
Abstract 
WEI, WENBIN. Quantifying Shared Information Value in a Supply Chain Using 

Decentralized Markov Decision Processes with Restricted Observations. 

(Under the direction of Dr. Russell E. King and Dr. Thom J. Hodgson) 
 

Information sharing in a two-stage and three-stage supply chain is studied.  

Assuming the customer demand distribution is known along the supply chain, the 

information to be shared is the inventory level of each supply chain member.  In order to 

study the value of shared information, the supply chain is examined under different 

information sharing schemes.  A Markov decision process (MDP) approach is used to 

model the supply chain, and the optimal policy given each scheme is determined.  By 

comparing these schemes, the value of shared information can be quantified.  Since the 

optimal policy maximizes the total profit within a supply chain, allocation of the profit 

among supply chain members, or transfer cost/price negotiation, is also discussed. 

The information sharing schemes include full information sharing, partial 

information sharing and no information sharing.  In the case of full information sharing, 

the supply chain problem is modeled as a single agent Markov decision process with 

complete observations (a traditional MDP) which can be solved based on the policy 

iteration method of Howard (1960).  In the case of partial information sharing or no 

information sharing, the supply chain problem is modeled as a decentralized Markov 

decision process with restricted observations (DEC-ROMDP).  Each agent may have 

complete observation of the process, or may have only restricted observation of the 

process.  In order to solve the DEC-ROMDP, an evolutionary coordination algorithm is 

introduced, which proves to be effective if coupled with policy perturbation and multiple 

start strategies. 
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Chapter 1 Overview 

1.1 Introduction 
If information in a supply chain is not shared among the individual chain elements 

(e.g., demand information), actual demand information (from downstream to upstream of 

the supply chain) may be distorted (this is also termed the bullwhip effect, Lee et al. 

1997) and cause unnecessary cost.  It has been reported that information sharing is 

beneficial to a supply chain, especially in reducing the bullwhip effect (Lee et al. 1997, 

2000, Cachon and Fisher 2000) and supply chain cost (Gavirneni et al. 1999, 

Swaminathan et al. 1997, Tan 1999).  However, it may not be beneficial to a supply chain 

if the cost of adopting the inter-organizational information system is too high 

(Swaminathan et al. 1997, Cohen 2000).  In terms of information sharing, the concern is 

usually which production information to share and how to share it to maximize the 

mutual benefits in a supply chain (Huang et al. 2003). 

The objective of this dissertation is to quantify the value of sharing inventory 

information in a make-to-stock environment and optimize the operational control for a 

two-stage and three-stage supply chain through appropriate information sharing.  This 

dissertation is an extension of Davis’ (2004) work on a two-stage supply chain with a 

single capacitated supplier and a single retailer.  Davis finds the supplier’s optimal policy 

by assuming the retailer uses a fixed policy, such as a base stock policy or (s, S) policy.  

Davis’ work has some limitations.  First, the retailer’s policy is fixed.  A more flexible 

policy could possibly achieve better system performance.  Second, only the value of 

sharing retailer’s inventory information is examined.  This dissertation allows the retailer 

to use a flexible policy, and examines the value of sharing suppliers’ inventory 

information.  However, the problem becomes much more complicated since the suppliers 

and retailer need coordination when making their replenishment decisions in order to 

optimize the supply chain.  Four different information sharing models are examined in a 

two-stage supply chain problem, while eight different models are examined in a three-

stage supply chain. 

Solving supply chain models for the optimal replenishment policy is a key to 

quantifying information value.  Due to the difficulty of determining optimal policies for a 
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multi-echelon inventory system, researchers usually assert that a certain type of policy, 

like a base-stock policy, is optimal for one stage (Gavirneni et al. 1999, Gavirneni 2002, 

Simchi-Levi and Zhao 2002ab, Davis 2004) or both stages (Lee et al. 2000), and then 

find the specific policy for each stage.  Those assumptions do not pursue system-wide 

optimality, since the assertion comes from the results of a single-stage inventory system, 

and the possibility of coordination between members is ignored.  To overcome this 

drawback, we model a multi-stage supply chain as a Markov Decision Process (MDP). 

In the context of a MDP, an agent with full observation (due to information 

sharing) actually faces a common MDP problem (also called a completely observable 

MDP, COMDP), while an agent with restricted observations (lack of information 

sharing) faces a MDP with restricted observations (called ROMDP).  Davis (2004) solves 

a single agent ROMDP.  As an extension, this dissertation provides a solution for multi-

agent (decentralized) MDP or ROMDP problems (called DEC-ROMDP), where supply 

chain members need to be coordinated in order to maximize profit. 

This dissertation proposes and analyzes an infinite horizon ROMDP with an 

average cost criterion, with an objective to maximize the average reward.  A 

computationally efficient algorithm is developed to find optimal policies based on the 

policy iteration method of Howard (1960) for the infinite horizon undiscounted cost case.  

Formally, a ROMDP can be represented as a mixed integer nonlinear programming 

(MINLP) problem, for which it is difficult to find the global optimal solution.  The basic 

heuristic proposed here includes two steps: value determination and policy improvement.  

It is proven that the policy improvement searches for an optimal solution by following a 

steepest ascent direction.  We also propose perturbation methods, such as policy 

perturbation and Π  perturbation ( Π  is the system steady state probability vector), to 

improve local optima towards a global optimal policy.  Successive approximation is used 

to reduce computational effort.  In addition, Ding’s encapsulation evolution method 

(1985) can be used to further reduce computational effort for specially structured supply 

chain problems (Davis 2004). 

A multi-agent model is viewed as a decentralized Markov decision process with 

restricted observation (DEC-ROMDP), which can be viewed as a special case of a 

decentralized POMDP (DEC-POMDP) (Bernstein et al., 2000) and a multi-agent team 
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decision problem (MTDP) (Pynadath and Tambe, 2002).  An evolutionary coordination 

algorithm is used to make a joint policy evolve to a locally optimal solution, and then 

perturbation methods and a multiple restart strategy are used to improve the policy.  By 

using the tools for solving DEC-ROMDP models, a wide range of supply chain problems 

with different information sharing schemes are solved. 

Chapter 2 proposes the mathematical model for an infinite horizon ROMDP with 

an average cost criterion and introduces heuristic algorithms for solution.  Chapter 3 

gives the definition of DEC-ROMDP and proposes an evolutionary coordination 

algorithm to solve the multi-agent decision problems.  Chapter 4 applies the evolutionary 

coordination algorithm to two-stage and three stage supply chain problems, and 

elaborates on information sharing and transfer cost negotiation within the supply chain.  

Chapter 5 outlines the future research to be performed. 
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Chapter 2 Markov Decision Processes with Restricted 
Observations 
2.1 Introduction 

This chapter presents a computationally efficient procedure to determine control 

policies1 for an infinite horizon, undiscounted Markov decision process (MDP) with 

restricted observations (ROMDP).  In the MDP framework, it is usually assumed that an 

agent interacts synchronously with a world (Kaelbling, Littman, and Cassandra 1998).  A 

Markov decision process can be defined as a tuple < S, A, T, R >.  S is a finite set of |S| 

world states; A is a set of |A| actions; T: S × A × S → [0, 1] is the state-transition model, 

where T(s, a, s’) represents the probability of transition from state s to s’, given that the 

agent takes action a; R: S × A→ R is the reward model, where R(s, a) represents the 

expected reward for taking action a in state s (assumed to be bounded in this chapter).  In 

a common MDP, the world state is assumed as completely observable to the agent, so this 

process is also called COMDP (completely observable Markov decision process) in this 

dissertation.  Since this process is considered observable and the state of the system is 

observable to the agent, the stationary policy is a function of the state space. 

If the world state is not completely observable to the agent, this process is a 

partially observable Markov decision process (POMDP), which can be defined as a tuple 

<S, A, T, R, Z, O>, where S, A, T, and R are the same as those in a COMDP. Z is a finite 

set of |Z| observations; O: S×A×Z→[0, 1] is the observation probability distribution 

model, where O (z, a, s’) represents the probability that the agent observes z given that it 

took action a and then the world state reached s’.  As the agent cannot observe the state 

directly, a POMDP policy, different from a COMDP policy, is not a function of the state 

space, but the function of belief states, i.e., the steady state probability distribution.  Since 

the belief state is continuous, it is not realistic to find a policy based upon every possible 

belief state.  However, an optimal policy can be based only upon finite partitions of belief 

                                                           
1 This dissertation attempts to find the optimal stationary deterministic policy for an infinite horizon 
undiscounted ROMDP problem. A ROMDP policy space is a subset of a common MDP policy space. A 
common MDP policy can be categorized as deterministic or randomized, Markovian or history-dependent. 
A stationary policy is generally for an infinite horizon MDP problem. Refer to Puterman (1994) for details 
of these policy types. 
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state space (Smallwood and Sondik 1973)2.  Several algorithms have been developed to 

efficiently determine the partitions (Sondik 1971, Cheng 1988, Littman 1994, and Zhang 

and Liu 1996). 

A Markov decision process with restricted observation is a special POMDP, and it 

can be represented by a tuple < S, A, T, R, Z, G >, where S, A, T, R, and Z are the same as 

those in a POMDP.  G: S → Z represents the mapping function from a state to a single 

observation for the agent.  If a state s outputs an observation z, it can be denoted as G(s) 

=z.  A ROMDP policy is represented as a function of the observation space.  In this 

policy, if an action a is applied given an observation z, this action a would apply to any 

possible state s satisfying G(s) = z, that is, the action a must be implementable/admissible 

to all these states.  Hence, a ROMDP policy is also called an “implementable policy” 

(Serin and Kulkarni 1995) or “admissible policy” (Smith 1971).  

Although an ROMDP is a special POMDP, it is still intractable to solve.  Serin 

and Kulkarni (1995) develop an algorithm that finds local optimal stationary randomized 

policies for the infinite horizon discounted reward case, with the objective to optimize the 

total discounted reward.  Serin and Avsar (1997) introduce a similar algorithm for the 

finite horizon discounted reward case, and prove a deterministic optimal policy exists in 

this case. Smith (1971), Hordijk and Loeve (1994), and Hastings and Sadjadi (1979) 

present algorithms that determine deterministic policies for infinite horizon undiscounted 

reward problems, with the objective to optimize the average reward.  The algorithm 

developed by Hastings and Sadjadi (1979) is enumerative based and thus intractable for 

large problems.  The algorithm developed by Smith (1971) is a policy iteration type of 

algorithm containing enumerative component when a better policy cannot be determined.  

None of the above algorithms have addressed to an infinite horizon large scale ROMDP 

problem.  This chapter introduces a computationally efficient algorithm that also finds 

optimal deterministic policies, based on the policy iteration method developed by 

Howard (1960) for the infinite horizon undiscounted cost case.  This chapter 

demonstrates empirically that the algorithm finds the optimal deterministic policy for 

over 99% of the general ROMDP problem instances generated.  In the instances where 

the optimal policy cannot be determined, the average error in the objective function is 

                                                           
2 This applies to a finite horizon POMDP problem. It may not be the case for an infinite horizon problem.  
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less than 1%.  This algorithm achieves better performance for supply chain ROMDP 

problems. 

2.2 Mathematical Model for a ROMDP  

2.2.1 ROMDP Notation 
The process being analyzed is a Markov Decision Process with state space S and 

action space A.  The state of the system cannot be observed, however some output of the 

system is observable.  Based on those outputs, one can infer the state or possible states of 

the system.  This chapter finds an optimal control policy defined over the observation 

process that maximizes the long term average reward.  The optimal policy has the 

property that each state within a given observation set takes the same action.  A summary 

of the problem notation is presented below. 

S: The set of possible states {1…N}. 

A:  The set of available actions {1…M}. 

Xn: A random variable that defines the state at time n. 

Yn: A random variable that defines the action by the agent at time n. 
a
ijp : The one step transition probability from state i to j given an action a.  

},|{ 1 aYiXjXPp nnn
a
ij ==== + , AaSji ∈∀∈∀ ,, ,  

cia: The expected immediate reward associated with transitioning to state i given 

action a. 

Z: The set of observable outputs {1...K}. 

G(i): A function mapping a state i to a single observable output in the set Z. 

Sk: A partition of the state space S satisfying {i: G(i) = k}.  Without loss of 

generality, it is assumed any state space partition has the same number (say L) 

of states.  Obviously, K*L = N, and Sk ={(k-1)*L+1, (k-1)*L+2…k*L}, k∈Z.  

A(k): The set of admissible actions for the observation set Sk.  Obviously, A(k) ⊆ 

A. Without loss of generality, it is assumed A(k) = A for a generic ROMDP.  

Zn: A random variable that defines the observation by the agent at time n. 
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2.2.2 LP Model for a MDP Problem 
Before presenting the mathematical model for a ROMDP with undiscounted 

reward and infinite horizon, this section starts from the linear programming model (LP) 

for an underlying common MDP problem (Wolf and Dantzig, 1962). 

AaSix

x

Sipxx

xc

ia

M

a

N

i
ia

M

a

N

j

a
jija

M

a
ia

M

a

N

i
iaia

∈∈∀≥

=

∈∀=

∑∑

∑∑∑

∑∑

= =

= ==

= =

,0

1

,

tosubject

max

1 1

1 11

1 1

 

This primal problem aims to maximize the average reward. Its decision variable 

iax  can be interpreted as the steady state probability that state i will be visited at a typical 

transition and action a will be applied.  The constraints can be satisfied with some 

feasible steady state probabilities associated with a certain randomized stationary policy, 

that is, a policy that chooses at state i the action a with probability iax . 

LP theory implies that the optimal solution is always obtained with deterministic 

stationary policies.  Indeed, if α* is an optimal (deterministic) stationary policy that is 

uni-chain ( )(* iα  denotes the action for the state i), and xi* is the corresponding steady 

state probability of state i, then 
⎩
⎨
⎧ =

=
otherwise.   0

)(* if  *
* iax

x i
ia

α
 is an optimal solution of the 

primal problem. 

It is also insightful to investigate the following dual formulation for the problem. 

Sjv

AaSicvpvg

g

j

ia

N

j
j

a
iji

∈∀

∈∈∀≥−+ ∑
=

,free

,

tosubject
min

1

 

Howard’s (1960) dynamic programming algorithm solves a COMDP problem from a 

dual perspective.  This chapter solves the associated ROMDP from a primal perspective.  
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2.2.3 NLP Model for a ROMDP Problem 
By adding observability constraints to the above primal MDP problem, the 

nonlinear programming (NLP) model for a corresponding ROMDP problem is obtained. 

Before formulating the NLP model, the following definitions are introduced. 

),...,|...|,...,|,...,,( 122111211 KMKMM αααααααα =  is a ROMDP policy, in which 

αka denotes the probability that  action a is applied given observation k.  Here 

AaSi
x
x

x

x
k

i

ia
M

a
ia

ia
ka ∈∈∀==

∑
=

,,

1

α . 

Sixx
M

a
iai ∈∀= ∑

=

,
1

. 

The NLP model for the ROMDP is given as 
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Let P(α) be the matrix defined with entries pij(α), where ( ) ∑
=

=
M

a

a
ijaiGij pp

1
)(αα , 

and 
1

( )
M

i ka ia
a

c cα α
=

= ∑ . 

The NLP can be written in matrix notation as 
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( ) ( )

( )[ ]
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The matrix [I-P(α)] is not invertible since it contains a redundant constraint.  To 

reduce this redundant constraint, replace the Nth column of this matrix with all ones and 

define an invertible matrix Q(α).  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
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Furthermore, define an n-element vector b =(0,0…1). 

