
ABSTRACT

SILVA, LUCIANO DA COSTA E. Multiple Trait Multiple Interval Mapping of
Quantitative Trait Loci from Inbred Line Crosses. (Under the direction of Zhao-Bang
Zeng).

Tremendous progress has been made in recent years on developing statistical meth-

ods for mapping quantitative trait loci (QTL) from crosses of inbred lines. Most of

the recent research is focused on strategies for mapping multiple QTL and associ-

ated model selection procedures and criterion. In Chapter 1, we review the progress

of research on QTL mapping on one and multiple trait by maximum likelihood and

Bayesian methods.

Although in many instances multiple trait are measured in the same subject, single

traits analyses have been the main stream for the purpose of QTL identification.

However, single trait analyses do not take advantage of correlation between traits.

Multiple trait analysis allows an investigator to assess the pattern of action of QTL

on multiple trait, such as, testing the hypothesis of existence of pleiotropic QTL

versus the hypothesis of close linked QTL affecting multiple trait, and testing the

hypothesis of QTL by environment interaction. In Chapter 2, we proposed a statistical

model for mapping multiple QTL affecting multiple trait, the multiple trait multiple

interval mapping (MTMIM) model. We also developed a score-based threshold for

assessing significance level of QTL effects on multiple trait. Our MTMIM model

provides a comprehensive framework for QTL inference in multiple trait, in which

the score-based threshold is built in as an essential and elegant tool for computing

the significance level of effects of putative QTL in the genome-wide scan, therefore,

allowing us to build a set of models containing multiple QTL.



In Chapter 3, we empirically showed that the score-based threshold maintains the

false discovery rate within acceptable levels and the multiple trait analysis can bring

insights into the analysis of data for the purpose of QTL identification. The analysis

of data from an experiment with Drosophila showed the potential of our MTMIM

model in delivering complementary information regarding the genetic architecture of

complex traits, such as, estimating QTL effects on a set of traits simultaneously, test-

ing for the presence of pleiotropic QTL, and estimating the genotypic covariance be-

tween traits. A generalized expectation maximization Newton-Raphson (GEM-NR)

algorithm for maximizing the likelihood function and estimating parameters in the

MTMIM model was compared to the expectation-conditional maximization (ECM)

algorithm. Empirical comparison showed that GEM-NR speeded up the convergence

of likelihood function considerably when compared to the ECM algorithm, while still

delivering stable estimates of parameters.

In Chapter 4, we proposed analytical formulae to predict the length of confidence

interval for position of QTL and to predict shape of the LRT around the position of

QTL in highly saturate linkage maps and multiple trait analysis using large sample

theory. Our results generalize the results of Visscher and Goddard (2004) and

they can be used to predict the length of confidence interval for position of QTL

with a hypothesized effect on multiple trait, for any given coverage probability. Our

analytical formulae can also be used to predict shape of LRT around the position of

QTL. Furthermore, we proposed an alternative method for predicting the length of

confidence interval for position of QTL, the adjusted method. The adjusted method

accounts for the length of the chromosome in which the QTL is located and can

deliver more accurately predictions than the method with no adjustments, especially

for QTL of low heritability. Our simulation results showed that for sample size of 300

and QTL with heritability levels of 5, 10 and 15%, there are good agreement between

lengths of confidence intervals empirically estimated and analytically predicted with

the adjusted method.
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Introduction

Many traits that are important to agriculture, human health and evolutionary

biology are quantitative in nature, influenced by multiple genes. Efficient and robust

identification and mapping onto genomic positions of those genes is a very important

goal in quantitative genetics. The availability of genome-wide molecular markers

provides the means for us to locate and map those quantitative trait loci (QTL) in a

systematic way. Since the publication of Lander and Botstein (1989), that first

proposed interval mapping method for a genome-wide scan of QTL, many statistical

methods have been proposed and developed to map multiple QTL with epistasis in a

variety of populations.

In this chapter we review the current status of research on statistical methods for

mapping multiple QTL in single and multiple complex traits within the maximum

likelihood and Bayesian frameworks.

1.1 Inbred populations

The general approach for constructing inbred populations for the purpose of map-

ping QTL is to choose two homozygous strains (inbred lines) that differ for the traits

of interest. Let’s denote these parental strains as P1 and P2. Parentals P1 and P2 are
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homozygous for all loci. Once the parental strains have been chosen, the next step is

to cross them to obtain the filial F1 generation, in which all subjects are genetically

identical and heterozygous for all loci at which P1 and P2 differ. Upon having the

filial generation and parental strains, and depending on the strategy adopted, many

types of experimental inbred populations can be formed, as reviewed in the reminder

of this section.

Intercross F2

The intercross F2 is obtained by mating subjects of the F1 generation (in some

plants, self pollinating). For any locus Q at which the parental strains differ, a

subject in the intercross F2 population will have either one of the three genotypes,

QQ, Qq, or qq, with expected probability 1
4
, 1

2
, and 1

4
, respectively. For each trait

t, we parameterize the genotypic values of genotypes QQ, Qq, qq, as at, dt and −at,
respectively, where at is the additive effect and dt is the dominance effect of the QTL

(Falconer and Mackay, 1996). The possibility of sampling all three genotypes

in the F2 population allows an investigator to estimate the additive and dominance

effects of QTL.

Recombinant inbred lines

The first step towards constructing a population of recombinant inbred lines (RIL)

is to obtain an F2 generation as describe previously. The second step consists in mak-

ing repeated mating of relatives (in some plants, self pollinating) for many generations

until homozygosis is reached. Plant geneticists usually adopt the single seed decent

method starting from the F2 generation to produce the desired RIL. In the single seed

decent method, each plant in the F2 population is self pollinated and a single seed

from each plant is cultivated to produce a F3 plant. Each F3 plant is self pollinated

and a single seed from each F3 plant is cultivated to produce a F4 plant. This pro-

cess is repeated for many generations, generally until F7, when the RIL population

is formed. As the result of mating relatives, each subject in the RIL population is

highly homozygous. Therefore, for any locus Q for which the parental lines differ each
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subject has almost certainly either genotype QQ or qq. Therefore, an investigator

can obtain information only about the additive effect of QTL in RIL populations.

Double haploid

The subjects of a double haploid (DH) population are obtained from regenera-

tion in vitro of immature pollen grains with their genetic material duplicated. In the

technique, pollen grains are harvested from adult F1 plants and chemically induced to

duplicate their chromosomes without further cell division. These pollen grains with

duplicated chromosomes are cultivated in vitro to further develop into plant siblings.

Similar to RIL populations, subjects in DH populations have only homozygous geno-

types. Therefore, only the additive effect of QTL can be studied. The use of DH

population is very common among rice breeders.

Backcross

The backcross (BC) population is obtained with the crossing of F1 subjects to one

parental strains. For any locus Q in which the parental strains differ, any subject in

the BC population has either genotype QQ or Qq, if the genotype of parental strain

crossed to F1 is QQ. Because only the homozygous genotype (QQ) of a segregating

locus is sampled in the BC population, estimation of additive and dominance effects

of a QTL is impossible.

Although many population structures can be used for studying the effects of QTL,

we have chosen to discuss the statistical methods throughout this review with the use

of a BC population, in which the filial generation F1 of two inbred lines have been

backcrossed to the parental line that has genotype QQ for a QTL.

Suppose that parental strains P1 and P2 have genotypes mLmLqqmRmR and

MLMLQQMRMR, respectively, where, M and m are genetic marker alleles of marker

loci on the left (L) and right (R) of QTL, and Q and q are alleles of QTL. Any off-

spring F1 from the cross between P1 and P2 would have genotype MLmLQqMRmR,

and any subject of a population obtained from the cross between F1 and P2 would

have one of the eight genotypes shown in Table 1.1. The expected frequency of each
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genotype is also shown in Table 1.1. We assume: (1) the three loci are linked (i.e.,

the loci are relatively close to each other on a chromosome); (2) the order of loci in

the chromosome is MLQMR; (3) the recombination frequencies between ML and Q,

Q and MR, and ML and MR are, rLQ, rQR, and rLR, respectively.

Table 1.1: Joint probabilities of genotypes for any subject originated from the back-
cross of F1 (MLmLQqMRmR) and P2 (MLMLQQMRMR), assuming the loci are
linked.

Genotypes1 Probability2

MLMLQQMRMR
1
2
[(1− rLQ)(1− rQR)− rLQrQR(1− c)]

MLMLQQMRmR
1
2
[(1− crLQ)rQR]

MLMLQqMRMR
1
2
[crLQrQR]

MLMLQqMRmR
1
2
[rLQ(1− crQR)]

MLmLQQMRMR
1
2
[rLQ(1− crQR)]

MLmLQQMRmR
1
2
[crLQrQR]

MLmLQqMRMR
1
2
[(1− crLQ)rQR]

MLmLQqMRmR
1
2
[(1− rLQ)(1− rQR)− rLQrQR(1− c)]

1 The order of the markers and QTL is assumed to be
MLQMR, and the recombination frequencies between
MLQ, QMR, and MLMR are, respectively, rLQ, rQR, and
rLR.

2 c = OFDR
EFDR

= OFDR
rLQrQR

, where OFDR and EFDR stand for

observed and expected frequency of double recombinants,
respectively.

Unfortunately, the assessment of probabilities in Table 1.1 is not possible because

genotypes of QTL are unobserved. Because the only information available to us is

the genotypes of genetic markers flanking QTL, the general strategy is to compute,

for each subject, the conditional probabilities of QTL genotypes QQ and Qq, given

the two markers ML (on the left) and MR (on the right) flanking the QTL (Table

1.2). In cases where missing information on the markers flanking the QTL is present,
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one may use the information on the closest neighboring markers through a Markov

Chain (Jiang and Zeng, 1997).

Table 1.2: Conditional probabilities of QTL genotypes QQ and Qq, for any subject
of a BC population, given the genotypes of markers ML (on the left) and MR (on the
right) flanking the QTL. The assumption of complete cross-over interference (c = 0)
within a marker interval was made in this table.

Marker genotypes P (QQ|ML,MR, rLR, rLQ) P (Qq|ML,MR, rLR, rLQ)
MLMLMRMR 1 0
MLMLMRmR

rLQ
rLR

1− rLQ
rLR

MLmLMRMR 1− rLQ
rLR

rLQ
rLR

MLmLMRmR 0 1

rLR is the recombination frequency between markers ML and MR, and
rLQ is the recombination frequency between locus ML and QTL (0 ≤
rLQ ≤ rLR).

1.2 Outbred populations

In the previous section we reviewed some commonly inbred populations used for

mapping QTL. For some populations, for instance, livestock and humans, developing

and crossing inbred lines are not feasible, however. The information available for such

populations is collected in terms of pedigrees over multiple generations.

In livestock, many family structures have been described in the literature (van der

Beek et al., 1995), such as, half-sibs and full-sibs. In half-sibs, one of the parents,

generally the male, has many unrelated mates and each mate has one offspring, in

which the traits are measured. Genotypes are obtained for the common parent and

offsprings. In full-sib, a pair of parents has many offsprings, in which the trait values

are obtained. Marker genotypes are obtained for each offspring and its pair of parents.
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Since the distances between QTL and markers in a moderate resolution linkage

map (markers ten centiMorgans (cM) apart from each other) often exceeds 1 cM,

recombinations between QTL and markers over generations prevent the detection of

any linkage disequilibrium resulting from a not recent event in the history of the

population. Therefore, linkage disequilibrium information is only available within

parents, and hence QTL effects must be estimated within parents (Hoschele, 2007).

Complexity of structure of populations dictates the complexity of the statistical

model for mapping QTL. When large individual families are available, for instance,

in cattle a single sire may have hundreds or even thousands of offsprings, simple

adaptations of methods for inbred populations are feasible (Knott et al., 1996).

In contrast, variance-component methods is advocated (Hoeschele et al., 1997) to

analyze multiple families of small sizes and possibly with genetic ties between families.

Statistical methods for mapping QTL in outbred populations would deserver,

on their own, a rigorous review chapter. However, we omit further details in this

dissertation to dedicate more efforts towards inbred populations, which are used for

modeling purpose throughout this dissertation.

1.3 Mapping multiple QTL on single trait

The identification of QTL effects associated with genetic markers dates back to

Sax (1923). While the first method simply tested for differences between means of a

phenotype associate with marker genotypes by t-statistic (Soller and Brody, 1976;

Rebai et al., 1995; Liu, 1998; Wu et al., 2007), more elaborated methods such as

interval mapping (IM) (Lander and Botstein, 1989) use information on more than

one genetic marker at a time, therefore, delivering more power in identifying QTL and

in estimating their effects. Because the IM assumes a single QTL in the model, the

effects of unaccounted QTL remains in the model residual sum of squares. Therefore,

IM does not take advantage of information on multiple markers to increase the power

of the test statistic and consequently its ability in identifying a QTL in the presence
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of other QTL. Jansen (1993) and Zeng (1993, 1994), independently, proposed a

method based on multiple regression that fits both the effect of a QTL as well as the

effects of covariates, which are a subset of selected genetic markers. The method is

a combination of interval mapping and multiple regression. The interval mapping is

used to fit a linear model at every position for the genome scan, and the multiple

regression is used for fitting covariates to control linked and unlinked QTL effects

and reduce the model residual. When well-chosen, the use of covariates reduces the

model residual sum of squares, enhancing the power of identifying QTL. The multiple

regression method proposed by Zeng is known in the literature as composite interval

mapping (CIM).

In this section, we review statistical methods for identifying QTL with significant

effects on the distribution of a single quantitative trait. There is a vast literature

on both maximum likelihood and Bayesian methods for mapping QTL and we will

comment them along the way. In what follows, for any matrix A, its transpose is

denoted by A′, its inverse by A−1, its uth row by A[u,·], its vth column by A[·,v], and

its element in row u and column v by A[u,v].

1.3.1 Multiple interval mapping: maximum likelihood method

In this section, we describe the multiple interval mapping (MIM) (Kao and Zeng,

1997; Kao et al., 1999; Zeng et al., 1999) with details. MIM is similar to CIM in

concept. The rationale of CIM is to fit in the model genetic markers closely linked to

other QTL across the genome as covariates when searching for a specific QTL. The

rationale of MIM is to fit in the model estimated positions of other QTL rather than

their closely linked genetic markers, therefore, delivering more power as well as better

parameter estimates.

Model: The statistical model for single trait multiple QTL inference on BC popula-

tion is a linear model in which, the trait value yi of the ith subject (i = 1, 2, · · · , n)

is regressed on the explanatory variables xir (r = 1, 2, · · · ,m), which are defined ac-

cording to the Cockerham genetic model (Kao et al., 1999; Kao and Zeng, 2002;
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Zeng et al., 2005). For each subject i in our BC population defined previously, xir

takes value 1
2

or −1
2
, depending on whether the QTL r has genotype QQ or Qq, re-

spectively. The coefficients of xir, βr, are called the effect of the rth QTL. The linear

model also includes an intercept µ, the epistatic effects wrl between QTL r and l

for a subset p of all pairwise interactions, and the residue ei, which is assumed to

be independent and identically distributed according to a normal distribution with

mean zero and variance σ2
e . The linear model is then:

yi = µ+
m∑
r=1

βrxir +

p∑
r<l

wrlxirxil + ei (1.1)

Let y be the n by 1 vector of all observations, X be the n by m + p incidence

matrix, e be the n by 1 vector of residuals, 1 be an n by 1 vector of ones, and let

β = (β1, β2, · · · , βm, w1, w2, · · · , wp)′ be the vector of all main and epistatic effects

and θ = (β′, µ, σ2
e). Then the statistical model in matrix form would look like y =

1µ+Xβ + e.

Likelihood: Let M be an n by K matrix of known marker genotypes and let R =

(r12, r23, · · · , rK−1,K) be a vector of known recombination frequencies (or distances)

between markers, where rk,k+1 is the recombination frequency (or distance) between

markers Mk and Mk+1. In the BC population defined previously there are two possible

genotypes for each QTL, QQ and Qq. Therefore, if there are m loci affecting a

trait, there are 2m possible genotypes for any subject i, genotypes of the form Gj =

Q1Q2 · · ·Qm, where Qr ∈ {QQ,Qq}, r = 1, 2, · · · ,m and j = 1, 2, · · · , 2m. Assuming

m main and p epistatic effects in model (1.1), we define an 2m by s = m + p matrix

D of coded genotypes according to the Cockerham genetic model (Kao and Zeng,

1997, 2002; Zeng et al., 2005). In the matrix D each column b corresponds to the

bth effect parameter (b = 1, 2, · · · , s) and each row j of D, D[j,·], represents a coded

genotype Gj. If b ≤ m, D[j,b] = xr, otherwise D[j,b] = xr ∗ xl, where xu (u = r and

u = l) is either 1
2

or −1
2
, depending on whether the genotype of QTL Qu in Gj is QQ

or Qq, respectively.
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In order to search the entire genome for significant effects of QTL, the genome is

partitioned into H loci, usually at 1-cM grid. This partition is denoted by ζ. The

set of positions of m putative QTL in model (1.1), λ = {λ1, λ2, · · · , λm}, is assumed

to be a fixed and known subset of ζ. For any subject i, let M [i,·] be the genotypic

information of the markers flanking the m QTL, and M r
i,L and M r

i,R be the flanking

markers on left and right of QTL Qr, respectively. Then, assuming no cross-over

interference between marker intervals and no more than one QTL existing within

a marker interval, the probability of any genotype Gj conditional on the genotypes

of the markers flanking the m QTL is P (Gj|M [i,·],R,λ) =
m∏
r=1

P (Qr|M r
i,L,M

r
i,R, λr),

where the conditional probabilities on the right hand side of the equation can be found

in Jiang and Zeng (1997) and Kao and Zeng (1997). In Table 1.2, we show how

to estimate these probabilities for a BC population. The recombination frequency

between QTL Qr and its left marker (rLQr) has a one-to-one correspondence with

the position λr. Conditional probabilities of two QTL lying within a single interval

is shown in Table A.2 of Appendix A.

If Gj genotype of the ith subject were known, then individual likelihood Li would

be Li (θ | yi) = φ
(
yi|µ+D[j,·]β, σ

2
e

)
, where φ(z|µ0, σ

2
0) is the probability density func-

tion of a normal random variable z with mean µ0 and variance σ2
0. However, since

genotype Gj is unknown, then the individual likelihood (Li), assuming m QTL with

positions defined in λ, is a mixture of 2m normal distributions with homogeneous

variance, different means, and mixture probabilities pij = P (Gj|M [i,·],R,λ):

Li
(
θ | yi,M [i,·],λ

)
=

2m∑
j=1

pijφ
(
yi|µ+D[j,·]β, σ

2
e

)
(1.2)

and the overall likelihood (L) is L (θ |y,M ,λ) =
n∏
i=1

Li
(
θ | yi,M [i,·],λ

)
. The maxi-

mum likelihood estimates of all parameters in model (1.1) are obtained after maximiz-

ing L with some technique, such as, Newton-Rapson, quasi-likelihood, expectation-

maximization (EM) algorithm or some of its variants (McLachlan and Krishnan,
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1996; Kao et al., 1999).

A drawback of model (1.1) when applied to the analysis of data from a BC pop-

ulation is the lack of separate estimates of the additive and the dominance effects of

a QTL. An alternative that enables estimates of both additive and dominance effects

is to use two backcrosses (a backcross of filial generation F1 to the parental line with

QTL genotype QQ and other backcross of F1 to the parental line with genotype qq)

or NC design III (Garcia et al., 2008). The method of Garcia also has an additional

advantage of allowing for inference on the genetic bases of heterosis.

In what follows we define the logarithm likelihood ratio test (LRT), the logarithm

of the odds (LOD) and the score statistic. Then we formalize the concept of genome-

wide scan, review methods of threshold computation for a reliable detection of QTL,

and end with a review of methods for model selection.

Hypothesis testing: In general, let θ be the vector of all parameters in model

(1.1), let θ1 ∈ θ be a vector of length c for which one wants to test the hypotheses

H0 : θ1 = θ10 versus H1 : θ1 6= θ10, where θ10 is a vector of real numbers, let η be

the vector of nuisance parameters, and let L(θ = (θ1,η)|y) be likelihood function

of the data y. In the remainder of this section we describe LOD, LRT and score

statistic for testing H0 vs H1 in a general framework, and then for testing QTL effects

in genome-wide scan. The logarithm of the odds (LOD) is:

LOD = log10

(
supθ∈H0∪H1L(θ|y)

supθ∈H0L(θ|y)

)
= log10

(
L(θ̂|y)

L(θ̃|y)

)

where, sup stands for sumpremum, and θ̂ and θ̃ are the maximum likelihood estimates

(MLE) under H1 (full model) and H0 (reduced model), respectively.
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The logarithm likelihood ratio test (LRT) is:

LRT = −2 loge

(
supθ∈H0L(θ|y)

supθ∈H0∪H1L(θ|y)

)
= −2 loge

(
L(θ̃|y)

L(θ̂|y)

)

The score statistic has been in the literature for quite a while since it was proposed

by Rao (1948), but it had not been used very often in the QTL mapping literature,

until Zou et al. (2004) proposed a score-based threshold for assessing genome-wide

significance of QTL effects. In general, let `i = loge (Li(θ|yi)) and ` = loge (L(θ|y))

be the natural logarithm of the individual and overall likelihoods, respectively.

The score statistic to test H0 vs H1 can be written as S = Û ′V̂ −1Û (Zou et al.,

2004; Cox and Hinkley, 1974), where Û =
n∑
i=1

Ûi, V̂ =
n∑
i=1

ÛiÛ
′
i , and Ûi is:

Ûi =
∂`i (θ1,η)

∂θ′1

∣∣∣∣
(θ1=θ10,η=η̃)

− ∂` (θ1,η)

∂θ1∂η′

∣∣∣∣
(θ1=θ10,η=η̃)

(
∂` (θ1,η)

∂η∂η′

∣∣∣∣
(θ1=θ10,η=η̃)

)−1
∂`i (θ1,η)

∂η′

∣∣∣∣
(θ1=θ10,η=η̃)

(1.3)

where, η̃ is the MLE of η under H0.

Under the large sample assumption the LRT and score statistics follows a χ2 dis-

tribution with c degrees of freedom. There is an one-to-one mathematical relationship

between LRT and LOD statistics, which is LRT = 2loge(10)LOD ≈ 4.6LOD.

Genome-wide scan: In genome-wide scan a putative QTL is assumed at every

position λ ∈ ζ and its effect significance (main or epistatic effect) is tested against the

null of no effect. For instance, assume a model with m−1 main effects and p epistatic

effects and we are scanning for a putative mth QTL. Let l = λ denotes the testing

position of the putative QTL coming into the model and λ = (λ1, λ2, · · · , λ(m−1), l) be

the current positions of all QTL. Let θm = βm represents the main effects for the new
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QTL coming into the model, and let θ = (θ1, θ2, · · · , θm−1, θm, θm+1, · · · , θs, µ, σ2
e)
′ be

the column vector of all parameters, where θb = βb for 1 ≤ b ≤ m and θb = wb for

m < b ≤ s = m + p. Let η = (θ1, θ2, · · · , θm−1, θm+1, · · · , θs, µ, σ2
e)
′ be the column

vector of nuisance parameters. Then for every position l either LOD, LRT or score

statistics may be used to assess the strength of the hypotheses H0 : θm = 0 versus

H1 : θm 6= 0:

LOD(l) = log10

(
L(θ̂|y,M ,λ)

L(θ̃|y,M ,λ)

)
, LRT (l) = −2 loge

(
L(θ̃|y,M ,λ)

L(θ̂|y,M ,λ)

)
, S(l) = Û ′V̂ −1Û

where, θ̂ = (θ̂1, θ̂2, · · · , θ̂s, µ̂, σ̂2
e) and θ̃ = (θ̃1, θ̃2, · · · , θ̃m−1, 0, θ̃m+1, θ̃s, µ̃, σ̃

2
e) are the

MLE under H1 and H0, respectively.

For every position l, LRT and score statistic, under some regular conditions, are

asymptotically equivalent. Therefore, under a reasonable sample size, the chi-squared

distribution (χ2) can be used to obtain the appropriate threshold for a given level of

significance for a fixed testing position l. However, in the MIM genome-wide scan the

hypothesis is tested many times, therefore, some correction for the test multiplicity

is required. Next, we describe two approaches to tackle this issue, the permutation

test and the score-based threshold.

Genome-wide threshold: In the genome-wide search for identifying QTL effects

associated with certain markers, an investigator wants to increase the chances of

finding significant QTL throughout the genome of an organism. An obvious strategy

is to maximize the number of screened markers up to the budget and labor work

available. If all markers in a large set of markers are tested for the hypothesis of

presence of a QTL effect against the null of no effect, then multiple testing is an

issue that must be dealt with. The consequence of multiplicity of tests could be even

worse in the IM and MIM methods because not only all markers but also many other

positions between markers are tested for the presence of a putative QTL. Therefore,

some correction is required for controlling the rate of rejecting the null of no effect

when it is true (false positive discovery). Theoretical threshold values were proposed



13

by Lander and Botstein (1989) and Rebai et al. (1994). The threshold of Lander

and Botstein (1989) is derived with assumptions of large sample size, infinitely many

genetic markers and normal distribution of quantitative trait. Rebai et al. (1994)’s

threshold is an approximation of Davies (1977) and Davies (1987)’s bound and

requires integral evaluation for each marker interval, which in more complex models

must be substituted with numerical integration. Neither one of the two methods

of threshold computation is popular, either because of unrealistic assumptions or

practical difficulties regarding their implementations.

Recently, Zou and Zeng (2008) have provided a good review of many strategies

for controlling for false positive discovery in QTL analyses, such as, false discovery

rate (FDR) (Benjamini and Hochberg, 1995), Bonferroni correction, permutation

(Churchill and Doerge, 1994), and score-based threshold (Zou et al., 2004). The

low number of discoveries in the genome-wide search limits the practical implementa-

tion of the FDR in traditional QTL experiments. As for the Bonferroni correction, it

is known that it can be very conservative when there is strong dependency between

tests, a situation commonly encountered in QTL mapping because all tests within

the same chromosome will naturally show certain dependence due to genetic linkage.

The permutation test is by far the most popular method used in single QTL mapping,

and the score-based seems to be more suitable for multiple QTL mapping.

Permutation: The goal of the permutation is to build an empirical distribution of the

test statistic when the null hypothesis is true. In the case of QTL mapping, the null

hypothesis of no QTL effect on a trait translates into the lack of statistical associa-

tion between the phenotype and genotypes of markers segregating in the population.

An obvious strategy of mimicking the null hypothesis is by breaking down any rela-

tionship between phenotype and marker genotypes, as implemented in the standard

permutation test of Churchill and Doerge (1994). The standard permutation test

consists in shuffling the trait values, keeping the marker genotypes as in the observed

data, for many times, and carrying out the genome scan on the permuted data. For

each permuted data, the maximum LRT across the genome is kept. The threshold
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for a given α-level of type I error is chosen to be the 100(1 − α)th percentile of the

empirical distribution of the maximum LRT. This approach is more appropriate for

threshold computation in single QTL model, but it is not so appropriate for threshold

computation in the multiple QTL model. Two other permutation-based methods for

threshold computations, the conditional empirical threshold (CET) and the residual

empirical threshold (RET), that take into account the effects of QTL already in the

model were also proposed by Doerge and Churchill (1996).

In the CET method, the procedure begins with the assumption of a priori infor-

mation about a major QTL, for which the closest marker is chosen as conditioning

marker, then the genotypes of the conditioning marker are used for classifying the

subjects into categories. Once the categories are formed, the phenotype shuffling

is done within each one of them, and CET value is computed from the empirical

distribution of the maximum LRT in the permuted data. In practice, three issues

may restrict using the CET. First, if the conditioning marker has many missing data,

another conditioning marker should be chosen, even if it is far from the QTL, thus

reducing the strength of the stratification in improving the power of the permutation

test. Second, even with stratification, the markers in the same linkage group as the

conditioning marker show association with the phenotype. It was suggested that the

linkage group with the conditioning marker is excluded from the computations of the

empirical distribution of the maximum LRT. Third, the method is computationally

demanding.

In the RET method, the residuals from the model with known QTL effects are

treated as a new trait, which is used for searching unknown QTL effects and for

computing the threshold using the standard permutation test of Churchill and

Doerge (1994). An assumption of the RET method is that the model is correct. If

this assumption is violated, the results may be misleading.

Score-based Threshold : The standard permutation test, CET and RET seem not to

be very well adapted for computing adequate threshold values to identifying multiple

QTL. An alternative model-based method, attractive both in terms of computation
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burden and statistical properties, for computing threshold values in multiple QTL

search has been proposed by Zou et al. (2004), the score-base threshold. C. Laurie, S.

Wang, L. A. Carlini-Garcia and Z-B. Zeng (unpublished) extended the score statistic

for testing hypothesis in the MIM method.

Under some regular conditions, the score and LRT statistics are asymptotically

equivalent in large sample. But, an interesting characteristic of the score statistic is

that it can be approximated by a sum of independent random numbers or vectors,

depending on whether one or more parameters are tested at the same time, respec-

tively. Motivated by this characteristic and based on the decomposition of the score

function in Cox and Hinkley (1974), Zou et al. (2004) derived the large-sample

distribution of the score statistic for genome-wide QTL mapping.

The re-sampling algorithm for the computation of the score-based threshold con-

sists of four steps. Before detailing the procedure, let’s re-iterate the hypotheses

under investigation. In genome-wide scan a putative QTL is assumed at every po-

sition λ ∈ ζ and its effect significance (main or epistatic effect) is tested against

the null of no effect. Suppose a model with m− 1 main QTL effects and p epistatic

effects and we are scanning for a putative mth QTL. Let l = λ denotes the testing

position of the putative QTL coming into the model and λ = (λ1, λ2, · · · , λ(m−1), l)

be the current positions of all QTL. Let θm = βm represents the effect for the new

QTL coming into the model, and let θ = (θ1, θ2, · · · , θm−1, θm, θm+1, · · · , θs, µ, σ2
e)
′ be

the column vector of all parameters, where θb = βb for 1 ≤ b ≤ m and θb = wb for

m < b ≤ s = m + p. Let η = (θ1, θ2, · · · , θm−1, θm+1, · · · , θs, µ, σ2
e)
′ be the column

vector of nuisance parameters. The hypotheses of interest are H0 : θm = 0 versus

H1 : θm 6= 0. Let η̃ be the MLE of η under H0 at testing position l. Let Ûi(l)

be equation (1.3) evaluated at testing position l. Similarly let Û(l) =
n∑
i=1

Ûi(l) and

V̂ (l) =
n∑
i=1

Ûi(l)Û
′
i(l) be evaluations of Û and V̂ at testing position l, respectively.

Then, the steps of the re-sampling algorithm are:

1. generate n independent samples zi (i = 1, 2, · · · , n) from a normal distribution
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with mean zero and unit variance;

2. for each testing position l, obtain η̃ and compute Û∗(l) =
n∑
i=1

Ûi(l)zi and S∗(l) =

Û∗′(l)V̂ −1(l)Û∗(l). Then, compute S∗ = max
l∈ζ
{S∗(l)};

3. repeat steps 1 and 2 many times, say N times (re-sampling), to obtain a se-

quence (S∗1 , S
∗
2 , · · · , S∗N);

4. the score-based threshold for a given significance α-level is the 100(1− α) per-

centile of the ascending ordered values (S∗(1), S
∗
(2), · · · , S∗(N)).

If Ûi(l) in Û∗(l) and V̂ (l) are assumed to be fixed and zi in Û∗(l) to be random,

then: I - the conditional distribution of Û∗(l) on the observed data is normal with

mean zero and limiting covariance as that of Û(l); II - from I, it follows that the

distributions of n−
1
2 Û∗(l) and n−

1
2 Û(l) are asymptotically equivalent and; III - from

II, it is possible to approximate the distribution of S(l) by that of S∗(l) under the

null hypothesis (Zou et al., 2004; Lin, 2005).

A noticeable burden in the score statistic is the necessity of analytical derivatives,

especially the second order derivatives, which may be very messy. But, once the

derivatives expressions have been derived, the computation of the score statistic is

very straightforward and a matter of computer implementation. The score-based

threshold computation is quite fast, because Ûi(l) and V̂ (l) are computed only once

at each genomic position and the remaining step of generating random variables can

be implemented very time efficiently. In contrast, the requirement of analyzing many

permuted data sets makes the permutation test very time consuming, especially if

the data set is large. It is worth mentioning that the score-based procedure has been

successfully implemented and shown to have very good stability and performance in

the multiple QTL search in single trait analysis as well as in multiple trait analysis.

Selecting a class of models: Very often an investigator is looking for two classes

of models, the purely additive and the additive and epistatical. The class of purely

additive models is appealing because of its simplicity, which reduces tremendously the
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burden of model selection and facilitates the interpretability of the fitted model. How-

ever, this simplicity reduces its spectrum of applications in practice, where research

results have been shown the importance of interacting loci affecting quantitative traits

(for instance, Weber et al. (1999); Reifsnyder et al. (2000)). The class of additive

and epistatical models is gradually gaining the attention of researchers due to the

possibility of fitting complex models including epistatic effects.

Mathematically, the inclusion of interaction terms into the model is trivial, though

in practice, fitting a realistic model with epistasis is very challenging because of the

lack of robust search procedure and good criteria that statistically maintain the false

discovery rate under control. In most of the current multiple QTL methods, only the

subset of identified loci with main effects are considered in the search for epistasis.

The search for epistatic loci without identified main effects is an ongoing topic of

research.

Model selection criteria: The goal of model selection is to identify a subset of

regressors that is actually related to the response variable y. The collection of cri-

teria for model selection based on minimizing prediction error is vast in the litera-

ture of model selection. More traditional criteria are the Mallows’s Cp and the ad-

justed R2. They have been reported to be liberal, in the sense of selecting oversized

models. A second generation of approaches that minimizes a criterion of the form

C(κ) = −2 log(L̂κ) +D(n, P ), where P is the total of parameters in model κ, n is the

sample size, and L̂κ is the likelihood of model κ, includes the Akaike’s information cri-

terion (AIC) (Akaike, 1969), the Bayesian information criterion (BIC) (Schwarz,

1978), and the Akaike’s Information Criterion corrected (AICc) (Sugiura, 1978),

with D(n, P ) being equal to P log(n), 2P , and 2P + 2P (P+1)
n−P−1

, respectively. Broman

and Speed (2002) proposed the use of D(n, P ) = δP log(n), and called the crite-

rion BICδ. The penalty parameter δ, in genome-wide QTL studies, depends on the

threshold W of the maximum LOD distribution, and could be defined as δ = 2W
log10(n)

.

Alternative computer intensive methods for model selection are the bootstrap (Efron

and Tibshirani, 1993; Shao and Tu, 1995), delete-one cross-validation (CV) and
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delete-d cross-validation (Shao and Tu, 1995). The delete-one cross-validation is

conservative in the sense that it tends to choose a model with too many regressors

(Shao and Tu, 1995).

The delete-d CV approach is an alternative to overcome the conservativeness and

the inconsistency of the delete-one CV. In the delete-d CV method, the entire data set

is divided into two distinct subsets of data: a construction data with n−d observations

(yci ,M
c
i) and a validation data with d observations (yvi ,M

v
i ), where the superscripts

c and v stand for construction and validation, respectively. The construction data is

used for estimating the model parameters and the validation data is used for assessing

the prediction error of the fitted model. The consistency of the delete-d CV, under

certain weak conditions, is guaranteed if and only if d
n
→ 1 and n− d→∞, i.e., the

size of the validation set must be much larger than the construction set (Shao and

Tu, 1995).

The prediction error in the bootstrap methods is asymptotically equivalent to the

delete-one CV, therefore, it inherits its inconsistentness and conservativeness (Shao

and Tu, 1995). A consistent bootstrap estimator can be obtained by following the

same strategy of the delete-d CV, i.e., one forms bootstrap replicates of size k (k < n).

If k is chosen such that k
n
→ 0, then the new bootstrap estimator is asymptotically

equivalent to the delete-d CV with d = n− k (Shao and Tu, 1995).

Searching through the space of models: The space of models may be very

large, for instance, even for the class of additive models with as few as 10 regressors,

the model space would have 210 = 1024 models. Therefore, some efficient searching

technique on the subset of model space must be employed in the hope of finding good

models efficiently. There are many strategies in the literature ready for use in QTL

mapping, among them the backward elimination, forward selection, and stepwise

selection seem to appear as favorites. Depending on the size of the model space, the

subset search may reduce tremendously the burden in computations. However, the

saving in computations may come with the price of perhaps missing good models.

In backward elimination, in the first step, the full model is fitted. In the subsequent
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steps, one at the time, the regressor with smallest regression sum of squares in the

model is dropped. In forward selection, from the initial model with no regressors, one

adds, one at the time, the regressor with the largest regression sum of squares into

the model. In both methods, a sequence of nested models is created at the end of the

algorithm’s execution.

The stepwise selection is a general strategy that allows moves in either way, elim-

inating or adding regressors within the same step of search. The backward stepwise

selection begins with the full model, and then at each step the least significant re-

gressor is dropped and all regressors dropped, but the one dropped in the current

step, are re-considered for re-entering the model. Usually, two different significance

levels are used, one for deleting and other, more stringent, for adding regressor. In

the forward stepwise selection, regressors once added to the model may be deleted if

they are no longer significant.

In backward elimination once a regressor is dropped, it will be excluded from

all subsequent models, and in the forward selection once a regressor is added, it

will remains in all further models. On the other hand, in the stepwise selection, a

regressor may enter or leave the model in different steps. Therefore, the number of

models visited during the search may be higher in stepwise selection, which increases

the chances of finding more good models (Miller, 2002; Broman and Speed, 2002).

The score-based threshold can also be used as a criterion to build and refine models

with many QTL. Starting with a model with no QTL effect one can select signifi-

cant putative QTL based on the score-based threshold, add them to the model, and

then further refine the model, by including or excluding QTL effects. An algorithm,

analogue to the algorithm described in Zeng et al. (1999), to build an initial model

and to refine it upon using the score-based threshold criterion could be as follows:

Forward selection– assuming that model (1.1) starts with no QTL, one QTL is added

at each step of the forward selection. In the mth step of the forward selection, one

could assume a putative QTL at every position l ∈ ζ, but avoiding positions within

the 5 cM neighboring regions of the m − 1 QTL in the model already identified at
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previous steps of the forward selection and compute the MLE of each parameter in

the model with the QTL at positions λ = (λ1, λ2, · · · , λm−1, l). For each position

l, the LRT statistic can be used for testing the significance of the effect of the mth

putative QTL. A putative QTL at the maximum LRT statistic over all positions l

is added to the model if the LRT statistic is larger than the score-based threshold.

