ABSTRACT

NEWTON, GREGORY ANSELM. Heisenberg Quantum Representation of the Bianchi

I Cosmological Model. (Under the direction of Professor Arkady Kheyfets)

A Bianchi-I type cosmological model is considered. A Hamiltonian function for the
Bianchi geometry is developed from differential geometric methods and general relativity.
The Hamiltonian function allows the model to be analyzed via dynamical methods of
classical mechanics. The system is then quantized by way of the the usual methods of
transition from classical mechanics to quantum mechanics.

The motivation to express the system in the Heisenberg representation stems from
the Heisenberg equations of motion being more closely parallel to the classical equations.
This correspondence is largely due to dynamical time-dependent quantum mechanical
operators consisting of derivative or matrix operators fashioned from classical observables
that are considered to be time dependent in the classical theory. In the Heisenberg picture
the time-dependent operators corresponding to classical observables act on a state vector
in Hilbert space which is not time-dependent.

In contrast, the Schrodinger representation expresses evolution by means of appli-
cation of non-dynamic non-time-dependent operators which act on a dynamic evolving
time-dependent wave function. The correspondence is somewhat faulty because in the
Schrodinger picture time-independent operators replace time-dependent classical observ-

ables.



It is important to consider Heisenberg evolution because the concepts of time in rela-
tivistic space-time geometric systems become difficult to analyze in a consistent fashion
because of Lorentz transformations. An interpretation of a global time function with
respect to local measurements of time should be consistently and logically related, and
made to coincide with the fact that measurements of such observables as local times must
be performed within the system itself. This is a unique problem in quantum cosmology
because in usual quantum mechanical systems the observer is defined to be external to

the system being analysed.
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Chapter 1

Introduction

The quantum mechanical state of a system is often pictured as a ray in Hilbert space
that has been normalized to unit length. The Hilbert state space is spanned by a set of
basis vectors, each representing some particular base mode of the system. Operations
(measurements) performed on the system will rotate the unit state vector with respect
to the spanning basis into some particular mode corresponding to a measurement in the
Schrodinger formulation of quantum mechanics. In order to analyse possible measure-
ments on the system, the original Hilbert space basis must be transformed into a different
set of basis functions whose eigenvalues are possible measurement values. Such differing
base representations are realized as different phase plane coordinates, such as position
representation or momentum representation.

In the Schrodinger picture, the state vector of the system is considered to have a

direction in the Hilbert space as a function of time. That is, a time development prop-
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agation operator will rotate the direction of the state vector in Hilbert space away from
the initial state direction. However, in the Heisenberg representation the basis vectors
are functions of time, and their phases will advance at a rate proportional to the en-
ergy of that particular basis state. The picture is changed from that of an “active” one,
where the state vector rotates as a function of time, to a “passive” one, where the state
vector remains static but the coordinate system will rotate (phase at a rate proportional
to the energy of the state) underneath it. The initial state vector in the Heisenberg
representation is regarded as being fixed, but with basis vectors having temporal depen-
dence. The Heisenberg equations of motion can be transferred more readily from classical
equations of motion. It is the operators (such as the position operator) corresponding
to the observables that change in time, due to the fact that operators are fashioned as
linear combinations of the phasing Heisenberg basis vectors. For example, the quantum
mechanical momentum operator corresponding to a free particle has a time dependence
associated with it via the momentum base kets. The operator is formed from a linear
combination of base kets, all which phase in time in proportion to the energy of the
particle.

In standard quantum mechanics, usually a statistical wave function as a function of
position coordinates is asked for, and usually on a flat Fuclidean space or even possibly
on a curved non-Euclidean space, but still a function of the coordinates of position within
the geometry. What’s more, measurements on the system are usually made from devices

exterior to the system itself.
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However, in considering the dynamics of a closed spatial geometry GG, the approach is
different than the approach to the usual quantum mechanical examples. In writing the
equations for a dynamic geometry spatial geometry, G(t) is the spatial system itself, and
so it is difficult to consider a statistical wave function for G as a function of a coordinatized
background geometry. And what’s more, measurements on G must be obtained from
within GG because there is no points outside of G' from which to perform measurements.
More abstract degrees of freedom are available for some dynamic geometries, and analyses
may be done in abstract symplectic spaces coordinatized by these degrees of freedom.
Furthermore, it is convenient to incorporate abstract temporal parameters because the
concept of time within generally curved compact dynamic geometries is highly dependent
on localized Lorentz frames of reference and local curvature conditions, and not on GG as an
autonomous system. The state of a cosmological geometrodynamic hypersurface system
> may be evolved within phase planes made up of these more fundamental or abstract
degrees of freedom and their conjugate momenta degrees of freedom. The evolution
may be propagated with respect to a more fundamental holistic temporal parameter,
and the problem of local time within ¥ may be left to local Lorentz covariance, and an
absolute cosmological time measured by cosmological parameters perhaps such as overall
curvature or degree of symmetry. Some very intriguing methods of representing local
times and global times have been developed by Brown, York, Kuchar, Kheyfets, and
others. [5, 22, 4, 28]

Quantum mechanical analyses may be done following guidelines inferred from better
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known classical prototypes and their quantizations [11]. The Heisenberg representation is
much more readily adapted from classical mechanics than the Schrodinger representation
due to the similarity of the Heisenberg equations of motion to the classical equations of
motion. The idea of a dynamical spatial geometry is very surprising and intriguing, not
to mention somewhat problematic. However, the theory goes a long way and is consistent,

up to certain problems, mostly those concerning definitions of time.



Chapter 2

A Local Picture

Some tools and objects from differential geometry will enable development of results. It
is known that, on the macroscopic scale, the universe exists within a four-dimensional
manifold continuum called space-time which admits additional structure of a Lorentz
pseudo-Reimannian metric function. That is, the metric function has a signature (-
+++)=2 which admits a light cone at all non-singular four-points (ordered quadruplets).

However, when introducing Lagrangian and Hamiltonian methods into cosmology it
is convenient to divide the spacetime 4-manifold up into a strata of spatial 3-manifolds
which are foliated in time one on top of the other, parameterized by and thus labeled
by some time-like parameter. This method is referred to as the Arnowitt-Deser-Misner
approach to general relativity. The foliations are defined such that each 3-dimensional
hypersurface contains all the spatial points (along with their topology and curvature)

that are associated with a certain common time parameter in spacetime. That is, they
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comprise a surface of simultaneity.

On the local spacelike scale, we may think of a local 3-d neighbourhood U which
is small enough so that it may be considered a local flat part of a larger 3-region that
is possibly curved. Let us call the curved 3-surface by the Greek letter ¥. U is the
generator of and subset of a flat Euclidean 3-space which is the tangent space to ¥ at a
3-point ¢. The tangent 3-space may be represented as T,%, where ¢ € ¥ As discussed
in the previous paragraph, a 3-manifold > may be parameterized as one of a series of
stratifications labeled uniquely as ¥(¢), which fill out a 4-manifold spacetime which may
be called M. T,¥ may be thought of as being (in general) “tilted” with respect to the
arrow of time at that event point. This is because of the possible uneven propagation
of time at varying points, i.e., the concept of “many fingered time”. The construction
of surfaces of simultaneity is sometimes called a “foliating” or ”laminating” approach to
filling out M, as opposed to a "threading” approach, which fills out M by a set of timelike
1-curves, each intersecting 3 at a different 3-point. Such one-dimensional curves can be
parameterized by writing each timelike curve as 7(¢), where ¢ € ¥. These curves remain
unique, but may meet and/or become undefined at borders of singularities. As long as
the curves remain separate and do not cross, the coordinatization will be diffeomorphic.

It will be helpful to say a few words here about diagrams and figures. We have at
our disposal three spatial dimensions available in which to picture configurations. Such
spatial configurations changing in time can be thought of as being embedded in a four

dimensional spacetime continuum. For pictorial purposes it is convenient to suppress one
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spatial dimension in order to borrow it for use as an imitation of the temporal dimension.
The three spatial dimensions in which we are used to envisioning things are only an
introduction to geometry, topology, and mathematics in higher dimensions. Importantly
however, there are just enough dimensions to observe, analyse, and classify some key
concepts which become important in descriptions of higher dimensions. In three spatial
dimensions it is possible to draw and envision the ideas of curvature, surfaces, vectors,

embeddings, duality, compactness, and so forth.

2.0.1 Normal vectors and the spatial metric

Historically, normal vectors to surfaces and their derivatives have been employed exten-
sively in differential geometry [43], and in general relativity this still holds true. It is
convenient to construct a unit vector n ' which is normal to a 3-surface . (Please re-
fer here to Figure 2.1.) However, a unit one-form is a more primitive object and could
possibly be represented in a notation such as n, ~ (1,0,0,0). Such an object may be
thought of as a stack of copies of the flat local neighborhood 3-surface U, with one unit
of time between the copies, or as the curl or gradient dt¢ of the time function ¢. Lorentz
geometry allows a metric function as additional structure in the manifold, and a unit
timelike normal vector may be created from an inner product of the metric function and
the unit normal one form. That is, the 1-form may be transformed into a contravariant

vector by an inner product with the metric tensor. The representation of the vector will

LA boldface letter here represents a multidimensional tensor object with one or more indices. Sup-
pressed is information about if the object is contravariant or covariant, vector-like or form-like. See [48]
Chapters 1 and 2.
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in general be more complicated than the unit normal 1-form due to the action of the

metric function. However, since n is timelike as well as unit length, it is always true that

nen® = —1 (2.1)

In the threading approach, the contravariant normal vector n* may be thought of as
a tangent vector to a curve which is normal to ¥ at a point q. In fact, the normal vector
is actually an equivalence class of all curves which are normal to ¥ at q. (The unique
one of these curves which is a geodesic is the path in spacetime which test matter would
follow.) Such curves may be represented in a fashion ¢(7), where ¢ represents the set of
points in spacetime making up the curve. 7 is the affine parameter of the curve, which
may be thought of as either the proper time of an observer following the curve, or else

an affine function of the original parameter such as

7'1(7') = aoT + bo. (22)

Note that an affine function composed of an affine function is still a member of the class
of affine functions by its definition.

The geodesic threading curves will enable one type of mapping of points from one
3-surface to the next. As long as the geodesics do not intersect or trade identities,
the mapping is called a diffeomorphic type of one-to-one mapping. If the topology of

the manifold is retained, the mapping is homeomorphic. Analysis of such geodesics are
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important for determining singularities in the spacetime 4-manifold. Incorporated in such
analyses are concepts such as limiting points, open and closed set theory, compactness,
boundedness, etc. Analysis is continued up until a singular region is encountered, which
is sometimes represented as a point or a region itself, although analysis is impossible
there. Analysis may show that the singularity is not physical, only mathematical, and
may be transformed away.

On extremely small scales of the order of the Planck Length, quantum analysis be-
comes important, the classical limit being the point sets in spacetime such as geodesic
curves. See [48], chapter 43. A new physical world becomes evident at very small spatial
and temporal scales, out of which many new theories are developing. Much about new
physical theories corresponding to astrophysical phenomena and observations which cou-
ple to the quantum realm may be followed up through publications by Mottola et al. A
very interesting theory concerning astrophysical compact objects and quantum mechan-
ics melding with general relativity at extreme conditions may be investigated through
the publications of this group of workers, as well as references given therein. [26, 25]

A very useful doubly covariant metric-like operator 2 may be formed from the metric

and the unit normal vector, as;

hab = YGab + UZLE (23)

2Here we are employing Wald’s convention [46] for the early lower case Latin indices being covariant
metacoordinate input slots. For the functional form of a tensor object in a given coordinate system,
lower case Greek letters are usually employed for referral to all four spacetime indices, and lower case
Latin letters such as i, j, k are usually employed for the three spatial coordinates in a 3-surface.
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This important tensor is known as the induced 3-dimensional Reimannian metric tensor
on the spatial 3-surface, or simply the induced 3-metric. One might suppose that adding
the dyadic-like object n,n, would add structure to the 4-metric g instead of subtracting
out the timelike part, but the negative Lorentz signature in the timelike direction requires
that a plus sign be used.

A quick calculation will show that the inner product of h and the normal vector n is
indeed zero, showing orthogonality and normality of n to the 3-surface. Furthermore, h
performs as the metric tensor in a 3-surface which is orthogonal to n. This 3+1 arrange-
ment is called the synchronous system, and is an important method for decomposing the
Einstein field equations into a 3 4+ 1 separable and tractable form.

Raising one index of hq, with the full 4-metric ¢ will form the so-called projection
operator h, which will operate such that an inner product of any vector object with A
will eliminate the timelike component of the vector parallel to n, and an inner product
on each and every index of a tensor will eliminate all the tensor’s components parallel
to m. The projection operator is idempotent in that subsequent inner products over the
same index will not do any further subtractions to the tensor, the component parallel to
n being already eliminated, i.e., hSh¢ = h¢. The representation of the projection operator
is

hY = 6% + ngn® (2.4)

This operator has general utility in differential geometry in that any unit vector may

be used instead of n (e.g. the 4-velocity u),and the surface orthogonal to that arbitrary
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Figure 2.1: A local picture of neighboring hypersurfaces, normal vector, normal vector
times lapse function, timelike bridging vector, shift vector, and light cone.

vector may be considered as having a similar submetric and projection operator. However,
a minus sign instead of a plus sign must be used if the metric is Reimannian as opposed

to Lorentzian, i.e., because of eq. 2.1

2.0.2 Lapse Function and Shift Vector

4

If one is considering a hypersurface ¥ and does a “wait” operation, then a 4-d region is
swept out with two 3-surfaces as the boundary of the 4-region. Globally, there can be
topological identifications and connectivity assigned to the boundary point sets. Locally
however, the 4-region generated is sometimes called a “thin sandwich”. It being thin
enables a calculus type of analysis to first order. The “rigging vector” t shown in Figure

2.1 can be thought of as a local generator of a diffeomorphism in that it is able to map

a point ¢ in the first 3-surface to another point in the 4-manifold, but which could be
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referred to as the same point ¢ in the 3-surface at a later time. Obviously, a test mass
following along t would be subject to the Lorentz transformation with respect to the
light cone having the normal vector n as its axis, and the time lapse along t would be
the proper time of the test mass.

The timelike distance along n from one 3-surface to the next is defined as the lapse,
which is usually a parameter given to describe a certain physical configuration, and is
given as the lapse function N. It may take on various mathematical representations de-
pending on the geometry involved. The vector Nn will take one from one 3-surface to
the next with no Lorentz transformation with respect to the light cone (along the axis),
while emitting normal from the first 3-surface. When an action integral is formed from
the curvature invariants of the theory, the lapse function plays the role of a Lagrange
multiplier on the Hamiltonian constraint function. This is possible because the Hamil-
tonian constraint is constrained to zero due to the Bianchi identities on the geometrical
side of the Einstein field equations. However, this in turn creates a serious problem for
quantum gravity because it eliminates the generator in the time direction (the “problem
of time”). On the source side of the Einstein field equations, the same constraint is a
conservation statement. Usually, some specific lapse function is initially written in an
analysis as an ansatz, wherefrom other results follow. We will see that the lapse N enters
into the metric tensor matrix, but in the time-time entry of the matrix.

To span a 4-space, three more functions are required, and these are given by the three

components N'of the spatial 3-vector N, the shift vector. As can be seen in Figure 2.1,
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the spatial projection of t is given by IN. In fact the definitions of lapse and shift are

given by Wald as [46]

N = —t%,
= (n°Vqt)!
No = hut' (2.5)

The first order diffeomorphisms generated by the fields of lapse and shift are arbitrary
until provided by a model, and may include rotations, shears, scaling, etc, as long as the
fields are continuous and provide one-to-one mappings.

Consider a differential quantity INdt which will be the timelike length along the nor-
mal vector m emitting from the lower hypersurface (labeled by time t) to the upper
hypersurface of the subsequent foliation (labeled by time ¢ 4 dt). This construction is
known as a “thin sandwich”, with differential thickness. Now consider a completely
spatial contravariant vector-like object w® = dx* + Ndt which exists in the lower hyper-
surface of the thin sandwich. The shift vector IN allows a recoordinatization from one
hypersurface to the next. For example, let the actual changes in coordinates da* for all
coordinates z* be zero. Now, because dz’ = 0, this implies that the point with coordinate
label x is then displaced on the next hypersurface by a spatial distance INdt. Thus, the
point & (t+dt) is not directly above the point x(¢) along the normal direction. Therefore,
if the shift vector IN is zero, both points on the upper and lower hypersurfaces connected

along the normal direction may be called & and movements to points with other coordi-
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nate labels will be represented by the usual dz’. The shift vector should be such that a
diffeomorphic mapping occurs.
Letting the lapse function times the normal vector Ndt be the “vertical” and w® =

dx' + N'dt be the “horizontal”, the Lorentz Pythagorean theorem may be written as

ds* = —Ndt* + gij(da’ + N'dt)(da’ + Ndt) (2.6)

Multiplying out this equation and collecting terms will yield the matrix representation

of the covariant metric array g,,;

—(N? — gi;N'N7)  gi;N?  go;N?  g3;N’
91ij g11 912 913
G = (27)
g2;IN? 921 922 923
93ij 931 932 933

Note that the contravariant values for the shift vector are expressed within the covariant
metric tensor components. It is formulated in this fashion because it is the contravariant
shift components which are written down as an ansatz in accordance with specifying a

particular model. Solving g,,g*? = 67 for the contravariant metric, which is the inverse
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of the covariant metric gives

-1 Nt N? N3

w_ -2 N? g1 — N'N! g12 — NIN? g13 — N'N3 (2 8)
L . .
N? 921—N2N1 922—N2N2 913—NlN3

N3 931—N?’N1 932—]\73N2 933—N?’N3

A covariant unit normal and its dual contravariant vector may be fashioned from the

lapse and shift and the existence of the metric as

n, = (=N,0,0,0)

n* = N'(1,-N',—-N? —N?%) (2.9)

(See [48], chapter 21.) The lapse function and shift vector functions are functions which
are usually supplied in a particular analysis, i.e., they are functions supplied in order to
characterize the type of model being analysed. For instance, N = 1 cosmology is a group
of models that encompasses much of cosmological theory. It will be seen later on that
the lapse and shift quantities serve as Lagrange multipliers in the action integral, and

which scale constraint surfaces in the dynamic phase space.



Chapter 3

A Semi-Local Picture

In this chapter will be developed some geometric objects and structures from around the
local neighbourhood of a point. Changes in geometrical constructions and fields with
respect to small changes in position around the point will be considered. New objects
and constructions may be derived from primary objects that reflect changes in position
in space and spacetime. This implies the differentiation of some of the locally defined

objects introduced in the previous chapter.

3.0.3 Extrinsic Curvature

Recall the normal vector, or rather, its more primitive covariant representation

n = —Ndt = (—N,0,0,0), (3.1)

16
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where boldface symbols are used to represent covariant 1-form objects. Since we are
exploring the neighbourhood, consider now the covariant derivative of this normal form:;
N~ However, we will only need the part of this tensor which is in the 3-surface, which
is called the extrinsic curvature tensor, also called the second fundamental form Kj;.

