
ABSTRACT 

HOWARD, BRIAN EDWARD. Methods for Accurate Analysis of High-Throughput 
Transcriptome Data. (Under the direction of Dr. Steffen Heber). 
 

A detailed understanding of the transcriptome is a prerequisite for deciphering the 

flow of information from genotype to phenotype.  Fortunately, modern high-throughput 

technologies now provide an unprecedented ability to observe the full complement of 

transcriptional events, which extend far beyond the classical "one gene, one protein" 

hypothesis to include alternatively spliced genes, microRNAs, RNA interference, anti-sense 

transcription, and a variety of other, until recently, unknown phenomena. However, in order 

to accurately interpret the results of these assays, new statistical and bioinformatic methods 

must be developed in parallel to biotechnological advances. In this thesis, we present several 

methods for improving the accuracy of inferences obtained from the high-throughput 

transcriptome data generated by these new technologies. 

First, we present a novel method for microarray quality assessment.  Since accurate 

inference is dependent on the quality of the underlying data, quality assessment is a critical 

component in any microarray data analysis. Our method, which uses an unsupervised 

classifier to discriminate between high and low quality microarray datasets, exhibits 

performance comparable to supervised learners constructed using the same training data.  

However, because our approach requires only unnannotated data, it is easy to customize and 

to keep up-to-date as technology evolves. 

Next, we present an alternative method for microarray quality assessment, which 

identifies low quality microarrays by simulating a set of differentially expressed genes.  This 

method directly measures the ability of a planned statistical analysis to identify differential 



gene expression when suspected low quality arrays are included in the dataset.  A key 

advantage of this approach is that, unlike other methods, this method provides a specific 

recommendation about whether to retain or discard low quality chips in the context of a 

particular experimental setting. 

Finally, we introduce a procedure for accurately quantifying alternative splicing using 

RNA-Seq data. Our method uses a familiar linear models approach, but improves upon 

similar methods that assume uniform coverage of RNA-Seq reads along the targeted 

transcripts. We first show, through simulation, that using an incorrect read sampling 

distribution can lead to incorrect conclusions about the expression of isoforms in a mixture.  

Applying our method to an example dataset, we identify 438 differentially spliced genes, 

exhibiting a range of expression patterns including genes with switch-like differential 

splicing between two tissues, as well as genes with more subtle variations in isoform 

expression. 

Taken together, we expect that these methods can serve to increase the accuracy of 

inferences drawn from high-throughput transcriptome data, and in doing so, lead to an 

advancement of our understanding of the biology of genome expression. 
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Chapter 1  
 

INTRODUCTION 
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Study of the Transcriptome in the (Post-) Genomic Era 

Genome size alone is a poor predictor of phenotypic complexity. Ever since the first 

crude, genome-level investigations in the 1950’s, biologists have been puzzled by a lack of 

correlation between the raw count of genomic nucleotides and organism morphology (Pray, 

2008; see also Figure 1-1.) Today, with the availability of many whole genome sequences, it 

is clear that there is also no meaningful association between gene count and organism 

complexity. For example, the organism with the largest known number of genes (60,000) is 

the single-celled parasite Trichomonas vaginalis.  In contrast, the current gene count estimate 

for Homo sapiens is about 25,000 — approximately the same as the plant, Arabidopsis 

thaliana, and less than both mouse (30,000 genes) and rice (51,000 genes) (Pray, 2008). 

The key to resolving this information gap is widely believed to hinge on a detailed 

understanding of the spatial and temporal gene expression patterns that confer phenotype 

from genotype (Sharp, 2009). In between the latent information stored in raw DNA and 

outwardly observable biological forms, lies a complex, and often mysterious, world of RNA. 

As a first step towards understanding the flow of information from genes to proteins, it is 

imperative to study the entire transcriptome, or “the complete set of transcripts in a cell, and 

their quantity, for a specific developmental stage or physiological condition.” (Wang et al., 

2009) In recent years, our understanding has advanced far beyond the classic “one gene, one 

protein” hypothesis, to include a rich transcriptional landscape in which a single gene can, in 

fact, encode multiple protein products, and in which many important regulatory transcripts do 

not result in functional proteins, at all.  The last decade has witnessed an explosion of 
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research in this area, thanks, in part, to a variety of new high-throughput technologies that 

allow researchers to study the detailed expression of thousands, or tens of thousands, of RNA 

transcripts at once.   

This introductory chapter will begin by reviewing several of the important 

components of the transcriptome, which includes not only the canonical, “carbon-copy” 

mRNAs fundamental to the “Central Dogma” of molecular biology, but also alternatively-

 

 
Figure 1-1. Extensive variation in genome size within and 
among the main groups of life (Pray, 2008).   

As an example, some protozoa have larger genomes than 
mammals, while other protozoa have genome sizes comparable 
to bacteria and archaea. There is a striking lack of association 
between genome size and organism complexity. 
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spliced transcripts, non-protein coding microRNAs, and anti-sense RNAs.  Then, we will 

review the various high-throughput technologies that are currently available for measuring 

transcriptome expression. Special attention will be given to both microarrays and high-

throughput RNA sequencing (RNA-Seq), both of which are central to this thesis.  Finally, 

relevant background information regarding current methods for microarray quality 

assessment is discussed, in an effort to lay the groundwork for subsequent chapters.   

The focus of our research is the development of new methods that can be used to 

maximize the accuracy of inferences obtained through analysis of transcriptome datasets.  In 

the case of microarrays, which are often subject to high levels of experimental noise (Wilkes, 

et al., 2007), data quality assessment is a critical component of any analysis. In chapter 2, 

“Unsupervised assessment of microarray data quality using a Gaussian mixture model,” we 

will introduce a new method for interpreting a variety of widely-used quality indicators in the 

effort to identify low quality microarrays. This chapter was previously published in the 

journal BMC Bioinformatics (Howard, et al., 2009a).  In chapter 3, “Practical quality 

assessment of microarray data by simulation of differential gene expression,” we take a 

different approach to quality assessment.  In small, real-world experiments, it is often not 

feasible to re-run a defective hybridization; instead the relevant choice is whether or not to 

completely discard imperfect data. To address this question, we introduce a simulation-based 

method that determines the effect of discarding a particular array in the context of a test for 

differential gene expression.  This chapter was published in the conference proceedings for 

the 5th International Symposium on Bioinformatics Research and Applications (ISBRA 2009) 

(Howard, et al., 2009b). In Chapter 4, “Towards reliable isoform quantification using RNA-
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Seq data,” we turn our attention to an alternative high throughput technology.  In particular, 

our interest is in developing a method for quantifying the relative transcription levels for the 

various alternatively spliced isoforms for mutli-isoform genes, using RNA-Seq data. This 

chapter is an accepted submission to the upcoming International Conference on 

Bioinformatics and Biomedicine (BIBM 2009). 

Components of the Transcriptome 

Early large scale gene expression studies often assume a limited definition of the 

transcriptome as the “identity of each expressed gene and its level of expression for a defined 

population of cells” (Velculescu, et al., 1997).  In these studies, gene expression levels are 

inferred from the measured quantities of messenger RNA (mRNA) found in a sample.  This 

approach is in correspondence with the “Central Dogma” of biology which describes how 

DNA genes are first copied to mRNA transcripts, and then delivered to ribosomes where they 

are decoded and used as blueprints to assemble functional proteins. Indeed, most studies of 

the transcriptome have involved isolation of mRNA molecules followed by a quantification 

step using microarrays or, more recently, high-throughput RNA sequencing.  Much has been 

learned from this approach, with applications in drug development (Marton, et al., 1998), 

toxicology (Nuwaysir, 1999), biomarker discovery (Golub, et al., 1999; van’t Veer, et al., 

2002; Singh, et al., 2002; Wang, et al., 2000; Alon, et al., 1999; Ramaswamy, et al., 2001), 

evolutionary biology (Kant and Baldwin, 2007), functional genomics (Jares, 2006) and 

clinical practice (Li, et al., 2008). Nevertheless, as the science has evolved, we have 
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developed an increasing appreciation for complexities of the transcriptome that extend well 

beyond the simple one gene, one protein model of Beadle and Tatum (1941).  

 
 

Figure 1-2. Layers of coordinated gene regulation (Blencowe, 2006).   

Recent evidence suggests that, for a given tissue and treatment, the set of 
differentially expressed genes is independent from the set of differentially 
spliced genes. This contributes to a model for genetic regulation that involves 
several distinct layers acting independently to determine phenotype.  In the first 
layer, the physical DNA structure and packaging, which can be influenced 
dynamically by histone modifications, controls the availability of genes to the 
transcriptional machinery.  Subsequently, various cis and trans regulatory 
signals, including promoters, enhancers and transcription factor binding sites, 
further modulate gene expression.  Likewise, at the level of alternative splicing, 
a variety of signals, including canonical splice recognition sites, along with 
splicing enhancers and silencers, determine the observed patterns of alternative 
splicing.  Finally, a variety of post-transcriptional and post-translational 
mechanisms, including RNA degradation, RNA silencing, and post-translational 
modifications, can further modify expression. 
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In humans and other metazoans, most genes are divided into multiple protein coding 

regions (exons), separated by long intervening non-coding intronic regions. After 

transcription, but before being transported out of the nucleus for conversion to protein, the 

introns are spliced out of the primary transcripts. In many cases, different patterns of splicing 

can lead to multiple transcripts and proteins from the same gene. It is now estimated that 

70% or more of human genes undergo alternative splicing, and mutations in splicing regions 

are increasingly recognized as playing an important role in inherited diseases (Hertel 2008). 

Furthermore, microarray experiments have revealed that transcription and splicing appear to 

be regulated in an orthogonal manner (Figure 1-2); the set of genes that is alternatively 

spliced is often very different than the set of genes that is differentially expressed under the 

same conditions (Blencowe 2006). Technological advances that increase our ability to detect 

and measure this phenomenon are expected to lead to an increased appreciation for the role 

played by alternative splicing in the domains of evolution, tissue differentiation, phenotypic 

response to environmental stimulus and disease pathology (Gravely 2001). 

RNA interference (RNAi) is an additional complication that must be included in any 

modern definition of the transcriptome (Fire, et al. 1998). RNAi is a complex, conserved, 

innate genetic mechanism that can be exploited to post-transcriptionally “silence” targeted 

genes with high specificity. The primary endogenous variety of RNAi occurs in the form of 

micro-RNAs (miRNAs) — short, non-protein coding, functional RNAs that occur in the 

genomes of many organisms. Currently, there are 678 predicted human miRNAs cataloged in 

the miRBase database (Griffith-Jones 2004). Micro-RNA genes are transcribed in the nucleus 

into primary miRNA (pri-miRNA) transcripts, which are then transported to the cytoplasm, 



 8

cleaved into mature 21-23 nucleotide miRNAs by an enzyme called DICER, and then 

incorporated into an RNA-induced silencing complex (RISC). When a RISC encounters a 

target RNA with base pair complementarity, the targeted mRNAs are either degraded or 

sequestered.  Because base-pairing is imperfect, each miRNA appears to target on average 5-

10 mRNAs in humans (Sarnow 2006).  Recent research suggests that microRNAs may be 

nearly as important as transcription factors for the purpose of gene regulation in vertebrate 

genomes, and that the two regulatory mechanisms may work in concert to control gene 

expression (Hobert 2008).  For example, it has been shown that, in many cases, up-regulation 

of transcription factors confers wide-spread up-regulation of targeted genes, and that 

miRNAs may then modulate this response through post-transcriptional silencing in a tissue-

specific manner (Hobert 2004).  In contrast to transcription factors, however, it has been 

noted that the “speed, reversibility, and compartmentalization of miRNA-mediated control 

mechanisms predestine miRNAs to be involved in rapid, adaptive changes in gene expression 

to maintain homeostasis and to respond to specific environmental, nutrient, or neuronal 

signals.” (Hobert 2008).   

In addition to microRNAs, there are also a number of other important non-coding 

RNA species now recognized as components of the transcriptome.  Piwi-interacting RNAs 

(piRNAs), for example, are short transcripts with lengths between 26 to 32 nucleotides.  

Unlike miRNAs, they lack secondary structure and are not highly conserved (Carmi, 2006).  

They are thought to function in germline development, possibly in the capacity of silencing 

movable genetic elements, such as retrotransposons, during spermatogenesis (Watanabe, et 

al., 2006).  Repeat-associated small interfering RNAs (rasiRNAs) are also thought to play a 
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role in silencing germline retrotransposons, but their structure and properties are different 

(Watanabe, et al., 2006).  In addition, endogenous, anti-sense RNA transcripts are also 

known to play an important regulatory role in some organisms by causing the degradation of 

their targeted sense transcripts (e.g. Dühring, et al., 2006). At this time, many of the 

mechanisms and properties of these functional non-coding RNAs remain unknown.  In 

addition, there are probably additional types of non-coding RNA, that are yet undiscovered 

— especially longer transcripts that have been more difficult to characterize with high-

throughput RNA sequencing technologies (Sharp, 2009).  In fact, the recent ENCODE 

project (The ENCODE Project Consortium 2007) has revealed that the majority of the human 

genome is actually transcribed into RNA, with only a tiny fraction of this corresponding to 

protein-coding genes. 

High-Throughput Technologies for Transcriptome Analysis 

In this section we will provide a brief description of the two main technologies used 

to assay the transcriptome in a high-throughput manner.  There are also several other 

important technologies with both historical and modern significance, including SAGE, EST 

libraries, and MPSS.  However, since our research is focused on data generated from 

microarrays and high-throughput RNA sequencing, we will limit our discussion to these two 

technologies. 
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Microarrays 

The two main types of microarrays are spotted cDNA arrays and oligonucleotide 

arrays.  Both array types rely on hybridizing labeled RNA or cDNA from a sample to 

complementary nucleotides fixed to a solid surface.  The amount of RNA hybridizing to the 

array for each species is assumed to be proportional to its prevalence in the sample and can 

therefore be used as a proxy for quantification of the sample’s RNA content. 

Spotted cDNA arrays are usually manufactured in-house by an individual lab.  The 

procedure typically involves isolating RNA from a targeted transcriptome, and then making 

reverse transcribed cDNAs.  These cDNAs are then affixed to a solid surface in a grid-like 

pattern, with a distinct “spot” for each cDNA species.  Each spot is complementary to a 

specific RNA transcript from the original sample, and can be used to quantify the RNA 

content of future samples from the same organism, tissue, and/or treatment.  Because cDNA 

arrays are typically made by individual labs, the resulting measurements can be more 

difficult to compare across labs than results obtained from industrially manufactured 

oligonucleotide arrays (Bammler, et al., 2005).  However, the degree of customization is 

attractive for many researchers, and, for non-model organisms, spotted arrays are often the 

only microarray platform available. 

Oligonucleotide arrays such as those available from Agilent 

(http://www.chem.agilent.com), Affymetrix (http://www.affymetrix.com), Illumina 

(www.illumina.com), NimbleGen (http://www.nimblegen.com), and other biotechnology 

companies, rely on a set of short standardized oligonucleotide probes.  Probes are carefully 

chosen according to their complementarity to selected targets, and so as to minimize cross-
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hybridization to homologous regions of similar genes. Many types of arrays are available, 

varying according to the targeted molecules.  Gene expression arrays attempt to measure the 

expression of mRNAs from protein coding genes, and typically target the least variable gene 

regions at the 3’ and 5’ termini.  For this reason, this platform is not usually capable of 

discriminating between alternatively spliced transcripts from the same gene. Exon arrays or 

exon junction arrays have probes that are designed to query individual exons, or regions 

spanning adjacent exons, and can be used to quantify the occurrence of alternative splice 

isoforms.  Genome tiling arrays are designed to measure transcription across the entire 

genome, with probes spaced equally at regular intervals, regardless of known locations of 

protein coding genes.   Other microarrays include probes for known miRNAs and other non-

coding RNAs. In this thesis, we make use of example datasets that originate from the 

Affymetrix GeneChip Array and Affymetrix Exon Array platforms.  Accordingly, the 

following sections provide additional details regarding these arrays. 

Affymetrix 3’ GeneChip Arrays 

An Affymetrix GeneChip® microarray consists of an approximately one-half square 

inch quartz surface divided into a grid containing hundreds of thousands of “probe cells.”  

