Flw) = /_ " F (1) exp(—wtv/=T) dt for all real w. (2.19)
We can recover the original function f(¢) by using the inverse Fourier transform,

ft) = % /_O:o f(w) exp(wtv/—1) dw for almost all real t. (2.20)
Alternatively, (2.19) and (2.20) may be written as
flw) = /_ "Rt {cos(wt) — V=T sin(wt)} dt

and

£ = 5= [ F) {costwt) + VT sinwt)} do (2.21)

respectively. If f(t) = f(—t) for all ¢t € R (that is, f is an even function), then from (2.21) we

get the cosine transform,
1 [ .
ft) = 2—/ f(w) cos(wt) dw for almost all real ¢. (2.22)
T J—c0

Similarly, if f(t) = —f(—t) for all t € R (that is, f is an odd function), we have the sine
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transform,
1 oo .
1) =5 / F(w) sin(wt) dw for almost all ¢ € R (2.23)
T J—o00

[47].

The Fourier transform and its inverse are used to reproduce a function f(t) as a sum of
the complex exponentials, exp(nty/—1),n € Z [35]. However, if f(¢) has a sharp spike, then
reproducing f(t) by summing a series of complex exponentials is inefficient. In particular,
the narrower the spike, the more high-frequency complex exponentials must be used in the
construction of f(¢) using equation (2.20). Since these complex exponentials repeat the same
oscillatory behavior all along R, more complex exponentials will be required in order to cancel
the previous ones before and after the spike occurs. In this way, the Fourier transform is not
an efficient method for reconstructing functions with local behavior, such as a sharp spike.

A more efficient method for estimating a function f(¢) with local behavior is the windowed
Fourier transform (WFT). The goal of the WEFT method is to localize a function f in the
time domain and the frequency domain simultaneously. Only the values f(u) for u < ¢ can be
used to compute the frequency distribution of f at time ¢. Furthermore, there is a time lag
T > 0 such that only the values f(u) for ¢t — T < u < t can influence the frequency at time ¢.
This information can be used to construct a weight function, or window, that will be used to
localize a function in time. Let g(u) be a real-valued function that vanishes outside the interval
—T <u <0. For every t € R, define

fi(u) = g(u—1) f(u),

where f; is a localized version of f that depends only on the values f(u) for t =T <u <t. We

define the windowed Fourier transform of f as the Fourier transform of f,
fiw) = / Filw) exp(—wuy/=1) du (2.24)
= / glu—1t) f(u) exp(—wuyv—1) du.

—00

To reconstruct f from ft, we use the following reconstruction formula,

1 0o 0o R
flu) = —— / / exp(wuy/=D)g(u — ) filw) dw dt, (2.25)
2mligllz J—o0 J—oo
which holds for almost all u € R, provided f, g € Lo(R) and ||g||3 > 0 [35].

While the WF'T method is more efficient in reproducing functions with local behavior than

the Fourier transform method, the WFT can be inefficient when the local behavior occurs in
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a much shorter time interval than the truncation point 7" for the window. A similar problem
occurs when very long and smooth features of the function are to be reproduced by the WE'T
(that is, features of the function f characterized by time intervals much greater than the trun-
cation point T'). In summary, the WFT introduces a scale into the analysis and reconstruction
of functions equal to the magnitude of the truncation point T'. The reproduction of features of
f much shorter or much longer than this scale will require the combination of many complex

exponentials.

2.3. Wavelet Theory

The goal now becomes to find a method for analyzing and reproducing functions with local
behavior that does not require a fixed scale. Wavelet analysis is such a method. Consider the
wavelet function ¢(t) € Lo(R). Using the terminology of the WFT method, we can think of
¥ (t) as a window function. However, to avoid the problems associated with using a fixed scale,
we will use all possible scalings of (). In particular, let ¢, ;(t),a € R\{0},b € R, be a family

of functions created via translations and rescalings (or dilations) of the wavelet function (),

t—0
Yo p(t) = |a|™P o (T) for all real ¢, (2.26)

where p > 0 is fixed and a is the scaling parameter. For general a > 1, 1,;(t) is obtained by
stretching 1 (t) by the factor a in the horizontal direction. Similarly, if 0 < a < 1, then g (t)
is obtained by compressing 1(t) in the horizontal direction. If a < 0, then v, ;(t) is obtained
by reflecting v (t) with respect to the vertical axis.

The wavelet function () is assumed to satisfy the following admissibility condition,

Cy = /oo el 4, < 00, (2.27)

—oo W]

where 1 (w) is the Fourier transformation of ¢ (¢). The admissibility condition (2.27) implies

that @(w) — 0 as w — 0; and it follows from Lebesgue’s dominated convergence theorem that
b0 =0= [ vl dr
Furthermore, it is assumed that v (¢) has unit norm,

Wl = [ v at=1.

23



The continuous wavelet transform (CWT) of a function f(¢) is defined as
fowrlab) = [ 1) baslt) dt. (2.28)

Note that the scale parameter a and the translation parameter b vary continuously over R\{0} x
R. When the admissibility condition (2.27) is satisfied, it is possible to find the inverse contin-

uous wavelet transformation using the resolution of identity,

1 o0 o0
10 = & / { / fown(a,b) ap(t) (a3 da| db for almost all € R,

provided f € Ly(R) and Cy > 0 [62].
Since all scales a # 0 are used in the CWT (2.28), the reconstruction is highly redundant.
Ideally, the entire frequency spectrum should be covered by discrete scalings of 1(t) [35]. Let

a=27b=k277,j,k € 7. (2.29)

If we set p = 1/2 and substitute the values of a and b given in (2.29) into (2.26), we have a
family of functions {v;x(t) : j,k € Z} created via discrete translations and rescalings of the

wavelet function v (t), where
Uin(t) =220t k), j.k €T

Using the above values of a and b, we have a discrete transformation that is invertible and
furthermore, all information about the decomposed function will be preserved. In the next

section, discrete wavelet transformations for the values of a and b given in (2.29) are described.

2.4. Multiresolution Analysis

Multiresolution analysis was formulated in 1986 by S. Mallat and Y. Meyer [41]. Multiresolution
analysis is used for performing discrete wavelet analysis, as well as the construction of wavelet
functions. A multiresolution analysis is a sequence of closed subspaces {V; : j € Z} in Lo(R).

This sequence of “successive approximation spaces” satisfies the following conditions:

(i) {V; : j € Z} is an increasing sequence of subspaces so that

- CVaaCcVoayaCcVoC ViV (2.30)

(ii) the subspace defined by the limit of {V} : j € Z} is dense in La(R) so that the closure of
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UjEZ ‘/j7

cl (U 1/]-) = Ly(R); (2.31)

JEZ
and

(iii) the null function (that is, the function go(z) = 0 for almost all € R) is the only common
element of all the {V}},

Vi ={0} (2.32)

JEZ.

[41]. There are several additional requirements the sequence of subspaces {V;} must satisfy to

form a multiresolution analysis. First, the V-spaces must be self-similar,
f(27t) € V; if and only if f(t) € Vg for all j € Z. (2.33)

That is, all the V-spaces are scaled versions of the central space V. Second, V[ must be

invariant under integer translations,
f(t) e Vy implies f(t—k) € Vp forall k€ Z. (2.34)

Finally, there must exist a scaling function ¢(t) € Vj so that

{Pok(t) : k € Z} (2.35)
is an orthonormal basis for V{;, where

o k() = 22927t — k), jk € Z.

From (2.33) and (2.35), we see that

{djk(t) - 4,k € Z}

is an orthonormal basis for V; [16]. We will also assume

/ (t) dt £ 0.
R
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Whenever a sequence of subspaces satisfies the properties of a multiresolution analysis, then

there exists an orthonormal basis for Ly(R),
{w],k’(t) = 2]/2¢(2]t - k)’jv ke Z})

where 1(t) is the mother wavelet function obtained from the scaling function ¢(t):

b(t) = V2 e k(=1)"o(t — k), (2.36)

kEZ

where
;) / Y b2t —k) dt, ke Z, (2.37)

are the (generalized) Fourier coefficients of ¢(t) in V; with respect to the orthonormal basis
{V2¢(2t — k) : k € Z} for V; [16]. If we fix some jo € Z, then any target function f(t) € La(R)

can be expressed as

ft) = Z CiokPijo k(1) + Z Z d;j k¥ k(t) for almost all ¢, (2.38)

keZ J=Jjo k€Z

where the scaling coefficients

Cjok = /Rf(t)éf)jo,k(t) dt for k€ Z,

and the wavelet coefficients
djr = / f)Yk(t)dt for k€ Z and j > jo
R

are defined as the inner product of f(¢) with the basis functions ¢;, x(t) and ; x(t), respectively
[62]. The representation (2.38) is analogous to the Fourier series representation of a square
integrable function on the interval [0,27) in terms of trigonometric basis functions.

The discrete wavelet transform (DWT) maps data from the time domain to the wavelet

domain [62]. Wavelet transforms are linear and can be defined by the matrix operation
W =0X, (2.39)

where X = (X1,..., X,,)" is the original data vector, @ is the nxn matrix that defines the DWT
associated with the particular scaling functions and wavelet functions used in the representation

(2.38), and W is the n x 1 vector of estimated scaling and wavelet coefficients. Extending the

26



analogy between wavelet analysis and Fourier analysis, we see that transforming a data set via
the DWT closely resembles the process of computing the Fast Fourier Transformation (FFT)
of that data set. Because of the orthogonality of @, the inverse DW'T is given by

X =0Tw, (2.40)

where ®" denotes the transpose of ®. Mallat [41] developed an efficient algorithm to compute
the DWT and the inverse DWT if the total sample size n = 27 for some positive integer J. For
more details on this algorithm, see [46]. In this research, we will assume the sample size n is a
power of 2 and Mallat’s algorithm will be used to compute the DWT and the inverse DWT.
In general, after applying the DWT to a data set {X; : i =1,...,n}, where the sample size

has the form n = 27, we get the following approximation formula for the function f (1),

270 —1 J—1 27—-1

FO) = Y0 Copdjor(t) + D D dixibin(t), (2.41)
k=0 J=jo k=0
where the estimated scaling coefficients {¢;,» : K =0,1,... ,2% — 1} and the estimated wavelet

coefficients {J]k :k=0,1,...,27 — 1} for the jth level of resolution (j = jo,jo + 1,...,J — 1)
all appear as corresponding elements of the vector W defined by (2.39). In general, at the jth
level of resolution, there will be 27 coefficients, beginning with the coarsest level j = jo. In the
remainder of this thesis, any general empirical coefficient in the vector W will be denoted by
W; - An estimated coefficient will be denoted by ), when it is not necessary to distinguish it

as a scaling coefficient or a wavelet coefficient.

2.5. Thresholding Wavelet Coefficients

There are many wavelet model selection procedures in the literature that are based on the idea
of selecting “important” wavelet coefficients and setting to zero the “unimportant” coefficients.
These methods attempt to find an optimal number of coefficients to accurately represent the
data, thereby leading to a simplified and smoother (less noisy) data model. In many situations,
it is often the case that the goal is to estimate a function f(¢) from some set of noisy data

{z;:i=1,...,n}. Suppose the data x; are given by
z; = fi + €, (2.42)

where the errors {g;} are i.i.d. with &; ~ N(0,02) and f; = f(i) for i = 1,...,n. When we take
the DWT of the noisy data vector

X:(xla"'axn)T:(fl+517°"7fn+€n)T7
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we have
Dk = Fik + i (2.43)

where: @;; denotes a particular element in the vector W of scaling and wavelet coefficients
in (2.39); and f]k and €; are the corresponding coefficients at the jth level of resolution for
the “signal” component (fi,..., f,)" and “noise” component (c1,...,e,)" of X, respectively.
From (2.43), we see that each coefficient, @, 1, generated by the DWT contributes noise with
variance 0'52“' By shrinking the small coefficients to zero, this noise can be removed, while at the
same time preserving the original features of the function f.

One method often used to fit data using wavelets is to compute a set of multiresolution
approximations [42, 9]. This method involves first constructing an approximation to the data
using the coarsest-level signal and then adding increasingly finer levels of resolution. As more
levels of resolution are used, the approximation to the target data set improves. Figures 2.1-2.3
below depict multiresolution approximations to a data set of size n = 128 that we obtained
from a rapid thermal chemical vapor deposition (RTCVD) process. For more information on

the RTCVD process, see [38]. Notice in particular the following aspects of Figures 2.1-2.3:

(i) In the top panel of Figure 2.1, the solid curve represents the wavelet approximation to
the data set based on taking the level index jp = 2 in equation (2.38) and then estimating
only the coefficients {ca 1, : k = 0,1,2,3} of all relevant shifts (translations) of the jp-level
scaling functions {¢9 (t) : k € Z} while setting all other coefficients on the right-hand
side of (2.38) to zero. Thus the top panel of Figure 2.1 depicts the accuracy of the wavelet

approximation to the target data set based on four coefficients at the coarsest level.

(ii) In the bottom panel of Figure 2.1, the solid curve represents the wavelet approximation
to the data set based on estimating the eight coefficients at the top two coarsest levels—
namely, the coefficients {co : k = 0,1,2,3} of all relevant shifts of the jo-level scaling
functions {¢9(t) : k € Z} and the coefficients {daj : k = 0,1,2,3} of the corresponding
shifts of the jo-level wavelet functions {13 1 (t) : k € Z}—while setting all other coefficients

at the finer levels to zero.

(iii) In the top panel of Figure 2.2, the solid curve represents the wavelet approximation to
the data set based on estimating sixteen coefficients—namely, all the jg-level coefficients
mentioned in the previous item (ii) and the coefficients {d3; : & = 0,1,...,7} of all
relevant shifts of the (jo + 1)-level wavelet functions {13 (t) : k& € Z}—while setting all

other coefficients at the finer levels to zero.
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Figure 2.1: Multiresolution approximation to a run of the RT'CVD process using four coefficients
(top panel) and eight coefficients (bottom panel).

(iv) Similarly in the remaining panels of Figures 2.2 and 2.3, the solid curve represents the
wavelet approximation to the data set based on estimating the indicated number of co-
efficients up to and including all relevant shifts of the next-higher-level wavelet functions
while setting all other coefficients at the finer levels to zero. At each level j in this ex-
ample, there are 2/ nonzero coefficients {djr:k=0,1,... , 29 — 1} associated with the

relevant shifts of the corresponding wavelet functions {1; x(t) : k € Z}.

Notice the improvement in the approximation as more levels of detail are added by including
coefficients at the finer levels hierarchically. At the finest level of resolution with index j =
jo +4 = 6, the total number of estimated wavelet coefficients equals the size of the data
set (n = 128) so that the data set is exactly reconstructed as shown in the bottom panel of
Figure 2.3.

While easy to use, this type of “linear” multiresolution approximation tends to oversmooth
the data. For example, in the bottom panel of Figure 2.1, the eight coefficients in the two
coarsest-resolution levels are unable to represent the dip around sample number 40. Of course,
if such a dip in the data is considered to be less important or data noise, then it is reasonable

to filter out that dip. However, if that dip is considered to be an important characteristic of the
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Figure 2.2: Multiresolution approximation to a run of the RTCVD process using sixteen coef-
ficients (top panel) and thirty-two coefficients (bottom panel).

target data set, then we should use “nonlinear” approximation methods. In particular, nonlinear
methods that select “important” wavelet coefficients (usually the largest in magnitude) and
set to zero the “unimportant” coefficients (usually those representing noise) are effective in
accurately representing small jumps or dips in the data with typically fewer coefficients than
an approach based on a straightforward multiresolution approximation. One simple nonlinear
approximation method is to select a certain number of coefficients with the largest magnitude,
regardless of the level of resolution, and set the remaining coefficients to zero. Figure 2.4 shows
a reconstruction of the same data set depicted in Figures 2.1-2.3 using the eight estimated
wavelet coefficients having the largest magnitudes. Even though this reconstruction is not
perfect, the dip around sample number 40 is represented. Figure 2.5 shows the same data set
reconstructed with the nineteen estimated coefficients having the largest magnitudes. From
this plot, it is clear that it is possible to achieve an excellent approximation to the data using

as few as nineteen coeflicients.
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Figure 2.3: Multiresolution approximation to a run of the RTCVD process using sixty-four
coefficients (top panel) and 128 coefficients (bottom panel).
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Figure 2.4: Reconstruction of the RTCVD data set using the eight largest-magnitude coeffi-
cients.
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Figure 2.5: Reconstruction of the RTCVD data set using the nineteen largest-magnitude coef-
ficients.
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Another nonlinear approximation method for the selection of significant wavelet coefficients
was proposed by Donoho and Johnstone [18]. Their thresholding method is based on the idea
that wavelet coefficients are set to zero if their absolute value is below a certain threshold level
A > 0. The two most common thresholding rules are hard and soft. Using either the hard or

soft thresholding rule, we obtain the thresholded scaling coefficients,

Cio ke = OA(Cio k)5 (2.44)
where
y if [yl > A
9 = 2.45
A) {0 e (245)
for hard thresholding and
Ux(y) = sgn (y)max(0, [y — A), (2.46)

for soft thresholding. Similarly, we obtain the thresholded wavelet coefficients

ik = Ua(djir),
where ¥, is as defined in (2.45) or (2.46). Hard thresholding is a “keep or kill” rule, whereas

soft thresholding is a “shrink or kill” rule. Once the thresholded coefficients are obtained (using

either the hard or soft rule), the original function f can be reconstructed in the following way,

270 —1 J—1 27-1 R
FO) = Y e ibjo st + D D diyibin(t).
k=0 j=jo k=0

The choice of an appropriate threshold A is crucial for the effectiveness of the thresholding
method for removing noise. If the threshold is too large, certain local features of the target
function may not be preserved. On the other hand, if the threshold is too small, there will be
noise in the reconstructed function. There are many techniques for selecting a threshold in the

literature. Donoho and Johnstone developed the universal threshold [17],

A= %,/mn(n), (2.47)

where

o? = Var(e;) = 0 = Var(gj;) for i=1,...,n. (2.48)
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Equation (2.48) holds since the wavelet transform is orthogonal. The universal threshold is
appealing because of its simplicity. In practice, however, it tends to oversmooth. That is, the
only feature of the data used to compute the universal threshold is o.. For large samples, it
has been shown that the universal threshold will remove all the noise in the reconstruction
with high probability, but features of the original, underlying function may be lost as well
[1]. As an alternative to the universal threshold, Donoho and Johnstone proposed an adaptive
threshold. Their procedure, called SureShrink, removes noise by assigning a threshold to each
multiresolution level by minimizing the Stein unbiased estimate of risk (SURE) for threshold
estimates. For more details about the SureShrink procedure, see [18]. There are a number of
other thresholding schemes in the literature, including methods that utilize Bayesian approaches
and the statistical technique of cross-validation to select a threshold. For a comprehensive
overview of these methods, as well as others, see [45] or [62].

When selecting a threshold, there are no specific rules. In most cases it depends on the
application. The top plot of Figure 2.6 below shows a noisy doppler signal that was created by
sampling n = 1024 equally spaced points on the interval [0, 1] of a doppler signal with random
noise added to it. The middle plot shows the reconstruction of the doppler signal after applying
a soft threshold to the wavelet coefficients using Donoho and Johnstone’s SureShrink method.
The bottom plot of Figure 2.6 shows the same noisy doppler signal reconstructed after applying
a soft threshold to the wavelet coefficients using the universal threshold (2.47). The sample
standard deviation of the finest scale detail coefficients {cj g1k k=0,... .27 ~11 was used to
estimate the standard deviation, o., of the noise term ¢; in (2.42). This is the default method
for estimating o, in the statistical software package S-Plus [9]. For the doppler signal in Figure
2.6, it appears that the universal threshold results in a slightly smoother, less noisy signal than
the SureShrink method. For a comprehensive overview of proposals for threshold selection, see
[45].

2.6. Wavelet-Based Estimation of the Spectrum

The analysis of a time series {X;} can be conducted in either the time domain or the frequency
domain. In the time domain, the relationship between observations at different points in time
is studied. In the frequency domain, the cyclical movements of the data are studied [21]. These
two methods for analyzing time series data are complementary and each provides a different
insight into the behavior of a particular time series.

One important tool for exploring the frequency behavior of a time series is estimation of

the spectral density (or power spectrum). The spectral density function py(w) of the process
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Figure 2.6: Doppler signal with random noise (top panel). Reconstruction of the doppler signal
after applying the SureShrink method to the wavelet coefficients (middle panel). Reconstruction
of the doppler signal after applying the universal threshold to the wavelet coefficients (bottom
panel).

{X;:i=1,...,n} is defined as follows,

Sw<

DN =

, (2.49)

px(w) = i vx (I)cos(2mwl)  for _%

l=—00

where yx (1) is the autocovariance function, as defined in (1.6). From (2.22), we see that the
spectral density is the cosine transform of the autocovariance function. An asymptotically

unbiased estimate of the spectrum px (w) is the periodogram {I(L), for 0 <1 < n — 1}, where

2 2
l 1 - 2r(5 — 1)1 - . (2m(j — 1)l
Il = - = X. i CO o . -V
(n) " [Z ]cos< - ) + ZX]sm( - )
7=1 7=1
la()[®

_ 2.50
oL (2:50)
where a(l) is the discrete Fourier transform of the process X1, Xa,...,X,. The periodogram
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has the following asymptotic properties for large n:

)] =m().  vei<y
Var{[(%)} ngf(%), 0<i<2,
Cov[[(%) ,I(%)} ~0, 0<l#j<Z, and
1(4) ~px()x2@/2, 0<i<s,

(2.51)

where x%(2) denotes a chi-square random variable with two degrees of freedom so that x?(2)/2
is an exponential random variable with mean one. From the above properties, the advantage
of working in the frequency domain instead of the time domain becomes apparent. While the
original output process {X;} may be highly correlated, the periodogram {I(%) : 1 =1,...,2-1}
is approximately uncorrelated.

In practice, the periodogram is not a good estimate of the spectrum since it does not have
a constant variance. To obtain an estimate that has constant variance, the natural logarithm
of the peridogram is used to estimate the log-spectrum. Several wavelet-based techniques for
estimating the log-spectrum from the log-periodogram have been developed. Both Moulin [43]
and Gao [21] have proposed wavelet-based methods for estimating the log-spectrum, denoted

by

((w) = In{px(w)},

using the thresholding ideas presented in the previous section. In general, both methods follow

the basic steps below:

(i) Expand L; = In{J (%)} fori=1,2,...,n — 1 as a wavelet series using the DWT,
W =0cL, (2.52)
where L is given by
L = [L1,...,Lu]t

= Gy (50))

(ii) Threshold the resulting coefficients ¢, , and C@k to obtain the coefficients ¢7 , and c@’-“ i

T

(2.53)

(iii) Perform the inverse transform
LY =etw
where W* is the vector containing the thresholded coefficients ¢ , and c@’.“k, to obtain

Jo
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the corresponding thresholded wavelet approximation L£* to the vector (2.53) of log-

periodogram values.

The most important step in the above algorithm for wavelet-based estimation of the log-
spectrum is the selection of an appropriate threshold. When we use wavelets to estimate the
log-spectrum, we represent the log-periodogram as a signal plus noise, as in (2.42), where the
signal is the true log-spectrum. However, because the noise associated with the log-periodogram
is not normally distributed, we need to make a modification to equation (2.42). Wahba [63]
proposed the following non-Gaussian model for the log-periodogram using the fourth property

of the periodogram in (2.51),
x*(2) i
Li—E || X :g‘(—>+5l-, i=1,2,....n—1, (2.54)
n

where ¢ (%) is the log-spectrum at frequency i/n and ¢; is the noise, or error term, with

L (X© X*(2)
5i—ln< 5 )—E ln< 5 )],

so that the §; have zero mean and are i.i.d. Furthermore, by calculating the first two derivatives

of the moment generating function of d; at zero, we see that

o (22 .

where v ~ 0.57721 is the Euler-Mascheroni constant and

2
E[5] =0 and Var[o;]= %, i=1,2,...,n—1. (2.56)

Using (2.55), we can rewrite (2.54) as follows,
L= ¢ (%) 44 (2.57)

When we take the DWT of the log-periodogram, we have from (2.53) that

1 -1 T
Lo (3) v +annc ()t an| (2.58)
n n
and thus the components of W defined by (2.52) have the form
@jg = Gk + Ok (2.59)
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where: @; j represents a particular coefficient for the log-periodogram at resolution level j; and
Zj,k and gj,k are the corresponding estimates at the jth level of resolution for the translated log-
spectrum [C (%) —Y,...,C ("T_l) — 'y}T and the error component (d1,...,d,_1)", respectively.
That is, each coefficient ;; has a certain amount of noise, gj,k, corrupting it. Furthermore,
the distribution of the coefficient ngg is independent of the translation index k, but depends on
the resolution level j.

Since the error term &; in (2.54) is log-x? distributed, thresholding techniques based on
normally distributed noise, like those in the previous section, cannot be used to estimate the
log-spectrum. To address this problem, both Gao and Moulin developed thresholds for wavelet-
based estimation of the spectrum that depend on the multiresolution level. Gao’s soft thresh-
olding algorithm for the empirical wavelet coefficients {c@k :k=0,1,...,27 —1} at a particular

resolution level j is given below,
T .
\; = max [—,/2111 n), 2-=i=D/41©2n)| for j=jo,jo+1,...,J — 1. 2.60
J \/@ ( ) ( ) J =Jo,Jo ( )

Because the empirical scaling coefficients {¢;, » : £ =0,1,... , 290 — 1} contain important infor-
mation about the underlying coarse features of the signal, they are not thresholded.

The practicality of Gao’s thresholding scheme can be justified as follows. Since ® is an
(n — 1) x (n — 1) orthogonal matrix [46], it follows that the variance-covariance matrix of the

(n —1) x 1 wavelet coefficient vector W in (2.52) is given by

Cov(W) = ©Cov(L)OT
7I‘2 T
e EI(n—l)X(n—l) S

Q

_ Teet
6

7T2

= G ln-1xm-1) (2.61)

where I(,,_1)x(n—1) denotes the (n —1) x (n — 1) identity matrix; and it follows from (2.61) that

Var(Ejmk):Var(dj,k):% for k=0,1,...,29 —1 and j=jo,jo+1,...,J — 1 (2.62)

Moreover, if the dependence structure of the time series {X; : i = 1,...} dies off sufficiently

fast, then the empirical coefficients J]k will be asymptotically normal,
djx —E[d;1] ~ N(0,7%/6), as n— oo and j — jo (2.63)

[21]. Typically, the longer the memory of the time series, the weaker the asymptotic normality
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When computing the DWT of the log-periodogram as in (2.52), we calculated each coefficient
as a linear combination of terms in the log-periodogram. The number of terms in the linear
combination for a particular coefficient at resolution level j increases exponentially as j — jg.
As a result, for the coarser levels of coefficients (j close to jg), there are a sufficient number
of terms in the linear combination used to compute the DWT for the Central Limit Theorem
to take effect, leading to (2.63). Therefore, when n is large, the universal threshold (2.47) can
be used for the coarse levels of resolution since Gaussian approximation applies. Notice that
the first term on the right hand side of (2.60) is in fact the universal threshold (2.47) with
0. = m/\6.

For the finer levels of resolution (j > jp), the normality approximation breaks down since
the coefficients at a fixed resolution level 7, {c@k :k=0,...,27 — 1}, are linear combinations
of a small number of points in the log-periodogram. That is, there are not enough terms in the
linear combination used to compute a particular coefficient c@k for the Central Limit Theorem
to take effect. Gao developed the threshold given in the second part of the right-hand side of
equation (2.60) for the finer levels of resolution where the Gaussian approximation cannot be
applied. This threshold will in general be larger than the universal threshold since a stricter, or
larger threshold is needed at the finer levels of resolution where the departure from normality
is the greatest. For details on the derivation and justification of this threshold, see [21].

As an alternative to Gao’s threshold for estimation of the spectrum, Moulin’s wavelet-based
method for estimating ((w) = In{px(w)} includes a hard thresholding scheme based on a
saddlepoint approximation to the distribution of the sample wavelet coefficients of £. The goal
of Moulin’s thresholding method is to shrink the small coefficients towards zero, since those

coefficients are likely due to noise. This is done by testing the null hypothesis
Ho : dj,k =0

against the alternative
Ha : dj,k 75 0,

for each wavelet coefficient d; . The null hypothesis is accepted when the empirical coefficient

~

djk falls in the acceptance region [A;, )\j] at significance level o (0 < @ < 1), where A\; < 0
and AJ > 0. That is,

R AT
Pr[A; < dj < AF[Ho) = A U dGs () =1-a, (2.64)
-

where Gfg'k(u) is the cumulative distribution function (c.d.f.) of the error term gj,k in (2.59).
s

Since the distribution of gj,k is asymmetric with respect to the origin, the values of A, and )\j
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can be different. This hypothesis test is equivalent to applying the following hard threshold to

the empirical wavelet coefficients,

g 2.65
Gk otherwise. ( )

- { oA if A <djp <AS
djx

If we define the tail probabilities for a particular resolution level j as follows,

[2dGz (u) x>0
Qz,, (@) = { .
Js f—oo gj’k (u) r < O,

we see from (2.64) that
Q)+ Q5 (W) =a. (2.66)

and hence the magnitudes of the thresholds A; and )\;r decrease with a. Let the probability
of failure Pr be the least upper bound on the probability that the largest-magnitude noise
wavelet coefficient is smaller than )\j_ or larger than )\j. That is, Pr is the least upper bound
on the probability that a particular noisy coefficient will fall outside the interval [)\j_, )\;r] and
ultimately will not be thresholded correctly using the hard thresholding rule (2.65), so that we

have

Pr = P djkl) > A7 ] AT . 2.67
PSP e (1d]) > masc (A7 . [AF1) (2.67)
0< k<2

From (2.66), Moulin shows that Pp is bounded from above by
Pr<1—(1—qnl'-2770

The objective is to compute thresholds )\j_ and )\;r that approximate a specified probability
of failure, Pr. This may be done using a saddle point approximation to the tail probability
ng B (). The saddle point approximation is the first term in an asymptotic series expansion for
ngk() One simple solution to (2.66) is

Q5 , (A7) = ngyk()\f) =

| Q

, (2.68)
with
a=1-(1— pp)/{nl—27 70} (2.69)
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For a given probability of failure Pp and a given resolution level j, the thresholds A;" and )\;r
can be computed from the distribution of the noise coefficients d;; using (2.68) and (2.69).
Moulin states that this thresholding scheme should only be applied to the empirical wavelet
coefficients {c@k :k=0,1,...,27 — 1} at resolution levels j = jo + 1,...,J — 1. He presumes
that the empirical scaling coefficients {¢;,r : £k = 0,1,... , 2% — 1} and wavelet coefficients
{cfjmk :k=0,1,...,2/0 — 1} at resolution jy contain information about the coarse features of
the signal and should not be thresholded.