Because boldsymbol K is 3 by 3, let us use only Latin indices as,

Kij = i
— 14
= m;—=T

ij

= -NIY (3.2)

K

where we have used the fact from definition 3.1 that n, = —Ndo,. Notice that the curl

of nis

dn = —dNdt
= —N,dtA (dz' + N'dt)

= —N,dtAds, (3.3)

which shows the derivative of n having no antisymmetric spatial parts, i.e. terms such as
in dz* A da?. This has the implication that the connection I'}; is symmetric with respect
to the covariant spatial indices. Furthermore, K is contained in the hypersurface tangent

space because of its obvious orthogonality to dt. And because the derivative of n being
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symmetric, the proportionality of K to the derivative of n implies that

Notice further that the linear combination of spatial forms which expand the spatial
derivative IV; of the lapse defines a preferred direction in 3-space. This is important in
that it shows the spatial anisotropy in general of “many-fingered time” [48].

It is oftentimes convenient to have an expression for K in terms of the lapse and
shift and hypersurface 3-metric. Recall that the lapse, shift, and 3-metric g;; make up
the spacetime 4-metric according to eqs. 2.7 and 2.8. Also recall the expression for the

connection in terms of the first partial derivatives of the metric;

1
Lguw = §[gﬂu,v + 9uu — Guwpl- (3.5)

Inserting the metric in terms of lapse and shift into the expression for the connection and

taking derivatives gives an expression for K (via equation 3.2) as
1 k
Ki; = ﬁ[Ni,j + Nji — gij0 — 2Tk N7 (3.6)

Recalling that the covariant derivative of a tensor within the 3-surface is written with a

stroke instead of semicolon, K is given as

1 0
Kij = ﬁ[Nz’\j + Njji — agij]- (3.7)



CHAPTER 3. A SEMI-LOCAL PICTURE 19

It is illustrative to construct the extrinsic curvature from a Lie derivative, which is a very
pictorial and geometrical construction. (See [6]) Taking the Lie derivative of the metric

with respect to the normal vector field gives

(£ng)uu = g,uu,/)’nﬂ + gﬁuni + gﬂﬁn,ﬁlj
= guv,ﬂ”ﬂ + (gﬂvnﬂ),u - gﬂv,unﬂ + (guﬂnﬂ),v - guﬂ,vnﬂ
= Ny + Mo — nﬂ[gg,,,“ + 98w — Gupl

= Ny + My — Qnﬂrﬂuv

(3.8)

Putting two projection operators, one on each index, of this equation shows that, accord-

ing to eq. 3.2;

£ng”

(3.9)

The Lie derivative is illustrative in that the extrinsic curvature is essentially the
change of the metric tensor along the normal to the 3-surface, where the normal is the
direction of the axis of the local light cone. It is interesting that the change in the metric

tensor with respect to the timelike normal is determined by the change in the normal

vector itself. The extrinsic curvature may be decomposed into a group of three different
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motions with respect to the normal vector;
1
Kij = geh” + O'Z'j + wij. (310)

The first term represents expansions or contractions, which may also be referred to as
conformal or scale transformations. # is the conformal factor, which multiplies the usual

spatially induced metric tensor, and is defined by
0 =K, = K;h". (3.11)

The second term o;; is the term which represents the shear, and is defined by

1
0ij = Kij) = 50hij, (3.12)

that is, the symmetric part of the extrinsic curvature tensor with the conformal transfor-
mation taken out. The third term is called the twisting or torsion term, and is defined
by

that is, the antisymmetric portion of the extrinsic curvature. However, the ADM ap-
proach is such that the coordinates are adapted to layered or stratified 3-surfaces that
are non-intersecting, also termed synchronous. In order to have a well-defined normal

vector everywhere on the hypersurfaces the torsion must be equal to zero, meaning in
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turn that the antisymmetric part of the extrinsic curvature must vanish. That is,

wij = K['LJ] = 0, (314)

The extrinsic curvature is the second fundamental form, or more specifically in this
case, the second fundamental form of the spatial hypersurface with respect to its embed-
ding in the 4-manifold. That K is proportional to the Christoffel connection symbol I'
in equation 3.2 implies that it may be employed as a matrix valued derivative operator,
which usually enters as a second corrective term for curved spaces in some covariant

differentiation.



Chapter 4

Extending the Scope

We would now like to extend the scope of the neighbourhood and allow some nice sim-

plifications (symmetries) which will allow a tractable dynamic cosmological model.

4.0.4 Isometries

If one considers an oscillating soap bubble, it would have a general shape of a 2-sphere,
but it could have waves traveling or standing on it such that many hills and valleys would
exist on the bubble. The dynamics of the bubble could be analyzed by computing the
curvature of the 2-surface at each point and writing some differential equations which
would require initial position (shape) and velocity data. An arbitrary bubble would
have many degrees of freedom and would require numerical analysis to predict the future
shape and velocities. However, if the bubble admits some symmetries then the degrees

of freedom would be reduced to a few variables. For example, the initial data could be

22
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a cigar shape with velocity zero, the shape changing in time to an oblate spheroid. In a
case like this the surface would have rotational symmetry about an axis, say the z axis.
Furthermore, there would be a vector field 0/0¢ tangent to curves circling the z axis.
Since the curvature of the surface is constant along this vector field, the metric tensor is
constant as well. Therefore, the vector field 9/0¢ is called a Killing vector field, and is
the generator of an isometry.

Isometries and symmetries are used in cosmology to be able to write the metric as
a function of position, which globalizes the field equations, and gives many quantities
an integrable form. After all, cosmology is the most global of sciences. The rationale
for using the concept stems from the cosmological principle, which asserts that on the
grand cosmological scale, the density of galaxies and matter appears as a fluid or dust.
Even further, letting the limit of the density going to zero would render the galaxies as
test matter in a dynamic gravitational field or geometry (a vacuum model). Einstein’s
equivalence principle was arrived at by by considering the acceleration of a particle in
a gravitational field, and taking the limit of the acceleration as the mass goes to zero,
leaving only a 1-dimensional timelike curve in spacetime.

If the Lie derivative of the metric tensor g is taken with respect to a vector field &,
and the result set equal to the zero tensor, an equation is left for £ which is referred to
as the Killing equation for €. Just insert £ into the above equation 3.8 instead of the

normal vector n, and a similar equation will result;

(£€g)uu = gu;u + gu;u- (41)
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Demanding that g does not change (Lie derivative is zero) along the vector field £ gives
Killing’s equation;

€ + & Z 0. (4.2)

Given g and taking its derivatives, one can solve this equation for all Killing vector fields
(KVEF’s) € that exist in a manifold, and can be assured that the metric will be constant
along these special vector fields. That is, the Killing vector fields (or the curves to which

they are tangent) describe the isometries of the manifold.

4.0.5 Isometry Group

In a 3-manifold it is known that there are at most 3(3 + 1)/2 = 6 linearly independent
KVE’s (See [46], appendix C). It is also easily proved that, for two linearly independent

KVF’s £ and n, that

Ligm9uw = Opw- (4.3)

Where the commutator of the two KVF’s is defined as

&nl* = (Lem)t

= 0 - (4.4)

The fact that there are only at most 6 KVF’s in the 3-manifold, and that the commutator
of two KVF’s is also a KVF| it is recognized that the set of linearly independent KVF’s

make up a closed set{€,} of number less than or equal to 6, and have an algebraic



CHAPTER 4. EXTENDING THE SCOPE 25

relationship such that

[ﬁr’ &t] = C;?tgs' (45)

The set of constants C7, are known as the structure constants of the Lie algebra derived
from the Lie invariance group of the 3-manifold type, and are obviously antisymmetric in
two lower indices. Commutators in general also satisfy another algebraic identity which

completes the group algebra, usually referred to as the Jacobi identities;

[[61"7 55]7 Et] + [[Es? ét]v ér] + [[étv ér]i Es] = 07 (46)

which implies that, via eq. 4.5

P Cu 4+ CP "+ CP O =0, (4.7)

The set of structure constants are tensor class objects. The linearly independent
KVEF’s may be transformed locally into a set of unit vectors which span the 3-space and
have similar commutation relations. If the group dimension is larger than the dimension
of the space to be spanned, then the situation is termed multiply transitive. If the group
dimension equals the dimension of the space to be spanned, it is termed simply transitive.

The possible Lie symmetry groups for a 3-dimensional homogeneous manifold embed-
ded into 4-dimensional Lorentz signature spacetime have been worked out and tabulated,
and the structure constant sets solved for which correspond to several different possible

3-manifolds corresponding to their respective Lie group.
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However, a convenient decomposition of the structure constants into irreducible terms
has been worked out [18], and eventually allows for a diagonalization of the metric tensor
itself. Because of the antisymmetry of the two lower indices, the structure constants may
be dualized with the totally antisymmetric tensor € into a doubly contravariant tensor

density, and splits into a symmetric and an antisymmetric term, i.e., one writes

ab _ a _bed
o = Coie

1
2
— Clab) 4 olabl

n + e%q,, (4.8)

where €% is the totally antisymmetric tensor. The structure constants may be then

written in terms of the irreducible terms as

a ad
Cbc = C*€ape

=  n%+ af5gca, (4.9)

“ j5 a symmetric matrix resulting from the split, and n hasn’t any direct relation

where n
to the normal vector. The delta symbol (SZC“ is an object which is positive unity if the
upper indices equal the lower ones, and negative unity if the lower indices equal the set

of permuted upper ones. The a; symbol determines if the Bianchi model is a member of

class A or of class B depending on if it is zero or non-zero, and is a trace of the structure
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constants, as;

1
ap = EC;;”S (410)

Furthermore, the following orthogonality conditions are identities;
0 = apn® = 0,0 = a,C°.. (4.11)

The tables on the subsequent pages help to codify the several different Bianchi types
based on the parameters which make them unique. The algebra of structure constants is
listed, as are the Killing vectors and their dualized form objects. The invariant bases X;

in the tables are constructed to be invariant by way of the relations

[Xi7 gj] = 0
(X, X;] = Ci& (4.12)

(4.13)

The structure constants are important in determining the curls of the base forms by way
of the relations

dw' = EC;-sz Aw. (4.14)

The Bianchi I and the Bianchi IX models are the most useful models. The former is
a flat space that reduces to the Friedman model when the anisotropy decays to zero.

The Bianchi IX model is a curved-in 3-sphere that reduces to the Robertson-Walker
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model when the anisotropy decays to zero. Einstein favoured a 3-sphere model due
to considerations of the Mach principle, and maintained that the cosmology should be
self-enclosed for these reasons.

The transition from classical gravity and importance of Mach’s principle is analysed
with great and loving detail in a publication by J. Wheeler titled The Geometric Steering
Principle Reveals the Determiners of Inertia [47]. Within this work is a tour-de-force of
quantum gravity, and at the finish is a wealth of hundreds of references to many important

publications, including those by J. York and Chouquet-Brouhat.
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Table 4.1: Bianchi I [sometry group

Relations
Structure Constants

All C;k =0
Killing Vectors &;
& & &3
01 o 03
Invariant Bases X;
X1 Xo X3

81 82 83
Bases Dual to X;

wh o w? w3

dz'  dz? dz3
Curls of Duals dw’

dz'  dz? dz3
0 0 0

Table 4.2: Bianchi II Isometry
group Relations

Structure Constants
Cy=1=—Ch
other C, =0
Killing Vectors &;

&1 &2 &3

62 83 81 + 15382
Invariant Bases X;

X1 X2 X3

62 ."17182 + 83 81
Bases Dual to X;

wt w? w3

dx? — 23dz3 dx? dz?

Curls of Duals dw*

dx? dx? dx?

w? A w? 0 0

Table 4.3: Bianchi III Isometry
group Relations
Structure Constants
Cly=1=-Cj
other Cl; =0
Killing Vectors ¢&;
&1 &2 &3
82 83 (91 + .T2(92
Invariant Bases X;
X1 X2 X3

6'7:1(92 63 81
Bases Dual to X
wt w? w3
e~ dz?  dad dx?
Curls of Duals dw?
dz? dx? dz?
wrAw? 0 0

29
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Table 4.4: Bianchi IV Isometry group Relations
Structure Constants

0113 =1= —051
0213 =1= —0312
C3 =1=—Cy

other Cf, =0
Killing Vectors &;

&1 &2 &3
62 83 31 + (.’172 + .’133)82 + .’17383
Invariant Bases X;
X1 X2 X3
ezlag ﬂ?lemlag + 6$183 81
Bases Dual to X;
wl w? w3
e dg? — xle™® dx3 e dg? dxt
Curls of Duals dw*
dz! dx? dx?
wr A w? +w AW w? A w? 0

At this point, a very important reduction in the degrees of freedom of the equations
may be initiated. The matrix n? is symmetric, and therefore is hermitian. This hermitian
matrix may be diagonalized by an adjoint transformation using orthonormal matrices of
unit determinant, and still contain all vital information about the manifold. In effect,
the diagonalization will project the matrix n®, which exists as a point (or vector) in
the 6-dimensional Euclidean space of ¢l(3, R) with the set of spanning basis unit vectors
{e}}, into a 3-dimensional subspace spanned independently by the 3 eigenvectors of the

matrix. Therefore, this matrix may be written as

n® ~ diag(n®, n®, n®), (4.15)
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Table 4.5: Bianchi V Isometry group Relations
Structure Constants
Ciy=1=-Cy
C=1=-Cj
other C’;k =0
Killing Vectors ¢&;

&1 &2 &3
82 83 81 + 56262 + x383
Invariant Bases X;
X X5 X3
ezl(?g €$183 61
Bases Dual to X;
w? w? w3
e dx? e dx’ dxt
Curls of Duals dw*
dz? dx? dx?
WwAw? WA W 0

Table 4.6: Bianchi VI Isometry group Relations
Structure Constants
Cly=1=—-Cy
Ci=h=-C%,h#0,1
other C% =0
Killing Vectors &;

&1 &2 &3
82 63 81 + 1'262 + hx363

Invariant Bases X;

Xy Xy X3

6‘%182 €h$la3 61
Bases Dual to X;

wt w? w?

e~ dz?  e~he' 3 dx?
Curls of Duals dw*

dx? dz? dz3

w'Awd hw? AW 0

31



CHAPTER 4. EXTENDING THE SCOPE

Table 4.7: Bianchi VII Isometry group Relations

Structure Constants
0123 =1= _03?1
0213 =—1= _03%2
C% =h=—C%,(h? < 4)
other C’;k =0

Killing Vectors &;

&1 &2 &3
82 83 81 — 1'382 + (.1'2 + h.T?’)ag
Invariant Bases X;
X1 X2 X3
(A+ BkB)3, — B8; B+ (A — kB)ds )
Bases Dual to X;
wt w? w?
(C — kD)dz? — Ddz® Ddx? + (C + kD)dz? dz!
Curls of Duals dw*
dat dx? dx?
—w? Aw? w! A w? + hw? Aw? 0
where A = e**" cos(az!), B = —21e" sin(aa?)
C =e* cos(az'), D= —Le " sin(az')

k=" a=(1-k7 =24 1?)3

27




Table 4.8: Bianchi VIII Isometry group Relations

Structure Constants
0213 =-1= _052
C??l =1= _0123
Ch=1= _C§1a (h* < 4)
other C% =0

&1

Killing Vectors &;
3 &

le 20, + 1e® — (2?)% *"]0, — 2% "0 D3 le 29, — Le®’ + (2?)% *"]0, — a%e "0,
Invariant Bases X
X1 X2 X3

%[1 + (.1‘1)2]81 + %[1 - 2x1$2]82 - xlag

—.Tlal + 33282 + 83 [1 - (.7)1)2]81 + %[—1 + 2x1x2]82 + .7)183

1
2

wl

dz' + [1 + (z')?]dz? + 2! — 2% — (2})?2?]dz®

Bases Dual to X;

w? w3

2ztdz? + (1 — 22'2?)dx®  dx! + [—1 + (21)?]d2? + [z! + 22 — (21)?2?]d®

dz!
—w? AW

Curls of Duals dw*
dx? dz3
w3 A wl wl A w?

HdOODS HHL ONIANHLXH v HHLdVHO

€e



Table 4.9: Bianchi IX Isometry group Relations

Structure Constants

0213 =1= —C§2
C§1 =1= —0123
Ciq’Q =1= _031

other C7, =0

Killing Vectors &;

&1 &2 &3
O cos(2%)0; — (x') sin 220, + :28283 —sin(z?)0; — (z') cos x20, + :?2((;”283
Invariant Bases X;
Xy Xo X3
—sin(23)0; + Z?ﬁ((:f)) Oy — (z') cos 2203 cos(x3)0; + :28?;82 — sin(z3)z'0; O3
Bases Dual to X
wt w2 w3

—sin(z')dz' + sin(z') cos(x?)dz?

cos(z®)dz' + sin(z') sin(z®)dz?

cos(z')dz? + dz?

dz!
w? A w?

Curls of Duals dw®
dx?
w3 A w!l

dzx3
wl A w?

HdOODS HHL ONIANHLXH v HHLdVHO

28
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Table 4.10: The potential terms in Hamiltonian cosmology for all diagonal Bianchi types

I through IX

Bianchi Type Potential Constraint
I 0 None
II 1+ Let(P++v3h-) None
111 1+ ze*P+ 3p; — V3p_
IAY 1+ %e45+ (8 + %64\/§’B_> p+ =0
\ 1+ 4e*P+ pr =0
VI 1+ 5(14h+ h%)e*r p_ =3 (1)
VII 1+ 2 [cosh(4V3B-) + 2h% — 1] e*P+ None
VIII 1+ 2 [cosh(4v3B_) — 1] e*P+ + Le 0+ + 2725+ cosh (2v/3_) None
IX 1+ 2 [cosh(4v3B_) — 1] e*P+ + Le 0+ + 2725+ cosh(2v/3_) None

abe i antisymmetric and will vanish upon performing

Note that the dualized covector a,e
the diagonalization transformation which diagonalized the symmetric matrix n. This
implies that the antisymmetric dual vector is is perpendicular to the surface spanned
by the eigenvectors of m. This in turn implies that the covector a; lies in the surface
spanned by the eigenvectors. One may choose a to lie along any of the three eigenvectors,
for instance parallel to n®, i.e., a, = ad?. Furthermore, an invariant scalar » may be

introduced via the relation

a? = hnMn®. (4.16)

This invariant also gives information about the type of manifold corresponding to the
different Bianchi types. The topology of the Bianchi manifolds is important for clas-
sification, and remains invariant upon diagonalization of the matrix n, and also upon

normalization of the diagonal eigenvalues produced upon diagonalization. After this is
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done, the Table of Bianchi Types listing the parameters of each Bianchi type may be
constructed (see [18]), and is shown above. We will be quantizing the Bianchi I model,
but it is important to see how this model compares to the other Bianchi types. The
parameters shown in the table create a lattice in the vector space having the matrices n
as points. The lattice points may be viewed as a type of state space for cosmologies.
One of the most important of these types is Bianchi I (studied here in more detail),
which is a flat 3-space with the translational symmetry group 75. The structure constants
of this model are all equal to zero, and therefore the curvature is zero. The other type
of major importance is Bianchi Type IX, which has the topology of a three sphere S3,
and is the archetype for many well known cosmological models, including the Freidman-
Robinson-Walker types and the Einstein model. The structure constants for these models
are the totally antisymmetric tensor components €;;;. The curvature of these models is
non-zero, and is simply related to the scaling factor, or the “radius of the universe”,

usually written as R (see [48]).