Then transform the NLP into  

( ) ( )
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By removing the variable x, it becomes 

( ) ( )

Zk

cQb

M

a
ka ∈∀=

=Φ

∑
=

−

,1

tosubject
)( max

1

1

α

ααα
 

Note the optimal solution to this NLP problem may be a randomized stationary 

policy α.  That is, kaα , a component of an optimal policy may be a number other than 0 

and 1.  It is intuitive that an optimal randomized policy will be better than an optimal 

deterministic policy.  As only the optimal deterministic policy is in concern, the NLP is 
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transformed into a mixed integer nonlinear programming problem (MINLP) by adding 

the integer constraint. 

( )

AaZk

Zk

cQb

ka

M

a
ka

∈∀∈∀∈

∈∀=

=Φ

∑
=

−

,,}1,0{

,1

tosubject
)()( max

1

1

α

α

ααα

 

2.3 Methodology for Solving a ROMDP  

Definition 1: ),...,|...|,...,|,...,,( 122111211 KMKMM ββββββββ =  is a feasible direction at 

a feasible policy α if and only if α+θβ is also a feasible policy for some θ>0.  

Clearly, Zk
M

a
ka ∈∀=∑

=

,0
1

β  and 0for  0 =≥ kaka αβ  and 1for  0 =≤ kaka αβ .  Without loss 

of generality, the normalization restriction 1||
1 1

=∑∑
= =

K

k

M

a
kaβ  is assumed on the feasible 

direction (Serin and Kulkarni 1995). 

Definition 2: A feasible direction β is an ascent direction at a feasible policy α 

if )()( αθβα Φ>+Φ , for all θ∈(0,δ) for some δ>0.  

Lemma 1: If a feasible direction β satisfies that βα T)(Φ∇ is positive, then β is an ascent 

direction at policy α. Here, )(αΦ∇  is the gradient of the objective function at α.  

Proof: It is Obvious according to the definition of the gradient. (Q.E.D) 

Theorem 1: Let ]...[ 1 nvvv = be the solution to Q(α)v= c(α), ]...[ 1 nxxx =  be the solution 

to bQx =)(α , and kaP  is the matrix with 
⎩
⎨
⎧ ≠=

=
Otherwise0

 and ,)(if NjkiGp
p

a
ijka

ij . If 

))((maxarg
1

* ∑ ∑
∈ =∈

+=
kSi

N

j
j

ka
ijiaiAak vpcxa , then β satisfying 

⎪
⎩

⎪
⎨

⎧

≠=−
==

=
otherwise,0

 and ,1 if ,2/1
 and,0 if ,2/1

*

*
k

kka

ka

ka aa
aa

α
α

β  

is a steepest ascent direction at the current policy α, which maximizes the directional 

derivative βα T)(Φ∇ . 

Proof:  
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First derive the gradient of the objective function at α, i.e. )(αΦ∇ . To compute 

the gradient, it is assumed that the objective function is continuous and differential at 

every point of feasible region, i.e., α can be randomized.  

( ) ( ) ( )

( )

( ) ( )∑ ∑

∑

∑ ∑

∈ ∂
∂

+=
∂
Φ∂

⎩
⎨
⎧ =

=⎟
⎠

⎞
⎜
⎝

⎛
∂

∂
=

∂
∂

∂
∂

+
∂

∂
=

∂
Φ∂

kSi i
i

ka

i
iia

ka

ia

a
kaia

kaka

i

i i
i

ka

i
i

ka

i

ka

c
x

xc

kiGc
c

c

c
x

x
c

α
αα

α

α
αα

α

α
αα

α
α

α

So

otherwise0
)(if

 

Let ⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

∂
∂

=
∂
∂

ka

N

kakaka

xxxx
αααα

..., 21   

0)()( =
∂

∂
+

∂
∂

kaka

QxQx
α

αα
α

, 

Define
)(
)(

ka

ka QP
α

α
∂
∂

−= . Clearly, kaP  is the matrix with 

⎩
⎨
⎧ ≠=

=
Otherwise0

 and ,)(if NjkiGp
p

a
ijka

ij . 

Then ka

ka

PxQx
=

∂
∂ )(α
α

. Since 1)( −αQ exists, 1)( −=
∂
∂ α
α

QPxx ka

ka

.  

Therefore, ( ) ∑
∈

−+=
∂
Φ∂

kSi

ka
iia

ka

cQPxxc )()( 1 αα
α

α  

Let ]...[ 1 nvvv =  be the solution to Q(α)v= c(α), Then  

( ) ∑ ∑
∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

∂
Φ∂

kSi j
j

ka
ijiai

ka

vpcx )(α
α

α . 

In order to find the steepest ascent direction at the current policy α, βα T)(Φ∇  

should be maximized. Note the current policy α must be deterministic, for instance, if α 

uses action b for a state set Sk, there must be
⎩
⎨
⎧ =

=
otherwise ,0

 if   ,1 ba
kaα . It is obvious for a state 

set Sk, ),...,( 1 kMk ββ  must have a single negative component, say βkb. Note 
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0for  0 =≥ kaka αβ , 1for  0 =≤ kaka αβ , and Zk
M

a
ka ∈∀=∑

=

,0
1

β . In order to 

maximize βα T)(Φ∇ , it is obvious to choose a component βka* among ),...,( 1 kMk ββ , 

where ))((maxarg*

ka
Aa

a
α

α
∂
Φ∂

=
∈

, and set           βka* to be -βkb, other components zero. 

Considering the normalization restriction 1||
1 1

=∑∑
= =

K

k

M

a
kaβ , so βka* = 1/2, and βkb = -1/2.  If 

a* = b, every component of ),...,( 1 kMk ββ  is zero. (Q.E.D) 

If a steepest ascent direction β at a current policy α is zero, the policy α is 

considered as a local optimal policy. Otherwise, if β is not zero, there exists a step size 

θ>0 such that α+θβ (it might be a randomized policy) is better thanα, i.e. 

Φ(α+θβ)>Φ(α). Since α is deterministic and the steepest ascent direction β is defined as 

Theorem 1, it is necessary to make θ = 2 such that α’=α+θβ is also deterministic. Note a 

step size θ = 2 may not satisfy Φ(α+θβ)>Φ(α). However, it is sufficient to keep this step 

size and ensure policy move between deterministic policies. This movement has a 

drawback that may not keep Φ(α+θβ)>Φ(α), but if that is a case, the current policy α is 

also considered as a local optimal policy.  Based on this guidance, a heuristic algorithm is 

presented below. 

Definition 3: If starting from a current policy α, β is the steepest ascent direction found 

according to Theorem 1, then the operation of getting a new policy α’=α+2β is called a 

policy improvement. 

Definition 4: A policy α is a local optimal solution, if after a policy improvement the 

policy change from α to α’, and )()'( αα Φ≤Φ . 

Lemma 2: Let ]...[ 1 Nvvv = be the solution to Q(α)v= c(α), then g = vN  is the gain 

associated with the policy α.  

Proof: For a policy α, the gain is )(αcxg = , where x is the steady state probability. 

Since 1)( −= αQbx , the gain is vbcQbg == − )()( 1 αα . Hence g = vN  as b = [0,0, …,1]’. 

(Q.E.D) 
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As deterministic policies are of interest, it is sufficient to only carry the 

information needed in terms of the action taken for a given observation set Sk, and this 

dispels the necessity to construct a K*M-element decision vector α to represent an 

implementable policy.  Therefore, a K*M-element original decision vector α  can be 

represented by K-element policy vector ]...[ 1 Kδδδ = , where 1if == kak a αδ .  

Then Q(α) has entries pij(α) where  

( ) )(
),(

iG
ij

a

a
ijaiGij ppp δαα == ∑  

Similarly, the vector c(α) has entries ci(α) where 

( ) ∑ ==
a

iaiGiai iG
ccc

)(,),( δαα  

These substitutions will be denoted as Q(α/δ) and c(α/δ). To simply notation, a policy is 

always considered as K-element vector notation in this chapter, but readers should keep 

in mind that the policy can have two representations. Use αk to represent the action used 

for observation set k. 

Heuristic Algorithm: The algorithm for finding an implementable policy is as below. 

Step 0. Initialization 

Generate an initial admissible policy α.  

Set g* = -∞. 

Step 1. Value Determination 

Determine relative values v, steady state probabilities x, and the gain gδ. 

x  = b Q(α)-1, v = Q(α)-1c(α), 

(a). If *gg >α , set g* = g and proceed to Step 2. 

(b) If *gg ≤α , the current solution is a local maximum, and stop. 

Step 2. Policy Improvement 

For all k∈ Z find an action ∑ ∑∈
=

∈ +=
kSi

N

j
j

ka
ijiaiAak vpcx

1
)(maxargα , and 

go to step 1. 

Lemma 3: The algorithm defined above will terminate at a local optimal solution after a 

finite number of iterations. 
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Proof:  By assuming the reward for the Markov decision process is bounded, the gain 

associated with any policy would be bounded. Since the policy improvement step will not 

increase the gain indefinitely, there must be a finite number of iterations such that the 

algorithm terminates. (Q.E.D) 

2.4 Perturbation 
The above heuristic, called Normal Convergence, does not guarantee to obtain the 

global optimum unless only a single local optimum exists.  Therefore, the normal 

convergence is augmented by a local improvement procedure, called perturbation, to 

increase the probability of finding the global optimum. 

In order to improve the heuristic, this chapter also provides two perturbation 

methods. One is called Policy Perturbation, and the other is called Π Perturbation.  

2.4.1 Policy Perturbation 
Policy perturbation is carried out based on the policy from Normal Convergence. 

The basic idea is to perturb the best policy obtained from normal convergence, and form 

a neighboring policy. By starting from this new policy, repeat value determination and 

policy improvement cycle. Once a better policy is found, continue perturbing this policy 

until no better policy can be found.  

Obviously, how a policy is perturbed and how many perturbations are performed 

impacts the effect of policy perturbations. Two approaches for policy perturbation are 

developed. The first one (denoted as PP1) modifies only one element in the policy vector, 

and the number of the perturbation increases proportionally to the length of the policy 

vector. The second one (denoted as PP2) is an extension of the first one. After modifying 

one element in the policy vector, it tries to modify any adjacent two elements in the 

policy vector. Obviously, PP2 has more perturbations than PP1. 

How to modify the element to obtain a new policy? During the policy 

improvement step, the test quantities for different alternatives are computed, and the best 

alternative is determined, which maximizes the test quantity, say, 

∑ ∑∈
=

+
kSi

N

j
j

ka
ijiai vpcx

1
)( . Actually, the second best alternative can serve as the candidate 

for perturbation. The example below demonstrates the approach.   
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The original policy ),...,||,...,...,|,...,,( 122111211 KMKMM αααααααα =  is not 

convenient to represent. According to the characteristic of deterministic policy α, this 

chapter simplifies the representation of this policy with K-element policy vector, of 

which each element corresponds to the selected action index for one of the K 

observations. For instance, for a ROMDP problem with N = 16, M = 4, K = 4, and L = 4, , 

if a best policy is (4, 3, 3, 2) after Normal Convergence, the original representation of 

policy is actually α=(0,0,0,1| 0,0,1,0| 0,0,1,0| 0,1,0,0). Assume the second best 

alternatives are (3, 4, 1, 3). Policy Perturbation I (denoted as PP1) results in the following 

policies after perturbation: (3,3,3,2), (4,4,3,2), (4,3,1,2), and (4,3,3,3). The Policy 

Perturbation II (denoted as PP2) results in the following policies after perturbation: 

(3,3,3,2), (4,4,3,2), (4,3,1,2), (4,3,3,3), (3,4,3,2), (4,4,1,2), (4,3,1,3), and (3,3,3,3). Notice 

that the first element and the last element in a vector are treated as adjacent.  

2.4.2 Pi Perturbation  
Pi Perturbation ( Π  Perturbation) is similar to the policy perturbation, except that 

it perturbs a steady state probability vector x instead of a policy vector.  Although the 

policy is not modified, modification of vector x may lead to a better policy by repeating 

the value determination and policy improvement cycle.  If a better policy is found, again 

perturb the vector x associated with this policy.  The process is continued until no better 

policy can be found. 

Unlike a policy vector, vector x has a continuous space.  Different from policy 

perturbation, Π  perturbation is performed by randomizing the x vector under the 

expectation that this modified vector x will eventually lead to a better policy during the 

value determination and policy improvement cycle.  

Two types of Π perturbation are developed (set ε = 1/N). 

(1) Π Perturbation I (denoted as PiP1) 

i) ixx ii ∀+= ε  

ii) i
x

xx N

i
i

i
i ∀=

∑
=1

 

(2) Π Perturbation II (denoted as PiP2)  
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i)
⎩
⎨
⎧

∀>+
∀≤−

=
irx
irx

x
i

i
i ,5.0if

,5.0if ),0max(
ε

ε
 , 

where r is randomly generated value between 0 and 1. 

ii) i
x

xx N

i
i

i
i ∀=

∑
=1

 

2.5 Experimentation 

2.5.1 Generic Problem 
To evaluate the effectiveness of an algorithm, different sizes of generic ROMDP 

problems are generated, and each problem has 1000 random instances.  The heuristic 

solution of solving these instances was compared with the optimal solution through brute 

force enumeration.  Let K represent the number of partitions, L the number of states in 

each partition, N=K*L the number of total states in the system, and M the size of action 

space. 

Table 2.1 gives the percentage of problems solved optimally.  By applying 

Normal Convergence (NC), Policy Perturbation I and II (PP1 and PP2), and Π  

Perturbation I and II (PiP1 and PiP2), 88.3%, 98.5%, 99.2%, 98.8%, and 99.1% of 1,000 

problem instances are optimally solved, respectively.  By combining PP1 and PiP2, 

99.7% of 1,000 problem instances were solved optimally. 

Table 2.2 gives the average error from the optimal solution for those problems 

that are not solved optimally.  Table 2.3 gives the maximum error from the optimal 

solution for those problems that are not solved optimally.  Table 2.4 gives the average 

execution time (seconds) for each problem.  The results show that NC can optimally 

solve at least 85% of generic ROMDP problems.  With policy perturbation or Π  

perturbation, more than 96% of these problems are solved optimally.  Among those 

problems not solved optimally, the average errors are less than 2% and the maximum 

error are less than 10%; with perturbations, the errors are much smaller.  As the size of 

the action space increases, the policy space increases exponentially and it is prohibitive to 

use brute force enumeration to obtain the optimal solution for larger problems.  Our 

algorithm appears effective and fast to the generic ROMDP problem. 
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Table 2.1: Percentage of Problems Solved Optimally (Generic ROMDP) 

% of Problem Solved Optimally Among 1000 Instances 
KXL, N, M Policy space NC PP1 PP2 PiP1 PiP2 PP1&PiP2 
3X3, 9, 3 33= 27 88.90% 97.40% 98.30% 96.20% 98.10% 98.90% 

4X4, 16, 4 44=256 87.60% 98.30% 98.90% 97.70% 98.40% 99.50% 
5X5, 25, 5 55= 3125 88.30% 98.50% 99.20% 98.80% 99.10% 99.70% 

6X6, 36, 6 66= 46656 98.4% 99.6%  99.7%  98.7%  98.4%  99.6%  
 

Table 2.2: Average error of Problems Not Solved Optimally (Generic ROMDP) 

Average Error of Problems Not Solved Optimally  
KXL, N, M NC PP1 PP2 PiP1 PiP2 PP1&PiP2 
3X3, 9, 3 1.54% 1.33% 1.18% 1.39% 0.79% 0.68% 

4X4, 16, 4 0.69% 0.43% 0.45% 0.57% 0.40% 0.55% 
5X5, 25, 5 0.34% 0.19% 0.25% 0.16% 0.21% 0.28% 
6X6, 36, 6  0.09% 0.09%  0.09%  0.09%  0.09%  0.09%  

 

Table 2.3: Max Error of Problems Not solved Optimally (Generic ROMDP) 

Max Error of Problems Not Solved Optimally  
KXL, N, M NC PP1 PP2 PiP1 PiP2 PP1&PiP2 
3X3, 9, 3 9.36% 5.20% 4.79% 7.23% 2.29% 1.81% 

4X4, 16, 4 3.45% 1.44% 1.44% 1.86% 1.03% 1.44% 
5X5, 25, 5 1.65% 0.64% 0.64% 0.77% 0.70% 0.64% 
6X6, 36, 6 0.23% 0.16% 0.16% 0.23% 0.23% 0.16% 

 

Table 2.4: Average Execution Time (seconds) (Generic ROMDP) 

Average Execution Time (seconds3) for 1000 Problem Instances 
KXL, N, M NC PP1 PP2 PiP1 PiP2 PP1&PiP2 Enumeration 
3X3, 9, 3 0.00026 0.0013 0.0025 0.0017 0.0024 0.0035 0.0014 

4X4, 16, 4 0.0012 0.0063 0.011 0.0083 0.014 0.018 0.037 
5X5, 25, 5 0.0030 0.024 0.043 0.037 0.059 0.073 1.5 
6X6, 36, 6 0.01 0.08 0.16 0.08 0.23 0.30 74 

 

2.5.2 Supply Chain Problem 
The ROMDP algorithm is also applied to a two-stage supply chain ROMDP 

problem (maximization problem), in which the retailer uses a fixed order-up-to policy, 

and the supplier aims to optimize the system without knowing the retailer’s inventory 

information. 

