
ABSTRACT

TANG, YONGQIANG. Dirichlet Process Mixture Models for Markov processes.

(Under the direction of Dr. Subhashis Ghosal.)

Prediction of the future observations is an important practical issue for statisticians.

When the data can be viewed as exchangeable, de Finneti’s theorem concludes that,

conditionally, the data can be modeled as independent and identically distributed

(i.i.d.). The predictive distribution of the future observations given the present data

is then given by the posterior expectation of the underlying density function given

the observations. The Dirichlet process mixture of normal densities has been success-

fully used as a prior in the Bayesian density estimation problem. However, when the

data arise over time, exchangeability, and therefore the conditional i.i.d. structure in

the data is questionable. A conditional Markov model may be thought of as a more

general, yet having sufficiently rich structure suitable for handling such data. The

predictive density of the future observation is then given by the posterior expecta-

tion of the transition density given the observations. We propose a Dirichlet process

mixture prior for the problem of Bayesian estimation of transition density. Appropri-

ate Markov chain Monte Carlo (MCMC) algorithm for the computation of posterior

expectation will be discussed. Because of an inherent non-conjugacy in the model,

usual Gibbs sampling procedure used for the density estimation problem is hard to

implement. We propose using the recently proposed “no-gaps algorithm” to overcome

the difficulty. When the Markov model holds good, we show the consistency of the

Bayes procedures in appropriate topologies by constructing appropriate uniformly

exponentially consistent tests and extending the idea of Schwartz (1965) to Markov

processes. Numerical examples show excellent agreement between asymptotic theory

and the finite sample behavior of the posterior distribution.

KEY WORDS: Dirichlet mixture, Markov process, no-gaps algorithm, Poisson

equation, posterior consistency, sup-L1 distance, time series,

uniformly exponentially consistent tests.
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Chapter 1

Introduction

1.1 Overview

There has been much work on the estimation of the density function of a population

based on a sample of independent and identically distributed (i.i.d.) observations.

However, the i.i.d. assumption does not hold in many situations. Often, the observa-

tions show evidence of dependence on the past. Assuming that only the immediate

past matters, we obtain a Markov process. The goal of this thesis is to propose a non-

parametric Bayesian method for the estimation of the transition density of a Markov

process model, and to study its asymptotic behavior.

In the conditional density estimation problem, the sample is a list of real-valued

random variables {X−m+1, X−m+2, . . . , X0, . . . , Xn} ∗ drawn from a discrete time series

model. The observation Xi depends on only its m lagged values given all its past tra-

jectory, that is, given X−m+1, . . . , Xi−1, the distribution of Xi is f(·|Xi−1, . . . , Xi−m).

Our goal is to estimate the transition density f . Note that when m = 1, the time

series model is a Markov process with the state space R and that when m > 1, the

time series model could be represented by a Markov process in the product state

∗we assume that the first m observations X−m+1, . . . , X0 are fixed or have known distribution.

1
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space Rm. Without loss of generality, we refer to the general time series models as

Markov processes.

Classical parametric approaches for the estimation of the transition density rely

on the assumption that the functional form of the transition density f is completely

known except for certain parameters, which have to be estimated from the sam-

ple. However, the assumption of a parametric model is often only a convenient

mathematical artifice. To avoid unnatural model assumptions, non-parametric or

semiparametric techniques for inference have been developed. Prakasa Rao (1978)

proposed a kernel-type density estimation method to estimate the transition den-

sity and its invariant distribution function for a stationary uniformly ergodic Markov

process (refer to Appendix A for the definition) under the assumption that both

the transition density and the density for the invariant distribution are uniformly

continuous. Mixture models are flexible nonparametric models and have interesting

applications in Bayesian density estimation. Muller, West and MacEachern (1997)

studied a Bayesian locally weighted finite mixture model for nonlinear autoregressive

time series in which the size and terms of the mixing proportions of the mixture mod-

els have a random prior from the Dirichlet process. Ferguson (1983) and Lo (1984)

considered the Dirichlet mixture of normal (DMN) model for the estimation of the

density of an i.i.d. population. In this thesis, we propose using the Dirichlet process

mixture (DPM) model to estimate the transition density of a Markov process. Our

DPM model is a natural extension of Ferguson’s and Lo’s DMN model. Our model

is different from Muller, West and MacEachern’s in that the parameter in our model

could be viewed as dynamically varying with time while in the latter, the parameter

is static. Our models will be formally introduced in the next section.

Distributional symmetry is a key natural assumption in a statistical model if no

information, other than the data, is available. The symmetry is represented proba-

bilistically by exchangeability (refer to Section 2.1). A fundamental representation
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theorem of de Finetti (1937) shows that an exchangeable probability measure is a

mixture of the products of identical measures. This forms the fundamental pillar of

Bayesian statistics. Thus exchangeable observations are conditionally i.i.d. This in-

troduces the “parameter” and the “prior” in Bayesian inference. To predict the next

observation, one finds the conditional distribution of the next given the available

observations by integrating out the unknown distribution (parameter) with respect

to the posterior distribution. The posterior is obtained from the conditional i.i.d.

structure by the Bayes theorem. However, particularly, for observations arising over

time (as in a time series analysis), the assumption of this form of distributional sym-

metry seems to be unconvincing. Therefore, the observations are not conditionally

i.i.d., but the future observations should be conditionally dependent on the past given

the parameter. A Markov process is one of the most natural extensions of the i.i.d.

structure that can possibly capture this dependence, yet has a rich structure. For a

Markov process, one assumes that given the present, the future will not depend on

the past any further. However, the dependence will “propagate” and all the involved

variables will be dependent. It is also easily possible to incorporate this “one step

immediate dependence” to m steps by simply looking at an m-tuple of m successive

observations. Therefore it seems to be reasonable to model the observations as a con-

ditional Markov process. A prior is then put on the transition density of the process,

and prediction can be done by integrating out the transition density with respect to

the posterior distribution. Clearly, the conditional Markov process model contains

the exchangeable model as a special case (with 0 terms). Including more terms is

likely to enhance prediction power up to some stage, before it starts overfitting the

data.

In this thesis, we shall demonstrate our models numerically in three ways. First,

we will simulate data from known Markov models when m = 1, and compare the

Bayes estimate of the transition density with the true one. In the literature, a widely
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used nonparametric Bayesian model for estimating the density function of an i.i.d.

sample is the DMN model, which is a special case of our model. We will compare

the prediction power of our method under the Markov process assumption when the

state space is R with that of the DMN model under the i.i.d. assumption. To see

how our general Markov model captures all the dependence structure in practice, we

shall study its prediction performance with real data.

The nonparametric Bayesian method is useful when little information is available.

However, inference based on the posterior is reliable only if the posterior shows rea-

sonable large sample frequentist properties. This thesis shows posterior consistency

of our model when the state space of the Markov process is the real line R. To the

best of our knowledge, this thesis presents one of the first theoretical examinations

of consistency issues of nonparametric Bayesian methods for dependent data. Our

result is presented in chapter 4.

1.2 The Nonparametric Bayesian Model

It has been long known that the mixtures of a standard distribution could be used

to approximate many densities. Diaconis and Ylvisaker (1985) observed that discrete

mixtures of beta densities provide a dense class of models for densities on [0, 1]. Sim-

ilarly, the discrete mixtures of gamma densities provide a dense class of models for

densities on R+. Mixture models have been flexible nonparametric models. Dirichlet

process mixture (DPM) models follow a Bayesian framework and have particularly

been useful in this context in which the mixing distribution is unknown and auto-

matically determined by the data.

In the DPM model proposed in this thesis, the data are modeled as a switching-

regression model with its density mixed with respect to a distribution on the pa-

rameter. We seek to enrich the class of the regression models through modeling
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the uncertainties about the functional form of the mixing distribution. We assume

that the mixing distribution could be any distribution in the relevant space with a

Dirichlet process prior. The unknown mixing distribution could have any shape such

as degenerate, discrete, multimodal, skewed, fat-tailed and could be automatically

learned from the data. In a Bayesian framework, the data automatically determine

the amount of smoothing given the prior.

The Dirichlet mixture model could be viewed as a two-layer hierarchical Bayesian

model. At the first layer, we assume that each observation of the variables under

study comes from the following switching regression model,

Xi = H(Zi, τ) + εi, (1.2.1)

where {εi, i ≥ 1} are i.i.d. from N(0, σ2), the normal distribution with mean 0 and

variance σ2, τ = (β0, β1, γ
T )T , γ = (γ0, γ1, . . . , γm)T , Zi = (1, Xi−m, . . . , Xi−1)

T ,

H(z, τ) = β0 + β1g(γT z). (1.2.2)

and g is a known link function. The logistic function

g(t) =
1

1 + exp(−t)
(1.2.3)

seems to be a particularly interesting choice because of its boundedness, monotonicity,

smoothness and ability to approximate a linear function; See Figure 1.1 and the

discussion below. We shall work with this choice. However, other choices of g with

similar properties are possible and the treatment will be very similar. Note that if

β∗0 = β0 + β1, β∗1 = −β1 and γ∗ = −γ, then

H(z, θ) = β0 + β1g(γT z) = β∗0 + β∗1g(−γ∗T z) = H(z, θ∗).

To avoid the identitiability issue of the parameter, we assume that γm > 0. The

equation (1.2.1) could be interpreted as follows. When the linear combination of
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the m lagged values γT Zi ¿ 0, the conditional mean of Xi+1 is equal to β0, while

it changes gradually to β0 + β1 as γT Zi increases. The switching regression model

could be used to approximate any autoregressive AR(m) model arbitrarily well. From

Figure 1.1, we see that the logistic regression function (1.2.3) is approximately linear

with slope 0.25 as t is near 0. Given any compact set K ⊂ Rm, there exists a γ with

sufficiently small ‖γ‖ such that γT Zi will be close to 0 enough and hence

Xi+1 ≈ β0 + 0.5 + 0.25β1(γ
T Zi) + εi+1.

when Zi ∈ K. So for any given K, we could always adjust the parameter γ, β0, β1 in

the switching regression model (1.2.1) and make it approximate any AR(m) model

arbitrarily closely for Zi ∈ K.

Figure 1.1: Logistic function vs linear function

In the hierarchical Bayesian model, we assume that the parameter θ = (τ, σ) varies

with time, that is, each observation is from

Xi = H(Zi, τi) + εi, (1.2.4)

where εi ∼ N(0, σ2
i ) and θi’s are i.i.d. from some distribution P . We need to specify

the prior P for θi’s. Often, the prior is chosen based on the user’s prior belief. If we
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have a strong belief that θi’s are i.i.d. from some parametric distribution G0, we could

set the prior of θi as P = G0. But usually the functional form of P is unavailable in

practice. It is well known that the inference is often sensitive to the specification of

such an explicit parametric functional form of P . To avoid this drawback, we instead

assume that the prior P itself is random and could be any distribution function on

the space Θ, where Θ denotes the space of θi and is a subset of Euclidean space

Rm+2 × R+ × R+; note that γm > 0 and σ > 0.

At the second layer of the model, we need to specify a hyperprior for the ran-

dom distribution P . Let M(Θ) denote the space of all probability measures on Θ.

Conceptually, the specification of prior for P is different from that in a parametric

Bayesian model. In parametric models, usually P is a distribution G0(θ|λ) which

is known except for the parameter λ. The unknown parameter λ is a real-valued

scalar or a finite dimensional vector. One may use additional prior information or

may choose a diffuse prior for λ. Unlike the parametric case, the space M(Θ) is

infinite-dimensional. The distribution function P , viewed as an unknown element of

M(Θ), is assumed to be random. The prior for P is hence a stochastic process on the

infinite-dimensional space M(Θ). We will choose a Dirichlet process DαG0 as the prior

of P . The Dirichlet process prior is reviewed in Chapter 2. In a Dirichlet process, α

is a known positive scalar, G0 is a fixed distribution function in M(Θ). As noted by

its constructive definition given in equation (2.1.1), the random realization P from

the Dirichlet prior is almost surely discrete. In spite of the discreteness property

of the Dirichlet process, its support for the weak-star topology is large enough and

includes any probability measure with support belonging to the support of the center

measure G0. For example, if the support of G0 is Rm+2 ×R+ ×R+, any P satisfying

P (γm > 0, σ > 0) = 1 will be in the weak-star support of DαG0 . The Dirichlet process

prior can be interpreted as follows. We are uncertain about the prior P of θi and
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expect it to be close to G0. The parameter α controls the extent of the closeness be-

tween P and G0. A large α leads to a step function P that is likely to be close to G0.

It is similar to putting a prior G0 directly on θi’s for a given sample size. For a small

α, the discrete P is likely to put most of its mass on just few atoms. Given a sample

size n and a sufficiently small α, the model is very similar to the one that all θi’s are

clustered at a random point from G0. However, the above interpretation indicates

the prior information only. In a Dirichlet mixture model, the data will update the

shape of the prior P properly with sufficiently many samples for any α and a center

measure G0 with large support.

The DPM model could be summarized in the following equations:

P ∼ DαG0

Xi|P, Zi ∼ fP (Xi|Zi) for i ≥ 1
(1.2.5)

where Zi = (1, Xi−m, . . . , Xi−1),

fP (y|z) =

∫

Θ

φσ (y −H(z, τ)) dP (θ), (1.2.6)

and

φσ(x) =
1√

2πσ2
exp

[
− x2

2σ2

]

is the density of the normal distribution N(0, σ2). In the model, P is the unknown

parameter. Given P , {Xi, i ≥ 0} follows a time series model with the conditional

density fP .

The DPM is eqivalent to the two-layer hierarchical Bayesian model:

P ∼ DαG0 ,

θ1, . . . , θn|P i.i.d.∼ P,

Xi|Zi, θi ∼ N(H(Zi, τi), σ
2
i ) for i ≥ 1,

(1.2.7)

where θi = (τi, σi) for i ≥ 1. The hierarchical model could be viewed as a dynamical

time series model in that the parameters of the switching-regression model are varying
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with time and are i.i.d. from P . The case of the static parameters is clearly included

by taking P to be degenerate.

A special case of our model is the DMN model, in which the samples are assumed

to be conditionally independent if G0(β1 = 0) = 1, that is β1 ≡ 0 in the equation

(1.2.4). Another special case of our model is the one which assumes that τ has

a random mixing distribution P from the Dirichlet process prior and σ is a static

parameter with a prior µ. This model is less flexible than the DPM model. We will

study its asymptotic property of the posterior only. Essentially similar ideas, except

for some notational complications, work for the less flexible model.

Let £m denote the class of transition densities f(·|z) of interest. We specify a

prior Π indirectly on the space £m through the specification of a prior on P . The

data series {Xn, n ≥ 1−m}, conditioning on f ∈ £m or equivalently on P , is a time

series model with transition density f given by equation (1.2.6). Assume the first m

points X−m+1, . . . , X0 are fixed or have a known distribution. Then {Π, f} together

define the joint distribution of {Xn, n ≥ 1 −m} and f . Formally, the posterior is a

probability measure uniquely defined by the Bayes theorem as follows:

Π(df |X0, . . . , Xn) =

∏n
i=1 f(Xi|Zi)Π(df)∫

£m

∏n
i=1 f(Xi|Zi)Π(df)

. (1.2.8)

Generally, we are interested in estimating the transition density function f(y|z) and

predicting the future value Xn+1 given the whole history. In a Bayesian framework,

the “decision rule” is the one that minimizes the expected loss calculated under

the posterior. Because of the intractable analytical expression of the posterior, we

have to estimate the quantity of interest numerically through Markov Chain Monte

Carlo (MCMC) methods. As the random element in the Dirichlet mixture model

is a random probability distribution P , it is difficult to use Monte Carlo method to

simulate the random P exactly from the posterior. However, we could integrate out

the random P and work with θ1, . . . , θn directly. Chapter 3 describes an appropriate
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MCMC algorithm.

1.3 Outline

The thesis is organized as follows. Chapter 2 gives a literature review. Chapter 3

presents the MCMC algorithm for simulation from the posterior, and shows how to

compute the quantities in which we are interested. Chapter 4 presents our theoretical

results on the posterior consistency for Markov processes with state space R under

different topologies. Chapter 5 illustrates the DPM model with simulation studies

and real data examples. For reference, Appendix A gives a brief review of the general

state Markov Process and Appendix B gives a brief review of Markov Chain Monte

Carlo simulation techniques.



Chapter 2

Literature Review

This chapter reviews and discusses the literature. The first section reviews the con-

struction of the prior distribution on the space of probability measures and discusses

the popular Dirichlet process mixture models. The second section reviews some the-

oretical results concerning the frequentist performance of Bayesian procedures. The

proofs of posterior consistency of our nonparametric Bayesian modeling of Markov

processes are based on these pioneering works.

2.1 Priors on the Space of Probability Measures

Conceptually, Bayesian nonparametric models are different from the parametric cases.

In nonparametric modeling, the unknown parameter is in some class of functions.

These functions might be the cumulative distribution or density functions, the regres-

sion function in regression models, the conditional cumulative or conditional density

functions in time series models, the cumulative hazard or hazard function in sur-

vival analysis models and so on. The dimension of these function space are infinite.

The Bayesian approach requires an infinite dimensional stochastic specification of the

prior over the function space. However, in the past thirty years, there has been an

11
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enormous literature on the specification of such priors.

Let Θ be a complete separable metric space with B(Θ) being the corresponding

Borel σ-algebra on Θ, and denote by M(Θ) the space of all probability measures on

(Θ, B(Θ)). The simplest Bayesian framework consists of a prior Π on M(Θ), and

θ1, θ2, . . . is a sequence of i.i.d. random variables from P ∼ Π. De Finetti’s represen-

tation theorem (de Finetti, 1937) shows that a minimal judgement of exchangeability

of the observation sequence leads to the above Bayesian formulation. The sequence of

Θ-valued random variables {θi, i ≥ 1} is said to be exchangeable if for each n and for

every permutation g of {1, 2, · · · , n}, the distribution of θ1, · · · , θn is the same as that

of θg(1), . . . , θg(n). Let µ be a probability measure on Θ∞. De Finetti’s theorem shows

that {θi, i ≥ 1} is exchangeable if and only if there is unique probability measure Π

on M(Θ) such that

µ{θ1 ∈ B1, · · · , θn ∈ Bn} =

∫ n∏
i=1

P (Bi)dΠ(P ).

DeFinetti’s theorem could be a guidance for constructing a prior distribution on M(θ).

Among those priors on M(Θ), the Dirichlet process is the most widely used.

The Dirichlet Processes

The Dirichlet process, developed by Ferguson (1973), is the most widely used prior

on M(Θ). Let G0 be a fixed probability measure on (Θ,B(Θ)) and α be a positive

number. A random probability measure P ∈ M(Θ) is said to follow a Dirichlet process

DαG0 if for any finite measurable partition B1, · · · , Bk of Θ, (P (B1), · · · , P (Bk)) has

the Dirichlet distribution D(αG0(B1), · · · , αG0(Bk)) (if G(Bi) = 0, then P (Bi) = 0

with probability 1). The measure G = αG0 is referred to as the base measure of the

Dirichlet process. Since for any B ∈ B(Θ),

E(P (B)) = G0(B) and Var(P (B)) =
G0(B)G0(B

c)

1 + α
,
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G0 is viewed as the center of the process while α can be loosely interpreted as a

precision parameter ∗. The larger α is, the closer we expect a realization from the

process to be G0. On the other hand, if α → 0, the random variable P (B) has the

maximum variance. Thus when DαG0 is interpreted as a prior distribution for P in

Bayesian inference, DαG0 may be viewed as noninformative as α → 0.

A constructive definition of the Dirichlet process is given by Sethuraman (1994).

A realization P from DαG0 is almost surely of the form

P =
∞∑
i=1

piδθi
, (2.1.1)

where θ1, θ2, . . . are a sequence of i.i.d. random variables distributed according to G0,

β1, β2, . . . are a sequence of i.i.d. random variables from Beta(1, α), and p1 = β1, and

for n ≥ 2, pn = βn

∏n−1
i=1 (1 − βi). Note that it follows

∑∞
i=1 pi = 1 a.s.. Clearly the

Dirichlet process places all its mass on the subset of all discrete probability measures

on Θ. This fact was earlier noted by Ferguson (1973) and Blackwell and McQueen

(1973).

In spite of the discreteness property of the Dirichlet process, its support for the

weak star topology is quite large. Let Θ∗ be the support of the center measure G0.

Any probability measure with support belonging to Θ∗ will lie in the weak support of

DαG0 . The Dirichlet process has the congjugacy property. Suppose that θ1, . . . , θn are

i.i.d. from P and P has a Dirichlet process prior DαG0 . Then posterior distribution

of P is again a Dirichlet process:

P |θ1, . . . , θn ∼ Dα∗G∗0 ,

where α∗ = α+n and G∗
0 = (α+n)−1(αG0+

∑n
i=1 δθi

). Thus the predictive distribution

∗Sethuraman and Tiwari (1982) shows that this interpretation may sometimes be misleading
because DαG0 converge weakly to a random degenerated measure δθ∗ where θ∗ ∼ G0 as α → 0. In
fact, as seen in equation (2.1.1), another role of α is to control probability of ties of observations
generated from random P following the Dirichlet process. When α is small, the random realization
P tends to concentrate on few points which are i.i.d. from G0.
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of θn+1|θ1, . . . , θn is G∗
0. This leads to the Polya urn sampling scheme as described by

Blackwell and MacQueen (1973):

θ1 ∼ G0

θi+1|θ1, · · · , θi ∼ G∗
0i =

αG0 +
∑i

j=1 δθj

α + i
for i ≥ 1.

(2.1.2)

Dirichlet Mixture Processes

One disturbing aspect of the Dirichlet process is that it puts all its mass on the subset

of all discrete distributions. In order to constrain the prior support to have distribu-

tion with some smoothness properties, Lo (1984) and Ferguson (1983) developed a

useful construction of priors on densities through Dirichlet Mixture processes in which

the sample X1, . . . , Xn is from the Mixtures of Kernels ψ(·, P ) =
∫

K(·, β, θ)dP (θ),

where K(·, β, θ) is a density function given β and θ, while P ∼ DαG0 . In Lo’s and

Ferguson’s construction, it is assumed that X1, . . . , Xn are conditionally independent

given the parameter (β, P ). Their construction could be naturally extended to the

dependent data structure by taking the kernel K to be the conditional density of a

discrete time series model. Obviously, our DPM model follows this structure.

In a Dirichlet mixture process, it is convenient to view the observations Xi as aris-

ing from K(·, β, θi) for i = 1, . . . , n where θ1, . . . , θn are i.i.d. from P ∼ DαG0 . The

random P could be integrated out, and the joint distribution of θ1, . . . , θn could be ob-

tained from the Polya urn presentation in equation (2.1.2). The posterior distribution

of θi given all other parameters is

θi| (θ1, · · · , θi−1, θi+1, · · · θn, β,X1, · · · , Xn) ∝ q0G
∗
−i(dθi) +

∑

j 6=i

qjδθj
(dθi), (2.1.3)

where

q0 =

∫
K(Xi, β, θ)dG0(θ),

qj = K(Xi, β, θj),
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G∗
−i(dθi) ∝ K(Xi, β, θ)dG0(θ).

In designing the MCMC sampling scheme from the posterior, the θi’s could be directly

drawn with the Gibbs sampler without having to draw the random P . In the case

when the kernel K(·, β, θ) is conjugate with respect to G0, it is easy to compute q0

and sample the θi’s sequentially from the posterior with the Gibbs sampler. Such

MCMC computation schemes were studied by Escobar (1994), Escobar and West

(1995), MacEachern (1994), Bush and MacEachern (1996), and Escobar and West

(1998). In the absence of conjugacy, MacEachern and Muller (1998) developed the

“no gaps” algorithm in which the parameter space is cleverly augmented, and Neal

(1998) developed algorithms based on Metropolis-Hasting sampling scheme. In our

numerical demonstration, we will use Muller and MacEachern’s “no gap” sampling

scheme and appropriately adapt it to our situation.

Mixtures of Dirichlet processes considered by Antoniak (1974) allow the base mea-

sure of the Dirichlet process itself to be random. In the literature, generally the

mixture of Dirichlet processes and Dirichlet mixture are used together to develop

hierarchical Bayesian models. Another popular prior on M(Θ) is the Polya tree

distribution, which generalizes the Dirichlet processes, and can be chosen to assign

probability 1 to the space of continuous, or even absolutely continuous distributions.

Ferguson (1974), Maudlin, Sudderth and Williams (1992), and Lavine (1992, 1994)

and many others give a good introduction on the Polya tree priors. The tailfree

process, considered by Freedman (1963, 1965), is a very general class of priors that

includes the Polya tree distribution and the Dirichlet process. The neutral to the

right (NTR) prior [Doksum (1974), Ferguson and Phadia (1979)] is a special case of

the tailfree process and used widely in survival models. Various NTR priors in liter-

ature include gamma process, extended gamma process, beta process and beta-Stacy

process. These processes are closely connected with the Levy process. Gelfand (1997)
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gave a good review on these topics. Among various priors on M(Θ), the Dirichlet

process is the easiest to specify and handle mathematically.

2.2 Theoretical Results

This section provides a brief review of some large sample frequentist properties of

Bayesian procedures. We focus mainly on posterior consistency, but we touch on a

few other issues as well.

Consider a sequence of experiments indexed by a parameter θ taking values in

the space Θ. The space Θ need not be a subset of Euclidean space, so that the

nonparametric and semiparametric problems are also included. The observation at

the nth stage is denoted by X(n). The law of X(n) is a probability P
(n)
θ controlled by

the parameter θ. In this section, we assume that {Xi, i ≥ 1} are i.i.d. Pθ where the

probability measure Pθ has density pθ with respect to a σ-finite measure µ, unless

explicitly mentioned otherwise. Further we denote the prior on Θ by Π and the

posterior distribution Π(θ|X1, . . . , Xn) by Πn. There may exist different versions of

the posterior. However, when the family {P n
θ , θ ∈ Θ} is dominated, the posterior is

essentially unique and is given by the Bayes theorem.

The posterior Πn is said to be consistent at θ0 if Πn(U) → 1 a.s. under the

law determined by θ0 for every neighborhood U of θ0, that is, the posterior should

concentrate around the true parameter value as more data comes in. Obviously this

definition of posterior consistency depends on the topology on the parameter space

Θ and the version of the posterior. By the Portmanteau theorem, the consistency of

the posterior at θ0 is equivalent to requiring that Πn
weakly−→ δθ0 a.s. the law determined

by θ0, where δθ0 is the degenerate measure at θ0.

Bayesian methods without reasonable consistency properties may cause serious

problems in that the posterior may mislead to a wrong value or wander indefinitely
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around the parameter space. Suppose that an experimenter generates observations

from a known (to the experimenter) distribution. It would be embarrassing if a

Bayesian fails to come close to finding the mechanism used by the experimenter

even with an infinite amount of data. Consistency is important also to subjective

Bayesians, who do not believe in such true models. Consistency is equivalent to

“intersubjective agreement”, which means that two Bayesians, with different priors,

presented with the same data, will ultimately have very close predictive distributions.