4.0.6 Diagonalizing the Metric Tensor

The 3x3 metric tensor of the 3-surface is symmetric, and hence hermitian, and therefore
diagonalizable. It is possible to diagonalize both the 3x3 symmetric irreducible part of the
structure constant tensor n% and the 3x3 metric tensor simultaneously (for details, see
e.g. [14], ch. 6). Thus, the 3-metric would have a basis of three eigenvectors associated

with it. The eigenvectors are not necessarily degenerate, and therefore the universe may
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Table 4.11: Bianchi Homogeneous Cosmology Types and their Parameters

Bianchi Type | n® [ n® [ n® Ja | h
Class A:
I 0 0 0o [0} 7
IT 0 0 1 (0] ?
Vly 1 | -1 |0 1]0| 0
VI, 1 1L |0 |0] O
VIII 1 1 -1 /01 0
X 1|11 1]0] 0
Class B:
V 0 0 0 |1 ?
1AY 1 0 0 |1 ?
I11 1 -1 0 |1 -1
VI, 1 | -1] 0 |1] -1
VI—a2 1 -1 0 a —a2
VIa2 1 1 0 a CI,2

have anisotropy. It is possible to have a universe with homogeneity as well as anisotropy.
The universe may appear different by looking in different directions. However, this
same anisotropy would appear in the same fashion throughout the universe, implying a
homogeneous anisotropy.

Once considered diagonalized, the metric tensor may be put in a form which is ad-
mitted into the Lie group category with an associated Lie algebra. Consider the diagonal

matrix

B = diag(8', 5%, 5°). (4.17)

Furthermore, consider a matrix fashioned from these parameters as exponents, as in

P = diag(e?, ", ™). (4.18)
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The Lie algebra of a Lie group is the tangent space at the identity element of the Lie
group. When the matrix 8 has all zero elements, the matrix e? is the identity matrix.

Then, let the matrix e? be the “square root” of the 3-metric, in that

g=¢é". (4.19)

It is convenient to rewrite the metric in a way where there is an overall multiplying
factor which scales the entire Lie group manifold, and which multiplies a 3x3 matrix

which contains the topological information, and has determinant always equal to unity.
That is,

g =P (4.20)

Misner has developed such a method, and is based on a set of three basis matrices defined

as

{eo, ey, e_} = {diag(1,1,1),diag(1,1, —2), diag(1, —1,0)}. (4.21)

This basis set is defined so as to be orthogonal with respect to the DeWitt inner product

<A,B >py=TrAB — TrATrB. (4.22)

In this basis, the Lie group structure is apparent in the equation

B=5"1+4, (4.23)
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where the hatted values are given as the set

(0,532, %) = {(GThB), (57 + VBB ), (% — VB ), (=267}, (424

and such that

B=p"s=p"eo+pes +5e_. (4.25)

The Lie group structure is evident in this equation, as eq is the identity element of the
group algebra, the last two terms are the generators of the degrees of freedom away from
the identity element, and ° is the overall scale of the Lie group manifold. 8° may be
thought of as a time dependent scale or conformal factor of the manifold. Qualitative
dynamics of the cosmological models are oftentimes described on a 2-plane space with
axes of 1 and 7, with contours of potential energy type functions given as functions of
the 5% parameter, or of a variant thereof. These variables represent the two true degrees
of freedom of the gravitational field as a function of a temporal parameter.

In accordance with the definitions of Misner (see [41], p. 149), we will let 5, = —£2,
so that the complete 4-metric line element for the Bianchi models is then usually written

accordingly as
ds® = —dt® + e 22TV (dz!)? + 28T -V30T) (dz?)2 4+ e T (dz?)?].  (4.26)

The diagonal subspace of such 3-metrics may be used to formulate a concise expression
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for the 3-curvature as found in [18], which is
2 1 2 c
R = —Tr(m)* - ETr m — 6a‘a, (4.27)

where the covector a, corresponds to the trace of the structure constant tensor as defined

above in equation 4.10 and the matrix m is defined by

m = %ng. (4.28)

Furthermore, by consulting the table of algebraic constants of the Bianchi homogeneous
models as described above, it is easily seen that the scalar 3-curvature for the Bianchi I
model is identically zero, due to the vanishing of the structure constant trace vector n
Quantum mechanical gravitation and cosmology is a work in progress, with some the-
oretical problems left unsolved. In order to acquire more insight into what is happening,
it is helpful to work with models that have been simplified to a certain extent. We will
be looking at a Bianchi I model with the above metric line element. However, we will
consider a subset of the models where it is taken from the start that 5~ = 0 on the ini-
tial 3-surface. The equations of evolution ensure that it will remain zero on subsequent

hypersurfaces. Therefore, the metric line element that we will use will appear as

ds® = —dt® + e[ (dx')? + € (da®)® + e (da?)?), (4.29)
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where 8 = 81, and f; is the conformal degree of freedom. This symmetry results in a
model that is referred to as being locally rotationally symmetric (LRS), or a Kantowski-
Sachs geometry. It may be thought of as having one spatial direction (out of three)
which is expanding or contracting at a rate which is different than the other two. The
resulting group of motions is a symmetry transformation of ellipsoid (cigar shape) to

oblate spheroid (pancake) transformations.



Chapter 5

Classical Mechanics Applied to

Geometries

We have seen how the Bianchi classification scheme is organized. We would like now to
apply classical mechanics to the model, in order to create a formalism upon which to
apply quantum methods. It is quite intriguing and wondrous that spatial geometries can
be dynamic and subject to the laws of mechanics. This is of course due to the fact that
Einstein’s equations can be solved in a 4-dimensional continuum. Even so, the ADM 3-+1
split and Hilbert’s method of determining the field equations through a Lagrangian and
action integral are intriguing ways to view the same problem, not to mention allowing
inroads to quantum mechanical solutions.

In 1917, Hilbert derived the Einstein field equations by applying the variational cal-

culus to a Lagrangian with the scalar 4-curvature density as the integrand, in the same

42
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fashion that the Maxwell equations are derived from variation of an action integral of an

electromagnetic Lagrangian. The action integral is written in general as

Iz/ﬁ qv, (5.1)

where £ is the Lagrangian density throughout a volume, and the integral is taken over
the volume. For the case of a gravitational field, the Lagrangian density is the scalar
4-curvature multiplied times a 4-volume-correction factor (the square root of the deter-

minant of the metric tensor) which is integrated over a spacetime 4-region. That is,

1:/%‘5\/45 d*. (5.2)

The square root of the determinant of the 4-metric is necessary when integrating over the
manifold because that is the factor which enables covariance of the volume differential.
For instance, if the coordinates were changed from Cartesian to angular, the square root
term would enable covariance. Of course, we would like this expression to be decomposed
into the 3+1 spacetime split in order to formulate it in terms of the geometric objects
we have been using, like the spatial hypersurface and its normal vector, and the extrinsic
curvature. This split is worked out in detail in Wald [46], appendix E. The result for the
action integral is

I= % / VIN[R + Tr(K?) — (TrK)?|d's, (5.3)

where ¢ is the determinant of the 3-surface metric, R is the scalar spatial curvature of
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the 3-surface. From the matrix representation of the metric tensor given in terms of the
lapse and shift earlier, it is easy to see when the shift is zero that the 341 split of the

determinant of the 4-metric is just N2g. That is,

Vi =Ng. (5.4)

Even though it is a simple matter to calculate the above relation when the shift is set to
the zero vector, the relation is true in general, although the proof is more difficult. The
overall multiplier of the integrand, the lapse function N, is a transformation between the

spacetime temporal coordinate ¢t and the symplectic time coordinate;

N =1, (5.5)

and enters from the square root of the determinant of the 4-metric.
The above Hamiltonian may be qualitatively seen in the following light. Recall the

Lagrangian from mechanics

L=T-YV, (5.6)

where 7T is the kinetic energy and V is the potential energy function. Now consider the
configuration space of the metric components g;;, which is spanned by the basis vector
set {eé-}, and which has the DeWitt inner product as the metric on the symplectic-type

mechanical space,

gabcd — \/g(ga(cgd)b _ gabgcd)’ (57)
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along with its inverse metric

_ 1
gabid = \/g(ga(cgd)b - Egabgcd)- (5.8)

We now recall equation 3.7 for the extrinsic curvature as two spatial derivative terms
of the shift vector and one term a time derivative of the metric tensor. If we consider
a synchronous system without diffeomorphic gauge transformations caused by a shift

vector, i.e. N; =0 we will have that

Gij
Kij = —x (5.9)

Here is a good place to discuss again the difficult and complicated nature of time in
the theory. The dot operator as employed above signifies a derivative with respect to the
variable that parameterizes the hypersurfaces. Because it parameterizes the hypersur-
faces, and because these hypersurfaces are defined as being dense and non-intersecting
in the 4-manifold, the variable ¢ may be employed as a coordinate in the 4-space. The
difficulty is making a mapping function from ¢ as a spacetime coordinate to ¢ as a pa-
rameterization variable in the mathematical spaces of classical mechanics, and eventually
to the quantum mechanical mathematical spaces. The mapping must be done so as to
allow theory to match observations. An observer has an associated curve in 4-space that
everywhere has a time-like tangent vector within the light cone at some 4-point event.

The proper time of the observer associated with the curve must be related to the time
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function that labels the hypersurfaces. The normal vector emits perpendicular to the
hypersurface, and defines the axis of the light cone at that event point. The normal
vector is also one of a whole equivalence class of vectors which are tangent to a geodesic
curve which intersects all hypersurfaces in a normal fashion along its length. Normal
curves of this type make up a special class of observers who would follow the path of a
particle that was at rest on average with respect to all other particles in the universe.
Another way to look at the path would be that of a test particle with a rest mass that
originated in some initial singularity.

The dot operator considered here is the derivative with respect to the actual coor-
dinate that labels the hypersurfaces. In a general spacetime without added symmetries,
the hypersurfaces are tilted with respect to the direction of local time flow. However,
when one thinks of the flow of time, one thinks of a set of curves, which is a very different
picture than that of hypersurfaces of simultaneity labeled by some t. When symmetries
are allowed, the situation becomes somewhat more tractable. The symmetry of homo-
geneity on the global scale (the cosmological principle) allows the whole global system
to be considered as being parameterized by some fundamental fiducial time ¢. The time
coordinate in the 4-space associated with the zeroth index of the four indices is what is
inferred from the relation

which is what we are using here as the variable with respect to which the time derivative

is taken. We have taken the shift vector to be zero in the Bianchi I model which is under
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consideration. This is another symmetry which makes the model less general and allows
an overall global dynamical equation to be written. A vacuum model is made up basically
of various modes of gravitational waves with spatial frequencies that fit cyclically within
the global topological shape of the model. The first fundamental mode is that of a DC
component where no oscillating standing modes are present. A general vacuum model
would be made up of all wavelengths of gravitational waves and the issue of a direction
of time and energy density would be a very involved one.

Once the choice of time variable has been made, and symmetries such as homogeneity
and no shift are in effect, one may think of the time variable as that of the proper time
of a test particle that follows a path which intersects each hypersurface at some spatial
coordinate label (z,y,z). Then, this time may be re-introduced as the time variable
in any space in which the mechanical dynamics develop, such as the phase space. The
nature of time in the mechanical space is then considered usually as a Newtonian time,
flowing evenly everywhere in the mechanical space, i.e., at every value of the dynamical
coordinate and dynamical momenta. In this sense the parameterization of observables
may be solved for, for example a momentum p(t)

We now regard the variables {g;;, gi;} as the tangent bundle of the configuration

space, and we write for the quadratic inner product of these lifted coordinates

T = G"uga = VI<KK>py = Tr(K?) - (TrK)? (5.11)

as the kinetic energy of the Lagrangian. Thus we see from comparing this with the
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integrand of equation 5.3 that the potential energy function is what is left over in the
integrand, that is;

V = /4R, (5.12)

meaning that the scalar curvature of the 3-surface acts as the potential energy function
in the symplectic phase space.
Next, one does a transformation from the tangent bundle to the cotangent bundle via

the Legendre transformation

89 ab

_ a 1 abed »,
- % [(2N)2 g gabgcd:|

1 abed
= W g Ged

1 bed
=  —___gudp
(2N)g cd

1
= oM VI(g“cg? — g™ g Ko

= ViK™ - " TrK). (5.13)

The transition from the Lagrangian to the Hamiltonian results in a transition from the

tangent bundle to the cotangent bundle, represented by
Gab = G oo™ (5.14)

Then, one may write the Hamiltonian function in the cotangent bundle representation



CHAPTER 5. CLASSICAL MECHANICS APPLIED TO GEOMETRIES 49

as

H = T+V
= Gueam 7 + VIR

1
= V9(9a(egayp — igabgcd)ﬂabﬂw +9R

1
=  Jg[Trn® — §Tr27r + R]. (5.15)

5.0.7 Constraints

Recall the more strict definition of the Hamiltonian function that one writes before

changing the tangent bundle velocities into the cotangent bundle momenta;
H=7"ga — L. (5.16)
Then, solve equation 3.7 for g, to get

Jab = 2N Koy + Ngjp + Npja, (5.17)
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which when the inner product is taken twice with the momentum gives, via equation

5.13;

™4 = VI(EK® = ¢""TrK)(2NKap + Nojp + Noja)
= 2N/g[Tr(K?) — (TrK)?] + 7®[Nyjp + Npja]

=  2N/g[Tr(K?) — (TrK)?] + 27* Ngp. (5.18)

However, the last term may be treated by parts to be written

T Nojp = (1% Na)jp — 7y No. (5.19)

But the first term on the right is a divergence in the 3-surface, which via Stoke’s theorem
contributes a boundary term when integrated over the 3-surface. But the three surface
is considered not to have a boundary, in that identifications of point subsets (would-be
boundaries) have been made to give the surface a compact topological connectedness.
Therefore, this term is suppressed in the action integral, but the other term is retained
since it is not a divergence.

Noting that the equation 5.18 has terms in common with the Lagrangian function
under the action integral sign of equation 5.3, we subtract these terms from the equation
5.16, and write the result as

H=NH,+NH. (5.20)
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where

Hy = L(Tm2 — %TrQﬂ') - VIR, (5.21)

S

and

i o i
H = 2m

(5.22)

where also we have transformed the terms in K into terms in 7 by the equation 5.13,
ie.,

Trn? = g(Tr K* + T’ K), (5.23)

and

Trr = 2,/¢TrK. (5.24)

H. is usually referred to as the “superHamiltonian”, which is a scalar function of
the coordinates g;; and the conjugate momenta m;;. It is the generator of evolution

along the normal vector n. H' = —27r|ljj. is referred to as the “supermomentum”, and is
the generator of evolution within the 3-surface. Solving equation 5.16 for £ and using

equation 5.20 these equations result in an integral expression for the action;

I = /d% dt[wijg;j - NHJ_(ﬂ'ijgij) — NleZ(WUg”)] (525)

By varying the action integral with respect to the shift vector /V;, three constraint

equations appear in the form

H = —2r/1 = 0. (5.26)
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This set of constraints may be eliminated by utilizing a spatial concept called “super-
space”, as a configuration space. This space is a gauge-diffeomorphism equivalence class
of pullbacks of the 3-surface metric g;;, and therefore eliminates the gauge degrees of
freedom in a manner similar to the more familiar freedom in re-gauging the Maxwell
equations (see [46] page 467). To show this, we write the spatial gauge diffeomorphism

invariance of momenta by demanding the equality
/d?’ac Wij(égij +U)(,L-|j)) = /de wijégij, (527)

where w; is a vector field generator of diffeomorphisms on the 3-surface. The expression
in parentheses is used often as a gauge expansion of the metric (see e.g. [46], page 75).

But this means that
/d3ac Wijwi‘j =0 = /d3x [(Wijwi)u—wﬂrrj , (5.28)

and after getting rid of the total divergence just shows the automatic satisfaction of the

Y = (). This set of 3 constraints, the set of “vector

supermomenta vector constraint ;

constraints”, is equivalent to the set of 0 index vacuum field equations as written by
Einstein. That these constraints may be dealt with on a level of gauge transformations
means that it is able to be dealt with as a mathematical problem. However, the other
remaining constraint, the scalar constraint obtained by variation with respect to the

Lagrange multiplier NV in the action integral, is physically important.
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Upon varying the action integral with respect to the lapse N, and setting it to zero,

while throwing out boundary terms (see [46], appendix E, page 465), it is found that

which is referred to as the “superHamiltonian constraint”, or the “scalar constraint”.
This constraint happens to be identical to the Ry field equation as written by Einstein,
and explains the * 1’ as labeling the constraint because of generativity normal to the 3-
surface. This constraint also involves a gauge transformation with respect to time, and by
looking at equation 5.21, is a quadratic expression in the momenta. When transitioning
to quantum mechanics the quadratic term in the momenta becomes a second spatial
derivative on the states, which is set equal to the time derivative of the state in the
Schrodinger equation. If it is identically zero then there is no real Schrodinger equation.
This constraint brings up all the notorious “problems of time” in classical and quantum
gravity, and remains an obstacle to quantization of gravity (see e.g. Kheyfets et al [20]).

There being no time generator implies that the total energy would be zero and hence
there would be no quantum mechanical propagator, because the phasing of the state
vector in the Schrodinger picture or the phasing of the basis vectors in the Heisenberg
picture would be absent, and therefore there would be no development of the states
in time. This problem could be intimately linked with the problem of the lack of an
external observer in quantum cosmology. It is possible that the total energy of the

universe includes that of the possible observer, but could possibly be divided such that



CHAPTER 5. CLASSICAL MECHANICS APPLIED TO GEOMETRIES 04

neither one would be exactly zero.



Chapter 6

Hamiltonian Cosmology of the

Bianchi I Model

The quantization of a system often begins with either writing or developing a Hamiltonian

function. Therefore let us find the Hamiltonian function for the Bianchi I model.

6.0.8 The Hamiltonian Function

We will begin with the expression 5.3 for the Lagrangian function and write for the
Lagrangian

L= 16%\/@\[[}2 + Tr(K?) — (TrK)?]. (6.1)

Recalling the expression 4.27 for the scalar 3-curvature for Bianchi models, and consulting
the table for the values of the structure constant trace vector m corresponding to the

Bianchi I model, it is seen that this vector vanishes, implying that the scalar curvature

95
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R for the Bianchi I model is zero, i.e.,

R=0. (6.2)

The rest of the Lagrangian may be calculated using the diagonal metric described

above in equation 4.29, which we will write with a slight simplification of variable names;

5 = —d? + e 2P (dr)? + 2P (dr?)? + e ()7, (6.3)

where [y has been changed to {2, and where (3 is the abbreviate symbol for 3, listed in
the earlier equation 4.29 for the metric. Recall that the symmetrized model is locally
rotationally symmetric in the 3-space, which is also referred to as the Kantowski-Sachs
model. When the decay of anisotropy is complete, the model is homeomorphic and
isomorphic to the Friedman isotropic model. One writes the diagonal spatial 3-metric

tensor for the model with anisotropy as

g = e X diag(e?, e, ), (6.4)

or as

g= diag(e%_m, 62’3_29, 6_4'6_2Q), (65)

where 8 and ) are parameterized functions of time ¢, but where time might be better

considered as a temporal parameter of a mechanical symplectic phase space wherein 3 is
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a “configuration space” dynamic variable.

