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Decentralized Markov Decision Processes with Restricted Observations.
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Information sharing in a two-stage and three-stage supply chain is studied.
Assuming the customer demand distribution is known along the supply chain, the
information to be shared is the inventory level of each supply chain member. In order to
study the value of shared information, the supply chain is examined under different
information sharing schemes. A Markov decision process (MDP) approach is used to
model the supply chain, and the optimal policy given each scheme is determined. By
comparing these schemes, the value of shared information can be quantified. Since the
optimal policy maximizes the total profit within a supply chain, allocation of the profit
among supply chain members, or transfer cost/price negotiation, is also discussed.

The information sharing schemes include full information sharing, partial
information sharing and no information sharing. In the case of full information sharing,
the supply chain problem is modeled as a single agent Markov decision process with
complete observations (a traditional MDP) which can be solved based on the policy
iteration method of Howard (1960). In the case of partial information sharing or no
information sharing, the supply chain problem is modeled as a decentralized Markov
decision process with restricted observations (DEC-ROMDP). Each agent may have
complete observation of the process, or may have only restricted observation of the
process. In order to solve the DEC-ROMDP, an evolutionary coordination algorithm is
introduced, which proves to be effective if coupled with policy perturbation and multiple

start strategies.
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Chapter 1 Overview
1.1 Introduction

If information in a supply chain is not shared among the individual chain elements
(e.g., demand information), actual demand information (from downstream to upstream of
the supply chain) may be distorted (this is also termed the bullwhip effect, Lee et al.
1997) and cause unnecessary cost. It has been reported that information sharing is
beneficial to a supply chain, especially in reducing the bullwhip effect (Lee et al. 1997,
2000, Cachon and Fisher 2000) and supply chain cost (Gavirneni et al. 1999,
Swaminathan et al. 1997, Tan 1999). However, it may not be beneficial to a supply chain
if the cost of adopting the inter-organizational information system is too high
(Swaminathan et al. 1997, Cohen 2000). In terms of information sharing, the concern is
usually which production information to share and how to share it to maximize the
mutual benefits in a supply chain (Huang et al. 2003).

The objective of this dissertation is to quantify the value of sharing inventory
information in a make-to-stock environment and optimize the operational control for a
two-stage and three-stage supply chain through appropriate information sharing. This
dissertation is an extension of Davis’ (2004) work on a two-stage supply chain with a
single capacitated supplier and a single retailer. Davis finds the supplier’s optimal policy
by assuming the retailer uses a fixed policy, such as a base stock policy or (s, S) policy.
Davis’ work has some limitations. First, the retailer’s policy is fixed. A more flexible
policy could possibly achieve better system performance. Second, only the value of
sharing retailer’s inventory information is examined. This dissertation allows the retailer
to use a flexible policy, and examines the value of sharing suppliers’ inventory
information. However, the problem becomes much more complicated since the suppliers
and retailer need coordination when making their replenishment decisions in order to
optimize the supply chain. Four different information sharing models are examined in a
two-stage supply chain problem, while eight different models are examined in a three-
stage supply chain.

Solving supply chain models for the optimal replenishment policy is a key to

quantifying information value. Due to the difficulty of determining optimal policies for a



multi-echelon inventory system, researchers usually assert that a certain type of policy,
like a base-stock policy, is optimal for one stage (Gavirneni et al. 1999, Gavirneni 2002,
Simchi-Levi and Zhao 2002ab, Davis 2004) or both stages (Lee et al. 2000), and then
find the specific policy for each stage. Those assumptions do not pursue system-wide
optimality, since the assertion comes from the results of a single-stage inventory system,
and the possibility of coordination between members is ignored. To overcome this
drawback, we model a multi-stage supply chain as a Markov Decision Process (MDP).

In the context of a MDP, an agent with full observation (due to information
sharing) actually faces a common MDP problem (also called a completely observable
MDP, COMDP), while an agent with restricted observations (lack of information
sharing) faces a MDP with restricted observations (called ROMDP). Davis (2004) solves
a single agent ROMDP. As an extension, this dissertation provides a solution for multi-
agent (decentralized) MDP or ROMDP problems (called DEC-ROMDP), where supply
chain members need to be coordinated in order to maximize profit.

This dissertation proposes and analyzes an infinite horizon ROMDP with an
average cost criterion, with an objective to maximize the average reward. A
computationally efficient algorithm is developed to find optimal policies based on the
policy iteration method of Howard (1960) for the infinite horizon undiscounted cost case.
Formally, a ROMDP can be represented as a mixed integer nonlinear programming
(MINLP) problem, for which it is difficult to find the global optimal solution. The basic
heuristic proposed here includes two steps: value determination and policy improvement.
It is proven that the policy improvement searches for an optimal solution by following a
steepest ascent direction. We also propose perturbation methods, such as policy
perturbation and I perturbation (IT is the system steady state probability vector), to
improve local optima towards a global optimal policy. Successive approximation is used
to reduce computational effort. In addition, Ding’s encapsulation evolution method
(1985) can be used to further reduce computational effort for specially structured supply
chain problems (Davis 2004).

A multi-agent model is viewed as a decentralized Markov decision process with
restricted observation (DEC-ROMDP), which can be viewed as a special case of a

decentralized POMDP (DEC-POMDP) (Bernstein et al., 2000) and a multi-agent team



decision problem (MTDP) (Pynadath and Tambe, 2002). An evolutionary coordination
algorithm is used to make a joint policy evolve to a locally optimal solution, and then
perturbation methods and a multiple restart strategy are used to improve the policy. By
using the tools for solving DEC-ROMDP models, a wide range of supply chain problems
with different information sharing schemes are solved.

Chapter 2 proposes the mathematical model for an infinite horizon ROMDP with
an average cost criterion and introduces heuristic algorithms for solution. Chapter 3
gives the definition of DEC-ROMDP and proposes an evolutionary coordination
algorithm to solve the multi-agent decision problems. Chapter 4 applies the evolutionary
coordination algorithm to two-stage and three stage supply chain problems, and
elaborates on information sharing and transfer cost negotiation within the supply chain.

Chapter 5 outlines the future research to be performed.
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Chapter 2 Markov Decision Processes with Restricted
Observations

2.1 Introduction

This chapter presents a computationally efficient procedure to determine control
policies' for an infinite horizon, undiscounted Markov decision process (MDP) with
restricted observations (ROMDP). In the MDP framework, it is usually assumed that an
agent interacts synchronously with a world (Kaelbling, Littman, and Cassandra 1998). A
Markov decision process can be defined as a tuple <S, A, T, R>. Sis a finite set of |S]
world states; A is a set of |A| actions; T: S x A x S — [0, 1] is the state-transition model,
where T(S, a, S”) represents the probability of transition from state S to S°, given that the
agent takes action a; R: S x A—> R is the reward model, where R(S, a) represents the
expected reward for taking action a in state S (assumed to be bounded in this chapter). In
a common MDP, the world state is assumed as completely observable to the agent, so this
process is also called COMDP (completely observable Markov decision process) in this
dissertation. Since this process is considered observable and the state of the system is
observable to the agent, the stationary policy is a function of the state space.

If the world state is not completely observable to the agent, this process is a
partially observable Markov decision process (POMDP), which can be defined as a tuple
<§,A T,R,Z, 0>, where S, A, T, and R are the same as those in a COMDP. Z is a finite
set of |Z| observations; O: SXAxZ—[0, 1] is the observation probability distribution
model, where O (z, a, S”) represents the probability that the agent observes z given that it
took action a and then the world state reached S’. As the agent cannot observe the state
directly, a POMDP policy, different from a COMDP policy, is not a function of the state
space, but the function of belief states, i.e., the steady state probability distribution. Since
the belief state is continuous, it is not realistic to find a policy based upon every possible

belief state. However, an optimal policy can be based only upon finite partitions of belief

! This dissertation attempts to find the optimal stationary deterministic policy for an infinite horizon
undiscounted ROMDP problem. A ROMDP policy space is a subset of a common MDP policy space. A
common MDP policy can be categorized as deterministic or randomized, Markovian or history-dependent.
A stationary policy is generally for an infinite horizon MDP problem. Refer to Puterman (1994) for details
of these policy types.



state space (Smallwood and Sondik 1973)%. Several algorithms have been developed to
efficiently determine the partitions (Sondik 1971, Cheng 1988, Littman 1994, and Zhang
and Liu 1996).

A Markov decision process with restricted observation is a special POMDP, and it
can be represented by a tuple <S, A, T, R, Z, G>, where S, A, T, R, and Z are the same as
those in a POMDP. G: S — Z represents the mapping function from a state to a single
observation for the agent. If a state S outputs an observation z, it can be denoted as G(S)
=z. A ROMDP policy is represented as a function of the observation space. In this
policy, if an action a is applied given an observation z, this action a would apply to any
possible state S satisfying G(S) = z, that is, the action a must be implementable/admissible
to all these states. Hence, a ROMDP policy is also called an “implementable policy”
(Serin and Kulkarni 1995) or “admissible policy” (Smith 1971).

Although an ROMDP is a special POMDP, it is still intractable to solve. Serin
and Kulkarni (1995) develop an algorithm that finds local optimal stationary randomized
policies for the infinite horizon discounted reward case, with the objective to optimize the
total discounted reward. Serin and Avsar (1997) introduce a similar algorithm for the
finite horizon discounted reward case, and prove a deterministic optimal policy exists in
this case. Smith (1971), Hordijk and Loeve (1994), and Hastings and Sadjadi (1979)
present algorithms that determine deterministic policies for infinite horizon undiscounted
reward problems, with the objective to optimize the average reward. The algorithm
developed by Hastings and Sadjadi (1979) is enumerative based and thus intractable for
large problems. The algorithm developed by Smith (1971) is a policy iteration type of
algorithm containing enumerative component when a better policy cannot be determined.
None of the above algorithms have addressed to an infinite horizon large scale ROMDP
problem. This chapter introduces a computationally efficient algorithm that also finds
optimal deterministic policies, based on the policy iteration method developed by
Howard (1960) for the infinite horizon undiscounted cost case. This chapter
demonstrates empirically that the algorithm finds the optimal deterministic policy for
over 99% of the general ROMDP problem instances generated. In the instances where

the optimal policy cannot be determined, the average error in the objective function is

? This applies to a finite horizon POMDP problem. It may not be the case for an infinite horizon problem.



less than 1%. This algorithm achieves better performance for supply chain ROMDP

problems.

2.2 Mathematical Model for a ROMDP
2.2.1 ROMDP Notation

The process being analyzed is a Markov Decision Process with state space S and
action space A. The state of the system cannot be observed, however some output of the
system is observable. Based on those outputs, one can infer the state or possible states of
the system. This chapter finds an optimal control policy defined over the observation
process that maximizes the long term average reward. The optimal policy has the
property that each state within a given observation set takes the same action. A summary
of the problem notation is presented below.

S: The set of possible states {1...N}.

A: The set of available actions {1...M}.

Xn: A random variable that defines the state at time n.

Yn: A random variable that defines the action by the agent at time n.

p; : The one step transition probability from state i to j given an action a.
p; =P{X,, =]lX,=iY,=a},Vi,jeS,VaeA,

Cia: The expected immediate reward associated with transitioning to state i given
action a.

Z: The set of observable outputs {1...K}.

G(i): A function mapping a state i to a single observable output in the set Z.

Sk: A partition of the state space S satisfying {i: G(i) = k}. Without loss of
generality, it is assumed any state space partition has the same number (say L)
of states. Obviously, K*L = N, and Sy={(k-1)*L+1, (k-1)*L+2...k*L}, keZ.

A(K): The set of admissible actions for the observation set Sx. Obviously, A(K) <

A. Without loss of generality, it is assumed A(K) = A for a generic ROMDP.

Z,: A random variable that defines the observation by the agent at time n.



2.2.2 LP Model for a MDP Problem
Before presenting the mathematical model for a ROMDP with undiscounted
reward and infinite horizon, this section starts from the linear programming model (LP)

for an underlying common MDP problem (Wolf and Dantzig, 1962).

This primal problem aims to maximize the average reward. Its decision variable
X;, can be interpreted as the steady state probability that state i will be visited at a typical
transition and action a will be applied. The constraints can be satisfied with some
feasible steady state probabilities associated with a certain randomized stationary policy,

that is, a policy that chooses at state i the action a with probability X, .

LP theory implies that the optimal solution is always obtained with deterministic
stationary policies. Indeed, if a* is an optimal (deterministic) stationary policy that is

uni-chain (« * (i) denotes the action for the state i), and x* is the corresponding steady

. : . X ifa=a*() . : :
state probability of state i, then x;, =1 ) ® is an optimal solution of the
0 otherwise.

primal problem.
It is also insightful to investigate the following dual formulation for the problem.
min ¢

subject to
N

g+v —z pjv; >¢c, VieS,ae A
i=1

v, free, Vj € S

Howard’s (1960) dynamic programming algorithm solves a COMDP problem from a

dual perspective. This chapter solves the associated ROMDP from a primal perspective.



2.2.3 NLP Model for a ROMDP Problem
By adding observability constraints to the above primal MDP problem, the
nonlinear programming (NLP) model for a corresponding ROMDP problem is obtained.

Before formulating the NLP model, the following definitions are introduced.

a= (0(11,0{12,...,051,\,' ‘ Qyiseees Oy ‘ | 155 0pm ) is a ROMDP policy, in which
oka denotes the probability that action a is applied given observation k. Here

X; X;
— 1a _ 1a H
Ay = =—,Vie§,,acA.

i Xia XI

a
M
X = X,,Vies.
a=1
The NLP model for the ROMDP is given as

N M
max ZZCiaXiaG(i)a

i=l a=l

subject to

N M
_ a 1
X = ZZXjaG(j)apji,VI €S

j=1 a=l

X =1

M=

1

N

o, =LvkeZ

1

>0VieS

%

M
Let P(«) be the matrix defined with entries pjj(a), where p;; (a) = Zaema P >
a=l1

M
and ¢ (a)= Zakacia .

a=l1

The NLP can be written in matrix notation as



max (D(a) = Yc(a)
subject to

1 Pla)]=0

X. =1

b

Mz

1

Mz

o, =LvkeZ

—_

a
X; 20,Vie$S
The matrix [I-P()] is not invertible since it contains a redundant constraint. To
reduce this redundant constraint, replace the N™ column of this matrix with all ones and
define an invertible matrix Q(a).

l-p, (@) —ppa)

1

- 1- v 1
Qa) = P, () P, (@) :
1

= Pui(@) —pya(@)
Furthermore, define an n-element vector b =(0,0...1).
Then transform the NLP into
max qb(a) = Xc(a)
subject to
XQ(a)=b
M
Y a,=1vkeZ

a=1

X, >20VieS
By removing the variable X, it becomes
max ®(a)=bQ(a) ' c(a)

subject to

iaka =1,vkeZ

a=l

Note the optimal solution to this NLP problem may be a randomized stationary
policy a.. Thatis, e, , a component of an optimal policy may be a number other than 0
and 1. It is intuitive that an optimal randomized policy will be better than an optimal

deterministic policy. As only the optimal deterministic policy is in concern, the NLP is
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transformed into a mixed integer nonlinear programming problem (MINLP) by adding
the integer constraint.
max ®(ar) = b Q(ar) ' ¢()

subject to

M
> a,=1vkez
akl e{0,l},vkeZ,Vac A

2.3 Methodology for Solving a ROMDP

Definition 1: B = (8,1, Biyseos B | Barseeos Bom || By B ) 18 @ feasible direction at

a feasible policy o if and only if a+68f is also a feasible policy for some 6>0.

