ABSTRACT

LIU, PENG. A Stochastic Volatility Model and Inference for the Term Structure of Interest
Rates. (Under the direction of Professor Peter Bloomfield).

This thesis builds a stochastic volatility model for the term structure of interest
rates, which is also known as the dynamics of the yield curve. The main purpose of the
model is to propose a parsimonious and plausible approach to capture some characteristics
that conform to some empirical evidence and conventions. Eventually, the development
reaches a class of multivariate stochastic volatility models, which is flexible, extensible,
providing the existence of an inexpensive inference approach.

The thesis points out some inconsistency among conventions and practice. First,
yield curves and their related curves are conventionally smooth. But in the literature these
curves are modeled as random functions, and the co-movement of points on the curve
are usually assumed to be governed by some covariance structures that do not generate
smooth random curves. Second, it is commonly agreed that constant volatility is not a
sound assumption, but stochastic volatilities have not been commonly considered in related
studies.

Regarding the above problems, we propose a multiplicative factor stochastic volatil-
ity model, which has a relatively simple structure. Though it is apparently simple, the
inference is not, because of the presence of stochastic volatilities. We first study the
sequential-Monte-Carlo-based maximum likelihood approach, which extends the perspec-
tives of Gaussian linear state-space modeling. We propose a systematic procedure that
guides the inference based on this approach. In addition, we also propose a saddlepoint ap-
proximation approach, which integrates out states. Then the state propagates by an exact
Gaussian approximation. The approximation works reasonably well for univariate models.
Moreover, it works even better for the multivariate model that we propose, because we can

enjoy the asymptotic property of the saddlepoint approximation.
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Chapter 1

Overview

Term structure of interest rate modeling, started probably by Vasicek (1977), is
an active topic at least in two disciplines: econometrics and financial mathematics. The
major concern of an econometrician is to understand the dynamics of a collection of interest
rates. The concern of a financial mathematician is to price derivatives whose underlying
assets are interest rates. The topic may also be of interest to physicists, electrical engineers,
and others, because theoretical or practical tools from those disciplines might be applicable.
The topic is rather fascinating to statisticians, especially those who are working on time
series, because it has roots in classical time series analysis, and it leads to current study on
nonlinear and non-Gaussian systems.

The object to be modeled is a curve evolving over time, as illustrated in Fig-
ure (1.1). This curve itself is not naturally analytical. Only a finite number of points on the
curve can be observed, so the curve is not observable completely. There are different ways
of describing the curve. For example, the forward rate curve is a type of derived curve.
Moreover, this curve and its dynamics have been modeled under two measures, physical
and risk-neutral. In another word, modeling under the risk-neutral measure must neutral-
ize the differences, which exist under the physical measure, among expected returns due to
risks. Among empirical studies, we find that two stylized facts are interesting to us. The

first stylized fact is that the first difference of a time series of a yield with a fixed time-to-
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Figure 1.1: Dynamics of Static Yield Curves. The left plots the Constant Maturity Rates,

sampled every ten observations, from October 1st, 1993, to May 10th, 2006. The right plots
the corresponding semi-annual forward rates. Source: http://research.stlouisfed.org

maturity presents the so called volatility clustering phenomenon. The second is that those
differenced series with different time-to-maturity present correlations among them. The
correlation deceases if their time-to-maturity apart further from each other.

Unfortunately those stylized facts are sometimes ignored or misused in modeling
and inferential practice. For example volatility clustering is sometimes ignored, such that
complicated variance modeling can be avoided. Moreover, correlation structures are often

picked due to their convenience in computation and presentation, which often does not
reveal what the stylized fact attempts to tell. These are two mismatches that we have seen
in the literature. Regarding such problems, we are interested in the following questions.
First, what are the characteristics of the curve? Is the curve itself random, or static but
observed with errors? Is the curve smooth? And so on. Second, by allowing stochastic
volatilities along the physical time axis, how complicated is the process? There are many
other important issues, such as mean reversion and unit roots. But it is unrealistic to do
many things at the same time. We focus on those two issues, because by such, we may
decompose a complex system in two orthogonal directions, and the remaining issues will fit

naturally into the framework. This perspective may be introduced by Santa-Clara (2001) in



terms of solving a stochastic partial differential equation. The perspective is itself inherited
from the string model perspective, which was initiated by Kennedy (1994; 1997).

We consider term structure modeling as a motivation, and propose a multivariate
stochastic volatility model that is of our interest, which is partially inspired by the string
model proposed by Kimmel (2004). We will ultimately focus on making inference, based on
observed time series, about the unknown parameters in the model. Therefore, our model
is a discrete time multivariate stochastic volatility model. The model is different from
existing ones. And we will reveal the appealing properties of the model that will lead to a
non-simulation-based inference.

The rest of the thesis consists of five chapters. Chapter 2 serves as a short presen-
tation, about canonical forms of term structure models, and how they are used in practice.
In this chapter, we bring up the discrete time multivariate stochastic volatility model that
we will propose. Chapter 3 refers to some empirical results and practice, in order to point
out the disagreement among conventions and practice, from the string model perspective.
By such, we pursue a more specific form of the models that we propose in Chapter 2. More
specifically, the covariance functions that have been specified in the string model literature
usually violate the smoothness convention on static yield curves. In addition, effects from
stochastic volatilities are often ignored during the estimation of the covariance functions.
Those two issues motivate our proposal of two types of covariance structures, and incorpo-
rate stochastic volatilities. Two covariance (or correlation) structures are also introduced
in the chapter. By such, we assume that increments of static yield curves are Gaussian,
conditionally on the source of stochastic volatilities.

Chapter 4 starts with discussing the inference of the canonical stochastic volatility
model. We follow the maximum likelihood approach and the likelihood is constructed from
sequential Monte Carlo filtering. We will present the difficulty and computational expense
of this approach. In addition, we will explain why we do not feel confident on making
inference by following this approach. We propose a patch to this practice, which however

will cause even more computational expenses.



The above approach does bring deep insight about how inference can be improved
dramatically for some systems, e.g. the one that we propose. For our model, we still
construct likelihood through filtering. However, we take advantage of the linear Gaussian
structure of the state transition. The new approach is not simulation-based, which is differ-
ent from all canonical inference that we have been aware of. Briefly, our proposal constructs
the likelihood by integrating out the state variables, using the saddlepoint approximation,
which also approximates the predicted state distribution as a Gaussian. We will present
the details in Chapter 5.

Besides applications in quantitative finance, Chapter 5 develops a general purpose
methodology for situations, in which state variables can be estimated consistently. When
state variables can be estimated consistently, parameter inference may be conducted without
expensive simulations. We have shown several rather simple models in Chapter 5, and the

last chapter extends discussions and points out future work.



Chapter 2

Term Structure Modeling in

Financial Mathematics

Term structure of interest rates in derivative pricing is a large topic. Though an
overall review deserves a separate study, we provide a short presentation about what our

model and inference will serve. Also we present our model later in this chapter.

2.1 Motivation

The seminal paper of Black and Scholes (1973) is one milestone in the complete
story. Besides the elegant pricing formula, their work provides a probabilistic model that
prescribes the dynamics of price movements, based on which a fair price of an option can
be derived. Mathematical forms of those dynamics are known as It6 processes. Since then,
continuous time model framework (Merton 1990) has become the foundation of modern
quantitative finance. And prescribing the dynamics of underlying assets is one major task
for pricing their derivatives.

The initial development of the above work started with such a problem. Suppose
an investor has been given a right, at time ¢, to purchase an asset at time T, at a fixed price

K whatever the actual price Pr will be at T. The pricing question is what the fair cost is



at t for such a right. This right is known as a European call option in finance. The option
is known as a derivative from the asset. The famous Black-Scholes formula gave an explicit
solution to such a problem in early seventies, and brought quantitative finance into a new
era. While stocks are assets in the stock market, there is a much larger market that is less
familiar to the public. It is known as the fixed-income security market. In this market, the
trading instruments are related to interest rates. Derivatives from interest rate instruments
enlarge the notional value of the market rapidly. In some sense, similar pricing problems in
the fixed income security market are even more important.

While pricing a derivative, it is crucial to know the dynamics of the underlying as-
set. For example in Black-Scholes, the stock price is assumed to have a geometric Brownian

motion with a constant volatility. The stochastic differential is of the form
dSt = ’T‘St + OStth, (21)

where S; stands for the stock price at time ¢, r for the risk-free short rate, and W; for a

standard Wiener process. The corresponding European call option price is

ln(S/K)+(r+02/2)T)
oVT

. In(S/K) + (r +0?/2)T
—K xe Tx@( /T —ax/f),

where ®(-) stands for the standard Gaussian cumulative density function (CDF), and S is

c(s,T) = Sx@(

the current stock price.

From the above formula, we can see volatility ¢ and interest rate r play impor-
tant roles in pricing, where both were assumed constant. It has been recognized that those
assumptions are not realistic in some situations, such that the geometric Brownian motion
is not a good approximation. A well known empirical evidence to statisticians or econome-
tricians is the differenced log series, or the return series, does not have apparently constant
variance, or volatility in terms of financial mathematics. In addition, the pattern has be
summarized as volatility clustering.

More general assumptions are that the volatility and interest rate(s) are stochastic

processes. The dynamics of interest rates are stochastic differential by themselves, with their



own volatilities, which might be stochastic as well. The dynamics of interest rates are then
used for pricing their own derivatives. Pricing under stochastic volatilities is an emerging
research area; see Fouque et al. (2000). In addition, interest rates are observed as vector
time series. Therefore, we are inevitably interested in multivariate stochastic volatility
models. For pricing, the importance of inference on stochastic volatility models is obvious.
Later, inference will be developed for more general problems, and possible applications can
be largely extended. We first briefly present the development of modeling term structure

of interest rates.

2.2 Term Structure Models

The area started to benefit from natural science after Vasicek (1977), which came
after Black-Scholes. More specifically, in the Vasicek model, the short rate (r;) — instanta-

neous borrowing and lending rate — was prescribed by an Ornstein-Uhlenbeck process:
dry = (u — ary)dt + odWy,

where y, o, and o were constant, and W; was a standard Wiener process. Over the next
decade, many researches were on adding dynamics of state variables to the Vasicek model,
which drove ¢, u, and ¢. In many situations, the static yield curve was then constructed
as a deterministic function of those state variables.

The Vasicek model and its successors, which are known as short rate models, are
under the umbrella of continuous time modeling. According to the full treatment in Merton
(1990), we can see that continuous time models are not simply extensions or generalizations
to their discrete counterparts, because price is always generated discretely over time. To our
understanding, such models are continuous time approximations to discrete time stochastic
processes that are observable, such that algebraic simplicity in calculation can be used
in analysis. However, inference about unknown parameters is not simplified. Inference
of univariate continuous time models with deterministic drift and volatility functions is

a branch of active research. Meanwhile, models with stochastic drift and volatility are of



great interest. The inference about this stem is known as stochastic volatility models (SVM),
initiated probably by Taylor (1980; 1982) to model the volatility clustering phenomenon.
In parallel, autoregressive conditional heteroscedasticity (ARCH) and generalized ARCH
(GARCH) belong to the other approach.

After Heath et al. (1992) proposed their HIM framework of modeling the charac-
teristics of the entire instantaneous forward rate curve f;, the difficulty of specifying the
functional that links the short rate and yield curve is circumvented. The dynamics are

expressed in the following stochastic differential:
dft,s = pesdt + &'gdet, where t < s < T%, (2.2)

where T is a finite constant, Wt is a standard d-dimensional Brownian motion, y;s and
01,5 are drift and diffusion functions in respective scalar and vector forms, the superscript
T for &4 ¢ stands for vector transpose, and 6'?; det is an inner product of two vectors. This
form prescribes infinitely many processes for s € (¢,7*), which are driven by d-dimensional
innovations th. The co-movement between two forward rates at s; and s can be described
by the covariance Cov(dfs,, dfts,) = &'g: s;0t,s5dt. The crucial benefit of the framework is
that it suffices to specify &, to determine the stochastic differential (2.2). To statisticians,
the task is similar to specifying a covariance function for the driving process 6}7; Sth, s €

(t,T*). For a finite collection of forward rates, fis,,..., fts,, the form (2.2) is represented

by the corresponding discrete form:

d
dfre, = prsdt+ Y 016 jdWy;, where t < s < T%, (2.3)
j=1
(2.4)
d
dfts; = pesdt+ Y 015, AWy, where t < s; < T7, (2.5)
j=1
(2.6)
d
dfts, = s dt+ Z Ot,s,,,jAW4j, where t < sp < T, (2.7)
=1

Therefore, the covariance matrix of df; s, ,...,df; s, must be singular, if k& > d. Specifying



a covariance in this way is very similar to what the factor analysis does, i.e. the matrix
[0,5;,5] is similar to a factor loading matrix. Thus, the singularity issue is easy to follow.

Several years after that, using the similar strategy, market models were popular-
ized, and took observed rates as direct inputs; see Brace et al. (1997) and Rutkowski (1998).
Such models may still be considered to be in the HJM family. Along this line, most of the
efforts are put upon specifying either &; ; or th, such that the covariance structure of their
product is parsimonious, but still rich enough to represent a large class of structures. Such
models include factor models, string models (or field models), and so on.

The term structure plays an important role in fixed-income asset-related pricing
problems, which are related to a much larger market than the equity market. There have
been several comprehensive treatments on existing models; see James and Webber (2000),
Brigo and Mercurio (2001), and Musiela and Rutkowski (1997) among other. Sundaresan
(2000) surveys a broad range of research areas, including term structure modeling.