Model optimization: in turns, the positions of all QTL identified in the forward se-

lection are updated. One could pick a QTL in the model, and hold the other QTL in

the model fixed at the positions that they were found in the forward selection. The

effects of the picked QTL are then removed from the model and a new search for a

QTL is done within the region delimited by its two neighboring QTL, avoiding 5 cM

from the neighbor QTL (the search is performed until the end of the chromosome if

no neighbor QTL is found on either side of the picked QTL). The new position of the

picked QTL is set to the position of the maximum LRT statistic within the searched

region and all parameters in the model are updated. The effect of the picked QTL

can then be excluded from the model if it shows no significant effect. This procedure

is repeated until all positions of QTL in the model are updated.

We praise for running expertise-based analysis, in which, judgements based on the

investigator’s expertise is launched when selecting a subset of models, that ultimately

are both biologically concise and fit the data well. In practice, perhaps, one may

take advantage of a priori information to fit an initial model, and then use stepwise

selection to include or exclude QTL effects. Once a model has been built, one may

test each effect individually, excluding the least significant, and finally performing the

model optimization. Another alternative could be to iterate stepwise selection and

model optimization.

The score- and permutation-based thresholds for the multiple QTL mapping meth-

ods of Kao et al. (1999) and Garcia et al. (2008), as well other common methods

for mapping QTL, have been implemented in the Windows QTL Cartographer com-

putational tool for mapping QTL (Wang et al., 2007). This computational tool also

includes many other functions for importing and exporting a variety of data formats,
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for genome-wide scan, and graphical tools for presenting and summarizing results.

Windows QTL Cartographer is freely available at http://statgen.ncsu.edu/qtlcart/

WQTLCart.htm. Some of the model selection criteria presented previously are also

implemented in Windows QTL Cartographer within the MIM procedure.

1.3.2 Multiple interval mapping: Bayesian methods

In this section we review QTL inference within the Bayesian framework. For model

(1.1) with m QTL, let’s defineG the n by m unknown matrix of QTL genotypes (each

row of G has the m QTL genotypes for a given subject) and ψ the unknown param-

eters in the model, which is either ψ = (β, µ, σ2
e ,λ,G) or ψ = (β, µ, σ2

e ,λ,G,m),

according to whether m is known or unknown parameter, respectively. We assume

that genotypes of genetic markers (M) and distance between markers (R) are known.

Bayesian framework combines the likelihood of the data, p(y|ψ,M ,R), with prior

knowledge of the unknowns, p(ψ), through an application of Bayes theorem to pro-

duce the joint posterior distribution over all unknowns, p(ψ|y,M ,R), which is then

used for inference. Inference regarding each unknown is based on its marginal dis-

tribution, which can be obtained from the joint posterior distribution by integrating

over the other unknowns. Analytical integration of the joint posterior distribution

may be cumbersome or even impossible because the posterior distribution lives in

high-dimensional product space. When analytical close form expressions of posterior

probabilities are unaffordable, a Markov Chain Monte Carlo (MCMC) technique can

be used to form a Markov Chain whose stationary distribution is the posterior dis-

tributions of the unknowns. Several standard samplers used in MCMC methods are

available in the literature, such as the Metropolis (Metropolis et al., 1953), the

Metropolis-Hastings (Hastings, 1970), the Gibbs (Geman and Geman, 1984), and

the Reversible Jump (Green, 1995). A good sampler spends more time in the re-

gions of higher posterior probabilities of the product space, while still visiting regions

of lower probabilities. The posterior distribution of the unknowns can be written as



22

follows:

p(ψ|y,M ,R) =
p(y|ψ,M ,R)p(ψ)∫
p(y|ψ,M ,R)p(ψ)dψ

where, the integral in the denominator is over as many dimensions as the number of

parameters in ψ.

Several Bayesian methods of QTL inference have been proposed in the literature,

some treat the number of QTL in the model as a fixed quantity and others as a

random variable from state-to-state in the MCMC (Sorensen and Gianola, 2002).

Methods with fixed number of QTL: Satagopan et al. (1996) proposed a

MCMC algorithm to inferring the positions and effects of multiple QTL under the as-

sumption of known number of QTL. The authors factorized the posterior distribution

in the following manner:

p(β, µ, σ2
e ,λ,G|y,M ,R) ∝ p(y|β, µ, σ2

e ,G)p(G|λ,M ,R)p(λ)p(β, µ, σ2
e) (1.4)

where, ∝ stands for proportional.

If the conditional posterior distribution of an unknown is explicit and easy to sam-

ple from, the Gibbs sampler can be used. Otherwise, the Metropolis-Hastings can be

applied to obtain the desirable samples. For all parameters in ψ = (β, µ, σ2
e ,λ,G),

but for the positions of QTL (λ), there exist conjugate priors. The sequence of states

in the Markov Chain, ψ(0),ψ(1), · · · ,ψ(N), starts at any point ψ(0) with positive

posterior density, and at each state, under certain rules, the unknowns are updated

sequentially in the order λ, G, µ, β and σ2
e (Satagopan et al., 1996). The col-

lected samples of the Markov Chain after a long run are assumed to be from the

target posterior distribution, and these samples are used to make inference for the

parameters.

Sen and Churchill (2001) developed an imputation method of QTL analysis,

in which multiple versions of QTL genotypes are sampled from their posterior distri-

bution conditional on the phenotypes and marker genotypes, and these multiple sets

of QTL genotypes are then used for computing approximate posterior densities of the
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parameters of interest as well as the marginal probability of the data, which may be

used for model selection. This procedure arises naturally because the posterior distri-

bution of the unknowns can be divided into two independent parts, the genetic model

p(y|µ,β, σ2
e ,G)p(µ,β, σ2

e), and the linkage model, p(G|λ,M ,R)p(λ) (see equation

1.4). The sampling is a two-step procedure: first, for a given set of QTL positions

λ, QTL genotypes G are sampled from their conditional distribution on the marker

data p(G|λ,M ,R); second, each genotype is weighted by the likelihood of the phe-

notypic data conditional on the sampled QTL genotypes G, p(y|G). Although, the

derivations of expressions and the computations are framed within the Bayesian the-

ory, the method deviates from the Bayesian approach in the model selection aspect.

Single and pairwise genome scans are performed and those regions with strong evi-

dence of QTL, i.e., regions that exceed stringent threshold from the permutation test,

are selected to fit multiple QTL models which are subsequently used to make model

comparisons. The genome scan is restricted to low dimensional search because the

number of positions to search through in the genome-wide scan grows quickly as the

number of QTL increases. This limitation in the method is because the method does

not provide a procedure for sampling the set of QTL positions λ = {λ1, λ2, · · · , λm},
therefore, in principle all possible sets of positions of size m should be used in the

computations. Nevertheless, the imputation framework is able to handle covariates,

missing data, non-normal phenotypic data, and simple scenarios of epistasis as well

as multiple trait.

Methods with varying number of QTL: In Satagopan et al. (1996) the Monte

Carlo (MC) simulations are conditional on the number of QTL m. In order to com-

pare models of different sizes, one has to run a MC simulation for each model size and

use the Bayes factor as a measure of comparison. With the advent of the reversible

jump MCMC approach (Green, 1995), which allows sampling from the distribution

of interest when the dimension of the vector of parameters is not fixed, m can be

regarded as random and be sampled together with all other parameters. Several re-

versible jump MCMC methods of QTL inference have been proposed in the literature
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(Waagepetersen and Sorensen, 2001). It seems that Satagopan and Yan-

dell (1996) were the first in the QTL literature to propose using the reversible jump

MCMC to estimate the marginal posterior probability distribution of the unknown

number of QTL and the marginal of other parameters conditional on the number of

QTL. At each state of the Markov Chain, a QTL may be included to (birth), exclude

from (death) the model, or the number of QTL remains the same, then conditional

on the new number of QTL, the other parameters are updated under certain rules.

The sampled states can be used to obtain inference regarding the parameters of in-

terest, for instance, the frequencies of the sampled values of m gives an estimate of

its marginal posterior density. Inference for the other parameters are conditional on

m.

Yi et al. (2003) extended the reversible jump MCMC for inference of the number

of QTL and their effects simultaneously when some QTL may have main effects only,

some may have epistasis effects only, and others may have main and epistasis effects.

For a given model with m QTL, instead of setting the unimportant effects to zero, the

indicator variables γr and γrl (r and l ∈ {1, 2, · · · ,m}), for main effects and epistatic

effects, respectively, are included into the model. The indicator variables γr and γrl

take value one or zero, according to whether their corresponding indicated effects are

included to or removed from the model, respectively. The statistical model (1.1) can

be re-written as follows:

yi = µ+
m∑
r=1

γrβrxir +
∑
r<l

γrlωrlxirxil + ei

If the indicator variables γr and γrl are collected into a vector γ, and one defines

a diagonal matrix Γ with the elements of γ in its diagonal, Γ = diag(γ), then the

linear model can be rewritten in matrix notation is y = 1µ +XΓβ + e (Yi et al.,

2005).

The posterior distribution of the unknowns, including the number of QTL m and
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the vector of indicator variables γ, can be written as:

p(µ,β, σ2
e ,m,λ,γ,G|y,M ,R) ∝ p(y|µ,β, σ2

e ,m,γ,G)p(G|m,λ,M ,R)

× p(µ,β, σ2
e ,m,γ)p(λ)

The reversible jump MCMC algorithm updates, sequentially at each state of the

Markov Chain, the missing marker genotypes and missing phenotypes, the parameters

(µ,β, σ2
e), the QTL genotypes G, the QTL positions λ, the indicator variables γ, add

a new QTL with only main effect, add a new QTL with only epistasis effect, add a new

QTL with both main effect and epistasis effect with some QTL already in the model,

or delete an existing QTL, and also add two QTL with epistasis between themselves

or delete two existing QTL. The approach represents an advence in QTL mapping

in allowing the search for epistatic QTL, which may or may not show main effect.

However, there are some drawbacks, such as, challenge convergence diagnoses (Yi,

2004), intensive computations, low acceptance rate for including or deleting QTL,

and poor exploration of the parameter space (poor mixing) (Yi et al., 2005).

Methods with fixed number of QTL using the composite space representa-

tion: Aiming to overcome the difficulties in implementing the reversible jump MCMC

approach in QTL mapping, Yi (2004) proposed an alternative Bayesian method based

on the composite space representation of the parameter space (Godsill, 2001). The

composite space representation gets rid of the changes in the dimensionality of the

vector of parameters in the reversible jump approach by, first, creating an upper

bound U for the number of QTL m, and second, adding indicator variables for all

QTL effects in the model. The composite space approach, in principle, may produce

more efficient proposal designs for the parameters, because parameters out of the

current model may be stored and used in the proposals when a model is visited again

(Yi, 2004). Yi et al. (2005) and Yi et al. (2007) used Yi (2004)’s composite space

approach to develop a method for model selection to identifying pairwise epistatic

effects. While Yi et al. (2005) use the Bernoulli distribution with prior probability of

success for the indicator variables of epistatic effects γrl independently of the indicator
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variables of the main effects γr and γl, Yi et al. (2007) constructed probabilities for

the epistatic effects (pe) conditional on the indicator variables of the main effects as

follows:

pe = P (γrl = 1|γr, γl) =


c0p if (γr = 0, γl = 0)

c1p if (γr = 0, γl = 1) or (γr = 1, γl = 0)

c2p if (γr = 1, γl = 1)

where, p = P (γr = 1) = P (γl = 1) and 0 ≤ c0,≤ c1,≤ c2 ≤ 1. Besides the inclusion

of epistasis between loci, the model can also includes interaction between loci and

environmental variables, for instance, sex, location, and other phenotypic traits. This

prior setting has two immediate consequences: first, the constant 0 ≤ ci ≤ 1, for i =

0, 1 and 2, implies that the main effects are more likely to be detected than the

epistasis effect; second, the constants ci may play a rule of tuning parameters, in the

sense that they give different weights to the epistasis effects based on the pattern

of identification of main effects. Both consequences seem reasonable, since main

effects are in fact easier to detect and so are epistatic effects between loci with main

effects. Therefore, an appropriate tuning of the constants ci will likely increase the

chances of finding epistatic effects between pairs of loci in which none or one QTL has

main effect. The composite space approach is implemented in the R/qtlbim package

(Yandell et al., 2007), and a technical review discussing different choices of priors

as well as manners of drawing samples from the posterior distributions in the context

of mapping multiple QTL is given in Yi and Shriner (2008).

Methods with fixed number of QTL using shrinkage: A close related proce-

dure to the composite space is the Bayesian shrinkage. In this approach, the full

set of markers is included into the linear model, and the effects of markers unre-

lated or trivially related to the trait phenotypes are shrunk toward zero (“removed”).

Wang et al. (2005) proposed assigning each effect a normal prior with mean zero

and effect-specific variance, and further assigning a non-informative Jeffrey’s prior to

each variance. The selective shrink is possible because of the special forms of the pos-
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terior mean and posterior variance of each effect. Small effect will show relative small

variance, which makes both its posterior mean and posterior variance approximately

zero, therefore, forcing the posterior samples of the effect to be close to zero. Yi and

Xu (2008) proposed a two-level hierarchical model, similar to Wang et al. (2005)’s

method in the first level, in which each effect gets assigned a normal prior with mean

zero and effect-specific variance. However, in the second level, they assign the vari-

ances two types of distributions with hyper-parameters, the double exponential and

the inverse-χ2. The hyper-parameters in the prior for the variances are assumed to be

unknown and sampled along with the other parameters in the MCMC algorithm. In

this procedure the data have greater impact on the amount of shrinkage when com-

pared with procedures that pre-specify the hyper-parameters. The use of exponential

and the inverse-χ2 distributions for the variances of effects leads to the Bayesian ver-

sion of LASSO (Tibshirani, 1996) and the Student-t model, respectively. Yi and

Xu (2008) observed that their method has faster convergency than methods using

Jeffrey’s prior, which includes no hyper-parameter.

Posterior inference: In Bayesian MCMC methods, inference for the underlying ge-

netic architecture (number of QTL, QTL locations and effects) of quantitative traits

relies on posterior samples from the posterior distribution with support on the param-

eter space. Regions in the parameter space that best support the data will be visited

more frequently. This feature is of special interest in model selection for multiple

QTL, because the data may support several models and the posterior distribution

highlight such uncertainty (Zou and Zeng, 2008). Specific hypotheses are tested

using Bayes factor (BF), which is defined as the ratio of marginal probabilities of the

data under the two hypotheses (Kass and Raftery, 1995). Assuming the data y

arises under one of the two hypothesis H1 and H2 with density distributions p(y|H1)

and p(y|H2), and letting the prior distribution and the posterior distribution of Hi

be p(Hi) and p(Hi|y), respectively (i=1, 2), then the Bayes factor is:

BFH1H2 =
p(y|H1)

p(y|H2)
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Alternatively, from Bayes’ theorem the BF can be re-written as follows:

p(y|H1)

p(y|H2)
=
p(H1|y)/p(H2|y)

p(H1)/p(H2)

and the Bayes factor is the ratio of the posterior odds of H1 to its prior odds (Kass

and Raftery, 1995). For example, the BF for testing model m1 and m2 is:

BFm1m2 =
p(y|m1)

p(y|m2)

When the number of QTL m is regarded as fixed, there in no posterior samples

of it to make inference regarding the size of the model. Satagopan et al. (1996)

proposed running the MCMC algorithm for each model size N times and using the

estimator of the marginal probability of model mi of Kass and Raftery (1995) for

BF computations. The estimator of the marginal probability used by Satagopan

et al. (1996) is:

p̂(y|mi) =

(
1

N

N∑
s=1

h(λ(s),G(s),β(s), µ(s), σ
2(s)
e )

p(y|G(s),β(s), µ(s), σ
2(s)
e )p(λ(s),G(s),β(s), µ(s), σ

2(s)
e )

)−1

where, h(λ,G,β, µ, σ2
e) = h(λ)p(G|λ)p(β, µ, σ2

e). The density h(λ) is a normal den-

sity with support restricted to 0 ≤ λ1 ≤ λ2 · · · ≤ λm ≤ Lc, where Lc is the length of

the chromosome, mean λ and variance serving as tuning parameter. While it is clear

how to apply this estimator to one chromosome only, it is not so straight for multiple

chromosomes because the ordering 0 ≤ λ1 ≤ λ2 · · · ≤ λm ≤ Lc and λ are meaningless

in such situation.

Both BF and probability value (p-value) have to be compared to a given threshold

to make the final decision regarding which hypothesis is more likely correct. However,

while p-value is calculated only under the null hypothesis, BF is computed under both

hypotheses (Kass and Raftery, 1995).

Consistent estimates of parameters as well as their density distributions can be ob-
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tained with the posterior samples. For example, Yi et al. (2005) proposed estimating

the main effect (β) of any QTL in ζ or chromosome region ∆ by:

β̂(∆) =
1

N

N∑
s=1

m∑
r=1

I(λ(s)
r ∈ ∆, γ(s)

r = 1)β(s)
r

where, I(x) is the indicator function, which takes value one if x = x0 and zero

otherwise.

Other estimates, such as the posterior probability of inclusion of a particular QTL

ζh ∈ ζ, p(ζh|y), and its Bayes factor, BF (ζh), are as follows:

p̂(ζh|y) = 1
N

N∑
b=1

m∑
r=1

I(λ
(s)
r = ζh, γ

(s)
r = 1) and BF (ζh) = p̂(ζh|y)

1−p(ζh)
1−p̂(ζh|y)
p(ζh)

Both p(ζh|y) and BF (ζh) can be used to profile the QTL activity across the entire

genome (Yi et al., 2005).

Prior choice: As noticed, the posterior samples which are used for inference regard-

ing the unknown parameters combine information from the observed data and prior

knowledge expressed in terms of prior probability distributions. The choice of such

priors for each unknown is not so simple and may be crucial for reliable posterior

inference. There exist a consensus that a priori information from previous related

studies should anchor such choices. Experimental results have shown evidences that

quantitative traits are genetically regulated by few major loci (large effects) and

many minor loci (small effects) (Paterson et al., 1988; Shrimpton and Robert-

son, 1988; Mackay, 1996). Hoeschele and VanRaden (1993) suggested that

the results of Shrimpton and Robertson (1988) regarding the frequency of effects

of loci affecting bristle number in Drosophila Melanogaster could be modeled using

the exponential distribution, and thus Hoeschele and VanRaden (1993) proposed

exponential prior for QTL effects. The normal distribution has been widely used as

prior for the QTL effects, in part because it is conjugate under normality assumption

of the data, therefore, making the derivations of posterior distributions much easier.
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As important as the choice of priors for the QTL effects, is the choice of their

locations throughout the genome. A common approach used regarding the QTL

positions is to give all positions in the genome the same prior probability of harboring

a QTL, i.e., the uniform distribution on the entire genome (Satagopan et al., 1996).

Numerous Bayesian approaches for QTL mapping have been proposed, and besides

their advantage of combining information from the data and prior knowledge, they

also can accommodate complex models. However, the choice of prior may affect the

posterior distributions of the unknowns, therefore, one must be careful when picking

prior distributions. Perhaps, one could carry out some sensitivity analyses of priors

to better support decision regarding their choice. Other factors that might interfere

in the quality of Bayesian inference are: initial values for the Markov Chain, rule to

stop the chain, and mixing of the chain. Moreover, estimates of standard error of

parameters from MCMC simulations are not so trivial.

1.4 Mapping multiple QTL on multiple trait

In genetic experiments, although in many cases multiple trait are measured in the

same subject, the common rout taken for identifying QTL is to proceed with single

trait analyses. However, the single trait analysis does not take advantage of the

information in the data provided by the existence of phenotypic correlation between

traits. The source of phenotypic correlation between traits is both genetical and

environmental. In quantitative genetics, it is of practice to decompose the phenotypic

variance-covariance between traits (Σp) into genetic variance-covariance (Σg) and

residual variance-covariance (Σe), in other words, Σp = Σg+Σe (Lynch and Walsh,

1997). The cause of genetic correlation between traits is the existence of loci affecting

the traits simultaneously (pleiotropic loci) and loci in linkage disequilibrium. Multiple

measurements can also arise when one trait is measured in multiple environments.

Since we can regard the expression of a trait in different environments as different

trait status (Falconer, 1952), the multivariate analysis is also very useful within
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this context. If the same set of genotypes is evaluated in different environments, and

significant difference of the phenotypic values is observed between environments, it is

because of genes having different responses according to the environment, i.e., there

is gene by environment interaction.

The literature in multivariate QTL analysis is not as extensive as the single trait

one. Perhaps, this lack of research in multivariate QTL analysis is because of its

complexity. Nevertheless, some approaches have been proposed. Jiang and Zeng

(1995) extended the composite interval mapping (Zeng, 1993, 1994) to multiple trait

analysis within the maximum likelihood framework. Besides the advantages of possi-

bly testing for pleiotropy versus close linkage and QTL by environment interaction,

the proposed method may improve, in some circumstances, the power of detecting

QTL and the accuracy in estimating the positions of QTL. Weller et al. (1996) and

Mangin et al. (1998) have both proposed the use of the method of canonical transfor-

mation of the multivariate data and the subsequent use of single trait analyses on the

independent canonical variables. Although the canonical transformation technique is

a powerful tool for creating independent new variables, in QTL analysis this indepen-

dency may not be satisfactory because of the way that QTL affect traits. While some

QTL may affect one trait only, others may affect two or more traits depending on

the number of traits being analyzed jointly, i.e., the QTL may have different patterns

of pleiotropy. This lack of pattern makes impossible to build independent canonical

variables in which all QTL are non-pleiotropic. Creating canonical variables with all

non-pleiotropic QTL is possible only if the phenotypic and genotypic correlations are

equal and the pattern of pleiotropy are identical for all QTL (Knott and Haley,

2000). Knott and Haley (2000), following the same reasoning as in Haley and

Knott (1992), extended the single trait least square method to multivariate least

square. A disadvantage that both methods of Jiang and Zeng (1995) and Knott

and Haley (2000) share is the assumption of multinormality of the traits. If this

assumption is not plausible, for example when traits are count, proportion or posi-

tive continuous, these methods may lack robustness. Having this in mind, Lange
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and Whittaker (2001) developed a generalized estimation equations (GEE) method

that deals with non-normal traits. The advantage of GEE is the possibility of esti-

mating the parameters without a distributional assumption on the data. However,

a drawback of the method is the need for supplying a variance-covariance matrix to

begin with.

With the multivariate analysis some interesting questions, as the ones that follows,

could be tackled: (A) Is a QTL pleiotropic or are there close linked QTL affecting

multiple trait? (B) Does a QTL show genotype by environment interaction? In this

section we introduce a model parametrization that allows for addressing question (A),

then we describe some hypotheses setting that allows one to address question (B),

and end with a discussion regarding threshold and model choice in the context of

mapping multiple QTL on multiple trait.

Assuming that we have a BC population and multiple trait (t = 1, 2, · · · , T ) are

measured in each subject of a sample of size n, the statistical model for multiple trait

and multiple QTL analysis relates the phenotype of each subject i, yit, to the coded

variables xir for each QTL r (r = 1, 2, · · · ,m) affecting the traits. The explanatory

variables are defined according to the Cockerham genetic model (Jiang and Zeng,

1995). A linear model with a subset p of all pairwise interactions between two loci

can be written as:

yti = µt +
m∑
r=1

βtrxir +

p∑
r<l

wtrlxirxil + eti (1.5)

where, for each t, µt is the mean of trait t (t = 1, 2, · · · , T ), βtr is the effect of QTL

r (r = 1, 2, · · · ,m), wtrl is the epistasis between loci r and l, and eti ∼ N(0, σ2
et

).

For each subject i, let yi = (y1i, y2i, · · · , yT i)′ be the T by 1 vector of trait val-

ues, X i be the m + p by 1 incidence matrix, ei be the T by 1 vector of residu-

als, µ = (µ1, µ2, · · · , µT )′ be the T by 1 vector of mean. For each r and l, let

βr = (β1r, β2r, · · · , βTr)′ and wrl = (w1rl, w2rl, · · · , wTrl)′. We collect all the effects

parameter into a T by m + p matrix B = (β1,β2, · · · ,βm,w1,w2, · · · ,wp). Then,
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the linear model (1.5) in matrix form looks like:

yi = µ+ BX i + ei (1.6)

where, ei ∼ MVN(0,Σe) and Σe is a positive definite symmetric residual variance-

covariance matrix. We collect all s = m + p vectors of effect parameters, µ and Σe

of model (1.6) into the vector θ = (θ1,θ2, · · · ,θs,µ′, vect(Σe))
′, where θb = β′b for

1 ≤ b ≤ m and θb = w′b for m < b ≤ s, and vect(Σe) is an operator that stacks the

rows of Σe into a column vector one on the top of the other and then transposes it.

Let Z be the transpose of the incidence matrix D defined previously in the single

trait analysis. Analogue to the univariate model, the individual and overall likelihood

of the multivariate model (1.6) with m QTL are mixtures of 2m multivariate normal

distribution functions with different means and same variance-covariance, and mixing

probabilities pij (i = 1, 2, · · · , n and j = 1, 2, · · · , 2m). These mixing probabilities

are defined in the same manner as previously explained in the single trait likelihood

equation (1.2). The individual likelihood (Li) is:

Li
(
θ |yi,M [i,·],λ

)
=

2m∑
j=1

pijφ
(
yi|µ+ BZ [·,j],Σe

)
where φ(z|µ0,Σ0) is the probability density distribution of a multivariate normal

random variable z with mean µ0 and variance-covariance matrix Σ0. The overall

likelihood (L) is L (θ |Y ,M ,λ) =
n∏
i=1

Li
(
θ |yi,M [i,·],λ

)
, where Y is a T by n

matrix containing the traits measurements.

The expectation maximization (EM) algorithm (Dempster et al., 1977) solves

the incomplete logarithm likelihood iteratively in terms of the unobserved complete

logarithm likelihood. The E-step at the (ν + 1) iteration consists of updating the
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probabilities πij as follows:

π
(ν+1)
ij =

φ(yi|µ(ν) + B(ν)Z [·,j],Σ
(ν)
e )pij

2m∑
j=1

φ(yi|µ(ν) + B(ν)Z [·,j],Σ
(ν)
e )pij

The M-step at the (ν + 1) iteration consists of updating the parameters as follows:

µ(ν+1) =
1

n

n∑
i=1

(yi −
2m∑
j=1

π
(ν+1)
ij B(ν)Z [·,j])

B(ν+1)
[t,b] =

n∑
i=1

2m∑
j=1

π
(ν+1)
ij Z [b,j][(yti − µ(ν)

t )−
b−1∑
u=1

Z [u,j]B(ν)
[t,u] −

s∑
u=b+1

Z [u,j]B(ν)
[t,u]]

n∑
i=1

2m∑
j=1

π
(ν+1)
ij Z2

[b,j]

Σ(ν+1)
e =

1

n

n∑
i=1

2m∑
j=1

π
(ν+1)
ij (yi − µ(ν) −B(ν)Z [·,j])(yi − µ(ν) −B(ν)Z [·,j])

′

For any small positive number ε, a stoping rule for the iterations can be defined as

loge L(θ(ν+1)|Y ,M ,λ) − loge L(θ(ν)|Y ,M ,λ) < ε. More efficient estimators for all

parameters in model (1.6) have been derived (L.C. Silva and Z-B. Zeng, unpublished)

using a expectation-conditional maximization algorithm (Meng and Rubin, 1993)

as well as a hybrid algorithm combining the expectation-conditional maximization

and Newton-Raphson methods (Rai and Matthews, 1993; Aitkin and Aitkin,

1996).

Pleiotropy versus close linkage: As previously stated, an advantage of multiple

trait analysis is the possibility of testing for a single QTL affecting multiple trait

versus the alternative of two or more closely linked non-pleiotropic loci (or, two or

more closely linked pleiotropic loci). For instance, suppose we have measurements of

two traits and a total of three non-epistatic QTL at positions λ1, λ2 and λ3 in the

genome. The multiple trait multiple QTL pleiotropic model for a subject i would
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look like:

(
y1i

y2i

)
=

(
µ1

µ2

)
+

(
β11 β12 β13

β21 β22 β23

)
xi1

xi2

xi3

+

(
e1i

e2i

)
(1.7)

The model above assumes that all QTL have the same pattern of pleiotropy, but

instead, suppose we want to test whether a QTL, say the last QTL in the model above,

has effect on multiple trait against the alternative of two linked non-pleiotropic loci.

The model with two pleiotropic (positions λ1 and λ2) and two nonpleiotropic QTL

(positions λ3 and λ4) for a subject i would look like:

(
y1i

y2i

)
=

(
µ1

µ2

)
+

(
β11 β12 β13 0

β21 β22 0 β24

)
xi1

xi2

xi3

xi4

+

(
e1i

e2i

)
(1.8)

Or, suppose we want to test whether the last two QTL in the model (1.8) are both

pleiotropic, against the alternative that they are two linked non-pleiotropic QTL. The

model with four pleiotropic QTL for a subject i would look like:

(
y1i

y2i

)
=

(
µ1

µ2

)
+

(
β11 β12 β13 β14

β21 β22 β23 β24

)
xi1

xi2

xi3

xi4

+

(
e1i

e2i

)
(1.9)

Many hypotheses can be formulated and tested using model (1.5), for example,

the hypotheses of model (1.7) versus (1.8) can be stated as:

H0 : λ3 = λ4

H1 : λ3 6= λ4
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and the hypotheses of model (1.8) versus (1.9) can be stated as:

H0 : β14 = β23 = 0

H1 : β14 6= 0 and β23 6= 0

A couple of alternative tests have been proposed to make a statistical decision re-

garding model choice between a pleiotropic and a close linkage non-pleiotropic model.

The LRT statistic, with a threshold from the χ2
d1−d0 distribution was proposed by

Jiang and Zeng (1995), where d1 and d0 are the total of parameters in the full

model (under H1) and reduced model (under H0), respectively. A disadvantage of the

LRT is the assumption of asymptotically equivalency to a χ2
d1−d0 distribution, which

may not be true since two models may not be nested within each other, as in the

example previously stated regarding models (1.7) and (1.8). A parametric bootstrap

strategy to empirically estimate the threshold of the distribution of the approximate

LRT between the pleiotropic model and close linkage model was proposed by Knott

and Haley (2000). Each bootstrap replicate consists of the original marker data

and trait values simulated from the pleiotropic model. This approach overcomes the

asymptotic assumption for threshold computation. However, there is assumption that

the pleiotropic model is correct for generating the null distribution.

A non-parametric bootstrap method that does not involve multivariate analysis

was proposed by Lebreton et al. (1998). It consists of drawing samples with re-

placement from the original data followed by single trait analyses. For each bootstrap

sample, the distance between the QTL locations is computed and used to build an

empirical 95%-confidence interval. If the confidence interval includes zero, the null

hypothesis of pleiotropy is not rejected. This procedure has been tested with two

traits only, and its application in cases where more than two traits are analyzed

jointly is not so clear. Knott and Haley (2000) showed in a simulation study that

the non-parametric method was less powerful than the parametric, and both of them

were conservative in rejecting the hypothesis of pleiotropy.

QTL by environment interaction: The possibility of testing for QTL by envi-
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ronment interaction arises as another advantage of the multivariate analysis. There

are two situations in which we are able to study the differential expression of a QTL.

One, which has already been mentioned, is when the same set of genotypes are eval-

uated phenotypically in different environments (design I), and the other is when the

phenotypic evaluations are done in different sets of genotypes, or subjects, in different

environments (design II) (Jiang and Zeng, 1995). We regard the model for analysis

of data in design II as multiple populations model, and thus we shall omit further

discussion about it while talking about the multiple trait analysis in this review.

Let’s re-iterate that in design I we regard the expression of a trait in different

environments as different trait status, therefore, the index t (t = 1, 2, · · · , T ), which

was previously defined to index traits, is regarded as the environment index in what

follows. With this in mind, testing whether a QTL r equally affects a trait or not in

a subset S (S ∈ T ) of environments, involves testing the hypotheses:

H0 : βtr = βr ∀ t ∈ S
H1 : βtr 6= βr for some t ∈ S

The LRT statistic may be used to evaluate the hypotheses above. The critical

value for the test can be obtained from the χ2 distribution with degrees of freedom

being the difference in the number of parameters between the full model (H1) and the

reduced model (H0).

Threshold and model choice: The usefulness of multiple trait analysis has been

demonstrated in several studies (Jiang and Zeng, 1995; Knott and Haley, 2000;

Eaves et al., 1996; Wu et al., 1999; Lebreton et al., 1998). However, procedures

for building a model are yet scarce. As raised by Knott and Haley (2000), this

scarcity may be because the strategy to build a model is very likely to depend on

both the underlying genetic architecture and the goals of the investigator. One may

choose a bottom up approach, in which a series of single trait analyses is carried out

with follow up multiple trait analysis based on the priori information obtained in

the single trait analyses. In contrast, others may option to begin straight with the
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multiple trait analysis and build a model with forward selection using some criterion

for controlling the inclusion of unimportant QTL (top down approach). Or yet, one

may choose to narrow down the multiple trait analysis to cluster of related variables.

The cluster could be chosen based on phenotypic correlation, genotypic correlation

or some other criterion, like gene pathway.

Assuming two traits and at most one QTL affecting a trait (the QTL is either

pleiotropic or affects only one trait), Knott and Haley (2000) studied the behavior

of three procedures for identifying QTL, single trait approach, linkage model approach

and pleiotropic model approach. In the single trait approach, single trait analyses were

performed in each trait followed by multiple trait analysis for testing the hypothesis of

one pleiotropic QTL versus two linked loci, each affecting only one trait. In the linkage

model approach, a linkage model was fitted with a putative QTL for each trait at each

position of genome (two-dimensional search) and tested against the null of no effect

of both loci. Then, at the position of maximum test statistic, the effects of each non-

pleiotropic QTL were tested against the null of zero effect. Finally, if the two effects

were significant, the test of pleiotropy versus close linkage model was performed. As

for the pleiotropic model approach, the pleiotropic model was fitted at each position

in the genome and tested against the null of no effect. At the position of maximum

test statistic, each trait effect was tested individually and if both were significant, the

pleiotropic and close linked QTL model were tested. A general conclusion, as one

might have expected, is that the best approach depends on the underlying genetic

architecture of the traits under analysis. For example, when no residual correlation

was simulated, all approaches’ performances were very similar. In contrast, when

the residual correlation was set to 0.75, the pleiotropic model performed the best.

Also, when QTL were simulated with effects on both traits, the multiple trait model

were more significant than the single trait model. Maia (2007) chose the bottom

up procedure to build an initial multiple trait multiple QTL model. Each trait was

analyzed with the multiple interval mapping (Kao et al., 1999), and the number

and positions of the identified QTL were used as initial values in the multiple trait
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multiple QTL model. The permutation test was adopted to obtain the genome-wide

threshold in the single trait analyses. After sketching an initial model, the positions

of the QTL were adjusted with the pleiotropic versus close linkage hypothesis testing.

Two weakness in Knott and Haley (2000) study are, the assumptions of two

traits and at most one QTL affecting each trait. The assumption of one QTL in the

model permitted them to empirically estimate the threshold for a given genome-wide

significance level in both the linkage and pleiotropic model approaches, by simulating

several replicates under the null hypothesis of no QTL effects on each trait. In

real data analysis, their suggestion is to use permutation to empirically estimate the

threshold. Maia (2007), as well, applied the permutation test in the multiple interval

mapping. However, as mentioned previously in the review, the permutation test for

multiple QTL model has some drawbacks.

While many Bayesian methods have been proposed for mapping QTL on single

trait, just recently Banerjee et al. (2008) seems to have proposed the first Bayesian

method for mapping QTL on multiple trait. Their method allows for mapping sets

of QTL specific to each trait through the concept of seemingly unrelated regression

(Zellner, 1962), in which each trait is allowed to have its on set of QTL. Without

any doubts the method represents an advance in mapping multiple QTL on multiple

trait, however, no criterion has been proposed for assessing significance of putative

QTL.

The lack of a good criterion for assessing significance of putative QTL when map-

ping multiple QTL on multiple trait has motivated us to extend the score statistic of

Zou et al. (2004) for threshold computation in the context of multiple trait (to be

published elsewhere) and this technique will be included into the already available

multiple trait multiple QTL mapping modulus in the Windows QTL Cartographer

(Wang et al., 2007).

In this paper we reviewed statistical methods for QTL mapping of non-dynamic

traits from populations derived from inbred line crosses. There is also a vast liter-

ature of statistical methods for QTL mapping of dynamic (functional, longitudinal)
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complex traits, for instance, Ma et al. (2002), Zhao et al. (2005), Wu and Lin

(2006), Yang et al. (2006), Yang and Xu (2007), Yap et al. (2009) and Liu and

Wu (2009). Likewise, there is also a rich literature of statistical methods for map-

ping QTL from data of outbred populations (for instance, half-sibs and full-sibs),

family-based populations (pedigree data) and observational populations (association

mapping) (see, for instance, Slate (2005), Balding et al. (2007), Neale et al.

(2007), and McCarthy et al. (2008)).

1.5 Final considerations

In this paper we reviewed the multiple interval mapping both within the maximum

likelihood and Bayesian frameworks. The main advantage throughout the develop-

ment of multiple interval mapping is the improvement in identification of putative loci

due to fitting of more complex models that ultimately use the information available

in the data more efficiently through information of many marker intervals simulta-

neously. Another advantage brought by modeling multiple loci simultaneously is the

possibility of evaluating epistasis between loci.

