
Abstract

Wu, Weiwei. Estimating Value at Risk and The Expected Shortfall for Het-

eroscedastic Financial Log Returns: a Two-stage Method. (Under the supervision of

Dr. Peter Bloomfield)

Value at Risk and the Expected Shortfall are two measurements of market risks

for financial assets. Statistically, they are extreme quantiles of the distribution of fi-

nancial log returns. Though financial log return data are usually both heteroscedastic

and fatter-tailed, most of the existing methods in literature only deal with one of the

two properties.

Motivated by McNeil and Frey (2000), we propose a two-stage model, which is a

combination of a tree-structured GARCH(1,1) and a revised version of the General-

ized Pareto Distribution(GPD). In the first-stage model, both the number and the

value of the tree nodes are chosen by maximizing some conditional reduction of neg-

ative log likelihood or the AIC criterion. In the second stage, the shape parameter of

the GPD is defined as a linear function of the log estimated volatilities obtained from

the first-stage model. This two-stage model not only considers both of the two data

properties, but also allows the model to be different for different extents of market

changes. Simulations show that our proposed model has advantages when the under-

lying model is classical GARCH(1,1) with t innovation, or the underlying model is

tree-structured GARCH(1,1). We also applied the proposed method to historical log

returns of the NASDAQ index and the MRK stock price.
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Chapter 1

INTRODUCTION

1.1 Market Risk, Value at Risk, and The Expected

Shortfall

In finance, risk can be broadly defined as the degree of uncertainty about future

net returns of some financial assets. Generally speaking, financial institutions mainly

face four types of risk1, namely: credit risk; operational risk; liquidity risk and market

risk. Among these four types of risk, market risk is the most prominent one. It

measures the unexpected changes caused by the market movements in the prices or

rates of the underlying traded assets. Here by saying changes we usually mean losses,

since investors are concerned about losses much more than gains for obvious reasons.

1We only list the most common types here. There are also other kinds of risk in addition to these

four. For example, the legal risk.
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Losses have different meanings for investors holding different positions. For investors

holding a long position, a decrease of the asset prices means loss, whereas for those

holding a short position, an increase of the asset prices means loss. Because of the

large increase in the amount of traded assets, such as stocks, indices, and options

and so on, market risk has become a primary concern for both the regulators and the

financial institutions for risk management purposes.

To measure the market risk of financial assets, the most widely used tool is Value

at Risk (henceforth, VaR). The definition of VaR can be stated as the following: For

a given time horizon L and probability2 p, the Value at Risk (VaR) is the loss in

market value of a portfolio over the time horizon L that is exceeded with probability

1− p. Analytically for a long position we have:

Pr (Pt − Pt+L ≥ VaR) = 1− p or Pr (Pt+L − Pt ≤ −VaR) = 1− p, (1.1)

where Pt is the price of that portfolio at time t. If we have the distribution of the

price changes, or the so-called Profit and Loss distribution of a given portfolio, then

VaR is just a quantile of it. Because p is usually at least 0.95, it is a high quantile.

This can be seen clearly from Figure 1.1, which illustrates Equation 1.1.

Originally, VaR was used only as an internal risk management tool by a number of

banks and financial institutions, including J. P. Morgan, which developed the famous

RiskMetrics methodology and published it in 1994. Then the group charged with

this task was spun off from J. P. Morgan and started their new business: using this

2In the literature on financial risk, p is also referred as a “confidence level”. We avoid that usage

because of the obvious conflict with statistical conventions.
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Figure 1.1: Definition of VaR

system to carry out VaR calculations for other banks, corporations, mutual funds and

so on. Soon VaR became the most commonly used measure of market risk. It is used

by investment institutions not only to manage their risk, to evaluate the performance

of risk takers, but also to meet some regulatory requirements. For example, J. P.

Morgan discloses its daily VaR at 95% level (that is, L = 1 day and p = 0.95), and

Bankers Trust discloses its daily VaR at 99% level ( i. e., L = 1 day and p = 0.99).

In particular, the Basel Committee on Banking supervision (1996) at the Bank for

International Settlements require financial institutions to set capital margins based
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on VaR for L = 10 days and p = 0.99.

After 1994, many articles and books on VaR appeared in both the finance and

the statistics literature. For a general exposition of VaR, we refer to Duffie and Pan

(1997) [10], and Jorion (1997) [15].

Though VaR is the most popular measure of market risk, it has been criticized by

many researchers as well. A commonly recognized shortcoming of VaR is that it only

gives an upper bound on the losses that occur with a given probability. It tells nothing

about the size of the potential loss given that a loss exceeding this bound has occurred.

Furthermore, Artzner et al. (1997, 1999) [2, 3] point out that VaR is not a “coherent”

measure of risk. They define coherent measure of risk to be a measure that has

four properties: monotonicity, sub-additivity, positive homogeneity, and translation

invariance. Here we use the mathematical definition of the four properties in Acerbi

and Tasche (2002) [1]:

Consider a set V of real-valued random variables. A function ρ : V → R is called

coherent measure if it is

1. monotonic: X ∈ V, X ≥ 0 =⇒ ρ(X) ≤ 0,

2. sub-additive: X,Y,X + Y ∈ V =⇒ ρ(X + Y ) ≤ ρ(X) + ρ(Y ),

3. positively homogeneous: X ∈ V, h > 0, hX ∈ V =⇒ ρ(hX) = hρ(X), and

4. translation invariant: X ∈ V, a ∈ R =⇒ ρ(X + a) = ρ(X)− a.

Among the four properties, sub-additivity means that the total risk of a portfolio
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made of sub-portfolios is at most the sum of the risks of each sub-portfolio. For

measures without this property, investment diversification may not reduce the total

amount risked. This is somewhat contradictory to the common practices. Unfortu-

nately, VaR is not sub-additive. To overcome this, Artzner et al. (1997, 1999) [2, 3]

proposed a new measure called the Expected Shortfall . It is the conditional expected

loss given that the loss exceeds VaR. That is, it is E[Loss|Loss > VaR]3.

The introduction of the Expected Shortfall adds little difficulty to statistical mod-

elling and the estimation. When the distribution is known, estimating the conditional

expectation is no more difficult than estimating a quantile. So after the Profit and

Loss distribution is set up, it is easy to get the Expected Shortfall in addition to

VaR. Thus, it is ideal if a fitted model can give good estimates to both VaR and the

Expected Shortfall.

1.2 Value at Risk Methodologies

1.2.1 Features of Financial Return Series

As Equation 1.1 indicates, VaR is usually defined in dollar amount: it is given as

a quantile of the absolute change of some financial asset’s price. But as most other

financial studies, modelling and estimating VaR usually involves returns instead of

prices. Let Pt be the price of an asset at time t; holding an asset for one period from

3Notice that “loss” is Pt − Pt+L when Pt < Pt+L in Equation 1.1.
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date t− 1 to date t would result in a log return :

rt = ln
Pt

Pt−1

(1.2)

Notice that by Equation 1.2, a negative rt means loss, and a positive one means gain.

Also, rt corresponds approximately to the percentage change of price, because Pt and

Pt−1 are usually very close to each other.

Using log return rt instead of the price Pt in Equation 1.1, now VaR is defined as

Pr (rt ≤ −VaR) = 1− p. (1.3)

There are two main reasons to use log returns rather than the original prices:

one is that it is scale-free, and another is that it has some very attractive statistical

properties. It has been well known for a long time, and has been proved by empirical

research, that financial return series, especially stock return series, have the following

features:

• they have fatter tails than the normal distribution;

• the return series themselves have almost zero-autocorrelations;

• they have positive serial correlations in the second moment, or volatility.

Thus, to estimate VaR is to estimate a high quantile of the distribution of log return

series, which has the above features.
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1.2.2 Existing Methods for VaR Estimation

In the past ten years or so, quite a few methods have been developed for VaR

estimation in the literature. Some people classify them as conditional methods and

unconditional methods, or parametric, semi-parametric, and nonparametric methods.

Actually the model development is so fast that some complicated models appeared,

which assume a hybrid way and are thus hard to classify. We enumerate the main

methods here, mentioning the related more complicated models after each of them.

Historical Simulation (HS)

A common method for VaR assessment is the historical simulation (HS), in which

the estimated distribution of returns is simply the empirical distribution of the past

observations. The advantages of this methods is that it makes no distributional

assumptions, it is nonparametric, and is therefore easy to implement. But it also has

some very serious drawbacks: First, the estimated distribution is discrete. Second, it

can not make out-of-sample estimation. Third, when there is a very large observation

in the sample, the quantiles obtained by HS can be greatly affected by it. And

finally, the choice of sample size can have large impact on the value predicted. To

overcome the disadvantages of the historical simulation method, some variations of

it are proposed in literature. For example, Boudoukh, Richardson and Whitelaw

(1998) [5] propose a method which applies exponentially declining weights to the

past return observations. And Butler and Schachter (1996) [6] propose a variation

7



which uses a kernel smoother to estimate the distribution of log returns.

RiskMetrics and GARCH Family

At the beginning of this section, we listed three features of the financial log re-

turn series. The last two of them actually indicate that the log return series are

heteroscedastic, which means that the error term, or innovation, of the underlying

model does not have a constant variance. There is a well-known family of models

which deal with time series with heteroscedastic errors: the generalized autoregressive

conditional heteroscedasticity (GARCH) models. So the last two features easily lead

us to use the GARCH family models.

Generally, a GARCH(p,q) model with mean equation µt, an autoregressive pa-

rameter p, and a moving average parameter q is defined by,

rt = µt + σtεt

σ2
t = α0 +

∑p
i=1 αir

2
t−i +

∑q
j=1 βjσ

2
t−j

εt ∼ (0, 1)

(1.4)

where α0 > 0,αi ≥ 0 for i = 1, 2, . . . , p, and βj ≥ 0 for j = 1, 2, . . . , q. The innovation

εt is often assumed to have a standard Normal or standardized Student-t distribution.

And the most commonly used mean equation for µt is the autoregressive (AR) model.

In particular, a classical GARCH(1,1) with zero mean and normal innovation has

the following form:

rt = µt + σtεt

µt = 0

σ2
t = α0 + α1r

2
t−1 + βσ2

t−1

εt ∼ N(0, 1)

(1.5)
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Furthermore, there exist several variants of the GARCH model: the Integrated

GARCH model, the Exponential GARCH model, and the GARCH-in-mean model.

They are also called IGARCH, EGARCH, and GARCH-M model respectively for

short. Among them the IGARCH model is actually an unit-root GARCH model. In

fact, the popular RiskMetrics approach4 is, in its simple form, an Integrated GARCH

(1,1) model with normal innovations. An IGARCH(1,1) model assumes the following

form:

rt = µt + σtεt

µt = 0

σ2
t = λσ2

t−1 + (1− λ)r2
t−1

εt ∼ N(0, 1)

(1.6)

where λ is always a fixed number in the interval (0.9, 1). That is, the GARCH(1,1)

model is specialized to the case α0 = 0 and α1 + β = 1. The choice to use an

IGARCH(1,1) instead of a classical GARCH(1,1) is made based on practical expe-

riences: when classical GARCH(1,1) models are fitted to stock return data, it is

commonly observed that α0 is close to 0 and the summation of the two parameters

α1 and β in the volatility model is very close to 1.

Extending the RiskMetrics approach to other members of the GARCH family

is a natural step. Also, to adapt to the fatter tail feature of return series, we can

consider using, say, t distribution as the innovation instead of the common Normal

distribution. Another idea is to make the parameters such as λ variable with time.

4See http://www.riskmetrics.com/index.html.
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Extreme Value Theory (EVT)

The common idea in both the HS and the GARCH family models is to aim at

modelling the distribution of the return first, then to get the percentile needed. How-

ever, many researchers argue that this is not appropriate. Even if we get a statistically

well-fitted model this way, we can only say that the model fits most of the data, or

the central part of the data well. However, it is the extreme data, or the tail part of

the data that VaR estimation mainly deals with. This has given rise to the recent

use of the Extreme Value Theory (EVT) in VaR estimation.