We have reviewed the literature and textbooks in the financial mathematics dis-
cipline. We can see two perspectives on making inference. One is under the so-called
risk-neutral measure. The other is under the physical measure. The first perspective is
taken by financial mathematicians for risk-neutral pricing. The goal is to guarantee that,
given the parameters, the model is able to recover market prices, by using a conventional
formula such as the Black-Scholes. Such approaches are known as calibrations. The second
perspective is taken by econometricians and probably statisticians. The inference then relies
on historical time series. Parameters obtained by two approaches are often different from
each other. A theoretical offset is known as the risk premium, which is the drift difference
by change of measures. In addition, to our understanding, disagreement due to model mis-
specification has not been addressed. Before any uncertainties besides the risk premium can
be excluded, two approaches are complements to each other. We still estimate parameters
from time series, in discrete time, in particular.

In addition, by allowing volatilities to be stochastic, inference about the forward

rate models calls for multivariate versions of either SVM or GARCH. There are existing
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models. However, we will propose a suitable one for the term structure of interest rates,
which can be used in more general situations as well. Our model is inspired by the string

model perspective.

2.3 String Model Perspective

We have mentioned that, chronologically, short rate models, forward rate models,
market models were developed during the past two decades. Our proposal is related to
models that are categorized by driving processes. In the literature, the driving processes
are either processes of state variables, which have economic interpretations, or purely Wiener
processes. We will focus on the second category. Among the category, some are known as
finite factor models, e.g. W, in Equation (2.2) is a standard d-dimensional Wiener processes,
which is basically a collection of independent standard Wiener processes.

The random field models (see Kennedy 1994, among others) or the string models,
which inspire our study, extend the finite factor models in a way such that the number of
factors is infinitely many, while parsimony is still preserved. In string models, Wy is replaced
by infinitely many correlated Wiener processes Z; s, for s € (¢,7*). As a whole piece, Z; s
is treated as a field, or a string, indexed by s. In the terminology of analysis of covariance
functions, this object is known as a continuous one-dimensional Gaussian random function,
or Gaussian process. We adopt a form similar to the one from Goldstein (2000), in the

following, to facilitate the discussion:
dft,s = pt,sdt + 01,5dZ; 5, where t < s <T™, (2.8)

where py s and o, are both scalar functions, Var(dZ;s) = dt, and Cov(dZ;,,dZ;,) =

p(s1, 82)dt, where s1,s2 € (t,7*). Therefore, for a finite collection of k forward rates, the
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corresponding form for the stochastic differential (2.8) is as follows:

dft,sl = ,U/t,sldt + at,slet,sla where t < s < T*,
dft,sk = ,Uft,skdt + at,sdet,ska where t < s < T".
The covariance of dfy s, , ..., dft s, is DRD, where D is a diagonal matrix with D?’i = 02 s;dt,

and R is a correlation matrix with R; ; = p(s;, s;).

By properly prespecifying the correlation structure, any number of Wiener pro-
cesses can be used as driving processes. Thus, the task of covariance modeling through
a factor analysis style approach in (2.2) has been changed into working with covariance
directly in (2.8). To financial mathematicians, it is important that the argument in the
HJM framework remains the same in string models, that is it suffices to specify the co-
variance to prescribe the stochastic differential. Beyond seeking a more parsimonious and
flexible parameterization for the driving processes, this class of models has been blended
with the market model framework, which leads to simpler valuation practice; see Longstaff
and Schwartz (2001). To statisticians, the task remains the same — covariance modeling,
but more attractive. In practice, to statisticians, the factor analysis approach is sometimes
harder, in terms of both inference and interpretation. The string model approach opens the
door to many other directions.

A brief history of the development along this line is as follows. Kennedy (1994)
pioneered the development of this line. The development is made more clear by Kennedy
(1997), and calibration was first implemented in Pang (1999). Goldstein (2000) extends the
driving process to non-Gaussian random field. Santa-Clara (2001) connects the perspective
to stochastic partial differential equations. Kimmel (2004) adds conditional volatility. Al-
beverio et al. (2004) works on Lévy field assumptions. Baaquie (2001; 2002), and Baaquie
and Srikant (2004) connect the problem to quantum field theory. Bester (2004) makes some
empirical comparisons between random field model approach and affine model approach.

Gall et al. (2004; 2006) work on discrete versions.
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Practical advantages of string models have been discussed by their inventors. These
models might be promoted because they overcome the HIM drawback that the number of
factors must be much smaller than the number of interest rates. In practice, the inner
product of the k x d matrix [0y, ;| in equations (2.3) through (2.7) must be calibrated to
an k x k covariance matrix, which is implied from market prices. In order to have a unique
solution, the condition k£ + 1 — 2d > 0 must be satisfied. While k + 1 —2d >> 0, parsimony
is achieved, which is similar to the factor analysis approach in statistics literature. String
models do not have such a restriction; this approach still involves a covariance matrix, whose
entries are modeled simultaneously, which are sometimes hardly modeled parsimoniously.
To statisticians, parsimony may be achieved by structured parameterizations, among which
we will choose two particular ones for some special cases in this research.

Some string model approaches decompose the term structure in two directions,
because some authors suggest to solve a stochastic partial differential equation (SPDE),
rather than a system of ordinary stochastic differential equations; see Santa-Clara (2001).
Therefore, instead of considering term structure as a functional process or vector process
with one index ¢, it has been considered as a scalar process with two indices. The first
index is commonly agreed, which is the physical time horizon, denoted by ¢. The second
index used in literature is either maturity date or maturity tenor. It is very important
to distinguish them in financial mathematics literature, because the no-arbitrage condition
is different under two choices. In this research, as we will address later, our interest is a
covariance matrix of fixed dimension that evolves over physical time horizon. Therefore,
the choice of the second index is not crucial. We ignore possible meaning of the index, and
denote it by s, along which a second stochastic process has been specified in the SPDE
approach.

It has been tried, in the literature, to specify a Gaussian process along the second
index. It is well known to statisticians that it is equivalent to specify a valid covariance
function to define a Gaussian process, and it has been mostly discussed in string model

literature. In the next chapter, we point out that some covariance structures proposed for
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ot,sdZ; s do not match the convention that the yield curve is smooth. We then present
two structures that generate either non-smooth or smooth random curves, and discuss their
properties for inference. The discussion is based on the modified Cholesky decomposition
proposed by Pourahmadi (1999).

Even more fundamental, the curve along the second index must be continuous,
so that pure arbitrage does not exist. The proof is not hard. First, a zero-coupon bond
curve must be continuous, otherwise a pair of instantaneous short and long position at
the discontinuity point will create a riskless profit. Second, continuous transformation of a
continuous curve preserves the continuity. Fortunately, representations for the yield curve
that we are aware of are all continuous transformations of the zero-coupon bond curve.
During our model construction, if we assume there are latent volatility processes that drive
the curve, the continuity cannot be broken. This concern finally leads to our multiplicative
factor model. In the next section, we briefly present the development of discrete time

stochastic volatility models.

2.4 Discrete Time Stochastic Volatilities Models

There are two promising approaches in the literature, regarding making inference
about volatility processes. The first is the autoregressive and conditional heteroscedasticity
(ARCH), started by Engle (1982). The second one is the stochastic volatility model (SVM),
started by Taylor (1980). The canonical form of ARCH is:

Y, = Hq, (2.9)

H = ag+a¥?, (2.10)

where €, is usually assumed to be a Guassian white noise with Var(e;) = 1. Generalized

ARCH (GARCH), by Bollerslev (1986), has the following minimal structure.

Y, = H e, (2.11)

Hy = ag+a1Y2,+/iHy, (2.12)
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which is known as GARCH(1,1). The canonical form of SVM is:

Y, = Bexp(Xi/2)e (2.13)

Xt = ¢Xt_1-|-0"u,t, (214)

where 8 > 0, u; and €; are usually assumed to be orthogonal Gaussian white noises with
Var(u;) = Var(e;) = 1. By letting H; = exp(X;+log 3?) and putting back into the canonical
SVM, we get

Y, = H'?¢ (2.15)

log(H;) = (1—¢)logp?+ ¢plog(Hi_1) + ous. (2.16)

Thus, we can tell the difference between two approaches, which is that SVM has innovations
in both equations, and the second equation does not have a positivity constraint on the
designated process. It is SVM that is more attractive to us, because it is a special case of
non-linear state-space models. We usually call (2.13) the observation equation and (2.14)
the state equation. To financial mathematicians, Equation (2.14) in SVM corresponds to a
suitable stochastic differential, which may be desirable under some circumstances. Further
comparison is beyond the scope of this research.

The statistical inference of ARCH or GARCH will be straight forward, by maxi-
mizing the likelihood. The GARCH(1,1) likelihood is:

n

p(Y1,...,Y) = p() [[p(¥ilYi1)
t=2

n
= pn(Y5;0, Hi) [[ o (V550,00 + n Y2y + BiHy 1),
t=2

where py( - ;u,0?) stands for a Gaussian density with mean p and variance o2. H is
either provided or not, but it does not bring critical difficulty to inference. Meanwhile,
SVM does not have such a convenience. We postpone our discussion on SVM inference to

later chapters.
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2.4.1 Multivariate Extensions of Stochastic Volatility Models

Though inference is postponed, in order to facilitate the discussion in the following
chapters, we first present the form of the model that we are interested in. Because we are
handling multiple time series, we are interested in multivariate extensions of SVM. Suppose
now the observed time series 1_’;5 is of dimension m, and the unobservable process X't is of
dimension k. In addition, we denote the components of Y, by {Yit,---, Ymt}-

Harvey et al. (1994) propose the following model, denoted by M1, in which m = k.

Y, = diag{exp(X;/2)}, (2.17)

—

Xy = ji+0X; 1+, (2.18)

where ji is a mean vector, ® is a m X m matrix, & ~ Np(0,3¢), and 7 ~ Ny, (0,%,).
A concern of this model is that instantaneous correlation of Y; is constant. In addition,
from an inferential point of view about the number of unknown quantities, neither is this
system very much different from m independent univariate SVM, because it has as many
unobservable processes as m independent SVMs. The major difference is that conditional
means, for example F(Y1;|Ya, ..., Yint, )Z"t), are not necessarily zeros.

Pitt and Shephard (1999b) propose the following factor SVM, denoted by M2,

with m < k = ky + m, in which (FT, XT)T is the unobservable process:

Y, = B-dot{exp(F;/2)é} + diag{exp(X;/2)}E, (2.19)
F, = & F_+1n, (2.20)
Xi = g+ ®:Xio1 + i, (2.21)

where dot{-} is a dot product operator, 1_’; is m-dimensional, F’t is ki-dimensional, )?t is
m-dimensional, &; ~ Ny, (0,1), & ~ Ny (0,A1), Fi ~ Nk, (0,As), iz ~ Nyu(0,A3), i is
a mean vector, Aj 23 and @5 are diagonal matrices. This model contradicts the common
usage of factors, which is to reduce the number of unknown quantities. This system has
even more unobservable processes than observation processes. The reason might be that

Var(Y;) will be singular, if M2 does not have Equation (2.21) and the second term in the
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right-hand side of Equation (2.19). Suppose we ignore X, and compare the new form with
what we will propose in the next paragraph. The new form of above, denoted by M3, is:

Y, = B-vec[exp(FL/2)a}, (2.22)

OF, 1 +1i, (2.23)

!
I

in which we suppose B is m x k, and ® is k X k.
Different from the above two approaches, we are interested in the following setting,

denoted by M4:

k

Y, = Zexp(Xit/Q)Zit, (2.24)
=1

X, = ®Xi 1+, (2.25)

where Zj ~ Np(0,%;) for i = 1,...,k, 7, ~ N(0,%,), and ® is a k x k matrix. The

simplest version of the above, denoted by M5, is:

Y, = exp(Xy/2)Z, (2.26)
Xy = Xy 1 +m, (2.27)

with £ =1, Zy ~ N(0,%), and conditionally 17}|Xt ~ N(0,exp(X;)X). This simple version
is directly corresponding to Equation (8) in Kimmel (2004). The following shows that M5
is a special case of Kimmel’s model. Adopting our notation, we rewrite Kimmel’s Equation
(8) as follows:
m
dft,s = u(Xt,t,8)dt + Z owi(Xt, t, 8)dWy; + 04( Xy, t, s)dZy, (2.28)
i=1
where X; is a latent process, W};’s are independent standard Brownian motions, Z; is the
random field as in Equation (2.8), oy;’s and o, are scalar functions. Simplifying the process

by defining o,,; = 0, we get the following:
dfy s = p(Xy,t, s)dt + 0,(Xy, 1, s)dZ;. (2.29)

This simplification is to ignore additive factors. Recall the HJM framework, we can see

that o,(X;,t,s) also determines u(Xy,t,s) under the risk-neutral measure. Here, in order
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to focus discussion on inference related to volatilities, we over-simplify the problem, ignore

the drift, and focus on the following process:
df;:s = UZ(Xtatas)dZt- (230)
For a finite collection, the processes are:

df#;isl = UZ(Xtatasl)dZt,sla

dfzsk = UZ(Xtatask)dZt,ska

with Cov(dff’sz.,dfg‘,sj) = 0,(Xy,t,5:)0,(Xt,t,55)p(si,55)dt. Thus, in discrete time, we may
get Equation (2.26). And the (i,)" entries of the matrix exp(X;)Z are mapped by the

following equations:
[eXp(Xt)E]i,j = [Uz(XtataSi)az(XtataSj)p(SiaSj)] :

Our task is to propose an inferential methodology for the multivariate SVM that we have
presented.