In the maximum likelihood method, the data is fitted with a mixture of distribu-

tion functions (we reviewed only the mixture of normal distributions), which requires

somewhat more sophisticated approaches of parameter estimation, such as the EM

algorithm (Dempster et al., 1977). To build a set of models with multiple loci

within the maximum likelihood framework the genome is usually partitioned in small

bins (or grids), say 1-cM, and the model is fitted at every position in the genome and

the LRT is used for the assessment of significance of effects at each position. The

position within the genome with maximum LRT is considered as harboring a putative

QTL if the LRT at the position exceeds a predefined criterion. A good criterion must

correct for the multiplicity of testing and take into account the correlation between

tests due to the genetic linkage. The permutation test (Churchill and Doerge,

1994; Doerge and Churchill, 1996) is by far the most widely used method for
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threshold estimation in single trait single QTL analysis. However, it might lack ro-

bustness when models with multiple loci are fitted. The score-based threshold (Zou

et al., 2004) has been empirically shown to be an alternative to the permutation test

for computing the threshold in single trait multiple interval mapping (C. Laurie, S.

Wang, L. A. Carlini-Garcia and Z-B. Zeng, unpublished).

The Bayesian paradigm provides us with tools for building a set of complex models.

However, prior distributions need to be chosen, and their choice might have impact

in the posterior inference. Moreover, the sampling of parameters in high-dimensional

space and the diagnosis of convergence have been reported to be challenging, espe-

cially when the number of loci in the model is treated as an unknown parameter

and it is sampled along with the other model parameters using the reversible jump

MCMC algorithm of Green (1995) (Yi, 2004; Yi et al., 2005).

In genetic experiments, although in many cases multiple trait are measured in the

same subject, analyses of single traits have been the main stream for the purpose

of QTL identification. However, the single trait analyses do not take advantage of

the information in the data regarding the existence of genetic and environmental

correlation between traits. Within the multiple trait analysis framework we reviewed

interesting hypotheses and statistical methods that might allow an investigator to

assess the pattern of action of loci on multiple trait, such as, testing the hypothesis of

the existence of a pleiotropic QTL versus the hypothesis of close linked QTL affecting

multiple trait, and testing the hypothesis that a QTL shows genotype by environment

interaction. However, preceding the use of these interesting features provided by the

multiple trait analysis, one may need to build a model or a set of models. Knott

and Haley (2000) and Banerjee et al. (2008) have developed a least squares and

a Bayesian method for mapping QTL multiple trait, respectively. The latter method

lacks a criterion for assessing the significance level of QTL and in the former method,

it was suggested the use of permutation to empirically estimate the genome-wide

threshold to assess the significance level of loci effects. However, the permutation

has drawbacks that might limit its robustness in multiple QTL model. Because the
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multiple trait analysis is an important tool that allows an investigator to better extract

information from multivariate data, therefore, revealing with more details the genetic

architecture of complex traits, we have invested efforts in developing a score-based

threshold for assessing significance level of QTL on multiple trait.

1.6 Plan of dissertation

In this dissertation we summarize our own research results on mapping QTL from

inbred line crosses. We present this research in the form of four chapters. In Chapter

1, we reviewed the current status of research on statistical methods for mapping

multiple QTL in single and multiple complex traits within the maximum likelihood

and Bayesian frameworks. In Chapter 2, we propose a statistical model for multiple

trait multiple interval mapping (MTMIM) of QTL from inbred line crosses. We also

derive a set of equations for parameter estimations. We extended the score-based

threshold for genome-wide evaluation of significance level of effects of QTL in the

MTMIM model. We propose a strategy of forward selection using the score-based

threshold as a criterion of variable selection in the MTMIM model. In Chapter 3, we

implement and evaluate our MTMIM model and score-based threshold with several

simulated data sets as well as with data from an experiment with Drosophila. In

Chapter 4, we derive analytical formulae for prediction of length of confidence interval

for position of QTL and for prediction of shape of the LRT around the position of

QTL in multiple trait analysis in linkage maps with distinct saturation of markers.
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2

Multiple trait multiple interval

mapping of quantitative trait loci

from inbred line crosses

2.1 Introduction

Although in many cases multiple trait are measured in the same subject, single

trait analyses have been the main stream for the purpose of QTL identification.

However, single trait analyses do not take advantage of the information in the data

regarding existence of genotypic and environmental correlation between traits. In

Chapter 1 we reviewed interesting hypotheses and statistical methods in multiple

trait analysis that might allow an investigator to assess the pattern of action of QTL

on multiple trait, such as, testing the hypothesis of the existence of a pleiotropic

QTL versus the hypothesis of close linked QTL affecting multiple trait, and testing

the hypothesis of QTL by environment interaction. However, preceding the use of

these interesting features provided by the multiple trait analysis, one may need to

build a model or a set of models. Knott and Haley (2000) and Banerjee et al.

(2008) have developed a least squares and a Bayesian method for mapping multiple
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QTL in multiple trait, respectively. Both methods lack criteria for assessing the

significance level of effects of QTL. In the former method, permutation test was

suggested to empirically estimate the genome-wide threshold to assess significance

level of effects of QTL. However, the permutation has drawbacks that might limit its

robustness in multiple QTL models. Because multiple trait analysis is an important

tool that allows an investigator to better extract information from multivariate data,

therefore, revealing with more details the genetic architecture of complex traits, we

have invested efforts in developing a score-based threshold for assessing significance

level of QTL on multiple trait.

In this chapter, we propose a statistical method for multiple trait multiple interval

mapping (MTMIM) of QTL from inbred line crosses. In what follows, we describe the

MTMIM statistical model (Section 2.2), build the likelihood function (Section 2.3),

derive parameter estimators (Section 2.4), extend the score-based threshold method

of Zou et al. (2004) to the MTMIM model (Section 2.5), propose a forward selection

to build a model with multiple QTL using the score-based threshold as the criterion

to assess the significance level of effects of QTL, and propose a model optimization

procedure (Section 2.6). In the last section, we describe some alternative criteria for

testing pleiotropy versus close linkage (Section 2.7).

2.2 Statistical model

Our statistical model for multiple trait multiple QTL inference on BC population

is a linear model, in which the value of trait t (t = 1, 2, · · · , T ), yti, for each ith subject

(i = 1, 2, · · · , n), is regressed on variables xir (r = 1, 2, · · · ,m). These variables are

defined according to the Cockerham genetic model (Kao and Zeng, 2002; Zeng

et al., 2005). For each subject i, xir takes either value 1
2

or −1
2
, depending on whether

QTL r has genotype QQ or Qq, respectively. The coefficient of xir, βtr, is called

the main effect of rth QTL on trait t. The linear model also includes an intercept

µt, a subset p of epistatic effects (wtrl) between all pairwise interactions between
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QTL (r and l ∈ {1, 2, · · · ,m}), and a residue eti. The residues are assumed to be

independent and identically distributed according to a normal distribution with mean

zero and variance σ2
et

. The linear model is then:

yti = µt +
m∑
r=1

βtrxir +

p∑
r<l

wtrlxirxil + eti (2.1)

For each subject i, let yi = (y1i, y2i, · · · , yT i)′ be the T by 1 vector of trait val-

ues, X i be the m + p by 1 incidence matrix, ei be the T by 1 vector of residu-

als, µ = (µ1, µ2, · · · , µT )′ be the T by 1 vector of mean. For each r and l, let

βr = (β1r, β2r, · · · , βTr)′ and wrl = (w1rl, w2rl, · · · , wTrl)′ be column vectors of main

and epistatic effects, respectively. We collect all the effect parameters into a T by

m+ p matrix B = (β1,β2, · · · ,βm,w1,w2, · · · ,wp), and rewrite (2.1), for a subject

i, in matrix form as:

yi = µ+ BX i + ei

where, ei is a random vector of length T assumed to be independent and identically

distributed according to a multivariate normal distribution with mean vector zero

and positive definite symmetric variance-covariance matrix Σe (MVNT (0,Σe)).

We collect all s = m+p effect parameters (m main and p epistatic effect vectors),

µ and Σe into a column vector θ = (θ1,θ2, · · · ,θs,µ′, vect(Σe))
′, where θb = β′b for

1 ≤ b ≤ m and θb = w′b for m < b ≤ s, and vect(Σe) is an operator that stacks

the rows of Σe into a column vector one on the top of the other and then transposes

it. Motivated by the fact that a QTL may not have significant effect on all traits

under analysis, we allow for the insignificant effect parameters in each vector θb to be

constrained to zero. Therefore, our MTMIM model allows each trait to have its own

set of effect parameters, as in the seemingly unrelated regression model of Zellner

(1962).
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2.3 Likelihood function

Let’s re-iterate that in order to search the entire genome for significant effects of

QTL, the genome is partitioned into H loci, usually at 1-cM grid. This partition

is denoted by ζ. The set of positions of m putative QTL, λ = {λ1, λ2, · · · , λm}, is

assumed to be a subset of ζ (Yi et al., 2005). For any subject i, let M [i,·] be the geno-

typic information of markers flanking the m QTL, and M r
i,L and M r

i,R be the flanking

markers on left and right of QTL r, respectively. Then, assuming no cross-over inter-

ference between marker intervals and no more than one QTL existing within a marker

interval, the probability of any genotype of the form Gj = Q1Q2 · · ·Qm, where Qr

∈ {QQ,Qq}, r = 1, 2, · · · ,m and j = 1, 2, · · · , 2m, conditional on the genotypes of

markers flanking the m QTL is pij = P (Gj|M [i,·],R,λ) =
m∏
r=1

P
(
Qr |M r

i,L,M
r
i,R, λr

)
,

where the probabilities on the right hand side of this equation can be estimated as

in Jiang and Zeng (1997) and Kao and Zeng (1997). In Table 1.2, we show how

to estimate these probabilities for a BC population. The recombination frequency

between QTL Qr and its left marker (rLQr) has a one-to-one correspondence with

the position λr. Conditional probabilities of two QTL lying within a single interval

is shown in Table A.2 of Appendix A.

Let’s also remind that Z is the transpose of the incidence matrix D defined

in single trait analysis. Analogue to the univariate model, the individual and overall

likelihoods of the MTMIM model with m QTL are mixtures of 2m multivariate normal

distribution functions with different means and same variance-covariance, and mixing

probabilities pij (j = 1, 2, · · · , 2m). These mixing probabilities are defined in the

same manner as previously explained in the single trait likelihood equation (1.2).

The individual (Li) and overall likelihoods (L) are:

Li
(
θ |yi,M [i,·],λ

)
=

2m∑
j=1

pij (2π)−
T
2 |Σe|−

1
2 e−

1
2(yi−µ−BZ[·,j])

′
Σ−1
e (yi−µ−BZ[·,j])
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L (θ |Y ,M ,λ) =
n∏
i=1

Li
(
θ |yi,M [i,·],λ

)
(2.2)

where, Y is a T by n matrix of phenotypic trait data. In what follows, (`i) and (`)

represent the natural logarithm of the individual and overall likelihoods, respectively.

2.4 Parameter estimation

Estimation of parameters in the likelihood function (2.2) is cumbersome because

mixture of distributions. The expectation-maximization (EM) (Dempster et al.,

1977) algorithm is very popular for parameter estimation in mixture models. The

EM algorithm is very simple to program, given that efficient estimators are available

for the “complete-data”. Moreover, the EM algorithm guarantees that the likelihood

function is non-decreasing in every iteration. However, EM may show slow conver-

gence rate if there are many missing data, and EM does not provide standard errors

of parameter estimates.

Many modifications of the EM algorithm and many hybrids of EM and Gauss-

Newton (GN) methods have been proposed in the literature (Rai and Matthews,

1993; Aitkin and Aitkin, 1996; McLachlan and Krishnan, 1996). GN methods

are not guaranteed to converge when the logarithm likelihood is not concave, but if

there is convergence its rate is usually quadratic, as opposite to the linear rate of

EM. Therefore, speed of convergence of GN may be much faster than EM. In this

section, we describe four algorithms to estimate parameters in the MTMIM model:

EM, expectation-conditional maximization (ECM), Newtow-Raphson (NR), and a

hybrid of EM and NR called generalized EM-NR (GEM-NR).

Expectation maximization algorithm

Let z∗i = (z∗i1, z
∗
i2, · · · , z∗i2m)′ be a vector with information about “missing” QTL

genotypes for subject i. Each z∗ij = 1 if ith subject has genotype Gj, otherwise

z∗ij = 0. Let z∗ = (z∗1, z
∗
2, · · · , z∗n) be a matrix containing missing information from
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all subjects. The joint distribution of observed and missing data (yi, z
∗
i ) for subject

i is:

p(yi, z
∗
i ) =

2m∏
j=1

[
φ(yi|µ+ BZ [·,j],Σe)pij

]z∗ij
where, φ(yi|µ + BZ [·,j],Σe) is the probability density distribution of a multivariate

normal random variable yi with mean µ + BZ [·,j] and variance-covariance Σe. The

mixing probabilities pij are defined as previously, pij = P (Gj|M [i,·],R,λ). The

joint distribution of observed and missing data allow us to obtain the complete-data

logarithm likelihood (`c):

`c(θ|Y , z∗) =
n∑
i=1

2m∑
j=1

z∗ij(log pij + log(φ(yi|µ+ BZ [·,j],Σe)))

The EM algorithm (Dempster et al., 1977) solves the incomplete logarithm like-

lihood iteratively in terms of the unobserved complete-data logarithm likelihood. The

E-step requires computation of the expectation of the complete-data logarithm like-

lihood, conditional on the observed data y and evaluated at a current value of θ

(denoted here as θ(ν)) (McLachlan and Krishnan, 1996):

Qc(θ|θ(ν)) = Eθ=θ(ν) [`c(θ|y, z∗)|y]

=
n∑
i=1

2m∑
j=1

π
(ν)
ij (log pij + log(φ(yi|µ+ BZ [·,j],Σe)))

where,

π
(ν)
ij = Eθ=θ(ν)

[
z∗ij|yi

]
=

pijφ(yi|µ(ν) + B(ν)Z [·,j],Σ
(ν)
e )

2m∑
j=1

pijφ(yi|µ(ν) + B(ν)Z [·,j],Σ
(ν)
e )

The M-step consists of maximizing the expected complete logarithm likelihood
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(Qc) with respect to the unknown parameters. By taking derivatives of Qc with

respect the unknown parameters (see Appendix B) and setting the first order deriva-

tives equal to zero we can obtain the maximum likelihood estimators of all unknown

parameters. In what follows, we show closed form estimators of all parameters in the

MTMIM model assuming that all QTL have effects on all traits (no effect parameter

is constrained to zero):

µ = 1
n

n∑
i=1

(yi −
2m∑
j=1

π
(ν)
ij BZ [·,j])

B =
n∑
i=1

2m∑
j=1

π
(ν)
ij (yi − µ)(Z [·,j])

′(
n∑
i=1

2m∑
j=1

π
(ν)
ij Z [·,j](Z [·,j])

′)−1

Σe = 1
n

n∑
i=1

2m∑
j=1

π
(ν)
ij (yi − µ−BZ [·,j])(yi − µ−BZ [·,j])

′

The E- and M-steps are computed iteratively for many times until convergence of

the likelihood function. The E-step at the (ν + 1) iteration consists of updating the

probabilities πij as follows:

π
(ν+1)
ij =

φ(yi|µ(ν) + B(ν)Z [·,j],Σ
(ν)
e )pij

2m∑
j=1

φ(yi|µ(ν) + B(ν)Z [·,j],Σ
(ν)
e )pij

The M-step at the (ν + 1) iteration consists of updating the parameters as follows:

µ(ν+1) = 1
n

n∑
i=1

(yi −
2m∑
j=1

π
(ν+1)
ij B(ν)Z [·,j])

B(ν+1) =
n∑
i=1

2m∑
j=1

π
(ν+1)
ij (yi − µ(ν))(Z [·,j])

′(
n∑
i=1

2m∑
j=1

π
(ν+1)
ij Z [·,j](Z [·,j])

′)−1

Σ(ν+1)
e = 1

n

n∑
i=1

2m∑
j=1

π
(ν+1)
ij (yi − µ(ν) −B(ν)Z [·,j])(yi − µ(ν) −B(ν)Z [·,j])

′
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For any small positive real number ε, a stoping rule for convergence of the likeli-

hood can be defined as `(θ(ν+1)|Y ,M ,λ)− `(θ(ν)|Y ,M ,λ) < ε.

Expectation-Conditional maximization algorithm

Because the assumption of unconstrained effect parameters the expressions for

parameter estimation are very simple and easy to implement in the M-step described

previously. This is perhaps the most attractive feature of the EM algorithm, which

is possible because our “complete-data” logarithm likelihood is rather simple. If the

complete-data logarithm likelihood is messy and the M-step is complex, then the

EM algorithm is no longer attractive. For such cases of complicate M-step, Meng

and Rubin (1993) proposed a class of generalized EM algorithm, called expectation-

conditional maximization (ECM). The ECM enjoys the convergence properties of the

EM while simplifying the estimation of parameters. In the ECM, a complex M-step is

broken down into many simpler CM-steps, each one of them maximizes the expected

complete-data logarithm likelihood conditional on some function of the parameters.

Besides simplifying the M-step, the CM-step is often simpler, faster and more sta-

ble than the M-step because the conditional maximization are over spaces of smaller

dimensions (Meng and Rubin, 1993). When some effect parameters in MTMIM

model (2.1) are constrained to zero it is easier to implement the ECM algorithm. For

instance, when estimating parameters in the model with closely linked non-pleiotropic

QTL, model (1.8). Now, we describe an ECM algorithm feasible for parameter esti-

mation in MTMIM model (2.1) when all effect parameters are unconstrained.

In the CM-step, we split the parameters into the groups B[·,1],B[·,2], · · · ,B[·,s],

µ and Σe. Parameters within the same group are estimated simultaneously, while

parameters in distinct groups are estimated consecutively. The parameter estimators
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can be shown to be:

µ(ν+1) =
1

n

n∑
i=1

(yi −
2m∑
j=1

π
(ν+1)
ij B(ν)Z [·,j])

Σ(ν+1)
e =

1

n

n∑
i=1

2m∑
j=1

π(ν+1)
ij

(yi − µ(ν+1) −B(ν)Z [·,j])(yi − µ(ν+1) −B(ν)Z [·,j])
′

B(ν+1)
[·,b] =

n∑
i=1

2m∑
j=1

π
(ν+1)
ij (yi − µ(ν+1) −

b−1∑
u=1

B(ν+1)
[·,u] Z [u,j] −

s∑
u=b+1

B(ν)
[·,u]Z [u,j])Z [b,j]

n∑
i=1

2m∑
j=1

π
(ν+1)
ij Z2

[b,j]

for b ∈ {1, 2, · · · , s}.
The estimator of B[·,b] shown previously is not appropriate if some parameters

in B[·,b] are constrained to zero. For instance, when estimating parameters in the

model with closely linked non-pleiotropic QTL, model (1.8). When there exist zero-

constrained effect parameters in the MTMIM model, our strategy is to update each

element in B[·,b] one at the time. Given the current estimate B(ν)
[·,b], where B(ν)

[t,b] =

0 (constrained to zero) for some t ∈ {1, 2, · · · , T}, the updating equation for the

unconstrained effect parameter B[t,b] is:

B(ν+1)
[t,b] =

n∑
i=1

2m∑
j=1

π
(ν+1)
ij Σ−1(ν)

e
[t,·]

[(yi − µ(ν))−
b−1∑
u=1

B(ν+1)
[·,u] Z [u,j] −

s∑
u=b+1

B(ν)
[·,u]Z [u,j]]Z [b,j]

n∑
i=1

2m∑
j=1

π
(ν+1)
ij Σ−1(ν)

e
[t,t]
Z2

[b,j]

Our choice of initial values for µ and Σe are the sample mean and the sample

variance-covariance, respectively, and all parameters in B are initiated as zero.

It is worth mentioning that for many combinations of i and j, the probabilities

pij are zero or very close to zero. Therefore, one may take advantage of sparse matrix

theory to save on computation time.

Newton-Raphson method
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The Newton-Raphson (NR) method for solving the equations (2.3) consists of

approximating the gradient vector (left hand side of 2.3) by a linear Taylor’s series

expansion around the current fit θ(ν) (McLachlan and Krishnan, 1996).

∂`(θ|Y )

∂θ
= 0 (2.3)

The first order Taylor’s approximation of the gradient vector is:

∂`(θ|Y )

∂θ
' ∂`(θ|Y )

∂θ

∣∣∣∣
θ(ν)

+
∂2`(θ|Y )

∂θ∂θ′

∣∣∣∣
θ(ν)

(θ − θ(ν)) (2.4)

Equating the left hand side of (2.4) to zero and solving for θ, we obtain the

updating formula for the parameters:

θ(ν+1) = θ(ν) +

(
−∂

2`(θ|Y )

∂θ∂θ′

∣∣∣∣
θ(ν)

)−1
∂`(θ|Y )

∂θ

∣∣∣∣
θ(ν)

(2.5)

Besides a major advantage of NR method in terms of convergence rate (when it

does converge), the NR method also provides an estimate of the variance-covariance

matrix of parameters in the MTMIM model at the limiting value of θ, θ∗. The inverse

of the observed Fisher’s information matrix provides an estimate of the variance-

covariance of parameters:

I−1(θ∗|Y ) =

(
−∂

2`(θ|Y )

∂θ∂θ′

∣∣∣∣
θ∗

)−1

The NR method requires accurate initial values of parameters, in certain problems,

in order for right convergency of the likelihood function. Moreover, the NR method

has almost equally chances to move either in the direction of saddle points, local

minima or local maxima (McLachlan and Krishnan, 1996).

Generalized EM algorithm based on Newton-Raphson methods

The Generalized EM-Newton-Raphson (GEM-NR) methods combine the EM al-
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gorithm with the NR method for maximizing the complete-data logarithm likelihood

(Rai and Matthews, 1993; Aitkin and Aitkin, 1996). The hybrid methods take

advantage of the EM algorithm for generating an accurate starting point for the NR,

and then explores the convergency rate of NR method. By introducing a step-size

κ(ν) (0 < κ(ν) ≤ 1) in equation (2.5) and by having the incomplete-data logarithm

likelihood replaced by the expected complete-data logarithm likelihood, we obtain a

modified version for the updating equation (McLachlan and Krishnan, 1996):

θ(ν+1) = θ(ν) + κ(ν)

(
−∂

2Qc(θ|Y )

∂θ∂θ′

∣∣∣∣
θ(ν)

)−1
∂Qc(θ|Y )

∂θ

∣∣∣∣
θ(ν)

(2.6)

The advantage of using the modified version of the updating equation is that

an appropriate choice of κ(ν) guarantees the logarithm likelihood increases at each

iteration. The negative of the matrix of second order derivatives in (2.6) is positive

definite under usual conditions. Therefore, it has the Cholesky decomposition (2.7),

where C is an upper triangular matrix.

(
−∂

2Qc(θ|Y )

∂θ∂θ′

∣∣∣∣
θ(ν)

)−1

= C ′C (2.7)

Let θ(ξ) be a point in the line segment from θ(ν) to θ(ν+1), the Taylor’s expansion

of the complete-data logarithm likelihood function around θ(ν) is:

Qc(θ
(ν+1)|Y )−Qc(θ

(ν)|Y ) =(θ(ν+1) − θ(ν))′
∂Qc(θ|Y )

∂θ

∣∣∣∣
θ(ν)

+
1

2
(θ(ν+1) − θ(ν))′

∂2Qc(θ|y)

∂θ∂θ′

∣∣∣∣
θ(ξ)

(θ(ν+1) − θ(ν))

(2.8)

Plugging θ(ν) from (2.6) into (2.8), and upon making some algebra using (2.7), we
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obtain:

Qc(θ
(ν+1)|Y )−Qc(θ

(ν)|Y ) = κ(ν)

(
∂Qc(θ|Y )

∂θ

∣∣∣∣
θ(ν)

)′
C ′CB

∂Qc(θ|Y )

∂θ

∣∣∣∣
θ(ν)

(2.9)

where,

B =

(
I +

1

2
κ(ν) ∂

2Qc(θ|Y )

∂θ∂θ′

∣∣∣∣
θ(ξ)

C ′C

)
(2.10)

and I is an identity matrix.

From (2.9), we can see that as long as κ(ν) is chosen to make (2.10) positive

definite, the logarithm likelihood is guaranteed to increase at every iteration.

To guarantee that the logarithm likelihood is non-decreasing, Aitkin and Aitkin

(1996) proposed to start the EM algorithm with five iterations to quickly approach the

MLE and then to switch to NR until either convergence or decrease of the logarithm

likelihood. If the logarithm likelihood decreases, they suggested halving the step size

κ up to five times, and if the logarithm likelihood still decreases, to return to the EM

and to run five iterations and then to switch back to NR. Aitkin and Aitkin (1996)

argued that their choice of running the EM algorithm for five iterations is based on

previous experiences of Redner and Walker (1984) that 95% of the change in the

initial value of logarithm likelihood until its maximum value often happens in five

EM iterations.

As θ(ξ) lies in the line segment from θ(ν) to θ(ν+1), and θ lives in high-dimensional

space, the choice of κ(ν) to make (2.10) positive definite may not be easy. Xue-Jun

Qin and Zhao-Bang Zeng (unpublished) proposed an iterative procedure to make sure

that κ(ν) satisfies condition (2.10):

1. Let θ(ν) be the parameter estimate in the νth iteration;

2. Set κ(ν) = 1;

3. Estimate θ(ν+1) using (2.6) with the first and second order derivatives ofQc(θ|Y )

evaluated at θ(ν);
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4. Set θ(ξ) = θ(ν+1) and evaluate (2.10):

• If (2.10) is positive definite, then set θ(ν+1) as the updated parameter;

• Otherwise, keep repeating steps 3 and 4 with smaller and smaller κ(ν), until

(2.10) is positive definite.

In cases where the complete-data logarithm likelihood does not allow for closed

form solution of parameter estimators, Rai and Matthews (1993) have found that

the GEM-NR can reduce significantly the computation burden, when compared to

the EM algorithm. In Appendix B, we derived all expressions (first and second order

derivatives of the complete-data logarithm likelihood) to implement the GEM-NR

algorithm for estimation of parameters in the MTMIM model.

2.5 Genome-wide score-based threshold

The genome-wide threshold in the multiple trait CIM model of Jiang and Zeng

(1995) is either based on asymptotic approximation of the LRT to the chi-squared

distribution or permutation. In this section we extend the score statistic of Zou et al.

(2004) to assess the genome-wide statistical significance level of any effect of QTL in

the MTMIM model (2.1). Based on the individual and overall likelihoods, we derived

all required expressions to compute the score statistic to test any effect parameter in

the MIMIM model (see Appendix B).

In the genome-wide scan context of MTMIM model, the score is computed in

the same fashion as in the MIM model detailed in Chapter 1, except for the di-

mensionality of the score function. In genome-wide scan of the MTMIM model, a

putative pleiotropic QTL is assumed at every position λ ∈ ζ and the significance

level of its effects (main or epistatic effects) are tested against the null of no effects.

For instance, assume a model with m − 1 QTL with main effects and p epistatic

effects between certain QTL. Assume we are scanning for a putative mth QTL. Let

l = λ denotes the testing position of the putative QTL coming into the model. Let
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λ = (λ1, λ2, · · · , λ(m−1), l) be the current positions of all m QTL in the model. Let

θm = β′m be a T by 1 vector of effects for the new QTL coming into the model,

and let θ = (θ1,θ2, · · · ,θm−1,θm,θm+1, · · · ,θs,µ′, vect(Σe))
′ be a column vector

of all parameters in the model, where θb = β′b for 1 ≤ b ≤ m and θb = w′b for

m < b ≤ s = m + p. Let η = (θ1,θ2, · · · ,θm−1,θm+1, · · · ,θs,µ′, vect(Σe))
′ be

the column vector of nuisance parameters. Then the hypotheses H0 : θm = 0 and

H1 : θm 6= 0 are tested at every position l in the genome by means of the LRT. The

genomic position with the maximum LRT over all l is assessed for the presence of a

QTL with the score-based threshold.

The score-based threshold is computed in the same fashion as for the MIM model.

In order to maintain the variances of the re-sampled score and score statistic equal,

we multiply Û i by random variables zi from the normal distribution with mean zero

and unit variance (N(0,1)). The the steps of the re-sampling score algorithm in the

MTMIM model are:

1. generate n independent normal variables zi (i = 1, 2, · · · , n) from N(0,1);

2. for each l, compute Û
∗
(l) =

n∑
i=1

Û i(l)zi, S
∗(l) = Û

∗′
(l)V̂

−1
(l)Û

∗
(l). Then,

compute S∗ = max
l∈ζ
{S∗(l)};

3. repeat steps 1 and 2 many times, say N times (re-sampling), to obtain a se-

quence (S∗1 , S
∗
2 , · · · , S∗N);

4. the score-based threshold for a given significance α-level is the 100(1− α) per-

centile of the ascending ordered values (S∗(1), S
∗
(2), · · · , S∗(N)).

where, V̂ (l) =
n∑
i=1

Û i(l)Û
′
i(l), and Û i(l) is:

Û i(l) =
∂`i (θm,η)

∂θm

∣∣∣∣
(θm=0,η=η̃)

− ∂` (θm,η)

∂θm∂η′

∣∣∣∣
(θm=0,η=η̃)

(
∂` (θm,η)

∂η∂η′

∣∣∣∣
(θm=0,η=η̃)

)−1
∂`i (θm,η)

∂η

∣∣∣∣
(θm=0,η=η̃)
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where, η̃ is the MLE of η under H0 (see Appendix B for a detailed derivation of first

and second order derivatives of the likelihood function).

2.6 Model selection and model optimization

The search for genomic positions associated with changes in the phenotype be-

tween groups of subjects due to QTL consists on identifying a subset of regions in the

genome for which the effects of QTL are significantly different from zero. Broman

and Speed (2002) elaborated the problem of finding such a subset of regions in the

genome, as the one of model selection, for which there exits many tools available in

the vast literature of subset selection. However, in QTL studies the identification of

a reasonable model, which maximizes the correct number of QTL while controlling

the rate of false discovery, is predominant over the identification of models with the

smallest prediction errors, which is the major criterion for model selection in the

literature (Broman and Speed, 2002).

The score-based threshold can be used as a criterion to build and refine models

with many QTL. Starting with a model with no QTL effect we can select significant

putative QTL based on the score-based threshold, add them to the model, and then

further refine the model, by including to or excluding from the MTMIM model effects

of QTL. We propose an algorithm, analogue to the algorithm described in Zeng et al.

(1999), to build an initial model and to refine it upon using the score-based threshold

criterion. Forward selection– assuming that model (2.1) starts with no QTL, one QTL

is added at each step of the forward selection. In the mth step of the forward selection,

we assume a putative pleiotropic QTL at every position l ∈ ζ, but avoiding positions

within 5 cM neighboring regions of the m−1 QTL already identified in previous steps

of the forward selection and compute the MLE of all parameters in the MTMIM model

with QTL at positions λ = (λ1, λ2, · · · , λm−1, l). For each position l, we compute the

LRT statistic to test the null hypothesis H0 : (β1m, β2m, · · · , βTm)′ = (0, 0, · · · , 0)′ for

putative mth QTL versus H1 : (β1m, β2m, · · · , βTm)′ 6= (0, 0, · · · , 0)′. A putative QTL
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at the maximum LRT statistic over all positions l is added to the model if the LRT

statistic is larger than the score-based threshold. Next, the effect of the selected QTL

on each trait is tested individually against the null of no effect using the LRT and

critical value from a chis-squared probability distribution function with one degree of

freedom and pre-specified corrected experiment-wise error rate α, i.e., when T traits

are analyzed jointly, the corrected significance level (Bonferroni correction) to test

each effect of the mth QTL is αc = α/T . Finally, any non-significant effect of the mth

QTL is removed from the model, ending the mth step of the forward selection. The

forward selection continues until no maximum LRT statistic exceeds the score-based

threshold. Model optimization: in turns, we update the positions of all QTL selected

in the forward selection. We pick a QTL in the model, and hold the other QTL in

the fixed at the positions that they were found in the forward selection. The effects

of the picked QTL are then removed from the model and a new search for a QTL is

done within the region delimited by its two neighboring QTL, avoiding 5 cM from

the neighbor QTL (the search is performed until the end of the chromosome if no

neighbor QTL is found on either side of the picked QTL). The new position of the

picked QTL is set to the position of the maximum LRT statistic within the searched

region and all parameters in the model are updated. This procedure is repeated until

all positions of QTL in the MTMIM model are updated.

2.7 Testing for pleiotropy versus close linkage

Although testing for pleiotropy versus close linkage is part of model selection,

we preferred to separate it from the model selection because, generally, this test is

performed at the end of the model selection procedure, when the final model is almost

fitted.

When models are nested, the critical value to assess the strength of the LRT is

straightforward in the sense that the asymptotic distribution of the LRT is known

to be χ2 with degrees of freedom equal to the difference between the number of
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parameters in the full and reduced model. However, the pleiotropic and close linkage

models may not be nested (for instance, models (1.8) and (1.9)), which then requires

some correction of for LRT (Vuong, 1989; Kapetanios and Weeks, 2003). The

parametric bootstrap method of Kapetanios and Weeks (2003) is an alternative

for computing the empirical distribution of the LRT statistic when models are not

nested. In the multiple trait model of Knott and Haley (2000) a parametric

bootstrap is advocated to estimate the threshold for the LRT. In recognizing the

testing of pleiotropy versus close linkage as one of model selection, alternative criteria,

such as BIC, AIC, AICc, bootstrap, and CV may be used to choose among competing

models. In the next chapter we evaluate the performance of the AICc and LRT, using

simulation.

2.8 Concluding remarks

A novel statistical method for multiple trait multiple interval mapping (MTMIM)

of QTL from inbred line crosses was proposed. Our model belongs to the class of

seemingly unrelated regression models (Zellner, 1962). We also proposed a novel

method for estimation of genome-wide threshold to assess the significance level of

effect of putative QTL in the MTMIM model. The method of genome-wide threshold

estimation is based on the score-based framework of Zou et al. (2004). Our MTMIM

model has the advantage of allowing for mapping QTL with effects only on a subset

of traits under analysis, while taking advantage of correlation between traits.

Our method provides a comprehensive framework for QTL inference on multiple

trait and the score-based threshold serves as an essential and elegant tool for comput-

ing significance level of effects of putative QTL in genome-wide scan. Therefore, our

procedure overcomes the drawbacks of permutation test as proposed in the multiple

trait least square method of Knott and Haley (2000), and lack of criterion for

assessing significance level of effects of putative QTL in the multiple trait Bayesian

method of Banerjee et al. (2008).
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3

Evaluation of the MTMIM model

by simulation study and

experimental data analysis

In Chapter 1, we reviewed the current status of research on statistical methods

for mapping multiple QTL in single and multiple complex traits within the maximum

likelihood and Bayesian frameworks. In Chapter 2, we proposed a MTMIM model

for QTL inference from inbred line crosses. We also proposed a novel method for

estimation of genome-wide threshold to assess the significance level of effect of puta-

tive QTL in the MTMIM model. The method of genome-wide threshold estimation

is based on the score statistic framework of Zou et al. (2004). Our MTMIM model

has the advantage of allowing for mapping QTL with effects only on a subset of

traits under analysis, while taking advantage of correlation between traits. We ended

Chapter 2 with a brief description of some alternative criteria for testing pleiotropy

versus close linkage models. In this chapter, we implement our MTMIM model and

score-based threshold method and evaluate them with several simulated data sets.

More specifically, we evaluate type I error (Section 3.1), model fitting (Section 3.2),

and pleiotropic versus close linkage model testing criteria (Section 3.3). We end this
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chapter with an analysis of data from an experiment with Drosophila (Section 3.4).

3.1 Genome-wide type I error

In this section, we use simulation to evaluate the proportion of falsely discovered

QTL (type I error) in the analysis of data without QTL effects. The LRT statistic

is used for hypothesis testing and the score-based threshold is used as the criterion

to assess significance level of effect of QTL in genome-wide scan. Each replicate

has six chromosomes, each with 9 markers evenly spaced 10 cM apart from each

other, 300 subjects, and three traits with parameters shown in Table 3.1. In the

genome-wide scan a putative pleiotropic QTL with main effects on all traits, β =

(β1, β2, β3)′, was assumed at each 1 cM in the genome for the alternative hypothesis.

The effects of QTL were tested against the simulated null hypothesis of no effects,

β = (β1, β2, β3)′ = (0, 0, 0)′. For each position in the genome, we re-sampled the score

statistic 1000 times to obtain the genome-wide score-based threshold. One thousand

replicates were analyzed with the MTMIM model and the results are shown in Figure

3.1A. The results show clearly an excellent agreement between estimated type I error

and nominal level in the range of 1 to 15%.

The empirical distributions of genome-wide score- and permutation-based thresh-

olds in interval mapping analysis were very similar to each other (Figure 3.1B). In

a fixed position in the genome, the score- and permutation-based distributions ap-

proximate that of a χ2
3 (Figures 3.1C and 3.1D) because the hypothesis being tested

involves three parameters simultaneously, namely, H0 : (β1, β2, β3)′ = (0, 0, 0)′ versus

H1 : (β1, β2, β3)′ 6= (0, 0, 0)′.
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Table 3.1: Genetic architecture of traits (T1, T2 and T3) dictated by QTL (Q1, Q2,
· · · , Q5).