M
Clearly, Zﬂka =0,VkeZ and g, 20fore,, =0 and §,, <O0forer,, =1. Without loss

a=l1

K M
of generality, the normalization restriction z Z| B | =1 is assumed on the feasible
k=1 a=

—

direction (Serin and Kulkarni 1995).

Definition 2: A feasible direction £ is an ascent direction at a feasible policy a

ifO(a + 6F) > D(a), for all 0(0,0) for some 5>0.

Lemma 1: If a feasible direction S satisfies that V®(a)" £ is positive, then Sis an ascent
direction at policy a. Here, V®(«) is the gradient of the objective function at c.

Proof: It is Obvious according to the definition of the gradient. (Q.E.D)

Theorem 1: Let V =[v,...v, ]be the solution to Q(a)v= c(a), X =[X,...X, ] be the solution

pj ifG(i)=k,and j=N
0 Otherwise '

to XQ(a)=b, and P* is the matrix with pi';a = { If

. 1/2,if o, =0,and a = a,
a, =arg Iralg\x(z X, (C;y + Z:; pi‘;avj ), then B satisfying S, ={-1/2,if a,, =l,anda # a,

ieS j .
= ! 0, otherwise

is a steepest ascent direction at the current policy o, which maximizes the directional
derivative V®(a)' .

Proof:

11



First derive the gradient of the objective function at a, i.e. V®(«&r). To compute
the gradient, it is assumed that the objective function is continuous and differential at

every point of feasible region, i.e., & can be randomized.

ob(a) _ zac( )xi+zﬁ0i(a)

aaka aaka i aaka

ac;(a) (ZC j {cia if G(i) =k
ia ka 0 .

c?aka Gaka 2 otherwise

) S Z

aaka IESk aka
Let X _ 0X, , oX, OXy
oa,, oa,, Oa,, O0a,,
6 a
X Q)+ x 2D g,
6ak 6aka
Define P* = — Q(a) . Clearly, P** is the matrix with
a(Olka
0 — pj ifG(@i)=k,and j=N
! 0 Otherwise '
Then -2 Q(a) = XP*. Since Q(a) ' exists, = XP“Q(a)™".
aka aka
Therefore, ZC.aX. +XPQ(a) 'c(a)

aka ieS;

Let V =[v,...v, ] be the solution to Q(a)v= c(a), Then

ZX (c +Zp (a)vjj.

acxka ieSy

In order to find the steepest ascent direction at the current policy a,, VO ()" S

should be maximized. Note the current policy o must be deterministic, for instance, if o

1, ifa=b ) )
uses action b for a state set Sy, there must be ¢, = .. Itis obvious for a state
0, otherwise

set Sk, (By;»---» By ) Mmust have a single negative component, say Sq,. Note

12



M
B =0fora, =0, B, <0fora, =1,and B, =0,Vk € Z. In order to

a=1
maximize V@ (a)" 3, it is obvious to choose a component Byax among (B, ;... By ) »

0D (a

aka

wherea” = arg max( )) , and set [rax to be - fip, other components zero.

acA

K M
Considering the normalization restrictionZZ\ B |=1,50 fa==1/2, and fp="-1/2. If

k=1 a=l
a =bh, every component of (Byise- Ban) 18 zero. (Q.E.D)

If a steepest ascent direction S at a current policy « is zero, the policy a is
considered as a local optimal policy. Otherwise, if £ is not zero, there exists a step size
>0 such that o+6p (it might be a randomized policy) is better thang, i.e.

A a+0P)> D). Since «a is deterministic and the steepest ascent direction £ is defined as
Theorem 1, it is necessary to make 8= 2 such that o’=o+6fis also deterministic. Note a
step size €= 2 may not satisfy &a+6p0)>d ). However, it is sufficient to keep this step
size and ensure policy move between deterministic policies. This movement has a
drawback that may not keep & a+ 6> ), but if that is a case, the current policy o is
also considered as a local optimal policy. Based on this guidance, a heuristic algorithm is
presented below.

Definition 3: If starting from a current policy a, B is the steepest ascent direction found
according to Theorem 1, then the operation of getting a new policy a’=a+2fis called a
policy improvement.

Definition 4: A policy a is a local optimal solution, if after a policy improvement the
policy change from a to a’, and ®(a') < D(«).

Lemma 2: Let V =[v,...v ]be the solution to Q(a)v= c(a), then g = vy is the gain

associated with the policy .

Proof: For a policy a, the gain is g = XC(er) , where X is the steady state probability.
Since X =bQ(a) ', the gainis g =bQ(a) 'c(a) =bv. Hence g =vy as b=10,0, ...,1]".
(Q.EE.D)
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As deterministic policies are of interest, it is sufficient to only carry the
information needed in terms of the action taken for a given observation set Sk, and this
dispels the necessity to construct a K*M-element decision vector « to represent an

implementable policy. Therefore, a K*M-element original decision vector o can be

represented by K-element policy vector & =[J,...0, ], where 8, =a if o, =1.

Then Q(¢«) has entries pjj(«) where
a 56
P (a) = ZaG(i),a Py = B "
Similarly, the vector ¢() has entries Ci( ) where

Ci (a) = Zcia%m,a = Cise,,
a

These substitutions will be denoted as Q(a/0) and c(a/ ). To simply notation, a policy is
always considered as K-element vector notation in this chapter, but readers should keep
in mind that the policy can have two representations. Use o to represent the action used
for observation set K.
Heuristic Algorithm: The algorithm for finding an implementable policy is as below.
Step 0. Initialization
Generate an initial admissible policy a.
Set g* = -o0.
Step 1. Value Determination
Determine relative values v, steady state probabilities X, and the gain g°.
X =bQ(@",v=Q(@) c(a),
(@).If g* >g",setg =gand proceed to Step 2.
(b) If g“ < g”, the current solution is a local maximum, and stop.

Step 2. Policy Improvement

N
For all ke Z find an action ¢, = argmax,_, Zi o Xi(Cip + Z pi'}avj ), and
€9 -
j=1

go to step 1.
Lemma 3: The algorithm defined above will terminate at a local optimal solution after a

finite number of iterations.
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Proof: By assuming the reward for the Markov decision process is bounded, the gain
associated with any policy would be bounded. Since the policy improvement step will not
increase the gain indefinitely, there must be a finite number of iterations such that the
algorithm terminates. (Q.E.D)

2.4 Perturbation

The above heuristic, called Normal Convergence, does not guarantee to obtain the
global optimum unless only a single local optimum exists. Therefore, the normal
convergence is augmented by a local improvement procedure, called perturbation, to
increase the probability of finding the global optimum.

In order to improve the heuristic, this chapter also provides two perturbation
methods. One is called Policy Perturbation, and the other is called 11 Perturbation.
2.4.1 Policy Perturbation

Policy perturbation is carried out based on the policy from Normal Convergence.
The basic idea is to perturb the best policy obtained from normal convergence, and form
a neighboring policy. By starting from this new policy, repeat value determination and
policy improvement cycle. Once a better policy is found, continue perturbing this policy
until no better policy can be found.

Obviously, how a policy is perturbed and how many perturbations are performed
impacts the effect of policy perturbations. Two approaches for policy perturbation are
developed. The first one (denoted as PP1) modifies only one element in the policy vector,
and the number of the perturbation increases proportionally to the length of the policy
vector. The second one (denoted as PP2) is an extension of the first one. After modifying
one element in the policy vector, it tries to modify any adjacent two elements in the
policy vector. Obviously, PP2 has more perturbations than PP1.

How to modify the element to obtain a new policy? During the policy
improvement step, the test quantities for different alternatives are computed, and the best

alternative is determined, which maximizes the test quantity, say,

N
Zi ¢ Xi(Cy + z pi';av ;) - Actually, the second best alternative can serve as the candidate
&9k -
j=1

for perturbation. The example below demonstrates the approach.
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The original policy o = (¢, &y seees Oy | Osyseees Uapg oo | Oy oeees Ay ) 18 DOL
convenient to represent. According to the characteristic of deterministic policy ¢, this
chapter simplifies the representation of this policy with K-element policy vector, of
which each element corresponds to the selected action index for one of the K
observations. For instance, for a ROMDP problem with N=16, M =4, K=4,and L =4, ,
if a best policy is (4, 3, 3, 2) after Normal Convergence, the original representation of
policy is actually &=(0,0,0,1| 0,0,1,0] 0,0,1,0] 0,1,0,0). Assume the second best
alternatives are (3, 4, 1, 3). Policy Perturbation I (denoted as PP1) results in the following
policies after perturbation: (3,3,3,2), (4,4,3,2), (4,3,1,2), and (4,3,3,3). The Policy
Perturbation II (denoted as PP2) results in the following policies after perturbation:
(3,3,3,2), (4,4,3,2), (4,3,1,2), (4,3,3,3), (3,4,3,2), (4,4,1,2), (4,3,1,3), and (3,3,3,3). Notice
that the first element and the last element in a vector are treated as adjacent.

2.4.2 Pi Perturbation

Pi Perturbation (IT Perturbation) is similar to the policy perturbation, except that
it perturbs a steady state probability vector X instead of a policy vector. Although the
policy is not modified, modification of vector X may lead to a better policy by repeating
the value determination and policy improvement cycle. If a better policy is found, again
perturb the vector X associated with this policy. The process is continued until no better
policy can be found.

Unlike a policy vector, vector X has a continuous space. Different from policy
perturbation, IT perturbation is performed by randomizing the X vector under the
expectation that this modified vector x will eventually lead to a better policy during the
value determination and policy improvement cycle.

Two types of Il perturbation are developed (set &= 1/N).

(1) ITPerturbation I (denoted as PiP1)
) X =X +e&Vi
i) X, = Vi
X.
=1

(2) ITPerturbation Il (denoted as PiP2)
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Hx = max(0,Xx; —¢&) ifr <0.5,Vi
ol x +e ifr > 0.5, Vi

where r is randomly generated value between 0 and 1.

.. X .

i) X =—— Vi
X.

=1

2.5 Experimentation

2.5.1 Generic Problem

To evaluate the effectiveness of an algorithm, different sizes of generic ROMDP
problems are generated, and each problem has 1000 random instances. The heuristic
solution of solving these instances was compared with the optimal solution through brute
force enumeration. Let K represent the number of partitions, L the number of states in
each partition, N=K*L the number of total states in the system, and M the size of action
space.

Table 2.1 gives the percentage of problems solved optimally. By applying
Normal Convergence (NC), Policy Perturbation I and II (PP1 and PP2), and I1
Perturbation I and II (PiP1 and PiP2), 88.3%, 98.5%, 99.2%, 98.8%, and 99.1% of 1,000
problem instances are optimally solved, respectively. By combining PP1 and PiP2,
99.7% of 1,000 problem instances were solved optimally.

Table 2.2 gives the average error from the optimal solution for those problems
that are not solved optimally. Table 2.3 gives the maximum error from the optimal
solution for those problems that are not solved optimally. Table 2.4 gives the average
execution time (seconds) for each problem. The results show that NC can optimally
solve at least 85% of generic ROMDP problems. With policy perturbation or I'l
perturbation, more than 96% of these problems are solved optimally. Among those
problems not solved optimally, the average errors are less than 2% and the maximum
error are less than 10%; with perturbations, the errors are much smaller. As the size of
the action space increases, the policy space increases exponentially and it is prohibitive to
use brute force enumeration to obtain the optimal solution for larger problems. Our

algorithm appears effective and fast to the generic ROMDP problem.
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Table 2.1: Percentage of Problems Solved Optimally (Generic ROMDP)

% of Problem Solved Optimally Among 1000 Instances
KXL,N,M Policy space NC PP1 PP2 PiP1 PiP2 PP1&PiP2
3X3,9,3 3*=27 88.90% | 97.40% | 98.30% | 96.20% | 98.10% 98.90%
4X4, 16,4 4'=256 87.60% | 98.30% | 98.90% | 97.70% | 98.40% 99.50%
5X5,25,5 5°=3125 88.30% | 98.50% | 99.20% | 98.80% | 99.10% 99.70%
6X6, 36, 6 6°= 46656 98.4% 99.6% 99.7% 98.7% 98.4% 99.6%

Table 2.2: Average error of Problems Not Solved Optimally (Generic ROMDP)

Average Error of Problems Not Solved Optimally
KXL,N,M NC PP1 PP2 PiP1 PiP2 PP1&PiP2
3X3,9,3 1.54% 1.33% 1.18% 1.39% | 0.79% 0.68%
4X4, 16,4 0.69% | 0.43% | 045% | 0.57% | 0.40% 0.55%
5X5,25,5 034% | 0.19% | 0.25% | 0.16% | 0.21% 0.28%
6X6, 36, 6 0.09% | 0.09% | 0.09% | 0.09% | 0.09% 0.09%

Table 2.3: Max Error of Problems Not solved Optimally (Generic ROMDP)

Max Error of Problems Not Solved Optimally
KXL,N,M NC PP1 PP2 PiP1 PiP2 PP1&PiP2
3X3,9,3 936% | 520% | 4.79% | 7.23% | 2.29% 1.81%
4X4,16,4 345% | 1.44% | 1.44% | 1.86% | 1.03% 1.44%
5X5,25,5 1.65% | 0.64% | 0.64% | 0.77% | 0.70% 0.64%
6X6, 36, 6 023% | 0.16% | 0.16% | 0.23% | 0.23% 0.16%

Table 2.4: Average Execution Time (seconds) (Generic ROMDP)

Average Execution Time (seconds’) for 1000 Problem Instances

KXL,N,M NC PP1 PP2 PiP1 PiP2 PP1&PiP2 Enumeration
3X3,9,3 0.00026 0.0013 0.0025 0.0017 0.0024 0.0035 0.0014
4X4,16,4 0.0012 0.0063 0.011 0.0083 0.014 0.018 0.037
5X5,25,5 0.0030 0.024 0.043 0.037 0.059 0.073 1.5
6X6, 36, 6 0.01 0.08 0.16 0.08 0.23 0.30 74

2.5.2 Supply Chain Problem
The ROMDP algorithm is also applied to a two-stage supply chain ROMDP

problem (maximization problem), in which the retailer uses a fixed order-up-to policy,

and the supplier aims to optimize the system without knowing the retailer’s inventory

information.

? The experiments were performed on a computer with Intel Pentium 2.2GHz CPU.
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The assumptions include: There is a customer demand distribution that retailer
must satisfy. The supplier’s production and the retailer’s order shipment are
synchronous, and their lead-time is a typical period. Each has a maximum inventory
capacity. The supplier’s production capacity is limited by its inventory capacity, since it
cannot produce more than can be accommodated in his warehouse. The retailer applies
order-up-to policy, and the order-up-to level is its inventory capacity. Note that the
excess demand from a customer or the retailer is lost. The cost structure includes

production/order setup cost (F; and F,), holding cost (H and H ), variable
production/purchase cost (W and W, ), and a stock out penalty cost (L, and L,). Here

the subscription of “s” stands for the supplier and “r” for the retailer.
The typical parameters for the supply chain are as follows.

C,: The inventory capacity for the supplier.

C, : The inventory capacity for the retailer.
V: The selling price to the customer.

d : The demand from the customer, d =0,1...D, assuming D =C, .

i : The inventory level of the supplier, i, =0,1,2,...,C,. The supplier’s
observation on his own inventory is z, =1 .