                                                           
3 The experiments were performed on a computer with Intel Pentium 2.2GHz CPU. 
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The assumptions include: There is a customer demand distribution that retailer 

must satisfy.  The supplier’s production and the retailer’s order shipment are 

synchronous, and their lead-time is a typical period.  Each has a maximum inventory 

capacity.  The supplier’s production capacity is limited by its inventory capacity, since it 

cannot produce more than can be accommodated in his warehouse.  The retailer applies 

order-up-to policy, and the order-up-to level is its inventory capacity.  Note that the 

excess demand from a customer or the retailer is lost.  The cost structure includes 

production/order setup cost ( sF  and rF ), holding cost ( sH and rH ), variable 

production/purchase cost ( sW and rW ), and a stock out penalty cost ( sL  and rL ).  Here 

the subscription of “s” stands for the supplier and “r” for the retailer. 

The typical parameters for the supply chain are as follows.  

sC : The inventory capacity for the supplier. 

rC : The inventory capacity for the retailer. 

V: The selling price to the customer. 

d : The demand from the customer, d = 0,1…D, assuming rCD = . 

si : The inventory level of the supplier, ss Ci ,...,2,1,0= .  The supplier’s 

observation on his own inventory is ss iz = . 

ri : The inventory level of the supplier, rr Ci ,...,2,1,0= .  The retailer’s observation 

on her own inventory is rr iz = . 

sk : The production order quantity placed by the supplier.  The possible order 

quantity depends on the supplier’s inventory capacity and current inventory level, i.e., 

sss iCk −= ,...,2,1,0 . 

The objective is to find the optimal policy for the supplier, who only observes his 

own inventory, such that the supply chain total profit is maximize.  Obviously, this is a 

typical ROMDP problem.  The system state can be represented by the inventories of both 

the supplier and the retailer, i.e., rss iCii +∗−= )1( , and the action can be represented by 

the order quantity of the supplier, i.e., sk .  Since the supplier has the capacity restriction, 

the policy space is not as large as the generic ROMDP with the same action space.  

Suppose the current state is i (the supplier and the retailer’s inventories are 
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correspondingly si and ri  respectively), under an action sk  and a customer demand d, 

then the total profit of this supply chain would be: 

])(**)),min(,1min(                 

*),1min(***[),min(*),,(
+−++

+++−=

rrrsr

ssssrrssrs

idLFik

FkkWiHiHidVdkiP  

Since sC  and rC  determines the problem size, 1000 problem instances for 

different sC  and rC  are generated.  It appears that the performance is better than generic 

problems (see Figure 2.1, Figure 2.2, and Figure 2.3).  Note that Cs + 1 = K and Cr + 1 = 

L. Without any perturbation, NC method has achieved more than 93% of problems solved 

optimally.  With perturbation, almost solve all the problems are solved; even for those 

problems that are not solved optimally, the average errors are close to zero. 

Fraction Optimal Found
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Figure 2.1: the percentage of problems solved optimally (Supply Chain ROMDP) 
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Figure 2.2: The Average error of Problems Unsolved Optimally (Supply Chain ROMDP) 
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Maximum Relative Error
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Figure 2.3: Max Error of Problems Unsolved Optimally (Supply Chain ROMDP) 

Table 2.5: Average Execution Time (seconds) (Supply Chain ROMDP) 

Average Execution Time (seconds) for 1000 Problem Instances 
KXL, N, M NC PP1 PP2 PiP1 PiP2 PP1&PiP2 Enumeration 
3X3, 9, 3 8e-005 0.000251 0.000233 0.000128 7.9e-005 0.00022 4.7e-005 

4X4, 16, 4 0.000252 0.000862 0.001359 0.000267 0.000204 0.000845 0.000623 
5X5, 25, 5 0.00066 0.002282 0.002818 0.000661 0.000704 0.002072 0.007928 
6X6, 36, 6 0.001128 0.004493 0.008472 0.001197 0.001108 0.005118 0.103613 
7X7, 49, 7 0.002471 0.011151 0.019283 0.002475 0.002805 0.01094 1.43334 
8X8, 64, 8 0.02791 0.14635 0.24389 0.31893 0.33917 0.43547 101.69725 

 

2.6 Conclusion 
Experimental results demonstrate that the heuristic approach to solving ROMDP 

problems is very effective and efficient.  For practical supply chain problems, it has better 

performance. The heuristic approach can be used for solving large-scale ROMDP 

problems (Davis 2004). 
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Chapter 3 Decentralized Markov Decision Processes 
with Restricted Observations 
3.1 Introduction 

This chapter presents a computationally efficient algorithm to solve a distributed 

multi-agent decision process problem.  It is assumed that a group of agents are fully 

cooperative, and that the objective is to derive optimal joint policies for the agents that 

maximize the joint reward over an infinite horizon. 

Generally, a Markov Decision Process or MDP (Howard, 1960) can be used to 

model a single agent decision problem where the agent has full observability of the 

process.  Within a multi-agent framework, the global state may not be observable by 

every agent.  It is assumed that agents are only able to observe their local states which are 

the observable partitions of the global state space.  Due to the partial observability, each 

agent faces a Restricted Observable Markov Decision Process or ROMDP (Chapter 2).  It 

is instructional to note that a ROMDP is a special case of a partially observable Markov 

decision process or POMDP (Sondik, 1971).  In a POMDP, for each global state there is 

a probability distribution associated with the resulting observation whereas in a ROMDP 

there is a single observation associated with each global state (although multiple global 

states may yield the same observation).  Thus, the multi-agent problem can be viewed as 

a Decentralized ROMDP (DEC-ROMDP).  A DEC-ROMDP can be viewed as a special 

case of a decentralized POMDP (DEC-POMDP) (Bernstein et al., 2000) and a multi-

agent team decision problem (MTDP) (Pynadath and Tambe, 2002).  Note that within a 

DEC-ROMDP framework, if every agent has full observability of the global state, the 

DEC-ROMDP degenerates into a Multi-agent MDP (MMDP) (Boutilier, 1999) or a 

Decentralized MDP (DEC-MDP) (Bernstein et al., 2000), where every agent is a MDP 

decision maker that collectively acts to achieve a common objective. 

Solving a decentralized Markov decision problem is extremely difficult.  The 

computational complexity of a DEC-POMDP with at least two agents or a DEC-MDP 

with at least three agents is complete for the complexity class nondeterministic 

exponential time (Bernstein et al., 2000).  One approach to circumventing this complexity 

barrier is to exploit the structure of decentralized problems.  For example, Becker et al. 
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(2002) present a coverage set algorithm to solve a general class of decentralized MDPs 

that exhibits transition independence without reward independence.  Another approach is 

to simplify the nature of decentralized decision problems. For example, Chades et al. 

(2002) convert a DEC-POMDP into a MMDP (Boutilier, 1999) by approximating the 

reward function and transition function over observations instead of over states.  

However, the conversion from solving a DEC-POMDP to solving a MMDP can be quite 

complex and the solution to the MMDP is approximate to the DEC-POMDP since it 

ignores the nonstationary property of the transition and reward functions over 

observations. 

Researchers have been exploiting algorithms within the framework of finite 

horizon DEC-POMDPs and DEC-MDPs (for example, Becker et al., 2002, Nair et al. 

2003, Chades et al. 2003, Xuan et al., 2001).  Chapter 2 presents an effective approach 

for solving single agent ROMDP problems.  However, a DEC-ROMDP cannot be treated 

as separate ROMDPs because the transition and reward function generally depends on the 

joint policy, rather than a single agent policy.  To the best of the authors' knowledge there 

is no efficient algorithm for DEC-ROMDPs in the literature. 

This chapter presents an evolutionary coordination mechanism to evolve a joint 

policy to a locally optimal policy for infinite horizon DEC-ROMDPs.  In the coordination 

mechanism, each agent iteratively updates their local policy while keeping the other 

agents’ policies fixed.  Each update attempts to increase the joint reward until no 

improvement can be made.  Similar coordination mechanisms are studied by Nair et al. 

(2003) and Chades et al. (2002) for finite horizon DEC-POMDPs.  For example, Nair et 

al. (2003) present a similar coordination mechanism called JESP (joint equilibrium-based 

search for policy) which uses either exhaustive search or dynamic programming to find 

the best policy for each agent.  

Our experimentation indicates that the evolutionary coordination algorithm, 

coupled with a multiple start strategy and policy perturbation, effectively solves general 

DEC-ROMDPs.  Additional experimentation shows that for specially structured supply 

chain problems modeled as infinite horizon DEC-ROMDPs, 100% of problems tested are 

solved optimally.  Using successive approximation (White, 1960) to reduce computation 
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effort, this algorithm has been used to solve large-scale supply chain problems, and 

appears to be effective and efficient.  

3.2 Model 

3.2.1 Single agent MDP and ROMDP 
A single agent Markov decision process can be defined as a tuple < S, A, T, R >. S 

is the finite set of global states; A is the set of actions; T: S×A×S→[0,1] is the state-

transition model, where a
ssp ',  represents the probability of ending at a state s’ given that 

the process is in state s and the agent takes action a; R: S×A→R is the reward model, 

where a
sr

4 represents the expected reward when taking action a in state s.  In a common 

MDP (referred henceforth as a completely observable Markov decision process or 

COMDP), the global state is assumed as completely observable to the agent. 

If a global state is not completely observable to the agent, this process is a 

partially observable Markov decision process (POMDP), which can be defined as a tuple 

<S, A, T, R, Z, O>, where S, A, T, and R are the same as those in a COMDP.  Z is the 

finite set of observations; O: S×A× Z →[0, 1] is an observation probability distribution 

model, where a
zso ,'  represents the probability that the agent observes z given that it took 

action a and then the global state changed to s’.  If the observation probability 

distribution O is simplified as a mapping function such that G(s)=z, the POMDP 

degenerates into a ROMDP.  Thus, a ROMDP can be represented by a tuple < S, A, T, R, 

Z, G >, where S, A, T, R, and Z are the same as those in a POMDP.  G: S → Z represents 

the mapping function from a state to a single observation for the agent.  Note that the 

mapping relationship ensures the partitioning of the state space by observations.  

Specially, if G(s)=s, the ROMDP degenerates into a COMDP. 

This chapter finds the optimal stationary deterministic policy5 to maximize 

average reward for infinite horizon decision problems.  A COMDP policy can be 

represented as a function of the state space, and a ROMDP policy a function of the 

observation space.  Under a RODMP policy, if an action a is applied given an 

                                                           
4 Assumed bounded in this dissertation. 
5 A common MDP policy can be categorized as deterministic or randomized, Markovian or history-
dependent.  A stationary policy is generally sought for an infinite horizon MDP problem.  Refer to 
Puterman (1994) for details of these policy types. 
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observation z, this action a applies to any possible state s satisfying G(s)=z, that is, the 

action a must be implementable/admissible to all these states.  Hence, a ROMDP policy 

is also called an “implementable policy” (Serin and Kulkarni, 1995) or “admissible 

policy” (Smith, 1971).  Obviously, a ROMDP policy space is a subset of a common 

COMDP policy space.  

3.2.2 DEC-ROMDP (Multi-agent) 
Definition 1. An n-agent DEC-ROMDP is defined as a tuple <S, A, T, R, Z, G, Λ>, where  

• S is a finite set of global states; 

• nAAA ××= ...1  is a finite set of joint actions, with Ai indicating the individual 

action set by agent i; 

• T: S×A×S→[0,1] is a state-transition model, where a
ssp ',  represents the probability 

of ending at state s’, given that the system state is s and each agent i follows their 

individual action ai.  The collection of individual  actions, (a1,…, an), form a joint 

action a; 

• R: S×A→R is a reward model, where a
sr  represents the immediate expected 

reward for taking joint action a=(a1,…, an) when the system state is s; 

• },...,{ 1 nZZZ = is a finite set of observations, with Zi indicating the individual 

observation set of agent i; 

• },...,{ 1 nGGG = is a set of mapping functions, with  Gi: S →Zi indicating an 

individual mapping function from a state to an observation by agent i; and 

• Λ ={1… n} is a set of n agents. 

Definition 2: Given an n-agent DEC-ROMDP, a stationary individual policy for an 

agent i is defined as δi: Zi → Ai, or δi: S → Ai (due to the mapping function between a 

global state and an observation by the agent, i.e. Gi: S →Zi).  This chapter tends to use the 

representation of δi: S → Ai such that a stationary joint policy for these agents can be 

defined as δ: nAAS ××→ ...1 .  Note δ is equivalent to (δ1, δ2,…,δn). 

Definition 3: An agent i has full observability if it can observe the global system state.  

Otherwise, it has restricted observability where there exists a mapping function Gi: S 



   27

→Zi.  It is assumed that only these two types of observability exist within an n-agent 

DEC-ROMDP. 

Definition 4: Given an n-agent DEC-ROMDP and a current joint policy δ = (δ1, δ2…δn), 

the steady state probabilities can be defined as ),...,,(
||21

δδδδ =
S

xxxx , where δ
kx  

represents the long run probability that the system state is k and |S| is the cardinality of set 

S. 

Definition 5: Given an n-agent DEC-ROMDP and a current joint policy δ = (δ1, δ2…δn), 

the relative values can be defined as ),...,( ||1
δδδ = Svvv  where  

 

Ssvprvg
Ss

sssss ∈∀⋅+=+ ∑
∈′

′′
δδδδδ .   

Refer to Howard (1960) for more detail on relative values. 

Definition 6: Given an n-agent DEC-ROMDP and a current joint policy δ = (δ1, δ2…δn), 

the associated expected reward is defined as Φ(δ), which is also called the gain, denoted 

as δg . 

Definition 7: Given an n-agent DEC-ROMDP and a current joint policy δ = (δ1, δ2…δn), 

the following operation is called an individual policy update by agent i.  

• If agent i has full observability, find a new individual policy 'iδ  which satisfies 

)(maxarg)('
'

'
))(),...,(,),(),...,((

',
))(),...,(,),(),...,(( 111111 ∑

∈∀∈
⋅+= +−+−

Ss
s

ssass
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• If agent i has restricted observability, find a new individual policy 'iδ  which satisfies 

])([maxarg)('
)(

'
'

))(),...,(,),(),...,((
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)(
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Note the above update keeps individual policies unchanged for every agent except agent 

i, i.e. the new joint policy after the update is ),...,,',,...,(' 111 niii δδδδδ=δ +− . 
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Lemma 1: Given an n-agent DEC-ROMDP and a current joint policy δ = (δ1, δ2…δn), 

after a policy update by agent i, the joint policy becomes ),...,,',,...,(' 111 niii δδδδδ=δ +− . 

• If agent i has full observability, it is guaranteed that )()'( δΦ≥δΦ . 