Scenarioa h2& µb Effects of each QTL (β)c Σe
$

Q1 Q2 Q3 Q4 Q5 T1 T2 T3
T1 0 30 0 0 0 0 0 1 0.2 0

S0 T2 0 35 0 0 0 0 0 0.2 1 -0.2
T3 0 30 0 0 0 0 0 0 -0.2 1
T1 25 30 0.52 0.52 0.52 0.52 0.52 1 0.2 0
T2 25 35 0.52 0.52 0.52 0.52 0.52 0.2 1 -0.2

SI T3 25 30 0.52 0.52 0.52 0.52 0.52 0 -0.2 1
Chr. – – 1 2 3 5 6 – – –

Positiond – – 23 15 45 67 53 – – –
T1 25 30 0.52 0.52 0.52 0.52 0.52 1 0.2 0
T2 18 35 0 0.54 0.54 0.54 0 0.2 1 -0.2

SII T3 5 30 0 0 0.46 0 0 0 -0.2 1
Chr. – – 1 2 3 5 6 – – –

Position – – 23 15 45 67 53 – – –
T1 18 30 0.54 0 0.54 0 0.54 1 0.2 –
T2 18 35 0 0.54 0.54 0.54 0 0.2 1 –

SIII Chr. – – 1 1 3 6 6 – – –
Position – – 23 33 45 38 53 – – –

a Scenario S0 is for type I error evaluation. Scenarios SI, SII and SIII are for
model fitting evaluations.

b General mean of each trait.
c Main effect of QTL. The percentage of phenotypic variation of each trait due

to each QTL is 5%.
d Position, in cM, of the QTL from the leftmost marker in the chromosome (Chr).
& Heritability (%) due to all QTL affecting the trait.
$ Residual variance-covariance matrix.
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Figure 3.1: (A) Estimated and expected type I error, in percentage, of LRT when us-
ing the genome-wide score-based threshold to assess significance level of putative QTL
in genome-wide scan of 1000 replicates. (B) Empirical distributions of permutation-
and score-based genome-wide thresholds for one replicate simulated without QTL
effects. (C) and (D) show the quantile-quantile plots of a χ2

3 distribution versus the
permutation- and score-based thresholds values at a fixed position in the genome,
respectively. Both (C) and (D) are results from one replicate simulated without QTL
effects.
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3.2 Model fit evaluations

In this section, we use simulation to evaluate the overall performance of our MT-

MIM model and score-based threshold as the criterion to assess the significance level

of effects of QTL in the genome-wide scan. We examined the performance of the

MTMIM in three different scenarios (SI, SII and SIII), each evaluated with B = 500

replicates and sample size of 300 subjects. Each replicate was simulated with 6 chro-

mosomes, each with 9 markers evenly spaced 10 cM apart from each other. The

genetic architecture of each scenario is described with details in Table 3.1. For each

replicate we build a MTMIM model using our proposed forward selection and model

optimization procedure. The genome was partitioned at 1-cM grid for genome-wide

scan. For the sake of comparison, we also build a MIM model for each trait in each

replicate with our proposed forward selection and model optimization procedure. For

every position in the genome, the score statistic was re-sampled 800 times for the

purpose of genome-wide score-based threshold estimation.

Let’s re-iterate our forward selection and model optimization procedure. Forward

selection– assuming that model (2.1) starts with no QTL, one QTL is added at each

step of the forward selection. In the mth step of the forward selection, we assume

a putative pleiotropic QTL at every position l ∈ ζ, but avoiding positions within

5 cM neighboring regions of the m − 1 QTL already mapped in previous steps of

the forward selection and compute the MLE of all parameters in the MTMIM model

with QTL at positions λ = (λ1, λ2, · · · , λm−1, l). For each position l, we compute the

LRT statistic to test the null hypothesis H0 : (β1m, β2m, · · · , βTm)′ = (0, 0, · · · , 0)′ for

putative mth QTL versus H1 : (β1m, β2m, · · · , βTm)′ 6= (0, 0, · · · , 0)′. A putative QTL

at the maximum LRT statistic over all positions l is added to the model if the LRT

statistic is larger than the score-based threshold. Next, the effect of the selected QTL

on each trait is tested individually against the null of no effect using the LRT and

critical value from a chis-squared probability distribution function with one degree of

freedom and pre-specified corrected experiment-wise error rate α, i.e., when T traits
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are analyzed jointly, the corrected significance level (Bonferroni correction) to test

each effect of the mth QTL is αc = α/T . Finally, any non-significant effect of the mth

QTL is removed from the model, ending the mth step of the forward selection. The

forward selection continues until no maximum LRT statistic exceeds the score-based

threshold. Model optimization: in turns, we update the positions of all QTL selected

in the forward selection. We pick a QTL in the model, and hold the other QTL

fixed at the positions that they were found in the forward selection. The effects of

the picked QTL are then removed from the model and a new search for a QTL is

done within the region delimited by its two neighboring QTL, avoiding 5 cM from

the neighbor QTL (the search is performed until the end of the chromosome if no

neighbor QTL is found on either side of the picked QTL). The new position of the

picked QTL is set to the position of the maximum LRT statistic within the searched

region and all parameters in the model are updated. This procedure is repeated until

all positions of QTL in the MTMIM model are updated.

The general goal of each simulated scenario is: SI– with a basic and favorable

situation, we want to evaluate basic properties of the MTMIM model, and check

whether it would deserve further investigations; SII– with a mixture of QTL affecting

one, two and three traits, we want to evaluate how well the MTMIM handles QTL

with effects on only a subset of traits under analysis; SIII– with presence of close

linked non-pleiotropic QTL and a pleiotropic QTL, we want to evaluate the MTMIM

model under more complex genetic architecture. In SIII, we build a MTMIM model

for each replicate using the forward selection without testing for pleiotropic versus

close linkage models. Each model built in the forward selection was then refined with

a follow-up test of pleiotropy versus close linkage. The pleiotropy versus close linkage

test was carried out for every pleiotropic QTL in the MTMIM model built in the

forward selection.

Scenario SI depicts a trivial situation where all QTL are independent and pleiotropic

to all traits. The profile of the LRT and score statistics for one replicate is shown

in Figure 3.2. The result shows the similarity between the two statistics along the
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genome. In the neighboring positions of QTL the score statistic tends to produce

higher values.
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Figure 3.2: Profile of score and LRT statistics in MTMIM model for one replicate
with three traits. The vertical green lines separate the six chromosomes, and the ticks
in the horizontal axis represent the positions of genetic markers.
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We evaluated our MTMIM model under three genome-wide significance levels, 1,

5 and 10%. For each replicate, all QTL selected in the forward selection are defined

as mapped QTL. We summarize the performance of our method with measures that

are function of the LOD-d support interval (d = 1, 1.5, and 2) of mapped QTL.

The LOD-d support interval of a mapped QTL is a continuous genomic region that

includes the position of the mapped QTL and all positions on its left and right sides

with LOD values larger than or equal to the LOD value at the position of the mapped

QTL after subtraction of a positive constant d (Lander and Botstein, 1989). Let

Qr, for r ∈ {1, 2, · · · ,m = 5}, be a simulated QTL. A simulated QTL is defined as

being paired with a mapped QTL if the simulated and mapped QTL are near nearby.

A mapped QTL is defined as being matched to a paired QTL if the LOD-d support

interval of the mapped QTL includes the paired QTL. A mapped QTL is defined as

mismatched if it is not matched. A simulated QTL Qr is defined as identified if

it has a matched QTL. For each simulated Qr and for each d, let ΩQr,d be the set of

replicates for which Qr is identified. We define |ΩQr,d| as the number of elements in

ΩQr,d. In what follows, we define our measures of model fit.

False discovery rate per replicate (FDRb):

FDRb(d) =
number of mismatched QTL in replicate b

total of mapped QTL in replicate b

FDR over all replicates:

FDR(d) =
1

B

B∑
b=1

FDRb(d)

Power to identify Qr:

Power(Qr, d) =
|ΩQr,d|
B
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Coverage of LOD-d support interval of Qr:

C(Qr, d) =
|ΩQr,d|

number of replicates for which Qr is paired with a mapped QTL

Mean of length of LOD-d support interval of Qr: average of lengths of LOD-d

support interval of Qr over replicates in ΩQr,d.

Mean of effect of Qr: average of effects of Qr over replicates in ΩQr,d.

Mean of position of Qr:average of positions of Qr over replicates in ΩQr,d.

We also summarize results in terms of: model size– number of mapped QTL; mean

of score-based threshold– average of score-based threshold to add a QTL into a model

as the number of mapped QTL grew larger in the forward selection. For each model

size, only replicates with that specific model size were used to compute the mean of

score-based threshold.

These summary statistics have been proposed by C. Laurie, S. Wang, L. A. Carlini-

Garcia and Z-B. Zeng (unpublished). Additionally, we evaluate the accuracy of the

MTMIM model in estimating the genotypic variance-covariance matrix. The estima-

tors of the genotypic variance (σ2
gt) of trait t, the genotypic covariance (σgtt′ ) and

correlation (ρgtt′ ) between traits t1 and t2 (Zeng et al., 1999; Maia, 2007, pages

109-110) are:

σ̂2
gt =

m+p∑
r=1

m+p∑
u=1

{ 1

n

n∑
i=1

2m∑
j=1

π̂ij(Z [r,j] − Z̄r)(Z [u,j] − Z̄u)B̂[t,r]B̂[t,u]}

σ̂gt1t2 =

m+p∑
r=1

m+p∑
u=1

{ 1

n

n∑
i=1

2m∑
j=1

π̂ij(Z [r,j] − Z̄r)(Z [u,j] − Z̄u)B̂[t1,r]B̂[t2,u]}

ρ̂gt1t2 =
σ̂gt1t2√
σ̂2
gt1
σ̂2
gt2

where, Z̄r = 1
n

n∑
i=1

2m∑
j=1

π̂ijZ [r,j], and π̂ij and B̂ are the MLE of πij and B, respectively.
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In what follows, we describe the results of each summary statistic separately.

Mean of score-based threshold (Table 3.2): a trend clearly noticed is the almost

constance of score-threshold values across models with different number of QTL, for

any given genome-wide significance level. Celilia et al. (unpublished) have found the

same behavior in the MIM model.

Table 3.2: Mean of score-based threshold to add a QTL into a MTMIM model, when
m QTL are already in the model.

Scenario Level1
m

0 1 2 3 4 5 6
1% 19.5 19.6 19.7 19.9 19.8 19.8 –

SI 5% 16.0 16.1 16.2 16.3 16.3 16.3 –
10% 14.4 14.4 14.5 14.6 14.7 14.7 –
1% 19.6 19.7 19.6 19.7 19.7 19.7 20.9

SII 5% 16.1 16.1 16.2 16.2 16.2 16.2 16.1
10% 14.4 14.5 14.5 14.5 14.6 14.6 14.5
1% 16.9 17.1 17.1 17.2 17.1 – –

SIII 5% 13.6 13.7 13.7 13.8 13.7 13.8 –
10% 12.0 12.1 12.2 12.2 12.2 12.1 –

1 Genome-wide significance level.

Model size (Tables 3.3, 3.4 and 3.5): as expected, the number of QTL in the

MTMIM model of scenario SI (Table 3.3) is closer to the simulated parameter (5

QTL) when compared to scenario SII (Table 3.4), for any genome-wide significance

level. While a QTL in both scenarios has to exceed very similar thresholds to be

declared significant in the forward selection (Table 3.2), the number of traits affected

by a QTL is rather different in the two scenarios. In scenario SI all QTL have effect

on all traits, while in scenario SII a QTL may have effect either on one, two or three
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traits. Therefore, model over-parametrization is making the detection of QTL with

effects on one and two traits in scenario SII more difficult. Similar argument carries

over to scenario SIII (Table 3.5), where most of the QTL have effects on one trait

only.

Our results show that in general the number of QTL mapped in MTMIM model

is closer to the simulated (5 QTL) than in MIM model.

Table 3.3: Number of mapped QTL (model size) in MIM and MTMIM models in
scenario SI.

Analysis
Level1

Number of QTL
(trait) 0 1 2 3 4 5 6 7

MIM
1% 6 27 69 133 167 98 0 0

(T1)
5% 0 0 17 56 196 223 8 0
10% 0 0 7 36 136 296 24 1

MIM
1% 4 17 77 153 161 88 0 0

(T2)
5% 1 2 74 193 213 5 0 0
10% 0 0 4 44 150 284 17 1

MIM
1% 2 29 80 147 149 93 0 0

(T3)
5% 0 5 21 74 161 231 8 0
10% 0 1 8 37 142 291 20 1

MTMIM
1% 0 0 0 0 7 487 4 2

(T1,T2,T3)
5% 0 0 0 0 1 472 24 3
10% 0 0 0 0 0 439 56 5

1 Genome-wide significance level.
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Table 3.4: Number of mapped QTL (model size) in MIM and MTMIM models in
scenario SII.

Analysis
Level1

Number of QTL
(trait) 0 1 2 3 4 5 6 7

MIM
1% 13 29 73 145 163 75 1 1

(T1)
5% 6 2 15 86 166 215 9 1
10% 7 1 7 48 140 274 20 3

MIM
1% 5 64 180 247 4 0 0 0

(T2)
5% 1 14 128 344 13 0 0 0
10% 0 4 86 375 34 1 0 0

MIM
1% 215 281 3 0 0 0 0 0

(T3)
5% 120 363 16 1 0 0 0 0
10% 83 378 34 5 0 0 0 0

MTMIM
1% 0 2 30 108 204 152 4 0

(T1,T2,T3)
5% 0 0 4 49 179 253 13 2
10% 0 0 0 33 130 310 23 4

1 Genome-wide significance level.

Table 3.5: Number of mapped QTL (model size) in MTM and MTMIM models in
scenario SIII.

Analysis
Level1

Number of QTL
(trait) 0 1 2 3 4 5 6 7

MIM
1% 7 59 178 255 1 0 0 0

(T1)
5% 2 14 111 359 14 0 0 0
10% 0 7 81 386 26 0 0 0

MIM
1% 5 50 183 261 1 0 0 0

(T2)
5% 0 11 92 383 14 0 0 0
10% 0 4 64 408 23 1 0 0

MTMIM
1% 1 3 25 159 213 96 3 0

(T1, T2)
5% 0 1 9 149 215 119 7 0
10% 0 0 2 135 217 131 15 0

1 Genome-wide significance level.
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FDR (Tables 3.6, 3.7 and 3.8): FDR is a very import measure of quality control in

statistical analyses. However, FDR is not feasibly estimated in analysis of data from

traditional QTL experiments, due to the low discovery rate of putative QTL in such

experiments. Nevertheless, in simulation experiments we are able to estimate FDR

because we can replicate the experiment many times. We estimate FDR when varying

the genome-wide significance levels (1, 5, and 10%) and LOD-d support interval levels

(d=1, 1.5 and 2). While FDR is expected to increase with increments in genome-

wide significance level, our results show that for a fixed LOD-d level FDR changed

few with increments in genome-wide significance levels, in both MIM and MTMIM

models. Regarding changes in LOD-d level, our results show that FDR and LOD-d

are negatively correlated, as expected. Higher levels of LOD-d ultimately translate

into wider LOD-d support intervals. Therefore, increasing chances of capturing the

true position of QTL. FDR in MIM and MTMIM models were very similar, except

MIM model of trait T3 of scenario SII (Table 3.8), which was simulated with only

one QTL of small effect (heritability of 5%).
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Table 3.6: False discovery rate (FDR) estimates in MIM and MTMIM models in
scenario SI.

Analysis
d1 Genome-wide significance level

(trait) 1% 5% 10%

MIM
1.0 0.091 0.091 0.099

(T1)
1.5 0.039 0.044 0.053
2.0 0.020 0.027 0.036

MIM
1.0 0.080 0.087 0.089

(T2)
1.5 0.039 0.042 0.047
2.0 0.020 0.023 0.030

MIM
1.0 0.107 0.096 0.099

(T3)
1.5 0.038 0.042 0.049
2.0 0.018 0.023 0.031

MTMIM
1.0 0.046 0.054 0.069

(T1, T2, T3)
1.5 0.019 0.027 0.040
2.0 0.011 0.019 0.033

1 d is the amount subtracted from the LOD value at QTL
position to estimate the LOD-d support interval for the
QTL.
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Table 3.7: False discovery rate (FDR) estimates in MIM and MTMIM models in
scenario SII.

Analysis
d1 Genome-wide significance level

(trait) 1% 5% 10%

MIM
1.0 0.089 0.092 0.100

(T1)
1.5 0.037 0.043 0.053
2.0 0.018 0.022 0.030

MIM
1.0 0.079 0.086 0.096

(T2)
1.5 0.032 0.041 0.054
2.0 0.012 0.022 0.036

MIM
1.0 0.124 0.138 0.180

(T3)
1.5 0.075 0.090 0.114
2.0 0.048 0.065 0.085

MTMIM
1.0 0.085 0.092 0.100

(T1, T2, T3)
1.5 0.033 0.041 0.049
2.0 0.014 0.024 0.032

1 d is the amount subtracted from the LOD value at QTL
position to estimate the LOD-d support interval for the
QTL.

Table 3.8: False discovery rate (FDR) estimates in MIM and MTMIM models in
scenario SIII.

Analysis
d1 Genome-wide significance level

(trait) 1% 5% 10%

MIM
1.0 0.072 0.079 0.087

(T1)
1.5 0.028 0.035 0.041
2.0 0.014 0.019 0.023

MIM
1.0 0.062 0.070 0.078

(T2)
1.5 0.031 0.037 0.045
2.0 0.012 0.021 0.028

MTMIM
1.0 0.056 0.078 0.084

(T1, T2)
1.5 0.029 0.052 0.057
2.0 0.022 0.041 0.045

1 d is the amount subtracted from the LOD value
at QTL position to estimate the LOD-d support
interval for the QTL.
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Power (Tables 3.9, 3.10 and 3.11): results of MIM and MTMIM models for all

three scenarios clearly show a remarkable increment in power as genome-wide signifi-

cance levels grow less stringent, for any LOD-d level. Based on these results as well as

those that showed almost constance of FDR across genome-wide significance levels,

we, hereafter, show results of 10% genome-wide significance level only. The results of

all other significance levels are shown in complementary tables in Appendix D.

Results of power (10% genome-wide significance level) to identifying QTL in MT-

MIM model show that QTL affecting more traits have higher chances of being identi-

fied in the forward selection. In scenario SI, which is the most favorable amongst all

three scenarios, all QTL have effects on all traits. Therefore, all QTL were correctly

identified most of the times, power ≥ 93% (Table 3.9). In scenario SII, Q1 has effect

on one trait only, Q2 on two traits, and Q3 on three traits. Power increases from Q1

to Q3 in MTMIM model (Table 3.10). Results also show that MTMIM model might

have lower power than MIM model for QTL with effects on only a small subset of

traits under analysis. For instance, MTMIM model has less power than MIM model

to identify Q1, which affects only T1 (same pattern is seen for Q5). However, as

the subset of traits affected by a QTL increases, power of MTMIM model overpasses

power of MIM model, even when some traits are not affected by that QTL. For in-

stance, Q2 affects T1 and T2, but not T3, nevertheless, MTMIM model identifies Q2

more frequently than MIM model (same pattern carries over to Q4). The increment

in power as the number of traits affected by a QTL increases was also observed in

scenario SIII (Table 3.11).
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Table 3.9: Power (%) of QTL identification in MIM and MTMIM models when using
forward selection and score-based threshold as the criterion for variable selection in
scenario SI.

Analysis
QTL

1%a 5% 10%
(trait) 1b 1.5 2 1 1.5 2 1 1.5 2

Q1 63.2 66.8 68.4 78.2 82.0 83.6 82.2 86.6 88.4

MIM
Q2 60.6 63.6 64.2 77.8 81.8 82.6 84.2 87.6 89.0

(T1)
Q3 62.8 67.4 68.8 77.2 81.6 83.4 82.0 87.2 88.8
Q4 63.0 66.4 68.0 78.4 81.8 83.6 83.4 87.0 88.8
Q5 63.6 66.8 68.0 79.2 83.6 85.0 81.8 86.4 88.0
Q1 62.8 64.8 65.4 76.4 80.0 80.6 85.0 88.2 89.0

MIM
Q2 62.6 64.8 65.6 77.4 80.0 81.2 82.0 84.8 86.2

(T2)
Q3 63.6 65.6 68.2 77.0 79.8 82.6 80.6 83.4 86.2
Q4 61.8 66.0 66.6 76.8 82.4 83.0 81.2 87.0 87.6
Q5 64.6 68.4 70.0 78.4 83.0 85.8 84.6 88.8 91.2
Q1 59.4 65.6 67.0 75.4 81.4 83.4 80.2 86.0 88.0

MIM
Q2 60.4 63.2 64.2 77.0 80.0 80.8 83.6 86.6 87.6

(T3)
Q3 59.8 65.6 67.2 73.6 80.4 82.4 77.6 84.0 86.0
Q4 61.2 65.4 67.0 77.0 80.8 82.2 84.0 87.8 89.2
Q5 61.0 65.4 66.8 79.6 83.0 84.8 85.0 88.6 90.8
Q1 96.2 98.8 99.0 96.4 99.4 99.6 96.4 99.4 99.6

MTMIM
Q2 97.0 98.0 98.6 97.0 98.0 98.6 96.8 98.2 98.8

(T1,T2,T3)
Q3 94.2 97.0 98.4 94.6 97.4 98.8 94.6 97.4 98.8
Q4 93.6 98.4 99.0 94.0 98.8 99.4 93.8 99.0 99.4
Q5 96.4 98.6 99.6 96.4 98.6 99.6 96.0 98.6 99.6

a Genome-wide significance level.
b 1, 1.5 and 2 are the amounts subtracted from the LOD value at QTL position to

estimate the LOD-d support interval for the QTL.
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Table 3.10: Power (%) of QTL identification in MIM and MTMIM models when using
forward selection and score-based threshold as the criterion for variable selection in
scenario SII.

Analysis
QTL

1%a 5% 10%
(trait) 1b 1.5 2 1 1.5 2 1 1.5 2

Q1 62.0 65.8 67.8 76.2 80.2 83.0 80.4 84.2 87.4

MIM
Q2 57.0 59.8 61.0 74.6 78.2 79.2 78.8 81.8 83.8

(T1)
Q3 58.8 63.2 64.4 75.6 81.2 82.8 79.5 85.8 88.0
Q4 60.6 63.4 64.6 75.6 78.4 80.2 80.2 83.4 85.6
Q5 62.0 65.6 66.4 77.6 82.0 83.2 82.4 87.2 87.8

MIM
Q2 70.6 74.4 75.2 81.0 85.4 86.4 85.4 89.8 91.0

(T2)
Q3 72.2 76.4 78.4 81.2 86.0 88.2 85.0 90.0 92.2
Q4 74.4 77.4 79.0 84.8 87.6 89.2 89.4 92.0 93.4

MIM (T3) Q3 50.6 53.4 55.0 67.2 70.6 72.4 73.0 77.8 79.6
Q1 49.8 53.8 55.2 66.2 71.0 72.4 73.2 78.2 79.8

MTMIM
Q2 83.8 89.0 89.8 89.8 94.4 95.6 91.0 95.6 96.8

(T1, T2, T3)
Q3 93.0 96.6 99.0 92.8 97.0 99.4 92.8 97.2 99.4
Q4 85.0 87.6 89.0 90.2 93.2 94.4 91.4 94.6 96.0
Q5 52.0 57.2 58.6 65.6 71.8 73.2 71.8 78.4 80.0

a Genome-wide significance level.
b 1, 1.5 and 2 are the amounts subtracted from the LOD value at QTL position to

estimate LOD-d support interval for the QTL.
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Table 3.11: Power (%) of QTL identification in MIM and MTMIM models when using
forward selection and score-based threshold as the criterion for variable selection in
scenario SIII.

Analysis
QTL

1%a 5% 10%
(trait) 1b 1.5 2 1 1.5 2 1 1.5 2

MIM
Q1 66.6 67.6 67.8 76.0 77.2 77.4 78.2 79.6 79.8

(T1)
Q3 72.2 75.2 76.8 83.4 87.0 89.0 86.4 90.2 92.4
Q5 67.2 70.2 70.2 75.2 78.4 78.4 78.4 81.6 81.6

MIM
Q2 62.6 64.2 64.8 71.6 74.2 74.6 73.6 76.4 76.8

(T2)
Q3 73.2 76.4 78.0 85.2 88.4 90.2 87.6 91.2 93.0
Q4 73.2 74.6 76.2 84.0 86.0 87.4 86.0 88.0 89.4
Q1 63.4 65.4 65.6 63.4 65.2 65.8 67.8 70.0 70.6

MTMIM
Q2 63.4 64.6 65.0 65.4 66.6 67.2 66.6 68.0 69.0

(T1, T2)
Q3 91.0 94.4 96.0 92.8 96.4 98.0 93.6 97.0 98.8
Q4 72.6 74.8 75.6 75.6 77.4 78.8 76.0 78.2 79.6
Q5 64.4 65.6 65.6 64.8 66.2 66.6 66.4 68.0 68.4

a Genome-wide significance level.
b 1, 1.5 and 2 are the amounts subtracted from the LOD value at QTL position

to estimate the LOD-d support interval for the QTL.
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In scenarios SII and SIII, we decomposed power of QTL identification into three

non-overlapping subsets. In scenario SII, there is a subset of replicates for which a

QTL affects T1 only, another subset for which a QTL affects T1 and T2 simulta-

neously, and finally a subset of replicates for which a QTL affects all traits simul-

taneously (Table 3.12). In scenario SIII, there is a subset of replicates for which a

QTL affects T1 only, another subset for which a QTL effects T2 only, and finally a

subset of replicates for which a QTL affects T1 and T2 simultaneously (Table 3.13).

These decompositions of power allow us to separate power of MTMIM model into

QTL-by-trait power. Therefore, enabling us to measure the frequency in which a

non-pleiotropic QTL is mapped as a pleiotropic QTL. In scenario SII, where all QTL

are independent, most of power to identifying a QTL is concentrated on the right

trait affected by that QTL. For instance, in the LOD-1.5 level, 66.4 out of 78.2 power

(0.85 ratio) to identifying Q1 is due to T1 only, which is the only trait that Q1 has

effect on (Table 3.12). In scenario SIII, because linkage between QTL pairs Q1 and

Q2, and Q3 and Q4, contribution of power to identifying a QTL due to the right

trait affected by that QTL is lower than in scenario SII, thought the right trait still

accounts for a large amount of power. For example, in the LOD-1.5 level, 36.8 out

of 70 power (0.53 ratio) to identifying Q1 is due to T1 only, which is the only trait

Q1 has effect on, and 46 out 68 (0.68 ratio) power to identifying Q5 is due to T1

only, which is the only trait Q5 has effect on (Table 3.13). Note that Q1 was mapped

as a pleiotropic QTL (subset (1,1) in Table 3.13) more often than Q5, for instance,

in the LOD-1.5 level, 30.4 out 70 (0.43 ratio) and 20.8 out of 68 power (0.31 ratio),

respectively. Identification of Q1 as pleiotropic more often than Q5 is mainly because

the distance between Q1 and Q2 is shorter than distance between Q4 and Q5, 10

and 15 cM, respectively. The smaller the distance between two non-pleiotropic QTL,

the harder is to separate them in the MTMIM model. Moreover, separation of non-

pleiotropic QTL is also affected by distance between genetic markers. Linkage maps

with markers closely spaced are expected to help in separating non-pleiotropic QTL.

On the other hand, separation of non-pleiotropic QTL in linkage maps with sparse
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markers, such as the linkage map used in our simulations, is a much harder task.

We return to the issue of separating non-pleiotropic QTL in the MTMIM model in

section 3.3.
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Table 3.12: Decomposition of total power (Ptotal) of QTL identification in scenario SII (Table 3.10) into QTL-
by-trait power (Ptrait) for 10% genome-wide significance level. Subsets (1, 0, 0), (1, 1, 0) and (1, 1, 1) contain
replicates with QTL affecting T1 only, T1 and T2, and T1, T2 and T3, respectively. We show only three subsets
out of 7 subsets of the full decomposition. These three subsets account for most of the space, besides they are
the most interesting in scenario SII. The QTL-by-trait to the overall power ratio (RATIO=Ptrait/Ptotal) is also
presented.

da

Subsets
(1,0,0) (1,1,0) (1,1,1)

Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

1
Ptrait 63.0 1.0 0.0 0.8 59.8 4.2 82.8 4.6 84.0 6.8 0.8 6.0 85.2 5.8 0.2
RATIO 0.86 0.01 0.00 0.01 0.83 0.06 0.91 0.05 0.92 0.09 0.01 0.07 0.92 0.06 0.00

1.5
Ptrait 66.4 1.2 0.0 0.8 64.0 4.2 86.4 5.0 87.2 8.2 0.8 6.6 89.0 5.8 0.2
RATIO 0.85 0.01 0.00 0.01 0.82 0.05 0.90 0.05 0.92 0.10 0.01 0.07 0.92 0.06 0.00

2
Ptrait 67.6 1.2 0.0 0.8 64.8 4.2 87.4 5.2 88.0 8.6 0.8 6.8 90.8 6.4 0.2
RATIO 0.85 0.01 0.00 0.01 0.81 0.05 0.90 0.05 0.92 0.11 0.01 0.07 0.91 0.07 0.00

a d is the amount subtracted from the LOD value at QTL position to estimate the LOD-d support interval for the
QTL.
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Table 3.13: Decomposition of total power (Ptotal) of QTL identification in scenario SIII (Table 3.11) into QTL-
by-trait power (Ptrait) for 10% genome-wide significance level. Subsets (1, 0), (0, 1) and (1, 1) contain replicates
with QTL affecting T1 only, T2 only, and T1 and T2, respectively. The QTL-by-trait to the overall power ratio
(RATIO=Ptrait/Ptotal) is also presented.

da

Subsets
(1,0) (0,1) (1,1)

Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

1
Ptrait 36.2 2.8 3.8 1.2 45.0 2.4 35.4 3.6 48.8 1.6 29.2 28.4 86.2 26.0 19.8
RATIO 0.53 0.04 0.04 0.02 0.68 0.04 0.53 0.04 0.64 0.02 0.43 0.43 0.92 0.34 0.30

1.5
Ptrait 36.8 2.8 3.4 1.0 46.0 2.8 36.2 4.0 49.6 1.2 30.4 29.0 89.6 27.6 20.8
RATIO 0.53 0.04 0.04 0.01 0.68 0.04 0.53 0.04 0.63 0.02 0.43 0.43 0.92 0.35 0.31

2
Ptrait 37.0 3.0 3.2 1.2 46.6 2.8 36.8 4.4 50.6 0.8 30.8 29.2 91.2 27.8 21.0
RATIO 0.52 0.04 0.03 0.02 0.68 0.04 0.53 0.04 0.64 0.01 0.44 0.42 0.92 0.35 0.31

a d is the amount subtracted from the LOD value at QTL position to estimate the LOD-d support interval for the
QTL.
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Mean of position of QTL (Tables 3.14, 3.15 and 3.16): results show that mean of

positions of QTL in MIM and MTMIM models have no qualitative difference. There

is, though, a trend of smaller variation (measured in terms of standard error of mean)

of estimated positions in MTMIM than in MIM model. In the MTMIM model, there

is a trend of smaller variation of estimated positions for those QTL with effects on a

larger subset of traits under analysis.

Table 3.14: Mean of positions of QTL (cM) in MIM and MTMIM models in scenario
SI for 10% genome-wide significance level. Standard errors are in parentheses.

Analysis (Trait) QTL Positiona LOD-d level
1 1.5 2

MIM (T1)

Q1 23 [1] 23.4 (0.29) 23.6 (0.36) 23.6 (0.38)
Q2 15 [2] 15.7 (0.31) 14.9 (0.33) 15.3 (0.38)
Q3 45 [3] 45.6 (0.32) 45.3 (0.36) 45.6 (0.38)
Q4 67 [5] 66.8 (0.27) 66.5 (0.29) 66.5 (0.29)
Q5 53 [6] 52.6 (0.28) 52.4 (0.33) 52.5 (0.35)

MIM (T2)

Q1 23 [1] 23.7 (0.32) 23.9 (0.39) 23.9 (0.39)
Q2 15 [2] 14.1 (0.30) 14.1 (0.32) 14.4 (0.36)
Q3 45 [3] 44.8 (0.32) 44.9 (0.36) 45.0 (0.39)
Q4 67 [5] 66.8 (0.27) 66.3 (0.32) 66.2 (0.33)
Q5 53 [6] 52.4 (0.27) 52.4 (0.33) 52.4 (0.35)

MIM (T3)

Q1 23 [1] 23.7 (0.31) 24.0 (0.36) 24.3 (0.40)
Q2 15 [2] 14.2 (0.31) 14.6 (0.35) 14.9 (0.37)
Q3 45 [3] 44.7 (0.30) 44.8 (0.37) 45.1 (0.39)
Q4 67 [5] 67.3 (0.28) 67.1 (0.29) 66.8 (0.34)
Q5 53 [6] 52.6 (0.31) 52.4 (0.35) 52.3 (0.37)

MTMIM

Q1 23 [1] 23.62 (0.13) 23.76 (0.17) 23.75 (0.17)

(T1, T2 and T3)

Q2 15 [2] 14.15 (0.16) 14.20 (0.16) 14.22 (0.16)
Q3 45 [3] 45.50 (0.16) 45.57 (0.17) 45.68 (0.18)
Q4 67 [5] 67.68 (0.15) 67.66 (0.17) 67.62 (0.17)
Q5 53 [6] 52.76 (0.14) 52.73 (0.15) 52.82 (0.16)

a Simulated position (cM) of QTL from the leftmost genetic marker in the chro-
mosome. The chromosome in which each QTL is located is shown in between
the square brackets.
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Table 3.15: Mean of positions of QTL (cM) in MIM and MTMIM models in scenario
SII for 10% genome-wide significance level. Standard errors are in parentheses.

Analysis (Trait) QTL Positiona LOD-d level
1 1.5 2

MIM (T1)

Q1 23 [1] 23.4 (0.29) 23.7 (0.31) 23.8 (0.36)
Q2 15 [2] 14.4 (0.30) 14.6 (0.31) 14.9 (0.35)
Q3 45 [3] 45.4 (0.32) 45.4 (0.38) 45.2 (0.41)
Q4 67 [5] 67.1 (0.27) 66.9 (0.29) 66.7 (0.33)
Q5 53 [6] 52.9 (0.28) 52.9 (0.33) 52.8 (0.35)

MIM (T2)
Q2 15 [2] 14.5 (0.27) 14.7 (0.30) 14.9 (0.32)
Q3 45 [3] 45.6 (0.30) 45.2 (0.35) 45.4 (0.37)
Q4 67 [5] 67.2 (0.26) 67.0 (0.27) 66.6 (0.33)

MIM (T3) Q3 45 [3] 44.7 (0.38) 44.7 (0.45) 44.8 (0.47)

MTMIM

Q1 23 [1] 23.4 (0.30) 23.5 (0.32) 23.5 (0.33)

(T1, T2 and T3)

Q2 15 [2] 14.4 (0.20) 14.4 (0.22) 14.5 (0.23)
Q3 45 [3] 44.9 (0.15) 44.9 (0.18) 44.9 (0.19)
Q4 67 [5] 67.6 (0.18) 67.6 (0.19) 67.5 (0.21)
Q5 53 [6] 52.9 (0.31) 52.8 (0.37) 52.9 (0.38)

a Simulated position (cM) of QTL from the leftmost genetic marker in the
chromosome. The chromosome in which each QTL is located is shown in
between the square brackets.
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Table 3.16: Mean of positions of QTL (cM) in MIM and MTMIM models in scenario
SIII for 10% genome-wide significance level. Standard errors are in parentheses.

Analysis (Trait) QTL Positiona LOD-d level
1 1.5 2

MIM (T1)
Q1 23 [1] 22.1 (0.18) 22.1 (0.22) 22.0 (0.23)
Q3 45 [3] 44.3 (0.27) 44.3 (0.32) 44.1 (0.35)
Q5 53 [6] 52.4 (0.23) 52.9 (0.26) 52.9 (0.26)

MIM (T2)

Q2 33 [1] 34.9 (0.21) 35.5 (0.28) 35.6 (0.29)
Q3 45 [3] 43.8 (0.30) 43.8 (0.32) 43.8 (0.36)
Q4 38 [6] 36.9 (0.21) 36.5 (0.27) 36.2 (0.29)

MTMIM

Q1 23 [1] 23.2 (0.23) 23.1 (0.24) 23.0 (0.25)

(T1, T2)

Q2 33 [1] 33.5 (0.23) 33.6 (0.25) 33.7 (0.27)
Q3 45 [3] 44.4 (0.19) 44.6 (0.22) 44.5 (0.23)
Q4 38 [6] 38.6 (0.21) 38.5 (0.23) 38.5 (0.27)
Q5 53 [6] 51.4 (0.25) 51.7 (0.26) 51.8 (0.29)

a Simulated position (cM) of QTL from the leftmost genetic marker in the
chromosome. The chromosome in which each QTL is located is shown in
between the square brackets.

Coverage and length of LOD-d support interval for position of QTL (Tables 3.17,

3.18 and 3.19): results show that for any LOD-d level the coverage of LOD-d support

interval for position of QTL are not remarkably different in MIM and MTMIM models.

However, results show that on average estimates of length of LOD-d support interval

were always larger in MIM model. Differences in length are only marginal for QTL

with effects on only a small subset of traits, but there are considerable differences in

length for QTL with effects on larger subset of traits under analysis. For instance, in

scenario SII (Table 3.18) Q1 affects one trait only and it has mean length of LOD-1.5

support intervals of 29.4 cM in MIM and 26.4 cM in MTMIM model. On the other

hand, Q2 affects two traits and it has mean length of LOD-1.5 support interval of 27.7

(T1) and 27.9 (T2) in MIM and 21.0 cM in MTMIM model. An interesting result is

that the LOD-1.5 support interval produced confidence intervals for position of QTL

with approximately 95% coverage in both MIM and MTMIM models.
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Table 3.17: Coverage (%) and length (cM) of LOD-d support interval for position of QTL in MIM and MTMIM
models in scenario SI for 10% genome-wide significance level. Standard errors are in parentheses.