I, : The inventory level of the supplier, i, =0,1,2,...,C_ . The retailer’s observation
on her own inventory is z, =1, .

K : The production order quantity placed by the supplier. The possible order
quantity depends on the supplier’s inventory capacity and current inventory level, i.e.,

k, =0,1,2,...C, —i,

The objective is to find the optimal policy for the supplier, who only observes his
own inventory, such that the supply chain total profit is maximize. Obviously, this is a
typical ROMDP problem. The system state can be represented by the inventories of both
the supplier and the retailer, i.e., i = (i, —1)*C, +1,, and the action can be represented by

the order quantity of the supplier, i.e., K. Since the supplier has the capacity restriction,

the policy space is not as large as the generic ROMDP with the same action space.

Suppose the current state is i (the supplier and the retailer’s inventories are
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correspondingly i and i, respectively), under an action k and a customer demand d,

then the total profit of this supply chain would be:
P(i,k,,d)=V *min(d,i ) —[H, *i, + H, *i, +W,_ *k,_ +min(1,k,)*F,

+ min(1, min(k,,i,))*F, + L, *(d —i,)"]

I”IS

R

Since C, and C, determines the problem size, 1000 problem instances for
different C, and C, are generated. It appears that the performance is better than generic

problems (see Figure 2.1, Figure 2.2, and Figure 2.3). Note that C;+ 1 =KandC,+ 1=
L. Without any perturbation, NC method has achieved more than 93% of problems solved
optimally. With perturbation, almost solve all the problems are solved; even for those

problems that are not solved optimally, the average errors are close to zero.

Fraction Optimal Found
100.00% -

98.00% -

96.00% -+

94.00% -+

92.00% -+

90.00% -+

88.00% - T T T —
3X3 axa 5X5 6X6 ™7 8Xx8

‘DNC EPP1 OPP2 OPiP1 EPIiP2 DPPl&PiPZ‘

Figure 2.1: the percentage of problems solved optimally (Supply Chain ROMDP)

Average Relative Error

12.00%
10.00% -
8.00% -
6.00% -|
4.00% -
2.00% - I

0.00% + T — —=

NC PP1 PP2 PiP1 PiP2 PP1&PiP2

|E3X3 M4X4 O5X5 [6X6 M7X7 H8X8|

Figure 2.2: The Average error of Problems Unsolved Optimally (Supply Chain ROMDP)
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Maximum Relative Error
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16.00% -+
14.00% -+
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10.00%
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Figure 2.3: Max Error of Problems Unsolved Optimally (Supply Chain ROMDP)
Table 2.5: Average Execution Time (seconds) (Supply Chain ROMDP)

Average Execution Time (seconds) for 1000 Problem Instances

KXL,N,M NC PP1 PP2 PiP1 PiP2 PP1&PiP2 | Enumeration

3X3,9,3 8e-005 | 0.000251 | 0.000233 | 0.000128 | 7.9¢-005 | 0.00022 4.7¢-005
4X4,16,4 | 0.000252 | 0.000862 | 0.001359 | 0.000267 | 0.000204 | 0.000845 0.000623
5X5,25,5 | 0.00066 | 0.002282 | 0.002818 | 0.000661 | 0.000704 | 0.002072 0.007928
6X6,36,6 | 0.001128 | 0.004493 | 0.008472 | 0.001197 | 0.001108 | 0.005118 0.103613
7X7,49,7 |0.002471 | 0.011151 | 0.019283 | 0.002475 | 0.002805 | 0.01094 1.43334
8X8,64,8 | 0.02791 | 0.14635 | 0.24389 | 0.31893 | 0.33917 0.43547 101.69725

2.6 Conclusion

Experimental results demonstrate that the heuristic approach to solving ROMDP
problems is very effective and efficient. For practical supply chain problems, it has better
performance. The heuristic approach can be used for solving large-scale ROMDP
problems (Davis 2004).
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Chapter 3 Decentralized Markov Decision Processes
with Restricted Observations

3.1 Introduction

This chapter presents a computationally efficient algorithm to solve a distributed
multi-agent decision process problem. It is assumed that a group of agents are fully
cooperative, and that the objective is to derive optimal joint policies for the agents that
maximize the joint reward over an infinite horizon.

Generally, a Markov Decision Process or MDP (Howard, 1960) can be used to
model a single agent decision problem where the agent has full observability of the
process. Within a multi-agent framework, the global state may not be observable by
every agent. It is assumed that agents are only able to observe their local states which are
the observable partitions of the global state space. Due to the partial observability, each
agent faces a Restricted Observable Markov Decision Process or ROMDP (Chapter 2). It
is instructional to note that a ROMDP is a special case of a partially observable Markov
decision process or POMDP (Sondik, 1971). In a POMDP, for each global state there is
a probability distribution associated with the resulting observation whereas in a ROMDP
there is a single observation associated with each global state (although multiple global
states may yield the same observation). Thus, the multi-agent problem can be viewed as
a Decentralized ROMDP (DEC-ROMDP). A DEC-ROMDP can be viewed as a special
case of a decentralized POMDP (DEC-POMDP) (Bernstein et al., 2000) and a multi-
agent team decision problem (MTDP) (Pynadath and Tambe, 2002). Note that within a
DEC-ROMDP framework, if every agent has full observability of the global state, the
DEC-ROMDP degenerates into a Multi-agent MDP (MMDP) (Boutilier, 1999) or a
Decentralized MDP (DEC-MDP) (Bernstein et al., 2000), where every agent is a MDP
decision maker that collectively acts to achieve a common objective.

Solving a decentralized Markov decision problem is extremely difficult. The
computational complexity of a DEC-POMDP with at least two agents or a DEC-MDP
with at least three agents is complete for the complexity class nondeterministic
exponential time (Bernstein et al., 2000). One approach to circumventing this complexity

barrier is to exploit the structure of decentralized problems. For example, Becker et al.
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(2002) present a coverage set algorithm to solve a general class of decentralized MDPs
that exhibits transition independence without reward independence. Another approach is
to simplify the nature of decentralized decision problems. For example, Chades et al.
(2002) convert a DEC-POMDP into a MMDP (Boutilier, 1999) by approximating the
reward function and transition function over observations instead of over states.
However, the conversion from solving a DEC-POMDP to solving a MMDP can be quite
complex and the solution to the MMDP is approximate to the DEC-POMDP since it
ignores the nonstationary property of the transition and reward functions over
observations.

Researchers have been exploiting algorithms within the framework of finite
horizon DEC-POMDPs and DEC-MDPs (for example, Becker et al., 2002, Nair et al.
2003, Chades et al. 2003, Xuan et al., 2001). Chapter 2 presents an effective approach
for solving single agent ROMDP problems. However, a DEC-ROMDP cannot be treated
as separate ROMDPs because the transition and reward function generally depends on the
joint policy, rather than a single agent policy. To the best of the authors' knowledge there
is no efficient algorithm for DEC-ROMDPs in the literature.

This chapter presents an evolutionary coordination mechanism to evolve a joint
policy to a locally optimal policy for infinite horizon DEC-ROMDPs. In the coordination
mechanism, each agent iteratively updates their local policy while keeping the other
agents’ policies fixed. Each update attempts to increase the joint reward until no
improvement can be made. Similar coordination mechanisms are studied by Nair et al.
(2003) and Chades et al. (2002) for finite horizon DEC-POMDPs. For example, Nair et
al. (2003) present a similar coordination mechanism called JESP (joint equilibrium-based
search for policy) which uses either exhaustive search or dynamic programming to find
the best policy for each agent.

Our experimentation indicates that the evolutionary coordination algorithm,
coupled with a multiple start strategy and policy perturbation, effectively solves general
DEC-ROMDPs. Additional experimentation shows that for specially structured supply
chain problems modeled as infinite horizon DEC-ROMDPs, 100% of problems tested are

solved optimally. Using successive approximation (White, 1960) to reduce computation
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effort, this algorithm has been used to solve large-scale supply chain problems, and

appears to be effective and efficient.

3.2 Model
3.2.1 Single agent MDP and ROMDP

A single agent Markov decision process can be defined as a tuple <S, A, T,R>. S

is the finite set of global states; A is the set of actions; T: SxAxS—[0,1] is the state-

transition model, where p;,, represents the probability of ending at a state s’ given that

the process is in state S and the agent takes action a; R: SxA—R is the reward model,
where r? * represents the expected reward when taking action a in state . In a common

MDP (referred henceforth as a completely observable Markov decision process or
COMDP), the global state is assumed as completely observable to the agent.

If a global state is not completely observable to the agent, this process is a
partially observable Markov decision process (POMDP), which can be defined as a tuple
<§,A T,R,Z, 0>, where S, A, T, and R are the same as those in a COMDP. Z is the

finite set of observations; O: SxAx Z —[0, 1] is an observation probability distribution

model, where 0;,, represents the probability that the agent observes z given that it took

action a and then the global state changed to S’. If the observation probability
distribution O is simplified as a mapping function such that G(s)=z, the POMDP
degenerates into a ROMDP. Thus, a ROMDP can be represented by a tuple <S, A, T, R,
Z, G >, where S, A, T, R, and Z are the same as those in a POMDP. G: S — Z represents
the mapping function from a state to a single observation for the agent. Note that the
mapping relationship ensures the partitioning of the state space by observations.
Specially, if G(s)=s, the ROMDP degenerates into a COMDP.

This chapter finds the optimal stationary deterministic policy’ to maximize
average reward for infinite horizon decision problems. A COMDP policy can be
represented as a function of the state space, and a ROMDP policy a function of the

observation space. Under a RODMP policy, if an action a is applied given an

* Assumed bounded in this dissertation.

> A common MDP policy can be categorized as deterministic or randomized, Markovian or history-
dependent. A stationary policy is generally sought for an infinite horizon MDP problem. Refer to
Puterman (1994) for details of these policy types.
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observation z, this action a applies to any possible state s satisfying G(S)=z, that is, the
action a must be implementable/admissible to all these states. Hence, a ROMDP policy
is also called an “implementable policy” (Serin and Kulkarni, 1995) or “admissible
policy” (Smith, 1971). Obviously, a ROMDP policy space is a subset of a common
COMDP policy space.
3.2.2 DEC-ROMDP (Multi-agent)
Definition 1. An n-agent DEC-ROMDP is defined as a tuple <S, A, T, R, Z, G, A>, where
e Sis a finite set of global states;
e A=A x..xA isa finite set of joint actions, with A; indicating the individual
action set by agent i;

o T:SxAxS—[0,1] is a state-transition model, where p;, represents the probability

of ending at state S’, given that the system state is S and each agent i follows their
individual action @;. The collection of individual actions, (a,..., &), form a joint

action a;

e R:SxA—>Ris areward model, where r? represents the immediate expected

reward for taking joint action a=(ay,..., a,) when the system state is S;
o Z={Z,..,Z,}1s afinite set of observations, with Z; indicating the individual
observation set of agent i;
o G={G,,...,G,}is a set of mapping functions, with G;: S —Z; indicating an
individual mapping function from a state to an observation by agent i; and
o A={l...n} isasetof nagents.
Definition 2: Given an n-agent DEC-ROMDP, a stationary individual policy for an
agent i is defined as 6;: Zi — Aj, or &;: S — Aj(due to the mapping function between a
global state and an observation by the agent, i.e. Gi: S —Z;). This chapter tends to use the
representation of 8;: S — A such that a stationary joint policy for these agents can be
defined as 6: S — A x...x A,. Note d is equivalent to (J;, 82,...,0n).

Definition 3: An agent i has full observability if it can observe the global system state.

Otherwise, it has restricted observability where there exists a mapping function Gj: S
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—Z;. It is assumed that only these two types of observability exist within an n-agent
DEC-ROMDP.
Definition 4: Given an n-agent DEC-ROMDP and a current joint policy & = (81, 8,...6n),

d 5 (o

the steady state probabilities can be defined as X° = (x1 ,x2 xi‘ ), where x{

represents the long run probability that the system state is k and |S] is the cardinality of set
S.

Definition 5: Given an n-agent DEC-ROMDP and a current joint policy & = (81, 8>...6n),

the relative values can be defined as v° = (VIS,..‘,V|SS|) where

9’ +Vv. =10+ ps Ve VseS.

s
s'eS

Refer to Howard (1960) for more detail on relative values.

Definition 6: Given an n-agent DEC-ROMDP and a current joint policy & = (1, 3,...0y),
the associated expected reward is defined as ®(3), which is also called the gain, denoted
asg’.

Definition 7: Given an n-agent DEC-ROMDP and a current joint policy & = (1, 9,...0y),
the following operation is called an individual policy update by agent i.

e Ifagent i has full observability, find a new individual policy ¢,' which satisfies

5i'(s) =arg max(rs(gl(s)!“'v(si—l(S)’ais(5}+l(s) aaaaa S (s)) + Z p(fsl‘(s) aaaaa 0i-1(8),81,0141(8),--00 (8)) Vsa‘)
aeh vs'eS

VseS.
o Ifagent i has restricted observability, find a new individual policy J,' which satisfies

5}'(5) =arg max[ Z X;Y(rs(é'l(s)w-ﬁm(5),ai,5i+1(5) ,,,,, 60 (5)) + Z p((s‘,(s) ,,,,, i-1(8),81,6;11(8),0, (8)) V:)]

VseS aeh,  vseS Vs'eS
Gi(s)=z Gi(s)=z

Vz,eZ,.
Note the above update keeps individual policies unchanged for every agent except agent

I, i.e. the new joint policy after the update is &'=(31,...,0i_1,0i',0j4+1»-+->0n ) -
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Lemma 1: Given an n-agent DEC-ROMDP and a current joint policy & = (J1, d2...0n),
after a policy update by agent i, the joint policy becomes d'= (81,...,8j_1,0j ', Ojis--On ) -
e Ifagent i has full observability, it is guaranteed that ®(3') > ®(J).
e Ifagent i has restricted observability, it is not guaranteed that ®(3') > @(J).

Proof: If agent i has full observability, the agent faces a COMDP problem by fixing the
other agents' policies. A policy update can be treated as a policy improvement step in

Howard's (1960) procedure which guarantees ®(8') > ®(8). If agent i has restricted
observability, the agent faces a ROMDP problem by fixing other agents’ policies. A

policy update can be treated as a policy improvement step in the heuristic algorithm for
solving a ROMDP problem. According to Chapter 2, this does not

guarantee d(3') > ®(0). However, if this happens, the agent has found a local optimum
for that ROMDP problem. (Q.E.D)
Definition 8: A policy update by agent i from & = (81, 5,...6,), to

8'=(8,,....8,,,8,,8,,,,...,0,) is called a policy improvement if ®(5') > d(3).

+0i150i 50415+

Definition 9: A joint policy & = (81, 9,...0y) is called local optimal policy if no policy

improvement exists from any agent while fixing the other agents’ individual policies.

The gain associated with the local optimal policy is called local optimal gain.

Definition 10: A joint policy 8 = (J1, 8,...0y) is called a joint myopic policy if

O(S) = argmax rsa ,VseS. That is, a joint myopic policy chooses an action which
aceA

maximizes the immediate expected reward for each state.
3.3 DEC-ROMDP Algorithm

This chapter introduces an evolutionary coordination algorithm that updates one
agent’s policy while keeping other agents’ policies unchanged. There exist two
variations of the algorithm. The first updates one agent’s policy only once and then
performs a policy update on the next agent. The second keeps updating one agent’s
policy until no improvement can be made before performing a policy update on the next
agent. Both terminate when no policy update is available at any agent. The details of the

algorithms are as follows.

