
Abstract

HUANG, XIANZHENG. Robustness in Latent Variable Models. (Under the direction

of Dr. Marie Davidian and Dr. Leonard A. Stefanski.)

Statistical models involving latent variables are widely used in many areas of

applications, such as biomedical science and social science. When likelihood-based

parametric inferential methods are used to make statistical inference, certain distri-

butional assumptions on the latent variables are often invoked. As latent variables

are not observable, parametric assumptions on the latent variables cannot be veri-

fied directly using observed data. Even though semiparametric and nonparametric

approaches have been developed to avoid making strong assumptions on the latent

variables, parametric inferential approaches are still more appealing in many situa-

tions in terms of consistency and efficiency in estimation, and computational burden.

The goals of our study are to gain insight into the sensitivity of statistical inference

to model assumptions on latent variables, and to develop methods for diagnosing

latent-model misspecification to enable one to reveal whether the parametric infer-

ence is robust under certain latent-model assumptions. We refer to such robustness

as latent-model robustness.

We start with a simple class of latent variable models, the structural measurement

error models, to first tackle the problem. We define theoretical conditions under

which a certain degree of latent-model robustness is achieved and study some special

structural measurement error models analytically to gain insight into the sensitivity of

inference to latent-model assumptions under these specific contexts. Then we borrow



the idea of simulation-extrapolation (SIMEX), or remeasurement method, introduced

by Cook and Stefanski (1994) to develop an empirical diagnostic tool that is able to

reveal graphically whether or not robustness is attained under the imposed latent-

variable assumptions. Testing procedures are proposed as a numerical supplement

to the graphical diagnostic tool. These methods are then generalized and refined to

adapt to a more complex class of latent variable models called joint models. For this

generalization we focus on joint models that link a primary response, which can be a

simple response or a censored time-to-event, to an error-prone longitudinal process.

The performances of the proposed methods are demonstrated through application to

simulated data and data from medical studies.
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Chapter 1

Introduction and Models

1.1 Introduction

Models involving unobservable latent quantities are widely used in a host of ap-

plications. One example is the structural measurement error models where the latent

variable is the true value of a mismeasured regression predictor (Carroll et al., 1995,

sec. 1.2). Another example is the so-called “joint” models in which the longitudi-

nal response and endpoint are linked through shared dependence on latent random

effects (Henderson et al., 2000; Tsiatis and Davidian, 2004). These joint models can

be viewed as generalizations of structural measurement error models. Following Car-

roll et al. (1995, sec. 1.2), we refer to models involving unobservable random latent

variables as structural models.

Provided that the model for the latent variable is correctly specified, likelihood-

based approaches are appealing because they lead to consistent and efficient inference.

However, intuition suggests that misspecification of this model may compromise in-
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ference, although some recent empirical studies have exhibited striking robustness to

the assumption on the latent variable (Song et al., 2002). The data analyst faces the

difficulty that the extent to which inference may be sensitive to the choice of model

for unobservable latent variables is not known in a given problem. Techniques for

studying and diagnosing robustness in these models would thus be invaluable. We

present a framework for assessing model robustness in a class of structural latent

variable models.

We first focus on the particular subclass of structural measurement error models,

and propose practical strategies for diagnosing misspecification of the model for the

true predictor, the latent variable for this subclass. We then adapt the methods to

more general and complicated structural latent variable models, namely joint models.

To illustrate the proposed methods in the context of different structural latent variable

models, we demonstrate the methods using analytical examples, simulated data, and

data sets from several medical studies where these models are entertained.

In Section 1.2, the structural measurement error models are reviewed. We argue

that model robustness in this setting refers to lack of bias (asymptotically) in the

estimator for parameters of interest. In Section 1.3, we give the generic setup of two

types of joint models of our interest. Each model setup is followed by an example

from a medical study to which the proposed methods are later applied.
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1.2 Structural Measurement Error Models

We consider the so-called classical measurement error model. Let Y be the

response; Xq×1 and W q×1 be the true and observed predictor, respectively; and

W = X +U , where U q×1 is nondifferential measurement error (Carroll et al. 1995,

Section 1.6) that follows a multivariate normal N(0,σ2
U
) with σ2

U
known. In practice

when σ2
U

is unknown but there are replicated measures on W , estimating σ2
U

adds

little variation or complexity in implementing the proposed methods. Assuming the

conditional density of Y given X = x is fY |X (y|x;θ), the joint density of (Y,W )

given X = x is

fY, W |X (y,w|x;θ) = fY |X (y|x;θ)fW |X (w|x;σ2
U
), (1.1)

where the conditional density ofW givenX, fW |X (w|x;σ2
U
), is the N(x, σ2

U
) density.