We consider our approach M4 different from M3, in which each common volatility
factor Fj; is realized only once at t, by attaching its transformation to a scalar innovation
€¢;- The realized volatility factor then enters into the observation vector, by linear combi-
nation. In contrast, a common volatility factor X;;, in M4, is realized multiple times at ¢
by attaching its transformation to multiple innovations as components of a vector Zit, the
components of which may not be necessarily independent. Though M3 and M4 are differ-
ent, it will be very interesting to see how they are related. By defining perfectly correlated
components in each Zit in Equation (2.24), such that the corresponding covariance matrix
is rank one, we can see that M3 is a special case of M4. Therefore, it reveals that we
control the perfectness of co-movements through controlling the correlation of Zy in M4,
rather than controlling the loading matrix B in M3. In addition, as we mentioned before,
by such, the latent volatility process does not break the continuity of the field or string

easily, and achieve a nonsingular dynamic covariance.
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M4 brings both simplicity and complexity. The simplicity and flexibility of our
model is appealing. First, the number of latent processes can be small, i.e. k < m, while the
other two models have at least as many latent processes as observed time series. Second,
our model does not need to balance common factors and singularity in covariance: as long
as vector innovations have non-singular covariance, Y, will have non-singular covariance.
Third, dynamic correlation of 17; is immediately obtained, when & > 1. The complexity
is, for k-factors in M4, k random vectors Zit for ¢+ = 1,...,k, introduce k covariance
matrices, each of which is m x m. Although bringing one more common factor increases
unknown parameters by at least O(m?), reducing one common factor will decreases unknown
quantities by at least O(N), where N is the time series length. For long time series, when
N >> m?, our model still has less unknown quantities than others. In addition, we suggest
imposing structures on these covariance matrices, which is a very common approach in large
covariance modeling, in order to reduce the number of unknown quantities in covariance

matrices. From the next chapter, we start to focus on the inference and work with M5.
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Chapter 3

Conventions, Practice, and

Mismatches

We have mentioned that we may impose covariance structure on Zt in Equa-
tion (2.26). The reason is both from achieving the parsimony and, more important, pro-
viding a chance of revealing the true nature of the term structure. This chapter points out
that lack of understanding about implications of covariance structures may lead to possible
misunderstanding about the nature of the term structure. Providing evidence that sup-
ports any existing covariance structures is beyond the scope of this study. However, we
hope the material presented here can bring a fresh view regarding covariance modeling for
the term structure. In order to facilitate the discussion, we model covariance by separating
variance and correlation, and structures are embedded in the correlation. Regarding only
structures, we use the term covariance structure and correlation structure indistinguishably

in the discussion.

3.1 Smooth Yield Curves

A convention is that static yield curves are smooth. In empirical study on the

term structure, the first thing is to construct static yield curves, or curves of other rates.
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Under short rate models and HIM framework, short rate r(¢) and forward rate f(¢,T)
are not observable, and must be computed from other quantities, such as bond prices,
coupon rates, swap rates, and so on. A conventional method is known as the bootstrap
method, which is not related to what was developed by Efron (1979). We refer to Hull
(2002) and Fabozzi (1997) for the relationships among bond prices, coupon rates, bond
yields, par rates, spot rates, and forward rates. Because bond prices and coupon rates
are typically observable, other rates can be computed based on the relationships. The
bootstrap procedure starts with zero-coupon securities that mature in a year, whose spot
rates and par rates can be determined fairly easily. The remaining rates can be determined
iteratively one by one with longer and longer maturities. The procedure might be plausible,
if the observable curve can be observed at finer and finer grid resolution. In practice, that
is impossible, especially for securities with long maturities which are much less traded. A
conventional solution is to interpolate the observable curve by smoothing, e.g. cubic spline.
Corresponding documentations can be easily found in finance literature and the Federal
Reserve files on constructing constant maturity rates.

The convention that we are following in this study is that static yield curves are
random functions. Therefore, forward rate curves that are derived from yield curves are also
stochastic. By re-constructing such curves through interpolation techniques such as splines,
the resulting curves may have a smoothness property that the underlying process does not
have. We notice that such an issue leads to disagreement between empirical studies and

mathematical modeling on the term structure as a random function.

3.2 Covariance Structure in Mathematical Modeling

The exponential correlation function p;; = exp(—p|T; — Tj|) has been used in
Rebonato (2002) for modeling forward rate curves. This correlation function, and many of
its variations have appeared in the pricing literature. This correlation function is known

to characterise linear Gaussian Markov process, which is known as autoregressive process
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of order one in discrete time, or Ornstein-Uhlenbeck process in continuous time. It is a
known result that such a correlation function cannot govern a smooth random function
in the mean square sense. References on this result and further on random functions and
covariance functions include Yaglom (1987), Stein (1999), among many time series and

spatial process analysis.

3.3 Covariance Structure in Empirical Studies

Simple historical estimation was described in Jarrow (1996), and used by string
model practice (Longstaff et al. 2001). Interesting patterns are discovered, such as the decay
pattern in correlations while two series are far apart, and historical correlations are larger
than implied correlations that are calibrated to market prices. Their inference is based on

a very crucial assumption that, for instance HJM model under the physical measure,
df (t,T) = p(t, T, f(£,T))dt + Y 0;(t, T, f(t,T))dW;(t), t < T,

drift and volatilities are functions of only (7" —t), which is the difference of 7" and ¢. Briefly
speaking, the procedure utilizes the discrete version of the term structure dynamics and
constructs series of increments which have constant means specified by the drift function.
Since the drift and volatilities are functions of T' — ¢, then the series can be approximated
from constant tenor curves. The increments are then treated as independent Gaussian
vectors. Covariance is then easy to compute. There have been many discussions on the
implications of stylized facts that are obtained by the simple estimation method and re-
strictive assumptions. We feel such discussions should be interpreted with caution and that
stochastic volatilities or serial dependence has been ignored.

Though the stylized facts are obtained under rather restrictive conditions, some
still deliver very useful information. For example, the correlation matrix shows a nearly
Toeplitz structure, and correlation decays off the diagonals. Figure (3.1) graphically repre-
sents the correlation matrix for forward rates reported in Table I in Longstaff et al. (2001).

This graph presents a smooth ridge, which implies that the corresponding random function
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may be differentiable. Therefore, we are interested in the “Gaussian” correlation function
pij = exp(—B(T; — T;)?), or its variations. This correlation function can characterize a
smooth Gaussian process, which is infinitely differentiable in the mean square sense. We

call its discrete representation a Gaussian correlation matrix.

Figure 3.1: Simple Historical Correlation Estimate. The height of points on the surface
represents the value in the correlation matrix. Matrix indices are along the other two
horizontal axises.

To us, for inferential purposes, one attractive feature about those two correlation
functions is that they have explicit forms of Cholesky decomposition, which is very useful in
constructing Gaussian likelihood function. The decomposition of an exponential correlation
matrix is well known. The decomposition of a Gaussian correlation matrix has been shown
by Loh and Lam (2000).

Besides the computational usefulness of the Cholesky decomposition, one of its
variations can interpret the decomposition in a natural way. The variation is even more

convenient for likelihood construction. We present this variation in the next section.
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3.4 Modified Cholesky and Covariance Modeling

Suppose V is symmetric, positive definite matrix. The Cholesky decomposition of
V can be expressed as V = LL”, where L is a lower triangle matrix, and L7 is the transpose

of L. The modified Cholesky decomposition by Pourahmadi (1999) refers to
TvT? = D, (3.1)

where T' is a lower triangle with ones on its diagonal, and D is a diagonal matrix. The
relationship is LLT = T-*D'/2DY2(TT)~!. Moreover, matrix inversion is easy to compute,
by V-1 =1TD1T.

T and D have very meaningful interpretations. Suppose V' is the covariance matrix

of a vector of zero mean Gaussian variables Y7,...,Y,. Run regressions
i—1
Y, = E ¢Z’7]’Y}'+€Z’, fori=2,...,p.
Jj=1

Then, —¢; ; is the (i,3)"" element of T. Var(e;) is the i*" element on D’s diagonal.

In recent studies, the modified Cholesky decomposition has been used in longitu-
dinal data analysis and large scale covariance modeling. The former utilizes the natural
order among longitudinal data, while the later utilizes the computational simplicity.

We are interested in two types of covariance matrices. The first is the exponential
covariance matrix, which is the discrete representation of an exponential covariance function.

A typical matrix is as follows:

- o? 020 o%0%> ... ... o2m! ]
%0 o? 0%
0%0? 0?0 o?
Z = 7
o%0 %0
a2mt .. L. ... 0’0 o?
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where |0| < 1. The corresponding 7" and D matrices are as follows:

1 0 0 0
-6 1 0
0 -6 1
T = ,
1 0
0 -0 1
o? 0 0 0
0 (1-6%)02 0
0 0 1—6%)0?
o (16
(1 - 62)0? 0
0 0 (1 - 62%)0?

It is more complicated for the Gaussian covariance function and its corresponding
matrix, which are presented in the following as functions of row and column indices. The

notation L indicates a d-dimensional lower triangle matrix. For 1 <14,j5 < d,

Li,j = (_w)z_]G(] - 17i - 1;’11]2),
_ Li,
1,j Li,i 5
1
Dii = -
L

where
(1—g"~ ™) (1—gm~™+2)...(1—¢")
(1-¢)(1—-¢?)...(1—¢™)

0 , otherwise,

,if0<m<n

G(m,n;q) =
The function G(m,n;q) is known as the Gaussian polynomial; see Loh and Lam (2000).
Their inverse also have explicit forms. Therefore, the Gaussian likelihood does not require

numerical inversion. We use the above structures as special cases in the rest of our study.
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Chapter 4

Stochastic Volatility Model and

Inference

We have presented several forms of SVMs in Chapter 2. The simplest form of
our model is described by Equation (2.26) and (2.27). In Chapter 3, We have discussed
about modeling covariance structures for the covariance of Z; in Equation (2.26). The next
question is about inference, after injecting a stochastic volatility process. In this chapter,
we focus on the inference about the canonical SVM.

The chapter is arranged as follows. The first section will revisit the canonical SVM.
A review on three canonical approaches follows. Then, we study the approach that uses
particle filtering to construct the likelihood, and make inference about unknown parameters,
which are assumed fixed. As we will point out, the quality of such a likelihood construction
does not have a commonly agreed assessment, we suggest a procedure for making inference

that is based on this approach.
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4.1 The Canonical Form

The canonical form (Taylor 1982) of a stochastic volatility model is as follows:

Y, = Bexp(Xi/2)e (4.1)
Xy = ¢Xp1 +ouy, (4.2)
where we may assume that u; and €; are identical and independent Gaussian white noises.

The last equation is known as the autoregressive of order one (AR1) process. This is

corresponding to the following stochastic differential:

dayy = ydWy
v = Bexp(X;/2)
dX;y = —-0Xdt+ O'deQt,

where W1; and Wy, are independent Wiener processes. The last stochastic differential is

known as a zero mean Ornstein-Uhlenbeck (OU) process. A discrete series sampled from

an OU process every At unit has the covariance function y(At) = %e*H'At. Moreover,
relationship between OU and ARI1 is as follows.
¢ = e’ (4.3)
1—e 20
2 2
O, = TGUJ' (44)

The derivation of OU covariance is given in Appendix A.1. We have omitted the drift
term, and probably over-simplified the problem. But for situations with constant drift or
deterministic drift, the generalization is trivial. More complicated generalization includes
mean reverting, etc. We will probably postpone such extensions to future work.

By reparameterization, the canonical form can be expressed by the following equiv-

alent form as well:

Y; = exp(X:/2)e (4.5)

Xt = Ot—{—gZSthl—FO"U,t, (46)
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in which the state process has a mean, which is not necessarily zero. Two parameterizations
are connected by the relationship
e
ﬂ:exp{rl_(ﬁ)}. (4.7
This parameterization has been used in some literature, and we may as well compare our
results with those that use this parameterization.

In literature, autoregressive conditional heteroscadesticity (ARCH) and general-
ized ARCH (GARCH) are also well known for modeling volatility clustering, due to Engle
(1982) and Bollerslev (1986), respectively. It is known that pricing under GARCH-type
volatilities, the market completeness assumption is not broken. However, pricing under
Taylor’s stochastic volatility will break the assumption. Details are in Fouque et al. (2000).
We will not discuss issues that are not related to inference. We focus on Taylor’s structure,
because it leads to more general problems in other areas.

More general problems include state-space modeling. Here, in particular, the prob-
lems are either non-linear or non-Gaussian, or both. Linear and Gaussian state-space models
have been studied by many authors. See Harvey (1989) as a textbook treatment. The effi-
ciency of the Kalman filter (Kalman 1960) is well known. Its success in autoregressive and
moving average (ARMA) modeling (Jones 1980) is also well noted.

A typical state-space problem usually has the Markovian property, which is often
represented by two conditional densities p(X¢11|Xt,0) and p(Y:| Xy, 0) for a certain param-
eter 0, where {X;}7 ; denote unobservable state variables, and {Y;}]_, are observed time
series. Usually, we assume that p(X7) is known. The first conditional density prescribes
how state variables propagate. The second conditional density prescribes the transition
from unobservable variables to observable variables. By the Markovian property, condition-
ally on Xy, two variables X;1; and Y; are independent of Xi.;—; and Y741, where X, 1
is the state variable sequence from 1 to ¢ — 1, and Yj.;_1 is the observed variable sequence
from 1 to t — 1.

In the Kalman filter, the iteration starts with a known density p(X;|Yi.—1,6) at
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t, with a known parameter set . We may sometimes drop 6 to make the notation simpler.
The task is to compute p(Xy41|Y1.,0) when Y is observed. Because p(Y;| X4, 0) is given, we
can derive

(Xt Y14, 0) x p(Ye| Xy, 0)p(Xe|Yii—1,0). (4.8)

Next, we can derive

p(Xi41|Y1:4,0) = /p(Xt+1|Xt,9)p(Xt|Y1:t,9)dXt- (4.9)

Fortunately, for linear Gaussian transitions, p(X;|Y1.,0) and p(Xy41|Y1.,0) have closed
forms. And it suffices to compute mean and variance of X;|Y7., which is Gaussian dis-

tributed. The following is a graph that demonstrates the iteration.

Y1 Y; Yina
™ N N

- X1 = Xy = Xy =

In the above graph, right and upward arrows denote known state and observation transi-
tions. Downward arrows denote computing the posterior.