The mathematical foundation of EVT is given by Gnedenko (1943) [13], who

proved the so-called Extreme Value Theorem. The theorem can be restated as the

following 5:

Suppose X1, X2, . . .,Xn,. . . are independent random variables with a common

cdf F (x). Let Mn = min{X1, X2, . . . , Xn} 6; then for suitable normalizing constants

an > 0 and bn, as n goes to infinity, the limiting distribution of Mn−bn

an
can only assume

one of the 3 types of extreme value laws, namely, the Gumbel distribution (type 1),

the Frechet distribution (type 2), and the Weibull distribution (type 3). These three

limiting distributions are defined by Equation 1.7, Equation 1.8 and Equation 1.9

respectively:

5Here we use a restatement similar to that used in Smith (1999) [22].
6In the rest of this article, we will not distinguish long position and short position. Also, be-

cause max{X1, X2, . . . , Xn} = −min{−X1,−X2, . . . ,−Xn}, we will not rigorously distinguish the

maximum and the minimum since they make little difference in modelling and analysis.

10



H(x) = exp(−e−x) for −∞ < x < ∞, (1.7)

H(x) =





0 for x ≤ 0,

exp(−x−α) for x > 0,
(1.8)

H(x) =





exp(−(−x)α) for x ≤ 0,

1 for x > 0.
(1.9)

In both Equation 1.8 and Equation 1.9, we have α > 0.

If F (x) is a thin-tailed distribution such as the normal or the lognormal distribu-

tion, then the limiting distribution is Gumbel (type 1). If F (x) is fatter-tailed such as

the t distribution or the stable Paretian distribution, then we get Frechet distribution

(type 2). The Weibull distribution is obtained when F (x) has no tail. If we let X

be the log return series, since financial return series is usually fatter-tailed, Frechet

distribution is the type that concerns us.

EVT can be applied directly to VaR estimation. Nonparametric estimators of

α are given by Hill (1975) [14] and Pickands (1975) [20], both of which are based

on the bootstrap method. For parametric estimator, suppose we have N × n daily

log returns. Divide the data into N non-overlapped time intervals, each interval

containing n data points. From each of the N intervals, get Mn, the minimum of the

n log returns. Then we get N minima. When n is sufficiently large, we know that

EVT applies to Mn; and if N is also large, we have sufficient number of Mn to do

model fitting. That is, if both N and n are large enough, we can use the N minima

11



to fit the Frechet distribution in Equation 1.8 directly, getting the MLE estimates of

an, bn and α. Then VaR, as a high quantile, can be obtained by using the relation

FMn(x) = 1 − (1 − F (x))n. We call this kind of method the classical EVT . For the

classical EVT, we refer to Longin (1996) [16] and (2000) [17].

In the classical EVT, since we only use the minimum of each of the N non-

overlapped intervals, for N and n to be large enough, a lot of data points are needed.

To overcome this disadvantage, an alternative approach which is often used in envi-

ronmental statistics can be applied instead. It is based on the exceedances over high

thresholds :

If for variable X, we fix a high threshold u and look at the exceedance of u, which

is denoted by Y = X − u, the distribution of the excess value is:

Fu(y) = Pr{X ≤ u + y|X > u} =
F (u + y)− F (u)

1− F (u)
, y > 0. (1.10)

According to Pickands (1975) [20], if F (x) is fatter-tailed and is such that a EVT

distribution exists, then as u →∞, Fu(y) has the following limiting distribution:

G(y) = 1− (1 + ξy/β)−1/ξ (1.11)

where β > 0, ξ ≥ 0 and the support is y ≥ 0. This distribution is the so-called

generalized Pareto distribution (GPD).

Usually the threshold approach is applied by fitting the GPD to the observed

excesses over the threshold u. Then the natural question here is how to choose

the threshold. There are several articles discussing the selection of a suitable u,

and the treatment of time series dependence. Again, these articles are mainly in

12



the environmental area. Smith (1999) [22] suggests to use it in VaR estimation and

proposes a variation to it. The variation is a change-point model based on hierarchical

Bayesian structure. It models both the exceedance times and the excess values as a

two-dimensional point process instead of just a GPD.

Other Methods

There are two other methods which are not included in the above enumeration,

both of which model the evolution of the quantiles directly. One is called quantile

regression . For this method, see chapter 7.4.2 of Tsay (2002) [23], Chernozhukov

(2002) [7] and the references therein. Another is the Conditional Autoregressive Value

at Risk , or CAViaR. See Engle and Manganelli (1999) [11].

The GARCH model, in particular the RiskMetrics model, is the most popular

one used in practice, whereas the EVT-based models are the commonest models

seen in the theoretical literature. The GARCH model considers the heteroscedastic

property of the log return series. By using such innovations as the t distribution, it

also considers the fatter-tail feature to some extent. But as stated above, it aims at

modelling the whole distribution of the return, thus gives good estimates of such usual

statistics as the mean and the variance of the return, rather than a high quantile such

as VaR. Especially, some researchers believe that if the goal is to get the VaR at p =

0.95, RiskMetrics may be enough, but if p = 0.99 or higher is needed, the RiskMetrics

13



is not so useful. In practice, p = 0.95 is far from enough for risk management purpose.

For example, for daily data p = 0.95 means the unprotected events happen once in

every 20 days on average. This is just too risky to be acceptable to some investors.

The EVT based models solve this problem by applying the Extreme Value Theorem,

but at some expense: The Extreme Value Theorem assumes independence, which is

not true for financial returns according to the last two features listed in Chapter 1.2.1.

That is, EVT does not consider the heteroscedasticity. But EVT handles the fatter

tail in a better way than the GARCH model. In addition, even when a t distribution

is used, GARCH actually assumes the right tail and the left tail are symmetric. But

in practice, we sometimes have good reasons to believe that the market may respond

differently to upward oscillations and downward oscillations. Using EVT, we can

model the right tail and the left tail respectively, thus reflecting this idea.

Now it seems combining these two popular methods together may be a good idea.

McNeil and Frey (2000) [18] describe one such combination. They propose a two-

stage method: first, model the returns as a classical GARCH(1,1), assuming normal

innovations and using pseudo MLE to get the parameter estimates; then, construct

the residuals of the first-stage model and fit them to GPD. The high quantile, VaR, is

estimated according to both of the fitted models and their relationship. Such a two-

stage model considers both the heteroscedasticity and the extreme quantile property

of VaR.
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Chapter 2

METHOD

2.1 The Motivation and Outline

The method proposed here is motivated by McNeil and Frey (2000) [18]. We keep

the idea of building a two-stage model and combine the GARCH and the EVT to-

gether. Furthermore, we want to add the following thought to our consideration: The

market may respond differently not only to upward and downward movements, but

also to different extent of the movements. That is, when the market is experiencing

very large movements, the underlying model may be different from that when the

market is experiencing small movements. To realize this idea, we use the following

two-stage model: in the first-stage model, a tree-structured GARCH(1,1) similar to

that proposed by Audrino and Buhlmann (2001) [4] will be used, and the residuals

of the model are calculated; in the second stage, GPD is used to model the residuals

of the first-stage model, with the shape parameter being a function of the estimated
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volatilities in the tree-structured GARCH(1.1). Then the VaR, as a predicted quan-

tile of the tree-structured GARCH(1,1) with innovation being the fitted covariate

GPD, is estimated from the fitted two-stage model. Likewise, the Expected Shortfall

is obtained as a function of the estimated parameters and quantiles.

The tree-structured GARCH is chosen such that the classical GARCH(1,1) is a

special case of it. Generally, we get a partition of the R×R+ space of (r, σ2). For all

the partition cells, we adapt a single mean equation, which is the same as the first line

in Equation 1.5, the classical GARCH(1,1) model. But for different partition cells,

we use different volatility equations: we still assume that all the volatility equations

have the same form as that in Equation 1.5, whereas the values of (α0, α1, β) are now

different. Furthermore, the innovation term εt in the mean equation is assumed to

have a standardized t distribution with the degree of freedom ν. Here ν is greater

than 2, and is to be estimated together with other unknown parameters. The nodes

(splits) of this partition are decided by a selection strategy, which maximizes some

reduction of negative log likelihood or some specified criterion (for example, the AIC).

Maximum likelihood method is used to get the parameter estimates. By using such

a tree-structured GARCH model, we actually fit different GARCH(1,1) models for

each of the partition cells. In another word, we use different GARCH(1,1) models

for different extents of market movements (i.e., different σ2). Also, because rt is also

partitioned, we may be able to reflect the asymmetry of the upward and downward

movements. We hope that this tree-structured GARCH will make the estimation of

the volatilities more accurate.
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In the second-stage model, to make it also changeable with the volatility level, we

model the shape parameter of the GPD as a linear function of the log values of the

estimated volatilities obtained in the first-stage model, keeping the scale parameter

a constant. This time, we do not fit multiple GPD, but fit only one GPD model for

all the data. This is because when it is possible, a smooth model is always preferred

to a non-smooth one. For a non-smooth model like the one we use in the first stage,

because of the use of nodes, the values which are very close to the nodes may not

be estimated as accurately as the others. This is simply decided by the nature of

non-smooth models.

In the following two sections, the details of the modelling process are given for

each of the two stages.

2.2 The First-stage Model: Tree-structured

GARCH(1,1)

Let’s redefine the working model by the following equation:

rt = µt + σt(θ)εt

µt = φrt−1

σ2
t (θ) = fθ{rt−1, σ

2
t−1(θ)}

εt ∼ t(ν), ν > 2.

(2.1)

Except for the form of fθ and the distribution of εt, model 2.1 differs from both the

classical GARCH(1,1) model (see Equation 1.5) and the IGARCH(1,1) model (see

Equation 1.6) used in RiskMetrics in that it has an autoregressive term φrt−1 in the
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mean equation. This term is used to adapt to the real data, which may not have an

exactly zero autocorrelation. Considering the almost zero-autocorrelation property

of log returns, the estimate of φ should be close to zero.

Suppose P = {R1, . . . ,Rk} is a partition of the R × R+ space (r, σ2), where k

is the number of partition cells. For every partition cell Ri, we apply a different

volatility equation in the classical GARCH(1,1) model. That is, fθ has the following

form:

fθ(r, σ
2) =

k∑
j=1

(α0,j + α1,jr
2 + βjσ

2)I[(r,σ2)∈Rj ] (2.2)

where θ = {α0,j, α1,j, βj; j = 1, . . . , k} with α0,j, α1,j, βj ≥ 0. As a special case, when

k = 1, Equation 2.1 and Equation 2.2 give the classical GARCH(1,1) model with

standardized t innovation.

By the above definition, the negative log likelihood of our working model is:

−l(φ, θ) = −
n∑

t=2

log

[
σ−1

t (θ) ∗ fε

(
rt − φrt−1

σt(θ)

)]
(2.3)

where fε is the probability density function (PDF) of the innovation εt. In our case,

we have:

fε(x|ν) =
Γ((ν + 1)/2)

ν/2

1√
νπ

(
1 + x2/ν

)− ν+1
2 (2.4)

Notice that this negative log likelihood is conditional on the first observation r1 and

some starting value σ2
1(θ) = var(r1).

In order to find the MLE estimates of φ, ν and θ, we need to minimize the negative

log likelihood given in Equation 2.3. Here notice that Equation 2.3 depends on the

partition, i.e., depends on the selection of partition nodes through σt(θ). Because
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we plan to carry out the selection by maximizing some reduction of negative log

likelihood, the nodes selecting and parameter estimating processes actually can be

combined together by using an algorithm1, which is to be described in details in the

next two subsections.