As an alternative to both Gao and Moulin’s methods that use the periodogram as a spectrum
estimator, Percival and Walden have proposed a wavelet-based method for estimating the power
spectrum that uses a multitaper spectrum estimator. One drawback of their method is that
the multitaper estimates are not approximately uncorrelated, and therefore an estimate of the

correlation must be computed. For more details on this multitaper method, see [46] or [65].

2.7. Spectral Methods for Simulation Output Analysis

Instead of working in the time domain with the original output process {X; : i = 1,...,n},
a spectral analysis approach to steady-state output analysis works in the frequency domain,
under the assumption that the process X1, X, ... is stationary with E[X;] = ux. For frequency

w = 0 we have
px(0) =vx = Y yx(I), (2.70)

where px (w) is the spectral density function as defined in (2.49). Provided > ;72 _  |vx({)] < o0
and n is sufficiently large, the variance of X can be approximated by
px(0)

Var[X] ~ —=, (2.71)

where X is the usual point estimate of sy,

X =

S

n
> X
i=1
Therefore, to construct an asymptotically valid confidence interval for the steady-state mean

wux, we need to estimate the spectral density at zero frequency, px(0).

Classical methods for spectral estimation are based on the usual estimator for yx (1),

R 1 n—I . .
() = =5 3 (X = X)Xy = X), 1=0,41, 42, %(n — 1), (2.72)
j=1
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Given n observations from the original output process, we can estimate at most n — 1 covariance
functions yx (/) using equation (2.72). Hence, an estimate of the SSVC ~x is

Ax (1)

n—1
px(0) =9x =
(

I=—(n-1)

Summations over Yx (I) for a wide range of [ tend to be highly variable, however. To compensate

for this, it was found that if we use the truncated estimator,
M
px(0)=9x = > Ax(), (2.73)
I=——M

where the truncation point M is much less than n, then the variance of the estimator px(0) can
be reduced, but at the cost of increasing the bias. To further improve the estimator in (2.73),

we can weight the Jx(I)’s in the following way, resulting in a less biased estimate px (0),
px(0) =3x = > wl)Fx (1), (2.74)

where w(l), the lag window, is a positive, even function with w(0) = 1 and w(l) = 0 for |I| > M.
If the spectral density function px (w) is approximately linear near 0, then px (0) in (2.74) is an
unbiased estimate of px(0). That is, E[px(0)] = px(0). Using (2.74) and (2.71), we see that
an asymptotically valid 100(1 — 3)% confidence interval for px is

px(0) '

Yj:zl_ﬁ/g n

The two main issues that arise when using the classical approach to spectral estimation
are the determination of the truncation point M and the lag window w(l). It can be very
difficult to decide on appropriate values for both M and w(l). Furthermore, a more fundamental
problem with the classical approach is the assumption that the spectral density function px (w)
is approximately linear near 0 [26]. Since px(w) is an even function, it is symmetric about 0,
implying that at 0 it either has a peak, it has a valley, or it is flat. Therefore, px(w) is not
approximately linear near 0 (unless it is flat); and the estimate for px(0) given in equation
(2.74) will be biased.

2.7.1 Heidelberger and Welch’s Spectral Method

Heidelberger and Welch [26] developed an alternative approach to the classical methods for

spectral analysis. The goal of their spectral analysis method is to estimate px(0) from the
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values of the periodogram. From (2.50), notice that I(0) = n72; and hence the zero value of
the periodogram depends only on the average value of the process and contains no information
about px (0). Heidelberger and Welch use regression techniques to obtain an estimate of px (0)
from the values of the periodogram in the region near 0. The classical approach described
earlier averages over the periodogram, but it only gives an unbiased estimate of px(0) when
the function px(w) is flat near 0. Heidelberger and Welch’s approach assumes px (w) is smooth
near 0, thereby allowing the use of regression analysis and resulting in an estimate px(0) equal
to the y-intercept of the fitted regression function that does not have the bias problems that
the classical estimator (2.74) has.

The steps of Heidelberger and Welch’s procedure for the output process {X; : i =1,...,n}

are as follows:

(i) Compute the periodogram I(%) for ¢ = 1,...,n — 1 using (2.50) for the data {X; : i =
1,...,n}. Average over adajacent periodogram values to obtain a smoother, less erratic
function

e =5 [1(%7) 1 (3))

1/25—1 25 45 —1
wj:—<j —I-—j): ]2n for jzl,...,ﬁ.

where

2 n n 4

Take the logarithm of this smoothed function to obtain a function

L(w;) = n{I(w;)} for j:1,...,%

that has constant variance, so that £(w) is the log of the average of I (L) and I(2), L(ws)
is the log of the average of I(2) and I(2), and so on.

(ii) Using ordinary least squares, fit a polynomial of degree ¢,

q
g(wj) =Y anw],
h=0
to
L(wj) +0.270 (2.75)

for j =1,..., K, where K is the number of points in the log of the smoothed periodogram
ﬁ(wj) that are used to obtain the polynomial fit. The value 0.270 in equation (2.75) is

the correction for the bias introduced by taking a logarithmic transformation.

(iii) The least squares estimate of ag, G, is used as the estimator for ¢(0) = In[px(0)]. An
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estimate for px(0) is obtained as follows,
px(0) = Cre™,
where C1 = C1(K, q) is a constant chosen to make px(0) approximately unbiased.

(iv) A 100(1 — 3)% confidence interval for the steady-state mean px is given by

- px (0
X £t1_g/2, #7

where the computation of the degrees of freedom v = v(K, q) is as described in [26].

Heidelberger and Welch determined empirically that fitting a quadratic to the log of the
smoothed periodogram (that is, setting ¢ = 2) provides an optimal balance between small
sample bias and large sample stability. If ¢ is chosen large, then complexities in the shape of
the spectrum are more easily captured. The larger ¢ is, however, the larger the variance of the
estimate of the spectrum at zero frequency. They also found empirically that setting K = 25
gives better small sample results, while setting K = 50 gives better large sample results.

Heidelberger and Welch’s spectral method can also be applied to batched data. Suppose
the output process {X; : i =1,...,n} is divided into k batches of size m. Let

— 1 mJ
X;=X;m)=— >  X; for j=1,...k
i=m(j—1)+1
denote the jth batch mean,
prm— 1 E—
X = - d X,
j=1

denote the grand mean of the k batch means X1, ..., X}, and

= 1
Px(m) (W) = Z Y (m) (Dcos(2mwl), -5 <w<

l=—o0

be the spectral density function of the batch-means process {X1(m),..., Xx(m)} for batches

of size m. Using the following result,

Px(m)(0) = 19)(7@7 (2.76)

we see that a confidence interval for the steady-state mean px can be constructed by following

the steps (i)—(iii) above to estimate pg,,(0). A 100(1—3)% confidence interval for sx is then
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given by,

(2.77)

where ﬁ;{(m)(O) is the Heidelberger-Welch estimator of the power spectrum at zero frequency
for batch means with batch size m, where a quadratic polynomial (¢ = 2) is fitted to K points
on the bias-corrected log of the smoothed periodogram (2.75) based on k batch means, and
v = C1(K,2) is taken from Table I of [26].

2.7.2 A Sequential Spectral Method

The spectral method described in Section 2.7.1 applies to a sample of fixed size. Heidelberger
and Welch also developed a sequential method for constructing confidence intervals that satisfy
a given accuracy requirement, specified as a maximum relative fraction r* of the magnitude of
the final grand mean X. In addition to the accuracy requirement, a maximum limit on the
length of the simulation run is also specified. A confidence interval is generated once either
the accuracy requirement is satisfied or the maximum run length is reached. Heidelberger and
Welch’s sequential procedure for confidence interval estimation is given as follows. First, the

values of the following parameters are specified:
(i) the point t; at which the first confidence interval is to be constructed;
(ii) the maximum run length ¢y ax;
(iii) the required relative half-width r*; and
(iv) a multiplier 7 by which the run length is increased if the precision requirement is not met.

Beginning at time t1, a set of batch means is computed (as described in [26]) and a confidence

interval of the form X + H is generated using equation (2.77). If
H < r*[X]|, (2.78)

then the simulation is terminated. Otherwise, the simulation is continued and additional ob-

servations are generated until time
to = HliIl(T X tlatmax)' (279)

A confidence interval is generated at time to. If the precision requirement (2.78) is met or if

to = tmax, the simulation is terminated. Otherwise, additional observations are generated until
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time
ts = min(7 X t2, tmax)- (2.80)

A confidence interval is generated at time t3. This process of generating data and then con-
structing a confidence interval is continued until either the precision requirement is met or the
maximum simulation time t,,,5 1S reached.

In an attempt to improve both the small and large sample behavior of their spectral method,
Heidelberger and Welch proposed a more flexible, adaptive method which selects the degree
of the polynomial fit to the log of the smoothed periodogram according to the shape of the
periodogram [27]. Previously, Heidelberber and Welch found a quadratic was necessary to
obtain an unbiased estimate of the spectrum at zero frequency for small samples. As the batch
size is increased, however (that is, as the sample becomes larger), the correlation between
the batch means goes to zero and the spectrum becomes flatter. Therefore for large samples,
fitting a linear function to the log of the smoothed periodogram may be more appropriate. In
[27], Heidelberger and Welch propose several adaptive spectral methods for confidence interval
estimation that use the following smoothing techniques: polynomial smoothing with the degree
selected sequentially using standard regression statistics, polynomial smoothing with the degree
selected by cross validation, and smoothing splines with the amount of smoothing determined
by cross validation. Heidelberger and Welch tested their adaptive method on both samples
of a fixed size and in the context of the sequential procedure described at the beginning of
this section. They found that the performance of the adaptive methods when using a fixed
sample size did not improve the small sample behavior, and only marginally improved the large
sample behavior. They also found that the adaptive methods performed poorly when used in
a sequential procedure. Therefore, Heidelberger and Welch ultimately recommend using the
quadratic method described in [26].

Heidelberger and Welch also propose a variation of their sequential spectral method that
incorporates a procedure for detecting and eliminating initialization bias [28]. To identify an
appropriate warm-up period, Heidelberger and Welch apply a stationarity test to a sequence
of batch means. The stationarity test involves the computation of a Brownian Bridge statistic
whose asymptotic distribution under the assumption of stationarity is known. Beginning at
time t1, a set of batch means is computed and the stationarity test is applied to the sequence
of batch means {X1, ..., X¢,} to determine if there is a point ¢* such that {X41,..., X4, } is
a sample from a covariance stationary process. If the sequence of batch means {X1,..., X4, }
passes the stationarity test, then a confidence interval of the form (2.77) is generated from the
truncated set of batch means {X«11,..., Xy, }. If the precision requirement (2.78) is satisfied,
then the simulation is terminated. Otherwise, we proceed to the next checkpoint to as defined
in (2.79).
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If the sequence of batch means {Xi,...,X; } fails the stationarity test (that is, there
is no value of t* for which the sequence of batch means {X41,..., Xy, } is a sample from
a covariance stationary process), then we proceed immediately to the next checkpoint to as
defined by (2.79). At time t5, the test for stationarity is applied to the sequence of batch means
{X1,...,X,}. This process of generating data, testing for stationarity, and then (possibly)
constructing a confidence interval continues until either the precision requirement is met or the
maximum simulation time ¢,,,x is reached. If the simulation reaches time t,,x, then the test for
stationarity is performed on the sequence of batch means {X1,..., X, . }. If the test is failed,
then a confidence interval is not returned. If the stationarity test is passed, then a confidence
interval is returned that may or may not satisfy the precision requirement.

Heidelberger and Welch’s experimental results indicate that for processes with a pronounced
initial transient period, the inclusion of a test for stationarity in their sequential spectral method
results in point and confidence interval estimators with lower bias, smaller average confidence
interval half-lengths, and shorter run lengths than when no test for stationarity is performed.
However, for processes with no initial transient period, the inclusion of a stationarity test
actually causes a slight degradation in the performance of their sequential spectral method.
Furthermore, Heidelberger and Welch found that if the simulation run length is short relative to
the length of the initial transient period, then the proposed stationarity test may not be powerful
enough to detect initialization bias. Finally, Heidelberger and Welch found that their method
had difficulty detecting an appropriate data-truncation point when the initial checkpoint t; was
actually within the warm-up period. Therefore, Heidelberger and Welch’s method for detecting
and eliminating initialization bias requires the user to specify an initial time ¢; that is not in
the warm-up period, implying the user must have some general indication of the length of the
warm-up period for the method to work effectively.

Since the fast Fourier transform can be used to compute the periodogram, the spectral
method can be more computationally efficient than the replication/deletion and regenerative
methods. Furthermore, a spectral approach involves working with uncorrelated periodogram
values, rather than with a highly correlated output sequence. However, the periodogram can
have highly erratic behavior, making implementation of the method difficult. The experimen-
tal results obtained by Heidelberger and Welch for their quadratic spectral method indicate
that restricting to polynomial fits to the periodogram is not flexible enough to obtain stable
estimates of the spectrum at zero frequency. In the next chapter, we will describe a wavelet-
based spectral method for steady-state output analysis that is an extension of Heidelberger and
Welch’s spectral method. This wavelet-based spectral method more adequately addresses the
erratic behavior of the periodogram so that a stable estimate of the spectrum at zero frequency

can be obtained.
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Chapter 3

A Wavelet-Based Spectral Method

In the previous chapter, both nonspectral and spectral methods for steady-state output analysis
were reviewed. From the experimental results for the existing spectral approaches, it is clear that
additional follow-up work is needed to improve the performance of spectral methods in practice.
In [26], Heidelberger and Welch fit a quadratic polynomial to the natural log of the smoothed
periodogram of a simulation output process that may be raw (unbatched) or aggregated into a
time series of nonoverlapping batch means. They apply this method with data sets of a fixed
size as well as with a stopping rule. From Heidelberger and Welch’s computational results, it
is clear their spectral method does not produce sufficiently reliable confidence intervals (Cls)
in practice. In an effort to improve the performance of their method, Heidelberger and Welch
propose in [27] an adaptive spectral method that fits higher order polynomials to the log of
the smoothed periodogram. Heidelberger and Welch find, however, that this adaptive spectral
method does not perform any better than their original spectral method.

There are several explanations for the unreliable performance of Heidelberger and Welch’s
spectral method in terms of confidence interval coverage. First, to smooth the periodogram,
Heidelberger and Welch average adjacent periodogram values before applying the logarithmic
transformation. Based on our computational experience in estimating the log-spectrum of
batched or unbatched simulation output processes from the log of the smoothed periodogram
of the corresponding time series of batch means or individual (unbatched) observations, we
have found that averaging adjacent periodogram values does not provide enough smoothing
and that this approach will ultimately lead to an excessively noisy estimate of the associated
log-spectrum. Least-squares estimation of a polynomial in the presence of excessive noise is in
general very erratic, and Heidelberger and Welch’s experimental results reflect this fact.

Another possible explanation for the unreliable performance of Heidelberger and Welch’s
spectral method is that a simple polynomial function of degree up to, say, three may not be

sufficiently flexible to approximate adequately the behavior of the underlying log-spectrum even
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when the log of the smoothed periodogram yields a reasonably accurate estimator of the log-
spectrum. Furthermore, even after smoothing the periodogram, we have found that the resulting
log-smoothed-periodogram has a certain degree of noise associated with it. Heidelberger and
Welch attempt to denoise the log-smoothed-periodogram by applying standard least-squares
regression techniques. These methods can be thought of as thresholding schemes in the sense
that terms in the polynomial fitted to the log-periodogram are discarded until the desired fit is
achieved. The problem with this type of thresholding is that going from a cubic to a quadratic
polynomial, for example, makes a huge difference in the adequacy of the fit; and more than noise
may be eliminated in the process—that is, important features of the log-smoothed-periodogram
may be lost by simply going from a cubic to a quadratic fit.

In this chapter, we describe WASS?P, a sequential, wavelet-based spectral method for con-
structing a valid confidence interval with user-specified levels of precision and coverage proba-
bility as an estimator of the mean of a steady-state simulation output process. This method
addresses the problems associated with previous spectral methods and can be viewed as a nat-
ural extension of Heidelberger and Welch’s method. WASSP determines a batch size and a
warm-up period (statistics clearing time, data-truncation point) beyond which the computed
batch means are not necessarily independent but constitute an approximately stationary Gaus-
sian process; and then WASSP uses wavelets to approximate the log of the (appropriately)
smoothed periodogram of the batch means, thereby yielding what is hoped to be a more flex-
ible and accurate estimate of the log-spectrum of the batch means in the neighborhood of
zero frequency. Moreover, the associated estimate of the steady-state variance constant of the
original (unbatched) process can be combined with the grand average of all the batch means
computed beyond the warm-up period to yield a reliable confidence-interval estimator of the
steady-state mean response, where the delivered confidence interval satisfies a user-specified
absolute or relative precision requirement.

In general, wavelets are an excellent tool for estimating functions that exhibit certain types
of local behavior, such as sharp spikes or dips. The complex behavior often exhibited by the
power spectra of batched or unbatched simulation outputs can be easily captured using wavelets.
Furthermore, wavelets are an excellent tool for denoising log-spectrum approximations based
on the log of the smoothed periodogram of batched or unbatched time series (see Chapter 3 of
[66]). The wavelet coefficients can be carefully thresholded to filter out noise, while at the same
time ensuring that important features of the log-smoothed-periodogram are retained.

The rest of this chapter is organized as follows. Section 3.1 provides a general overview of
WASSP and how it operates. Section 3.2 contains a formal algorithmic statement of WASSP.
A detailed description of the steps comprising WASSP is given in Section 3.3.
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3.1. Overview of WASsP

Figure 3.1 depicts a high-level flowchart of the operation of WAS8P. The algorithm begins
by dividing the initial, simulation-generated output process into a fixed number of batches of
uniform size. Batch means are computed for all batches, and an independence test is applied

to the set of batch means. The independence test serves two purposes:

e It is used to construct a set of spaced batch means such that the interbatch spacer preced-
ing each batch is sufficiently large to ensure all computed batch means are approximately
independent and identically distributed (i.i.d.) so that subsequently the batch means can

be tested for normality.

e It is used to determine an appropriate data-truncation point (statistics clearing time,
warm-up period)—that is, the “interbatch” spacer preceding the first batch—beyond
which all computed batch means are approximately independent of the simulation model’s

initial conditions.

Start

Skip the first S observations; Compute log of the
| compute nonspaced batch means[*| smoothed periodogram
from all remaining observations of the batch means

Collect observations;
compute spaced batch means

Yes
Compute wavelet—based
Collect extra observations; estimate of the
recompute batch means log—spectrum

Independence Yes
test passed?

Normality test
passed?

Fix spacer size §

|

Compute batch size,

No Compute wavelet—based

m=="[n/k 1 spectral estimate of SSV(
R Compute new
Increase spacer size S batch size m T ¢
or batch size m
Limit batch count, Construct wavelet—based
k=- min{4096, k} spectral CI
Collect observations; ¢

compute spaced batch means

Compute total required No
. -~
sample size 7,

new batch count k
of form 27

CI meets
precision
requirements?

Figure 3.1: High-Level Flowchart of WASS®P.
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Once the independence test is passed, the set of approximately i.i.d. spaced batch means is

tested for normality. Each time the normality test is failed, the following steps are executed:
e the batch size is increased;

e a new set of spaced batch means is computed using the final spacer size determined by

the independence test; and
e the normality test is repeated for the new set of spaced batch means.

Once the normality test is passed, all simulation-generated data beyond the warm-up period
is used to compute adajacent (nonspaced) batch means of the previously determined batch size;
then the periodogram of the approximately normal batch means is computed. In general, the
periodogram is more well behaved for data that is approximately normal. Furthermore, the
periodogram approaches its asymptotic properties (as listed in equation (2.51)) more quickly if
the data is normal.

After the periodogram for the approximately normal adjacent (nonspaced) batch means
is computed, the periodogram is smoothed by taking a moving average of width A points.
WAS8P allows the user to specify the value of A in the set {5,7,9,11}, with the default taken
as A = 7. In contrast to WASSP’s approach for smoothing the periodogram, with Heidelberger
and Welch’s approach the periodogram is smoothed by taking a moving average with a fixed
width of 2 points.

To obtain an estimate of the SSVC of the original (unbatched) process, we compute a
wavelet-based estimate of the log-spectrum of the batch means over the frequency range (—%, %)
(expressed in cycles per unit time) from the log of the smoothed periodogram of the batch
means. The estimated wavelet coefficients are thresholded using a variant of Gao’s thresholding
algorithm, as described in Section 2.6.

From the thresholded wavelet approximation to the log-spectrum of the batch means, we
compute an estimate of the spectrum of the original (unbatched) process at zero frequency
(that is, the SSVC); and finally we compute a confidence interval of the form (1.14), where the
midpoint of the confidence interval is the average of all the adjacent (nonspaced) batch means
that are computed after skipping the initial spacer.

The confidence interval is then tested to determine if it meets a user-specified absolute or
relative precision requirement. If the precision requirement is satisfied, then WASSP delivers

the latest confidence interval and terminates. Otherwise, the following steps are executed:

(a) The total required sample size is estimated; and on the assumption that the current
batch size is maintained, the estimated batch count is expressed as the largest power of

two yielding a total delivered sample size not exceeding the required sample size.
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(b) If the estimated batch count exceeds 4,096, then the batch count is reduced to 4,096 and
the batch size is adjusted (increased) so that the total delivered sample size is not less

than the total required sample size.

(¢) The required additional observations are obtained (by restarting the simulation if neces-
sary); and the batch means are recomputed using the latest batch size after skipping the

initial spacer.
(d) The log of the smoothed periodogram for the new set of batch means is computed.

(e) A new estimate of the SSVC is obtained from a wavelet-based estimate of the log of the

smoothed periodogram of the latest set of batch means.
(f) A confidence interval is computed and the precision requirement is retested.

Note that if the confidence interval in step (f) above fails to meet the precision requirement,
then it is not necessary to repeat the independence test or the normality test; instead steps

(a)—(f) are repeated until the precision requirement is satisfied.
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3.2. Formal Algorithmic Statement of WAass»

WASS?P requires the following user-supplied inputs:

(a) a simulation-generated output process {X; : i = 1,2,...,n} from which the steady-state

expected response px is to be estimated;
(b) the desired confidence interval coverage probability 1 — 3, where 0 < § < 1; and

(c) an absolute or relative precision requirement specifying the final confidence interval half-

length in terms of

— a maximum acceptable half-length h* (for an absolute precision requirement); or

— a maximum acceptable fraction r* of the magnitude of the confidence interval mid-

point (for a relative precision requirement).
WASSP delivers the following outputs:

(a) a nominal 100(1 — )% confidence interval for px that satisfies the specified absolute or

relative precision requirement, provided no additional data are required; or
(b) a new, larger sample size n to be supplied to WASSP when it is executed again.

If additional observations of the target process must be generated by the user’s simulation
model before a confidence interval with the required precision can be delivered, then WASSP
must be executed again with all the observations accumulated so far; and this cycle of simulation
followed by automated wavelet-based spectral output analysis may be repeated several times
before WASSP finally delivers a confidence interval.

A formal algorithmic statement of WASS? is given on the succeeding pages. In Section 3.3

we describe the steps in the algorithm in more detail.
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WASSP Algorithm

[1] Divide the initial sample of size n « 4096 into k <« 256 batches of size m «— 16.
Compute the batch means {X;(m) : j = 1,...,k} as in (3.7). Set the initial spacer
size 8§ < 0. Set the independence test size aj,q «— 0.20. Set the initial normality test
size amner(1) < 0.05 and the iteration counter for the normality test i < 0. Set the
smoothing parameter a < 3 to compute a moving average of width A <+ 2a + 1 points
for the log-periodogram of the batch means.

[2] Test the k batch means for independence using the von Neumann test (3.9)—(3.11) with
level of significance ajpng-

[2.1] If the k adjacent batch means pass the independence test, then set k¥’ < k and go
to [4].

[2.2] Insert a spacer of one ignored batch between the k' < k/2 remaining batch means
and update the spacer size to the current batch size, 8§ «— m.

[2.3] Test the k' spaced batch means for independence using the von Neumann test
(3.9)-(3.11) with level of significance aipq. If independence test is passed, then go
to [4].

[2.4] Insert another ignored batch into each spacer; update the spacer size and the batch
count,

§«—8+mand k' — {LJ
m+ 8
[2.5] If ¥’ > 25 then go to [2.3]; else go to [3].

[3] Increase the batch size m and update the sample size n according to
m «— {ﬁmJ and n < km,;

collect additional observations; recompute the adjacent (nonspaced) batch means
{X;(m):j=1,...,k}; and go to [2].

[4] Update the iteration counter for the normality test, ¢ « ¢ + 1. Test the k' approxi-
mately i.i.d. batch means for normality using the Shapiro-Wilk test (3.12)—(3.13) with
significance level aner(7) given by (3.14). If the spaced batch means pass the test for
normality, then compute the total accumulated sample size n < k(8 +m) and go to

[6].

[5] Increase the batch size m according to
m {\/ﬁmJ ;

recompute the spaced batch means using current spacer size §; and go to [4].
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WASsP Algorithm (Continued)

[6]

[7]

Skip the first § observations in the total accumulated sample of size n. Divide the
remaining n’ «+— n — § observations into batches of size m, where the number of batches
k is

k « 9lloga(n//m)]

Compute the adjacent (nonspaced) batch means {X;(m):j=1,...,k}.

Compute the periodogram (3.17) of the k£ batch means; and take

a

RS ! 1 1 E_q
0= (l) () LS (3)

=1
and

l l
I)-((m)(—%> <—IX(m)<E> for 1=1,2,...,5 -1

Compute the smoothed periodogram {TX(m) (%) :1=0,+£1,...,£ (% - 1) , %} accord-
ing to (3.22) based on a moving average of width A = 2a + 1 points. Compute the
log-smoothed-periodogram,

~ l ~ l

[8] Correct for the bias induced by the log transformation (3.1):

[ ~
X(m)<—> — Egm E) [ W(a) —In(a)] for 1=0 and I =,

k
2 2 ’

) )
) — Egm é) [ W(4) ~ In(A)] for a<|l <k —q,
) )

() w252

for —a<|l|<&-1,

o o
>
|~

|~

|~

where ¥(-) is the digamma function defined by (3.28); and for each positive integer j
with 1 < j < a, the quantity v; is defined by (3.41).
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WAS8P Algorithm (Continued)

9] Compute the wavelet-based estimate 6 % w) of the batch means log-spectrum
X (m)
Cx (m) (w)-
[9.1] Take J < logy(k); set the number of resolution levels

L H
2
for the wavelet-based estimate {ZX(m) (%) 1=0,£1,..., :l:(% — 1) ,%} of the log-

spectrum {CX(m) (é)} of the batch means process {X;(m) :j =1,...,k}; and set
the coarsest level of resolution
j() — J—L.

[9.2] Compute {EX(m)(%)} from the DWT (3.44) of {EX(m)(é)} and threshold the

resulting wavelet coefficients {d;; : j = jo,...,J — 1;1 = 0,1,...,29 — 1} using
Gao’s thresholding scheme (2.60) to obtain the thresholded coefficients {d}"l}

[9.3] Perform the inverse transform (3.47) to obtain the thresholded wavelet approxi-
mation {6 X (m) (%)} to the log-spectrum of the batch means process.

[10] Compute the wavelet-based estimate of the spectrum of the batch means process at zero
frequency,

P (m)(0) — exp {CX(m)(O)} ; (3.2)
and the wavelet-based estimate of the SSVC for the original (unbatched) process,

[11] Compute the approximate 100(1 — 3)% confidence interval for px,

= [Ax
X(m, k) £t1_5/2,2 P (3.3)

where n' «— mk and ?(m, k) is the grand average of the k batch means {Xi(m),...,
Xj(m)} that are computed as in (3.8) after skipping the warm-up period consisting of
the first 8 observations in the total accumulated sample of size n = mk + 8 =n’ + 8.
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WAS8P Algorithm (Continued)

[12] Apply the appropriate absolute or relative precision stopping rule.