Blackwell and Dubins (1962) showed that if two priors are mutually absolutely contin-

uous, the two corresponding predictive distributions of the future (Xn+1, Xn+2, . . .)

given the past will merge† in total variation distance almost surely. Diaconis and

Freedman (1986) studied the mergence of the predictive distributions under weak

convergence topology. For parametric problems, Ghosh, Ghosal and Samamta (1994)

showed that under certain condition the posterior distributions merge in the total

variation distance.

The frequentist property is well understood in finite dimensional (parametric)

Bayesian models. The posterior will be consistent under mild regularity conditions

and the i.i.d. set up. Moreover, the Bernstein-von Mises theorem ‡ asserts that if

the densities form a smooth class, then the Bayes estimate and the maximum like-

lihood estimate will be close and that the posterior distribution of the parameter

vector around the posterior mean is close to the distribution of the maximum likeli-

hood estimate around the truth: Both are asymptotically normal with mean 0 and

the same covariance matrix. For this reason, the Bernstein-von Mises theorem is

sometimes called the “Bayesian Central Limit Theorem”. Borwanker, Kallianpur

†Two sequences of distributions {Pn} and {Qn} are said to merge in some topology if
d(Pn, Qn)→0 a.s. as n →∞, where d is the corresponding metric.

‡the phenomenon of the Berstein-von Mises theorem was first observed by Laplace (1774) and
rediscovered by Bernstein (1917) and von-Mises (1931); Le Cam (1953, 1958) gave the first rigorous
proof under i.i.d. assumption



18

and Prakasa Rao (1971) gave a version of Bernstein-von Mises theorem for general

discrete time stochastic processes. Ghosal, Ghosh and Samanta (1995) gave a version

of the Bernstein-von Mises theorem for general parametric Bayesian models which

requires neither the i.i.d. structure nor the smoothness conditions.

However, in infinite-dimensional nonparametric problems, the situation becomes

much more complex. Freedman (1963) constructed a classical example in which the

posterior is not consistent. The question of interest is to estimate an unknown proba-

bility mass function θ on the set of positive integers in the infinite multinomial prob-

lem. Let θ0 stand for the geometric distribution with parameter 1
4
. Freedman (1963)

constructed a prior which gives positive mass to every weak neighborhood of θ0 but

the posterior concentrates in the weak neighborhoods of a geometric distribution with

parameter 3
4
. Freedman (1963) continued to show that in his counterexample, most

priors are troublesome in a topological sense in that they form the complement of a

first category meagre set. Freedman’s (1963) result shows that in infinite-dimensional

problems, consistency is the exception, not the rule, which led to some criticism of

Bayesian methods. Some more classical counterexamples of posterior inconsistency

are listed as follows. In the symmetric location problem, the data are modeled as

Xi = θ + εi in which εi are i.i.d. from a symmetric distribution F . Diaconis and

Freedman (1986) showed that the Bayes estimates of the location parameter θ in

the symmetric location problem can be inconsistent if the true distribution of εi is

continuous while F has a (symmetrized) Dirichlet process prior. See Doss (1985)

for a variation of this problem where the Dirichlet process is not symmetric and the

median is of interest. Some counterexamples of posterior inconsistency in survival

models were given by Kim and Lee (2001). In spite of Freedman’s (1963) conclusion,

usually plenty of priors can be constructed to match one’s prior belief arbitrarily close

yet achieving consistency. Many recent works have focused on studying the posterior

consistency in nonparametric Bayesian fields.
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An early result on consistency is due to Doob (1948). His assumption is essentially

the minimal. The posterior is consistent at every θ except possibly on a null set of Π

measure 0 for any prior Π in the i.i.d. case. Doob’s theorem holds for general Bayesian

models if the parameter is consistently estimable. Many Bayesians are satisfied with

Doob’s theorem. However the theorem fails to tell at which point the posterior is

consistent. The null set, depending on the prior, may be quite large. For example,

consider {Xi} are i.i.d. from N(θ, 1) and the prior is a point mass at 0. Then the

posterior consistency fails at all points except 0.

Schwartz (1965) established a theory which enables us to study posterior consis-

tency at a particular point θ0 under the i.i.d. assumption. Schwartz’s theory and its

various extensions have been the main tool for establishing the posterior consistency,

especially in nonparametric problems. To state her theory in detail, we recall the

following definition.

Definition 2.2.1. A sequence of tests φn(X1, . . . , Xn) is “uniformly consistent” for

H0 : θ = θ0 against H1 : θ ∈ U c

if both the type I and type II errors converge to 0, that is,

E0(φn) → 0 and sup
θ∈Uc

Eθ(1− φn) → 0;

The sequence of test is “ exponentially consistent” if both the type I and II error are

exponentially small, that is, there exist C > 0, β > 0 such that

E0(φn) ≤ Ce−nβ and sup
θ∈Uc

Eθ(1− φn) ≤ Ce−nβ.

Under the i.i.d. assumption, the existence of a uniformly exponentially consistent

sequence of tests is equivalent to the existence of a uniformly consistent sequence

of tests by Hoeffding’s inequality (refer to Theorem C.0.2). Schwartz (1965) showed

that if



20

(1) the prior puts positive mass in any Kullback-Leibler neighborhood (refer

to Section 3.1) of θ0,

(2) there exists a uniformly exponentially consistent sequence of tests for H0 :

θ = θ0 versus H1 : θ ∈ U c for any neighborhood U of θ0,

then the posterior is consistent at θ0.

The Condition (2) ensures that for some β0 > 0 and any neighborhood of U ,

lim inf
n→∞

enβ0

∫

Uc

n∏
i=1

pθ(Xi)

pθ0(Xi)
Π(dθ) = 0 a.s. P∞

θ0
, (2.2.1)

and the condition (1) implies that for any β > 0,

lim inf
n→∞

enβ

∫

Θ

n∏
i=1

pθ(Xi)

pθ0(Xi)
Π(dθ) = ∞ a.s. P∞

θ0
. (2.2.2)

Hence the ratio Πn(U c) converges to 0 almost surely by taking β = β0.

For parametric Bayesian models, Schwartz’s conditions are of essentially weaker na-

ture than the condition for the consistency of maximum likelihood estimator (MLE).

However, Schwartz (1965) cleverly constructed an example in which Wald’s condition

holds, and hence the MLE is consistent, but the posterior is inconsistent for some

prior which shrinks too fast around the true value of the parameter and thus fails to

put positive mass over a sufficiently small Kullback-Leibler neighborhood. We should

note that Schwartz’s two conditions are sufficient and not necessary, as shown by the

following example from Ghosh and Ramamoorthi (2003). Let {Xi, i ≥ 1} be i.i.d.

from the uniform distribution on (0, θ) and θ ∈ Θ = (0, 1]. Suppose that p0 = U(0, 1)

and Π = U [0, 1]. It is easy to see that the posterior is consistent but it does not

satisfy Schwartz’s condition (2) at p0.

Schwartz-type theorem are of tremendous usefulness for nonparametric Bayesian

models. Let U denote any neighborhood of p0 under the weak star topology; then

there exists an exponentially consistent sequence of tests for p = p0 versus p ∈ U c.
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Thus if the prior puts positive mass to all Kullback-Leibler neighborhood of p0, then

the posterior is consistent at p0 under the topology of weak star convergence by

Schwartz’s theorem. Under condition (1), the strong law of large numbers is a key

result to prove the equation (2.2.2). Schwartz (1965) pointed out that her result could

possibly be extended to the dependent data problem in which the strong law of large

numbers holds, such as the discrete uniformly ergodic Markov process. However,

the notion of a Kullback-Leilber neighborhood may need some modification. Most

importantly, finding an exponentially consistent sequence of tests to satisfy Schwartz’s

condition (2) is usually the most challenging problem.

Weak star neighborhoods are large. It would be better if the posterior could be

shown to concentrate in stronger neighborhoods. However, Le Cam (1973) and Bar-

ron (1989) showed that there does not exist a uniformly exponentially consistent

sequence of tests for p = p0 versus p ∈ U c if p0 is nonatomic and U is a total varia-

tion neighborhood of p0. Barron (1988) extended Schwartz’s theory. Barron’s result

shows that if p0 is in the Kullback-Leibler support of the prior, then for establish-

ing posterior consistency at p0, it is enough to show that there is an exponentially

consistent sequence of tests for p0 versus Vn where U c ∩ V c
n has exponentially small

prior probability, that is, Π(U c ∩ V c
n ) ≤ c2e

−nβ2 for some positive c2 and β2. Barron

(1988) also observed that the condition that the type I errors are exponentially small

could be replaced by Pr0(φn > 0 infinitely often) = 0 if all other conditions hold.

For the estimation of the density function with i.i.d. observations, Barron, Schervish,

and Wasserman (1999) developed sufficient conditions using bracketing metric en-

tropy (refer to Appendix C) for showing posterior consistency under total variation

(or equivalent the Hellinger) metric based on Barron’s (1988) results. However, their

conditions are stronger than needed. Ghosal, Ghosh and Ramamoorthi (1999a) ob-

tained a consistency result that uses L1- metric entropy § without bracketing, which

§the same as the the total variation metric except a factor of 2
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is weaker than the bracketing entropy condition. The result of Ghosal et al. (1999a)

is described below. Suppose that p0 is in the Kullback-Leibler neighborhood of the

prior, and for every ε > 0 there exists a δ < ε, c1, c2 > 0, β < ε2/2 and Fn such that

(a) J(δ,Fn) < nβ where J(δ,Fn) is the logarithm of the minimal number of

balls of radius δ in total variation metric needed to cover the Fn,

(b) Π(Fc
n) < c1e

−nc2 ;

then Hellinger (and total variation) consistency obtains.

The first condition of the theorem ensures that there exists an exponentially consis-

tent sequence of tests if the densities are restricted to the “sieve” Fn. The second

condition ensures that the complement of the sieve in M(Θ) barely receives prior

mass. Similarly to the Schwartz theory, the prior needs to put positive mass around

any Kullback-Leibler neighborhood of p0. The results established by Ghosal et al.

(1999a) and Barron et al. (1999) could be used to show the posterior consistency in

Dirichlet mixture of normal model, Polya trees and infinite dimensional exponential

families in total variation (Hellinger) metric. Applying Schwartz’s theorem, Ghosal

et al. (1999b) showed that the posterior for the location parameter is consistent

in the location problem if an appropriate Polya tree prior or a Dirichlet mixture of

normal is used in place of the Dirichlet process. Amewou-Atisso, Ghosal, Ghosh

and Ramamoorthi (2003) extended their result to semiparametric regression models

Yi = α+βxi +εi where the error term εi are i.i.d from an unknown density p symmet-

ric around 0. They also gave a non-identical version of Schwartz’s theorem. Kim and

Lee (2001) studied sufficient conditions for posterior consistency in survival models.

The consistency of the posterior implies the consistency of the Bayes estimate of the

density in nonparametric Bayesian problem. If the posterior is consistent at p0 in the

weak-star topology (respectively, the total variation metric), then the Bayes estimate

of the density function under squared error loss converges to f0 weakly (respectively,

in the total variation distance).
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Ghosal, Ghosh and van der Vaart (2000) studied the convergence rates of the

posterior distributions and applied the results to several examples including priors

on finite sieves, log-spline models, Dirichlet processes and interval censoring. One of

their fundamental results is as follows.

Suppose that for a sequence {εn} with εn → 0 and nε2
n →∞, a constant C > 0 set

sets Pn ⊂ P where P denotes the parameter space such that

(a) log D(εn,Pn, d) ≤ nε2
n, where d is the metric on P and D(ε, P, d) is the

covering number (refer to Appendix C).

(b) Π(P− Pn) ≤ e−nε2n(C+4),

(c) Π
{

P : −P0(log p
p0

) ≤ ε2
n, P0(log p

p0
)2 ≤ ε2

n

}
≥ e−nε2nC ;

then Π(P : d(P, P0) ≥ Mεn|X1, . . . , Xn) → 0 in probability for a sufficiently large M .

In other words, εn is the convergence rate of the posterior distribution. Condition

(a) ensures that there exist certain highly powerful tests for testing against the com-

plement of a neighborhood shrinking at a certain rate while condition (b) helps to

effectively reduce the size of the parameter space P. Condition (c) requires that the

prior measures put a sufficient amount of mass near the true measure P0. A similar

result under stronger conditions involving bracketing entropy integrals was obtained

by Shen and Wasserman (2001).

In this thesis, we extend Schwartz’s (1965) theorem and Ghosal, Ghosh and Ra-

mamoorthi’s (1999a) theorem to find sufficient conditions for posterior consistency in

our Dirichlet process mixture model of the Markov process. We have not attempted

to obtain convergence rates of the posterior distribution for Markov process. We ex-

pect that this could be done by using some of the ideas of Ghosal and van der Vaart

(2001), who studied the convergence rate of the posterior for the Dirichlet mixture

of normal model with i.i.d. observations. We expect to address this issue in future

research.



Chapter 3

Monte Carlo Simulation from the

Posterior

This chapter describes a Markov Chain Monte Carlo (MCMC) algorithm that could

be used to sample from the posterior distribution. Recall that we are interested in

the predictive distribution of Xn+1 and the predictor of the one-step future value

Xn+1. In a Bayesian framework, the Bayes estimate is the one which minimizes

the posterior expected error loss. Under the squared error loss, the Bayes estimate

is just the posterior mean. In general, analytical expression of the Bayesian esti-

mate, involving the posterior, is complex. However, the posterior for the Dirich-

let mixture model is amenable to MCMC methods. Suppose that we want to esti-

mate
∫

f(β)Π(β|X0, . . . , Xn) where Π(β|X0, . . . , Xn) is the posterior distribution. In

MCMC, an irreducible and aperiodic Markov process is designed such that it has the

stationary distribution Π(β|X0, . . . , Xn) and it is easy to sample from the chain. The

Bayes estimate
∫

f(β)Π(β|X0, . . . , Xn) could be approximated by m−1
∑m

i=1 f(βi) nu-

merically by the strong law of large number (refer theorem A.1.3). Appendix 1 and

2 give an introduction on Markov process and MCMC simulation techniques.

Unlike the parametric Bayesian models, one main difficulty in developing MCMC

algorithms for Dirichlet mixture model is that the model consists of a random mixing

24



25

distribution P that is difficult to sample precisely. However, the Dirichlet mixture

model could be represented by a parametric model equivalently in a finite sample

size problem in which the random P is integrated out. Reference for various MCMC

methods for Dirichlet mixture type model is given in Section 2.1. In our numerical

demonstration, we shall use Muller and MacEachern’s (1998) “no gaps” sampling

scheme. Theoretically the “no gaps” algorithm is proved to converge almost surely

under a very mild sufficient condition.

3.1 More on Dirichlet Process and Some Nota-

tions

The Dirichlet process is reviewed in Section 2.1. Let Θ be a complete separable

metric space with B(Θ) the corresponding Borel σ-algebra on Θ. Let M(Θ) denote

the space of all probability measures on (Θ,B(Θ)). Let G0 be a fixed probability

measure on (Θ, B(Θ)) and α be a positive number. The Dirichlet process is a proba-

bility measure on the space M(Θ). A random probability measure P ∈ M(Θ) is said

to follow a Dirichlet process DαG0 with parameter G0 and α if for any finite mea-

surable partition B1, · · · , Bk of Θ, (P (B1), . . . , P (Bk)) has the Dirichlet distribution

D(αG0(B1), . . . , αG0(Bk))
∗. This section presents some concepts and results related

to the Dirichlet process, which are the key in the development of MCMC algorithm

for the Dirichlet mixture model.

In a model related to the Dirichlet process, the random P is infinite dimensional

and is not easy to work with directly. Suppose that {θi, i ≥ 1} are i.i.d. according to

P ∼ DαG0 . The following theorem, abstracted from Ferguson (1973), shows that we

could integrate out the random component P and work with the random variables

∗if G(Bi) = 0, then P (Bi) = 0 with probability 1
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{θi, i ≥ 1} directly. Result (c) in this theorem gives the conditional distribution of

θn+1 given θ1, . . . , θn, which implies the generalized Polya urn sampling scheme given

in equation (2.1.2).

Theorem 3.1.1 (Ferguson, 1973). Suppose that {θi, i ≥ 1} are i.i.d. from P ∼
DαG0. Let g be a measurable function such that

∫ |g|dG0 < ∞.

(a) The posterior distribution of P given θ1, . . . , θn is a Dirichlet process with base

measure

αG0 +
n∑

i=1

δθi
, (3.1.1)

where δθ denotes the measure giving mass 1 to the point θ.

(b) With probability 1,
∫ |g|dP < ∞, and

E

(∫
gdP

)
=

∫
gdG0.

In particular, if g(θ) = I(B), we have E(P (B)) = G0(B). Hence the marginal

distribution of θi’s is G0.

(c) The predictive distribution of θn+1 given θ1, . . . , θn is

θn+1|θ1, . . . , θn ∼ G∗
0n = (αG0 +

n∑
i=1

δθi
)/(α + n). (3.1.2)

The joint distribution of θ1, . . . , θn is

∏n
i=1(αG0 +

∑i
j=1 δθj

)

α[n]

where α[k] = α(α + 1) . . . (α + k − 1).

(d) The Bayes estimate g(θ) given θ1, · · · , θn under the squared error loss is given by

E

(∫
gdP

∣∣∣∣ θ1, · · · , θn

)
=

∫
gdG∗

0n =
α

∫
gdG0 +

∑n
i=1 g(θi)

α + n
.

The constructive definition of the Dirichlet process given in equation (2.1.1) implies

that the random realization P from the Dirichlet process is almost surely discrete. So
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there may be ties among {θi, i ≥ 1}. If G0 contains a discrete component, some θi’s

may be equal not because of the inherent discreteness property of Dirichlet process,

but also because the draws from G0 happen to be equal. We shall assume that the

base measure G is “nonatomic”, that is, for any θ ∈ Θ, G ({θ}) = 0. Then the

ties among θi’s are caused only by the inherent discreteness property of the Dirichlet

process. This fact could also be seen from the posterior distribution of θn+1 given

θ1, . . . , θn given in equation (3.1.2).

Let φ = (φ1, . . . , φk) denote the set of distinct θi’s, where k is the number of

distinct elements of θ1, . . . , θn. Let s = (s1, . . . , sn) denote the vector of configuration

indicators defined by si = j if and only if θi = φj, i = 1, . . . , n. We will use the

term “cluster” with notation g = (I1, . . . , Ik) to refer to the set of all observations

Xi’s with identical configuration indicators si. The jth cluster is Ij = {i : si = j}.
Obviously {I1, . . . , Ik} are a disjointed partition of I = {1, . . . , n}. We assume that

no order is put on the clusters I1, . . . , Ik. Given the configuration vector s and φ,

θ and g is uniquely determined. But if we allow arbitrary permutations of the φ

indexed by j = 1, . . . , k, any given θ corresponds to k! pairs (φ, s). In this situation,

we will assign equal probabilities to each of the k! permutations. For example, when

n = 3 and θ1 = θ3 6= θ2, there are two distinct observations θ1, θ2. If φ = (θ1, θ2),

then s = (1, 2, 1). Otherwise φ = (θ2, θ1), then s = (2, 1, 2). The k distinct values

φ1, . . . , φk could also be assumed to be naturally picked from the vector θ in the

following way:

φ1 = θ1,

when j ≥ 2, φj = θi, where i = min{m : θm 6= φ1, . . . , θm 6= φj−1}.
(3.1.3)

Then (s, φ) would be uniquely defined given θ. For example, when n = 3, θ1 = θ3 6= θ2,

s = (1, 2, 1) and φ = (θ1, θ2) while s = (2, 1, 2), φ = (θ2, θ1) does not exist. As no

order is put on g, it is uniquely defined. For this example, g = ({1, 3}, {2}). In either
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situation, given k, the distinct random values in the vector φ will be i.i.d. with the

distribution G0. However, the conditional distribution of s given the particular φ will

be different in the two notations as given in the following theorem.

Theorem 3.1.2 (Antoniak (1974) and Korwar and Hollander (1973)). Sup-

pose that θ1, . . . , θn are i.i.d. from P ∼ DαG0 where G0 is nonatomic. Let the k

distinct values among θ1, . . . , θn be denoted by φ = (φ1, . . . , φk), the vector of con-

figuration indictors denoted by s. Let g = (I1, . . . , Ik) denote the clusters with sizes

n1, . . . , nk. Then the following assertions hold.

(i) The distribution of k is given by

Pr(k) =
αkc(n, k)

α[n]
,

where c(n, k) =
∑

g[
∏k

j=1(nj − 1)!], the sum is over all possible g. Furthermore,

E(k) =
n∑

i=1

α

α + i− 1
∼= α log

(
n + α

α

)
.

(ii) The distribution of g is given by

Pr(g = (I1, . . . , Ik)) = Pr(g, k) =
αk

∏k
j=1(nj − 1)!

α[n]
, (3.1.4)

which depends only on the number and sizes of clusters.

(iii) Suppose that φ1, . . . , φk are taken naturally from the vector θ as in equation

(3.1.3). The distribution of s is given by

Pr(s = (s1, . . . , sn)) = Pr(g) =
αk

∏k
j=1(nj − 1)!

α[n]
.

If we allow arbitrary permutations of φ indexed by j = 1, . . . , k, and assign equal

probabilities to each of the k! permutations, then the distribution of s is given by

Pr(s = (s1, . . . , sn)) =
αk

∏k
j=1(nj − 1)!

α[n]k!
. (3.1.5)

(iv) Given k, φ1, . . . , φk are independent from the law G0.
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We will illustrate the use of Theorem 3.1.2 when the sample size n = 3. The joint

distribution of θ1, . . . , θn given by Theorem 3.4.1 is quite complicated. Theorem 3.1.2

also tells us how to simplify this joint distribution function when G0 is nonatomic.

Example 3.1.1. If θ1 = θ3 6= θ2, then g = ({1, 3}, {2}). By equation (3.1.4),

Pr(g) = Pr(θ1 = θ3 6= θ2) =
α2

α(α + 1)(α + 2)
.

If φ = (θ1, θ2), s = (1, 2, 1), and if φ = (θ2, θ1), s = (2, 1, 2). If we assign equal

probabilities to the two configuration of s, then by equation (3.1.5),

Pr(s = (2, 1, 2)) = Pr(s = (1, 2, 1)) =
Pr(θ1 = θ3 6= θ2)

2
=

α2

2α(α + 1)(α + 2)
.

If the order in φ is defined as in equation (3.1.3), φ = (θ1, θ2) and s = (1, 2, 1),

Pr(s = (1, 2, 1)) =
α2

α(α + 1)(α + 2)
,

and the configuration s = (2, 1, 2) does not exist.

When n = 3, more results are given in following equations. By equation (3.1.4),

Pr(θ1 = θ3 6= θ2) = Pr(θ1 = θ2 6= θ3) = Pr(θ2 = θ3 6= θ1) =
α2

α(α + 1)(α + 2)
,

Pr(θ1 6= θ2 6= θ3) =
α3

α(α + 1)(α + 2)
,

Pr(θ1 = θ2 = θ3) =
2α

α(α + 1)(α + 2)
.

When θ1 = θ3 6= θ2, by (iii) of Theorem 3.1.2, θ1 and θ2 are i.i.d. from G0. Then we

have

Pr(θ1 ∈ A, θ2 ∈ B, θ3 ∈ C, θ1 = θ3 6= θ2)

=Pr(θ1 ∈ A, θ2 ∈ B, θ3 ∈ C|θ1 = θ3 6= θ2)Pr(θ1 = θ3 6= θ2)

=G0(A ∩ C)G0(C)
2α

α(α + 1)(α + 2)
.



30

Similarly, we could get

Pr(θ1 ∈ A, θ2 ∈ B, θ3 ∈ C, θ1 6= θ2 6= θ3) =
α3G0(A)G0(B)G0(C)

α(α + 1)(α + 2)
.

Pr(θ1 ∈ A, θ2 ∈ B, θ3 ∈ C, θ1 = θ2 = θ3) =
2αG0(A ∩B ∩ C)

α(α + 1)(α + 2)
.

Summing over all possible g, we could get the joint distribution of (θ1, θ2, θ3) as

Pr(θ1 ∈ A, θ2 ∈ B, θ3 ∈ C)

=Pr(θ1 ∈ A, θ2 ∈ B, θ3 ∈ C, θ1 = θ2 = θ3) + Pr(θ1 ∈ A, θ2 ∈ B, θ3 ∈ C, θ1 6= θ2 6= θ3)

+ Pr(θ1 ∈ A, θ2 ∈ B, θ3 ∈ C, θ1 = θ2 6= θ3) + Pr(θ1 ∈ A, θ2 ∈ B, θ3 ∈ C, θ3 = θ2 6= θ1)

+ Pr(θ1 ∈ A, θ2 ∈ B, θ3 ∈ C, θ1 = θ3 6= θ2)

= [α(α + 1)(α + 2)]−1 {
α3G0(A)G0(B)G0(C) + 2αG0(A ∩B ∩ C)

+α2 [G0(A ∩B)G0(C) + G0(A ∩ C)G0(B) + G0(B ∩ C)G0(A)]
}

.

We shall see that even when n = 3, the joint distribution of θ1, . . . , θn is quite

complex.

In the “no gaps” algorithm, we shall assume that the index of the distinct elements

are allowed to arbitrarily permute. We add the subscript “−i” to all notations in the

case the observation i is removed. For example, θ−i = {θj : 1 ≤ j ≤ n, j 6= i},
k−i refers to the number of clusters formed by θ−i, φ−i denote the set of distinct

observations among θ−i,and n−i,j represents the number of elements in cluster j when

the i-th observation is removed. Furthermore, we will add the superscript “(l)” to all

notations to denote the posterior sample at the ith step of the “no gaps” algorithm.

For example, θ(l) = (θ
(l)
1 , . . . , θ

(l)
n ) denote the posterior sample of the θ vector, k(l)

denote the number of distinct values among θ(l), φ(l) = (φ
(l)
1 , . . . , φ

(l)

k(l)) denote the

set of distinct observations among θ(l), and n
(l)
j represents the number of elements in

cluster j at the lth step of the “no gaps” algorithm.



31

3.2 “No Gaps” Algorithm

In the DPM model, the observations are X = {X−m+1, Xm+2, . . . , Xn} and the model

is presented equivalently in the two equations (1.2.5) and (1.2.7). It is more conve-

nient to work with equation (1.2.7) if we want to estimate the interested quantity

numerically through MCMC method. We rewrite the model as follows.