Forward: Selecting the Nodes

We’ll select the nodes of the partition by constructing a binary tree. Figure 2.1

is an example of a simple binary tree. It is constructed by the following way: First,

select a node of r, call it d1, which partitions the support of r, R, into two cells:

a1 = {r ≤ d1} and a2 = {r > d1}. Second, select one of the cells from the previous

partition, say, a1 = {r ≤ d1}, and a second node d2 of σ2, then use this node to

partition the selected cell into two cells, which are b1 = {r ≤ d1, σ
2 ≤ d2} and

b2 = {r ≤ d1, σ
2 > d2}. Finally, repeat the second step once. That is, again select

one of the cells from the previous partition and a third node. This time assume the

selected cell is a2 = {r > d1}, and the node d3 is a node of σ2. Then use this node

to partition the selected cell into two cells, which are c1 = {r > d1, σ
2 ≤ d3} and

c2 = {r > d1, σ
2 > d3}.

If the second step is done repeatedly until we get k − 1 nodes d1, d2, . . . , dk−1, we

get a partition P which has k cells R1,R2, . . . ,Rk. Notice that each node divides a

1This algorithm is similar to that in Audrino and Buhlmann (2001) [4], but with some differences.

For example, the maximization routine, the definition of AIC, and the realization of Step 1 etc. Also,

this algorithm is more detailed.
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a1 a2

b1 b2 c1 c2

Figure 2.1: A Simple Binary Tree

selected cell from the previous partition into two new cells, one with a less-than-or-

equal sign “≤” and another with a greater-than sign “>”. We denote the former new

cell by Rleft and the later one by Rright.

For our problem, to partition the R × R+ space (r, σ2), we use the following

algorithm, which not only constructs a binary tree by optimizing the reduction of a

conditional negative log likelihood, but also estimates the parameter vector (φ, ν, θ)

at the same time.

Step 1: Let P(0)
opt = R × R+, i.e., P(0)

opt is the whole space without any partition.

Compute the negative log likelihood in Equation 2.3 with volatility function

f
P(0)

opt

θ(0)

(
r, σ2

)
= α0 + α1r

2 + βσ2, θ(0) = (α0, α1, β) ∈ (R+)3. (2.5)

Then minimize the negative log likelihood, get the estimates φ̂(0), ν̂(0) and θ̂(0).

Set a counter m = 0.
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To do the minimization, basically any nonlinear optimization method can be

used. These methods can be easily found as build-in subroutines in popu-

lar statistical softwares. For example, SAS provides subroutines to realize the

following nonlinear optimization methods: the Conjugate Gradient Method,

the Double Dogleg Method, the Nelder-Mead Simplex Method, the Newton-

Raphson (Ridge) Method, the (Dual) Quasi-Newton Method, the Quadratic

Optimization Method, and the Trust-Region Method etc.2 . Among them, the

Quasi-Newton method3 is the most popular one, and is the one used by McNeil

and Frey (2000) [18]. Here in our method, we recommend and use the so-called

Double Dogleg Method (see Dennis and Mei (1979)[9], and Gay (1983)[12]) in

stead of the Quasi-Newton. This is because the Double Dogleg optimization

technique works well for medium to moderately large optimization problems,

and we find in reality it is more stable for our specified case.

The starting values for this step can be obtained by simply applying the SAS

procedure PROC AUTOREG. We use this procedure to fit a simple GARCH(1,1)

with standard Normal innovation. And by default, it calculates and uses the

OLS (the Ordinary Least Square) estimates of the parameters as its own starting

values.

2See the SAS online documentation at http://www.ncsu.edu/it/sas/help/ for details.
3Also called Quasi Gauss-Newton iteration method. It is an algorithm to get the quasi-likelihood

estimates of parameters given the conditional mean and conditional variance equations containing

the unknown parameters. See Nocedal and Wright (1999)[19] and Davidian (2001)[8].
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Step 2: Increase m by 1. Find the best refined partition P(m)
opt by binary dividing one

of the cells from the previous partition P(m−1)
opt into two new cells. The detailed

process is listed as below:

(a) Given P(m−1)
opt = {R1, . . . ,Rm}, consider a new partition P(m), where only

one partition cell Rj∗ ∈ P(m−1)
opt is split into Rj∗ = Rj∗left

∪ Rj∗right
as that

described above. The new volatility function corresponding to P(m) is

fP
(m)

(θ(m−1)\∗,θ∗) (r, σ2) =
∑

j 6=j∗(α0,j + α1,jr
2 + βjσ

2)I[(r,σ2)∈Rj ]

+
∑

i∈{j∗left,j
∗
right}(α

∗
0,i + α∗1,ir

2 + β∗i σ
2)I[(r,σ2)∈Ri],

(2.6)

where

θ(m−1)\∗ = {α0,j, α1,j, βj; j = 1, . . . , m, j 6= j∗} ∈ (R+)3(m−1),

θ∗ = {α∗0,i, α
∗
1,i, β

∗
i ; i ∈ {j∗left, j

∗
right}} ∈ (R+)6.

(b) Using Double Dogleg method, minimize the negative conditional log like-

lihood in the refined partition P(m) over θ∗ and ν, holding the parameter

vector φ̂(m−1), θ̂(m−1)\∗ fixed. This time we have

min
θ∗,ν

[
−lP

(m)
{

φ̂(0),
(
θ̂(m−1)\∗, θ∗

)}]
. (2.7)

Here −lP
(m)

is as in Equation 2.3 and the volatility function fP
(m)

is Equa-

tion 2.6. In this minimizing process, for the parameters in θ∗, use as

starting values the components of θ̂(m−1) corresponding to the cell Rj∗ .

And for ν, use ν̂(m−1) as the starting value.

(c) By varying P(m) in (a) and re-computing (b), find the optimized Equation

2.7. Denote the optimal refined partition by P(m)
opt and the corresponding
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partition node by dm. More details for this step will be given in the last

paragraph of this subsection.

Step 3: Again, using Double Dogleg method, minimize the negative conditional log

likelihood in Equation 2.3 corresponding to the partition P(m)
opt . This time use

the volatility function fP
(m)
opt from Equation 2.2 to get (φ̂(m), ν̂(m), θ̂(m)). For this

step, the starting values can be φ̂(m−1), ν̂(m−1), θ̂(m−1)\∗ and the minimizer θ̂∗ in

expression 2.7 that is obtained in Step 2. The resulting estimates in this step are

denoted by φ̂m ,̂(ν), and θ̂m. Please notice that in this step we no longer fix any

parameter in (φ, ν, θ). All the parameters are to be re-estimated simultaneously.

Step 4: Repeat Step 2 and Step 3 until m = M , where M is specified in advance.

By doing this we get the partition P(M)
opt which gives the final binary tree and

the final parameter estimates (φ̂(M), ν̂(M), θ̂(M)).

As to the value of M , it is pointed out by Audrino and Buhlmann (2001) [4] that

for financial returns data, choosing M around six is appropriate. We will adapt this

idea and use M = 4 unless specified otherwise. This means at the end of Step 4, we

will have four nodes and five cells in the data-partition tree.

Now the only remaining issue is how to choose nodes to split cells in Step 2(a)

and Step 2(c). Here a grid searching is proposed. We use the empirical α quantiles

of r and those of the estimated σ2 with α = 1/8, 2/8, . . . , 7/8. That is, for each cell

of the previous partition, we search for 7 × 2 = 14 splits. And for each m, since we
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have m cells, we actually go over Step 2(a) and 2(b) m× 14 times in order to get the

dm and P(m)
opt in Step 2(c).

Backward: Reducing the Number of Nodes

Because M = 4 is usually sufficiently large for financial data, the binary tree

with five cells developed in the previous subsection may be too fine. Also, estimating

too many parameters is always not encouraged in modelling, especially if the model

is to be used in practice. So we consider using such measurement as the Akaike

Information Criterion (AIC) instead of just the negative log likelihood to judge if

one tree is better than the others. To do this, we apply the following method to

reduce the number of nodes:

First, find the set T , which is the set of all the binary subtrees of P(M)
opt , the

final tree we get from the previous subsection. Denote the elements of T by Pi.

Note that the “subtrees” are defined by dropping the decision nodes one by one,

beginning from the end leaves of the tree. And the set T is usually larger than the set

{P(0)
optP(1)

opt, . . . ,P(M)
opt }. This is because there may be more than one node that can be

dropped at some point during the dropping process, and it is not necessary to drop

the nodes by the order they are constructed in the previous subsection.

To illustrate this, again we use the simple binary tree in Figure 2.1 as an example.
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By the way it is constructed, we have

P(0)
opt = no partition,

P(1)
opt = {a1, a2},
P(2)

opt = {b1, b2, a2},
P(3)

opt = {b1, b2, c1, c2}.
These four subtrees correspond to the first four subtrees in Figure 2.2. Since they

are subtrees of P(3)
opt, they are also the elements of set T . Though as a decision node,

a1 is split earlier than a2 when we constructed the tree, we can choose to drop a1

first instead of a2 because they are both decision nodes giving end leaves of the tree.

So except for the four elements listed above, the set T contains one more partition,

which is P5 = {a1, c1, c2}, and P5 = {a1, c1, c2} is the fifth subtree in Figure 2.2.
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Figure 2.2: The Elements of T For The Simple Binary Tree

For a particular binary tree like that in Figure 2.1, finding all the elements of T is
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very easy to do by simply looking at the graph. But in general, finding such elements

as P5 computationally is not so easy. Please see Appendix A: Finding the Set of

Subtrees for the strategy we use to do this.

Then after finding all the elements of T , we follow the following three steps to

choose our final partition tree:

A. For every Pi, use Double Dogleg method to maximize Equation 2.3 with volatil-

ity function 2.2, and get the parameter estimates (φ̂Pi , ν̂Pi , θ̂Pi). For starting

values, we use the parameter estimates obtained in the previous subsection

corresponding to the cells of Pi.

B. For every Pi, calculate the AIC:

AIC(Pi) = −2l(φ̂Pi , θ̂Pi) + 2{dim(θ̂Pi) + 2}. (2.8)

The AIC penalizes the number of parameters, or nodes, to be estimated. Here

notice that dim(θ̂Pi) is the dimension of θ̂Pi , which equals the number of cells

in θPi times 3, then plus the number of nodes in the tree, and the number “2”

accounts for φ and ν.

C. Choose the binary tree, or the partition Pi, which minimizes Equation 2.8 and

call it P .

The tree-structured GARCH(1,1) given by P is the final model for our first-stage

modelling.
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Note that at the end of the previous subsection, we develop a tree with four

nodes and five cells/leaves. But after the reducing process, the final tree P may have

any number of nodes from zero to four, and any number of leaves from one to five

accordingly.

2.3 The Second-stage Model: GPD with Covariate

σ2
t

In the second-stage model, the dependent variable is no longer rt. Instead, it is

the residual of the first-stage model. Let’s denote the residuals by zt. That is

zt = (rt − φ̂rt−1)/σ̂t (2.9)

where φ̂ and σ̂t are the estimates of φ and σt obtained in the first-stage model. Notice

that the residuals zt are actually estimates of εt in Equation 2.1.

Hopefully, the tree-structured GARCH(1,1) model can give us good estimates of

the volatilities σ2
t , so that after the data filtration, the residuals we get no longer have

the heteroscedastic property. This can be tested simply by drawing the autocorrela-

tion graph of zt and that of z2
t . If both graphs show no significant autocorrelation,

then we can say that the residuals do not have heteroscedasticity and thus are now

at least plausibly independent.

Now treat zt as they are independent. By the nature of financial return series,

they are still supposed to be fatter-tailed. These properties indicate that the EVT-
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based models apply. Here we use the model defined by Equation 1.11, the GPD, to

model the exceedances of a high threshold of zt. As stated in Chapter 2.1, to use a

smooth model, this time we do not fit multiple GPD, but fit only one GPD model

for all the exceedances, not considering which cell of the partition, or which classical

GARCH(1,1) model they correspond to in the first-stage model. Also, to make the

model changeable with different volatility levels, we’ll use the estimated σ2
t obtained

in the first stage as an explanatory variable for the shape parameter of the GPD.