The temporal parameter should be related somehow to a cosmological temporal pa-
rameter in the Lorentzian 4-manifold in which cosmological observations are made (our
universe), but such parameters are arbitrary with respect to local Lorentz transforma-
tions and subject to curvature effects over large distances. After all, there is seemingly
no absolute Lorentz frame that exists in a vacuum model universe. The visible matter in
our universe all seems to be in about the same Lorentz frame on the average. However,
it is unknown if the visible matter is the total mass content of the universe. It is also
unknown whether the visible mass density is large enough to affect the dynamics of the
universe. As for the so-called “dark energy” of the universe, this energy is dark and so its
Lorentz frame cannot be determined as of yet, much less its true existence and nature,
or if it affects the dynamics of the universe and matter therein.

The assumption of homogeneity (cosmological principle), and the assumption of syn-
chronous system (4-d “gradient”of the time scalar being perpendicular to the 3-surface)
can simplify the relation between theoretical and observed time considerably. The prob-
lem of time flowing at different rates throughout the 3-surface may be eliminated as well
if there is homogeneity. If the normal to the 3-surface points in a different direction in
spacetime than the tangent to the geodesic that is the average 4-path of visible matter,
then the model is referred to as “tilted”.

We as observers within the model are part of the matter distribution that we observe,

and being “comoving observers” makes it appear that the matter distribution is approx-
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imately static locally. And so such matter would have a 4-velocity that points all in one
direction in 4-space, which is the direction we would call perpendicular to the 3-surface.
However, if such matter were non-existent or unobservable, it would be difficult to decide
if there is indeed a unique Lorentz time direction to hang one’s hat on. The concept
of a test mass could be used, but the initial conditions of the test mass would be hard
to define, and would have to be defined with respect to and in concert with the slant
of the 3-surface chosen with respect to the 4-manifold. Even though vacuum models
are important in describing the universe as is observed, it is known that any amount of
matter added to a vacuum model will significantly change its properties (see [41]).

If the observable matter distribution is considered to be test matter, a metric us-
ing lapse and shift may be written with respect to that distribution since the lapse and
shift are usually written down so that the problem parameters will match some ansatz.
Subsequently, geodesics may be calculated with respect to the metric, and then traced
throughout the 4-manifold (see [41] chapter 5). The fate of geodesic curves is an in-
teresting topic, in that some geodesics may be traced up to a boundary, where beyond
the metric tensor is singular. Traveling backwards in time, the classical boundary of the
singularity could be used to formulate initial conditions which have an invariant quality
with respect to evolution of a vacuum model, and which should exhibit homogeneity
because of the small volume and extreme conditions at very singular times. Currently,
observations of microwave background structure and velocity is being compared to ob-

servations of conventional mass density and velocities in order to see if they both retain
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a related quantum signature from early extremely close conditions before decoupling at
lower temperatures and larger volumes. Even though it is generally accepted (because
of observations such as helium and hydrogen content and the background radiation)
that there were extremely high energy conditions in the past, it is still generally hoped
that quantum mechanical models will make classical singularities irrelevant, just like the
quantum mechanical model of the atom suppresses the problem of singularity of energy
of an electron-nucleus system with zero angular momentum at zero radius. The idea of
a singularity means that there would be no known physics that apply there, which could
raise the question of whether singularities can or do in fact exist. Some very interest-
ing models of astrophysical compact objects which avoid singularities in the equations is
being worked out by Mottola et al at Los Alamos National Laboratory. [26]

The difference between homogeneity and isotropy within the 3-surface should be men-
tioned before continuing. Homogeneity implies that the same representation of the metric
tensor may be found at all points of the 3-surface. However, isotropy implies that a spa-
tial rotation about any point of the 3-surface would cause no change in observations,
i.e., the rotation group about any point in space is an invariance symmetry. That is,
everything should appear the same on the average no matter which direction in the sky
that one points the telescope or other measurement-taking device. Noting the obvious
asymmetry of the metric components in equation 6.4, it is seen that any mapping that
employs the metric tensor along the third spatial dimension generator dz® can be quite

different from mappings within the plane of the two first metric components z! and 2
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which are symmetrical. (This is true even though the metric tensor is the same every-
where). Since the metrical anisotropy in the model is also a dynamic function of time,
obvious observational effects such as a different observed Hubble flow with associated
redshift in one unique direction in space is possible. Several analyses of Hubble flow and
microwave background radiation data have been done for such effects, with inconclusive
results.

After digressing, it is time now to return to the problem of making a Hamiltonian

and Lagrangian for the Bianchi I system. Recalling equation 5.9;

(6.6)

along with the fact that we have shown that the scalar 3-curvature is identically zero for

this model, the Lagrangian of equation 6.1 reduces to
1
L= f\/gN[Tr(I@) — (TrK)?). (6.7)
™

But we have for the volume determinant factor that

N \/det [diag(e2f—202 2820 —48-20)]

— 6—60

= e (6.8)
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and due to the diagonality of the metric tensor matrix and the representation of the

extrinsic curvature Kj; in terms of g;; that

Tr(K?) — (TrK)? = (KijKug*g" — (Kijg7)?)
. 9110119 9" + 92299207297 + 433933939
- Ny
—(911911 + Go2g®? + 933933)2
(911)%(9'")% + (922)*(¢)* + (g33)* (9%*)?
_ 1 . . .
= @ | —(911)%(9")” — (922)°(9%)* — (933)*(¢%%)?

—20119229" 9% — 29119339 6°* — 20329339%2 ¢

@2 < 9119529 9% + 9119339 9% + 9229339%2 9% )

62&29(25 - 29)62&29 (Qﬁ . 29)672&29672“29

= @nN)? +e2ﬂ729(26 _ 29)6—4,3729(_45' _ 29)672&2964%29
+€2B—2Q(2ﬁ' _ 29)6—4/3—29(_45' _ 29)6—2ﬂ+2964ﬂ+29

-2

= G 6-20) | (2p - 20) + 245 - 29)

= Gwp (B~ (=65 - 62)

- m )
Therefore, we have that the Lagrangian of equation 6.7 is

_i—m 52 2
L= e (B - 0P). (6.9)

A metric tensor in minisuperspace may be found by looking at the coefficients of the
two terms of the Lagrangian above (see the following chapter for more details on minisu-

perspace and [35], p.124). The two terms are quadratic and kinetic in character. However
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the term quadratic in € is more abstract in that Q is usually used for a timelike axis in
the minisuperspace because of its quadratic entry with Lorentzian negative signature in
the above representation.

The variables in minisuperspace are distinct from any coordinate axes labels in the real
4-dimensional spacetime continuum, and €2 has no direct connection with any observer’s
clock time in spacetime. Even so, the variable {2 may be used as a cosmological time
reference because it is indicative of the scale factor of the universe, which is a dynamic
observable most of the time. The time when {2 would not be a good indicator of cosmic
time is at the time of maximal expansion, when the extrinsic curvature vanishes. (Recall
that the extrinsic curvature is basically the Lie derivative of the metric tensor with
respect to the timelike normal vector to the hypersurface leaf.) At the time of maximal
expansion there would be no way to observe changes in the scale factor, so that €2 would
be useless as a temporal indicator at this stage. But it is only because €2 is borrowed
for the purpose of timekeeping that it would have any connection with the time of the
spacetime continuum, or the proper time of any observer within the continuum. Some
minisuperspace models include €2 as a dynamical variable with a conjugate momentum,
and some do not. Later on both cases will be looked at. There are problems admitting
(2 as a dynamical variable because of its entry in the Lagrangian with a negative sign
and the fact that true kinetic quadratic terms should enter positively. Therefore, later
on we follow Kheyfets [29] in considering the quadratic term in Q2 to be an effective

time-dependent potential energy term of the Lagrangian and action integral. It would



CHAPTER 6. HAMILTONIAN COSMOLOGY OF THE BIANCHI I MODEL 63

be conceivable to include the Q2 term as a true dynamic variable if one were to make
O — z'Q, but that is beyond our scope here.

The other minisuperspace variables, which map to the anisotropy of space, could also
be used as indicators of cosmological time, but there are also times when these too would
fail as timekeeping observables. For instance, at later times there would necessarily have
been a decay of anisotropy in order to match current observations of effectively zero
anisotropy. And so, with no anisotropy to observe, it would be much more difficult to
observe a change in isotropy, and especially acceleration or deceleration of isotropy. It
is only in this sense that one of the minisuperspace coordinates could be borrowed as
something to set clocks in spacetime by, or to keep time by.

The natural metric on minisuperspace being defined by the coefficients of the kinetic

terms in the Lagrangian, one would write this minisuperspace metric as
3V 3V
ds> = — | =—e 3 ) d? + [ =—e 3| dp> (6.10)
8T 8T

The metric components are dependent on the {2 parameter, and so there would be no
simplistic isometries in the minisuperspace, except at small values of €2, where the metric
would be almost a multiple of the Minkowski metric times a volume scale factor. At large
(2 this minisuperspace metric would seemingly be ill-behaved insofar that an inverse
metric tensor would diverge. A further treatment within minisuperspace is developed
in the next chapter, where some transformations improve the character of the solution

sub-manifolds within the minisuperspace manifold.
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Recalling that N = ¢, we will follow in this section what is called N = 1 cosmology
[41], where we let the lapse function be equal to unity, implying the identity transforma-
tion of affine parameter. Furthermore, since we are utilizing the cosmological principle of
a homogeneous spatial 3-surface, we may integrate the action integral over the 3-surface
to get the volume of the 3-surface, V. Therefore, we may write the action integral in the

form

3V

8w

I e32(52 — Q?)dt, (6.11)

implying that the Lagrangian, after integration over the 3-surface, is

B 87r6

L (8% - O?), (6.12)

where a regular upper case capital is used to imply that the integration over the 3-surface
has been done. However, the factor of scale is determined solely by the scale factor {2 and
not the variables of spatial integration. Therefore, the volume here V' is a topological
volume which is a constant, and usually a multiple on the order of 72. That is, the scalar
volume is included in the Lagrangian via the factor exponential in ().

Note in the above equation that the term in 52 is reminiscent of the kinetic energy
term in a free particle Lagrangian proportional to ¢2. In this way it is seen that the
dynamics of a homogeneous vacuum cosmology can be similar in many respects to the
dynamics of a particle. The term in 02 can be regarded as a potential function, and will

be shown later to initiate a time dependent Hamiltonian energy functional which must
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be integrated over time to evolve the dynamics.

It is possible to fashion a dynamic Hamiltonian function from the Lagrangian inte-
grand of this action integral (see Kheyfets [29]). For such a Hamiltonian we will follow the
Legendre transformation which changes the Lagrangian function of the classical configu-
ration variable tangent bundle (g, ) to the classical cotangent bundle (g, p) (see equation
5.16, and reference [14]. Letting the geometrodynamic configuration degree of freedom

variable be 3, we write the Hamiltonian as

H=p,p-L, (6.13)

where regular capital letters for the Hamiltonian and Langrangian functions have been
used symbolizing the fact that integration over the 3-surface has taken place. Furthermore
(and henceforth dropping the subscript on p) recall that the momentum function on the

cotangent bundle is defined and calculated from the expression

oL
op
and upon performing the differentiation becomes
3V _39 p
=— ) 6.15
p=¢p (6.15)

In accordance with the usual methods, we replace ﬁ in equation 5.15 by solving the
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above equation in terms of ps to formulate a dynamic Hamiltonian that has the form

H=H (B, Q, Q) This dynamic Hamiltonian explicitly has the form

47 3V A7 3V .
_ 2 2 3a _ 2V -sqp, 2T o3ay2 2V —306)2
Pigy T gpt  Pagpe ) g ’
which finally comes to
2T 3V .
H = =32 4+ 73902 6.16
e 'py + P (6.16)

3V

We will be using this dynamic Hamiltonian function to continue our analysis of the

Bianchi I cosmology in the quantum mechanics.

6.0.9 A Canonical Representation Cyclic in 2

Recall that the Lagrangian function for the Kantowski-Sachs diagonal Bianchi I model

was derived in the previous section to be
_ 3052 2
L= 56 (87— Q7). (6.17)

Where for notational purposes we have substituted % = £. The fact that Q appears
explicitly causes many complications when applying the equations of the canonical for-
malism, as will be found in the succeeding section. In this section a transformation of
variables will be applied which will eliminate the explicit dependence of the Lagrangian,

and thus the Hamiltonian, on the scale factor ). Therefore it will be seen that the
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Lagrangian and the Hamiltonian functions will become cyclic in all degrees of freedom,
including the scale factor €2. It should be noted here that €2 will appear here as a dy-
namic variable. This is different than the Misner minisuperspace (where €2 is used to play
the role of a time coordinate since the minisuperspace manifold is Lorentzian in metric
structure and (2 takes the negative signature.)

As mentioned earlier, the scale factor variable () may in general be incorporated into
the formalism as a dynamical variable, and as such will have a conjugate momentum pq.
For more detail, see Kheyfets, The Issue of Time Evolution in Quantum Gravity [28]. In
the minisuperspace approach [32] there are three coordinates, two degrees of freedom rep-
resenting cosmological anisotropy 3, and [, and one coordinate representing the overall
scale, ). However, there is no obvious way to parameterize these degrees of freedom by
a time variable, because the Hamiltonian function (the Lie algebra generator in the time
direction) is identically zero due to the scalar constraint from classical general relativ-
ity. It is usually the case that the anisotropic degrees of freedom (. 3_ are represented
as being parameterized by the scale factor {2 because {2 enters minisuperspace with a
negative signature in the minisuperspace metric, giving the space a Lorentz signature,
similar to the time coordinate in 4-dimensional spacetime. Such usage for €2 is slightly
ad hoc and artificial because 2 has nothing directly to do with time other than being
an observable that one can associate with real time. In fact, the other two anisotropic
coordinates could be used as well as temporal-like parameters simply because they are

observables that change with time.
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Presumably the state of the universe represented as a point in minisuperspace can
be parameterized by an outside variable that could be related more directly to the real
time that is countable by clocks, but there is no one way to do this that is proven to
be consistent. It is possible to introduce time into the canonical formalism by way of
proposing a dynamic Hamiltonian which is derived in accordance with the usual canonical
methods, starting with a Lagrangian function like the one above.

In order to make the Lagrangian for the current model cyclic in all variables, it is

instructive to start with a change in variables

voo=  [p-Q, (6.18)

which gives the reverse transformation

u—+v
o= 2
QO = “;”. (6.19)

2
= ge*%“ue%%. (6.20)
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This form suggests another transformation of variables

¢ = e (6.21)
whence the Lagrangian becomes simply
Ay
L="FPpé (6.22)

which is cyclic in all the coordinates. From here it is also easy to compute the Hamilto-

nian. We have

4 -
_ 8L _
Dy =6 = 3
4u .
whence
9
n = @P&
. 9
N (6.24)

In accordance with the usual definition of a Hamiltonian, we write

H =pyi+pl — L, (6.25)
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which gives

9
H=— . 6.26
4anp§ ( )

This Hamiltonian is very simple, and is somewhat reminiscent of the free particle Hamil-
tonian. However, the Hamiltonian is not separated into quadratic terms each of one
dynamic variable. However, it is interesting to proceed.

In accordance with the usual Dirac method, it is possible now to replace the Hamil-

tonian variables with their quantum mechanical representations as operators;

0
H h—
— zhat
L, ho
P i On
h o

- 2

and this give a partial differential equation for the wave function ¥(n, £, t) which is similar

to the free-particle Schrodinger equation;

LoV 9 90
“Wor T auonoe

(6.28)

In the relations here, the variable with respect to which the time derivatives are taken
is the time which parameterizes the dynamical variables in the quantum mechanical
phase space of the coordinate-momentum plane. The Newtonian time in this space may

be identified with the proper time of an observer that is on a geodesic curve of a test
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particle that is at rest on average with respect to its angular position in the topology. For
example, a flat connected and compact 3-space is that of the 3-torus, similar in topology
to that of the surface of a doughnut. A test particle that would retain its angular
position on the torus would be a good fiduciary test mass particle for this purpose. Each
hypersurface labeled by some ¢ would be compact and have the topology of a 3-torus,
yet have zero spatial curvature. A zero-curvature 3-torus is unlike a 2-torus embedded
in a Euclidean 3-space, which does in fact have a curved surface.

A separation of variables may be done to find energy eigenfunctions of the wave
function. Upon letting ¥(n,&,t) = F,(n)Fe(§)Fi(t), and entering this expression for W

into the differential equation, there results

. : 9
thEF FeFy = @Fn'Fg'Ft, (6.29)
where the primes represent derivatives with respect to the respective variable dependen-
cies. Dividing the differential equation by W(n, &, t) = F,(n)Fe(§)Fi(t) results in
F_ o PR

h— = ———. 6.30
' By ApFy e ( )

The two sides of the equation are independent of one another for all values, and so each

side must equal some constant eigenvalue. Therefore the time factor in the wave function
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must be proportional to the eigenfunction

Fy ~ et (6.31)

The left and right hand sides of the differential equation being constants further results

in
F F
FZ = constfé, (6.32)

which is also independent in variables from one side to the other, resulting in two more

relations for the energy eigenfunctions

F, ~ ¢

F,  ~ et (6.33)

all which gives an expression for an energy eigenbasis for the wave function

U(n, &, 1) ~ eilhmrhetet), (6.34)

The wave function follows a preferred direction k in the transformed configuration space

determined by the constants of integration

U(n, &, ) ~ T, (6.35)
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The Hamiltonian has been transformed to be cyclic in €2, but instead the Hamiltonian
is not separable. The above resulting wave function may be transformed back into the
regular variables. Considering the retransformation would involve another chapter, and

so the problem is deferred until a later time.



Chapter 7

Quantizing the Bianchi I

Cosmological Model

We will be utilizing the Hamiltonian function derived in the preceding chapter to first
obtain a quantized Bianchi I system in accordance with the Schrodinger picture, and

then subsequently in the Heisenberg picture.

7.0.10 Quantizing the Bianchi I system in the Schrodinger Pic-
ture

Time development for quantized gravitational systems is unique because of the difficult
problems of time and the role of observers and observations. A consistent relationship
between the temporal function used in the mechanical configuration space and the time

recorded by an observer within the system is difficult to find. C. Misner, J. York, and

74
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A. Kheyfets, among others have developed means for parameterizing both classical and
quantized cosmological models with temporal functions [48, 20, 29]. We will employ
the dynamic Hamiltonian function derived at the end of the last chapter to initiate a
quantization procedure.