Each probe cell contains hundreds of thousands, or even millions of copies, of a single short 

oligonucleotide probe.  Each probe on the GeneChip “3’ Expression” arrays is typically 25 

nucleotides in length.  These probes, which are synthesized directly on the quartz surface 

using a photolithographic process, are designed to be complimentary to a particular gene in 

the target organism’s genome.  Each probe exists as a member of a probe pair.  Within a 



 12

probe pair, the “perfect match” probe is perfectly complimentary to its intended target; the 

“mismatch probe,” on the other hand, contains a single mismatched nucleotide, usually at the 

center base within the probe sequence.  Although the mismatch probe is intended to measure 

non-specific, “background” hybridization, some pre-processing algorithms actually ignore 

the signal from this probe.  Probe pairs are further organized into larger “probe sets.”  Each 

probe pair within a probeset is intended to hybridize to a different subsection of the intended 

target sequence.  The 3’ expression arrays typically have about 11 probe pairs per targeted 

gene.  In order to minimize the effects of various spatial artifacts that can occur during 

hybridization, the probes for each probeset are not positioned contiguously, but rather are 

scattered across the entire array. 

 In the case of 3’ expression arrays, the goal is to measure the amount of mRNA in a 

sample and thereby gain information concerning the relative transcription levels of the 

targeted genes.  Once mRNA has been isolated from the biological sample, oligo-dT primers, 

which are complementary to the poly-A tails on the mRNAs, are used to prime reverse 

transcription reactions that convert the mRNA into double-stranded cDNA.  Next, these 

cDNAs are re-transcribed back into cRNA using biotinylated nucleotides.  In addition, an 

amplification procedure can be used to increase the amount of RNA available for 

hybridization.  The resulting cRNAs are then fragmented and hybridized to the array.  Any 

cRNA fragments that are complimentary to the probes on the array will base pair and anneal 

to the probes. Next, the array is exposed to a Streptavidin-phycoerythrin (SAPE) solution.  

The Streptavidein adheres to the biotinylated cRNA fragments bound to the array. Afterword, 

a laser is used to excite the fluorescent dye (phycoerythrin), which then emits light.  The light 
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can be read using an optical scanner, and the amount of light emitted from each cell is 

roughly proportional to the amount of cRNA hybridized to the probes in that cell. 

  After a microarray experiment has been performed, a variety of data processing steps 

need to be performed before an analysis of differential gene expression can proceed.  

Affymetrix provides software to assist with these steps, but there are also a variety of free, 

public domain software packages available, as well.  The first step is to convert the digitized 

image produced by the optical scanner into a raw intensity measurement for each probe.  This 

involves determining the borders of each “spot” and computing an average intensity 

measurement.  Once raw intensity values have been read for each probe, it is next necessary 

to perform “background subtraction,” which is an attempt to remove noise caused by a 

variety of factors including cross-hybridization, and other local and global artifacts.  The 

mismatch probes may or may not be used for this purpose.  After background subtraction, a 

normalization step is performed to ensure that each of the microarrays in an experiment has a 

similar distribution of intensity values.  In addition, the signals from all probes within a 

single probeset are typically summarized using a single statistic intended to represent the 

intensity of the target gene.  Once these values have been computed, it is possible to use a 

variety of statistical procedures, including t-tests, ANOVA, and other more sophisticated 

techniques, to compare the gene expression levels.  In general, the outcome of a microarray 

experiment is highly dependent on the pre-processing steps performed and the statistical 

analysis employed. 
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Affymetrix Exon Arrays 

The Affymetrix GeneChip® Exon Array platform, currently available for mouse, rat 

and human, is an oligonucleotide microarray platform designed to interrogate expression 

levels of individual exons, rather than genes.  The Human Exon 1.0 ST Array, for example, 

contains 1.4 million probesets querying more than one million exon clusters.  On average, 

each potential exon or splice region is covered by a single probeset, with about 4 probes per 

probeset, for a total of more than 5,500,000 probes.  These probesets are divided into 

annotation categories which quantify the degree of evidence supporting the corresponding 

target features. “Core” probesets, for example, are designed to measure expression of well-

annotated exons, while the “Extended” and “Full” probeset lists contain probesets designed 

to measure expression of more speculative transcriptional loci, including computationally 

predicted exons.  While the platform is relatively new, a sample of several recent 

publications have reported reasonable rates of validation for detected differentially expressed 

exons (Gardinia, et al., 2006; Kwan, et al., 2007; French, et al., 2007; Chueng, et al., 2008; 

Clark, et al., 2007).  In general, better validation rates tend to occur when more stringent 

filters are applied to the candidate list - for example, by only accepting predictions from 

probesets with signal levels that are clearly above background, and by using only those 

probesets from the “Core” list.  The fact that each probeset is comprised of, on average, only 

four probesets, may make the results somewhat noisier than for traditional 3’ arrays.  

Additionally, algorithms used to interpret the data are still being researched, with fewer 

public domain options available than for gene-level array platforms.  
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 One important design limitation inherent in this platform, is that exon arrays measure 

exon expression and not transcript expression.  For a given splicing isoform, exon arrays can 

only provide measurements of the component exons individually; they do not directly 

measure what combinations of exons are being co-expressed within the same transcript. 

Consequently, published analyses made using this platform have necessarily emphasized 

differential exon expression rather than differential splicing products. 

High-Throughput RNA Sequencing 

High-throughput RNA sequencing (RNA-Seq) includes sequencing by synthesis 

according to a variety of technologies, including those from Solexa / Illumina, Applied 

Biosystems / SOLID, Roche / 454 Life Sciences, as well as several other biotechnology 

companies.  In these procedures, either RNA or reverse transcribed cDNA is fragmented and 

then used as a template for massively parallel polymerization reactions while various 

techniques are used to record each nucleotide added to the growing oligonucleotide chains.  

Various platforms are capable of sequencing millions of short reads in parallel, which can 

then be mapped to a reference genome or assembled de novo.  Chapter 4 of this thesis 

presents an analysis of datasets generated from both the Roche 454 and Illumina platforms.  

In the next two sections, we provide additional background information specific to these 

technologies. 

Rouche / 454 Life Sciences Pyrosequencing 

 Using the 454 Life Sciences pyrosequencing method, nucleotide sequencing can be 

performed directly from a DNA sample, with no cloning required.  The details of the 
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procedure are described in (Margulies et al. 2005).  Although originally designed for the 

purpose of genome sequencing, the same technology can be used to measure gene expression 

by simply converting expressed RNA into cDNA.  To begin, the cDNA is broken into small 

double-stranded fragments using a nebulizer (Figure 1-3, Panel 1). The resulting fragments 

typically range from 50-900 base pairs in length, with a mean size of about 325 base pairs.  

Next, “adaptors” are attached to both ends of the DNA fragments (Figure 1-3, Panel 2; 

Figure 1-4). Once the adaptors have been attached, the DNA fragments are electrophoresed 

through an agarose gel to separate the fragments according to length.  Fragments in the 

length range of 250-500 base pairs are retained.  The nicks at the 3’ junctions between the 

adaptors and the fragments are then repaired, and the overhangs are filled in.   

In order to isolate single stranded DNA fragments having an A adaptor on one end 

and a B adaptor on the opposite end (configuration A-dsDNA-B in Figure 1-4), the following 

procedure is utilized: first the DNA are washed through a column of Streptavidin beads 

allowing the A-dsDNA-B and the B-dsDNA-B fragments to adhere to the column, while the 

A-dsDNA-A fragments are eluted.  Next, the column is washed with a melting solution 

which causes the remaining double stranded A-dsDNA-B and B-dsDNA-B DNA fragments 

to separate into single stranded fragments.  Furthermore, one of the A-ssDNA-B fragments 

will lack a biotin tag, and therefore elute through the column while the B-ssDNA-B 

fragments and the other single A-ssDNA-B fragments remain attached to the beads.   

In the next step, the eluted single-stranded DNA library is attached to DNA capture 

beads.  Each of the DNA capture beads is joined to oligonucleotide primers that are 

complimentary to the A adaptor.  The DNA library is then bound to the capture beads using a 
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process of limiting dilution: a very dilute solution of the DNA library is annealed to a vast 

excess of the beads such that it is highly improbable that any bead will anneal to more than 

one DNA molecule.  The beads are then suspended in a water-in-oil emulsion along with a 

PCR reaction mixture (Figure 1-3, Panel 3). Each tiny droplet serves as a microreactor, in 

which the single DNA strands are amplified into millions of copies per bead.  When the PCR 

reactions have completed, the emulsion is broken, and the millions of amplified, double 

stranded DNAs on each bead are converted to single stranded DNAs using a melting 

solution. While approximately zero beads will contain more than one species of DNA as a 

result of the limiting dilution, many beads will have no DNA attached.  In order to remove 

the majority of these “null beads,” an enrichment procedure is performed in which a 40 base 

pair primer is mixed in with the beads. This primer, which is partially complementary to the 

3’ adaptor and which has a biotin tag attached, binds to the DNA-containing beads.  Next, 

Streptavidin beads are added to the mixture, and the biotin-attached capture beads adhere to 

them.  A magnet is used to separate these Streptavidin beads from the null DNA capture 

beads, which are discarded, and then the Streptavidin beads and biotin tagged primers are 

released from the capture beads with an application of melting solution. 

Now, the beads are placed on a fiber optic plate (Figure 1-3, Panel 4), which is made 

of individual fiber optic core threads packed tightly together, side-by-side. Etched into each 

of the fiber optic threads is a tiny 75 pico-liter well. The size of the wells is such that each 

one can accommodate exactly one of the DNA capture beads, which are loaded onto the plate 

along with luciferase, ATP sulfurylase, sequencing primer and DNA polymerase. After the 

beads have been loaded onto the fiber optic plate, the DNA fragments attached to the beads 
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are ready to undergo a series of massively parallel, sequencing-by-synthesis reactions. In a 

series of cycles, reaction mixture containing a single species of nucleotide (A,C,G or T) is 

washed across the fiber optic plate (Figure 1-3, Panel 5).  If this particular nucleotide is 

complimentary to the next base pair on one of the single stranded DNA’s, it is incorporated 

into the growing double-stranded chains by DNA polymerase, and a series of chemical 

reactions occurs culminating in the conversion of ATP into light by luciferase (Figure 1-3, 

Panel 7).  This light is then conveyed through the fiber optic tubules and automatically 

measured, with the amount of light from each well roughly proportional to number of 

sequential nucleotides being incorporated. This linearity is maintained for strings of up to 

eight consecutive repeated nucleotides; above that, it becomes difficult to accurately quantify 

the number of nucleotides from the measured light. After each nucleotide is added, a solution 

containing apyrase is washed over the wells to quench any residual luciferase reactions and 

complete the cycle.  Then the next nucleotide is added and a new cycle begins. Nucleotides 

are added in this manner in a sequential fashion, e.g. A-C-G-T-A-C-G-T-A-C-G-T, etc. By 

measuring the amount of light emitted from each well at each step, in correlation with the 

order in which the nucleotides are added, it is possible to accurately determine the sequence 

of the single stranded DNA fragment attached to the bead in each well (Fig 1.3, Panel 6).  

During the incorporation of each nucleotide, a small fraction of the amplified strands on each 

bead can become out of synch. The effect, however, is cumulative, and this places an upper 

limit to the length of accurate reads.  The first generation of sequencing machines were 

capable of average read lengths of around 110 base pairs.  The more recent hardware has 

apparently increased the average length of reads to around 400 base pairs.   
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In the final step of the analysis, if no reference genome is available, the fragments 

need to be combined in a manner analogous to sequence assembly from traditional shotgun 

sequencing.  However, because the read length is currently much shorter than the length of 

Sanger sequencing reads, greater coverage of the genome may be required to achieve the 

 
 

Figure 1-3. Steps in Roche/454 Life Sciences pyrosequencing (Ellengren, 
2008). 
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same level of assembly completeness. If a reference genome is available, the reads can 

instead simply be aligned to the reference using a program such as BLAT (Kent, 2002). 

Illumina / Solexa Sequencing 

Transcriptome sequencing with the Illumina platform typically begins by using 

sonication to shear RNAs into fragments that are then used to construct complimentary 

cDNA. Generic work flows are described in (Mardis, 2008; Metzker, 2008; see also, Figure 

 

Figure 1-4. Pyrosequencing adaptors (Marguiles et al., 2005).   

There are two double-stranded adaptors, the “A” and “B” adaptors.  Each 
adaptor consists of a 20 base pair amplification primer, followed by another 20 
base pair sequencing primer, and a 4 base pair “key sequence,” which is used to 
identify the beginning of each sequenced fragment.  Both adaptors have a blunt 
end on one side, and a 5’ overhang on the opposite side.  In addition, the B 
adaptor also has a biotin tag attached to the 5’ overhang.  Adaptors can only 
attach to the DNA fragments blunt end to blunt end, in 3 possible 
configurations: A-dsDNA-A, A-dsDNA-B, B-dsDNA-B. 



 21

1-5).  Adaptors are attached to both ends of the fragments, and single-stranded fragments are 

randomly attached to the solid surface of a flow cell.  The flow cell surface also contains a 

dense lawn of primers that are complementary to the adaptors. 

Next, a technique known as “bridged amplification” is used to make many copies of 

each of the individual cDNA fragments adhering to the surface.  This step is important 

because it ensures that the subsequent sequencing-by-synthesis reactions will produce 

adequate signal for detection by the optical instrumentation.  During bridge amplification, the 

attached cDNA fragments bend towards the surface so that their free ends also come into 

contact with the surface.  Since the free ends are attached to adaptors that are complementary 

to the primers on the surface, they bind to the surface of the flow cell, forming a “bridge.”  At 

this point, the primers are used for a round of DNA synthesis by DNA polymerase.  After 

several rounds of synthesis and denaturization, the result is millions of individual, 

homogeneous cDNA clusters, each containing about 1 million copies of a single original 

fragment. 

After this preliminary step, the stage is set for the subsequent sequencing by synthesis 

reactions.  First, primer is added to the attached fragments, and then, in each sequencing 

round, all four nucleotide bases are added simultaneously. Each of the four nucleotide bases 

is given a unique fluorescent label. In addition, the 3’ hydroxyl group is chemically blocked 

so that only one base can be added at a time. During each synthesis cycle, a single base is 

incorporated into each growing oligonucleotide chain.  Then, the fluorescent labels are 

excited and the resulting light is detected and recorded by a specialized optical instrument.  

After each cycle, the fluorescent label and the 3’ chemical block are removed so that the 
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sequencing reaction can continue in the next round. By keeping track of the colors of light 

originating from different locations on the surface, the sequencing machinery is able to 

accumulate sequence information for millions of short cDNA fragments in parallel.  In the 

first generation of equipment, these fragments ranged in length from about 25-35 base pairs.  

Each flow cell has 8 separate lanes, each of which can be loaded with a different sample. 

Following the sequencing reactions, it is necessary to perform the same basic data 

analysis steps required with 454 sequencing.  However, because the number of reads is so 

much greater, and the length of those reads, so much shorter, it is generally necessary to use a 

completely separate set of software tools to do the alignment and assembly steps. 
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Figure 1-5. Illumina sequencing (Mardis, 2008). 

A) Bridge amplification. B) Sequencing by synthesis. 
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Microarray Quality Assessment 

Sources of variability 

As with any biological experiment, the goal of a typical microarray study is to 

identify meaningful variation between treatments while controlling for random technical and 

biological noise.  However, the generation of reliable microarray data involves many steps, 

and often things go wrong.  Because of this, recent efforts have emphasized the need for 

rigorous quality control, as well as procedures and metrics designed to assist researchers in 

identifying low quality data. Here we consider some of the various sources of error that may 

occur during a typical microarray experiment. The following list is not exhaustive, but does 

highlight several important factors influencing the outcome for a typical microarray 

experiment.  For concreteness, the Affymetrix GeneChip platform is assumed.  The ordering 

of the list roughly follows the sequence of steps in an array analysis, from design and 

manufacturing of the chips through analysis of the data: 

 Sub-optimal probes and cross hybridizations. Probe selection is a very important 

aspect of microarray design. Unfortunately, we do not yet completely understand how 

probe sequence translates to binding affinity.  Microarrays are subject to cross-

hybridization from partially complimentary sequences, and this effect is difficult to 

predict or quantify.  Even for perfectly complimentary target and probe pairs, there 

are differences in binding affinity that are difficult to model. 