Suppose u is a high threshold of zt; for the exceedances of this threshold, yt = zt−u,

the model is re-stated as the following:

G(yt) = 1− (1 + ξ(σt)yt/γ)−1/ξ(σt)

ξ(σt) = a + b ln(σ2
t )

(2.10)

where γ > 0, ξ(σt) ≥ 0 and the support is yt ≥ 0.

In practice, instead of fixing the threshold u, we take the highest 10% of zt and

treat them as the tail part that need to be modelled by Equation 2.10. We will

also make sure that the data set of rt is large enough to give sufficient number of

yt to fit the model. Again, the parameters will be estimated by MLE. As shown by

Smith (1987) [21], in the case of a simple GPD model, the MLE estimates of the two

parameters are consistent and asymptotically normal as the number of exceedances

used goes to infinity.

This is the end of our two-stage modelling. And the last remained task is to

forecast and estimate VaR and the Expected Shortfall.
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2.4 Estimating VaR and The Expected Shortfall

Now after the two-stage model is set up, it finally comes to the point to esti-

mate VaR and the Expected Shortfall. First, let’s define the notations for these two

statistics. For 0 < p < 1, an unconditional quantile is denoted by

Rp = inf {r ∈ R : Fr(r) ≥ p} , (2.11)

and a conditional quantile is denoted by

Rt
p(k) = inf

{
r ∈ R : Frt+1+...+rt+k|Gt(r) ≥ p

}
, (2.12)

where k means k steps ahead conditional on the information at time t, which is

denoted by Gt. If we define rt to be the negative log returns rather than the log

returns, then the VaR defined in Equation 1.1 is Rt
p(k) for some high value p. Here

we are only interested in the 1-step ahead prediction Rt
p(1), and let’s just call it Rt

p.

Similarly, the unconditional Expected Shortfall is defined to be

Sp = E [r|r > Rp] , (2.13)

and the conditional Expected Shortfall is

St
p(k) = E

[
k∑

j=1

rt+j|
k∑

j=1

rt+j > Rt
p(k),Gt

]
. (2.14)

Again, we are only interested in St
p, the 1-step ahead conditional Expected Shortfall.

Please notice that our goal is to estimate the conditional VaR and the Expected

Shortfall rather than the unconditional ones.
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According to the first equation given in 2.1, it is easy to get:

Frt+1|Gt(r) = Pr {σt+1εt+1 + µt+1 ≤ r|Gt}

= Fε ((r − µt+1) /σt+1) .

This leads to the following relation between Rt
p, St

p and the quantile of ε, which is

denoted by zp:

Rt
p = µt+1 + σt+1zp

St
p = µt+1 + σt+1E [ε|ε > zp]

(2.15)

By setting up the two-stage model, we can obtain estimates of µt+1, σt+1, zp, and

E[ε|ε > zp]. Plugging them in 2.15, we have the estimates of the wanted VaR and the

Expected Shortfall.

It is clear that after fitting the first-stage model, we can calculate µ̂t+1 and σ̂t+1

immediately. But it is not so easy to obtain estimates of zp and E[ε|ε > zp]. This is

because in stage two, we only fit the GPD to the highest 10% of zt, where zt is the

residual calculted from the stage-one model.

To estimate zp, recall that in Chapter 1 we mentioned the following equation while

introducing GPD:

Fu(y) = Pr{X ≤ u + y|X > u} =
F (u + y)− F (u)

1− F (u)
, y > 0, (2.16)

where Fu(.) is the cumulated distribution function (CDF) of exceedances y = z − u

over threshold u and F (.) is the CDF of X. In our case Fu(.) is the GPD in Equation

2.10 and F (.) is the CDF of z. From the above equation, we have

1− F (z) = (1− F (u)) (1− Fu(z − u)) . (2.17)
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The second part on the right-hand side can be estimated by the fitted GPD, and the

first part is just 10%, because we only choose the highest 10% of zt to fit the GPD

model. Specifically, if we use m zts to get the GPD model, where m ¿ n and n is the

total number of data points we have, and if z(1), z(2), . . . , z(n) are the ordered residuals

such that z(1) ≥ z(2) ≥ z(3) . . . ≥ z(n), then

F̂ (z) = 1− m

n

(
1 + ξ̂

z − z(m+1)

γ̂

)−1/ξ̂

. (2.18)

By inverting this formula, for time t + 1 we can write ẑp as

ẑp = z(m+1) +
γ̂

ξ̂t+1

((
1− p

m/n

)−ξ̂t+1

− 1

)
. (2.19)

Having this result in hand, by Equation 2.15, we calculate R̂t
p by

R̂t
p = µ̂t+1 + σ̂t+1ẑp. (2.20)

Now we need to estimate E[ε|ε > zp]. First notice that what we have in the

second-stage model, in the simple form, is ε− u|ε > u ∼ GPD(ξ, γ). For zp > u, we

can write

L (ε− zp|ε > zp) = L ((ε− u)− (zp − u)|(ε− u) > (zp − u)) . (2.21)

Based on this expression, it can be easily shown that

ε− zp|ε > zp ∼ GPD (ξ, γ + ξ(zp − u)) . (2.22)

Then it follows from Equation 2.22 that

E [ε|ε > zp] = zp

(
1

1− ξ
+

γ − ξu

(1− ξ)zp

)
. (2.23)
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Plugging it in Equation 2.15, for time t + 1, we finally get

Ŝt
p = µ̂t+1 + σ̂t+1ẑp

(
1

1− ξ̂t+1

+
γ̂ − ξ̂t+1z(m+1)

(1− ξ̂t+1)ẑp

)
. (2.24)

32



Chapter 3

DATA APPLICATION

In this chapter, we apply the two-stage model to some simulated data and some

real data respectively. In both cases, we compare the results with those of several

other popular models to see if the two-stage model performs better.

3.1 The Simulations

3.1.1 Simulation Structure

To perform simulations, first we need to choose data generators. Here we use

three models with the following common form, which is very similar to Equation 2.1,

to generate data:

rt = µt + σtεt

µt = φrt−1

σ2
t = f{rt−1, σ

2
t−1}

(3.1)
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The three models are defined by different forms of f(r, σ2): The first model is a

classical GARCH(1,1), that is, Equation 3.1 with

f(r, σ2) = 0.05 + 0.1r2 + 0.85σ2. (3.2)

The second model is a tree-structured GARCH(1,1) which has

f(r, σ2) =





0.1 + 0.5r2 if r ≤ d1 = 0,

0.2 + 0.2r2 + 0.75σ2 if r > d1 = 0 and σ2 ≤ d2 = 0.5,

0.8 + 0.5σ2 if r > d1 = 0 and σ2 > d2 = 0.5.

(3.3)

The third model is neither classical GARCH nor tree-structured GARCH. It is Equa-

tion 3.1 with f(r, σ2) defined to be

f(r, σ2) =
(
0.1 + 0.2|r|+ 0.9r2

) {0.8 exp (−1.5|r| × |σ|)}+
(
0.4r2 + 0.5σ2

)3/4
. (3.4)

In all the three models, we let φ = 0 for convenience. These three models are the

same as those used in Audrino and Buhlmann (2001)[4], who choose these parameters

to mimic the time series of real log returns.

We use these three models to construct the following five data-generators:

Generator 1: model 3.2 with
√

(3/1)εt ∼ t3;

Generator 2: model 3.3 with
√

(3/1)εt ∼ t3;

Generator 3: model 3.4 with
√

(3/1)εt ∼ t3;

Generator 4: model 3.2 with εt ∼ N(0, 1);

Generator 5: model 3.3 with εt ∼ N(0, 1).
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Here we use 3 as the degree of freedom of the t distributions to obtain substantially

fatter tails.

Using each of the five data-generators, we generate N = 120 samples with sample

size n = 1000. Notice here that n = 1000 corresponds to about four year’s of real

daily data. Then we use the two-stage model proposed in the previous chapter to

obtain the estimates of volatility (σ2
t ), VaR (Rt

p), and the Expected Shortfall (St
p).

Also notice that for each sample, we have 1000 σ̂2
t , but have only one R̂t

p and one Ŝt
p

for a particular value of p.

For comparison purposes, we also fit four other models mentioned in Chapter 1

for the same generated data, and obtain estimates for the three measurements. These

four models are:

1. RiskMetrics, i.e., the IGARCH(1,1) model defined by Equation 1.61;

2. classical GARCH(1,1) model defined by Equation 1.5;

3. threshold GPD fitted to the highest 10% data;

4. the MF model: the two-stage model proposed in McNeil and Frey (2000)[18].

Here notice that Rt
p and St

p can be calculated for all the four models. But the estimates

of volatility, the σ̂2
t s, can’t be obtained for the threshold GPD.

1Actually the model we use here is not exactly Equation 1.6. Instead, we use the IGARCH(1,1)

model defined in SAS, which has an extra intercept term ω in the volatility Equation of 1.6. Notice

that when ω = 0, it is exactly Equation 1.6.
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To compare the performance of our two-stage model with those of the four models

mentioned above, and also to quantify the goodness of fit, we need to calculate some

statistics. For simulated data, a big advantage we can take is that the true values

of volatility (σ2
t ), VaR (Rt

p), and the Expected Shortfall (St
p) are all known. Keeping

this in mind, we define the following statistics:

1. the AISRL (Average In-Sample Relative Loss ) of σ̂2
t : AISRLσ̂2

t
= 1

Nn

∑N
k=1

∑n
t=1

|σ2
t,k−σ̂2

t,k|
σ2

t,k
;

2. the sample mean of R̂t
p;

3. the sample standard deviation of R̂t
p;

4. the ARL (Average Relative Loss ) of R̂t
p: ARLR̂t

p
= 1

N

∑N
k=1

|Rt,k
p −R̂t,k

p |
Rt,k

p
;

5. the sample mean of Ŝt
p;

6. the sample standard deviation of Ŝt
p;

7. the ARL (Average Relative Loss ) of Ŝt
p: ARLŜt

p
= 1

N

∑N
k=1

|St,k
p −Ŝt,k

p |
St,k

p
;

The first statistic is used to measure the performance of the first-stage model, i.e.,

the tree-structured GARCH(1,1), in estimating the volatility. Notice again that it

can not be calculated for the threshold GPD, which does not estimate the volatility.

The next three statistics are used to measure the models’ ability to estimate VaR.

And the last three are for the Expected Shortfall. Obviously, the smaller, the better

are the relative loss statistics.

In addition to the statistics listed above, we also check how many nodes our two-

stage mode find for each of the 1000 data sets simulated from the five data generators.
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The true models defined by Equation 3.2 to Equation 3.4 show that Generator 1 and

4 have no node, whereas Generator 2 and 5 have two nodes. So we access whether,

for each of the 1000 data sets generated, our model can tell the true number of nodes

most of the time.

One more thing needs to be pointed out: In order to calculate the estimates for the

four competing models, and also to obtain the real values of VaR and the Expected

Shortfall, some formulas other than those mentioned in Chapter 2.4 should be used.

These formulas are listed in Appendix B.

3.1.2 Simulation Results

In this subsection, we present the results relating to the first-stage model first.

This includes the effect of the data filtration for heteroscedasticity, the number of

nodes estimated by our tree-structured GARCH(1,1) model, and the AISRL statistics.

Then we summarize the statistics about the estimation of VaR and the Expected

Shortfall. And some conclusions are drawn at the end.

Results Related to the First-stage Model

First, we would like to check whether the two-stage model succeeded in removing

the heteroscedasticity by using the tree-structured GARCH(1,1) as the data filtration.