For non-linear and non-Gaussian state-space problems, computing p(X;|Y1.,6)
and p(X;41|Y1.4,0) is difficult, because closed forms usually do not exist. The recently
developed particle filter (Gordon 1993) is an ezact generalization to the Kalman filter. The
ezact means that all dependent structures are not changed or broken, which is different
from the Extended Kalman filter (EKF). EKF linearizes the state-space equations around
the filtered state at each iteration. Particle filters compute exact densities, although not

analytically. We postpone the presentation on particle filtering to a later section.

4.2 Canonical Inferences

The state-space structure brings flexibility to describing dynamics. However, it
brings difficulties to inference about parameters. That is because the state sequence is

introduced and unobservable, and it has the same length as the observed series. We are
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aware of three canonical inferences for stochastic volatility models; see Shephard (2005).
They include Markov chain Monte Carlo (MCMC), efficient method of moments (EMM),
and particle filtering. In the following sub-sections, we briefly present the first two, and
focus on the third one. The first two involve general purpose inference methods, which

deserve detailed review and study, which are beyond the scope of this review.

4.2.1 MCMC

From a logical perspective, MCMC approaches are straight forward, if the joint
density of parameters, unobservable variables, and observable variables, can be expressed
in a closed ring of conditional densities. Thus, a sampler can explore the space of random
variables by following the rules that are designated by the conditional densities. There
are a variety of implementations to guide the sampler’s movement. An accessible and
comprehensive reference on both theory and practice is Gilks et al. (1996). In stochastic

volatility literature, Jacquier et al. (1994) pioneered this approach.

4.2.2 Efficient Method of Moments

EMM approach for stochastic volatilities, by Gallant et al. (1997), also utilizes
a general inference methodology, which belongs to the family of indirect inference. The
basic idea of indirect inference is the following deduction: data from the generator with the
same parameter set must have similar characteristics in terms of some summary statistics,
by fitting the same auxiliary model. In addition, in order to make inductive conclusion
reasonable, the auxiliary model must be a close approximation to the data generator. A
preferred approximation is known as semi-nonparametric density, and the feature statistic

is the score function. See details in Gallant and Tauchen (1996) and references therein.

4.2.3 Particle Filtering and State Inference

Actually, particle filtering does not make inference about fixed parameters. The

filtering can only make inference about unknown states, given all other parameters. More
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specifically, the filtering consecutively computes p(X;|Y1.,6) and p(Xy+1|Y1.4,60) in Equa-
tion (4.8) and (4.9), when 6 is known. Related names include sequential Monte Carlo,
sequential importance sampling, sequential sampling importance resampling, etc. An ac-
cessible and comprehensive reference is Doucet et al. (2001). There have been modifications
and enhancement to the first successful filter by Gordon (1993). We only review the original
version in this research. The foundations include basic sampling importance resampling,

state prediction, and state filtering. We first discuss sampling importance resampling (SIR).

Sampling from a Posterior and SIR

Suppose we know densities p(X) and p(Y|X) for random variables Y and X.
The task is to compute p(X|Y) o p(Y|X)p(X). From simulation point of view, being
able to compute the density p(X|Y) is equivalent to being able to generate a sample from
p(X|Y = y), for any y, if it is possible. There are apparently two approaches to generate
such a sample; see Smith and Gelfand (1992, and references therein). The first is known as
the rejection sampling; see von Neumann (1951). The second is SIR.

To facilitate the discussion regarding sample points from certain distributions, we
adopt the following notations. We use Z(9 to denote the i** sample point from p(X). The
notation will be intuitive for a “predicted” or “proposed” sample point. We use {Z(")}M to
denote such a sample of size M. We use z(*) to denote the i** sample point from p(X|Y = y),
for some y. We use upper cases for variables, and lower cases for realized values. We often
simply use p(X|y) for p(X|Y = y). {z(}M, denotes a sample of size M from p(X|y). The
curly brackets notation sometimes also stands for a set of indexed numbers.

In order to use the rejection sampling, first we assume p(y|X) is maximized at

X™a%_ Then p(y|X™*) serves as the constant C in the following inequality:

p(X,y) = py|X) - p(X) < p(y|X™*) - p(X) = C - p(X).
Then for each sample point Z(*) from p(X), accept the point with probability

p(EY,y)
C-pG0)’
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until M sample points are accepted. Then {x(i) i]‘il represent a sample of size M from the
density p(X|y) = p(X,y)/p(y); see Ripley (1987) for the proof.

In order to use SIR, we must find a weight function that is determined by the
ratio p(X|y)/p(X), in which p(X|y) is the target distribution, and p(X) is the proposal

distribution. In the current situation,

p(X|y)/p(X) o< p(y|X)p(X)/p(X) = p(y|X).

Therefore, p(y|Z() serves as the importance weight for the sample Z(® from p(X). An

implementation of SIR is as follows:
Procedure 4.2.1. An SIR Implementation

(a) generate {ZO}M, from p(X);

(b) compute W) = p(y|z®), fori=1,...,M;

(¢) compute normalized weights w® = %, fori=1,...,M;

(d) resample from {z%) M., regarding weights {w® M., and get a sample {z® M.

Thus, we obtain a sample that is from p(X|y). We then apply this technique to
filtering.

SIR and Filtering

Recall the general Markov state-space structure with known transitions. We as-
sume that p(X;|Y7.4—1) is known. Due to the Markovian property, it is equivalent to know
p(X¢|Yi—1). Sampling from p(X;|Y;), which is the first task, is achieved by using SIR. This
accomplishes the task of Equation (4.8).

The notation for the following discussion is similar to those discussed previously,
with extra subscripts. We use ngi) for the i*" sample from p(X;|Y1.;_1), which stands for a
sample of the predicted state at t. Use xgi) for the i** sample from p(X;|Y1.;), which stands

for a sample of the filtered state at t. Finally, use ?v'gi) for the ** sample from p(X;|Y1.7),
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which stands for a sample of the smoothed state at ¢, where Yi.7 stands for the entire
observed series.

Suppose we generate a sample {Ev\,(f) M. of size M from p(Xy|Y;—1 = y;_1). Use
p(yt| X¢) as the weight function. Adopt SIR, we obtain {x,@}{‘il from p(X¢|y:). The ultimate

goals is to compute p(Xy41|Y7.) as in Equation (4.9). Due to the Markovian property,

(X1 |Yie) = p(Xesa| Vi) = / (X1 | X)p(Xi[ Vi) dX; = / (X1, Xi| Vi)d X

Therefore, generating a sample from p(X;;1|Y1.) is equivalent to first generate a sample

from p(Xiy4+1, Xt|Y:), then marginalize it with respect to X;. For any y;, generating a pair

(Ev\gl,wg )) from p(Xy¢41,X¢|Y; = y¢) is achieved by generating xgi) from p(X¢|y;) first, then

generate 55%21 from p(Xy+1| Xy = :1:,(51)) By such, we can implement the filtering, at step ¢,

as follows:
Procedure 4.2.2. Adopt SIR in Filtering

(a) sample zt) from p(X;|X¢—1 = zt 1) fori=1,...,M;

(b) compute fu\gi) :p(yt|§§i)), fori=1,...,M;

; (l)
(¢) compute normalized weights wgz) = W, fori=1,...,M;

i=1 "t

M
=

M

(d) resample from {wt WM. | regarding weights {wt 1, and get a sample {37t s

The simulation runs from ¢ = 1 through 7" where the series terminate, given all
other parameters. To initiate the simulation, {fc\gz)}f‘il is a sample generated from a known
distribution. This procedure serves the basis of particle filtering, where particle is a vivid
name for sample points. As a convention, state estimation is simply F(X;|Y;), which is
approximated by a sample average M Zz 1 mS).

We have mentioned that there are at least two approaches to generate a sample
from a posterior distribution. In this filter, SIR is generally adopted. A reason is that

finding a constant for the rejection sampling is not required for SIR. Thus it is more general

and hopefully easy to implement.



33

4.2.4 Particle Filtering and Parameter Inference

Though particle filtering provides state inference, parameters must be given sep-
arately. Hiirzeler and Kiinsch (2001) give a comprehensive outline on likelihood based
inference. However, likelihood construction is based on simulation. The following are three

likelihood construction methods, which have been discussed in the above reference.

Pointwise Approximation

The following computes the likelihood at a fixed parameter set 8. In order to avoid
unnecessary confusion and make notations more clear, we allow the subscript £ — 1 to be 0,
in which case the conditioning drops off. For example, p(yi1|yo) is the same as p(y;). This

simplified notation applies to the rest of discussions. The likelihood is:

T T
LOyr) = pyrrld) = [[pvelyre-1,6) = H/p(yt|$t,9)17($t\y1:t—1,9)d$t,
i=1

t=1
in which the integration term [ p(y;|z:, 0)p(z¢|y1:4—1,0)dz; is approximated by sample av-
erage over particles as follows:
M
1 ~{i
i > p(wlz?,0).
i=1
The maximum likelihood approach can optimize over the parameter space, until reaching
a local or global optimum, depending on the method. For every different parameter set,

filtering must be conducted to obtain trajectories {ZEYZI M.

Function Approximation

Pointwise approximation requires re-filtering when parameters change. The likeli-
hood surface is also noisy. The following constructs a smooth likelihood function about an

arbitrary 0, after a filtering has been done at 8y. The approximation utilizes the importance
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sampling trick multiple times. The formulation is as follows:

T
L(elylzTaHO) = p(lele) = Hp(yt|y1:t—170)

t=1

T
= H/p(yt|$t,9)p($t|y1:t1,9)d$t

= H/ (yelz1, 0) Py, 8) p(@t|y1:-1, 00)dzy,

p(ze|yrs_1,60) 1,90)
where
p(ze|y1:4-1,0)
= /p $t|$t 1,0 (33t71|y1:t7156)d$t71
p(zi—1|y1:-1,0)
= p(x|Ti—1,0 P(xi—1|y1:4—1,00)dTi—1
/ | ($t71|yl:t71500) ( | )
and

p($t—1 |y1:t—1, 9)

p(-thl |y1:t715 90)

P(ye—1lre-1,0)  plre-1|yiz—2,0)  pye—1|y14—2,60)
x x )

P(ye—1|ze—1,00)  p(@r-1|y1:4-2,00)  plyt—1|y1:4-2,0)

Two starting densities p(z1|0) and p(z1|6y) are known. Among above quantities, p(-|-,0)
are directly feasible from the filtered sample at 6y. Meanwhile, p(y¢|z¢, -) and p(zit1|z¢, *)
are available from known transitions for any parameter. p(z:|yi.—1,6) and p(y¢|y1.e—1,0)
are computed recursively, by knowing p(z1|6) and p(z1|6p) first.

The major step among the above expressions is to approximate p(y:|yi.t—1,6),

which is sample average as follows:

Aot = p(ytly1:t-1,0) =~ —f[: |z, 0 W (4.10)
M =1 (:L't ‘yt—lae())
M (i
- = Z i A =5) (411)
M :

Bl<Xt =)’

among which the term p(yt|§§i), ) is easy to compute with the known transition from state

to observation. Two functions A;(X; = z;) and By (X; = x;), which take X; = x; as the



argument, are computed as follows:

AL(Xy = z4) = p(me|ye—1,0) =

M
1 .
Bi(Xy = zt) = p(ze|yt—1,00) =~ i Zp(wﬂwg‘?_)l,@o),

M .
1 Zp($t|w(j) 0) p(x521|yt_1’0)
1 p(x?g]—)1|yt*1, 90)
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(4.12)

(4.13)

(4.14)

where the term p(xt|m§];)1, 6y) and p(xﬂz@l, 0) are easy to compute with the known state

transition. Two other terms A and By, are computed as follows:

Agy = p(lv,@ﬂyt—b )

By = p(x,@ﬂyt—h 6) =

where

Bot = p(yt|ys—1,60)

pyi1|z2,, 0)p(?, [y, 6)
P(Yt-1lys2,0)
A( X g = :v@l)

(4)
1|z, 0
P(ye—1] t—1 ) Lot 1

(Y1 |37§J;)1a 90)29(371@1 |yt—2,00)
P(Yi—1|yt—2,60)

p(ye1|z,, 60)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

Moreover, in order to initiate the propagation, A;(X; = x) and B;(X; = z) are computed

as following:

z) = p(=0),

z) = p(z|6y).

(4.20)

(4.21)

Therefore, by maximizing over 8, the inference then runs an approximation maxi-

mization iterative approach, which is

0k+1 = arg;naxlog L(9|y1:T> Hk)-
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Though the function approximation is mathematically elegant, the complexity of the ap-
proximation, compared to the pointwise approximation, is O(M?), which is sometimes too
large. The complexity of the pointwise approximation is O(M). The major benefit of the
function approximation is the possible smoothness. However, the analytic gradient for such
a complicated function is not necessarily available in general. In this case the numerical
gradient or Hessian must be used in derivative-based optimization routines, and the gain
might be questionable. On the contrary, by using non-derivative-based optimization rou-
tines, e.g. Nelder-Mead, the optimizer may converge by using a certain number of pointwise
function evaluations which is still cheap, compared to O(M?), even though the likelihood
is not smooth. A question arises about how we can draw such an inference from a noisy
surface. Recall, the function approximation also involves particle randomness effects, al-
though the surface is smoothing. After running filtering the second time at 6; = 6y, by
using a different random seed, the new likelihood function L(8|y1.7,60:) does not necessarily
agree with L(0|yi.1,0p). Therefore, smoothness is not crucial in comparing pointwise and

function approximations.

Expectation-Maximization Algorithm

Regarding states as missing observations, the E-M algorithm iterates as follows

Ort1 = arg;naX/logp(y,:v|9)u(dwly,9k),

where the integral denotes the expectation of the log-likelihood of the complete data with
respect to the probability measure on the missing quantity. The expectation is approximated
by the average over a smoothed samples from p(X1.7|Y1.1, 6k), or p(X1.7|Y1.7) for simplicity.