To focus on the choice of model for X, we assume the densities in (1.1) are known

up to θp×1. Inference on θ is of central interest.

Denote the independent random pairs, {Yi,W i}n
i=1, as a realization of the mea-

surement error model, with W i = X i + U i, i = 1, . . . , n. Two ways of viewing the

X i, i = 1, . . . , n, lead to two types of measurement error models, functional models

and structural models (Carroll et al., 1995, sec. 1.2). In a functional model, the X i

are viewed as unknown parameters, and the likelihood of the observed data based on

model (1.1) is

L(θ,X1, . . . ,Xn) =
n∏

i=1

fY, W |X (Yi,W i|X i;θ). (1.2)

In a structural model, theX i are regarded as random variables. Under the assumption

3



that the density of X is f
(a)
X (x; τ (a)), depending on parameter τ (a),

fY, W (y,w;θ, τ (a)) =

∫
fY |X (y|x;θ)fW |X (w|x;σ2

U
)f

(a)
X (x; τ (a)) dx, (1.3)

is the modeled marginal density of (Y,W ), and the corresponding likelihood is

L(θ, τ (a)) =
n∏

i=1

fY, W (Yi,W i;θ, τ
(a)). (1.4)

An example of a situation where such a model is suitable is the analysis of car-

diovascular disease outcomes in the Framingham study (Kannel et al., 1986), which

followed subjects for development of coronary heart disease (CHD) over several exam

periods. An objective is to characterize the relationship between a response, an in-

dicator of evidence of CHD at the end of an eight-year follow-up period after the

second exam visit, and long-term systolic blood pressure (SBP). One may postulate a

structural measurement error model, where the true predictor, long-term SBP, which

cannot be measured directly, is viewed as a latent variable with some distribution in

the population of subjects, information on which is only available through contami-

nated measurements of SBP taken during clinic visits.

Functional modeling makes minimal assumptions on the set of unobserved pre-

dictors and thus is generally applicable. However, functional-model inference is usu-

ally problematic. Maximizing the functional likelihood (1.2) with respect to θ and

X1, . . . ,Xn is often difficult and seldom results in consistent estimator for θ. Con-

sequently, many functional-model inference methods are moment methods or condi-

tional likelihood methods. Fuller (1987) and Carroll et al. (1995) describe a number

of functional model inference methods.
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Whereas historically, functional models and functional-model methods have been

studied more than structural models and methods, recent emphasis has been on struc-

tural models and methods. The appeal of structural modeling is mainly due to the

fact that inference can be based directly on the likelihood (1.4), thereby simplifying

estimation relative to that in functional modeling, apart from the numerical problem

of evaluating the integral in (1.3). Maximum likelihood estimation also offers the

attraction of asymptotic efficiency when the assumed parametric model f
(a)
X (x; τ (a))

is correct.

A reason often cited for avoiding parametric structural modeling is that misspec-

ification of the distributional model for X can result in inconsistent estimators for θ.

With regard to robustness of inference on θ to misspecification of this model, semi-

parametric modeling methods (Roeder, Carroll, and Lindsay, 1996; Schafer, 2001)

and flexible-parametric modeling methods (Carroll, Roeder, and Wasserman, 1999;

Richardson, 2002) provide some solutions. However, with respect to simplicity of

implementation and efficiency, they can be more like functional methods than para-

metric structural methods. Hence, parametric structural modeling is preferable in

practice as long as the analyst may be assured that the inferences are insensitive to

an incorrect specification of the distributional model.

To study robustness to model specification on X, we assume that measurement

error exists with known variance σ2
U

(6= 0) and that the unknown density of X is

possibly misspecified in (1.4). It should be clear that only the interaction of these two

factors can result in inconsistency of the estimator for θ. Accordingly, we characterize

model robustness as lack of large-sample bias in this estimator, regardless of the size

5



of measurement error variance.

1.3 Joint Models

It is often of interest to characterize the association of a primary endpoint and a

longitudinal process, as well as the features of the longitudinal process. One popular

approach to tackle this dual-task problem is to adopt a regression model for the

primary endpoint and a mixed-effect model for the longitudinal process, which are

linked through joint dependence on latent random effects. It has been demonstrated

in the literature that, with appropriate parametric modeling of the distribution of

random effects, joint modeling can gain efficiency and provide insight into underlying

features of the longitudinal process. Similar to what is pointed out in Section 1.2,

one concern in this approach is the sensitivity of inference on the primary regression

parameters to the model assumptions on the random effects.