P ∼ DαG0

θ1, . . . , θn|P i.i.d.∼ P

Xi|Zi, τi, σi ∼ N
(
H(Zi, τi), σ

2
i

)
for i ≥ 1

(3.2.1)

where θi = (τi, σi), τi = (β0i, β1i, γi), γi = (γ0i, . . . , γmi), Zi = (1, Xi−m, . . . , Xi−1) and

H(Zi, τi) = β0i + β1i
1

1 + exp(−γT
i Zi)

(3.2.2)

Furthermore we assume that Z1 = (X−m+1, . . . , X0) is fixed or has a known distri-

bution and that the distribution G0 is nonatomic and has density g0 with respect to

Lebesgue measure. We denote the conditional transition density of Xi given Zi and

θi = (τi, σi) by

f(Xi|Zi, θi) = φσi
(Xi −H(Zi, τi)) . (3.2.3)

It is equivalent to viewing that the data are sampled from f(Xi|Zi, θi) while the

time-varying parameter θi has a prior joint distribution given in (c) of Theorem 3.4.1

or suggested by the generalized Polya urn sampling scheme as in equation (2.1.2).

Thus the random probability measure P is integrated out so that we can design the

MCMC algorithm based on its equivalent parametric form when the sample size is

finite. As noted in the last section, a key feature of the Dirichlet process is that

with positive probability, some of the θi’s are identical due to the discreteness of

the random measure P , and that the marginal prior distribution of θi is G0. Since

we assume that G0 is nonatomic, the ties among θi’s is not caused by chance when
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drawing from G0 and the distinct elements among θi’s are i.i.d. from the prior G0.

The joint prior distribution of θi’s is complex. In developing MCMC algorithms, it is

convenient to work with the vector φ of distinct elements and the configuration vector

s. Appendix 2 gave a short review of several popular MCMC sampling schemes.

Theorem 3.2.1. Suppose that the Dirichlet Mixture model is given in equation (3.2.1).

The posterior distribution of θi given θ−i and X is a mixture distribution

θi | (θ−i, X) ∼ q0,i G−i(θi) +
∑

j 6=i

qj,i δθj
(θi),

where the weights satisfy

qj,i ∝ f(Xi|Zi, θj),

q0,i ∝ α

∫
f(Xi|Zi, θ)dG0(θ),

∑

j 6=i

qj,i + q0,i = 1,

and G−i(θi) is the posterior distribution of θi given Xi, Zi based on the prior G0(θi)

and the likelihood f(Xi|Zi, θi), that is,

G−i(θi) ∼ f(Xi|Zi, θi)g0(θi)∫
f(Xi|Zi, θi)dG0(θi)

The posterior distribution of θi given θ−i and X could be simplified as

θi| (θ−i, X) ∼ q0G−i +
∑

φk∈φ−i

n−i,kqk,iδφk
(θi)

where qk,i ∝ f(Xi|Zi, φk).

Proof. By Theorem 3.4.1, the conditional distribution of θi|θ−i is given by

θi|θ−i ∼ α

α + n
G0(θi) +

∑

j 6=i

1

α + n
δθj

(θi).
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An application of the Bayes theorem yields that

dP (θi|θ−i, X) =
f(X|θi, θ−i)dP (θi|θ−i)∫
θi

f(X|θi, θ−i)dP (θi|θ−i)

∝ f(Xi|Zi, θi)dP (θi|θ−i)

∝ αf(Xi|Zi, θi)dG0(θi) +
∑

j 6=i

f(Xi|Zi, θi)δθj
(dθi)

∝ q0,iG−i(θi) +
∑

j 6=i

qj,iδθj
(dθi)

Sampling θi from the posterior distribution of θi given θ−i and X is equivalent

to sampling si first given s−i, φ−i and X, and then sampling θi given si, φ−i. If

si = j ≤ k−i, let the new θi = φj if si = k−i + 1, then let the new value θi be sampled

from G−i. This argument leads to the following result.

Corollary 3.2.1. Under the assumption and notation of Theorem 3.2.1, the distri-

bution of si given s−i and X is

Pr (si = j|s−i, φ−i, X) ∝ n−i,jf(Xi|Zi−1, φj), for j = 1, . . . , k−i,

Pr (si = k−i + 1|s−i, φ−i, X) ∝ α

∫
f(Xi|Zi−1, θ)dG0(θ).

(3.2.4)

Theorem 3.2.2. Suppose that the Dirichlet Mixture model is given by equation

(3.2.1). Let the distinct elements among θ = (θ1, . . . , θn) be denoted by φ = (φ1, . . . , φk).

Let Ij be the corresponding cluster related to φj such that θi = φj for i ∈ Ij and

1 ≤ j ≤ k. Then in the posterior distribution, φ1, . . . , φk are conditionally indepen-

dent given X and s and is given as follows:

Pr (φj|s,X) ∝ g0(φj)
∏
i∈Ij

f(Xi|Zi, φj) for j = 1, . . . , k. (3.2.5)
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Proof. By Theorem 3.1.2, φ1, . . . , φk are i.i.d. according to the law G0 (with density

g0) given k (or s). By Bayes theorem, the conditional distribution of φ given (s,X)

is,

dP (φ|s,X) ∝ dP (φ|s)f(X|φ, s, σ)

∝
[

k∏
j=1

dG0(φj)

][
n∏

i=1

f(Xi|Zi, φsi
)

]

∝
k∏

j=1


g0(φj)

∏
i∈Ij

f(Xi|Zi, φj)




Hence given s and X, φ1, . . . , φk are conditionally independent with the posterior

densities given in equation (3.2.5).

Given the conditional distributions, the above theorems yield a very simple MCMC

scheme for the Dirichlet mixture model.

Repeat the following steps until the MCMC algorithm converges:

For i = 1, . . . , n, draw a new value θi from the posterior (θi|θ−i, X) given

in Theorem 3.2.1 or equivalently si and then θi as the method described

by Corollary 3.2.1.

This MCMC sampling scheme does not work well for our DPM model. Two pos-

sible reasons are cited below. When α is not large enough, the sum
∑

j 6=i qi,j would

be very large relative to q0i. So it is very unlikely to generate a “new” value of θi dif-

ferent from all values in θ−i. Hence the θ vector will get stuck in the algorithm. The

first case could be prevented by “remixing” the distinct values φj, that is, resampling

φj according to Theorem 3.2.2 besides updating the θ vector at each MCMC step.

The MCMC scheme with an additional remixing step has been studied by Bush and

MacEachern (1996), West, Muller and Escobar (1994) and others. The remixing step

is shown to improve the convergence of the MCMC algorithm. Another difficulty is
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that it is not easy to calculate q0i = α
∫

f(Xi|Zi, θ)dG0(θ) if g0(θ) is not conjugate

with respect to f(Xi|Zi, θ). In the absence of conjugacy, Muller and MacEachern

(1998) developed the “no gaps” algorithm in which the parameter space is cleverly

augmented. Neal (2000) developed algorithms based on the Metropolis-Hasting sam-

pling scheme. In our numerical demonstration, we shall use Muller and MacEachern’s

(1998) “no gaps” sampling scheme.

In the “no gaps” algorithm, the φ vector is augmented to

{φ1, . . . , φk︸ ︷︷ ︸,

φF

φk+1, . . . , φn︸ ︷︷ ︸}
φE

Muller and MacEachern refer the φF = (φ1, . . . , φk) as “full” clusters, which are

composed of the k distinct values among θ, and φE = (φk+1, . . . , φn) as “empty”

clusters or “potential” clusters. The augmentation relies upon the constraint that

there be “no gaps” in the values of the si, that is, nj > 0 for j = 1, . . . , k and

nj = 0 for j = k + 1, . . . , n. In the “no gaps”, it is allowed to permute the index

of φF = (φ1, . . . , φk) arbitrarily. There are total k! possible pairs of (φF , s). Equal

probabilities are assigned to each of the k! permutations.

We should note that the conditional distributions of si given (s−i, X, φ) are different

from the one given (s−i, X, φ−i) as in Corollary 3.2.1. The reason is that once a new

candidate φk−i+1 for θi is generated, no permutation is performed; however, in the

“no gaps” algorithm the probability is calculated under the assumption that the new

candidate from φE is permuted with those in φF .

Theorem 3.2.3. (a) In the “no gaps” algorithm, the conditional distribution of si

given s−i and φ = φF ∪ φE
† is

Pr(si = j|s−i, φ) ∝ n−ij for j = 1, . . . , k−i

†The mass is calculated after φF is permuted.
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Pr(si = n−ij + 1|s−i, φ) ∝ α

k−i + 1
.

if all n−ij ≥ 1 for j = 1, . . . , k−i. The conditional distribution is degenerated if

n−ij = 0 for some j under the “no gaps” constraint, that is,

Pr(si = j|s−i, φ) = 1.

(b) The conditional distribution of si given s−i, φ and X is

Pr (si = j|s−i, φ, X) ∝ Pr(si = j|si, φ)f(Xi|Xi−1, φj)

for j = 1, · · · , k−i + 1, where Pr(si = j|s−i, φ) is defined in (a).

Proof. (a) An application of the Bayes theorem yields that

Pr(si = j|s−i, φ) =
Pr(si = j, s−i|φ)∑
j Pr(si = j, s−i|φ)

∝ Pr(si = j, s−i|φ).

By Theorem 3.1.2,

Pr(s = (s1, . . . , sn)|φ) =
αk

∏k
j=1(nj − 1)!

α[n]k!

In the case n−ij ≥ 1 for j = 1, . . . , k−i, when j = 1, . . . , k−i, there are only k−i distinct

values, so

Pr(si = j, s−i|φ) =
αk−i

∏k−i

j=1(n−ij − 1)!

α[n]k−i!
.

When j = k−i + 1, there are k−i + 1 distinct values. The new si form a cluster with

size 1, so

Pr(si = k−i + 1, s−i|φ) =
αk−i+1

∏k−i

j=1(nj − 1)!

α[n](k−i + 1)!
.

Thus

Pr(si = j|s−i, φ) ∝ Pr(si = j, s−i|φ)

∝





n−ij if j ≤ k−i,

α
k−i+1

if j = k−i + 1.
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In the case n−ij = 0 for some j, the “no gaps” constraint makes the distribution of

(si|s−i, φ) degenerate.

(b) By the Bayes theorem,

Pr (si = j|s−i, φ,X) ∝ f (X|si = j, s−i, φ) Pr(si = j|s−i, φ)

∝ Pr(si = j|s−i, φ)f(Xi|Zi, φj).

“No gaps” Algorithm One (The Version Telling the Idea):

Initialize the s and (φF , φE) and update them according to following mechanism until

the algorithm converges.

i) Repeating (ia) and (ib) for i = 1, . . . , n.

ia) Given φF or θ = (θ1, . . . , θn), randomly permute the index of φF , with

each permutation having probability 1/k!.

ib) Sample (si|s−i, φ, X) according to Theorem 3.2.3.

ii) Sample (φi|s,X) as in theorem (3.2.2) for i = 1, . . . , n since φi’s are con-

ditional independent given s,X. φk+1, . . . , φn could be sampled directly

from G0 since nj = 0 for j = k + 1, . . . , n. From here, we should note

that, in (ib) of each MCMC step, once a new θ value is generated, it is

from the law G0, not Gi defined in Theorem 3.2.1.

Note that in the step (ia), the permutation of the index φF and s does not change

the values in the θ vector. The implementation of this algorithm may be simplified

and speeded by discarding unnecessary draws that do not alter the chain itself. So

in step (i) the permutation (ia) will be performed only when nsi
= 1. In this case,

si = k with probability 1/k and si < k with probability 1−1/k. The former case leads

to a nondegenerate posterior conditional distribution Pr(si|s−i, φ, X), as in Theorem

3.2.3. The latter case leads to a degenerate posterior for si. Also, we note that in
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a typical cycle of the algorithm, most of the φj ∈ φE will not be used. So they are

generated only when needed. Thus the “no gaps” algorithm may be simplified as

follows.

“No gaps” Algorithm (Simplified Version):

Initialize the s and φF and update them according to the following mechanism until

the algorithm converges.

i) Set φE empty. For i = 1, . . . , n, repeating (ia) and (ib)

(ia) If nsi
> 1, then k−i = k. If φE is empty, draw a new value φk+1 from

G0 and add it to φE. Sample si according to non-degenerated posterior

distribution Pr(si|s−i, φ,X) in Theorem 3.2.3. If the new si ≤ k, φF are

unchanged. If the new si = k + 1, move the first element from φE to φF ,

so φF = (φ1, . . . , φk+1).

(ib) If nsi
= 1, k−i = k − 1. With probability 1 − 1/k, leave si un-

changed. Nothing is done. Otherwise relabel clusters such that si = k

and then resample si according to the non-degenerate posterior distribu-

tion Pr(si|s−i, φ, X) in Theorem 3.2.3. So if the new si happened to be

equal k−i+1 = k, then the preceding relabeling kept the previous values of

θi as φk and nothing is changed except possible relabing of φF and hence

s. If the new si ≤ k−i, the last element after relabeling in φF is moved to

φE.

ii) Only draw φi|(s,X) as in Theorem 3.2.2 for i = 1, . . . , k.

In the implementation of the MCMC sampling scheme, it is critical for the al-

gorithm to converge to the posterior distribution. Otherwise the strong law of large

numbers do not hold for the Markov process designed in the MCMC algorithm, which

leads to a wrong Bayes estimate based on the sample from the MCMC. Muller and

MacEachern (1997, 1998) showed that their “no gaps” algorithm converges to the
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posterior distribution under some mild sufficient conditions.

In the “no gaps” algorithm, the state space of the designed Markov process is

s = (s1, . . . , sn) and φ = (φF , φE). Given n, the number of all possible configuration

vectors s is finite. The prior distribution of s is given in Theorem 3.1.2. The distinct

elements φi (i = 1, . . . , n) are i.i.d. from the prior G0 with density g0. Given s and φ,

the joint distribution of X is
∏n

i=1 f(Xi|Zi, φsi
). Thus the posterior distribution of s

and φ is

π(s, φ|X) ∝ Pr(s)

[
n∏

i=1

g0(φi)

][
n∏

i=1

f(Xi|Zi, φsi
)

]
. (3.2.6)

The “no gaps” is designed specially in the case when G0(θi) is not conjugated with

the kernel f(Xi|Zi, θi). Let the support of G0 be denoted by Θ which is a subset of the

Euclidean space Rm+2 × R+ × R+. Suppose that G0 has density g0 which is positive

for θ ∈ Θ. In the “no gaps”, we need to update the φi sequentially according to

their posterior, given in Theorem 3.2.2. Typically, we need to turn to the Metropolis-

Hasting sampler (the Gibbs sampler is a special case) as introduced in Appendix 2.

Suppose further that each φi vector could be decomposed to ηi,1, . . . , ηi,l components

(ηij may be a vector or scalar) and we update each ηi,j for j = 1, . . . , l and i = 1, . . . , k

sequentially in a fixed order with the Metropolis-Hasting sampler. For each ηi,j, its

posterior distribution given X and s and other ηi,j’s is

f(ηi,j|X, s, ηi,1, . . . , ηi,j−1, ηi,j+1, . . . , ηi,l) ∝ f(φi|X, s),

where f(φi|X, s) is given in Theorem 3.2.2 and is positive everywhere for φi ∈ Θ.

When updating ηi,j, we sample a candidate η̃i,j from a proposed distribution

qij(ηi,j, η̃i,j) = q(η̃i,j|s, ηi,1, . . . , ηi,j−1, ηi,j, ηi,j+1, ηi,l) (3.2.7)

such that qij is positive everywhere. Then with probability

αij(ηi,j, η̃i,j) = min

{
1,

f(η̃i,j|X, s, ηi,1, . . . , ηi,j−1, ηi,j+1, . . . , ηi,l)qij(ηi,j, η̃i,j)

f(ηi,j|X, s, ηi,1, . . . , ηi,j−1, ηi,j+1, . . . , ηi,l)qij(η̃i,j, ηi,j)

}
.

(3.2.8)
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we update ηi,j as η̃i,j and otherwise we leave ηi,j unchanged. The special case of the

Metropolis-Hasting sampler is the Gibbs sampler in which the proposed distribution

qij = f(ηi,j|X, s, ηi,1, . . . , ηi,j−1, ηi,j+1, . . . , ηi,l) and with acceptance probability αij = 1

the ηi,j is replaced by η̃i,j. In application, the assumption given in this paragraph is

very mild. However, these assumptions do ensure that the “no gaps” converges almost

surely to the target (posterior) distribution.

Theorem 3.2.4. Suppose that the center measure G0 has a density g0 which is pos-

itive everywhere in its support Θ. Assume that the φi vector could be decomposed

into ηi,1, . . . , ηi,l components which are updated sequentially in a fixed order by the

Metropolis-Hasting sampler (Gibbs sampler is a special case) with proposed distribu-

tions qij given in equation (3.2.7) which are everywhere positive. Further assume that

si is sampled directly from the conditional distribution as in Theorem 3.2.3.

(a) Then the Markov kernel Q defined after a cycle of updating all parameters ω =

(s, φ) of the algorithm is irreducible, aperiodic and positive with unique invariant dis-

tribution π as in equation (3.2.6).

(b) For π-almost all initial starting point ω(0) =
(
s(0), φ(0)

)
,

‖Qn
(
ω(0), ·)− π‖ → 0,

where Qn is the n-step transition kernel of Q. That is, the algorithm converges to the

posterior distribution almost surely in total variation distance.

(c) For π-almost all initial starting point, and any π-integrable function f ,

1

n

n∑

l=1

f
(
ω(l)

) →
∫

fdπ a.s.π,

where ω(l) =
(
s(l), φ(l)

)
is the state of chain at end of l-th cycle.

Proof. The theorem follows from Theorem A.1.3 if all three conditions of Theorem

A.1.3 could be verified. Since the “no gaps” algorithm consists of Gibbs and Metropo-

lis steps, and each step defines an aperiodic and irreducible sub-Markov kernel, the
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three conditions will be satisfied according to Tierney (1994). The details are given

as follows.

(i) To verify that π is one of the invariant distribution of the cycle kernel Q defined

by the “no gaps” algorithm. This condition is automatically true since each step of

(ia) (ib) and (ii) of the “no gaps” is typically a Gibbs sampler or Metropolis-Hasting

sampler. Appendix 2 gives the brief argument.

(ii) To verify that Q is π-irreducible. We shall show for any A such that π(A) > 0,

Q(ω(0), A) > 0 for each initial ω(0) =
(
s(0), φ(0)

)
. Thus Q will be π-irreducible. Any A

may be partitioned as A = ∪sAs, where the elements of the partition are indexed by

the configuration vector. Also, the invariant distribution has a unique representation

as π =
∑

s πs, where

πs(dφ1, . . . , dφn) ∝ p(s)

[
n∏

i=1

g0(φi)

][
n∏

i=1

f(Xi|Zi−1, φsi
)

]
[dφ1 . . . dφn] .

so that π(A) =
∑

s πs(As) and there exists some As∗ for which πs∗(As∗) > 0.

Note that n is fixed. Given n, there are only a finite number of the possible con-

figuration vectors s which receive positive prior probability. The first stage (i) of

the “no gaps” algorithm involves the generation of a new configuration s through

a sequence of smaller generations. Given any φ and X, f(Xi|Zi, φj) will always be

positive. So after n steps of repeating (ia) and (ib), there is a positive probability of

a transition to each vector s which receives positive prior probability. So given any

initial ω(0) =
(
s(0), φ(0)

)
, there is a positive probability for the chain to move to s∗.

At the second stage (ii) of the “no gaps” algorithm, we focus on the generation of new

φi (i = 1, . . . , k) by Metropolis-Hastings sampler (Gibbs sampler is a special case).

Given the old φi and the new s∗, the updating is implemented sequentially in a fixed

order as ηi,j for j = 1, . . . , l and i = 1, . . . , k. When we update a parameter, say ηij,

we sample a candidate η̃ij from the proposal transition kernel with density qij which

may depend on other ηij’s and accept it with probability α(ηij, η̃ij) as in equation
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(3.2.8). The component transition kernel is

Pij(ηij, dη̃ij|X,S∗, ηi,1, . . . , ηi,j−1, ηi,j+1, . . . , ηi,l)

=qij(ηij, dη̃ij)αij(ηij, η̃ij)dη̃ij +

[
1−

∫
qij(ηij, dη̃ij)αij(ηij, η̃ij)dη̃ij

]
δηij

(dη̃ij)

≥qij(ηij, dη̃ij)αij(ηij, η̃ij)dη̃ij

the same way as that in equation (B.3). Thus given (s∗, X), the overall transition

after the updating of ηi,j for j = 1, . . . , l and i = 1, . . . , k in step (ii) of the no gaps

satisfies

P (φ, dφ̃|X, s∗)

=
k∏

i=1

l∏
j=1

[Pij(ηi1, dη̃ij|X, s∗, dη̃i,1, . . . , dη̃i,j−1, ηi,j+1, . . . , ηi,l)]

≥
k∏

i=1

l∏
j=1

[qij(ηij, dη̃ij)αij(ηij, η̃ij)dη̃ij] .

So its absolutely continuous part has density everywhere positive as suggested in

above equation and is hence dominated by the invariant measure πs∗ since πs∗ is

absolutely continuous. So πs∗(As∗) > 0 implies that Pr(φ ∈ As∗|X, s∗) > 0. Hence

Q(ω(0), A) ≥ Q(ω(0), As∗) = Pr(s∗|φ(0), s(0))Pr(φ ∈ As∗ |s∗) > 0.

(iii) To verify that the chain is aperiodic.

Suppose that the chain is not aperiodic. Then by definition, the overall parameter

space could be divided into a sequence {E0, E1, · · · , Ed−1} (d ≥ 2) of d nonempty

disjointed sets such that for all ω = (φ, s) ∈ Ei,

Q(ω,Ej) = 1 for j ≡ i + 1 (mod d).

Hence for any i and any ω = (φ, s) ∈ Ei, Q(ω,Ei) = 0. We note as in the verification

of the irreducibility condition in step (ii), that if π(A) > 0, then for any ω = (φ, s),
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Q(ω, A) > 0. So the equation Q(ω, Ei) = 0 leads to π(Ei) = 0 for any i. We conclude

that π(∪d−1
i=0 Ei) = 0. This contradicts the fact that π is an invariant probability

measure. So the chain is aperiodic.

3.3 “No Gaps” Algorithm with a Specified Prior

In the last section, we have discussed the “no gaps” algorithm and its convergence

property. To complete our model, we need to specify the prior, that is, the parameter

α and G0 of the Dirichlet process. When we implement the Dirichlet mixture model,

we specify a center measure G0 in which all the parameters θ = (β0, β1, γ0, . . . , γm+1, σ)

are independent with distribution as follows.

β0 ∼ N(u0, Vβ),

β1 ∼ N(0, Vβ),

γj ∼ N(0, Vγ1) for j = 1, . . . , m,

log(γm+1) ∼ N(0, Vγ2),

1

σ2
∼ G(a, b).

(3.3.1)

where N(a, b) is the normal distribution with mean a and variance b and G(a, b) is

the gamma distribution with shape parameter a and inverse scale parameter b. When

implementing the “no gaps” algorithm, one needs to specify the constants α, u0, Vβ,

Vγ1 , Vγ2 , a and b.

Lemma 3.3.1. Given h, β and X, the random vector Y has multivariate normal

distribution N(Xβ, h−1I). If the prior distribution of β is N(u, V ), then the posterior

distribution of β given X, Y and h is the multivariate normal with mean vector

bh = Bh(hXT Y + V −1u) and variance matrix Bh where Bh = (V −1 + hXT X)−1.



44

Proof.

f(β|h,X, Y ) ∝ f(β)f(Y |β,X, h)

∝ exp

[
−(β − u)T V −1(β − u)− h(y −Xβ)T (y −Xβ)

2

]

∝ exp

[
−(β − bh)

T B−1
h (β − bh)

2

]

So the conditional posterior distribution of β is N(bh, Bh).

The Complete “No Gaps” Algorithm:

Initialize the number of distinct elements k and the configuration vector s = (s1, . . . , sn)

and φF . Repeating the following step until the algorithm converges.

i) Set φ = φF ∪ φE. φE comes after φF . Empty φE first. Elements will be

added to φE only when needed. For i = 1, . . . , n, repeat (ia) and (ib).

(ia) If nsi
> 1, k−i = k. If φE is empty, draw a new value from G0 and add

it to the first position of φE. Obviously φk+1 is the first value in φE at this

time. Resample si according to the following multinomial distribution.

si =





j for j = 1, . . . , k−i with probability n−ijf(Xi|Zi, θi),

k−i + 1 with probability α
α+k−i+1

f(Xi|Zi, θi).

(3.3.2)

If the new si ≤ k, φF and k are kept unchanged. But one new element

may be added to φE depending on whether it was previously empty or not.

If the new si = k + 1, move the first element from φE to φF and change

k to k + 1 and the configuration vector correspondingly. The vector φE

loses one element if it was not empty previously and remains empty if it

was empty previously.

(ib) If nsi
= 1, k−i = k− 1. With probability 1− 1/k leave si unchanged.
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Nothing is done. Otherwise relabel the indices of φF and change the config-

uration vector s accordingly such that si = k and φk = θi, and then resam-

ple si according to the multinomial distribution given in equation (3.3.2).

If the new si happens to be equal k−i +1 = k, then the preceding relabel-

ing keeps the previous values of θi as φk. The values in φF = (φ1, . . . , φk)

are never changed in this step except for the possible relabeling of the

indices. If the new si ≤ k−i, φF becomes φF = (φ1, . . . , φk−1), and add φk

to the first position in the set φE since it may be used in step (ia) later.

ii) Updating φj (j = 1, . . . , k) sequentially according to the following scheme:

Let Ij, j = 1, . . . , k, denote the clusters in which i ∈ Ij if and only if

θi = πj.

(iia) Updating σj:

Note that the prior for σ2
j is the inverse gamma distribution. The posterior

of hj = 1/σ2
j is

f(hj|X, s, βj, γj) ∝g0(hj)
∏
i∈Ij

f(Xi|Zi, βj, γj)

∝ha−1
j e−bhj

∏
i∈Ij

[
h

1
2
j e−

hj(Xi−H(Zi,βj,γj))2

2

]

∝h
a+nj−1
j e−hj [b+SSEj/2]

(3.3.3)

where nj is the size of the jth cluster, and SSEj =
∑

i∈Ij
(Xi−H(Zi, βj, γj))

2

is the sum of squares of the error of the jth cluster. So the posterior of

hj = 1/σ2
j is a gamma distribution G(a + nj, b + SSEj/2). It is straight-

forward to update σj with a Gibbs sampler.

(iib) updating βj = (βj0, βj1)
T :

Since the prior for βj is a bivariate normal distribution with mean vector

uβ = (u0, 0)T and covariate matrix VβI2 where Ij is the j × j identity

matrix, and (Xm,m ∈ Ij) are conditional normal given (γj, σj, Zm), by
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Lemma 3.3.1, the posterior of βj is a bivariate normal distribution with

covariance matrix

Bj =

(
1

Vβ

I2 +
1

σ2
j

ST
j Sj

)−1

,

and mean vector Uj = Bj(
1
σ2

j
ST

j Yj + 1
Vβ

uβ), where

ST
j =


 1 · · · 1

[
1 + exp(−γT

j Zj1)
]−1 · · ·

[
1 + exp(−γT

j Zjnj
)
]−1


 ,

and j1, j2, . . . , jnj
are the nj elements in Ij. The βj is updated with a

Gibbs sampler.