 Damaged or Scratched slide. Damaged slides are obviously problematic. Generally 

speaking, commercially produced microarray slides are of exceptional quality, but 
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mistakes can occur.  More commonly, slides can be damaged at any point during their 

lifecycle, including during shipping and storage.  

 RNA degradation.  All biological samples contain varying amounts of enzymes 

(nucleases) which function to digest RNA. These continue to be active even after the 

death of the cell or tissue from which the RNA is extracted.  Furthermore, nucleases 

are prevalent in the environment, and extreme caution must be exercised not to 

introduce exogenous nucleases into a sample during an experiment. 

 Sample contamination. Depending on the sample preparation procedure, numerous 

opportunities for sample contamination may occur.  For example, in some cases RNA 

is extracted from specific organs or tissues, which may be difficult to properly isolate 

under certain conditions. It is also possible to contaminate samples with foreign RNA 

or DNA, for example from bacteria or viruses present in the environment. It is even 

possible (but hopefully rare) to inadvertently mislabel or switch samples during an 

analysis. 

 Improper storage of reagents.  The Affymetrix microarray preparation protocol is 

fundamentally a sequential series of chemical reactions.  In order for these reactions 

to proceed efficiently according to specifications, proper storage of reagents is 

necessary.   

 Transcription efficiency.  The first steps in preparation of an RNA sample for 

hybridization involve reverse transcription reactions that copy RNA into cDNA; these 

cDNAs are then transcribed back into RNA, incorporating biotin-labeled nucleotides.  

If these reactions do not occur with the same efficiency across all samples, and for all 
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transcripts, a bias has been introduced. 

 PCR amplification. Similarly, during sample preparation, it is usually necessary to 

perform a PCR step in order to amplify the small amounts of RNA present in the 

original sample.  While the goal is to have the resulting amount of RNA proportionate 

to the starting amount of each transcript, it is possible that bias can be introduced if 

the PCR reactions proceed with differing efficiency for different transcripts or 

samples. 

 Spot identification.  Quantification of the relative hybridization occurring at each 

probe involves averaging the signal observed at each of the microarray features.  This 

requires identifying the edges of each feature “spot,” subtracting any contaminating 

background intensity and producing a composite average raw intensity to serve as a 

proxy for hybridization at the underlying probes.  Numerous opportunities for 

introducing error exist during this process. 

 Spatial artifacts. If the target solution is not evenly applied during hybridization, 

numerous bubble effects and edge effects can occur.  Unfortunately, these spatial 

artifacts are not uncommon. 

 Paralogous sequences. In most organisms there are many sets of paralogous genes 

having highly similar sequences.  These genes are one source of cross-hybridization 

effects that can influence observed intensities.  

 Alternatively spliced isoforms.  For most genes, the Affymetrix 3’ expression arrays 

only contain probesets corresponding to the 3’ end of the transcript.  For this reason, 

these arrays are unable to measure relative levels of alternative transcripts, and the 
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presence of alternatively spliced gene variants can confound the observed signal for 

the constitutive isoforms. 

 Normalization method. The goal of normalization procedures is to remove systematic 

biases among a set of microarray slides. However, there are many different 

normalization procedures, and each method is based on a set of specific assumptions.  

Unfortunately, the method of normalization chosen can greatly influence the outcome 

of an experiment, and in some cases normalization can introduce unwanted biases 

into the measured gene expression levels. 

 Above background detection. Microarrays have a finite dynamic range, and features 

having low signal levels often originate due to background signal and cross-

hybridization.  It is important to exclude low intensity signals from an analysis, but it 

is not always clear what threshold to use for this determination, and this decision can 

have an impact on the analysis results. 

 Saturation effects. At the other extreme of the spectrum, genes expressed at very high 

levels may saturate their corresponding probes.  In these cases, it will not be possible 

to obtain accurate measurements for expression differences between transcription 

levels of these genes. 

 Probeset averaging.  For most applications, the multiple probe pairs in a probeset are 

combined to produce a composite signal intended to represent overall expression for 

the target gene.  However, this averaging approach can, unfortunately, obscure the 

underlying variation among probe measurements and conceal this variance from 

higher level analysis steps. 
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 Analysis methods.  A whole spectrum of analysis methods exists for comparing 

microarray expression levels.  These range from simple fold change comparisons to 

detailed linear models and sophisticated Bayesian estimation procedures.  The 

statistical analysis method employed can have large impact on the resulting lists of 

differentially expressed genes. 

 Sample size.  Although microarrays are a very cheap way to get high-throughput gene 

expression measurements, as compared to other alternative methods like SAGE, EST 

libraries, rt-PCR, and, more recently, high-throughput sequencing technologies, most 

microarray experiments have, nevertheless, been limited by small sample sizes. It is 

not uncommon for researchers to allocate only 2 or 3 slides per individual treatment.  

Because of this, it is often very hard to get reliable estimates of the means and 

variances of gene expression levels for these treatments, and robust comparisons can 

be difficult even with quality data. 

 Biological noise. Even when everything else goes well, it is still possible for results to 

be confounded by uncontrolled biological variability. Biological systems are 

inherently complex, and it is always possible that a subset of the experimental units is 

in a completely different “state” than the others. A typical mammalian organ is a 

mixture of a wide variety of distinct cell types, each of which may be reacting to a 

distinct set of environmental signals; a study of gene expression in the liver, for 

example, would be comprised of a complex mixture of distinct expression patterns.  

Similarly, an unhealthy organism could react very differently to a treatment than a 

healthy subject.   
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For array types other than Affymetrix GeneChips, various additional sources of error are also 

possible.  For example, two color arrays are subject to “dye bias” effects, i.e. differential 

affinity of the dyes used to label the two samples compared.  It has even been observed that 

local ozone concentrations can have a noticeable affect on dye affinities (“Making the most 

of Microarrays,” 2006, p.1039). The bottom line is that there is considerable variance 

inherent in microarray measurements.  Given the fact that biological systems are already 

highly complex and variable, and the fact that small sample sizes are often necessary, it is 

paramount to make efforts to identify and manage controllable sources of variance.  

Review of Popular Quality Metrics 

 Having established the importance of quality control metrics, our discussion now 

turns to a few of the more popular metrics used in practice. These metrics can be divided into 

two broad categories: pre-hybridization metrics and post-hybridization metrics.  

Pre-hybridization quality metrics are used to measure the quality of an RNA sample 

before the sample is actually hybridized to a microarray slide.  Ideally, if there is some 

quality problem with an RNA sample, this problem would be detected prior to hybridization, 

before continuing the analysis and incurring the expense and wasted effort of following 

through with corrupted data.  Popular pre-hybridization metrics include the 28S/18S rRNA 

ratio (Sambrook, et al., 2001), the RNA integrity number (RIN) (Schroeder, et al., 2006), the 

RQS Score (Copois, et al., 2007), and the RNA degradation factor (Auer, et al., 2003).  
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Even in the cases where pre-hybridization quality checks suggest that the initial RNA 

sample is of high quality, there are still many sources of error that can occur during the 

course of an RNA experiment.  For this reason, it is also critical to measure microarray data 

quality after the sample has been hybridized to the chip, scanned and converted into raw 

intensity measurements.  For example, for the Affymetrix microarray platform, several post-

hybridization quality assessment metrics are included with the manufacturer’s analysis 

software (Affymetrix, 2003); it is also possible to compute these metrics using the free R 

“simpleaffy” package (Wilson and Miller, 2005). In addition, the R BioConductor package 

(Gentleman, et al., 2004) contains additional facilities for assessing the post-hybridization 

quality of Affymetrix microarray data.  The software contains a variety of useful diagnostic 

plots that are often applied in conjunction with the standard Affymetrix quality control 

metrics discussed above (see Gentleman, et al., 2005.) It is also possible to derive numerical 

statistics from these plots, and this approach has been used to produce software for 

automatically assessing microarray quality (e.g. Heber and Sick 2006).  Because these 

BioConductor metrics are used extensively in the examples discussed in chapters 2 and 3 of 

this thesis, brief descriptions are provided below. 
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Figure 1-6. Examples of microarray quality assessment diagnostics. 

(A) RNA degradation plot.  The graph indicates that RNA degradation may be occurring at 
a different rate in sample GSM134513 compared to the other samples in the experiment.  
Inclusion of this sample in the analysis may adversely affect the resulting inferences. (B) 
Raw intensity distribution. A comparison of the un-normalized PM probe intensity 
distributions of the chips in an experiment can be used to identify outliers.  (C) Normalized 
intensity box plot.  After quantile normalization, the intensity distribution for all chips in an 
experiment is expected to be similar.  Chips that deviate significantly from this expectation 
should be considered for exclusion. (D) Normalized intensity scatter plot. This plot is 
constructed from the same underlying data as C. Differences among the chips suggest that 
sample GSM16258 may be an outlier. 
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5’ to 3’ RNA degradation plot 

 The 5’ to 3’ RNA degradation plot (Figure 1-6a), which can be produced using the 

BioConductor “affy” package (Gautier, et al., 2004), shows the relationship between signal 

 
Figure 1-7. Additional microarray quality assessment diagnostics. 

(A) Probe level model (PLM) residuals. The residuals in the probe level 
summarization model are expected to have a mean of zero.  A large field of positive 
residuals (red) separated from a large field of negative residuals (blue) indicates a 
possible quality problem for sample GSM16258 from GEO dataset GDS611. (B) 
Probe level model weights.  An excess of down-weighted probes (dark green area) in 
the probe level model for chip GSM16258 is an additional indicator of potential 
quality problems. (C) Relative Log Expression (RLE) box plot.  Since most genes are 
not expected to be differentially expressed, a non-zero median and a large inter-
quartile range in the RLE box plot can serve as indicators of low quality data.   
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intensity and probe position within each multi-probe probeset.  To produce this graph, the 

individual probes within each probeset are ordered according to their position within the 

probeset, in the 5’ to 3’ direction.  For each chip, the average signal at each probe position is 

computed across all probesets, and plotted as a function of probe position.  In addition, a 

linear regression may be performed to model signal intensity as a function of probe position 

(assuming equal spacing of probes within the probesets).  An upward slope is expected, since  

in almost all samples there is some RNA degradation, which occurs in the 5’ to 3’ direction.  

In general, outlier chips can be identified by looking for chips having slopes that are very 

different than the others; this may indicate, for example, an inconsistency in sample handling 

that has introduced additional variance for this chip.  

Raw intensity distribution 

 Another useful diagnostic approach is to plot the raw intensity distribution for each 

chip prior to normalization.  While it is reasonable to expect small differences among the 

chips, too much variation may indicate data quality problems. For example, Figure 1-6b 

shows the raw intensity plot for GEO experiment GDS1732. The intensity distribution for 

chip GSM85216 seems to be skewed to the right with more density at higher intensities.   

Normalized intensity distribution 

 A comparison of signal distributions after normalization is probably an even better 

quality indicator. After normalization, it is expected that the intensity distributions should be 

similar for all chips.  Figure 1-6c and Figure 1-6d show diagnostic plots for GEO dataset 

GDS611.  In this case, both the median and the interquartile range of the normalized intensity 
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values for chip GSM16258 appear to be different from the other chips in the experiment, 

with the apparent magnitude of this difference depending on the nature of the visualization 

method employed.   

PLM weights and residuals 

 The probe level summarization model is another often-used quality control indicator.  

As described in (Gentleman, et al., 2005), the BioConductor affyPLM package contains 

functionality to fit (using a median polish procedure) a probeset summarization model for 

each probeset: 

  log( )gji gi gj gjiY              

where gi is the log-scale expression level for gene g on array i, gj is the effect of the jth 

probe for gene g, and gij is the error measurement. An important assumption of this model is 

that the expected value of gij is zero. A plot of the residuals from this model, as well as the 

weights used by the regression procedure to down-weight outlier probes, may reveal 

irregularities in the data.  For example, Figure 1-7a shows that the residuals plot for sample 

GSM16258 from GEO dataset GDS611 indicates a large field of highly positive residuals 

(red) and another field of highly negative residuals (blue).  In addition, the PLM weights plot 

(Figure 1-7b) indicates a large set of highly down-weighed probes (dark-green area).  

RLE box plot 

 Given the normalized (log-scale) expression values, the RLE box plot displays the 

distribution of the quantity ˆ
gi gi gM m   for each chip, where ĝi  is the log expression 
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measurement for probeset g, on chip i, and mg is the median expression of probeset g across 

all arrays.  In general, since it is normally assumed that the majority of genes are not 

differentially expressed across chips, the quantity Mgi is ordinarily expected to be distributed 

with median 0. Figure 1-7c shows the RLE box plot from GEO dataset GDS515.  Several of 

the chips seem to have larger variance in the RLE distribution, and a few of the medians 

appear to deviate significantly from zero. 

Microarray Quality Assessment Summary 

The previous discussion has emphasized the importance of quality control in the 

analysis of microarray data.  In addition, a variety of popular quality control methods were 

described.  However, due to space constraints, many other important metrics were not 

covered here.  For example, spike-in controls are available to assist with the determination of 

Affymetrix GeneChip data quality (Affymetrix, 2003), while NUSE plots, hierarchical 

clustering, and pairwise correlations are also available as part of the BioConductor library 

(Gentleman, et al., 2005).  Furthermore, recent research has focused specifically on detection 

of spatial artifacts (e.g. Reimer and Weinstein, 2005; Stokes, et al., 2007).  Recent research 

has also explored the development of similar metrics for RNA-Seq data (e.g. Morgan, et al., 

2009). 

One difficulty for all of the metrics explored is that it is often not clear how to 

separate “good” quality scores from “bad” quality scores – the use of an arbitrary threshold is 

generally required.  For example, Affymetrix supplies suggested score ranges for several of 

its post-hybridization quality scores, but with little or no justification for these 
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recommendations. Furthermore, since many of the metrics measure different aspects of 

quality, it is usual practice to use one or more metrics simultaneously, but it is not always 

clear what quality decision to make when these metrics give conflicting scores.  

Nevertheless, it is generally assumed that even a relatively naive use of some of these metrics 

will detect the most adverse cases of low quality data. Ongoing research is required to 

identify the best metrics to use in various scenarios, the distributional properties of these 

metrics, and efficient ways to combine them to generate useful composite quality scores.  

The topic of the next chapter is a new method for identifying low quality microarray data 

using quality metrics like the ones reviewed here. 
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Abstract  

Quality assessment of microarray data is an important and often challenging aspect of 

gene expression analysis. This task frequently involves the examination of a variety of 

summary statistics and diagnostic plots. The interpretation of these diagnostics is often 

subjective, and generally requires careful expert scrutiny. We show how an unsupervised 

classification technique based on the Expectation-Maximization (EM) algorithm and the 

naïve Bayes model can be used to automate microarray quality assessment.  The method is 

flexible and can be easily adapted to accommodate alternate quality statistics and platforms.  

We evaluate our approach using Affymetrix 3’ gene expression and exon arrays and compare 

the performance of this method to a similar supervised approach.  This research illustrates the 

efficacy of an unsupervised classification approach for the purpose of automated microarray 

data quality assessment. Since our approach requires only unannotated training data, it is 

easy to customize and to keep up-to-date as technology evolves.  In contrast to other “black 

box” classification systems, this method also allows for intuitive explanations. 

Background  

 Recently, the MicroArray Quality Control (MAQC) consortium found that most 

microarray platforms will generate reproducible data when used correctly by experienced 

researchers (Shi, et al., 2006).  Despite this positive result, it has been suggested that 20% or 

more of the data available in public microarray data repositories may be of questionable 

quality (Larsson et al., 2006). For this reason, discriminating between high and low quality 
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microarray data is of the highest importance, and several recent publications have dealt with 

this problem; detailed reviews are provided by Wilkes et al. (2007) and Eads et al. (2006).  

 Several approaches have emphasized the importance of measuring, either directly or 

indirectly, the integrity of the RNA samples used in the experiment (e.g. Copois et al., 2007; 

Archer et al., 2006; Jones et al., 2006). Other research has focused on spatial artifacts: 

problems that typically arise during hybridization due to bubbling, scratches and edge effects 

(Reimer et al., 2005; Stokes et al., 2007).  