Algorithm [
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8« Initialize joint policy, the gain g° < ®(3), and fail <-0
while fail <n do
fori=1ton
policy update from & = (81, 82...6n) to 8'=(87,...,0j_1,0j",Ojs15-»0n)
if this policy update is a policy improvement then
9° D), &« &', fail «0

else
fail« fail+1
if fail = n then
break

return g° and 6.

Algorithm II
8 « Initialize joint policy, the gain g° <~ ®(8), and fail < 0
while fail <n do
fori=1ton
improved < 0
while true do
policy update from 6 = (81, 8,...8,) to
8'=(81,--,9j_1,0;",0j411--»0n)
if this policy update is a policy improvement then
9° «— D(3"), d« &', improved « 1

else
break

if improved =1 then

fail < 0
else

fail «— fail+1
if fail = n then

break

return g° and §.

Theorem 1: The above algorithms monotonically increase expect reward, and eventually
will terminate at a local optimal policy after a finite number of iterations.

Proof: Both of the algorithms perform a policy update on an agent. If this policy update
does not improve the current policy, the next agent is selected to perform the policy
update. Hence, the policy is monotonically increasing. As the expected reward is
assumed bounded, the algorithm eventually terminates after a finite number of iterations.

According to Definition 9, it terminates at a local optimal policy (Q.E.D.)

29



3.4 Case Study: A Two-Agent DEC-ROMDP problem
3.4.1 General two-agent DEC-ROMDP Models

-
- ~

i LY
+ Agentch
A (FOy e FC: Full Observability
oty e
TN RO: Restricted Observability
Agent a Agent b Agent a Agent b
(FO) {FO) (RO} (FO)
Model | Model I
Agent a Agent b Agent a Agent b
(FO) (RO (RO} (RO}
Model 1l Model IV

Figure 3.1: General Two-Agent DEC-ROMDP Models with Different Observations

Obviously, several rules exist that may affect the algorithm performance,
including the choice of an initial agent for policy update, the policy updating sequence
for the agents, and the initial joint policy. This chapter studies two-agent (agent a and
agent b) DEC-ROMDP models (refer to Figure 3.1), so the policy updating sequences
can be ignored. Considering the choice of an initial agent for policy update and two
variations of the evolutionary coordination algorithm, four approaches are used as
follows. “ab” (“ba”) denotes using Algorithm I but the initial agent for updating policy is
agent a (b). Similarly, “opt_ab” (“opt_ba”) denotes using Algorithm II, but the initial
agent for updating policy is agent a (b). In order to compare the approaches “ab”, “ba”,
“opt_ba”, and “opt_ab”, the same myopic policy is initialized for each approach. The
term “meta” is used to denote the method that chooses the best result from these four
approaches.

Additional notation is defined for this two-agent DEC-ROMDP as below.

e N =S|, the number of system states.

e My =|Ay, the number of individual actions for agent X.

o Ky =|Z,, the number of possible observations by agent X.

e J,: the number of states in each observation set for agent X.

Without loss of generality, assume each observation by an agent corresponds to

the same number of states. (N, Max Mp, Ka x Kp, Ja x Jp) sufficiently and necessarily
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characterizes a two-stage DEC-ROMDP problem. Due to the mapping function G, (G,),
N = Ka x Ja (or N = K} x Jp) always holds. In addition, a fully observable agent can
always track the system state such that the mapping function between an observation and
a state becomes a one-to-one relationship. Hence the number of states in an observation
set by this agent is 1. In Model I, J,=1 and J, = 1. In Model II, only J, = 1. In Model
III, only J; = 1. In Model IV, neither J; nor J, equals 1.

To evaluate the effectiveness of the approaches, 1000 instances of different sizes
of general DEC-ROMDP problems are generated randomly. In Model I, due to the full
observability of agents a and b, a centralized agent € can be assumed to optimize the
system with full observability. Obviously, since agent ¢ faces a COMDP problem,
Howard’s (1960) procedure can be used to find optimal policies. It should be noted,
however, that experimentation using the evolutionary coordination algorithm shows that
the procedure is able to solve a large percentage of problems tested, and for those not
solved, the maximum deviation from the optimal gain is negligible (Figure 3.2). Table
3.1 shows that evolutionary coordination algorithm is faster than Howard’s procedure for
larger Model I problems. As the problem size increases, the execution time does not
increase as fast as the Howard’s procedure. The reason can be explained as follows.
Policy improvement becomes significantly time-consuming due to more states and
actions that must be evaluated as the problem sizes increases. A decentralized agent has
fewer states and actions to evaluate, thus spends less time improving its local solution
than a centralized agent. This is also an advantageous characteristic of solving problems
from a decentralized perspective.

For Models II, III and IV, a restricted observable agent is assumed, and the
centralized agent is not available to calculate the optimal solution. Brute-force
enumeration is used to find the optimal solution in order to evaluate the effectiveness of

the evolutionary coordination approach.
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Figure 3.2: Performance for the General Model I Starting with a Joint Myopic Policy
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Table 3.1: Average Execution Time (Seconds6) (General Model I)

N, MaxMp, KaxKp, JaxJy Howard | opt ab | opt ba | a b b a

9,3x3,9x9,1x1 0.0002 | 0.0006 | 0.0006 | 0.0004 | 0.0004
36,6%6,36x36,1x1 0.0050 | 0.0139 | 0.0138 | 0.0093 | 0.0124
81,9x9,81x81,1x1 0.1235 | 0.0238 | 0.0237 | 0.0234 | 0.0235

144,12x12,144x144,1x1 0.2965 | 0.1155 | 0.1142 | 0.0939 | 0.0960
225,15x15,225x225,1x1 2.6126 | 0.3060 | 0.3065 | 0.2949 | 0.3026
324,18x18,324x324,1x1 4.6951 | 0.8654 | 0.8289 | 0.8542 | 0.8667

A joint myopic policy proves effective as a starting policy in finding optimal
solutions for Model I. However, the joint myopic policy cannot be used directly to solve
Models II, IIT and IV, since at least one agent is not fully observable. Therefore, we use a
randomly generated policy as an initial policy. Obviously, a multiple starts strategy helps
offset the disadvantage of randomly choosing a poor initial policy.

Policy perturbation can also be applied to improve the algorithm. The
evolutionary coordination algorithm obtains a local optimal policy for Models II, IIT and
IV. Policy perturbation moves an existing local optimum to a neighboring policy by
modifying both agents’ policy vectors simultaneously. By starting from this neighboring
policy, the evolutionary coordination algorithm may come up with a better policy.
Combined with multiple starts, policy perturbation works very effectively.

A two phase perturbation strategy is developed that generates neighboring
policies by changing policy vector entries of each agent simultaneously. These new
policies are then evaluated using the evolutionary coordination algorithms. Before
describing the details of the perturbation strategy, define a state aggregation as all states
that map to a given observation ( z,) by an agent (i), i.e. {S:G;(s)=1z;}.

In the first phase, the second best action (from the final policy improvement phase
of Algorithm I or II) for the policy entry of each state aggregation for each agent is
evaluated using either evolutionary coordination algorithm I or II. The second phase
evaluates adjacent pairs of entries in the policy vector (corresponding to two adjacent
state aggregations) for each agent. As in the first phase, the second best alternatives are

considered.

% The experiments were performed on a computer with Intel Pentium 2.2GHz CPU.
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Experimentation indicates that the performance of “ab”, “ba”, “opt_ab” and
“opt_ba” are not statistically significantly different. Hence, the following figures were
drawn by “meta” solutions from different initial starting policies.

As with Model I, this chapter focuses on relative errors when examining results
for Models II (Figure 3.3), III (Figure 3.4) and IV (Figure 3.5). For all models, as the
problem size increases, the relative error generally decreases. Algorithm performance for
Models II and III shows a similar pattern with the average error for all problems less than
0.5% and maximum error of less than 2% after only 20 restarts. Without perturbation,
Model IV problems of size (36, 3x3, 6x6, 6x6) have an average error of only 0.38% after
20 multiple starts. With perturbation, this error becomes zero after only 14 restarts, i.e.,
all 1000 problem instances are solved optimally. For smaller size problems, fewer
restarts are needed.

Clearly, as the number of restarts increases, the number of scenarios solved
(Percent Optimal Found) is monotonically non-decreasing and the Maximum Relative
Error is monotonically non-increasing. However, it should be noted that the Average
Relative Error is computed only for those scenarios that are not solved optimally. Thus,
the Average Relative Error may not necessarily be monotonically non-increasing since as
the number of restarts increase, some scenarios with small relative error may now be

solved and no longer contribute to this measure.
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Figure 3.3: Performance for General Model II with Multiple Starts
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Figure 3.5: Performance for General Model IV with Multiple Starts
3.4.2 DEC-ROMDP Application to a Supply Chain Problem

Next apply the algorithm to a supply chain problem involving a single-product,

two-stage supply chain with a supplier and a retailer. The assumptions are as follows.

The retailer attempts to satisfy all customer demand from its inventory. Demand each

period is independent and identically distributed. The supplier’s production and the

retailer’s order shipment are synchronous, and their lead-time is one period. Each has a

maximum inventory capacity. The supplier’s production capacity is limited by its

inventory capacity, as it cannot produce more than can be accommodated in its

warehouse. Likewise, the retailer cannot order more than can be accommodated in its

warehouse.

The event sequence of the retailer is described as follows. At the beginning of a

period, the retailer’s inventory holding cost is incurred. As an order is placed, variable

purchase cost and order setup cost are incurred. Note that the purchase cost and setup
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cost can be zero if the supplier has zero stock since the supplier can only fill an order
from stock. During the period, customer demand occurs and is satisfied from the
retailer’s stock. Excess demand is lost if there is insufficient stock, and a penalty cost is
incurred. The retailer receives the product shipment from the supplier at the end of the
period.

The event sequence for the supplier is described as follows. At the beginning of a
period, the supplier’s inventory holding cost is incurred. As a production order is placed,
variable production cost and production setup cost is incurred unless there is no
production. Note that the production capacity is limited by the inventory capacity. If the
supplier knows retailer’s order quantity, he would possibly produce more products based
upon this knowledge (this only happens if the retailer shares its inventory information).
Subsequently, the supplier receives the retailer’s order and ships product from stock.
Excess demand is lost. However, there is no penalty cost as this is an interior product
transfer in the chain. At the end of the period, the supplier’s production is added to
inventory.

The gain of the system is long term profit per period for the supply chain. The
Markov decision process modeling for this problem is straightforward. An individual
inventory level represents a local state, while a system state can be represented by a
vector of both inventory levels. Similarly, an individual order quantity represents a local
action, while a system action can be represented by a vector of both order quantities.

Parameters for the supply chain are defined as follows.

X: A supply chain member, either the supplier (sp) or the retailer (rt).

Cx: The inventory capacity for supply chain member X.

Wy: The unit purchase (wholesale) cost for supply chain member X.

Hy: The unit holding cost per period for supply chain member x.

Fx: The setup (fixed) cost per order for supply chain member X.

Lx: The unit stock out (lost sales) cost for supply chain member x.

I, : The inventory level of supply chain member x, i, =0.1,...,C, .
K, : The production order quantity placed by supply chain member x.

V: The unit selling price to the customer.

d: Demand from the customer, d =0,1...D, assumingD =C, .
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The system state S is defined as s = (i, i, ), and a system action a is defined as

sp?

a=(kg,,k,). A system state transition from s to s’ depends on the corresponding local

state transitions i, —> i "and i, — i, given local actions ki, and Kk, , and demand d,

sp

whereig, "= (i, —k,)" +k andi ' = (i, —d)" + min(ig,,kK,). (Note: (X)" = max(x,0)).

sp °
The corresponding transition probability pg is derived directly from the demand
probability mass function, denoted as p(d). Thus, following system action @ when in
system state S and having demand d occur implies a transition from state Stos’.
In addition, given a system transition from state S under action a when demand d
occurs, the retailer’s profit during the period, P,(s,a,d), is calculated as
P.(s,a,d) =V *min(d,i,)—[H, *i, +W, *min(k,i,)+min(l,min(k,i,))* F, + L, *(d—i,)"]
and the supplier’s profit during the period, P, (s,a,d), is calculated as
P,(s,a,d) =W, *min(k,i,) —[H, *ii, +W, *K, +min(l,k,)*F + L *(k, —ig,)"]
The profit for the supply chain when the system transitions from state S under system

action a with demand d occurring, i.e.r’(d), is the summation of the retailer and
supplier’s profits’, i.e.

r’(d)=P,(s,a,d)+P,(s,a,d)
=V *min(d,i,)—[H, *i, +min(l,min(K,.,i,))* F, + L, *(d =i )"+ H,, *ig,

+W, ¥k, + min(L, kg, ) * F, + L, *(k, —ig,)" ]

Thus, r], the expected immediate reward for state s under action a, is calculated as

AEIOMACH

The following experiments set Hyp,=1, Hy=1, Lsx,=0, Ly=100, F,=40, F=O0,
W,,=10, W,=50, and V=100. Note that C, and C,; determine the size of a problem.

This chapter studies four types of information sharing schemes (Figure 3.6) where
the critical shared information is the individual inventory levels. The objective is to find
optimal policies for the supply chain for each of the different information sharing

schemes. In each scheme, supplier and retailer cooperate to maximize profit in the

" Notice the total profit does not depend upon W, which determines the profit allocation between the
supplier and the retailer.
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supply chain. In Model I, both supplier and retailer share information. In Model 11, the

supplier does not know retailer’s inventory level. In Model III, the retailer does not know

supplier’s inventory level. In Model IV, neither supplier nor retailer knows each other’s

inventory level. This mirrors the four models described above in the general problems.

The evolutionary coordination algorithms for DEC-ROMDP problems are used to solve

them.
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Since Model I can always be solved using a centralized agent, the focus is on the
other three models. Our computational studies show that the evolutionary coordination
algorithm performs even better in supply chain problems than the general problems. For
problems with N ranging up to 36, 1000 instances were tested (Figure 3.7). By using a
multiple start strategy with perturbations, all problems are solved optimally for Models II
and III after only about 4 restarts. For Model IV, after 5 restarts only 2 instances out of
1000 instances for problem (25,5x5,5x5,5x5) and 3 instances out of 1000 instances for
problem (36,6x6,6x6,6x6) are not solved optimally. However, the average error for the
unsolved problems is only 0.03% and the maximum error is only 0.08% which is

probably within the resolution of typical “real” input data.

3.5 Conclusion

Experimental results demonstrate that the evolutionary coordination algorithm,
coupled with a multiple start strategy and policy perturbation is effective and efficient for
solving DEC-ROMDP problems (especially supply chain problems). The effectiveness
of the algorithm is also confirmed for three-stage supply chain problems (Chapter 4). For
large scale problems, in order to maintain the efficiency of the algorithm, successive
approximations (White, 1960) and encapsulation evolution approach (Ding et al., 1988)

can be used to reduce computational effort.
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Chapter 4 Quantifying the Value of Information and
Transfer Price Negotiation in a Supply Chain

4.1 Introduction
4.1.1 Background

It has been reported that information sharing is beneficial to a supply chain,
especially in reducing the bullwhip effect (Lee et al. 1997, 2000, Cachon and Fisher
2000) and supply chain cost (Gavirneni et al. 1999, Swaminathan et al. 1997, Tan 1999).
However, it may not be beneficial to a supply chain if the cost of adopting the inter-
organizational information system is too high (Swaminathan et al. 1997, Cohen 2000).