(iic) Updating γj = (γj0, . . . , γj,m−1, γjm)T :

Updating γj is equivalent to update γ∗j = [γj0, . . . , γj,m−1, γ
∗
jm]T where

γ∗jm = log (γjm). Recall that the prior for γ∗j is a multivariate normal distri-

bution with mean vector 0 and covariance matrix Vγ = diag(Vγ1 , . . . , Vγ1 , Vγ2).

The posterior distribution of γ∗j given βj, σj and Xm’s is

f(γ∗j |βj, σj, X) ∝ g0(γ
∗
j )

∏
i∈Ij

f(Xi|Zi, βj, σj, γ
∗
j ), (3.3.4)

where g0(γ
∗
j ) is the density of the multivariate normal distribution N(0, Vγ).

The complex conditional distribution function does not allow efficient

random variate generation to implement a Gibbs sampling step. In-

stead we realize a random walk chain step. Generate a candidate γ̃∗j =

(γ̃j0, . . . , γ̃jm−1, γ̃
∗
jm) from q(γ∗j , γ̃

∗
j ), the multivariate normal distribution

with mean vector γ∗j and covariance matrix V ∗
γ = cVγ = diag(cVγ1 , · · · , cVγ1 , cVγ2).

The acceptance probability is

α(γ∗j , γ̃
∗
j ) = min

{
1,

f(γ̃∗j |βj, σj, X)q(γ̃∗j , γ
∗
j )

f(γ∗j |βj, σj, X)q(γ∗j , γ̃
∗
j )

}

= min

{
1,

f(γ̃∗j |βj, σj, X)

f(γ∗j |βj, σj, X)

}
.
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where f(γ∗j |βj, σj, X) is defined in equation (3.3.4). With probability

α(γ∗j , γ̃
∗
j ) replace γ∗j by γ̃∗j ; otherwise keep γ∗j . In practice, the value of

c is determined automatically by the program such that the average ac-

ceptance probability is between 0.20 and 0.65. The choice of c makes a

compromise between the jump distance in the parameter space and the

acceptance frequency; both of them ensure the efficiency of the MCMC

algorithm.

3.4 Bayes Estimate

Theorem 3.4.1. Suppose that the Dirichlet Mixture model is given by

equation (3.2.1) and g(θ) = g(τ, σ) is a measurable function.

The Bayes estimate of
∫

g(θ) dP (θ) given X = {X−m+1, . . . , Xn} under

squared error loss is

E

(∫
g(θ) dP (θ)

∣∣∣∣ X

)
=

α
∫

g(θ) dG0(θ) + E

[∑n
i=1 g(θi)

∣∣∣∣ X

]

α + n
.

Proof. Since the joint distribution of X, given (θ1, . . . , θn) and P , is free of

P , the distribution of P , given (θ1, . . . , θn) and X depends on (θ1, . . . , θn)

only. By (a) of Theorem 3.4.1, given (θ1, . . . , θn) the distribution of P

is Dirichlet process DG0n where G0n = αG0 +
∑n

i=1 δθi
. A further use of

Theorem 3.4.1 leads to

E

(∫
g(θ) dP (θ)

∣∣∣∣ θ1, . . . , θn, X

)
=E

(∫
g(θ) dP (θ)

∣∣∣∣ θ1, . . . , θn

)

=
α

∫
gdG0 +

∑n
i=1 g(θi)

α + n
.
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Therefore

E

(∫
g(θ) dP (θ)

∣∣∣∣ X

)
= E

[
E

(∫
g(θ) dP (θ)

∣∣∣∣ θ1, . . . , θn, X

) ∣∣∣∣ X

]

=

α
∫

g(θ) dG0(θ) + E

[∑n
i=1 g(θi)

∣∣∣∣ X

]

α + n
.

Corollary 3.4.1. Suppose that the Dirichlet Mixture model is given by

equation (3.2.1) and the conditions of Theorem 3.2.4 hold. If E
(∫

g(θ)dP (θ)|X)
,

the Bayes estimate of
∫

g(θ)dP (θ), exists, then for almost all starting val-

ues, given any fixed sample X,

α
∫

g(θ)dG0(θ)

α + n
+

∑M
i=1

[∑k(i)

j=1 n
(i)
j g(φ

(i)
j )

]

M(α + n)
→ E

(∫
g(θ)dP (θ)|X

)
a.s.

as M →∞.

Proof. As shown in Theorem 3.4.1, the Bayes estiamte of
∫

g(θ)dP (θ) is

E

(∫
g(θ)dP (θ)

∣∣∣∣ X

)
=

α
∫

g(θ)dG0(θ) + E (
∑n

i=1 g(θi)|X)

α + n
.

A use of part (c) of Theorem 3.2.4 leads to the conclusion.

We are interested in the predictive distribution of Xn+1 and prediction of

the future value Xn+1 given all the past. Under squared error loss, the

Bayes estimate is just the posterior mean. Corollary 3.4.1 is one of the key

results for us to estimate the quantity of interest. In Corollary 3.4.1, the

posterior sample at every step is used in the approximation. In practice,

we may use the posterior sample after the “burn-in” period, at which the

algorithm has reached convergence approximately. This will improve the

approximation. Also, we may use the posterior sample every r steps to
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reduce the variance of the Bayes estimate given that the same M is used

in (3.4.2) since the covariance between rth lagged value tends to be quite

small in a Markov process.

The Bayes estimate of the transition kernel is equal to the posterior ex-

pected transition density, that is,

f̂(x|z) = E

(∫
f(x|z, θ)dP (θ)

∣∣∣∣ X1, X2, . . . , Xn

)
(3.4.1)

where f(x|z, θ) is given in equation (3.2.3). By Corollary 3.4.1, the Bayes

estimate of the transition kernel is approximated by

f̂(x|z) =
α

∫
f(x|z, θ)dG0(θ)

α + n
+

∑M
i=1

[∑k(N+ri)

j=1 n
(N+ri)
j f

(
x|z, φ(N+ri)

j

)]

M(α + n)
(3.4.2)

where N is the number of steps in the “burn in” period, and M is a

large integer. Suppose that the prior is given in equation (3.3.1). Given

Z and θ = (β0, β1, γ, σ), X has a normal distribution with mean β0 +

β1/[1+exp(−γT Zn+1)] and variance σ2, and (β0, β1) has a bivariate normal

distribution with mean (u0, 0)T and covariance matrix VβI2. So given

Z, γ, σ, the distribution of X is normal with mean u0 and variance Vg =

σ2 + Vβ(1 + 1/[1 + exp(−γT Zn+1)]
2). The integration in the first part of

equation (3.4.2) can be simplified as

∫
f(x|z, θ)dG0(θ) =

∫
1√

2πVg

exp

[
−(x− u0)

2

2Vg

]
dG0(γ, σ). (3.4.3)

One can simulate N2 pairs of (γi, σi) from the posterior and get the cor-

responding Vgi = σ2
i + Vβ(1 + 1/[1 + exp(−γT

i Zn+1)]
2). By the strong law

of large numbers, the integration could be approximated by

∫
f(x|z, θ)dG0(θ) ∼= N−1

2

N2∑
i=1

(
1√

2πVgi

exp

[
−(x− u0)

2

2Vgi

])
. (3.4.4)
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The density of the predictive distribution of Xn+1 given X0, . . . , Xn is just

f̂(Xn+1|Zn+1). Under the squared error loss, the Bayes predictor of Xn+1,

is just the conditional mean from f̂(Xn+1|Zn+1) as in following equation,

µn+1 =E

(∫

θ

∫

x

xf(x|Zn+1, θ)dxdP (θ)|X1, X2, . . . , Xn

)

=E

[∫

θ

(
β0 +

β1

1 + exp(−γT Zn+1)

)
dP (θ)|X1, X2, . . . , Xn

]
.

(3.4.5)

By Corollary 3.4.1, the Bayes predictor could be approximated by

µ̂n+1
∼=α

∫
g(θ)dG0(θ)

α + n
+

∑M
i=1

[∑k(N+ri)

j=1 n
(N+ri)
j g

(
φ

(N+ri)
j

)]

M(α + n)
, (3.4.6)

where g(θ) = β0 + β1

1+exp(−γT Zn+1)
. Given the prior as in equation (3.3.1),

the Bayes predictor can be simplified as

µ̂n+1
∼= αu0

α + n
+

∑M
i=1

[∑k(N+ri)

j=1 n
(N+ri)
j g

(
φ

(N+ri)
j

)]

M(α + n)
. (3.4.7)

The variance of the Bayes predictor is given by the following equation:

var(µ̂n+1) =E

(∫

θ

∫

x

x2f(x|Zn+1, θ)dxdP (θ)|X1, X2, . . . , Xn

)
− µ2

n+1

=E

[∫

θ

h(θ)dP (θ)|X1, X2, . . . , Xn

]
− µ2

n+1,

(3.4.8)

where

h(θ) =

(
β0 +

β1

1 + exp(−γT Zn+1)

)2

+ σ2.

By Corollary 3.4.1, the variance of Bayes predictor could be approximated

by

v̂ar(µ̂n+1) ∼=α
∫

h(θ)dG0(θ)

α + n
+

∑M
i=1

[∑k(N+ri)

j=1 n
(N+ri)
j h

(
φ

(N+ri)
j

)]

M(α + n)
− µ̂2

n+1

(3.4.9)
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Again, the integration in first term of equation (3.4.10) could be found

by direct integration or by numerical integration as in equation (3.4.4).

Suppose that the prior is given in equation (3.3.1). Then the variance of

the Bayes predictor is approximated by

v̂ar(µ̂n+1) ∼=
α

∫ (
β0 + β1

1+exp(−γT Zn+1)

)2

dG0(θ)

α + n
+

α

α + n

b

a− 1

+

∑M
i=1

[∑k(N+ri)

j=1 n
(N+ri)
j h

(
φ

(N+ri)
j

)]

M(α + n)
− µ̂2

n+1.

(3.4.10)

We note that the variance of the Bayes predictor does not exist when

a ≤ 1.



Chapter 4

Posterior Consistency On Transition

Densities

This chapter establishes sufficient conditions under which the posterior will be consis-

tent in our DPM models when the state space is the real line R. Posterior consistency

is important in validating the Bayes procedure in that the procedure should be able

to find the true mechanism closely, as more and more data come in. In consistent

Bayesian procedures, the data will eventually swamp the prior, that is, different pri-

ors will ultimately lead to very close predictive distributions (refer to Section 2.2 for

more discussion). The definition of posterior consistency depends on the topology

on the relevant space. Section 4.1 defines different topologies on the space of tran-

sition density functions. As pointed out in Section 2.2, Schwartz’s (1965) theorem

and its various extensions have been the main tools for studying posterior consistency

in nonparametric problem with i.i.d. observations. Section 4.3 extends Schwartz’s

theorem to Markov models. Schwartz’s theorem consists of two critical conditions.

One is that the prior puts positive mass in any Kullback-Leibler neighborhood of the

true parameter. The other is the existence of an exponentially consistent sequence of

tests. For a Markov process, Section 4.4 gives a sufficient condition so that a tran-

sition density lies in the Kullback-Leibler support of the prior. Sufficient conditions

52
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for the existence of exponentially consistent tests in weak star topology are given

in Section 4.5 and in sup-L1 metric are given in Section 4.6. Our main results are

concluded in Section 4.2.

4.1 Topologies on the Space of Transition Densi-

ties

Let R be the real line with its Borel σ-algebra B. Let M(R) be the space of all proba-

blity measures on (R,B). Let £(R) be a proper subset of the space of Markov transi-

tion density functions on (R,B). In our approach, we assume that Doeblin’s condition

holds for any Markov model in £(R). Thus any Markov model f(·|x) ∈ £(R) is uni-

formly ergodic with a unique stationary probability density function πf . Let £π(R)

denote the space of all invariant density functions corresponding to f(·|x) ∈ £(R).

There are many natural topologies on the space M(R), as reviewed in Subsection

4.1.1. Subsection 4.1.2 discusses how to extend the topologies on M(R) to the space

£(R).

4.1.1 Topologies on the Space of Probability Measures

We first review topologies on M(R). Among these topologies, the “topology of weak

convergence” ( the “weak-star topology”) is the most frequently used. The weak-star

topology on M(R) is the one for which the basic neighborhoods of P are the sets of

the form {
Q :

∣∣∣∣
∫

ψidQ−
∫

ψidP

∣∣∣∣ ≤ ε, i = 1, . . . , k

}
, (4.1.1)

where ε > 0 and ψ1, . . . , ψk are bounded continuous functions on R. Thus {Pn}
converges weakly to P if and only if {Pn} converges to P in the weak-star topology.
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Following Portmanteau theorem C.0.1, three other bases for the weak convergence

topology could be defined as follows.

(a) the sets {Q : Q(Fi) < P (Fi) + ε, i = 1, . . . , k } with Fi closed.

(b) the sets {Q : Q(Gi) > P (Gi)− ε, i = 1, . . . , k } with Gi open.

(c) the sets {Q : |Q(Ai)− P (Ai)| < ε, i = 1, . . . , k } with P (∂Ai) = 0, where

∂A = A− Ao is the boundary of A.

Theorem 4.1.1 (Billingley (1968), Page 236). The bases (a), (b), (c) and the

basis given in equation (4.1.1) are equivalent and all generate the same weak star

topology. The equivalence means that given any neighborhood O1 in one basis, we

could find the neighborhood O2 in any three other bases satisfying O2 ⊂ O1.

Since R is separable, M(R) is complete and seperable under the topology of weak

convergence (Billingley 1999). The σ-algebra generated by the weak star topology

is just the smallest one that makes all the function {P 7→ P (B) : B ∈ B} measur-

able. The weak star topology has the fewest open sets and weak neighborhoods are

large. The other two frequently used metrics are the “total variation metric” and the

“Hellinger metric”. They are extremely useful if we are interested in the subspace Lµ,

all of probability measures dominated by the σ-finite measure µ. Let P and Q be two

probability measures on the space (R,B). The “total variation distance” between P

and Q is defined as

dTV (P, Q) = ‖P −Q‖ = 2 sup
A∈B(χ)

|P (A)−Q(A)|.

The “Hellinger distance” between P , Q is

H(P,Q) =

√∫
(
√

p−√q)2dµ

where p, q are the densities of P and Q respectively with respect to µ. Associated

with the Hellinger metric, there is a useful quantity A(P, Q) called Affinity defined
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by,

A(P,Q) =

∫ √
p
√

qdµ = 1− H2(P, Q)

2
.

The “Kullback Leibler divergence” between two probability densities p, q (with respect

to µ) is defined as

K(P,Q) = K(p, q) = EP log
p

q
=

∫
p log

p

q
dµ.

Though not a metric, it has played a central role in the classical theory of estimation

and testing and the consistency of Bayesian estimation.

Theorem 4.1.2.

‖P −Q‖ = sup
|f |≤1

∣∣∣∣
∫

f dP −
∫

f dQ

∣∣∣∣ = 2 sup
0≤f≤1

∣∣∣∣
∫

f dP −
∫

f dQ

∣∣∣∣ .

Let p, q be the densities of P, Q respectively with respect to some measure µ. For

convenience, we may denote the total variation distance of P and Q as ‖p−q‖. Then

‖p− q‖ =

∫
|p− q| dµ = 2

∫

p(x)≥q(x)

(p(x)− q(x))dµ(x) = 2

∫

q(x)≥p(x)

(q(x)− p(x))dµ(x)

= sup
|f |≤1

∣∣∣∣
∫

fp dµ−
∫

fq dµ

∣∣∣∣ = 2 sup
0≤f≤1

∣∣∣∣
∫

fp dµ−
∫

fq dµ

∣∣∣∣ .

Theorem 4.1.3. (i) ‖P −Q‖2 ≤ 2H2(P, Q)(1 + A(P, Q)) ≤ 4H2(P, Q).

(ii) H2(P,Q) ≤ ‖P −Q‖.
(iii) A(P, Q) =

∫ √
pqdµ = EP

√
q
p

= EQ

√
p
q
≤

√
1− ‖P−Q‖2

4
.

(iv) K(P, Q) ≥ ‖P−Q‖2
4

.

From Theorem 4.1.3, ‖Pn − Qn‖ → 0 if and only if H(Pn, Qn) → 0. So the total

variation metric is equivalent to the Hellinger metric. If {Pn} converges to P under

either of the two metrics, it means Pn(B) converges to P (B) uniformly for any B ∈ B.

While if {Pn} converges to P weakly, it only means that Pn(B) converges to P (B)

if P (∂B) = 0. Therefore convergence under total variation metric or the Hellinger

metric is much stronger than the weak convergence.
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4.1.2 Topologies on the Space of Transition Densities

There are many topologies on M(R). However, there is no natural one on the space

£(R) due to the dependent structure of Markov processes. The metrics defined on

the space M(R) cannot be used directly on £(R). For each x ∈ R, a basic open set

for the weak star topology of f0(y|x) is given by

{
f :

∫
ψ1(y)f(y|x)dy <

∫
ψ1(y)f0(y|x)dy + ε, . . . ,

∫
ψk(y)f(y|x)dy <

∫
ψk(y)f0(y|x)dy + ε

}
.

where ψ1, . . . , ψk are bounded continuous functions on R. This depends on x which

must be integrated out. It is natural to integrate out x with respect to the cor-

responding invariant distributions, so that we consider weak neighborhoods of the

type

{
f :

∫∫
ψ1(y)f(y|x)dy πf (x)dx <

∫∫
ψ1(y)f0(y|x)dy π0(x)dx + ε,

. . . ,

∫∫
ψk(y)f(y|x)dy πf (x)dx <

∫∫
ψk(y)f0(y|x)dy π0(x)dx + ε

}
.

Since
∫

f(y|x)πf (x)dx = πf (y), the basic open set for the weak topology reduces to

a weak neighborhood of the invariant measure:

{
f :

∫
ψ1(y) π(y)dy <

∫
ψ1(y) π0(y)dy + ε, . . . ,

∫
ψk(y) π(y)dy <

∫
ψk(y) π0(y)dy + ε

}
. (4.1.2)

This is just the weak neighborhood of π0 in the space £π(R).

Definition 4.1.1. The weak neighborhood of a transition density f0 is defined in equa-

tion (4.1.2), that is, just the weak neighborhood of its invariant probability measures

of π0 in the space £π(R).
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The weak-star neighborhood defined above is too large. Another issue with respect

to the weak-star neighborhood is the possible non-identification of the transition

densities in a neighborhood since different transition densities may have the same

invariant probability measures. The sup-L1 metric defined below is a very strong

neighborhood and avoids the non-identity issue.

Definition 4.1.2. The sup-L1 neighborhood of a transition density f0 is defined as

{
f : sup

x
‖f(y|x)− f0(y|x)‖ < ε

}
. (4.1.3)

In the literature, there are some other topologies on the space of transition densi-

ties. One example would be the Birge’s metric (1978). Let ν be a probability measure

on the space of M(R). Birge’s distance between two transition densities is

dν(f0, f) =
1

2

∫∫ (√
f0(y|x)−

√
f(y|x)

)2

dy ν(dx). (4.1.4)

Since Birge’s metric is much weaker than the sup-L1 metric, posterior consistency in

sup-L1 metric implies the consistency in Birge’s metric. In this thesis, we shall not

discuss too much about the Birge’s metric.

Similarly, we could define the Kullback-Leibler divergence for the Markov processes

as follows.

Definition 4.1.3. In £(R), the Kullback-Leibler divergence between two transition

densities f, f0 is

K(f0, f) = Eπ0⊗f0

[
log

f0(y|x)

f(y|x)

]
=

∫
π0(x)f0(y|x) log

f0(y|x)

f(y|x)
dydx. (4.1.5)

The true transition density f0 is said to be in the Kullback-Leibler (K-L) support of

the prior Π, if for any ε > 0, Π(Kε(f0)) > 0, where Kε(f0) stands for

Kε(f0) = {g : K(f0, g) < ε} . (4.1.6)
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Suppose that P µ
f denote the overall law of the Markov process with transition

density f and initial distribution µ of X0. In nonparametric Bayesian procedure,

Π is a prior on the space £(R) and Πn denote the posterior distribution when the

sample size is n.

Definition 4.1.4. The sequence of posterior distributions {Πn, n ≥ 1} is said to be

consistent at f0 under some topology if for every neighborhood U of f0, Πn(U |X1, · · · , Xn) →
1 almost surely the law defined by f0, i.e., P µ

f0
.

Following the Portmanteau theorem C.0.1, the consistency of the posterior at f0 is

equivalent to requiring that the posterior {Πn} converges weakly to δf0 almost surely

in the corresponding topology.

Definition 4.1.5. The sequence of posterior distributions {Πn, n ≥ 1} is said to be

weakly consistent at f0 if for every weak neighborhood U of f0 given in equation (4.1.2),

Πn(U |X1, · · · , Xn) → 1 almost surely P µ
f0

. The sequence of posterior distributions

{Πn, n ≥ 1} is said to be strongly consistent at f0 under sup-L1 metric if for every

neighborhood U of f0 given in equation (4.1.3), Πn(U |X1, · · · , Xn) → 1 almost surely

P µ
f0

.

4.2 Main results

In this chapter, we establish the posterior consistency under weak-star topology for

models one and three, and the posterior consistency under the sup-L1 metric for

models two and four. Models one to four are defined as follows:

Model One:

Xi = θ1i + F (Xi−1, θ2i) + εi, (4.2.1)
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where F could be any continuous function bounded by a value, say a, θ2i may be a

vector, εi’s are i.i.d. from the normal distribution with mean 0 and variance σ2
i , and

θi = (θ1i, θ
T
2i, σi)

T are i.i.d. according to the law P . We assume that P has a Dirichlet

process prior DαG0 , where the center measure G0 satisfies

G0(σ ≥ σ) = 1.

for a fixed positive σ.

Model Two:

Given the parameter P , Xi’s follows a Markov process with transition density

fP (y|x) =

∫
φσ

(
y − v − ϕ

1

1 + exp[−γ(x− u)]

)
dP (v, ϕ, γ, u, σ).

We assume that P has a Dirichlet process prior DαG0 , where G0 are compactly sup-

ported, and

G0(γ ∈ [γ, γ]) = 1,

where γ and γ > 0 have the same signs.

Model Three:

Xi = θ1i + F (Xi−1, θ2i) + εi, (4.2.2)

where F could be any continuous function bounded by a value, say a, θ2i may be a

vector, εi are i.i.d. from the normal distribution with mean 0 and variance σ2, and

θi = (θ1i, θ
T
2i)

T are i.i.d. according to the law P . We assume that P has a Dirichlet

process prior DαG0 , and σ has a prior µ satisfying

µ(σ > σ) = 1, where σ > 0 is fixed.

Model Four:
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Given the parameter P , Xi’s follows a Markov process with transition density

fP (y|x) =

∫
φσ

(
y − v − ϕ

1

1 + exp[−γ(x− u)]

)
dP (v, ϕ, γ, u, σ).

We assume that P has a Dirichlet process prior DαG0 and σ has a prior µ, where both

G0 and µ are compactly supported, and

G0(σ ≥ σ) = 1.

for a fixed positive σ.

Models three and four are less flexible than Model one and two, as mentioned at

the end of Section 1.2, since in Models three and four, σ is a static parameter with

a prior µ. In fact, Model three and four are special cases of Model one and two

respectively. So the posterior consistency of Model three and four hold automatically

if we can show the posterior consistency of Models one and two. All arguments for

establishing posterior consistency are based on the Schwartz-type Theorem in Section

4.3. Details are given in Section 4.4, 4.5 and 4.6.

4.3 General Theories on Posterior Consistency

Schwartz’s (1965) theorem and its various extensions have been the main tools for

studying posterior consistency in nonparametric problem with i.i.d. observations. In

this section, we extend Schwartz’s theorem to Markov models. Schwartz’s theorem

consists of two critical conditions. One is that the true transition lies in the K-L

(Kullback-Leibler) support of the prior, the other is the existence of an exponentially

consistent sequence of tests. Kullback-Leibler support is defined in Section 4.1 while

the definition of exponentially consistent tests is given as follows. Our two fundamen-

tal Schwartz-type results are given in Theorem 4.3.1 and Corollary 4.3.1. The next

three sections establish sufficient conditions so that the two assumptions of Schwartz’s

theorem hold.
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Definition 4.3.1. A sequence of test functions {φ(X0, X1, . . . , Xn) : n ≥ 1} is uni-

formly exponentially consistent for testing H0 : f = f0 vs H1 : f ∈ V c
n , if there exists

C, β, n0 such that for all n > n0, the type I and type II are bounded by Ce−nβ, that

is,

Ef0(φ(X0, X1, . . . , Xn)) ≤ Ce−nβ

sup
f∈V c

n

Ef (1− φ(X0, X1, . . . , Xn)) ≤ Ce−nβ
(4.3.1)

Theorem 4.3.1 (Extension Schwartz’s theorem∗ for ergodic Markov pro-

cesses). Let Π be a prior and Vn and f0 satisfy †

(i) f0 is in the K-L support of Π,

(ii) there exists a sequence of test functions which is uniformly exponentially consis-

tent for testing H0 : f = f0 vs H1 : f ∈ V c
n .

Then Π(Vn|X0, X1, . . . , Xn) → 1 a.s.

Proof. (i) Since f0 is in the K-L support of Π, by Lemma 4.3.1 we have for any β > 0,

lim inf
n→∞

enβ

∫ n∏
i=1

f(Xi|Xi−1)

f0(Xi|Xi−1)
Π(df) = ∞ a.s. P∞

f0
. (4.3.2)

(ii) There exists a sequence of test functions which is uniformly exponentially consis-

tent for testing H0 : f = f0 vs H1 : f ∈ V c
n . By Lemma 4.3.2, for some β0 > 0,

lim inf
n→∞

enβ0

∫

V c
n

n∏
i=1

f(Xi|Xi−1)

f0(Xi|Xi−1)
Π(df) = 0 a.s. P∞

f0
. (4.3.3)

By taking β = β0 in equation (4.3.2), it easily follows that the ratio

Π(V c
n |X0, X1, . . . , Xn) =

∫
V c

n

∏n
i=1 f(Xi|Xi−1)Π(df)∫ ∏n

i=1 f(Xi|Xi−1)Π(df)

=
enβ0

∫
V c

n

∏n
i=1

f(Xi|Xi−1)
f0(Xi|Xi−1)

Π(df)

enβ0
∫ ∏n

i=1
f(Xi|Xi−1)
f0(Xi|Xi−1)

Π(df)
→ 0 a.s. P∞

f0
.

∗Refer to Section 2.2 for original Schwartz’s theorem
†In practice, we may take Vn = V for all n.
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by equation (4.3.2) and (4.3.3). These arguments leads to the proof of our fundamen-

tal consistency theorem.

Corollary 4.3.1. Let Π be a prior and V and f0 satisfy

(i) f0 is in the K-L support of Π,

(ii) For each i = 1, . . . , k, there exists a sequence of test functions which is uniformly

exponentially consistent for testing H0 : f = f0 vs H1 : f ∈ Ui, where V c =
⋃k

i=1 Ui

where k is a finite integer and Ui’s may overlap with each other. .