 In the case of Affymetrix GeneChips, which we will use to demonstrate our method, 

there are standard benchmark tests provided by the manufacturer (Affymetrix, Inc., 2003).  A 

standard complementary approach is to use the R statistical software, along with the 

BioConductor (Gentleman et al., 2004) “affy” (Gautier et al., 2004) and “affyPLM” 

(Bolstad, 2007) packages, to produce a series of diagnostic plots for the assessment of 

GeneChip quality (see Figure 1-6 and Figure 1-7). A review of the quality control features 

available in BioConductor can be found in (Gentleman et al., 2005), and a variety of software 

packages are now available to assist in the automation of this process (Heber and Sick, 2006; 

Psarros, et al. 2005; Howard, et al. 2007; Lee, et al.2006; Lozano and Kalko, 2006).  

 In general, the goal of these approaches is to identify chips that are outliers - either in 

relation to other chips in the same experiment or the entire theoretical population of similar 

chips. Often, it is assumed that a rational decision regarding data quality is made only after 

considering several quasi-orthogonal dimensions of quality.  Chips are typically rejected only
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after a preponderance of the evidence indicates poor quality; a slightly unusual score on a 

single metric is frequently ignored, while a number of moderately or highly unusual scores 

on a variety of quality metrics is often grounds for exclusion of a particular chip from further 

analysis. However, there are no universal, robust thresholds available for the identification of 

outliers according to the various quality variables. Instead, decisions are necessarily made 

using historical data, either implicitly or explicitly. 

 Therefore, recent efforts have focused on providing a “holistic”, accurate, and 

automatic interpretation of diagnostic plots and quality metrics. Burgoon et al. (2005) 

describe a custom, in-house protocol for assessing data quality of two-color spotted cDNA 

arrays.  The authors advocate an integrated “Quality Assurance Plan” which attempts to 

integrate quality control at every level of the experimental procedure. Another example is the 

RACE system (Heber and Sick, 2006; Psarros, et al. 2005). This system utilizes various 

statistics extracted from the BioConductor diagnostic plots, along with a random forest 

classifier, to automatically identify low quality data. However, like the quality assurance 

protocol described by Burgoon et al., the RACE system relies on a large expert-annotated 

data set.  For this reason, it is difficult to keep the system up-to-date in the face of rapidly 

changing technology, with new chip types continually being introduced into the market. A 

further challenge is to adapt such a system to similar, but slightly different, types of data such 

as Affymetrix SNP arrays, exon arrays, or arrays produced by other manufacturers such as 

Illumina and Agilent. 

 In this paper we investigate a method for unsupervised classification that was 

designed with these considerations in mind. First, we describe how to frame the 
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interpretation of microarray quality indicators as an unsupervised classification problem 

using a Gaussian mixture model.  We show how the model parameters can be estimated 

using the Expectation-Maximization (EM) algorithm (Dempster et al., 1977), and how they 

can be used to construct a Naïve Bayes classifier for identifying low quality data. 

 Previous work has demonstrated that naïve Bayes classifiers perform well with 

labeled training sets in the supervised version of the problem discussed in this paper (Heber 

and Sick, 2006). The combination of Naïve Bayes together with EM has been used with 

considerable success in other problem domains, including text classification (Nigam, et al., 

2000). Gaussian mixture models have been applied to automatic quality assessment of phone 

signal clarity (Falk and Chan, 2004) and mass spectrometry data (Wong, et al., 2007), and in 

other stages of the microarray processing pipe-line, including identification of differentially 

expressed genes (Najarian, et al., 2004), assessment of the concordance between sets of 

similar microarray data sets (Lai, et al., 2007), and even quality control at the spot detection 

and image fluorescence analysis level (Asyali and Alci, 2005).  However, this is the first 

research we are aware of that employs this estimation approach, in conjunction with a naïve 

Bayes classifier, for the purpose of array-level quality control of microarray data. 

 In the following sections, we describe the datasets used in this research, and explain 

the implementation of both the supervised and unsupervised versions of the quality classifier. 

We demonstrate that the performance of the unsupervised classifier is comparable to a 

supervised classifier constructed from expert-labeled data.  We also apply the algorithm to 

Affymetrix exon array data, and compare the observed quality indicator distributions with 

those obtained from 3’ expression arrays. 
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Methods 

Datasets 

 Our first dataset is a set of 603 Affymetrix raw intensity microarray data files, from 

32 distinct experiments downloaded from the NCBI GEO database (Edgar, et al., 2002). A 

variety of Affymetrix GeneChip 3’ Expression array types are represented in the dataset, 

including:  

 

 ath1121501 (Arabidopsis, 248 chips); GEO accession numbers: GSE5770, GSE5759, 

GSE911 (William et al., 2004), GSE2538 (Ramonell et al., 2005), GSE3350 

(Vanneste et al., 2005), GSE3416 (Bläsing et al., 2005), GSE5534, GSE5535, 

GSE5530, GSE5529, GSE5522, GSE5520, GSE1491 (Armstring et al., 2004), 

GSE2169, GSE2473  

 hgu133a (human, 72 chips); GSE1420 (Kimchi et al., 2005), GSE1922 

 hgu95av2 (human, 51 chips); GSE1563 (Flechner et al.,  2004)  

 hgu95d (human, 22 chips); GSE1007 (Haslett et al., 2003) 

 hgu95e (human, 21 chips); GSE1007 

 mgu74a (mouse, 60 chips); GSE76, GSE1912 (Lin et al.,  2004)  

 mgu74av2 (mouse, 29 chips); GSE1947 (Giambonini-Brugnoli et al., 2005), 

GSE1419 (Chen et al., 2005; Herman et al., 2004)  

 moe430a (mouse, 10 chips); GSE1873 (Li et al.,  2005)  
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 mouse4302 (mouse, 20 chips); GSE5338 (Cheng et al., 2006), GSE1871 (Jacobson et 

al., 2005)  

 rae230a (rat, 26 chips); GSE1918, GSE2470 

 rgu34a (rat, 44 chips); GSE5789 (Ovanod et al., 2006), GSE1567 (Gonzalez et al., 

2005), GSE471 (Fischer et al., 2002).  

 

These experiments cover many of the species commonly analyzed using the GeneChip 

platform, and were selected to represent a variety of tissue types and experimental 

treatments. 

 The BioConductor rma() function was used to perform probeset summarization, 

background subtraction and quantile normalization, with each raw intensity (.CEL) file 

preprocessed together with the other chips from the same GEO experiment. A variety of 

quality control indicators, listed in Table 2-1, were then computed for each chip. (For a list of 

all the .CEL files and their GEO identifiers, along with quality control feature scores and 

expert annotations, see http://www.biomedcentral.com/1471-2105/10/191/additional, 

“Additional file 2.”) Also included in the file are descriptions explaining how each of the 29 

quality control feature scores is computed from the raw expression data. 

 The second dataset consists of all of the exon array .CEL files available in the GEO 

database at the time of this analysis (540 .CEL files). Fourteen different experiments are 

represented: GSE10599 (Zhang et al., 2008), GSE10666 (Sandberg et al., 2008), GSE11150 

(Chahrour et al., 2008), GSE11344 (Xing et al., 2008), GSE11967 (Soreq et al., 2008), 

GSE12064 (Douglas et al., 2008), GSE6976 (Platts et al., 2007), GSE7760 (Hu et al., 2008),  
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Table 2-1. BioConductor quality control statistics 

 
Quality Statistic 1 Description 
mean.raw.int, sd.raw.int, median.raw.int, 
interQuartile.raw.int 

mean, standard deviation, median 
and inter-quartile range of raw log 
intensity distribution. 

q.5.raw.int, q.95.raw.int 5th and 95th percentile of raw log 
intensity distribution. 

slope.bias, p.bias slope parameter and associated p-
value of linear regression of log 
expression level versus probe 
number, as computed by R affy 
library function AffyRNAdeg(). 

mean.norm.int, sd.norm.int, median.norm.int, 
interQuartile.norm.int, q.5.norm.int, q.95.norm.int 

mean, standard deviation, median, 
inter-quartile range, and 5th and 
95th percentiles of normalized log 
intensity distribution. 

PLM.w.q.0.001, PLM.w.q.0.01, PLM.w.q.0.1, 
PLM.w.q.0.2 

0.1th, 1st, 10th and 20th percentile 
of the probe-level model weights, 
computed using affyPLM library 
functionality.  

PLM.res.q.0.01, PLM.res.q.0.1, PLM.res.q.0.25, 
PLM.res.q.0.75, PLM.res.q.0.9, PLM.res.q.0.99 

1st, 10th, 25th, 75th, 90th, and 
99th percentile of probe-level 
model residuals, computed using 
affyPLM library functionality.  

RLE.median, RLE.interQuartile, 
RLE.lower.whisker, RLE.upper.whisker 

median, inter-quartile range, lower 
tail and upper tail of "relative log 
intensity", computed using 
affyPLM library functionality.  

 
1. The “SCORE” function was used to normalize values for each statistic, t, for each chip, i, 
relative to the values observed in other chips from the same experiment: 
 
 

( )
( ) ;  with () and () computed across all chips in the experiment.

( )
i

i

t median t
SCORE t median mad

mad t



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GSE7761 (Huang et al., 2007), GSE8945 (Hung et al., 2008), GSE9342, GSE9372 (Kwan et 

al., 2008), GSE9385 (French et al., 2007), GSE9566 (Cahoy et al., 2008). The dataset 

includes examples of the Mouse Exon 1.0 ST array and several versions of the Human Exon 

1.0 ST array. This dataset was processed using two different methods. First, the same set of 

quality indicators described above for the 3’ expression dataset was prepared using the 

BioConductor packages in R. The “aroma” .cdf annotation files (Bengtsson et al., 2008) were 

used to read in expression values for the core probes on the arrays. In addition, this second 

dataset was also processed using the Affymetrix Expression Console software.  Only the 

“core” probesets were considered and the software was used to perform “gene-level” 

probeset summarization, background subtraction and quantile normalization using the “RMA 

sketch” option in the software. Several alternative quality indicators were then computed 

(Table 2-2).  A list of the .CEL files and their GEO identifiers and also the various quality 

control feature scores is can be found in “Additional file 3,” available at 

http://www.biomedcentral.com/1471-2105/10/191/additional. Detailed descriptions of the 

Affymetrix Expression Console quality control features can be found in (Affymetrix, Inc, 

2007). 

Expert Annotation 

 A domain expert analyzed the 3’ expression dataset (dataset 1) and assigned quality 

scores according to a procedure which is based on experience gained during almost three 

years of bioinformatics support within the Lausanne DNA Array Facility (DAFL).  This 

quality control procedure is described in (Heber and Sick, 2006).  Briefly, the chip scan  
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Table 2-2. Affymetrix Expression Console quality control statistics (exon arrays) 

 
 
Quality Statistic 1 Description 

pm.mean 
mean of the raw intensity for all PM probes, 
prior to any normalizations. 

bgrd.mean 

mean of the raw intensity for all probes used 
to compute background intensity. (Note: 
may be higher than pm.mean because GC 
compositions of probes used to compute 
background and PM probes can be quite 
different.) 

pos.vs.neg.auc 

area under ROC curve discriminating 
between positive control probesets and 
negative control probesets. 

probeset.mean, probeset.stdev 
mean and standard deviation of probeset 
signals after normalization. 2 

probeset.mad.residual.mean, 
probeset.mad.residual.stdev 

mean and standard deviation of the absolute 
deviations of the RMA probe level model 
residuals from the median across chips . 2 

probeset.rle.mean, probeset.rle.stdev 

mean and standard deviation of the absolute 
values of the relative log expression (RLE) 
for all probesets. 2 

 
1. The “SCORE” function was used to normalize values for each statistic, t, for each chip, i, 
relative to the values observed in other chips from the same experiment: 
 
 
 

 

2. Separate statistics are computed for a) all probesets, b) negative control probesets, and c) 
positive control probesets. 
 
 

( )
( ) ;  with () and () computed across all chips in the experiment.

( )
i

i

t median t
SCORE t median mad

mad t



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images and the distributions of the log scale raw PM intensities are visualized. Smaller 

discrepancies between chips are common and can often be removed by normalization. 

Remaining discrepancies usually indicate low quality data, possibly caused by problems in 

the amplification or labeling step. The general 5' to 3' probe intensity gradient averaged over 

all probe sets on a chip is also examined. The slope and shape of the resulting intensity 

curves depend on the RNA sample source, the amplification method, and the array type. In 

general, the specific shape of the curves is less important for the quality check than their 

agreement across the experiment. Pseudo-images representing the spatial distribution of 

residuals and weights derived from the probeset summarization model are very important 

diagnostics. Small artifacts are not critical when using robust analysis methods; however, 

extended anomalies are taken as an indication of low quality. In addition, box plot 

representations of the Normalized Un-scaled Standard Error (NUSE) from the probe level 

model fit and the Relative Log Expression (RLE) between each chip and a median chip are 

examined. These plots are used to identify problematic chips showing an overall deviation of 

gene expression levels from the majority of all measured chips. A chip may be judged as 

having poor quality if it is an apparent outlier in the experiment-wide comparison of several 

quality measures.  Each array was given a quality score of 0, 1 or 2, with 0 being “acceptable 

quality” (519 chips), 1 being “suspicious quality” (56 chips) and 2 being “unacceptable 

quality” (28 chips).  For the purposes of classification, chips with scores of 1 or 2 were 

combined into the composite “low quality” class. 
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Supervised Naïve Bayes Classifier 

 Previous research has demonstrated that quality assessment of microarray data can be 

successfully automated with the use of a supervised classifier (Heber and Sick 2006; 

Burgoon et al., 2005). The goal of supervised classification is to utilize an annotated training 

dataset to learn a function that can be used to correctly classify unlabeled instances. In the 

case of microarray quality assessment, the training dataset consists of the quality control 

features computed for each chip, combined with the quality annotation for each chip.   

 By making the simplifying assumption that all features are conditionally independent, 

naïve Bayes classifiers attempt to directly model the probability that a particular data point 

belongs to each class. Given the class label, each feature is assumed to follow an 

independent, univariate distribution. These distributions are, of course, unknown, but the 

maximum likelihood parameter estimates can be determined from a labeled training set.  

Then, for each unlabeled instance, Bayes’ rule can be applied to compute the conditional 

probability that the instance belongs to each of the possible classes. Because we had prior 

success performing classification on a similar data set using Naïve Bayes with Gaussian 

feature distributions (Heber and Sick, 2006), we again chose to model the features using 

independent normal distributions. However, the approach could easily be adapted to use 

alternative distributions, for example, Student’s t-distribution or the skew-normal 

distribution. 

Under this framework, the probability that an unlabeled instance belongs to the low 

quality class is estimated as follows: 
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where c    {0,1} signifies the class label, with 0 denoting “high quality” and 1 denoting 

“low quality,”  x


   is a length p vector of features describing the unlabeled instance., and 

( )( | 1)if x c 


  is the Gaussian density for the ith feature, among low quality chips. 

 The marginal probability of observing a low quality chip, Pr{c=1}, can be estimated 

from the proportion of low quality chips in the training set. Furthermore, the marginal density 

for a particular combination of feature values, ( )f x


 , independent of the class label, is equal 

to: 
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 (2.2) 

 For the purposes of classification, this algorithm assigns class 1 to an unlabeled 

instance  x


, if  Pr( 1 | }c x t 


, where t is a threshold parameter, ordinarily set to 0.5 in 

order to approximate the Bayes optimal decision rule. By varying this parameter, it is also 

possible to construct ROC curves which display the tradeoff between sensitivity and 

specificity for various decision thresholds. 

Unsupervised Naïve Bayes Classifier 

 The standard (supervised) approach to constructing a naïve Bayes classifier employs 

maximum likelihood estimation to infer the distribution parameters of each classification 

feature from an expert-annotated training set.  It is, however, also possible to construct an 

“unsupervised” naïve Bayes classifier by using an unannotated dataset as input. In this case, 
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the EM algorithm is used to infer the feature distributions, assuming an appropriate Gaussian 

mixture model, as described in the following section. 

Gaussian Mixture Model and the EM Algorithm 

 The naïve Bayes classification model described above requires parameter estimates 

for the quality control metrics, conditional on each quality class. In the absence of annotated 

data, however, the quality classes of the unannotated training instances are additional 

unknowns that must be estimated along with the distributional parameters. We model the 

unannotated dataset using a Gaussian Mixture Model, under the assumption that microarray 

data can be reasonably classified into the dichotomy of “high quality” and “low quality” 

chips, and that the unlabeled training set contains examples of each. 