We may write the state vector as a linear combination of basis kets in the momentum
representation. Let these momenta basis kets have eigenvalues k, and write for the state

vector

) = [ 10 Gy = [ 1) (k). ()

For typical initial conditions (wave packet) at a time ¢, we may assign a Gaussian dis-

tribution spectrum of momenta for ¢(k) such that
¢(k) = Cemolb—h)”, (7.2)
and

6)=C [ ke ot wora, (7:3)

where kg is the initial expectation value for the momentum (at the center of the Gaus-
sian distribution curve). a is a constant which determines the breadth of the wave packet

distribution, also called the statistical spread, or the standard deviation. C is a normal-
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ization constant allowing the normalized condition

(Wly) =1=cCC / (k' |ye ok —ko)” g malk—ko)® g gy = CC* / e kol g = 0O [ -,
a
(7.4)

which gives for C
920\ 1/
C = (—“) . (7.5)

™

For time development of the initial state vector we will apply the the time development
unitary operator. We have written the above state ket |¢)) as a spectrum (linear combi-
nation or distribution) of momentum kets, each with a phase and a direction in Hilbert
space. The differential operators in quantum mechanics utilize the Lie group concept of
using the identity element as the origin. An operator is pictured as a matrix which can
change the orientation of a vector in Hilbert space. However, it is also pictured in the
Lie group concept as being a matrix-valued vector, itself in a space of operators where
the identity element is the unit matrix. To first order, an operator which will change the
state vector by a small amount will be something close to the identity matrix. Such first

order operators are written as (see [39] ch. 2)
U =1—iQb, (7.6)

where [ is the unit matrix. €2 is a matrix operator as well and is multiplied by a differential

of some dynamic variable such as momentum, translation (configuration) coordinate,
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angular rotation variable, or temporal parameter. The imaginary number 7 will force any
slight changes to be 90 degrees out of phase with the totally real identity matrix. We are

interested now in a time development operator which we will write as
Uld)=1—i— (7.7)

where H is the Hamiltonian. The constant 7 is the fundamental unit of absolute physical
phase. The differential of the time may be represented by taking a finite interval of time
and dividing it by a large number of divisions N. Because of the compositional property *
of such unitary operators, a compositional product of many of these differential operators

may be written as (see [39] ch. 2)

N—oo

Ult,t,) = lim (I—iw> . (7.8)

The limit is known and the time development operator of a finite (non-infinitesimal)

length of time is written as

Ult, to) = e i HO, (7.9)

This non-infinitesimal time development operator may then be applied to the state vector

representation 7.3 to develop the state in time. For abbreviated notation, we may write

L An application of two such unitary operators in immediate succession results in an equivalent one
composed of the sum of the infinitesimal parameters of both, i.e., with the compositional property
U(Atl)U(AtQ) = U(Atl + Atg).
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the dynamic Hamiltonian function found at the end of the last chapter as

27 3V _4q.
H = Wemp% + o 02 = F(t)pj + G(t), (7.10)

where the functions F' and G are merely abbreviations for the coefficients of p% and Q2.
It is seen that pg commutes with the Hamiltonian function, and we may represent the
Hamiltonian in terms of the eigenvalues of the momentum basis ket vectors as H =
F(t)k? + G(t). Now we may apply this Hamiltonian function to develop the state ket |1))

in time;

p,t) = ekl HO
Y %O / ) ealk=ko)” g
= C/e—éffo O | 1y o=olk—ko)? g
= C/eéffo[kzF(tHG(t)]d ey ¢k g
- Ce G(t)at/e—%'k2 Ji Pty ey ealb—kol g,

(7.11)

The momentum representation coefficient function of the time dependent state vector
may be read off of the above equation by inspection. Leaving out the prefactor unitary

exponential number which is outside the integral sign because it is an overall phase factor
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independent of £ and thus not as important, we have
Sk, 1) = (k[o, 1) = e~ #F" Jig FOF o—alk—ho)?, (7.12)

One can observe that at ¢ = 0 all of the coefficient function is real, but as time goes on
the coefficient values ¢(k,t) will phase at different rates in accordance with the unitary
complex exponential’s dependence on k£ and t. This will cause the different coefficient
values to start phasing out of step, and cause interesting behaviours such as dispersions
and interferences.

Let us ask for the 8 configuration space representation of the state vector’s coefficients.
A Fourier transform must be done via the complex integration factor (5|k) in order to

transform from the k£ space into the configuration space of 5.

(Bl, 1) = 06_% i G0 / e—%/& Jro F(t)d<ﬁ|k>6_a(k—ko)2(ﬂf
o ikB/h

i [t i rt .2
_ Ce il G(t)ut/e—hftok F(t)d (
V2mh
kL, o / 4K [l P)a-+kg]—a(k—ko)?

> e—a,(lc—lco)zcﬂf

_ o / o= LR F(0-+kB]—a(k—ko)? g

(7.13)

After integration is performed [29] the wave function as a function of 8 at a time t is
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found to be
_ C —1/4 —a[f — 2ko f ()] iv(8,1)
U(B,t) = \/ﬁ[a(t)] /*exp ( ) ) exp ( h ), (7.14)
where
) = /t F(t)dif::—;; e
oy = [ G- ‘Z—Z "2 30,
(. Py
a(t) = (a + 7) s
w6 = wls - ras) + LOEZZIOE o) — nago
cos |20 = a ,
20(t) a(t)
. f(®)
sin |26 = . 7.15
20(t) o (7.15)

By letting ¢t = %y in the above expressions and equation 7.14 for the wave function, an

initial value for the wave function as a function of 5 is found to be
C —B%  iBkg

U(B,t) = Noro elah e h | (7.16)

which is seen to be a wave packet consisting of a sine/cosine wave modulated by a
Gaussian envelope. This initial wave packet would disperse in time due to the full wave
function’s inverse dependence on «a(t).

The momentum pg commutes with the Hamiltonian function 7.10. Upon substituting
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the momentum into the Heisenberg equation of motion for the change of momentum with

respect to time, it is seen that the momentum is a constant of the motion;

ps = [pg, H] = 0. (7.17)

The constant value for the momentum is found by taking the expectation value of pg

with respect to the distribution of momenta at the initial time ¢y. Recalling equation 7.2;

<ps—k>= / ¢* (k)ko(k)dk = C? / ke~ 2ak=ko) i — .

The expectation value for the anisotropy coordinate g is obtained by performing the

integral

<BB)> = / U (8, 1)8% (8, 1)

- v e (P )

= 2kof(t)

= 2<pg> f(t). (7.19)

By recalling the original expression 6.4 for the metric line element,

ds® = —dt* + e 2P (de')? + 2P (&?)? 4 e P (dr?®)?] (7.20)
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it is seen from the above relations that the spatial universe would collapse from a 3-
dimensional anisotropic manifold into a 2-dimensional pancake-like isotropic one that
would grow singularly and exponentially with f(¢). It is at singular situations such as
this where topological transitions or deformations may take place and where the Lie
group identifier of the manifold may signal a change into another Bianchi type [36].
Another type of such a singular situation may be where the 3-manifold would collapse
to a point. However, the general trend is to try to avoid such singularities by arranging
for calculations whereby the probability for such singular configurations is proportional
to measure zero. The analogous situation in atomic quantum mechanics is that the
probability of an electron with zero angular momentum existing at the point of the
nucleus is proportional to measure zero. Before quantum mechanics, the classical result
was singular in that the electron would exist with certainty at the nucleus, whereby the
potential energy would diverge in accordance with the 1/r behaviour of the potential

there.
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The Heisenberg equation of motion for S is obtained from the commutator of 5 with

respect to the Hamiltonian H,

= —ilsH

= _Z[ﬁa Weg p%] - Z[ﬁ7 ge ’ QQ]

2
_Z—

30
9
3¢ 25 (8, s]

ko, (7.21)

which coincides with the expression for the expectation value of £ in equation 7.19. It is
seen that the velocity of the anisotropy coordinate increases exponentially with 2. With
present-day lack of observational evidence of significant anisotropy, it is possible that in
the current epoch the value for {2 is negative, and the change with time of the anisotropy
remains small as well. However, at some time in the future if {2 would become positive or
on the order of unity, the velocity of the anisotropy would start to increase significantly,
and the model would progress rapidly to a singular metric describing a flattened out 2-
dimensional space, where the zz component of the metric would vanish, while the xx and
yy components would increase exponentially, stretching out the 2-dimensional “pancake”.

In the Schrodinger picture, the expression for any operator is given by the matrix-
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valued integral

a:/mﬂqm, (7.22)

where a is the eigenvalue from the action of G on |a),
ala)y =ala). (7.23)

In the Heisenberg picture, the base states are given phase velocities proportional to the

energy of the Hamiltonian function,
@)y = /" a). (7.24)
Therefore, the representation for an operator in the Heisenberg picture becomes
g

at) = dﬁ”“”%ﬂﬂﬂ

— /da ezflt/ha |a> <a‘ efiﬁt/h

= ¢fin [/da ala) (aq e Hi/h (7.25)

and so any operator in the Heisenberg picture is represented by
@)y = eHi/n g g=illt/h, (7.26)

Note that in the Heisenberg form, it is very easy to see why it is that operators that
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commute with the Hamiltonian are indeed constants of the motion, because the two
exponential operators will commute with the original operator and cancel. For example,
recalling that the Hamiltonian function is H = F(t)p? + G(t), where G(t) and G(t) are
¢ numbers, it is easily seen that the momentum operator is a constant of the motion, as
was determined earlier with the commutator p = [p, H] = 0.

The Heisenberg picture representation of the configuration space coordinate operator

B is more interesting because there will not be a commuting situation. One writes for

the position operator

B(t) — ezflt/h B e—iﬁt/h
ei(Fﬁ2+G)t/h B 6—i(Fz§2+G)t/h

- A2 A i ,\2
— esz t/h ﬂ e iFp t/h'

(7.27)
A change in notation could be written such that
1
peVesa_ 1 _p (7.28)
2 20
GVt _y (7.29)
8T 2
whereby the Hamiltonian appears as
P
H="—+7V, (7.30)
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in which case the expression for the coordinate operator becomes

(i 20t/ =i 20}t/ (7.31)

This relation expresses the well-known fact that the Bianchi I model corresponds to the
free-particle class of mechanical problems. That is, the above operator is the free-particle
time dependent representation of the coordinate f.

By differentiating the Heisenberg representation of the time dependent coordinate (3,

the Heisenberg equation of motion may be found for 5;

ag(t) 9 iHt/h B efz'ﬁt/h

- 7 — —e

t ot
_ (iﬂh)eiﬁt/h B efiﬁt/h_i_eiﬁt/h B efif{t/h(_iﬂ/h)

_ (ih)eiﬁt/ﬁ [I:I,ﬂA] e—iflt/h
1 .5 N - A

_ E[6ZH75/h ﬁ eszt/h’H]
1 - A

= E[ﬁ(t)aH]
1. 4 o 1

= .—[ﬁ(t),pQ]ﬂ

= p/u, (7.32)

because of the canonical commutation relation [B ,p] = ih.

The need for a non-zero Hamiltonian as a generator in time may be seen by taking a
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first-order expansion in ¢ of the expression for 5(¢);

eldi/h 3 o—illdt/h — (14 ifat/R) B (1 —iHdt/R)
=  (1+iHdt/h)(B — iBHdt/R)
—  B—ifHdt/h+iHdt/hB + O(dr)
o001 s .
— B+ pat

= B+dp, (7.33)

from which it is easily seen the problems with the development of dynamical variables if
there is a Hamiltonian constraint of H = 0.

From the Hamiltonian it is possible to extract an expression for a mechanical phase-
space intrinsic time ¢ by applying Hamilton-Jacobi methods of classical mechanics. First
the Hamiltonian is written as

p’ 1

H = —+-u0?
o Tt

1 oW\ 1 .,
_ 1 2 34
2u(aﬁ> L (7:34)

where W is Hamilton’s characteristic function. Then the equation is solved with respect
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95 and then integrated with respect to 8 to obtain

W= / dBr/ 1(2Py — p22), (7.35)

where the Hamiltonian has been renamed by H — F,. Then the intrinsic time ¢ is defined

as

ow
0P,

S
/ B 2pu
\ (2P — 1$22)

If the Hamiltonian constraint is effective then Py — 0 and

(7.36)

/ B 2u
\ (2P — 1$2?) o
/ B 2u
1/_IUQQQ
- / %, (7.37)

where the time is seen to come out to be imaginary. However, since the constraint and
final limit is such that Py — 0, it is permissible to allow P, to be negative imaginary, in

which case g—lvj‘g becomes imaginary as well, which in turn would cancel the number 7 in
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the last equation above. That is,

;= ow
O(—i| Fol)
—it = oW
(| Fo)
dp

= - | —. 7.38
I -
This is possible because Py — 0 under the square root sign, yet the derivative 6%30 would

be completely imaginary if P, is, which would not matter if it went to zero in the final
limit anyway. That is, a factor of ¢ introduced in the right hand side of equation 7.36
would cancel the imaginary factor in the right hand side of the final equation 7.37. It is
irrelevant if Py is imaginary if it is zero in the final limit. The intrinsic time would then

be a real number,

_ (98
t—/ 4 (7.39)

If 5 and Q) are independent, then after a constant of integration ¢, is added, a dynamic

equation for § results;

B =Q(t —t), (7.40)

which is the result for the Bianchi I model obtained by Misner in the minisuperspace

model [32].
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7.0.11 Minisuperspace Quantization

Recall the classical derivation of the action integral equation 5.25 which came to
I = /d:}? dt [Wijg;j - NHJ_(?Tijgij) - N{Hz(wmgm)] (741)

Since the lapse and shift N, N; are Lagrange multipliers of the constraints H, = 0 = H¢,

the action integral may be written as
I= / d% dt 7 g;;. (7.42)

Now, the scale of the universe is parameterized only by the factor e*?, and the model
under consideration is homogeneous, and so the integral over the remaining spatial co-
ordinates is only a topological number that could be set to unity or some multiple of 7.

For now, let us keep the integral

/ d% =1, (7.43)

so that

I= / dt 7 gi;. (7.44)

It is possible to shorten this integral by writing ¢;; dt = dg;; to get
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The general form of the metric line element we are working with is

ds? = —dt? + e [ ()2 + €7 (d?)? + €2 ()],

From the expression for the metric it is possible to write g;; as

11
62ﬁ

gijNef2Q eZﬂn — 672962,3 — 6729+2ﬁ — e2Q

bl

33
26%.

where

B ~ diag(8", 5%, %),

and where

Q=-10+8.

91

(7.46)

(7.47)

(7.48)

(7.49)

For general covariant spatial transformations and for the fact that the scale of the

volume element is parameterized only by the factor e 2, the determinant of e?? should

be equal to unity, i.e.,

det €2 = det €2 THB) = 1,

(7.50)

which implies that there is a constraint on the three degrees of freedom 3't, 322, 333 such

that

(7.51)



CHAPTER 7. QUANTIZING THE BIANCHI I COSMOLOGICAL MODEL 92

which will decrease the number of degrees of freedom from three to two.
Since the trace of the matrix 3 is zero and is with only two absolute degrees of

freedom, let us write the matrix as

By + V36
B ~ B — /38 (7.52)
—2B;.
Then dg;; is given by
dg = de?@ = 2¢g - dQ, (7.53)
and upon multiplying with the momentum gives
mdg;; =m-g-dQ. (7.54)

Let us also write the momentum tensor as a sum of a traceless part pé- and a part

proportional to the identity matrix,

where the factor 1/27 is added in anticipation of a Fourier transform from momentum

space to coordinate space, and where

=0 and H =277}, (7.56)
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It is easy to see that the second term that is proportional to the identity matrix gives
zero when multiplied times dB because the latter is traceless.

The situation may be seen from the Lie group and Lie algebra point of view as well.
The Euclidean spatial metric 1 may be thought of as at the “origin” where the coordinates

[ and €2 are equal to zero. Let

Q = -1 + Bioy + po-
1 0 0 1 0 0 V3 0 0
= =Q o 1 o |+87 0o 1 o + 8- 0 -3 0
0 0 1 0o 0 -2 0 0 0

Then, when @ = 0, it will be such that g = e? = 1. Furthermore, since the momentum
tensor 7t may be divided into a trace and traceless part, and since 7r is proportional to

Q, 7 may be written as

11
=  —(=H1
0 27r(3 +p)

1

(7.59)

With the above constructions in place, it is then possible to write the action integral
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in strictly canonical form as

I = /Wijdgij
~ [ngea0
= /(%Hl + p)(1dQ + dB)
= /%Hd9(1-1)+p-dﬁ

- [-HaQp b b (7.60)

As shown by Misner [32], it is very productive to transform the primary dynamical
coordinates (the metric components and their conjugate momenta) of the cosmological
model into a three dimensional Lorentz space referred to as minisuperspace. Recall that
the Lie group parameterization for any Bianchi class A or B model in the simply or

multiply transitive 3D spacial subgroups after diagonalization is given in general by

62’611
Gii ~ e26% : (7.61)

33
62’3

and the full general four-dimensional pseudo-Riemannian line element is given by

ds® = N*(t)dt* + guw'w’, (7.62)

where we recall that the form valued quantities are given by the diffeomorphism generator
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form function w® = dx* + N'dt.

The development of minisuperspace by Misner is motivated by the transformation

1 0 0 1 0 0 V3 0 0
B~=Qf o 1 o |+87] 0o 1 o0 + 8- 0 —v/3 0
0 0 1 0 0 =2 0 0 0

(7.63)

where the variable 2 may be used for a time substitute, and the variables 5., 3_ are the
anisotropy parameters. One may see the reducibility of this transformation in that the
first term is a multiple of identity and the second two terms make up a traceless portion
of the reduction. There are obviously three degrees of freedom displayed in the above
representation, and solely contained intrinsically within the hypersurface leaf itself. It is
known from analysis of Einstein’s equations that the entire dynamical information con-
cerning the dynamical development of the hypersurface is contained intrinsically within
the hypersurface and it’s degrees of freedom. The variable €2 has a negative coefficient
of the identity matrix, and since it has a special coefficient and is a multiple of identity,
it is usually thought of as a temporal parameterization variable. The other two degrees
of freedom are a polarization which gives information concerning anisotropy of 3-space.
The transformation redistributes the degrees of freedom within the metric tensor into an

irreducible form with desirable trace and determinant characteristics, as can be seen by
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looking at the metric tensor in terms of the transformed degrees of freedom,

2B+ +V3B-)
gii ~ e e2(B+—V38-) , (7.64)

6_4ﬂ+

where one of the degrees of freedom has emerged out front as an overall multiplier which
parameterizes the conformal scale factor of the universe. It will be seen shortly how this
degree of freedom also plays the role of an effective time coordinate in the minisuperspace
because of its Lorentzian signature within the metric of the minisuperspace.
Minisuperspace contains constraint surfaces which are submanifolds that comprise
solutions of Einstein’s field equations. The constraint surface turns out to be the forward
light cone symmetric with respect to the €2 axis. The Bianchi I model and Kasner
model are on the conic surface, and are restricted as well to the 3~ =0, ST <0
half-plane, but there are discussions in the literature of deformations between different
Bianchi types. [36] The dynamic of the actual universe is equivalent to that of a point
particle that travels within the constraint surfaces of the minisuperspace. It will be seen
that the Bianchi I model has no potential field within the minisuperspace that can cause
a deflection of the particle path in that space. A potential field in any of these models
is proportional to the curvature of the cosmological hypersurface in the actual spacetime
continuum. The non-Bianchi I type models do in fact have a curvature term in the

constraint equation, creating a potential field which in turn can alter the path of the
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Q

B+

Figure 7.1: The dynamical degrees of freedom may be transformed into minisuperspace,
a flat 3-D Minkowski space where the classical solutions are constrained to the forward
light cone surface. The Bianchi I Kasner models are admitted over the entire light cone,
whereas the Bianchi II model dynamics are further constrained to the 5, > 0 half of the
boundary cone.

dynamical point particle in the minisuperspace. The potential fields are functions of the
coordinates S and 57, but the potential field scales dynamically with respect to the Q
parameter. In these models the potential “walls” move, as does the state point “particle”.
The good news though is that the potential field has an exponential dependence on the
coordinates such that it may be thought of as a “moving wall” which will deflect the
particle in a predictable and simple fashion. (See [41] chapter 11.)