To do this, we calculate the autocorrelations of series rt, r2
t , et and e2

t respec-

tively. Remember that et are the estimates of the true innovation series, εt. The

ideal situation is that rt has almost no significant autocorrelations, but r2
t has some,
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showing that the generated series rt is heteroscedastic. Meanwhile, both et and e2
t

have no significant autocorrelations. This means that we successfully remove the het-

eroscedasticity from the the generated data by using the tree-structured GARCH(1,1)

filtration. In addition, we also get the QQ plots against N(0, 1) for both rt and et

to see if the data is fatter tailed, and if this property remains after the filtration.

Obviously, we expect it does for the generators with t innovations.

The following three figures are produced respectively for the first data sets gen-

erated from Generator 1, Generator 2, and Generator 3. In each of the figures, the

top four panels (panel (a), (b), (c) and (d)) are plots of the absolute value of auto-

correlations for rt, r2
t , et and e2

t . The two panels on the bottom (panel (e) and (f))

are QQ plots for rt and et. For the autocorrelation plots, we use lag = 24, because

in reality, there are usually 22 to 24 trading days within a month, though this has

little meaning for simulated data. Also, we plot the two times’ standard errors of

the autocorrelations at the same time. Thus a prominent spike means a significant

autocorrelation value of the corresponding lag.

All the QQ plots in Figure 3.1, 3.2 and 3.3 show that both rt and et have fatter

tails than a Normal distribution. So the generated data are fatter-tailed and the use

of the first-stage model does not change this property. This also indicates that the

use of GPD in the second stage is appropriate. It’s also noticed that in Figure 3.2

panel (e), the QQ plot for rt is not a straight line. Actually this is true for almost all

the data sets generated from Generator 2, indicating that the model used in generator

2 is far from a Normal distribution.
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Figure 3.1: ACF and QQ Plots: Generator 1
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Figure 3.2: ACF and QQ Plots: Generator 2
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Figure 3.3: ACF and QQ Plots: Generator 3
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As to the heteroscedasticity, we have the following observations: Panel (a) in all

the three figures shows no significant autocorrelations except for lag = 7, 8 and 9 in

Figure 3.1. Panel (b) has significant spikes in all the three figures, and this is especially

obvious in Figure 3.1 and Figure 3.2, which are for data sets generated from GARCH

models. Panel (c) shows et are not autocorrelated for all the three data sets. And

panel (d) shows e2
t are not autocorrelated except for lag = 14 and 21 in Figure 3.2. It

is also observed, though not from the above figures, the lag values we just mentioned

do not always have significant autocorrelations in other data sets generated by the

same data generating models. Note that 5% of the absolute ACF values should lie

beyond the bounds because we use two times’ standard errors as the limits. So the

existence of the significant autocorrelations mentioned above is reasonable. We can

conclude that rt, et and e2
t do not have low-order autocorrelations, but r2

t has.

Though we present the ACF and QQ plots for only the first generated data sets of

each of the three data generators, we need to point out that the majority of the other

data sets have similar data characteristics as these three. This gives the fundamental

reason to use our two-stage model. Meanwhile, there are a small proportion of data

sets which do not have heteroscedasticity and/or a fatter tail, though they are sup-

posed to have according to the models used to generate them.2 We should say that

it is something we must deal with while doing a simulation: extreme cases do occur.

And we do not exclude them from our simulation because of this reason. That is, we

2The proportion is relatively larger for Generator 4 and 5, which use standard Normal innovations

rather than t innovations. But in general, it is a small percentage.
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still apply the two-stage model and all other models to them, though these may not

be the appropriate models to these particular data sets.

Secondly, we explore how well our first-stage model performs in finding the nodes

and estimating the volatilities. Table 3.13 summarizes the number of nodes found by

our two-stage model for different data generating models:

Data Generator 0 node 1 node 2 nodes 3 nodes 4 nodes Total

1 frequency 71 24 11 10 4 120

percentage 59.2% 20.0% 9.2% 8.3% 3.3% 100%

2 frequency 0 23 32 33 32 120

percentage 0.0% 19.2% 26.7% 27.5% 26.7% 100%

3 frequency 45 34 23 11 7 120

percentage 37.5% 28.3% 19.2% 9.2% 5.8% 100%

4 frequency 110 7 2 1 0 120

percentage 91.7% 5.8% 1.7% 0.8% 0.0% 100%

5 frequency 0 6 33 38 43 120

percentage 0.0% 5.0% 27.5% 31.7% 35.8% 100%

Table 3.1: Frequency of Nodes: Simulated Data

For data Generator 1 and Generator 4, which are the simple GARCH(1,1) and

have no node, our two-stage model gives quite satisfactory result: For Generator 1,

for 71 (59.2%) out of the 120 data sets, it catches the true model. For another 20.0%

of the data sets, it results in only one node. For Generator 4, it is even better. The

two percentages are 91.7% and 5.8% respectively. This is acceptable because we use

3Note: The percentages for Data Generator 2 in this table do not sum up to exactly 100.0% due

to rounding problems.
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the AIC criteria in choosing the final tree structure, and it is commonly known that

AIC tends to overfit the model but give more accurate forecasts. Generator 2 and

Generator 5 have two nodes, d1 = 0 in r and d2 = 0.5 in σ2. For the 120 data

sets generated from Generator 2, the two-stage model results in almost the same

number of trees which have two nodes, three nodes, or four nodes. For Generator

5, it results in even more data sets with three or four nodes. For these two tree-

structured GARCH(1,1) generators, our model does not perform as well as it does

for Generator 1 and 4, over-estimating the number of nodes most of the time. But

the results do make it clear that the data do not come from a simple GARCH(1,1),

because none of the resulting trees have zero node. For Generator 3, which is neither

a simple GARCH(1,1) nor a tree-structured GARCH(1,1), the two-stage model tends

to mimic it by a tree with zero or one node.

Table 3.24 lists the AISRL (the average in-sample relative loss) statistics we cal-

culated for the five data generators:

Here notice that the AISRL statistics can not be calculated for Model 3, the

threshold GPD, because Model 3 does not estimate the volatilities. Also, this statistic

is the same for Model 2 and Model 4. This is because Model 2 is the classical

GARCH(1,1), which is exactly the first-stage model for Model 4, the McNeil and

Frey model. The volatilities are estimated only in the first-stage model.

Table 3.2 shows that for data generated from a simple GARCH(1,1) or the non-

4In this table we use TS to stand for our two-stage model. This abbreviation will also be used

in other tables and the context of this chapter.
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Model 1 Model 2 and 4 TS Model

RiskMetrics GARCH(1,1) and MF Two-stage

Generator 1 0.6394 0.4806 0.6240

Generator 2 1.8120 1.5173 0.6186

Generator 3 0.5648 0.4018 0.6190

Generator 4 0.1094 0.0464 0.3485

Generator 5 0.9615 0.8466 0.1963

Table 3.2: AISRL Statistics

GARCH model, our two-stage model is not the best one in estimating the volatilities.

It has average biases of 62% or so for Generator 1 and 3, and 34.85% for Generator

4. The best model is the classical GARCH(1,1), which has an average relative loss of

48.06%, 40.18%, and 4.64% respectively. But if the data come from a tree-structured

GARCH(1,1), our model is considerably better than the other three models: For

Generator 2, it has an average relative loss of 62% or so, whereas the losses for other

three models are above 151%. For Generator 5 its AISRL is 19.63% compared with

96.15% and 84.66% for others. Putting this into consideration, we conclude that our

model is not much worse than the others when the data are really from GARCH(1,1),

but much better when the true data generating model is a tree-GARCH.

Statistics Related to VaR and ES estimates

Finally we present the statistics about the estimateds of VaR and the Expected

Shortfall. Table 3.3 to 3.7 summarize the real and estimated means and standard

errors for each of the five data generators. ES in the column titles means the Expected
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Shortfall. The bold numbers in the tables are the best among the five models.

Model VaR VaR VaR ES ES ES

p = 0.95 p = 0.99 p = 0.995 p = 0.95 p = 0.99 p = 0.995

True mean 1.0923 2.1075 2.7110 1.7982 3.2504 4.1367

std 0.2233 0.4308 0.5542 0.3676 0.6645 0.8456

TS mean 1.0879 2.1087 2.6976 1.7884 3.2033 4.0463

std 0.2667 0.5537 0.7728 0.4873 1.1345 1.6828

Model 1 mean 1.3831 1.9562 2.1660 1.7345 2.2411 2.4318

std 0.4208 0.5951 0.6589 0.5276 0.6818 0.7398

Model 2 mean 1.3244 1.8731 2.0739 1.6608 2.1459 2.3284

std 0.3456 0.4888 0.5412 0.4334 0.5600 0.6076

Model 3 mean 1.2108 2.5020 3.2777 2.1142 3.9972 5.1626

std 0.1483 0.4698 0.7485 0.4184 1.2344 1.9292

Model 4 mean 1.1303 2.1973 2.7993 1.8523 3.2804 4.1056

std 0.2899 0.5902 0.7880 0.4966 1.0150 1.4036

Table 3.3: Mean and Std for VaR and ES Estimates: Generator 1

For data Generator 1, for which the results are shown in Table 3.3, except for ES

(p = 0.99) and ES (p = 0.995), the means of our TS model are the ones which are

closest to those of the true model. And for the two exceptions, Model 4, which also

has a two-stage structure, is the best. But both of these models are not good at the

standard errors. Their estimates do not have better stds than the true values and the

other models.

From Table 3.4, we can see that for data simulated from Generator 2, our two-

stage model again has the most best means, but this time the exceptions are VaR

(p = 0.99) and ES (p = 0.95). This is because both the true model and our TS model
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Model VaR VaR VaR ES ES ES

p = 0.95 p = 0.99 p = 0.995 p = 0.95 p = 0.99 p = 0.995

True mean 0.8476 1.6354 2.1037 1.3956 2.5223 3.2100

std 0.2233 0.4308 0.5542 0.3676 0.6645 0.8456

TS mean 0.8831 1.7325 2.2372 1.4817 2.7310 3.5149

std 0.4570 0.9445 1.3155 0.8607 2.0843 3.1821

Model 1 mean 1.1840 1.6746 1.8541 1.4848 1.9185 2.0817

std 0.4461 0.6309 0.6986 0.5594 0.7228 0.7843

Model 2 mean 1.1212 1.5858 1.7558 1.4061 1.8168 1.9713

std 0.2536 0.3587 0.3972 0.3181 0.4109 0.4459

Model 3 mean 1.0264 2.2141 2.9189 1.8516 3.5534 4.5927

std 0.0927 0.2734 0.4649 0.2442 0.8187 1.3265

Model 4 mean 0.9468 1.9737 2.5637 1.6488 3.0595 3.8932

std 0.1945 0.4219 0.5942 0.3583 0.8451 1.2495

Table 3.4: Mean and Std for VaR and ES Estimates: Generator 2

assume a tree-structure with a t innovation term. So our TS model should be the

best one. Model 4 has most best stds in this table. Again, our TS model has larger

values than the stds should be.

Table 3.5 shows that for Generator 3, Model 4 is the best, which has five out of

the six best means. Our TS model only has the one for ES (p = 0.995). But by

taking a careful look at the first five columns of the table, we can see that the means

of the two-stage model are always the second closest to those of the true model. The

differences between TS model’s means and Model 4’s are not very much.