Analysis (Trait) QTL
Coverage Mean of length

1a 1.5 2 1 1.5 2

MIM (T1)

Q1 92.9 97.9 100 20.7 (0.43) 28.0 (0.55) 35.7 (0.64)
Q2 92.3 96.3 97.6 21.3 (0.42) 28.4 (0.61) 35.5 (0.74)
Q3 90.9 96.7 98.5 22.3 (0.48) 31.1 (0.64) 39.8 (0.78)
Q4 92.5 96.5 98.5 19.9 (0.38) 26.4 (0.54) 33.4 (0.74)
Q5 91.3 96.4 98.2 21.3 (0.43) 29.1 (0.55) 36.4 (0.61)

MIM (T2)

Q1 95.9 99.6 100 22.6 (0.45) 30.7 (0.61) 38.4 (0.69)
Q2 93.4 96.6 98.2 21.6 (0.43) 28.4 (0.58) 35.5 (0.74)
Q3 91.8 94.9 98.2 21.9 (0.45) 30.4 (0.63) 39.2 (0.77)
Q4 90.8 97.3 98.0 20.2 (0.38) 26.6 (0.51) 33.2 (0.67)
Q5 92.2 96.7 99.4 21.6 (0.43) 29.6 (0.56) 36.7 (0.66)

MIM (T3)

Q1 90.3 96.9 99.1 21.7 (0.43) 29.9 (0.59) 37.2 (0.68)
Q2 94.1 97.5 98.7 21.3 (0.39) 27.7 (0.53) 34.9 (0.70)
Q3 87.4 94.6 96.9 22.4 (0.44) 31.2 (0.60) 40.3 (0.76)
Q4 92.7 96.9 98.5 19.6 (0.35) 27.8 (0.47) 33.3 (0.69)
Q5 93.8 97.8 100 21.9 (0.41) 29.5 (0.54) 36.4 (0.63)

MTMIM

Q1 96.4 99.4 99.6 12.4 (0.17) 16.0 (0.26) 19.1 (0.30)

(T1, T2 and T3)

Q2 96.8 98.2 98.8 12.6 (0.17) 16.0 (0.22) 19.5 (0.27)
Q3 94.6 97.4 98.8 12.5 (0.17) 15.9 (0.22) 19.4 (0.28)
Q4 93.8 99.0 99.4 12.2 (0.17) 15.3 (0.19) 18.2 (0.23)
Q5 96.0 98.6 99.6 12.3 (0.15) 15.6 (0.20) 18.7 (0.25)

a d is the amount subtracted from the LOD value at QTL position to estimate the LOD-d
support interval for the QTL.
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Table 3.18: Coverage (%) and length (cM) of LOD-d support interval for position of QTL in MIM and MTMIM
models in scenario SII for 10% genome-wide significance level. Standard errors are in parentheses.

Analysis (Trait) QTL
Coverage Mean of length

1a 1.5 2 1 1.5 2

MIM (T1)

Q1 91.4 95.7 99.3 21.7 (0.42) 29.4 (0.55) 37.3 (0.66)
Q2 92.2 95.8 98.1 21.1 (0.38) 27.7 (0.55) 34.9 (0.73)
Q3 88.8 95.8 98.2 23.7 (0.49) 33.0 (0.67) 41.9 (0.81)
Q4 92.2 95.8 98.4 20.2 (0.35) 26.7 (0.51) 35.4 (0.79)
Q5 93.4 98.8 99.6 21.3 (0.43) 28.7 (0.56) 36.4 (0.68)

MIM (T2)
Q2 92.6 97.4 98.7 21.0 (0.88) 27.9 (0.55) 34.1 (0.67)
Q3 90.6 95.9 98.3 22.3 (0.38) 29.8 (0.56) 39.1 (0.74)
Q4 95.3 98.1 99.6 19.6 (0.33) 26.1 (0.49) 32.6 (0.67)

MIM (T3) Q3 88.8 94.6 96.8 25.3 (0.55) 35.3 (0.74) 46.2 (0.88)

MTMIM

Q1 89.5 95.6 97.6 20.0 (0.38) 26.4 (0.47) 33.1 (0.56)

(T1, T2 and T3)

Q2 93.1 97.8 98.9 16.2 (0.25) 21.0 (0.33) 25.3 (0.39)
Q3 92.8 97.2 99.4 13.1 (0.22) 17.2 (0.28) 20.7 (0.33)
Q4 94.2 97.5 98.9 15.6 (0.23) 20.3 (0.31) 24.2 (0.39)
Q5 89.5 97.8 99.8 19.7 (0.41) 26.1 (0.51) 32.6 (0.60)

a d is the amount subtracted from the LOD value at QTL position to estimate the LOD-d
support interval for the QTL.
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Table 3.19: Coverage (%) and length (cM) of LOD-d support interval for position of QTL in MIM and MTMIM
models in scenario SIII for 10% genome-wide significance level. Standard errors are in parentheses.

Analysis (Trait) QTL
Coverage Mean of length

1a 1.5 2 1 1.5 2

MIM (T1)
Q1 98.0 99.8 100 20.2 (0.40) 26.8 (0.53) 34.9 (0.74)
Q3 92.1 96.2 98.5 21.1 (0.39) 29.1 (0.57) 37.8 (0.74)
Q5 95.4 99.3 99.3 20.4 (0.39) 27.8 (0.57) 35.9 (0.75)

MIM (T2)
Q2 94.9 98.5 98.9 20.6 (0.44) 28.9 (0.67) 37.5 (0.89)
Q3 92.4 96.2 98.1 22.1 (0.45) 29.6 (0.61) 38.4 (0.77)
Q4 95.6 97.8 99.3 19.5 (0.38) 26.9 (0.55) 35.8 (0.75)

MTMIM

Q1 97.9 100 100 28.8 (1.16) 38.4 (1.34) 47.6 (1.40)

(T1, T2)

Q2 100 100 100 28.1 (1.17) 39.4 (1.38) 48.7 (1.41)
Q3 93.9 97.4 99.2 16.8 (0.31) 22.9 (0.48) 28.8 (0.65)
Q4 97.4 100 100 26.7 (0.91) 37.3 (1.15) 47.6 (1.23)
Q5 97.1 99.4 100 28.9 (1.05) 39.9 (1.27) 49.5 (1.34)

a d is the amount subtracted from the LOD value at QTL position to estimate the
LOD-d support interval for the QTL.
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Mean of effect of QTL (Tables 3.20, 3.21 and 3.22): in scenario SI, results show

that estimates of QTL effects in MTMIM model are overall close to the parameters,

with neither clear trend of under- nor over-estimation (Table 3.20). On the other

hand, results show that in scenario SII estimates of effects in MTMIM model for those

QTL with effects on only a subset of traits seem to have a trend of over-estimation,

and possibly a trend of under-estimation of effects for those QTL with effects on all

traits under analysis (Table 3.21). For instance, effects of Q1 which affects T1 only

were over-estimated, and effects of Q3 which affects all traits were under-estimated for

traits T1 and T3. Results of scenario SII also demonstrate the robustness of MTMIM

model in estimating the effects of QTL, whereby QTL without effects on certain traits

have estimates near zero, while QTL with non-zero effects have estimates with few

bias. However, the robustness of MTMIM to estimate effect of QTL with few bias is

less evident in scenario SIII. For instance, note that while Q2 has zero effect on T1,

its effect estimate is not close to zero, for any LOD−d level. In order to understand

why this bias is present in Q2 of scenario SIII, we need to understand how we match

a mapped to a simulated QTL. Remember that in the forward selection we search

and map pleiotropic QTL, then each mapped pleiotropic QTL is tested against the

alternative hypothesis of close linked non-pleiotropic QTL at the neighboring region of

the mapped pleiotropic QTL. If the pleiotropic hypothesis is not rejected, we assume

the QTL is pleiotropic. Then, in order to apply our summary statistics each mapped

pleiotropic QTL is matched to its closest (smallest distance) simulated QTL. It could

happen that a mapped pleiotropic QTL in the neighboring region of simulated Q1 and

Q2 be matched to Q2, even though the major effect of the mapped pleiotropic QTL

comes from Q1. Note that when the previous situation happen, we mistakenly assign

the effect of Q1 (which affects only T1) to Q2 (which presumably would not affect

T1), therefore, producing biased effect of Q2 on T1. Had we used another criterion

(not smallest distance) to match mapped to simulated QTL or had we found a more

powerful statistics to separate close linked non-pleiotropic QTL, the “bias” in Q2

would be minimized or even absent. The same explanation of “bias” carries over to
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Q4 (T1), Q1 (T2) and Q5 (T2) in scenario SIII. We quoted bias to emphasize that

the bias observed in scenario SIII is not due to the MTMIM estimation per se, but

rather due to our lack of ability to separate closed linked non-pleiotropic QTL or due

to our criterion to match mapped to simulated QTL.

In MIM model the effects of all QTL were over-estimated. This phenomena is

expected due to genome-wide selection, and it is known as “Beavis effect” (Beavis,

1998). A qualitative comparison of results show that overall the estimation of effects

in MTMIM model are less biased than in MIM model.
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Table 3.20: Mean of effect of QTL in MIM and MTMIM models in scenario SI for 10% genome-wide significance
level. Standard errors are in parentheses.

Trait QTL Parameter
MIM MTMIM

1a 1.5 2 1 1.5 2

T1

Q1 0.52 0.57 (0.006) 0.57 (0.006) 0.57 (0.006) 0.52 (0.006) 0.51 (0.007) 0.51 (0.007)
Q2 0.52 0.56 (0.006) 0.56 (0.006) 0.56 (0.006) 0.51 (0.006) 0.51 (0.006) 0.51 (0.006)
Q3 0.52 0.56 (0.006) 0.56 (0.006) 0.55 (0.006) 0.52 (0.006) 0.52 (0.006) 0.52 (0.006)
Q4 0.52 0.55 (0.006) 0.55 (0.006) 0.55 (0.006) 0.51 (0.006) 0.51 (0.006) 0.51 (0.006)
Q5 0.52 0.55 (0.006) 0.56 (0.006) 0.56 (0.005) 0.52 (0.007) 0.52 (0.007) 0.51 (0.007)

T2

Q1 0.52 0.55 (0.007) 0.55 (0.007) 0.55 (0.007) 0.50 (0.007) 0.50 (0.007) 0.50 (0.007)
Q2 0.52 0.55 (0.006) 0.56 (0.005) 0.56 (0.005) 0.51 (0.006) 0.51 (0.006) 0.51 (0.006)
Q3 0.52 0.56 (0.006) 0.56 (0.005) 0.56 (0.005) 0.52 (0.006) 0.52 (0.006) 0.52 (0.006)
Q4 0.52 0.55 (0.005) 0.55 (0.005) 0.55 (0.005) 0.51 (0.006) 0.50 (0.006) 0.50 (0.006)
Q5 0.52 0.56 (0.005) 0.55 (0.006) 0.56 (0.006) 0.52 (0.007) 0.52 (0.007) 0.52 (0.007)

T3

Q1 0.52 0.56 (0.005) 0.56 (0.005) 0.56 (0.005) 0.52 (0.006) 0.52 (0.006) 0.52 (0.006)
Q2 0.52 0.55 (0.005) 0.55 (0.005) 0.55 (0.005) 0.51 (0.007) 0.51 (0.007) 0.51 (0.007)
Q3 0.52 0.55 (0.005) 0.55 (0.005) 0.55 (0.005) 0.51 (0.007) 0.51 (0.006) 0.51 (0.006)
Q4 0.52 0.55 (0.005) 0.55 (0.005) 0.55 (0.005) 0.51 (0.007) 0.52 (0.007) 0.51 (0.007)
Q5 0.52 0.56 (0.006) 0.56 (0.006) 0.56 (0.006) 0.53 (0.008) 0.53 (0.008) 0.52 (0.008)

a d is the amount subtracted from the LOD value at QTL position to estimate the LOD-d support interval for the
QTL.
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Table 3.21: Mean of effect of QTL in MIM and MTMIM models in scenario SII for 10% genome-wide significance
level. Standard errors are in parentheses.

Trait QTL Parameter
MIM MTMIM

1a 1.5 2 1 1.5 2

T1

Q1 0.52 0.56 (0.005) 0.56 (0.005) 0.56 (0.005) 0.56 (0.005) 0.56 (0.005) 0.56 (0.005)
Q2 0.52 0.55 (0.005) 0.56 (0.006) 0.56 (0.005) 0.52 (0.007) 0.52 (0.007) 0.52 (0.007)
Q3 0.52 0.54 (0.005) 0.54 (0.005) 0.54 (0.005) 0.51 (0.007) 0.51 (0.007) 0.50 (0.007)
Q4 0.52 0.55 (0.007) 0.55 (0.006) 0.55 (0.006) 0.52 (0.006) 0.52 (0.006) 0.52 (0.006)
Q5 0.52 0.55 (0.007) 0.55 (0.006) 0.56 (0.006) 0.56 (0.005) 0.56 (0.005) 0.56 (0.005)

T2

Q1 0 - - - 0.00 (0.004) 0.00 (0.004) 0.00 (0.004)
Q2 0.54 0.57 (0.006) 0.57 (0.006) 0.57 (0.006) 0.55 (0.007) 0.54 (0.007) 0.54 (0.006)
Q3 0.54 0.57 (0.005) 0.57 (0.005) 0.57 (0.005) 0.54 (0.007) 0.54 (0.007) 0.54 (0.006)
Q4 0.54 0.58 (0.005) 0.57 (0.005) 0.57 (0.005) 0.55 (0.006) 0.55 (0.006) 0.55 (0.006)
Q5 0 - - - 0.00 (0.005) 0.00 (0.005) 0.00 (0.005)

T3

Q1 0 - - - 0.00 (0.005) 0.00 (0.005) 0.00 (0.005)
Q2 0 - - - 0.00 (0.004) 0.01 (0.004) 0.01 (0.003)
Q3 0.46 0.51 (0.006) 0.51 (0.006) 0.51 (0.006) 0.44 (0.008) 0.44 (0.008) 0.43 (0.007)
Q4 0 - - - 0.00 (0.003) 0.00 (0.003) 0.00 (0.003)
Q5 0 - - - 0.00 (0.004) 0.00 (0.004) 0.00 (0.004)

a d is the amount subtracted from the LOD value at QTL position to estimate the LOD-d support interval for the
QTL.
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Table 3.22: Mean of effect of QTL in MIM and MTMIM models in scenario SIII for 10% genome-wide significance
level. Standard errors are in parentheses.

Trait QTL Parameter
MIM MTMIM

1a 1.5 2 1 1.5 2

T1

Q1 0.54 0.57 (0.005) 0.57 (0.006) 0.57 (0.006) 0.57 (0.011) 0.56 (0.011) 0.57 (0.012)
Q2 0 - - - 0.21 (0.019) 0.20 (0.019) 0.20 (0.019)
Q3 0.54 0.57 (0.005) 0.57 (0.005) 0.57 (0.005) 0.53 (0.008) 0.52 (0.008) 0.52 (0.008)
Q4 0 - - - 0.11 (0.016) 0.13 (0.015) 0.12 (0.015)
Q5 0.54 0.58 (0.006) 0.58 (0.005) 0.58 (0.005) 0.58 (0.009) 0.58 (0.013) 0.59 (0.013)

T2

Q1 0 - - - 0.24 (0.016) 0.23 (0.016) 0.24 (0.016)
Q2 0.54 0.58 (0.006) 0.58 (0.006) 0.58 (0.006) 0.55 (0.009) 0.55 (0.009) 0.55 (0.009)
Q3 0.54 0.57 (0.005) 0.57 (0.005) 0.57 (0.006) 0.53 (0.008) 0.54 (0.008) 0.54 (0.007)
Q4 0.54 0.58 (0.005) 0.58 (0.006) 0.58 (0.006) 0.59 (0.009) 0.60 (0.008) 0.58 (0.010)
Q5 0 - - - 0.09 (0.016) 0.09 (0.015) 0.09 (0.015)

a d is the amount subtracted from the LOD value at QTL position to estimate the LOD-d support interval for the
QTL.
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Mean of genotypic variance-covariance matrix : averaged genotypic covariance ma-

trix of traits in MTMIM model are shown in Table 3.23. Because in the MTMIM

model some QTL may have undetectable effects in some traits under analysis, we eval-

uate consequences of estimating the genotypic variance-covariance matrix with and

without removing such non-significant effects from the MTMIM model. A qualitative

inspection of the results shows that genotypic variance-covariance matrix estimates

were very close to parameters regardless of whether non-significant effects were ex-

cluded or not from the MTMIM model.

Table 3.23: Mean of genotypic variance-covariance matrix (Σg) in MTMIM model in
scenarios SI, SII and SIII for 10% genome-wide significance level.

Scenario Parameter (Σg) Mean of Σg
* Mean of Σg

&

T1 T2 T3 T1 T2 T3 T1 T2 T3

SI
T1 0.33 0.33 0.33 0.35 0.34 0.33 0.36 0.34 0.33
T2 0.33 0.33 0.33 0.34 0.35 0.32 0.34 0.35 0.33
T3 0.33 0.33 0.33 0.33 0.32 0.35 0.33 0.33 0.35

SII
T1 0.33 0.21 0.06 0.34 0.20 0.06 0.34 0.21 0.06
T2 0.21 0.22 0.06 0.21 0.23 0.06 0.21 0.23 0.06
T3 0.06 0.06 0.05 0.06 0.06 0.06 0.06 0.06 0.07

SIII
T1 0.22 0.18 – 0.24 0.20 – 0.23 0.20 –
T2 0.18 0.22 – 0.20 0.24 – 0.20 0.25 –

In MTMIM model some QTL may have non-significant effects in some traits.
The mean of genotypic variance-covariance matrix indexed by ‘*’ and ‘&’
were computed with and without setting non-significant effects of QTL to
zero, respectively.
The standard error of means ranges from 0.001 to 0.004.
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3.3 Pleiotropy versus close linkage

In scenario SIII, after selecting a MTMIM model in the forward selection, each

mapped pleiotropic QTL was tested against the alternative of close linked non-

pleiotropic QTL. In bivariate model, we performed a two-dimensional search for posi-

tions of putative close linked non-pleiotropic QTL in the neighborhood of the position

of each pleiotropic QTL, as suggested in Jiang and Zeng (1995). The model with

non-pleiotropic QTL that showed highest likelihood within the two-dimension search

region was selected and tested against the model with pleiotropic QTL. We compared

two criteria of model selection, the AICc and LRT. The critical value for the LRT at

5% significance level was obtained from a χ2 probability distribution with one degree

of freedom.

Estimates of type I error and power of AICc and LRT criteria for model selection

are shown in Table 3.24. Because Q3 was simulated as being pleiotropic, rejection of

pleiotropic hypothesis for Q3 provides a measure of type I error. On the other hand,

Q1 and Q2, and Q4 and Q5 were simulated as pairs of close linked non-pleiotropic

QTL. Therefore, rejection of pleiotropic hypothesis at these QTL provides a measure

of power. Under our simulation setting, the LRT performed the best as criterion of

model selection. The LRT was able to keep the best balance between type I error and

power (Table 3.24). Estimated frequency of rejection of pleiotropy for Q3 using the

LRT agrees very well with the expected 5% nominal error, and estimated frequency

of rejection of pleiotropy for Q1 and Q2 are satisfactory high taking into account

that Q1 and Q2 are considerably close to each other in a linkage map with markers

considerably way from each (10 cM from marker to marker). On the other hand,

AICc criterion showed higher power for Q1 and Q2, but with a cost of high type I

error for Q3. Moreover, because Q4 and Q5 are 15 cM apart from each other, the

frequency of rejection of pleiotropy for these two QTL is higher than for Q1 and Q2,

which are 10 cM apart from each other.
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Table 3.24: Frequency of rejection of pleiotropy model for each pleiotropic QTL in
MTMIM model in scenario SIII. The AICc and LRT criteria are compared.

QTL
AICc LRT*

1& 1.5 2 1 1.5 2
Q1 0.45 0.45 0.45 0.39 0.38 0.38
Q2 0.45 0.45 0.44 0.36 0.36 0.36
Q3 0.16 0.15 0.15 0.05 0.04 0.04
Q4 0.59 0.54 0.54 0.45 0.41 0.41
Q5 0.65 0.66 0.66 0.46 0.48 0.48

* The critical value for the LRT at 5% signifi-
cance level was obtained from a χ2 probability
distribution with one degree of freedom.

& 1, 1.5 and 2 are the amounts subtracted from
the LOD value at QTL position to estimate the
LOD-d support interval for the QTL.
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3.4 Analysis of data from an experiment with fruit

flies Drosophila

In this section, we analyze data from a cross between fruit flies Drosophila simulus

and D. mauritiana with MIM and our MTMIM model. The experiment, including

crosses, data acquisition, and previous analyses have been described in details in Liu

et al. (1996) and Zeng et al. (2000). Briefly, males from an inbred line of D. mau-

ritiana (Rob A JJ) were crossed to females from an inbred line of D. simulus (13w

JJ) to produce an F1 population of males and females. F1 females were then crossed

to each parental line to produce two populations of males only, mauritiana backcross

(BM) and simulus backcross (BS). These two crosses were repeated twice to produce

two independent populations from each backcross: BS1 (sample size n=186), BS2

(n=288), BM1 (n=192) and BM2 (n=299). Males from BM1 and BS1 were genotyp-

ically scored at 45 marker loci for which the two parental lines were homozygous for

different alleles. Males from BM2 and BS2 were genotypically scored at 42 marker

loci out of the same 45 marker loci that BM1 and BS1 were scored. The phenotypic

values of each subject are: (1) average over both sides (left and right) of the first prin-

cipal component of 100 Fourier coefficients of posterior lobe (PC1); (2) area of the

posterior lobe (AREA); (3) average over both sides of the first principal component

of 100 Fourier coefficients of the rescaled posterior lobe, rescaled so that it has unit

area (ADJPC1); and (4) length of the foreleg tibia (TIBIA). While PC1 provides a

measure of both size and shape of the posterior lobe, AREA and ADJPC1, on the

other hand, provide measures of size and shape, respectively. TIBIA provides a mea-

sure of overall body size. The genotypic and phenotypic data are freely available at

ftp://statgen.ncsu.edu/pub/qtlcart/data/zengetal99/.

All variables related to posterior lobe (PC1, ADJPC1 and AREA) were reported

to be highly correlated between themselves in both BM1 and BS1 (correlation larger

than 0.82). Therefore, suggesting the presence of pleiotropic and/or close linked

QTL affecting size and shape. However, all variables related to posterior lobe were
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weakly correlated with TIBIA. Because possibly sharing of most developmental pro-

cess components between posterior lobe shape and size, these two traits would be

tightly related most due to pleiotropic effects (Liu et al., 1996). Results of CIM

analyses of AREA, PC1, and ADJPC1 were very similar to each other, except for the

presence of a QTL affecting both AREA and PC1 but not ADJPC1 in the interval

between marker loci Ddc and eve. Therefore, this QTL affects size but no shape of

the posterior lobe (Liu et al., 1996).

Motivated by the fact that joint analysis of PC1 and ADJPC1 in the data from

the experiment with fruit flies Drosophila could provide additional information to

distinguish between genetic effects of QTL on size and shape of posterior lobe by: (1)

testing pleiotropic versus close linked non-pleiotropic QTL, and (2) estimating the

genotypic covariance between traits due to linked and pleiotropic QTL, we analyzed

these two traits with our MTMIM model. In the following sections, we show results of

MIM and MTMIM model of the pooled samples from BM1 and BM2 (n=192+299).

Hereafter, we denoted this pooled samples as BM data. We also take advantage of

this data to test our GEM-NR algorithm for maximizing the likelihood function of

MTMIM model with many QTL. Using data from a genetic experiment would provide

more realistic differences between performances of GEM-NR and ECM algorithms

than a simulated data would provide.

The LRT profiles of MIM and MTMIM models of BM data are shown in Figure

3.3. We want to mention that although MTMIM model is expected to produce

larger values of LRT than MIM model at any position in the genome (Jiang and

Zeng, 1995), Figure 3.3 shows that this expectation is violated at some regions in

the genome. Nevertheless, this violation is easily explained because not all positions

of putative QTL in the MIM and MTMIM models coincide. Therefore, MIM models

are not nested within the MTMIM model shown here. Seventeen regions in the

genome showed statistical evidence of putative QTL in the MTMIM model for 10%

genome-wide significance level (Figure 3.3 and Table 3.25). Out of these seventeen

regions, fifteen and fourteen regions also showed statistical evidence of putative QTL
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in the MIM models of PC1 and ADJPC1, respectively. Overall, the inferred genomic

regions harboring putative QTL in the MTMIM model are in strong agreement with

previous inferred QTL in Zeng et al. (2000) and Liu et al. (1996).

MIM models of PC1 and ADJPC1 showed statistical evidence of twelve genomic

regions with statistical significant QTL affecting both traits, and five regions with

statistically significant QTL affecting either one of the traits (regions 3, 6, 9 , 12 and

15 shown in Figure 3.3). We want to mention that in all these five regions, expect

region 6, even for the trait with no significant effect there is still some evidence of weak

effect of putative QTL, as can be notice in the LRT profiles of PC1 and ADJPC1

MIM models. Region 6, which includes marker loci Ddc and eve, was previously

reported not to harbor any putative QTL with significant effect on ADJPC1 (Liu

et al., 1996). MTMIM model mapped these five regions either exactly or very close

to their respective estimated positions in the MIM model. Moreover, the estimated

effects of these five regions in the MTMIM model showed small discrepancy from those

estimates in the MIM model (Table 3.25). Nevertheless, empirical results from our

simulations suggest that both estimates of positions and effects of QTL in MTMIM

model are more accurate than in MIM model.

Positions of QTL in regions 4, 5, 7, 10, 11, 13, 14, 16 and 17 did not coincide

in the MIM models of PC1 and ADJPC1. Therefore, one could hypothesize the

existence of two close linked non-pleiotropic QTL at each of these regions. In order

to verify this hypothesis, we tested the hypothesis of pleiotropic QTL versus close

linked non-pleiotropic QTL at each of these regions. However, on the basis of the

data available the null hypothesis of pleiotropic QTL could not be rejected for any

region. Thus, since PC1 contains attributes of both shape and size of posterior lobe,

whereas ADJPC1 contains attributes of size only, the available data provides strong

evidence that the genetic mechanisms controlling shape and size of posterior lobe are

highly similar. Nevertheless, availability of linkage map with many markers closely

linked and larger sample size could lead to different conclusions regarding tests of

pleiotropic versus close linked non-pleiotropic QTL.
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Partition of the phenotypic variance-covariance matrix between PC1 and AD-

JPC1 in terms of their environmental and genotypic components, as estimated in the

MTMIM model, shows that most of the phenotypic covariance between these traits

is due to the genotypic component, more specifically due to pleiotropic QTL rather

than close linked non-pleiotropic QTL (Table 3.25).
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Figure 3.3: LRT profile of separate MIM analyses of PC1 and ADJPC1 and MTMIM
analysis of PC1 and ADJPC1 (Joint) of BM data for 10% genome-wide significance
level. Tick marks in the horizontal axis represent positions of genetic markers on
chromosomes X, 2 and 3 (from left to right). Black squares bellow the horizontal axis
indicate positions of mapped QTL in separate and joint analyses.
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The possibility of fitting many traits and many QTL in MTMIM model imposes

severe burden in estimation of parameters. Burden both in terms of reliability of

parameter estimates (accuracy) and time to estimation (speed). The GEM-NR and

ECM algorithms are two alternative approaches suitable for parameter estimation in

such complex models. We evaluate these two algorithms with the BM data by fitting

a MTMIM model (PC1 and ADJPC1) containing 16 QTL. The results (Figure 3.4)

show a tremendous gain of GEM-NR over ECM in terms of number of iterations, 19

and 52, respectively, as well as in terms of computing user time, 8.2 and 30.6 seconds,

respectively. Parameter estimates delivered in the GEM-NR and ECM were very

similar (not shown).
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Table 3.25: Estimates of QTL main effect on PC1 (β̂1) and ADJPC1 (β̂2) in MIM and
MTMIM models of BM data for 10% genome-wide significance level. The estimated
genotypic variances and covariances are also shown.

MIM MTMIM
PC1 ADJPC1 (PC1 and ADJPC1)

QTL p̂$ β̂1 p̂ β̂2 p̂ β̂1 β̂2

Chromosome X
1 1 0.00204 1 0.01651 1 0.00212 0.01752
2 20 0.00184 20 0.02843 20 0.00173 0.02747

Chromosome 2
3 – – 1 0.03042 1 0.00071 0.02929
4 14 0.00182 17 0.02145 17 0.00181 0.02197
5 26 0.00171 30 0.01407 29 0.00115 0.01459
6 71 0.00162 – – 70 0.00171 -0.00481ns

7 111 0.00091 116 0.01467 116 0.00110 0.01764
8 144 0.00122 144 0.00907 144 0.00114 0.00820

Chromosome 3
9 5 0.00126 – – 4 0.00110 0.01066
10 17 0.00217 16 0.05030 17 0.00218 0.04265
11 48 0.00328 44 0.02794 45 0.00272 0.02526
12 – – 54 0.02353 54 0.00069ns 0.02548
13 82 0.00331 83 0.03913 83 0.00337 0.03939
14 112 0.00092 116 0.03236 115 0.00093 0.02570
15 129 0.00152 – – 128 0.00118 0.00943ns

16 147 0.00073 146 0.01163 145 0.00087 0.00923
17 169 0.00209 166 0.02681 167 0.00210 0.02734

#QTL 15 14 17

Σ̂p
27.66x10−6 – 27.66x10−6 31.79x10−5

– 52.26x10−4 31.79x10−5 52.26x10−4

Σ̂g
23.58x10−6 – 23.64x10−6 31.42x10−5

– 45.30x10−4 31.42x10−5 45.25x10−4

Σ̂e
4.08x10−6 – 4.02x10−6 0.37x10−5

– 6.96x10−4 0.37x10−5 7.01x10−4

$ Position, in cM, of QTL from the leftmost genetic marker on the chromosome.
ns Non-significant main effect tested with the LRT and 5% significance level. The

critical value of the LRT was obtained from the χ2 distribution function with one
degree of freedom.
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Figure 3.4: Comparison of performances between ECM and GEM-NR algorithms
in terms of number of iterations required for convergence of the likelihood function.
Both algorithms were applied to a MTMIM model with 16 QTL and traits PC1 and
ADJPC1 of the BM data. The algorithms were said to have converged whenever the
difference between the natural logarithm of the likelihood function of two consecutive
iterations was smaller than or equal to 10−4. (A) shows the values of the natural
logarithm of the likelihood function at each iteration (loge(Lk)) until convergence was
reached (GEM-NR algorithm began with 5 iterations of ECM algorithm. Therefore,
the first 5 iterations produced identical likelihood values in both algorithms, and
because of that we omitted the first 4 iterations). (B) shows the difference between
the natural logarithm of the likelihood function of two consecutive iterations until
convergence was reached. In (B), y-axis was re-scaled with a logarithm of base ten
to improve graphical resolution.
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3.5 Concluding remarks

Our MTMIM model and score-based threshold proposed in Chapter 2 were evalu-

ated through simulations. Also, we analyzed data from an experiment with Drosophila

for the purpose of illustrating our MTMIM model and evaluating the performances

of the GEM-NR and ECM algorithms developed in Chapter 2.

Results from our simulations showed many interesting features of our MTMIM

model and score-based threshold. First, our score-based threshold maintained the

type I error at a desired nominal level when no QTL effects were present in the sim-

ulated data. Second, discovery of spurious QTL (false discovery rate) was almost

constant across genome-wide significance levels of 1, 5 and 10%, while power to iden-

tifying true simulated QTL increased substantially as the significance level grew less

stringent. Therefore, a more liberal (10%) genome-wide significance level could be

used in genome-wide scan, corroborating the results of C. Laurie, S. Wang, L. A.

Carlini-Garcia and Z-B. Zeng in MIM model (unpublished). Third, MTMIM model

could have lower power than MIM model for QTL with effects on only a small subset

of traits under analysis. However, as the subset of traits affected by a QTL increases,

power in MTMIM model overpasses power in MIM model even when not all traits

are affected by that QTL. Forth, MIM and MTMIM models revealed no qualitative

differences in estimates of positions of QTL. However, there is a trend of smaller

variation (measured in terms of standard error of means) in estimates of positions in

MTMIM model for those QTL with pleiotropic effects on a larger subsets of traits

under analysis. Fifth, the LOD-1.5 support interval produced confidence intervals

for position of QTL with approximately 95% coverage in both MIM and MTMIM

models. However, confidence interval for position of QTL was much wider in MIM

than in MTMIM model. Sixth, estimates of effects of QTL in MTMIM model were

in general closer to parameters for those QTL with effects on more traits. In MIM

model effects of QTL were all over-estimated, demonstrating biases of selection due to

genome-wide scan (Beavis, 1998). Overall, a qualitative comparison of results from
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MIM and MTMIM models shows that effect estimates in the latter are less biased

than in the former model. Lastly, LRT was shown to keep adequate type I error level

when testing the null hypothesis of pleiotropic QTL against the alternative of close

linked non-pleiotropic QTL in the bivariate analysis, while it delivered reasonable

power when data were generated under the alternative.

Analysis of data from an experiment with Drosophila showed the potentials that

our MTMIM model have to deliver complementary information for unveiling the

genetic architecture of complex traits. Such as the potential to estimate effect of

pleiotropic QTL, to test the hypothesis of pleiotropic QTL versus the alternative of

close linked non-pleiotropic QTL, and to estimate the genetic covariance between

traits.

Our results showed that the GEM-NR algorithm speeded up convergence of the

likelihood function considerably when compared to the ECM algorithm, while still

delivering stable parameter estimates.

Concluding, we showed empirically that the score-based threshold maintained

type I error rate and false discovery rate within acceptable levels in MTMIM model.

Furthermore, MTMIM model can be used as an extra tool to better extract infor-

mation from multivariate data. Therefore, revealing with more details the genetic

architecture of complex traits.
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4

Prediction of length of confidence

interval for position of QTL in

multiple trait analysis

In Chapter 1, we reviewed the current status of research on statistical methods

for mapping multiple QTL in single and multiple complex traits within the maximum

likelihood and Bayesian frameworks. In Chapter 2, we proposed a MTMIM model for

QTL inference from inbred line crosses. We derived parameter estimators, extended

the score-based method of Zou et al. (2004) to estimate threshold in MTMIM model,

proposed a forward selection to build a MTMIM model using the score-based thresh-

old as the criterion to assess the significance of effects of QTL, and proposed a model

optimization procedure. In Chapter 3, we evaluated our MTMIM model and score-

based threshold method with regard to type I error, model fitting, and pleiotropy

testing. We ended with analysis of data from an experiment with Drosophila. In this

chapter, we derive analytical formulae for prediction of length of confidence interval

for position of QTL and for prediction of shape of the LRT around the position of

QTL in multiple trait analysis, under the assumption of infinitely many markers and

large sample size. We end with some simulations to evaluate the length and coverage
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of confidence interval for position of QTL in two linkage maps with distinct saturation

of markers.

4.1 Introduction

Although maximum likelihood based methods provide both parameter estimates

that are asymptotically unbiased and their variance-covariances, the variance of po-

sition QTL is often inaccurate (Darvasi and Soller, 1997) and hard to obtain

because of the required second order derivatives of likelihood function. Therefore,

practical application of maximum likelihood theory for construction of confidence

interval for position of QTL is cumbersome. A practical “confidence interval” for

position of QTL, the LOD-d support interval (Lander and Botstein, 1989), is

defined as a continuous genomic region that includes the position of QTL and all

positions on its left and right sides with LOD values larger than or equal to the LOD

value at the position of QTL after subtraction of a positive constant d.

Under assumptions of infinitely many markers, large sample size, and normal-

ity distribution of phenotypic values of subjects, Lander and Botstein (1989)

showed that the LOD statistic follows a distribution proportional to a χ2 (LOD

∼ 1
2

log10(e)χ2
df , where e is the Euler’s constant and df stands for degrees of freedom).

Therefore, if df = 1 (i.e., one parameter is been tested) the LOD-1 support interval of

Lander and Botstein (1989) leads to a predicted confidence interval with 96.8%

coverage. However, it is been shown (van Ooijen, 1992) that the same constant d

can lead to different levels of coverage depending on the effect of QTL and sample

size. van Ooijen (1992) pointed out that LOD-2 support interval would be nec-

essary to achieve 95% coverage under their simulation settings. Moreover, Mangin

et al. (1994) showed evidences from simulation experiments that there are severe bi-

asses in coverage of position of QTL with small effects, especially for saturate linkage

maps, and the reason for these biasses is the poor convergence of the LRT statistic

(or, equivalently the LOD statistic) towards a chi-squared distribution when effects
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of QTL are small. In the light of their results, Mangin et al. (1994) proposed a new

statistic whose asymptotic distribution is independent of any nuisance parameter,

especially the effects of QTL. However, practical use of the proposed statistic can be

cumbersome because its computation burden and a correct threshold necessary for

estimation of confidence interval must be found empirically through simulations. Nev-

ertheless, their simulation experiments showed that confidence interval for position

of QTL is unbiased for a wide range of effects of QTL (Mangin et al., 1994).

Darvasi and Soller (1997) defined a term “resolving power” as the 95% confi-

dence interval (95CI) for position of QTL that one would obtain with infinitely many

scored genetic markers. With many simulation experiments over a wide range of

sample size (n) and allelic substitution effects (τ), the authors empirically estimated

a generalized equation (4.1) to predict resolving power of backcross (m = 1) and

intercross F2 (m = 2) populations.

95CI =
3000

mnτ 2
(4.1)

Darvasi and Soller (1997) noticed that resolving power predicted under as-

sumption of infinitely many markers was in general similar to 95CI for linkage maps

with marker spaced 10 to 20 cM apart from each other.

The empirical results of Darvasi and Soller (1997) was latter analytically con-

firmed to hold good under large sample theory (Visscher and Goddard, 2004).

Visscher and Goddard (2004) analytically derived equation (4.2), which is a gen-

eralization of equation (4.1). Equation (4.2) permits prediction of confidence interval

for position of QTL with additive effect at on trait t in backcross (x = 4) and intercross

F2 (x = 2) populations for any given coverage level 100(1− α), where 0 ≤ α ≤ 1.

100(1-α)CI =
200xz2

α/2

na2
t

(4.2)

where, for the standard normal distribution function with cumulative probability
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distribution function Φ, zα/2 satisfies Φ(zα/2) = 1 − α/2 (e.g., for α = 0.05, zα/2 =

1.96).

Roberts et al. (1999) showed evidence that standard error of position of QTL

is a function of the expected LOD statistic. Furthermore, they empirically estimated

equation (4.3) for prediction of standard error (SE) for position of QTL as a function

of expected LOD (E[LOD]) in affected sib pair design.

SE = 7.0181[E(LOD)]−0.5881 (4.3)

It is important to understand how this expression was generate before it can be

applied. A wide range of genetic parameter settings were simulated mimicking real

data. For each parameter setting, replicates were simulated and analyzed, producing

LOD profile along the simulated chromosome. Then, an averaged LOD across repli-

cates was computed for each position along the chromosome, leading to the averaged

LOD profile along the chromosome. Next, the averaged LOD for positions around

the position of the simulated QTL were used to fit a quadratic function of the form

LOD= b0 + b1 ∗ position + b2 ∗ position2. Then, the square root of the reciprocal of

the negative of the second order derivative of this function evaluated at the simu-

lated position of QTL was taken as the measure of standard error for that particular

parameter setting. Finally, equation (4.3) represents the fitted equation of SEs from

all parameter settings regressed on their respective averaged LOD at the position of

simulated QTL.