A brief review of the Hamiltonian formulation of the action integral and resultant

constraints from variational principles will be outlined in order to motivate the mapping
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of the dynamics into the minisuperspace environment.

The Hilbert action integral for gravitation is given by

S(guw) :/d4xL, (7.65)

where L is the local Lagrangian density. The method of producing the field equations by
variation of the action integral was published Hilbert simultaneously as the field equations
were published by Einstein. The action formulation is equivalent to the Einstein equations
because the variationional calculus applied to the action integral results in the complete
field equations of general relativity. The correct Lagrangian that gives the field equations
in this manner is proportional to the full 4-dimensional curvature Ricci scalar with a local

4-volume tensor density factor as
L=®WR\®yg. (7.66)

But we recall that the volume element density may be written in terms of the ADM 341

decomposition as

V®g = Nvh, (7.67)

where h is the determinant of the induced spatial metric formulated by means of a unit
normal vector to the local hypersurface, i.e., hqp = gap + 1o, and N is the timelike lapse

function. We further recall that the Ricci curvature scalar may be separated into ADM
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3 + 1 variables as

WR = [R+ Tr(K?) — (TrK)?, (7.68)

where R is the local spatial curvature of the 3-dimensional hypersurface foliation, and K

is the extrinsic curvature tensor described in the previous chapters, i.e.,

1

R =5

(hij — Nij; — Njji), (7.69)

where the vertical bar notation signifies covariant differentiation with respect to the
covariant derivative operator that is associated with the metric h,,, and h,, is adapted to
the hypersurface orientation via the normal vector n*. The canonical momenta conjugate
to the spatial metric components may be found through the ordinary classical equation

for canonical momenta,
oL
Ohij’

7Tij

(7.70)

which, after substituting the definition of K, into the Lagrangian definition gives

7 = Vh(KY — TrKh9). (7.71)

Recall here that the intrinsic scalar curvature R is like a potential term in that it is not
a function of the velocities g;;, meaning that the conjugate momenta are independent of

R. Therefore the momenta are dependent only on the extrinsic curvature K.
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One writes down the canonical covariant definition of the Hamiltonian function
H = ’/Tijhij - L, (772)

and subsequently replaces h,] using equation 7.69, and also replaces the extrinsic curva-
ture tensors K;; with the canonical momenta m;; via equation 7.71, all resulting in the

expression for the Hamiltonian density,

H=+vh {N (”i;”” - % - R> — 2N, (7\;—%) ‘i +2 (N\J/%J> } . (7.73)

One notes that the last term in the previous expression is a total divergence without

any accompanying Lagrange multiplying factors, which, when integrated over the hyper-
surface foliation only gives a boundary term via Stoke’s theorem, and so is not treated
in the variation process because there is no variation at the boundaries by definition.
A variation inside the boundaries is performed however with respect to the Lagrange
multipliers lapse NV and shift N;. The two main constraint equations of general rela-
tivity result from the variation, the well known scalar Hamiltonian constraint and the

diffeomorphism vector constraint;

H =0 = a (7.74)
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It turns out to be very productive to reduce the canonical momenta into a traceless

matrix added with a trace term multiplier of the identity matrix, i.e.,

i Lo, 1y
where
pi=Trp=0, H = 27Trm = 277l (7.76)

Then the Hamiltonian scalar constraint, the first of equations 7.74, reads as

H? = 6pip] — 247 hR. (7.77)

If one makes a transformation of momenta proportional to the transformation of coordi-

nates of anisotropy degree of freedom like

1 0 0 1 0 0 V3 0 0
H P+ P-
(e 0 1 0 127 1 0 12r 0 -3 0
0 0 1 0 0 =2 0 0 0
(7.78)

then by making the substitutions one may verify the following identity for the canonical
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action integral;

1= [pdspd - Hao

where the last expression is the usual action integral but where the constraints have been
suppressed by the transformation. Variation on this integral will produce the field equa-
tions [33]. The first expression here is written in a form that easily gives the Hamiltonian

equations of motion. A slight manipulation and shorthand gives,

I = /(piBi — H)dQ
- / F (P B s )Y, (7.80)

where () plays the role of temporal parameter. In the Hamiltonian formulation of dy-
namics the coordinates and conjugate momenta have equal status, and so there are two

sets of Lagrangian equations of motion that emerge from a variation of the integral,

of ~d (Of\|_,_|[2f d (9f
[aﬂ ) (ap)] 0 [aﬁi i (a,@‘i)]' (7.81)

Substitution of the above integrand into these equations will produce the standard Hamil-
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tonian equations of motion

: oOH ) 0H - OH
=) =] 7= %) e

This transformation having achieved such clean separation as in the form of the action
of equation 7.79 as dI = p,dB. + p_d5_ — HdS}, it is possible to write a corresponding

metric function within the minisuperspace manifold as
ds* = —dQ* + dﬁi +dp?, (7.83)

as for a 3-dimensional Lorentz hyperbolic signature space with a causal structure and with
a flat 3-dimensional Minkowski metric function 7;;. Furthermore, the Hamilton-Jacobi

theoretical structure may be seen in writing the above integrand as

ds = pidi+p-db- — HdQ
6S 6S 6S
= ﬁdﬂjL + Wdﬁ_ — 5—QdQ, (7.84)

where S is the dynamical phase in accordance with the classical Hamilton-Jacobi theory.
This is the symplectic structure which identifies the momentum with the dynamical
change in phase with respect to the configuration variables on the pg phase plane, and the

Hamiltonian function being identified with the change in dynamical phase with respect
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to the effective time parameter, i.e.

59 59
= H == .
bi = 54 and 57 (7.85)

Now, rewriting the constraint equation 7.77 in terms of the transformed variables,

one regains the constraint equation in minisuperspace

H? = pi + p? — 247%hR

= pl+p>—R, (7.86)

where the first two terms are regarded as kinetic-type terms and the last term regarded as
an effective potential term. One then recalls the Hamilton-Jacobian procedure of writing

differential equations for the dynamical phase produced by the constraint equations, and

- e

as the Hamilton-Jacobi equation in minisuperspace. This equation motivates the transi-

writes

tion to quantum mechanics by way of changing the above equation into a Klein-Gordon
equation. This is done by way of a few replacements within the Hamilton-Jacobi equa-
tion. The replacements are done by replacing the dynamical phase by the probability
distribution wave function ¥ of quantum mechanics, replacing the momenta with par-
tial derivative operators with an added factor ¢ to change the phase by 90 degrees, and

replacing the Hamiltonian function with a similar out of phase partial derivative with
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respect to the effective time variable, i.e.

1 1
S—>‘Ij, pi—>—.a H a

where a quantum of area on the phase plane given by Planck’s constant has been written
as equal to unity. When these replacements are done, a Klein-Gordon field theoretic
wave-type hyperbolic differential equation results;

o* %y 0%

%2 T op T o — Rap = 0. (7.89)

The form of this equation differs from the Hamilton-Jacobi equation a little more than
appears at first glance. The terms change from first-order derivatives to the second power
into second-order derivatives to the first power, and the function ) multiplies the effective
potential term. The above equation is known as the Wheeler-DeWitt equation.

We recall that in the Bianchi I model the curvature R is zero. Therefore, the Hamil-

tonian function is written as
ey (7.90)

and it is possible to find the solution submanifold as a 2-dimensional surface within the
3-dimensional minisuperspace manifold. We write the metric ds*> = —dQ? + df? + dp?

as in equation 7.83, but divided by d2?, i.e.

£=-1++p, (7.91)
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and then use Hamilton’s equations 7.82 which were proven for this metric by a variation

of the Lagrangian. We recall from those equations that

OH

T o

— P (7.92)

VI
and when substituted into equation 7.91 for the metric gives the invariant line element
ds? = 0, implying that the solution manifold surface is the null surface “light cone” in
the minisuperspace. Such findings reinforce the idea that the dynamics of the universe
may be simplified to the analogous problem of a relativistic particle constrained to or
near to the light cone in Minkowski space.
The Wheeler-DeWitt equation becomes, in the Bianchi I model with zero curvature,

TN
“or o Tapr (7.93)

The Wheeler-DeWitt equation differs significantly from the Schrodinger equation because
it is second order differentiated with respect to the effective time coordinate €2, which is
only chosen as an effective time coordinate because of its being multiplied by the negative
component of a Minkowski metric, giving a Lorentz structure to the minisuperspace
manifold. The Schrodinger equation enjoys having positive definite solutions for inner

products of its solutions, whereas the Wheeler-DeWitt equation often may not.
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However, a solution for the Bianchi I Wheeler-DeWitt equation may be written down

in terms of an expansion of plane-type waves within the minisuperspace manifold as

w(F) = / 8(75) 77 P, (7.94)

where vector 3 = (B4, 5-) may be admitted simply because of the isomorphism of the
minisuperspace to a flat vector space [8]. When the unitary time development operator
is applied to the initial wave function distribution, that distribution as a function of time

1s as

W8, = e(,0)
- e—iQ\/(ﬁinLﬁ?_)d,(g’ 0)

= (5,9
— eiﬂﬂ/¢(ﬁ)eiﬁ-Fd2 /’

= / $(p)e® T I g2y (7.95)

Notice that this wave function will satisfy both the Schrodinger equation Hy = ig—g, as

well as the Klein-Gordon Wheeler-DeWitt equation 8.15. Figure 7.2 shows the Hamilto-
nian function as a function of the momenta conjugate to the minisuperspace coordinates.
This space is the cotangent bundle space that is canonically conjugate to the coordinate
space of 5y, 3_. Gauge symmetries with respect to €2 allow one to set the phase of all

basis kets |py,p—) equal to zero at the plane Q = 0. The derivative with respect to the
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Rate of phase of |p+, p_>

p+

- |rr. S exp(iHOQ

Figure 7.2: The momentum minisuperspace has an energy surface H = y/p% + p% which
gives the Heisenberg dynamics in the Bianchi I model. The basis vectors for the momen-
tum eigenstates |py,p_) phase at a rate proportional to the height of the energy surface,
or equivalently, at a rate proportional to their distance from the origin.
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effective minisuperspace time coordinate €2 of the time dependent basis kets is just the
minisuperspace Hamiltonian function. Since the momenta p. commute with the Hamil-
tonian H = \/pi—i——pQ_ , the dynamics is trivialized if one works in the Heisenberg picture.

All of the dynamics is contained within the time dependence of the basis vectors as

|p+,p,, Q) = 6iHQ |p+,p7, O> ’ (796)

and the time dependence of the distribution (unit area continuously distributed coeffi-
cients of the basis vectors, or wave function) is thereby suppressed. A unitary develop-
ment operator with respect to the effective minisuperspace time coordinate 2 may be

easily fashioned from the momenta basis vectors as
Uw) = /dp'+dp'_ P, o) VPP Gl (7.97)

Accordingly, one is then able to write the unitary development operator in the coordinate

[ basis as

UG, B,9) = (Blu®) 15), (7.98)

where § = (B, B-). Or, in the Heisenberg picture, the effective time dependence of the

coordinate basis kets may be expressed as

- -,

5,9) =U() |6) = / dp'.dp’|pl,, p) eV By, B). (7.99)
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The second term under the square root sign in the above expression is somewhat similar
to the mass term in the Hamiltonian for a relativistic particle, and therefore much of the
theory of relativistic particles may be brought into play.

The probability distribution in the coordinate minisuperspace would be normalized
to unit integral probability of the squared norm of the wave function, and the wave func-
tion would be initially peaked in some region of minisuperspace. Classically the points
representing solutions to Einstein’s field equations are constrained to the shell that is
the “light cone” boundary in minisuperspace. The Lorentzian metric of minisuperspace
is such that classically there is no “proper time” or “invariant interval” between solu-
tions. However, the probability distribution given by quantum mechanics is spread out
in the minisuperspace manifold, and only approximates the classical solution space in the
limit of correspondence. Therefore behaviors such as tunneling are permissible, as well
as off shell solutions. Tunneling could occur between different Bianchi models, signify-
ing fundamental changes in topology without the system passing through a singularity.
Furthermore, a point in minisuperspace corresponding to a singular state of the system
might have measure zero, meaning that the probability for the system to be found in a
singular state would be very low.

The evolution of the state of the system can be approximated by looking at the ex-
pectation value of the effective coordinates of the system, i.e. the anisotropy coordinates

B+, B parameterized by the conformal scale factor (2. In the Heisenberg representation
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the coordinate operator is represented as a function of effective time as

B:I:(Q) — eiHQBiefiHQ
— ™ /(pi+p2_)iie—i9\/(pi+p3)
Op+
- P (7.100)

Vi +p2)

which, when the expectation value with respect to the state function 7.95 gives,

< B >=pQ, (7.101)

where p is a unit vector pointing in the direction of the momentum vector p = (p,,p_).

7.0.12 Interaction Picture Dynamics

The early stage of the universe is a very important topic in quantum cosmology because
of the desire to get around the initial singularity which occurs in the classical analysis. As
mentioned earlier, this would be a victory for quantum gravity as was the elimination by
quantum mechanics of the infinite energy of an electron with zero angular momentum in
the atom. We here undertake an analysis of the early stages of the universe by considering
the geometrodynamic Hamiltonian at early conditions, an analysis which lends itself to
the interaction picture of quantum mechanics. The interaction picture is the picture
which is intermediate between the Schrodinger picture and the Heisenberg picture.

We motivate an analysis on the quantized Bianchi I model in an interaction picture
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Table 7.1: The three main dynamical “pictures” in quantum mechanics

QUANTIZING THE BIANCHI I COSMOLOGICAL MODEL

Heisenberg Interaction Schrodinger

Picture Picture Picture
State Ket Doesn’t Evolution Evolution

change determined | determined

by Vi by Hio

Observable | Evolution Evolution Doesn’t

determined | determined | change

by Hiot by Hy
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by recalling the Hamiltonian function derived in the previous chapter and given also

previously as equation 7.10;

(7.102)

The first term of the Hamiltonian is the kinetic term which is quadratic in the momentum,
and made time dependent by the factor €3?, where the scale factor €2 is not a dynamic
or canonical coordinate variable in the geometrodynamic paradigm. However, ) is a
function of (or parameterized by) the geometrodynamic phase time ¢.

The current cosmological observations show that the current level of anisotropy in
the universe is minimal or nonexistent, which implies that a Bianchi class cosmological
model with dynamic anisotropy must have undergone a decay of anisotropy during the
course of its evolution. It stands to reason that with a large anisotropy factor 3, the
universe must have been in an early stage with high anisotropy and small scale. A large

value of {2 implies that the universe was in the early stage with small scale by recalling
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the form of the metric
ds® = —dt* + e [P (! )? + P (&?)? + e P (&®)?], (7.103)

where the spatial coordinate part of the metric is scaled down by large 2. Along with a
large value of €2, a large negative value of ﬂ = df/dt is implied as well in order to account
for rapid decay of anisotropy. Recalling that the momentum is proportional to /3", it is
seen that the momentum was large in early times, as was (). In view of the large value
of momentum, the second term of the Hamiltonian is comparatively small, which would

motivate an interaction picture analysis, as the Hamiltonian could be written down as
H=H,+YV, (7.104)

where V' is a small perturbative term which can be regarded as a potential term which
interacts perturbatively with the primary kinetic momentum term Hy. Furthermore, if
the second term is regarded as small, then the factor Q must be necessarily small in
comparison. If such is the case, we may in this situation treat {2 as a constant in the first

approximation, and we may write down the Hamiltonian as

2
p o
H="—+2-0Q .1
2,u+2 , (7.105)
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where

3V _aq

=4~ const. (7.106)

I

The smallness of p at early times (large values of ) further motivates the interaction
picture analysis by scaling down the potential term while bolstering the kinetic term.
Recall that the factor V' in the expression enters from an integration over the spatial
coordinates. However, also recall that the overall scale is completely determined by
the scale factor e~%, and the remaining coordinates which it scales are just prototype
coordinates that run from 0 to something like 1 or an integer multiple of /pi, like the
angular coordinates in an expression such as for the length of a circle which is scaled by a
radius factor, i.e. C = R -276. Therefore, the value V is a type of number that depends
on the topological configuration of the spatial manifold, and is usually set to a constant
such as 473, The value might be slightly different depending on if the spatial manifold
is given the topology of a 3-torus or a 3-sphere or some other topological identification.
Sometimes an integration over the spatial coordinates when the scale factor is set to
unity is called the coordinate volume. The coordinate volume may depend on the units
being employed, the overall scale which is gauged to unity, and the choice of coordinates.
There are enough choices to allow a freedom to set the coordinate volume to almost any
constant.

The solution of the problem of the unperturbed Hamiltonian is now very simple
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because it is that of the free particle in one dimension

H=Hy=">. (7.107)

It is necessary to solve this equation for the eigenvalues of the unperturbed Hamiltonian.

After substituting H — ih% and p — ih% there results the differential equation

] 2y
z’h%—t = —7122?, (7.108)

which has the well known solution of basis states

U(B,1) = (BU(t)) = " FF-FM, (7.109)

where Fik is the eigenvalue of the momentum (k is the wave-number) and

_ B

Lo 2p

(7.110)

The energy eigenvalues of the Hamiltonian comprise a continuous and dense spectrum
on the energy line because the Hamiltonian corresponds to that of a free particle. And
since the momentum commutes with the Hamiltonian, these eigenvalues correspond to
a continuous spectrum on the momentum line as well. By linear superposition, a wave
packet made up of a linear combination of such states of momenta centered around some

large initial momentum hky may be constructed. However, it is desired to consider the
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probability of a transition from some initial state of momentum to some final state, or
more exactly, to a neighbourhood of final states that are centered around some momentum
Or energy.