When adopting an information sharing policy, the concern is usually which
production information to share, how to share it, and how to use it effectively to
maximize mutual benefits to the supply chain members (Huang et al. 2003). In a make-
to-order environment, capacity requirements and production capability of upstream
members is critical in order to satisfy the delivery and quantity requirements of the
customer (D’Amours et al. 1999). In a make-to-stock environment, demand information
is critical to upstream members in order to mitigate the bullwhip effect. Make-to-stock
information sharing problems have been extensively studied (Gavirneni et al. 1999,
Gavirneni 2002, Simchi-Levi and Zhao 2002) from the supplier’s point of view. This
chapter quantifies the value of sharing inventory information in a make-to-stock
environment and optimizes operational control for the entire supply chain. In addition,
this chapter provides insight on how profit can be allocated between the supply chain
members so that appropriate information sharing contracts can be negotiated.

Markov Decision Process (MDP) models are used to quantify the value of
information sharing and characterize the structure of the optimal policy. A Markov
model is a natural way to represent a system where information is shared. Based on the
supply chain structure being used, the definition of the state space indicates the available
information known to the decision-maker at any point in time. A completely observable
MDP (COMDP) is used to model the complete information sharing case. The case of no
or limited information sharing is modeled as a MDP with restricted observations

(ROMDP). The reader is referred to Chapter 2 for the ROMDP algorithm and Chapter 3
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for the decentralized ROMDP (DEC-ROMDP) algorithm. There are several advantages
for using an MDP to study supply chain information sharing models. No assumption has
to be made about the structure of the optimal policy. Previous approaches have typically
made one or more assumptions about the structure of the optimal policy. The effect of
these assumptions is discussed in the following section. It is easy to analyze information
sharing from different vantage points by structuring the costs from the desired view; total
supply chain, retailer, or supplier. Steady state performance parameters are easily
determined to provide managerial insight on inventory levels, profit and cost. In addition,
there have been a number of developments (e.g. White, 1963, Ding et al., 1988, and
Hodgson and Wang, 1992) in computationally efficient methods for MDP problems,
which can be used solve large scale problems.
4.1.2 Literature Review

Typically, the structure of the retailer’s order policy is assumed to be an order-up-
to (Zhao and Simchi-Levi 2002, Lee, So, and Tang 2000) or (S,S) policy (Gavirneni et al.
1999). Chen (1998) considers reorder point/order quantity policies to quantify the value
of information sharing when echelon versus installation based reorder points is used.
Since the supplier is considered to be perfect from the retailer’s perspective and all
retailer demand is backlogged, the optimal policy of the retailer is not influenced by how
the supplier responds and is thus optimized independent of the supplier’s action. As a
result, existing inventory control results for single stage problems are used to assert the
structure of the retailer’s policy or prove the optimality of such structures in the
information sharing setting (Clark and Scarf, 1962, Federgruen and Zipkin 1986,
Kapuscinski and Tayur 1998). Zhao and Simchi-Levi (2002) extend the work of
Kapuscinski and Tayur (1998) to prove the optimality of the supplier’s inventory control
policy under no information sharing. The resulting information sharing analysis is made
from the viewpoint and cost structure of the supplier. In contrast, this dissertation
considers an imperfect supplier and pursues system-wide optimality. Retailer and
supplier policies are jointly optimized. Since the multi-stage information sharing
problem is modeled as an MDP, no assumption has to be made relative to the form of the

policy of the supply chain partners.
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Gavirneni (2002) addresses how the retailer’s optimal (S, S) policy, when set in
‘isolation’ does not result in the lowest total supply chain cost. The best way for the
retailer to make use of the information and achieve system-wide optimality is to modify
the way the retailer responds when information is shared. In order to quantify this,
Gavirneni must optimize the entire supply chain given the information sharing
partnership is occurring. To determine the lowest supply chain cost, he has to evaluate
several suboptimal policies for the retailer, while the supplier’s information sharing
policy is fixed. This is achieved by performing a search over a range of possible control
policy (S, S) values.

One-stage inventory systems have been extensively examined, and policies, such
as base-stock policy, (S, S) policy, X-Y band policy, etc. (Scarf 1960, Wagner 1972,
Shaoxiang and Lamberecht 1996), are optimal given certain assumptions. However, the
optimal policy for a general multi-stage supply chain is not of a simple structure and can
be very difficult to find because the policy depends on system states and structures (Ng,
L1, and Chakhlevitch 2001). An MDP model allows relaxation of the ‘fixed policy’

assumption.
4.2 Information sharing in a 2-stage Supply Chain

4.2.1 Modeling
4.2.1.1 Assumptions

Consider information sharing in a single-product, 2-stage supply chain with a
supplier (manufacturer) and a retailer. The assumptions are as follows. The retailer must
satisfy an 1.1.d. customer demand distribution. The supplier’s production and the
retailer’s order shipment are synchronous, and their lead-time is one period. Each has a
maximum inventory capacity. The supplier’s production capacity is limited by its
inventory capacity, as it cannot produce more than can be accommodated in its
warehouse. Likewise, the retailer cannot order more than can be accommodated in its
own warehouse. The cost structure includes production setup/ordering cost, inventory
holding cost, production and material cost, and stock out penalty cost.

The event sequence of the retailer is as follows. At the beginning of a period, the
retailer’s inventory holding cost is incurred. If an order is placed, purchase cost and

ordering cost are incurred. Note that the purchase cost and setup cost can be zero if the
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supplier has zero stock, since the supplier can only fill an order from stock. During the
period, customer demand arrives and is satisfied from retail stock. Excess demand is lost
if there is insufficient stock, and a stock out penalty cost is incurred. The retailer receives
the product shipment from the supplier at the end of the period.

The event sequence for the supplier is as follows. At the beginning of a period,
the supplier’s inventory holding cost is incurred. As a production order is placed,
production and material cost and production setup cost is incurred unless there is no
production. Note that production capacity is limited by inventory capacity. If the
supplier knows the retailer’s order quantity, he could possibly produce more product-
based upon this knowledge (this only happens if the retailer shares inventory
information). Subsequently, the supplier receives the retailer’s order and ships product
from stock. Excess demand is lost. However, there is no penalty cost as this is an
interior product transfer in the chain. At the end of the period, the supplier’s production
is added to inventory.
4.2.1.2 Model Parameters

Parameters for the supply chain model are defined as follows.

X: A supply chain member, either the supplier (S) or the retailer (r).

Cx: The inventory capacity for supply chain member X.

W;y: The unit purchase (wholesale) cost for supply chain member x.

Hy: The unit holding cost per period for supply chain member X.

Fx: The setup (fixed) cost per order for supply chain member X.

Lx: The unit stock out (lost sales) cost for supply chain member x.

I, : The inventory level of supply chain member x, i, =0,1....,C, .

K, : The production order quantity placed by supply chain member x.

V: The unit selling price to the customer.

d: Demand from the customer, d =0,1...D, assumingD =C, .

4.2.1.3 Markov Decision Process Approach
The MDP approach to modeling this problem is straightforward. An individual
inventory level represents a local state, while a system state can be represented by a

combination of both inventory levels. Similarly, an individual order quantity represents a
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local action, while a system action can be represented by a combination of both order
quantities.

The system state i is defined as i = (i ,i, ), and a system action a is defined as
a=(k,,k,). A system state transition from i to i' depends on the corresponding local

state transitions i; —i;' and i, —1i,' given local actions k, and K, , and demand d,
wherei'= (i, —k, )" +k,, andi, = (i, —d)" +min(ig,k,) i,'= (i, —d)" +min(i,k,).
(Note: (x)" = max(x,0)). The corresponding transition probability p;. is derived directly

from the demand probability mass function, denoted as p(d). Thus, following system
action a when in system state s and having demand d occur implies a transition from state
i toi'.

In addition, given a system transition from state i under action a when demand d
occurs, the retailer’s profit during the period, P, (i,a,d), is calculated as

P (i,a,d) =V *min(d,i,)—[H, *i, +W, * min(k
and the supplier’s profit during the period, P, (i,a,d), is calculated as

i ))*Fr +Lr *(d _ir)+]

rols

i)+ min(l, min(k

T’IS

P.(i,a,d) =W, *min(k,,i,)—[H, *i, +W, *k_+min(l,k)*F, + L, *(k, —i)"].

rols

The profit for the supply chain when the system transitions from state i under

system action a with demand d occurring, i.e.r,”(d), is the summation of the retailer and
supplier’s profits®, i.e.

ria(d) = Pr(iaa,d)—l_ Ps(iaaad)
=V *min(d,i )—[H, *i, + min(l,min(k, ,i,)))*F, + L, *(d —i )" + H_ *i_

+W, *k, +min(l,k,)*F, + L, *(k, —i,)"]

Thus, 1, the expected immediate reward for state i under action a, is calculated as

=2 p(d)*ri(d).
d=0

4.2.1.4 Information Flows
Our objective is to quantify the value of sharing inventory information, and to

examine the sensitivity to demand characteristics, production/setup cost, inventory

¥ Notice the total profit does not depend upon W,, which determines the profit allocation between the
supplier and the retailer.
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capacity, holding cost, and stock out penalty cost. In order to determine the value of the
supplier’s or the retailer’s inventory information, four types of information sharing

models are to be analyzed (see Figure 4.1). Davis’s model is included in Figure 4.1.
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Model IV Davis' Model
Figure 4.1: Information Flow in Each Model

MDP is used as the modeling approach, with the objective to find optimal joint
policies. As both supplier and retailer make their own replenishment decisions
collectively to maximize the total profit per period for the supply chain, each model is a
decentralized decision problem.

Assume that an agent SA makes decisions for the supplier, and an agent RA
makes decision for the retailer. In Model I, supplier and retailer share inventory
information with each other. This is a special DEC-ROMDP problem, since both SA and
RA see the entire state of the system. Thus, an equivalent centralized agent CA can make
decisions for the whole system by solving a single agent MDP problem. Once the
centralized decision is determined, decentralized decisions by SA and RA can be easily
derived. In Model II, only the supplier’s inventory information is shared with the retailer.
SA sees only local states while RA sees the entire state of the system. In Model III, only
the retailer’s inventory information is shared to the supplier. SA sees the entire state of
the system while RA sees only local states. In Model IV, there is no information sharing
between supplier and retailer. Each agent sees only its local states. Obviously, no

centralized agent can be utilized to help make decisions for the decentralized agents
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within Models II, III, and IV. These three models are typical DEC-ROMDP problem:s.
In addition, Davis’ model (2004) is a single agent ROMDP problem. Details of single
agent ROMDP and DEC-ROMDP problems are contained in Chapter 2 and Chapter 3
respectively.
4.2.2 Methodology

To quantify the value of sharing inventory information, four different models
need to be considered. Howard’s procedure (1960) can be used to solve Model I, while
the DEC-ROMDP algorithm (Chapter 3) is used to solve Models II, III, and IV. The
DEC-ROMDP algorithm, also called the evolutionary coordination algorithm, updates
the policy for each agent by turns until no more policy improvements can be made by any
agent. During a policy update, all agents’ policies are fixed except the updating agent.
The policy update differs depending upon whether the updating agent has full observation
or restricted observation of the system states. If the agent has full observability, the
policy update guarantees an improved gain, or at least an equivalent gain. If the agent
has restricted observability, the policy update does not guarantee an improved gain. This
evolutionary coordination algorithm eventually terminates after a finite number of
iterations. Policy perturbation and multiple starts are used to improve the algorithm.
Experiments demonstrate that the algorithm with policy perturbation and multiple starts
optimally solves almost all the supply chain problems attempted, and has negligible error
for those problems not solved optimally. Experimental evidence indicates that large-
sized supply chain problems can be expected to be solved with, at worse, negligible
errors. Successive Approximation (White 1960) is used to reduce computational effort.
The encapsulated evolutionary approach (Ding et al. 1985) can be used for further
reduction of computational effort (Davis 2004).

Solving the four models enables the quantification of the value of sharing
information. The average long term profit per period over the supply chain is the gain of

the underlying MDP. Let g, denote the gain for Model i. Obviously, one would expect
that 9, >9, >9g,,and g, 2 ¢, > g,, since more information should always help a

decision maker. The Relative Information Value (RIV) is of more interest. By using

Model IV as a reference, RIV, =(9,—0,)/9, is used to represent the relative value of
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shared information between supplier and retailer, RIV, =(g, —9,)/0, to represent the
relative value of sharing only the supplier’s inventory information with the retailer, and

RIV, =(9,-09,)/9, to represent the relative value of sharing only the retailer’s

inventory information with the supplier.
4.2.3 Experimentation

In the computational experiments, the selling price is set at 100, and all other cost
parameters are accordingly based on reasonable assumptions of real world conditions,
such as markup ratio and interest rate. Considerations in the experimental design are
summarized as follows:

1. The retailer’s order cost is assumed to be 0 as this cost is usually overhead in the real
world.

2. Since the goal is to optimize the total supply chain, the supplier has no stock out cost.

3. The retailer’s purchasing cost can be regarded as the transfer cost between supplier
and retailer, which does not affect total profit, but does affect individual profits.

4. The holding cost is based on the cost during an order period (e.g., a week).

5. The markup ratio ranges from 5:1 to 20:1, which determines the supplier’s production
cost.

6. The demand distribution is assumed to be a truncated discrete Normal distribution.
Mean demand is denoted as “Mean”. The coefficient of variation (Cov), is used to
measure the variability of the demand distribution.

7. The retailer’s inventory capacity is set such that the probability of a lost sale is not
large.

8. In the real world, the supplier may have limited production capacity, which is
reflected by its inventory capacity.

Two experimental designs are performed. The first investigates the effect of
production capacity, mean demand and the coefficient of variation on the relative value
of information. The second investigates the effect of the coefficient of variation, holding
cost, the supplier’s production setup cost, and the retailer’s penalty cost on the relative

value of information.
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4.2.3.1 Design of Experiments |

The first experimental design (denoted as DOE1) is shown in Table 4.1. 12
problems are generated and solved using the evolutionary coordination algorithm with
policy perturbation and 20 restarts. Lost sales’ for all the problems range from 0.2% to
7%, with most of the lost sales being less than 5%. These percentages appropriately

reflect the real world.

Table 4.1: Design of Experiments I

Mean® Cov C, C, H, Hh W, W, L, L F F V
5 03 11 15 1 1 10 50 O 100 40 0O 100

045 13
0.60 15
17

For the 12 problem instances, RIV; = RIV3, and RIV, = 0, except RIV, = 0.03% for
one problem. This is intuitive since the retailer’s decision making is closely related to
current inventory levels. Further, the retailer is not concerned with order setup cost as F,
=0."" Knowing the supplier’s inventory information, the retailer may choose to delay
ordering so that the supplier can make fewer production setups. Thus, it is possible to
reduce total cost and the supplier’s information may be helpful. However, this situation
rarely occurs. If there is any value in the supplier sharing information, it appears to be
small. The exception of 0.03% confirms the point. The followings only consider the

retailer sharing information, i.e., RIV;.