Generally, from Table 3.3, Table 3.4 and Table 3.5, we conclude that for data

generated from GARCH-type models with t innovations, i.e., Generated 1 and 2, the
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Model VaR VaR VaR ES ES ES

p = 0.95 p = 0.99 p = 0.995 p = 0.95 p = 0.99 p = 0.995

True mean 1.1851 2.2866 2.9413 1.9510 3.5265 4.4881

std 0.2448 0.4724 0.6077 0.4031 0.7286 0.9272

TS mean 1.1547 2.2109 2.8169 1.8914 3.3964 4.3231

std 0.3267 0.6449 0.9025 0.6230 1.7450 2.8917

Model 1 mean 1.5041 2.1273 2.3555 1.8663 2.4372 2.6446

std 0.6888 0.9742 1.0786 0.8638 1.1161 1.2110

Model 2 mean 1.4474 2.0471 2.2667 1.8151 2.3453 2.5448

std 0.6394 0.9043 1.0013 0.8018 1.0360 1.1242

Model 3 mean 1.2705 2.5507 3.3109 2.1604 3.9977 5.1210

std 0.0933 0.2837 0.4760 0.2526 0.8627 1.4197

Model 4 mean 1.2082 2.3241 2.9490 1.9614 3.4433 4.2946

std 0.3350 0.6350 0.8072 0.5301 0.9948 1.3468

Table 3.5: Mean and Std for VaR and ES Estimates: Generator 3

means of our TS estimates for VaR and ES are generally better than all of the other

three models. But for data from Generator 3, which is not a GARCH-type model,

our model performs a little worse than Model 4. Here we would also like to point out

another observation about the means of estimates: It seems from all the three tables

that when it comes to ES (p = 0.99) and ES (p = 0.995), the true means of ES tend

to increase very fast. And all the models which incorporate the GPD (TS, Model 3

and Model 4) can reflect this increase by an increasing mean of estimates, but the

other two models can’t.

It’s also observed from these tables that though our TS model has good means

of the estimates, the stds of the estimates are poorer in most of the cases. This is
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especially true for ES (p = 0.99) and ES (p = 0.995). For these two cases our method

gives estimates with considerably larger standard errors.

Generator 4 and Generator 5 differ from the first three data generators in that

they use N(0, 1) as the distribution of the innovation. Table 3.6 and Table 3.7 give

the means and stds of these two generators:

Model VaR VaR VaR ES ES ES

p = 0.95 p = 0.99 p = 0.995 p = 0.95 p = 0.99 p = 0.995

True mean 1.5750 2.2276 2.4665 1.9752 2.5521 2.7692

std 0.3298 0.4665 0.5165 0.4136 0.5344 0.5799

TS mean 1.5482 2.2859 2.6046 2.0068 2.7466 3.0662

std 0.3476 0.5132 0.5856 0.4498 0.6175 0.6902

Model 1 mean 1.6317 2.3077 2.5552 2.0462 2.6439 2.8688

std 0.4472 0.6325 0.7003 0.5608 0.7246 0.7863

Model 2 mean 1.5799 2.2344 2.4741 1.9812 2.5599 2.7777

std 0.3442 0.4868 0.5390 0.4317 0.5577 0.6052

Model 3 mean 1.6053 2.4533 2.8258 2.1343 2.9979 3.3779

std 0.1159 0.2282 0.2935 0.1848 0.3365 0.4215

Model 4 mean 1.5476 2.2827 2.5994 2.0044 2.7397 3.0564

std 0.3448 0.5081 0.5798 0.4455 0.6117 0.6840

Table 3.6: Mean and Std for VaR and ES Estimates: Generator 4

For Generator 4, the true model is classical GARCH(1,1) with N(0, 1) innovations.

And Table 3.6 shows Model 2 has the best means and stds, because it uses exactly

the true model and the true innovation distribution. Also, Model 4 is the second best

one for this case. And our TS model is a little worse than Model 4.

For Generator 5, which is tree-structured GARCH(1,1) with N(0, 1) innovations,
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Model VaR VaR VaR ES ES ES

p = 0.95 p = 0.99 p = 0.995 p = 0.95 p = 0.99 p = 0.995

True mean 1.2492 1.7668 1.9563 1.5666 2.0241 2.1964

std 0.5548 0.7847 0.8688 0.6957 0.8990 0.9754

TS mean 1.2689 1.8823 2.1488 1.6506 2.2687 2.5372

std 0.5891 0.8758 1.0014 0.7673 1.0584 1.1858

Model 1 mean 1.4602 2.0652 2.2866 1.8311 2.3660 2.5673

std 0.5671 0.8020 0.8880 0.7111 0.9188 0.9970

Model 2 mean 1.3390 1.8937 2.0968 1.6791 2.1696 2.3541

std 0.3582 0.5066 0.5609 0.4492 0.5804 0.6298

Model 3 mean 1.4116 2.3945 2.8282 2.0254 3.0307 3.4755

std 0.0902 0.1840 0.2368 0.1455 0.2716 0.3452

Model 4 mean 1.3184 2.1882 2.5723 1.8616 2.7517 3.1457

std 0.3632 0.6238 0.7404 0.5252 0.7960 0.9190

Table 3.7: Mean and Std for VaR and ES Estimates: Generator 5

Table 3.7 shows for means, the TS model is the best one for small ps and the classical

GARCH(1,1) is the best for other ps. The TS model is also the second best for large

ps. Model 1 has all the best stds.

The last two tables for VaR and ES estimates are Table 3.8 and Table 3.9, which

contain the results of the ARL statistics defined in Chapter 3.1.1:

Because ARL is the average relative loss, it is obvious that the smaller, the better.

So except for ES (p = 0.99) and ES (p = 0.995), the TS model is better than the

others for data Generator 1. And for data Generator 2, TS model is the best for both

VaR and the ES for all the three p values. For data from Generator 3, Model 4, the

MF model, is the best one. The TS model is the second best. For Generator 4, again
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Generator Model VaR VaR VaR ES ES ES

p = 0.95 p = 0.99 p = 0.995 p = 0.95 p = 0.99 p = 0.995

1 TS 0.0774 0.1016 0.1273 0.1046 0.1759 0.2169

Model 1 0.2582 0.1429 0.2313 0.1306 0.3270 0.4203

Model 2 0.2244 0.1575 0.2503 0.1366 0.3469 0.4382

Model 3 0.2208 0.2933 0.3226 0.2860 0.3668 0.4102

Model 4 0.0995 0.1196 0.1391 0.1174 0.1699 0.2024

2 TS 0.1343 0.1595 0.1860 0.1646 0.2393 0.2876

Model 1 0.6908 0.3719 0.2945 0.3986 0.2641 0.2982

Model 2 0.6861 0.3804 0.3183 0.4057 0.3033 0.3240

Model 3 0.6554 0.8000 0.8349 0.7722 0.8635 0.8953

Model 4 0.4911 0.5733 0.5850 0.5513 0.5847 0.5915

3 TS 0.0983 0.1133 0.1384 0.1225 0.2059 0.2626

Model 1 0.2541 0.1691 0.2596 0.1514 0.3506 0.4409

Model 2 0.2292 0.1899 0.2866 0.1686 0.3756 0.4622

Model 3 0.1775 0.2170 0.2401 0.2154 0.2741 0.3077

Model 4 0.0921 0.0958 0.1127 0.0957 0.1456 0.1786

Table 3.8: ARL Statistics: Generators with t Innovations

because it uses exactly the true model and the true innovation distribution, Model

2 is the one with the smallest ARLs. And Model 4 is the second best model, even

Model 1 is better than the TS model for VaR (p = 0.995), ES (p = 0.99) and ES

(p = 0.995). For Generator 5, the TS model is considerably better because it catches

the tree structure, just as it does for Generator 2.
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Generator Model VaR VaR VaR ES ES ES

p = 0.95 p = 0.99 p = 0.995 p = 0.95 p = 0.99 p = 0.995

4 TS 0.0483 0.0564 0.0727 0.0509 0.0871 0.1129

Model 1 0.0698 0.0698 0.0698 0.0698 0.0698 0.0698

Model 2 0.0314 0.0314 0.0314 0.0314 0.0314 0.0314

Model 3 0.1628 0.2096 0.2401 0.1951 0.2615 0.2982

Model 4 0.0432 0.0506 0.0674 0.0451 0.0817 0.1076

5 TS 0.1104 0.1245 0.1416 0.1195 0.1558 0.1798

Model 1 0.4268 0.4268 0.4268 0.4267 0.4268 0.4268

Model 2 0.3873 0.3873 0.3873 0.3873 0.3873 0.3873

Model 3 0.6073 0.7932 0.8746 0.7393 0.9256 1.0192

Model 4 0.3836 0.5235 0.5925 0.4797 0.6325 0.6995

Table 3.9: ARL Statistics: Generators with Normal Innovations

Some Conclusions for Simulation

By reviewing all the results listed in the above tables and figures, we draw the

following conclusions from the simulations:

• First, our two-stage model does remove the heteroscedasticity of the simulated

data by using the tree-structured GARCH(1,1) as the data filtration;

• Second, our TS model shows undoubted advantage in estimating VaR and ES

when the true underlying model is GARCH(1,1) and has a tree structure, no

matter whether the innovation term is standard Normal or standardized t(3),

which has an obvious fatter tail than N(0, 1);

• Third, when the data are simulated from a classical GARCH(1,1) with innova-
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tions coming from N(0, 1), the existing RiskMetrics, GARCH, and MF methods

are better than our TS model. But if the innovation is standardized t(3), our

TS model remains the best except for ES p = 0.99 and ES p = 0.995, for which

cases the MF model is the second best choice. And both models are much better

than the other three.

3.2 Application to Real Data

3.2.1 The Structure

In this section, we apply our two-stage model and the four competitive models to

two real financial series of negative log returns. We choose one index, the NASDAQ,

and one stock, the MRK for Merck & Co. , the famous pharmaceutical company. For

the NASDAQ index, we use the daily closing NASDAQ 500 composite from January

2, 1990 to November 26, 1997. And for the MRK stock, we use the daily closing price

starting from March 2, 1992. Both the NASDAQ index series and the MRK price

series have a total of 2001 historical observations.

First, for both of the two financial instruments, we use the historical series to cal-

culate daily negative log returns (in percentages) according to the following equation

rt = −100 ln
Pt

Pt−1

, (3.5)

where Pt is the index or stock price at time point t for t = 0, 1, 2, . . . , 2000. Notice

that for a total of 2001 observations, we can get exactly 2000 historical log returns
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for either of the two series.

Second, we fit our two-stage model and the four competing models to the log

return series. As for the simulated data, we always use a window of n = 1000 to

do model fitting and one-step forward estimating. We begin with the first 1000

observations of the historical log return series, fit the models and get the estimates

of Rt
p and St

p for p ∈ {0.95, 0.99, 0.995}. Then we drop the first observation and add

the 1001th one to form the second data set, and do the model fitting and estimating

again. Then repeat this step until we exhaust the whole series. This means we fit

each model 1000 times with sample size n = 1000 and get estimates of Rt
p and St

p for

t ∈ {1001, 1002, . . . , 2000}. Since there are 3 values of p, there are a total of 1000× 3

estimates of Rt
p and St

p respectively.

For real data, we no longer assume φ = 0 in the mean equations of all the five

models except the competing Model 3, which does not have a mean equation. Instead,

we estimate φ in each step as described in Chapter 2.2.

Finally, we again define and calculate some statistics to measure the performance

of each model in estimating volatility, VaR and the Expected Shortfall. Then com-

pare the values of these statistics and draw some conclusions about the model per-

formances.

Again, we first give a table for the frequencies of the number of nodes estimated

by our two-stage model. And to measure the goodness of fit of σ2
t , we use the so-called
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Average In-Sample Absolute Loss for Prediction (AISALP) defined by

AISALP =
1

N(n− 1)

N∑

k=1

n∑
t=2

∣∣σ̂2
t − (rt − µ̂t)

2
∣∣ . (3.6)

Here N = 1000 because of the way we exhaust the series with 2000 observations.

And µ̂t = rt − φ̂ ∗ rt−1. AISALP is the counterpart of the AISRL statistics we use

for simulated data. But we choose to use absolute loss rather than relative loss here.

This is because for real data, rt and µ̂t can be so close that their differences can

sometimes become very close to zero. If we divide the absolute difference in Equation

3.11 by this small number, the ratio can be extremely large. Thus it does not reflect

the goodness-of-fit of σ̂2
t very properly. But for simulated data, we use σ2

t , which is

known and not so close to zero, this problem does not exist.

When it comes to Rt
p and St

p, again we calculate the following statistics for the

estimates:

1. the sample mean of R̂t
p;

2. the sample standard deviation of R̂t
p;

3. the sample mean of Ŝt
p;

4. the sample standard deviation of Ŝt
p.