The smoothed sample can be obtained by backward smoothing on filtered samples as follows:

(x| i1, Y11, Ok) = P(@t|Te1, Y16, Ok) X D(ze|y1:e, Ok )p(Ti41| e, Or),

which is again obtained by SIR, where p(z;41|z¢,0)) is the weight function. The following
is an algorithm that obtains a smooth sample {?v'gz)T}f‘il At the k'™ iteration, the algorithm

propagates backwards from ¢ + 1 to ¢ by following these three steps for each i:
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Procedure 4.2.3. Adopt SIR in Smoothing

(a) compute wgi’j) :p(5§21|w§j)), forj=1,...,M;

(b) com ute @9 - forj=1,...,M;
D t ZM w(z,])? J ’ ) )
j=1"t

(¢) sample 59 Jrom {:véj)}j”il, regarding weights {ﬁgi’j)}jj‘il.

In addition, the smooth sample at T" coincides with the filtered sample at 7. Thus,
in terms of particles, the E-M algorithm steps from k to k + 1 as follows:
M T .
Os1 = argmax - > 1> log (p(ytlfgz)ﬁ)) :
0 i=1 t=1
In addition, it would not be difficult to see that the complexity of the algorithm is O(M?)

as well.

4.3 Quality of Likelihood and a Systematic Framework

Regarding the three approaches of constructing the likelihood, we want to address
that there are no formal inferential procedures that consider both estimates and the quality
of likelihood approximation. All likelihood constructions mentioned in the previous section
are based on a finite set of state trajectories. The question arises when maximum likelihood
estimates and their covariance matrix are reported. This is because they may be affected by
not only the length of time series, but also the number of particles or state trajectories. Our
opinion is that following the simulated likelihood approach, the estimates can be trusted
only if the randomness caused by the number of state trajectories is negligible. We do
not have a theoretical justification about how much randomness is negligible. However,
because a certain amount of difference in information criteria will affect decision making,
we would like to suggest that the randomness caused by the number of state trajectories
should be controlled within the critical range that affects decision making. For example, if
a difference by 3 between Akaike information criteria (AIC) will call for a decision making

between two different models, we might like to control the 90% span of the log-likelihood
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uncertainty due to particles within, say 1.5, because AIC requires twice of the log-likelihood.
Otherwise, if two models have difference in information criteria by 3, it would be difficult to
tell whether two models are really different, or just due to the particle randomness. However,
balancing among the accuracy of the simulated likelihood, saving computing expense on
function evaluations, and effectively finding the optimal is rather subjective. We suggest

the following iterative procedure:
Procedure 4.3.1. A Systematic Framework for Particle Filtering-based MLE
(a) at step k, set the number of particles to M, quit if M exceeds a limit;

(b) utilize an optimization routine to find the mazimum of the log likelihood, initiated at
0r_1 that is the estimate obtained at step k — 1, using any kind of likelihood approzi-

mation;

(¢) in case optimization fails to satisfy individual stopping criteria, go to step k+ 1 and

increase M ;
(d) at the optimum 6y, bootstrap the likelihood evaluated at Oy;

(e) if the variation of the bootstrapped likelihood is larger than a prespecified threshold, go

to step k + 1 and increase M;
(f) compute statistics necessary for reports.

For step (b), we suggest using pointwise approximation and a fixed random seed
each time the function is evaluated. Thus, we obtain static approximation to the entire
likelihood surface by fixing the random seed, and reduce the roughness by increasing the
number of particles. Fixing random seed is an effective practice; see Durham et al. (2002).
More efficiency can be gained by spending more on pre-storing random numbers. The
static approximation is still non-smooth, due to the sampling step. Fortunately, robust

local optimization routines exist. For example, the non-gradient based simplex method
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(Nelder and Mead 1965) is such a well known routine. More routines can be found in
Kelley (1999), among others.

The tricks about increasing number of particles and fixing random seeds are not
new. We implement the procedure more systematically, and add a necessary step of assessing
the quality of likelihood approximation. The procedure provides an exploratory approach at
the beginning when the number of particles is small and filtering is relatively cheap. Based
on such very rough surface, the Nelder-Mead optimization is still capable of approaching
towards an optimum. By increasing M, we help the Nelder-Mead approach the optimum
under finer and finer resolutions, and assess the quality of likelihood approximation in
addition.

In step (d), bootstrap can be done by repeating the likelihood evaluation with
different random seeds. The size of bootstrap sample can be subjective. In case of regarding
the span of the log-likelihood, the sample size should be relatively large, if the coverage is
large. Step (f) can also be subjective. For example, we can keep several independent runs
to get estimates, with different random seeds but the same number of particles. Then we
summarize the estimates. We can also adopt the function approximation to the likelihood
once to obtain a set of estimates. Finally, how to increase M is also subjective.

The following studies the result from a simulation to illustrate how the procedure
works. The simulated data is generated from the canonical SVM with parameters {f =
0.6,¢ = 0.95,0 = 0.3}. This setting generates the observed time series with a clear volatility
clustering pattern. States are slowly mean reverting with relatively small noise. Figure (4.1)
gives the plots of observed time series, and the true state series.

Table (4.1) illustrates our procedure. The initial guess about the parameters is
arbitrary but realistic, which is {8y = 0.3,¢9 = 0.9,00 = 0.5}. The stopping criterion
The first column in the table indicates the number of particles that are used at that stage.
Using that amount of particles, the optimization routine, which is Nelder-Mead in our
study, finds an optimum at the values under columns ,E, ¢A>, and . The corresponding

log-likelihood values are also listed in the third column. The second column tells that there
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Figure 4.1: Simulated Stochastic Volatility Process with {8 = 0.6,¢ = 0.95,0 = 0.3}

have been no convergence failure reported by Nelder-Mead, in this simulation. From this

Table 4.1: History of the Estimation

~

M converge log-likelihood B\ (Z o
100 yes —923.94 0.58 0.90 0.34
200 yes —925.93 0.57 0.89 0.42
400 yes —926.17 0.55 0.94 0.27
800 yes —925.12 0.56 0.90 0.34
1600 yes —926.15 0.55 0.92 0.33
3200 yes —926.39 0.54 0.93 0.32
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table, regardless of the first column, we do not know about the quality of the estimates and
realized log-likelihood. Because, by changing random seeds, estimates and log-likelihood will
change. Therefore, at each stage with a particular M, we bootstrap the log-likelihood at
the corresponding estimates. Figure (4.2) provides the bootstrapped log-likelihood at each
stage with increasing number of particles. The graph is presented in consecutive boxplots

(Tukey 1977). In order to bootstrap log-likelihood, we simply use a different random seed
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Figure 4.2: Boxplots for Bootstrapped Log-likelihood. Bootstrap sample size is 1000. Two
additional bars to each boxplot indicate 5% and 95% percentiles. The line runs through
boxplots indicates optima that the Nelder-Mead optimizer finds under six scenario with
different number of particles.

to get simulated log-likelihood, which is computed by the pointwise approximation formula.
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Meanwhile, we should notice that even the optimizer adopts the function approximation to
the likelihood, bootstrapping the log-likelihood at the estimates gives 1 to all importance
weights. So function approximation in log-likelihood bootstrapping reduces to pointwise
approximation. At this point, we can see the smoothness of the approximated likelihood is
not essential for assessing the quality of the likelihood approximation. With a fixed number
of particles, the pointwise approximation and the function approximation, with the same set
of parameters, will vary over the same range. We want to assess the range, which indicates
the quality.

From Figure (4.2) we can see log-likelihood varies less as M increases. Boot-
strapping terminates when M = 3200, at the moment that the 90% of the twice of the
bootstrapped log-likelihood are in a region of width 3, which is a predetermined threshold.
In Figure (4.2), there is a line through the boxplots. This line connects the log-likelihood
in Table (4.1). It is clear, the optima that the optimizer finds are at the upper tail of the
bootstrapped log-likelihood samples. Recall, we use pointwise approximation for function
evaluation in the optimizer. The pattern confirms that the Nelder-Mead is capable to find
an optimum on a noisy surface.

In order to make a connection between the boxplots and the actual static log-
likelihood surface that we have generated with a fixed random seed, we profile the log-
likelihood that uses M = 100 particles, around the obtained estimates. Each profile log-
likelihood is evaluated at 1000 equally spaced points. In order to avoid the delusion that
those 1000 function values present the curve that passes through all the points on the profile
log-likelihood, we do not concatenate those points. The profile log-likelihood plots confirm
the position of the boxplot for M = 100. These plots also help to imagine a scenario that an
arbitrary number of particles are used to construct the simulated likelihood, and estimates
are reported without assessing the quality of the likelihood approximation. A question that
we are trying to answer here is that after an optimum is found, how well the simulated
likelihood can represent the expected likelihood. Using the suggested procedure, we think

the question is answered.



43

-925
-925

log-likelihood
-930

I
-930

log-likelihood

-935
-935

-940
|
-940

0.50 0.55 0.60 0.65 0.86 0.88 0.90 0.92 0.94

beta phi

-925

-930
|

log-likelihood

-935

Figure 4.3: Static profile log-likelihood against B3, ¢, and o. The number of particles
M = 100. The solid dots are the optimal found by the Nelder-Mead optimizer.

4.4 Summary

In this chapter, we mainly study the particle filtering-based maximum-likelihood
for the inference about the canonical stochastic volatility model. The major difficulty is to
integrate over a huge space of the unobserved state trajectories. The space is huge, because
the trajectory estimates can never be consistent under the current situation. All these
simulated approaches try to generate samples from the space effectively. Based on their

work, we suggest a systematic procedure to guide the parameter estimation. Briefly, we use
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a strategy that is relatively cheap to find a region that might hold the parameters. This
strategy does not require a rigorous initial guess, which is not generally feasible. Meanwhile,
a fair number of particles is suggested later in the procedure. Then a variety of published

strategies can be used to obtain estimates and statistics that can be reported.
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Chapter 5

A Multivariate Stochastic

Volatility Model and Inference

Based on our experience, the particle filtering approach to the inference is not as
practical as the approach that Box et al. (1994) take to make inference about autoregres-
sive and moving average (ARMA) models. Computationally, the method is too expensive.
Fortunately, the particle filtering approach does setup connections, so that other inferential
methods can be applied. This chapter pursues a saddlepoint approximation to integrate
out state variables.

The rest of chapter is arranged as follows. First, we study the approach on the
canonical SVM. Next, we study a multivariate extension described by Equation (2.26)

and (2.27). After that, we report simulation results.

5.1 Saddlepoint Approximation Approach for the Univariate
Model

The canonical form of stochastic volatility models is linear and Gaussian in the
state transition. That gives some hope for an analytic approximation for some calculations

that were done by the sequential Monte Carlo. This situation has been discussed as early as
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in Masreliez (1975), in which approximating p(Y;|Y;_1) is not an easy task. In this section,
we use the saddlepoint approximation (Daniels 1954) for all levels of approximation.

In this section, we focus on the canonical SVM described by Equation (2.13)
and (2.14). Suppose p(X¢|Yi—1) ~ N(fis,57) and p(Y3|X;) are known. We are inter-
ested in computing p(Y;|Yi—1), p(X¢|Y:), and p(Xy41]Y;), such that filtering can prop-
agate. In non-linear and non-Gaussian state-space, p(X;|Y;) is not Gaussian, neither
is p(Xi+1|Y:). However, if it is plausible to approximate p(X;|Y;) by Gaussian, then
p(Xt41|Yz) is Gaussian naturally for the canonical SVM. And iteration continues. The
saddlepoint approximation can be used for computing the posterior p(X;|Y;) and the den-
sity p(Ye|Yi1) = [ p(Ye| Xe)p(Xy|Yi-1)d X

Recall that the saddlepoint approximation is usually but not necessarily stated as
an integration problem; see Goutis and Casella (1999). Suppose we are interested in the
integral

fz) = / m(z, 0)do.

By defining k(z,0) = logm(z, @), the saddlepoint approximation to f(x) is
1/2

f(@) ~ exp (k@ 0@} |~ |

- 92k(z,9)

where §(z) maximizes m(x,8). Therefore, we may apply this to computing p(Y;|Y; 1). The
approximation is often stated as well as a Bayesian problem of computing the expectation

of a function with respect to a posterior distribution, which is

- [9(0)f(z]0)n(6)do
E[g(0)|X =z] = )@

where g(6) is the function of interest, w(6) is the prior distribution, and f(z|@) is the

likelihood. The approximation is

0%ky(2,0) 1/2
0T

0 (x)

02kn (z,0)
302 |a
o0 ()

Elg(0)|X = 1] ~ exp{kn(z,0(x)) — ka(z, 6" (2))}
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where ky,(z,0) = log[g(0) f (z|0)7(0)] and k4(z,8) = log[f (x|@)7(8)]. Two functions k,(z,0)
and kq(z,0) are maximized at 6(z) and 0*(z) respectively. It is required that g(f) is a
positive function, such that the saddlepoint approximation can be applied to E[g(6)]. In
case that g(f) is not positive, the moment generating function M (t) = E[e"?)] is computed
first. After that, F[g(#)] can be obtained. More general discussions can be found in Tierney

et al. (1989). We may use this to obtain E[X;|Y;] and E[X?|Y;]. Having these, we are ready

to compute [];_, p(¥;|¥; 1) for the canonical SVM.

5.1.1 Likelihood Computation

The computation is still under the filtering framework. Two steps involve the sad-
dlepoint approximation. First is the saddlepoint approximation of the density p(Y;|Y;—1) =
J p(Ye| Xy, Yi—1)pn (X¢|Yi—1)d X, where X;|Y;_; is Gaussian with known mean and vari-
ance. The second is the saddlepoint approximation of filtering, which computes E[X}|Y}]
and E[X?|Y;]. Then X;,1|X; is approximated by Gaussian with mean ¢E[X;|Y;] and vari-
ance ¢?Var[X;|Y;] + o%. The iteration then moves forward.