• If agent i has restricted observability, it is not guaranteed that )()'( δΦ≥δΦ . 

Proof: If agent i has full observability, the agent faces a COMDP problem by fixing the 

other agents' policies.  A policy update can be treated as a policy improvement step in 

Howard's (1960) procedure which guarantees )()'( δΦ≥δΦ .  If agent i has restricted 

observability, the agent faces a ROMDP problem by fixing other agents’ policies.  A 

policy update can be treated as a policy improvement step in the heuristic algorithm for 

solving a ROMDP problem.  According to Chapter 2, this does not 

guarantee )()'( δΦ≥δΦ .  However, if this happens, the agent has found a local optimum 

for that ROMDP problem. (Q.E.D) 

Definition 8: A policy update by agent i from δ = (δ1, δ2…δn), to 

1 1 1δ ' (δ ,...,δ ,δ ,δ ,...,δ )i i i n− +
′=  is called a policy improvement if )()'( δΦ≥δΦ . 

Definition 9: A joint policy δ = (δ1, δ2…δn) is called local optimal policy if no policy 

improvement exists from any agent while fixing the other agents’ individual policies.  

The gain associated with the local optimal policy is called local optimal gain. 

Definition 10: A joint policy δ = (δ1, δ2…δn) is called a joint myopic policy if 

a
s

Aa
rs

∈
=δ maxarg)( , Ss ∈∀ .  That is, a joint myopic policy chooses an action which 

maximizes the immediate expected reward for each state. 

3.3 DEC-ROMDP Algorithm 
This chapter introduces an evolutionary coordination algorithm that updates one 

agent’s policy while keeping other agents’ policies unchanged.  There exist two 

variations of the algorithm.  The first updates one agent’s policy only once and then 

performs a policy update on the next agent.  The second keeps updating one agent’s 

policy until no improvement can be made before performing a policy update on the next 

agent.  Both terminate when no policy update is available at any agent.  The details of the 

algorithms are as follows. 

Algorithm I 
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δ←Initialize joint policy, the gain δg ← )(δΦ , and fail ←0 
while fail < n do 
 for i = 1 to n  
  policy update from δ = (δ1, δ2…δn) to ),...,,',,...,(' 111 niii δδδδδ=δ +−  
  if this policy update is a policy improvement then 
   δ (δ ')g ← Φ , δ δ '← , fail ←0 

else  
fail← fail+1 

  if fail = n then 
   break 
return δg and δ. 

Algorithm II 

δ ← Initialize joint policy, the gain δg ← )(δΦ , and fail ← 0 
while fail < n do 
 for i = 1 to n 
  improved ← 0 
  while true do 

policy update from δ = (δ1, δ2…δn) to 
),...,,',,...,(' 111 niii δδδδδ=δ +−  

if this policy update is a policy improvement then 
 δ (δ ')g ← Φ , δ δ '← , improved ← 1 
else 
 break 

  if improved = 1 then 
   fail ← 0 

else 
fail ← fail+1 

  if fail = n then 
   break 
return δg and δ. 

Theorem 1: The above algorithms monotonically increase expect reward, and eventually 

will terminate at a local optimal policy after a finite number of iterations. 

Proof: Both of the algorithms perform a policy update on an agent.  If this policy update 

does not improve the current policy, the next agent is selected to perform the policy 

update.  Hence, the policy is monotonically increasing.  As the expected reward is 

assumed bounded, the algorithm eventually terminates after a finite number of iterations.  

According to Definition 9, it terminates at a local optimal policy (Q.E.D.) 
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3.4 Case Study: A Two-Agent DEC-ROMDP problem 

3.4.1 General two-agent DEC-ROMDP Models 

 

Figure 3.1: General Two-Agent DEC-ROMDP Models with Different Observations 

Obviously, several rules exist that may affect the algorithm performance, 

including the choice of an initial agent for policy update, the policy updating sequence 

for the agents, and the initial joint policy.  This chapter studies two-agent (agent a and 

agent b) DEC-ROMDP models (refer to Figure 3.1), so the policy updating sequences 

can be ignored.  Considering the choice of an initial agent for policy update and two 

variations of the evolutionary coordination algorithm, four approaches are used as 

follows.  “ab” (“ba”) denotes using Algorithm I but the initial agent for updating policy is 

agent a (b). Similarly, “opt_ab” (“opt_ba”) denotes using Algorithm II, but the initial 

agent for updating policy is agent a (b).  In order to compare the approaches “ab”, “ba”, 

“opt_ba”, and “opt_ab”, the same myopic policy is initialized for each approach.  The 

term “meta” is used to denote the method that chooses the best result from these four 

approaches. 

Additional notation is defined for this two-agent DEC-ROMDP as below. 

• N = |S|, the number of system states. 

• Mx = |Ax|, the number of individual actions for agent x. 

• Kx = |Zx|, the number of possible observations by agent x. 

• Jx: the number of states in each observation set for agent x. 

Without loss of generality, assume each observation by an agent corresponds to 

the same number of states.  (N, Ma x Mb, Ka x Kb, Ja x Jb) sufficiently and necessarily 
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characterizes a two-stage DEC-ROMDP problem.  Due to the mapping function G1 (G2), 

N = Ka x Ja (or N = Kb x Jb) always holds.  In addition, a fully observable agent can 

always track the system state such that the mapping function between an observation and 

a state becomes a one-to-one relationship.  Hence the number of states in an observation 

set by this agent is 1.  In Model I, Ja = 1 and Jb = 1.  In Model II, only Jb = 1.  In Model 

III, only Ja = 1.  In Model IV, neither Ja nor Jb equals 1. 

To evaluate the effectiveness of the approaches, 1000 instances of different sizes 

of general DEC-ROMDP problems are generated randomly.  In Model I, due to the full 

observability of agents a and b, a centralized agent c can be assumed to optimize the 

system with full observability.  Obviously, since agent c faces a COMDP problem, 

Howard’s (1960) procedure can be used to find optimal policies.  It should be noted, 

however, that experimentation using the evolutionary coordination algorithm shows that 

the procedure is able to solve a large percentage of problems tested, and for those not 

solved, the maximum deviation from the optimal gain is negligible (Figure 3.2).  Table 

3.1 shows that evolutionary coordination algorithm is faster than Howard’s procedure for 

larger Model I problems.  As the problem size increases, the execution time does not 

increase as fast as the Howard’s procedure.  The reason can be explained as follows.  

Policy improvement becomes significantly time-consuming due to more states and 

actions that must be evaluated as the problem sizes increases.  A decentralized agent has 

fewer states and actions to evaluate, thus spends less time improving its local solution 

than a centralized agent.  This is also an advantageous characteristic of solving problems 

from a decentralized perspective.   

For Models II, III and IV, a restricted observable agent is assumed, and the 

centralized agent is not available to calculate the optimal solution.  Brute-force 

enumeration is used to find the optimal solution in order to evaluate the effectiveness of 

the evolutionary coordination approach. 
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Figure 3.2: Performance for the General Model I Starting with a Joint Myopic Policy 
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Table 3.1: Average Execution Time (Seconds6) (General Model I) 

N, MaxMb, KaxKb, JaxJb Howard opt_ab opt_ba a_b b_a 
9,3x3,9x9,1x1 0.0002 0.0006 0.0006 0.0004 0.0004 

36,6x6,36x36,1x1 0.0050 0.0139 0.0138 0.0093 0.0124 
81,9x9,81x81,1x1 0.1235 0.0238 0.0237 0.0234 0.0235 

144,12x12,144x144,1x1 0.2965 0.1155 0.1142 0.0939 0.0960 
225,15x15,225x225,1x1 2.6126 0.3060 0.3065 0.2949 0.3026 
324,18x18,324x324,1x1 4.6951 0.8654 0.8289 0.8542 0.8667 

 

A joint myopic policy proves effective as a starting policy in finding optimal 

solutions for Model I.  However, the joint myopic policy cannot be used directly to solve 

Models II, III and IV, since at least one agent is not fully observable.  Therefore, we use a 

randomly generated policy as an initial policy.  Obviously, a multiple starts strategy helps 

offset the disadvantage of randomly choosing a poor initial policy.   

Policy perturbation can also be applied to improve the algorithm.  The 

evolutionary coordination algorithm obtains a local optimal policy for Models II, III and 

IV.  Policy perturbation moves an existing local optimum to a neighboring policy by 

modifying both agents’ policy vectors simultaneously.  By starting from this neighboring 

policy, the evolutionary coordination algorithm may come up with a better policy.  

Combined with multiple starts, policy perturbation works very effectively. 

A two phase perturbation strategy is developed that generates neighboring 

policies by changing policy vector entries of each agent simultaneously.  These new 

policies are then evaluated using the evolutionary coordination algorithms.  Before 

describing the details of the perturbation strategy, define a state aggregation as all states 

that map to a given observation ( iz ) by an agent (i), i.e. })(:{ ii zsGs = .   

In the first phase, the second best action (from the final policy improvement phase 

of Algorithm I or II) for the policy entry of each state aggregation for each agent is 

evaluated using either evolutionary coordination algorithm I or II.    The second phase 

evaluates adjacent pairs of entries in the policy vector (corresponding to two adjacent 

state aggregations) for each agent.  As in the first phase, the second best alternatives are 

considered.   

                                                           
6 The experiments were performed on a computer with Intel Pentium 2.2GHz CPU. 
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Experimentation indicates that the performance of “ab”, “ba”, “opt_ab” and 

“opt_ba” are not statistically significantly different.  Hence, the following figures were 

drawn by “meta” solutions from different initial starting policies. 

As with Model I, this chapter focuses on relative errors when examining results 

for Models II (Figure 3.3), III (Figure 3.4) and IV (Figure 3.5).  For all models, as the 

problem size increases, the relative error generally decreases.  Algorithm performance for 

Models II and III shows a similar pattern with the average error for all problems less than 

0.5% and maximum error of less than 2% after only 20 restarts.    Without perturbation, 

Model IV problems of size (36, 3x3, 6x6, 6x6) have an average error of only 0.38% after 

20 multiple starts.  With perturbation, this error becomes zero after only 14 restarts, i.e., 

all 1000 problem instances are solved optimally.  For smaller size problems, fewer 

restarts are needed.   

Clearly, as the number of restarts increases, the number of scenarios solved 

(Percent Optimal Found) is monotonically non-decreasing and the Maximum Relative 

Error is monotonically non-increasing.  However, it should be noted that the Average 

Relative Error is computed only for those scenarios that are not solved optimally.  Thus, 

the Average Relative Error may not necessarily be monotonically non-increasing since as 

the number of restarts increase, some scenarios with small relative error may now be 

solved and no longer contribute to this measure. 
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Figure 3.3: Performance for General Model II with Multiple Starts 
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Figure 3.4: Performance for General Model III with Multiple Starts 
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Figure 3.5: Performance for General Model IV with Multiple Starts 

3.4.2 DEC-ROMDP Application to a Supply Chain Problem 
Next apply the algorithm to a supply chain problem involving a single-product, 

two-stage supply chain with a supplier and a retailer.  The assumptions are as follows.  

The retailer attempts to satisfy all customer demand from its inventory.  Demand each 

period is independent and identically distributed.  The supplier’s production and the 

retailer’s order shipment are synchronous, and their lead-time is one period.  Each has a 

maximum inventory capacity.  The supplier’s production capacity is limited by its 

inventory capacity, as it cannot produce more than can be accommodated in its 

warehouse.  Likewise, the retailer cannot order more than can be accommodated in its 

warehouse.   

The event sequence of the retailer is described as follows.  At the beginning of a 

period, the retailer’s inventory holding cost is incurred.  As an order is placed, variable 

purchase cost and order setup cost are incurred.  Note that the purchase cost and setup 
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cost can be zero if the supplier has zero stock since the supplier can only fill an order 

from stock.  During the period, customer demand occurs and is satisfied from the 

retailer’s stock.  Excess demand is lost if there is insufficient stock, and a penalty cost is 

incurred.  The retailer receives the product shipment from the supplier at the end of the 

period. 

The event sequence for the supplier is described as follows.  At the beginning of a 

period, the supplier’s inventory holding cost is incurred.  As a production order is placed, 

variable production cost and production setup cost is incurred unless there is no 

production.  Note that the production capacity is limited by the inventory capacity.  If the 

supplier knows retailer’s order quantity, he would possibly produce more products based 

upon this knowledge (this only happens if the retailer shares its inventory information).  

Subsequently, the supplier receives the retailer’s order and ships product from stock.  

Excess demand is lost.  However, there is no penalty cost as this is an interior product 

transfer in the chain. At the end of the period, the supplier’s production is added to 

inventory. 

The gain of the system is long term profit per period for the supply chain. The 

Markov decision process modeling for this problem is straightforward.  An individual 

inventory level represents a local state, while a system state can be represented by a 

vector of both inventory levels.  Similarly, an individual order quantity represents a local 

action, while a system action can be represented by a vector of both order quantities.   

Parameters for the supply chain are defined as follows. 

x: A supply chain member, either the supplier (sp) or the retailer (rt). 

Cx: The inventory capacity for supply chain member x. 

Wx: The unit purchase (wholesale) cost for supply chain member x. 

Hx: The unit holding cost per period for supply chain member x. 

Fx: The setup (fixed) cost per order for supply chain member x. 

Lx: The unit stock out (lost sales) cost for supply chain member x. 

xi : The inventory level of supply chain member xx Cix ,...,1,0, = . 

xk : The production order quantity placed by supply chain member x. 

V:  The unit selling price to the customer. 

d: Demand from the customer, Dd ...1,0= , assuming rCD = . 
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The system state s is defined as ( , )sp rts i i= , and a system action a is defined as 

( , )sp rta k k= .  A system state transition from s to s′  depends on the corresponding local 

state transitions sp spi i ′→  and rt rti i ′→  given local actions and sp rtk k , and demand d, 

where ' ( )sp sp rt spi i k k+= − + , and ( ) min( , )rt rt sp rti i d i k+′ = − + .  (Note: )0,max()( xx =+ ).  

The corresponding transition probability a
ssp ′  is derived directly from the demand 

probability mass function, denoted as p(d).  Thus, following system action a when in 

system state s and having demand d occur implies a transition from state s to s′ . 

In addition, given a system transition from state s under action a when demand d 

occurs, the retailer’s profit during the period, ( , , )rtP s a d , is calculated as 

( , , ) *min( , ) [ * *min( , ) min(1, min( , ))* *( ) ]rt rt rt rt rt rt sp rt sp rt rt rtP s a d V d i H i W k i k i F L d i += − + + + −

and the supplier’s profit during the period, ( , , )spP s a d , is calculated as  

( , , ) *min( , ) [ * * min(1, )* *( ) ]sp rt rt sp sp sp sp sp sp sp sp rt spP s a d W k i H i W k k F L k i += − + + + −

The profit for the supply chain when the system transitions from state s under system 

action a with demand d occurring, i.e. )(dr a
s , is the summation of the retailer and 

supplier’s profits7, i.e. 

( ) ( , , ) ( , , )

* min( , ) [ * min(1, min( , )) * * ( ) *

* min(1, ) * * ( ) ]

a
s rt sp

rt rt rt rt sp rt rt rt sp sp

sp sp sp sp sp rt sp

r d P s a d P s a d

V d i H i k i F L d i H i

W k k F L k i

+

+

= +

= − + + − +

+ + + −

 

Thus, a
sr , the expected immediate reward for state s under action a, is calculated as  

 0
( )* ( )

D
a a

s s
d

r p d r d
=

= ∑ .   

The following experiments set Hsp=1, Hrt=1, Lsp=0, Lrt=100, Fsp=40, Frt=0, 

Wsp=10, Wrt=50, and V=100.  Note that Csp and Crt determine the size of a problem. 