[12.1]

[12.2]

[12.3]

[12.4]

If the half-length

A ﬁX’ m (O)
H «—t1_g/3 241/ Zz_)/( =t1-6/2,24\| %

of the confidence interval (3.3) satisfies the user-specified precision requirement

H<H", (3.4)
where
o0, for no user-specified precision level,
H* r*|?(m, k)|, for a user-specified relative precision level 7*, (3.5)
h*, for user-specified absolute precision level h*,

then deliver the confidence interval (3.3) and stop.

Set
H 2
k* k| .
~|G
Update the number of batch means k, the batch size m, and the total sample size
n as follows:

ko~ min{alee(7) 4096} (3.6)
= | (5)m
- (=
]{: )
n «— km+S8.

Obtain the additional simulation-generated observations (by restarting the simu-
lation if necessary), and go to [6].
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3.3. Detailed Description of Steps in WASS?

3.3.1 Test for Independence of the Batch Means

The WAS8P algorithm begins by dividing the initial sample {X; : i« = 1,...,n} into k = 256
batches of size m = 16. The minimum number of data points required by WASS?P is 4,096, which
is the same initial sample size required by ASAP2. Based on our experimental results using
WASSP as well as on our results using ASAP2, we have found that this initial sample size works
well in practice. Furthermore, for any large-scale simulation study, it is relatively inexpensive

to generate a sample of size 4,096. A batch mean for each of the batches is computed. Let

_ 1 mJ
Xj=X;(m) = m > X (3.7)
t=m(j—1)+1

X(m, k) = % S X (m) (3.8)

denote the grand average of the k£ batch means.
The batch means {X1(m),..., Xx(m)} are tested for independence using the von Neumann
test. The hypothesis of independent, identically distributed batch means,

Hina : {X;(m):j=1,...,k} areiid., (3.9)
is tested by computing the test statistic,
- 2
Z [X5(m) = X1 (m)]
k prm—
23" [Xi(m) = X(m, k)}

, (3.10)

where C}, is a relocated and rescaled version of the ratio of the mean square successive dif-
ference to the variance of the batch means. If {X1(m),..., Xy(m)} are normal, then under
Hy, the statistic C, has zero mean, variance (k — 2)/(k? — 1), and a distribution that is close

to normal for k£ > 8. If the batch means are nonnormal but i.i.d., then the distribution of

Cr/\/ (k /(k? — 1) can be approximated by a normal distribution with mean 0 and variance
1for k > 20 [72]. Since WASSP’s test for independence always involves at least 25 batch means,
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the hypothesis (3.9) can be tested as follows. If

k—2

ICk| < 21_a5,4/2
where z;_, /2 is the 1—ai,q/2 quantile of the standard normal distribution, then the hypothesis
(3.9) is accepted; otherwise the hypothesis (3.9) is rejected so that WASSP must increase the
spacer size before retesting (3.9).

Each time the test for independence is repeated, there is a certain probability of making a
type Il error (that is, falsely declaring the batch means to be i.i.d. when they are not). Therefore,
it is necessary to carefully select aj,q so that the probability of making a type II error is small,
while at the same time the probability of a type I error (falsely declaring the batch means to
be dependent or nonstationary when they are in fact i.i.d.) is also at a reasonable level. If ;g
is too small, then the probability of making a type II error becomes high. Since WASSP uses
the results of the independence test to determine the length of the warm-up period, this could
lead to an inaccurate identification of the warm-up period, ultimately leading to biased point
and confidence-interval estimators of px. On the other hand if ajnq is too large, then the risk
of making a type I error becomes high and it is possible that extremely large sample sizes will
be required to pass the independence test. Through extensive experimentation, we found that
setting ajnq = 0.2 works well in practice and provides an effective balance between type I and
type II errors.

If the k = 256 adjacent batch means defined by (3.7) pass the independence test (3.9)-
(3.11) at the level of significance «j,q, then we set k', the number of batch means retained
for the normality test, equal to 256; and we proceed to perform the normality test as detailed
in Subsection 3.3.2 below. On the other hand, if the £ = 256 batch means fail the test for
independence, then a spacer consisting of one ignored batch is inserted between the k' = 128
remaining batch means that are to be retested for independence. That is, every other batch
mean, beginning with the second batch mean, is retained and the alternate batch means are

discarded as depicted in Figure 3.2.

1 2 3 254 255 256 1 2 3 254 255 256

Figure 3.2: Left-hand figure depicts the original 256 batches of size m. Right-hand figure depicts
k' = 128 batches of size m with interleaved spacers, each consisting of 1 ignored batch so that
the spacer size 8 = m. The X-marks denote batches that compose each spacer. The spaced
batch means are computed from the unmarked batches.
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1 2 3 ... 253 254 255 256

Figure 3.3: Depiction of k' = 85 batches of size m with spacers consisting of 2 batches so that
8 = 2m. The X-marks denote adjacent batches that compose each spacer. The spaced batch
means are computed from the unmarked batches.

As illustrated in the right-hand part of Figure 3.2, the k¥’ = 128 remaining batch means
{X2(m), X4(m), ..., Xa56(m)} are retested for independence. If the test is failed, then another
ignored batch is added to the spacer (that is, every third batch mean is retained) and the
k' = 85 remaining batch means {X3(m), X¢(m),..., Xos55(m)} are retested for independence
as illustrated in Figure 3.3. This process is continued until either the independence test is passed
or the number of batch means reaches the lower limit &’ = 25 (that is, the point has been reached
where every tenth batch mean from the original £ = 256 batch means has been retained). In
order for the independence test to work properly (that is, in order to use the standard normal
distribution as an approximation to the distribution of the test statistic Cx/+/(k — 2)/(k? — 1)

under the null hypothesis (3.9)), a minimum of about 20 batch means is required. If the number

of retained batch means drops to &’ = 25 and the batch means still fail the independence test,

then the batch size m is increased by a factor of v/2,
e Vi

the initial sample {X; : i = 1,...,n} is rebatched into k = 256 batches of size m; and the k
batch means are recomputed. If n < km, then more data must be collected and n must be
updated before the batch means can be recomputed and retested for independence.

The process of testing for independence is repeated, starting with the k£ = 256 recomputed
batch means. If the independence test is failed, then additional batches are added iteratively
to the spacers lying between the batches from which we compute the set of &’ retained batch
means (as described earlier) until either the independence test is passed or the number of
retained batch means reaches k' = 25. If the independence test is failed for &’ = 25, then the
batch size m is increased by a factor of /2 again; the original sample {X; : i = 1,...,n} is
rebatched into k£ = 256 batches of size m; additional data is collected if necessary; and the test
for independence is repeated. We found in practice that it is not necessary to double the total
sample size every time the independence test reaches the point that it becomes necessary to
increase the batch size (that is, when &’ = 25 and the independence test is failed). We found
that it is appropriate to double the sample size every other time the batch size needs to be

increased, implying that the batch size should be increased by a factor of v/2 on each iteration
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of this step in WASSP.

Once the independence test is passed, there will be a set of ¥’ approximately independent
batch means, where 25 < &’ < 256. At this point, the spacer length § is computed. The spacer
length is the number of observations in each spacer lying between the batches from which we

compute the set of k' retained batch means. The spacer length is computed as follows,
S = ms,

where s is the number of batches in each spacer. For example, if the final number of retained
batch means is k¥’ = 85, then there are s = 2 batches in the spacer preceding each retained
batch. The first § observations { X7, ..., Xs} will comprise the warm-up period. We justify this
formulation of the warm-up period as follows. The von Neumann test checks the batch means for
randomness. Those batch means computed from observations comprising the warm-up period
will exhibit a significant deterministic trend or a significant degree of stochastic dependence.
Once the simulation reaches steady-state operation, the batch means will no longer exhibit a
trend; and provided the batch means are approximately independent, they will appear to be
more nearly random. If the batch means exhibit a trend, then it is likely that the trend will be
detected by the von Neumann test and the hypothesis (3.9) will be rejected. Each time the test
for independence is failed, another batch is added to the spacer preceding each retained batch.

Once the spaced batch means pass the independence test (3.9)—(3.11), two conclusions can
be deduced.

e First, the observations {Xj,..., Xs} used to compute the batch means {X1(m), X2(m),
.., Xs(m)} comprising the first spacer can be regarded as the warm-up period since the
retained batch means following the first spacer do not exhibit a deterministic trend or

any type of stochastic dependence on the simulation’s initial conditions.

e Second, the retained batch means after the warm-up period are randomly sampled from a
common distribution. That is, batch means computed from batches separated by a spacer

consisting of § successive observations are approximately i.i.d.

Figure 3.4 depicts a typical transient mean function for a general, simulation-generated
output process, along with the batch means computed from a possible realization of this output
process. The trend (nonstationarity) of the batch means Xi(m),..., Xs(m) computed from
observations in the warm-up period can be clearly seen. Figure 3.4 also shows the first three
retained batch means X4, 1(m), Xos12(m), and X3,3(m), each preceded by a spacer consisting
of s batch means.

One of the advantages of WASSP over Heildelberger and Welch’s spectral method is that

WASSP provides an automatic scheme for effectively identifying an appropriate warm-up period,
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Figure 3.4: Depiction of the transient mean function {E[YJ (m)} 7 =12,.. } for a general
output process and the batch means computed from one realization of the output process.

thereby ensuring the delivered confidence interval is not affected by system warm-up bias.
Chapter 4 provides substantial experimental evidence of the effectiveness of WASSP’s scheme

for eliminating the effects of initialization bias.

3.3.2 Test for Normality of the Batch Means

Because the Shapiro-Wilk test for normality [55] requires a data set consisting of i.i.d. observa-
tions, we apply this test to the ¥’ batch means that were retained after passing the preceding
test for independence. To assess the normality of the sample {X1(m),..., Xp(m)}, we start

by sorting the observations in ascending order to obtain the order statistics

Xy(m) < Xgy(m) < -+ < Xgry(m).
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The Shapiro-Wilk test statistic is then computed as follows,

=1

L&' /2] o _ ’
> i [X(k’—l+1)(m) - X(l)(m)}
W =

- : (3.12)

— = 2
> [Xim) - X (m, k)|
=1

where the coefficients {011 : I = 1,...,|k'/2]} are tabulated in [55] and [19]. The test
statistic W is then compared to the appropriate lower 100ame% critical value w,,,, of the

distribution of W under the null hypothesis of i.i.d. normal batch means,

~ . ii.d.
Hoor : {Xj(m) 15 = 1,... K} ~7 N(ux, 0% (m))- (3.13)

It W < w,,,, then at the level of significance ayor we reject the hypothesis JH,or that the
retained batch means {X;(m):j=1,...,k'} are normal.

For the first iteration of the normality test, the iteration counter is set to ¢ «+ 1 and the
level of significance for the Shapiro-Wilk test is apor (1) = 0.05. In general if on the ith iteration
of the normality test (3.12)-(3.13) the hypothesis (3.13) is rejected at the level of significance

amor(7), then the following steps are taken:

(a) The iteration counter i is increased,
i—1+1,
and the batch size m is increased by a factor of /2,
m— |vam].

(b) The overall data set {X71,...,X,} is redivided into k&’ batches of size m so that each batch
of size m is separated by 8§ observations, where the spacer size 8§ was fixed in the preceding
test for independence; and if necessary, additional simulation-generated data is collected
to allow computation of k¥’ spaced batch means with the new batch size m and the fixed

spacer size 8.
(c) The spaced batch means {X;(m):j=1,...,k'} are computed.

(d) The level of significance aner(7) for the current iteration ¢ of the Shapiro-Wilk test is set

according to
Onor (1)« amor (1) exp[—7(i — 1)?] for i=1,2,..., (3.14)
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where 7 = 0.184206. Table 3.1 lists the values of ane (i) for ¢ = 1,...,6. Note that for
i =17,8,..., the significance level oy, (7) is decreased by at least an order of magnitude

on each additional iteration of the normality test.

(e) The k' spaced batch means {X;(m) :j =1,...,k'} are tested for normality at the level

of significance oo (7).

If the normality hypothesis (3.13) is rejected in step (e), then steps (a)-(e) above are repeated
until the hypothesis is accepted.

Table 3.1: Level of significance o (7) for the ith iteration of the Shapiro-Wilk normality test
(3.12)—(3.13).

anor(i)
0.050
0.042
0.024
0.0095
0.0026
0.0005
>7 < ape(i—1)/10

S T W N .

The scheme in step (d) above for setting o (7) on each iteration of the normality test is
specifically designed so that WASSP avoids excessive variability in the final sample size. We
have seen through extensive experimentation that beginning with aye;(1) = 0.05 and decreasing
amor(7) on each iteration of the normality test according to (3.14) greatly reduces the final
sample size required by WASSP, especially in those cases where the data are highly nonnormal.
Furthermore, we have found that WASSP performs well even when there is a mild departure
from normality in the resulting batch means. Therefore, decreasing the level of significance
(3.14) of the normality test (3.12)—(3.13) on each iteration i effectively controls the required
sample size without adversely affecting the performance of WASS®P.

One of the main differences in the WASS?P spectral method and Heidelberger and Welch’s
spectral method is that WASSP always requires normalization of the output process via batching
(aggregation) with a batch size sufficient to induce approximate marginal normality of the batch
means before the periodogram of the batch means is constructed. One advantage of performing
this extra step is that the periodogram is in general more well behaved for normal data [47],
thereby facilitating the process of obtaining an estimate of the log-spectrum of the batch means
in a neighborhood of zero frequency. Furthermore, convergence of the periodogram to its

asymptotic properties (listed in equation (2.51)) is faster for Gaussian processes [47]. Quick
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convergence of the periodogram of the batch means to its asymptotic properties is important
because those properties will be used to compute an estimate of the bias that is introduced
when we apply the logarithmic transformation to the smoothed periodogram of the batch
means. Ultimately this bias term will be subtracted from the log-smoothed-periodogram of
the batch means to yield an approximately unbiased estimator of the log-spectrum of the batch

means. The computation of this bias term will be described in the next section.

3.3.3 Estimation of the Log-Spectrum of the Batch Means

Once the normality test is passed, independence of the batch means is no longer required.
Therefore, the first spacer consisting of the observations { X7, Xs, ..., Xg} is deleted (to account
for the warm-up period), and the remaining n’ = n—8 observations are rebatched into k adjacent
(nonspaced) batches of size m. To construct the wavelet-based estimate of the log-spectrum of
the batch means in a neighborhood of zero frequency, we see that the number of points in the
log-periodogram (that is, the number of batch means k) must be a power of two. Therefore, k

is set to the largest power of two less than or equal to n’/m,
k = ollog2(n'/m)] (3.15)

where m is the final batch size required for the batch means to pass the normality test. For
7 =1,...,k, the jth batch mean Yj(m) is computed. The next step in WASS?P is to obtain an
estimate of the log-spectrum of the batch means in a neighborhood of zero frequency by com-
puting a wavelet-based estimate of the batch means log-spectrum from the log of the smoothed
periodogram of the batch means process {X1(m),..., Xx(m)}.

The periodogram of the batch means process is computed by taking the fast Fourier trans-
form of X = {X1(m),..., X(m)},

k
(TX) =Y X;(m)exp[-2n(v=T)(j — DI/k| for 1=1,2,... k1. (3.16)
j=1

Since we will be interested in obtaining an estimate of the log-spectrum of the batch means in a
neighborhood of zero frequency using the values of the log-smoothed-periodogram of the batch
means in a neighborhood of zero, we will use a full period of the periodogram. The periodogram
is symmetric, so that for [ =1,2,..., % —1,

Leoy(£) = Ixm (=) = $1EFX)P (3.17)

B % Léyj(m)m(w) ? Yj(m)sin<w)r

k
+

7j=1
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To compute the smoothed periodogram of the batch means based on a moving average of
A = 2a+1 periodogram values, we first must determine appropriate values for the periodogram
atl =0and! = % Using the definition (3.17), we see that the value of the periodogram at [ = 0
is simply a scaled sum of the batch means and provides no information about the spectrum of
the batch means at zero frequency. As an alternative, we take the value of the periodogram at

[ = 0 as follows,

1< !
I (0) = - > Ixim (E) : (3.18)
=1

We will assume that for [ # 0 and a sufficiently small relative to k, the periodogram values
{IX(m)(HTu) :u=0,%£1,...,+a} have expected values approximately equal to PX(m) (%) In
particular for [ = 0, we assume that the periodogram values {IX(m)(HTu) cu = =%1,...,+a}

have expected values approximately equal to p X(m)(O). That is,

l—i—u)} <l> 0,£1,£2,...,+a for [=1,...,5-1
E(ls — || = p5x — |, where u = 3.19
[X(““( k PXow\ ) "N 4 42, 4a for 1=0. (3.19)

Setting [ = 0 and using (3.19), we have

E[IX(m)(O)} = %éE[IX(m) <é>} ~ %ép)((m)(o) = Px(m)(0);

and therefore we see (3.18) is an approximately unbiased estimate of the spectrum of the batch
means at zero frequency, provided a is not too large relative to k.

On the basis of considerations paralleling those leading to the revised definition (3.18) of
the periodogram at zero frequency, we make the following definition of the periodogram at

frequency %:

1y _1¢ k1
=1
We define the periodogram at frequency % for the sole purpose of facilitating wavelet-based
estimation of the log-spectrum of the batch means, as described in Section 3.3.4.
Since the spectrum of the batch means is symmetric about zero on the interval [—%, %] with

period 1, we see that

k/2 41 k/2 —1
IX(m)( /k: )ZIX(m)< /k: ) for l:1,2,...,(§—1); (3.21)

and therefore the smoothed periodogram of the batch means {TX(m) (Ly:i=-%-1),...,0,...,
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% -1, %} can be computed using a moving average of A = 2a + 1 points according to,

I ! AN Itu k k
IX(m)(E) Zzu;alx(m) (T) for l:O,il,iQ,...,i(ﬁ—l),i (3.22)

WASSP allows the user to select the value of the smoothing parameter A from the set of values
{5,7,9,11}. The default value of A is 7. If the smoothing parameter is set too high, then the
log-smoothed-periodogram of the batch means will be oversmoothed, resulting in an estimate
that is flatter in the neighborhood of zero frequency than the true log-spectrum of the batch
means process. If A is too small, then the log-smoothed-periodogram of the batch means will
not be smoothed enough, resulting in an excessively noisy estimate of the log-spectrum of the
batch means. We found through extensive experimentation that setting A = 7 works well
for a variety of problems. There are instances, however, where it may be necessary to set A
smaller or larger than 7. For example, certain simulation-generated output processes have a
power spectrum with a very sharp peak in the neighborhood of zero frequency. In order to
approximate adequately the sharpness of the peak, it may be necessary to set the smoothing
parameter A to 5.

Another justification for setting the default smoothing parameter A = 7 is the following: at
zero frequency, the log-smoothed-periodogram has 2a degrees of freedom (this result is derived
in equation (3.25)). Therefore, if A = 7 then a = 3, implying we have 6 degrees of freedom
at zero frequency. This is comparable to what Heidelberger and Welch found in [26]. For
their spectral output analysis method, they found that their best-performing estimate of the
log-spectrum at zero frequency has 7 degrees of freedom. Presumably, based on Heidelberger
and Welch’s results, any improved spectral estimator should have approximately 7 degrees of
freedom. Therefore, selecting A = 7 as the default smoothing parameter in WASSP seems to
provide an acceptable balance between the degrees of freedom associated with the final estimate
of the SSVC of the original (unbatched) process and the amount of smoothing required to
capture the important features of the underlying log-spectrum of the batch means.

It is also worth noting at this point that the smoothed periodogram cannot be computed
using a moving average of A = 2a periodogram values. If the smoothing parameter A is
even, then the smoothed periodogram I X(m)(%) will be associated with frequencies for which
the index | = i%,i%,i%, ... ,i%. If we then add a point at zero frequency using (3.18),
however, we will no longer have equally spaced function values on both sides of zero frequency.
Since we will ultimately be computing the discrete wavelet transform of the log of the smoothed
periodogram of the batch means (as described in Section 3.3.4), the points in the log of the
smoothed periodogram of the batch means must be equally spaced. Such a condition is satisfied
only when the smoothing parameter A is odd.

The natural log of the smoothed periodogram of the batch means, {ﬁ)-((m) (£):1=0,£1,...,
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+(& — 1),%}, is used as an estimator of the log-spectrum {CX(m)(%) 1= 0,£1,...,£(& -
1), % of the corresponding batch means process. However, upon applying the properties of the

periodogram in (2.51), we find that the expected value of our estimator is

E{ln{f}((m)<é)]} E{ln[ui_apx(m)<é> wuxiz@) }
= E{ID[PX(m(é)] +In % > wod(®)

= (X(m)<é>+E{ln 1 =

) i wuXi(2)‘| }7 (3.23)

u=—a

Q

where {x2(2) : u = 0,%+1,...,4a} are i.i.d. chi-square random variables with 2 degrees of
freedom and the {w, : v = 0,%+1,...,+a} are nonnegative deterministic weights such that
e w, = 1. Therefore, when we take the log of the smoothed periodogram, bias is intro-

duced and must be removed.

Specifically, at zero frequency so that [ = 0 and with smoothing parameter A = 2a + 1, we

have
= 1l & w 1S u
Igem(0) = _Z Isem 7 ) = EZIIX(m) 7)) (3.24)
since the sequence {IX(m)(%) 2l = —(% —1),...,0,... ,% — 1} is symmetric with respect to
l =0 and Ig(,,(0) is as given in (3.18). Applying the properties of the periodogram in (2.51),
we have
= RS Xa(2)
Igmy(0)  ~ - > px(m(0) 5
u=1
X*(2a)

where x?(2a) denotes a chi-square random variable with 2a degrees of freedom. Taking the

natural log of (3.25), we have

Lm0 = In[Tg,(0)]

~ In [pX(m) (0)

=  In[pg((0)] +1n (3.26)

x2(2a)]
20 |’

Therefore, our estimate of the log-spectrum of the batch means at zero frequency has the
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following expected value,

B[Lxon®)] = B{nfoxn]}+E 1H<X22<Z“>>]
= (x(m)(0) + ¥(a) — In(a); (3.27)

where given the gamma function,

o
I'(z) = / t*“Le~tdt for all z with Re(z) > 0,
0

the digamma function is defined as follows,

_d _T'(z)
U(z) = P In[T(z)] = T(2) (3.28)
[2]. The term
U(a) — In(a) (3.29)

is the bias at zero frequency that is introduced by taking the log of the smoothed periodogram

wy, =0 for u = —a,—a+1,...,0 in equation (3.23).

of the batch means. The result in (3.27) correponds to taking w, = 1/a for u=1,2,...,a and
A similar analysis at the frequency % so that [ = % yields
~ 1 1
E ’Q‘X(m) 5 = E<{ln pX'(m) 5 +E

x*(2a)
1

s (3) +¥(@) ~ nfa); (3.30)

and therefore the bias term at the frequency % is the same as the bias term for zero frequency
(as given in display (3.29)). A complete derivation of the bias term (3.29) is given in Section
A.1 of Appendix A.

Similarly, at frequency é for a < || < % — a, we have

() (3] e (3]

o1 (3.31)

x2(2A)]

and
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l
Therefore, the bias term for frequency é where a < |I| < g —ais
U(A) —In(A). (3.33)

The result in (3.32) corresponds to setting w, = 1/A foru = 0,+1,...,+ain (3.23). A complete
derivation of the bias term (3.33) is given in Section A.2 of Appendix A.

At frequency é for 1 < |l| < a, we see that I X(m)(é) is in general a weighted average of
independent chi-square random variables in which the weights are all positive constants that
are not necessarily equal in value. The results of Satterthwaite [53] and Welch [67] ensure that

an excellent approximation to the distribution of I. X(m)(%) is given by

- 1 . xX(v) l
]X(m)(E) ~ pX(m)(E)? (3.34)

where v, the “effective” degrees of freedom, is as computed in equation (A.14) of Appendix

A; see also display (3.41) below. The log of the smoothed periodogram of the batch means can

then be written as follows,

() ()] < o (][22

Furthermore,
l X ()
E<1 % - E{ln{ ——=
fiu s () -+ ol (5
— SXm)\ g 2 "\ ) '
and the bias term for frequency % where 1 < |l] < ais

v (%) _ ln<y7l> . (3.37)

Section A.3 of Appendix A has the complete derivation of the bias term (3.37).
Finally, at frequency % for % —a<|l| < % — 1, we see that as in the previous case, I X (m) (é)

(3.35)

=
o
>
S
VR
|~
N———
L

is in general a weighted average of independent chi-square random variables. As in (3.34), we

assert that

-~ 1\ . XWkpp) !
I m (_) ~ X (m (_) ’ 3.38
xm) | . Pxm) | 7 (3-38)
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where vy, /5|, the effective degrees of freedom, is as computed in equation (A.14) of Appendix
A; see also display (3.41) below. Paralleling the computation of the bias term at frequency é
for 1 < |I| < a, we find that the bias term for g —a<|l| < g —1is

Vk/2— | Vija—
U ) —In| ———=—2]. .
( : ) n( : ) (3.39)

Section A.4 of Appendix A has the complete derivation of the bias term (3.39). Table 3.2 shows
the values of the bias terms (3.29), (3.33), (3.37), and (3.39) for smoothing parameter values
A={5,7,9,11} and frequency £ where [ = 0,%1,...,£(5 —1),£.

Table 3.2: Bias E{EX(m) (é)} = CX(m) (é) for smoothing parameter A =5, 7, 9, and 11 and for

frequency é, where [ =0,+1,...,+ % -1 ,%.

! A=5 A=7 A=9 A=11

0 —0.2704 —0.1758 —0.1302 —0.1033

+1 —0.2131  —0.1496 —0.1152 —0.0937
+2 —0.1496  —0.1302 —0.1033 —0.0856
+3 —0.0937 —0.0856 —0.0731
+4 —0.0681 —0.0638
+5 —0.0536
a<l|l|<%—a -01033 -0.0731 —0.0566 —0.0461
+(5-) —0.0536
+(& -4 —0.0681 —0.0638
(k-3 —0.0937 —0.0856 —0.0731
(k-2 —0.1496  —0.1302 —0.1033 —0.0856
+(&-1) —0.2131  —0.1496 —0.1152 —0.0937

—0.2704 —-0.1758 —0.1302 —0.1033

[Nl

To obtain an estimate of the log-spectrum {CX(m)(é) l=—(E-1),...,0,..., 51,5} of the
batch means process, we have described in this section a procedure that first involves computing
the periodogram of the batch means {Ix(m)(%) 2= —(% —-1),... ,0,...,% -1, %} We then
compute the smoothed periodogram of the batch means {Ig(m)(é) l=—(k-1),....0,... .5
1,5}, and take ’E‘X(m) (L) = ln[fX(m) (4)] as our estimate of Cx(m) (4). An alternative estimate of
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CX(m ( ) may be obtained by computing the log-periodogram, In[I X(m)( )], and then smoothing
the result by taking a moving average of log-periodogram points; and we let Ex(m) (é) denote

the resulting smoothed-log-periodogram,

OR

In Appendix B we have derived expressions for the variances of these two different estimates of
CX(m)(é) for frequencies [ = 0,£1,+£2,... ,:l:(— —1),% 5; and the results are displayed in Table
3.3. For each integer j where 1 < j < a, the quantities VJ# and v; in Table 3.3 are defined as

Z m[IX (HI;UH forzzo,i1,...,i(§—1),g. (3.40)

u—a

follows:

# 2aA2
V. =
J 4a? —2aj +4a —2j+1

and v; = [v#]. (3.41)

Table 3.3: Comparison of the variances of the estimators £ X(m)(é) and ZX(m)(é) of the log-
spectrum of the batch means at frequency %, where [ =0, +1,... ,i(% - 1), %

Frequency Index [ Var {EX(m)(%)} Var {LX( )(E)}

1)
1=0,% ' (a)
Vi 1)
1<|l|<a v
2 2
i
v'(1)
k
a<l|l|<5—a U'(A) I
_ (1
E_g<i<k-1 \1,<”k/#> #4
Yk 2—|1|/2

In Table 3.4, we show the values of Var[C % (m)(0)] and Var[ZX(m)(O)] for smoothing pa-
rameter values A = 5, 7, 9, and 11. From this table we see that at zero frequency, smoothing
the periodogram of the batch means and then taking the natural log results in an estimate
of Cx(m) (0) with smaller variance than the estimate obtained by computing the natural log
of the periodogram of the batch means and then smoothing by taking a moving average of

log-periodogram values. Furthermore, we prove in Appendix B the following general variance
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reduction results,

v'(1)

V() < for j=2,3,... (3.42)
and
o ( Lz v'(1)
-— — > 3. .
U < 5 ) < 5 for all real = >3 (3.43)

Applying (3.42) and (3.43) to the variances in Table 3.3, we can conclude that for all frequencies
é where [ = 0,+£1, ... ,:l:(% —1), % and for any value of the smoothing parameter A, smoothing
the periodogram of the batch means and then taking the logarithm results in an estimate
of ¢ X(m)(%) with smaller variance than the estimate of X(m)(é) obtained by smoothing the

log-periodogram of the batch means.

Table 3.4: Comparison of the variance of L X (m) (0), the log of the smoothed periodogram of the

batch means (3.1) at zero frequency, to the variance of Z)_((m) (0), the smoothed log-periodogram
of the batch means (3.40) at zero frequency.