Theoretical and practical details about the saddlepoint approximation can be
found in Schervish (1995). Several key steps and derivations are put in Appendix (A.2), as
a self-contained reference. Our implementation can be summarized as follows, where the
subscript N denotes a Gaussian density indicated with or without mean and variance. The

likelihood components include

pltlyit) = / p(yrlee)p(@ilye— )z, ~ / p(rlze)pw (tlys—1)dey

- / el pn @ elye_1; SB[z lye 1], 6*Varlze 1 |ye_1] + 0%)day

= p(Ytlys—1),

where the filtering computes

p(zalye 1) ~ P(Yi—1|t-1)pN (T1-1]ys—2) :p(yt—l|$t—1)pN($t—1|yt—2)
I p(ye1lze1)pn (e 1|ye—2)dzs P(Yi-1y—2)
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We compute p(y|y; 1) and Mg, 1y, (k) = [ eke=1p(xy 1|y 1)dxs 1, using the saddlepoint

technique. Derivations are put in Appendix (A.3). The maximum likelihood estimator is

T
arg max > log p(ytlyi-1,9)-
t=1

5.1.2 Criticism

During our study, we found that Shimada and Tsukuda (2005) have studied the
saddlepoint approach already. However, instead of computing posterior mean and variance
rigorously, their implementation plugs in the Maximize-a-Posteriori (MAP) estimator. By
such, their method removes the computation demand on the posterior mean and variance.
Thus, their method is much faster. From the parameter inference point of view, that
may cause little difference, since neither theirs nor ours enjoy the large sample property of
the saddlepoint approximation, because we only have one observation at ¢t. Therefore, a
formal justification will be impossible, in comparing two approximations, or with simulated
likelihood approaches. In the next section, we reveal a situation in which we can enjoy the

asymptotic property.

5.2 A Factor Stochastic Volatility Model

In Chapter 3, we have discussed the reason that we are interested in the model

described by Equation (2.26) and (2.27), which is as follows to facilitate discussions:

Y, = exp(Xy/2)Z,

Xy = ¢Xi1+m,

where Z; ~ Ny, (0,%) and n; ~ Ny (0, 0,27) are mutually independent Gaussian white noises

in vector and scaler forms. In order to make a maximum likelihood inference for the mul-
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tivariate SVM, we need to compute the likelihood

T

L@lihx) = prld) = [[p@lFi-1,6)
i=1

T
I1 [ #tiiler,0)p(aii 1,0)da
t=1

Q

T
1 [ plailon)py (arlgis)da
t=1
T
= 11/ pte0py (o1l BBLXe 1[5, 6 Varl X 1[5 + 02
t=1
T
= [18@lg-).
t=1

Among above steps, assuming X;|¢_1 ~ N(u,0?), we approximate E[X;|;] and Var[X;|7]

as follows:

. —~ 1+m 1 1
BX7] ~ = argmax{— log(2) — 1 log 5] ~ 5 log o*

2 2
mzy  exp(—Tt) o 1o 1 2
— — by - (g —
2 9 Yt Yt 902 (z— ) ¢
exp (=)

Var[X;|i,] = 3] = ( 5 Ut 'S+ ﬁ) ;

Tt=0
for which derivations are in Appendix (A.4). They are indeed MAP estimators, which
are more easy to obtain in general situations. The quality of this approximation, instead
of rigorously computing the moment generating function, is reasonably good, which has
been discussed in Schervish (1995). Using such a construction, we make inference about
(%, ¢,0y), by maximizing the approximated likelihood HtT:_ll D(Ti|Te—1)-

For maximum likelihood inference, it would always be wise to provide a reasonable
initial guess about the parameter. It would be ideal if the initial guess is consistent. For

the current situation, we adopt the following procedure to obtain initial values.
Procedure 5.2.1. Obtain Initial Values

(a) regard {i;}1_, identical and independent, compute the sample covariance %,
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(b) provide an arbitrary, but reasonable, guess about (¢,oy),

(¢) compute agw = (E[exp(Xt/2)|¢,an])2.

(d) compute & = %,/02, to approzimate Var[Zy),

(e) get state estimates by filtering, using (3, ¢,0y),

(f) update (¢, 0y) by fitting an ARI model to the filtered states,
(g) goto the step (c), and repeat this loop several times,

(h) use (X, ¢,0,) from the last updating step as an initial guess.

Basically, the above procedure is a cheap analogue to the E-M iteration. The step
(e) above is an analogue to the E-step in an E-M iteration, and the step (f) is an analogue
to the M-step in an E-M iteration. The procedure is cheaper than a formal E-M, because
we conduct filtering in step (e), rather than smoothing. In addition, Elexp(X;/2)|¢, oy] in

step (c) is easy to compute due to the fact that exp(X;/2) is log-normal.

5.3 Simulation Studies

In order to illustrate the performance of the proposed inferential method for this

class of models. We conduct five simulation studies.

5.3.1 Simulation Study - 1

The purpose of this simulation study is to set up a similar setting to that in
Jacquier et al. (1994). In their simulation study, the model is the canonical SVM, but in
the equivalent form, which is described by Equation (4.5) and (4.6). We use parameter-
ization 1 to denote that parameterization. We actually conduct simulation by using the
form (4.1) and (4.2), the parameterization of which is denoted by parameterization 2.

Pitt and Shephard (1999a) discussed the convergence performance from a purely Bayesian
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inference point view, and prefer parameterization 1. However, parameterization prefer-
ence is considered differently here, because the methodology is different. More often, the
preference here is only related to optimization performance, and possibly convergence rate.
However, the convergence rate in optimization will heavily depend on individual optimiza-
tion routines. For example, many local optimization routines perform well if the surface
around the optimum is approximately quadratic, and perform poorly if the surface is close
to singular. In our simulation, we adopt parameterization 2, which has more economic
meaning; see Kim et al. (1998).

In the following, we briefly present how parameter values are chosen for the sim-
ulation. Details are in the original reference. First ¢ is predetermined to be 0.9, 0.95, or
0.98. The other two values are chosen, such that following equalities hold.

2 2

g 0% g

0.2
exp{ } —1 = 10, or 1, or 0.1.

1—¢2
It can be recognized that the above quantities are related to a log-normal random variable
with location parameter ﬁ and scale parameter ﬁ, which are unconditional mean and
variance of an AR1 process with intercept a, autocorrelation coefficient ¢, and innovation
variance o2.

The simulation in the original reference is for a univariate model, while we are
interested in a multivariate model. Therefore, for each simulated state trajectory, we in-
dependently simulate m observed series. That means ¥ = %I, for Zt in Equation (2.26),
where [, is an m-dimensional identity matrix. We choose m to be either 5 or 20. We
also increase the number of simulated samples for each setting. The number is 1000 in our

study, which was 500 in Jacquier et al. (1994). We also choose the length of series to be

either T = 500 or T' = 1000, in order to study the effects from the time series length.
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Figure 5.1: Estimates of a in Nine Scenarios. Solid horizontal lines indicate true values.
Dash-dotted lines indicate Bayesian estimates. Dashed lines indicate 7' = 500. Dotted lines
indicate T' = 1000. The trend of dashed and dotted lines indicates the trend by increasing
m from 5 to 20.
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Figure 5.3: Estimates of ¢ in Nine Scenarios. Solid horizontal lines indicate true values.
Dash-dotted lines indicate Bayesian estimates. Dashed lines indicate 7' = 500. Dotted lines
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m from 5 to 20.



Table 5.1: Simulation Results. Parameterization 1.
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«a ¢ o « ¢ o @ ¢ o
—0.821 0.900 0.675 | —0.411  0.950 0.483 | —0.164 0.980 0.308
—0.736 0.900 0.363 | —0.368  0.950 0.260 | —0.147  0.980 0.166
—0.706 0.900 0.135 | —0.353  0.950 0.096 | —0.141  0.980 0.061

Estimates

T=500 m=5

—0.831 0.891 0.666 | —0.449  0.940 0.484 | —0.227  0.969 0.315
(0.197)  (0.025) (0.044) | (0.151) (0.020) (0.036) | (0.127) (0.017) (0.030)
—0.801 0.888 0.370 | —0.439 0.938 0.269 | —0.222  0.969 0.174
(0.217)  (0.031) (0.037) | (0.166) (0.024) (0.031) | (0.136) (0.019) (0.025)
—0.931 0.868 0.150 | —0.513  0.927 0.107 | —0.339  0.952 0.072
(0.628)  (0.089) (0.045) | (0.460) (0.065) (0.035) | (0.724) (0.103) (0.032)
T=500 m=20

—0.866 0.891 0.671 | —0.460 0.941 0.480 | —0.224 0.971 0.307
(0.190)  (0.024) (0.029) | (0.148) (0.019) (0.024) | (0.118) (0.015) (0.020)
—0.789 0.890 0.361 | —0.426  0.940 0.260 | —0.211  0.970 0.167
(0.183)  (0.026) (0.022) | (0.144) (0.020) (0.019) | (0.116) (0.016) (0.016)
—0.802 0.886 0.137 | —0.439 0.937 0.099 | —0.224 0.968 0.064
(0.254)  (0.036) (0.019) | (0.190) (0.027) (0.016) | (0.152) (0.022) (0.012)
T=1000 m=5

—0.798 0.895 0.666 | —0.411 0.944 0.483 | —0.187 0.974 0.313
(0.141)  (0.017) (0.031) | (0.099) (0.013) (0.025) | (0.068) (0.010) (0.021)
—0.766 0.892 0.369 | —0.403 0.943 0.267 | —0.183 0.974 0.172
(0.149)  (0.021) (0.026) | (0.106) (0.015) (0.022) | (0.074) (0.011) (0.018)
—0.823 0.883 0.145 | —0.433 0.938 0.104 | —0.198 0.972 0.066
(0.306) (0.043) (0.030) | (0.186) (0.027) (0.022) | (0.114) (0.016) (0.015)
T=1000 m=20

—0.824  0.896 0.672 | —0.420 0.946 0.481 | —0.184 0.976 0.307
(0.126)  (0.016) (0.021) | (0.093) (0.012) (0.018) | (0.066) (0.009) (0.014)
—0.748 0.896 0.361 | —0.388  0.946 0.260 | —0.175  0.975 0.167
(0.120)  (0.017) (0.016) | (0.089) (0.013) (0.014) | (0.066) (0.009) (0.011)
—0.747  0.894 0.137 | —0.395 0.944 0.098 | —0.180 0.974 0.063
(0.161)  (0.023) (0.013) | (0.115) (0.016) (0.010) | (0.080) (0.011) (0.008)




Table 5.2: Simulation Results. Parameterization 2.
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p ¢ o p ¢ o p ¢ o
0.016 0.900 0.675 0.016 0.950 0.483 0.016 0.980 0.308
0.025 0.900 0.363 0.025 0.950 0.260 0.025 0.980 0.166
0.029 0.900 0.135 0.029 0.950 0.096 0.029 0.980 0.061

Estimates

T=500 m=>5

0.023 0.891 0.666 0.025 0.940 0.484 0.028 0.969 0.315
(0.870)  (0.025) (0.044) | (0.487) (0.020) (0.036) | (0.267) (0.017) (0.030)

0.029 0.888 0.370 0.030 0.938 0.269 0.030 0.969 0.174
(0.852)  (0.031) (0.037) | (0.488) (0.024) (0.031) | (0.272) (0.019) (0.025)

0.030 0.868 0.150 0.030 0.927 0.107 0.030 0.952 0.072
(1.125)  (0.089) (0.045) | (0.693) (0.065) (0.035) | (0.788) (0.103) (0.032)
T=500 m=20

0.019 0.891 0.671 0.021 0.941 0.480 0.024 0.971 0.307
(0.901) (0.024) (0.029) | (0.496) (0.019) (0.024) | (0.261) (0.015) (0.020)

0.028 0.890 0.361 0.029 0.940 0.260 0.029 0.970 0.167
(0.833)  (0.026) (0.022) | (0.470) (0.020) (0.019) | (0.256) (0.016) (0.016)

0.030 0.886 0.137 0.030 0.937 0.099 0.030 0.968 0.064
(0.864)  (0.036) (0.019) | (0.498) (0.027) (0.016) | (0.283) (0.022) (0.012)
T=1000 m=5

0.023 0.895 0.666 0.026 0.944 0.483 0.029 0.974 0.313
(0.827)  (0.017) (0.031) | (0.439) (0.013) (0.025) | (0.214) (0.010) (0.021)

0.029 0.892 0.369 0.030 0.943 0.267 0.030 0.974 0.172
(0.805)  (0.021) (0.026) | (0.439) (0.015) (0.022) | (0.218) (0.011) (0.018)

0.030 0.883 0.145 0.030 0.938 0.104 0.030 0.972 0.066
(0.898)  (0.043) (0.030) | (0.492) (0.027) (0.022) | (0.248) (0.016) (0.015)
T=1000 m=20

0.019 0.896 0.672 0.021 0.946 0.481 0.024 0.976 0.307
(0.850)  (0.016) (0.021) | (0.446) (0.012) (0.018) | (0.211) (0.009) (0.014)

0.028 0.896 0.361 0.029 0.946 0.260 0.030 0.975 0.167
(0.782)  (0.017) (0.016) | (0.422) (0.013) (0.014) | (0.209) (0.009) (0.011)

0.030 0.894 0.137 0.030 0.944 0.098 0.030 0.974 0.063
(0.792)  (0.023) (0.013) | (0.437) (0.016) (0.010) | (0.221) (0.011) (0.008)
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Simulation results are reported in Table (5.1) and (5.2) for both parameteriza-
tion 1 and parameterization 2. Each table has five portions. The first portion presents
nine sets of parameters for data generation. The other four portions are corresponding
to four combinations of T" and m. The layout of each portion is similar to the ones in
Jacquier et al. (1994). Each portion has nine groups, separated by horizontal and vertical
lines. Each group is corresponding to a parameter setting in the first portion at the same
group location. There are three columns in each group. Each column is corresponding to
a parameter, which is denoted by the symbol at the top of the table. In each column, two
numbers are the mean of estimates, and the square root of mean squared errors.