Notice that the ARL statistics used for simulated data are not obtainable because of

the fact that the true values for Rt
p and St

p are unknown for real data.

Though we no longer have the advantage of knowing the true values of the risk

measurements, notice that we actually use N = 1000 instead of the N = 100 used
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in the previous simulations. This makes backtesting applicable. For Rt
p, in addi-

tion to the mean and standard deviation of the estimates, for each value of p and

the corresponding 1000 estimates, we can count the number of violations. A vio-

lation is said to occur whenever rt+1 > R̂t
p. By the definition of VaR, the num-

ber of violations should have a binomial distribution B(1000, 1 − p) under H0 :

the model correctly estimates VaR . Thus, we can compare the number of violations

with its expectation 1000× (1− p). Obviously for p = 0.95, p = 0.99 and p = 0.995,

the expected numbers of violations are 50, 10 and 1 respectively. Also, the bino-

mial distribution and the null hypothesis give the following confidence interval for a

significant level 0.95:

(1− p)−
√

(1− p)p
χ2

0.95(1)

1000
<

nv

1000
< (1− p) +

√
(1− p)p

χ2
0.95(1)

1000
, (3.7)

where nv is the number of violations, and χ2
0.95(1) is the inverse chi-square distribution

function with degree of freedom 1.

For St
p, unfortunately there is no such beautiful result as the binomial distribution

for Rt
p. When the underlying models are different, the distribution properties of St

p

are also very different. So far it seems there is no good statistic to measure the

goodness of fit for St
p. The only statistic we found in literature is based on the

so-called exceedance residuals , which is denoted by r∗t+1 and defined by

r∗t+1 =
rt+1 − Ŝt

p

σ̂t+1

√
ˆvar(ε|ε > zp)

for rt+1 > Ŝt
p. (3.8)

It is said that the exceedance residuals should behave like an iid sample with mean

zero and variance one. But it seems from the literature that the application of this
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result is not satisfactory. We’ll just list this statistics here without using it.

The last thing we do for real data application is to plot the 1000 estimates of Rt
p

and St
p for each p and each model. From these plots we observe how fast the estimates

change from time t to the adjacent time t + 1, which can not be fully reflected by

the statistics listed above. We hope that they do not change too quickly. This is

because one important use of the market risk measurements is to help the investors

set their margins. If the margins change dramatically from one day to another, it

means the investors need to add or reduce their margins by a considerable amount

daily. This is not preferable to the investors, even when the measures are statistically

more accurate than the others. We will check our results from this non-statistical

aspect.

3.2.2 The Results

In this subsection, we present the results about real data application by a similar

way as that for simulated data. That is, first we check the autocorrelation and

QQ plots for variable rt and et, to see if our data filtration model, the tree-structured

GARCH(1,1) succeeds in remove the heteroscedastic property of the log return series.

Second, we give the table of frequencies of the number of nodes got by our two-

stage model. Then we list the results of the AISALP statistics, which measures the

performance of the first-stage model in estimating the volatilities. Third, we present

the results of the means and standard deviations of our estimates. Fourth, we backtest
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and count the number of violations we have for each model. And finally, we plot all

the estimates of VaR and the Expected Shortfall for the NASDAQ index series, to

see how volatile they are.

Results Related to the First-stage Model

First, Figure 3.4 and Figure 3.5 are the ACF and QQ plots for NASDAQ and

MRK respectively. For either of the figures, we use a data set of 1000 observations.

We use the same number of lags and the same layout of the plots as before. Remember

that a prominent spike means a significant autocorrelation value of the corresponding

lag.

The ACF plot for rt in Figure 3.4 is very different from the counterparts in the

figures for simulated data: it has a significant autocorrelation value for lag = 1. This

is the reason why we do not assume φ = 0 for real log returns. The spikes in panel

(b) of the same figure shows that the NASDAQ log return series is heteroscedastic,

as we expect. And panel (c) and (d) show that the data filtration is successful, the

estimates of innovations, et, no longer has this property. The QQ plot in panel (e) is

somewhat similar to that of Figure 3.2, showing both skewness and a fatter tail. And

the QQ plot in panel (f) remain fatter-tailed. Figure 3.5 has the same characteristics

as Figure 3.4, except that the rt is not autocorrelated and the QQ plot for it show

little skewness.

Again these figures just show part of the NASDAQ and MRK series. Most of

the other parts not shown here are similar to these two. So both the series are het-
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Figure 3.4: ACF and QQ Plots: NASDAQ
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eroscedastic and fatter-tailed. And our two-stage model can remove the heteroscedas-

ticity from them.

Next, we examine how many nodes our two-stage model find for the real log

returns. Table 3.10 summarizes the frequencies: For the NASDAQ log return series,

Data Series 0 node 1 node 2 nodes 3 nodes 4 nodes Total

NASDAQ frequency 0 3 136 316 545 1000

percentage 0.0% 0.3% 13.6% 31.6% 54.5% 100%

MRK frequency 225 52 122 168 433 1000

percentage 22.5% 5.2% 12.2% 16.8% 43.3% 100%

Table 3.10: Frequency of Nodes: Real Data

Table 3.10 shows that our two-stage model regards the underlying model as a tree-

structured GARCH(1,1) rather than a classical GARCH(1,1). And it has at least two

nodes. For the MRK series, our two-stage model finds that 22.5% of the data sets

have no node, but at the same time more than 60% of the data sets have at least two

nodes. Competing the results for MRK with those of the simulated data, we see that

MRK does not seem like any of the five generators. This suggests that the underlying

model for MRK may not be any one of the five.

Finally, we list the AISALP statistics in Table 3.11. For the NASDAQ index, it is

notable that our two-stage model is the best in estimating the volatilities. It has the

smallest average in-sample absolute loss for prediction. For the MRK price series, all

the AISALP statistics has much large values than those of the NASDAQ. But our TS

model is still the one which has the smallest value.
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Model 1 Model 2 and 4 TS Model

RiskMetrics GARCH(1,1) and MF Two-stage

NASDAQ 0.7294 0.6861 0.6283

MRK 12.1251 17.0263 7.0408

Table 3.11: AISALP Statistics

Statistics Related to VaR and ES estimates

For the VaR and ES, remember that we estimated them for p = 0.95, p = 0.99 and

p = 0.995. The following two tables give the resulting means and standard deviations

for the estimates of each model. Because we do not have the true values of VaR and

ES any more, we can only evaluate the table values by their magnitudes.

Model VaR VaR VaR ES ES ES

p = 0.95 p = 0.99 p = 0.995 p = 0.95 p = 0.99 p = 0.995

TS mean 1.3152 2.1232 2.4960 1.8251 2.6882 3.0896

std 0.6645 0.9520 1.0799 0.8419 1.1400 1.2769

Model 1 mean 0.7794 1.0210 1.1094 0.9275 1.1411 1.2214

std 0.5603 0.7262 0.7874 0.6618 0.8094 0.8652

Model 2 mean 1.5809 2.1627 2.3757 1.9377 2.4520 2.6456

std 0.5470 0.7176 0.7802 0.6515 0.8026 0.8595

Model 3 mean 1.3292 2.3143 2.7703 1.9507 3.0042 3.4940

std 0.0690 0.1440 0.1860 0.1165 0.2223 0.2945

Model 4 mean 1.3799 2.3532 2.8006 1.9932 3.0279 3.5060

std 0.4806 0.7558 0.8701 0.6472 0.9141 1.0256

Table 3.12: Mean and Std for VaR and ES Estimates: NASDAQ

From Table 3.12, we can see that for the NASDAQ return series, Model 1, the
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most often used RiskMetrics model in practice, is the one that always get the smallest

estimates for VaR and ES. And the differences between the results of this model and

the others are relatively large. This means that if this model is used to set the risk

margins for investors, the money amount required is much less than those using other

models. Except for Model 1, our TS model has the smallest mean estimates except

for ES (p = 0.99) and ES (p = 0.995). For these two cases, Model 2, the classical

GARCH(1,1), has the second smallest mean estimates. But our TS model estimates

always have a large standard deviation than the others.

Model VaR VaR VaR ES ES ES

p = 0.95 p = 0.99 p = 0.995 p = 0.95 p = 0.99 p = 0.995

TS mean 2.7015 4.8957 6.2630 4.5164 8.8498 12.2271

std 5.2235 10.8237 14.3447 9.5524 21.9484 26.3786

Model 1 mean 3.7390 5.2748 5.8370 4.6807 6.0385 6.5495

std 7.4391 10.1559 11.1526 9.1036 11.5099 12.4165

Model 2 mean 3.8276 5.4447 6.0368 4.8091 6.2489 6.7869

std 6.9074 9.7733 10.8226 8.6646 11.1986 12.1523

Model 3 mean 2.4704 4.5898 5.9381 4.0060 7.3600 9.5611

std 0.2414 0.6002 1.0143 0.5900 1.8135 2.9052

Model 4 mean 2.7757 5.1914 6.7001 4.4974 8.1908 10.5515

std 5.1799 10.6936 14.0969 9.0296 17.1550 22.1914

Table 3.13: Mean and Std for VaR and ES Estimates: MRK

Table 3.13 shows that the means of the VaR and ES estimates for the single stock

price series are much more larger than those for the index series. Furthermore, though

all the models give similar means for most of the estimates (ES (p = 0.99) and ES
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(p = 0.995) are exceptions), the standard deviations are very different. For the com-

peting models, except for the GPD model, which does not assume any distribution

structure for the original log return series rt, the other three models have estimates

with surprisingly large standard deviations, especially Model 4, which is also a two-

stage one. Actually, by examining the original data and the VaR and ES estimates

carefully, we find that this is because a few of the original log returns and the corre-

sponding estimates obtained by those models are extremely large. For example, the

closing price of MRK on February 16, 1999 is 150.87, but that for the next day is

only 74.67; this gives a rt of 70.3340 for February 17, 1999, comparing with −2.2590

of the previous day. For the data set in which this day is the last observation, Model

1 gives an estimate for VaR (p=0.95) to be as large as 149.0255, but that obtained

by Model 3 for the same data set is only 2.4358. And the extreme estimates do not

always happen for the same data sets for all the four models, though most of them

do. Compared with the three models, our TS model again has the largest stds.

Next, we do the backtesting for VaR and count the number of violations for the

three p values. The results are summarized in Table 3.14. The frist row of this table

is the expected number of violations out of the 1000 fits. The second row is the

confidence interval calculated according to Equation 3.7.

Table 3.14 shows that both Model 3 and Model 4, i.e., the GPD model and the

MF model are doing well for the NASDAQ series. All the actual counts of violations

for these two models fall into the 95% confidence intervals. Our TS model does

well for p = 0.99 and p = 0.995, but has more violations for p = 0.95 than it
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MODEL p = 0.95 p = 0.99 p = 0.995

Expected Violations 50 10 5

Confidence Interval 36.5-63.5 3.8-16.2 0.6-9.4

TS 67 10 6

NASDAQ Model 1 174 131 118

Model 2 47 17 11

Model 3 58 13 9

Model 4 61 11 6

TS 67 14 6

Model 1 140 111 98

MRK Model 2 36 10 8

Model 3 73 17 4

Model 4 69 17 4

Table 3.14: Backtesting Results for VaR

should have. The RiskMetrics model used in practice obviously under-estimates all

the three VaRs, resulting much more violations than the reasonable values given by

the confidence intervals. As to the MRK series, Unlike the means and stds in Table

3.13, the counts of violations are not affected so much by the extreme estimates.

To be specific, only Model 2 still has all the three counts falling in the confidence

intervals. Our TS model remains the same as it does for the NASDAQ, but Model 3

and Model 4 have more violations than the confidence intervals indicate for p = 0.95

and p = 0.99. The RiskMetrics model (Model 2) again underestimates the VaR to

such an extent that the actual violation counts are much larger than any of the other

models. Putting both the NASDAQ and the MRK into consideration, we see that
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except for the RiskMetrics, all the other models have relatively small differences in

violations counts, our TS model is a little worse than Model 2, but is a little better

than Model 3 and Model 4.