This chapter studies four types of information sharing schemes (Figure 3.6) where 

the critical shared information is the individual inventory levels.  The objective is to find 

optimal policies for the supply chain for each of the different information sharing 

schemes.  In each scheme, supplier and retailer cooperate to maximize profit in the 

                                                           
7 Notice the total profit does not depend upon Wrt, which determines the profit allocation between the 
supplier and the retailer.  
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supply chain.  In Model I, both supplier and retailer share information.  In Model II, the 

supplier does not know retailer’s inventory level.  In Model III, the retailer does not know 

supplier’s inventory level.  In Model IV, neither supplier nor retailer knows each other’s 

inventory level.  This mirrors the four models described above in the general problems.  

The evolutionary coordination algorithms for DEC-ROMDP problems are used to solve 

them. 

 

Figure 3.6: Different Information Sharing Schemes for Supply Chain Problems 
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Figure 3.7: Solving Supply Chain Problems with Multiple Starts and Perturbation 
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Since Model I can always be solved using a centralized agent, the focus is on the 

other three models.  Our computational studies show that the evolutionary coordination 

algorithm performs even better in supply chain problems than the general problems.  For 

problems with N ranging up to 36, 1000 instances were tested (Figure 3.7).  By using a 

multiple start strategy with perturbations, all problems are solved optimally for Models II 

and III after only about 4 restarts.  For Model IV, after 5 restarts only 2 instances out of 

1000 instances for problem (25,5x5,5x5,5x5) and 3 instances out of 1000 instances for 

problem (36,6x6,6x6,6x6) are not solved optimally.  However, the average error for the 

unsolved problems is only 0.03% and the maximum error is only 0.08% which is 

probably within the resolution of typical “real” input data.  
 

3.5 Conclusion 
Experimental results demonstrate that the evolutionary coordination algorithm, 

coupled with a multiple start strategy and policy perturbation is effective and efficient for 

solving DEC-ROMDP problems (especially supply chain problems).  The effectiveness 

of the algorithm is also confirmed for three-stage supply chain problems (Chapter 4).  For 

large scale problems, in order to maintain the efficiency of the algorithm, successive 

approximations (White, 1960) and encapsulation evolution approach (Ding et al., 1988) 

can be used to reduce computational effort. 
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Chapter 4 Quantifying the Value of Information and 
Transfer Price Negotiation in a Supply Chain 
4.1 Introduction 

4.1.1 Background 
 It has been reported that information sharing is beneficial to a supply chain, 

especially in reducing the bullwhip effect (Lee et al. 1997, 2000, Cachon and Fisher 

2000) and supply chain cost (Gavirneni et al. 1999, Swaminathan et al. 1997, Tan 1999).  

However, it may not be beneficial to a supply chain if the cost of adopting the inter-

organizational information system is too high (Swaminathan et al. 1997, Cohen 2000). 

When adopting an information sharing policy, the concern is usually which 

production information to share, how to share it, and how to use it effectively to 

maximize mutual benefits to the supply chain members (Huang et al. 2003).  In a make-

to-order environment, capacity requirements and production capability of upstream 

members is critical in order to satisfy the delivery and quantity requirements of the 

customer (D’Amours et al. 1999).  In a make-to-stock environment, demand information 

is critical to upstream members in order to mitigate the bullwhip effect.  Make-to-stock 

information sharing problems have been extensively studied (Gavirneni et al. 1999, 

Gavirneni 2002, Simchi-Levi and Zhao 2002) from the supplier’s point of view.  This 

chapter quantifies the value of sharing inventory information in a make-to-stock 

environment and optimizes operational control for the entire supply chain.  In addition, 

this chapter provides insight on how profit can be allocated between the supply chain 

members so that appropriate information sharing contracts can be negotiated. 

Markov Decision Process (MDP) models are used to quantify the value of 

information sharing and characterize the structure of the optimal policy.  A Markov 

model is a natural way to represent a system where information is shared.  Based on the 

supply chain structure being used, the definition of the state space indicates the available 

information known to the decision-maker at any point in time.  A completely observable 

MDP (COMDP) is used to model the complete information sharing case.  The case of no 

or limited information sharing is modeled as a MDP with restricted observations 

(ROMDP).  The reader is referred to Chapter 2 for the ROMDP algorithm and Chapter 3 
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for the decentralized ROMDP (DEC-ROMDP) algorithm.  There are several advantages 

for using an MDP to study supply chain information sharing models.  No assumption has 

to be made about the structure of the optimal policy.  Previous approaches have typically 

made one or more assumptions about the structure of the optimal policy.  The effect of 

these assumptions is discussed in the following section.  It is easy to analyze information 

sharing from different vantage points by structuring the costs from the desired view; total 

supply chain, retailer, or supplier.  Steady state performance parameters are easily 

determined to provide managerial insight on inventory levels, profit and cost. In addition, 

there have been a number of developments (e.g. White, 1963, Ding et al., 1988, and 

Hodgson and Wang, 1992) in computationally efficient methods for MDP problems, 

which can be used solve large scale problems.   

4.1.2 Literature Review 
 Typically, the structure of the retailer’s order policy is assumed to be an order-up-

to (Zhao and Simchi-Levi 2002, Lee, So, and Tang 2000) or (s,S) policy (Gavirneni et al. 

1999).  Chen (1998) considers reorder point/order quantity policies to quantify the value 

of information sharing when echelon versus installation based reorder points is used.  

Since the supplier is considered to be perfect from the retailer’s perspective and all 

retailer demand is backlogged, the optimal policy of the retailer is not influenced by how 

the supplier responds and is thus optimized independent of the supplier’s action.  As a 

result, existing inventory control results for single stage problems are used to assert the 

structure of the retailer’s policy or prove the optimality of such structures in the 

information sharing setting (Clark and Scarf, 1962, Federgruen and Zipkin 1986, 

Kapuscinski and Tayur 1998).  Zhao and Simchi-Levi (2002) extend the work of 

Kapuscinski and Tayur (1998) to prove the optimality of the supplier’s inventory control 

policy under no information sharing.  The resulting information sharing analysis is made 

from the viewpoint and cost structure of the supplier.  In contrast, this dissertation 

considers an imperfect supplier and pursues system-wide optimality.  Retailer and 

supplier policies are jointly optimized.  Since the multi-stage information sharing 

problem is modeled as an MDP, no assumption has to be made relative to the form of the 

policy of the supply chain partners. 
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 Gavirneni (2002) addresses how the retailer’s optimal (s, S) policy, when set in 

‘isolation’ does not result in the lowest total supply chain cost.  The best way for the 

retailer to make use of the information and achieve system-wide optimality is to modify 

the way the retailer responds when information is shared.  In order to quantify this, 

Gavirneni must optimize the entire supply chain given the information sharing 

partnership is occurring.  To determine the lowest supply chain cost, he has to evaluate 

several suboptimal policies for the retailer, while the supplier’s information sharing 

policy is fixed.  This is achieved by performing a search over a range of possible control 

policy (s, S) values. 

One-stage inventory systems have been extensively examined, and policies, such 

as base-stock policy, (s, S) policy, X-Y band policy, etc. (Scarf 1960, Wagner 1972, 

Shaoxiang and Lamberecht 1996), are optimal given certain assumptions.  However, the 

optimal policy for a general multi-stage supply chain is not of a simple structure and can 

be very difficult to find because the policy depends on system states and structures (Ng, 

Li, and Chakhlevitch 2001).  An MDP model allows relaxation of the ‘fixed policy’ 

assumption. 

4.2 Information sharing in a 2-stage Supply Chain 

4.2.1 Modeling 
4.2.1.1 Assumptions 

Consider information sharing in a single-product, 2-stage supply chain with a 

supplier (manufacturer) and a retailer.  The assumptions are as follows.  The retailer must 

satisfy an i.i.d. customer demand distribution.  The supplier’s production and the 

retailer’s order shipment are synchronous, and their lead-time is one period.  Each has a 

maximum inventory capacity.  The supplier’s production capacity is limited by its 

inventory capacity, as it cannot produce more than can be accommodated in its 

warehouse.  Likewise, the retailer cannot order more than can be accommodated in its 

own warehouse.  The cost structure includes production setup/ordering cost, inventory 

holding cost, production and material cost, and stock out penalty cost. 

The event sequence of the retailer is as follows.  At the beginning of a period, the 

retailer’s inventory holding cost is incurred.  If an order is placed, purchase cost and 

ordering cost are incurred.  Note that the purchase cost and setup cost can be zero if the 
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supplier has zero stock, since the supplier can only fill an order from stock.  During the 

period, customer demand arrives and is satisfied from retail stock.  Excess demand is lost 

if there is insufficient stock, and a stock out penalty cost is incurred.  The retailer receives 

the product shipment from the supplier at the end of the period. 

The event sequence for the supplier is as follows.  At the beginning of a period, 

the supplier’s inventory holding cost is incurred.  As a production order is placed, 

production and material cost and production setup cost is incurred unless there is no 

production.  Note that production capacity is limited by inventory capacity.  If the 

supplier knows the retailer’s order quantity, he could possibly produce more product-

based upon this knowledge (this only happens if the retailer shares inventory 

information).  Subsequently, the supplier receives the retailer’s order and ships product 

from stock.  Excess demand is lost.  However, there is no penalty cost as this is an 

interior product transfer in the chain.  At the end of the period, the supplier’s production 

is added to inventory. 

4.2.1.2 Model Parameters 

Parameters for the supply chain model are defined as follows. 

 x: A supply chain member, either the supplier (s) or the retailer (r). 

Cx: The inventory capacity for supply chain member x. 

Wx: The unit purchase (wholesale) cost for supply chain member x. 

Hx: The unit holding cost per period for supply chain member x. 

Fx: The setup (fixed) cost per order for supply chain member x. 

Lx: The unit stock out (lost sales) cost for supply chain member x. 

xi : The inventory level of supply chain member xx Cix ,...,1,0, = . 

xk : The production order quantity placed by supply chain member x. 

V:  The unit selling price to the customer. 

d: Demand from the customer, Dd ...1,0= , assuming rCD = . 

4.2.1.3 Markov Decision Process Approach 

The MDP approach to modeling this problem is straightforward.  An individual 

inventory level represents a local state, while a system state can be represented by a 

combination of both inventory levels.  Similarly, an individual order quantity represents a 
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local action, while a system action can be represented by a combination of both order 

quantities.  

The system state i is defined as ),( rs iii = , and a system action a is defined as 

),( rs kka = .  A system state transition from i to 'i  depends on the corresponding local 

state transitions 'ss ii →  and 'rr ii →  given local actions sk  and rk , and demand d, 

where srss kkii +−= +)(' , and ( ) min( , )rt rt sp rti i d i k+′ = − + ),min()(' rsrr kidii +−= + .  

(Note: )0,max()( xx =+ ).  The corresponding transition probability a
iip '  is derived directly 

from the demand probability mass function, denoted as p(d).  Thus, following system 

action a when in system state s and having demand d occur implies a transition from state 

i to 'i . 

In addition, given a system transition from state i under action a when demand d 

occurs, the retailer’s profit during the period, ),,( daiPr , is calculated as 

])(**)),min(,1min(),min(**[),min(*),,( +−+++−= rrrsrsrrrrrr idLFikikWiHidVdaiP
and the supplier’s profit during the period, ),,( daiPs , is calculated as  

])(**),1min(**[),min(*),,( +−+++−= srssssssssrrs ikLFkkWiHikWdaiP . 

The profit for the supply chain when the system transitions from state i under 

system action a with demand d occurring, i.e. )(dr a
i , is the summation of the retailer and 

supplier’s profits8, i.e. 
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Thus, a
ir , the expected immediate reward for state i under action a, is calculated as  
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4.2.1.4 Information Flows 

Our objective is to quantify the value of sharing inventory information, and to 

examine the sensitivity to demand characteristics, production/setup cost, inventory 

                                                           
8 Notice the total profit does not depend upon Wr, which determines the profit allocation between the 
supplier and the retailer.  
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capacity, holding cost, and stock out penalty cost.  In order to determine the value of the 

supplier’s or the retailer’s inventory information, four types of information sharing 

models are to be analyzed (see Figure 4.1).  Davis’s model is included in Figure 4.1. 

 

Figure 4.1: Information Flow in Each Model 

MDP is used as the modeling approach, with the objective to find optimal joint 

policies.  As both supplier and retailer make their own replenishment decisions 

collectively to maximize the total profit per period for the supply chain, each model is a 

decentralized decision problem. 

Assume that an agent SA makes decisions for the supplier, and an agent RA 

makes decision for the retailer.  In Model I, supplier and retailer share inventory 

information with each other.  This is a special DEC-ROMDP problem, since both SA and 

RA see the entire state of the system.  Thus, an equivalent centralized agent CA can make 

decisions for the whole system by solving a single agent MDP problem.  Once the 

centralized decision is determined, decentralized decisions by SA and RA can be easily 

derived.  In Model II, only the supplier’s inventory information is shared with the retailer.  

SA sees only local states while RA sees the entire state of the system.  In Model III, only 

the retailer’s inventory information is shared to the supplier.  SA sees the entire state of 

the system while RA sees only local states.  In Model IV, there is no information sharing 

between supplier and retailer.  Each agent sees only its local states.  Obviously, no 

centralized agent can be utilized to help make decisions for the decentralized agents 
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within Models II, III, and IV.  These three models are typical DEC-ROMDP problems.  

In addition, Davis’ model (2004) is a single agent ROMDP problem.  Details of single 

agent ROMDP and DEC-ROMDP problems are contained in Chapter 2 and Chapter 3 

respectively. 

4.2.2 Methodology 
To quantify the value of sharing inventory information, four different models 

need to be considered.  Howard’s procedure (1960) can be used to solve Model I, while 

the DEC-ROMDP algorithm (Chapter 3) is used to solve Models II, III, and IV.  The 

DEC-ROMDP algorithm, also called the evolutionary coordination algorithm, updates 

the policy for each agent by turns until no more policy improvements can be made by any 

agent.  During a policy update, all agents’ policies are fixed except the updating agent.  

The policy update differs depending upon whether the updating agent has full observation 

or restricted observation of the system states.  If the agent has full observability, the 

policy update guarantees an improved gain, or at least an equivalent gain.  If the agent 

has restricted observability, the policy update does not guarantee an improved gain.  This 

evolutionary coordination algorithm eventually terminates after a finite number of 

iterations.  Policy perturbation and multiple starts are used to improve the algorithm.  

Experiments demonstrate that the algorithm with policy perturbation and multiple starts 

optimally solves almost all the supply chain problems attempted, and has negligible error 

for those problems not solved optimally.  Experimental evidence indicates that large-

sized supply chain problems can be expected to be solved with, at worse, negligible 

errors.  Successive Approximation (White 1960) is used to reduce computational effort.  

The encapsulated evolutionary approach (Ding et al. 1985) can be used for further 

reduction of computational effort (Davis 2004). 

Solving the four models enables the quantification of the value of sharing 

information.  The average long term profit per period over the supply chain is the gain of 

the underlying MDP.  Let ig  denote the gain for Model i.  Obviously, one would expect 

that 421 ggg ≥≥ , and 431 ggg ≥≥ , since more information should always help a 

decision maker.  The Relative Information Value (RIV) is of more interest.  By using 

Model IV as a reference, 4411 /)( gggRIV −=  is used to represent the relative value of 
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shared information between supplier and retailer, 4422 /)( gggRIV −=  to represent the 

relative value of sharing only the supplier’s inventory information with the retailer, and 

4433 /)( gggRIV −=  to represent the relative value of sharing only the retailer’s 

inventory information with the supplier. 

4.2.3 Experimentation 
In the computational experiments, the selling price is set at 100, and all other cost 

parameters are accordingly based on reasonable assumptions of real world conditions, 

such as markup ratio and interest rate.  Considerations in the experimental design are 

summarized as follows: 

1. The retailer’s order cost is assumed to be 0 as this cost is usually overhead in the real 

world. 