Then Π(V |X0, X1, . . . , Xn) → 1 a.s. P∞
f0

.

Proof. By Theorem 4.3.1, for any i = 1, . . . , k,

Π(Vi|X0, X1, . . . , Xn) → 0 a.s. P∞
f0

.

We have 0 ≤ Π(V c|X0, X1, . . . , Xn) ≤ ∑k
i=1 Π(Vi|X0, X1, . . . , Xn) → 0 a.s. P∞

f0
.

So Π(V |X0, X1, . . . , Xn) → 1 a.s. P∞
f0

.

Lemma 4.3.1. If f0(y|x) is in the Kullback-Leibler support of Π, then for any β > 0,

lim inf
n→∞

enβ

∫ n∏
i=1

f(Xi|Xi−1)

f0(Xi|Xi−1)
Π(df) = ∞ a.s. P∞

f0
.

Proof. Let ε = β/2 and note that

∫

£µ

n∏
i=1

f(Xi|Xi−1)

f0(Xi|Xi−1)
Π(df) ≥

∫

Kε(f0)

e
−Pn

i=1 log
f0(Xi|Xi−1)

f(Xi|Xi−1) Π(df)

Since f0 defines an Ergodic Markov chain which is Harris positive and aperiodic, by

Theorem A.1.2,

− 1

n

n∑
i=1

log
f0(Xi|Xi−1)

f(Xi|Xi−1)
→ −K(f0, f) > −ε a.s. P∞

f0

for each f ∈ Kε(f0). Equivalently for each f ∈ Kε(f0),

exp

{
n

[
2ε− 1

n

n∑
i=1

log
f0(xi|xi−1)

f(xi|xi−1)

]}
→∞ a.s. P∞

f0
. (4.3.4)
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Hence by Fubini’s theorem there is Ω0 ⊂ Ω of P∞
f0

measure 1 such that, for each

ω ∈ Ω0, for all f ∈ Kε(f0), outside a set of Π measure 0, equation (4.3.4) holds. By

Fatou’s lemma,

lim inf
n→∞

e2nε

∫

Lµ

n∏
i=1

f(Xi|Xi−1)

f0(Xi|Xi−1)
Π(df)

≥ lim inf
n→∞

e2nε

∫

Kε(f0)

e
−Pn

i=1 log
f0(Xi|Xi−1)

f(Xi|Xi−1) Π(df)

≥
∫

Kε(f0)

lim inf
n→∞

e
n
h
2ε− 1

n

Pn
i=1 log

f0(Xi|Xi−1)

f(Xi|Xi−1)

i
Π(df) →∞.

a.s. P∞
f0

.

Proposition 4.3.1. Let v be any probability measure on Un. Suppose that there is a

nonnegative test function φn(X0, X1, · · · , Xn) bounded by 1 such that

Ef0(φn(X0, X1, . . . , Xn)) ≤ Ce−nβ,

sup
f∈Un

Ef (1− φn(X0, X1, . . . , Xn)) ≤ Ce−nβ.

Let pn(x1, x2, . . . , xn) =
∏n

i=1 f0(xi|xi−1) and qn(x1, x2, . . . , xn) =
∫

Un

∏n
i=1 f(xi|xi−1)v(df),

then

||pn − qn|| ≥ 2(1− 2Ce−nβ).

Proof. By Fubini’s theorem,
∫

x1

· · ·
∫

xn

φn(x0, · · · , xn)qn(x1, x2, . . . , xn)dx1 · · · dxn

=

∫

x1

· · ·
∫

xn

∫

Un

φn(x0, · · · , xn)
n∏

i=1

f(xi|xi−1)Π(df)dx1 · · · dxn

=

∫

Un

Ef [φn(X0, X1, · · · , Xn)] Π(df)

≥ 1− Ce−nβ

(4.3.5)

and by the assumption,
∫

x1

· · ·
∫

xn

φn(x0, · · · , xn)pn(x1, x2, . . . , xn)dx1 · · · dxn = Ef0(φn) ≤ Ce−nβ. (4.3.6)
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Hence, by Theorem 4.1.2

||pn − qn||

= 2 sup
0≤h(x1,...,xn)≤1

∣∣∣∣
∫

x1

· · ·
∫

xn

h(x1, . . . , xn)

[pn(x1, . . . , xn)− qn(x1, . . . , xn)]dx1 · · · dxn|

≥ 2

(∫

x1

· · ·
∫

xn

φn(x1, . . . , xn)pn(x1, . . . , xn)dx1 · · · dxn−
∫

x1

· · ·
∫

xn

φn(x1, . . . , xn)qn(x1, . . . , xn)dx1 · · · dxn

)

≥ 2(1− 2Ce−nβ)

by equation (4.3.5) and (4.3.6)

Lemma 4.3.2. If there exists a sequence of test functions which is uniformly expo-

nentially consistent for testing H0 : f = f0 vs H1 : f ∈ U c
n, and Π(U c

n) ≥ a > 0 for

all n > n0, then for some β0 > 0,

lim
n→∞

enβ0

∫

Uc
n

n∏
i=1

f(Xi|Xi−1)

f0(Xi|Xi−1)
Π(df) = 0 a.s. P∞

f0
.

Proof. Obviously v(df) = Π(df)/Π(U c
n) defines a probability measure on the set U c

n.

Set qn(x0, . . . , xn) = 1
Π(Uc

n)

∫
Uc

n

∏n
i=1 f(xi|xi−1)Π(df) and pn(x0, . . . , xn) =

∏n
i=1 f0(xi|xi−1).

Since there exists a sequence of test functions which is uniformly exponentially con-

sistent for testing H0 : f = f0 vs H1 : f ∈ U c
n, by Proposition 4.3.1,

||qn − pn|| ≥ 2(1− 2Ce−nβ) (4.3.7)

Let

A(pn, qn) =

∫
· · ·

∫ √√√√
n∏

i=1

f0(xi|xi−1)
√

qn(x0, x1, · · · , xn)dx1 · · · dxn.

Then by Theorem 4.1.3 and equation (4.3.7),

A(pn, qn) ≤
√

1− ||qn − pn||2
4

≤
√

1− [2(1− 2Ce−nβ)]2

4
≤
√

4Ce−
nβ
2
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provided that Ce−nβ ≤ 1. Thus by Markov’s inequality,

Pf0

{√
qn(X0, X1, . . . , Xn)∏n

i=1 f0(Xi|Xi−1)
≥ e

−nβ
4

}
≤ e

nβ
4

√
4Ce−

nβ
2 =

√
4Ce−

nβ
4

An application of Borel-Cantelli lemma yields that
√

qn(X0, X1, . . . , Xn)∏n
i=1 f0(Xi|Xi−1)

≤ e−
nβ
4 a.s. P∞

f0
.

Hence when β0 < β/4,

e
nβ
4

∫

Uc
n

n∏
i=1

f(xi|xi−1)

f0(xi|xi−1)
Π(df) ≤ e−n(β

4
−β0) → 0 a.s. P∞

f0
.

4.4 Kullback-Leibler Support of f0

In Section 4.1, we introduced the concept of the K-L support of Π, which is one of the

key sufficient conditions for posterior consistency. For any transition density f0(y|x),

we denote by Kε(f0) the Kullback- Leibler neighborhood
{

f :

∫∫
π0(x)f0(y|x) log{f0(y|x)

f(y|x)
}dydx < ε

}
.

Say that f0 is in the Kullback-Leibler support of Π if for any ε > 0,

Π(Kε(f0)) > 0.

Our main result on Kullback-Leibler support for Markov processes is given in

Theorem 4.4.1.

Theorem 4.4.1. Given model one ‡ introduced in Section 4.2, we assume that the

true model has the form

f0(y|x) = fP0(y|x) =

∫
φσ(y − θ1 − F (x, θ2))dP0(θ1, θ2, σ).

‡Note that Model two is a special case of Model one
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Suppose that the support of P0 belongs to the support of G0 (that is, P0 is in the

weak-star support of DαG0). If EP0(θ
2
1) < ∞ and EP0(σ

2) < ∞, then f0 is in the K-L

support of the prior.

The proof of Theorem 4.4.1 will be given after Proposition 4.4.2..

Lemma 4.4.1. Suppose that the assumptions of Model one hold. If f = fP is any

Markov transition density where the support of P belongs to the support of G0 (that

is, P is in the weak-star support of DαG0), then it is uniformly ergodic and

sup
x∈R

‖fn
P (·|x)− π‖ ≤

[∫

|y|≤a/σ

φ(y)dy

]n

,

where π is the invariant probability measure of f , and φ(y) is the density of standard

normal distribution.

Proof. Observe that

fP (y|x) =

∫
φσ (y − θ1 − F (x, θ2)) dP (θ1, θ2, σ)

≥ g(y) =

∫
φσ(|y − θ1|+ a)dP (θ1, σ)

where a bounds the function F , and that

1 > c =

∫
g(y)dy

=

∫∫
φσ(|y − θ1|+ a)dP (θ1, σ) dy

=

∫∫
φσ(|y − θ1|+ a)dy dP (θ1, σ)

=

∫ ∫

y>θ1

φσ(y − θ1 + a)dy dP (θ1, σ) +

∫ ∫

y<θ1

φσ(y − θ1 − a)dy dP (θ1, σ)

=

∫ ∫

y>a

φσ(y)dy dP (θ1, σ) +

∫ ∫

y<−a

φσ(y)dy dP (θ1, σ)

=

∫ ∫

|y|>a/σ

φ(y)dy dP (θ1, σ)

≥
∫

|y|>a/σ

φ(y)dy
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Thus Doeblin’s condition holds since the transition density satisfies f(y|x) ≥
cg(y)/c, where g(y)/c is a density on the real line. The lemma follows from the

Theorem A.1.7.

Proposition 4.4.1. Suppose that the true transition densition has the form

f0(y|x) = fP0(y|x) =

∫
φσ(y − θ1 − F (x, θ2))dP0(θ1, θ2, σ).

Then

(i) the invariant probability measure, say π0, uniquely exists,

(ii) if EP0(θ
2
1) < ∞ and EP0(σ

2) < ∞, then Eπ0(x
2) < ∞.

Proof. (i) by Lemma 4.4.1, the chain is uniformly ergodic. The invariant distribution

π0 uniquely exists.

(ii) Note that

y2 = (θ1 + F (x, θ2) + ε)2 ≤ 3(θ2
1 + a2 + ε2),

where ε ∼ N(0, σ2) and (θ1, θ2, σ) ∼ P0. So

Ef0(y
2|x) ≤ U = 3EP0

[
θ2
1 + a2 + E(ε2)

]
= 3

[
EP0(θ

2
1) + a2 + EP0(σ

2)
]
.

for any x. So

Eπ0(x
2) = Eπ0{Ef0(y

2|x)} ≤ U < ∞.

Proposition 4.4.2. If P2(|θ1| ≤ k, σ ∈ [σ1, σ2]) ≥ b, where b > 0 and σ1 > 0, then

∣∣∣∣log
fP1(y|x)

fP2(y|x)

∣∣∣∣ ≤ log
σ2

bσ
+

3(y2 + k2 + a2)

2σ2
1
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Proof. If P2(|θ1| ≤ k, σ ∈ [σ1, σ2]) ≥ b, then we have

fP2(y|x) =

∫
1√
2πσ

exp

[
−(y − θ1 − F (x, θ2))

2

2σ2

]
dP2(θ1, θ2, σ)

≥
∫

1√
2πσ

exp

[
−3(y2 + θ2

1 + F (x, θ2)
2)

2σ2

]
dP2(θ1, θ2, σ)

≥
∫

1√
2πσ

exp

[
−3(y2 + θ2

1 + a2)

2σ2

]
dP2(θ1, θ2, σ)

≥
∫

|θ1|≤k,σ∈[σ1,σ2]

1√
2πσ

exp

[
−3(y2 + θ2

1 + a2)

2σ2

]
dP2(θ1, θ2, σ)

≥
∫

|θ1|≤k,σ∈[σ1,σ2]

1√
2πσ2

exp

[
−3(y2 + k2 + a2)

2σ2
1

]
dP2(θ1, θ2, σ)

≥ b
1√

2πσ2

exp

[
−3(y2 + k2 + a2)

2σ2
1

]

and that

fP1(y|x) ≤ 1√
2πσ

.

We get the result by dividing the above two inequalities.

Proof of Theorem 4.4.1. The Theorem is equivalent to that for any ε > 0, we could

find a weak-star neighborhood Np of P0 such that Π(Np) > 0, and for any P ∈ Npσ,

Eπ0⊗f0

[
log

fσ,P0(y|x)

fσ,P (y|x)

]
≤ ε. (4.4.1)

Note that P0 is a given probability measure on the space of (θ1, θ2, σ). There exists

constants k1, σ1, σ2, and a compact set Aθ2 in the space of θ2 such that

P0(θ1 ∈ [−k1, k1], σ ∈ [σ1, σ2]) ≥ P0(θ1 ∈ [−k1, k1], σ ∈ [σ1, σ2], θ2 ∈ Aθ2) ≥
1

2
.

Since EP0(θ
2
1) < ∞ and EP0(σ

2) < ∞, by Proposition 4.4.1, log 2σ2

σ
+

3(Y 2+k2
1+a2)

2σ2
1

is

integrable under the product probability measure π0⊗ f0. So there exists K1 and K2

such that

Eπ0⊗f0

[(
log

2σ2

σ
+

3(Y 2 + k2
1 + a2)

2σ2
1

)
I(|Y | > K2)

]
<

3ε

8
,
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Eπ0⊗f0

[(
log

2σ2

σ
+

3(Y 2 + k2
1 + a2)

2σ2

)
I(|X| > K1)

]
<

3ε

8
.

If we restrict Np be the subset of P (|θ1| ≤ k1, σ ∈ [σ1, σ2]) ≥ 1/2, then by Proposition

4.4.2, for any P ∈ Np ,

∣∣∣∣log
fP0(y|x)

fP (y|x)

∣∣∣∣ ≤ log
2σ2

σ
+

3(y2 + k2
1 + a2)

2σ2
1

.

So we have

Eπ0⊗f0

[∣∣∣∣log
fP0(Y |X)

fP (Y |X)

∣∣∣∣ I(|Y | > K2)

]
<

3ε

8
,

Eπ0⊗f0

[∣∣∣∣log
fP0(Y |X)

fP (Y |X)

∣∣∣∣ I(|X| > K1)

]
<

3ε

8
.

(4.4.2)

Now we try to construct Np such that for any P ∈ Np,

Eπ0⊗f0

{
log

(
fP0(Y |X)

fP (Y |X)

)
I(|X| ≤ K1, |Y | ≤ K2)

}
<

ε

4
.

Then the Theorem follows equation (4.4.6)

Let

d = inf
|x|<K1,|y|<K2

[
ε

8

∫

θ1∈[−k1,k1], θ2∈Aθ2
, σ∈[σ1,σ2]

φσ[y − θ1 − F (x, θ2)]dP0(θ1, θ2)

]
.

Then d > 0 since for any (x, y, θ1, θ2, σ) in a compact set, φσ[y − θ1 − F (x, θ2)] is

bounded below.

We could find the compact set B and BL on the space (θ1, θ2, σ) and a continuous

function t(θ1, θ2, σ) such that

(a) B∗ ⊂ B ⊂ BL where

B∗ = {(θ1, θ2, σ) : θ1 ∈ [−k1, k1], θ2 ∈ Aθ2 , σ ∈ [σ1, σ2]},

(b) 1
σ
√

2π
P0(B

c) ≤ d,

(c) IB(θ1, θ2, σ) ≤ t(θ1, θ2, σ) ≤ IBL
(θ1, θ2, σ).
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Hence for any |x| < K1 and |y| < K2,
∫

Bc

φσ(y − θ1 − F (x, θ2))dP0(θ1, θ2, σ)

≤
∫

Bc

1

σ
√

2π
dP0(θ1, θ2, σ)

≤ 1

σ
√

2π
P0(B

c)

≤d =
ε

8

∫

θ1∈[−k1,k1],θ2∈Aθ2
,σ∈[σ1,σ2]

φσ(y − θ1 − F (x, θ2))dP0(θ1, θ2, σ)

≤ε

8

∫

B

φσ(y − θ1 − F (x, θ2))dP0(θ1, θ2, σ)

≤ε

8

∫
φσ(y − θ1 − F (x, θ2))t(θ1, θ2)dP0(θ1, θ2, σ).

So for any |x| < K1 and |y| < K2,
∫

φσ(y − θ1 − F (x, θ2))dP0(θ1, θ2, σ)

<
(
1 +

ε

8

) ∫
φσ(y − θ1 − F (x, θ2))t(θ1, θ2)dP0(θ1, θ2, σ)

and hence for any P ∈ Np, |x| < K1 and |y| < K2,

log
fP0(y|x)

fP (y|x)

≤ log

∫
φσ(y − θ1 − F (x, θ2))dP0(θ1, θ2, σ)∫

φσ(y − θ1 − F (x, θ2))t(θ1, θ2, σ)dP (θ1, θ2, σ)

≤ log
(
1 +

ε

8

)
+ log

∫
φσ(y − θ1 − F (x, θ2))t(θ1, θ2, σ)dP0(θ1, θ2, σ)∫
φσ(y − θ1 − F (x, θ2))t(θ1, θ2, σ)dP (θ1, θ2, σ)

≤ε

8
+

∣∣∣∣
∫

φσ(y − θ1 − F (x, θ2))t(θ1, θ2, σ)dP0(θ1, θ2, σ)∫
φσ(y − θ1 − F (x, θ2))t(θ1, θ2, σ)dP (θ1, θ2, σ)

− 1

∣∣∣∣

(4.4.3)

since log(x) < log(1 + |x− 1|) < |x− 1| for any x > 0.

Clearly,

c = inf
|x|≤K1,|y|≤K2

inf
(θ1,θ2,σ)∈BL

φσ (y − θ1 − F (x, θ2)) > 0

The family of functions {φσ (y − θ1 − F (x, θ2)) : |x| ≤ K1, |y| ≤ K2}, viewed as

a set of functions of (θ1, θ2, σ) ∈ BL, is uniformly continuous. By the Arzela-Ascoli
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theorem, given any δ > 0, there exist finitely many points (x1, y1), . . . , (xm, ym) such

that for any |x| ≤ K1, |y| ≤ K2, there exists an i with

sup
(θ1,θ2,σ)∈BL

|φσ(y − θ1 − F (x, θ2)− φσ(yi − θ1 − F (xi, θ2)| < cδ,

so

sup
(θ1,θ2,σ)

|φσ(y−θ1−F (x, θ2))t(θ1, θ2, σ)−φσ(yi−θ1−F (xi, θ2))t(θ1, θ2, σ)| < cδ. (4.4.4)

Let

Np =

{
P : P (B∗) >

1

2
,

∣∣∣∣
∫

φσ(yi − θ1 − F (xi, θ2))t(θ1, θ2, σ)dP (θ1, θ2, σ)

−
∫

φσ(yi − θ1 − F (xi, θ2))t(θ1, θ2, σ)dP0(θ1, θ2, σ)

∣∣∣∣ < cδ; i = 1, · · · ,m

}

Since Np is a weak neighborhood of P0 (refer to Theorem 4.1.1), Π(Np) > 0. Let

P ∈ Np. For any |x| ≤ K1, |y| ≤ K2, choosing the appropriate (xi, yi) from equation

(4.4.4), using a simple triangulation argument we get

∣∣∣∣
∫

φσ(y − θ1 − F (x, θ2))t(θ1, θ2, σ)dP (θ1, θ2, σ)

−
∫

φσ(y − θ1 − F (x, θ2))t(θ1, θ2, σ)dP0(θ1, θ2, σ)

∣∣∣∣ < 3cδ.

Also,
∫

φσ(y − θ1 − F (x, θ2))t(θ1, θ2, σ)dP0(θ1, θ2, σ) ≥ cP0(B) ≥ c/2. We get

∣∣∣∣
∫

φσ(y − θ1 − F (x, θ2))t(θ1, θ2, σ)dP (θ1, θ2, σ)∫
φσ(y − θ1 − F (x, θ2))t(θ1, θ2, σ)dP0(θ1, θ2, σ)

− 1

∣∣∣∣ < 6δ.

So when δ = ε/(6ε + 48), for any |x| ≤ K1, |y| ≤ K2, P ∈ Np,

∣∣∣∣
∫

φσ(y − θ1 − F (x, θ2))t(θ1, θ2, σ)dP0(θ1, θ2, σ)∫
φσ(y − θ1 − F (x, θ2))t(θ1, θ2, σ)dP (θ1, θ2, σ)

− 1

∣∣∣∣ <
6δ

1− 6δ
≤ ε

8
.

So for any P ∈ Np, we have that by equations (4.4.3)

log

(
fP0(Y |X)

fP (Y |X)

)
I(|X| ≤ K1, |Y | ≤ K2) <

ε

4
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Eπ0⊗f0

{
log

(
fP0(Y |X)

fP (Y |X)

)
I(|X| ≤ K1, |Y | ≤ K2)

}
<

ε

4
(4.4.5)

Following equations (4.4.5) and (4.4.2), we have that for any P ∈ Np,

Eπ0⊗f0

{
log

fP0(Y |X)

fP (Y |X)
)

}

≤Eπ0⊗f0

{
(log

(
fP0(Y |X)

fP (Y |X)

)
I(|X| ≤ K1, |Y | ≤ K2)

}

+ Eπ0⊗f0

{∣∣∣∣log

(
fP0(Y |X)

fP (Y |X)

)∣∣∣∣ I(|Y | > K2)

}

+ Eπ0⊗f0

{∣∣∣∣log

(
fP0(Y |X)

fP (Y |X)

)∣∣∣∣ I(|X| > K1)

}

<ε

(4.4.6)

Hence given any ε > 0, we could find a neighborhood Np of P0 such that for any

P ∈ Np, equation (4.4.1) holds.

4.5 Weak Consistency on Densities

In Section 4.2, we extended Schwartz’s theorem to Markov processes. Section 4.3

provided sufficient conditions for a transition density to lie in the Kullback-Leibler

support of the prior. In this section, we establish sufficient condition for the existence

of an exponentially consistent sequence of tests in weak-star topology. If the data are

i.i.d., an exponentially consistent sequence of tests will always exist by Hoeffding’s

inequality, so that the posterior consistency will automatically follow. This is not

true in Markov processes since Hoeffding’s inequality may not hold again, because

of the dependence among data. However, if we focus on the subset of £(R), in

which all Markov processes are uniformly ergodic, for any bounded function g, we

could decompose the sum series {∑n
i=1[g(Xi)−πf (g)], n ≥ 1} into a sum of bounded

martingale difference sequence plus a bounded term and use Azuma’s inequality to
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find the uniformly exponentially consistent sequence of tests. Our result on Hoeffding-

type inequality in uniformly ergodic Markov processes and the construction of an

exponentially consistent sequence of tests is given in Theorem 4.5.2. Theorem 4.5.1

presents a result on posterior consistency in the weak-star topology.

Theorem 4.5.1. Suppose that the assumption of Model one introduced in Section 4.2

holds, the true model has the form

f0(y|x) = fP0(y|x) =

∫
φσ(y − θ1 − F (x, θ2))dP (θ1, θ2, σ),

and f0 is in the Kullback-Leibler support of the prior. Furthermore, the initial point

x0 is either fixed or has a known distribution. Then the posterior is weakly consistent

at any f0.

Proof. Let

Vw =

{
fP :

∣∣∣∣
∫

gi(x)π(x)dx−
∫

gi(x)π0(x)dx

∣∣∣∣ < ε, ‖gi‖ ≤ Mi, i = 1, . . . , k

}
,

where gi’s are continuous functions, be a weak neighborhood of f0. Let g∗i1 = 1
2
+ gi

2Mi
,

g∗i2 = 1 − gi1 and δi = ε/(2Mi), then gi1 and gi2 is continuous functions with values

lying in [0, 1], and Vw = ∩k
i=1 ∩2

j=1 Vij, where

Vij = {fP :

∫
g∗ij(x)π(x)dx−

∫
g∗ij(x)π0(x)dx < δi}.

By Lemma 4.5.1, there exist an exponentially consistent sequence of tests for

H0 : f = f0 vs Hij : f ∈ V c
ij.

So for j = 1, 2, i = 1, . . . , k,

Π(V c
ij|X0, . . . , Xn) → 0 a.s. P∞

f0

by Theorem 4.3.1 as f0 is in the K-L support of the prior. So

Π(V c
w|X0, . . . , Xn) ≤

k∑
i=1

2∑
j=1

Π(V c
ij|X0, . . . , Xn) → 0 a.s. P∞

f0
.
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Equivalently,

Π(Vw|X0, . . . , Xn) → 1 a.s. P∞
f0

.

Theorem 4.5.2. Consider a Markov process with the state space (χ,B(χ)) and tran-

sition probability measure P which is uniformly ergodic, that is, there exists ε > 0

and a probability v such that for all A ∈ B(χ),

inf
x∈χ

Pm(x,A) ≥ εv(A).

Let π denote the invariant probability measure for the chain, and g : χ → [l, u] be a

measurable function. Then

(i) G(x) =
∑∞

i=0[P
i(x, g)− π(g)] solves the Poisson equation

G(x)− PG(x) = g(x)− π(g),

and |G(x)| is bounded by

R =
u− l

2[1− (1− ε)1/m]

(ii) If a satisfies na > 2R, then for any initial distribution of X0,

Pr

(
n∑

i=1

[g(Xi)− π(g)] ≥ na

)
≤ exp

[−n(a− 2R/n)2

2R2

]
(4.5.1)

Pr

(
n∑

i=1

[g(Xi)− π(g)] ≤ −na

)
≤ exp

[−n(a− 2R/n)2

2R2

]
(4.5.2)

Proof. (i) Let g̃(x) = g(x) − (u − l)/2. Then g̃ is bounded by (u − l)/2. If G solve

the Poisson equation G(x)−PG(x) = g(x)−π(g), it also solves the Poisson equation

G(x)− PG(x) = g̃(x)− π(g̃). By Theorem A.2.8, for any x ∈ χ,

|G(x)| ≤ R =
u− l

2[1− (1− ε)1/m]
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(ii) As denoted in equation (A.2), the sum series Sn(g) could be written as

Sn(g) =
n∑

i=1

[G(Xi)− PG(Xi)] =
n∑

i=1

[G(Xi)− PG(Xi−1)] + PG(x0)− PG(xn),

where [G(Xi) − PG(Xi−1)], i = 1, 2, . . ., is a martingale difference sequence and the

remaining term PG(X0)− PG(Xn) is bounded by 2R. So we have

Pr

(
n∑

i=1

[g(Xi)− π(g)] ≥ na

)

=Pr

(
n∑

i=1

[G(Xi)− PG(Xi−1)] + PG(X0)− PG(Xn) ≥ na

)

≤Pr

(
n∑

i=1

[G(Xi)− PG(Xi−1)] ≥ n(a− 2R/n)

)

and similarly

Pr

(
n∑

i=1

[g(Xi)− π(g)] ≤ −na

)
≤ Pr

(
n∑

i=1

[G(Xi)− PG(Xi−1)] ≤ −n(a− 2R/n)

)

Note that −R− PG(Xi−1) ≤ [G(Xi)− PG(Xi−1)] ≤ R− PG(Xi−1). An application

of Azuma’s inequality (Theorem C.0.2) yields the inequalities (4.5.1) and (4.5.2).