Care must me taken when estimating confidence interval for position of QTL

thought equation (4.3) because estimated LOD are just poor estimates of the expected

LOD (Roberts et al., 1999). Nevertheless, Roberts et al. (1999)’s expression is still

useful for a priori prediction of confidence interval for position of QTL with certain

hypothesized effects, and so are the expressions derived by Darvasi and Soller

(1997) and Visscher and Goddard (2004).

Roberts et al. (1999) showed that estimated position of QTL with weak effect
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may be many cM from its true position. Roberts et al. (1999) and other investigators

(for instance, Flint-Garcia et al. (2003), Cervino et al. (2005), and Mackay

and Powell (2007)) argued for to use complementary approaches, such as linkage

disequilibrium-based methods, to refine precision of estimated position of QTL.

While both Darvasi and Soller (1997) and Visscher and Goddard (2004)

have derived mathematical equations, empirically and analytically, respectively, to

predict confidence interval for position of QTL with information from effect param-

eters and sample size, Roberts et al. (1999)’s empirical equation involves only the

expected LOD. LOD summarizes all genetic information from any combination of

experimental conditions, hence allowing an investigator to assess variation of position

estimates across repeated experiments (Roberts et al., 1999).

Visscher and Goddard (2004) also studied shape of the LRT profile around

the true position of QTL. Their results showed evidences for a non-quadratic form

of LRT profile around the true position of QTL in saturate linkage maps. Therefore,

contradicting asymptotic properties of the LRT statistic, from which one would expect

a quadratic shape around the true QTL position, as it is been empirically shown in

sparse maps (Roberts et al., 1999).

In this chapter, we derive analytical formulae for prediction of length of confidence

interval for position of QTL and for prediction of shape of LRT around the true

position of QTL in multiple trait analysis, under assumptions of infinitely many

markers and large sample size. Besides, we use simulation to evaluate length and

coverage of confidence interval for position of QTL in linkage maps with distinct

saturation of markers in single and multiple trait analyses.

4.2 Prediction of length of confidence interval for

position of QTL

In this section, we derive analytical formulae for prediction of length of confidence

interval for position of QTL in multiple trait analysis assuming infinitely many mark-
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ers such that for any subject we know its genotype at any loci in the genome. With

such saturate linkage map any QTL affecting a trait is assumed to coincide with a

marker locus. For each trait t (t = 1, 2, · · · , T ), we parameterize the genotypic values

of genotypes QQ, Qq, qq as at, dt and −at, respectively (Falconer and Mackay,

1996). We assume a BC population in which a QTL may assume genotype either

QQ or Qq, each with expected frequency of 1
2
. Similarly, any genetic marker may as-

sume either genotype MM or Mm, each with expected frequency of 1
2
. The expected

genotypic variance of trait t due to a QTL is 1
4
(at− dt)2, and the expected genotypic

covariance of traits t and t′ due to a QTL is 1
4
(at − dt)(at′ − dt′) (see Appendix C).

The phenotypic measurement of trait t on subject i, yti, (i = 1, 2, · · · , n) can be

written in the following linear model:

yti = βtXi + eti (4.4)

where, Xi takes value 1
2

or −1
2
, according to whether subject i has genotype QQ

or Qq, respectively. The residual eti is assumed to be independent and identi-

cally distributed according to a normal distribution with mean zero and variance

σ2
et

. The vector of residuals ei = (e1i, e2i, · · · , eT i)′ is assumed to follow a mul-

tivariate normal distribution with mean vector zero and variance-covariance Σe.

We define X = (X1, X2, · · · , Xn), β = (β1, β2, · · · , βT )′, yi = (y1i, y2i, · · · , yT i)′,
ei = (e1i, e2i, · · · , eT i)′, Y = (y1,y2, · · · ,yn), and E = (e1, e2, · · · , en), and rewrite

model (4.4) in matrix form as:

Y = βX +E

Under the assumption that residual error and genotypic effects are independent,

the expected phenotypic variance of trait t (σ2
pt

) can be partitioned into expected

genotypic (σ2
gt

) and residual (σ2
et

) variances, i.e., σ2
pt

= σ2
gt

+ σ2
et

. Similarly, the

phenotypic covariance between traits t and t′ can be partitioned in σp
tt′

= σg
tt′

+σe
tt′

.

The heritability of trait t is defined as h2
t = σ2

gt
/(σ2

gt
+ σ2

et
). In matrix form, the

phenotypic variance-covariance (Σp) can be written as the sum of genotypic variance-
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covariance (Σg) and residual variance-covariance (Σe).
σ2
p1

σp12 . . . σp1T

σp21 σ2
p2

. . . σp2T
...

...
. . .

...

σpT1
σpT2

. . . σ2
pT

 =


σ2
g1

σg12 . . . σg1T

σg21 σ2
g2

. . . σg2T
...

...
. . .

...

σgT1
σgT2

. . . σ2
gT

+


σ2
e1

σe12 . . . σe1T

σe21 σ2
e2

. . . σe2T
...

...
. . .

...

σeT1
σeT2

. . . σ2
eT


Assuming a large population we may observe four haplotypes MQ, Mq, mQ

and mq for any marker-QTL pair. We assume that genetic marker and QTL are

linked in cis phase (i.e., in F1 generation alleles M and Q reside in the same chro-

mosome) and have recombination frequency r. Under these assumptions, the four

haplotypes have expected frequency 1−r
2

, r
2
, r

2
, 1−r

2
, respectively. For each trait t

and a given genetic marker we define the phenotypic mean of four haplotypes as

ȳtMQ
, ȳtMq

, ȳtmQ , ȳtmq . We collect means of traits for each haplotype into four

vectors Ȳ MQ = (ȳ1MQ
, ȳ2MQ

, · · · , ȳTMQ
)′, Ȳ Mq = (ȳ1Mq

, ȳ2Mq
, · · · , ȳTMq

)′, Ȳ mQ =

(ȳ1mQ , ȳ2mQ , · · · , ȳTmQ)′, and Ȳ mq = (ȳ1mq , ȳ2mq , · · · , ȳTmq)′. We also define the pheno-

typic means of two genotypes MM and Mm as ȳtM and ȳtm , respectively. We collect

means of traits for genotypes MM and Mm into vectors Ȳ M = (ȳ1M , ȳ2M , · · · , ȳTM )′

and Ȳ m = (ȳ1m , ȳ2m , · · · , ȳTm)′, respectively. Likewise, we collect phenotypic means

of traits for genotypes QQ and Qq into vectors Ȳ Q = (ȳ1Q , ȳ2Q , · · · , ȳTQ)′ and Ȳ q =

(ȳ1q , ȳ2q , · · · , ȳTq)′, respectively. The phenotypic means of marker and QTL can be

written is terms of haplotype means as follows:

Ȳ M = (1− r)Ȳ MQ + rȲ Mq

Ȳ m = (1− r)Ȳ mq + rȲ mQ

Ȳ Q = (1− r)Ȳ MQ + rȲ mQ

Ȳ q = (1− r)Ȳ mq + rȲ Mq

In single trait analysis, under the assumption of infinitely many genetic markers

the LRT statistic and F-statistic have been shown to produce very similar results when
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testing for association between genetic marker and phenotypic variation of traits. The

squared t-statistic is an alternative test, which is equivalent to F-statistic when only

two treatment means are tested, i.e., only one degree of freedom in the denominator

of F-statistic. Same relationship between squared t-statistic and F-statistic carries

over to multiple trait analysis (Rencher, 2002). Let Σ̂(Ȳ M−Ȳ m) be the estimated

variance-covariance of difference between means Ȳ M and Ȳ m, where Ȳ M is the mean

of n1 subjects with genotype MM and Ȳ m is the mean of n2 subjects with genotype

Mm. The Hotelling’s squared T-statistic (Hotelling, 1951) to test for association

between genetic marker and phenotypic variation of T traits is:

T 2
stat = (Ȳ M − Ȳ m)′Σ−1

(Ȳ M−Ȳ m)
(Ȳ M − Ȳ m)

We assume Σ(Ȳ M−Ȳ m) ≈ 4
n
Σe, which is reasonable under assumptions of infinitely

many markers (small recombination between QTL and close linked genetic marker),

small effects of QTL (Lander and Botstein, 1989; Lynch and Walsh, 1997;

Visscher and Goddard, 2004), and n1 = n2 = n
2
.

With infinitely many markers the position of QTL is set to the position of the

genetic marker with largest LRT, and confidence interval for position of QTL is

constructed with the LOD-d method (Lander and Botstein, 1989) or bootstrap

(Visscher et al., 1996). Our goal here is to derive an expression to predict length

of confidence interval for position of QTL in multiple trait analysis. The key idea to

build such confidence interval is based on the construction of a statistic (D-statistic,

as in Visscher and Goddard (2004)) as a function of the distance, l, between the

marker with largest squared T-statistic and true position of QTL. Then, to apply in-

version method (Casella and Berger, 2002) to obtain length of confidence interval

for position of QTL for any desired coverage level. We define the D-statistic as the

difference between the squared T-statistic at a genetic marker positioned l Morgans

from the true position of the QTL and squared T-statistic at the true position of
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QTL. The D-statistic is written as:

D(l) = T 2
stat(l)− T 2

stat(0)

= (Ȳ M − Ȳ m)′Σ−1
(Ȳ M−Ȳ m)

(Ȳ M − Ȳ m)− (Ȳ Q − Ȳ q)
′Σ−1

(Ȳ Q−Ȳ q)
(Ȳ Q − Ȳ q)

We assume Σ(Ȳ Q−Ȳ q) ≈
4
n
Σe. A QTL will be located off its true position if

D(l) > 0. Therefore, knowing the distribution of D(l) would allows us to analytically

or numerically solve P [D(l) > 0] = α
2

for l, and the solution l provides the boundaries

of 100(1 − α) confidence interval for position of QTL. We show (Appendix C) that

the D-statistic can be rewritten in terms of haplotype means as follows:

D(l) = nr(1− r)(Ȳ MQ − Ȳ mq)
′Σ−1

e (Ȳ Mq − Ȳ mQ)

We also show (Appendix C) that for an additive genetic model (i.e., dt = 0

for all t ∈ {1, 2, · · · , T}), E[D(l)] = −nr(1 − r)a′Σ−1
e a and V ar[D(l)] = [nr(1 −

r)]2 16
n(1−e−4l)

a′Σ−1
e a, where a = (a1, a2, · · · , aT ). To simplify, we define D?(l) =

D(l)
nr(1−r) , then E[D?(l)] = −a′Σ−1

e a and V ar[D?(l)] = 16
n(1−e−4l)

a′Σ−1
e a. Therefore,

P [D(l) > 0] = P [D?(l) > 0].

Under large sample size assumption, Z = D?(l)−E[D?(l)]√
V ar[D?(l)]

is normally distributed with

mean zero and unit variance, and P (D?(l) > 0) ≈ P (Z > − E[D?(l)]√
V ar[D?(l)]

). Therefore,

the boundaries of the 100(1− α)CI for position of QTL can be obtained as follows:

P (Z > − E[D?(l)]√
V ar[D?(l)]

) =
α

2

− E[D?(l)]√
V ar[D?(l)]

=z
α/2

a′Σ−1
e a

[ 16
n(1−e−4l)

a′Σ−1
e a]

1
2

=z
α/2

(4.5)

Solving equation (4.5) for l gives the boundaries of the confidence interval for
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position of QTL:

l = −1

4
loge(1− z2

α/2

16

na′Σ−1
e a

) (4.6)

Using the Taylor’s approximation of loge(1− x) ≈ −x, for small x, equation (4.6)

can be simplified to:

l = z2
α/2

4

na′Σ−1
e a

The length of the 100(1− α)CI, in cM, is:

(1− α)CI =100l

=400
z2
α/2

na′Σ−1
e a

Because the approximation of length of confidence interval given by equation

(4.5) does not account for the length of the chromosome in which the QTL is located,

the approximation can be biased upwards, or even worse, it can produce confidence

interval wider than the whole length of the chromosome. The upwards bias appears

because the left hand side of equation (4.5) evaluated with l at the ends of the

chromosome can return values that are smaller than zα/2. Here, we propose a method

for prediction of length of confidence interval for position of QTL that accounts for

length of chromosome. The idea is to use a truncated normal distribution rather than

a normal distribution. We take the upper limit of the truncated normal distribution

as the minimum (min) of two values returned by the left hand side of equation (4.5)

when evaluated at the ends of the chromosome. Let l1 and l2 denote the distance

from the QTL to the left and right ends of chromosome respectively. Then, the upper

limit (u) is:

u = min
l∈ {l1,l2}

{
a′Σ−1

e a

[ 16
n(1−e−4l)

a′Σ−1
e a]

1
2

}
(4.7)

We take the lower limit of the truncated normal distribution as the negative
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of the upper limit. Since the position of QTL in the chromosome has little effect

in the truncation limits we can assume the position of QTL in the middle of the

chromosome. The boundaries of the adjusted confidence interval for position of QTL

can be obtained from:

a′Σ−1
e a

[ 16
n(1−e−4l)

a′Σ−1
e a]

1
2

=zuα/2 (4.8)

where, zuα/2 is the quantile of a truncated normal distribution with mean zero and

unit variance and truncation points −u and u. Then, using similar arguments as

previously, the adjusted length of the 100(1-α)CI, in cM, is:

(1− α)CIa = 400
z2
uα/2

na′Σ−1
e a

Hereafter, we denoted the method that uses truncated normal distribution as ad-

justed method and the other method as unadjusted. Although the adjusted method is

very naive we empirically show (next sections) that it greatly improves the estimates

of length of confidence interval for position of QTL when compared to the unadjusted

method. Moreover, the adjusted method always guarantees length of confidence in-

terval for position of QTL shorter than the whole length of the chromosome.

Let ft denote the fraction of genotypic variation of trait t explained by a QTL

with additive effect only. Specifically, ft =
a2
t

4σ2
gt

. Then, after some algebra, we have

4σ2
et
/a2

t = 1/ft × (1 − h2
t )/h

2
t . Let the residual correlation between two traits be

ρ =
σe12√
σ2
e1
σ2
e2

. Therefore, the (1− α)CI for position of QTL in bivariate analysis is:

(1− α)CI =100
z2
uα/2

(1− ρ2)

n
4
(
a2
1

σ2
e1

− sign(a1a2)2ρ a1a2

σe1 σe2
+

a2
2

σ2
e2

)

=100
z2
uα/2

(1− ρ2)

n(
f1h2

1

1−h2
1
− sign(a1a2)2ρ

√
f1h2

1√
1−h2

1

√
f2h2

2√
1−h2

2

+
f2h2

2

1−h2
2
)
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where, sign(x0) = 1 if x0 ≥ 0 and sign(x0) = −1 otherwise.

4.3 Prediction of shape of LRT around the posi-

tion of QTL

In this section, we derive analytical formulae to predict shape of the LRT around

the position of QTL in multiple trait analysis assuming infinitely many markers.

Under the assumption of infinitely many markers, the likelihood function of data

under model (4.4) does not involve mixture of distributions, which greatly simplifies

our derivations. The likelihood function of model (4.4) at a genetic marker located l

Morgans apart from the position of a QTL and assuming an additive genetic model

(dt = 0 for all t ∈ {1, 2, · · · , T}), is:

L(a,Σe|Y ,X, l) =
n∏
i=1

(2π)−
T
2 |Σe|−

1
2 e−

1
2

(yi−aXi)′Σ−1
e (yi−aXi) (4.9)

The natural logarithm of the likelihood function (4.9), `(l) = loge L(a,Σe|Y ,X, l),

is:

`(l) = −nT
2

log(2π)− n

2
log(|Σe|)−

n∑
i=1

1

2
(yi − aXi)

′Σ−1
e (yi − aXi) (4.10)

The MLE of Σe and a at a given genetic marker l Morgans apart from the position

of a QTL are:

Σ̂e(l) =
1

n
(Y − âX)(Y − âX)′

â(l) =Y X ′(XX ′)−1

=Ȳ M − Ȳ m

The last equality is true under assumption of equal number of subjects with genotypes
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MM and Mm (i.e., n1 = n2 = n/2). The logarithm likelihood function (4.10)

evaluated at the MLE is:

ˆ̀(l) = −nT
2

log(2π)− n

2
log(|Σ̂e(l)|)−

n

2

The shape of LRT around the position of a QTL can be assessed by means of the

expectation E[LRT(l)] = −2E[ˆ̀(l)− ˆ̀(0)]. We show (Appendix C) that shape of LRT

around the position of a QTL can be predicted by:

E[LRT(l)] ≈n
4

(1− e−4l)a′Σ−1
e a (4.11)

For the bivariate analysis we can rewrite equation (4.11) as:

E[LRT(l)] =
n(1− e−4l)

4(1− ρ2)
(
a2

1

σ2
e1

− sign(a1a2)2ρ
a1a2

σe1σe2
+

a2
2

σ2
e2

)

=
n(1− e−4l)

(1− ρ2)
(
f1h

2
1

1− h2
1

− sign(a1a2)2ρ

√
f1h2

1

√
f2h2

2√
1− h2

1

√
1− h2

2

+
f2h

2
2

1− h2
2

)

Therefore, rather than knowing the QTL effect and environmental variation in the

bivariate analysis, if we know the heritability and the contribution of the QTL to the

genotypic variance we can estimate the shape of the LRT around the QTL.

4.4 Simulations

In this section, we use simulation to assess empirical length of confidence interval

for position of QTL constructed with the LOD-d method. In our simulations, we

varied heritability level of QTL (5, 10 and 15% of phenotypic variation), number of

traits (one, two and three traits), and marker distance (2 and 10 cM, 2-cM map and

10-cM map, respectively). In the 2-cM map, we simulated one thousand replicates

with parameters shown in Table 4.1. Each replicate consisting of one chromosome

with 41 markers evenly spaced at 2 cM apart from each other, three traits and sample
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size of 300. In the genome-wide scan we tested the presence of a putative QTL at

each genetic marker. In the 10-cM map, we simulated one thousand replicates with

parameters shown in Table 4.1. Each replicate consisting of one chromosome with 9

markers evenly spaced at 10-cM apart from each other, 300 subjects and three traits.

In the genome-wide scan we tested the presence of a putative QTL at each 1-cM

in the genome. In both experiments, 2- and 10-cM maps, we used the score-based

threshold to assess the genome-wide significance of effects of putative QTL. The score

statistic was resampled 800 times at each tested position in the genome.

Table 4.1: Parameters used in simulations to evaluate length of confidence interval
for position of QTL.

Traits
Effects of the QTL Σe

$

h2=.05 h2=0.10 h2=0.15 T1 T2 T3
T1 0.46 0.67 0.84 1 0.2 0
T2 0.46 0.67 0.84 0.2 1 -0.2
T3 0.46 0.67 0.84 0 -0.2 1

Positionb 34 34 34 – – –

$ Residual variance-covariance matrix.
b Position, in cM, of QTL from the leftmost marker in the

chromosome.
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4.5 Results

We evaluated the unadjusted (equation (4.5)) and adjusted (equation (4.8)) meth-

ods to predict length of confidence interval for position of QTL. In both methods, we

varied number of traits, heritability levels of QTL and sample sizes (Table 4.1). In

the adjusted method, the lower and upper limits of the truncated normal distribution

were obtained by equation (4.7) assuming that a QTL is located in the middle of

the simulated 80-cM long chromosome (l1 = l2 = 40/100 Morgans) and parameters

in Table 4.1. Our results show a remarkable difference between unadjusted (Figure

4.1A) and adjusted (Figure 4.1B) methods for predicting length of confidence interval

for position of QTL with heritability 5%, sample size 300 and single trait analysis.

While length of confidence interval predicted by the unadjusted method was approx-

imately 90.49 cM (wider than the whole length of the chromosome–80 cM), the the

length of confidence interval predicted by the adjusted method was approximately

23.26 cM. Table 4.2 shows empirical (from simulations) and analytical (unadjusted

and adjusted methods) predicted length of confidence interval for position of QTL.

The results clearly demonstrate that while the empirical and adjusted estimates of

length of confidence intervals are very similar for all levels of heritability and number

of traits, the empirical and unadjusted estimates can be remarkably different in single

trait analysis when a QTL has low heritability.

Graphical visualization (Figure 4.1B) facilitates understanding the role of each

factor involved in predicting the length of confidence interval for position of QTL.

First, there is a inverse relationship between percentage of phenotypic variation ex-

plained by a QTL and length of confidence interval, for any population size and

number of traits analyzed jointly. Second, length of confidence interval decreases

when population size increases, for any heritability level of QTL and any number of

traits analyzed jointly. And lastly, if a QTL has pleiotropic effects, multiple trait

analysis delivers more precise estimates of position of QTL.
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Figure 4.1: Prediction of length of 95% confidence interval for position of QTL with
infinitely many markers. Predictions are displayed as function of heritability of QTL,
sample size (n) and number of traits (T) analyzed jointly. (A) and (B) show predicted
length of confidence interval delivered by unadjusted (equation 4.5) and adjusted
methods (equation 4.8), respectively.

We also evaluated equation (4.11) to assess the shape of LRT around position of

QTL. We varied heritability levels (5 and 15%) and number of traits (one, two and

three). Two factors, number of traits and heritability of QTL, have important role in

shaping the LRT (Figures 4.2A and 4.2C). As the testing position moves away from

the position of the QTL, the LRT decays more rapidly when more traits are analyzed

jointly and/or when the QTL has higher heritability. Therefore, multiple trait analysis

and/or stronger effects can led to narrower confidence interval for position of QTL,

provided that the QTL has pleiotropic effects. This result corroborates the results

displayed in Figure 4.1. Analytical predictions of shape of LRT around the position

of QTL agree very well with the averaged LRT over 1000 replicates (Figures 4.2B and
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Table 4.2: Analytical and empirical length of 95% confidence interval for position of
QTL in single and multiple trait analyses. Three heritability (h2) were investigated.

Analysis Length h2=5% h2=10% h2=15%

Single (T1)
empirical* 26.3 (1.06) 13.3 (0.50) 7.9 (0.29)
adjusted$ 23.3 13.9 8.5

unadjusted$ 90.5 15.5 8.6

Multiple (T1,T2)
empirical 18.7 (0.72) 7.1 (0.26) 4.1 (0.14)
adjusted 17.1 8.0 4.8

unadjusted 21.9 8.1 4.8

Multiple (T1,T2,T3)
empirical 9.9 (0.36) 4.1 (0.14) **
adjusted 9.3 4.1 2.5

unadjusted 9.5 4.1 2.5

* Average of length of empirical 95% confidence intervals built with the
LOD-d method. The value of d in LOD-d was fine tuned until LOD-d
support interval of 95% of all replicates that showed significant QTL
effect included the simulated QTL. Then, length of LOD-d support in-
terval for those replicates with LOD-d support interval including the
simulated QTL were averaged. Standard error of means are in paren-
theses.

$ Adjusted and unadjusted analytical approximations of length of 95%
confidence interval.

** Even very small values of d in LOD-d led to empirical confidence inter-
val with coverage larger than 98%. Therefore, we were unable to verify
the length of empirical 95% confidence interval.
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4.2D). Therefore, our analytical predictions might be useful to predict shape of LRT

around a hypothesized QTL.

Equation (4.11) can be decomposed into two non-centrality parameters of two

chi-squared probability distribution functions. When the LRT is performed at the

position of a QTL, the LRT follows a chi-squared distribution with non-centrality pa-

rameter n
4
a′Σ−1

e a and degrees of freedom equal to difference in number of parameters

in the full and reduced models. We demonstrate that the LRT, when evaluated at

a genomic position l Morgans (Haldane distance) from the position of QTL, follows

a chi-squared distribution with non-centrality parameter n
4
e−4la′Σ−1

e a. In Figure

4.3, we show the empirical distribution of LRT at various positions in a simulated

chromosome (simulations setting of 2-cM map). These results regard the multiple

trait analysis of traits T1 and T2 with a pleiotropic QTL positioned 34 cM from the

leftmost marker in the chromosome and with heritability of 5% (see Table 4.1).
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Figure 4.2: Analytical (A and C from equation (4.11)) and averaged LRT over 1000
replicates (B and D from simulations) prediction of shape of LRT around the position
of QTL. Prediction of shape of LRT is displayed as function of heritability level of
QTL (A and B: h2=5%, C and D: h2=15%), number of traits (T), and distance (l)
from testing position and position of QTL. A linkage map with genetic markers 2 cM
apart from each other and sample size n=300 were assumed in both simulation and
analytical predictions.
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Figure 4.3: Empirical distribution of LRT at three positions in a simulated chro-
mosome. These results regard the multiple trait analysis of traits T1 and T2 with a
pleiotropic QTL of heritability 5%. From top to bottom, first row shows the histogram
(left panel) of LRT values exactly at the position of QTL, overlayed by a chi-squared
probability distribution function with two degrees of freedom and non-centrality pa-
rameter ξ = n

4
e−4la′Σ−1

e a (χ2
2(ξ)), where l is distance of the testing position from

the position of QTL, n is the sample size, a is the vector of effects of QTL and Σe

is the residual variance-covariance matrix. The right panel shows a quantile-quantile
plot of a χ2

2(ξ) distribution versus the LRT. Second row shows results of LRT 10 cM
away from the position of QTL, which leads to l = 10/100. Third row shows results
of LRT 20 cM away from the position of QTL, which leads to l = 20/100. A linkage
map with genetic markers 2 cM apart from each other and sample size n=300 were
assumed in simulations. A total of 1000 replicates were analyzed.
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Results of simulations of a QTL explaining 5% of phenotypic variation of each

trait in 2-cM and 10 cM maps are summarized in Table 4.3. There are three factors

(distance between markers, number of traits analyzed jointly, and level d in LOD-d

method) that need to be discussed from this experiment. First, for any level d in

LOD-d and number of traits, length of confidence interval for position of QTL in

10-cM map is wider than in 2-cM map. As an immediate consequence, the confidence

interval in 10-cM map has higher coverage. Figures 4.2B and 4.4 show clearly that

shape of LRT around the position of QTL in 10-cM map is flatter than in 2-cM map.

Flatness and spikiness of LRT around position of QTL impose wider and shorter

confidence intervals in 10- and 2-cM maps, respectively.

Our results provide empirical evidences that in order to keep approximately 95%

confidence interval in both 10-cM and 2-cM maps, d levels in LOD-d should be 1 and

1.5, respectively, regardless of number of traits analyzed jointly. Two distinct levels of

d for different maps is mainly due to differences in shape of LRT around the position

of QTL.

Our results provide some evidences that a region in the genome that gives ap-

proximately 95% of chance to include the QTL is not much shorter in 2-cM map as

compared to 10-cM map if single trait analysis is performed (in our simulations, the

length of confidence interval is approximately 26 cM in both 2- and 10-cM maps). On

the other hand, there seems to exist a minor gain in precision when we moved from

10- to 2-cM maps if multiple trait analysis is performed and the putative QTL has

pleiotropic effects. For instance, in our simulations, multiple trait analysis of three

traits with a small pleiotropic QTL led to length of confidence interval for position

of QTL of 14.0 and 10.5 cM, in 10- and 2-cM maps, respectively.

Within both 2- and 10-cM maps, there is major reduction in length of confidence

interval for position of pleiotropic QTL in multiple trait analysis. For instance, the

LOD-1.5 support intervals in 2-cM map were 26.3, 17.5 and 10.5 cM, according to

whether one, two and three traits were analyzed jointly, respectively.
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Table 4.3: Coverage (%) and length (cM) of LOD-d support interval for a QTL explaining 5% of phenotypic
variation of traits. Estimated position of QTL are also shown. Single and multiple trait analyses were performed
with 5% genome-wide significance level. Standard errors are in parentheses.

Map Summary Traits
LOD-d level

0.50 0.75 1 1.5 2

2-cM

1 70.2 80.0 86.5 95.0 97.9
Coverage 1,2 77.4 83.4 87.2 94.4 97.6

1,2,3 87.9 89.9 92.1 95.9 98.8
1 8.0 (0.35) 11.5 (0.49) 15.8 (0.65) 26.3 (1.06) 38.1 (1.49)

Length 1,2 6.9 (0.28) 9.0 (0.35) 11.4 (0.45) 17.5 (0.68) 24.5 (0.95)
1,2,3 5.6 (0.20) 6.6 (0.24) 7.7 (0.28) 10.5 (0.38) 13.7 (0.49)
1 36.0 (0.10) 36.1 (0.14) 36.0 (0.18) 35.5 (0.23) 35.4 (0.24)

Position 1,2 35.9 (0.08) 35.9 (0.10) 36.0 (0.11) 35.9 (0.15) 35.8 (0.17)
1,2,3 36.0 (0.05) 36.0 (0.05) 36.0 (0.06) 36.0 (0.08) 36.0 (0.09)

10-cM

1 76.7 87.6 94.3 99.2 99.7
Coverage 1,2 81.8 89.9 93.7 98.5 99.8

1,2,3 83.0 89.9 94.0 98.5 99.9
1 15.9 (0.24) 20.8 (0.32) 26.0 (0.38) 36.8 (0.55) 48.4 (0.67)

Length 1,2 12.8 (0.15) 16.7 (0.21) 20.2 (0.29) 27.0 (0.38) 34.5 (0.50)
1,2,3 9.3 (0.09) 11.7 (0.12) 14.0 (0.16) 18.4 (0.23) 22.4 (0.28)
1 35.4 (0.18) 35.5 (0.21) 35.4 (0.23) 35.2 (0.26) 35.0 (0.26)

Position 1,2 35.5 (0.15) 35.6 (0.16) 35.6 (0.17) 35.5 (0.18) 35.3 (0.20)
1,2,3 35.6 (0.09) 35.7 (0.10) 35.7 (0.11) 35.8 (0.13) 35.8 (0.13)
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4.6 Concluding remarks

We proposed analytical formulae that allow prediction of length of confidence

interval for position of QTL and prediction of shape of the LRT around the position

of QTL with infinitely many markers and multiple trait analysis using large sample

theory. Our results generalize the results of Visscher and Goddard (2004) and

they can be used to predict the length of confidence interval for position of QTL

with a hypothesized effect on multiple trait, for any given coverage probability. Our

analytical formulae can also be used to predict shape of LRT around the position of

QTL. Furthermore, we have proposed an alternative method for predicting the length

of confidence interval for position of QTL, the adjusted method. The adjusted method

accounts for the length of the chromosome in which the QTL is located and we showed

empirically that it can deliver more accurately predictions than the method with no

adjustments, especially for QTL of low heritability. Our simulation results showed

that for sample size of 300 and QTL with heritability levels of 5, 10 and 15%, there

are good agreement between length of confidence intervals empirically estimated and

analytically predicted with the adjusted method.

As in Darvasi and Soller (1997), we have shown that because of inverse rela-

tionship between length of confidence interval for position of QTL (resolving power)

and sample size, major steps towards increasing resolution of QTL mapping is pos-

sible by increasing sample size. Moreover, we demonstrate that shorter confidence

intervals can also be obtained by multiple trait analysis if the putative QTL has

pleiotropic effects. However, as pointed out by Darvasi and Soller (1997), it is

worth mentioning that for putative QTL that has power less than one, which means

that if several experiments are repeated the QTL would not be identified in all of

them, effects of QTL are overestimated. Therefore, estimated length of confidence

interval for position of QTL in real data analysis is usually shorter than predicted.

Our simulations results showed that length of 95% confidence interval in 2- and 10-

cM maps were approximately the same regardless of whether single or multiple trait
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analyses were carried out. This finding corroborates results of Roberts et al. (1999)

and Darvasi and Soller (1997) that decreasing marker distance below resolution

power of QTL without increasing sample size does not improve estimation of position

of QTL. Despite existence of empirical evidences showing little reduction in length

of confidence interval for position of QTL when number of genetic markers is larger,

use of highly saturate linkage maps, such as single nucleotide polymorphism (SNP)

maps, is certainly advantageous because much more information is conveyed with

such saturated maps. Therefore, combining such saturated linkage maps, large sample

size, well-designed experiments, linkage analysis, linkage disequilibrium analysis, and

information on gene pathways in the region surrogating the QTL might provide a

way of narrowing down the search for candidate genes regulating traits of interest

(Mackay, 2001; Cervino et al., 2005).

In the 10-cM map, we provided empirical evidences that shape of LRT is quadratic

around the position of QTL position in multiple trait analysis. Therefore, corrobo-

rating results of single trait analysis shown by Roberts et al. (1999).

In the 2-cM map, we provided analytical and empirical evidences that shape of

LRT shape is not quadratic in multiple trait analysis. Therefore, corroborating results

of single trait analysis shown by Visscher and Goddard (2004). Moreover, we

demonstrated that in the presence of QTL, the LRT in the neighborhood of the QTL

follows a chi-squared distribution with non-centrality parameter that depends on the

distance between the testing position and the position of the QTL, sample size, effects

of QTL, and structure of residual variance-covariance matrix.

We reinforce findings of Visscher and Goddard (2004) that asymptotic theory

of LRT may not hold good in highly saturate linkage maps because the number of

recombinants has a critical role in convergence. The formula of D?(l) let clear that

as the distance between marker decreases (l) goes to zero, the variance of D?(l) blows

up unless the number of recombinants (nr) is large. However, as distance between

markers decreases, the number of recombinants between any two markers will reduce

unless sample size grows very large. Therefore, since D?(l) and LRT are equivalent
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in convergence, asymptotic inference based on LRT distribution is cumbersome and

care should be taken when drawing conclusions from LRT asymptotic theory in highly

saturate linkage maps.
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Figure 4.4: Empirical (from simulations) prediction of shape of LRT around the
position of a pleiotropic QTL in 10-cM map. The prediction of shape is displayed as
function of number of traits (T) and distance (l) from testing position and position
of QTL. The pleiotropic QTL explained 5% of the phenotypic variation of each trait.
One thousand replicates with sample size n=300 were used.
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A

Introduction

A.1 Joint and conditional probabilities of two QTL

within a marker interval in backcross

Suppose two parental lines P1 and P2 with genotypes mLmLq1q1q2q2mRmR and

MLMLQ1Q1Q2Q2MRMR, respectively. Assume that the four loci are linked, i.e., they

are relatively close to each other on a chromosome. Any offspring F1 from the cross

between P1 and P2 would have genotype MLmLQ1q1Q2q2MRmR. Any subject of a

population obtained from the cross between F1 and P2 would have one of the sixteen

genotypes shown in Table A.1. Their probabilities were computed assuming that the

loci order in the chromosome is MLQ1Q2MR, and that the recombination frequencies

between ML and Q1, Q1 and Q2, Q2 and MR, and ML and MR are r1, r2, r3, and r,

respectively.
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Table A.1: Joint probabilities of markers and QTL genotypes for any subject originated from the backcross of F1

(MLmLQ1q1Q2q2MRmR) and P2 (ML Q1Q1Q2Q2MRMR), assuming the loci are linked.

Genotype Probability
MLMLQ1Q1Q2Q2MRMR

1
2
[(1− r1)(1− r2)(1− r2)− r1r2(1− c12)− r1r3(1− c13)− r2r3(1− c23) + r1r2r3(1− c)]

MLMLQ1Q1Q2Q2MRmR
1
2
[(1− r1)(1− r2)r3 + r1r3(1− c13) + r2r3(1− c23)− r1r2r3(1− c)]

MLMLQ1Q1Q2q2MRMR
1
2
[(1− r1)r2r3 − r2r3(1− c23) + r1r2r3(1− c)]

MLMLQ1Q1Q2q2MRmR
1
2
[(1− r1)r2(1− r3) + r1r2(1− c12) + r2r3(1− c23)− r1r2r3(1− c)]

MLMLQ1q1Q2Q2MRMR
1
2
[r1r2(1− r3)− r1r2(1− c12) + r1r2r3(1− c)]

MLMLQ1q1Q2Q2MRmR
1
2
[cr1r2r3]

MLMLQ1q1Q2q2MRMR
1
2
[r1(1− r2)r3 − r1r3(1− c13) + r1r2r3(1− c)]

MLMLQ1q1Q2q2MRmR
1
2
[r1(1− r2)(1− r3) + r1r2(1− c12) + r1r3(1− c13)− r1r2r3(1− c)]

MLmLQ1Q1Q2Q2MRMR
1
2
[r1(1− r2)(1− r3) + r1r2(1− c12) + r1r3(1− c13)− r1r2r3(1− c)]

MLmLQ1Q1Q2Q2MRmR
1
2
[r1(1− r2)r3 − r1r2(1− c13) + r1r2r3(1− c)]

MLmLQ1Q1Q2q2MRMR
1
2
[cr1r2r3]

MLmLQ1Q1Q2q2MRmR
1
2
[r1r2(1− r3)− r1r2(1− c12) + r1r2r3(1− c)]

MLmLQ1q1Q2Q2MRMR
1
2
[(1− r1)r2(1− r3) + r1r2(1− c12) + r2r3(1− c23)− r1r2r3(1− c)]

MLmLQ1q1Q2Q2MRmR
1
2
[(1− r1)r2r3 − r2r3(1− c23) + r1r2r3(1− c)]

MLmLQ1q1Q2q2MRMR
1
2
[(1− r1)(1− r2)r3 + r1r3(1− c13) + r2r3(1− c23)− r1r2r3(1− c)]

MLmLQ1q1Q2q2MRmR
1
2
[(1− r1)(1− r2)(1− r3)− r1r2(1− c12)− r1r3(1− c13)− r2r3(1− c23) + r1r2r3(1− c)]

The order of markers and QTL is assumed to be MLQ1Q2MR, and the recombination frequencies between MLQ1,
Q1Q2, Q2MR, and MLM2 are r1, r2, r3, and r, respectively.
c12 = number of double recombinants ML and Q1, and Q1 and Q2

r1r2
.

c13 = number of double recombinants ML and Q1, and Q2 and MR

r1r3
.

c23 = number of double recombinants Q1 and Q2, and Q2 and MR

r2r3
.

c = number of triple recombinants MLand Q1, Q1 and Q2, and Q2 and MR

r1r2r3
.
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Assuming the absence of double and triple cross-overs (c12 = c13 = c23 = c = 0),

we derived the conditional probabilities of two QTL lying within a marker interval

(Table A.2). The assumptions of no double and triple cross-overs greatly simplify the

analytical derivation of probabilities.