By comparing the first portion in Table (5.1) with Bayesian estimates in Table 9.5
in Jacquier et al. (1994), we can see that biases and root mean squared errors are generally
smaller than those from a univariate model. The purpose of comparisons is not about
different methodologies, but to see most estimates are improved by increasing either T' or
m, which means that more data become available. We re-run these simulations, but feed
the alternative parameterized model to the optimizer. Summary results are the same. The
results are more clear through Figure (5.1), (5.2), and (5.3).

In these plots, solid lines indicate the true values, dash-dotted lines indicate
Bayesian estimates from Jacquier et al. (1994), dashed lines indicate increasing m from
5 to 20 while 7" = 500, and dotted lines indicate increasing m from 5 to 20 while 7" = 1000.
From these plots, we can see, except for rare cases, dashed and dotted lines are closer to
corresponding solid lines than dash-dotted lines; dotted lines are closer to solid lines than
dashed lines; the right ends of dashed and dotted lines are closer to solid lines than their
left ends. This presents the estimation improvement by increasing either m or 7.

All the estimates for « in Table (5.1) are computed from the estimates in Table
(5.2), by using the relationship that is described by Equation (4.7). We basically get the

same information from both tables.
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5.3.2 Simulation Study - 2

The first simulation study is to illustrate how estimates can be improved if multiple
time series can be observed. All time series are mutually independent, and generated upon
the same observation transition from the same state trajectory.

This simulation study will introduce correlations among observed time series. To
do that, we assume a non-diagonal covariance matrix 3. for Z; in Equation (2.26). More
specifically, we are interested in two structures that have been discussed. We focus on the
ARI1 structure in this simulation study.

Due to lack of real data, we only create a set of arbitrary parameters. The multi-

variate stochastic model that we simulate data from is

Y, = exp(X:/2)7,

Xy = oXy1+my,

where Z; ~ Np(0,%) and 7, ~ N (0, o;) are mutually independent Gaussian white noises
in vector and scaler forms. Moreover, [Z];; = o2pliJ| is an AR1 structure covariance
matrix with equal variance. The parameter values that are used in the simulation are
(0, =0.6,p =0.9,¢ = 0.95,0, = 0.16). For this set of parameters, we still simulate data
with length 7" = 500 and 7' = 1000. For each series length, m = 5 and m = 20 are two
scenario. By such, we can see how estimates are improved. Table (5.3) collects simulation
results. Similarly, we generate Figure (5.3) to present the table graphically. Recall the SVM
can be reparameterized to have a non-zero intercept state transition. In this simulation,

the connection between two parameterizations is
«
0, =€xXpq ————~
TP e-g) )
in which « is the intercept in the state transition of the equivalent parameterization:

Y, = exp(Xy/2)Z,

Xy = a+¢Xyi 1+,
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where Z; ~ N,,,(0,%) and 7, ~ Ny (0, o;) are mutually independent Gaussian white noises
in vector and scaler forms. Moreover, [X]; ; = pl*~l is an ARI structure covariance matrix
with variance 1 in the equivalent parameterization.

In Table (5.3), the true parameter values are in the first row, and « is computed
due to the equivalence of reparameterization. Below the first row, every two rows present
results of a simulation of size 1000, with a particular combination of time series length T’
and number of observed time series m. The first row of two presents the mean of parameter
estimates. The second row presents the square root of mean squared errors. Except o,
the pattern in the results is similar to the one in the first simulation. Parameter estimates
are less biased, if the time series length or the number of time series increases. In Figure
(5.4), the pattern is more clear. The solid lines indicate true parameter values. Dashed
lines indicate T" = 500. Dotted lines indicate T = 1000. Left ends of lines are corresponding
to m = 5. Right ends of lines are corresponding to m = 20. It is easy to see that dotted
lines are closer to solid lines than dashed ones. Right ends of both dotted and dashed lines
are more close to the solid lines than their left ends. At the present, we are not clear about
why o, is different, although the equivalent parameter « follows the pattern. However,
this might be an indicator that the alternative parameterization might be preferred in this
situation, as well as in a purely Bayesian inference situation.

Table 5.3: Summary of Parameter Estimates in the Second Simulation. Model is a single
multiplicative factor model. Observation innovations are multivariate Gaussian random
variables with an AR1 correlation structure.

T m 0] o p o, o
0.9500 0.1600 0.9000 0.6000 —0.0511
500 5  0.9358 0.1695 0.8997 0.6370  —0.0592
(0.0293) (0.0301) (0.0062) (0.0621) (0.0293)
500 20 0.9393 0.1615 0.8999 0.6361  —0.0558
(0.0224) (0.0168) (0.0039) (0.0595) (0.0224)
1000 5  0.9416 0.1675 0.8998 0.6383 —0.0531
(0.0185) (0.0217) (0.0044) 0.(0530) (0.0180)
1000 20  0.9449 0.1611 0.9000 0.6370  —0.0502
(0.0139  (0.0116) (0.0027) (0.0502) (0.0144)
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Figure 5.4: Summary of Parameter Estimates in the Second Simulation. Solid horizontal
lines indicate true values. Dashed lines indicate 1" = 500. Dotted lines indicate 7" = 1000.
The trend of dashed and dotted lines indicates the trend by increasing m from 5 to 20.
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5.3.3 Simulation Study - 3

The third simulation study has same settings and scenario as those in the second
simulation, except that the covariance matrix [X];; = o2pli=7 ” has a Gaussian structure.
The results are presented in the same way as those in the second simulation. In the simu-
lation, we compute the inverse and determinant analytically. However, as m increases, the
complexity increases, due to the Gaussian polynomial. This is the most time consuming
simulation in our study, although a single fitting is tolerable. Table (5.4) and Figure (5.5)

summarize the results. Results have a similar pattern to previous ones.
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Figure 5.5: Summary of Parameter Estimates in the Third Simulation. Solid horizontal line
indicates the true value. Dashed line indicates 7' = 500. Dotted line indicates T' = 1000.
The trend of dashed and dotted lines indicates the trend by increasing m from 5 to 20.
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Table 5.4: Summary of Parameter Estimates in the Third Simulation. Model is a single
multiplicative factor model. Observation innovations are multivariate Gaussian random
variables with an Gaussian correlation structure.

T m ¢ o p o «a
0.9500 0.1600 0.9000 0.6000 —0.0511
500 5 0.9358 0.1695 0.9000 0.6374  —0.0591
(0.0293) (0.0301) (0.0016) (0.0608) (0.0292)
500 20 0.9394 0.1615 0.9000 0.6366  —0.0557
(0.0226) (0.0169) (0.0003) (0.0598) (0.0224)
1000 5  0.9416 0.1675 0.9000 0.6385  —0.0530
(0.0185) (0.0217) (0.0012) (0.0524) (0.0179)
1000 20  0.9448 0.1612 0.9000 0.6369  —0.0503
(0.0140) (0.0117) (0.0002) (0.0503) (0.0144)

5.3.4 Simulation Study for Small Sample Sizes

We have presented results regarding the asymptotic property. It is worth to study
small sample size situations as well. Besides the fact that estimates will have large devi-
ations, we find the existence of multimodal likelihood, if true values for ¢, o, T, and m
all are relatively small. 8 is not relevant. To illustrate that, we simulate an example with
¢ =02,0=0.3,8=0.1,T7 =500, and m = 1. We search the log-likelihood surface, and
identify a multimodal region what contains the maximum likelihood estimate. Figure (5.6)
is the contour that presents two modes. The log-likelihood is apparently flat over a wide
range of ¢. We generate 1000 simulated samples. Estimates are presented in a scatter
matrix plot in Figure (5.7). It reveals that estimates of ¢ and those of o have a strange
pattern, which implies that an optimizer is very likely to be trapped near the boundary of

ag.

5.3.5 Filtering Examples

Previous simulations present results related to parameter inference. In this section,
we present corresponding filtering results. The parameter settings are arbitrary. The states

are generated from the following univariate AR1 process:

Xt = 0.98Xt71 + 0.1677753
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Figure 5.6: Multimodal Log-likelihood
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where 7, ~ N(0,1) is a white noise. Observation transitions are
Y, = exp(X/2) Z;,

where Z; ~ N(0,0.36R)), and R is a correlation matrix. We simulate three scenarios
with three structures for R, which are identity, AR1 correlation matrix with p = 0.9, and
Gaussian correlation matrix with p = 0.9. The dimension of R is either 5 or 20. In each
scenario, we filter out the states, by using the true parameter values. Results are presented
in Figure (5.8), (5.9), and (5.10).

Instead of plotting filtered states X;, we plot the transformed states in terms
of volatilities exp(X;/2), which is of interest in financial literature. Figure (5.8) clearly
presents that the filtered volatilities are close the the true volatilities. Although it is hard
to tell which filtered volatility trajectory is closer to the true one, the one from m = 20 has
narrower confidence intervals, which is what we expect. Meanwhile, Figure (5.9) and (5.10)
present similar results, but the confidence intervals are wider. This is understood, because
observed time series in these two scenarios are positively correlated. In addition, instead
of assuming we know the true parameter values, Figure (5.11), (5.12), and (5.13) present

respective filtering results with the estimated parameter values. Results are similar.
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filtered volatility, m=5, iid
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Figure 5.8: Filtered Volatilities from Different Dimensional Time Series, with an Identity
Correlation Matrix. The upper portion presents filtered volatilities from a 5-dimensional
time series. The true volatilities are in gray color. Dark solid line denotes filtered volatilities.
Upper and lower thin lines denote 95% confidence interval for individual filtered volatilities.
The bottom portion presents those from the 20-dimensional time series.
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filtered volatility, m=5, AR1
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Figure 5.9: Filtered Volatilities from Different Dimensional Time Series, with an AR1 Cor-
relation Matrix. The upper portion presents filtered volatilities from a 5-dimensional time
series. The true volatilities are in gray color. Dark solid line denotes filtered volatilities.
Upper and lower thin lines denote 95% confidence interval for individual filtered volatilities.
The bottom portion presents those from the 20-dimensional time series.
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filtered volatility, m=5, Gaussian

o

“7 W\JW V w

o

-

e |

—

S (W\« W%WN

e M
T T T T T I
0 200 400 600 800 1000

filtered volatility, m=20, Gaussian

N e

o

-

o |

—

S 7 M’M

T T T T T I
0 200 400 600 800 1000

Figure 5.10: Filtered Volatilities from Different Dimensional Time Series, with a Gaussian
Correlation Matrix. The upper portion presents filtered volatilities from a 5-dimensional
time series. The true volatilities are in gray color. Dark solid line denotes filtered volatilities.
Upper and lower thin lines denote 95% confidence interval for individual filtered volatilities.
The bottom portion presents those from the 20-dimensional time series.
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filtered volatility, m=5, iid
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Figure 5.11: Filtered Volatilities (using estimates) from Different Dimensional Time Series,
with an Identity Correlation Matrix. The upper portion presents filtered volatilities from
a 5-dimensional time series. The true volatilities are in gray color. Dark solid line denotes
filtered volatilities. Upper and lower thin lines denote 95% confidence interval for individual
filtered volatilities. The bottom portion presents those from the 20-dimensional time series.
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filtered volatility, m=5, AR1
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Figure 5.12: Filtered Volatilities (using estimates) from Different Dimensional Time Series,
with an AR1 Correlation Matrix. The upper portion presents filtered volatilities from a
5-dimensional time series. The true volatilities are in gray color. Dark solid line denotes
filtered volatilities. Upper and lower thin lines denote 95% confidence interval for individual
filtered volatilities. The bottom portion presents those from the 20-dimensional time series.
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filtered volatility, m=5, Gaussian
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Figure 5.13: Filtered Volatilities (using estimates) from Different Dimensional Time Series,
with a Gaussian Correlation Matrix. The upper portion presents filtered volatilities from
a 5-dimensional time series. The true volatilities are in gray color. Dark solid line denotes
filtered volatilities. Upper and lower thin lines denote 95% confidence interval for individual
filtered volatilities. The bottom portion presents those from the 20-dimensional time series.
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Chapter 6

Conclusion and Discussion

6.1 Conclusion

Motivated by proposing a suitable multivariate SVM for the term structure of
interest rates, we are in favor of a low state dimensional multivariate SVM. We point out
that multivariate Gaussian innovations must be more carefully studied, instead of being
prescribed just for the sake of mathematical convenience. After reviewing the current dif-
ficulties in SVM inference literature, we first propose a systematic procedure, in order to
guide the simulated maximum likelihood inference. We also realize that all the difficulties
are from limited knowledge about individual states, which has no hope to be improved if
no additional information is obtainable. In situations that state and parameter inference
are equally important, existing approaches can hardly be satisfactory. On the contrary,
the multivariate SVM that we are interested in can provide more information about in-
dividual states when the dimension of the observed time series increases. In addition to
that, such property leads to a computationally inexpensive inference approach, which is the
saddlepoint-approximated-likelihood inference. Simulation results confirm that the analytic
approximation improves both state inference and parameter inference in most of the cases,

when the dimension or the time series length increase.
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6.2 Discussion

This research opens a door to several possible future directions. First, we have
only considered a one factor model, it would be desirable if multiple factors can be modeled.