Corollary 4.5.1. Let f = fP be a Markov transition density function, where P is

in the weak-star support of DαG0. Let g be any nonnegative function bounded by 1.

Then for any δ, when n ≥ 4M/δ where M = 1/
[
2
∫
|y|>a/σ

φ(y)dy
]

and φ(y) is the

density of the standard normal distribution,

Pr

(
n∑

i=1

[g(Xi)− π(g)] ≥ nδ

)
≤ exp

[−nδ2

8M2

]

Pr

(
n∑

i=1

[g(Xi)− π(g)] ≤ −nδ

)
≤ exp

[−nδ2

8M2

] (4.5.3)

Proof. By Lemma 4.4.1, the chain is uniformly ergodic. This corollary follows from

Theorem 4.5.2 with R = M . So when n ≥ 2R/δ,

Pr

(
n∑

i=1

[g(Xi)− π(g)] ≥ nδ

)
≤ exp

[−n(δ − 2R/n)2

2R2

]
,
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Pr

(
n∑

i=1

[g(Xi)− π(g)] ≤ −nδ

)
≤ exp

[−n(δ − 2R/n)2

2R2

]
.

Note R = M . When n ≥ 4M/δ,

exp

[−n(δ − 2R/n)2

2R2

]
≤ exp

[−nδ2

8M2

]
.

So equation (4.5.3) holds.

Lemma 4.5.1. Under the assumption of Theorem 4.5.1, there exists a sequence of

tests which are exponentially consistent for testing

H0 : f = f0 vs H1 : f ∈
{

V :

∫
g(x)π(dx) >

∫
g(x)π0(dx) + ε

}

for any nonnegative measurable function g bounded by 1, i.e. there exists C, β and

n0 and a nonnegative sequence test φn bounded by 1 such that for all n > n0.

Ef0(φn) ≤ C exp{−nβ} and sup
f∈V

Ef (1− φn) ≥ C exp(−nβ) (4.5.4)

Proof. Let α = π0(g) and γ = inff∈V π(g) > α. Then

φn = I

(
n∑

i=1

g(Xi) > n(α + γ)/2

)
, n ≥ 1,

is such a sequence of test functions. By Corollary 4.5.1, When n ≥ n0 = 8M/(γ −α)

where M = 1/
[
2
∫
|y|>a/σ

φ(y)dy
]
, we have that

Ef0(φn) = Prf0

(∑
(g(Xi)− π0(g)) > n(γ − α)/2

)
≤ exp

[−n(γ − α)2

32M2

]

and when n ≥ n0, for any f ∈ V , we have that

Ef (1− φn) ≤ Prf

(∑
(g(Xi)− π(g)) < −n(γ − α)/2

)
≤ exp

[−n(γ − α)2

32M2

]
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4.6 Strong Consistency Under sup-L1 metric

In the last section, we presented a result on posterior consistency in the weak-star

topology. As discussed in Section 4.1, the weak-star neighborhoods are large, and the

transition densities in a weak-star neighborhood may not be identical since different

transition densities may be corresponding to the same invariant probability measure.

The sup-L1 metric defined below is a very strong neighborhood and avoids the non-

identity issue. A result on posterior consistence in the sup-L1 topology is given in

Theorem 4.6.1.

Theorem 4.6.1. Denote θ = (v, ϕ, γ, u, σ),

ψθ(y|x) = ψv,ϕ,γ,u,σ(y|x) = φσ

(
y − v − ϕ

1

1 + exp[−γ(x− u)]

)
.

and fP (y|x) =
∫

ψθ(y|x)dP (θ). Under the assumption of Model two defined in Section

4.2, assume that the true transition density be of the form f0(y|x) = fP0(y|x). Suppose

that

G0([v, v], [γ, γ], [ε, ε], [u, u], [σ, σ]) = 1,

and the interval [γ, γ] does not contain 0,

(i) If P0 in the weak-star support of Dirichlet prior DαG0, then f0 is in the K-L support

of the prior,

(ii) If f0 is in the K-L support of the prior, the posterior distribution is strongly

consistent at f0 under the sup−L1 metric.

The key observation is that the prior Π is supported on a compact subspace of

£(R) under sup-L1 topology. Here, the support of γ cannot contain 0. Otherwise the

space under sup-L1 metric may not be compact. Let see the counterexample below.

Counterexample 4.6.1. Consider the class of the degenerate measures $ = {P :

P = δu=0,v=0,ϕ=1,γ,σ=1 : 0 ≤ γ ≤ 1}. Let P1 = δ(0,0,1,γ1,1) and P2 = δ(0,0,1,γ2,1) and
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suppose that a = γ2/γ1 > 1. Then

sup
x
||fP1(·|x)− fP2(·|x)||

= sup
x

∫
1√
2π

∣∣∣∣exp

[
−1

2
(y − 1

1 + exp(−xθ1)
)2

]
− exp

[
−1

2
(y − 1

1 + exp(−xθ2)
)2

]∣∣∣∣ dy

= sup
x

4√
2π

∫ 1
2 |[1+exp(−xθ1)]−1−[1+exp(−xθ2)]|

0

e−y2/2dy

= sup
x

4√
2π

∫ 1
2 |[1+exp(−x)]−1−[1+exp(−xa)]−1|

0

e−y2/2dy

From the above equation, we see that supx ||fP1(·|x) − fP2(·|x)|| depends on a only

and increases with a. If we want to find the cardinality of the minimal η-net of $.

let a be satisfy η = supx ||fP1(·|x) − fP2(·|x)||. Then we can find infinitely many

eta-separated points fδ(0,0,1,γi,1)
where γi = 1/(1 + a)i for i = 1, 2, . . ..

proof of Theorem 4.6.1. (i) follows from Theorem 4.4.1.

(ii) By Lemma 4.6.4, we could find finite nets V1, . . . , Vk covering V C . For each Vi,

i = 1, . . . , k we could find a sequence of exponentially consistent tests for testing f0

against f ∈ Vi. Since f0 is in the K-L support of the prior, the theorem follows from

Corollary 4.3.1.

Proposition 4.6.1. § Let a pair of random variables (u, β) be independent of ε, and

ε has density f(ε) with respect to the Lebesgue measure. Suppose that f1(y) and f2(y)

are the density function of y = u + β + ε and y = u + βI(|β| ≤ a) + ε respectively,

The total variation distance between f1 and f2 is bounded by

||f1 − f2|| ≤ 2 Pr(|β| ≥ a).

Proof. Let the distribution of (u, β) be P . Then the density of y = u + β + ε is given

by

f1(y) =

∫

β

∫

u

f(y − u− β)dP (u, β),

§A similar result is given in [37] in which u = 0.



79

and the density of y = u + βI(|β| ≤ a) + ε is given by

f2(y) =

∫
|β|≤a

∫
u
f(y − u− β)dP (u, β)

Pr(|β| ≤ a)
.

||f1 − f2||

=

∫

y

|f1(y)− f2(y)|dy

=

∫

y

∣∣∣∣∣
∫

β

∫

u

f(y − u− β)dP (u, β)−
∫
|β|≤a

∫
u
f(y − u− β)dP (u, β)

Pr(|β| ≤ a)

∣∣∣∣∣ dy

=

∫

y

∣∣∣∣
∫

|β|≤a

∫

u

f(y − u− β)dP (u, β)

(
1

Pr(|β| ≤ a)
− 1

)
−

∫

|β|≥a

∫

u

f(y − u− β)dP (u, β)

∣∣∣∣ dy

=

∫

y

∫

|β|≤a

∫

u

f(y − u− β)dP (u, β)

(
1

Pr(|β| ≤ a)
− 1

)
dy+

∫

y

∫

|β|≥a

∫

u

f(y − u− β)dP (u, β)dy

= Pr(|β| ≤ a)

(
1

Pr(|β| ≤ a)
− 1

)
+ Pr(|β| ≥ a)

= 2 Pr(|β| ≥ a)

Proposition 4.6.2. ¶ Let N(u, σ2) denote the normal distribution with mean u and

variance σ2. Then the total variation distance between N(θ1, σ
2) and N(θ2, σ

2) is

4√
2π

∫ |θ2−θ1|
2σ

0

exp

[
−x2

2

]
dx ≤

√
2

π

|θ2 − θ1|
σ

.

¶This proposition is given in [36].
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Proof. Without loss of generality, we assume that θ1 ≤ θ2. Now
∫ ∣∣∣∣

1√
2πσ2

exp

[
−(x− θ1)

2

2σ2

]
− 1√

2πσ2
exp

[
−(x− θ2)

2

2σ2

]∣∣∣∣ dx

=

∫ ∣∣∣∣
1√

2πσ2
exp

[
−(x + (θ2 − θ1)/2)2

2σ2

]
− 1√

2πσ2
exp

[
−(x− (θ2 − θ1)/2)2

2σ2

]∣∣∣∣ dx

=
4√
2π

∫ |θ2−θ1|
2σ

0

exp

[
−x2

2

]
dx

≤
√

2

π

|θ2 − θ1|
σ

.

Proposition 4.6.3. ‖ Let ℘N = {(P1, P2, · · · , PN) : Pi ≥ 0,
∑N

i=1 Pi = 1} be the

N-dimensional probability simplex and let ℘∗N be a δ-net in ℘N , i.e., given P ∈ ℘N ,

there is P ∗ = (P ∗
1 , · · · , P ∗

N) ∈ ℘∗N such that
∑N

i=1 |Pi − P ∗
i | < δ. The cardinality of

the minimal δ-net of PN is smaller than (N/δ)N(1 + δ)N/N !.

Proof. Since |Pi − P ∗
i | < δ/N for all i implies that

∑N
i=1 |Pi − P ∗

i | < δ. An upper

bound for the cardinality of the minimal δ-net of PN is given by

#cubes of length δ/N covering [0, 1]N× volume of
{

(P1, P2, · · · , PN) : Pi ≥ 0,
N∑

i=1

Pi ≤ 1 + δ

}
= (N/δ)N(1 + δ)N/N !

Lemma 4.6.1. Let

Fh,τ ,τ =

{∫
φh (y|x, τ) dP (τ) : P ([γ, γ], [v, v], [u, u], [ϕ, ϕ]) = 1

}
,

where τ = (γ, u, v, ϕ), and φh(y|x, τ) = φh

(
y − v − ϕ 1

1+exp[−γ(x−u)]

)
. If [γ, γ] does

not contain 0 and h ∈ [σ, σ] is a fixed point, the space Fh,τ ,τ is compact with respect

to the sup-L1 distance.

‖This proposition is given in [36].
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Proof. Note that γ > 0.

(i) When x is small enough, (say x ≤ −M1 < 0),
∣∣∣∣

ϕ

1 + exp[−γ(x− u)]

∣∣∣∣ ≤
|ϕ|

1 + exp[γ(u + M1)]
≤ δ

4

√
π

2

σ

max |ϕ| (4.6.1)

(ii) When x is big enough, (say x ≥ M2 > 0),

1

1 + exp[−γ(x− u)]
≥ 1

1 + exp[−γ(M2 − u)]
≥ 1− δ

8

√
π

2

σ

max |ϕ| (4.6.2)

(iii) When |x| ≤ M (where M = max{M1,M2}), by Proposition 4.6.2,

||φτ1,h(·|x)− φτ2,h(·|x)||

≤
√

2

π

∣∣∣v1 + ϕ1

1+exp[−γ1(x−u1)]
− v2 − ϕ2

1+exp[−γ2(x−u2)]

∣∣∣
h

≤
√

2

π

|v1 − v2|+ |ϕ1 − ϕ2|+ max |ϕ|
∣∣∣ 1
1+exp[−γ1(x−u1)]

− 1
1+exp[−γ2(x−u2)]

∣∣∣
h

By the Arzela-Ascoli theorem, given δ > 0, there exists c > 0 such that, whenever

|u1 − u2| < c, |v1 − v2| < c, |θ1 − θ2| < c and |ϕ1 − ϕ2| < c,

sup
h∈[σ,σ],|x|≤M

|φu1,v1,γ1,ϕ1,h(·|x)− φu2,v2,γ2,ϕ2,h(·|x)| ≤ δ (4.6.3)

Let d = min{c, σδ
4max |ϕ|

√
π
2
}. Let N1 be the smallest integer greater than (u − u)/d,

N2 be the smallest integer greater than (v − v)/d, N3 be the smallest integer greater

than (γ−γ)/d, N4 be the smallest integer greater than (ϕ−ϕ)/d. Divide the support

of τ = (u, v, ϕ, γ) into N = N1N2N3N4 boxes E1, E2, . . . , EN . Let τi, i = 1, · · · , N ,

be the corresponding center points in each box Ei. Let ℘N = {(P1, P2, . . . , PN) :

Pi ≥ 0,
∑N

i=1 Pi = 1} be the N -dimensional probability simplex. Let ℘∗N be a δ-

net of ℘N , that is, given p ∈ ℘N , there exists P ∗ = (P ∗
1 , . . . , P ∗

N) ∈ ℘∗N such that
∑N

i=1 |Pi − P ∗
i | < δ. By Proposition 4.6.3, the cardinality of ℘∗N is finite given N .
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Let F ∗ = {∑N
i=1 P ∗

i φτi,h : P ∗ = (P ∗
1 , · · · , P ∗

N) ∈ ℘∗N}. Then we can prove that F ∗

is a 2δ-net of Fh. If fh,P = φh ∗P ∈ Fh, set Pi = P (Ei) and let P ∗ ∈ ℘∗N be such that
∑N

i=1 |Pi − P ∗
i | < δ, then

∥∥∥∥∥
∫

φτ,h(·|x)dP (τ)−
N∑

i=1

∫
P ∗

i φτi,h(·|x)

∥∥∥∥∥

≤
∥∥∥∥∥
∫

φτ,h(·|x)dP (τ)−
N∑

i=1

∫
IEi

(τ)φτi,h(·|x)dP (τ)

∥∥∥∥∥

+

∥∥∥∥∥
N∑

i=1

P ∗
i φτi,h(·|x)−

N∑
i=1

Piφτi,h(·|x)

∥∥∥∥∥

≤
∫ N∑

i=1

IEi
(τ)‖φτ,h(·|x)− φτi,h(·|x)‖dP (τ) +

N∑
i=1

|Pi − P ∗
i |

≤
∫ N∑

i=1

IEi
(τ)‖φτ,h(·|x)− φτi,h(·|x)‖dP (τ) + δ

(4.6.4)

Now we try to bound the term ‖φτ,h(·|x) − φτi,h(·|x)‖ where τ lie in the box Ei and

τi is the center of Ei for any i. When |x| ≤ M , by equation (4.6.3)

sup
|x|≤M

‖φτ,h(.|x)− φτi,h(.|x)‖ ≤ δ.

When x > M , by equation (4.6.1) and Proposition 4.6.2,

‖φτ,h(.|x)− φτi,h(.|x)‖

≤
√

2

π

∣∣∣v + ϕ
1+exp[−γ(x−u)]

− vi + ϕi

1+exp[−γi(x−ui)]

∣∣∣
h

≤
√

2

π

|v − vi|+ |ϕ− ϕi|+ max |ϕ|
∣∣∣ 1
1+exp[−γ(x−u)]

− 1
1+exp[−γi(x−ui)]

∣∣∣
h

≤
√

2

π

δ
2

√
π
2
σ + δ

4

√
π
2
σ + δ

4

√
π
2
σ

h

=δ.
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When x < −M , by equation (4.6.2) and Proposition 4.6.2,

‖φτ,h(·|x)− φτi,h(·|x)‖

≤
√

2

π

∣∣∣v + ϕ
1+exp[−γ(x−u)]

− vi + ϕi

1+exp[−γi(x−ui)]

∣∣∣
h

≤
√

2

π

|v − vi|+ |ϕ|
1+exp[−γ(x−u)]

+ |ϕi|
1+exp[−γi(x−ui)]

h

≤
√

2

π

|v − vi|+ 2 δ
4

√
π2σ

h

≤δ

So for any x, ||φτ,h(·|x) − φτi,h(·|x)|| ≤ δ provided that τ, τi lie in the same box Ei.

So we can see that by equation (4.6.4), for any x,

‖
∫

φτ,h(·|x)dP (τ)−
N∑

i=1

∫
P ∗

i φτi,h(·|x)‖

≤
∫ N∑

i=1

IEi
(τ)‖φτ,h(·|x)− φτi,h(·|x)‖dP (τ) + δ

≤2δ

Since the cardinality of ℘∗N is finite, the space of Fh is compact.

Lemma 4.6.2. Let Fθ,θ = {P ∗ φ(y|x, θ) : P ([γ, γ], [v, v], [u, u], [ϕ, ϕ], [σ, σ]) = 1},
where φ(y|x, θ) = φσ

(
y − v − ϕ 1

1+exp[−γ(x−u)]

)
and [γ, γ] does not contain 0. Then

Fθ,θ is compact with respect to the sup-L1 distance.

Proof. Note that for any Markov process in Fθ,θ, its transition density fP is given by

Xn+1 = v +
ϕ

1 + exp[−γ(Xn − u)]
+ εn+1,

or equivalently by

Xn+1 = v + εn+1,2 +
ϕ

1 + exp[−γ(Xn − u)]
+ εn+1,1, (4.6.5)
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where

(u, v, ϕ, γ, σ) ∼ P,

εn+1
i.i.d.∼ N(0, σ2), given P,

εn+1,1
i.i.d.∼ N(0, σ2),

εn+1,2
i.i.d.∼ N(0, σ2 − σ2), given P,

and the series of random variables {εn+1,1 : n ≥ 0} are independent of {εn+1,2 : n ≥ 0}.
Let F ∗ denote the set of all such models:

Xn+1 = v′ +
ϕ

1 + exp[−θ(Xn − u)]
+ εσ,n+1,

where v′ = v + εn+1,2I{|εn+1,2| ≤ b}, with corresponding transition density f ∗P . By

Proposition 4.6.1,

sup
x
||fP (·|x)− f ∗P (·|x)|| ≤ 2Pr(|εn+1,2| ≥ b)

≤ 2E(ε2
n+1,2)/b

2

= 2EP

[
E(ε2

n+1,2|P )
]
/b2

= 2EP [σ2 − σ2|P ]/b2

≤ 2(σ2 − σ2)/b2

(4.6.6)

So we can find a sufficiently large b such that

(σ2 − σ2)/b2 ≤ 2δ.

So J(3δ, Fσ,σ,τ ,τ ) ≤ J(δ, F ∗), where J(δ,F) is the logarithm of the minimal number

of balls of radius δ in total variation metric needed to cover the F. By Lemma 4.6.1,

F ∗ and hence Fθ,θ is compact with respect to the sup-L1 distance.
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Proposition 4.6.4. Under the assumption of Theorem 4.6.1 and |v| + |ϕ| ≤ a, the

following inequalities hold for any fP1 , fP2 ∈ Fθ,θ, any xn and any Borel set A.

1√
2πσ

exp

[
−(|xn+1|+ |a|)2

2σ2

]
≤ fP2(xn+1|xn)

≤ 1√
2πσ

exp

[
−(|xn+1| − |a|)2

2σ2

]
exp

[
a2

2σ2

]
,

Prf2(Xn+1 ∈ A|Xn) ≥ 1√
2πσ

∫

A

exp

[
−(|y|+ a)2

2σ2

]
dy

and
fP1(xn+1|xn)

fP2(xn+1|xn)
≤ σ

σ
exp

[
(|xn+1|+ a)2

2σ2

]

Proof. The first equation is easy to prove if we note that for any |b| ≤ a,

(|xn+1| − |b|)2 ≤ (xn+1 − b)2 ≤ (|xn+1|+ |b|)2 ≤ (|xn+1|+ a)2.

Then for any σ ∈ [σ, σ],

1√
2πσ

exp

[
−(|xn+1|+ a)2

2σ2

]
≤ 1√

2πσ
exp

[
−(|xn+1|+ a)2

2σ2

]

≤ 1√
2πσ

exp


−

(
xn+1 − v − ϕ 1

1+exp[−γ(x−u)]

)2

2σ2




≤ 1√
2πσ

exp


−

(
|xn+1| − |v + ϕ 1

1+exp[−γ(x−u)]
|
)2

2σ2




≤ 1√
2πσ

exp

[
−(|xn+1| − |a|)2

2σ2

]
exp

[
a2

2σ2

]

≤ 1√
2πσ

exp

[
−(|xn+1| − |a|)2

2σ2

]
exp

[
a2

2σ2

]

The first equation is easy to get by integrating the above inequalities with respect to

P2. The second equation is easy to get from the first equation. The third equation is

straightforward if we note the following two equations,

fP1(xn+1|xn) ≤ 1√
2πσ

,
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and

fP2(xn+1|xn) ≥ 1√
2πσ

exp

[
−(|xn+1|+ |a|)2

2σ2

]

Proposition 4.6.5. Under the assumption of Theorem 4.6.1 and |v|+ |ϕ| ≤ a, given

a positive number b1, there exists η such that for all xn, any fP1 , fP2 , fP3 ∈ Fθ,θ, and

λ = σ2/(2σ2), the inequality

∫ [
fP1(xn+1|xn)

fP2(xn+1|xn)

]λ

[fP3(xn+1|xn)− fP2(xn+1|xn)]dxn+1 ≤ b1,

holds whenever

sup
xn

‖fP3(·|xn)− fP2(·|xn)‖ ≤ η.

Proof. If we could find b such that

∫

|xn+1|≥3a+b

[
fP1(xn+1|xn)

fP2(xn+1|xn)

]λ

fP3(xn+1|xn)dxn+1 ≤ b1/2 (4.6.7)

for all xn and any fP1 , fP2 , fP3 ∈ Fθ,θ,

η = b1/(2T ) solves this problem where T = sup|xn+1|≤3a+b

{[
σ
σ

]λ

exp
[

λ(|xn+1|+a)2

2σ2

]}
.
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To see this, note that for any xn,

∫ [
fP1(xn+1|xn)

fP2(xn+1|xn)

]λ

[fP3(xn+1|xn)− fP2(xn+1|xn)]dxn+1

≤
∫

|xn+1|≥3a+b

[
fP1(xn+1|xn)

fP2(xn+1|xn)

]λ

fP3(xn+1|xn)dxn+1

+

∫

|xn+1|≤3a+b

[
fP1(xn+1|xn)

fP2(xn+1|xn)

]λ

[fP3(xn+1|xn)− fP2(xn+1|xn)]dxn+1

≤
∫

|xn+1|≥3a+b

[
fP1(xn+1|xn)

fP2(xn+1|xn)

]λ

fP3(xn+1|xn)dxn+1

+ sup
|xn+1|≤3a+b

{[
fP1(xn+1|xn)

fP2(xn+1|xn)

]λ
}
||fP3(·|xn)− fP2(·|xn)||

≤b1

2
+ sup
|xn+1|≤3a+b

{[
σ

σ

]λ

exp

[
λ(|xn+1|+ a)2

2σ2

]}
η (by Proposition 4.6.4)

≤b1

2
+ Tη = b1 for all xn

Since
∫

exp
[
− y2

4σ2

]
dy < ∞, we can find b satisfying

[
σ

σ

]λ
1

σ
√

2π
exp

[
a2

2σ2

]
exp

[
2a2

σ2

] ∫

|y|≥b

exp

[
−(|y|)2

4σ2

]
dy ≤ b1

2
(4.6.8)
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Now to show b satisfies equation (4.6.7), we observe that

∫

|xn+1|≥3a+b

[
fP1(xn+1|xn)

fP2(xn+1|xn)

]λ

fP3(xn+1|xn)dxn+1

≤
∫

|xn+1|≥3a+b

[
σ

σ

]λ

exp

[
λ(|xn+1|+ a)2

2σ2

]
1√
2πσ

exp

[
−(|xn+1| − a)2

2σ2

]
exp

[
a2

2σ2

]
dxn+1

(by Proposition 4.6.4)

≤
∫

|xn+1|≥3a+b

[
σ

σ

]λ

exp

[
(|xn+1|+ a)2

4σ2

]
1√
2πσ

exp

[
−(|xn+1| − a)2

2σ2

]
exp

[
a2

2σ2

]
dxn+1

≤
[
σ

σ

]λ
1

σ
√

2π
exp

[
a2

2σ2

]
exp

[
2a2

σ2

] ∫

|xn+1|≥3a+b

exp

[
−(|xn+1| − 3a)2

4σ2

]
dxn+1

≤
[
σ

σ

]λ
1

σ
√

2π
exp

[
a2

2σ2

]
exp

[
2a2

σ2

] ∫

|y|≥b

exp

[
−(|y|)2

4σ2

]
dy

≤b1

2
(by equation (4.6.8))

Lemma 4.6.3. Let P and Q be two probability measures and p, q be their densities

with respect to some σ-finite measure µ. Then for any 0 < α < 1,

∫
pαq1−αdµ ≤

[
1− 1

4
‖p− q‖2

]β

,

where ‖p−q‖ is the total variation distance between P and Q, and β = min{α, 1−α}.

Proof. By Lyapounov’s Inequality (Lemma C.0.1) and Theorem 4.1.3, when 0 < α ≤
1
2
, ∫

pαq1−αdµ = EQ

[
p

q

]α

≤
[
EQ

√
p

q

]2α

≤
[
1− 1

4
‖p− q‖2

]α

.

and when 1
2
≤ α < 1,

∫
pαq1−αdµ = EP

[
q

p

]β

≤
[
EP

√
q

p

]2β

≤
[
1− 1

4
‖p− q‖2

]β

.
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Lemma 4.6.4. Let Vi be a subset of Fθ,θ, f0 ∈ Fθ,θ, Ai be a Borel set, ζ and δ2 are

positive numbers such that

2δ2 ≤ inf
xn∈Ai

||f0(·|xn)− f(·|xn)||, and ζ ≤ inf
xn,f∈Vi

Prf (Xn+1 ∈ Ai|xn).

Let λ = σ2/(2σ2), b1 =
(
1− [1− δ2

2]
2λ

)
ζ/2 and η be the value given in Proposition

4.6.5 corresponding to b1. If for any f1, f2 ∈ Vi,

sup
xn

||f1(·|xn)− f2(·|xn)|| ≤ η,

then there exists a sequence of exponentially consistent tests for

H0 : f0 vs H1 : f ∈ Vi

Proof. Let f1 be any Markov model in Vi. Define the function

h(k) =
k∑

l=1

log
f1(x2l|x2l−1)

f0(x2l|x2l−1)
.

Consider the following sequence of testing functions:

φn = I{h(k) > 0} if n = 2k or n = 2k + 1 (4.6.9)

We will show that φn is a sequence of uniformly exponentially consistent tests.