 Given a large set of microarray data files, the first step is to compute values for each 

of the various quality control features.  Then, for each feature, we assume that the observed 

distribution of scores is generated by an underlying Gaussian mixture model with two 

components: 1) chips having high quality and 2) chips having low quality.  Given the mixture 

component, c {0,1}, each feature is assumed to follow a Normal  2,c c   distribution. 

However, in the case of an unlabeled dataset, the true mixture component is unknown.  We 

further assume that, marginally, the class label for each instance is a simple Bernoulli random 

variable with probability  of indicating a low quality chip. Under this model, the (log) 

likelihood of the dataset is: 



 56

1

1
( ) 2 ( )

1 0

log ( , , | ) log( ( ; , , )

                            log ( | ; , ) Pr{ ; }

N

i
i

N
i i

i j j
i j

L f x

f x c j c j

 

  



 

 

   

2 2
 

    

   x
 (2.3) 

where: 

 x is an N × p matrix containing the p feature values for the N items in the dataset, with 

ix


 denoting the length p feature vector for the ith data point. 

   is a 2 × p parameter matrix containing, in each column, 0  and 1  for the pth 

feature; j


is the length p parameter vector for the jth Gaussian mixture component (j 

{0,1}). 

 2 is a 2 × p parameter matrix containing, in each column, 2
0  and 2

1  for the pth 

feature; 2
j  is the length p parameter vector for the jth Gaussian mixture component. 

 c


 is a length N vector containing the (unknown) class labels for each of the N data 

points. 

 


 is a length 2 probability vector containing the probability that a randomly chosen 

data point belongs to each class.  

 The likelihood function in equation 2.3 can be maximized using the EM algorithm 

(Dempster et al., 1977).  The EM algorithm is a well-known method for maximizing mixture 

model likelihood functions by iteratively performing two steps: 

 E Step:  Estimate the unknown class labels, based on the current estimates for the 

other parameters. 
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 M Step: Given current class labels, compute the maximum likelihood estimators for 

the parameters  ,  2 , and 


 . 

 To implement the EM algorithm, we introduce an additional N × 2 matrix, w, which 

contains, for each data point, i, the current guesses for p( ( )ic


=0) and p( ( )ic


=1). After 

initializing all parameters and the weight matrix, w, to random values, the EM algorithm 

proceeds as follows: 

M step:  For  {0,1}, {1... }j k p   
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E Step: For {1... }, {0,1}i N j   
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where 2( , , )normpdf x    denotes the probability density of a normal distribution evaluated 

at x. Because the algorithm can possibly converge to local optima, it is prudent to run the 

algorithm several times after random restarts. Additionally, each 2
jk  was constrained to be 
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>= .001 to avoid convergence to a trivial solution.  Further details concerning this 

implementation of the EM algorithm and the associated Gaussian mixture model can be 

found in (Ng 2006). Once estimates have been obtained for  , 2  and 


, any unlabeled 

instance can be classified according to these mixture components using naïve Bayes, 

according to equation 2.1 (or equivalently, equation 2.7, in the case of the original unlabeled 

dataset).  Since our assumption is that low quality chips are outliers with respect to these 

quality features, we use the mixture component corresponding to the smallest value from 


 

to identify the low quality class. 

Feature Selection 

 In order to achieve optimal classification performance, it is important to select an 

appropriate subset of the classification features.  Ideally, this subset should include 

independent features that are each individually predictive of the class label.  

 To measure the ability of each feature to predict the correct class label in a training 

set (where “correct” label is defined as either the expert annotation in the supervised case, or 

the estimated w matrix in the unsupervised case), we first constructed an N × p score matrix, 

S, where each cell Sij contains a distance measuring the discrepancy between the true and 

predicted class for data point ix


, given the jth feature and the parameter estimates for that 

feature:   
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2 (0) 2 (1)
0 0 1 1
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 (2.8) 

Then for each feature, j, these scores were totaled across all N data points 
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1

N

j ij
i




 S S  (2.9) 

 Finally, the p scores were sorted in ascending order, to rank the features by their 

ability to predict the correct class label.  Denote the rank of feature j according to the value of 

this score as S[j]. 

 To identify correlations among the quality control features, we next computed the p× 

p Pearson correlation matrix. Let jk  denote the correlation between features j and k, and 

[ ]j k  represent the rank of the correlation of feature j with feature k among all other features 

correlated with k, with features ranked in order of descending correlation. To select a subset 

of n features, we used the following forward selection algorithm: 

 First, select the single feature that is most predictive of the class labels, i.e. the feature 

with S[j] = 1. 

 Then, sequentially, for the remaining n-1 features, select the feature j to satisfy: 

  

2 [ ]

1 [ ]arg min
j i

i F
j

j

c
c S

F




 
   
 


 (2.10) 

where F denotes the set of previously selected features. The constants c1 and c2 in this 

expression are weighting factors that can be modified to control the tradeoff between 

selection for independent features and features that are highly correlated with the class label. 

We used 0.5 for each. 
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Results and Discussion 

Parameter Estimates 

3’ Expression Arrays 

 We applied the unsupervised mixture model described above to the 3’ expression 

array data (hiding the expert quality labels). For nearly all of the 29 quality control features 

considered, the unsupervised EM parameter estimates very closely approximate the 

corresponding supervised MLE estimates, a result which indicates that the unsupervised 

approach was able to discover patterns in the data that are in agreement with the expert 

annotations. “Additional file 4” (available at http://www.biomedcentral.com/1471-

2105/10/191/additional) contains the mixture model parameter estimates for 


, 0 , 1 , 2
0  

and 2
1  for each of the quality control features. These estimates were obtained by applying 

the EM algorithm to the entire unlabeled dataset. For comparison, the table also includes the 

maximum likelihood estimates obtained using the expert-annotated class labels.  Figure 2-1 

shows some representative examples. Plots of this nature reveal that, in most cases, the EM 

and (supervised) MLE estimates exhibit only minor differences, generally with magnitudes 

analogous to the discrepancies shown in Figures 2.1a-d.   

 The EM estimates appear to be reasonable in all cases, given the original intent of 

each quality metric.  For example, given the normalized (log-scale) expression values, the 

RLE metric measures the distribution of the quantity ˆ
gi gi gM m   for each chip, where ĝi  

is the log expression measurement for probeset g, on chip i, and mg is the median expression  
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Figure 2-1. Mixture model parameter estimates. 

Supervised (MLE) and Unsupervised (EM) estimates shown are for the 
following features from the 3’ expression arrays: (A) 5th percentile of raw 
intensities, (B) inter-quartile range of the Relative Log Intensity (RLE), 
(C) 25th percentile of the probe-level model residuals, and (D) the 20th 
percentile of the probe-level model weights. All features were normalized 
relative to other chips in the same experiment, using the SCORE function 
(see Table 2-1). 
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of probeset g across all arrays.   In general, since it is ordinarily assumed that the majority of 

genes are not differentially expressed across chips, the quantity Mgi is expected to be 

distributed with median 0. In addition, chips that more frequently have extreme expression 

values will have a large inter-quartile range for this statistic. Figure 2-1b indicates that, as 

expected, low quality chips were indeed more likely to have a large inter-quartile range for 

the RLE statistic. 

 Parameter estimates for the other metrics also agree with our expectations.  For 

example, the estimates for metrics relating to probe-level model weights and residuals reflect 

the expectation that low quality chips should have larger residuals and more down-weighted 

probesets (Figure 2-1c,d). Similarly, the estimates indicate that low quality chips are more 

likely to have RNA degradation plots that are different from other chips in the same 

experiment.  The low quality chips also tend to have both mean raw and mean normalized 

intensities that are either significantly higher or lower than other chips in the same 

experiment. 

Exon Arrays 

 The Affymetrix exon array platform is different from the 3’ expression array platform 

in several important ways (Robinson and Speed, 2007). For example, the 3’ expression array 

targeting the human genome (Hgu133) has, on average, 1 probeset pair for each well-

annotated gene; each probeset consists of 11 individual 25-mer probes, which primarily 

target the 3’ region of the gene.  In contrast, the Human Exon 1.0 ST array has 1 probeset for 

each exon for each gene in the target genome. Each probeset contains, in general, 4 (rather 



 63

than 11) 25-mer probes.  Unlike 3’ expression arrays, exon arrays lack mismatch probes.  

Instead, the background expression level for each probe is estimated by averaging the 

intensities of approximately 1000 surrogate genomic and anti-genomic background probes 

having the same GC content as the target probe. Because most genes consist of several 

exons, the median number of probes per gene is increased on the exon array from 11 on the 

3’ array to between 30-40 (Gardina et al., 2006).  However, genes with fewer exons are 

covered by fewer probes.  In fact, there are a few thousand well-annotated single exon genes 

covered by only 4 probes (Robinson and Speed, 2007). Furthermore, the feature size on the 

exon arrays has been reduced from 11x11 microns on the HGU133 array to 5x5 microns on 

the Human Exon 1.0 ST array (about 1/5 the area). This change may increase the expression 

variance, at least at the probeset level (Robinson and Speed, 2007). Exon arrays also utilize a 

different hybridization protocol which uses sense-strand labeled targets, and results in DNA-

DNA hybridizations rather than the DNA-RNA hybridizations used with traditional 3’ arrays 

(Abdueva et al., 2007). These differences suggest that the distributions of key quality control 

indicators may differ between the two platforms. 

For the exon arrays, the resulting probability estimate for low quality chips was .397 - 

nearly twice what was obtained for the 3’ arrays.  This is reflected in Figure 2-2 as the larger 

areas under the red curves for exon arrays compared to 3’ arrays, and as the smaller areas 

under the green curves for exon arrays compared to 3’ arrays. For the majority of the 

indicators, the estimated distributions were qualitatively similar to those estimated for the 3’ 

arrays (Figure 2-2a,c,d). One interesting difference is that in the exon arrays, the low quality 

chips appear to be more likely to have median raw intensity values that are lower than other  
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Figure 2-2. Comparison of parameter estimates for 3' expression arrays and 
exon arrays. 

Each diagram illustrates the unsupervised Gaussian parameter estimates for 
one of the quality control features, for each of the two chip types. Estimates 
shown are for the following features: (A) Upper tail of the Relative Log 
Intensity (RLE), computed using the affyPLM functionality, (B) median of the 
raw intensity distribution, (C) 10th percentile of the probe-level model 
residuals, and (D) inter-quartile range of the RLE. 
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chips in the same experiment (Figure 2-2b), whereas for the 3’ arrays, both abnormally high 

and low median raw intensities appear to be indicative of bad chips.   

 To check the robustness of our estimates, we also analyzed a separate set of quality 

control indicators (Table 2-2) computed using the Affymetrix Expression Console software. 

In agreement with the estimate obtained using the first set of quality metrics, the inferred 

probability for low quality chips was .394 using the Expression Console quality indicators. 

At a qualitative level, the estimates for the Expression Console quality indicators generally 

agreed with our expectations. For example, Figure 2-3a shows that, as expected, lower 

quality chips tend to have larger residuals when fitting the RMA probe-level summarization 

model.  Similarly, Figure 2-3b and Figure 2-3c show that low quality chips are more likely to 

have higher variability in the RLE metric. Interestingly, the SCORE.pos.vs.neg.auc metric, 

which measures the area under an ROC curve discriminating between positive and negative 

controls, did not indicate a major difference between high and low quality chips.  This seems 

to be in conflict with the recommendation by Affymetrix that this is potentially one of the 

most useful quality control indicators for exon arrays (Affymetrix, Inc, 2007). This 

observation could reflect the fact that labs detecting unusual values for this metric may have 

been more likely to exclude the corresponding chips from further analysis. 

Classifier Performance Evaluation 

3’ Expression Arrays 

 After obtaining parameter estimates for various quality control features for the 3’ 

expression arrays, we next sought to compare the performance of the unsupervised  
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and  
 

Figure 2-3. Parameter estimates for exonarrya expression console QC features. 

Shown are the parameter estimates obtained using the EM algorithm for various exon 
array quality control features available in the Affymetrix Expression Console 
software. Estimates shown are for the following features: (A) mean of the absolute 
deviation of the RMA probe level model residuals from the median across chips, (B) 
standard deviation of signal from positive control probesets after normalization, (C) 
standard deviation of signal from all probesets after normalization, and (D) area under 
ROC curve discriminating between positive control probesets and negative controls. 
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supervised classifiers. A 10-fold cross-validation procedure was used to compare the 

performance of naïve Bayes classifiers constructed using distribution parameters estimated 

using either the standard maximum likelihood method or, alternatively, the unsupervised 

mixture model approach. For each of 10 iterations, 9/10 of the 603 data instances were used 

as a training set, for both parameter estimation and also the selection of 5 classification 

features.   For classifiers built using supervised MLE estimation (“MLE + Naïve Bayes”), the 

expert generated labels were used to distinguish between high and low quality chips in the 

training set. For the unsupervised classifier (“EM + Naïve Bayes”), the expert labels in the 

training set were ignored and the EM algorithm was used to estimate parameters of a 

Gaussian mixture model.  The remaining unused 10th of the data was used to assess the 

performance of the classifier, using the expert labels as the standard of truth. The 

performance of the two algorithms was nearly identical. The confusion matrices (Table 2-3) 

show the classification results for the two algorithms using a classification threshold of 0.5.  

The accuracy of the MLE + Naïve Bayes method was .907 with a false positive rate of .058, 

while the accuracy of the EM + Naïve Bayes method was .910 with a false positive rate of 

.079.  An ROC curve, constructed by varying the classification threshold, is shown in Figure 

2-4. The area under the ROC curve (AUC) was .9455 for the unsupervised method and .9402 

for the supervised method. Although this performance is good, it is possible that these results 

could be improved even more by identifying and using alternative (other than normal) 

distributions to model one or more of the classification features. 

 In many real world scenarios the amount of unlabeled data available greatly exceeds 

the amount of expert-labeled data.  To test the performance of the two classifiers under these  
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Table 2-3. Confusion matrices, full training set 

 
  MLE + Naïve Bayes (Supervised)  
  0 1 ◄ Expert Label 

Classified As►       0 489 26  
1 30 58  

  EM + Naïve Bayes (Unsupervised)  

  0 1 ◄ Expert Label 
Classified As►       0 478 13  

1 41 71  
 
 
 
 
 
 
 
 
 
 

Table 2-4. Confusion matrices, given 30 labeled instances for supervised method 

 
 

  MLE + Naïve Bayes (Supervised)  
  0 1 ◄ Expert Label 

Classified As►       0 492 44  
1 27 40  

  EM + Naïve Bayes (Unsupervised)  
  0 1 ◄ Expert Label 

Classified As►       0 478 13  
1 41 71  
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Figure 2-4. Classifier performance. 

Unsupervised versus supervised classifier using labeled data sets of various sizes. 
When the full labeled training dataset (~540 labeled instances per fold) is 
available, the performance of the unsupervised classification method (EM+Naïve 
Bayes) and the supervised classification method (MLE+Naïve Bayes) are 
equivalent on the test dataset. When the amount of labeled data is limited, but 
unlabeled data is abundant, the unsupervised method outperforms the supervised 
method. 
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conditions, we performed additional 10-fold cross-validation experiments similar to the 

previous test. However, in this case, the supervised MLE + Naïve Bayes classifier was 

trained using random subsets of instances from each labeled training fold, while the EM + 

Naïve Bayes classifier was constructed using the entire unlabeled training fold. Subsets 

containing 10, 20, 30, 60, 75, and 100 instances were used to train the supervised classifier. 

The ROC curves in Figure 2-4 indicate that the EM + Naïve Bayes classifier appears to have 

an advantage when the amount of unlabeled training data available greatly exceeds the 

amount of expert-labeled data. For example, the unsupervised method clearly outperforms 

the supervised method when 30 or fewer labeled instances were available. Table 2-4 contains 

the resulting confusion matrix for the case in which 30 labeled training instances were used, 

with a classification threshold of 0.5. 

Exon Arrays 

 To demonstrate the general applicability of our method, we constructed unsupervised 

classifiers using the two sets of quality control variables and the entire unlabeled training set.  