Table A.2: Conditional probabilities of QTL genotypes Q1Q1Q2Q2, Q1Q1Q2q2,
Q1q1Q2Q2, and Q1q1Q2q2, for any subject of a BC population, given the genotypes of
markers ML (on the left) and MR (on the right) flanking the two QTL. The assump-
tion of complete cross-over interference within a marker interval was made to obtain
this table.

Marker genotypes P (Q1Q1Q2Q2) P (Q1Q1Q2q2) P (Q1q1Q2Q2) P (Q1q1Q2q2)
MLMLMRMR 1 0 0 0
MLMLMRmR

r3
r

r2
r

0 r1
r

MLmLMRMR
r1
r

0 r2
r

r3
r

MLmLMRmR 0 0 0 1

The order of markers and QTL is assumed to be MLQ1Q2MR, and the recombi-
nation frequencies between MLQ1, Q1Q2, Q2MR, and MLM2 are r1, r2, r3, and r,
respectively.
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B

Multiple trait multiple interval

mapping of quantitative trait loci

from inbred line crosses

B.1 First and second order derivatives of the log-

arithm likelihood function

In this section, we provide analytical formulae of the first and second order deriva-

tives∗ of the logarithm of individual and overall likelihoods of MTMIM model. In what

follows, for any matrix A, its transpose is denoted by A′, its inverse by A−1, its uth

row by A[u,·], its vth column by A[·,v], and its element in row u and column v by A[u,v].

In what follows, although all the definitions and notations have already been

described throughout the chapters, we refer to them again in order to make this

section self contented. Our MTMIM statistical model for QTL inference on BC

population is a linear model, in which the value of trait t (t = 1, 2, · · · , T ), yti, for

∗We borrowed useful ideas from the works of Dwyer and Macphail (1948) and Dwyer (1967).
These papers provide many results regarding matrix derivatives as well their applications in multi-
variate analysis.



150

each ith subject (i = 1, 2, · · · , n), is regressed on variables xir (r = 1, 2, · · · ,m). These

variables are defined according to the Cockerham genetic model (Kao and Zeng,

2002; Zeng et al., 2005). For each subject i, xir takes value 1
2

or −1
2
, depending

on whether QTL r has genotype QQ or Qq, respectively. The coefficient of xir, βtr,

is called the main effect of rth QTL on trait t. The linear model also includes an

intercept µt, a subset p of epistatic effects (wtrl) between all pairwise interactions

between QTL (r and l ∈ {1, 2, · · · ,m}), and a residue eti. The residues are assumed

to be independent and identically distributed according to a normal distribution with

mean zero and variance σ2
et

. The linear model is then:

yti = µt +
m∑
r=1

βtrxir +

p∑
r<l

wtrlxirxil + eti (B.1)

For each subject i, let yi = (y1i, y2i, · · · , yT i)′ be the T by 1 vector of trait val-

ues, X i be the m + p by 1 incidence matrix, ei be the T by 1 vector of residu-

als, µ = (µ1, µ2, · · · , µT )′ be the T by 1 vector of mean. For each r and l, let

βr = (β1r, β2r, · · · , βTr)′ and wrl = (w1rl, w2rl, · · · , wTrl)′ be column vectors of main

and epistatic effects, respectively. We collect all the effect parameters into a T by

m+p matrix B = (β1,β2, · · · ,βm,w1,w2, · · · ,wp), and rewrite (B.1) in matrix form

as:

yi = µ+ BX i + ei (B.2)

where, ei ∼MVN(0,Σe) with Σe being a positive definite symmetric matrix.

We collect all s = m+p vectors of effect parameters (m main and p epistatic effect

vectors), µ and Σe of model (B.2) into a vector θ = (θ1,θ2, · · · ,θs,µ′, vect(Σe))
′,

where θb = β′b for 1 ≤ b ≤ m and θb = w′b for m < b ≤ s, and vect(Σe) is an operator

that stacks the rows of Σe into a column vector one on the top of the other and then

transposes it.

In the BC population there are two possible genotypes for each QTL, QQ and

Qq. Therefore, if there are m QTL affecting a trait, there are 2m possible genotypes
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for any subject i. Genotypes of the form Gj = Q1Q2 · · ·Qm, where Qr ∈ {QQ,Qq},
r = 1, 2, · · · ,m and j = 1, 2, · · · , 2m. We define an s by 2m matrix Z of coded

genotypes according to the Cockerham genetic model (Kao and Zeng, 2002; Zeng

et al., 2005). In the matrix Z each row b corresponds to a column of effect parameters

in B (b = 1, 2, · · · , s) and each column j, Z [·,j], represents a coded genotype Gj. If

b ≤ m, Z [b,j] = xr, otherwise Z [b,j] = xr ∗ xl, where xu (u = r or u = l) is either 1
2

or

−1
2
, depending on whether the genotype of QTL Qu in Gj is QQ or Qq, respectively.

The natural logarithm of the individual (`i) and overall likelihoods (`) are:

`i(θ|yi,M [i,·],λ) = loge(
2m∑
j=1

pij(2π)−
T
2 |Σe|−

1
2 e−

1
2

(yi−µ−BZ[·,j])
′Σ−1
e (yi−µ−BZ[·,j]))

`(θ|Y ,M ,λ) =
n∑
i=1

`i(θ|yi,M [i,·],λ)

where, pij = P (Gj|M [i,·],R,λ)† is the conditional probability of QTL genotype Gj =

Q1Q2 · · ·Qm, where Qr ∈ {QQ,Qq}, r = 1, 2, · · · ,m and j = 1, 2, · · · , 2m.

For each subject i, let πij be the posterior probability of QTL genotype Gj:

πij =
pijφ

(
yi|µ+ BZ [·,j],Σe

)
2m∑
j=1

pijφ
(
yi|µ+ BZ [·,j],Σe

)
where, φ(z|µ0,Σ0) is the probability distribution function of a multivariate normal

random variable z with mean µ0 and variance-covariance Σ0.

Auxiliary matrices : we assume b = 1, 2, · · · , s, i = 1, 2, · · · , n and j = 1, 2, · · · , 2m.

J is a T by T matrix with 1 at positions J [u,`] and J [`,u], and zero elsewhere.

I is an T by T identity matrix

†Note on computations: It is worth mentioning that for many combinations of i and j, the
probabilities pij are zero or very close to zero. Therefore, one may take advantage of sparse matrix
theory to save on computations when evaluating the expressions presented in Appendix B.
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T ij = yi − µ−BZ [·,j]

Sij = 1
2
T ijT

′
ijΣ

−1
e − 1

2
I

∂πij
∂θb

= πijΣ
−1
e

(
T ijZ [b,j] −

2m∑
u=1

πiuT iuZ [b,u]

)
∂πij
∂µ

= πijΣ
−1
e

(
T ij −

2m∑
u=1

πiuT iu

)
∂πij
∂Σe

= πijΣ
−1
e

(
Sij −

2m∑
u=1

πiuSiu

)
∂T ij
∂θ′b

= −Z [b,j]I
∂T ij
∂µ′

= −I
∂φ(yi|µ+BZ[·,j],Σe)

∂θb
= φ

(
yi|µ+ BZ [·,j],Σe

)
Σ−1
e T ijZ [b,j]

∂φ(yi|µ+BZ[·,j],Σe)
∂µ

= φ
(
yi|µ+ BZ [·,j],Σe

)
Σ−1
e T ij

∂φ(yi|µ+BZ[·,j],Σe)
∂Σe

= φ
(
yi|µ+ BZ [·,j],Σe

)
Σ−1
e Sij

First order derivatives of the logarithm of the individual likelihood :

In the following equations we short write `i(θ) = `i(θ|yi,M [i,·],λ), and we assume

b = 1, 2, · · · , s.
∂`i(θ)
∂θb

=
2m∑
j=1

πijΣ
−1
e T ijZ [b,j]

∂`i(θ)
∂µ

=
2m∑
j=1

πijΣ
−1
e T ij

∂`i(θ)
∂Σe

=
2m∑
j=1

πijΣ
−1
e Sij

Second order derivatives of the logarithm of the overall likelihood :

In the following equations we short write `(θ) = `(θ|Y ,M ,λ), and we assume
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b = 1, 2, · · · , s, k = 1, 2, · · · , s, u = 1, 2, · · · , T , and ` = 1, 2, · · · , T .

∂2`(θ)
∂θk′∂θb

= Σ−1
e

(
n∑
i=1

2m∑
j=1

πijZ [b,j]Z [k,j]T ijT
′
ij

)
Σ−1
e

−Σ−1
e

(
n∑
i=1

2m∑
j=1

πijZ [b,j]T ij

2m∑
c=1

πicZ [k,c]T
′
ic

)
Σ−1
e

−Σ−1
e

n∑
i=1

2m∑
j=1

πijZ [b,j]Z [k,j]

∂2`(θ)
∂µ′∂µ

= Σ−1
e

(
n∑
i=1

2m∑
j=1

πijT ijT
′
ij

)
Σ−1
e

−Σ−1
e

(
n∑
i=1

2m∑
j=1

πijT ij

2m∑
c=1

πicT
′
ic

)
Σ−1
e

−nΣ−1
e

∂2`(θ)
∂µ′∂θb

= Σ−1
e

(
n∑
i=1

2m∑
j=1

πijZ [b,j]T ijT
′
ij

)
Σ−1
e

−Σ−1
e

(
n∑
i=1

2m∑
j=1

πijZ [b,j]T ij

2m∑
c=1

πicT
′
ic

)
Σ−1
e

−Σ−1
e

n∑
i=1

2m∑
j=1

πijZ [b,j]

∂2`(θ)
∂Σe

[u,`]
∂θb

=
n∑
i=1

2m∑
j=1

∂πij
∂Σe

[u,`]

Σ−1
e T ijZ [b,j]

−
n∑
i=1

2m∑
j=1

πijZ [b,j]Σ
−1
e J [u,`]Σ

−1
e T ij
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∂2`(θ)
∂Σe

[u,`]
∂µ

=
n∑
i=1

2m∑
j=1

∂πij
∂Σe

[u,`]

Σ−1
e T ij

−
n∑
i=1

2m∑
j=1

πijΣ
−1
e J [u,`]Σ

−1
e T ij

∂2`(θ)
∂Σe

[u,`]
∂Σe

=
n∑
i=1

2m∑
j=1

∂πij
∂Σe

[u,`]

Σ−1
e Sij

+1
2

n∑
i=1

2m∑
j=1

πijΣ
−1
e J [u,`]Σ

−1
e

−1
2

n∑
i=1

2m∑
j=1

πijΣ
−1
e J [u,`]Σ

−1
e T ijT

′
ijΣ

−1
e

−1
2

n∑
i=1

2m∑
j=1

πijΣ
−1
e T ijT

′
ijΣ

−1
e J [u,`]Σ

−1
e

The matrices of first (∂`i(θ
∂θ

) and second (∂
2`(θ)
∂θ′∂θ

) order derivatives are:

∂`i(θ)
∂θ

=
(

∂`i(θ)
∂θ1

∂`i(θ)
∂θ2

. . . ∂`i(θ)
∂θs

| ∂`i(θ)
∂µ

| ∂`i(θ)
∂Σe

)′
=
(
C1 C2 . . . Cs | V | R

)′
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∂2`(θ)
∂θ′∂θ

=



∂2`(θ)
∂θ′1∂θ1

. . . ∂2`(θ)
∂θ′s∂θ1

...
. . .

...
∂2`(θ)
∂θ′1∂θs

. . . ∂2`(θ)
∂θ′s∂θs

| ∂2`(θ)
∂µ′∂θ1

|

| ... |
| ∂2`(θ)

∂µ′∂θs
|

∂2`(θ)
∂Σe11

∂θ1
. . . ∂2`(θ)

∂Σe
TT

∂θ1

...
. . .

...
∂2`(θ)

∂Σe11
∂θs

. . . ∂2`(θ)
∂Σe

TT
∂θs

∂2`(θ)
∂θ′1∂µ

. . . ∂2`(θ)
∂θ′s∂µ

| ∂2`(θ)
∂µ′∂µ

| ∂2`(θ)
∂Σe11

∂µ
. . . ∂2`(θ)

∂Σe
TT

∂µ

∂2`(θ)
∂θ′1∂Σe11

. . . ∂2`(θ)
∂θ′s∂Σe11

...
. . .

...
∂2`(θ)

∂θ′1∂Σe
TT

. . . ∂2`(θ)
∂θ′s∂Σe

TT

| ∂2`(θ)
∂µ′∂Σe11

|

| ... |
| ∂2`(θ)

∂µ′∂Σe
TT

|

∂2`(θ)
∂Σe11

∂Σe11

. . . ∂2`(θ)
∂Σe11

∂Σe
TT

...
. . .

...
∂2`(θ)

∂Σe
TT

∂Σe11

. . . ∂2`(θ)
∂Σe

TT
∂Σe

TT


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=



A1,1 . . . A1,s

...
. . .

...

A′1,s . . . As,s

| B1 |

| ... |
| Bs |

W 1,11 . . . W 1,TT

...
. . .

...

W s,11 . . . W s,TT

B′1 . . . B′s | K | Y 11 . . . Y TT

W ′
1,11 . . . W ′

s,11

...
. . .

...

W ′
1,TT . . . W ′

s,TT

| Y ′11 |

| ... |
| Y ′TT |

Z11,11 . . . Z11,TT

...
. . .

...

Z ′11,TT . . . ZTT,TT



=



A | B | W

B′ | K | Y

W ′ | Y ′ | Z



B.2 Score statistic

In this section, we derive the score statistic for testing any effect parameter in the

MTMIM model (B.1). Assume model (B.1) with m main and p epistatic vectors, and

collect all parameters into a column vector θ = (θ1,θ2, · · · ,θs,µ′, vect(Σe))
′, where

s = m+ p. Assume that the hypotheses of interest are H0 : θb = 0 versus H1 : θb 6= 0
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for some b ∈ {1, 2, · · · , s}. Let η = (θ1,θ2, · · · ,θb−1,θb+1, · · · ,θs,µ, vect(Σe))
′ be

a column vector of nuisance parameters. Let η̃ be the MLE of η under H0. Then

the score statistic to test H0 versus H1 can be defined as S = Û
′
V̂
−1
Û (Zou et al.,

2004; Cox and Hinkley, 1974), where U =
n∑
i=1

Û i, V̂ =
n∑
i=1

Û iÛ
′
i, and Û i is:

Û i =
∂`i (θb,η)

∂θb

∣∣∣∣
(θb=0,η=η̃)

−

∂` (θb,η)

∂θb∂η′

∣∣∣∣
(θb=0,η=η̃)

(
∂` (θb,η)

∂η∂η′

∣∣∣∣
(θb=0,η=η̃)

)−1
∂`i (θb,η)

∂η

∣∣∣∣
(θb=0,η=η̃)

After removing redundant rows and columns of the matrices W , Y , Z and R

generated due to the assumption that Σe is symmetric, and denoting the new matrices

as W̃ , Ỹ , Z̃ and R̃, respectively, the components of U i in terms of matrix notation

are:

∂`i(θb,η)
∂θb

= Cb

∂`(θb,η)
∂θb∂η′

=
(
Ab,1 . . . Ab−1,b−1 Ab+1,b+1 . . . Ab,s |Bb| W̃ b,11 . . . W̃ b,TT

)
∂`i(θb,η)
∂η′

=
(
C1 . . . Cb−1 Cb+1 . . . Cs | V | R̃

)′

∂`(θb,η)
∂η∂η′

=



Ã | B̃ | W̃

B̃
′ | K | Ỹ

W̃
′ | Ỹ ′ | Z̃


where,



158

Ã =



A1,1 . . . A1,b−1 A1,b+1 . . . A1,s

...
. . .

...
...

. . .
...

Ab−1,1 . . . Ab−1,b−1 Ab−1,b+1 . . . Ab−1,s

Ab+1,1 . . . Ab+1,b−1 Ab+1,b+1 . . . Ab+1,s

...
. . .

...
...

. . .
...

As,1 . . . As,b−1 As,b+1 . . . As,s



B̃ =



B1,1

...

Bb−1,1

Bb+1,1

...

Bs,1



W̃ =



W 1,11 W 1,12 . . . W 1,TT

... . . . . . .
...

W b−1,11 W b−1,12 . . . W b−1,TT

W b+1,11 W b+1,12 . . . W b+1,TT

... . . . . . .
...

W s,11 W s,12 . . . W s,TT


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B.3 First and second order derivatives of the ex-

pected complete-data logarithm likelihood

For a current value of θ = (θ1,θ2, · · · ,θs,µ, vect(Σe))
′, denoted θ(ν), the first

and second order derivatives of the expected complete-data logarithm likelihood are

shown bellow. We assume b = 1, 2, · · · , s, k = 1, 2, · · · , s, u = 1, 2, · · · , T and

` = 1, 2, · · · , T .

∂Qc(θ|θ(ν))
∂θb

=
n∑
i=1

2m∑
j=1

π
(ν)
ij Σ−1

e T ijZ [b,j]

∂Qc(θ|θ(ν))
∂µ

=
n∑
i=1

2m∑
j=1

π
(ν)
ij Σ−1

e T ij

∂Qc(θ|θ(ν))
∂Σe

=
n∑
i=1

2m∑
j=1

π
(ν)
ij Σ−1

e Sij

∂2Qc(θ|θ(ν))
∂θ′k∂θb

= −
n∑
i=1

2m∑
j=1

π
(ν)
ij Σ−1

e Z [b,j]Z [k,j]

∂2Qc(θ|θ(ν))
∂µ′∂µ

= −nΣ−1
e

∂2Qc(θ|θ(ν))
∂µ′∂θb

= −
n∑
i=1

2m∑
j=1

π
(ν)
ij Σ−1

e Z [b,j]

∂2Qc(θ|θ(ν))
∂Σe[u,`]

∂θb
= −

n∑
i=1

2m∑
j=1

π
(ν)
ij Z [b,j]Σ

−1
e J [u,`]Σ

−1
e T ij

∂2Qc(θ|θ(ν))
∂Σe[u,`]

∂µ
= −

n∑
i=1

2m∑
j=1

π
(ν)
ij Σ−1

e J [u,`]Σ
−1
e T ij
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∂2Qc(θ|θ(ν))
∂Σe[u,`]

∂Σe
= 1

2

n∑
i=1

2m∑
j=1

π
(ν)
ij Σ−1

e J [u,`]Σ
−1
e

−1
2

n∑
i=1

2m∑
j=1

π
(ν)
ij Σ−1

e J [u,`]Σ
−1
e T ijT

′
ijΣ

−1
e

−1
2

n∑
i=1

2m∑
j=1

π
(ν)
ij Σ−1

e T ijT
′
ijΣ

−1
e J [u,`]Σ

−1
e

B.4 Extension of score statistic to intercross F2

Our MTMIM statistical model for QTL inference in intercross F2 population is a

linear model, in which the value of trait t (t = 1, 2, · · · , T ), yti, for each ith subject (i =

1, 2, · · · , n), is regressed on the explanatory variables xir and zir (r = 1, 2, · · · ,m).

These variables are defined according to the Cockerham genetic model. For each

subject i, xir takes value 1, 0 or −1, depending on whether QTL r has genotype QQ,

Qq or qq, respectively, and zir takes value −1
2
, 1

2
or −1

2
, depending on whether QTL

r has genotype QQ, Qq or qq, respectively (Kao and Zeng, 2002). The coefficient

of xir, a
∗
rt, is the additive effect of the rth QTL, and the coefficient of zir, d

∗
rt, is

the dominance effect of the rth QTL. The linear model also includes an intercept µt,

the additive by additive epistatic effects waarkt between QTL r and k for a subset p

of all pairwise interactions, the additive by dominant epistatic effects wadrkt between

QTL r and k for a subset s of all pairwise interactions, the dominant by additive

epistatic effects wdarkt between QTL k and r for a subset u of all pairwise interactions,

the dominant by dominant epistatic effects wddrkt between QTL r and k for a subset v

of all pairwise interactions, and the residue eti, which is assumed to be independent

and identically distributed according to a normal distribution with mean zero and
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variance σ2
et

. The linear model is then:

yti = µt +
m∑
r=1

(a∗trxir + d∗trzir)

+
p∑
r<k

waatrkxirxik

+
o∑

r<k

wadtrkxirzik

+
u∑
r<k

wdatrkzirxik

+
v∑
r<k

wddtrkzirzik

+eti

(B.3)

For each subject i, let yi = (y1i, y2i, · · · , yT i)′ be the T by 1 vector of trait

values, X i be the (2m + p + o + u + v) by 1 incidence matrix, ei be the T by

1 vector of residuals, µ = (µ1, µ2, · · · , µT )′ be the T by 1 vector of mean. For

each r and k, let a∗r = (a∗1r, a
∗
2r, · · · , a∗Tr)′, waa

rk = (waa1rk, w
aa
2rk, · · · , waaTrk)′, wad

rk =

(wad1rk, w
ad
2rk, · · · , wadTrk)′, wda

rk = (wda1rk, w
da
2rk, · · · , wdaTrk)′, wdd

rk = (wdd1rk, w
dd
2rk, · · · , wddTrk)′.

We collect all the effect parameters into a T by s = 2m+ p+ o+ u+ v matrix B:

B = (a∗1,a
∗
2, · · · ,a∗m,

d∗1,d
∗
2, · · · ,d∗m,

waa
1 ,w

aa
2 , · · · ,waa

p ,

wad
1 ,w

ad
2 , · · · ,wad

o ,

wda
1 ,w

da
2 , · · · ,wda

u ,

wdd
1 ,w

dd
2 , · · · ,wdd

v )

Then, the statistical model in matrix notation, for subject i, would look like:

yi = µ+ BX i + ei (B.4)

where, ei is a random vector of length T assumed to be independent and identically
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distributed according to a multivariate normal distribution with mean vector zero

and positive definite symmetric variance-covariance matrix Σe (MVNT (0,Σe)).

We collect all s vectors of effect parameters, µ and Σe of model (B.4) into a

column vector θ = (θ1,θ2, · · · ,θs,µ, vect(Σe))
′. In the F2 population there are

three possible genotypes for each QTL, QQ, Qq and qq. Therefore, if there are

m QTL in the MTMIM model, there are 3m possible genotypes for any subject i,

genotypes of the form Gj = Q1Q2 · · ·Qm, where Qr ∈ {QQ,Qq, qq}, r = 1, 2, · · · ,m
and j = 1, 2, · · · , 3m. Let Z be an s× 3m matrix of coded genotypes, where each row

b corresponds to a column of effect parameters in B (b = 1, 2, · · · , s) and each column

j, Z [·,j], represents a coded genotype Gj. Each element of Z is defined as follows:

Z [b,j] =



xr if b ≤ m

zr if m < b ≤ 2m

xrxk if 2m < b ≤ 2m+ p

xrzk if 2m+ p < b ≤ 2m+ p+ o

zrxk if 2m+ p+ o < b ≤ 2m+ p+ o+ u

zrzk if 2m+ p+ o+ u < b ≤ s

where, xr takes value 1, 0 or −1, depending on whether the genotype of Qr in Gj

is QQ, Qq or qq, respectively, and zl (l = r and l = k) takes value −1
2
, 1

2
or −1

2
,

depending on whether the genotype of Ql in Gj is QQ, Qq or qq, respectively.

The natural logarithm of the individual likelihood (`i) is:

`i
(
θ |yi,M [i,·],λ

)
= loge

(
3m∑
j=1

pij (2π)−
T
2 |Σe|−

1
2 e−

1
2(yi−µ−BZ[·,j])

′
Σ−1
e (yi−µ−BZ[·,j])

)
(B.5)

where, pij = p(Gj|M [i,·],R,λ) is the conditional probability of QTL genotype Gj =

Q1Q2 · · ·Qm, where Qr ∈ {QQ,Qq, qq}, r = 1, 2, · · · ,m and j = 1, 2, · · · , 3m. The
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overall likelihood (`) is:

` (θ |Y ,M ,λ) =
n∑
i=1

`i
(
θ |yi,M [i,·],λ

)
(B.6)

For each subject i, let πij be the posterior probability of the QTL genotype Gj:

πij =
pijφ

(
yi|µ+ BZ [·,j],Σe

)
3m∑
j=1

pijφ
(
yi|µ+ BZ [·,j],Σe

)
where, φ(z|µ0,Σ0) is the probability density distribution of a multivariate normal

random variable z with mean µ0 and variance-covariance Σ0.

The extension of score statistic to the F2 population is straightforward, in fact, the

auxiliary matrices, expressions of first and second order derivatives of the logarithm

likelihood functions (B.5) and (B.6) with respect to the parameters in model (B.3)

can be obtained straight from the general expressions derived in section B.1. The

extension consists basically of using Z and B matrices of the F2 and substituting 2m

by 3m in the summations where needed.
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C

Prediction of length of confidence

interval for position of QTL in

multiple trait analysis

C.1 Prediction of length of confidence interval for

position of QTL

We assume that measurements are taken in T traits for each subject i of a BC

population in which a QTL may assume genotype QQ and Qq, with additive effect

at and dominance effect dt on trait t (t = 1, 2, · · · , T ), respectively ((Falconer and

Mackay, 1996)). Each QTL genotype has expected frequency of 1
2
. Similarly, any

genetic marker has either genotype MM or Mm, each with expected frequency of 1
2
.

We define a = (a1, a2, · · · , aT )′ and d = (d1, d2, · · · , dT )′.

We define a random variable Xt(G) that takes value either at or dt, according to

whether G = QQ or G = Qq, respectively, with probability 1
2

for both outcomes.

Then, expectation of Xt(G) is 1
2
(at + dt), and expectation of X2

t (G) is 1
2
(a2
t + d2

t ).

We define another variable Xt′(G) that also takes values either at′ or dt′ , according

to whether G = QQ or G = Qq, respectively, with probability 1
2

for both outcomes.
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With these two variables we obtain E[Xt(G)Xt′(G)] = 1
2
(atat′ + dtdt′), variance of

Xt(G), and covariance of Xt(G) and Xt′(G) as:

Var[Xt(G)] =E[X2
t (G)]− E2[Xt(G)]

=
1

4
(at − dt)2

Cov[Xt(G)Xt′(G)] =E[Xt(G)Xt′(G)]− E[Xt(G)]E[Xt′(G)]

=
1

4
(at − dt)(at′ − dt′)

For any pair of genetic marker and QTL, and assuming a large population we are

able to observe the four haplotypes MQ, Mq, mQ and mq. Assuming that the genetic

marker locus and the QTL are linked in cis phase (i.e., in the F1 generation M and Q

resides in the same chromosome) and have recombination frequency r, the four haplo-

types have expected frequencies 1−r
2

, r
2
, r

2
, and 1−r

2
, respectively. For each trait t and

a given genetic marker we define the phenotypic mean of the four haplotypes as ȳtMQ
,

ȳtMq
, ȳtmQ , and ȳtmq , respectively. We collect the means of all traits for each haplotype

into four vectors Ȳ MQ = (ȳ1MQ
, ȳ2MQ

, · · · , ȳTMQ
)′, Ȳ Mq = (ȳ1Mq

, ȳ2Mq
, · · · , ȳTMq

)′,

Ȳ mQ = (ȳ1mQ , ȳ2mQ , · · · , ȳTmQ)′, and Ȳ mq = (ȳ1mq , ȳ2mq , · · · , ȳTmq)′. We also define

the phenotypic means of the two genotypes MM and Mm of the genetic marker as

ȳtM and ȳtm , respectively. We collect the means of genotypes MM and Mm for all

traits into the vectors Ȳ M = (ȳ1M , ȳ2M , · · · , ȳTM )′ and Ȳ m = (ȳ1m , ȳ2m , · · · , ȳTm)′,

respectively. Likewise, we collect the phenotypic means of genotypes QQ and Qq into

the vectors Ȳ Q = (ȳ1Q , ȳ2Q , · · · , ȳTQ)′ and Ȳ q = (ȳ1q , ȳ2q , · · · , ȳTq)′, respectively. The

phenotypic means of marker and QTL can be written is terms of haplotype means as
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follows:

Ȳ M =(1− r)Ȳ MQ + rȲ Mq

Ȳ m =(1− r)Ȳ mq + rȲ mQ

Ȳ Q =(1− r)Ȳ MQ + rȲ mQ

Ȳ q =(1− r)Ȳ mq + rȲ Mq

Assuming that Σ(Ȳ M−Ȳ m) = Σ(Ȳ Q−Ȳ q) ≈
4
n
Σe, where Σe is the residual variance-

covariance matrix, we define a D(l) statistic as:

D(l) =(Ȳ M − Ȳ m)′Σ−1
(Ȳ M−Ȳ m)

(Ȳ M − Ȳ m)− (Ȳ Q − Ȳ q)
′Σ−1

(Ȳ Q−Ȳ q)
(Ȳ Q − Ȳ q)

=
n

4
[(Ȳ M − Ȳ m)′Σ−1

e (Ȳ M − Ȳ m)− (Ȳ Q − Ȳ q)
′Σ−1

e (Ȳ Q − Ȳ q)]

The statistic D(l) can be expressed in terms of means of four haplotypes in the

population as shown bellow. Let

(Ȳ M − Ȳ m)′Σ−1
e (Ȳ M − Ȳ m) =[(1− r)Ȳ MQ + rȲ Mq − (1− r)Ȳ mq − rȲ mQ]′Σ−1

e

[(1− r)Ȳ MQ + rȲ Mq − (1− r)Ȳ mq − rȲ mQ]

=[(1− r)(Ȳ MQ − Ȳ mq) + r(Ȳ Mq − Ȳ mQ)]′Σ−1
e

[(1− r)(Ȳ MQ − Ȳ mq) + r(Ȳ Mq − Ȳ mQ)]

and

(Ȳ Q − Ȳ q)
′Σ−1

e (Ȳ Q − Ȳ q) =[(1− r)Ȳ MQ + rȲ mQ − (1− r)(Ȳ mq − rȲ Mq)]
′Σ−1

e

[(1− r)Ȳ MQ + rȲ mQ − (1− r)(Ȳ mq − rȲ Mq)]

=[(1− r)(Ȳ MQ − Ȳ mq)− r(Ȳ Mq − Ȳ mQ)]′Σ−1
e

[(1− r)(Ȳ MQ − Ȳ mq)− r(Ȳ Mq − Ȳ mQ)]
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then,

D(l) =
n

4
{[(1− r)(Ȳ MQ − Ȳ mq) + r(Ȳ Mq − Ȳ mQ)]′Σ−1

e

[(1− r)(Ȳ MQ − Ȳ mq) + r(Ȳ Mq − Ȳ mQ)]

− [(1− r)(Ȳ MQ − Ȳ mq)− r(Ȳ Mq − Ȳ mQ)]′Σ−1
e

[(1− r)(Ȳ MQ − Ȳ mq)− r(Ȳ Mq − Ȳ mQ)]}

=
n

4
[4r(1− r)(Ȳ MQ − Ȳ mq)

′Σ−1
e (Ȳ Mq − Ȳ mQ)]

=nr(1− r)(Ȳ MQ − Ȳ mq)
′Σ−1

e (Ȳ Mq − Ȳ mQ)

In order to obtain the expected value of D(l), we derive some auxiliary equations

(equations (C.1), (C.2) (C.3), (C.4) and (C.5)) as follows:

E(Ȳ M − Ȳ m) =E(Ȳ M)− E(Ȳ m)

=(1− r)a+ rd− ra− (1− r)d

=(1− 2r)a− (1− 2r)d

=(1− 2r)(a− d) (C.1)

By setting r = 0 in equation (C.1), we obtain E(Ȳ Q − Ȳ q) = a − d. Under the

assumption of additivity of allelic effects (d = 0), E(Ȳ M − Ȳ m) and E(Ȳ Q − Ȳ q)

are:

E(Ȳ M − Ȳ m) =(1− 2r)a (C.2)

E(Ȳ Q − Ȳ q) =a (C.3)
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The expectation of the cross-products are:

E[(Ȳ M − Ȳ m)(Ȳ M − Ȳ m)′] ≈ 4

n
Σe + E(Ȳ M − Ȳ m)E(Ȳ M − Ȳ m)′

=
4

n
Σe + (1− 2r)2aa′ (C.4)

E[(Ȳ Q − Ȳ q)(Ȳ Q − Ȳ q)
′] ≈ 4

n
Σe + E(Ȳ Q − Ȳ q)E(Ȳ Q − Ȳ q)

′

=
4

n
Σe + aa′ (C.5)

Using equations (C.4) and (C.5), and applying some properties of trace of matrices

we obtain the desired expected value of D(l) as follows:

E[D(l)] =
n

4
{E[tr[(Ȳ M − Ȳ m)Σ−1

e (Ȳ M − Ȳ m)′]]− E[tr[(Ȳ Q − Ȳ q)Σ
−1
e (Ȳ Q − Ȳ q)

′]]}

=
n

4
{tr[Σ−1

e E[(Ȳ M − Ȳ m)(Ȳ M − Ȳ m)′]]− tr[Σ−1
e E[(Ȳ Q − Ȳ q)(Ȳ Q − Ȳ q)

′]]}

=
n

4
{tr[Σ−1

e [
4

n
Σe + E(Ȳ M − Ȳ m)E(Ȳ M − Ȳ m)′]]

− tr[Σ−1
e [

4

n
Σe + E(Ȳ Q − Ȳ q)E(Ȳ Q − Ȳ q)

′]]}

=
n

4
{tr[Σ−1

e (
4

n
Σe + (1− 2r)2aa′)]− tr[Σ−1

e (
4

n
Σe + aa′)]}

=
n

4
{ 4

n
tr[Σ−1Σe] + (1− 2r)2tr[Σ−1

e aa
′]− 4

n
tr[Σ−1

e Σe] + tr[Σ−1
e aa

′]}

=
n

4
[−4r(1− r)tr(Σ−1

e aa
′)]

=− nr(1− r)a′Σ−1
e a (C.6)

The expectation of D?(l) = D(l)
nr(1−r) is easily obtained from equation (C.6):

E[D?(l)] = −a′Σ−1
e a

In what follows, we derive auxiliary equations (equations (C.7), (C.8), (C.9),
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(C.10), (C.11), (C.13) and (C.12)) to compute the variance of D?(l):

E(ȳtMQ
− ȳtmq) =E(ȳtMQ

)− E(ȳtmq)

=at − (−dt)

=at (C.7)

E(ȳtMq
− ȳtmQ) =E(ȳtMq

)− E(ȳtmQ)

=− dt − at

=− at (C.8)

Cov(ȳtMQ
− ȳtmq , ȳt′MQ

− ȳt′mq) =
4σe

tt′

n(1− r)
(C.9)

Cov(ȳtMq
− ȳtmQ , ȳt′Mq

− ȳt′mQ) =
4σe

tt′

nr
(C.10)

In equations (C.7) and (C.8), we assumed dt = 0 (additive allelic effect). In equations

(C.9) and (C.10), σe
tt′

is the element in row t and column t′ of Σe. The last two

equations above were obtained under the assumption of Σ(Ȳ M−Ȳ m) = Σ(Ȳ Q−Ȳ q) ≈
4
n
Σe.

For any variables X,Y ,W and Z, if X and W are both independents of Y and

Z, and ρXW and ρY Z are small, then Cov(XY,WZ) ≈ Cov(XW )E(Y )E(Z) +
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E(X)(W )Cov(Y, Z), as shown bellow:

Cov(XY,WZ) =E(XYWZ)− E(XY )E(WZ)

=E(XYWZ)− E(X)E(Y )E(W )E(Z)

=E(XW )E(Y Z)− E(X)E(Y )E(W )E(Z)

=(Cov(XW ) + E(X)E(W ))E(Y Z)− E(X)E(Y )E(W )E(Z)

=Cov(XW )E(Y Z) + E(X)(W )Cov(Y, Z)

=Cov(XW )(Cov(Y Z) + E(Y )E(Z)) + E(X)(W )Cov(Y, Z)

=Cov(XW )E(Y )E(Z) + E(X)(W )Cov(Y, Z) + Cov(X,W )Cov(Y, Z)

=Cov(XW )E(Y )E(Z) + E(X)(W )Cov(Y, Z) + ρXWρY ZσXσWσY σZ

≈Cov(XW )E(Y )E(Z) + E(X)(W )Cov(Y, Z) (C.11)

Applying the results of equations (C.7), (C.8), (C.9), (C.10) and (C.11), where

in the latter we let X = (ȳjMQ
− ȳjmq), Y = (ȳkMq

− ȳkmQ), W = (ȳlMQ
− ȳlmq), and

Z = (ȳuMq
− ȳumQ), we obtain:

Cov[(ȳjMQ
− ȳjmq)(ȳkMq

− ȳkmQ), (ȳlMQ
− ȳlmq)(ȳuMq

−ȳumQ)]

≈ 4

n

(
ajalσe

ku

r
+
akauσe

jl

1− r

)
(C.12)

where, σe
jl

is the element in row j and column l of the variance covariance-matrix Σe

(likewise for σe
ku

).

Let x = (x1, x2, · · · , xT )′, y = (y1, y2, · · · , yT )′ and A be a square T by T matrix,
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then the variance of the quadratic form x′Ay is:

Var(x′Ay) =Var[
T∑
t=1

T∑
t′=1

att′xtyt′ ]

=
T∑
t=1

T∑
t′=1

Var[att′xtyt′ ]

+
T∑
t=1

T∑
t′=1

Cov[att′xtyt′ , att′xtyt′ ] (C.13)

Now, we let x = (Ȳ MQ − Ȳ mq), y = (Ȳ Mq − Ȳ mQ), att′ = σe
tt′

and A = Σ−1
e .