By Lemma 4.6.3,
∫ [

f1(xn+1|xn)

f0(xn+1|xn)

]λ

f0(xn+1|xn)dxn+1

=

∫
[f1(xn+1|xn)]λ[f0(xn+1|xn)]1−λdxn+1

≤
[
1− ‖f1(xn+1|xn)− f0(xn+1|xn)‖2

4

]λ

≤





[1− δ2
2]

λ, if xn ∈ Ai,

1, if Xn ∈ Ac
i

=1 +
(
[1− δ2

2]
λ − 1

)
I(xn ∈ Ai).

(4.6.10)
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similarly,

∫ [
f0(xn+1|xn)

f1(xn+1|xn)

]λ

f1(xn+1|xn)dxn+1

≤1 +
(
[1− δ2

2]
λ − 1

)
I(xn ∈ Ai).

(4.6.11)

Let β = b1 + 1 +
(
[1− δ2

2]
2λ − 1

)
ζ = 1 +

(
[1− δ2

2]
2λ − 1

)
ζ/2 < 1. We get by

equation (4.6.10) that

∫∫ [
f1(xn+1|xn)

f0(xn+1|xn)

]λ

f0(xn+1|xn)f0(xn|xn−1)dxn+1dxn

≤1 +
(
[1− δ2

2]
λ − 1

) ∫
I(xn ∈ Ai)f0(xn|xn−1)dxn

≤1 +
(
[1− δ2

2]
λ − 1

)
ζ

≤β

(4.6.12)

For any f ∈ Vi, by Proposition 4.6.5 and equation (4.6.11),

∫ [
f0(xn+1|xn)

f1(xn+1|xn)

]λ

f(xn+1|xn)dxn+1

=

∫ [
f0(xn+1|xn)

f1(xn+1|xn)

]λ

[f(xn+1|xn)− f1(xn+1|xn)]dxn+1 +

∫ [
f0(xn+1|xn)

f1(xn+1|xn)

]λ

f1(xn+1|xn)dxn+1

≤b1 + 1 +
(
[1− δ2

2]
λ − 1

)
I(xn ∈ Ai).

So

∫∫ [
f0(xn+1|xn)

f1(xn+1|xn)

]λ

f(xn+1|xn)f(xn|xn−1)dxn+1dxn

≤b1 + 1 +
(
[1− δ2

2]
λ − 1

) ∫
I(xn ∈ Ai)f(xn|xn−1)dxn

≤b1 + 1 +
(
[1− δ2

2]
λ − 1

)
ζ

≤β.

(4.6.13)
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To compute the type I error of the sequence of tests, let n = 2k or 2k + 1

Ef0(φn)

= Ef0(φ2k)

= Prf0(h(k) > 0)

≤ Ef0{exp[λh(k)]} (by Markov inequality)

= Ef0

{
exp[λh(k − 1)]

∫∫ [
f1(x2k|x2k−1)

f0(x2k|x2k−1)

]λ

f0(x2k|x2k−1)f0(x2k−1|x2k−2)dx2kdx2k−1

}

≤ βEf0{exp[λh(k − 1)]} (by equation (4.6.12))

≤ βk (recursively using equation (4.6.12))

≤ βn/2

= exp [−n log(1/β)/2] .

The type II error of the sequence of tests is bounded by

sup
f∈Vi

Ef (1− φn)

= sup
f∈Vi

Ef (1− φ2k)

= sup
f∈Vi

Prf (−h(k) > 0)

≤ sup
f∈Vi

Ef{exp[−λh(k)]} by Markov Inequality

= sup
f∈Vi

Ef

{
exp[−λh(k − 1)]

∫∫ [
f0(x2k|x2k−1)

f1(x2k|x2k−1)

]λ

f(x2k|x2k−1)f(x2k−1|x2k−2)dx2kdx2k−1

}

≤ β sup
f∈Vi

Ef{exp[−λh(k − 1)]} (by equation (4.6.13))

≤ βk (recursively using equation (4.6.13))

≤ βn/2

= exp[−n log(1/β)/2].
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Since both of the type I and II error are bounded by exp [−n log(1/β)/2], φn are a

sequence of exponentially consistent tests.

Lemma 4.6.5. Under the condition of Theorem 4.6.1, there exist finite nets V1, . . . , Vk

covering the set V = {fP : supx ||fP − f0|| > δ} and for each i = 1, . . . , k, there exists

a sequence of tests which is uniformly exponentially consistent for testing

H0 : f = fP0 vs H1 : fP ∈ Vi.

Proof. We partition V twice. The first partition V1, . . . , Vm is made in order to find

intervals A1, . . . , Am satisfying

min
xn∈Ai,fP∈Vi

||f0(·|xn)− fP (·|xn)|| ≥ δ

2
for i = 1, . . . , m.

Then refine the partition of each Vi in order to find uniformly exponentially consistent

tests.

By Lemma 4.6.2, the space Fθ,θ is compact. the cardinality of δ/8-net is finite,

so we can find a finite disjoint partition {V1, . . . , Vm} of V such that for any two

transition density f1,f2 in the same Vi (i = 1, . . . , m),

sup
x
||f1(y|x)− f2(y|x)|| ≤ δ

4
. (4.6.14)

We arbitrarily pick up a model fi = fPi
from each Vi. Since supx ||f0(·|x)−fi(·|x)|| > δ

and ||f0(·|x) − fi(·|x)|| is a continuous function of x, so we can find intervals Ai

satisfying

min
x∈Ai

||f0(·|x)− fi(·|x)|| ≥ 3δ

4
for i = 1, . . . ,m

By equation (4.6.14),

||f0(·|x)− fσ,P (·|x)|| ≥ 3δ

4
− δ

4
=

δ

2

for all fσ,P ∈ Vi and x ∈ Ai and i = 1, . . . , m.
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Suppose that |v + ϕ/[1 + exp(−θ(x− u))]| ≤ |v|+ |ϕ| ≤ a. By proposition 4.6.4,

inf
∀xn, P

fP (xn+1 ∈ Ai|xn) ≥ di

where di = 1√
2πσ

∫
Ai

exp
[
− (|y|+a)2

2σ2

]
dy for i = 1, . . . , m.

Let ζ = min{d1, · · · , dm}, (Obviously ζ > 0∗∗), δ2 = δ/4, λ = σ2/(2σ2), and b1 =
(
1− [1− δ2

2]
λ
)
ζ/2. Now we come to discuss the finer partition of V1, . . . , Vm. Given

b1, let η be the value got as in Proposition 4.6.5 and η1 = min{η, δ/8}/2. Again, due

to the compactness of the space Fθ,θ, the cardinality of η1-net is finite, so we can find

a finer finite disjoint partitions Vij, j = 1, . . . , imi
, i = 1, . . . ,m that satisfy

Vi = Vi1 + · · ·+ Vi,ki
∀i = 1, . . . , m,

sup
x
||f1(·|x)− f2(·|x)|| ≤ 2η1 ≤ η ∀f1, f2 ∈ Vij, ∀i, j. (4.6.15)

By Lemma 4.6.4, we can find sequences of uniformly exponentially consistent test

for H0 : f = f0 vs Hij : f ∈ Vij for any j = 1, . . . , imi
, i = 1, . . . ,m.

∗∗From here, we see compactness is the key factor.



Chapter 5

Numerical Examples

This chapter evaluates the performance of the DPM model through analyzing simu-

lation data and real data. In the DPM model, the data are modeled by a mixture

of kernel in which the kernel is known and the mixing distribution is unknown and

could have any shape. The fundamental idea is to use the mixture of kernel to ap-

proximate the transition density. The advantage of the DPM models is that the

data will automatically determine the shape of the mixing distribution through the

Bayesian framework, and thus the complex model identification procedures could be

avoided. How well could the true transition density be recovered by the DPM model?

In Section 1, we simulate data from some known Markov processes and compare the

Bayes estimates of the transition densities with the true ones. Simulation studies

show that the DPM model recovers the transition densities well for models lying in

the support of the prior as well as for many other popular models. In addition, the

Bayes estimates from the Dirichlet mixture models are shown to be insensitive to the

specification of the prior parameters over a wide range. In the Chapter 1, we argued

that statistical models under i.i.d. assumption will fail when the data show evidence

of dependence on the past. In Section 2, we will compare the prediction powers of

the DPM models under the Markov and the i.i.d. assumptions under the criterion

94
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of the predictive Mean square error (PMSE). In the final section, we analyze the

famous Canadian lynx data using our general DPM models. For real data analysis,

our interest is focused on prediction. The results from the general DPM models are

very encouraging, compared to the literature.

5.1 Estimating the Transition Density

In this section, we illustrate the performance of the DPM model with simulated data

by comparing the Bayes estimate of the transition density with the true one. The

DPM model is given in equation (1.2.5) and the center measure is specified in equation

(3.3.1). In Section 3.3, we gave the details of the “no gaps” MCMC algorithm. In

our computation of the Bayes estimate of the transition density , we will use equation

(3.4.2) while the first part of the equation can be evaluated by equation (3.4.3).

When implementing the “no gaps” algorithm, one needs to specify the parameters

of the base measure of the Dirichlet process. The role of the precision parameter

α in the Dirichlet process controls the extent how the true P0 is close to the center

measure G0, if it exists. Usually, the precision parameter α is set to be small since

the functional form of the true P0 is unknown. Even if it is known, it tends to deviate

from G0 greatly. Since we expect that the true P0 tends to differ much from G0, the

center measure G0 is mainly used to be a reference measure in developing a Bayesian

framework, and could be chosen according to mathematical convenience. In our

simulation, we try some distribution G0 different from that given in equation (3.3.1)

such that we set the components (β0, β1, σ) to have a joint normal-inverse-gamma

distribution. We find that if both G0 are roughly the same diffuse, they yield close

Bayes estimate. However, in practice, the center measure G0 shall be moderately

informative in the sense that it reflects the order of the magnitude of the sample data

roughly. As seen in equation (1.2.8), the posterior consists of the prior part and the
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likelihood part. The likelihood part indicates the information from the data. If there

is enough data, the data will swamp the prior and the specification of the prior does

not affect the inference much. However, in application, typically the sample size is not

big enough. If the center measure G0 puts most of its mass around a very small area

of the parameter space, the random P from the prior information will concentrate

on this small area. The prior will then affect the posterior heavily and it will be

difficult for the few data to update the shape of P properly. When specifying the

constant parameter for the base measure G0 in equation (3.3.1), we suggest that the

mean u0 of β0 should reflect the mean of the data, the standard deviation
√

Vβ of

β0, β1 should reflect the range of plausible values for the data centered around their

mean. For example, if most of the data are between −2 and 2, the prior will be

informative if one specifies u0 = 0,
√

Vβ = 2. But if one set
√

Vβ = 0.000001 and

u0 = 0, the random P will put a lot of mass around 0 in its components β0, β1 in

the prior information. The posterior of P will tend to concentrate around the small

area also in small sample size problem so that the estimate of the transition density

may deviate from the true. A diffuse prior plays little role in the posterior so that

the inference is critically determined by the data even in a small sample size problem.

However, we do not suggest a prior which is too diffuse either. Chow ∗ (1998) gave

the reason that the multinomial sampling of the “configuration” vector s would run

into problem as the likelihood will stay near 0 for long time, invalidating the samples

generated from the posterior. Our simulation experiments does confirm the fact. In

fact, if the prior is chosen to be moderately informative, the result is quite insensitive

to the specification of the constant parameter in equation (3.3.1) over a wide range.

In Theorem 3.2.4, we have showed that the “no gaps” algorithm will converge for

∗In that paper, he used Muller and MaCeachern’s (1997) model mentioned in Section 1.1 to
analyze the overnight Hong Kong Interbank Offer Rates (HIBOR).
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almost any initial starting value. However, the theorem does not imply that the al-

gorithm will certainly converge in reasonable steps. In the “no gap” algorithm, the

number of the parameters increases linearly with the sample size. It usually takes

more time for a high dimensional MCMC algorithm to converge. In above paragraph,

we mention that a too diffuse prior may cause the likelihood gets locked at 0 for a

long period of time which leads to improper samples. Furthermore, theoretical results

may fail numerically. Tierney (1994) mentioned that rounding error arising in com-

putations may introduce absorbing state which causes a non-convergence MCMC.

Hence, before calculating our interested quantity based on the posterior sample, it

is necessary to diagnose if the algorithm has reached convergence (approximately).

Various methods for diagnosing the convergence of MCMC algorithm could be found

in Brooks and Roberts (1997). In general, most of these methods are quite sub-

jective and tell only that the algorithm has not reached convergence if it does not

really. It is also difficult to implement these methods in high dimensional parame-

ter problems. Instead, we use the informal graph method to judge if the “no gap”

algorithm has converged by trying different starting values. If the algorithm reaches

convergence, the posterior sample will show the same pattern whatever the initial

values are. Fortunately, the “no gaps” algorithm will generally reach (approximate)

convergence quickly in a few thousands of steps. In our numerical demonstration,

when we use equation (3.4.2) and (3.4.7) to approximate the Bayes estimate, we set

the N = 15, 000 which indicate the “burn in” period (approximate convergence) has

reached and pick up the posterior sample every r = 10 step, and set the posterior

sample size M = 5, 000. We set r = 10 in order to reduce the variance of the estimate.

Also, even if the algorithm has not reached convergence at step 15, 000, the Bayes

estimate will not affected much by the first few samples. Recall that we will check

the convergence of the algorithm informally by the graphical method with different

initial values in each example.
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In the first example, 150 observations are sampled from a model which lies in the

support of the prior.

Xn+1 =





−2.5− 1
1+exp(−Xn+1)

+ εn+1 with probability 0.3

2
1+exp(−2Xn+1)

+ 0.5εn+1 with probability 0.4

2.5 + 1
1+exp(−Xn−1)

+ 0.25εn+1 with probability 0.3

(5.1.1)

where X0 = 3 and εi
i.i.d.∼ N(0, 1). The true transition density satisfies equation (1.2.6)

with

P0(θ) = 0.3δ(−2.5,−1,−1,1,1)(θ) + 0.4δ(0,2,−1,2,0.5)(θ) + 0.3δ(2.5,1,1,1,0.25)(θ)

and δφ is a degenerate distribution put mass 1 on φ. To complete the specification of

the base measure in equation (3.3.1), we set

u0 = 0, Vβ = 32, Vγ1 = 52, Vγ2 = 52, a = b = 0.01, α = 1.

The Bayes estimate of the transition density and the true transition density are

presented in Figure 5.1.

In the second example, 200 samples are simulated from a mixture of AR(1) as

follows,

Xn+1 =





1.5− 0.5Xn + εn+1 with probability 0.6

−1.5 + 0.5Xn + 0.5εn+1 with probability 0.3

(5.1.2)

where X0 = 3 and εi
i.i.d.∼ N(0, 1). In Section 1.2, we have shows that any AR(1) model

could be approximated by a switching-regression model in equation (1.2.1). Hence

the above finite mixture of AR(1) could be approximated arbitrarily well by a finite

mixture of switching-regression models arbitrarily closely which lie in the support of

the prior. We specify the constant parameter in equation (3.3.1) as follows.

u0 = 0, Vβ = 32, Vγ1 = 52, Vγ2 = 52, a = b = 0.01.α = 1.
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Figure 5.1: Bayes transition density estimate vs the true in example one

(a) Bayes estiamte f̂(y|x) based on 150 sample (b) True f(y|x)

The Bayes estimate of the transition density and the true transition density are

presented in Figure 5.2.

In the third example, 50 samples are simulated from a smooth threshold autore-

gressive (STAR) model as follows,

Xn+1 =(2 + 0.5Xn)
1

1 + exp(−1.5Xn)

− (1 + 0.5Xn)
exp(−1.5Xn)

1 + exp(−1.5Xn)
+ 0.5εn+1

(5.1.3)

where X0 = 0 and εi
i.i.d.∼ N(0, 1). We specify the constant parameter in equation

(3.3.1) as follows.

u0 = 0, Vβ = 22, Vγ1 = 52, Vγ2 = 52, a = b = 0.1.α = 1.

The Bayes estimate of the transition density and the true transition density are

presented in Figure 5.3.
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Figure 5.2: Bayes transition density estimate vs the true in example two

(a) Bayes estiamte f̂(y|x) based on 200 sample (b) True f(y|x)

5.2 Comparing Dirichlet Mixture Model under the

Markov and the i.i.d. Assumption

The i.i.d. assumption does not hold in many situations. Often, the observations show

evidence of dependence on the past especially for time series data. it is expected that

a model with i.i.d. assumption cannot capture the dependence structure among the

data and naturally its performance will suffer. On the other hand, if Markov model

is used to model the data which are i.i.d., its performance may not be much worse

than that of the model with i.i.d. assumption since the latter is a special case of the

former. We will demonstrate the fact by comparing the Dirichlet mixture model under

Markov assumption and i.i.d. assumption. We will use the criterion of the prediction

mean squared errors (PMSE). Suppose that there are n observations available. For

any l ≤ i ≤ n where n is the sample size and l is a given integer, we use the first
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Figure 5.3: Bayes transition density estimate vs the true in example three

(a) Bayes estiamte f̂(y|x) based on 50 sample (b) True f(y|x)

i − 1 observations to predict the the next observation. The predictor is denoted by

ûi+1 for l ≤ i ≤ n. Then the prediction mean squred error (PMSE) is defined as

PMSE =
1

n− l

n∑

i=l+1

(Xi − ûi)
2. (5.2.1)

we shall simulate two data sets from a known Markov process and a data set with

i.i.d. observations. Both sample sizes are 250. We will evaluate the PMSE with the

Dirichlet model under Markov assumption and i.i.d assumption. We set l = 150. the

Bayes predictor is given (3.4.7) based on the posterior sample. Recall that under i.i.d.

assumption, we only need to set β1 ≡ 0 when implementing the “no gap” algorithm

and using equation (3.4.7) to calculate the Bayes predictor.

The first data set is simulated from a AR(1) model as follows:

Xn+1 = −0.5Xn + 0.25εn+1 (5.2.2)
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We specify the constant parameter in equation (3.3.1) for this example as follows:

u0 = 0.6, Vβ = 0.52, Vγ1 = 32, Vγ2 = 32, a = b = 0.05, α = 1.

Before starting the simulation, we find that at N = 10000, the “no gap” algorithm

has approximately reached convergence. The posterior samples from step 10,001

to step 15,000 are used to calculated the Bayes predictors with equation (3.4.7).

The observations, their expections conditioned on the past, and the corresponding

Bayes predictors under both models between time 150–250 are plotted in Figure 5.4.

The estimated PMSE for the Dirichlet mixture Markov model is 0.0649 and for the

Dirichlet mixture model under i.i.d. assumption is 0.0731. The theoretically optimal

value for the PMSE is equal to Var(0.25εi) = 0.0625.

Figure 5.4: Predicting AR(1) with DPM under Markov and i.i.d. assumption

The second data set is simulated from a Threshold Autoregressive (TAR) model

as follows:

Xn+1 =





−0.5Xn + 0.25εn+1 when Xn > 0

0.5Xn + 0.25εn+1 else.

(5.2.3)
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We specify the constant parameter in equation (3.3.1) for this example as follows.

u0 = 0, Vβ = 0.52, Vγ1 = 32, Vγ2 = 32, a = b = 0.05, α = 1.

Before starting the simulation, we find that at N = 10000 the “no gap” algorithm

has approximately reached convergence. The posterior samples from step 10,001

to step 15,000 are used to calculated the Bayes predictors with equation (3.4.7).

The observations, their expections conditioned on the past, and the corresponding

Bayes predictors under both models between time 150–250 are plotted in Figure 5.5.

The estimated PMSE for the Dirichlet mixture Markov model is 0.0696 and for the

Dirichlet mixture model under i.i.d. assumption is 0.0768. The theoretically optimal

value for the PMSE is equal to Var(0.25εi) = 0.0625.

Figure 5.5: Predicting TAR(1) with DPM under Markov and i.i.d. assumption

The third data set composes of i.i.d. observations from the following model.

Xn = βn + 0.1εn, (5.2.4)

where βi
i.i.d.∼ from the gamma distribution G(0.1, 1), εi

i.i.d.∼ N(0, 1) and βi’s and εi’s

are independent. The constant parameter in equation (3.3.1) for this example is set
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as follows:

u0 = 0.1, Vβ = 0.32, Vγ1 = 32, Vγ2 = 32, a = b = 0.05.α = 1.

Again, in this example, the posterior samples from step 10,001 to step 15,000 are

used to calculated the Bayes predictors with equation (3.4.7). The observations,

their expections conditioned on the past, and the corresponding Bayes predictors

under both models between time 150-250 are plotted in Figure 5.6. The estimated

PMSE for the Dirichlet mixture Markov model is 0.271 and for the Dirichlet mixture

model under i.i.d. assumption is 0.271. The theoretically optimal value for the PMSE

is equal to Var(0.1εi) + Var(βi) = 0.11. We shall note that the Bayes predictors from

both models are close to the theoretically expected value 0.1 while the PMSE=0.271

from both models are much larger than the theoretically optimal PMSE 0.11. It is

of interest to discuss this question. Simulation results show that it needs for more

sample size from the the gamma distribution G(0.1, 1) for sample means and variance

to be close to their expectation. For the specific simulation data, the sample mean

is 0.15 and sample variance is 0.02693. So the predictors from the Dirichlet mixture

models are much better than the predictor based on the sample mean.

5.3 Real Data Analysis

In this section, we analyze the famous Canadian lynx data. The lynx data set has

been popular in the literature for testing new statistical methodology for time series

analysis and is available in the R software. Our interest is focused on prediction. The

result from the Dirichlet mixture models are very encouraging.

The Canadian lynx data set consists of annual Canadian lynx trappings around

the Mackenzie River from 1821 to 1934 inclusive as recorded by the Hudson Bay

company. It reflects to some extent the population size of the lynx in the Mackenzie
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Figure 5.6: Predicting i.i.d. observations with DPM under Markov and i.i.d. as-
sumption

River district. If the proportion of the number of lynx being caught to the population

size remains approximately constant, after logarithmic transforms, the differences

between the observed data and the population sizes remain approximately constant.

Hence, it helps us to study the population dynamics of the ecological system in the

system in that area. For further background about the data, refer to Tong (1983).

Figure 5.7 depicts the time series plot of

Xt = log10(number of lynx trapped in year 1820 + t), t = 1, . . . , 114.

The periodic fluctuation displayed in this series has profoundly influenced the ecolog-

ical theory (see below for discussion).

Model 5.3.1 was probably first time series model built for Canadian lynx data by

Moran (1953).

Xt = 1.05 + 1.41Xt−1 − 0.77Xt−2 + εt, (5.3.1)

where {εt} ∼ IID(0, 0.04591). Moran (1953) in his paper pointed out a ”curious
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Figure 5.7: Number of trapped lynx in the MacKenzie River district

feature” – the sum of squares of residuals corresponding to values of Xt greater than

the mean is 1.781, where the sum of squares of residuals corresponding to values of

Xt smaller than the mean is 4.007. The ratio the two sums is 2.250, which would be

judged significant at the 1% level (F-test) against the null hypothesis that the two

data sets of residuals are random samples from the same normal population.

The ARIMA models may be not proper for this data set. Please refer to Tong (page

8–31, 1983) for some arguments. Obviously, this series is not time-irreversible, which

implies the existence of nonlinearity in lynx data. From Figure 5.7, we can see that

there is an approximate ten-year cycle and that the ascent periods (around 6 years)

tend to exceed the descent periods (around 4 years) by approximately 50%. Tong

(1983) proposed to fit the data by TAR (threshold autoregressive) models. Model

5.3.2 is the simplest TAR model he fitted for the data.

Xt =





0.62 + 1.25Xt−1 − 0.43Xt−2 + εt if Xt−2 ≤ 3.25,

2.25 + 1.52Xt−1 − 1.24Xt−2 + ε′t else ,

(5.3.2)
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where {εt} and {ε′t} are independent sequences or i.i.d. variables with N(0, 0.0381)

and N(0, 0.0626) respectively. The TAR models admitted some nice ecological inter-

pretation (Tong 1983). Some ecologists have hypothesized, on the basis of indepen-

dent experiments, the following function form as a represntative of one standard type

of birth curve:

b(x) = b exp(−x/k),

which is shown in Figure 5.8. The crucial feature of this type of birth curve is that

when the adult population exceeds the critical point N , the competition for food

so reduces the average adult fecundity that the birth rate of the entire population

begins to fall off. The TAR model seems reasonable for analysis of the lynx data

Figure 5.8: A typical Birth Curve
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and provide a good fit of the data. There are some other models such as the STAR

(smooth threshold autoregressive) models 5.3.3 fitted well for the data.
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Xt = [0.62 + 1.25Xt−1 − 0.43Xt−2 + εt]
1

1 + exp[γ(Xt−2 − 3.25)]

+ [2.25 + 1.52Xt−1 − 1.24Xt−2 + ε′t]
exp[γ(Xt−2 − 3.25)]

1 + exp[γ(Xt−2 − 3.25)]
, (5.3.3)

where γ is sufficiently large value, and εt’s and ε′t’s are defined in equation (5.3.2).

One key difference between models (5.3.2) and (5.3.3) is whether the coefficients

should be smooth or radical in population density. This is of interpretation and

belief. However, given the available data, the TAR and STAR models are statistically

indistinguishable.

Here, we use the Dirichlet mixture models to predict the annual lynx numbers.

We shall note that the conditional densities given by the Dirichlet mixture model and

STAR model are smooth while that given by the TAR model is discontinuous at some

critical points. Figure 5.9 plots the one-step predictions for the last 40 observations by

AR(2), TAR(2) and the Dirichlet mixture models with two lagged terms. The PMSE

is 0.0593 for AR(2), 0.0509 for Dirichlet mixture models and 0.0463 for TAR(2). The

performance is better than AR(2) and a little worse than TAR(2), given the small

sample size.
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Figure 5.9: One-Step ahead Predictions of Trapped Lynx
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Appendix

A Some Results on Markov Chains

This section gives a brief introduction to some concepts and results on the general

state time-homogeneous Markov chain. Most of the material here is extracted from

Meyn and Tweedie (1993) and Tierney (1994).

A.1. General Concepts

Let χ be a complete seperable space equipped with the Borel σ-algebra B(χ). Usually

χ will be a subset of Rk. A “Markov transition kernel” on (χ, B(χ)) is a map P :

χ×B(χ) → [0, 1] such that:

(i) for any B ∈ B(χ), the function P (·, B) is measurable,

(ii) for any x ∈ χ, P (x, ·) is a probability measure on (χ, B(χ)).

A “time-homogeneous Markov chain” with the transion kernel P (x, ·) is a sequence

of χ-valued random values {Xn, n ≥ 0} such that for n and A ∈ B(χ)),

Pµ(Xn+1 ∈ A|X0, · · · , Xn) = P (Xn, Xn+1 ∈ A),

where µ denote the initial distribution of X0, and Pµ denotes the law of the overall

process. In particular, Px denotes the overall law if the chain starts at x. The critical

aspect of a Markov chain is that it is forgetful of all but its most immediate past.