And finally, to see how volatile the estimates are, we plot all the estimates of VaR

and the Expected Shortfall for the NASDAQ index series in Figure 3.6. As the titles

for the sub-figures indicate, the first three sub-figures are for VaR estimates, and the

next three are for ES estimates.

All the six sub-figures look similar: Model 1 and Model 3 give quite stable es-

timates; the estimates for the other three models change to quite some extent from

day to day; and among the three, our two-stage model is the one that gives the most

volatile estimates. From this figure, we can also see that the estimates of Model 1 are

usually much smaller than those of the other models. Combining this with the num-

bers in Table 3.14, we know that it is because that Model 1 actually underestimates

the risk measurements.

Conclusions and Comments for Real Data Application

First, for the NASDAQ index, it seems that our TS model tends to believe it

has a tree structure. But for the MRK price series, the TS model give complicated

results in the frequency table. It seems more like that the series actually have different

structures for different parts of it. Some parts of the data have a tree structure but

some do not. Second, no matter what structure the underlying models have, for

both the NASDAQ and the MRK, our TS model estimates the volatilities better
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than the other three models that do the same estimations according to the AISALP

statistics. Third, the RiskMetrics model underestimates all the risk measurements,

which is observed from the violation counts for both of the negative log return series.

And this is why it gives smaller means of estimates for the NASDAQ. For the same

NASDAQ series, except for the RiskMetrics, our TS model has the second smallest

means of estimates most of the time. But it does not do well for the case p = 0.995.

Also, the estimates of our TS model usually have larger standard variations than

the other models. The MRK series have extreme observations, which result in larger

means of estimates from all the models. The standard deviations of the estimates

given by the GPD model are not affected very much by the extreme observations,

but all the other models do not have this advantage, including our TS model, which

again gives larger stds. Also, By plotting all the estimates of the NASDAQ series, we

observe that the estimates of our TS model are more volatile than those of the other

models. And both the RiskMtrics and the GPD model are rather stable. Finally,

except for the RiskMetrics, all the other models show only small differences in the

violation counts for the VaR estimates. Our TS model has only one count falling out

of the confidence intervals for both the NASDAQ and the MRK series. It is better

than all the other models other than Model 2, the classical GARCH(1,1) model.

We conclude this section with a few comments: Firstly, here we only applied the

methods to the NASDAQ and the MRK stock, and from the application we can see

that it is much more difficult to model the price series of a single stock. The price

for a single stock can be easily affected by a lot of things, such as the company’s
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annual report, the amount of dividend given out, the amount of new stocks issued

and so on. It is more changeable than an index series. Secondly, in order to facilitate

the calculations and make the comparisons, we use an unique TS model structure

for a large number of data sets. In reality, the model structure can actually be data

dependent. For example, we can change the form of µt according to the characteristics

of the data in hand. It is not necessarily to be an AR(1) used here. The sample size

n can also be increased. Using these means may improve our estimates. Finally, we

want to point out that modelling an index is not only easier, but also more meaningful,

because much more financial instruments are based on the change of indices rather

than that of a single stock.

3.3 Conclusions

In this chapter, we applied our two-stage method to both simulated data and two

real negative log return series. Estimates of both Value at Risk and the Expected

Shortfall are obtained for p = 0.95, p = 0.99 and p = 0.995. And we compared the

results with those of four other models: the RiskMetrics, the classical GARCH(1,1)

model, the threshold GPD model, and the McNeil and Frey (MF) model.

The simulated data are generated from five different data generators, includ-

ing the classical GARCH(1,1) model with standard Normal innovation, the classical

GARCH(1,1) model with standardized t(3) innovation, the tree-structured GARCH(1,1)

model with two nodes and standard Normal innovation, the tree-structured GARCH(1,1)
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model with two nodes and standardized t(3) innovation, and a non-GARCH model.

We examined the number of nodes found by our two-stage model, and such statistics

of the estimates as the Average In-Sample Relative Loss (AISRL) for σ̂2
t and Average

Relative Loss (ARL) of R̂t
p and Ŝt

p are calculated.

The results show that our two-stage model estimates the risk measurements much

better than the other models when the underlying model has a tree structure. When

the underlying model is the classical GARCH(1,1) with standardized t(3) innovation,

our model also performs better for estimating ES (p = 0.95) and all the three VaRs.

For the classical GARCH(1,1) model with standard Normal innovation and the non-

GARCH data, RiskMetrics, classical GARCH, and the MF are better choices. And

for the non-GARCH data, our model is only worse than the MF model. The threshold

GPD model seems to be the one which gives the largest relative losses. But in general,

our model gives estimates with larger standard deviations than they should have.

The two real negative log return series we used for real data application are the

NASDAQ index series and the MRK stock price series. The NASDAQ index series are

rather stable, but the MRK series contain some extreme observations. The Average

In-Sample Absolute Loss for Prediction (AISALP) instead of the AISRL statistics is

calculated. We also did backtestings and counted the actual number of violations for

the three VaR estimates. Plots of all the estimates for the NASDAQ series are drawn

to reflect the volatility.

It is observed from the results of real data application that the popular RiskMet-

rics model always underestimates both the risk measurements to quite some extent.
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Except for this model, our two-stage model has smaller means of estimates for the

NASDAQ series. For the MRK price series, the performances of our two-stage model,

together with the other three models are greatly affected by the extreme value. Only

the threshold GPD model, which does not assume any structure for the log return,

remains stable. For both series, our two-stage model again gives estimates with larger

standard deviations than the other models. And it has the most volatile estimates

according to the plots. As to the violation counts, our two-stage model is satisfactory,

only having larger number of violations for VaR (p = 0.95).

Generally speaking, the two-stage model we proposed here has advantages when

the underlying model is tree-structured or has obvious fatter tail. And for other usual

cases, this method is not much worse than the other existing methods. The real data

application also shows reasonable results. Our model gives satisfactory number of

violations for VaR estimates. The disadvantages are that it’s estimates tend to have

larger variations, and it does better for the Expected Shortfall with lower p and

VaR than for the Expected Shortfall with higher p values. We suggest to use it to

estimate these measurements for indices and stable stock price series, adding another

perspective of view in addition to the current methods in literature.
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Appendix A

Finding the Set of Subtrees

In the subsection of 2.2, “Backward: Reducing the Number of Nodes”, we men-

tioned that it is easier to describe the concept of T , which is the set of all the binary

subtrees of P(M)
opt , than to find it computationally. Here we describe the strategy we

use to do this in our SAS program:

To find every element of T correctly, the key is to store the tree structure in an

appropriate way. To be specific, the tree should be stored in such a way that it is

very easy to tell which cell is an intermediate node or a leaf, and which one is not.

We should be able to do this any time during the pruning process.

For illustration purpose, we still use the tree in Figure 2.1. Remember that during

the growing process, we get {a1, a2} first by using the splitting node d1 in r, then get

{b1, b2} by splitting a1 with d2 in σ2, and finally split a2 with d3 in σ2 to get {c1, c2}.

We store the tree in a data set which contains the first three columns of the following

table:

72



dimension node left cell subtree 3 subtree 5

r d1 2 2 2

σ2 d2 4 4 0

σ2 d3 6 0 6

0 0 0 0 -1

0 0 0 0 -1

0 0 0 -1 0

0 0 0 -1 0

Table A.1: The Subtrees of the Simple Binary Tree

The first row of the data set says that with the node d1 in r, we split the data

into two cells, and the left one, i.e., the one with the less-than-or-equal sign ”≤”, is

stored in the second row and the right one goes to the third row by default. So the

first row is the root of the tree, the second row is cell a1 and the third row is cell a2.

Since the values of “dimension” and “node” for the second row are not zero, cell a1

is also split into two cells: the left one is the fourth row (cell b1), and the right one is

the fifth (cell b2). These two cells are leaves because all the values for the first three

columns are zero. The same thing happens to the third row (cell a2), and it is split

into two leaves: the sixth row (cell c1) and the seventh (cell c2).

After identifying the leaves and the nodes which produce the leaves, pruning the

tree becomes rather easy: Notice that the third column is the full tree (or Subtree 4

in Figure 2.2), and only row four and five, or row six and seven are the end leaves

that can be pruned. To get rid of row six and seven ({c1, c2}), just replace the zeros

in the third column of these two rows with −1, and replace that of row three, the
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node which produce them, with zero. The resulting subtree is stored in column four.

It is Subtree 3 in Figure 2.2. Similarly, by pruning row four and five, we get column

five which is Subtree 5 in Figure 2.2. We can see from both of the columns that

now the subtrees have three leaves (zeros) and two nodes. Column four has already

appeared in the growing process, since the nodes has the consecutive even numbers

{2, 4}. Column five is a new subtree since the numbers are {2, 6}, which are not

consecutive.

By further pruning column four and five, we always get Subtree 2 in Figure 2.2,

and then Subtree 1. Thus we get all the subtrees in the set of subtrees T .
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Appendix B

Additional Formulas

In order to calculate the statistics ARLR̂t
p

and ARLŜt
p

proposed in Chapter 3.1,

we need the true values of Rt
p and St

p for model 3.1. When rt and σt are known for

t = 1000, no matter which volatility equation we use to generate the data, Equation

3.2, Equation 3.3 or Equation 3.4, it is obvious that we can always get the true σt+1

according to it. Then by the definition of VaR, for our data generating models with

standardized t innovations, the true VaR is just

Rt
p = µt+1 + σt+1zp = σt+1

CDF−1
ε (p)√
3

. (B.1)

Here CDF−1
ε (.) is the inverse CDF of εt. And remember that we let φ = 0 and

√
(3/1)εt ∼ t3 in Equation 3.1.

Similarly for the same data generators, the true value of the Expected Shortfall

can be calculated according to the following formula:

St
p = µt+1 + σt+1E [ε|ε > zp] = σt+1 × 3

[3 + (CDF−1
ε (p))2]π

× 1

(1− p)
. (B.2)
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Except for the formulas for true VaR and the Expected Shortfall, to compare the

different models, we also need to get the estimated Rt
p and St

p for the four models

mention in Chapter 3.1.

For IGARCH(1,1) and GARCH(1,1), σ̂t+1 can be obtained according to their

volatility equations, provided the estimated parameters and σt. Then because we

assume εt ∼ N(0, 1) in these models, by a little inference, the formulas for R̂t
p and Ŝt

p

are:

R̂t
p = σ̂t+1 × CDF−1

N(0,1)(p) (B.3)

and

Ŝt
p = σ̂t+1 × 1√

2π
exp

(
−

(CDF−1
N(0,1)(p))2

2

)
× 1

(1− p)
. (B.4)

Please notice that these two formulas can also be used to get the true VaR and

the Expected Shortfall for our data generators with the standard Normal innovations.

The only change to be made is using σt+1 instead of σ̂t+1 in both of the formulas.

For the threshold GPD model, since it simply fits a GPD model to the top 10%

of rt, Equation 2.19 and Equation 2.23 can be used directly to get R̂t
p and Ŝt

p. The

only revision is that we need to use the corresponding symbols of rt instead of those

of the residuals. So the formulas are

R̂t
p = r(m+1) +

γ̂

ξ̂

((
1− p

m/n

)−ξ̂

− 1

)
(B.5)

and

Ŝt
p = R̂t

p

(
1

1− ξ̂
+

γ̂ − ξ̂r(m+1)

(1− ξ̂)R̂t
p

)
. (B.6)
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With all these formulas and the ones proposed in Chapter 2.4 in hand, we are able

to get all the true values and estimates of VaR and the Expected Shortfall. Hence

are able to calculate the ARLR̂t
p

and ARLŜt
p

statistics to do the comparisons.
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