2. Since the goal is to optimize the total supply chain, the supplier has no stock out cost. 

3. The retailer’s purchasing cost can be regarded as the transfer cost between supplier 

and retailer, which does not affect total profit, but does affect individual profits. 

4. The holding cost is based on the cost during an order period (e.g., a week). 

5. The markup ratio ranges from 5:1 to 20:1, which determines the supplier’s production 

cost. 

6. The demand distribution is assumed to be a truncated discrete Normal distribution.  

Mean demand is denoted as “Mean”.  The coefficient of variation (Cov), is used to 

measure the variability of the demand distribution. 

7. The retailer’s inventory capacity is set such that the probability of a lost sale is not 

large. 

8. In the real world, the supplier may have limited production capacity, which is 

reflected by its inventory capacity. 

Two experimental designs are performed.  The first investigates the effect of 

production capacity, mean demand and the coefficient of variation on the relative value 

of information.  The second investigates the effect of the coefficient of variation, holding 

cost, the supplier’s production setup cost, and the retailer’s penalty cost on the relative 

value of information. 



   48

4.2.3.1 Design of Experiments I 

The first experimental design (denoted as DOE1) is shown in Table 4.1.  12 

problems are generated and solved using the evolutionary coordination algorithm with 

policy perturbation and 20 restarts.  Lost sales9 for all the problems range from 0.2% to 

7%, with most of the lost sales being less than 5%.  These percentages appropriately 

reflect the real world.  

Table 4.1: Design of Experiments I 

Mean10 Cov Cs Cr Hs Hr Ws Wr Ls Lr Fs Fr V 
5 0.3 11 15 1 1 10 50 0 100 40 0 100 
 0.45 13           
 0.60 15           
  17           

 

For the 12 problem instances, RIV1 = RIV3, and RIV2 = 0, except RIV2 = 0.03% for 

one problem.  This is intuitive since the retailer’s decision making is closely related to 

current inventory levels.  Further, the retailer is not concerned with order setup cost as Fr 

= 0.11  Knowing the supplier’s inventory information, the retailer may choose to delay 

ordering so that the supplier can make fewer production setups.  Thus, it is possible to 

reduce total cost and the supplier’s information may be helpful.  However, this situation 

rarely occurs.  If there is any value in the supplier sharing information, it appears to be 

small.  The exception of 0.03% confirms the point.  The followings only consider the 

retailer sharing information, i.e., RIV3. 

                                                           
9 Lost sale here represents the average number of demand lost per period. 
10 Experiments indicate that a mean demand of 7.5 would not be appropriate, since it causes huge lost sales. 
11 If the retailer’s setup cost is not zero, RIV2 would be relatively larger based on experiments. 
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Figure 4.2: Relative Information Value when Mean Demand = 5 

g3 and g4 when Mean Demand = 5 and Cov = 0.3

385

390

395

400

405

410

415

420

11 13 15 17 19 21 23 25 27 29 31 Cs

ga
in g3

g4

 

Figure 4.3: g3 and g4 vs. Cs, with Mean Demand = 5 and Cov = 0.3 

Figure 4.2 indicates that RIV3 increases as demand variability increases.  This is 

intuitive as a supplier with retailer inventory information may predict retailer demand and 

make production decisions accordingly.  Figure 4.2 also indicates that RIV3 decreases as 

the supplier’s production capacity increases.  As capacity increases, the supplier may 

produce more during some periods and may not order at all during other periods.  Setup 

cost is reduced and holding cost is increased, which subsequently may reduce penalty 

cost.  Consequently, supply chain profit increases, i.e., g3 and g4 increase (e.g. Figure 

4.3).  There exists a maximum supply chain profit that can be achieved, once customer 
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demand is assumed.  When the retailer’s inventory information is shared, the supplier has 

additional information about the retailer’s pending order, but as supplier capacity 

increases, the value of that information decreases. 

Figure 4.3 shows g3 and g4 as a function of supplier capacity (Cs) with a mean 

demand of 5 and Cov of 0.30.  It is obvious that at some point the incremental value of 

capacity will go to zero, and that g3 > g4 always holds (g3 - g4 becomes a constant as 

capacity increases, g3 does not increase for Cs > 25, and g4 does not increase for Cs > 29). 

4.2.3.2 Design of Experiments II 

Considering the results from DOE1, experiment II (DOE2) follows Table 4.2.  

Thus, 96 problems are generated and solved.  Each problem is solved using the 

evolutionary coordination algorithm with policy perturbation and 20 restarts. 

Table 4.2: Design of Experiments II 

Mean Cov Cs Cr Hs Hr Ws Wr Ls Lr Fs Fr V 
5 0.30 15 15 1 1 10 50 0 100 40 0 100 
 0.45   2 2 20   200 80   
 0.60            

 

Effect tests using JMP 5.1 indicate that all the main effects except Hr are 

significant at the 99% significance level.  Among the main effects, Cov has the highest 

effect, then Fs, Lr, Hs, Ws, until Hr, which is almost negligible. 

It is not surprising that a larger Cov makes information more valuable.  This was 

shown in DOE1.  As Lr, Fs or Ws increases, the total cost in the supply chain increases 

and profit decreases.  This partially contributes to the increase of RIV3.  In addition, being 

able to track the retailer’s inventory, the supplier performs better. 

The interactions among Cov, Ws, Lr and Fs are significant, but the interactions 

involving Hs or Hr are not significant.  Also, the higher a certain factor is, the more 

significant is the interaction between this factor and another factor.  The reason for this is 

intuitive since a supplier with the retailer’s information will perform better in a highly 

variant environment. 
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4.3 Information sharing in a 3-stage Supply Chain 

4.3.1 Modeling and Methodology 
Now study information sharing in a single-product, 3-stage serial supply chain 

with a capacitated manufacturer, a capacitated supplier and a retailer.  Assumptions and 

event sequences for the 3-stage supply chain are similar to those for a 2-stage supply 

chain.  There is no penalty cost for the supplier or the manufacture as this is an interior 

product transfer in the chain.  In the 2-stage supply chain, “x” is used to denote supplier 

(s) or retailer (r).  In the 3-stage supply chain, “x” is also used to denote manufacturer 

(m). 

Therefore, an individual inventory level represents a local state; while a system 

state i is represented by a combination of the three members’ inventory levels.  Similarly, 

an individual order quantity represents a local action, while a system action a can be 

represented by a combination of three members’ order quantities. 

Given a typical period, system state ),,( rsm iiii = , action ),,( rsm kkka =  and 

demand d, the retailer’s profit is calculated as 

])()),min(,1min(),min([),min(),,( +−⋅+⋅+⋅+⋅−⋅= rrrsrsrrrrrr idLFikikWiHidVdaiP  

The supplier’s profit is calculated as 

])()),min(,1min(),min([),min(),,( +−⋅+⋅+⋅+⋅−⋅= srssmsmsssssrrs ikLFikikWiHikWdaiP
 

The manufacturer’s profit is calculated as  

])(),1min([),min(),,( +−⋅+⋅+⋅+⋅−⋅= msmmmmmmmmssm ikLFkkWiHikWdaiP  

Total profit for the supply chain is the summation of the above three profits12. 
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Thus, a
ir , the expected immediate reward given a state i, and an action a, is calculated as  
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12 Notice the total profit does not depend upon Wr and Ws, which determine the profit allocation along the 
supply chain members. 
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From the 2-stage supply chain, it was found that information sharing from an 

upper stream member to a down stream member is not particularly valuable.  Moving to a 

3-stage supply chain, this dissertation focuses on up-stream information flow as shown in 

the following eight models (Figure 4.4). 

 

Figure 4.4: Information Flow in Each 3-Stage Model 

The objective is to find optimal joint policies for each model.  All members make 

their own replenishment decisions collectively to maximize profit per period for the 

supply chain.  Model I is a single agent MDP problem, while the other models are DEC-

ROMDP problems.  The methodology for calculating relative information value is the 
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same as for the 2-stage model.  Let ig  denote the gain for Model i.  As Model VIII has 

no information sharing, the relative information value for Model i is defined as 

88 /)( gggRIV ii −= . 

4.3.2 Experimentation 
4.3.2.1 Design of Experiments III 

Table 4.3: Design of Experiments III 
Mean  Cov Cm Cs Cr Hm Hs Hr Wm Ws Wr Lm Ls Lr Fm Fs Fr V 

3 0.3 10 10 10 1 1 1 5 20 50 0 0 100 40 40 0 100 
 0.6    2 2 2 10     200 80 80   

  

Design of Experiments III (DOE3) is in Table 4.3.  256 problems are generated 

and solved.  Effect tests were made using JMP 5.1.  All the main effects (Hm, Hs, Hr, Wm, 

Lr, Fm, and Fs) are significant for most RIVs.  Of the 28 interactions only 8 are significant 

(Hm*Fs, Hm*Lr, Hm*Cov, Wm*Fs, Wm*Cov, Fm*Fs, Fs*Lr, Fs*Cov and Lr*Cov). 

RIVs for the First 32 Problems in DOE3
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Figure 4.5: RIVs for the First 32 Problems in DOE3 (all holding costs = 1) 

Table 4.4: Summary of Mean Comparison for RIVs 

Oneway Analysis of RIVs by Group for 256 Problems in DOE3 
RIVi RIV1 RIV2 RIV3 RIV4 RIV5 RIV6 RIV7 

Mean 0.0776 0.0769 0.0626 0.0582 0.0058 0.0075 0.0272 
Tukey-Kramer A A B B D D C 
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The RIVs can be separated into four groups.  Figure 4.5 shows RIVs for the first 

32 problems in DOE3.  It demonstrates visually that RIV5 and RIV6 comprise a group 

which gives the least value for information sharing.  RIV7 is the second group.  It gives 

statistically greater values for information sharing.  RIV3 and RIV4 comprise the third 

group, while RIV1 and RIV2 comprise the most valuable group.  Table 4.4 lists the mean 

for each RIV over 256 problems and Tukey-Kramer test result, which confirms the 

grouping. 

 The above grouping indicates the following.  First, information flow from the 

retailer to the supplier (s←r) is most valuable, while information flow from the retailer to 

the manufacturer (m←r), or from the supplier to the manufacturer (m←s) is 

comparatively less valuable.  Second, combining information flows m←r and m←s helps 

some, but falls well short of the performance of the flow s←r.  Third, once information 

flow s←r has been implemented, a good choice for additional information sharing would 

be to add flow m←s, rather than flow m←r.  What may be implied here is that having 

information from the immediate successor stage, for every stage, is the most important 

information to have. 

4.3.2.2 Design of Experiments IV 

Table 4.5: Design of Experiments IV 
Mean Cov Cm Cs Cr Hm Hs Hr Wm Ws Wr Lm Ls Lr Fm Fs Fr V 

3 0.3 8 8 10 1 1 1 5 20 50 0 0 100 40 40 0 100 
 0.6 10 10               
  12 12               

  

Design of Experiments IV (DOE4) is in Table 4.5.  18 problems are generated and 

solved.  Since the information flow from the retailer to the supplier is most significant, 

this dissertation focuses on how RIV3 changes with the capacities of the supplier and 

manufacturer, and with demand variability.  Figure 4.6 shows that RIV3 decreases as the 

supplier capacity (Cs) increases, while the manufacturer’s capacity (Cm) does not appear 

to significantly affect RIV3. 
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 Figure 4.6: RIV3 Changes with Cm, Cs and Cov 

4.4 Transfer Cost Negotiation 
By determining the optimal policy for a supply chain (with or without information 

sharing), the total profit per period within the supply chain is obtained.  The question is: 

how should the additional profit be allocated to the individual supply chain members 

after information sharing is implemented?  In order to achieve equity among the supply 

chain members, the transfer cost from member to member should be fairly negotiated.  

Once the transfer cost is determined, the unit purchase cost13 can then be calculated, since 

the average order quantity for each member can be determined for a given operating 

policy.  The limits are determined within which the transfer cost negotiation should be 

conducted so that the needs of every supply chain member are fulfilled, but have not 

modeled the actual negotiation process.  For ease of analysis, it is assumed that profit is 

positive for all stages and for all models.  In what follows, the transfer cost negotiation 
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for a 2-stage supply chain and a 3-stage supply chain are analyzed.  Without loss, it is 

assumed that the system is taken from no information sharing to some form of 

information sharing. 

4.4.1 Determination of Transfer Cost in a 2-stage Supply Chain 
Initially, the cost of information sharing (CI) is ignored in the determination of 

limits on how a fair transfer cost should be negotiated.  This section has only a supplier 

(manufacturer) and a retailer.  Let us define notation for the No Information Sharing 

(NIS) case. 

S0 retailer’s sales revenue per period 

C0s supplier’s cost per period, including production and materials, inventory 

holding, and setup cost 

C0r retailer’s cost per period including inventory holding, and stock out 

penalty. 

C0 = C0s + C0r (total cost per period in the supply chain) 

P0 = S0 - C0  (total profit per period in the supply chain) 

Z0 retailer’s transfer (purchase) cost per period 

P0s = Z0 - C0s  (supplier’s profit per period) 

P0r = S0 - C0r - Z0 (retailer’s profit per period) 

Notation for the Information Sharing (IS) case can be defined in the same way, 

but replace the subscript “0” with “1.”  Note that the MDP approach allows 

straightforward computation of the values S0, C0s, C0r, P0, S1, C1s, C1r, and P1.  Given the 

initial transfer cost Z0, the problem is to determine transfer cost Z1 after implementing 

information sharing.  Without loss, it is assumed that supplier and retailer make a profit 

both before and after information sharing is implemented.  Thus, the following 4 

constraints are given. 

P0s = Z0 - C0s > 0        (1) 

P0r = S0 - C0r - Z0 > 0        (2) 

P1s = Z1 - C1s > 0        (3) 

P1r = S1 - C1r - Z1 > 0        (4) 

                                                                                                                                                                             
13 The unit purchase cost is how much that the downstream member pays its immediate upstream member.  
The transfer cost per period equals the product of the unit purchase cost and the order quantity. 
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Since (initially) the cost of sharing information is ignored, it is reasonable to assume that 

both supplier and retailer make more profit after implementing information sharing.  

Thus, 

P1s > P0s → Z1 - C1s > Z0 - C0s     (5) 

P1r > P0r → S1 - C1r - Z1 > S0 - C0r - Z0    (6) 

Figure 4.7 is drawn based on constraints (1), (2), (3), (4), (5), and (6).  They define the 

area (parallelogram) within which negotiations must occur.  The NIS transfer cost must 

be within the line segment TT’ and the IS transfer cost must be within the line segment 

WW’ so that everyone makes their profit.  If the transfer cost before information sharing 

is Z0 = x*, U is the point where additional profit is only obtained by the retailer, and U’ is 

the point where additional profit is only obtained by the supplier.  If the retailer’s average 

order quantity changes from q0 (before information sharing) to q1 (after information 

sharing), the unit purchase cost Wr should change from x*/q0 (NIS) to y*/q1 (IS).  This 

provides guidance for price negotiation on the unit purchase cost. 

 
Figure 4.7: Transfer cost between supplier and retailer when CI = 0 

If the cost of implementing information sharing is charged to the supplier, then 

constraints (3) and (5) change to (7) and (8), respectively. 
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P1s = Z1 - C1s – CI > 0        (7) 

P1s > P0s, i.e. Z1 - C1s – CI > Z0 - C0s      (8) 

Figure 4.8 is drawn based on the constraints (1), (2), (4), (6), (7) and (8).  The 

parallelogram that defines where the negotiation must occur becomes smaller vertically, 

and the price negotiation should be conducted correspondingly. 

 Given x*, the upper limit and lower limit of y* can be calculated as: 

 y*max = S1 – C1r - S0 + C0r + x*      (9) 

 y*min = C1s - C0s + x* + CI       (10) 

Given a NIS transfer cost x* that defines a profit allocation ratio, if it is desired 

that supplier and retailer benefit according to the same ratio after information sharing, the 

IS transfer cost y* is defined by the intersection of the line segments GG’ and Z0=x*.  G 

is the point where all profit is solely allocated to the retailer and G’ is the point where all 

profit is solely allocated to the supplier, in both the NIS and IS cases. 