Smoothing Parameter Var[zx(m)(O)} Var{z)g(m)(O)}

A=5(a=2) 0.6449 0.8225
A=7(a=3) 0.3949 0.5483
A=9 (a=4) 0.2838 0.4112
A=11 (a=5) 0.2213 0.3290

3.3.4 Wauvelet-Based Estimation of the Spectrum of the Batch Means

In the previous section, we computed the log of the smoothed periodogram of the batch means
{EX(m)(%) 1 =0,£1,...,2(5 — 1),4}. The next step in WASS?P is to expand Ex(m)(é)
as a wavelet series to obtain a wavelet-based estimate of the log-spectrum of the batch means
Cx(m) (é) When the batch means periodogram {1, (é) l=1,..., % — 1} was computed in
the previous section, the number of points k in the batch means process {X1(m),..., Xx(m)}
was a power of two. After adding to the batch means periodogram the point Ig(,,)(0) defined
by (3.18) together with the points {Ig,, (é) = —(% —1),...,—1} in the frequency range
(—%,0), we see that the number of points in the extended batch means periodogram (and
consequently in the log of the smoothed batch means periodogram) on the frequency range

(—%, %) becomes 2(% —1)4+1=k—1, an odd number. To compute the DWT of the log of the
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smoothed batch means periodogram, {E X (m) (%)}, we must have a power of two for the total
number points in the log-smoothed-periodogram of the batch means. To make the number of
points in the log of the smoothed periodogram of the batch means a power of two, we add the
end point EX(m) (k—]f) = Ex(m) (%), as defined in (3.20).

To compute the DWT of the log-smoothed-periodogram {L X(m)(%)} of the batch means
process using k data points, we first correct for the bias in each of the components of L X(m) (%)

so that we have the DWT

W=0cL, (3.44)

where L is the bias-corrected log of the smoothed periodogram based on the bias terms (3.29),
(3.33), (3.37) and (3.39); and © is the k x k matrix that defines the DWT associated with
the s8 symmlet [9]. In Figure 3.5, the s8 scaling function ¢(¢) and wavelet function ¢ (t) are
shown. The s8 symmlet is an excellent overall choice for representing many functions since it

is orthogonal, smooth, nearly symmetric, and nonzero on a relatively short interval [9].

1.2
15
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-1.0

-0.2

Figure 3.5: The s8 symmlet scaling function ¢(t) (left) and the s8 symmlet wavelet function
P (t) (right).

Since the total number of points in the bias-corrected log of the smoothed periodogram of

the batch means has the form k& = 27, the number of resolution levels L used in the wavelet
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decomposition of {E X(m) (é)} is defined as follows,

J

L= {gJ , (3.45)

and the coarsest level of resolution jg is then given by
jo=dJ — L. (3.46)

This will give a total of 27° coefficients at the coarsest level of resolution. Table 3.5 lists the
values of L and jg, as well as the total number of coefficients at level jg, for various values of
k.

Table 3.5: Number of levels of resolution L obtained by computing the DWT of a data set of
size k. Also shown is the coarsest level of resolution jg, the range of values for the resolution
level j, and the number of coefficients at the coarsest level jg.

k J L j j # coefficients at level jj
32 5 2 3 3.4 8

64 6 3 3 34,5 8

128 7 3 4 45,6 16

256 8 4 4 4,5,6,7 16

512 9 4 5 5,6,7,8 32

4096 12 6 6 6,7,8,9,10,11 64

The justification of (3.45) is as follows. The energy € ¢ of a signal

f:[f17f27"'7fk]

of length k is defined as
Er=fi+fi+...,+ff

Any orthogonal discrete wavelet transform of the signal f conserves the energy of f [66]. That

is, if we let
200 -1

c ~2
8j0 = Z € jol

=0

be the total energy of the scaling coefficients at level j; and

d
&j

27 -1

72
> d
=0
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be the total energy of the jth level wavelet coefficients for j = jo,...,J — 1, then

J-1
Ep=85+ > &L
J=jo

In general, the DW'T redistributes the energy of f by compressing most of the energy into
the coarsest-level scaling coefficients. Consider the example shown in Figures 3.6 and 3.7. The
top plot of Figure 3.6 shows the plot of a Doppler signal sampled at k = 20 discrete time points.
The bottom plot shows the energy plot for the 1-level DW'T of the Doppler signal so that L =1
in this case. Taking L = 1 implies that jo = J — L = 9 so that the DWT yields the scaling
coefficients {¢g; : 1 = 0,1,...,2% — 1} and the wavelet coefficients {dAgJ :1=0,1,...,29 — 1}.
The top line represents the total energy contained in the original Doppler signal. The middle
line represents the total energy contained in the first level of wavelet coefficients Sg. The last
line represents the total energy contained in the scaling coefficients £§. From this plot, we
can see that nearly 100% of the energy of the Doppler signal is contained in the coarsest-level
scaling coefficients. That is, the energy of the Doppler signal has been compressed into a signal
that is 1/2 the length of the Doppler signal.

The top plot of Figure 3.7 shows the energy plot for the case L = 2 so that we compute
the 2-level DWT of the Doppler signal. In this case, jo = 8. The second line from the top
represents the energy Sg. The next line represents 8§ and the bottom line represents £5. From
this plot, we can see that about 98% of the energy of the Doppler signal is still contained in
the scaling coefficients, and that the energy of the Doppler signal has been compressed into a
signal that is 1/4 the length of the original signal.

The bottom plot of Figure 3.7 shows the energy plot for the case L = 6 so that we compute
the 6-level DWT of the Doppler signal taking jo = J — L = 4. The second line from the top
represents 83; the following lines respectively represent Sg, gd gd Eg, €4 and the bottom line
represents €. From this plot, we see that less than 80% of the energy of the Doppler signal is
localized in the signal

€4 = [C1,0,Ca,1,---,Ca,15)

of length 270 = 16 consisting of the coarsest-level scaling coefficients. As jo — 0 (that is, as the
number of scaling coefficients decreases), the amount of energy localized in the scaling coeffi-
cients must necessarily decrease. In the quantum theory of physics, Heisenberg’s Uncertainty
Principle states roughly that it is impossible to localize a fixed amount of energy into an arbi-
trarily small time interval. One wavelet-transform analog of Heisenberg’s Uncertainty Principle
(Theorem 2.4.1 of [62]) states roughly that for signal f of length &, it is impossible to localize
the energy €z of the signal f in a subsignal consisting of scaling and/or wavelet coefficients

extracted from the DWT of f, where the length of the subsignal is very much less than the
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Figure 3.6: Plot of a Doppler signal sampled at n = 2!° discrete time points (top); and energy
plot for the 1-level DWT of the Doppler signal.

length of the original signal; see pp. 8-9 of [66].

In equation (3.45), the number of resolution levels L is set to ensure the number of scaling
coefficients is large enough so that a high percentage of the energy of the bias-corrected log of
the smoothed periodogram of the batch means is contained in the scaling coefficients (which are
not thresholded), while at the same time the number of scaling coefficients is not so large that
many of the scaling coefficients represent noise. If L = 1 (that is, we have the maximum possible
number of scaling coefficients, k/2), then nearly 100% of the energy of the bias-corrected log of
the smoothed periodogram of the batch means will be contained in the scaling coefficients. In
this situation, however, it is also likely that some of the scaling coefficients will represent noise.
Since we are not thresholding the scaling coefficients, the ultimate result will be a less-smooth
estimate of the log-spectrum of the batch means. On the other hand, if L = J so that there
is only one scaling coefficient, then it is highly likely that the single scaling coefficient does
not represent noise. However, the estimate of the log-spectrum of the batch means will not
be as accurate since all coefficients but one will be thresholded, including smaller-magnitude

coefficients that do not represent noise.
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Figure 3.7: 2-level DWT of the Doppler signal shown in Figure 3.6 (top); and energy plot for
the 6-level DWT of the same Doppler signal (bottom).

After computing the DW'T of the bias-corrected log of the smoothed periodogram of the
batch means L as given by (3.44), we threshold the resulting wavelet coefficients {c@l 1 g =
josjo+1,...,J —1;1=0,1,...,27 — 1} using Gao’s thresholding scheme (2.60) to obtain the
coefficients {E;',l cj=Jjosjo+1,...,J—1;1=0,1,...,27 —1}. The empirical scaling coefficients
{Cjo1 : 1 =0,1,...,270 — 1} are not thresholded since it is presumed they contain information
about the coarse features of the log-spectrum of the batch means. The inverse transform

L =0™w (3.47)

is computed, where W' is the vector containing the coefficients {¢;,;: 1 =0,1,... , 290 —1} and

{cj}il 1§ =Jjoy...,J —1;1=0,1,...,27 — 1}, to obtain the corresponding thresholded wavelet
approximation

T
£ =[5 85 B = lz;.((m) (ﬁ) ,...,z;z(m)m),...,z}(m)(%)]
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to the vector £ of the bias-corrected log of the smoothed periodogram of the batch means.
Therefore, our wavelet-based estimate of the log-spectrum of the batch means CX(m)(%) is

given as follows,

¢ l L* ! k k

Figures 3.8-3.10 show plots of the bias-corrected log of the smoothed periodogram of the
batch means and the corresponding wavelet estimate of the bias-corrected log-smoothed peri-
odogram for the batch means of the waiting times in an M /M /1 queueing system with 90%
traffic intensity and an empty-and-idle initial condition. Each figure was generated by first
collecting n =32,768 waiting time observations from a simulation replication of the M/M/1
queueing system. The independence test and the normality test were conducted to obtain a
batch means process {X1(m),..., Xy(m)}, where we have k = 32 for replication 1; we have
k = 64 for replication 2; and we have k = 128 for replication 3. Finally, the bias-corrected log
of the smoothed periodogram of the batch means and the corresponding wavelet estimate were
computed for each replication. From these plots, it is clear that there is a significant amount
of variability in the shape of the bias-corrected log of the smoothed periodogram of the batch
means from replication to replication. It is also evident that transforming the bias-corrected
log of the smoothed periodogram using the thresholded DWT successfully removes the noise,
as can be seen clearly in Figures 3.8-3.10.

Tables 3.6-3.8 show the total amount of energy contained in each resolution level of both
the thresholded and nonthresholded versions of the wavelet estimate of the bias-corrected log-
smoothed periodogram of the batch means for replications 1-3. From these tables, we see that
before thresholding, the total energy of the bias-corrected log-smoothed periodogram of the
batch means is conserved after computing the DWT; and furthermore, the majority of this

energy is compressed into the thesholded coarsest-level scaling coefficients.
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Figure 3.8: The bias-corrected smoothed log-periodogram of the batch means (top) and the
corresponding thresholded wavelet estimate (bottom) for k& = 32 batch means computed from
the waiting times for an M /M /1 queueing system with 90% traffic intensity, replication 1.
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Figure 3.9: The bias-corrected smoothed log-periodogram of the batch means (top) and the
corresponding thresholded wavelet estimate (bottom) for k£ = 64 batch means computed from
the waiting times for an M /M /1 queueing system with 90% traffic intensity, replication 2.
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Figure 3.10: The bias-corrected smoothed log-periodogram of the batch means (top) and the
corresponding thresholded wavelet estimate (bottom) for k£ = 128 batch means computed from
the waiting times for an M /M /1 queueing system with 90% traffic intensity, replication 3.
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Table 3.6: Energy decomposition by resolution level of the wavelet estimate of the bias-corrected
log-smoothed periodogram of the batch means for replication 1 of the M/M/1 queue waiting
time process shown in Figure 3.8 with total energy & 7 = 458.5368.

Before Thresholding | After Thresholding
Energy ~ % of €5 | Energy % of &
€5 457.8729 99.86 457.8729  99.86
€4 0.2731 0.06 0 0
€4 0.3908 0.08 0 0

Table 3.7: Energy decomposition by resolution level of the wavelet estimate of the bias-corrected
log-smoothed periodogram of the batch means for replication 2 of the M/M/1 queue waiting
time process shown in Figure 3.9 with total energy EZ = 1074.8.

Before Thresholding | After Thresholding
Energy % of €7 | Energy % of £
e 1065.6 99.14 1065.6 99.14

€4 6.2289 0.58 0 0
€4 0.7250 0.07 0 0
€ 22165 0.21 0 0

Table 3.8: Energy decomposition by resolution level of the wavelet estimate of the bias-corrected
log-smoothed periodogram of the batch means for replication 3 of the M/M/1 queue waiting
time process shown in Figure 3.10 with total energy 82 =1,741.1.

Before Thresholding | After Thresholding
Energy ~ % of €5 | Energy % of €5
&5 1,7375 99.79 1,737.5 99.79

€4 1.5979 0.09 0 0
€ 0.9495 0.05 0 0
€l 1.0202 0.06 0 0

The wavelet-based estimate of the spectrum of the batch means process can now be com-

puted as follows,

. l ~ l
pX(m)(E) :eXP{CX(m)<E>] for l:O,:I:l,...,:I:(%—l)j%,

It follows that a wavelet-based estimate of the SSVC for the original (unbatched) process is
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given by

x =m - Dxm(0), (3.48)

and an approximate 100(1 — 3)% confidence interval for px is

B

X (m, k) + t1-8/2,2a (3.49)

7

3

where n’ = mk and ?(m, k) is the grand average of the k batch means {X1(m),..., Xr(m)}.

A proof of the result displayed in (3.48) is given as follows. For the unbatched steady-state
process {X; : i = 8+ 1,8 +2,...,8 + n'} consisting of the observations generated beyond 8,
the end of the warm-up period, the SSVC ~x is defined as

vx = lim 7/ Var{Y(n')} , (3.50)
where
1 S8+n’
B /
X(n') =~ > X (3.51)
i=1+8

If we batch the process {X; : i =1+8,2+38,...,8+n'} into k batches of size m, then we have

a new process consisting of the batch means {X;(m) :i =1,2,...,k}, where

j=8+(i—1)m—+1
Furthermore, the grand mean of the process {X;(m) :i=1,2,...,k} is given by

X (m, k) = % S X(m). (3.52)

Recognizing that
and

we see that equation (3.50) can be rewritten as

vx = lim mkVar[?(m,k)}

k—o0
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= m lim k Var| X(m, k)| . (3.53)

k—oo

Now, the SSVC of the batch means process {X;(m) :i =1,2,...,k} is defined as
VX (m) = kli_)H;OkVar{Y(m,k)} . (3.54)

Substituting (3.54) into (3.53), we have the result

3.3.5 Fulfilling the Precision Requirement

WASS?P is a sequential method for constructing confidence intervals that satisfy a given accu-
racy requirement, specified as either a maximum relative fraction r* of the magnitude of the
final grand mean ?(m, k), or as a maximum absolute half-length h*. A confidence interval is
delivered once the accuracy requirement is satisfied. The user is also allowed the option of not
specifying a precision level, in which case a confidence interval is delivered after one iteration
of WASSP.

The half-length of the confidence interval (3.49) is given by

B Px(m)(0)
- =11-5/2,24 —

B

H=1_5/224

3

If the confidence interval (3.49) satisfies the precision requirement,

H< H* (3.55)

where H* is as given in (3.5), then WASSP terminates and the confidence interval (3.49) is
delivered.
If the precision requirement (3.55) is not satisfied, then the total number of batches required

to satisfy the precision requirement is computed as follows,

<[]

and thus the total sample size required to meet the precision requirement is k*m. However,

since the number of batches must be a power of two, the batch count k is set for the next
iteration of WASSP as follows:

k «— min {220 1006}, (3.56)
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where 4,096 is the upper bound on the number of batch means used in WASSP.
Setting the batch size for the next iteration of WASSP requires some care. If the current
batch size m is used on the next iteration of WASS?P together with the new batch count k given

by (3.56), then the new total sample size including the warm-up period is
n «— km + 8.

If k < k*, then the new total sample size km + 8 will be less than the total sample size k*m + 8
required to meet the precision requirement. In this case, the new batch size m* is computed

from
km* +8 =k"m+ 8, (3.57)

where k is given by (3.56). Eliminating 8 from (3.57) and then dividing both sides of (3.57) by
k, we see that we must take
k*
m* = —m.

k
Therefore, if k < k*, then the new batch size m for the next iteration of WASS?P is assigned

m e K%) mw , (3.58)
)2.

On the next iteration of WASSP, the total sample size including the warm-up period is thus

according to

so that the total sample size n is increased approximately by a factor of ( I?*
given by
n <« km+ 38,

where the corresponding batch count k and batch size m are given by (3.56) and (3.58), re-
spectively. The additional simulation-generated observations are obtained by restarting the
simulation or by retrieving the extra data from storage; and then the next iteration of WASSP
is performed.

The next chapter summarizes the results of a comprehensive experimental performance
evaluation of WASSP that is specifically designed to reveal both the strengths and weaknesses
of WASSP.
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Chapter 4

Performance Evaluation of Wass»

We applied WASSP to a variety of particularly difficult test processes that were designed specif-
ically to explore the robustness of the procedure against the statistical anomalies commonly
encountered in the analysis of outputs generated by large-scale steady-state simulation experi-

ments. The test processes used in the performance evaluation of WASS?P are as follows:
(i) the M/M/1 queue waiting time process with server utilization equal to 0.90;
(ii) the first-order autoregressive process (AR(1)) with lag-one correlation equal to 0.995;

(iii) the “AR(1)-to-Pareto” (ARTOP) process that has marginals given by a Pareto distri-
bution with lower limit and shape parameter equal to 1 and 2.1, respectively (implying
the marginal mean and variance are both finite while the marginal skewness and kurtosis
are both infinite), and that is obtained by applying to process (iii) the composite of the

inverse of the specified Pareto c.d.f. and the standard normal c.d.f;

(iv) the “AR(1)-to-Johnson” (ARTOJ) process that has marginals given by a Johnson Sy
distribution with mean, variance, skewness, and kurtosis equal to 1, 1, 100, and 900,
respectively, and that is obtained by applying to process (iii) above the inverse of the

normalizing translation defining the specified Johnson Sy distribution; and
(v) the M/M/1/LIFO queue waiting time process with server utilization equal to 0.80.

Subsections 4.1-4.6 describe each of these processes in more detail.

For each of the above test processes, the parameters used to evaluate the performance
of WASSP are the coverage probability of its confidence intervals, the mean and half-length
of its confidence intervals, and the total required sample size. We performed independent
replications of WASSP to construct nominal 90% and 95% confidence intervals that satisfy a

specified precision requirement. The following three precision requirements were used:
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(a) no precision—that is, we set h* = oo in (3.4) and (3.5) so WASS?P delivers the confidence
interval (3.3) using the batch count and batch size required to pass the independence and

normality tests;

(b) £ 15% precision—that is, WASSP delivers the confidence interval (3.3) satisfying the

relative precision requirement given by (3.4) and (3.5) with 7* = 0.15; and

(c) £ 7.5% precision—that is, WASSP delivers the confidence interval (3.3) satisfying the
relative precision requirement given by (3.4) and (3.5) with r* = 0.075.

For each test process listed above, the theoretical steady-state mean response is available ana-
lytically (that is, a numerical method can be implemented to rapidly compute the exact value
of the steady-state mean response to several significant figures); and therefore we were able to
evaluate the performance of WASS?P in terms of actual versus nominal coverage probabilities for
the confidence intervals delivered by the procedure. For the sake of comparison, we also applied
ASAP2 and Heidelberger and Welch’s spectral method to the test processes listed above. The

next section describes how we implemented Heidelberger and Welch’s spectral procedure.

4.1. Implementation of Heidelberger and Welch’s
Spectral Method

Comparing the performance of WASSP with that of Heidelberger and Welch’s procedure is
complicated since the latter procedure requires the user to specify an upper limit .« on the
allowable simulation run length; and in many practical applications, the user may seek to use
a steady-state simulation analysis procedure as a means of estimating a reasonable simulation
run length based on the ultimate objectives of the simulation study. To make a fair comparison
between the performance of WAS8SP and the performance of Heidelberger and Welch’s sequential
spectral method (as described in Section 2.7.2), we first applied WASS? to a realization of a
particular process so as to obtain not only the corresponding WASSP-based confidence interval
but also a complete data set to which we may apply the (partially) sequential version of the
Heidelberger-Welch procedure. In particular on each replication of WAS8P and Heidelberger
and Welch’s procedure for the +£15% and the +7.5% precision cases, we set the maximum run
length ¢,y for Heidelberger and Welch’s method to the final sample size required by WASS?P for
that replication. However, since Heidelberger and Welch’s method for detecting and eliminating
initialization bias in their sequential spectral method [28] is not fully developed and since there
is no precise and complete algorithmic statement of the procedure that we can use to compare
to WASS8P, we decided to apply their sequential method without the test for initialization
bias. Therefore, Heidelberger and Welch’s method is applied to the entire data set, including

those observations comprising the warm-up period. For the no precision case, we applied the
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Heidelberger and Welch method to a fixed sample of size 4,096 (as described in Section 2.7.1).
That is, we applied Heidelberger and Welch’s method to the first 4,096 observations of the data
set used by WASS?P for each replication.

Heidelberger and Welch describe a method for batching data in [26]. We employed this same
batching procedure in our implementation of Heidelberger and Welch’s method. In particular,
we set the maximum number of possible batches £* = 200. Within one run (replication) of a test
process, let t; denote the time (sample size) at which the ith confidence interval is computed.

The values of t; are computed as follows,
t1 = [0.15 tmax | (4.1)
and
t; =min{[1.5¢_1], tmax}, ©=2,3,.... (4.2)

The factors 0.15 in (4.1) and 1.5 in (4.2) are based on Heidelberger and Welch’s recommenda-
tions for implementing their procedure in practice [26]. The batch size m; and the number of

batches k; at time (sample size) t; can then be computed according to

m, = ollosa{(ti=1)/k"}]

- 2]
m;

respectively, where t; > k*. Finally, to be consistent with Heidelberger and Welch’s experimen-

and

tal results in [26], we estimated the log-spectrum by fitting a polynomial of degree ¢ = 2 to the
first K = 25 points of the log of the smoothed periodogram. Setting the parameters K = 25 and
g = 2 implies that the bias-correction constant C1(K,q) = 0.882 and the “effective” degrees of
freedom v(K,q) = 7. Note that C; and v are associated with the Heidelberger-Welch spectral
estimator px(0) of the SSVC. A confidence interval of the form (2.77) is computed at each
time (sample size) t; for i = 1,2,..., until either the precision requirement is satisfied, or the
maximum run length is reached (that is, ¢; = tmax). For the no precision case, a confidence

interval of the form (2.77) is computed using a total of 4,096 observations.

4.2. The M/M/1 Queue Waiting Time Process

The performance of WASS® for the M /M /1 queue waiting time process is discussed in this sec-
tion. For this system, X; is the waiting time for the ith customer, ¢ = 1,2,..., in a single-server

queueing system with i.i.d. exponential interarrival times having mean 10/9, i.i.d. exponential
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service times having mean 1, a steady-state server utilization of 90%, and an empty-and-idle
initial condition (so that X; = 0). The theoretical mean for this waiting time process is
ux =9.0.

The M /M /1 queue waiting time process with 90% server utilization is a particularly difficult
test process for several reasons. First, because the system is starting empty and idle, the
duration of the initial transient period is long. If the end of the warm-up period is not identified
correctly and observations prior to the end of the warm-up period are used in the analysis, then
the resulting point estimate X will be biased. A second aspect of this process which makes it a
difficult test case is that once the system has reached steady-state operation, the autocorrelation
function decays very slowly with increasing lags. Consequently, this process will allow thorough
evaluation of the robustness of WASSP’s independence test and the ability of WASSP to

(a) identify a point beyond which all computed batch means are approximately independent

of the simulation model’s initial conditions; and

(b) construct a set of spaced batch means such that the interbatch spacer preceding each

batch is sufficiently large to ensure all computed batch means are approximately i.i.d.

Finally, this process is a difficult test case because the marginal distribution of waiting times
is markedly nonnormal, having an exponential tail. Hence, this process will also allow us to
evaluate the effectiveness of WASS8P’s normality test and its ability to determine an appropriate
batch size beyond which computed batch means are approximately normal.

For an M/M/1 queue with traffic intensity ¢ and mean interarrival time E[B;], where B;
is the interarrival time between the (i — 1)st and ith customers for i = 1,2,..., the power

spectrum of the steady-state waiting time process {X;} for w € [-1/2,1/2] is

0%(2 — o) 1—0° By /0’“ t9/2(r — t)1/2[cos(2nw) — 1]

px(w) = ———=- E2[Bi] + E2[ (1 —t)3[1 — 2tcos(2mw) + t2]

e - dt, (4.3)

where r = 40/(1 + 0)%. Since it appears that the literature lacks available computing formulas
for px(w), the result (4.3) is derived in Appendix D.

For the selected steady-state M /M /1 queue waiting time process with arrival rate 10/9 and
service rate 1, Figure 4.1 displays plots of the spectrum px (w) and the log-spectrum In[px (w)]
for w € [-1/2,1/2]. Clearly both functions are sharply peaked at zero frequency. In the WASS?P
algorithm, however, we are actually estimating the log-spectrum of the batch means process
ln[p;{(m) (w)]. From the plot in Figure 4.1 we can get a general idea of what the spectrum of the
batch means process will look like since the peakedness of PX(m) (w) depends on the peakedness
of the spectrum of the underlying process. While the power spectrum of the batch means will

be less peaked than px(w), it will still be sharply peaked; and this property will enable us to

91



gauge the robustness of WASSP’s wavelet-based technique for estimating the spectrum at zero

frequency.
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Figure 4.1: Plots for frequency w € [—3, 3] of the spectrum px(w) (top panel) and the log-

spectrum In[px(w)] (bottom panel) of the steady-state M/M/1 queue waiting time process
{X;} with 90% server utilization (arrival rate 10/9 and service rate 1).
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Table 4.1 shows the performance of WASS? for the M /M /1 queue waiting time process using
the smoothing parameter values A = 5,7,9,and 11. The results are based on 1,000 independent
replications of nominal 90% confidence intervals (CIs). Table 4.2 shows the corresponding
results for nominal 95% CIs. The standard error is less than 1% for each coverage estimator in
Tables 4.1 and 4.2. From these tables, it is evident that the coverage probability decreases in
general as the smoothing parameter increases. This is due to the target process having a power
spectrum with a sharp peak in the neighborhood of zero frequency. As the smoothing parameter
A is increased, WASSP’s estimate of the power spectrum near zero frequency becomes flatter,
resulting in an estimate of the SSVC that is biased low. For the no precision case, clearly A =5
yields the best results in terms of coverage probability. If one were only interested in generating
an initial, or pilot, CI for the steady-state mean of this process without imposing a precision
requirement, then it might be desirable to change the default smoothing parameter from A =7
to A = 5. Similarly, for the +15% precision case, the results for A = 5 appear to be better than
those for A = 7. However, for the £7.5% case, there is significant overcoverage for A = 5; and
it appears that asymptotically, the default smoothing parameter A = 7 produces better results
than A = 5. For A = 9 and A = 11, the coverage probabilities for the +7.5% precision case
are also excellent. However, the small sample results for A =9 and A = 11 are not as good as
those for A=5and A=71.

In summary, it is evident from Tables 4.1 and 4.2 that while there may be slight differences
in the results for the allowable values of A, setting A = 5,7,9, or 11 yields acceptable results

for this system and WASSP appears to be robust in terms of the smoothing parameter A.
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Table 4.1: Performance of WASSP using different values of A for the M/M/1 queue waiting
time process with 90% server utilization and empty-and-idle initial condition. Results are based

on 1,000 independent replications of nominal 90% CIs.

Precision Performance Smoothing Parameter
Requirement | Measure A=5 A=T A=9 A=11
CI coverage 87% 83% 82% 80%
Avg. sample size 13,171 12,956 13,964 13,020
None Max. sample size 128,142 123,102 159,408 123,102
Avg. CI half-length | 3.5545 3.1776 2.8900 2.8387
Var. CI half-length 3.6149 2.5342 1.8898 1.6919
CI coverage 89% 84% 83% 82%
Avg. sample size 112,400 88,782 73,443 66,793
+15% Max. sample size 931,840 819,248 665,600 396,288
Avg. CI half-length | 1.1047 1.1060 1.1231 1.1390
Var. CI half-length 0.0414 0.0368 0.0358 0.0342
CI coverage 93% 91% 90% 90%
Avg. sample size 458,550 371,380 340,070 314,330
+7.5% Max. sample size 2,609,152 1,871,936 1,986,560 3,260,416
Avg. CI half-length | 0.5866 0.5914 0.5925 0.5957
Var. CI half-length 0.0069 0.0066 0.0066 0.0056

Table 4.2: Performance of WASSP using different values of A for the M/M/1 queue waiting
time process with 90% server utilization and empty-and-idle initial condition. Results are based
on 1,000 independent replications of nominal 95% CIs.