These classifiers were then used to predict classification labels for each data point.  Figure 

2-5 shows a Venn diagram comparing the classification results for classifiers constructed 

using the BioConductor quality features and the Expression Console quality features. In 

most, but not all, cases, the classifiers agree on the characterization of each chip with regard 

to quality.  In addition, both classifiers agree that approximately 39% of the data is low 

quality. “Additional file 3” (available at http://www.biomedcentral.com/1471-
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2105/10/191/additional) contains the classification labels obtained using unsupervised 

classifiers constructed using each set of quality variables. 

Simulation Results 

 The agreement between the quality control feature distribution parameters estimated 

using the supervised maximum likelihood method and the estimates obtained with the 

unsupervised Gaussian mixture model suggests that our domain expert has uncovered a 

plausible dichotomy of chips within our dataset.  To further confirm that the chips classified 

as having low quality were indeed more likely to negatively impact tests for differential 

expression, we performed a simple simulation. The procedure involved adding an offset to 

the observed expression measurements for a subset of the probesets on a set of “treatment” 

arrays, and then comparing these arrays with a set of unmodified “control” arrays sampled 

from the same experiment (details not shown). Among those chips designated by the expert 

as low quality, the majority (approximately 70%) impaired the ability to detect simulated 

differential expression when included in an analysis, compared to only about 10% of the 

chips classified as having high quality. 

Conclusions  

 In this paper we have illustrated the efficacy of an unsupervised classification 

approach to assessing microarray data quality. Our method uses unlabeled training data to 

identify apparent distinctions between “good” and “bad” quality chips within the dataset. The 

method then integrates measurements obtained across a variety of quality dimensions into a  



 72

single composite quality score which can be used to accurately identify low quality data.

 Our method is flexible and can be easily adapted to accommodate alternate quality 

statistics and platforms. Because this technique requires only unannotated training data, it is 

easy to keep the resulting classifier up-to-date as technology evolves, and the adaptable 

nature of the system makes arbitrary, universal quality score thresholds unnecessary. 

Moreover, since a naïve Bayes classification approach involves the estimation of the 

underlying, univariate distributions for each of the classification parameters, this method 

allows for intuitive explanations that offer an advantage over other “black box” classification 

systems (Mozina et al., 2004; Pulin et al., 2006).  For example, under this framework, it is 

possible to infer which diagnostic plots and features are most relevant for the classification of 

a particular chip. These plots can then be presented to the user in order to explain the 

 
 

Figure 2-5. Exon arrays identified as high and low quality using two sets of 
QC indicators. 

The Venn diagram displays the number of exon arrays classified as low 
quality using the BioConductor QC variables and the Expression Console 
QC variables (left panel), as well as the number of exon arrays classified as 
high quality using the same two sets of QC indicators (right panel). 
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classification. A quality control method that incorporates an interpretation of standard 

diagnostic plots is an extension of a familiar process already used by many labs, and good 

diagnostic plots can provide powerful and convincing evidence of data quality artifacts. 

 An important caveat for this, and any quality control methodology, is that the 

decision about what to do with the detected low quality chip(s) is dependent on the 

experimental design, the number of low quality chips detected, and the magnitude of the 

defects encountered.  In many cases, low quality chips still contain valuable information, and 

in some cases the most effective strategy may be to simply down-weight these chips rather 

than discarding them entirely (Ritchie et al., 2006).  

 Nevertheless, with the availability of a variety of rapidly growing public repositories 

for microarray data, the continual appearance of new microarray chip types, and the 

increasing usage of genomics data by research organizations worldwide, the development of 

robust and flexible methods for microarray quality assessment is now more important than 

ever. An advantage of the approach described in this paper is that, once a classifier has been 

constructed, the run-time required to automatically classify new instances is minimal.  This 

makes the method ideal for use as a component of a batch processing system, such as a 

screening tool for use with public databases, or as a step in a meta-analysis pipeline. 

Software Availability and Requirements 

 Project name: Unsupervised Assessment of Microarray Data Quality Using a 

Gaussian Mixture Model. 
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 Availability: A Matlab implementation of these algorithms and the corresponding 

analyses is available in “Additional file 5” at http://www.biomedcentral.com/1471-

2105/10/191/additional. 

 Operating system: Implemented and tested under Windows XP.  

 Programming language: Matlab 7.0.1.15, service pack 1. 

 Other requirements: Matlab Statistics Toolbox version 6.1.  

 License: Brian E. Howard. Free for non-commercial use.  

 Any restrictions to use by non-academics: Contact corresponding author.  
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Abstract  

 
There are many methods for assessing the quality of microarray data, but little 

guidance regarding what to do when defective data is identified.  Depending on the scientific 

question asked, discarding flawed data from a small experiment may be detrimental.  Here 

we describe a novel quality assessment method that is designed to identify chips that should 

be discarded from an experiment.  This technique simulates a set of differentially expressed 

genes and then assesses whether discarding each chip enhances or obscures the recovery of 

this known set.  We compare our method to expert annotations derived using popular quality 

diagnostics and show, with examples, that the decision to discard a chip depends on the 

details of the particular experiment. 

 

Introduction  

 Considerable attention has been paid to methods and metrics that can be used to 

measure the quality of microarray data (for recent reviews, see Larsson, et al., 2006; Wilkes 

et al., 2007).  For example, a common approach employs a routine set of diagnostic plots and 

statistics to identify arrays having low quality relative to the other chips in an experiment 

(Archer et al., 2006; Reimer and Weinstein, 2005; Stokes et al., 2007; Gentleman et al., 

2005; Heber and Sick, 2006; Howard et al., 2009).  In the majority of cases, these methods 

are used as a filtering step, with the assumption that discarding low quality arrays should 

increase both the sensitivity and specificity of tests for differentially expressed genes (Wilkes 
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et al., 2007); however, in reality, many of these chips still contain valuable signal, even if 

that signal is obscured by extensive statistical noise.  For a given FDR level, increasing 

sample size can increase the power to identify differentially expressed genes with decreased 

probability of declaring false positives (Pawitan et al., 2005). Hence, as demonstrated in 

(Ritchie et al., 2006), discarding moderately noisy chips can actually be detrimental in many 

cases. Unfortunately, no clear guidelines currently exist for differentiating scenarios in which 

it is advantageous to discard low quality data from situations where that data should be 

retained. 

Here we present a simple procedure that can be used to assess the quality of 

microarray data.  In contrast to other methods, however, this procedure also provides 

practical advice about what to do when low quality chips are identified.  The method works 

by first simulating a set of differentially expressed genes, using gene expression distributions 

estimated from the dataset. Then, the procedure identifies arrays whose inclusion impairs the 

recovery of this known set of genes.  This method is intended not to merely categorize arrays 

into binary “high quality” and “low quality” categories, but to identify arrays that should 

actually be excluded from a particular analysis. Because this approach to quality assessment 

depends on the details of the particular microarray experiment considered, the assessment 

framework we describe is easily adaptable to a variety of analysis protocols and experimental 

frameworks. 

In the first section, we will describe the dataset used in this paper, and explain the 

simulation algorithm.  Then, we will compare the results obtained from this approach with 

previous expert annotations created with the aid of a set of popular quality diagnostics.  We 
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will illustrate the observation that any decision about whether to include a given array should 

be dependent not only on the noise profile of the array itself, but also on the details of the 

specific experiment being performed, including the number of replicates in each sample and 

the analysis method used to interpret the results. 

Methods 

Datasets 

 The dataset for this research consists of a set of 531 Affymetrix raw intensity (.CEL) 

files obtained from the NCBI GEO database (Edgar et al.,  2002).  These data are a subset of 

the dataset described in (Howard et al., 2009) and consist of all the experiments having at 

least three samples per treatment.  Several of the most commonly used Affymetrix GeneChip 

3’ expression array types are represented and were chosen to include a variety of frequently 

investigated tissue types, experimental treatments and species, including Arabidopsis 

(ath1121501 array), mouse (mgu74a, mgu74av2, mo3430a, and mouse4302 arrays), rat 

(rae230a and rgu34a arrays), and human (hgu133a, hgu95av2, hgu95d, and hgu95e arrays). 

Expert Annotations 

Quality scores were assigned to each chip by a domain expert, according to a 

procedure previously established and applied in the Lausanne DNA Array Facility (DAFL) 

(Heber and Sick, 2006). Briefly, this procedure involves the systematic analysis of a variety 

of common predictive quality assessment metrics including: chip scan images, distributions 

of the log scale raw and normalized PM probe intensities, plots of the 5’ to 3’ probe intensity 
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gradients, pseudo-images of the PLM weights and residuals, and boxplots of the Normalized 

Unscaled Standard Error (NUSE) and Relative Log Expression (RLE) scores for each chip. 

After consideration of each of these quality features, the expert identified arrays that 

appeared to be outliers with respect to other chips in the same experiment, and each array 

was assigned a quality score of 0, 1, or 2, with 0 being “acceptable quality” (462 chips), 1 

being “suspicious quality” (45 chips) and 2 being “unacceptable quality” (24 chips). These 

scores were then used as a basis of comparison to quality assessments made using the 

empirical quality approach described in this paper. 

Quality Assessment Algorithm 

Our approach takes a very practical definition of microarray data “quality”: a low 

quality microarray is an array that diminishes the chances of accurately detecting 

differentially expressed genes, given a particular experimental design, dataset, and analysis 

methodology.  To make this determination, our algorithm uses simulated data to find out if 

excluding a particular chip is likely to improve the ability to detect differentially expressed 

genes in an experiment similar to the one intended by the investigator.  The simulated dataset 

is constructed using the observed gene expression distributions from the original experiment.  

Within this simulated dataset, which includes both a “treatment” group and a “control” 

group, some of the genes are differentially expressed.  The quality assessment procedure 

operates by performing a statistical test for differential expression under two different 

scenarios: (1) using only the simulated data, and (2) using the simulated data plus the actual 

expression measurements for one of the chips.  If excluding the actual expression 
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measurements for this chip enhances the recovery of the known set of simulated 

differentially expressed genes, then that chip is flagged as “low quality”. 

Note that this definition of quality depends on the details of the experiment examined, 

and, accordingly, our quality assessment framework is adaptable to a variety of microarray 

platforms and statistical procedures.  For concreteness, we will describe the algorithm as it 

might be applied to a set of one-color microarray data of the sort that comprises our 

previously described test dataset. However, the details of this approach, including the 

normalization procedure, gene expression parameters, and choice of statistical test, are 

flexible. These can, and should, be adapted to match the analysis approach used for the actual 

experimental data. 

 

Goal 

 To determine whether or not a particular microarray chip should be excluded from an 

experiment designed to test for differential expression between two treatment groups.   

Input  

 A set of microarray expression values from treatment Group 1, which contains N1 

(≥2) replicate chips. 

 A set of microarray expression values from treatment Group 2, which contains N2 

replicate chips. 

 A suspected low quality chip, c, from Group 1. 
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Output 

 A decision whether or not to exclude chip c from the test for differential expression 

between Group 1 and Group 2. 

Procedure 

1. Normalize the complete dataset using whatever procedure would normally be used in 

the final analysis (e.g. quantile/RMA in Irizarry et al., 2003, etc.). 

2. Exclude the suspect chip, c, and use the N1-1 remaining chips from Group 1 to 

estimate the mean, ˆg , and sample variance, sg
2 ,  for every probeset, g, on the chip. 

Repeat 30 times: 

3. Simulate a set of G1 consistently expressed genes (CEGs) as follows:   

 Randomly select G1 probesets from the set of all probesets on the 

chip.  

 For each selected probeset, sample N1+N2-1 values from a 

Normal( ˆg , sg
2) distribution. 

 Append the actual expression values from chip c to the simulated 

data for Group 1. 

The result is a G1 × (N1+N2) expression matrix, where the first N1 columns 

correspond to “treatment 1” and the second N2 columns are “treatment 2”.  

4. Use the same procedure to simulate a set of G2 differentially expressed genes 

(DEGs), with the following additional step:  
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 Add a small multiple of the probeset-specific standard deviations, sg, 

to the N2 “treatment 2” expression values, shifting the mean of the 

second treatment group relative to the first. 

5. Perform a test for differential expression between the two treatments (e.g. 

using LIMMA (Smyth, 2004)) in each of the G1+G2 rows. 

6.  Evaluate the performance of this test by computing an ROC curve, which can 

be constructed from the sorted p-values from the tests in step 5. Using this 

ROC curve, compute the corresponding area under the curve (AUC). (A 

detailed guide to ROC curves can be found in Fawcett, 2006). 

7.  Discard the expression values from the suspect chip, and re-compute the 

ROC curve and AUC (i.e. repeat steps 5 and 6).  

8.  Record the difference between the AUC scores computed in steps 6 and 7. 

9. Discard chip c if the AUC without chip c is significantly higher than with chip c. 
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Figure 3-1. Low-quality calls by expert quality group. 

Expert quality score is shown on the x-axis.  Light blue indicates frequency of 
this category among expert annotations.  Dark blue shows proportion of this 
category flagged for exclusion using the simulation approach. 
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Figure 3-2. Comparison of expert and simulation determined quality scores. 

Chips with expert quality scores of 1 or 2 are included in the “Flagged by 
Expert” set.  Chips with simulation p-values < .001 are included in the 
“Flagged by Algorithm” set. 
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Results 

Comparsion with Expert Annotations 

 After normalizing all arrays from each experiment using RMA (Irizarry et al. 2003), 

we applied the previously described simulation-based quality assessment procedure to each 

of the chips in our dataset.  For each chip, we simulated 30 N × N experiments, where N is 

the number of replicates for that chip’s treatment in the original dataset. Each experiment 

contained 500 consistently expressed genes (CEGs) and 500 differentially expressed genes 

(DEGs). Differential expression was simulated by adding ± 1 standard deviation to the 

second treatment group (odd probesets were given positive deltas, and even probesets were 

given negative deltas).  The R LIMMA (Smyth, 2004) package was then used to identify 

differentially expressed genes, both with and without the suspect chip, and the resulting ROC 

curves were computed in each case. Chips whose inclusion significantly lowered the AUC 

according to a paired t-test (p-value < .001) were identified as having low quality.  The entire 

analysis was performed using the R statistical programming language (code available from 

the author by request.)  

We then compared the chips identified using this procedure with those identified 

previously by the domain expert. Figure 3-1 shows that, for the 24 chips identified by the 

expert as having the lowest quality (i.e. scored as 2’s), the simulation identified 8 chips as 

being candidates for exclusion (33.3%).  Among the 45 chips flagged by the expert as 

suspicious (1’s), 11 were identified by the simulation procedure as candidates for exclusion 

(24.4%).  For the 462 chips regarded by the expert as having acceptable quality, only 2 were 
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identified by the algorithm as candidates for exclusion (0.43%).  Figure 3-2 summarizes the 

chips flagged as low quality by the two methods. 

Practical Quality Judgment Depends on the Details of the Experiment 

Quality assessment procedures based on predictive quality metrics sometimes have 

difficulty determining the utility of excluding suspicious chips because this decision is 

inextricably tied to the details of the particular experiment and the analysis method used. 

Unfortunately, the values for most quality metrics do not explicitly incorporate the sample 

size, target effect magnitude or analysis method employed. However, these experimental 

details are critical for making a rational decision regarding the inclusion or exclusion of low 

quality data. This scenario is illustrated in the following examples.   

 

Example 1. GEO dataset GSE1873 (Li, et al. 2005) contains gene expression 

measurements taken from liver tissue of obese mice.  The experiment used 5 Affymetrix 

microarrays to measure gene expression of obese mice exposed to intermittent hypoxic 

conditions and 5 microarrays to measure gene expression of obese mice used as controls.  

Using the protocol described in section 2.2, our domain expert examined this dataset and 

identified 3 chips as having low or suspicious quality (GSM32860, GSM32861 and 

GSM32866).  However, in a simulation using 5 chips in each treatment group, only 

GSM32860 and GSM32866 were found to be worthy of exclusion (when considered 

individually).  On the other hand, in simulated 3x3 and 4x4 experiments, exclusion of chip 

GSM32866 is no longer recommended by our procedure.  Conversely, as simulated 
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experiment size increases, the p-value for chip GSM32861 approaches the threshold for 

exclusion, with a p-value of less than 0.01 for experiments of size 9x9 or greater. 