Labeling the second perturbative term in the Hamiltonian by V = %6_3902 = %QQ,

the complete Hamiltonian may be written as
H=Hy,+V. (7.111)

After replacing H — ih% and applying the operators to the wave function, the following

relation results;

m% U) = Hy |0) + V |¥). (7.112)

It is desirable to find the effects which are due to the second small term, which is known
also as the interaction term. Therefore the above equation might be better written in a

way to isolate the interaction term V' on the right hand side and then collect terms under
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one differentiation with respect to ¢ on the left hand side;

.0
0 s
zha |W) + ihi(iHy/R) |¥) = V |W)
hg )+ ik —ittot/n O _iot/n N - Vi
28t|)+2 e 5 Uy = )
. iHot/ﬁ, a . 8 iHot/ﬁ, iHot/ﬁ,
ihie % |U) + iR 56 [Ty = e V@)
ih%(eiHot/h “Il>) — ez’Hot/hV |\I/>
ih%(eiHOt/ﬁ |\Il>) — eiHot/ﬁVe—iHot/ﬁeiHot/ﬁ |\Ij>
.0
oy W) = vlY) (7.113)
where
‘w) — eiHot/ﬁ, |\IJ>
and v = eHt/hy it/ (7.114)

In the above derivation, it is first recognized that Hj is the constant eigenvalue of

the unitarily time-transformed operator e~*Hot/h 2 ¢ifot/h  Next, an integration by parts
is recognized and performed, and then time dependence is distributed to the other terms
to impart a similar phase rate to all the terms, in which case the phasing becomes

transparent if all kets and operators have such a rate depending on Hj.

In an effort to solve for the state ket that appears in the above differential equation
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ih% |ty = v |1), an integration with respect to the time variable may be attempted;

(o) = [ Solwo) + ). (7115)

But a problem presents itself in that the same ket to be solved for appears under the
integral sign as well as explicitly on the left hand side of the equation. However, if
the eigenket is not changing too rapidly, one may see that the integral term in the above
equation is proportional to the time and so the initial ket |¢)g) will be the significant term
to a first approximation. So it is permissible to substitute the initial ket |1)y) for the time

dependent one; [¢g) =~ |1(t)) under the integral sign for a first order approximation;

(t)) = /t %v |1ho) dit + |1o) (7.116)

0

in which case now it is possible to integrate the equation in principle.
If the early universe were in a state comprised of a linear combination of states cen-
tered around a particular momentum py, then a wave packet with a Gaussian distribution

may be written for the initial state such that

o) = C’/ dp ¢~ (P=p0)” D), (7.117)
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where the constant C' may be found by normalizing |¢y) such that

L = (tholth)
= Jop [ [ dudgte e gk la+ )
= |CP? / N / N dgdq'e =" e~ §(q + po — ¢’ — po)
= |CP / ) / N dgdq'e=*" e §(q — ¢)

= |OP / dqdq'e’%“’q2

1 s
= Cl?=
| |2 2a,
1
8a,\* [
= |) = (:) / dp e~ @=P0)" |p) (7.118)

The next step is to put this initial wave packet normalized state into the time depen-
dent perturbation formula derived previously, equation 7.116. A natural question to ask
would be about the behaviour of the momentum distribution as a function of time. Recall
that the behaviour of the cosmological wave function in the Bianchi I model is basically
that of a free particle, with perturbations resulting from introducing a matter distribu-
tion or some scalar field. It is advantageous to study a scalar field in the Bianchi I model
that results in an inflationary universe, which agrees more favourably with observations
in today’s universe of large scale isotropy and homogeneity. The observed magnitude
of the redshift implies the universe is expanding at a disproportionally rapid rate with
respect to the amount of homogeneity that is present. That is, it appears as if there has

been a degree of equilibrium reached throughout the universe, which can usually only
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occur if there is sufficient time to reach such a shared condition, or if the homogeneity
is an artifact of a much smaller universe that has suddenly expanded. The inflationary
model admits large scale homogeneity because of the possibility of the universe essentially
expanding instantaneously to a scale larger by many orders of magnitude, and the instan-
taneous expansion would allow the retention of the homogeneity that was in existence
when the universe was very compact and able to share information across the very small
extent of the universe. According to some theories, the homogeneity will survive the
inflation, but with some thumbprints of quantum wave functions that were in existence
in the small realm of the universe before the inflation occurred. Inflation in a Bianchi
I model has been studied extensively by several workers, including Rothman, Madsen,
Anninos, Ryan, Matzner, Ellis, and Futamase [23, 13, 24, 38]. Figure 7.3 depicts the
behavior of the scale of the universe at early times when the universe is very compact,
up until the inflation occurs when the scale of the universe increases by many orders
of magnitude within a very short period of time. Due to the rapid inflation, the factor
(2 in the potential term of the Hamiltonian of equation 7.105 can be written as being

proportional to a Dirac delta function, i.e.,

Vo~ Q2 (- t). (7.119)

That is, one may write the time dependent interaction picture potential term of the
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Figure 7.3: Inflation causes the scale of the universe to increase by many orders of
magnitude within a very short period of time. The archtypical model of this situation
is a step function with respect to time (also known as a Heaviside function), the time
derivative of which is the delta function §(t — to).

Hamiltonian in equation 7.114 as
v(t) = eMoP(t — to)fe ot (7.120)

where 7 is some operator which has units of 4. Subsequently introducing this expression

into the time dependent perturbation theory equation 7.116 will give

WJ(t)) _/t zl;; ZHOt/hd( )A —iHot/h |¢ >dt+ W’O) (7.121)

A natural question to ask would be one concerning the effect of the shock of inflation

on the distribution of momenta of the initial wave packet. Therefore, let us calculate
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the distribution of momenta (p) after inflation, using the time dependent perturbation

equation.

v = (pl¥)

- p'{/to o) + 40} }

dt
— zHot/h5 t—t )77 —iHot/h WJO) + |¢0>}
dt ZHOt/hé(t _¢ )77 *ZHot/hC /'oo dpl efao(p'*p0)2 ‘p,>
— to —
+C /oo dp' e~ W' =po)” |pfy
C 4
_h dp e o(p'—po) <p‘ ZHoto/ﬁﬁeszoto/h |pl>

- N . (7.122)
+0/ dp’ e~ @'=Po)* (p|p')

o

One now recalls that the unperturbed Hamiltonian operator is Hy = p*/2m, of which |p)

is an eigenstate, and so

e—iHoto/h |p') — e—ip’2t0/2mﬁ |p')
<p| eiHoto/h — <p| eipzto/me‘z
(lp)y = dp-p). (7.123)

And so the matrix element in the perturbative term becomes

(p| eitfoto/hje=tHoto/ |1y = (p| iy [pf) e'P"—")to/2mh, (7.124)
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Furthermore, if 77 was proportional to the unitary operator, then the matrix element
would be proportional to the Dirac delta function §(p — p'). However, one expression for

the Dirac delta function is

50— o) = tim © (7.125
= l1m 5 .
(p—p) = lim ——— )

which apparently is a Gaussian function taken to a singular limit of the Dirac delta
function. Therefore, we will use the non-singular form of the above representation, in
deference to the fact that the matrix element (p|7|p’) would go to the limit of d(p — p')
as 7 — 1. It is also obvious that for physical states, the matrix element would fall off
to zero as p and p’ would be separated further apart, the dependence of which would
be reflected in a Gaussian function for (p|7 |p'). Therefore, an expression for the matrix
element may be proposed to be approximated by

e—(p—p")?/4e

(p[n1p") ~ Mo v/ (7.126)

In order to match the notation for the rest of the factors in the perturbative term, let
us rewrite the matrix element with a change of notation (4¢)™' — a,,. Also, since the
matrix element may be complex, a unitary phase factor may be applied, and the matrix

element can be approximated by

(p| 7 |p') ~ o€ \Jam e om@ ) (7.127)
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where «,, has the same units as a, in the original Gaussian distribution of momenta, and
performs the same role of describing the spread of the bell curve, but where the subscript
reminds us that it is an artifact of the matrix element. Finally, to further make the
notation consistent, let’s rename the imaginary multipliers in the exponent of equation

7.128 so that;

WP =0 to/2mh _ goc(®?~p%) (7.128)

with the subscript of ¢ reminding us that o, = ito/2mh is imaginary. As may be seen
from figure 7.3, inflation occurs at very small values of ¢, and so the factor o, = ity /2mh
is thought of as small and imaginarily perturbative with respect to the spreading factor
@, in the original Gaussian wave packet distribution, i.e., |ap/a| < 1.

And so picking up where we left off, we may now proceed to integrate the expression
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for 1(p) after the inflationary shock;

.
_/ dp e~ o(p'—po) <p‘ ZHoto/ﬁA —iHoto/h |p/>

+C / dp' e @ P (p|pf)

.
C o _ 2 . _ 2_ 12 Y )
dp e~ (p?—2p' po+p0)770629 Qo € am (p*=2pp'+p'?) i(p*—p"*)to/2mh

+C/ dp' e—ao(p’—po)25(p _p/)

Ve

o
_ZC(T’O/h) eZa /am e—aop% e_p2(am—ac)/ dp[ 6_1”2(060+04m+ac) 617’(2@0170+204mp)

= < —00
+( e~ (P—po)®
? -
—iC(no /) €°\/a €= P e_pz(am_ac)/ dp' e=P” ¢~ BY
= < —00

+C e—ao(p—po)2,

(7.129)

where

o=, + o, + a, B = 2a,pg + 2a,;,p. (7.130)

The remaining integral in the perturbative term is well known, and can be integrated

by completing the square in the exponents. The result is

[ e < e [T (7.131)

After integrating the remaining integral, we can proceed to arrange the expression into
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an expression that could be simpler to analyse. Just considering the perturbative term

in the expression for ¢ (p), which could be called A (p),

iCno 0 6 ? > ! 2 By’
Ay(p) = T e \Ja, e %P 7P (em—ac) dp' e=oP" ¢~ BP
—0o0
iCno 49 Caop? —p*am—ac) B2/t | T
= —Te\/ame oPy P (am—ac) o m
«

; (aopg+2amp)? )
’[;C T . (7
— _ WMo m. if e—aopﬁ e—pZ(am—ac) e 1o
h o
2 2 2 2
. agpPpt2aoamppotamp
— _ZCUO ,7TO,/m ei@ efaopg efp2(amfac) 6( ao+amtac )
(0%

h

— _Z'CUO TOm eia e—aopﬁ(l—ao/a) e—ampz(l_am/a) e—OchJ2 620500%1”?0/0‘
R «
1C o Q o 20,00
- — hn01 | —" exp [2’0 —api(l — =2) — app?(1 — ) + 2722 mPPo _ aep?
o o o o

(7.132)

Some of the various parameters may now be entered into Aw(p), and some graphs
may be produced by some plotting programs. The general trend upon entering various
values of 0, a,, a;, €, P Tesults in a wave in p that peaks around pgy, but which has lower
frequency behaviour at values of p below py, and then the frequency increases above py.
A typical graph is shown in figure 7.4, where the solid curve is the real part of A(p)
and the dotted line is the imaginary part.

The relation between the real and the imaginary parts of the function Ay(p) may be

expressed by the theory of Hilbert transforms. The Hilbert transform of a function f(x)
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Figure 7.4: A plot is shown of the perturbative term At (p). The wave envelope is peaked
near pg, and the envelope modulates a wave of increasing frequency as p increases from
below pg to above py. The solid curve is the real part of Av(p) and the dotted line is the
imaginary part.
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is given by the integral expression

Fu(z) = % /_ © ) dat, (7.133)

o —x

which also is expressed equivalently as a convolution of the function f(z) with the Hilbert
kernel,

Fy(z) = — x f(x). (7.134)

The singularity of the integrand is taken into account by taking the Cauchy principle
value of the integral, which removes the value of the integrand at the singular point. The
result is not affected because the support of the singularity is measure zero. A process
consisting of two Hilbert transforms will just reverse the sign of the original function,
that is H- H - f(z) = —f(z). The total complex function f(z) = fr(z)+ifr(z) is known
as an analytic function if the imaginary and real parts are related by a Hilbert transform.
The imaginary part of the function is known as the quadrature. The real and imaginary
parts of the function f are called harmonic conjugates.

The function At (p), the perturbative term from the time dependent perturbation
of the initial momentum distribution (p) was analysed on the mathematical software
MATLAB using the Hilbert transform function within MATLAB. The transform of the
real part of Ay(p) was found to be almost perfectly identical to the original imaginary
part of Avy(p). The results of the transform are given in figure 7.5.

Furthermore, the real and imaginary parts of the function being harmonic conjugates
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Figure 7.5: The plot shown in this figure is the real part of the perturbation function
At(p) and the MATLAB Hilbert transform of that function. The transform matches

identically to that of the imaginary part of Ay(p) that is pictured in figure 7.4.
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Figure 7.6: The graph here shows the original imaginary part of At (p) along with the
negative Hilbert transform of the imaginary part. This pair closely duplicates the original
harmonic conjugate pair as depicted in figure 7.4.

implies that the Hilbert transform of the imaginary part should produce the real part.
This is indeed the case, as may be seen in the figure 7.6.

The total momentum distribution includes the original wave function added to the
perturbation, and the total distribution as a function of p can now be added together
and various parameters entered into a plotting program. The plot in figure 7.7 shows
the original momentum distribution density |4 (p)|® before inflation in the dotted curve,
while the solid curve shows the momentum density after inflation,|1(p) + Av(p)|?. The

general trend in these graphs with various parameters is one of a decreasing peak in

momenta, signifying a loss in momentum to inflation. However, another general trend
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Figure 7.7: This figure shows the total momentum distribution |¢(p)y*(p)|. Before
inflation the distribution is Gaussian, and is represented in the dotted curve. After
inflation is the perturbed momenta redistribution is represented by the solid curve. The
general trend is that of a peak at a lower momentum, but with an added component at
a higher momentum due to the ringing effect of the inflationary shock.
is one of bumps in the density at higher momenta, signifying the introduction of some
higher momenta due to the ringing effect of the inflationary shock on the momentum
distribution.

We know that the wave function 1 (53) in the anisotropy coordinate is related to the
distribution of momentum by way of a simple Fourier transform, simply because they
comprise a conjugate coordinate/momentum dynamical pair. Such a transform on a

Gaussian distribution of momenta (p) results in a Gaussian wave packet in coordinate

space 1g(f). The Fourier transform of the momenta distribution ¥g(p) is shown in
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Figure 7.8: This figure depicts the shape of the Fourier transformed Gaussian distribution
of momenta into that of the anisotropy coordinate wave function ¢(5). The original
distribution of momenta not being centered at p = 0 causes the transformed Gaussian
distribution to be modulated into a real and complex waveform as shown.

figure 7.8. The modulus of the Fourier transformed distribution is Gaussian, but the
Gaussian is modulated by a phase factor in  that gives it a real wave and an imaginary
wave, as shown in figure 7.8. The real and imaginary waves in ¢g(53) are a result of the
distribution of momenta not being centered at p = 0. The modulus of the wave function
is Gaussian in nature and is shown with the real and imaginary component waves in
figure 7.9.

The distribution in momenta after the inflationary stage is distorted from a Gaussian

distribution, and therefore the Fourier transformed distribution will obviously be some
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Original Anisotropy Coordinate Wave Function
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Figure 7.9: This figure shows the real and imaginary component waves of the pre-
inflationary wave function ¥g(8). The modulus of the complex wave is represented
as the Gaussian curve, which is modulated by a complex phase waveform in f.
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Perturbed Anisotropy Coordinate Wave Function
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Figure 7.10: This figure shows the total post-inflationary perturbed wave function ¥(5).
This graph exhibits the dispersion of the wave function and its modulus to that of lower
anisotropy.

distorted Gaussian wave function in 8. The Fourier transformed post-inflationary wave
function v(p) is depicted in figure 7.10. The general trend for various parameters entered
into equation 7.132 is that of the figure where the wave function tends to be distributed
to one of lower 5. The Gaussian shape is shown to be distorted with a larger antinode
at lower anisotropy. These nodes tend to become more pronounced and at lower values
of # upon inputting different parameters into equation 7.132, but the shape becomes
more distorted from the Gaussian shape and so is less identifiable. The squared moduli

¥(B)1*(B) of the pre-inflationary and post-inflationary wave functions are shown in figure

7.11.
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Action of perturbation on W(B)W*(B)
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Figure 7.11: This figure shows the comparison of the behaviours of the pre-inflationary
and post-inflationary squared moduli of the wave function in the anisotropy coordinate
Y(B)y*(B). The behaviour is that of dispersion of the wave function towards a lower
anisotropy.



Chapter 8

Embedded 3-Space in a Central

Potential

We consider here a related model [19] that is a 3-surface embedded in a flat space of
arbitrary dimension parameterized in polar style coordinates. That is, it is a variant
upon the multidimensional Kaluza-Klein type of theoretical spaces. Followed in this
section is a model of quantum gravitation analysed by by E.I. Guendelman and A. B.
Kaganovich, based on work of Kheyfets et al. [27] The total dynamic spatial configuration
of the model is parameterized by a cosmological time parameter which serves also as the
observable cosmological time. The total spatial configuration is also a Reimannian space,
in that the metric has no negative signature contributions, i.e., a non-Lorentz type. The
collection of spatial dimensions having a Reimannian metric implies that the space may

be referred to as a Kaluza-Klein space.

136
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The topology of the spatial collection is assumed to be toroidally compact in that
0 < z; < L;, where L; is some finite length at which a topological identification could be
made. The total number of spatial dimensions D is finite but arbitrary, and the D + 1

dimensional Lorentz manifold has a line element,
D
ds® = —dt* + ) al(t)da?. (8.1)
i=1
The dynamic coefficients a; are given by
a;(t) = [V ()]/Pe", (8.2)

such that

The scalar curvature R for the homogeneous D + 1 dimensional space is given by

0@V D-1[dlnV)\> 1 d(lng;) d(luay))?
=y D ( dt >+ Z( a  dt ) (8.4)

The cosmological gravitational action with a cosmological constant A is written as a

Hilbert integral as

S= % / V(R = 2A) d% dt. (8.5)

Because the space is homogeneous the spatial variables 0 < z; < L; may be integrated
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over, and the result set equal to 1 so that the action integral may be written as

S= —/L dt, (8.6)

where L. may be read off to be

1D—1(dV\* V d(lna;)) d(Ina;)\”
L=—""1(—/) - = L J 2AV. 8.7
V D <dt) D%( dt dt T (8.7)

Performing a mapping of the variables into polar form will allow a Hamiltonian repre-
sentation which has rotational symmetry with respect to a central potential. Such a

reparameterization is given by

) 4D - 1)

e

. DA

<7 Ta-

i 1 D D—1

4 = TV [20n+(1+\/1_7)9i], (8.8)

where the Lagrangian function may be written from these relations as
dp” 2D_1 d2'\’ 2 2
L=(%) _ - ) - 8.9
(%) X (%) (89)

Performing a Legendre transformation on the Lagrangian function and inserting the

transformed variables above,as well as adding a mass term p representing mass density,
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a Hamiltonian function is found that is written as

d 2
H = (d—f) UG - (8.10)
where
U()——ﬁﬁuw22 (8.11)
p - 4,02 p7 .

where / is an abstract angular quantity, and where

D—1
e=3¢ (8.12)
=1

and

d 7
0 = —2p2d—zt (8.13)

This is a fully classical Hamiltonian, and is reminiscent of the Hamiltonian of a particle
systematized in a multi-dimensional symmetric harmonic oscillator potential in a polar

coordinate system.