Precision Performance Smoothing Parameter
Requirement | Measure A=5 A=7 A=9 A=11
CI coverage 90% 90% 89% 87%
Avg. sample size 13,233 13,895 13,454 13,912
None Max. sample size 114,580 159,408 135,232 159,408
Avg. CI half-length | 4.4831 3.8909 3.6634 3.3978
Var. CI half-length 5.6563 3.6705 2.9545 2.4103
CI coverage 95% 93% 91% 90%
Avg. sample size 198,210 140,790 122,300 108,580
+15% Max. sample size 3,747,840 917,584 587,776 452,608
Avg. CI half-length | 1.1352 1.1436 1.1433 1.1538
Var. CI half-length 0.0352 0.0324 0.0300 0.0280
CI coverage 98% 97% 95% 94%
Avg. sample size 793,220 599,070 532,240 473,350
+7.5% Max. sample size 5,599,232 3,477,536 2,752,512 1,945,600
Avg. CI half-length | 0.5950 0.5953 0.5970 0.5967
Var. CI half-length 0.0061 0.0060 0.0055 0.0052
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4.2.1 Validation of Student’s t-Ratio Assumptions for the M/M/1 Queue
Waiting Time Process

When a confidence interval of the form (3.49) is delivered by WASS®, its validity depends on

the auxiliary random variable

T:?(mJgA)_MX _ (?_MX)/\/%: Z (4.4)
Vi () fou VO

having Student’s t-distribution with 2a degrees of freedom; and in general this distributional

requirement is met if the following assumptions hold—

Assumption Aj: The numerator of (4.4) satisfies

Z= ~ N(0,1). (4.5)

Ix
n

Assumption As: The squared denominator of (4.4) satisfies

_ 2a9x
5¢

Q

~ x%(2a). (4.6)

Assumption Agz: The numerator Z and the squared denominator Q are independent.

In the following experimental study of the stochastic behavior of 7, Z, and Q when WASSP
is applied to the waiting time process in the M /M /1 queue, we took a = 3 so that the smoothing
parameter A = 7 and Ax, the WASSP-based estimator of yx, has 2a = 6 degrees of freedom.
To determine if the 7-values generated by WASS?P do in fact follow a t-distribution with 2a = 6
degrees of freedom, we generated the following plots, each based on 400 independent replications
of WASSP with the confidence-interval specifications of no precision, +15% precision, and £7.5%

precision and with nominal confidence levels of 90% and 95%:

(i) A plot showing the histogram of 7-values superimposed on the probability density func-
tion (p.d.f.) of the t-distribution with 6 degrees of freedom, together with a plot showing
the empirical c.d.f. of the 7-values superimposed on the c.d.f. of the t-distribution with

6 degrees of freedom.

(ii) A plot showing the histogram of Z-values superimposed on the p.d.f. of the N(0,1) dis-
tribution, together with a plot showing the empirical c.d.f. of the Z-values superimposed
on the c.d.f. of the N(0,1) distribution.
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(iii) A plot showing the histogram of Q-values superimposed on the p.d.f. of the x?(6) distri-
bution, together with a plot showing the empirical c.d.f. of the Q-values superimposed on
the c.d.f. of the x?(6) distribution.

Figures 4.2-4.7 display the plots described in items (i)—(iii) above. To generate these plots,
first we had to compute the theoretical SSVC ~x of the M/M/1 queue waiting time process.

From [15] we have in general that

by = D& 4" +50+2)
(1-2o)*

E?[By, (4.7)

where p is the traffic intensity and B; is the interarrival time between the (i — 1)st and ith
customers. Substituting ¢ = 0.9 and E[B;] = 10/9, we have yx = 35,901.

Several observations can be made about the plots in Figures 4.2-4.7. First, from the middle
row of plots in Figures 4.2 and 4.5 where the empirical distributions of Z are compared to the
N(0,1) distribution, we see that the distribution of Z-values is slightly skewed. This indicates
that for the no precision case, the point estimate of the mean, ?(m, k), is biased. This bias is
likely the result of a combination of two different factors. First, the mean ?(m, k) is affected
by initialization bias. For the no precision case, it appears that WASS?P has not been able to
eliminate entirely the effects of system warm-up on the estimate of the mean. Second, the

simulation run length n is random. This implies that

X(m, k) = X(n) = ZZTlx (4.8)

is a ratio of two random variables; and for such a ratio estimator, in general we have

E> 7 Xy

B[ X(n)] # o (4.9)

(see Sections 6.3 and 6.8 of [12]). It is clear that when WASSP is applied to the process
{X;:i=1,2,...}, the resulting final sample size n is a stopping time for the process ([49], p.

229); and thus, for example, in the special case that the {X;} are i.i.d., then Wald’s equation
([49], Corollary 7.2.3) implies that

Xi] — Efnl ux (4.10)

so that in this situation we have

E[?(m,k)} £ . (4.11)
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From the preceding discussion it follows that WASSP’s final point estimator ?(m, k) is
generally biased. Asymptotically as the precision requirement r* — 0, the sample size n — oo,
and the mean X (n) converges with probability one to px, and the bias due to the randomness
of the simulation run length n goes to zero. Furthermore, as the simulation run length increases,
the effect of system warm-up on the estimate of the mean decreases. This can be seen clearly
in the middle row of plots in Figures 4.4 and 4.7. At the £7.5% precision level, a large amount
of the bias affecting the mean has been eliminated.

A second observation that can be made about the plots in Figures 4.2—4.7 is that for the
most part, the Q-values do closely follow the x?(6) distribution. In some cases, however (as
in Figure 4.7), the Q-values do not appear to track the x2(6) distribution as closely as in
others. We can expect the behavior of the Q-values to be erratic at times since Q is a random
variable based on the sample covariance structure (that is, second-degree sample moments) of
the simulation-generated time series {X; : i =1,2,...,n}.

A final observation is that overall the 7-values closely follow the ¢-distribution with 6 degrees
of freedom; and asymptotically, the Assumptions A; and A, required for the random variable
7T to have a t-distribution with 6 degrees of freedom appear to hold (at least to a reasonable

approximation) for the M /M /1 waiting time process.
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Figure 4.2: Comparison of the empirical distributions (step functions) of 400 7-values (top
row), Z-values (middle row), and Q-values (bottom row) with their corresponding assumed
theoretical distributions (smooth curves)—namely, the ¢-distribution with 6 degrees of freedom,
the N(0,1) distribution, and the x2(6) distribution, respectively. Results obtained from 400
i.i.d. runs of WASSP to estimate mean M /M /1 waiting time using a 90% CI with no precision
requirement.
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Figure 4.3: Comparison of the empirical distributions (step functions) of 400 7-values (top
row), Z-values (middle row), and Q-values (bottom row) with their corresponding assumed
theoretical distributions (smooth curves)—namely, the ¢-distribution with 6 degrees of freedom,
the N(0,1) distribution, and the x2(6) distribution, respectively. Results obtained from 400
i.i.d. runs of WASSP to estimate mean M /M /1 waiting time using a 90% CI with £15% precision
requirement.
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Figure 4.4: Comparison of the empirical distributions (step functions) of 400 7-values (top
row), Z-values (middle row), and Q-values (bottom row) with their corresponding assumed
theoretical distributions (smooth curves)—namely, the ¢-distribution with 6 degrees of freedom,
the N(0,1) distribution, and the x2(6) distribution, respectively. Results obtained from 400
iid. runs of WASS? to estimate mean M/M/1 waiting time using a 90% CI with £7.5%
precision requirement.
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Figure 4.5: Comparison of the empirical distributions (step functions) of 400 7 -values (top row),
Z-values (middle row), and Q-values (bottom row) with their corresponding assumed theoretical
distributions (smooth curves)—namely, the t-distribution with 6 degrees of freedom, the N (0, 1)
distribution, and the x?(6) distribution, respectively. Results obtained from 400 i.i.d. runs of
WASSP to estimate M /M /1 waiting time using a 95% CI with no precision requirement.
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Figure 4.6: Comparison of the empirical distributions (step functions) of 400 7-values (top
row), Z-values (middle row), and Q-values (bottom row) with their corresponding assumed
theoretical distributions (smooth curves)—namely, the ¢-distribution with 6 degrees of freedom,
the N(0,1) distribution, and the x2(6) distribution, respectively. Results obtained from 400
i.i.d. runs of WASSP to estimate mean M /M /1 waiting time using a 95% CI with £15% precision
requirement.
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Figure 4.7: Comparison of the empirical distributions (step functions) of 400 7-values (top
row), Z-values (middle row), and Q-values (bottom row) with their corresponding assumed
theoretical distributions (smooth curves)—namely, the ¢-distribution with 6 degrees of freedom,
the N(0,1) distribution, and the x2(6) distribution, respectively. Results obtained from 400
iid. runs of WASS?P to estimate mean M/M/1 waiting time using a 95% CI with £7.5%
precision requirement.
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To verify Assumption A3 required for the random variable 7 to have Student’s ¢-distribution
with 2a degrees of freedom, we estimated the correlation between ?(m, k) and yx for 400
replications of WASS? with confidence levels of 90% and 95% and with the smoothing parameter
A =7. In Tables 4.3 and 4.4, we see that there is significant correlation between ?(m, k) and
vx, strongly suggesting that in this application of WASSP, Assumption Az does not hold so
Z and Q are not independent. As the precision requirement r* — 0, the correlation between
?(m, k) and 7 x decreases very slowly. This may be a partial explanation for the undercoverage
seen in some of the small sample cases (that is, for the no precision and the +15% precision

cases) for the M/M/1 system.

Table 4.3: Correlation between ?(m, k) and 7x for 400 independent replications of WASSP to
estimate mean M /M /1 waiting time using a 90% CI.

Precision Requirement | Corr [?(m, k), ﬁx}

None 0.5829
+15% 0.5778
+7.5% 0.4922

Table 4.4: Correlation between ?(m, k) and 7x for 400 independent replications of WASSP to
estimate mean M /M /1 waiting time using a 95% CI.

Precision Requirement | Corr [?(m, k), S/X}

None 0.6540
+15% 0.5605
+7.5% 0.4531

4.2.2 Comparison of WASsP and ASAP2 for the M/M/1 Queue Waiting
Time Process

Tables 4.5 and 4.6 show a comparison of the performance of WASSP (using A = 7) and ASAP2
for the M/M/1 queue waiting time process. The coverage probabilities for ASAP2 have a
standard error of approximately 1.5% for nominal 90% confidence intervals and a standard
error of approximately 1% for nominal 95% confidence intervals since only 400 replications of
ASAP2 were performed. The coverage probabilities for WASSP have a standard error of 0.95%
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for nominal 90% confidence intervals and a standard error of 0.69% for nominal 95% confidence
intervals since we performed 1000 replications of WASS®P. From these two tables, it is clear that
in the no precision case ASAP2 has a higher coverage probability than WASSP. However, the
variance of the confidence interval half-length is markedly higher for ASAP2 than for WASS®>.
This suggests that for the no precision case, WASSP produces much more stable confidence
intervals than ASAP2. Furthermore, in the no precision case the confidence level has no effect
on the average and maximum sample size. Therefore, these two values should be the same
for nominal 90% and 95% ClIs if the procedure being tested is applied to the same set of data
for both confidence levels. We see from Tables 4.5 and 4.6 that this is the case for ASAP2.
However, the average and maximum sample sizes are different for nominal 90% and 95% CIs
generated by WASSP. This is because common random numbers were not used to generate the
data sets used to test WASSP and therefore the algorithm was applied to different sets of data
for nominal 90% CIs and nominal 95% Cls.

For the +15% precision case, ASAP2 appears to perform slightly better in terms of con-
fidence interval coverage probability than WASSP. However, from Tables 4.1 and 4.2 we see
that for smoothing parameter A = 5, WASSP produces results that are comparable to those for
ASAP2 when the relative precision requirement r* = 0.15 is imposed. Clearly, once a precision
requirement is imposed, ASAP2 produces confidence intervals that exhibit the same stability as
the confidence intervals produced by WAS8?P, as can be seen from the variance of the confidence
interval half-length.

For the case of +7.5% precision, Tables 4.5 and 4.6 indicate that WASSP and ASAP2 perform
essentially the same, suggesting that as the relative precision requirement r* — 0, WASSP and
ASAP2 produce comparable results for this test process in terms of coverage probability, average
confidence interval half-length, and variance of the confidence interval half-length. The average
sample size is significantly higher for WASS® than for ASAP2, however.
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Table 4.5: Performance of WASS? (using A = 7) and ASAP2 for the M/M/1 queue waiting
time process with 90% server utilization and empty-and-idle initial condition. Results are based

on independent replications of nominal 90% Cls.

Precision Performance Procedure

Requirement | Measure WASSP  ASAP2

# replications 1,000 400

CI coverage 83% 88%

None Avg. sample size 12,956 22,554
Max. sample size 123,102 131,072

Avg. CI half-length | 3.1776 6.44

Var. CI half-length 2.5342 167.0

# replications 1,000 400

CI coverage 84% 90%
+15% Avg. sample size 88,782 93,374
Max. sample size 819,248 260,624

Avg. CI half-length | 1.1060 1.18

Var. CI half-length 0.0368 0.025

# replications 1,000 400

CI coverage 91% 92%
+7.5% Avg. sample size 371,380 281,022
Max. sample size 1,871,936 796,076

Avg. CI half-length | 0.5914 0.630

Var. CI half-length 0.0060 0.002
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Table 4.6: Performance of WASS? (using A = 7) and ASAP2 for the M/M/1 queue waiting
time process with 90% server utilization and empty-and-idle initial condition. Results are based
on independent replications of nominal 95% Cls.

Precision Performance Procedure
Requirement | Measure WASSP  ASAP2
# replications 1,000 400
CI coverage 90% 90%
None Avg. sample size 13,895 22,554
Max. sample size 159,408 131,072
Avg. CI half-length | 3.8909 8.3
Var. CI half-length 3.6705 350.0
# replications 1,000 400
CI coverage 93% 95%
+15% Avg. sample size 140,790 126,839

Max. sample size 917,584 364,672
Avg. CI half-length | 1.1436 1.204
Var. CI half-length 0.0324 0.02

# replications 1,000 400
CI coverage 97% 96%
+7.5% Avg. sample size 599,070 382,040

Max. sample size 3,477,536 856,256
Avg. CI half-length 0.5953 0.633
Var. CI half-length 0.0060 0.002

107



4.2.3 Comparison of WASS? and Heidelberger and Welch’s Spectral Method
for the M/M/1 Queue Waiting Time Process

Tables 4.7 and 4.8 show the results for WASSP and the spectral method of Heidelberger and
Welch (H&W) for nominal 90% and 95% confidence intervals, respectively. Since it is possible
that the Heidelberger and Welch algorithm could run out of data before the precision require-
ment is satisfied, we included in Tables 4.7 and 4.8 the overall coverage (for all 1000 replications,
whether or not the precision requirement was met) as well as the coverage for those Cls that
satisfied the precision requirement. Furthermore, Tables 4.7 and 4.8 also report the estimated

mean square error of the grand mean,

1000 2
Z [Xl my, ki) ,UX}

1000 ’

MSE[X(m, k) | = (4.12)

where on replication [ of WASSP or the H&W procedure, ?l(ml,k‘l) denotes the delivered
grand mean based on k; batches of size m; for [ = 1,...,1000; and the corresponding estimated
standard error of (4.12),
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(4.13)

The statistics (4.12) and (4.13) provide an indication of the amount of bias associated with the
final point estimator ?(m, k) delivered by each procedure.

For the no precision case, @[?(m, k)] for Heidelberger and Welch’s method is nearly
double that for WAS8P. This can be attributed to the fact that the Heidelberger and Welch
algorithm does not address the warm-up problem at all; moreover, in general the randomness of
the final sample size used by the H&W procedure can introduce an additional bias into ?(m, k)
for the same reasons elaborated in the discussion leading up to display (4.11) above. Once a
precision requirement is imposed and the sample size begins to increase, I\TS\E[?(m, k)] for
Heidelberger and Welch’s method begins to decrease with the decreasing effect of initialization
bias and ratio-estimator bias on X (m, k). From the values of I\TS\E[?(m, k)] for WASS®P, it can
be seen (especially in the no precision case) that ?(m, k) is slightly affected by initialization
bias as well as ratio-estimator bias. As the precision requirement goes to zero, the effects of
these two types of bias on WASSP’s estimate of the mean decrease, as reflected in the values of
I\TS\E[?(m, k)] for the precision levels of +15% and £7.5%.

From Tables 4.7 and 4.8, we also see that Heidelberger and Welch’s method consistently
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requires smaller average sample sizes than WASSP. However, it is difficult to compare the
average sample sizes for the precision levels of £15% and £7.5% since not all 1000 CIs delivered
by the Heidelberger and Welch method satisfied the precision requirement. It is also evident
from Tables 4.7 and 4.8 that the coverage of the confidence intervals delivered by Heidelberger
and Welch’s method is consistently much less than the coverage of the confidence intervals
generated by WASSP.
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Table 4.7: Performance of WASS? (using A = 7) and Heidelberger and Welch’s spectral method
for the M/M/1 queue waiting time process with 90% server utilization and empty-and-idle
initial condition. Results are based on 1,000 independent replications of nominal 90% ClIs.

Precision Procedure
Requirement | Performance Measure WASSP H&W
# replications. 1,000 1,000
Overall CI coverage 83.2% 78.6%
Avg. sample size 12,956 4,096
Max. sample size 123,102 4,096
None Avg. CI half-length 3.1776 4.0415
Var. CI half-length 2.5342 4.6892
MSE[X (m, k)] 3.6379  7.0497
SE{MSE[X (m, k)]} 02815  0.6062
# replications satisfying precision requirement 1,000 1,000
Coverage for Cls satisfying precision requirement 83.2% 78.6%
# replications 1,000 1,000
Overall CI coverage 83.6% 79.6%
Avg. sample size 88,782 65,282
Max. sample size 819,248 314,464
+15% Avg. CI half-length 1.1060 1.3154
Var. CI half-length 0.0368 0.3765
MSE[X (m, k)] 0.6575  0.8940
SE{MSE[X (m, )]} 0.0368  0.0442
# replications satisfying precision requirement 1,000 767
Coverage for Cls satisfying precision requirement 83.6% 75.0%
# replications 1,000 1,000
Overall CI coverage 90.8% 84.10%
Avg. sample size 371,380 298,860
Max. sample size 1,871,936 1,216,420
+7.5% Avg. CI half-length 0.5914 0.6852
Var. CI half-length 0.0060 0.0599
MSE[X (m, k)] 0.1199  0.2186
SE{MSE[X (m, )]} 0.0066  0.0117
# replications satisfying precision requirement 1,000 673
Coverage for Cls satisfying precision requirement 90.8% 79.35%
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Table 4.8: Performance of WASS? (using A = 7) and Heidelberger and Welch’s spectral method
for the M/M/1 queue waiting time process with 90% server utilization and empty-and-idle
initial condition. Results are based on 1,000 independent replications of nominal 95% Cls.

Precision Procedure
Requirement | Performance Measure WASSP H&W
# replications 1,000 1,000
Overall CI coverage 90.0% 84.8%
Avg. sample size 13,895 4,096
Max. sample size 159,408 4,096
None Avg. CI half-length 3.8909 5.1046
Var. CI half-length 3.6705 7.3659
MSE[X (m, k)] 3.3902  7.3704
SE{MSE[X (m, k)]} 02118  0.8204
# replications satisfying precision requirement 1,000 1,000
Coverage for Cls satisfying precision requirement 90.0% 84.8%
# replications 1,000 1,000
Overall CI coverage 92.8% 87.0%
Avg. sample size 140,790 104,290
Max. sample size 917,584 482,306
+15% Avg. CI half-length 1.1436 1.3521
Var. CI half-length 0.0324 0.3791
MSE[X (m, k)] 0.381  0.6325
SE{MSE[X (m, )]} 0.0237  0.0313
# replications satisfying precision requirement 1,000 717
Coverage for Cls satisfying precision requirement 92.8% 83.68%
# replications 1,000 1,000
Overall CI coverage 96.5% 92.6%
Avg. sample size 599,070 458,310
Max. sample size 3,477,536 1,841,421
+7.5% Avg. CI half-length 0.5953 0.6910
Var. CI half-length 0.0060 0.0523
MSE[X (m, k)] 0.0743  0.1378
SE{MSE|[X (m, k)]} 0.0040  0.0077
# replications satisfying precision requirement 1,000 673
Coverage for Cls satisfying precision requirement 96.5% 89.6%
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4.3. The First-Order Autoregressive Process

The next test process used in the performance evaluation of WASS® is the first-order autore-
gressive process. Let {0; : ¢ = 1,2,...} be a white noise process that is randomly sampled from

N(0, O'g). We define an autoregressive process of order one as follows,
Xi=px +p(Xi—1 —px)+0;, for i=1,2,..., (4.14)

where px is the steady-state mean of the process and p is the lag-one correlation of the process
in steady-state operation. To generate the AR(1) process {X; : i = 1,...,n} from (4.14),
we first set Xo = 0, corresponding to an empty-and-idle initial condition. We then set the
autoregressive parameter p = 0.995, the mean pux = 100, and the variance of the white noise
process ag = 1. One of the most difficult aspects of this test proces is the exceptionally long
initial transient period.

The spectrum of the AR(1) process (4.14) in steady-state operations is

2
_ 95
1 —2pcos(2nw) + p?

px (w) for we [—%, %], (4.15)
see equation (6.2.20) of [33]. For the selected AR(1) process (4.14) with ux = 100, p = 0.995,
02 =1, 0% = 0%/(1 - p*) = 100.25, and steady-state initial condition Xy ~ N(ux,0%), Figure
4.8 depicts plots of the spectrum px(w) and the log-spectrum In[px (w)] for w € [-1/2,1/2].
Figure 4.8 reveals that both the spectrum and log-spectrum of the selected AR(1) process
exhibit peakedness at zero frequency similar to that exhibited by their counterparts for the
M/M/1 waiting time process. Thus the given AR(1) process provides another severe test of
WASSP’s wavelet-based technique for estimation of the spectrum at zero frequency.

Tables 4.9 and 4.10 show the performance of WASS? for the AR(1) process described above
using the smoothing parameter values A=5, 7, 9, and 11. The results are based on 1,000
independent replications of nominal 90% and 95% CIs. From these tables, it is clear that as
the value of A increases, the coverage probabilities decrease slightly. As previously observed
for the M/M/1 process, the extreme peakedness of the log-spectrum of the selected AR(1)
process in the neighborhood of zero frequency results in progressively greater underestimation
of the SSVC with increasing values of WASSP’s smoothing parameter A. However, as with the
M/M/1 queue waiting time process, Tables 4.9 and 4.10 also show the robustness of WASS? in
terms of the value of the smoothing parameter A since setting A=5, 7, 9, or 11 yields acceptable

results for this process.
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Table 4.9: Performance of WASS? using different values of A for the AR(1) process (4.14) with
pux = 100, Xg =0, p = 0.995, and ag = 1. Results are based on 1,000 independent replications
of nominal 90% CIs.

Precision Performance Smoothing Parameter
Requirememt | Measure A=5 A=7 A=9 A=11
CI coverage 94% 90% 87% 85%
Avg. sample size 9,885 9,703 9,960 9,715
None Max. sample size 21,504 22,120 27,468 29,736

Avg. CI half-length | 6.0418 5.3424 4.9107 4.6365
Var. CI half-length | 2.2874 1.7498 1.2413 1.0990

CI coverage 93% 92% 87% 84%
Avg. sample size 9,715 9,739 9,769 9,752
+15% Max. sample size 29,736 29,736 21,504 29,736

Avg. CI half-length | 6.1614 5.3423 4.8754 4.5442
Var. CI half-length | 2.4859 1.5663 1.3592 1.0379
CI coverage 93% 92% 89% 85%

Avg. sample size 9,756 9,899 9,885 9,960
+7.5% Max. sample size 29,736 30,090 21,504 27,468
Avg. CI half-length | 5.7021 5.3037 4.8869 4.5663
Var. CI half-length | 1.3305 1.3122 1.2303 0.9708
CI coverage 91% 86% 87% 86%

Avg. sample size 17,269 13,470 11,897 11,080
+3.75% Max. sample size 52,224 49,152 32,512 29,736
Avg. CI half-length | 3.1739 3.2235 3.2890 3.3300
Var. CI half-length | 0.1924 0.1453 0.1230 0.1094
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Table 4.10: Performance of WASS? using different values of A for the AR(1) process (4.14) with
pux = 100, Xg =0, p = 0.995, and ag = 1. Results are based on 1,000 independent replications

of nominal 95% ClIs.

Precision Performance Smoothing Parameter
Requirement | Measure A=5 A=7 A=9 A=11
CI coverage 97% 95% 95% 93%
Avg. sample size 9,769 9,834 9,781 9,809
None Max. sample size 21,504 29,736 24,174 29,736
Avg. CI half-length | 7.8435 6.7748 6.1069 5.5963
Var. CI half-length | 4.1196 2.7061 2.0884 1.5721
CI coverage 98% 95% 94% 91%
Avg. sample size 9,885 9,814 9,715 9,752
+15% Max. sample size 21,504 24,120 29,736 29,736
Avg. CI half-length | 7.8686 6.7411 6.1871 5.5864
Var. CI half-length | 3.8799 2.6902 2.1548 1.5686
CI coverage 96% 94% 93% 92%
Avg. sample size 10,378 9,941 9,777 9,585
+7.5% Max. sample size 27,468 30,208 21,504 22,592
Avg. CI half-length | 6.2788 6.1240 5.7928 5.5829
Var. CI half-length | 0.8404 1.0529 1.2285 1.2269
CI coverage 98% 95% 94% 92%
Avg. sample size 28,893 20,868 17,288 14,990
+3.75% Max. sample size 88,064 68,608 65,536 52,096
Avg. CI half-length | 3.2704 3.2908 3.3212 3.3841
Var. CI half-length | 0.1936 0.1393 0.1255 0.0850
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4.3.1 Validation of Student’s t-Ratio Assumptions for the AR(1) Process

To validate the assumptions required to ensure the auxiliary random variable 7" defined in (4.4)
will possess Student’s t-distribution with 2a = 6 degrees of freedom when we set A = 7 and
apply WASSP to the AR(1) process, we generated the same types of plots as for the M/M/1
queue waiting time process. As detailed below, when WASSP was applied to the AR(1) process
(4.14) with px = 100, Xy = 0, p = 0.995, and O'g = 1, the procedure required nearly the
same average sample sizes and generated not only confidence intervals but also 7-, Z-, and Q-
values with nearly the same performance characteristics at all three previously selected levels
of precision—mnamely, no precision, =15% precision, and +7.5% precision. To provide a more
comprehensive experimental validation of Assumptions A;—Az when WASS?P is applied to an
AR(1) process, we also included the case of £3.75% precision; and the resulting plots for all four
precision levels are displayed in Figures 4.9-4.16. To generate these plots, we first computed
the theoretical SSVC for the AR(1) system as follows [8],
O'g 1

_ _ = 40,000.
T A2 T (=099 "

From these plots, it appears that Assumptions A; and As are satisfied. It is worth noting,
however, that it is still possible to see some skewness in the distribution of Z-values, as in the
middle row of plots in Figure 4.9. As with the M /M /1 system, this bias is likely a combination
of the effects of system warm-up and the randomness of the simulation run length n.

In general for the plots in Figures 4.9-4.11 and Figures 4.13-4.15, only slight differences
can be detected between the cases defined by the three associated precision levels (no precision,
+15% precision, and +7.5% precision). This can be attributed to the fact that the average
sample size for each of the three precision levels is approximately the same, as can be seen in
the column for A = 7 in Tables 4.9 and 4.10. From Table 4.9, the average CI half-length is
5.4728 for the no precision case, indicating that with no precision requirement for nominal 90%
ClIs, WASS? is delivering CIs that are already within about £6% of the mean. From Table
4.10, the average CI half-length is 6.8943 for the no precision case, indicating that without
a precision requirement WASS? is delivering nominal 95% CIs that are already within about
+7% of the mean. Therefore, there is going to be little difference in the results for the three
previously selected precision levels.

Finally, to validate Assumption Ag required for 7 to have a t-distribution with 6 degrees of
freedom—namely that Z and Q are independent, we computed the sample correlation between
?(m, k) and 4x for 400 independent replications of WASS®P applied to the AR(1) process. As
shown in Tables 4.11 and 4.12, the correlations between ?(m, k) and 7x are small, indicating

approximate validity of Assumption Ags.
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Figure 4.9: Comparison of the empirical distributions (step functions) of 400 7-values (top
row), Z-values (middle row), and Q-values (bottom row) with their corresponding assumed
theoretical distributions (smooth curves)—namely, the ¢-distribution with 6 degrees of freedom,
the N(0,1) distribution, and the x2(6) distribution, respectively. Results obtained from 400
i.i.d. runs of WAS8®P applied to the AR(1) process (4.14) using a 90% CI with no precision
requirement.
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Figure 4.10: Comparison of the empirical distributions (step functions) of 400 7-values (top
row), Z-values (middle row), and Q-values (bottom row) with their corresponding assumed
theoretical distributions (smooth curves)—namely, the ¢-distribution with 6 degrees of freedom,
the N(0,1) distribution, and the x?(6) distribution, respectively. Results obtained from 400
i.i.d. runs of WAS8® applied to the AR(1) process (4.14) using a 90% CI with £15% precision
requirement.
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Figure 4.11: Comparison of the empirical distributions (step functions) of 400 7-values (top
row), Z-values (middle row), and Q-values (bottom row) with their corresponding assumed
theoretical distributions (smooth curves)—namely, the ¢-distribution with 6 degrees of freedom,
the N(0,1) distribution, and the x?(6) distribution, respectively. Results obtained from 400
i.i.d. runs of WASS? applied to the AR(1) process (4.14) using a 90% CI with £7.5% precision
requirement.