 

Example 2. Recent research has demonstrated that many of the common quality 

problems observed in a typical microarray experiment can be mitigated with the use of robust 

analysis methods. For example, many typical quality problems can be captured with a 

heteroscedastic variance model which allows each chip to have different levels of random 

noise (Ritchie, et al. 2006). Smyth showed in simulation that, in many cases, procedures that 

simply down-weight noisier chips perform better than methods that attempt to identify and 

exclude these low quality chips. 

Again, consider experiment GSE1873. Figure 3-3 shows the expression values for a 

few representative probesets (expert-identified low quality probesets are shown in colored 

dots).  The diagram illustrates the fact that there is greater variance between probesets than 

among chips within each probeset.  On the other hand, the expression values for the low 

quality chips appear to more often have extreme values than the other chips, although not 

consistently in one direction. The RLE boxplot also reflects this observation (Figure 3-4); the 

interquartile ranges for the low quality chips are larger than  for the high quality chips.  These 

observations suggest that the heteroscedastic variance model may indeed be useful in the 

analysis of this data set.  To test this hypothesis, we repeated the quality simulation with one 

modification: we used the “arrayWeights” functionality of the LIMMA package to identify 

and downweight noisy chips.  Under this analysis framework, the quality simulation showed 

that excluding these chips is no longer recommended. 
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Figure 3-3. Normalized expression levels for 4 probesets from experiment 
GSE1873. 

Green circles correspond to ‘treatment 1’ and blue circles to ‘treatment 2.’  
The colored circles represent chips flagged by the expert as low quality.  
The dashed lines indicate the median expression level for each treatment, 
while the dotted lines correspond to treatment median ± 1 MAD (median 
absolute deviation). X-axis is chip name; y-axis is normalized expression. 
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On the other hand, even robust methods can not be expected to correct the most 

extreme types of errors.  For example, we simulated mislabeled samples by interchanging 

data from different GEO datasets and observed that in these cases it was often still better to 

remove the foreign arrays than to apply the downweighting procedure (data not shown). 

Discussion 

The quality assessment method described here addresses an important question not 

often considered by other procedures: what to do with the low-quality chips that are 

identified.  In many real-world scenarios, better results can be obtained by retaining slightly 

flawed data, instead of discarding it completely.  Unfortunately, there is currently little 

guidance available with regard to this decision.  Our method takes an empirical approach to 

this problem by simulating a set of differentially expressed genes and then evaluating the 

 
Figure 3-4. Log expression for experiment GSE1873. 

Height of box corresponds to interquartile range of the RLE, and midline indicates 
RLE median. 
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contribution of each suspected chip with regard to identifying these genes.  For the datasets 

examined in our research, the chips identified by the simulation algorithm as “excludable” 

were roughly a subset of the chips identified by the domain expert as having low quality 

(Figure 3-2).  This may imply that although the expert is correctly identifying the chips with 

higher noise levels, many of those chips still retain useful signal, especially within the 

context of the small experiments considered. 

This approach is easily adapted to other analysis settings, and, in general, it is 

recommended that the analysis method and parameter settings chosen for the simulation 

should match the protocol intended for the real data set.  For example, here we have used the 

LIMMA library for statistical analysis, but other methods, such as SAM (Tusher et al., 2001) 

or Cyber-T (Baldi and Long, 2001) could just as easily be applied instead. Alternatively, if 

the researcher is interested in controlling false discoveries at a specific rate, then one could 

apply an FDR control procedure and compare the number of true discoveries made instead of 

the area under ROC curves. In future work we intend to explore more thoroughly the 

influence of these parameters on the resulting quality decisions. It would also be interesting 

to enhance our simulation approach to emulate more complex gene expression models, 

possibly allowing for correlated genes, non-normal distributions and variable effect sizes.  It 

should be noted that when applying the procedure as described here, it is important to look 

not only at the resulting p-value, but also the magnitude of the observed difference in AUC 

obtained with and without each chip. Very small differences can sometimes accompany 

significant p-values, especially if enough replications are performed; in these cases it is 

probably prudent to retain the chip anyway. 
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Like other quality assessment procedures that attempt to identify outliers among a 

particular set of microarrays, our method is susceptible to scenarios where the dataset is 

corrupted by a majority of chips with systematic error.  For example, in a dataset where one 

of the arrays is mislabeled with regard to the experimental treatment applied, our method 

would likely identify the mislabeled array as an outlier; however, if all of the arrays except 

one particular array were mislabeled, our algorithm may erroneously identify the correctly 

labeled array as the outlier. 

Robust analysis methods such as the approach described in Ritchie (2006) can 

potentially mitigate many of the common problems observed in microarray datasets.  On the 

other hand, there are still scenarios where even the most robust methods cannot recover 

useful signal from a particular low quality array.  Arrays showing evidence of large spatial 

artifacts, contamination or other gross errors such as mislabeled samples can rarely be 

salvaged. Our method can be used to identify these scenarios. In addition, while the method 

we have described can be used on its own for quality assessment, this technique can also be 

used in conjunction with other traditional quality diagnostics, which may provide additional 

clues as to what sorts of errors are present in a batch of arrays and thereby assist in avoiding 

these problems in the future.  
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Abstract  

In eukaryotes, alternative splicing often generates multiple splice variants from a single gene. 

Here we explore the use of RNA sequencing (RNA-Seq) datasets to address the isoform 

quantification problem. Given a set of known splice variants, the goal is to estimate the 

relative abundance of the individual variants.  Our method employs a linear models 

framework to estimate the ratios of known isoforms in a sample.  A key feature of our 

method is that it takes into account the non-uniformity of RNA-Seq read positions along the 

targeted transcripts. Preliminary tests indicate that the model performs well on both 

simulated and real data.   

Introduction  

In higher organisms many multi-exon genes undergo alternative splicing (AS) 

reactions that produce multiple splice variants, often encoding distinct, but related, protein 

products.  In contrast to the traditional “one gene, one protein” hypothesis, more than 70% of 

human genes are now believed to be subject to alternative splicing (Hertel, 2008), with AS 

isoforms apparently responsible for many of the salient differences between diverse tissue 

types.  A significant degree of AS has also been observed in various plant species, although 

the precise magnitude and functional relevance of these events is unknown (Wang and 

Brendel, 2006).  

While it has long been assumed that differential gene splicing plays an important role 

in determining the phenotypes of organisms, it has been difficult to quantify AS using 
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available high throughput methods.  However, recently developed massively parallel 

sequencing-by-synthesis technologies from Illumina, Applied Biosystems and Roche 454 

Life Sciences now have the potential to revolutionize the study of the transcriptome (Wang et 

al., 2009).  It is now possible to produce enough high quality reads in a single run to rival 

traditional EST libraries that have accumulated over a span of decades.  Furthermore, the 

resulting digital counts are more comparable to the “gold standard” quantification method, 

RT-PCR, and may overcome many of the shortcomings inherent in hybridization-based 

microarray gene expression studies. 

Because the technological potential of these “RNA-Seq” protocols is well 

appreciated, and rapidly advancing, methods for accurate estimation of isoform expression 

levels are an active area of research.  To compute an isoform expression score, the reads that 

map to each isoform must be converted into a quantitative expression value.  One approach is 

to count the number of reads that map to an isoform, normalizing against the feature length 

and sequencing depth (Mortazavi et al., 2008).  Unfortunately, this technique is often 

infeasible for AS variants because many reads can map to multiple isoforms simultaneously. 

Recently, Lacroix et al. (2008) investigated the theoretical limitations of transcriptome 

reconstruction and quantification from a combinatorial perspective. Their analysis operated 

under an “exact information hypothesis” whereby the exact abundances of all relevant 

transcribed regions is provided error-free. However, this approach ignores the sampling 

process that actually generates observed data along with the associated measurement error; in 

practice, statistical approaches are necessary in order to obtain accurate estimates of 

transcript abundance. For example, Jiang and Wong (2009) have described a Poisson model 
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for isoform quantification, showing how to estimate its parameters with a maximum 

likelihood approach. Other authors have employed more basic (but effective) statistical 

approaches, for example, Fisher’s exact test, to compare levels of AS between treatments, 

e.g. Wang et al., 2008. 

In this paper, we explore the use of RNA-Seq datasets to address the “isoform 

expression estimation problem” as defined in Jiang and Wong, 2009. It is assumed that the 

set of splice variants is known; the goal is to estimate the relative expression levels of these 

isoforms in a mixture. Obtaining precise estimates is necessary because important tissue-

specific differences in AS frequently involve a continuum of isoform ratios, rather than all-

or-nothing expression (Gupta et al., 2004).  Although, currently, the assumption of known 

isoforms may be limiting in many cases, we will soon be able to construct detailed lists of 

known isoforms for various organisms and tissue states using high-throughput sequencing 

(see for example, Salehi-Ashtiani et al., 2008). A key advantage of our method over prior 

approaches is that our model takes into account the non-uniformity of RNA-Seq reads along 

the targeted transcripts. In addition, our approach can be easily adapted for use with any 

high-throughput sequencing technology, including those that employ paired reads. In the 

following sections we will describe the details of our model, demonstrate its performance on 

simulated and real data, and outline topics for future research. 
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Methods 

Model Overview 

 Given a set of n unique AS isoforms for a gene, g, it is always possible to partition 

RNA-Seq reads from g into 2n categories according to what subset of these isoforms each 

read is compatible with. For example, consider two AS isoforms, T1 and T2: 

 

     T1: AAAAAAA UUUUUUUUUU CCCCCCCCCC 

     T2: AAAAAAA ---------- CCCCCCCCCC 

 

In this example, transcript T1 contains a cassette exon containing only “U” nucleotides.  

Transcript T2 skips this exon.  Reads aligned to these transcripts can be classified into 4 

mutually-exclusive subsets: 

 

 Subset S1: Reads which contain only T’s are only compatible with transcript isoform 

T1. 

 Subset S2: Reads which contain A’s followed immediately by C’s (e.g. AAACCCCC) 

are only compatible with T2. 

 Subset S3: Reads which contain only A’s or only C’s are compatible with both T1 and 

T2. 

 Subset S4: Many reads, including any reads containing one or more G’s, are not 

compatible with either T1or T2. 
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In the following we will disregard subset Sn and only consider reads that map to at least one 

of the known isoforms. Let: 

 

Pr(Si)  denote the probability that one of the gene’s reads maps to subset Si 

Pr(Ti)  denote the probability that one of the gene’s reads maps to transcript Ti 

fi  denote the percentage of the transcripts expressed as isoform Ti  

 

Given the subsets introduced above, the following equation describes the probability that an 

individual read maps to subset Si: 

    i i j j
1

Pr(S | ) Pr(S | T ) Pr(T | )       1 ... 2 -1
n

n
j

j

i 


  


   (4.1) 

 In general, we can assume that jPr(T | )j , the probability an individual read maps to a 

particular transcript, is dependent on the (unknown) frequency, fj, of that transcript in the 

transcript mixture. We will also assume that a given isoform is sampled with probability 

proportional to its known length.  Similarly,  i jPr(S | T ) , the probability that an individual 

read maps to subset Si, given the read maps to transcript Tj, can be worked out using the 

known transcript sequence and estimates of the distributions for read length and read start 

position (for details, see the section “Constructing the Design Matrix”). Let: 

 

Yi denote the number of reads compatible with subset Si 
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R denote the total number of reads for the gene 

pij = i jPr(S | T )   

  j  =  jPr(T | )j  

 

Assuming that individual reads are iid, we then have Yi ~ Binomial( R,  iPr(S | )

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  (4.2) 

For the example shown above, we can express this linear model in matrix form as follows: 

   
11 1

1
22 2

2
31 32 3

0

0

Rp Y

Rp Y

Rp Rp Y




   
               

   (4.3) 

Because Rp21 and Rp12 will always be zero, the rank of this matrix is 2, and both b1 

and b2 are estimable.   Although, in general, the number of rows (2n – 1) grows exponentially 

with the number of possible transcripts, it should be possible to either combine or ignore 

uninteresting categories.   

Distribution of Read Start Position and Read Length 

Most methods for estimating isoform abundance assume a uniform sampling 

distribution for reads along the targeted transcripts (e.g. Mortazavi et al., 2008; Lacroix et al., 
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2008; Jiang and Wong, 2009).  However, it is widely acknowledged that the true distribution 

for read position deviates substantially from uniformity, and varies with the fragmentation 

protocol and sequencing technology (Wang et al., 2009). Consequently, accurate methods for 

isoform quantification must incorporate this critical information.   

We believe that these distributions should be consistent properties of the instrument 

and experimental protocol. With millions of reads often available per experiment, it should 

be possible to determine these distributions with a high level of accuracy. We used a kernel 

density approach to estimate read length and read start distributions using the observed 

empirical distributions observed for well-annotated transcripts (Figure 4-1a,b).  The read 

length was estimated in a similar manner, resulting in an average read length of 

approximately 30 nucleotides for the Illumina data set, and about 100 nucleotides for the 454 

dataset. 

To investigate the relationship between experimental protocol and read distribution, 

we also created a simple simulation that emulates the process of cDNA fragmentation by 

nebulization. The similarity between Figure 4-1b and Figure 4-1c suggests that our 

simulation captures the main properties of the nebulization process.  We anticipate that more 

detailed models, which incorporate deep knowledge of the physical processes of 

fragmentation and sequencing, should be able to accurately describe observed distributions of 

read length and position. 

 

 



 109

Constructing the Design Matrix 

Let h( k, m | L ) denote the bivariate probability mass function describing the 

probability that a read has start position k and length m, given that this read aligns to a 

transcript of length L. We compute n
i jPr(S | T )  i {1...2 -1}   for a particular transcript Tj 

using the procedure detailed in Figure 4-2. 

Estimation of b and f 

Given the construction method described above, the design matrix will always be full 

column rank, so ̂   will always be fully estimable.  Each Yi ~ Binomial(R, iPr(S | )


).  For 

computational simplicity, we use the Normal approximation to the binomial distribution.  For 

the Normal linear model with a known covariance matrix, the maximum likelihood estimate 

(MLE) obtained using weighted least squares is the best linear unbiased estimator (BLUE).  

In the system described above, the variances are not known, but can be estimated from the 

data.  In this case, the “feasible weighted least squares” method can be used to approximate 

the weighted least squares solution.  In cases where a resulting ̂  is not a valid probability, 

we truncate the estimate at 0 or 1.  In addition, we ensure that the total probability is one by 

dividing each   ̂  by the sum across all i.   
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Figure 4-1. Distribution of read start position as 
percentage of gene length for genes with median 
gene length of 1200 bp. 

The red line is a cubic spline fit. (A) Illumina 
dataset - RNA fragmentation by sonication (Lister 
et al. 2008), (B) Roche 454 dataset - cDNA 
fragmentation by nebulization (Weber et al., 
2007), and (C) Simulated cDNA fragmentation 
assuming fragments in size range 500-800 bp. 
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Under the commonly employed assumption that a given isoform is sampled with 

probability proportional to its length, the probability that a given read maps to a transcript 

isoform can be expressed as follows: 

1

Pr( | ) j j
j j j n

i i
i

L
T

L


 




 


  (4.4) 

where Lj is the length of transcript j in bases. Given our estimates for the bj’s, the known 

lengths for each transcript and the fact that  
1

1
n

i
i




  , the ˆ
j  are uniquely determined and 

can be obtained by computing the unique   solution   to a   set   of   linear   equations.  The 

sampling distribution of the resulting  j  cannot easily be computed analytically, but 

confidence intervals can be worked out empirically following a procedure based on (Clopper 

and Pearson, 1934). 

Initialize n
i jPr(S | T ) 0  i {1...2 -1}ijp     . 

 
For each read start site, k, on transcript Tj : 

For each possible read length, m, for a read starting at k : 
 Determine the sequence for the read, r, aligned to Tj, having start 

position k, and end position k+m-1:   r = Ti[ k, …, k+m-1]. 
 Determine which category, Si, the read belongs to, and update its 

probability: 
   i j i jPr(S | T ) Pr(S | T ) ( , | )jh k m L   
 

Figure 4-2. Procedure for computing the design matrix. 
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Implementation 

The algorithm described was implemented in Java, with matrix computations by  the 

JAMA matrix library (available at http://math.nist.gov/javanumerics/jama/). Additional 

analyses and simulations were also performed using the R statistical programming language 

(http://www.r-project.org/).   