? Lost sale here represents the average number of demand lost per period.
1% Experiments indicate that a mean demand of 7.5 would not be appropriate, since it causes huge lost sales.
" If the retailer’s setup cost is not zero, RIV, would be relatively larger based on experiments.
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Figure 4.2: Relative Information Value when Mean Demand = 5

gain

g3 and g4 when Mean Demand =5 and Cov =0.3

420

415

410 ~

T

405

400
395

390 ~

385

11 13 15 17 19 21 23 25 27 29 31

Cs

Figure 4.3: g3 and g4 vs. Cs, with Mean Demand = 5 and Cov = 0.3

Figure 4.2 indicates that RIV; increases as demand variability increases. This is

intuitive as a supplier with retailer inventory information may predict retailer demand and

make production decisions accordingly. Figure 4.2 also indicates that RIV; decreases as

the supplier’s production capacity increases. As capacity increases, the supplier may

produce more during some periods and may not order at all during other periods. Setup

cost is reduced and holding cost is increased, which subsequently may reduce penalty

cost. Consequently, supply chain profit increases, i.e., g3 and g4 increase (e.g. Figure

4.3). There exists a maximum supply chain profit that can be achieved, once customer
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demand is assumed. When the retailer’s inventory information is shared, the supplier has
additional information about the retailer’s pending order, but as supplier capacity
increases, the value of that information decreases.

Figure 4.3 shows g3 and g4 as a function of supplier capacity (Cs) with a mean
demand of 5 and Cov of 0.30. It is obvious that at some point the incremental value of
capacity will go to zero, and that g3 > g4 always holds (g3 - g4 becomes a constant as
capacity increases, gs does not increase for C; > 25, and g4 does not increase for Cs > 29).
4.2.3.2 Design of Experiments Il

Considering the results from DOE]1, experiment II (DOE2) follows Table 4.2.
Thus, 96 problems are generated and solved. Each problem is solved using the
evolutionary coordination algorithm with policy perturbation and 20 restarts.

Table 4.2: Design of Experiments II

Mean Cov C, C, Hy, H W, W, L L F F V
5 030 15 15 1 1 10 50 O 100 40 O 100
0.45 2 2 20 200 80
0.60

Effect tests using JMP 5.1 indicate that all the main effects except H; are
significant at the 99% significance level. Among the main effects, Cov has the highest
effect, then F, L;, Hs, W, until H,, which is almost negligible.

It is not surprising that a larger Cov makes information more valuable. This was
shown in DOE1. As L,, Fs or W; increases, the total cost in the supply chain increases
and profit decreases. This partially contributes to the increase of RIV3. In addition, being
able to track the retailer’s inventory, the supplier performs better.

The interactions among Cov, W, L, and Fs are significant, but the interactions
involving Hg or H; are not significant. Also, the higher a certain factor is, the more
significant is the interaction between this factor and another factor. The reason for this is
intuitive since a supplier with the retailer’s information will perform better in a highly

variant environment.
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4.3 Information sharing in a 3-stage Supply Chain
4.3.1 Modeling and Methodology

Now study information sharing in a single-product, 3-stage serial supply chain
with a capacitated manufacturer, a capacitated supplier and a retailer. Assumptions and
event sequences for the 3-stage supply chain are similar to those for a 2-stage supply
chain. There is no penalty cost for the supplier or the manufacture as this is an interior
product transfer in the chain. In the 2-stage supply chain, “x” is used to denote supplier
(s) or retailer (r). In the 3-stage supply chain, “x” is also used to denote manufacturer
(m).

Therefore, an individual inventory level represents a local state; while a system
state 1 is represented by a combination of the three members’ inventory levels. Similarly,
an individual order quantity represents a local action, while a system action a can be
represented by a combination of three members’ order quantities.

Given a typical period, system state i = (i, i,i,), action a =(k,,k,,k,) and
demand d, the retailer’s profit is calculated as
P.(i,a,d) =V -min(d,i,)—[H, -i, +W, -min(K, ,i,) + min(l, min(k, ,i,))-F, + L, -(d —i,)"]

The supplier’s profit is calculated as
P,(i,a,d) =W, -min(k,,i,)—[H, i, + W, - min(k

i)+ min(1l, min(k

s’lm

[ ))Fs +Ls (kr _is)+]

S’Im

The manufacturer’s profit is calculated as

P_(i,a,d) =W, -min(k,,i,)—[H, -i, +W, -k, +min(L,k,)-F, + L, -(k, —i )]

s?lm
Total profit for the supply chain is the summation of the above three profits'®.

r2(d)=V -min(d,i,)—[H, -i, + min(1,min(k,,i,))-F, + L, -(d —i,)"

+H, i, + min(l,min(k,i,))-F, + L, -(k, —i)"

+H, i +W,_ -k +min(Lk, )-F, +L_ -(k —i )]

Thus, r*, the expected immediate reward given a state i, and an action a, is calculated as

= p(d) -1 ().

12 Notice the total profit does not depend upon W, and W;, which determine the profit allocation along the
supply chain members.
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From the 2-stage supply chain, it was found that information sharing from an
upper stream member to a down stream member is not particularly valuable. Moving to a
3-stage supply chain, this dissertation focuses on up-stream information flow as shown in

the following eight models (Figure 4.4).
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Figure 4.4: Information Flow in Each 3-Stage Model

The objective is to find optimal joint policies for each model. All members make
their own replenishment decisions collectively to maximize profit per period for the
supply chain. Model I is a single agent MDP problem, while the other models are DEC-

ROMDP problems. The methodology for calculating relative information value is the
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same as for the 2-stage model. Let 9i denote the gain for Model i. As Model VIII has
no information sharing, the relative information value for Model i is defined as

RIVi =(9; —0;)/0s.

4.3.2 Experimentation

4.3.2.1 Design of Experiments 111
Table 4.3: Design of Experiments 111

Mean Cov C, C, C, H, H, H W, W W, L, L, L, Fmn Fs F.

3 03 10 10 10 1 1 1 5 20 50 0 0 100 40 40 0
0.6 2 2 2 10 200 80 80

100

Design of Experiments III (DOE3) is in Table 4.3. 256 problems are generated
and solved. Effect tests were made using JMP 5.1. All the main effects (Hy, Hs, Hr, Wi,
L, Fim, and F) are significant for most RIVs. Of the 28 interactions only 8 are significant

(Hn*Fs, Hn*L;, Hn*Cov, Wi, *Fs, Wi *Cov, Fn*Fs, Fe*L;, Fs*Cov and L,*Cov).

RIVs for the Frst 32 Problems in DOE3

16.00%
14.00%
12.00% ——RIV1
= RI\2
10.00% RIV3
8.00% —>—RIV4
—=— RIS
6.00% —e_RIVG
4.00% RIVZ

2.00%

0.00%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 Problem #

Figure 4.5: RIVs for the First 32 Problems in DOE3 (all holding costs = 1)
Table 4.4: Summary of Mean Comparison for RIVs

Oneway Analysis of RIVs by Group for 256 Problems in DOE3
RIV, RIV, RIV, RIV; RIV, RIVs RIVe RIV;
Mean 0.0776 | 0.0769 | 0.0626 | 0.0582 | 0.0058 | 0.0075 | 0.0272
Tukey-Kramer A A B B D D C

53




The RIVs can be separated into four groups. Figure 4.5 shows RIVs for the first
32 problems in DOE3. It demonstrates visually that RIV5 and RIV6 comprise a group
which gives the least value for information sharing. RIV7 is the second group. It gives
statistically greater values for information sharing. RIV3 and RIV,4 comprise the third
group, while RIV; and RIV, comprise the most valuable group. Table 4.4 lists the mean
for each RIV over 256 problems and Tukey-Kramer test result, which confirms the
grouping.

The above grouping indicates the following. First, information flow from the
retailer to the supplier (s«—r) is most valuable, while information flow from the retailer to
the manufacturer (m«—r), or from the supplier to the manufacturer (m«—s) is
comparatively less valuable. Second, combining information flows m«—r and m«—s helps
some, but falls well short of the performance of the flow s«—r. Third, once information
flow s« has been implemented, a good choice for additional information sharing would
be to add flow m«—s, rather than flow m«r. What may be implied here is that having
information from the immediate successor stage, for every stage, is the most important
information to have.
4.3.2.2 Design of Experiments IV

Table 4.5: Design of Experiments [V

Mean Cov C, C; C, H, H, H W, W, W, L, Ls L, Fm Fs F. \"
3 0.3 8 8 10 1 1 1 5 20 50 0 0 100 40 40 0 100
06 10 10
12 12

Design of Experiments IV (DOE4) is in Table 4.5. 18 problems are generated and
solved. Since the information flow from the retailer to the supplier is most significant,
this dissertation focuses on how RIV; changes with the capacities of the supplier and
manufacturer, and with demand variability. Figure 4.6 shows that RIV; decreases as the
supplier capacity (C;) increases, while the manufacturer’s capacity (C,,) does not appear

to significantly affect RIV;.
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RIV3 Changes with Cm, Cs and Cov in DOE4

10.00%
| \
9.00%- \'Q\

8.00% \
7.00% ‘

\

\
A\

6.00% \
\\\

5.00%

- Cm=12 Cov=0.6
Cm=10 Cov=0.6
Cm=8 Cov=0.6
Cm=12 Cov=0.3

Cm=10 Cov=0.3

Cm=8 Cov=0.3

Cs=8 _
Cs=10 Cs=12

Figure 4.6: RIV; Changes with Cm, Cs and Cov
4.4 Transfer Cost Negotiation

By determining the optimal policy for a supply chain (with or without information
sharing), the total profit per period within the supply chain is obtained. The question is:
how should the additional profit be allocated to the individual supply chain members
after information sharing is implemented? In order to achieve equity among the supply
chain members, the transfer cost from member to member should be fairly negotiated.
Once the transfer cost is determined, the unit purchase cost" can then be calculated, since
the average order quantity for each member can be determined for a given operating
policy. The limits are determined within which the transfer cost negotiation should be
conducted so that the needs of every supply chain member are fulfilled, but have not
modeled the actual negotiation process. For ease of analysis, it is assumed that profit is

positive for all stages and for all models. In what follows, the transfer cost negotiation

55



for a 2-stage supply chain and a 3-stage supply chain are analyzed. Without loss, it is
assumed that the system is taken from no information sharing to some form of
information sharing.
4.4.1 Determination of Transfer Cost in a 2-stage Supply Chain

Initially, the cost of information sharing (CI) is ignored in the determination of
limits on how a fair transfer cost should be negotiated. This section has only a supplier
(manufacturer) and a retailer. Let us define notation for the No Information Sharing
(NIS) case.

So retailer’s sales revenue per period

Cos  supplier’s cost per period, including production and materials, inventory

holding, and setup cost

Cor  retailer’s cost per period including inventory holding, and stock out

penalty.
Co= Cos+ Cor (total cost per period in the supply chain)
Po=  So-Co (total profit per period in the supply chain)
Zy retailer’s transfer (purchase) cost per period
Pos = Zo - Cos (supplier’s profit per period)

Por=So-Co-2Zy (retailer’s profit per period)

Notation for the Information Sharing (IS) case can be defined in the same way,
but replace the subscript “0” with “1.” Note that the MDP approach allows
straightforward computation of the values Sy, Cos, Cor, Po, S1, Cis, Cir, and P;. Given the
initial transfer cost Z,, the problem is to determine transfer cost Z; after implementing
information sharing. Without loss, it is assumed that supplier and retailer make a profit
both before and after information sharing is implemented. Thus, the following 4

constraints are given.

Pos=Zy - Cos> 0 (1)
Por =Sp - Cor - Zo>0 (2)
Pis=2;-C;s>0 €)
Py=S8,-C;;-24,>0 (4)

" The unit purchase cost is how much that the downstream member pays its immediate upstream member.
The transfer cost per period equals the product of the unit purchase cost and the order quantity.
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Since (initially) the cost of sharing information is ignored, it is reasonable to assume that
both supplier and retailer make more profit after implementing information sharing.
Thus,

P15 > Pos — Zy - Cis> 2o - Cos (5)

Py > Por - S1-Cik-2Z1>Sp-Cor- 2o (6)
Figure 4.7 is drawn based on constraints (1), (2), (3), (4), (5), and (6). They define the
area (parallelogram) within which negotiations must occur. The NIS transfer cost must
be within the line segment TT’ and the IS transfer cost must be within the line segment
WW?’ so that everyone makes their profit. If the transfer cost before information sharing
is Zp = x*, U is the point where additional profit is only obtained by the retailer, and U’ is
the point where additional profit is only obtained by the supplier. If the retailer’s average
order quantity changes from (o (before information sharing) to q; (after information
sharing), the unit purchase cost W, should change from x*/q, (NIS) to y*/q; (IS). This

provides guidance for price negotiation on the unit purchase cost.
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Figure 4.7: Transfer cost between supplier and retailer when CI =0
If the cost of implementing information sharing is charged to the supplier, then

constraints (3) and (5) change to (7) and (8), respectively.
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Py=27;-C;;—CI>0 (7)

P> Py, 1.e. Zy - Cis— CI > Z; - Cos (8)

Figure 4.8 is drawn based on the constraints (1), (2), (4), (6), (7) and (8). The
parallelogram that defines where the negotiation must occur becomes smaller vertically,
and the price negotiation should be conducted correspondingly.

Given X*, the upper limit and lower limit of y* can be calculated as:

Y¥max = S1 = Cir - Sp + Cor + X* )

Y*min = Cis - Cos + X* + CI (10)

Given a NIS transfer cost x* that defines a profit allocation ratio, if it is desired
that supplier and retailer benefit according to the same ratio after information sharing, the
IS transfer cost y* is defined by the intersection of the line segments GG’ and Zp=x*. G
is the point where all profit is solely allocated to the retailer and G’ is the point where all

profit is solely allocated to the supplier, in both the NIS and IS cases.

Z, . P,

C,.-C

15" ~0s

Figure 4.8: Transfer cost between supplier and retailer, when CI is charged to the supplier
If the cost of information sharing (CI) is too great, the parallelogram may not

exist and information sharing is not worthwhile. Using the set of 96 problems solved in
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DOE2 (See Appendix) as an example, as CI increases information sharing is worthwhile
on fewer and fewer problems. If CI is 5.5% or more of gross revenue, information
sharing is not beneficial for any problem.
4.4.2 Determination of Transfer Cost in a 3-Stage Supply Chain
What is interesting to note is that a member of the supply chain can possibly
benefit from information sharing, yet be uninvolved in either giving or receiving data.
For instance, if the retailer shares information only with the supplier, the manufacturer
may benefit. This dissertation ignores the politics of this issue. Initially, again ignore the
cost of information sharing in the determination of limits in the negotiation of fair
transfer costs by supplier and retailer. Again, let us define notation for the NIS case.
So retailer’s sales revenue per period.
Com  manufacturer’s cost per period, including production and material,
inventory holding, and setup.
Cos  supplier’s cost (except purchase cost) per period, including setup, and
inventory holding.
Cor  retailer’s cost (except purchase cost) per period, including inventory
holding and stock out penalty.
Zos supplier’s transfer (purchase) cost per period

Zor retailer’s transfer (purchase) cost per period

Co= Com T Cos + Cor (total cost per period in the supply chain)
Po= So-Co (total profit per period in the supply chain)
Pom= Zos- Com (manufacturer’s profit per period)

Pos = Zor - Cos - Zos (supplier’s profit per period)

Por =S - Cor - Zor (retailer’s profit per period)

Notation for the IS case can be defined as before. Use “1” to replace the subscript
“0.” Note again that the MDP approach provides a perfect tool to easily obtain values for
So, Com, Cos, Cor, Po, S1, Cim, C1s, Cir, and P;. Given the initial transfer costs Zys and Zy,,
the problem is to determine Z5, and Z;,. Again without loss, it is assumed that
manufacturer, supplier and retailer make a profit both before and after information
sharing is implemented. The following 6 constraints are given.