119



w =
= =
- o
=] =
=
e
E
S = 8 <
S = [ =3
E
g e
[y =
= £
5 o 2 =
2 S 5 S
£
=
S
— o~
=1 =1
= — I - =
= =
] -4 -2 o 2 a a -2 o 2
T-value (4.3) T-value (4.3)
< =
=] =
w
= o
=
=
- 2
S 3 2
= S <«
g E S
= =
E o= =
= S
2 =
= 2 =
é’ g =1
o~
= £
L =3
o~
— =
S
= =
= =
-4 -2 o 2 -3 -2 -1 o 1 2 3
Z-value (4.4) Z-value (4.4)
S =
=1 —
=
w2 =
p=]
)
E
= g =
s = S
£ < 2
[y - =
2 = &£
= 2 =
=2 5 S
£
=
v S
=1
= o~
=1
= L | =
= =
o 5 10 15 20 o 5 10 15
Q-value (4.5) Q-value (4.5)

Figure 4.12: Comparison of the empirical distributions (step functions) of 400 7-values (top
row), Z-values (middle row), and Q-values (bottom row) with their corresponding assumed
theoretical distributions (smooth curves)—namely, the ¢-distribution with 6 degrees of freedom,
the N(0,1) distribution, and the x?(6) distribution, respectively. Results obtained from 400
i.i.d. runs of WASS? applied to the AR(1) process (4.14) using a 90% CI with £3.75% precision
requirement.
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Figure 4.13: Comparison of the empirical distributions (step functions) of 400 7-values (top
row), Z-values (middle row), and Q-values (bottom row) with their corresponding assumed
theoretical distributions (smooth curves)—namely, the ¢-distribution with 6 degrees of freedom,
the N(0,1) distribution, and the x?(6) distribution, respectively. Results obtained from 400
i.i.d. runs of WAS8®P applied to the AR(1) process (4.14) using a 95% CI with no precision
requirement.

121



w =
=] =2
~ o
= =
By
=]
s
S = 8 <
S = [y =3
s
g e
(e =
= £
5 o 2 =
2 = £ S
1=
s
S
— o~
=1 =1
= L[S =
=] =]
6 -a -2 o 2 a =3 -a -2 o 2
T-value (4.3) T-value (4.3)
< =
=] =2
)
= o
=1
=
- 2
o S 3
= g <o
g E S
= <«
E o= =
= S
= 2 =
£ g =
= £
o
™~
— =
=
= =
= =]
-4 -2 o 2 -3 -2 -1 o 1 2 3
Z-value (4.4) Z-value (4.4)
s =
=1 —
]
w2 =
=
)
s
) 8 <
s = S
g o 2
(e — =
2 = &£
= 2 =
=2 £ S
1=
s
v S
=
= o~y
=1
= — =
=] =]
o 5 10 15 20 o 5 10 15
Q-value (4.5) Q-value (4.5)

Figure 4.14: Comparison of the empirical distributions (step functions) of 400 7-values (top
row), Z-values (middle row), and Q-values (bottom row) with their corresponding assumed
theoretical distributions (smooth curves)—namely, the ¢-distribution with 6 degrees of freedom,
the N(0,1) distribution, and the x?(6) distribution, respectively. Results obtained from 400
i.i.d. runs of WAS8® applied to the AR(1) process (4.14) using a 95% CI with £15% precision
requirement.
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Figure 4.15: Comparison of the empirical distributions (step functions) of 400 7-values (top
row), Z-values (middle row), and Q-values (bottom row) with their corresponding assumed
theoretical distributions (smooth curves)—namely, the ¢-distribution with 6 degrees of freedom,
the N(0,1) distribution, and the x?(6) distribution, respectively. Results obtained from 400
i.i.d. runs of WASS? applied to the AR(1) process (4.14) using a 95% CI with £7.5% precision
requirement.
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Figure 4.16: Comparison of the empirical distributions (step functions) of 400 7-values (top
row), Z-values (middle row), and Q-values (bottom row) with their corresponding assumed
theoretical distributions (smooth curves)—namely, the ¢-distribution with 6 degrees of freedom,
the N(0,1) distribution, and the x?(6) distribution, respectively. Results obtained from 400
i.i.d. runs of WASS? applied to the AR(1) process (4.14) using a 95% CI with £3.75% precision
requirement.
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Table 4.11: Correlation between ?(m, k) and 7x for 400 independent replications of WASSP
applied to the AR(1) process (4.14) using a 90% CI.

Precision Requirement | Corr [X (m, k), ﬁx}

None -0.0041
+15% 0.0209
+7.5% 0.2768
+3.75% 0.1006

Table 4.12: Correlation between ?(m, k) and 7x for 400 independent replications of WASSP
applied to the AR(1) process (4.14) using a 95% CI.

Precision Requirement | Corr [?(m, k), S/X}

None 0.1115
+15% 0.0189
+7.5% 0.0844
+3.75% 0.0647

4.3.2 Comparison of Wass? and ASAP2 for the AR(1) Process

Tables 4.13 and 4.14 show a comparison of the performance of WASSP (using A = 7) and
ASAP2 for the AR(1) process (4.14) with pux = 100, Xo = 0, p = 0.995, and 0% = 1 so that
there is a pronounced initial transient in each time series of simulation-generated observations
from this process. For the no precision case with nominal 90% and 95% ClIs, it is clear that
ASAP2 completely breaks down. The Cls delivered by ASAP2 for the no precision case are so
wide that they have no practical meaning. Furthermore, the catastrophically high variance of
the CI half-length indicates that ASAP2 does not produce stable, reliable CIs when no precision
requirement is specified.

When a precision requirement is imposed, the tremendous variance of the confidence interval
half-length on the first iteration of ASAP2 causes the predicted sample sizes for succeeding
iterations to be too high. The sample sizes for the +£15%, £7.5%, and +3.75% precision cases
are about ten times higher for ASAP2 than for WASS®P. Furthermore, the actual precision of
the confidence intervals delivered by ASAP2 is significantly lower than the requested level. For

example in Table 4.13, the average confidence interval half-length for the £7.5% precision case
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is 1.9787. This indicates that at the +7.5% precision level, ASAP2 is delivering confidence
intervals that are within about +2% of the mean. This can also be attributed to the fact that
the variance of the confidence interval half-length is extremely high on the first iteration of
the ASAP2 algorithm, and therefore the predicted sample sizes needed to achieve the desired
precision are much higher than necessary.

The breakdown of ASAP2 for this process is likely due to the fact that this particular AR(1)
process has an extremely high lag-one correlation. When an ARMA time series model is fit
to the sequence of batch means for this AR(1) process, the result is a maximum likelihood
estimator for the autoregressive parameter that is very close to 1; and such a result leads to
unstable estimates of the first four cumulants of the NOBM ¢-ratio (2.7) which are ultimately

used to construct the correlation-adjusted confidence interval (2.8).

4.3.3 Comparison of WASS? and Heidelberger and Welch’s Spectral Method
for the AR(1) Process

Tables 4.15 and 4.16 show the results of applying WASS?P and Heidelberger and Welch’s spectral
method to the AR(1) process. The results for Heidelberger and Welch’s spectral method were
obtained in the same manner as described in Section 4.1. From both Tables 4.15 and 4.16,
examination of the statistic hﬂS\E[?(m, k)] reveals significant bias in the estimate of the mean
for Heidelberger and Welch’s method. This bias is likely due for the most part to system
warm-up. It is also worth noting the highly erratic results for nominal 90% CIs produced
by the Heidelberger and Welch method. For the no precision and the +7.5% precision cases,
H&W-based nominal 90% confidence intervals exhibit significant overcoverage; however, for the
+15% precision case the confidence intervals exhibit catastrophic undercoverage. For nominal
95% ClIs delivered by the H&W method in the no precision and +7.5% precision cases, the
resulting coverage probabilities are also significantly higher than the nominal level. Overall,
WASSP clearly outperforms Heidelberger and Welch’s spectral method for the AR(1) process.
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Table 4.13: Performance of WASS? (using A = 7) and ASAP2 for the AR(1) process (4.14)
with pux = 100, Xo = 0, p = 0.995, and O'g = 1. Results are based on independent replications
of nominal 90% CIs.

Precision Performance Procedure
Requirement | Measure WASSP ASAP2
# replications 1,000 400
CI coverage 90% 100%
None Avg. sample size 9,703 10,305

Max. sample size 22,120 23,040
Avg. CI half-length | 5.3424  90.5508
Var. CI half-length | 1.7498  5,159.18

# replications 1,000 400
CI coverage 92% 96.25%
+15% Avg. sample size 9,739 51,908

Max. sample size 29,736 201,472
Avg. CI half-length | 5.3423  3.3881
Var. CI half-length | 1.5663  9.8356

# replications 1,000 400
CI coverage 92% 92.75%
+7.5% Avg. sample size 9,899 101,331

Max. sample size 30,090 403,200
Avg. CI half-length | 5.3037 1.9438
Var. CI half-length | 1.3122 2.6427
# replications 1,000 400

CI coverage 86% 92.25%
+3.75% Avg. sample size 13,470 197,683
Max. sample size 49,152 806,144
Avg. CI half-length | 3.2235 1.2124
Var. CI half-length | 0.1453 0.8517
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Table 4.14: Performance of WASS? (using A = 7) and ASAP2 for the AR(1) process (4.14)
with px = 100, Xo = 0, p = 0.995, and O'g = 1. Results are based on independent replications

of nominal 95% ClIs.

Precision Performance Procedure
Requirement | Measure WASSP ASAP2
# replications 1,000 400
CI coverage 95% 100%
None Avg. sample size 9,834 10,305
Max. sample size 29,736 23,040
Avg. CI half-length | 6.7748 136.594
Var. CI half-length | 2.7061 14,915.191
# replications 1,000 400
CI coverage 95% 97.5%
+15% Avg. sample size 9,814 75,677
Max. sample size 24,120 378,368
Avg. CI half-length | 6.7411 3.3191
Var. CI half-length | 2.6902 11.0498
# replications 1,000 400
CI coverage 94% 96.5%
+7.5% Avg. sample size 9,941 147,110
Max. sample size 30,208 755,968
Avg. CI half-length | 6.1240 1.9787
Var. CI half-length | 1.0529 3.0829
# replications 1,000 400
CI coverage 95% 96.5%
+3.75% Avg. sample size 20,868 291,709

Max. sample size
Avg. CI half-length
Var. CI half-length

68,608 1,512,448
3.2908 1.2139
0.1393 0.8906
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Table 4.15: Performance of WASS?P (using A = 7) and Heidelberger and Welch’s spectral
method for the AR(1) process (4.14) with uy = 100, Xo = 0, p = 0.995, and 02 = 1. Results
are based on 1,000 independent replications of nominal 90% CIs.

Precision Procedure
Requirement | Performance Measure WASSP  H&W
# replications 1,000 1,000
Overall CI coverage 90.5% 93.1%
Avg. sample size 9,703 4,096
Max. sample size 22,120 4,096
None Avg. CI half-length 5.3424 9.9476
Var. CI half-length 1.7498 2.0874
MSE[X (m, k)] 8.6182  32.070
SE{MSE[X (m, k)]} 0.3941  0.9890
# replications satisfying precision requirement 1,000 1,000
Coverage for Cls satisfying precision requirement | 90.5% 93.1%
# replications 1,000 1,000
Overall CI coverage 92.2% 72.2%
Avg. sample size 9,739 4,220
Max. sample size 29,736 6,371
+15% Avg. CI half-length 5.3423  12.1689
Var. CI half-length 1.5663 1.3045
MSE[X (m, k)] 8.2502  106.4578
SE{MSE[X (m, k)]} 04012  3.1019
# replications satisfying precision requirement 1,000 1,000
Coverage for Cls satisfying precision requirement | 92.2% 72.2%
# replications 1,000 1,000
Overall CI coverage 92% 94%
Avg. sample size 9,899 8,061
Max. sample size 30,090 22,854
+7.5% Avg. CI half-length 5.3037 6.5924
Var. CI half-length 1.3122 1.1403
MSE[X (m, k)] 8.4103  11.0716
SE{MSE[X (m, k)]} 0.3811  0.4663
# replications satisfying precision requirement 1,000 845
Coverage for Cls satisfying precision requirement 92% 93.37%
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Table 4.16: Performance of WASS? (using A = 7) and Heidelberger and Welch’s spectral
method for the AR(1) process (4.14) with uy = 100, Xo = 0, p = 0.995, and 02 = 1. Results
are based on 1,000 independent replications of nominal 95% Cls.

Precision Procedure

Requirement | Performance Measure WAssP H&W
# replications 1,000 1,000

Overall CI coverage 95.1%  97.1%

Avg. sample size 9,834 4,096

Max. sample size 29,736 4,096
None Avg. CI half-length 6.7748  12.3665
Var. CI half-length 2.7061  3.2718
MSE[X (m, k)] 8.7998  33.2424
SE{MSE[X (m, k)]} 04151  1.0399

# replications satisfying precision requirement 1,000 1,000

Coverage for CIs satisfying precision requirement | 95.1% 97.1%

# replications 1,000 1,000

Overall CI coverage 94.8%  94.8%

Avg. sample size 9,814 4,732
Max. sample size 24,120 11,483
+15% Avg. CI half-length 6.7411  12.4977
Var. CI half-length 2.6902  1.5553
MSE[X (m, k)] 8.4478  42.9346
SE{MSE[X (m, )]} 04127  1.6567

# replications satisfying precision requirement 1,000 1,000

Coverage for CIs satisfying precision requirement | 94.8% 94.8%

# replications 1,000 1,000

Overall CI coverage 94.2%  97.7%

Avg. sample size 9,941 9,315

Max. sample size 30,208 21,504

+7.5% Avg. CI half-length 6.1240  7.6182
Var. CI half-length 1.0529  2.4289

MSE[X (m, k)] 8.0383  9.0171
SE{MSE[X (m, k)]} 0.3755  0.4124

# replications satisfying precision requirement 1,000 512
Coverage for Cls satisfying precision requirement | 94.2%  96.48%
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4.4. The AR(1)-to-Pareto (ARTOP) Process

The next system used to test the performance of WASS®P is the “AR(1)-to-Parteo,” or ARTOP
process. Let {Z; : j = 1,2,...} be a stationary AR(1) process with N(0,1) marginals and

lag-one correlation p. The process {Z; : j = 1,2,...} can be generated as follows:
Z; = pZi-1 + 5, (4.16)

iid.
~Y

where Zy ~ N(0,1) and {0; : j =1,2,...} N(0,02) is a white noise process with variance

02 =0%(1-p*)=1-p (4.17)

If{X;:j=1,2,...} is an ARTOP process with marginal c.d.f.

9
FX(x)EPr{ng}:{ ;‘(5) ) iiz (4.18)

where £ > 0 is a location parameter and 9 > 0 is a shape parameter, then {X,} is generated
from the “base process” (4.16) as follows. First, the base process {Z; : j = 1,2,...} is fed
into the standard normal c.d.f. to get a sequence of correlated, uniform(0,1) random variables
{U;j :5=1,2,...}; that is, U; = ®(Z;) for j =1,2,..., where

B(z) = /_ ; o(w)dw and (z) = \/1276—22/2 (4.19)

respectively denote the N(0,1) c.d.f. and p.d.f. for all real z. Finally, the process {U; : j =
1,2,...} is fed into the inverse of the Pareto c.d.f. (4.18) to generate the process {X; : j =
1,2,...} as follows,

X;=F{ U] = F[@(Z)] = ji=1,2,.... (4.20)

[ =z
The mean and the variance of the ARTOP process (4.20) are given by [34]

px = B[X;] =960 —1)71, for 9> 1, (4.21)
and

0% =29 —1)"2 —-2)", for ¥ >2, (4.22)

respectively.
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We decided to set the parameters of the Pareto distribution (4.18) according to ¥ = 2.1 and
¢ = 1; and we set the lag-one correlation in the base process (4.16) to p = 0.995. This yields an
ARTOJ process {X; : j =1,2,...} whose marginal distribution has mean, variance, skewness,

and kurtosis respectively given by

X —MX>3

px = 1.9091, 0% = 17.3554, EK
ox

=00, and E[(Xja;;txyl] =00. (4.23)

The most difficult aspect of this system is that the marginals are highly nonnormal, and their
distribution has a very heavy tail. We sampled Zj from the N (0, 1) distribution when generating
the process { X} so that the process was started in steady-state operation. Therefore, there is
no warm-up problem for this process.

Tables 4.17 and 4.18 show the performance of WAS8P for the ARTOP process (4.20) de-
scribed above using the smoothing parameter values A = 5,7, and 9. The results are based
on 400 independent replications of nominal 90% and 95% CIs. From these two tables, we see
that the coverage decreases in general as the smoothing parameter increases. For nominal 90%
Cls with A = 7 and A = 9, the resulting coverage probabilities are unacceptable at all three
precision levels. For nominal 95% ClIs, the coverage probabilities for A = 7 and A = 9 are
unacceptable for the no precision and the +15% precision levels. In this application of WASSP,
the smoothing parameter value A = 5 appears to yield the best results for both nominal 90%
and 95% confidence intervals, especially in the +7.5% precision case. While it is the case that
for A = 5 there is significant undercoverage in the small-sample cases, clearly as the sample
size increases the coverage probabilities approach the nominal level. It is unclear at this point
why A = 5 produces the best results for this process. Nonetheless, it is recommended that the

default smoothing parameter be changed from A =7 to A =5 for this ARTOP process.
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Table 4.17: Performance of WASS? using different values of A for the ARTOP process (4.20)
with € = 1.0, ¥ = 2.1, p = 0.995 and Zy ~ N(0,1). Results are based on 400 independent
replications of nominal 90% CIs.

Precision Performance Smoothing Parameter
Requirement | Measure A=5 A=T A=9
CI coverage 80.5% 76.5% 74.0%
Avg. sample size 15,276 15,350 17,021
None Max. sample size 122,176 321,470 901,340
Avg. CI half-length | 0.5740 0.4524 0.4447
Var. CI half-length 0.2943 0.0991 0.5885
CI coverage 78.25% 72.0% 69.25%
Avg. sample size 81,636 54,077 44,250
+15% Max. sample size 2,554,011 735,232 1,909,760
Avg. CI half-length | 0.2201 0.2214 0.2247
Var. CI half-length 0.0022 0.0022 0.0018
CI coverage 89% 81% 83%
Avg. sample size 377,140 303,840 281,890
+7.5% Max. sample size 5,066,880 3,829,760 3,946,496
Avg. CI half-length | 0.1187 0.1164 0.1183
Var. CI half-length 0.0004 0.0004 0.0004

Table 4.18: Performance of WASSP using different values of A for the ARTOP process (4.20)
with £ = 1.0, ¥ = 2.1, p = 0.995, and Zy ~ N(0,1). Results are based on 400 independent
replications of nominal 95% Cls.

Precision Performance Smoothing Parameter
Requirement | Measure A=5 A=T7 A=9
CI coverage 88.5% 81.25% 78%
Avg. sample size 15,584 15,350 15,214
None Max. sample size 146,421 321,470 321,470
Avg. CI half-length | 0.6863 0.5697 0.5207
Var. CI half-length 0.1837 0.1572 0.1309
CI coverage 85.75% 86% 76.5%
Avg. sample size 131,410 111,010 70,355
+15% Max. sample size 1,439,854 2,871,296 459,776
Avg. CI half-length | 0.2241 0.2255 0.2254
Var. CI half-length 0.002 0.002 0.0016
CI coverage 95% 91% 95%
Avg. sample size 782,638 532,315 474,795
+7.5% Max. sample size 6,156,442 6,033,408 6,877,184
Avg. CI half-length | 0.1198 0.1197 0.1186
Var. CI half-length 0.0005 0.0004 0.0005
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4.4.1 Validation of Student’s t-Ratio Assumptions for the ARTOP Process

To validate the assumptions required for the random variable 7 in (4.4) to have Student’s
t-distribution with 2a degrees of freedom when we set A = 5 and apply WASSP to the ARTOP
process (4.20), we generated the same types of histogram and c.d.f. plots as for the M/M/1
process and the AR(1) process. To generate these plots, we first used the method detailed in
Appendix C to compute the theoretical SSVC for the ARTOP process. From Equation (C.9),

we have the following estimate of yx with maximum relative error e,o = 1079,
vx ~ 1612.7791494. (4.24)

Figures 4.17-4.22 show the histogram and c.d.f. plots for the ARTOP process (4.20) using
A = 5. In the middle row of plots in Figures 4.17 and 4.20, the distribution of Z-values is
skewed, implying the mean ?(m, k) is biased. Since this ARTOP process is started in steady-
state operation, there is no bias in the mean due to system warm-up. Therefore, the bias
must be caused entirely by the randomness of the simulation run length n. We can see in the
middle row of plots in Figures 4.19 and 4.22 that as the sample size n increases, the bias due
to the randomness of the simulation run length decreases. From the remainder of the plots,
it is clear that asymptotically Assumptions A; and As are satisfied at least to a reasonable

approximation.
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Figure 4.17: Comparison of the empirical distributions (step functions) of 400 7-values (top
row), Z-values (middle row), and Q-values (bottom row) with their corresponding assumed
theoretical distributions (smooth curves)—namely, the ¢-distribution with 4 degrees of freedom,
the N(0,1) distribution, and the x?(4) distribution, respectively. Results obtained from 400
ii.d. runs of WASS?P applied to the ARTOP process (4.20) using a 90% CI with no precision
requirement.
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Figure 4.18: Comparison of the empirical distributions (step functions) of 400 7-values (top
row), Z-values (middle row), and Q-values (bottom row) with their corresponding assumed
theoretical distributions (smooth cuves)—mnamely, the ¢-distribution with 4 degrees of freedom,
the N(0,1) distribution, and the x?(4) distribution, respectively. Results obtained from 400
i.i.d. runs of WAS8?P applied to the ARTOP process (4.20) using a 90% CI with +15% precision
requirement.
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Figure 4.19: Comparison of the empirical distributions (step functions) of 400 7-values (top
row), Z-values (middle row), and Q-values (bottom row) with their corresponding assumed
theoretical distributions (smooth curves)—namely, the ¢-distribution with 4 degrees of freedom,
the N(0,1) distribution, and the x?(4) distribution, respectively. Results obtained from 400
i.i.d. runs of WAS8® applied to the ARTOP process (4.20) using a 90% CI with £7.5% precision
requirement.
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Figure 4.20: Comparison of the empirical distributions (step functions) of 400 7-values (top
row), Z-values (middle row), and Q-values (bottom row) with their corresponding assumed
theoretical distributions (smooth curves)—namely, the ¢-distribution with 4 degrees of freedom,
the N(0,1) distribution, and the x?(4) distribution, respectively. Results obtained from 400
ii.d. runs of WASS?P applied to the ARTOP process (4.20) using a 95% CI with no precision
requirement.
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Figure 4.21: Comparison of the empirical distributions (step functions) of 400 7-values (top
row), Z-values (middle row), and Q-values (bottom row) with their corresponding assumed
theoretical distributions (smooth curves)—namely, the ¢-distribution with 4 degrees of freedom,
the N(0,1) distribution, and the x?(4) distribution, respectively. Results obtained from 400
i.i.d. runs of WASS? applied to the ARTOP process (4.20) using a 95% CI with £15% precision
requirement.
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Figure 4.22: Comparison of the empirical distributions (step functions) of 400 7-values (top
row), Z-values (middle row), and Q-values (bottom row) with their corresponding assumed
theoretical distributions (smooth curves)—namely, the ¢-distribution with 4 degrees of freedom,
the N(0,1) distribution, and the x?(4) distribution, respectively. Results obtained from 400
i.i.d. runs of WAS8® applied to the ARTOP process (4.20) using a 95% CI with £7.5% precision
requirement.
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To validate Assumption Az, we computed the correlation between ?(m, k) and 7yx for 400
independent replications of WASSP applied to the ARTOP process (4.20). From Tables 4.19
and 4.20, we see that the correlation between ?(m, k) and 7x is significant at all three levels
of precision. This implies that Z and Q are not independent, and this may partially explain

the undercoverage seen in the no precision and £15% precision cases in Tables 4.17 and 4.18.

Table 4.19: Correlation between ?(m, k) and 7x for 400 independent replications of WASSP
applied to the ARTOP process (4.20) using A =5 and a 90% CIL.

Precision Requirement | Corr [?(m, k), S/X}

None 0.5906
+15% 0.5587
+7.5% 0.5462

Table 4.20: Correlation between ?(m, k) and 7x for 400 independent replications of WASSP
applied to the ARTOP process (4.20) using A =5 and a 95% CL

Precision Requirement | Corr [X (m, k), ﬁx}

None 0.6203
+15% 0.5882
+7.5% 0.5034

4.4.2 Comparison of WASS? and ASAP2 for the ARTOP Process

Tables 4.21 and 4.22 show a comparison of the performance of WASSP (using A = 5) and
ASAP2 for the ARTOP process (4.20). For nominal 90% and 95% CIs with no precision
requirement, ASAP2 yields a higher coverage probability than WASSP does. However, ASAP2
is also requiring significantly larger sample sizes than WASSP is for the no precision case. For
nominal 90% CIs in the £15% precision case, ASAP2 clearly outperforms WASSP; and the two
methods produce comparable results for nominal 95% ClIs with £15% precision. Asymptotically,
WASSP appears to outperform ASAP2 in the ARTOP process, however. For nominal 90% and
95% confidence intervals with +7.5% precision, the coverage probability for WASS? is right at

the nominal level, while the coverage probability for ASAP2 is significantly below the nominal
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level. In fact, the coverage probabilites for ASAP2 are about the same for both nominal 90%

and nominal 95% confidence intervals at all three levels of precision.

Table 4.21: Performance of WASSP (using A = 5) and ASAP2 for the ARTOP process (4.20)
with £ = 1.0, ¥ = 2.1, p = 0.995, and Zy ~ N(0,1). Results are based on 400 independent
replications of nominal 90% CIs.

Precision Performance Procedure
Requirement | Measure WASSP ASAP2
# replications 400 400
CI coverage 80.5% 85.75%
None Avg. sample size 15,276 113,336

Max. sample size 122,176 524,288
Avg. CI half-length | 0.5740 0.1788
Var. CI half-length 0.2943 0.0123

# replications 400 400
CI coverage 78.25% 85.5%
+15% Avg. sample size 81,636 117,883

Max. sample size 2,554,011 524,288
Avg. CI half-length | 0.2201 0.1645
Var. CI half-length 0.0022 0.0025
# replications 400 400
CI coverage 89% 84.75%
+7.5% Avg. sample size 377,140 183,534
Max. sample size 5,066,880 1,650,924
Avg. CI half-length | 0.1187 0.1276
Var. CI half-length 0.0004 0.0002

4.4.3 Comparison of WAss? and Heidelberger and Welch’s Spectral Method
for the ARTOP Process

Tables 4.23 and 4.24 show the results of comparing the performance of WASSP (using A = 5)
with Heidelberger and Welch’s sequential spectral method. We first notice from these two tables
that the values @[?(m, k)] for WAS8? and Heidelberger and Welch’s method are compara-
ble. Since this ARTOP process is started in steady-state, I\TS\E[?(m, k)] for Heidelberger and
Welch’s method will not be inflated by system warm-up bias, as we have seen in some of the
other test processes. We also notice from these two tables that WAS8P-generated Cls satisfying
the precision requirement have much better coverage probabilities than the H& W-generated
CIs. Even though WASS?P produces significant undercoverage in the small-sample case (es-

pecially for nominal 90% Cls), asymptotically it produces coverages that are at the nominal
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Table 4.22: Performance of WASS?P (using A = 5) and ASAP2 for the ARTOP process (4.20)
with £ = 1.0, ¥ = 2.1, p = 0.995, and Zy ~ N(0,1). Results are based on 400 independent

replications of nominal 95% Cls.

Precision Performance Procedure
Requirement | Measure WASSP ASAP2
# replications 400 400
CI coverage 88.5% 90.25%
None Avg. sample size 15,584 113,336
Max. sample size 146,421 524,288
Avg. CI half-length | 0.6863 0.2138
Var. CI half-length 0.1837 0.0177
# replications 400 400
CI coverage 85.75% 90.5%
+15% Avg. sample size 131,410 121,015
Max. sample size 1,439,854 524,288
Avg. CI half-length | 0.2241 0.1906
Var. CI half-length 0.0020 0.0025
# replications 400 400
CI coverage 95% 90.25%
+7.5% Avg. sample size 782,638 252,741
Max. sample size 6,156,442 1,953,339
Avg. CI half-length | 0.1198 0.1315
Var. CI half-length 0.0005 0.0001

level. Even at the +7.5% precision level, the coverage for Heidelberger and Welch’s method is

significantly below the nominal level.
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Table 4.23: Performance of WASS? (using A = 5) and Heidelberger and Welch’s spectral
method for the ARTOP process (4.20) with £ = 1.0, ¢ = 2.1, p = 0.995, and Zy ~ N(0,1).
Results are based on 400 independent replications of nominal 90% CIs.