8.1 Quantized Solutions of the Wheeler-DeWitt Equa-
tion in MiniSuperspace

As in the previous sections we consider a tangent and cotangent bundle space with a

metric function, and write for the most general Lagrangian and Hamiltonian functions
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in their respective spaces;

N Wk e
H = fm%§%§+w%”—m
H = faﬁ’ﬂ'aﬂ'/j +w?p? —
where
fapg = diag(l, —p?, ey — ), (8.14)

where the metric tensor matrix may be seen to derive from equation 8.10.

The Wheeler-DeWitt equation is the quantum mechanical equivalent of the classical
time-time Einstein equation, which is actually a constraint equation that says the classical
Hamiltonian is equal to zero. Using the Dirac prescription of replacing classical dynamical
variables with their corresponding quantum mechanical operators, the Wheeler-DeWitt

equation reads,

HV = 0. (8.15)

When the above Wheeler-DeWitt equation is transformed by the replacement of dy-
namic variables by their respective operators (the Dirac classical-to-quantum system

method), the Wheeler-DeWitt equation appears as
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where a radial operator ordering in the first term has been done. For the origination of
this equation, it is helpful to compare the Hamiltonians in equations 8.14 along with the
Hamiltonian in equation 8.10, where ¢! is the dynamical variable p and the rest are the
spin-like dynamical variables represented by z'. Recall also that in the quantization from

classical dynamical variables, there is the substitution

., 0
Mo — _Zha—qa (817)
It is easy to see that the operator % commutes with the Hamiltonian of the above

expression. Therefore, a trial wave function solution may be written as

, 1 ~D-1,

i\ iy 4z
\If(p, z ) - (271_)(D_1)/2R(p)€ ! ) (818)
where /; is the constant of the motion in the tangent bundle of Z that is described in
equation 8.13. When the trial function is inserted into the Wheeler-DeWitt equation, a
differential equation results which may be solved in terms of a confluent hypergeometric

function. The differential equation is

d’R D —1dR 2 9 9
d—p2+7d_p+ER_4w p"R = —4uR, (8'19)

where the last two terms on the left hand side are the negative of the effective potential

in the mechanical space. The apparent condition that ¢2 is a positive quantity would
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imply that the effective potential would create an attractive core. The limit as £ goes
to zero would imply an harmonic system. However, it would be possible to introduce
different factor orderings that could cause £? to be less than zero, and in this case the
effective potential would have a repulsive core. Observing the right hand side of the
above equation reveals that the complete differential operator of the equation has 4u as
an eigenvalue.

The fact that the wavefunction must vanish in the limit as p becomes very large
implies that the solutions R become quantized to solutions R,, according to the confluent

hypergeometric function ®, where

Ro(p) = Npp/W-2n= D260 (=, 1/ |w], =21, 2w p?), (8-20)

where N, is a normalization factor. The development of this wave function is determined
by the application of a unitary development operator, which would in turn be determined
by the levels corresponding to the quantized levels nof the wave function. However, the
interpretation of development of the wave function with respect to a time parameter
would need to be analysed further, since the unitary operator would have to be derived
from a Hamiltonian function in order to be a time development operator, which in turn
would involve the notorious problems of time from the Hamiltonian constraint. The

unitary development operator corresponding to the energy levels could be written as

Un) = |K,) e " (K,|, (8.21)
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where K, is an eigenvalue of an observable that would be a complete set of base states
countable by n. The complete set of states commuting with the Hamiltonian would
imply that they could be used to form a unitary development operator with respect to
time, but would be complicated by the Hamiltonian constraint. Thus the above unitary
development operator would rotate the distribution of the state vector into a distribution
given in terms of eigenstates corresponding to n. Therefore the problem would be to
determine which observables would commute with the Hamiltonian function, which is a
delicate problem when the Hamiltonian is constrained to be zero. However, we will look
further into this problem in the next section where the Heisenberg equations of motion
are considered, where the initial state vector is a constant of the motion. The motion
however must be considered quantum mechanically because in the classical picture there
is no time development due to the Hamiltonian constraint.

There is a large difference between pure vacuum solutions and solutions introducing
even a small amount of matter [41]. However, once matter is introduced into this model,
the behavior as p — 0 (the singularity) can depend in this model on the amount of matter
via the density p. That is, looking at the factor p in equation 8.20 reveals that the wave
function will vanish as p — 0 if its exponent remains positive, i.e. if y > |w|(2n + D/2).

Thus, the singularity can be avoided if the mass density is large enough.
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8.2 The Heisenberg Picture

The “problem of time” is discussed in depth by K. Kuchar [28]. Basically, it centers
around the problem of the Hamiltonian being constrained to zero, leaving no infinitesimal
generator in the direction of time (either forward or backward). This constraint appears
in the time-time equation of the set of Einstein equations of general relativity. Therefore,
it is somewhat difficult to produce the Heisenberg equations of motion because of the
Hamiltonian being constrained zero. However, in the model being studied in this section
it is possible to produce non-trivial equations of motion.

In the Schrodinger picture of quantum mechanics, the operators (such as position and
momentum operators) which have observables as eigenvalues are not time dependent and
do not change with time. However, in that picture the state vector evolves with time
and so will produce changing eigenvalues for the static operators.

The Heisenberg equations of motion imitate the classical equations of motion (or bet-
ter, vice versa), where the observables (such as position and momentum) are dynamical
functions which evolve with time. Recall that for some function A(g,p) in the classical

phase space the differential equation for time evolution of that function is

dA 0A0OH 0AOH

— = |A, H|poisson = 7~ i Ad i
dt 4, Hlp Oqi Opt  Op* Opt

(8.22)

It is generally believed that quantum mechanics is the basic theory, and where the

Planck’s constant h plays a fundamental role. But the correspondence principle is such
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that as the system becomes more macroscopic, Planck’s constant begins to appear small,
and will look like zero in the classical limit. And so, it is better to think of the quan-
tum mechanical commutator becoming the classical Poisson brackets, as opposed to vice

versa, as in the correspondence
1. . -
E[A’ B] — [Aa B]Poisson- (823)

The Hamiltonian 8.10 may be written in terms of p as

1 2
H=p, - 12T WP’ — py (8.24)
where p, = g—s = 2¢. The commutator of p with the Hamiltonian also gives the regular

classical equation of motion for p,

1

_ppa (825)

p = [pa H]Poisson - 9

where the mass of the effective relativistic particle is % in units used here. When p,: and

H are entered into the Poisson bracket equation 8.22, it is easily seen that

pzi = [pzia H]Poisson = Oa (826)

which was already known from symmetries, i.e. that the Hamiltonian is cyclic in z¢. With

the Hamiltonian in the above form, the classical equation of motion for the dynamical
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variables z* are

P
202

Z.i = [Zia H]Poisson =

(8.27)

A Schrodinger picture wave function has been obtained previously in this chapter by
way of the Wheeler-Dewitt equation 8.16. But it is fruitful to work in the Heisenberg
representation because the classical equations are more easily analysed quantum mechan-
ically in that picture, and transfer from classical to quantum more naturally. The classical
constraint equation forms a manifold consisting of a set of solutions to the constraint.
However, in the quantum mechanical system it is possible for nonclassical effects such
as quantum mechanical tunneling and so forth, which depart somewhat from the clas-
sical constraint equations. Therefore, it is necessary to consider a quantum mechanical
solution space that can depart from the classical continuum manifold of solutions.

According to equation 8.23 and equation 8.27 it is observed that the commutator of
the dynamical variables z* with the Hamiltonian is nontrivial, even with the Hamiltonian
constraint. Thus, the Heisenberg picture reveals that there is indeed a time dependence
which is not contained as information given in the constraint equations. From the equa-
tions 8.14, and using the standard replacement in the configuration variable basis of the
classical momentum with the quantum mechanical operator equivalent, along with the

canonical position-momentum commutation relations

T — _Zazi
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it is possible to retrieve the operator equations that give time dependence in this model
in accordance with the equations of motion in the Heisenberg representation. That is,

using equations 8.14

2 = —i[2", H]
= —i[2", fPrymg)
= —if*P[, mams)
= —ifP (]2, ] + [27, TaTp)
= —if* (7o} + 6)mp)
= —i(fm+ f"mp)

= —2if"m, (no sum)

1
1 0

2p% 027
(8.29)

One can attempt to solve for the evolution of the matrix elements of the dynamical
operators in the Heisenberg representation. Naively, one could write for the change in

(] 2% |9"), keeping in mind that the state vectors are constant,

0zt
= 1)

a % ! _
SWIEW) = W

(8.30)
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It is possible to consider performing a measurement on the system in accordance with
the expectation value formalism. Some interesting questions and insights can be brought
to light by looking at some simple examples in the Heisenberg picture. The cosmological
example is similar in many ways to the free particle example in classical and quantum
mechanics.

Consider the ordinary canonical commutator

[z,p] =ik (8.31)

This relation is considered as a starting point of quantum mechanical analysis [39]. Dirac
has named them “fundamental quantum conditions”. However, the above relation also

coincides with a Heisenberg equation motion of a relativistic free particle,

dx 1
haind — Iz H
di in H
1
= %[x,pc]
1
- CE[IL" p]
= (8.32)

Therefore a relativistic particle should be quantum mechanically fundamental as well. Er-
roneous results are obtained if one considers the equation of motion for a non-relativistic

particle when measured with respect to normalized momentum eigenstates while assum-
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ing that the Hamiltonian is Hermitian and applied in a quadratic fashion;

WS = e Al
-~ Lol L
= Ol =) )
= ih;m (r* = r*)(plp)
= 0, (8.33)

where the correct result should be equal to p. However, if the commutator is worked out
within the brackets before applying the operator to the states, a more satisfactory result

is obtained, i.e.

W% = ol Hlp)
= 0l 2l

— ﬁ {p| (plz, p] + [z, P]p) )

1
— 201
: mm( pih)(p|p)
p

= (8.34)

Evidently, the correct result is obtained by using the basic definitions of the commutator,
that appears to be associated with a relativistic particle, even though there were no rel-

ativistic assumptions about the energy of the particle. Therefore, the limiting behaviour
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of mechanical processes is evidently important in the basic definitions and the application
of the definitions. It is known that in order to measure the exact position of a particle,
the state of a probing particle must be that of an infinite frequency or zero wavelength,
and that a measurement of the momentum of a particle must be performed with a probe
particle of zero frequency or zero momentum in order not to disturb the momentum state
of the particle [40].

Another limiting concept is interesting with respect to gravitation. The equivalence
principle appears valid only to a certain degree. It is well known that a test mass can only
be so large before it affects the surrounding spacetime, and becoming a perturbation on
the solution to the Einstein equations. However, it is also interesting to consider the other
limit as the test particle becomes lighter and lighter. The equivalence principle states
that a test mass greater than zero will follow a certain geodesic path in the spacetime
manifold. The equivalence principle would seem to state that in the limit as the test
mass goes to zero, all that would be remaining is the geometric path of the geodesic,
which is a timelike path within the region bounded by the light cone. The equivalence
principle is experimentally accurate down to very light particles. However, in the limit as
the test mass goes to zero, the particle would not follow the timelike geodesic path, but
would follow a null path on the light cone boundary itself. Therefore, at some point in
the limit as the test mass gets smaller, the equivalence principle will fail, and the particle
would evidently jump from the timelike geodesic path to a null path, two very separate

and distinct curves.
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In the Heisenberg picture, the expectation of a measurement of the anisotropy dy-

namic variables is given by the expression

d<z'> dz’
dt - <E>
—i 9
= /\Il(qa) (2—:2%> \II(Qa) \% |Hfaa‘qu
¢
N < 92>

2
l; /1

in accordance with the results of the classical theory, equation 8.13.

With respect to the “almost solutions” which are not on the constraint manifold,
another limiting procedure may be employed in order to obtain the correct solutions for
the dynamic operator commutator equations in the Heisenberg principle. Essentially,
the commutator equations may be measured with respect to states which are off of the
solution manifold, and therefore have non-vanishing commutators, and then brought to

the manifold by way of a limiting process, i.e.

(][, H]|=)

[1]

< [Q,H] >= lim

- 8.36
(@2 (B|E) (8:36)

This limiting process will obtain solutions when the limit is approached in the right

fashion, without commuting with zero constraint.
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Conclusion

The problem of cosmological anisotropy is an intriguing one. The anisotropic model is
the more general model allowed from the constraint equations. Therefore it would seem
probabilistically that at least some anisotropy would exist in observations, unless there
would be a physical reason for decay of anisotropy. The problem could be compared with
that of the cosmological constant A in the Einstein equations. The constant is allowed
into the equations and there are observations that suggest that A is indeed non-zero.
However, there is a very small upper limit on A given by observations of motions of
the planets in the solar system. Therefore, it is possible that there is some physical
reason that A is zero or nearly zero, as opposed to any value that it could possibly take.
With respect to anisotropy however, the Friedman-L.eMaitre isotropic cosmological model
complies with observations, yet is only a special case of Bianchi I models which admit

any values of anisotropy in general.
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We have found here, that given some initial distribution of the momentum of anisotropy,
the inflationary shock will reduce the mean value of the momentum as well as reduce
the mean expectation value of the anisotropic coordinate . The result gives insight
into observations of minimal anisotropy in the post-inflationary universe. Previously the
problem of dissipation of anisotropy in a model with zero curvature such as Bianchi I
has been difficult due to the fact that in minisuperspace the potential well restricting the
anisotropy was formed from the scalar curvature, as we have seen.

The effects of anisotropy may be expressed in terms of an effective energy density
quantity formed from the time derivative of the metric determinant (see [9]), where the

determinant is expressive of the scale factor. The effective energy is expressed as

1d 8

H? = (=—1 2= — 1

and the equation of state corresponding to the energy density is found to be

Pan ~ g~ = (vol) 2. (9.2)

Early work on the effects of dissipation of anisotropy and associated energy was performed
by Parker and Zel’dovich (see [48]). One is referred to this line of references to find
out more about particle creation in the early universe with respect to dissipation of
anisotropy.

The dissipation of anisotropy we have found to be related to the dispersion relations of
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wave mechanics, in that the wave function describing the probability density of anisotropy
coordinate suffered dispersion, and in particular a dispersion toward lower values of
anisotropy. We have found early on that dynamic anisotropy is the complement to the
theory of dynamic scale transformations, and together cover a large portion of the total
theory of dynamic cosmology. They are both quite different groups of motions, but
they have an interplay that originates in the form of the Lagrangian function and the
Hamiltonian function. The Lagrangian defined on the tangent space is useful for classical
equations of motion but the transition to the Hamiltonian on the cotangent mechanical
space was found to be very useful as always for transitions into quantum theory. The
literature on the relations between inflation, anisotropy, and scalar motions is extensive
and too large to consider completely here. However, a much more complete picture of
the system of our universe has been attained in this dissertation, and routes have been
opened for future work.

It has been determined that many of the important equations of the theory of quan-
tum mechanics may be applied to the problem of quantum gravity once the Hamiltonian
function has been found. In particular, the concepts of the Heisenberg picture and fur-
thermore that of the interaction picture have proven to be exceptionally useful, especially
for a Hamiltonian such as the one studied extensively here. The interaction picture has
been particularly useful here due to the fact that the effective potential term in the
Hamiltonian proportional to 2 becomes momentarily very very large at the early time

of inflation when the cosmological scale inflated by many orders of magnitude within
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a very short period of time. The fact that the same term is otherwise very small in
comparison has allowed us to apply the time-dependent perturbation theory of quantum
mechanics, along with the useful equation of interaction of perturbation theory.

The cosmic background radiation (CMB) is thought to be an image of the very early
universe when the high temperature and pressure were such that the matter was coupled
to radiation. When the universe expanded and cooled just enough for a decoupling to take
place, the radiation at that time was uncoupled from matter to release the background
radiation. Today, after expansion and cooling, the background radiation has cooled to
a temperature of about 3 degrees Kelvin, which is in the microwave frequency range
of the electromagnetic spectrum. The matter which decoupled from the radiation has
formed into galaxies and dark matter (the nature of which is speculative). The CMB
was discovered experimentally (and serendipitously) by Penzias and Wilson by way of
their famous microwave observations in 1965. The CMB was theoretically predicted
originally by LeMaitre’s big bang dynamic model of the universe. LeMaitre’s model also
predicted the Hubble redshift, which was observationally determined by Edwin Hubble.
The redshift is a result of Doppler shifts of galaxies which are all receding from one another
due to the overall expansion of the universe. The electromagnetic frequency signature of
the universe before decoupling was that of a black body spectrum because of compact
high energy conditions causing an equilibrium state of energy sharing. However, after
the decoupling era and the following expansion the radiation has cooled in accordance

with the % law, but has retained its black body character, although shifted down in its
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peak frequency.

The background radiation has a signature spectrum of black body radiation, which
signifies that there was thermodynamic equilibrium at the time of decoupling. The CMB
is also of extremely uniform intensity in observations over the celestial sphere, which
indicates that there is a high degree of isotropy in the universe. The Bianchi models
that we have studied have a theoretical anisotropy coordinate which would appear in the
observational surveys of the CMB as a redshift of the CMB that would have a dependency
on direction in the sky. There being a lack of such observations imply that there has
been decay of anisotropy, which as we have seen can be an indicator of the epoch that
the universe is in presently.

Current redshift surveys show large scale structure in the universe that theoretically
evolved from primordial conditions. Figure 9.1 shows results from studies by Huchra
et al which depict the departure of large scale structure from homogeneity. Large scale
structures are thought to be the remnant artifacts of primeval fluctuations in the original
fireball from the big bang.

Figure 9.3 represents the spatial frequency distribution of inhomogeneities in terms of
spherical harmonics. The theoretical spatial frequencies of the inhomogeneities are rep-
resented by two terms in the equation for the differential temperature variations referred

to as the Sachs-Wolfe and Integrated Sachs-Wolfe terms,

ST(F) _ ®(F) 2 [d .
TO— 302 +C—2/§(I)(T’,t)dt, (93)
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Figure 9.1: Large scale structures (inhomogeneities) are artifacts of quantum fluctuations
in the compact early universe.
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where 7 is the direction of the observation on the celestial sphere, and ® is the potential
fluctuations that appear in the Poisson equation for the mass density V2® ~ p.

There is no greater satisfaction that can be obtained from studying physics and ge-
ometry than that from seeing the both of them as one and the same entity, referred to
by J. A. Wheeler as geometrodynamics. It is indeed “magic without magic”, as Wheeler
put it, that a geometric 3-manifold has dynamical equations associated with it that can
determine future geometries from past ones, and vice versa.

Investigations into both classical and quantum theories of gravity and cosmology
have made considerable progress, and have proceeded too far not to have credibility as a
valid and convincing theory. There still remains challenging but at the same time exciting
problems that cosmology still faces. The theoretical work is undoubtedly leading to some
fundamental discoveries concerning the nature of time and subsequent re-definitions that
will be quite revolutionary and surprising. Cosmology has always been and will especially

be in the future a productive and fertile area for physics.
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Figure 9.3: Inhomogeneities represented as spatial frequency distributions over the celes-
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