Pom =Zos - Com >0 (11)
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P0s=ZOr' COS‘ZOS>O (12)

Por =S - Cor - Zor >0 (13)
Pim=2Zi5s-Cim>0 (14)
Pis=2Z1-Cis-2Z;5>0 (15)
Pi=S1-Ci-2Z1,>0 (16)
Assuming every member makes more profit after information sharing,
Pim > Pom, i.e. Zis - Cim > Zos - Com (17)
Pis> Py, i.e. Zir - Cis - Z1s> Zor - Cos - Zos (18)
Py > Py, i.e. S1-Cir - Z1:> S - Cor - Zoy (19)

Based on the constraints (17), (18), and (19), an isosceles right triangle TT’T” is drawn in
figure 9, which is a profit triangle before information sharing, because any point in the
triangle represents transfer costs (Zgs, Zor) such that everyone has profit. Individual profit

is measured by the distance from that point to a corresponding side of the triangle (e.g.,

the distance from a point X* to TT” equals the supplier’s profit divided by\/E ). Point T
denotes the transfer costs (Zor, Zos) which give the retailer all of the profit. Point T’
denotes the transfer costs (Zor, Zos) which give the supplier all of the profit. Point T”
denotes the transfer costs (Zor, Zos) which give the manufacturer all of the profit. Total
profit is measured by the length of a shorter side in the profit triangle.

Usually after information sharing, S; — Ci > Sg — Cy, since the retailer’s sale
increases, while C;5 < Cys since the supplier can order appropriately to reduce setup cost
by tracking retailer’s inventory (for instance, Model III in Figure 4.4). Whether C;, <
Com or Ciy, > Com depends on the parameters of the specific problem. Figure 4.10
describes a situation where Cip, < Com. The triangle WW’W?” is a profit triangle after
information sharing, which is drawn based on the constraints (14), (15) and (16). By
satisfying constraints (17), (18), and (19), an information sharing triangle UU’U” (also
an isosceles right triangle) is drawn, which defines the area where everyone may make
additional profit after information sharing (refer to figure 10). Given a specific NIS
transfer cost point X* (the transfer cost between the supplier and retailer is X,*, and the
transfer cost between the supplier and the manufacturer is Xs*), an IS transfer cost point
y* (the transfer cost between the supplier and the retailer is y,*, and the transfer cost

between the supplier and the manufacturer is ys*) must be within UU’U” such that every
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one is willing to implement information sharing. Given the x* represented by (., X.), it

is easy to figure out the vertices of the information sharing triangle UU’U”, say

*

U:(x, +C,, —-C,, +C;, —Cy.. X, +C,. —=C,.),

0s> s

U':(x; +S,-C, -S, +C,.X. +C,,, = Cyrn) »

uU"(x, +S,-C, =S, +C,,,x, +S,-C,, =S, +C,,—C,, +C,,) .

The additional profit for each supply chain member, which comes from information
sharing, is measured by the distance from the point y* to a corresponding side of UU’U”.
It is interesting to note that no matter how the NIS transfer costs x* moves within TT T”,
the shape and size of UU’U” does not change, and UU’U” moves accordingly within
WWW”,

If the cost of information sharing (CI) is considered, the profit triangle after
information sharing and the information sharing triangle will shrink. Figure 4.11 gives
an example of how WW’W” and UU’U” shrink if all the cost of information sharing is
charged to the retailer (for instance, Model III in Figure 4.4). If the CI is too large,

UU’U” may not exist. In this case, information sharing is not worth implementing.

ZOS“TT': zero profit line of manufacturer

T'T": zero profit line of retailer : Por :
- ]

TT": zero profit line of supplier . . T %

TT'T": profit triangle before infor-sharing ! g ‘\

-C

0s

Figure 4.9: Profit Triangles before Information Sharing
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Figure 4.11: Information Sharing Triangle Shrinks When CI is charged to the Retailer
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4.5 Conclusion

The MDP approach provides a powerful tool for the study of multi-stage supply
chains. The evolutionary coordination algorithm coupled with policy perturbations and
multiple starts help to solve the supply chain problem effectively and efficiently.
Experimentation indicates that appropriate information sharing may bring significant
benefit to the supply chain, while some information sharing may not be valuable.
Depending on the cost of information sharing, it may, or may not, be worthwhile to
implement information sharing.

This chapter also discusses the issue of transfer cost negotiation within a supply
chain, when members of the chain may be from different cost centers or even different
companies. A framework is provided within which the negotiations necessarily have to
occur, thus giving guidance for determination of the transfer price or unit purchase price
for each of the supply chain members. Future research will explore this issue in more
detail. Other issues to be considered may include unsynchronized lead times, multiple

products, and alternative supply structures.
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4.7 Appendix

Worthy Curve of Information Sharing
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Figure 4.12: Worthy Curve of Information Sharing for 96 Problem Instances in DOE2
Table 4.6: Worthy Curve Analysis for 96 Problem Instances in DOE2 when CI=0"*

#Prob Cl Sales0 worthy X y_min y y_max WO0=x/q0 WI1 min Wl=y/ql W1 max
1 0 496.651 1 280.64 | 277.9 | 2814 | 2849 56.51 55.69 56.40 57.10
2 0 489.426 1 275.05 | 269.23 | 275.14 | 281.04 56.20 54.67 55.86 57.06
3 0 475251 1 261.29 | 253.19 | 259.34 | 265.49 54.98 53.04 54.32 55.61
4 0 497.722 1 28198 | 2763 | 2809 | 2854 56.65 5537 56.29 5721
5 0 491.66 1 27543 | 266.10 | 272.69 | 279.27 56.02 53.98 5531 56.65
6 0 476.728 1 252.84 | 24142 | 24826 | 255.09 53.04 50.56 51.99 53.42
7 0 495.779 1 288.57 | 280.83 | 286.82 | 292.80 5821 56.39 57.59 58.79
8 0 485.741 1 278.63 | 272.65 | 281.90 | 291.15 57.36 55.40 57.28 59.16
9 0 471.903 1 266.11 | 254.94 | 26520 | 275.47 56.39 53.48 55.64 57.79
10 0 496.654 1 288.91 | 280.70 | 288.07 | 295.44 58.17 56.26 57.74 59.22
11 0 488.574 1 278.89 | 267.24 | 278.86 | 290.48 57.08 54.26 56.62 58.98
12 0 474.85 1 260.23 | 243.19 | 255.48 | 267.77 54.80 50.94 53.51 56.09
13 0 496.651 1 30547 | 3029 | 3063 | 309.7 61.51 60.72 61.40 62.08
14 0 489.426 1 299.52 | 294.01 | 299.76 | 305.51 61.20 59.70 60.86 62.03
15 0 474.85 1 284.26 | 277.17 | 28321 | 289.25 59.86 58.06 59.32 60.59
16 0 497.722 1 306.87 | 3013 | 3058 | 3103 61.65 60.39 61.29 62.20

' This table analyzes the worthy curve for a two-stage supply chain. The information sharing case is based
on Model III and no information sharing is based on Model IV. “CI” denotes the cost of information
sharing. “Sales0” denotes the gross revenue when there is no information sharing. “x” denotes the transfer

cost for no information sharing case such that the profit is allocated among retailer and supplier evenly. “y”
denotes the transfer cost for information sharing case such that the profit is allocated evenly. “y min” and

“y_max” are the minimal and maximal transfer costs that both retailer and supplier will be benefited from

information sharing, respectively. “q0” and “q1” are the average transfer quantities per period that keep
profit allocated evenly before and after information sharing, respectively. “W0” and “W1” denote the unit
purchase prices that keep profit allocated evenly before and after information sharing, respectively.
“W1_min” and “W1_max” are the limits for the unit purchase price after information sharing if no
information sharing transfer cost is “x”. If “worthy” value equals 1, the implementation of information

sharing is worthy. Since CI=0, all the problems will be benefited from information sharing.
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17 0 491.66 1 300.01 | 290.58 | 297.10 | 303.62 61.02 58.95 60.28 61.60
18 0 476.728 1 276.68 | 265.33 | 272.13 | 278.93 58.04 55.57 56.99 58.42
19 0 495.779 1 31336 | 305.84 | 311.72 | 317.59 63.21 61.41 62.59 63.77
20 0 485.741 1 302.92 | 296.11 | 305.07 | 314.03 62.36 60.25 62.08 63.90
21 0 471.903 1 289.70 | 278.86 | 288.89 | 298.91 61.39 58.51 60.61 62.72
22 0 496.654 1 313.74 | 305.76 | 313.01 | 320.27 63.17 61.28 62.74 64.19
23 0 488.574 1 303.32 | 292.06 | 303.49 | 31491 62.08 59.30 61.62 63.94
24 0 474.85 1 283.97 | 267.19 | 279.35 | 291.51 59.80 55.97 58.51 61.06
25 0 496.65 1 275.84 273.1 276.5 279.9 55.54 54.74 55.42 56.09
26 0 489.426 1 270.16 | 264.34 | 270.15 | 275.96 55.20 53.67 54.85 56.03
27 0 475.251 1 256.26 | 248.17 | 254.27 | 260.37 53.92 51.98 53.26 54.54
28 0 497.721 1 277.12 271.4 275.9 280.4 55.68 54.40 55.30 56.21
29 0 491.66 1 27046 | 260.91 | 267.45 | 273.99 55.01 52.93 54.26 55.59
30 0 476.728 1 247.78 | 236.36 | 243.19 | 250.01 51.98 49.50 50.93 52.36
31 0 495.779 1 283.81 | 276.09 | 281.97 | 287.85 57.25 55.44 56.62 57.80
32 0 485.741 1 273.82 | 266.44 | 275.55 | 284.65 56.37 54.22 56.07 57.92
33 0 471.903 1 261.16 | 249.88 | 260.05 | 270.22 55.34 52.43 54.56 56.69
34 0 496.654 1 284.11 | 27591 | 283.15 | 290.38 57.21 55.30 56.75 58.20
35 0 488.574 1 274.01 | 262.36 | 273.87 | 285.38 56.08 53.27 55.61 57.94
36 0 474.85 1 255.21 | 238.18 | 25041 | 262.64 53.75 49.89 5245 55.02
37 0 496.641 1 300.68 298.2 3014 304.7 60.54 59.76 60.42 61.07
38 0 489.426 1 294.63 | 289.12 | 294.77 | 300.43 60.20 58.70 59.85 61.00
39 0 474.85 1 279.25 | 272.11 | 278.10 | 284.08 58.81 57.00 58.25 59.51
40 0 496.651 1 299.00 296.5 300.9 305.3 60.20 59.42 60.30 61.19
41 0 491.66 1 295.05 | 285.30 | 291.78 | 298.26 60.01 57.90 59.21 60.53
42 0 476.728 1 271.62 | 260.26 | 267.05 | 273.83 56.98 54.51 55.93 57.35
43 0 495.779 1 308.60 | 301.13 | 306.90 | 312.67 62.25 60.47 61.63 62.79
44 0 485.741 1 298.11 | 291.30 | 300.12 | 308.94 61.37 59.27 61.07 62.86
45 0 471.903 1 284.75 | 27391 | 283.84 | 293.78 60.34 57.47 59.56 61.64
46 0 496.654 1 308.95 | 300.97 | 308.09 | 315.22 62.21 60.32 61.75 63.18
47 0 488.574 1 298.44 | 287.18 | 298.50 | 309.81 61.08 58.31 60.61 62.90
48 0 474.85 1 278.96 | 262.17 | 274.28 | 286.39 58.75 54.92 57.45 59.99
49 0 496.631 1 284.61 282.5 284.9 287.2 57.31 56.73 57.20 57.67
50 0 489.426 1 279.38 275.8 280.6 285.3 57.08 56.01 56.97 57.93
51 0 475.251 1 265.95 | 258.47 | 263.61 | 268.75 55.96 54.22 55.30 56.38
52 0 496.651 1 282.97 282.6 286.1 289.5 56.97 56.65 57.34 58.03
53 0 491.66 1 280.01 | 271.32 | 276.92 | 282.53 56.95 55.09 56.23 57.36
54 0 476.728 1 257.69 | 247.93 | 253.89 | 259.84 54.05 51.93 53.18 54.42
55 0 495.779 1 292.51 286.8 291.8 296.7 59.00 57.59 58.59 59.59
56 0 485.741 1 282.77 | 277.60 | 285.71 | 293.83 58.21 56.49 58.14 59.79
57 0 471.903 1 270.56 | 261.34 | 270.55 | 279.77 57.33 54.83 56.77 58.70
58 0 496.651 1 29291 | 287.07 | 293.22 | 299.37 58.98 57.54 58.77 60.01
59 0 488.574 1 283.20 | 273.82 | 284.24 | 294.66 57.96 55.60 57.72 59.83
60 0 474.85 1 264.88 | 249.21 | 260.47 | 271.74 55.78 52.23 54.59 56.95
61 0 496.631 1 309.44 307.5 309.8 312.1 62.31 61.75 62.20 62.66
62 0 489.426 1 303.86 300.4 305 309.5 62.08 61.01 61.94 62.87
63 0 474.85 1 288.91 | 282.35 | 287.41 | 292.46 60.84 59.24 60.30 61.36
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64 0 496.651 1 307.80 | 3077 | 311 3143 61.97 61.67 62.34 63.00
65 0 491.66 1 304.59 | 295.98 | 301.54 | 307.11 61.95 60.10 61.23 62.35
66 0 476.728 1 281.52 | 271.84 | 277.76 | 283.68 59.05 56.94 58.18 59.41
67 0 495.779 1 317.30 | 3118 | 3167 | 3215 64.00 62.61 63.59 64.56
68 0 485.741 1 307.06 | 302.46 | 31029 | 318.11 6321 61.55 63.14 64.73
69 0 468.436 1 287.34 | 285.15 | 294.13 | 303.11 61.34 59.85 61.73 63.62
70 0 495.779 1 315.19 | 312.13 | 318.16 | 324.19 63.57 62.57 63.77 64.98
71 0 488.574 1 307.63 | 298.64 | 308.86 | 319.09 62.96 60.64 62.72 64.79
72 0 474.85 1 288.62 | 272.80 | 283.95 | 295.10 60.78 57.19 59.52 61.86
73 0 496.617 1 279.82 | 2777 | 280 | 2823 56.34 55.77 56.22 56.68
74 0 489.426 1 27449 | 2707 | 2754 | 280 56.08 54.99 55.93 56.87
75 0 474.85 1 260.16 | 25341 | 258.53 | 263.64 54.79 53.16 54.24 55.31
76 0 496.651 1 278.17 | 277.9 | 281.1 | 2844 56.01 55.69 56.35 57.01
77 0 491.66 1 275.04 | 266.35 | 271.93 | 277.51 55.94 54.08 5521 56.35
78 0 476.728 1 252.63 | 242.87 | 248.81 | 254.76 52.99 50.87 52.11 53.36
79 0 495.779 1 287.75 | 2821 | 2869 | 291.8 58.04 56.64 57.61 58.58
80 0 485.741 1 277.96 | 272.79 | 280.76 | 288.73 57.22 55.51 57.13 58.76
81 0 471.903 1 265.61 | 256.14 | 26527 | 274.39 56.28 53.76 55.67 57.59
82 0 495.782 1 285.65 | 282.27 | 28829 | 29431 57.62 56.58 57.79 58.99
83 0 488.574 1 27832 | 268.94 | 279.25 | 289.56 56.97 54.61 56.70 58.80
84 0 474.85 1 259.87 | 243.83 | 255.04 | 266.26 54.73 5111 53.46 55.81
85 0 496.61 1 304.64 | 3027 | 3049 | 307.1 61.34 60.78 61.22 61.67
86 0 489.426 1 298.96 | 2955 | 300 | 3045 61.08 60.02 60.93 61.84
87 0 474.85 1 283.90 | 277.33 | 28236 | 287.39 59.79 58.18 59.24 60.29
88 0 496.651 1 303.00 | 3029 | 306.1 | 309.3 61.01 60.71 61.35 61.99
89 0 491.66 1 299.63 | 291.02 | 296.55 | 302.09 60.94 59.09 60.21 61.34
90 0 476.728 1 276.46 | 266.78 | 272.69 | 278.60 57.99 55.88 57.11 58.35
91 0 495.779 1 31254 | 307.1 | 311.8 | 3165 63.04 61.66 62.61 63.56
92 0 485.741 1 302.25 | 297.65 | 30533 | 313.02 6222 60.57 62.13 63.70
93 0 468.436 1 282.45 | 280.26 | 289.09 | 297.92 60.30 58.82 60.67 62.53
94 0 495.782 1 31044 | 307.03 | 312.90 | 318.76 62.62 61.56 62.73 63.91
95 0 488.574 1 302.75 | 293.76 | 303.88 | 313.99 61.97 59.65 61.70 63.76
96 0 474.85 | 283.61 | 266.74 | 277.85 | 288.97 59.73 55.96 58.29 60.62