Precision Procedure
Requirement | Performance Measure WASSP H&W
# replications 400 400
Overall CI coverage 80.5% 80%
Avg. sample size 15,276 4,096
Max. sample size 122,176 4,096
None Avg. CI half-length 0.5740 0.7553
Var. CI half-length 0.2943 1.0580
MSE[X (m, k)] 0.1311  0.3028
SE{MSE[X (m, k)]} 0.0131  0.0554
# replications satisfying precision requirement 400 400
Coverage for Cls satisfying precision requirement 80.5% 80%
# replications 400 400
Overall CI coverage 78.25% 73%
Avg. sample size 81,636 43,981
Max. sample size 2,554,011 637,500
+15% Avg. CI half-length 0.2201 0.2522
Var. CI half-length 0.0022 0.0108
MSE[X (m, k)] 0.0397  0.0537
SE{MSE[X (m, )]} 0.0021  0.0025
# replications satisfying precision requirement 400 354
Coverage for Cls satisfying precision requirement | 78.25% 70.06%
# replications 400 400
Overall CI coverage 89% 78%
Avg. sample size 377,140 216,715
Max. sample size 5,066,880 1,309,545
+7.5% Avg. CI half-length 0.1187 0.1348
Var. CI half-length 0.0004 0.0031
MSE[X (m, k)] 0.0086  0.0135
SE{MSE[X (m, )]} 0.0017  0.0018
# replications satisfying precision requirement 400 321
Coverage for Cls satisfying precision requirement 89% 74.43%
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Table 4.24: Performance of WASS? (using A = 5) and Heidelberger and Welch’s spectral
method for the ARTOP process (4.20) with £ = 1.0, ¢ = 2.1, p = 0.995, and Zy ~ N(0,1).
Results are based on 400 independent replications of nominal 95% Cls.

Precision Procedure
Requirement | Performance Measure WASSP H&W
# replications 400 400
Overall CI coverage 88.5% 82.5%
Avg. sample size 15,584 4,096
Max. sample size 146,421 4,096
None Avg. CI half-length 0.6863 0.9283
Var. CI half-length 0.1837 2.2767
MSE[X (m, k)] 0.0927  0.3003
SE{MSE[X (m, k)]} 0.0053  0.0627
# replications satisfying precision requirement 400 400
Coverage for Cls satisfying precision requirement 88.5% 82.5%
# replications 400 400
Overall CI coverage 85.75% 82.5%
Avg. sample size 131,410 71,059
Max. sample size 1,439,854 671,948
+15% Avg. CI half-length 0.2241 0.2586
Var. CI half-length 0.0020 0.0130
MSE[X (m, k)] 0.0261  0.0335
SE{MSE[X (m, )]} 0.0018  0.0019
# replications satisfying precision requirement 400 349
Coverage for Cls satisfying precision requirement | 85.75% 80.52%
# replications 400 400
Overall CI coverage 95.3% 92.7%
Avg. sample size 782,638 432,664
Max. sample size 6,156,442 2,517,168
+7.5% Avg. CI half-length 0.1198 0.1355
Var. CI half-length 0.0005 0.0018
MSE[X (m, k)] 0.0034  0.0065
SE{MSE[X (m, )]} 0.0009  0.0016
# replications satisfying precision requirement 400 334
Coverage for Cls satisfying precision requirement 95.3% 90.6%

145



4.5. The AR(1)-to-Johnson (ARTOJ) Process

Let {X; : j = 1,2,...} be an AR(1)-to-Johnson (ARTOJ) process whose marginals have a
Johnson Sy distribution with shape parameters ¥ and v, scale parameter A\, and location
paramter £. Starting from a “base process” {Z;:j =1,2,...} as specified in (4.16)—(4.17), we

generate the process {X; : j =1,2,...} as follows,

Z; — 0
2

Xj:§+)\sinh< ) for j=1,2,..., (4.25)

where the hyperbolic sine function is given by
3 ]' z —Zz
sinh(z) = 3 (e* —e™®) for all real z.

To evaluate the performance of WASSP, we set the parameters of the ARTOJ process as in
Table 4.25. With these parameters, the marginal distribution of the process {X;} is a Johnson
Sy distribution with mean, variance, skewness, and kurtosis respectively given by

X — 2 X, — 4
px =1, o% =1, E[(M) ] — 100, and EKM> — 900. (4.26)

2D’ ox

Since the distribution of the marginals of the process {X;} has such large values of skewness
and kurtosis, it is highly nonnormal and it will exhibit a heavy tail to the right. We will start
the ARTOJ process in steady-state operation by sampling Zy from the N(0,1) distribution.

Table 4.25: Parameter values for the ARTOJ process (4.25).

Parameter Value
% —0.3082812288
) 0.7563372077
A 0.2193791025
19 0.7797155628
P 0.995

Tables 4.26 and 4.27 show the performance of WASS8P for the ARTOJ process using the
smoothing parameter values A = 7 and A = 9. The results are based on 400 independent
replications of nominal 90% and 95% CIs. From these two tables, we see that the results for the
no precision and the +15% precision levels with A = 7 and A = 9 are both excellent. However,
at the £7.5% precision level, the results for A = 7 indicate that both nominal 90% and 95%

confidence intervals have significant overcoverage.
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Table 4.26: Performance of WAS8P and ASAP2 for the ARTOJ process (4.25). Results are
based on 400 independent replications of nominal 90% Cls.

Precision Performance Procedure

Requirement | Measure WASSP(A=T7) WASSP(A=9) ASAP2
CI coverage 85.25% 88.25% 91.75%
Avg. sample size 9,874 9,904 40,160.6
None Max. sample size 122,176 75,712 185,344
Avg. CI half-length 0.3102 0.2968 0.1194

Var. CI half-length 0.0194 0.0139 0.0027

CI coverage 87.25% 85.5% 92%
Avg. sample size 56,912 48,383 43,359.8
+15% Max. sample size 462,848 679,936 185,344
Avg. CI half-length 0.1263 0.1283 0.1070

Var. CI half-length 0.0005 0.0005 0.0007

CI coverage 93.5% 91.0% 92.5%
Avg. sample size 258,020 239,230 90,533.2
+7.5% Max. sample size 1,880,064 1,757,184 197,775
Avg. CI half-length 0.0652 0.0650 0.0704
Var. CI half-length 0.00009 0.00009 0.00003

Along with the performance of WASS?P for the smoothing parameter values A = 7 and
A =9, Tables 4.26 and 4.27 also show the performance of ASAP2 for the ARTOJ process. For
nominal 90% and 95% CIs, there is little difference between the coverage probabilities at all
three precision levels for ASAP2. Another interesting point about the results is that in the
+7.5% precision case with nominal 90% ClIs, the coverage for WASSP using A =7 and A =9
is about the same as the coverage for ASAP2. However, the average sample sizes required by
WASSP are significantly larger than those required by ASAP2.

4.6. The M/M/1/LIFO Queue Waiting Time Process

Finally, we applied WASSP to the waiting time process in the M/M/1/LIFO queue with 80%
server utilization and an empty-and-idle initial condition. For this process, X; is the waiting
time for the ith customer, i = 1,2,..., in a single-server queueing system with i.i.d. exponential
interarrival times having mean 1, i.i.d. exponential service times having mean 0.8, and a last-
in-first-out queueing discipline. The theoretical mean for this waiting time process is px = 3.2.
This process is a difficult test case since the marginal distribution of waiting times has been
observed to possess large values of skewness and kurtosis and therefore is highly nonnormal.
Table 4.28 shows a comparison of the performance of WASS®P (using A = 7) with ASAP2
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Table 4.27: Performance of WAS8P and ASAP2 for the ARTOJ process (4.25). Results are
based on 400 independent replications of nominal 95% Cls.

Precision Performance Procedure
Requirement | Measure WASSP(A=T7) WASSP(A=9) ASAP2
CI coverage 93.25% 90% 95.5%
Avg. sample size 10,319 9,919 40,160.6
None Max. sample size 246,336 60,336 185,344
Avg. CI half-length 0.3986 0.3628 0.1431
Var. CI half-length 0.0258 0.0225 0.0039
CI coverage 95.75% 93% 96%
Avg. sample size 92,107 81,235 46,819.4
+15% Max. sample size 664,576 512,000 185,344
Avg. CI half-length 0.1288 0.1300 0.1194
Var. CI half-length 0.0004 0.0004 0.0005
CI coverage 97.75% 97.5% 96.8%
Avg. sample size 420,790 377,064 126,220.4
+7.5% Max. sample size 3,170,304 7,618,560 260,866
Avg. CI half-length 0.0652 0.0658 0.0708
Var. CI half-length 0.0001 0.00009 0.00002

The
results in Table 4.28 are based on 400 independent replications of nominal 90% CIs. At all

when both procedures are applied to the M/M/1/LIFO queue waiting time process.

three precision levels, WASSP performs slightly better than ASAP2 in terms of confidence
interval coverage probability. However, the sample sizes required by WASSP are significantly
larger than those required by ASAP2. In Table 4.29, the performance of WASSP and ASAP2 is
compared for independent replications of nominal 95% CIs. From this table we see that, as in
Table 4.28, WASSP performs slightly better than ASAP2 in terms of coverage; however WASSP
requires larger sample sizes than ASAP2 does.

One possible explanation for the difference in performance between WA8SSP and ASAP2 in
this process is that the ASAP2 algorithm relies much more heavily on the normality of the batch
means than WASSP does. As discussed earlier, the normalization step in the WASSP algorithm
is used only to expedite the convergence of the periodogram to its asymptotic properties. The
normalization step in the ASAP2 algorithm, however, plays a more central role. In particular,
joint multivariate normality of the batch means is required to derive expressions for the first
four cumulants of the NOBM t-ratio (2.7), from which the adjusted confidence interval (2.8)
is then computed. The final average sample sizes in Tables 4.28 and 4.29 suggest that ASAP2
may not be taking sample sizes large enough to ensure joint multivariate normality of the batch

means.
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Table 4.28: Performance of WASSP (using A = 7) and ASAP2 for the M/M/1/LIFO queue
waiting time process with 80% server utilization and empty-and-idle initial condition. Results

are based on 400 independent replications of nominal 90% CIs.

Precision Performance Procedure

Requirement | Measure WASSP  ASAP2

# replications 400 400

CI coverage 90% 87%
None Avg. sample size 97,990 53,957
Max. sample size 954,112 185,344

Avg. CI half-length | 0.3359 0.261

Var. CI half-length 0.0397 0.005

# replications 400 400

CI coverage 91% 86%
+15% Avg. sample size 105,060 54,017
Max. sample size 954,112 185,344

Avg. CI half-length | 0.2922 0.260

Var. CI half-length 0.0131 0.004

# replications 400 400

CI coverage 91% 87%
+7.5% Avg. sample size 162,503 68,313

Max. sample size
Avg. CI half-length
Var. CI half-length

1,905,920 236,800
0.1862 0.219
0.00182  0.0005
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Table 4.29: Performance of WASSP (using A = 7) and ASAP2 for the M/M/1/LIFO queue
waiting time process with 80% server utilization and empty-and-idle initial condition. Results
are based on 400 independent replications of nominal 95% Cls.

Precision Performance Procedure
Requirement | Measure WASSP  ASAP2
# replications 400 400
CI coverage 92% 93%
None Avg. sample size 111,874 53,957

Max. sample size 1,905,920 185,344
Avg. CI half-length | 0.4093 0.312
Var. CI half-length 0.0621 0.008

# replications 400 400
CI coverage 95% 93%
+15% Avg. sample size 126,433 54,255

Max. sample size 1,905,920 185,344
Avg. CI half-length | 0.3142 0.3076
Var. CI half-length 0.0117 0.0053

# replications 400 400
CI coverage 95% 93%
+7.5% Avg. sample size 209,182 91,432

Max. sample size 1,905,920 337,152
Avg. CI half-length | 0.19274 0.226
Var. CI half-length 0.0013 0.001
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Chapter 5

Conclusions and Future Research

5.1. Main Conclusions of the Research

We have proposed a wavelet-based spectral procedure for constructing an asymptotically valid
confidence interval for the steady-state mean of a simulation output process. This procedure,
called WASSP, addresses two fundamental problems associated with analyzing stochastic output
from a nonterminating simulation—the initialization bias and correlation problems.

The primary advantage of a spectral method for steady-state output analysis is that it
enables one to work with approximately uncorrelated periodogram values rather than with a
highly correlated output sequence. The proposed method uses wavelets to approximate the log
of the smoothed periodogram of the associated batch means process, from which we obtain an
estimate of the steady-state variance constant of the original (unbatched) process. Together
with a sample mean that has been suitably truncated to eliminate initialization bias, the SSVC
estimator is used to construct a reliable confidence-interval estimator of the steady-state mean
response that satisfies a user-specified absolute or relative precision requirement.

There are several key differences between WASSP and previous spectral methods (in par-
ticular, Heidelberger and Welch’s spectral method) for steady-state output analysis. First, to
smooth the periodogram Heidelberger and Welch average adjacent periodogram values. WASSP,
on the other hand, allows the user to select a moving average of width 5, 7, 9, or 11 points.
The main advantage to using a larger number of points in the moving average is that a less
noisy estimate of the power spectrum can be obtained. Furthermore, having a range of values
for the moving average width gives the user flexibility in selecting an appropriate value of the
smoothing parameter.

A second key difference between WASSP and Heidelberger and Welch’s method is that the
latter procedure uses standard least-squares regression techniques to approximate the log of

the smoothed periodogram by means of a simple quadratic polynomial. WASSP, however, uses

151



wavelets to approximate the log of the smoothed periodogram. The main premise behind using
wavelets is that this approach can yield a more flexible and accurate estimator of the power
spectrum than standard regression techniques can provide, especially in the neighborhood of
zero frequency.

A third key difference between WASSP and Heidelberger and Welch’s method is that WASSP
always requires normalization via batching (aggregation) of the output process before the pe-
riodogram is constructed. One advantage of this normalizing step is that the periodogram is
in general more well-behaved for normal data, and this effect facilitates estimation of the spec-
trum in a neighborhood of zero frequency. Finally, WASS? provides an automatic scheme for
effectively identifying an appropriate warm-up period beyond which all relevant statistics are
to be accumulated, thereby ensuring that the final delivered confidence interval is not affected
by system warm-up bias.

In the experimental performance evaluation summarized in Chapter 4, we presented five test
processes that were specifically designed to explore the robustness of WASS? and its competitors
against the statistical anomalies commonly encountered in the analysis of outputs generated
from large-scale, steady-state simulation experiments. We also used the same five test processes
to compare the performance of Heidelberger and Welch’s spectral method and ASAP2 with the
performance of WASSP. From the experimental results presented in Chapter 4, it is evident
that WASSP outperforms Heidelberger and Welch’s method; and we believe WASSP represents
an advance in spectral methods for simulation output analysis. Furthermore, we can conclude
that while WASSP and ASAP2 produce comparable results in some cases, WASS?P is in general a
more robust procedure than ASAP2. In particular, we found that ASAP2 does not perform well
when applied to processes with an exceptionally high lag-one correlation, like the AR(1) process
described in Section 4.3. However, it is not entirely fair to compare WASSP and ASAP2 as we
have done in Chapter 4 since ASAP2 is not designed to deliver an estimate of the SSVC. Both
WASSP and ASAP2 are designed to deliver point and confidence-interval estimators for the
steady-state mean of a simulation output process. WASSP, however, also provides an estimator
of the SSVC with reasonably stable behavior.

5.2. Directions for Future Research

The experimental results detailed in Chapter 4 provide substantial evidence of WASSP’s ability
to deliver approximately valid confidence intervals for the steady-state mean of a simulation-
generated output process with relative precision levels and nominal coverage probabilities that
often arise in practical applications. However, it would be desirable to prove rigorously that
for a nontrivial class of discrete-event stochastic systems, the confidence intervals delivered by

WASSP are asymptotically valid—that is, they have coverage probabilities equal to (or no less
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than) the user-specified nominal levels—as the user’s absolute or relative precision specification
tends to zero.

More generally, a careful theoretical examination of WASSP’s asymptotic properties should
address the question of efficiency in the sense of [11] and [44]. For example, if we are estimating
pux by a 100(1 — $)% confidence interval (0 < f < 1) with maximum acceptable half-length
h* as in (3.5), then the “ideal” confidence interval (1.13) based on exact knowledge of yx will

require the “best case” run length

2
DR\ Zl—ﬁ/Z’YX

If ny(h*) denotes the corresponding (random) run length required by WASSP, then an analysis
of WASSP’s asymptotic efficiency in this context should focus on the behavior of

nw(h*) and E[nw(h")]
n*(h*) n*(h*)

as h* — 0. (5.1)

A similar asymptotic efficiency analysis is required when WASS® delivers confidence intervals
for px with a user-specified relative precision level 7* as in (3.5). In this situation the “best

case” run length based on exact knowledge of all the relevant parameters of the target output

2
) = | 220X
( ) ’V (7“* ,UX)2 —‘ ’

process is

If ny(r*) denotes the corresponding (random) run length required by WASS®P, then the relevant
analysis of WAS8P’s asymptotic efficiency should be based on the behavior of

E[ny(r”)]
) M )

as " — 0. (5.2)

As an essential complement to future theoretical developments on WASSP, we should con-
tinue the experimental work that has been designed to explore the robustness of WASSP. This
work will require identifying classes of simulation output processes beyond those described in
Chapter 4 that will provide challenging test cases for WAS8P and other state-of-the-art sim-
ulation analysis techniques. This extended performance evaluation should include applying
WASS?P to processes with long-range dependence [60].

Another direction of future research is to modify WASS® so that the value of the smoothing
parameter A is automatically determined within the procedure based on the observed charac-
teristics of the target output process as well as the user’s specification of a confidence coefficient
and precision requirement for the final confidence interval. Currently, the user selects the value

of the smoothing parameter, with the default being A = 7. We saw in Chapter 4 that for some
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cases, like the ARTOP process in Section 4.4, WASSP performs significantly better if we set the
smoothing parameter A = 5 rather than using the default value. By automating the selection
of the value of A, we relieve the user of the responsibility for setting an appropriate value of
the smoothing parameter. The first step toward automating the selection of A would be to
deduce a relationship between the shape of the spectrum px(w) and the appropriate value of
the smoothing parameter for each of the five test processes described in Chapter 4. To do this,
we need to develop a computationally efficient method for calculating the spectrum px (w) of an
“AR(1)-to-Anything” process. Furthermore, as the batch size m — oo, the spectrum pg ) (w)
of the associated batch means process becomes flatter and converges uniformly to zero for all
w € [—%, %] Therefore, it would be desirable to allow the smoothing parameter A — oo as
m — oo; and such a modification might also improve the efficiency of WASSP as measured by
(5.1) and (5.2).

In the future we would also like to determine an appropriate method for eliminating the bias
that is introduced when in step [10] of WASSP we exponentiate 6 X (m)(0), the wavelet-based
estimate of the log-spectrum of the batch means at zero frequency. When we compute the
estimate of the spectrum of the batch means at zero frequency via equation (3.2), we make the

following assumption,

B{exp|Cem (0)] | = exp{E|Cen (0] }- (5:3)

However, since the exponential function is convex, Jensen’s inequality [49] implies that

B{exp|Cem (0)] } 2 exp{E|[Cen (0]} (5.4)

with strict inequality in (5.4) if Var[C %(m)(0)] > 0, a condition that holds in every nontrivial
application of WASSP. Moreover, since we have seen that at zero frequency the WASSP-based

batch means spectrum estimator yields asymptotically

exXD{E [T (m) (0)] } & exD [Cxom) (0)] = Py (0) = Vo) = 1 (55)

it follows that on the average, we are actually overestimating the SSVC ~x by assuming (5.3).
Asymptotically, making the assumption (5.3) will have little effect on the performance of WASSP
since the bias introduced by exponentiating E X(m) (0) goes to zero as the batch size m gets
larger. However, assuming that (5.3) holds may affect WAS8P’s performance in small-sample
cases; and therefore it would be desirable to determine a method for correcting for the bias that
is introduced when we exponentiate ¢ % (m)(0). This would involve estimating Var[C %(m)(0)], the
variance of the wavelet-based estimate of the log-spectrum of the batch means at zero frequency.

Another direction of future research is to determine the effects of using wavelet basis func-
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tions other than the s8 symmlet on the performance of WASSP. Furthermore, to obtain an
estimate of the SSVC of the original (unbatched) process, WASS®P generates a wavelet-based es-
timate of the batch means power spectrum px ., (w) for every frequency w € [—3 3 2] However,
since we are primarily interested in obtaining an estimate of the batch means power spectrum
at zero frequency, a possible direction for future research is to devise a method for estimating
PX(m) (w) in a neighborhood of w = 0 that becomes progressively smaller as the batch size m
increases and has the form

[—b(m),b(m)] where 0 < b(m+1) <b(m) for allm and lim b(m) = 0.

m—00

Another possible avenue of future research involves the implementation of WASSP. We
implemented the WASSP algorithm in MATLAB (as described in Appendix E). The data must
first be loaded into MATLAB and then a function call is made to execute WASSP. It would be
desirable, however, to produce a version of WASSP that can be executed from the simulation
software package Arena [36]. This would allow the user to restart the simulation and easily
collect additional data if necessary. We would also like to investigate how WASSP could be
incorporated into other popular simulation packages, such as Automod [48], ProModel [25],
and Extend [37].

In the future, it would also be interesting to develop a nonspectral wavelet-based method for
steady-state simulation output analysis and see how it compares with WASSP. Such a method
could possibly use the maximal overlap discrete wavelet transform (MODWT) [64] to obtain a
nonsg)ectral estimator of the SSVC vx. This MODWT-based method might yield estimators

X and ’y)(( ) for ux and yx, respectively, with the following properties:

(M)

Ay ~ — 7x with probability 1 as r* — 0 or h* — 0; (5.6)
?(M) B
2 T HEX D, — N(0,1) as " — 0 or h* — 0; (5.7)
A(M)/
TYx /N
and
(M) ~ (M)
) = M) [ . =M) y
Tl*lgloPr{,uX e X +21_5/2 XT} = hl*lgloPI'{,UzX e X + 21_5/2 )7(1 }
= 1-5, (5.8)

pr— M
where X ) +21_3/21/ %((M) /n is the final confidence interval delivered by the MODWT-based

procedure.
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For the WASSP-based estimators X and ~x, we have good empirical evidence (as exhibited

in Chapter 4) showing that to a reasonable approximation,

Ix - x X(2)
(20)

as " — 0 or h" — 0; (5.9)

and thus we see that 7x does not converge to vx with probability one under any circumstances.
Furthermore, all our experimentation indicates that WASS?P yields an excellent approximation

to the limit property

?_ﬂX

VAx/n

and thus an MODWT-based nonspectral method for steady-state output analysis with proper-

Lty as =0 or h* —0; (5.10)

ties (5.6)—(5.8) could outperform WASSP at least asymptotically as the precision requirement
tends to zero. It may be possible, however, to develop a variant of WASS® in which the smooth-
ing parameter a — oo as the batch size m — oo. If we allow the degrees of freedom in WASSP’s
estimator ¢ % (m)(w) of the log-spectrum (x(,,)(w) of the batch means to go to infinity as the
batch size m — oo, then it might be possible to obtain WASSP-based estimators X and 7x
with properties analogous to (5.6)—(5.8).

Finally, we hope in the future to apply wavelet techniques to simulation-related problems
other than steady-state output analysis. For example, because of their flexibility, we believe
wavelets could be used to estimate the density of a process used as an input to a large-scale
simulation model. Furthermore, we believe wavelets could be used for estimation, analysis,
and optimization of simulation metamodels—that is, regression models of simulation-generated
responses as those responses depend on the simulation’s input parameters or system design

variables.
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Appendix A

Bias Adjustment in Estimating the
Log-Spectrum of the Batch Means

In this appendix, we compute the mean and variance of L X(m) (é), the log-smoothed-periodogram
of the batch means at the Fourier frequency é, forl =0,+1,... ,i(% - 1), % so as to obtain a
bias adjustment to £ X (m) () that will yield an unbiased estimator of ¢ X (m) (L), the log-spectrum
of the batch means. Throughout this appendix, {x2(2) : u = 1,2,...} denotes a set of i.i.d.

chi-square variates, each with 2 degrees of freedom.

A.1. Bias Adjustment at Frequency é for /=0 and [ = g

For | = 0, smoothing parameter A = 2a + 1, and Ig(,,)(0) as defined in (3.18), we see from
(3.22) that I X (m)(0), the smoothed periodogram of the batch means at zero frequency, is given
by,

~ 1 & u
Iy (0) = 1 ; I5 (m) (E)
1 & U

= 7 2 Ixm (g)

u=—a
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S RS Xa(2)
~ E;pf{(m)(o) 5

2
X“(2a)

since in general the sum of n i.i.d. chi-square random variables with v degrees of freedom is a
chi-square random variable with nr degrees of freedom. Taking the natural log of the smoothed

periodogram of the batch means at zero frequency, we have

Lm0 = In[Ig,,(0)]

= Inpg;,(0)]+n o

x2(2a)1 .

Therefore, the log of the smoothed periodogram of the batch means at zero frequency has the

E[Lx(m(0)] = E{ln[pff(m)(m”JrEIH<X22(2G)>]

m(M)
2a

Since we are using L X(m) (%), the log of the smoothed periodogram of the batch means, to

following expected value,

= (xm)(0) +E (A1)

estimate ( X(m) (é), the log-spectrum of the batch means, the term

E{ln XQ@G)] }
2a

is the bias introduced at frequency zero after taking the logarithm of I X (m)(0); and we need to

derive a computational formula for this bias term to obtain an unbiased estimator of (g, (0)

based on L X(m)(O). In general, the expected value of a random variable of the form

14

2
B=I [X—(”)] (A.2)
can be computed as follows. The moment generating function of B is given by

Mp(t) = E[e“ﬂ = /Ooo exp [m(%)] mzm—l e /2 dx (A.3)
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_ 1 /OO (E)t .’L'V/2_1 e—r/? dx
22T (v/2) Jo \v

1 o0
- - (t+v/2)—1 —:c/2d
2v/2r(y/2)ut/o ’ c

2t+u/2r(t+y/2) 00 pttr/2-1 o—x/2 p
B ow/2 I(v/2) vt /0 ot+v/2 L(t+v/2) o

T(t+v/2)
T(v/2)(v/2)"

since the density function of a chi-square random variable with 2¢ + v degrees of freedom

integrates to 1. That is,
r = 1.

0 I‘H_V/Z_l e—x/2
d
/0 242 (t + v/2)

The cumulant generating function of B is defined as follows [13],
Kp(t) = In[Mg(t)]

= In[(t+v/2)] —In[l'(rv/2)] —t In(r/2). (A.4)
Taking the first derivative of Kp(t) gives

(4 v/2)

Ki(t) = Tt +0/2) —In(v/2).

Since the expected value of B is the first derivative of Kp(t) evaluated at ¢ = 0, we have

B{ln [\2(v)/v|} = E[B]

= Kp(t)|=o

e

= TR In(v/2)

— U(v/2) - In(v/2), (A.5)

where U(-) is the digamma function [23].
Using the result (A.5) with v = 2a, we see that the expected value of the log of the smoothed
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periodogram of the batch means at zero frequency as given by (A.1) is

E[L () (0)] ~ Cx () (0) + ¥(a) — In(a).
Conducting a similar analysis for the frequency é = %, we find that the expected value of
the log of the smoothed periodogram of the batch means at frequency [ = % is

E{E;{(m) (%)} ~ (% (m) (%) + ¥(a) — In(a).

A.2. Bias Adjustment at Frequency é for a < || < % —a

At the frequency % for a < || < % — a, the smoothed periodogram of the batch means is given

by
~ l 1 & l+u
Boo(r) = 7 2 ()
A 2
1 N\ xa(2)
i 1\ x%(24)
~PXm %) oA

Taking the natural log, we have
! x*(24)

£ (1) = (1)) = o ()] 552

The expected value of the log of the smoothed periodogram of the batch means is

ofesen(2)] = e (]} ofn(222)]
_ Cx(@(é) B ln<X22(ZA)>] ' (A.6)

Using the result (A.5) with v = 24, we see that the expected value of the bias term in equation

(A.6) at the frequency £ for a < [l| < & —ais

E{ln[x2(2A)] } ~ U(A) —1In(A).

2A
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A.3. Bias Adjustment at Frequency £ for 1 <||<a

At the frequency L for 1 < |I| < a, we observe that I X (m) () is a weighted average of independent
scaled chi-square variates in which the weights are all positive constants that are not necessarily
equal in value; and thus the results of Satterthwaite [53] and Welch [67] ensure that an excellent

approximation to the distribution of I X(m)(%) is given by

7 N . X)) I
X (m) E ~ o Px(m) E )

where v is the “effective” degrees of freedom for I X(m)(é) as formulated by Satterthwaite.

The log of the smoothed periodogram of the batch means can then be written as follows,

EX(m)@) zln[fx(m)Gﬂ N ln{px(m)<é>] + In M]

el
E{ln [p;z(m) (é)} } B ln(%)l
I ln<X2(V|l|)>
il

= (3 — E
Cx(m) < k;) +
Before (A.7) can be simplified further, the effective degrees of freedom v; must be computed.

In general, the effective degrees of freedom veg for . X(m)(%) is defined as follows,

Furthermore,

es
g
>
2
VRS
|~
N———
2

(A7)

2

Veft = oV [fx(m) (é)} ; (A.8)
where CV/[I. X(m)(é)] is the coefficient of variation of I X(m)(é),
- Var | I (L
ovon (1) - efl]

For the frequency é with 1 < |I| < a, the expected value of the smoothed periodogram of the

batch means is computed as follows,

e ()] - o

a—l1 w l+a w
ZﬂX(m)(g) + Igemy(0) + D2 fxw(g)
u=1

u=a—Il+1
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u=1 u=1
l+a
u
. E[X(m)(g)}}
u=a—I[+1
1 z z
~ 2@ =0pxml 3 ) trxem| 3 ) T 2Pxm | 1

= PX(m) (g) . (A.10)

Before computing the variance of the smoothed periodogram of the batch means, we first

rewrite the smoothed periodogram as follows,

~ l 1 E= U 1< U Lta U
IX(m)(E) = 7 ;2IX(m)<%>+E;IX(m)(E)+ > IX(m)(%)]

u=a—Il+1

1 |ad U 1 U R U
= 2| (o (3) 2 (7)) + 2 x ()
Lu= u=a—Il+1
l+a
U
+ > fX(m)(g)]
u=a—I[+1
1 2a + 1\ & u a+1 a U
- 3| () Ze(7)+ () X v(5)
l+a u
+ Zf”"”(%) : (A.11)
u=a+

Now, the variance of the smoothed periodogram can be computed from (A.11):

vlisn (1] = () {C) S v (2)]

() 2, vl ()]
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5 w3

u=a+1

= (1) Ao {57
- 2a+ 1 Px(m) k a —

U

|
=
—
>0

SN

—~

[N}

SN—

<2a;—1)2 “X‘:ll +<a—;—1)2 z": .