Then from equations (C.12) and (C.13), we obtain the variance of D?(l) as:

Var[D?(l)] = Var[(Ȳ MQ − Ȳ mq)
′Σ−1

e (Ȳ Mq − Ȳ mQ)]

=Var[
T∑
t=1

T∑
t′=1

σe
tt′

(ȳtMq
− ȳtmQ)(ȳt′Mq

− Ȳt′mQ)]

=
T∑
t=1

T∑
t′=1

Var[σe
tt′

(ȳtMq
− ȳtmQ)(ȳt′Mq

− ȳt′mQ)]

+
T∑
t=1

T∑
t′=1

Cov[σe
tt′

(ȳtMq
− ȳtmQ)(ȳt′Mq

− ȳt′mQ), σe
tt′

(ȳtMq
− ȳtmQ)(ȳt′Mq

− ȳt′mQ)]

=
4

nr(1− r)
a′Σ−1

e ΣeΣ
−1
e a

=
4

nr(1− r)
a′Σ−1

e a (C.14)

In terms of Haldane’s distance l, r = 1
2
(1 − e−2l), which leads to r(1 − r) =

1
4
(1− e−4l). Thus the variance of D?(l) in (C.14) can be rewritten as:

Var[D?(l)] =
16

n(1− e−4l)
a′Σ−1

e a
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C.2 Prediction of shape of LRT around the posi-

tion of QTL

The phenotypic value of trait t measured on subject i (i = 1, 2, · · · , n) may be

written in the following linear model:

yti = βtXi + eti (C.15)

where, Xi takes value of 1
2

or −1
2
, according to whether subject i has genotype QQ

or Qq, respectively, and eti is the residual assumed to follow a normal distribution

with mean zero and variance σ2
et

. In this model parametrization βt = at − dt, thus

separate estimates of the additive and dominance effects cannot be obtained in this

BC population without its reciprocal. Hereafter, we assume an additive model for

allelic effects (dt = 0, which leads to βt = at). We define X = (X1, X2, · · · , Xn),

yi = (y1i, y2i, · · · , yT i)′, Y = (y1,y2, · · · ,yn), ei = (e1i, e2i, · · · , eT i)′, and E =

(e1, e2, · · · , en). Then, model (C.15) in matrix form is:

Y = aX +E (C.16)

The likelihood function of data under model (C.16) is:

L(a,Σe|Y ,X, l) =
n∏
i=1

(2π)−
T
2 |Σe|−

1
2 e−

1
2

(yi−aXi)′Σ−1
e (yi−aXi)

The MLE of Σe and a for the data fitted at a given genetic marker l Morgans
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apart from the true position of the QTL are:

Σ̂e(l) =
1

n
(Y − âX)(Y − âX)′

â(l) =Y X ′(XX ′)−1

=
1

n∑
i=1

X2
i

n∑
i=1

XiY i

=
4

n

n∑
i=1

XiY i

=Ȳ M − Ȳ m

The last equality is true under the assumption that the number of subjects with

genotypes MM and Mm is equal (i.e., n1 = n2 = n/2).

The auxiliary equations (equations (C.17), (C.18), (C.19), (C.20) and (C.21)), for

obtaining the expected LRT when testing the hypothesis of the QTL located at a

genetic marker l Morgans apart from its true position versus the true hypothesis that

the QTL is located in position l = 0, are given bellow:

n∑
i=1

(yti − âtXi)(yt′i − ât′Xi) =
n∑
i=1

(ytiyt′i − ât′Xiyti − âtXiyt′i + âtât′X
2
i )

=
n∑
i=1

ytiyt′i − ât′
n∑
i=1

Xiyti − ât
n∑
i=1

Xiyt′i + âtat′
n∑
i=1

X2
i

=
n∑
i=1

ytiyt′i −
n

4
ât′ ât −

n

4
âtât′ +

n

4
âtât′

=
n∑
i=1

ytiyt′i −
n

4
ât′ ât (C.17)
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E(ytiyt′i) =E[(atXi + eti)(at′Xi + et′i)]

=E(atXiat′Xi) + E(etiat′Xi) + E(et′iatXi) + E(et′ieti)

=E(atat′X
2
i ) + E(et′ieti)

=
1

4
atat′ + σe

tt′
(C.18)

E(âtât′) =E[(ȳtM − ȳtm)(ȳt′M − ȳt′m)]

=Cov(ȳtM − ȳtm , ȳt′M − ȳt′m) + E(ȳtM − ȳtm)E(ȳt′M − ȳt′m)

≈ 4

n
σe

tt′
+ (1− 2r)2atat′ (C.19)

From equations (C.17), (C.18) and (C.19) it follows that:

E[
n∑
i=1

(yti − âtXi)(yt′i − ât′Xi)] = (n− 1)σe
tt′
− n

4
(1− e−4l)atat′ (C.20)

Assuming n− 1 ≈ n, which is reasonable under large n, equation (C.20) gives the

expected values of all elements of the estimated variance-covariance matrix, Σ̂e(l), as

follows:

E[Σ̂e(l)] =


σ2
e1

σe12 . . . σe
1T

σe21 σ2
e2

. . . σe
2T

...
...

. . .
...

σe
T2

σe
T2

. . . σ2
e
T

+
1

4
(1− e−4l)


a1

2 a1a2 . . . a1aT

a2a1 a2
2 . . . a2aT

...
...

. . .
...

aTa1 aTa2 . . . aT
2


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Assuming T = 2, it follows that the determinant of E[Σ̂e(l)] is:

∣∣∣E[Σ̂e(l)]
∣∣∣ =[σ2

e1
+

1

4
(1− e−4l)a1

2][σ2
e2

+
1

4
(1− e−4l)a2

2]− [σe12 +
1

4
(1− e−4l)a1a2]

=σ2
e1
σ2
e2

(1− ρ2
12) +

1

4
(1− e−4l)(σ2

e1
a2

2 − 2σe12a1a2 + σ2
e2
a1

2)

=|Σe(0)|+ |Σe(0)|1
4

(1− e−4l)a′Σ−1
e (0)a (C.21)

In fact, equation (C.21) holds good for any number of traits T . Therefore, equation

(C.21) allows us to derive the approximated expectation of the LRT for testing the

hypothesis that the QTL is located at a genetic marker l Morgans apart from its true

position versus the true hypothesis that the QTL is located in position l = 0. The

analytical derivation of the expected value is:

E[LRT(l)] =− 2E[ˆ̀(l)− ˆ̀(0)]

=− 2E[−n
2

log(|Σ̂e(l)|)− (−n
2

log(|Σ̂e(0)|)]

≈n(log E[|Σ̂e(l)|]− log E[|Σ̂e(0)|])

=n log(
E[|Σ̂e(l)|]
E[|Σ̂e(0)|]

)

≈n log(
|E[Σ̂e(l)]|
|E[Σ̂e(0)]|

)

=n log[1 +
1

4
(1− e−4l)a′Σ−1

e (0)a]

≈n
4

(1− e−4l)a′Σ−1
e (0)a
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D

Evaluation of the MTMIM model

by simulation study and

experimental data analysis

D.1 Complementary tables
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Table D.1: Decomposition of total power of QTL identification in scenario SII (Table
3.10) into QTL-by-trait power for 10% genome-wide significance level. Subsets (1, 0,
0), (1, 1, 0) and (1, 1, 1) contain replicates with QTL affecting T1 only, T1 and T2,
and T1, T2 and T3, respectively. We show only three subsets out of 7 subsets of the
full decomposition. These three subsets account for most of the space, besides they
are the most interesting in scenario SII.

Subsets QTL
1%a 5% 10%

1b 1.5 2 1 1.5 2 1 1.5 2
Q1 42.4 45.4 46.4 56.8 60.2 61.2 63.0 66.4 67.6
Q2 0.4 0.6 0.6 0.8 1.0 1.0 1.0 1.2 1.2

(1,0,0) Q3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Q4 0.2 0.2 0.2 0.6 0.6 0.6 0.8 0.8 0.8
Q5 44.2 48.0 48.6 55.4 59.6 60.2 59.8 64.0 64.8
Q1 2.8 2.8 2.8 3.8 3.8 3.8 4.2 4.2 4.2
Q2 76.4 80.6 81.4 81.8 85.6 86.6 82.8 86.4 87.4

(1,1,0) Q3 3.6 3.8 4.0 4.2 4.6 4.8 4.6 5.0 5.2
Q4 79.2 81.6 82.6 83.4 86.2 87.0 84.0 87.2 88.0
Q5 4.0 4.8 5.2 5.6 6.6 7.0 6.8 8.2 8.6
Q1 0.6 0.6 0.6 0.8 0.8 0.8 0.8 0.8 0.8
Q2 6.2 6.8 6.8 6.0 6.4 6.6 6.0 6.6 6.8

(1,1,1) Q3 87.6 91.0 93.0 86.0 89.8 91.8 85.2 89.0 90.8
Q4 5.4 5.6 6.0 5.8 6.0 6.4 5.8 5.8 6.4
Q5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

a Genome-wide significance level.
b 1, 1.5 and 2 are the amount subtracted from the LOD value at QTL position

to estimate the LOD-d support interval for the QTL.
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Table D.2: Decomposition of total power of QTL identification in scenario SIII (Table
3.11) into QTL-by-trait power for 10% genome-wide significance level. Subsets (1, 0),
(0, 1) and (1, 1) contain replicates with QTL affecting T1 only, T2 only, and T1 and
T2, respectively.

Subsets QTL
1%a 5% 10%

1b 1.5 2 1 1.5 2 1 1.5 2
Q1 33.6 34.6 34.6 33.4 34.0 34.2 36.2 36.8 37.0
Q2 1.4 1.4 1.6 5.0 5.0 5.2 2.8 2.8 3.0

(1,0) Q3 3.0 2.4 2.6 3.2 2.8 2.8 3.8 3.4 3.2
Q4 0.6 0.8 1.0 1.0 1.0 1.2 1.2 1.0 1.2
Q5 46.6 46.6 47.0 46.2 46.8 47.2 45.0 46.0 46.6
Q1 1.8 1.6 1.6 2.4 2.6 2.6 2.4 2.8 2.8
Q2 33.2 34.0 34.0 32.2 33.0 33.2 35.4 36.2 36.8

(0,1) Q3 3.2 3.8 3.8 3.4 3.8 4.0 3.6 4.0 4.4
Q4 48.6 48.6 49.2 48.4 48.6 49.6 48.8 49.6 50.6
Q5 1.2 1.6 1.2 1.2 1.2 0.8 1.6 1.2 0.8
Q1 28.0 29.2 29.4 27.6 28.6 29.0 29.2 30.4 30.8
Q2 28.8 29.2 29.4 28.2 28.6 28.8 28.4 29.0 29.2

(1,1) Q3 84.8 88.2 89.6 86.2 89.8 91.2 86.2 89.6 91.2
Q4 23.4 25.4 25.4 26.2 27.8 28.0 26.0 27.6 27.8
Q5 16.6 17.4 17.4 17.4 18.2 18.6 19.8 20.8 21.0

a Genome-wide significance level.
b 1, 1.5 and 2 are the amount subtracted from the LOD value at QTL position

to estimate the LOD-d support interval for the QTL.
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Table D.3: Mean of QTL positions (cM) in MIM and MTMIM models in scenario SI across significance levels (1,
5 and 10%). Range of the standard error (SE) of means is also shown.

Analysis
QTL Position

1% 5% 10%
SE

(trait) 1a 1.5 2 1 1.5 2 1 1.5 2
Q1 23 23.5 23.9 24.0 23.5 23.7 23.8 23.4 23.6 23.6 0.27-0.39

MIM
Q2 15 14.4 14.8 14.9 14.5 14.8 14.9 15.7 14.9 15.3 0.31-0.38

(T1)
Q3 45 45.5 45.2 45.6 45.5 45.2 45.6 45.6 45.3 45.6 0.32-0.42
Q4 67 67.2 66.8 66.8 66.9 66.6 66.6 66.8 66.5 66.5 0.26-0.23
Q5 53 52.9 52.8 52.8 52.7 52.5 52.4 52.6 52.4 52.5 0.30-0.36
Q1 23 23.4 23.5 23.4 23.6 23.8 23.8 23.7 23.9 23.9 0.32-0.39

MIM
Q2 15 13.4 13.5 13.5 14.1 14.1 14.4 14.1 14.1 14.4 0.29-0.36

(T2)
Q3 45 45.0 45.2 45.2 44.9 45.1 45.0 44.8 44.9 45.0 0.29-0.39
Q4 67 66.8 66.5 66.2 66.7 66.4 66.2 66.8 66.3 66.2 0.27-0.39
Q5 53 52.3 52.4 52.4 52.6 52.5 52.4 52.4 52.4 52.4 0.27-0.38
Q1 23 23.6 23.6 23.9 23.7 23.8 24.1 23.7 24.0 24.3 0.29-0.41

MIM
Q2 15 14.0 14.3 14.7 13.9 14.2 14.6 14.2 14.6 14.9 0.29-0.39

(T3)
Q3 45 44.9 45.0 45.2 44.8 44.9 45.2 44.7 44.8 45.1 0.30-0.43
Q4 67 67.0 66.8 66.5 67.1 66.9 66.7 67.3 67.1 66.8 0.28-0.39
Q5 53 52.8 52.7 52.6 52.5 52.3 52.3 52.6 52.4 52.3 0.31-0.42
Q1 23 23.61 23.67 23.67 23.59 23.73 23.74 23.62 23.76 23.75 0.13-0.17

MTMIM
Q2 15 14.13 14.18 14.20 14.15 14.21 14.22 14.15 14.20 14.22 0.15-0.16

(T1,T2,T3)
Q3 45 45.47 45.54 45.65 45.48 45.55 45.66 45.50 45.57 45.68 0.16-0.18
Q4 67 67.69 67.60 67.57 67.71 67.61 67.58 67.68 67.66 67.62 0.14-0.17
Q5 53 52.85 52.80 52.85 52.82 52.78 52.83 52.76 52.73 52.82 0.14-0.16

a 1, 1.5 and 2 are the amount subtracted from the LOD value at QTL position to estimate the LOD-d support
interval for the QTL.
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Table D.4: Mean of positions of QTL (cM) in MIM and MTMIM models in scenario SII across significance levels
(1, 5 and 10%). Range of the standard error (SE) of means is also shown.

Analysis
QTL Position

1% 5% 10%
SE

(trait) 1a 1.5 2 1 1.5 2 1 1.5 2
Q1 23 23.4 23.4 23.4 23.3 23.5 23.6 23.4 23.7 23.8 0.27-0.36

MIM
Q2 15 14.4 14.4 14.6 14.3 14.5 14.6 14.4 14.6 14.9 0.29-0.38

(T1)
Q3 45 45.5 45.3 45.4 45.5 45.3 45.3 45.4 45.4 45.2 0.32-0.42
Q4 67 67.2 66.9 66.8 67.1 66.9 66.6 67.1 66.9 66.7 0.27-0.34
Q5 53 52.9 52.7 52.5 53.0 52.9 52.7 52.9 52.9 52.8 0.28-0.39

MIM
Q2 15 14.3 14.5 14.7 14.3 14.5 14.7 14.5 14.7 14.9 0.27-0.34

(T2)
Q3 45 45.4 45.3 45.4 45.4 45.1 45.3 45.6 45.2 45.4 0.30-0.39
Q4 67 67.3 66.9 66.7 67.4 67.1 66.8 67.2 67.0 66.6 0.25-0.35

MIM (T3) Q3 45 44.9 44.8 44.9 44.7 44.9 45.0 44.7 44.7 44.8 0.35-0.47
Q1 23 23.4 23.2 23.1 23.5 23.4 23.3 23.4 23.5 23.5 0.31-0.37

MTMIM
Q2 15 14.3 14.4 14.5 14.4 14.4 14.5 14.4 14.4 14.5 0.21-0.23

(T1,T2,T3)
Q3 45 45.1 45.1 45.1 45.0 45.0 45.0 44.9 44.9 44.9 0.18-0.19
Q4 67 67.6 67.5 67.4 67.6 67.5 67.5 67.6 67.6 67.5 0.18-0.21
Q5 53 52.9 52.7 52.8 52.8 52.6 52.8 52.9 52.8 52.9 0.33-0.42

a 1, 1.5 and 2 are the amount subtracted from the LOD value at QTL position to estimate the LOD-d
support interval for the QTL.
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Table D.5: Mean of positions of QTL (cM) in MIM and MTMIM models in scenario SIII across significance levels
(1, 5 and 10%). Range of the standard error (SE) of means is also shown.

Analysis
QTL Position

1% 5% 10%
SE

(trait) 1a 1.5 2 1 1.5 2 1 1.5 2

MIM
Q1 23 22.3 22.1 22.1 22.1 21.9 21.9 22.1 22.1 22.0 0.18-0.23

(T1)
Q3 45 44.2 44.2 44.2 44.5 44.4 44.2 44.3 44.3 44.1 0.27-0.35
Q5 53 52.5 53.1 53.1 52.3 52.8 52.8 52.4 52.9 52.9 0.25-0.28

MIM
Q2 33 34.9 35.3 35.5 34.9 35.6 35.7 34.9 35.5 35.6 0.21-0.30

(T2)
Q3 45 43.9 44.1 43.9 43.7 43.8 43.8 43.8 43.8 43.8 0.30-0.37
Q4 38 37.1 36.8 36.4 36.9 36.4 36.2 36.9 36.5 36.2 0.21-0.30
Q1 23 23.1 22.9 22.9 23.7 23.6 23.5 23.2 23.1 23.0 0.20-0.25

MTMIM
Q2 33 33.4 33.5 33.5 33.7 33.7 33.7 33.5 33.6 33.7 0.21-0.27

(T1,T2)
Q3 45 44.5 44.6 44.6 44.5 44.6 44.5 44.4 44.6 44.5 0.19-0.23
Q4 38 38.8 38.4 38.4 38.8 38.6 38.6 38.6 38.5 38.5 0.21-0.27
Q5 53 51.3 51.3 51.4 51.3 51.5 51.7 51.4 51.7 51.8 0.26-0.29

a 1, 1.5 and 2 are the amount subtracted from the LOD value at QTL position to estimate the LOD-d
support interval for the QTL.
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Table D.6: Mean length (cM) of LOD-d support interval for position of QTL in MIM and MTMIM models in
scenario SI across significance levels (1, 5 and 10%). Range of the standard error (SE) of means is also shown.

Analysis
QTL

1% 5% 10%
SE

(trait) 1a 1.5 2 1 1.5 2 1 1.5 2
Q1 18.9 25.7 32.4 19.9 27.2 34.7 20.7 28.0 35.7 0.35-0.64

MIM
Q2 19.2 25.1 30.5 20.6 27.3 34.0 21.3 28.4 35.5 0.37-0.74

(T1)
Q3 19.9 27.9 35.4 21.3 29.5 38.0 22.3 31.1 39.8 0.42-0.78
Q4 18.2 23.7 29.0 19.4 25.7 31.8 19.9 26.4 33.4 0.33-0.74
Q5 19.8 27.1 33.9 20.9 28.7 36.3 21.3 29.1 36.4 0.40-0.63
Q1 20.0 26.9 34.2 21.3 29.0 36.4 22.6 30.7 38.4 0.40-0.69

MIM
Q2 19.5 25.9 31.6 20.9 27.6 34.2 21.6 28.4 35.5 0.39-0.74

(T2)
Q3 20.2 27.4 35.3 21.3 29.6 38.5 21.9 30.4 39.2 0.39-0.77
Q4 19.1 24.6 30.0 19.9 25.9 32.1 20.2 26.6 33.2 0.38-0.67
Q5 17.5 26.3 33.2 20.4 28.1 35.4 21.6 29.6 36.7 0.37-0.66
Q1 19.9 26.6 33.2 21.2 28.8 36.0 21.7 29.9 37.2 0.41-0.68

MIM
Q2 19.2 24.6 30.2 20.5 26.5 33.4 21.3 27.7 34.9 0.36-0.70

(T3)
Q3 20.9 28.8 36.8 22.1 30.5 39.4 22.4 31.2 40.3 0.43-0.76
Q4 18.6 23.8 29.3 19.3 25.1 31.5 19.6 27.8 33.3 0.35-0.69
Q5 20.2 26.5 32.8 21.5 28.8 35.5 21.9 29.5 36.4 0.41-0.63
Q1 12.38 15.88 19.00 12.42 16.04 19.13 12.40 16.01 19.11 0.17-0.30

MTMIM
Q2 12.60 16.11 19.54 12.56 16.04 19.47 12.55 16.02 19.45 0.17-0.27

(T1,T2,T3)
Q3 12.41 15.90 19.31 12.44 15.90 19.36 12.51 15.98 19.44 0.15-0.28
Q4 12.09 15.31 18.09 12.13 15.35 18.18 12.21 15.34 18.19 0.15-0.23
Q5 12.32 15.66 18.73 12.30 15.62 18.17 12.25 15.58 18.65 0.15-0.25

a 1, 1.5 and 2 are the amount subtracted from the LOD value at QTL position to estimate the LOD-d
support interval for the QTL.
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Table D.7: Mean length (cM) of LOD-d support interval for position of QTL in MIM and MTMIM models in
scenario SII across significance levels (1, 5 and 10%). Range of the standard error (SE) of means is also shown.

Analysis
QTL

1% 5% 10%
SE

(trait) 1a 1.5 2 1 1.5 2 1 1.5 2
Q1 19.9 27.0 33.9 21.2 28.5 36.2 21.7 29.4 37.3 0.38-0.66

MIM
Q2 19.3 25.1 30.4 20.6 26.8 33.3 21.1 27.7 34.9 0.37-0.73

(T1)
Q3 20.9 28.5 36.3 23.1 31.9 40.4 23.7 33.0 41.9 0.42-0.81
Q4 18.7 24.2 30.3 19.8 26.1 33.6 20.2 26.7 35.4 0.35-0.79
Q5 18.9 25.9 32.8 20.6 27.9 35.6 21.3 28.7 36.4 0.37-0.68

MIM
Q2 19.6 25.5 30.7 20.6 26.9 32.7 21.0 27.9 34.1 0.35-0.67

(T2)
Q3 20.9 27.8 35.4 21.8 29.2 37.7 22.3 29.8 39.1 0.39-0.64
Q4 18.3 24.0 29.7 19.2 25.3 31.3 19.6 26.1 32.6 0.30-0.67

MIM (T3) Q3 22.2 29.8 38.9 24.5 33.8 44.1 25.3 35.3 46.2 0.53-0.88
Q1 17.9 23.6 29.6 19.2 25.5 32.0 20.0 26.4 33.1 0.36-0.57

MTMIM
Q2 15.9 20.3 24.7 16.1 20.9 25.2 16.2 21.0 25.3 0.24-0.39

(T1, T2, T3)
Q3 13.1 17.1 20.7 13.1 17.1 20.7 13.1 17.2 20.7 0.18-0.33
Q4 15.4 19.9 23.7 15.6 20.3 23.9 15.6 20.3 24.2 0.23-0.39
Q5 17.7 23.5 29.1 18.9 25.1 31.4 19.7 26.1 32.6 0.36-0.60

a 1, 1.5 and 2 are the amount subtracted from the LOD value at QTL position to estimate the
LOD-d support interval for the QTL.
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Table D.8: Mean length (cM) of LOD-d support interval for position of QTL in MIM and MTMIM models in
scenario SIII across significance levels (1, 5 and 10%). Range of the standard error (SE) of means is also shown.

Analysis
QTL

1% 5% 10%
SE

(trait) 1a 1.5 2 1 1.5 2 1 1.5 2

MIM
Q1 18.8 24.7 31.6 19.8 26.1 33.9 20.2 26.8 34.9 0.34-0.74

(T1)
Q3 19.7 26.7 33.9 20.7 28.5 36.8 21.1 29.1 37.8 0.37-0.74
Q5 19.1 25.8 32.9 19.8 27.0 34.8 20.4 27.8 35.9 0.35-0.75

MIM
Q2 19.2 25.9 33.3 20.3 28.3 36.5 20.6 28.9 37.5 0.40-0.89

(T2)
Q3 20.0 26.8 34.2 21.8 29.0 37.5 22.1 29.6 38.4 0.39-0.77
Q4 18.1 25.0 32.5 19.2 26.4 34.9 19.5 26.9 35.8 0.35-0.75
Q1 26.7 36.2 46.0 28.1 37.9 47.8 28.8 38.4 47.6 1.10-1.45

MTMIM
Q2 26.4 37.1 46.4 28.4 39.4 48.7 28.1 39.4 48.7 1.12-1.44

(T1,T2)
Q3 16.7 22.5 28.3 16.9 22.8 28.7 16.8 22.9 28.8 0.32-0.65
Q4 26.8 38.2 48.9 26.6 37.8 48.2 26.7 37.3 47.6 0.92-1.26
Q5 29.7 41.1 51.3 29.5 40.5 50.4 28.9 39.9 49.5 1.06-1.37

a 1, 1.5 and 2 are the amount subtracted from the LOD value at QTL position to estimate
the LOD-d support interval for the QTL.
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Table D.9: Coverage (%) of LOD-d support interval for position of QTL in MIM and
MTMIM models in scenario SI.

Analysis
QTL

1%a 5% 10%
(trait) 1b 1.5 2 1 1.5 2 1 1.5 2

Q1 91.9 97.1 99.4 92.9 97.4 99.3 92.9 97.9 100

MIM
Q2 91.0 95.5 96.4 91.5 96.2 97.2 92.3 96.3 97.6

(T1)
Q3 90.0 96.6 98.6 91.5 96.7 98.8 90.9 96.7 98.5
Q4 91.8 96.8 99.1 92.7 96.7 98.8 92.5 96.5 98.5
Q5 90.6 95.2 96.9 91.5 96.5 98.2 91.3 96.4 98.2
Q1 94.9 97.9 98.8 94.8 99.3 100 95.9 99.6 100

MIM
Q2 93.4 96.7 97.9 93.7 96.9 98.3 93.4 96.6 98.2

(T2)
Q3 91.4 94.3 97.9 91.7 95.0 98.3 91.8 94.9 98.2
Q4 90.9 97.1 97.9 91.0 97.6 98.3 90.8 97.3 98.0
Q5 91.2 96.6 98.9 90.7 96.1 99.3 92.2 96.7 99.4
Q1 87.1 96.2 98.2 89.3 96.5 98.8 90.3 96.9 99.1

MIM
Q2 93.2 97.5 99.1 93.7 97.3 98.3 94.1 97.5 98.7

(T3)
Q3 86.7 95.1 97.4 87.2 95.3 97.6 87.4 94.6 96.9
Q4 89.5 95.6 97.9 92.1 96.7 98.3 92.7 96.9 98.5
Q5 90.1 97.3 99.4 94.1 98.1 100 93.8 97.8 100
Q1 96.6 99.2 99.4 96.4 99.4 99.6 96.4 99.4 99.6

MTMIM
Q2 97.0 98.0 98.6 97.0 98.0 98.6 96.8 98.2 98.8

(T1,T2,T3)
Q3 94.8 97.6 98.9 94.8 97.6 99.0 94.6 97.4 98.8
Q4 94.0 98.8 99.4 94.0 98.8 99.4 93.8 99.0 99.4
Q5 96.4 98.6 99.6 96.4 98.6 99.6 96.0 98.6 99.6

a Genome-wide significance level.
b 1, 1.5 and 2 are the amount subtracted from the LOD value at QTL position to

estimate the LOD-d support interval for the QTL.
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Table D.10: Coverage (%) of LOD-d support interval for position of QTL in MIM
and MTMIM models in scenario SII.

Analysis
QTL

1%a 5% 10%
(trait) 1b 1.5 2 1 1.5 2 1 1.5 2

Q1 90.1 95.6 98.6 91.1 95.9 99.3 91.4 95.7 99.3

MIM
Q2 91.9 96.5 98.4 92.3 96.8 98.0 92.2 95.8 98.1

(T1)
Q3 88.8 95.5 97.3 89.6 96.2 98.1 88.8 95.8 98.2
Q4 92.7 96.9 98.8 92.2 95.6 98.5 92.2 95.8 98.4
Q5 93.1 98.5 99.7 93.3 98.6 100 93.4 98.8 99.6

MIM
Q2 92.9 97.9 98.9 92.5 97.5 98.6 92.6 97.4 98.7

(T2)
Q3 90.3 95.5 98.0 90.4 95.8 98.2 90.6 95.9 98.3
Q4 93.9 97.7 99.8 94.6 97.8 99.6 95.3 98.1 99.6

MIM (T3) Q3 89.1 94.0 96.8 89.6 94.1 96.5 88.8 94.6 96.8
Q1 87.4 94.4 96.8 88.9 95.4 97.3 89.5 95.6 97.6

MTMIM
Q2 92.2 98.0 98.9 93.0 97.7 98.9 93.1 97.8 98.9

(T1,T2,T3)
Q3 93.4 97.0 99.4 92.8 97.0 99.4 92.8 97.2 99.4
Q4 94.4 97.3 98.9 94.6 97.7 98.9 94.2 97.5 98.9
Q5 88.4 97.3 99.7 89.4 97.8 99.7 89.5 97.8 99.8

a Genome-wide significance level.
b 1, 1.5 and 2 are the amount subtracted from the LOD value at QTL position to

estimate the LOD-d support interval for the QTL.
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Table D.11: Coverage (%) of LOD-d support interval for position of QTL in MIM
and MTMIM models in scenario SIII.

Analysis
QTL

1%a 5% 10%
(trait) 1b 1.5 2 1 1.5 2 1 1.5 2

MIM
Q1 97.9 99.4 99.7 97.9 99.5 99.7 98.0 99.8 100

(T1)
Q3 92.1 95.9 97.9 92.1 96.0 98.2 92.1 96.2 98.5
Q5 95.2 99.4 99.4 95.2 99.2 99.2 95.4 99.3 99.3

MIM
Q2 96.0 98.5 99.4 95.2 98.7 99.2 94.9 98.5 98.9

(T2)
Q3 92.2 96.5 98.5 92.8 96.3 98.3 92.4 96.2 98.1
Q4 95.1 96.9 98.9 95.5 97.7 99.3 95.6 97.8 99.3
Q1 97.8 100 100 98.8 100 100 97.9 100 100

MTMIM
Q2 100 100 100 100 100 100 100 100 100

(T1,T2)
Q3 93.8 97.32 98.9 93.7 97.4 98.9 93.9 97.4 99.2
Q4 98.9 100 100 98.4 100 100 97.4 100 100
Q5 100 100 100 97.6 99.7 100 97.1 99.4 100

a Genome-wide significance level.
b 1, 1.5 and 2 are the amount subtracted from the LOD value at QTL position

to estimate the LOD-d support interval for the QTL.
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Table D.12: Mean of effect of QTL in MIM and MTMIM models in scenario SI.

Analysis
QTL

1%a 5% 10%
(trait) 1b 1.5 2 1 1.5 2 1 1.5 2

Q1 0.60c 0.60 0.60 0.57 0.57 0.57 0.57 0.57 0.57

MIM
Q2 0.60 0.60 0.60 0.57 0.57 0.57 0.56 0.56 0.56

(T1)
Q3 0.59 0.59 0.60 0.57 0.57 0.57 0.56 0.56 0.55
Q4 0.58 0.59 0.59 0.56 0.56 0.56 0.55 0.55 0.55
Q5 0.59 0.59 0.59 0.56 0.56 0.56 0.55 0.56 0.56
Q1 0.59 0.59 0.59 0.57 0.56 0.56 0.55 0.55 0.55

MIM
Q2 0.59 0.59 0.59 0.56 0.56 0.56 0.55 0.56 0.56

(T2)
Q3 0.60 0.60 0.60 0.57 0.57 0.57 0.56 0.56 0.56
Q4 0.59 0.59 0.59 0.56 0.56 0.56 0.55 0.55 0.55
Q5 0.59 0.59 0.59 0.57 0.57 0.57 0.56 0.55 0.56
Q1 0.59 0.59 0.59 0.56 0.57 0.57 0.56 0.56 0.56

MIM
Q2 0.60 0.60 0.60 0.56 0.57 0.57 0.55 0.55 0.55

(T3)
Q3 0.59 0.59 0.59 0.56 0.56 0.56 0.55 0.55 0.55
Q4 0.59 0.59 0.59 0.56 0.56 0.56 0.55 0.55 0.55
Q5 0.60 0.60 0.60 0.56 0.56 0.56 0.56 0.56 0.56

Q1 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.51 0.51

MTMIM
Q2 0.51 0.52 0.51 0.51 0.51 0.51 0.51 0.51 0.51

(T1)
Q3 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52
Q4 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51
Q5 0.52 0.52 0.52 0.51 0.51 0.51 0.52 0.52 0.51
Q1 0.51 0.51 0.51 0.50 0.50 0.50 0.50 0.50 0.50

MTMIM
Q2 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51

(T2)
Q3 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52
Q4 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.50 0.50
Q5 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52
Q1 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52

MTMIM
Q2 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51

(T3)
Q3 0.51 0.52 0.51 0.51 0.51 0.51 0.51 0.51 0.51
Q4 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.52 0.51
Q5 0.52 0.52 0.52 0.52 0.52 0.52 0.53 0.53 0.52

a Genome-wide significance level.
b 1, 1.5 and 2 are the amount subtracted from the LOD value at QTL position

to estimate the LOD-d support interval for the QTL.
c The standard error of the means in this table ranges from 0.005 to 0.008.
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Table D.13: Mean of effect of QTL in MIM and MTMIM models in scenario SII.

Analysis
QTL

1%a 5% 10%
(trait) 1b 1.5 2 1 1.5 2 1 1.5 2

Q1 0.59c 0.59 0.59 0.57 0.57 0.57 0.56 0.56 0.56

MIM
Q2 0.60 0.60 0.60 0.56 0.56 0.56 0.55 0.56 0.56

(T1)
Q3 0.58 0.58 0.58 0.55 0.55 0.55 0.54 0.54 0.54
Q4 0.60 0.60 0.60 0.56 0.56 0.56 0.55 0.55 0.55
Q5 0.59 0.59 0.60 0.56 0.56 0.57 0.55 0.55 0.56

MIM
Q2 0.59 0.59 0.59 0.57 0.57 0.57 0.57 0.57 0.57

(T2)
Q3 0.59 0.59 0.59 0.57 0.58 0.58 0.57 0.57 0.57
Q4 0.60 0.60 0.60 0.58 0.58 0.58 0.58 0.57 0.57

MIM (T3) Q3 0.54 0.54 0.54 0.51 0.51 0.51 0.51 0.51 0.51

Q1 0.60 0.60 0.60 0.58 0.58 0.58 0.56 0.56 0.56

MTMIM
Q2 0.53 0.53 0.53 0.52 0.52 0.52 0.52 0.52 0.52

(T1)
Q3 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.50
Q4 0.54 0.54 0.54 0.53 0.53 0.53 0.52 0.52 0.52
Q5 0.60 0.60 0.60 0.58 0.58 0.58 0.56 0.56 0.56
Q1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MTMIM
Q2 0.56 0.55 0.55 0.55 0.55 0.55 0.55 0.54 0.54

(T2)
Q3 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54
Q4 0.56 0.56 0.56 0.55 0.55 0.55 0.55 0.55 0.55
Q5 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q1 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MTMIM
Q2 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01

(T3)
Q3 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.43
Q4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

a Genome-wide significance level.
b 1, 1.5 and 2 are the amount subtracted from the LOD value at QTL position

to estimate the LOD-d support interval for the QTL.
c The standard error of the means in this table ranges from 0.003 to 0.007.
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Table D.14: Mean of effect of QTL in MIM and MTMIM models in scenario SIII.

Analysis
QTL

1%a 5% 10%
(trait) 1b 1.5 2 1 1.5 2 1 1.5 2

MIM
Q1 0.60c 0.60 0.60 0.58 0.58 0.58 0.57 0.57 0.57

(T1)
Q3 0.60 0.60 0.60 0.58 0.58 0.58 0.57 0.57 0.57
Q5 0.60 0.60 0.60 0.58 0.58 0.58 0.58 0.58 0.58

MIM
Q2 0.61 0.61 0.61 0.59 0.59 0.59 0.58 0.58 0.58

(T2)
Q3 0.60 0.60 0.60 0.57 0.58 0.57 0.57 0.57 0.57
Q4 0.61 0.61 0.61 0.58 0.58 0.58 0.58 0.58 0.58

Q1 0.56 0.57 0.57 0.55 0.55 0.55 0.57 0.56 0.57

MTMIM
Q2 0.24 0.23 0.24 0.26 0.25 0.25 0.21 0.20 0.20

(T1)
Q3 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.52 0.52
Q4 0.14 0.15 0.15 0.13 0.14 0.13 0.11 0.13 0.12
Q5 0.58 0.58 0.58 0.58 0.59 0.59 0.58 0.58 0.59
Q1 0.25 0.25 0.25 0.25 0.25 0.25 0.24 0.23 0.24

MTMIM
Q2 0.57 0.57 0.57 0.53 0.53 0.53 0.55 0.55 0.55

(T2)
Q3 0.54 0.54 0.54 0.54 0.54 0.54 0.53 0.54 0.54
Q4 0.59 0.59 0.59 0.59 0.59 0.58 0.59 0.60 0.58
Q5 0.11 0.11 0.11 0.10 0.10 0.11 0.09 0.09 0.09

a Genome-wide significance level.
b 1, 1.5 and 2 are the amount subtracted from the LOD value at QTL position

to estimate the LOD-d support interval for the QTL.
c The standard error of the means in this table ranges from 0.007 to 0.019.
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Table D.15: Frequency of rejection of pleiotropy model for each pleiotropic QTL in
MTMIM model in scenario SIII. The AICc and LRT criteria are compared.

Criterion QTL
1%a 5% 10%

1b 1.5 2 1 1.5 2 1 1.5 2
Q1 0.56 0.55 0.55 0.52 0.51 0.51 0.45 0.45 0.45
Q2 0.50 0.49 0.49 0.47 0.46 0.46 0.45 0.45 0.44

AICc Q3 0.19 0.19 0.19 0.17 0.17 0.17 0.16 0.15 0.15
Q4 0.67 0.66 0.66 0.61 0.60 0.60 0.59 0.54 0.54
Q5 0.74 0.73 0.73 0.71 0.70 0.70 0.65 0.66 0.66
Q1 0.41 0.40 0.40 0.41 0.41 0.41 0.39 0.38 0.38
Q2 0.34 0.33 0.33 0.35 0.34 0.34 0.36 0.36 0.36

LRTc Q3 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.04
Q4 0.49 0.48 0.47 0.43 0.42 0.42 0.45 0.41 0.41
Q5 0.54 0.54 0.54 0.52 0.52 0.51 0.46 0.48 0.48

a Genome-wide significance level.
b 1, 1.5 and 2 are the amount subtracted from the LOD value at QTL position to

estimate the LOD-d support interval for the QTL.
c The critical value for the LRT at 5% significance level was obtained from the χ2

probability distribution with one degree of freedom.