 
Figure 4.8: Transfer cost between supplier and retailer, when CI is charged to the supplier 

If the cost of information sharing (CI) is too great, the parallelogram may not 

exist and information sharing is not worthwhile.  Using the set of 96 problems solved in 
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DOE2 (See Appendix) as an example, as CI increases information sharing is worthwhile 

on fewer and fewer problems.  If CI is 5.5% or more of gross revenue, information 

sharing is not beneficial for any problem. 

4.4.2 Determination of Transfer Cost in a 3-Stage Supply Chain 
What is interesting to note is that a member of the supply chain can possibly 

benefit from information sharing, yet be uninvolved in either giving or receiving data.  

For instance, if the retailer shares information only with the supplier, the manufacturer 

may benefit.  This dissertation ignores the politics of this issue.  Initially, again ignore the 

cost of information sharing in the determination of limits in the negotiation of fair 

transfer costs by supplier and retailer.  Again, let us define notation for the NIS case. 

S0 retailer’s sales revenue per period. 

C0m manufacturer’s cost per period, including production and material, 

inventory holding, and setup. 

C0s supplier’s cost (except purchase cost) per period, including setup, and 

inventory holding. 

C0r retailer’s cost (except purchase cost) per period, including inventory 

holding and stock out penalty. 

Z0s supplier’s transfer (purchase) cost per period 

Z0r retailer’s transfer (purchase) cost per period 

C0 = C0m + C0s + C0r (total cost per period in the supply chain) 

P0 = S0 - C0   (total profit per period in the supply chain) 

P0m = Z0s - C0m  (manufacturer’s profit per period) 

P0s = Z0r - C0s - Z0s  (supplier’s profit per period) 

P0r = S0 - C0r - Z0r  (retailer’s profit per period) 

Notation for the IS case can be defined as before.  Use “1” to replace the subscript 

“0.”  Note again that the MDP approach provides a perfect tool to easily obtain values for 

S0, C0m, C0s, C0r, P0, S1, C1m, C1s, C1r, and P1.  Given the initial transfer costs Z0s and Z0r, 

the problem is to determine Z1s, and Z1r.  Again without loss, it is assumed that 

manufacturer, supplier and retailer make a profit both before and after information 

sharing is implemented.  The following 6 constraints are given. 

P0m = Z0s - C0m > 0        (11) 
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P0s = Z0r - C0s - Z0s > 0        (12) 

P0r = S0 - C0r - Z0r > 0        (13) 

P1m = Z1s - C1m > 0        (14) 

P1s = Z1r - C1s - Z1s > 0        (15) 

P1r = S1 - C1r - Z1r > 0        (16) 

Assuming every member makes more profit after information sharing, 

P1m > P0m, i.e. Z1s - C1m > Z0s - C0m     (17) 

P1s > P0s, i.e. Z1r - C1s - Z1s > Z0r - C0s - Z0s    (18) 

P1r > P0r, i.e. S1-C1r - Z1r > S0 - C0r - Z0r     (19) 

Based on the constraints (17), (18), and (19), an isosceles right triangle TT’T” is drawn in 

figure 9, which is a profit triangle before information sharing, because any point in the 

triangle represents transfer costs (Z0s, Z0r) such that everyone has profit.  Individual profit 

is measured by the distance from that point to a corresponding side of the triangle (e.g., 

the distance from a point x* to TT” equals the supplier’s profit divided by 2 ).  Point T 

denotes the transfer costs (Z0r, Z0s) which give the retailer all of the profit.  Point T’ 

denotes the transfer costs (Z0r, Z0s) which give the supplier all of the profit.  Point T” 

denotes the transfer costs (Z0r, Z0s) which give the manufacturer all of the profit.  Total 

profit is measured by the length of a shorter side in the profit triangle. 

Usually after information sharing, S1 – C1r > S0 – C0r since the retailer’s sale 

increases, while C1s < C0s since the supplier can order appropriately to reduce setup cost 

by tracking retailer’s inventory (for instance, Model III in Figure 4.4).  Whether C1m < 

C0m or C1m > C0m depends on the parameters of the specific problem.  Figure 4.10 

describes a situation where C1m < C0m.  The triangle WW’W” is a profit triangle after 

information sharing, which is drawn based on the constraints (14), (15) and (16).  By 

satisfying constraints (17), (18), and (19), an information sharing triangle UU’U” (also 

an isosceles right triangle) is drawn, which defines the area where everyone may make 

additional profit after information sharing (refer to figure 10).  Given a specific NIS 

transfer cost point x* (the transfer cost between the supplier and retailer is xr*, and the 

transfer cost between the supplier and the manufacturer is xs*), an IS transfer cost point 

y* (the transfer cost between the supplier and the retailer is yr*, and the transfer cost 

between the supplier and the manufacturer is ys*) must be within UU’U” such that every 
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one is willing to implement information sharing. Given the x* represented by ),( **
sr xx , it 

is easy to figure out the vertices of the information sharing triangle UU’U”, say 

),(: 01
*

0101
*

mmsssmmr CCxCCCCxU −+−+−+ , 

),(:' 01
*

0011
*

mmsrrr CCxCSCSxU −++−−+ , 

),(:" 010011
*

0011
*

ssrrsrrr CCCSCSxCSCSxU +−+−−++−−+ . 

The additional profit for each supply chain member, which comes from information 

sharing, is measured by the distance from the point y* to a corresponding side of UU’U”.  

It is interesting to note that no matter how the NIS transfer costs x* moves within TT’T”, 

the shape and size of UU’U” does not change, and UU’U” moves accordingly within 

WW’W”. 

If the cost of information sharing (CI) is considered, the profit triangle after 

information sharing and the information sharing triangle will shrink.  Figure 4.11 gives 

an example of how WW’W” and UU’U” shrink if all the cost of information sharing is 

charged to the retailer (for instance, Model III in Figure 4.4).  If the CI is too large, 

UU’U” may not exist.  In this case, information sharing is not worth implementing. 

        
Figure 4.9: Profit Triangles before Information Sharing 
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Figure 4.10: Information Sharing Triangle 

                  
Figure 4.11: Information Sharing Triangle Shrinks When CI is charged to the Retailer 
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4.5 Conclusion 
The MDP approach provides a powerful tool for the study of multi-stage supply 

chains. The evolutionary coordination algorithm coupled with policy perturbations and 

multiple starts help to solve the supply chain problem effectively and efficiently.  

Experimentation indicates that appropriate information sharing may bring significant 

benefit to the supply chain, while some information sharing may not be valuable.  

Depending on the cost of information sharing, it may, or may not, be worthwhile to 

implement information sharing. 

 This chapter also discusses the issue of transfer cost negotiation within a supply 

chain, when members of the chain may be from different cost centers or even different 

companies.  A framework is provided within which the negotiations necessarily have to 

occur, thus giving guidance for determination of the transfer price or unit purchase price 

for each of the supply chain members.  Future research will explore this issue in more 

detail.  Other issues to be considered may include unsynchronized lead times, multiple 

products, and alternative supply structures. 
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4.7 Appendix 

Worthy Curve of Information Sharing
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Figure 4.12: Worthy Curve of Information Sharing for 96 Problem Instances in DOE2 

Table 4.6: Worthy Curve Analysis for 96 Problem Instances in DOE2 when CI=014 

#Prob CI Sales0 worthy x y_min y y_max W0=x/q0 W1_min W1=y/q1 W1_max 

1 0 496.651 1 280.64 277.9 281.4 284.9 56.51 55.69 56.40 57.10 

2 0 489.426 1 275.05 269.23 275.14 281.04 56.20 54.67 55.86 57.06 

3 0 475.251 1 261.29 253.19 259.34 265.49 54.98 53.04 54.32 55.61 

4 0 497.722 1 281.98 276.3 280.9 285.4 56.65 55.37 56.29 57.21 

5 0 491.66 1 275.43 266.10 272.69 279.27 56.02 53.98 55.31 56.65 

6 0 476.728 1 252.84 241.42 248.26 255.09 53.04 50.56 51.99 53.42 

7 0 495.779 1 288.57 280.83 286.82 292.80 58.21 56.39 57.59 58.79 

8 0 485.741 1 278.63 272.65 281.90 291.15 57.36 55.40 57.28 59.16 

9 0 471.903 1 266.11 254.94 265.20 275.47 56.39 53.48 55.64 57.79 

10 0 496.654 1 288.91 280.70 288.07 295.44 58.17 56.26 57.74 59.22 

11 0 488.574 1 278.89 267.24 278.86 290.48 57.08 54.26 56.62 58.98 

12 0 474.85 1 260.23 243.19 255.48 267.77 54.80 50.94 53.51 56.09 

13 0 496.651 1 305.47 302.9 306.3 309.7 61.51 60.72 61.40 62.08 

14 0 489.426 1 299.52 294.01 299.76 305.51 61.20 59.70 60.86 62.03 

15 0 474.85 1 284.26 277.17 283.21 289.25 59.86 58.06 59.32 60.59 

16 0 497.722 1 306.87 301.3 305.8 310.3 61.65 60.39 61.29 62.20 
                                                           
14 This table analyzes the worthy curve for a two-stage supply chain. The information sharing case is based 
on Model III and no information sharing is based on Model IV. “CI” denotes the cost of information 
sharing. “Sales0” denotes the gross revenue when there is no information sharing. “x” denotes the transfer 
cost for no information sharing case such that the profit is allocated among retailer and supplier evenly. “y” 
denotes the transfer cost for information sharing case such that the profit is allocated evenly. “y_min” and 
“y_max” are the minimal and maximal transfer costs that both retailer and supplier will be benefited from 
information sharing, respectively. “q0” and “q1” are the average transfer quantities per period that keep 
profit allocated evenly before and after information sharing, respectively. “W0” and “W1” denote the unit 
purchase prices that keep profit allocated evenly before and after information sharing, respectively. 
“W1_min” and “W1_max” are the limits for the unit purchase price after information sharing if no 
information sharing transfer cost is “x”.  If “worthy” value equals 1, the implementation of information 
sharing is worthy. Since CI=0, all the problems will be benefited from information sharing.  
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Table 4.6 (Continued) 

17 0 491.66 1 300.01 290.58 297.10 303.62 61.02 58.95 60.28 61.60 

18 0 476.728 1 276.68 265.33 272.13 278.93 58.04 55.57 56.99 58.42 

19 0 495.779 1 313.36 305.84 311.72 317.59 63.21 61.41 62.59 63.77 

20 0 485.741 1 302.92 296.11 305.07 314.03 62.36 60.25 62.08 63.90 

21 0 471.903 1 289.70 278.86 288.89 298.91 61.39 58.51 60.61 62.72 

22 0 496.654 1 313.74 305.76 313.01 320.27 63.17 61.28 62.74 64.19 

23 0 488.574 1 303.32 292.06 303.49 314.91 62.08 59.30 61.62 63.94 

24 0 474.85 1 283.97 267.19 279.35 291.51 59.80 55.97 58.51 61.06 

25 0 496.65 1 275.84 273.1 276.5 279.9 55.54 54.74 55.42 56.09 

26 0 489.426 1 270.16 264.34 270.15 275.96 55.20 53.67 54.85 56.03 

27 0 475.251 1 256.26 248.17 254.27 260.37 53.92 51.98 53.26 54.54 

28 0 497.721 1 277.12 271.4 275.9 280.4 55.68 54.40 55.30 56.21 

29 0 491.66 1 270.46 260.91 267.45 273.99 55.01 52.93 54.26 55.59 

30 0 476.728 1 247.78 236.36 243.19 250.01 51.98 49.50 50.93 52.36 

31 0 495.779 1 283.81 276.09 281.97 287.85 57.25 55.44 56.62 57.80 

32 0 485.741 1 273.82 266.44 275.55 284.65 56.37 54.22 56.07 57.92 

33 0 471.903 1 261.16 249.88 260.05 270.22 55.34 52.43 54.56 56.69 

34 0 496.654 1 284.11 275.91 283.15 290.38 57.21 55.30 56.75 58.20 

35 0 488.574 1 274.01 262.36 273.87 285.38 56.08 53.27 55.61 57.94 

36 0 474.85 1 255.21 238.18 250.41 262.64 53.75 49.89 52.45 55.02 

37 0 496.641 1 300.68 298.2 301.4 304.7 60.54 59.76 60.42 61.07 

38 0 489.426 1 294.63 289.12 294.77 300.43 60.20 58.70 59.85 61.00 
39 0 474.85 1 279.25 272.11 278.10 284.08 58.81 57.00 58.25 59.51 

40 0 496.651 1 299.00 296.5 300.9 305.3 60.20 59.42 60.30 61.19 

41 0 491.66 1 295.05 285.30 291.78 298.26 60.01 57.90 59.21 60.53 

42 0 476.728 1 271.62 260.26 267.05 273.83 56.98 54.51 55.93 57.35 

43 0 495.779 1 308.60 301.13 306.90 312.67 62.25 60.47 61.63 62.79 

44 0 485.741 1 298.11 291.30 300.12 308.94 61.37 59.27 61.07 62.86 

45 0 471.903 1 284.75 273.91 283.84 293.78 60.34 57.47 59.56 61.64 

46 0 496.654 1 308.95 300.97 308.09 315.22 62.21 60.32 61.75 63.18 

47 0 488.574 1 298.44 287.18 298.50 309.81 61.08 58.31 60.61 62.90 

48 0 474.85 1 278.96 262.17 274.28 286.39 58.75 54.92 57.45 59.99 

49 0 496.631 1 284.61 282.5 284.9 287.2 57.31 56.73 57.20 57.67 

50 0 489.426 1 279.38 275.8 280.6 285.3 57.08 56.01 56.97 57.93 

51 0 475.251 1 265.95 258.47 263.61 268.75 55.96 54.22 55.30 56.38 

52 0 496.651 1 282.97 282.6 286.1 289.5 56.97 56.65 57.34 58.03 

53 0 491.66 1 280.01 271.32 276.92 282.53 56.95 55.09 56.23 57.36 

54 0 476.728 1 257.69 247.93 253.89 259.84 54.05 51.93 53.18 54.42 

55 0 495.779 1 292.51 286.8 291.8 296.7 59.00 57.59 58.59 59.59 

56 0 485.741 1 282.77 277.60 285.71 293.83 58.21 56.49 58.14 59.79 

57 0 471.903 1 270.56 261.34 270.55 279.77 57.33 54.83 56.77 58.70 

58 0 496.651 1 292.91 287.07 293.22 299.37 58.98 57.54 58.77 60.01 

59 0 488.574 1 283.20 273.82 284.24 294.66 57.96 55.60 57.72 59.83 

60 0 474.85 1 264.88 249.21 260.47 271.74 55.78 52.23 54.59 56.95 

61 0 496.631 1 309.44 307.5 309.8 312.1 62.31 61.75 62.20 62.66 

62 0 489.426 1 303.86 300.4 305 309.5 62.08 61.01 61.94 62.87 

63 0 474.85 1 288.91 282.35 287.41 292.46 60.84 59.24 60.30 61.36 
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Table 4.6 (Continued) 