- (557) Awl)
~ \2a+1/) Pxem\%

u=1 u=a—Il+1
l+a
+ > 1
u=a-+1
1 2, l 2a + 12 a+1\?
= (zy7) Ae(z) () @0+ () 1+
I\ 4a® —2al + 4a — 21 + 1
-~ s A2
pX(m)(k) a(2a 1+ 1)2 (A.12)

Substituting (A.10) and (A.12) into (A.9), we have for 1 < || < a

= I 4a% —2al +4a —20+1  4a® —2al +4a — 20 + 1
2
17 _ — = . Al
cv [ X(m) (k)] a(2a + 1)2 aA? (A-13)
If for each j € {1,2,...,a} we let
2a.A?
# #
"I T 4a? " 2aj +da—25+1 O 7] (A.14)

then we have from (A.8) that the effective degrees of freedom veg = v at frequency % for
1 < |I] < a. Finally, using the result (A.5) with v = v;, we see that the expected value of the
log of the smoothed periodogram of the batch means in equation (A.7) for frequency % where

1 < |l] < a is approximately given by

fenm ()] =com(E) () -0(2)
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A.4. Bias Adjustment at Frequency % for g —a<|l| < % —1

At frequency % for % —a < |l < % — 1, the derivation of the bias term is the same as in the
case for 1 < |I| < a since the periodogram is symmetric with respect to frequency % in the same
way that it is symmetric with respect to frequency zero. In particular, if we use the following

approximation to the distribution of I. X(m)(%),

7. <£>&X2(Vk/2—l)p_ <£>

where vy /5|y is the “effective” degrees of freedom for I X(m)(é) as formulated by Satterthwaite

[53], then the log of the smoothed periodogram of the batch means can be written as follows,

E}‘((m)<é) ZIHFX(m)<é>] ~ ln{p)'((m)<é)] i X2£:Zi_ll)1
and
E[ﬁx(m)<é)] ~ gX(m)<é> +E 1%%)] . (A.15)

Furthermore, by an argument that parallels the argument leading to (A.10), we see that
the expected value of the smoothed periodogram of the batch means at the frequency % for

E_a<|<f-1is

k
71 k—l—a—1

~ l 1 U 1 U
Bl ()] = B | X (i) e (3) ¢ 2 1)
l
PX(m) (%) - (A.16)
If we rewrite the smoothed periodogram as follows,
~ l 1 2a +1 Ei U a+1 k-lza—l U
Ix(m)<;) = 7 ( . )u:;_afx(m)<g)+( a ) Xk: fxm)(;)
u:§—a
%—(a—i—l) u
+ ) IX(m)(E) ; (A.17)
u=l—a
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then the result analogous to (A.12) at frequency % for £ —a < |I] < & — 1 s

~ l ) I\ 4a®> —2a(E 1) +4a—-2(5-1)+1
o — | = p% — . Al
Var [IX(m) (l{:)] PX(m) (k:) w201 1)? (A.18)

Therefore from (A.9) and (A.8), we have the effective degrees of freedom veg = vy /o) for
TX(m)(é) at frequency £ for £ —a <|l| <& — 1, where v; is as defined in (A.14).

Finally, using the result (A.5) with v = v}/5_j;, we see that the expected value of the
log of the smoothed periodogram of the batch means in equation (A.15) at frequency é for

E_q<|l] <% —1isapproximately given by
2 2

= INT l Vi/2-|l| Vi/2—|l|
5|25 (1) ] = 6o () + 2 (57 -m(51).
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Appendix B

Variance Reduction Analysis for
Estimating the Log-Spectrum of the

Batch Means Process

In Chapter 3 we proposed an estimator £ X(m)(%) of the log-spectrum ¢ X(m)(%) for the batch
means process. The estimator L X(m)(é) is obtained by computing the natural log of the
smoothed periodogram of the batch means. We also proposed in Chapter 3 an alternative
estimator of the log-spectrum of the batch means, namely Z)_((m) (%), that can be obtained
by computing the natural log of the periodogram of the batch means and then smoothing
the result by taking a moving average of log-periodogram values. In this Appendix we will
derive expressions for the variances of these two estimators of C)_((m)(%) at frequencies | =
0,+1,+2,... ,:I:(% - 1), :I:g. Furthermore, we will prove that a variance reduction is achieved
in estimating the log-spectrum of the batch means by working with L X (m) (é) rather than with
E)’((m)(é)- Throughout this appendix, {x2(2) : u = 1,2,...} denotes a set of i.i.d. chi-square
variates, each with 2 degrees of freedom.

To derive expressions for the variances of £ X(m) (é) and ZX(m) ( é), we will need to compute

the variance of a random variable of the form

B= mlxify)] . (B.1)

Using the definition of the cumulant generating function of B in (A.4), we have

Var[B] =

>

Bt

'(3)

—
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where J
U'(z) = e U(z) for all z with Re(z) >0
z

is the trigamma function [23].

(B.2)

To establish that we achieve a variance reduction in estimating the log-spectrum of the

batch means by working with L X(m) (é), the log-smoothed-periodogram of the batch means,

rather than Z)-((m)(é), the smoothed-log-periodogram of the batch means, we will need the

following two propositions.

Proposition 1 If j is an integer and j > 2, then

v'(1
w(j) < S
J
Proof: From equation (6.4.3) of [2], we have
j_]- 1
\Il/(]):_ _§(2)+Zl_2 for]:273>7
=1

where
C(s) = i 1 for Re(s) > 1
= b

is the Riemann zeta function. From equations (6.4.2) and (23.2.24) of [2], we see that

™
V() =) =T
Combining (B.4) and (B.6), we have
V() =) - Y g for j=25....

=1

Now the desired conclusion (B.3) holds if and only if we have

Jj—1 /

=1

for j=2,3,...;
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and (B.8) in turn holds if and only if we have

. —1
j J

1 .
=1

To establish (B.9), we examine the properties of the function

j—1

j 1
xxj)z-f%jj 5 for j=23... (B.10)
JT 4

From the definition (B.10) of the function Y(j), we have

. +1[j— . 1
T(i+1) = 1= [j— (])4‘.—2}
J J J
T(j + 1
- Toy—[g)—]:} for j=2,3,.... (B.11)
J J
Since
) j—1
-1 1 ,
2 <1<} 5 for j=23,..., (B.12)
=1
it follows immediately from (B.10) and (B.12) that
Y() j7+1 .
- — =5 >0 for j=23,...; (B.13)
J J
and combining (B.13) and (B.11), we see that
TG +1) < T() for j=2,3,..., (B.14)

so that {Y(j):j =2,3,...} is a strictly monotone decreasing sequence with lower limit

Jim () = Y- 5 = ¢(2) = w(). (B.15)
=1

It follows from (B.14) and (B.15) that (B.9) holds; and thus (B.8) holds so that the desired

conclusion (B.3) is true.

Proposition 2 If x is a real number and x > 3, then
(1)

v WO , B.16

< 2 )< x/2 ( )
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Proof: For z = 3, we have

3 w2 v'(1l)  n?
(2) 3 "S3p2 9 (B-17)
and for z = 4, we have
2 / 2
oy ™ Y1) 7w
V@) =T 1< 2= (B.18)

by equations 8.366 8 and 8.366 12 of [23]. Since the functions

v'(1
g1(z) = (1) and go(z) = \Il'(m) for all real = >3 (B.19)
x/2 2
have the derivatives
gi(z) <0 and gy(z) =0 for z € (3,4), (B.20)

displays (B.17)—(B.20) imply that the desired conclusion (B.16) holds for all = € [3,4]. To
complete the proof, we establish the desired result on arbitrary adjacent intervals of the form
(27,25 + 1] and [2j + 1,25 + 2] for j = 2,3,....

For x = 25, we have

) N A )
n(2d) = v/ < T — g1(2)) (B.21)
by Proposition 1. Next we establish that
: o V(1) . :
92(2)) = ¥'(j) < . =q(254+1) for j=2,3,.... (B.22)
2
Notice that (B.22) holds if and only if
j_l 1
V) >G+HVE) =G +3) V() - g| for j=23.., (B.23)
=1
(see (B.7)); and (B.23) in turn holds if and only if
\1/'(1)<2j+1]§1 for j—2,3 (B.24)
2 1 7 j=2,3,.... :
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To prove (B.24), we examine the properties of the function

. j—1
25+ 14~ 1
o)) = E = f 1 =2,3,....

As shown in Table B.1 below, it is easy to verify by direct numerical evaluation that

O(j) > ¥'(1) for j=2,3,4,5.

Table B.1: Results of evaluating ©(j) as defined by (B.25) for j = 2,...,5.

1Y)
2 1.666667
3 1.75
4 1.75
5  1.739969
Moreover, we see that
4 1 (2j+3)
. 1 S
OU) =00+ 1) = G, = 2; 2 (2§ +1)52

and we assert that
0()—03G(+1)>0 for j=5,6,....
In view of (B.27), we see that (B.28) holds if and only if

11 1 3
—>14>—-= for j=5,6,....
2::2 Joo4

(B.25)

(B.26)

(B.27)

(B.28)

(B.29)

Direct numerical evaluation of (B.29) for j = 5 yields the value 1.4263611 on the left-hand

side and the value 1.17 on the right-hand side. Moreover, it is clear that for j = 5,6, ...,

the

sequence of values on the left-hand side of (B.29) is strictly monotone increasing to the limit

%2 > 1. On the other hand, it is easy to verify that the sequence of values on the right-hand
side of (B.29) is strictly monotone decreasing to the limit 1. It follows that (B.29) and (B.28)

hold.
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Finally we observe that

m 6() =3 4 = w). (B.30)

2
Jee =1

o~

Combining (B.25), (B.26), (B.28), and (B.30), we see that (B.24) holds; and thus (B.22) holds.
For the interval (27,25 + 1), we observe the following analogue of (B.20),

gi(z) <0 and gh(z) =0 for z € (25,25 +1) and for j=2,3,.... (B.31)

Combining (B.21), (B.22), and (B.31), we finally obtain the desired conclusion (B.16) for all
x € [27,2j + 1] and for j =2,3,....

To complete the proof, we need to establish that (B.16) holds for all z € [2j + 1,25 + 2] and
for j =2,3,.... From equation 8.363 8 of [23], we see that

92(2i+1) = V(i+3)

= ¢2(2j) for j=2,3,...; (B.32)
and in view of (B.22), we have
912 +1)>¢g2(2j+1) for 7=2,3,.... (B.33)
Moreover, we have the following analogue of (B.31),
gi(z) <0 and go(z) =0 for z € (25 +1,2j +2) and for j=2,3,.... (B.34)
Finally we have
v(1)

2/ 4+92) =W(j+1
92(27 + 2) (]+)<j_|_1

=g1(2j+2) for j=2,3,.... (B.35)

Combining (B.33), (B.34), and (B.35), we see that (B.16) holds for all x € [2j + 1,25 + 2] and
for j = 2,3,.... Putting all the results together, we have

v (L;”—J) < ‘I;g) for o € [3,00): (B.36)
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and this completes the proof of Proposition 2.

B.1. Variance Computation at Frequency é for [=0and [ = %

In this section, we will compute the variance of the log of the smoothed periodogram of the batch
means and the variance of the smoothed log-periodogram of the batch means at frequencies 0
and 3. From (3.26), we have

2
- N ) X“(2a)
Var {LX(m) (0)} ~ Var{ln [px(m)(O)} } + Var{lnl g ] } . (B.37)
Taking v = 2a and substituting into (B.2), we have
Var L g,y (0)] = ¥'(a). (B.38)

Now for the smoothed log-periodogram of the batch means, ZX(m) (é), we first notice

wln] - ve{LEwln ()]
- sl ()

%Var{ln xm ()] (B.39)

Q

assuming that for [ = 1,...,a, we have Var{ln[]x(m)(%)]} ~ Var{ln[Ig(,,(0)]}. From the

general properties of the periodogram, we have

[T ©] < ln[pX(m)m) XZ(Q)]
= In[pgem(0)] +n X22(2)] . (B.40)
Taking » = 2 and plugging into (B.2), we have
Var{In [ L5, (0)] } = Var{lnl@] } = 0'(1), (B.41)

and therefore the variance of the smoothed log-periodogram of the batch means at zero fre-
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quency is given by

_ 1 v'(1
Var [ g,y (0)] = Evar{ln L ©)] } = C(L ). (B.42)
A similar analysis for [ = % yields
- 1 )
and
_ 1 1 1 T/(1)
Using result (B.3), we have
/!
U'(a) < ra) for a =2,3,...; (B.45)
a

and therefore a reduction in variance is achieved at frequencies 0 and % by working with the
log-smoothed-periodogram of the batch means rather than the smoothed-log-periodogram of

the batch means.

B.2. Variance Computation at Frequency é for a < || < g —a

From equation (3.31), we have the following expression for the variance of the log of the

smoothed periodogram of the batch means at the frequency % for a < || < g —a,

~ l l x2(2A)
Var [L)—((m) <E>} A Var{ln [p)-((m) (E)] } + Var{lnl 51 . (B.46)
Taking v = 2A and substituting into (B.2), we have
Var [Ex(m) (é)] = T'(A). (B.47)

Now, to compute the variance of the smoothed log-periodogram of the batch means, we first

Var[fﬁ‘c(m(é)] - Var{% > IH[IX(m) (HTU)]}

u=—a

_ % Xa: Var{ln[fx(m)c—;u)}}

u=—a

notice that
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~ %Var{ln [IX(m) (é)] } . (B.48)

From the general properties of the periodogram, we have
l . 1\ x%4(2)
In {Ix(m (g)] ~ In [px(m) (g) B
l
= In |:pX(m) (E)] +1In

Taking v = 2 and plugging into (B.2), we have

Var{ln {Ix(m) (é)] } = Var{ln l@] } =V'(1), (B.50)

and therefore the variance of the smoothed log-periodogram of the batch means is given by

Var [Zx(m) (é)] = %Var{ln [Ix(m) (é)” = ‘Ij;(ll). (B.51)

Using result (B.3), we have

2

X2(2)] . (B.49)

(1)
A

V'(A) < for A=34,...; (B.52)

and therefore a reduction in variance is achieved at the frequency % for a < || < % —a by

working with the log-smoothed-periodogram of the batch means rather than the smoothed-log-

periodogram of the batch means.

B.3. Variance Computation at Frequency i for 1 <|[l| <a

From equation (3.35), we have the following expression for the variance of the log of the

smoothed periodogram of the batch means at frequency % for 1 < || <a,

Var |:EX(m) (é)} ~ Var{ln {px(m) (é)] } + Var{ln l%] } . (B.53)

Taking v = vy and substituting into (B.2), we have

Var [E;—((m) (é)] = w’(%l) : (B.54)

The analogue of (A.11) for the smoothed-log-periodogram of the batch means requires cal-

culation of the following weighted average of the log-periodogram values {In[Ig ()] : u =

179



1,2,...,l+a},

ZX(’”’(%) - <2a1+1>{<2a+1>2; {IX(’”< ﬂ

+( 1>u§+llnzx(m)(%)]
+ul§:f+11n (k)}} (B.55)

It follows immediately from (B.55) that we have the following expression for the variance of

T (£):
valEeon ()] = (53) {(5)” S vl (5)]}
() 3, vl ()]}

¢ 8 varlulteon ()]}

B <2a1+1>2 {<2a:1)2gvar{ln[pm(mHn 2 }
S 3, el )] 52
¢ & vl ()] n[421)
- (zr1) (Ml)mzlw +(“1‘1)2u_a§_l+lqﬂ<n
+H§I\P’(1)
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4a® — 2al +4a — 20 + 1

= (1) T (B.56)

Combining (B.54), (B.56), and (A.14), we see that

/
v (1) = 2 -
and
Var[ﬁ)—((m)@ﬂ = qx’(@) for 1<l < a. (B.58)
Since we always take 2 < a < 5 in WASSP, we see from (A.14) that

uflﬁ >5.26 for 2<a<5 and 1<l <a. (B.59)

Using result (B.16), we have for frequency + where 1 < |I| < a the result,

. LVF?TJ v(1)
) ( 5 )< z/fﬁ/Q’ (B.60)

and therefore a reduction in variance is achieved by working with the log-smoothed-periodogram

rather than the smoothed-log-periodogram.

B.4. Variance Computation at Frequency é for g—a <] < %—1

At frequency é for % —a < |l] < % — 1, the computation of the variance for the log of the

smoothed periodogram of the batch means is the same as for frequency % where 1 < || < a.
That is, for g —a<|l| < % — 1, we have

Var |:Z‘X(m) (é)} ~ Var{ln {px(m) (é)] } + Var{ln [%] } . (B.61)

Taking v = v}, /5_y; and substituting into (B.2), we have

Var{ﬁ)—((m) (é)] = (V’“/%q . (B.62)

By an analysis that parallels the derivation of (B.56), we have the following expression for
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the variance of ZX(m)(é) at frequency £ for £ —a <[l < & —1:
l 2 2 g_l
— 1 2a +1 u
velzso ()] = (@) ((557) 2 vl (D]}

() 3 el G

uU=5—a

E_(a+1) "
+ Y Var{ln [Ix(m) (E)H . (B.63)
u=l—a
Combining (B.62), (B.63), and (A.14), we see that
!/
k Z’1<:/2—|l|/2
and
#
P (! Wky2—n]
Var [LX(m) (E)] _ (T for k—a<|l<k-1. (B.65)

Since we always take 2 < a < 5 in WASSP, we see from (A.14) that

Vg 2526 for 2<a<5 and §—a<<f-1. (B.66)
Using result (B.16), we have for frequency £ where £ —a < [I| < & — 1 the result,
#
NG (Lyk/z_uM) - (1) (B67)
# ) .
2 Vi o/ 2

and therefore a reduction in variance is achieved by working with the log-smoothed-periodogram

rather than the smoothed-log-periodogram.
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Appendix C

Computation of the SSVC for an
“AR(1)-to-Anything” Process

The following computation of the SSVC for an “AR(1)-to-anything” process is based on [69].
Let {Z; : j = 1,2,...} denote a stationary AR(1) process with N(0,1) marginals and lag-one
correlation p as specified by (4.16)-(4.17); and let {X; : j = 1,2,...} denote the corresponding
“AR(1)-to-anything” process with marginal c.d.f. Fx(z) = Pr[X; < z] for all . Then {X;}

can be generated from the base process (4.16) according to
X = FR' [0(Z)], j=1.2.... (1)

We seek to calculate the SSVC for the process {Xj},

+o0o +o0o
=Yy, Cov(Xy, Xjp) = > x(D). (C.2)
l=—00 l=—00

Notice that

wx(l) = Cov{Fg'[®(Z)], Fx' [®(Z;1)]}

- /_:O /_+OO {F)El [®(z1)] = “X} {F)El [®(22)] — ,UX} P2 (21,22;p|l|) dz1 dzs,

(e}

where
zf —2rz129 +z§ }

xp [_ 3(1—r2)

21,20;T) =
P2(z1, 22im) 21 — 12
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is the bivariate standard normal p.d.f. with correlation r € (—1,+1). To simplify the notation,

we let
D(z) = F)}l [®(z;)] —pux for i =1,2,
so that we have

+oo  pt+oo 0|
vx (1) :/ D(Zl)D(Z2)SO2(217Z2;P ) dz1 dzo.

—0o0

It follows from equation (12.6.8) of [13] that for r € (—1,+1), we have

P2 21,22, Z H Zl )QD(Zl)QO(ZQ)Tu,

where for u =0,1,2,..., the uth Hermite polynomial is defined by

du
e = () H () e

Inserting (C.5) into (C.4) and then inserting the result into (C.2), we have

plile 2

H H,(zj) ¢ ] dz1 dzo

X = Z/ HDZZ

l=—c0 "

A2y >0 T

=1 u=0 ']1

Z

[ Dl ) z)

= UX—l—QZZ ] {/ {F)}l [®(2)] —HX} H,(2) ¢(2) dz}2.

=1 u=0
If we let
400 1
Sy = / {FX [®(2)] — ,uX} H,(2)¢(z)dz
—00
for u=20,1,..., then we have

Zo=0 and Eu:/ F [@(2)] Hy(2) #(2)dz for u=1,2,...

—00

so that (C.7) becomes

vx = UX+QZZ 'plu—\2

llul
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o0
- ey [z a
=1
'—'2 u
= ok +2 Z 5y (C.8)
Display (C.8) suggests a numerical method for estimating vx. To estimate yx with maximum

relative error €., compute the partial sum

=2 u

Qv—ax+22”7pp) (C.9)

where Qg = a_%( and for u > 1, we evaluate =, numerically as

8
=, ~ / F [(2)] Ha(2) o(2) dz. (C.10)
-8
We stop evaluating =, via (C.10) when

‘QU—QU 1
Quv-1

< Erel (C.11)

and then we deliver @), as the estimate of vx with maximum relative error €.
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Appendix D

Computation of the Power
Spectrum for the M/M/1 Queue

Waiting Time Process

If {X;:i=1,2,...} is the waiting time process for an M /M /1 queue in steady-state operation
with arrival rate A, service rate p, and server utilization o = A/ < 1, then we have [15]
2

0 0
Tl =0 M1 -9 (b1

2 — 3(2 —
K= g~ g -

and

(0® —40* + 50 +2) 0

— D.3
We seek to calculate and plot the spectrum of {X,},
+o0o
px(w) = Z vx (1) cos(2mwl)
l=—00
= o% {1 +22px(l) cos(27rwl)} , (D.4)
=1
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where —1/2 <w < 1/2 and

!
px (1) = Corr(X;, Xiyy) = 7X2( ) for 1= 1,2,.... (D.5)
0x

Let gx(w) denote the cosine transform of the autocorrelation function (D.5),

ax (w) =1+2§:px(5)cos(2mz), for we |[-1,4]. (D.6)
=1

From equation (34) of [15] as corrected on p. 117 of [56], we have

_ )3 v 32— p)1/2
pX(l):%/o tl%dt for | ==41,42,..., (D.7)
and hence
_\3 r [0 3/2(p _ 1)1/2
qX(w)=1+% /0 [Z:ltlcos(%wl)] %dt, (D.8)
where
= a j—gg)Q € (0,1) since o€ (0,1). (D.9)

It follows from (D.9) that |t| < 1 in the integrand of (D.8); and from formula 1.447(2) on
p. 39 of [23], we deduce that
t cos(2mw) — t2 tlcos(2mw) — t]

oo
t 2rwl) = = . D.10
; cos(2ml) 1 —2tcos(2mw) +t2 1 — 2tcos(2nw) + t2 ( )

Inserting (D.10) into (D.8), we have

gx(w) =1+

(1—0)3(1 + o) /’” { cos(2mw) —t /2 (r —t)1/2 dt (D.11)
0

T 03(2 — o) 1 — 2t cos(2mw) + t2 (1—1)3

from which we can recover a formula for the power spectrum,

. (D.12)

[N

px(w) =0k gx(w), —3 <w<
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Appendix E

WassP User’s Manual

E.1.

Installation of WAass®

We coded the WASSP algorithm in MATLAB [24] and it can be invoked using version 5.3 or
6.1 of MATLAB in either the Unix or Windows environment. The following steps must be

completed to properly install WASS®P:

(a)

Download the file wassp.zip from the website
<ftp.ncsu.edu/pub/eos/pub/jwilson/wassp.zip>.

The following MATLAB functions are contained in the file wassp.zip: wassp.m, batch3.m,
wavest.m, smooth2.m, indep2.m, and wilks.f. The MATLAB code for each of these func-
tions is given at the end of this appendix. The file wassp.zip also contains the MATLAB
data set L.mat.

Download WaveLab from the website
<http://www-stat.stanford.edu/ wavelab>.

Complete instructions for installing WaveLab are given at the above website. WaveLab is
a software package designed to run in conjunction with MATLAB, and WaveLab provides
the functions necessary to compute the discrete wavelet transform and the inverse discrete

wavelet transform.

Compile the Fortran function wilks.f in MATLAB. This can be done by typing the
command

mex wilks.f
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at the MATLAB command prompt. A compiled version of wilks.f will be created. The
resulting file will have a platform-dependent extension, namely .mexsol for sol2 or SunOS
5.x and .d11 for Windows.

Once steps (a)—(c) above have been completed, WASS?P is ready to use.

E.2. Invoking WASS? in MATLAB

Before WASS®P can be invoked, the data must be loaded into MATLAB using the load command.
The data should either be a MATLAB data file (.mat file) or an ASCII data file with one
observation per line. WASS8P can then be invoked using the MATLAB function call

[cil,ciu,extradatal=wassp(data,PrecReq,RP,hrstar,beta,A)

at the command prompt. Table E.1 lists the arguments required by the wassp function, as well
as a description of their acceptable values. Table E.2 lists the arguments returned by the wassp
function.

In Figure E.1, a screen shot of the MATLAB command window is shown. On the first
command line, the MATLAB data set L.mat is loaded. On the second command line, the
function wassp is invoked using the data set L. The parameter PrecReq is set to *F’, indicating
that no precision requirement is specified. The parameters RP and hrstar are set to the values
’F’ and 0.30, respectively. However, since the parameter PrecReq is set to *F’, the values
of RP and hrstar are irrelevant and will have no effect on the delivered confidence interval.
Finally, the parameter beta is set to 0.10, implying a 90% confidence interval is desired and
the smoothing parameter A is set to the default value of 7.

In Figure E.2 another screen shot of the MATLAB command window is shown. In this
example, the data set L.mat has already been loaded, and the wassp function is called with
a relative precision requirement of +15%. In order to construct the requested 90% confidence
interval that satisfies a relative precision requirement of £15%, the user would have to supply
an additional 66,128 observations. Once the additional observations have been collected, the
new appended data set must be loaded into MATLAB and the function wassp can then be called

again.
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Table E.1: Input arguments required to run the function wassp in MATLAB.

Argument

Definition

data

PrecReq

RP

hrstar

beta

The name of the data set that has already been loaded into
MATLAB.

The argument PrecReq is set to > T’ if an absolute or relative
precision requirement is specified; and PrecReq is set to ’F’
if no precision requirement is desired.

The argument RP is set to > T’ if a relative precision require-
ment is specified; and RP is set to *F’ if an absolute precision
requirement is specified. If the value of PrecReq is ’F’, then
RP may have either the value >T’ or the value ’F’.

The argument hrstar is defined by the precision require-
ment (3.5) specifying the final confidence interval half-
length. For an absolute precision requirement, hrstar
should be set equal to A*, the maximum acceptable
confidence-interval half-length as in (3.5). For a relative
precision requirement, hrstar should be set equal to r*,
the maximum acceptable fraction of the magnitude of the
confidence-interval midpoint as in (3.5).

For the final confidence interval (3.3) delivered by WASS?P,
the desired coverage probability is given by 1-beta, where
0 < beta < 1.

The argument A is the the value of the smoothing parameter
A in equation (3.22), where A=5, 7, 9, or 11.

Table E.2: Output arguments returned by the function wassp in MATLAB.

Argument Definition
cil The lower limit of the final confidence interval (3.3). If more
data is required, then cil=[].
ciu The upper limit of the final confidence interval (3.3). If more
data is required, then ciu=[].
extradata | The number of additional observations required to compute

the desired confidence interval.
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MATLAB
File Edit View Web Window Help

D |Ii| d% ||E| 'ﬂl l"'l ﬁ 4 CUV'EmDi"EC‘b’Yil.v‘afspieos ncsu edulockershesearchiedvilson—an_resfrivatedadaimvassP Tl
*» load Li
»» leil. ciu, extradatal =wassp(L.'F",'F".0.30.0.10.7)
cil =
6.0115
ciu =
5. 5487
extradata =
0
>3 |
Ready

Figure E.1: Display of the MATLAB command window showing how to invoke the function
wassp with no precision requirement. In this example, wassp returned the upper and lower
limits of the requested confidence interval.
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MATLAB
File Edit View Web Window Help

0 |Dq| & ||E| nl “l ﬁl ? | Current DifEde}"iI.v‘afs.vieos.ncsu.edu.-"loc:kers.-"researc:h.-’le.v\-vilson—tan_res;‘pri\.-'ateﬂadaMASSP

|

»» [eil, ciu, extradatal =wasspiL, 'T°, T ,0.15,0.10,7)
Tou will reguire 66128 more chservations.
cil =

[1
ciu =

[1
extradata =

66128

b
Ready

Figure E.2: Display of the MATLAB command window showing how to invoke the function
wassp with a specified precision requirement. In this example, wassp returned the amount of
extra data required to compute the requested confidence interval.
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E.3. Listing of MATLAB Code for WASS?
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