Results 

Simulation 

To test our method, we performed a simulated RNA-Seq experiment using the 

Arabidopsis gene models defined in TAIR 8 (http://arabidopsis.org).  A publicly available 

dataset (NCBI Short Read Archive Accession SRX002554, Lister et al., 2008) was used to 

estimate the read length and read start position for Illumina reads (Figure 4-1a).  The 

simulation was performed for several of the multi-isoform genes as follows: First, a relative 

frequency for each of the alternative isoforms was specified as a simulation parameter, along 

with a predetermined total number of RNA-Seq reads.  Each of these reads was then 

simulated by first selecting an isoform with probability proportional to its length and 

concentration in the mixture.  Then, a read start position k and read length m along the 

selected isoform were drawn from the distribution, h( k, m | L ). Using these read coordinates, 

the nucleotide sequence along the sampled isoform was determined, and this sequence was 

compared with other isoforms in the mixture to identify which subset of isoforms the read is 

compatible with.  The output of one run of the simulation is a list of subsets and the 
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corresponding counts of simulated reads assigned to those subsets.  For each gene, the entire 

simulation was repeated 500 times.  Given the simulated datasets, we then used the linear 

model described above to infer the original isoform concentrations from the simulated subset 

counts.  We performed the estimation in two different ways for each gene: first, using a 

design matrix constructed using the same read position distribution used to generate the 

simulated reads (Figure 4-1a) and second, using a design matrix constructed from a uniform 

read position distribution.  Note that using the incorrect distribution can introduce a severe 

bias into the estimates and even change the ordering of the isoform expression levels (e.g. 

Figure 4-3d). 

For each of the 500 replications, we also computed approximate confidence intervals 

about the estimates. To evaluate the performance of our approximation, we checked each 

confidence interval to see if it included the true value for the parameter.  For the AT1G75410 

simulation, 97.4% of the 95% C.I.’s contained the true parameter; 92.2% of the 90% C.I.’s 

contained the true parameter; and 63.2% of the 65% C.I.’s contained the true parameter. 

This entire process was repeated for 100 different genes.  Over several replications, 

the mean estimates were always approximately equal to the simulated isoform concentrations 

when the correct distribution was used to construct the design matrix.  For genes with two 

isoforms, we found that approximately 750-1000 reads were often needed to obtain a 95% 

confidence interval with a width of ~20%.  However, the number of reads required varies 

according to mixture composition, number of isoforms, and the read length and start site 

distributions. (Data not shown). 



 114

 

 

Transcript Mixture (fi) î - True Read 

Distribution 
î - Uniform Read

 Distribution 
A) AT1G75410.1=70% 69.8% (64.2%-75.2%) 67.5% (61.5%-73.3%)

 AT1G75410.2=30% 30.2% (24.8%-35.8%) 32.5% (26.7%-38.5%)
B) AT2G40140.1=70% 70.0% (55.8%-83.9%) 55.5% (43.9%-68.4%)
 AT2G40140.2=30% 30.0% (16.1%-44.2%) 44.5% (31.6%-56.1%)
C) AT2G01260.1=20% 19.6% (08.7%-30.5%) 12.8% (01.0%-23.9%)
 AT2G01260.2=70% 70.3% (62.5%-77.8%) 76.4% (68.5%-83.8%)
 AT2G01260.3=10% 09.9% (02.2%-18.8%) 10.7% (02.4%-19.9%)
D) AT1G75380.1=70% 69.5% (58.9%-78.8%) 70.9% (60.8%-80.3%)
 AT1G75380.2=20% 20.7% (05.9%-33.9%) 04.4% (00.0%-21.4%)
 AT1G75380.3=10% 09.4% (0.00%-22.4%) 22.9% (09.3%-35.7%)

      

Figure 4-3. Estimates for phi using 2000 simulated reads. 

(A) AT1G75410, (B) AT2G40140, (C) AT2G01260 and (D) AT1G75380.  
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Figure 4-4. Differences in main isoform frequency for 438 AS genes. 
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Real RNA-Seq Dataset 

We next applied our method to the publicly available data sets SRX002554 and 

SRX002555 (Lister et al., 2008).  These two experiments contain approximately 65 million 

(SRX002554) and 57 million (SRX002555) Illumina reads from floral tissue from two 

different Arabidopsis strains (SRX002554 = col-0; SRX002555 = ddc).  Reads were mapped 

to the transcriptome using the SOAP v2 alignment program (Li et al., 2009).  

TAIR 8 was used to define the tested gene models. Among the 33282 Arabidopsis 

gene models defined in TAIR 8, 4330 genes had more than 1 isoform.  In particular, 3336 

genes had 2 isoforms, 739 had 3 isoforms, 186 had 4 isoforms, 48 had 5 isoforms, 14 had 6 

isoforms, 4 had 7 isoforms, 2 had 8 isoforms, and 1 had 10 isoforms. 

For the SRX002554 dataset, among genes with 2 or more isoforms, 1039 genes had 

more than 500 mapped reads (31.1%); 481 genes had more than 1000 reads (11.1%); 205 

genes had more than 2000 reads ( 4.7%); and 50 genes had more than 5000 reads ( 1.5%). 

Similar coverage was observed in the SRX002555 dataset. 

We first used a chi-square test of subset counts to identify genes that were 

differentially spliced between the two conditions; 438 genes showed significant differences 

(uncorrected p-value cutoff of .001) between the two samples. We then used the method 

defined above to infer the isoform ratios in the two different strains.  In several cases, genes 

with highly significant AS levels (according to the Chi-square test), had only very small 

differences in proportions between the two treatments.  These most likely do not represent 

significant biological differences.  On the other hand, we also identified many genes that had 
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large differences in isoform composition between the two treatments.  For example, 286 of 

the 438 genes had differences of 15% or more in the proportion for the main isoform.  Figure 

4-4 shows a histogram of the differences in main isoform proportions between the two 

treatments. We also noted many genes which appeared to exhibit switch-like differential 

splicing (shown in Figure 4-4 as genes with large differences in isoform expression between 

treatments). For example, AT4G10610 "RNA-Binding protein 37", which has  unknown 

function, but which has been shown to be highly expressed during development and 

differentiation of floral tissue (Hecht et al., 1997), was estimated to occur exclusively as 

isoform AT4G10610.1 in col-0 (SRX002554) and only as AT4G10601.2 in ddc 

(SRX002555).  In addition, many of the genes exhibiting differential splicing had roughly the 

same number normalized read counts in each treatment, indicating that changes in overall 

gene expression level and changes in isoform abundance might occur independently (data not 

shown). 

Discussion and Future Work 

This paper describes a novel method for inferring AS expression levels.  Our method 

is unique in that it incorporates non-uniform distributions of reads along the targeted 

transcripts. This is important, since assuming a uniform read distribution might result in 

serious estimation mistakes. In addition, our method is flexible enough to accommodate a 

variety of sequencing technologies, including those that incorporate paired reads.  We expect 

that in the near future improved algorithms for isoform quantification will make it possible to 

investigate the transcriptome at a much higher level of resolution. It is likely that this will 
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reveal a so far unknown dimension of the transcriptome, including, for example, 

differentially spliced genes whose overall gene expression level remains unchanged 

(Blencowe, 2006). 

There are several potential avenues for future work. A major limitation of our 

approach is that it assumes that all transcripts are known, yet the current state of 

transcriptome annotation is incomplete for most organisms.  Because incorrect assumptions 

regarding potential transcripts in a mixture could lead to erroneous estimates, we are 

investigating ways to incorporate residual-based diagnostics into our model. These 

enhancements would serve to identify the presence of unknown “hidden” isoforms in a 

mixture and would complement isoform quantification with a mechanism for transcript 

discovery.  A second line of research focuses on developing tools for experimental design, in 

particular, a method for estimating the number of reads required to achieve a given 

confidence level for any given estimation scenario.  
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Chapter 5  
 

CONCLUSIONS 
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In chapters 2 and 3 of this dissertation we investigated several aspects of microarray 

data quality assessment. Chapter 2 introduced a new method for classifying data quality 

based on the unsupervised assessment of abstract quality indicators.  This method is 

applicable to a wide variety of popular quality metrics and can be regarded as a logical 

extension of the approach employed de facto by many labs. Since our method does not 

require extensive expert input, it is able to easily accommodate new datasets and chip types 

as they become available.  We suggest that our method could be most useful in scenarios 

where large datasets need to be automatically checked for quality, perhaps in the context of a 

screening module embedded in an online public database, or as a component in a meta-

analysis pipeline.  In addition, this approach would be valuable in scenarios where samples 

can be re-hybridized when severe quality problems are detected. On the other hand, a 

weakness of all systems of quality classification based on abstract quality indicators is the 

issue of what to do when data is flagged as “bad.”  In practice, it may often be inappropriate 

to completely discard flawed data.  Instead, a system that down-weights low quality data 

might be more appropriate (Ritchie, et al., 2006). The method outlined in chapter 3 provides 

a framework for determining whether it is beneficial to actually throw away data under a 

given experimental design and analysis methodology. Finally, it is important to note that one 

of the most important factors for obtaining reproducible microarray data is adequate 

replication (Zhang, et al., 2008).  In the early days of microarray experimentation, 3 

replicates per treatment was often the norm, leading to a proliferation of under-powered gene 

expression studies.  Now that costs have decreased, and labs have access to shared core 

analysis pipelines, larger studies are becoming more common and microarrays are 
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consequently yielding more reliable data. In addition, meta-analysis studies which combine 

similar, independent, but small, studies have produced promising results (Larsson, et al., 

2006). 

Meanwhile, an important new technology, high-throughput sequencing of the 

transcriptome (RNA-Seq), promises to yield an abundance of new data. (Wang, et al., 2009). 

In fact, most researchers expect RNA-Seq to eventually replace microarrays for most 

applications (Shendure, 2008). High throughput sequencing-by-synthesis is qualitatively 

similar to rt-PCR, which remains the “gold standard” for interrogating transcription.  The 

output of a high throughput sequencing analysis consists of actual “counts” of molecules 

rather than a fluorescence reading having some unknown relationship to the gene expression 

level, and some have characterized this important difference as “digital” versus “analog” 

measurement (Shendure, 2008).  As such, the dynamic range is expected to be larger for 

sequencing technologies, conferring a greater ability to detect transcripts occurring at low 

transcription levels.  Furthermore, most researchers expect that sequencing technologies will 

provide results that are more robust and reproducible than those achieved using microarrays 

(‘t Hoen, et al., 2008). Nevertheless, we are also beginning to appreciate that high-throughput 

sequencing based expression analysis comes with its own unique set of analytical biases (e.g. 

Oshlack and Wakefield, 2008). However, since the technology is so new, these biases have 

yet to be thoroughly explored.  

Current research efforts have begun to address quality assessment of high-throughput 

sequencing data. As with microarrays, quality assessment of RNA-Seq data can occur at 

various stages in an experiment.  Prior to sequencing, the same quality metrics used before 
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microarray hybridization can be used to verify RNA integrity.  As discussed in chapter 1, 

these include the 28S/18S rRNA ratio (Sambrook, et al., 2001), the RNA integrity number 

(RIN) (Schroeder, et al., 2006), the RQS Score (Copois, et al., 2007), and the RNA 

degradation factor (Auer, et al., 2003). After sequencing, the resulting reads often include a 

quality score for each base, similar in nature to the Phred scores (Ewing, et al., 1998a,b) used 

in Sanger sequencing  (Sanger, et al., 1977).  Recent research has shown that judicious use of 

these quality scores improves alignment accuracy for short read Illumina data (Smith, et al. 

2008).  In chapter 2, we demonstrated how microarray level, post-hybridization quality 

indicators, including the BioConductor quality indicators, can be used to screen for low 

quality microarray data.  The BioConductor library has recently been extended to include 

quality assessment metrics for use with high-throughput sequencing data (Morgan, et al., 

2009).  These quality assessment indicators, which include the number of aligned and 

unaligned reads, base call frequencies, distribution of read duplicate counts, and alignment 

quality scores, are aimed at detecting low quality sequencing runs due, for example, to 

excessive PCR bias or RNA degradation. The method described in chapter 2 could be easily 

adapted to discriminate between high and low quality RNA-Seq runs based on these 

indicators.  In addition, given a particular experimental design, the simulation methodology 

described in chapter 3 could likewise be adapted to identify cases in which a sequencing run 

is so badly flawed that it is better to completely discard the data.  These are both potential 

topics for future research. 

In Chapter 4 we introduced a new method for using RNA-Seq data to quantify the 

alternatively spliced isoforms present in a mixture.  One of the key advantages of our method 
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over similar approaches is that we do not assume uniform sampling of reads over targeted 

transcripts.  We have shown, through simulation, that using the wrong read sampling 

distribution can lead to incorrect conclusions about the expression of isoforms in a mixture.  

In an example dataset, we identified 438 genes that exhibit differential splicing between two 

different Arabidopsis strains. Using our isoform quantification method, we identified several 

alternatively-spliced genes with switch-like expression properties, as well as a number of 

other genes that varied more subtly in isoform expression. 

The research presented in chapter 4 is ongoing.  Currently, we are working on 

extending the method to accommodate reads that map to more than one gene and which 

could adversely effect the resulting expression estimates.  Similarly, we plan to improve our 

method to allow for the automatic detection of “hidden” or unannotated spliced isoforms 

concurrent with the quantification of known transcripts.  Improvements to accommodate 

paired read technologies and to provide visualization of the results are also planned.  The 

ability to reliably compute quantitative isoform expression values will allow us to separate 

true alternative splicing events from spurious transcripts originating from single mis-spliced 

transcripts — a major problem in all alternative splicing studies. Given that changes in 

isoform expression level frequently involve a continuum of isoform ratios, rather than all-or-

nothing expression (Blencowe, 2006), and that they are often independent of general gene 

expression changes (Wang, et al., 2008), we anticipate that our research will contribute to 

revealing a so far uninvestigated layer of the transcriptome. We believe that, in the future, 

researchers will prioritize genes for functional analysis based not only on observed changes 

in gene expression levels, but also on changes in alternative splicing. 
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Currently, the splicing code, or the full set of splice recognition signals, splice 

enhancers and splice silencers encoded in the genetic sequence, is currently poorly 

understood.  A pre-requisite to deciphering the splicing code is the availability of quantitative 

isoform expression data from a variety of biological tissues and states.  The nucleotide 

sequences of differentially spliced genes can then be scanned for motifs that occur in 

association with the observed splicing patterns (e.g. Zhao, et al., 2009; Kim, et al., 2009).  

There has been some success in generating data of this nature using an exon-junction 

microarray platform (Pan, et al., 2004), but high-throughput RNA-Seq promises to provide 

more reliable and complete data at a lower cost.  The isoform quantification method we have 

described in chapter 4 is, therefore, a first step towards unraveling the signals which 

orchestrate alternative splicing. 

An improved understanding of alternative splicing is critical to many important fields 

of biology.  For example, several studies have suggested that between 50-60% of human 

disease-causing mutations act by disrupting normal splicing patterns (Cartegni, et al., 2002; 

Pagenstecher, et al., 2006; Lopez-Bigas, et al., 2005).  In addition, changes in splicing 

patterns are known to occur during the normal course of a variety of cancers (Wang and 

Cooper, 2007).  The implications of these observations are potentially enormous, impacting 

the ways in which we prioritize candidate disease SNPs for functional analysis, design 

pharmaceutical therapies, and search for biomarkers.  Likewise, given the lack of correlation 

between genome size and phenotypic complexity, a more detailed understanding of 

alternative splicing will be critical in identifying evolutionarily important mutations.  Tissue-

specific differences in alternative splicing will also be important in unraveling the intricate 
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processes of cellular differentiation and growth within complex organisms.  Until recently, 

alternative splicing has often been overlooked in all of these fields, primarily due to an 

inability to make high-throughput, quantitative measurements of alternatively spliced 

transcripts.  Specialized microarray platforms, and, especially, high-throughput transcriptome 

sequencing are fundamentally changing the ways in which we investigate these important 

questions.  We hope that the methods detailed in this dissertation can serve to improve the 

reliability of conclusions derived from data generated by these powerful new technologies. 
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