This means that the future of the process is independent of the past given its present

value. The overall law is completely determined given the initial distribution µ and

the transition kernel P . For any n and any Ai ∈ B(χ) i = 0, · · · , n,

Pµ(X0 ∈ A0, · · · , Xn ∈ An) =

∫

x0∈A0

· · ·
∫

xn∈An

µ(dx0)P (x0, dx1) · · ·P (xn−1, dxn)
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Suppose that P n(x, ·) denotes the conditional probability of Xn given X0 = x,

P n(x,A) = Pu(Xn ∈ A|X0 = x).

The celebrated “Chapman-Kolmogorov equation” states that for any 0 ≤ m ≤ n,

P n(x,A) =

∫

χ

Pm(x, dy)P n−m(y, A).

A measure π∗ on (χ, B(χ)) is said to be “invariant measure” for the chain if

π∗(A) =

∫

χ

π∗(dx)P (x, A) for any A ∈ B(χ).

A probability measure π is called “invariant (stationary) distribution” of the chain if

π(A) =

∫

χ

π(dx)P (x,A) for any A ∈ B(χ).

It means that if the initial distribution of X0 is π, the distribution of any Xn is π

since

π(A) =

∫
π(dw)P (w,A) = · · · =

∫
π(dw)P n(w, A) = Pπ(Xn ∈ A).

The existence of invariant measure π∗ does not imply the existence of the invariant

probability measure unless π∗ is finite. The invariant distribution π is an “equilibrium

distribution” for the chain if for π-almost all x,

lim
n→∞

P n(x,A) = π(A).

A chain with unique equilibrium distribution has good mathematical properties. How-

ever, the invariant distribution of a chain may not exist, or may not be unique.

Example A.1.1. Let χ be the real line R, P (x = 0, ·) is a degenerate measure puts

mass 1 at 0, P (x 6= 0, ·) is the standard Normal distribution. It is easy to verify that

π1, the measure degenerated at point 0, and π2, the standard normal distribution are

both invariant, equilibrium distribution of P .
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“Irreducibilicity” ensures the uniqueness of the invariant distribution if it exists.

In above example, the invariant distribution is not unique because the chain is not

irrducible. A Markov process is called “ϕ-irreducible” if for a given measure ϕ on

B(χ), whenever ϕ(A) > 0, then for any x, there exists some integer n such that

P n(x,A) > 0,

that is, the set A will be finally reached with positive probability starting from any

point. Given the measure ϕ, we could always construct a measure ψ such that the

chain is ψ-irreducible and for any A with ψ(A) = 0,

ψ{ y : The chain will finally reach A staring from y with positive probability } = 0.

Such a measure ψ is called a “maximal irreducibility measure” for the chain. All

maximal irreducible measures are mutually absoultely continuous and dominate the

irreducible measures. We denote by B+(χ) the sets of positive ψ-measure,

B+(χ) = {A ∈ B(χ) : ψ(A) > 0 }.

The class B+(χ) is uniquely defined due to the equivalence of all maximal irreducibil-

ity measures. A chain is called “Recurrent” if it is irreducible and for any A ∈ B+(χ)

U(x,A) =
∞∑

n=1

P n(x,A) = ∞ for any x ∈ χ, and any A ∈ B+(χ).

A recurrent chain admits a unique invariant measure π∗ (up to a constant). A chain

is called “positive” if it is irreducible and admits an invariant distribution π. Recur-

rence does not imply positive unless π∗ is finite. However positivity always implies

recurrence. In a recurrent (positive) chain, the invariant measure π∗ (the invariant

distribution π) is a maximal irreducible measure. For this reason, sometimes it is

convenient to denote the irreducibility property of a recurrent (positive) chain by π∗

(π)- irreducible, and

A ∈ B+(χ) ⇐⇒ π∗(A) > 0 (π(A) > 0).
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Recurrent is equivalent to the following conditions:

For any A ∈ B+(χ),

Px({ The chain visits A infinitely often }) > 0 for all x ,

Px({ The chain visits A infinitely often }) = 1 for π∗-almost all x .

The chain is said to be “Harris recurrent” if for any A ∈ B+(χ),

Px({ the chain visits A infinitely often }) = 1 for all x .

Theorem A.1.1 (Theorem 9.1.5, Meyn and Tweedie (1993)). For a recurrent

chain with invariant measure π∗, the space χ could be decomposed into two disjoint

sets H and N such that,

(a) N is null, π∗(N) = 0. Starting from N , there is positive probability for the chain

to enter H, and positive probability for the chain to remain in N forever.

(b) H is “maximal absorbing” in the sense that P (x,H) = 1 for any x ∈ H and

P (x,H) = 1 implies x ∈ H. Starting from H, the chain will never enter N .

(c) The chain restricted to H is Harris recurrent.

If a chain is Harris recurrent and positive, it is called “Harris positive”. A Markov

chain is “periodic” if there exists a measurable disjoint partition B0, B1, . . . , Bd−1 of

χ for some d ≥ 2 such that for all i = 0, . . . , d − 1 and all x ∈ Bi, P (x,Bj) = 1 for

j = i + 1 (mod d). Otherwise, it is “aperiodic”. A chain is called “ergodic” if it is

positive Harris and aperiodic. A necessary and sufficient condition for a chain to be

ergodic with invariant distribution π is,

‖P n(x, ·)− π‖ → 0 for any x,

where ‖ · ‖ denotes the total variation norm. Two stronger forms of ergodicity are

called “geometric ergodicity” and “uniformly ergodicity”, both ensuring that the
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convergence happens at some rate. An ergodic chain is called geometrically ergodic

if there exists some nonnegative, extended real-valued M with
∫ |M | dπ < ∞ and a

positive constant r < 1 such that

‖P n(x, ·)− π‖ ≤M(x)rn for any x.

A chain is said to be “uniformly ergodic” if and only if

sup
x∈χ

‖P n(x, ·)− π‖ ≤ Rrn for some R > 0, r < 1.

Above, we have considered a series of conditions in increasing order of strength:

Recurrence → Positivity → Harris Positivity → Ergodicity → Geometric Ergodicity

→ Uniformly Ergodicity. In order to look at their implication we need some more

notations. A function h : χ → R is called “harmonic” if for all x ∈ χ,

∫
P (x, dy)h(y) = h(x),

It is equivalent to saying that {h(xi), i ≥ 0} is a martingale series for each initial

condition. A set C ∈ B(χ) is called a “small set” if there exists some m and measure

v on B(χ) such that for any B ∈ B(χ),

inf
x∈C

Pm(x, B) ≥ v(B) and v(C) > 0.

In the general theory, small sets play similar roles to individual states in discrete chain

theory. Given a function V on χ, denote by P nV (x) = P n(x, V ) =
∫

P n(x, dy)V (y)

and π(V ) =
∫

V dπ. The following theorem states the most important and funda-

mental result on ergodic chains.

Theorem A.1.2 (Theorem 13.0.1 and 17.1.7, Meyn and Tweedie (1993)).

The transition kernel P defines an ergodic chain with invariant distribution π if and

only if

‖P n(x, ·)− π‖ → 0, for any x.



Appendix A: Result on Markov Chains 115

Let Pπ denote the overall law governing the ergodic chain with initial distribution

X0 ∼ π. If the function g(x1, . . . , xk) : χk → R is measurable and and Pπ-integrable,

then for any initial distribution of X0,

1

n

n∑
i=1

[g(X1, . . . , Xk) + · · ·+ g(Xn, . . . , Xn+k−1)]

→
∫

gdPπ = Eπ[E(g(X0, . . . , Xk−1)|X0)] a.s..

As noted in Theorem A.1.1, for a positive chain with invariant distribution π, the

space χ could be decomposed into two parts H and N such that π(N) = 0 and the

chain restricted to H is positive Harris and will never leave H once it enters H. These

arguments together with Theorem A.1.2 leads to the following theorem.

Theorem A.1.3 (Theorem 1, Tierney (1994)). Let P be a Markov transition

kernel and π be one invariant distribution of P . Suppose that P is ϕ-irreducible

(particularly π-irreducible), P is positive recurrent and π is the unique invariant dis-

tribution of P . If the chain is also aperiodic, then the following assertions hold.

(a) For π-almost all x,

‖P n(x, ·)− π‖ → 0,

(b) If the function f is π-integrable, then for π-almost initial X0,

1

n

n∑
i=1

f(Xi) →
∫

fdπ a.s. [π].

In an ergodic chain the chain will always converge irrespective of the initial state.

In an aperiodic positive chain the converge are ensured except on a π-null set. If

we could verify the aperiodic positive chain is Harris recurrent, then by definition,

the chain is ergodic. Theorem A.1.4 and A.1.5 give some conditions for the chain to

be Harris recurrent while Theorem A.1.5 connects the aperiodic positive chain and

ergodic chain through the “drift condition”.
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Theorem A.1.4 (Theorem 1 and Corollary 1 and 1∗, Tierney (1994), The-

orem 17.1.5 Meyn and Tweedie (1993)). For any bounded harmonic function h

of an irreducible chain P with invariant distibution π, the following assertions hold

(a) If the chain is positive recurrent, h =
∫

hdπ a.s.

(b) The chain is Harris positive recurrent if and only if h is constant.

(c) If P (x, ·) is absolutely continuous with respect to π for all x, P is Harris recurrent.

(d) Denote by P n
a (x, ·), the absolutely continuous part and by P n

s (x, ·), the singular

part of the Lesbegue decomposition of P (x, ·) with respect to π. If P n
a (x, χ) → 1 for

all x, then P is Harris recurrent.

Theorem A.1.5 (Theorem 11.3.4 and 14.0.1, Meyn and Tweedie (1993)).

Suppose that the chain is irreducible and aperiodic, and f ≥ 1 is a function on χ.

Then (a) and (b) are equivalent:

(a) The chain is positive with invariant measure π, and
∫

f dπ < ∞.

(b) There exist a function V : χ → [0,∞) which is finite at some point, small set C

and b < ∞ such that for all x ∈ χ,

4V (x) =

∫
P (x, dy)V (y)− V (x) ≤ −f(x) + bI(x ∈ C).

Let ‖Q1−Q2‖f = supg≤f |
∫

g dQ1−
∫

g dQ2| denote the f -norm distance between two

measure. (Note the special case f ≡ 1). Let Sv = { x : V (x) < ∞}. Then (a) or (b)

implies that π(Sv) = 1 and for any x ∈ Sv,

P (x, Sv) = 1, and ‖P n(x, ·)− π‖ ≤ ‖P n(x, ·)− π‖f → 0.

Moreover if π(V ) < ∞, then exists R < ∞ such that for all x ∈ Sv,

∞∑
i=0

‖P n(x, ·)− π‖ ≤
∞∑
i=0

‖P n(x, ·)− π‖ ≤ R(V (x) + 1).

If Sv = χ, that is, V is finite everywhere, the chain is positive Harris recurrent.
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The condition in (b) of Theorem A.1.5 is called “drift condition”. It means that

V (xn) is expected to move monotonically downtowards at some uniform rate until the

chain enters C. Drift condition could also be used to verify the geometric ergodicity

of a chain.

Theorem A.1.6 (Theorem 15.0.1, Meyn and Tweedie (1993)). For an irre-

ducible and aperiodic chain, if there exists function V : χ → [1,∞) finite at some

point, small set C, b < ∞ and β > 0 such that for all x ∈ χ,

4V (x) =

∫
P (x, dy)V (y)− V (x) ≤ −βV (x) + bI(x ∈ C),

then the chain is geometric ergodic.

Historically, one of the most significant conditions for uniformly ergodicity of

Markov chains is the “Doeblin condition”. If there exists a probability measure φ

with the property that for any 0 < ε < 1, there exists some m and δ > 0,

φ(A) > ε ⇒ inf
x∈χ

Pm(x,A) ≥ δ.

then the Markov chain is said to satisfy Doeblin’s condition.

Theorem A.1.7 (Theorem 16.0.2, Meyn and Tweedie (1993)). For a ψ-

irreducible chain, the following are equivalent:

(a) The chain is uniformly ergodic, there exists some R, ρ < 1 such that

sup
x∈χ

‖P n(x, ·)− π‖ ≤ Rρn.

(b) The chain is aperiodic and Doeblin’s condition holds.

(c) There exist ε > 0 and a probability measure v such that for all A ∈ B(χ),

inf
x∈χ

Pm(x,A) ≥ εv(A)

In particular, Condition (c) implies a simple bound

sup
x∈χ

‖P n(x, ·)− π‖ ≤ ρ
n
m ,

where ρ = 1− ε.
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A.2. Poisson Equation

Suppose that a Markov chain is positive, recurrent with transition probability P

and invariant probability measure π. The “Poisson equation” associated with a π-

integrable Borel function g is the equation

G− P (G) = g − π(g). (A.1)

Due to the dependence structure of a Markov chain, it is somewhat difficult to study

the statistical property of the sum Sn(g) =
∑n

i=1(g(Xi) − π(g)) directly. However,

the series Sn(g) can be written as

Sn(g) =
n∑

i=1

[G(Xi)− PG(Xi)]

=
n∑

i=1

[G(Xi)− PG(Xi−1)] +
n∑

i=1

[PG(Xi−1)− PG(Xi)]

= Mn(g) + PG(X0)− PG(Xn)

(A.2)

where Mn(g) =
∑n

i=1[G(Xi) − PG(Xi)] is a martingale if a solution to the Poisson

equation (A.1) exists. The martingale approach via solution to the Possion equation

is introduced by Maigret (1978), Duflo (1997) and Meyn and Tweedie (1993) has been

the key approach to (functional) central limit theorems and (functional) laws of the

iterated logarithm for Markov chains. If
∑∞

k=0 |P k(x, g) − π(g)| is finite everyehere,

then

G(x) =
∞∑

k=0

{P k(x, g)− π(g)} (A.3)

is a solution to the Poisson equation (up to an additive constant). This can be easily

verified if we note that PG(x) =
∑∞

k=1{P k(x, g)−π(g)}, so G(x)−PG(x) = g−π(g).

Also
∑∞

k=0 |P k(x, g)−π(g)| is finite everyehere under the assumption of Theorem A.1.5

and A.1.7
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Theorem A.2.8 (Theorem 17.4.2, Meyn and Tweedie (1993)). (a) If the

condition (b) in Theorem A.1.5 is satisfied for an everywhere finite function V , then

for any |g| ≤ f , equation (A.3) is a solution to the Poisson equation (A.1) which

satisfies

|G(x)| ≤
∞∑

k=0

‖P k(x, ·)− π‖f ≤ R(V (x) + 1),

for some R < ∞.

(b) Suppose that the chain is uniformly ergodic, that is, there exists some ε > 0 and

a probability measure v such that for all A ∈ B(χ),

inf
x∈χ

Pm(x,A) ≥ εv(A).

For any g bounded by the constant M , the solution (A.3) to the Poisson equation is

uniformly bounded by

|G(x)| ≤ M

∞∑

k=0

‖P k(x, ·)− π‖ ≤ M

1− (1− ε)
1
m

.
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B Some Techniques of Markov chain Monte Carlo

Let π be a probability measure on a measurable space (χ,B(χ)). Suppose that we

are interested in
∫

f dπ where f is a π-integrable measuarble function. If π is easily

sampled, we could simulate i.i.d. sample θ1, . . . , θn from π. By the strong law of

large numeber, we could approximate
∫

fπ by n−1
∑n

i=1 f(θi) for a large enough n. If

the distribution function of π is too intractable to sample, another possible way is to

construct a π-irreducible, aperiodic, time-homogeneous Markov chain P (θ, ·) with in-

variant distribution π. If we could sample the sequence {θn, n ≥ 1} from the Markov

model, Theorem A.1.2 and A.1.3) ensures that n−1
∑n

i=1 f(θi) may still be used to

approximate
∫

fdπ. This leads to the idea of Markov chain Monto Carlo (MCMC)

simulation.

The MCMC techniques are extremely useful in Bayesian Inference. The Bayes

estimate of f(θ) under the squared error loss is the posterior conditional expectation

of f(θ) given the data as follows,

E(f(θ)|X) =

∫
f dπ(θ|X).

The expression of P (θ|X), the posterior distribution of θ given the sample could be

very complex. MCMC methods are generally used in which the posterior P (θ|X) is the

stationary distribution of some Markov chain. The most popular MCMC algorithms

are Gibbs sampling scheme, Metropolis-Hastings methods and their hybrids. Our

review of MCMC algorithms and theories is based on Gamerman (1997), Tierney

(1994) and others.

The Gibbs Sampler:

Gibbs sampling is a MCMC scheme where the transition kernel is formed by the

full conditional distributions. Assume the distribution of interest is π(θ) where
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θ = (θ1, . . . , θd). Each one of the components θi could be a scalar, vector or a

matrix. Let θ−i = (θj; j 6= i), i = 1, . . . , d. Suppose that all the full conditional dis-

tributions π(θi|θ−i), i = 1, . . . , d are available and we could easily sample from these

distributions.

Gibbs Sampling Scheme:

1) Initialize the iteration counter of the chain to j = 1, and set initial values

θ(0) =
(
θ

(0)
1 , . . . , θ

(0)
d

)
.

2) Obtain a new value θ(j) =
(
θ

(j)
1 , . . . , θ

(j)
d

)
from θ(j−1) through successive

generation of values

θ
(j)
1 ∼ π

(
θ1|θ(j−1)

2 , . . . , θ
(j−1)
d

)

θ
(j)
2 ∼ π

(
θ2|θ(j)

1 , θ
(j−1)
3 , . . . , θ

(j−1)
d

)

...

θ
(j)
d ∼ π

(
θd|θ(j)

1 , . . . , θ
(j)
d−1

)

3) Change the counter j to j + 1 and return to step 2 until convergence is

reached.

Obviously the Gibbs sampling scheme defines a time-homogeneous Markov chain since

the values at j-th step depends on that at step j − 1 with the transition kernel

P
(
θ(j−1), θ(j)

)
=

d∏
i=1

π
(
θ

(j)
i |θ(j)

1 , . . . , θ
(j)
1 , θ

(j−1)
i+1 , . . . , θ

(j−1)
d

)
.

Metropolis-Hastings Algorithm:

Assume that π(θ) has the density (still denoted by π) with respect to some finite

measure ν. In Metropolis-Hastings sampler, a reversible Markov chains is formed in

which the transition kernel density p with respect to ν satisfies

π(θ)p(θ, φ) = π(φ)p(φ, θ), for any θ, φ. (B.1)
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The above equation gives sufficient condition in order that π(θ) be the stationary

distribution of the chain.

Let E+ = {x : π(x) > 0}. Let q(θ, φ) be an arbitrary Markov kernel density with

respect to ν satisfying Q(x,E+) = 1 for any x /∈ E+. The acceptance probability is

defined as

α(θ, φ) = min

{
1,

π(φ)q(φ, θ)

π(θ)q(θ, φ)

}
.

We note that the acceptance probability depends on the ratio π(φ)/π(θ) only; the

complete knowledge of π is not required. In particular, the proportionality constant

is not needed. The kernel

p(θ, φ) = q(θ, φ)α(θ, φ), if θ 6= φ,

defines a density p(θ, ·) for every possible value of the parameter different from θ and

satisfies the reversibility condition given in equation (B.1). There is a probability

r(θ) = 1 − ∫
p(θ, φ) dν(φ) for the chain to remain at θ. So the Metropolis kernel is

defined as

P (θ, dφ) = p(θ, φ)dv(φ) + r(θ)δθ(dφ).

Under the reversibility condition, π is the invariant distribution of the chain.

π(φ) =

∫
π(dθ) P (θ, φ).

Metropolis-Hastings Sampling scheme:

1) Initialize the iteration counter to j = 1 and set the initial values θ(0).

2) Generate a φ from q(θ(j−1), ·) and U from the uniform distribution over

[0, 1]. If U ≤ α(θ(j−1), φ), the move is accepted and set θ(j) = φ, otherwise

θ(j) = θ(j−1).

3) Change the counter j to j + 1 and return to step 2 until convergence is

reached.
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The following are two special cases of Metropolis-Hastings Algorithm:

(i): Metropolis algorithm: If q(θ, φ) = q(φ, θ) for any φ, θ, the acceptance probability

becomes

α(θ, φ) = min

{
1,

π(φ)

π(θ)

}
.

(ii): “Independence chains”: If q(θ, φ) = f(φ).

The Componentwise Metropolis-Hastings Algorithm:

In the Metropolis-Hastings algorithm, the θ vector is taken as a whole and updated

in a single step. Similar to the Gibbs sampling, we could also divide the θ vector

into d blocks θ1, . . . , θd and update them one by one sequentially. Suppose π(θi|θ−i)

is dominated by vi, i = 1, . . . , d. If some of the components are continuous, the

dominating measure vi may be set to be the Lebesgue measure. If some of the com-

ponents is discrete, the dominating measure vi may be set to be the counting measure.

For each of the components θi, we propose an arbitrary conditional transition kernel

density qi(θi, φi) (with respect to vi) which may well depend on the values of θ−i.

Consequently, the acceptance probability could be written as

αi(θi, φi) = min

{
1,

π(φi|θ−i)qi(φi, θi)

π(θi|θ−i)qi(θi, φi)

}
. (B.2)

Similarly, the i-th component transition kernels is

Pi(θi, dφi) = qi(θi, φi)αi(θi, φi)dvi(φi) +

[
1−

∫
qi(θi, φi)αi(θi, φi)dvi(φi)

]
δθi

(dφi),

(B.3)

which satisfies the reversibility condition and hence satisfies

π(φi|θ−i) =

∫
π(θi|θ−i)Pi(θi, φi).
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Equivalently, we could define the i-th transition kernel as

P (i)(θ, dφ) = Pi(θi, dφi)δθ−i
(dφ−i),

It is easy to prove that π be an invariant distribution of P (i), that is,

π(φ) =

∫
π(θ)P (i)(θ, φ). (B.4)

The componentise Metropolis-Hastings steps are as follows:

1) Initialize the iteration counter to j = 1 and set the initial values θ(0).

2) Repeat the following sequentially from i = 1 to d.

Generate a φi from qi(θ
(j−1)
i , ·) and Ui from the uniform distribution over

[0, 1]. If Ui ≤ αi(θ
(j−1)
i , φi), the move is accepted and set θ

(j)
i = φi,

otherwise θ
(j)
i = θ

(j−1)
i .

3) Change the counter j to j + 1 and return to step 2 until convergence is

reached.

Metropolis-within-Gibbs Algorithm:

In (componentwise) Metropolis-Hastings, the more similar is the proposed q (qi) to

π (π(θi|θ−i)), the closer to 1 will the acceptance probability α (αi) be. This does not

necessarily ensure fast convergence but may imply substantial computational savings.

In the ideal situation, if all π(θi|θ−i) are easily sampled from, we may set qi =

π(θi|θ−i). Then the acceptance probability αi = 1 for i = 1, . . . , d. Hence the

proposed θi is drawn from π(θi|θ−i) and accepted with probability 1. This is just the

Gibbs sampler!

But this situation that all full conditional distribution π(θi|θ−i) could be easily

sampled is rare in complex problems met in practice. A convenient way is to per-

form a Gibbs step by setting qi = π(θi|θ−i) if it is easily sampled and otherwise use
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Metropolis-Hastings updating with a d-step cycle. This method is called Metropolis-

within-Gibbs algorithm.

In practice, in order to use Theorem A.1.3, we have to verify its conditions:

(i) π is the invariant distribution of the designed Markov chain,

(ii) the chain is irreducible and aperiodic,

(iii) f is π integrable, that is,
∫ |f | dπ < ∞.

The condition (i) is always satisfied if the components θ1, . . . , θd are updated sequen-

tially in a fixed order either by the Gibbs samper or the Metropolis -Hasting sampler.

Note that by equation (B.4), each Metropolis-Hasting step (Gibbs step is a special

case) produces a component kernel P (i), with invariant distribution π. Hence, after a

cycle of updating all the d components, the cycle kernel P is given by

P (θ, dφ) =

∫
· · ·

∫ d∏
i=1

P (i)(φi−1, dφi),

where φi, i = 1, . . . , d, are the intermediate states after updating d-th component,

φ0 = θ is the starting point and the φ = φd is the new state after a cycle. A use

of the induction method leads to the conclusions that π be the invariant distribution

of the cycle kernel P [Tierney 1994]. A sufficient condition for (ii) to hold is that

each component transition kernel Pi in equation (B.3) is πi = π(θi|θ−i)-irreducible

and aperiodic.



Appendix C: Other useful results 126

C Some Other Useful Results

Theorem C.0.1. (Portmanteau) The following are equivalent.

1. {Pn} ⇒ P .

3. lim sup Pn(F ) ≤ P (F ) for all F closed.

4. lim inf Pn(U) ≥ P (U) for all U open.

5. lim Pn(B) = P (B) for all B ∈ B(χ) with P (∂B) = 0.

Lemma C.0.1 (Lyapounov’s Inequality). When 0 ≤ α ≤ β,

E1/α[|X|α] ≤ E1/β[|X|β]

Theorem C.0.2 (Azuma’s Inequality†, Azuma (1967)). Let X1, X2, . . . be a

martingale difference sequence. If for each i, αi ≤ Xi ≤ βi and γi = βi−αi is a fixed

constant (where αi, βi may depend on X1, . . . , Xi−1), then for any n and a > 0,

Pr

(
n∑

i=1

Xn ≥ na

)
≤ exp

[−2(na)2

∑n
i=1 γ2

i

]
,

Pr

(
n∑

i=1

Xn ≤ −na

)
≤ exp

[−2(na)2

∑n
i=1 γ2

i

]
.

A collection of functions {fθ : θ ∈ T} is called “uniformly equicontinuous” if for

each ε > 0, there exists δ > 0 such that for any two x, y ∈ χ with d(x, y) < δ,

sup
θ∈T

|fθ(x)− fθ(y)| < ε.

The set of all bounded continuous on the locally compact and seperable metric space

χ forms a metric space denoted by C(χ), whose metric is given by

d(f1, f2) = sup
x∈χ

|f1(x)− f2(x)|.

†When Xn’s are independent, the inequality is called Hoeffeding’s inequality
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The set of functions

{ fθ : χ → R : θ ∈ T, fθ ∈ C(χ) },

is a subset of C(χ). This subset is said to be “precompact” if for any sequence

{θi : i ≥ 1, θi ∈ T}, there exists a subsequence {θni
} and a θ0 (which is not necessary

in T ) such that

sup
x∈χ

|fθni
(x)− fθ0(x)| → 0 as ni →∞.

Theorem C.0.3 (Ascoli’s Theorem). Suppose that a topological space χ is com-

pact. A collection of function {fθ : χ → R, θ ∈ T, fθ ∈ C(χ) } is precompact if and

only if both the following two conditions are satisfied:

(a) The set of functions is uniformly bounded, that is,

sup
θ∈T

sup
x∈χ

|fθ(x)| < ∞,

(b) The set of functions is equicontinuous.
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