Table 4.7: Worthy Curve Analysis for 96 Problem Instances in DOE2 when
CI=2%*Sales0*

#Prob CI SalesO worthy X y_min y y_max W4=x/q0 W3 min W3=y/ql W3 max
1 9.93 | 496.651 0 280.64 -1 -1 -1 56.51 -1 -1 -1
2 9.79 | 489.426 1 275.05 | 279.02 | 280.03 | 281.04 56.20 56.65 56.86 57.06
3 951 | 475251 1 261.29 | 262.70 | 264.09 | 26549 54.98 55.03 55.32 55.61
4 9.95 | 497.722 0 281.98 -1 -1 -1 56.65 -1 -1 -1
5 9.83 491.66 1 27543 | 27594 | 277.60 | 279.27 56.02 55.97 56.31 56.65

" If “worthy” value equals 0, the cost of information sharing is too great, i.e., the information sharing for

that supply chain problem is not worthy, and corresponding values are filled as -1 for “y_min”, “y”,
“y max”, “W3 _min”, “W3” and “W3_max.”
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6 9.53 476.728 1 252.84 | 250.96 | 253.02 | 255.09 53.04 52.56 52.99 53.42
7 9.92 495.779 1 288.57 | 290.74 | 291.77 | 292.80 58.21 58.38 58.59 58.79
8 9.71 485.741 1 278.63 | 282.36 | 286.76 | 291.15 57.36 57.37 58.26 59.16
9 9.44 471.903 1 266.11 | 264.38 | 269.92 | 27547 56.39 55.46 56.63 57.79
10 9.93 496.654 1 288.91 | 290.63 | 293.03 | 295.44 58.17 58.25 58.73 59.22
11 9.77 488.574 1 278.89 | 277.01 | 283.75 | 290.48 57.08 56.24 57.61 58.98
12 9.5 474.85 1 260.23 | 252.69 | 260.23 | 267.77 54.80 52.93 54.51 56.09
13 9.93 496.651 0 305.47 -1 -1 -1 61.51 -1 -1 -1

14 9.79 489.426 1 299.52 | 303.80 | 304.66 | 305.51 61.20 61.68 61.86 62.03
15 9.5 474.85 1 284.26 | 286.67 | 287.96 | 289.25 59.86 60.05 60.32 60.59
16 9.95 497.722 0 306.87 -1 -1 -1 61.65 -1 -1 -1

17 9.83 491.66 1 300.01 | 30041 | 302.01 | 303.62 61.02 60.95 61.27 61.60
18 9.53 476.728 1 276.68 | 274.87 | 276.90 | 278.93 58.04 57.57 57.99 58.42
19 9.92 495.779 1 31336 | 315.76 | 316.67 | 317.59 63.21 63.40 63.59 63.77
20 9.71 485.741 1 302.92 | 305.82 | 309.93 | 314.03 62.36 62.23 63.07 63.90
21 9.44 471.903 1 289.70 | 288.29 | 293.60 | 298.91 61.39 60.49 61.60 62.72
22 9.93 496.654 1 313.74 | 315.69 | 317.98 | 320.27 63.17 63.27 63.73 64.19
23 9.77 488.574 1 303.32 | 301.83 | 308.37 | 314.91 62.08 61.28 62.61 63.94
24 9.5 474.85 1 283.97 | 276.68 | 284.10 | 291.51 59.80 57.96 59.51 61.06
25 9.93 496.65 0 275.84 -1 -1 -1 55.54 -1 -1 -1

26 9.79 489.426 1 270.16 | 274.13 | 275.04 | 275.96 55.20 55.66 55.84 56.03
27 9.51 475.251 1 256.26 | 257.68 | 259.03 | 260.37 53.92 53.98 54.26 54.54
28 9.95 497.721 0 277.12 -1 -1 -1 55.68 -1 -1 -1

29 9.83 491.66 1 270.46 | 270.74 | 27236 | 273.99 55.01 54.93 55.26 55.59
30 9.53 476.728 1 247.78 | 245.90 | 247.95 | 250.01 51.98 51.50 51.93 52.36
31 9.92 495.779 1 283.81 | 286.00 | 286.93 | 287.85 57.25 57.43 57.62 57.80
32 9.71 485.741 1 273.82 | 276.16 | 280.41 | 284.65 56.37 56.19 57.06 57.92
33 9.44 471.903 1 261.16 | 259.31 | 264.77 | 270.22 55.34 54.41 55.55 56.69
34 9.93 496.654 1 284.11 | 285.84 | 288.11 | 290.38 57.21 57.29 57.75 58.20
35 9.77 488.574 1 274.01 | 272.13 | 278.76 | 285.38 56.08 55.25 56.60 57.94
36 9.5 474.85 1 255.21 | 247.67 | 255.16 | 262.64 53.75 51.88 53.45 55.02
37 9.93 496.641 0 300.68 -1 -1 -1 60.54 -1 -1 -1

38 9.79 489.426 1 294.63 | 298.91 | 299.67 | 300.43 60.20 60.69 60.84 61.00
39 9.5 474.85 1 279.25 | 281.61 | 282.84 | 284.08 58.81 58.99 59.25 59.51
40 9.93 496.651 0 299.00 -1 -1 -1 60.20 -1 -1 -1

41 9.83 491.66 1 295.05 | 295.13 | 296.70 | 298.26 60.01 59.89 60.21 60.53
42 9.53 476.728 1 271.62 | 269.79 | 271.81 | 273.83 56.98 56.50 56.93 57.35
43 9.92 495.779 1 308.60 | 311.05 | 311.86 | 312.67 62.25 62.46 62.62 62.79
44 9.71 485.741 1 298.11 | 301.01 | 304.97 | 308.94 61.37 61.25 62.06 62.86
45 9.44 471.903 1 284.75 | 283.34 | 288.56 | 293.78 60.34 59.45 60.55 61.64
46 9.93 496.654 1 308.95 | 31090 | 313.06 | 315.22 62.21 62.31 62.75 63.18
47 9.77 488.574 1 298.44 | 296.96 | 303.38 | 309.81 61.08 60.29 61.60 62.90
48 9.5 474.85 1 278.96 | 271.67 | 279.03 | 286.39 58.75 56.91 58.45 59.99
49 9.93 496.631 0 284.61 -1 -1 -1 57.31 -1 -1 -1

50 9.79 489.426 0 279.38 -1 -1 -1 57.08 -1 -1 -1

51 9.51 475.251 1 265.95 | 267.98 | 268.36 | 268.75 55.96 56.22 56.30 56.38
52 9.93 496.651 0 282.97 -1 -1 -1 56.97 -1 -1 -1
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53 9.83 491.66 1 280.01 | 281.15 | 281.84 | 282.53 56.95 57.08 57.22 57.36
54 9.53 476.728 1 257.69 | 257.47 | 258.65 | 259.84 54.05 53.93 54.17 54.42
55 9.92 495.779 1 292.51 296.7 296.7 296.7 59.00 59.58 59.58 59.59
56 9.71 485.741 1 282.77 | 287.32 | 290.57 | 293.83 58.21 58.47 59.13 59.79
57 9.44 471.903 1 270.56 | 270.78 | 275.27 | 279.77 57.33 56.81 57.76 58.70
58 9.93 496.651 1 292.91 | 297.00 | 298.19 | 299.37 58.98 59.53 59.77 60.01
59 9.77 488.574 1 283.20 | 283.59 | 289.13 | 294.66 57.96 57.59 58.71 59.83
60 9.5 474.85 1 264.88 | 258.71 | 265.22 | 271.74 55.78 54.22 55.58 56.95
61 9.93 496.631 0 309.44 -1 -1 -1 62.31 -1 -1 -1

62 9.79 489.426 0 303.86 -1 -1 -1 62.08 -1 -1 -1

63 9.5 474.85 1 288.91 | 291.85 | 292.15 | 292.46 60.84 61.23 61.29 61.36
64 9.93 496.651 0 307.80 -1 -1 -1 61.97 -1 -1 -1

65 9.83 491.66 1 304.59 | 305.81 | 306.46 | 307.11 61.95 62.09 62.22 62.35
66 9.53 476.728 1 281.52 | 281.37 | 282.52 | 283.68 59.05 58.93 59.17 59.41
67 9.92 495.779 0 317.30 -1 -1 -1 64.00 -1 -1 -1

68 9.71 485.741 1 307.06 | 312.17 | 315.14 | 318.11 63.21 63.53 64.13 64.73
69 9.37 468.436 1 287.34 | 294.52 | 298.81 | 303.11 61.34 61.81 62.71 63.62
70 9.92 495.779 1 315.19 | 322.05 | 323.12 | 324.19 63.57 64.55 64.77 64.98
71 9.77 488.574 1 307.63 | 308.41 | 313.75 | 319.09 62.96 62.63 63.71 64.79
72 9.5 474.85 1 288.62 | 282.30 | 288.70 | 295.10 60.78 59.18 60.52 61.86
73 9.93 496.617 0 279.82 -1 -1 -1 56.34 -1 -1 -1

74 9.79 489.426 0 274.49 -1 -1 -1 56.08 -1 -1 -1

75 9.5 474.85 1 260.16 | 262.91 | 263.28 | 263.64 54.79 55.16 55.23 55.31
76 9.93 496.651 0 278.17 -1 -1 -1 56.01 -1 -1 -1

71 9.83 491.66 1 275.04 | 276.19 | 276.85 | 277.51 55.94 56.08 56.21 56.35
78 9.53 476.728 1 252.63 | 252.40 | 253.58 | 254.76 52.99 52.87 53.11 53.36
79 9.92 495.779 0 287.75 -1 -1 -1 58.04 -1 -1 -1

80 9.71 485.741 1 27796 | 282.51 | 285.62 | 288.73 57.22 57.49 58.12 58.76
81 9.44 471.903 1 265.61 | 265.58 | 269.99 | 274.39 56.28 55.74 56.66 57.59
82 9.92 495.782 1 285.65 | 292.19 | 293.25 | 29431 57.62 58.57 58.78 58.99
83 9.77 488.574 1 278.32 | 278.72 | 284.14 | 289.56 56.97 56.60 57.70 58.80
84 9.5 474.85 1 259.87 | 253.32 | 259.79 | 266.26 54.73 53.10 54.46 55.81
85 9.93 496.61 0 304.64 -1 -1 -1 61.34 -1 -1 -1

86 9.79 489.426 0 298.96 -1 -1 -1 61.08 -1 -1 -1

87 9.5 474.85 1 283.90 | 286.83 | 287.11 | 287.39 59.79 60.18 60.23 60.29
88 9.93 496.651 0 303.00 -1 -1 -1 61.01 -1 -1 -1

89 9.83 491.66 1 299.63 | 300.85 | 301.47 | 302.09 60.94 61.08 61.21 61.34
90 9.53 476.728 1 276.46 | 276.31 | 27745 | 278.60 57.99 57.87 58.11 58.35
91 9.92 495.779 0 312.54 -1 -1 -1 63.04 -1 -1 -1

92 9.71 485.741 1 302.25 | 307.36 | 310.19 | 313.02 62.22 62.55 63.12 63.70
93 9.37 468.436 1 282.45 | 289.63 | 293.77 | 297.92 60.30 60.79 61.66 62.53
94 9.92 495.782 1 31044 | 31695 | 317.85 | 318.76 62.62 63.55 63.73 63.91
95 9.77 488.574 1 302.75 | 303.53 | 308.76 | 313.99 61.97 61.64 62.70 63.76
96 9.5 474.85 1 283.61 | 276.23 | 282.60 | 288.97 59.73 57.95 59.29 60.62
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Chapter 5 Summary and Future Research
5.1 Summary and Future Research

In this dissertation an evolutionary coordination algorithm for DEC-ROMDP
problems was introduced. Coupled with a policy perturbation and multiple starts
strategy, this algorithm works effectively for supply chain DEC-ROMDP problems. Any
improvement in the algorithm, like the perturbation method, that helps to improve
solving generic DEC-ROMDP problems has the potential to make this algorithm widely
used. Successive approximation (White 1960) is used in the algorithm to reduce
computations. In order to solve extremely large-scale supply chain problems more
efficiently, the encapsulation evolutionary approach (Ding et al. 1988) should be pursued
in future research. Note that the encapsulation evolution approach has two assumptions:
first, the chain structure of the MDP problem is uni-chain; and second, all possible
policies are aperiodic. Unfortunately, the supply chain ROMDP or DEC-ROMDP
problems may be multi-chain structured, and some implementable policies may be
periodic. Davis (2004) applied the encapsulation evolutionary approach to the supply
chain ROMDP problem, and found computational effort to be greatly reduced. Insight
from Davis” work should be brought into the application of the encapsulation
evolutionary approach to the supply chain DEC-ROMDP problems.

This dissertation quantifies the value of information sharing in a serial supply
chain (both two-stage and three-stage). Future research may explore information sharing
in a divergent, convergent, or network supply chain. Other issues to be considered may
include unsynchronized lead times, multiple products, and backlog. The incorporation of
the above issues may significantly increase the number of system states. For instance,
only a single product in the supply chain is considered here. If two different products are
considered, the system state space will expand greatly. If unsynchronized lead times or
backlog comes into play, the system state representation becomes complicated since it is
related to not only inventory levels, but also lead time or back orders. However, the
evolutionary coordination algorithm can still be applied to these more complicated

situations.
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The issue of transfer cost negotiation within a supply chain is discussed, when
members of the chain may be from different cost centers or even different companies.
This dissertation provides a framework within which the negotiations necessarily have to
occur, thus giving guidance for determination of the transfer price for supply chain

members. Future research should explore this issue in more detail.
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