64 0 496.651 1 307.80 307.7 311 314.3 61.97 61.67 62.34 63.00 

65 0 491.66 1 304.59 295.98 301.54 307.11 61.95 60.10 61.23 62.35 

66 0 476.728 1 281.52 271.84 277.76 283.68 59.05 56.94 58.18 59.41 

67 0 495.779 1 317.30 311.8 316.7 321.5 64.00 62.61 63.59 64.56 

68 0 485.741 1 307.06 302.46 310.29 318.11 63.21 61.55 63.14 64.73 

69 0 468.436 1 287.34 285.15 294.13 303.11 61.34 59.85 61.73 63.62 

70 0 495.779 1 315.19 312.13 318.16 324.19 63.57 62.57 63.77 64.98 

71 0 488.574 1 307.63 298.64 308.86 319.09 62.96 60.64 62.72 64.79 

72 0 474.85 1 288.62 272.80 283.95 295.10 60.78 57.19 59.52 61.86 

73 0 496.617 1 279.82 277.7 280 282.3 56.34 55.77 56.22 56.68 

74 0 489.426 1 274.49 270.7 275.4 280 56.08 54.99 55.93 56.87 

75 0 474.85 1 260.16 253.41 258.53 263.64 54.79 53.16 54.24 55.31 

76 0 496.651 1 278.17 277.9 281.1 284.4 56.01 55.69 56.35 57.01 

77 0 491.66 1 275.04 266.35 271.93 277.51 55.94 54.08 55.21 56.35 

78 0 476.728 1 252.63 242.87 248.81 254.76 52.99 50.87 52.11 53.36 

79 0 495.779 1 287.75 282.1 286.9 291.8 58.04 56.64 57.61 58.58 

80 0 485.741 1 277.96 272.79 280.76 288.73 57.22 55.51 57.13 58.76 

81 0 471.903 1 265.61 256.14 265.27 274.39 56.28 53.76 55.67 57.59 

82 0 495.782 1 285.65 282.27 288.29 294.31 57.62 56.58 57.79 58.99 

83 0 488.574 1 278.32 268.94 279.25 289.56 56.97 54.61 56.70 58.80 

84 0 474.85 1 259.87 243.83 255.04 266.26 54.73 51.11 53.46 55.81 

85 0 496.61 1 304.64 302.7 304.9 307.1 61.34 60.78 61.22 61.67 

86 0 489.426 1 298.96 295.5 300 304.5 61.08 60.02 60.93 61.84 

87 0 474.85 1 283.90 277.33 282.36 287.39 59.79 58.18 59.24 60.29 

88 0 496.651 1 303.00 302.9 306.1 309.3 61.01 60.71 61.35 61.99 

89 0 491.66 1 299.63 291.02 296.55 302.09 60.94 59.09 60.21 61.34 

90 0 476.728 1 276.46 266.78 272.69 278.60 57.99 55.88 57.11 58.35 

91 0 495.779 1 312.54 307.1 311.8 316.5 63.04 61.66 62.61 63.56 

92 0 485.741 1 302.25 297.65 305.33 313.02 62.22 60.57 62.13 63.70 

93 0 468.436 1 282.45 280.26 289.09 297.92 60.30 58.82 60.67 62.53 

94 0 495.782 1 310.44 307.03 312.90 318.76 62.62 61.56 62.73 63.91 

95 0 488.574 1 302.75 293.76 303.88 313.99 61.97 59.65 61.70 63.76 

96 0 474.85 1 283.61 266.74 277.85 288.97 59.73 55.96 58.29 60.62 

 

Table 4.7: Worthy Curve Analysis for 96 Problem Instances in DOE2 when 

CI=2%*Sales015 

#Prob CI Sales0 worthy x y_min y y_max W4=x/q0 W3_min W3=y/q1 W3_max 

1 9.93 496.651 0 280.64 -1 -1 -1 56.51 -1 -1 -1 

2 9.79 489.426 1 275.05 279.02 280.03 281.04 56.20 56.65 56.86 57.06 

3 9.51 475.251 1 261.29 262.70 264.09 265.49 54.98 55.03 55.32 55.61 

4 9.95 497.722 0 281.98 -1 -1 -1 56.65 -1 -1 -1 

5 9.83 491.66 1 275.43 275.94 277.60 279.27 56.02 55.97 56.31 56.65 

                                                           
15 If “worthy” value equals 0, the cost of information sharing is too great, i.e., the information sharing for 
that supply chain problem is not worthy, and corresponding values are filled as -1 for “y_min”, “y”, 
“y_max”, “W3_min”, “W3” and “W3_max.” 
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Table 4.7 (Continued) 

6 9.53 476.728 1 252.84 250.96 253.02 255.09 53.04 52.56 52.99 53.42 

7 9.92 495.779 1 288.57 290.74 291.77 292.80 58.21 58.38 58.59 58.79 

8 9.71 485.741 1 278.63 282.36 286.76 291.15 57.36 57.37 58.26 59.16 

9 9.44 471.903 1 266.11 264.38 269.92 275.47 56.39 55.46 56.63 57.79 

10 9.93 496.654 1 288.91 290.63 293.03 295.44 58.17 58.25 58.73 59.22 

11 9.77 488.574 1 278.89 277.01 283.75 290.48 57.08 56.24 57.61 58.98 

12 9.5 474.85 1 260.23 252.69 260.23 267.77 54.80 52.93 54.51 56.09 

13 9.93 496.651 0 305.47 -1 -1 -1 61.51 -1 -1 -1 

14 9.79 489.426 1 299.52 303.80 304.66 305.51 61.20 61.68 61.86 62.03 

15 9.5 474.85 1 284.26 286.67 287.96 289.25 59.86 60.05 60.32 60.59 

16 9.95 497.722 0 306.87 -1 -1 -1 61.65 -1 -1 -1 

17 9.83 491.66 1 300.01 300.41 302.01 303.62 61.02 60.95 61.27 61.60 

18 9.53 476.728 1 276.68 274.87 276.90 278.93 58.04 57.57 57.99 58.42 

19 9.92 495.779 1 313.36 315.76 316.67 317.59 63.21 63.40 63.59 63.77 

20 9.71 485.741 1 302.92 305.82 309.93 314.03 62.36 62.23 63.07 63.90 

21 9.44 471.903 1 289.70 288.29 293.60 298.91 61.39 60.49 61.60 62.72 

22 9.93 496.654 1 313.74 315.69 317.98 320.27 63.17 63.27 63.73 64.19 

23 9.77 488.574 1 303.32 301.83 308.37 314.91 62.08 61.28 62.61 63.94 

24 9.5 474.85 1 283.97 276.68 284.10 291.51 59.80 57.96 59.51 61.06 

25 9.93 496.65 0 275.84 -1 -1 -1 55.54 -1 -1 -1 

26 9.79 489.426 1 270.16 274.13 275.04 275.96 55.20 55.66 55.84 56.03 

27 9.51 475.251 1 256.26 257.68 259.03 260.37 53.92 53.98 54.26 54.54 

28 9.95 497.721 0 277.12 -1 -1 -1 55.68 -1 -1 -1 

29 9.83 491.66 1 270.46 270.74 272.36 273.99 55.01 54.93 55.26 55.59 

30 9.53 476.728 1 247.78 245.90 247.95 250.01 51.98 51.50 51.93 52.36 

31 9.92 495.779 1 283.81 286.00 286.93 287.85 57.25 57.43 57.62 57.80 

32 9.71 485.741 1 273.82 276.16 280.41 284.65 56.37 56.19 57.06 57.92 

33 9.44 471.903 1 261.16 259.31 264.77 270.22 55.34 54.41 55.55 56.69 

34 9.93 496.654 1 284.11 285.84 288.11 290.38 57.21 57.29 57.75 58.20 

35 9.77 488.574 1 274.01 272.13 278.76 285.38 56.08 55.25 56.60 57.94 

36 9.5 474.85 1 255.21 247.67 255.16 262.64 53.75 51.88 53.45 55.02 

37 9.93 496.641 0 300.68 -1 -1 -1 60.54 -1 -1 -1 

38 9.79 489.426 1 294.63 298.91 299.67 300.43 60.20 60.69 60.84 61.00 
39 9.5 474.85 1 279.25 281.61 282.84 284.08 58.81 58.99 59.25 59.51 

40 9.93 496.651 0 299.00 -1 -1 -1 60.20 -1 -1 -1 

41 9.83 491.66 1 295.05 295.13 296.70 298.26 60.01 59.89 60.21 60.53 

42 9.53 476.728 1 271.62 269.79 271.81 273.83 56.98 56.50 56.93 57.35 

43 9.92 495.779 1 308.60 311.05 311.86 312.67 62.25 62.46 62.62 62.79 

44 9.71 485.741 1 298.11 301.01 304.97 308.94 61.37 61.25 62.06 62.86 

45 9.44 471.903 1 284.75 283.34 288.56 293.78 60.34 59.45 60.55 61.64 

46 9.93 496.654 1 308.95 310.90 313.06 315.22 62.21 62.31 62.75 63.18 

47 9.77 488.574 1 298.44 296.96 303.38 309.81 61.08 60.29 61.60 62.90 

48 9.5 474.85 1 278.96 271.67 279.03 286.39 58.75 56.91 58.45 59.99 

49 9.93 496.631 0 284.61 -1 -1 -1 57.31 -1 -1 -1 

50 9.79 489.426 0 279.38 -1 -1 -1 57.08 -1 -1 -1 

51 9.51 475.251 1 265.95 267.98 268.36 268.75 55.96 56.22 56.30 56.38 

52 9.93 496.651 0 282.97 -1 -1 -1 56.97 -1 -1 -1 
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53 9.83 491.66 1 280.01 281.15 281.84 282.53 56.95 57.08 57.22 57.36 

54 9.53 476.728 1 257.69 257.47 258.65 259.84 54.05 53.93 54.17 54.42 

55 9.92 495.779 1 292.51 296.7 296.7 296.7 59.00 59.58 59.58 59.59 

56 9.71 485.741 1 282.77 287.32 290.57 293.83 58.21 58.47 59.13 59.79 

57 9.44 471.903 1 270.56 270.78 275.27 279.77 57.33 56.81 57.76 58.70 

58 9.93 496.651 1 292.91 297.00 298.19 299.37 58.98 59.53 59.77 60.01 

59 9.77 488.574 1 283.20 283.59 289.13 294.66 57.96 57.59 58.71 59.83 

60 9.5 474.85 1 264.88 258.71 265.22 271.74 55.78 54.22 55.58 56.95 

61 9.93 496.631 0 309.44 -1 -1 -1 62.31 -1 -1 -1 

62 9.79 489.426 0 303.86 -1 -1 -1 62.08 -1 -1 -1 

63 9.5 474.85 1 288.91 291.85 292.15 292.46 60.84 61.23 61.29 61.36 

64 9.93 496.651 0 307.80 -1 -1 -1 61.97 -1 -1 -1 

65 9.83 491.66 1 304.59 305.81 306.46 307.11 61.95 62.09 62.22 62.35 

66 9.53 476.728 1 281.52 281.37 282.52 283.68 59.05 58.93 59.17 59.41 

67 9.92 495.779 0 317.30 -1 -1 -1 64.00 -1 -1 -1 

68 9.71 485.741 1 307.06 312.17 315.14 318.11 63.21 63.53 64.13 64.73 

69 9.37 468.436 1 287.34 294.52 298.81 303.11 61.34 61.81 62.71 63.62 

70 9.92 495.779 1 315.19 322.05 323.12 324.19 63.57 64.55 64.77 64.98 

71 9.77 488.574 1 307.63 308.41 313.75 319.09 62.96 62.63 63.71 64.79 

72 9.5 474.85 1 288.62 282.30 288.70 295.10 60.78 59.18 60.52 61.86 

73 9.93 496.617 0 279.82 -1 -1 -1 56.34 -1 -1 -1 

74 9.79 489.426 0 274.49 -1 -1 -1 56.08 -1 -1 -1 

75 9.5 474.85 1 260.16 262.91 263.28 263.64 54.79 55.16 55.23 55.31 

76 9.93 496.651 0 278.17 -1 -1 -1 56.01 -1 -1 -1 

77 9.83 491.66 1 275.04 276.19 276.85 277.51 55.94 56.08 56.21 56.35 

78 9.53 476.728 1 252.63 252.40 253.58 254.76 52.99 52.87 53.11 53.36 

79 9.92 495.779 0 287.75 -1 -1 -1 58.04 -1 -1 -1 

80 9.71 485.741 1 277.96 282.51 285.62 288.73 57.22 57.49 58.12 58.76 

81 9.44 471.903 1 265.61 265.58 269.99 274.39 56.28 55.74 56.66 57.59 

82 9.92 495.782 1 285.65 292.19 293.25 294.31 57.62 58.57 58.78 58.99 

83 9.77 488.574 1 278.32 278.72 284.14 289.56 56.97 56.60 57.70 58.80 

84 9.5 474.85 1 259.87 253.32 259.79 266.26 54.73 53.10 54.46 55.81 

85 9.93 496.61 0 304.64 -1 -1 -1 61.34 -1 -1 -1 

86 9.79 489.426 0 298.96 -1 -1 -1 61.08 -1 -1 -1 

87 9.5 474.85 1 283.90 286.83 287.11 287.39 59.79 60.18 60.23 60.29 

88 9.93 496.651 0 303.00 -1 -1 -1 61.01 -1 -1 -1 

89 9.83 491.66 1 299.63 300.85 301.47 302.09 60.94 61.08 61.21 61.34 

90 9.53 476.728 1 276.46 276.31 277.45 278.60 57.99 57.87 58.11 58.35 

91 9.92 495.779 0 312.54 -1 -1 -1 63.04 -1 -1 -1 

92 9.71 485.741 1 302.25 307.36 310.19 313.02 62.22 62.55 63.12 63.70 

93 9.37 468.436 1 282.45 289.63 293.77 297.92 60.30 60.79 61.66 62.53 

94 9.92 495.782 1 310.44 316.95 317.85 318.76 62.62 63.55 63.73 63.91 

95 9.77 488.574 1 302.75 303.53 308.76 313.99 61.97 61.64 62.70 63.76 

96 9.5 474.85 1 283.61 276.23 282.60 288.97 59.73 57.95 59.29 60.62 
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Chapter 5 Summary and Future Research 
5.1 Summary and Future Research 

In this dissertation an evolutionary coordination algorithm for DEC-ROMDP 

problems was introduced.  Coupled with a policy perturbation and multiple starts 

strategy, this algorithm works effectively for supply chain DEC-ROMDP problems.  Any 

improvement in the algorithm, like the perturbation method, that helps to improve 

solving generic DEC-ROMDP problems has the potential to make this algorithm widely 

used.  Successive approximation (White 1960) is used in the algorithm to reduce 

computations.  In order to solve extremely large-scale supply chain problems more 

efficiently, the encapsulation evolutionary approach (Ding et al. 1988) should be pursued 

in future research.  Note that the encapsulation evolution approach has two assumptions: 

first, the chain structure of the MDP problem is uni-chain; and second, all possible 

policies are aperiodic.  Unfortunately, the supply chain ROMDP or DEC-ROMDP 

problems may be multi-chain structured, and some implementable policies may be 

periodic.  Davis (2004) applied the encapsulation evolutionary approach to the supply 

chain ROMDP problem, and found computational effort to be greatly reduced.  Insight 

from Davis’ work should be brought into the application of the encapsulation 

evolutionary approach to the supply chain DEC-ROMDP problems. 

This dissertation quantifies the value of information sharing in a serial supply 

chain (both two-stage and three-stage).  Future research may explore information sharing 

in a divergent, convergent, or network supply chain.  Other issues to be considered may 

include unsynchronized lead times, multiple products, and backlog.  The incorporation of 

the above issues may significantly increase the number of system states.  For instance, 

only a single product in the supply chain is considered here.  If two different products are 

considered, the system state space will expand greatly.  If unsynchronized lead times or 

backlog comes into play, the system state representation becomes complicated since it is 

related to not only inventory levels, but also lead time or back orders.  However, the 

evolutionary coordination algorithm can still be applied to these more complicated 

situations. 



   71

The issue of transfer cost negotiation within a supply chain is discussed, when 

members of the chain may be from different cost centers or even different companies.  

This dissertation provides a framework within which the negotiations necessarily have to 

occur, thus giving guidance for determination of the transfer price for supply chain 

members.  Future research should explore this issue in more detail. 
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