Or at least additional noise can be attached. For example, consider the following example:

Y, = exp(Xi/2)Z; +é,

Xy = Xy 1 +my,

which has an extra multivariate Gaussian innovation €;, in comparing with Equation (2.26).
Though this model still has one stochastic volatility factor, the instantaneous correlation
matrix of Y, is not constant, which is very desirable in some financial applications. To see
that, suppose the covariance matrix for Zt is X, that for €; is A, and the correlation matrix
for Y, is R, then the (4,5)"" entry of R is

R = eXp(Xt)Zij + Aij
17 )
T \exp(X) Ty + Ay Vexp(Xy) X5 + Ayj

which is not a constant. A multiple factor model will have dynamic correlation as well, how-
ever more latent processes must be introduced, and identifiability issues will arise. Besides
multiplicative factor models, additive factor models seem more familiar in the literature.
The saddlepoint approach may also apply to the additive class. Besides the above exten-
sions, in order to get a more theoretical justification, we would like to start the study on the

convergence rate of the saddlepoint approximated log-likelihood to the true log-likelihood.
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Appendix A

Derivations and Proofs

A.1 Derivations for Equality 4.3 and 4.4

The following requires the knowledge of stochastic differential equations (SDE).
An accessible reference is Oksendal (1995). The definition of Ornstein-Uhlenbeck processes

in terms of stochastic differential equation and Ito’s integral is as follows.
dX; = —-0(X;— p)dt+ odWy, 6 >0, (A.1)
which is the solution to

t
X, = Xoe %4 pu(1—e%+ / ce?Caw,, 6 > 0. (A.2)
0

Step-by-step, the solution is obtained as follows. First, multiply both sides of Equation (A.1)

by €%, and get:
X, = —0e" (X, — p)dt + oe®tdw,. (A.3)
Compute d(e’*X;) by using Ito formula, and replace e’*dX; by the right hand side of Equa-
tion (A.3). We get:
d(e?Xy) = 0e'Xdt + PdX, (A.4)
= 0" X;dt — 0P (X; — p)dt + o€t dW; (A.5)

= pbetdt + oetdw;,. (A.6)
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Therefore
t t
X, = 69'0X0+/ ,u9695d3+/ ae?5 dw (A.7)
0 0
¢
= Xo+p 1) +/ oeP dw, (A.8)
0

Dividing both sides by e, we get Equation (A.2).

In particular, we are interested in
t
X, =p+ / oe?GDaw,, 9 > 0,
—00

for t is sufficiently large, which is equivalent to say the initial value has no long term effect
on the process. Without loss of generality, we can assume pu = 0, and for ¢; < 9,

t1 t2
Cov(Xy,,Xy,) = E |:/ 0.60(st1)dWS/ JeH(utz)qu]
—00

-0

t t
= E [ / 1 o1 gy, / 1 oefw=t) gy,
—00

—0o0

t1 ta
+ / o=t gw, 060(“_t2)qu]

—00 t1
t1 t1
= E [ / oe?=t)gw, / aee(“_t2)qu]
—00 —00
t
— / 0,260(287151 *tz)ds
—0oQ
2
— U_efa\trtll
20
The correlation is then e~f*2~%l And variance is g—;. Assigning |to — 1| = 1, we get
Equation (4.3). By equality
1 2 1 o
1— ¢2 Oe = @o’wa

we get the equality (4.4).
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A.2 Key Steps in the Saddlepoint Approximation

This is a self-contained reference due to Goutis and Casella (1999). The task of a

saddlepoint approximation is to compute

/A f(z)da,

where f(z) is positive. Compute the first order approximation, by expanding h(z) =

log f(z) in Taylor’s series about zy,

r— X 2
) exp {an) + (& = o) + =)}

By choosing zy = %, where h(z) is maximized, we can eliminate the linear term. And

/Af(x)da: ~ exp{h(2)} (—M?—&)l/QA¢ (m—h#(m» da,

where the integrand of the last integral is a Gaussian density function. For A = R, the last
integral is 1. The quality of the approximation depends on the quadratic approximation of
h(z) around Z, which is usually satisfactory if f(z) is a likelihood function. Thus  is the
maximum likelihood estimate. Well behaved loglikelihood functions h(z) are known to be

approximately quadratic at its local maximum.
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A.3 Derivation of Saddlepoint Approximation

Assume 1 ~ N(u,0?) and p(y|z) ~ N(0,8?exp(z)). The task is to get p(z|y),
but eventually E(z|y), and Var(z|y), using saddlepoint approximation. We also need p(y)
for the likelihood. The notations used in the next subsections follow Goutis and Casella

(1999). At the present, we only conduct the first order approximation to achieve efficiency.

A3.1 p(y)
ply) = / p(y|z)p(z)dz,
T — 2
o) = e {0
o) = o en -
PV = Varpexp{a/2y 0\ 287 expla}
_ 1 {_L_z}
= Varp P\ 2Bexpla} 2
Let
mi(y,z) = p(ylz)p(z)
_ 1 {_L_E_M}
- 271Bc p 232 exp{z} 2 202 ’
kl(yax) = logml(yax)
2 oxpl— — )2
—  _log(2nfo) — % _ g B (w%ét)
Then
Oki(y,z) _ ylexp(=z) 1 z—p
Ox N 232 2 o2
Pki(y,z) _  yPexp(-z) 1

o2 252 o2’



and

where Z(y) solves

6k1 (y71")
o

=0 for z in y.

(z — i(y))* 8%k (y,
2 Ox?
1/2
2r
02k1(y,x) ’
9% lagy)
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A.3.2 My,(t) = E(e™y)

By = [eplatis = [ o PUDP@ 1 [ e rtulompeis

p(y) p(y)
Let
mu(y,z,t) = e"p(ylz)p(x)
_ 1 A N Clnd O
~ 27fo P 2% exp{z} 2 20 ,
ky(y,z,t) = logme(y,z)
9 2
o _yrexpia} oz (z-p)°
= —log(2nfo) + xt 252 9 202
And
Okm(y,z,t) _ , y'exp(zz) 1 z—p
Oz B 232 2 o?
Phuly,z,t) _  y'ep(-z) 1
0z2 B 22 o’
and
ot - . (.’I? — :f:(y,t))2 82]€M(y,$, t)
/e p(ylx)p(x)dr = /exp {kM(yaiU(yat)at) + 9 12 #(y,t) dz
1/2
2w

= exp{ku(y, i(y,t),t)} = u(y, £(y, 1), 1),

9%k (ymt)
Ok (yait)

oz ()

akM (yywyt)
ox

where & (y, t) solves = 0 for z in y. p(y) is obtained from the previous section. In

addition, we need the following evaluated at = = #(y,t), and ¢ =0, for m = 1,2.

am R
at—mu(ya iL'(’y, t)a t)a

while is quite involving. Finite difference methods are usually used for computing those
quantities, see Tierney et al. (1989). Here, with some aid from some symbolic computing
system, we will be able to get explicit expressions, which will be given next, in a form of

guidance. The lengthy formulae also follow, but at the present, we just give outputs from
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the Maxima system, without further verifications. In practice, implementations do not use
analytic formulae, but the finite difference method. It is understood that analytic solution
is not feasible in general.

To see that, we show the complexity and provide the following guidance for com-
puting the quantities in symbolic computing systems. First, redefine

ku(y,z,t) = at+ky(y,2(t))
1/2

i 2m

u(y,z,t) = exp(at)exp(kp(y, 2(t)) | — 55—
o

2(yt)

= m(z,t)h(x(t)) = u(z,1),
where m(z,t) = exp(zt) is a simple form that explicitly involves both z(t) and ¢, and
h(z(t)) does not involve ¢ explicitly. In addition, y is a constant. First, we can show, by
differentiating both sides of % =0 wr.tt,

ad 2/%5?
—(E(t) ) — PR
ot a?y? exp(—z) + 23

which is not a function of £, explicitly, either. Then

%u(x,t) - :%m(x,t)] h(z(t)) + m(z,t) [%h(w(t))]
S—;uw - :g—;m(x,t)] h(x(t))—l—[%m(x,t)] [%h(rc(t))]Jr
%m(x,t)] [gth(x(t))] + m(z, ) [ a;h(ﬂc(t))] ;

where
2h( ) = 3h( (1)) 9 (t)|, is not an explicit function of ¢
5 = |gz" 57 2(0) | » is not an exp unction of ¢,
0? o [0 0 . .. .
Wh(:v(t)) = % [ah(:v(t))] [ax(t)] , is not an explicit function of ¢,

ot

aa_;m(w,t) — [gt (z, t)] [%m() ]+exp($t) [%ﬂf( )]

- o] (B (& [20]) [20]

O @,t) = explat) [%w(t) + 1]



89

All the complex parts that do not involve ¢ explicitly with the exception of z, can be
computed by a symbolic system easily. Parts that involve ¢ explicitly among those above
are not hard to compute. Plug in Z(0) and ¢ = 0, in place of z and ¢, to get
9 2
au(y,:ﬁ(y,t),t) L and wu(y,:ﬁ(y,t),t) .
The first derivative can be finally simplified to a ratio, whose numerator is
Bo (a4xy4-|-04y4—6,6202wewy2+2[3204te$y2+252u026wy2—2[32026‘”y2+8

-z ,2

2
e y x px ©
—e "y 2 g hl
Brze?® —4prc?te?® 4280?27 —4B4ue2“) e 287 202 o2 2027,
and denominator is

2.9 2 3 7r
po (‘7 Yy —2p ew) \/02y2_2ﬁ26x'

The second derivative is also a ratio, whose numerator is

((Ba5x+605) em+%y4+ (—6ﬁ303x+2ﬂ3a5t+ (253u—263) 03)

-z, 2

AR AT (88°cz—4p°c*t+28°0° —4B° po) etH%Hm) e 28°
and denominator is

R 22 2 22 2
<50606m+2¢72 yﬁ _ 6,33 0.5 em'f'm-f-m y4 + 1265 0.3 em-}-?m-}—m y2_

2 2
85706;74-3584-5”6—2 m .
02y2 — 22t
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A.4 Integrating out a Class of State Variables

A.4.1 Statement of the Problem
Consider specification by Equation (2.26) and (2.27), which is as follows:
Vi = exp(X,/2)Z,
Xy = ¢Xi1+m,
where

Xt‘?t—l ~ N(u,o?)

n o~ N1(O,a%).
Thus, we have the following:
p(Vi|Xy,Yio1) ~ Np(0,exp(X,)%)
Our tasks, by using the plug-in version of the saddlepoint approximation, are
(a) Compute p(Y;|¥; 1) = [p(Yy| Xy, Yy 1)p(Xe|V; 1)dXy,
(b) Approximate p(Xt+1|17}) by Gaussian.

The function that we are interested in is k(Y;, X;) = log [p(l_/'t|Xt, Y’t,l)p(Xt)] , which equals

mX, _exp(~X))

0_2 2

1
Y27, — — (X, — p)?

where the quantity C' is independent of X; and equal to,

14+m

1 1
log(2m) — 2 log || Z|| — ilog o’

We need to compute the gradient and hessian of k(l—/'{;, X;) with respect to Xy, which are:

ok(Y;, X m  exp(—X _ 1

(815 t t) . P(2 t)Yt/E ly, — F(Xt — ) (A.9)
0%k Y_’,X exp(—X _ 1
% e _7( t) &tlz lit—g. (A]'O)
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A.4.2 Maximization

Function k(Y;, X;) is concave, according to Equation (A.10). For the same reason,
the gradient is monotonely decreasing in X;. In addition, because %}ZXQ >0, as Xy —
—o00, and %}gﬁ) < 0, as Xy — oo, there is a unique solution to %}gtxﬂ = 0. Therefore,
there is a global maximum for k(Y;, X;).

Regarding the fact that k(?t,Xt) has analytic first and second derivatives, and

hessian is always negative, this maximization problem can be solved by several standard

methods; see Kelley (1995; 1999).

A.4.3 Computation of p(V;|V;_,)

Suppose k(l_/'t, X}) is maximized at X;. The approximation is

1/2
. Lo o
p(Yi|Yi_1)) =~ exp{k(Y:, X¢)} TR ;
ox;  Ix,

due to the saddlepoint method directly.

A.4.4 Approximation of p(Xt+1|17t) by Gaussian

One of suitable approximations is to approximate the mean by
E(Xi1Yy) =~ ¢Xy,

and approximate variance by

0%k(Yh, Xy)

Var(Xt+1|17}) ~ ¢2( BXE

-1
2
> + o
Xy

This approximation does not compute posterior mean and variance through the saddlepoint
method described in Tierney et al. (1989). Fortunately, such approximations still have a

satisfactory convergence rate to true values; see Schervish (1995).
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A.4.5 Special Cases for X

Computation may have some problems due to computing matrix inversion and
determinant. For two special cases that we have discussed, inversion and determinant have
explicit expressions.

The general purpose of interest is a covariance matrix 3, which can be factorized
as a correlation matrix R, pre-multiplied and post-multiplied by the same diagonal matrix
A, ie. ¥ = ARA. The diagonal entries of A are J;’s.

Then the inversion and determinant are expressed in the following:

271 — AflRflAfl

1]

IANIRIIA]-

Exponential Correlation

An exponential correlation matrix R of dimension m is a matrix, whose entry is

defined by R;; = pli=il. Following quantities are either directly or indirectly used in the
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likelihood construction.

R = LDI
li=jl >
Ly = 4" =’
0, 1< j
1 i=j=1
Di; = 1—p% i=j>1
0 i #£J
IRl = (1-p)m"
m
1= = @=-p)" [
j=1
L' =1
1, i=j
= { -p imi=1
0, otherwise
(Ll)fl — TI

Y's"lyY = Y/'AT'RIATY
= Y'A YLD 1ATY

= Y'AYI) DL AT Y

Y1 2 1 = Yj+1 Yj 2
z + — “J
(&> (I—ﬁ)g;(®+1 p@)

Gaussian Correlation

An Gaussian correlation matrix R of dimension m is a matrix, whose entry is

defined by R;; = pli—i ? Following quantities are either directly or indirectly used in the



likelihood construction.

1Bl

131

G(m,n;q)
(Ll)fl

Y'S~ly

Lr
|i_j|2 H;;37j+1(1—p2l)
\/ Hzn_:11(1_P2m)

0, 1 <]
m
I1z
1=1

IR T4
j=1

i>

(_p)z’—j G(j—14-1;p) >

V :';:11(1_P2m)

0, 1< ]
[[ (1 - gvt)

H;'n:1(1 —q)
(Lfl)l

Y'AT'RT'ATYY
Y'ATH L) TATY

Y'ATHINTILIAT Y

94