For definiteness, we study two types of joint models that are of great interest in

medical and public health application. The first type is for an error-prone longitudinal

response and a primary simple response (Li et al., 2004; Wang et al., 2000). The

second type is for an error-prone longitudinal response and a censored time-to-event

(Song et al. 2002; Tsiatis and Davidian, 2001, 2004). Hereafter we refer to the first

type as a simple-response joint model and the second type as a censored-endpoint

joint model. Some common notations used in both joint models are given first.

Let i(= 1, . . . , n) be the subject index, and j(= 1, . . . ,mi) be the time index. The

vector of longitudinal measures for subject i is denoted by W i = (Wi1, . . . ,Wimi
)T ,

6



recorded at times ti = (ti1, . . . , timi
)T . The intra-subject errors, Uij for i = 1, . . . , n

and j = 1, . . . ,mi, are independent and identically distributed (i.i.d.) as normal with

mean zero and variance σ2
U
. Define U i = (Ui1, . . . , Uimi

)T , then U i ∼ Nmi
(0, σ2

U
Imi

),

where Imi
is the mi × mi identity matrix. Let Ω be the vector of all unknown

parameters in the joint model and θ be the vector of primary regression parameters.

Inference on θ is of central interest.

In the simple-response joint models, the joint model consists of two component

models: a primary regression model relating the response Yi and the p×1 unobservable

explanatory variablesX i with density denoted by fYi|X i
(Yi|X i;θ); and a mixed-effect

model relating the longitudinal measurements W i and X i, the unobserved subject-

specific random effects. We consider a linear mixed model of the form W i = DiX i +

U i, where Di is an mi × p (mi > p) design matrix of rank p. It is further assumed

that given X i, Yi and W i are independent. Define by f
(a)
X i

(X i; τ
(a)) the density of

the assumed model for X i, where τ (a) is the vector of parameters in the assumed

model. In this case, Ω = (θT , τ (a)T , σ2
U
)T ; and the contribution to the observed-data

likelihood from subject i is

fYi, W i
(Yi,W i;Ω) =

∫
fYi|X i

(Yi|xi;θ)fW i|X i
(W i|xi;σ

2
U
)f

(a)
X i

(xi; τ
(a))dxi, (1.5)

where fW i|X i
(w|xi;σ

2
U
) is the density of Nmi

(Dixi, σ
2
U
Imi

).

In the censored-endpoint joint models, the first component model is a model for

the time-to-event, denoted by the random variable T. For example, one may specify
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a proportional hazards model with hazard rate given by

λi(u) = lim
h→0

h−1P (u ≤ Ti < u+ h|Ti ≥ u,Xi, Fi, Ci, ti)

= λ0(u) exp{βXi(u) + ιFi}, (1.6)

where λ0(u) is an unspecified baseline hazard function, Xi(u) is the inherent value of

a longitudinal response at time u, Fi is the value of the time-independent covariate, β

and ι are parameters. The observed survival data on subject i include Vi = min(Ti, Ci)

and ∆i = I(Ti ≤ Ci), where Ti and Ci are the (potential) time to event and censoring

time, respectively, and I(·) is the indicator function. Censoring, covariate errors, and

timing of measurements are assumed noninformative. The second component model

relates the observed longitudinal measures Wij to the inherent longitudinal measures

Xi(tij), Wij = Xi(tij) + Uij. It is further assumed that Xi(u) depends on a p × 1

vector of subject-specific random effects, αi, via the relationship Xi(u) = Di(u)αi,

for instance, whereDi(u) is a 1×p design matrix. Define by f (a)
αi

(αi; τ
(a)) the assumed

model for αi. In this case Ω = (θT , τ (a)T , λ0, σ
2
U
)T and θ = (β, ι)T . The contribution

to the observed-data likelihood from subject i is

f(Vi,∆i,W i, ti, Fi;Ω) =

∫
f(Vi,∆i|αi, Fi;θ, λ0)fW i|αi

(W i|αi, ti;σ
2
U
)

f (a)
αi

(αi|Fi; τ
(a))dαi, (1.7)

where fW i|αi
(w|αi, ti;σ

2
U
) is the density of Nmi

(Diαi, σ
2Imi

), and assuming the haz-

ard rate in (1.6),

f(Vi,∆i|αi, Fi;θ, λ0) = [λ0(Vi) exp{βDi(Vi)αi + ιFi}]∆i

exp
[
−
∫ Vi

0

λ0(u) exp{βDi(u)αi + ιFi}du
]
.

8



An example where the simple-response joint model is appropriate is the Study of

Women’s Health Across the Nation (SWAN) (Sowers et al., 2003). Two objectives of

SWAN study are to characterize the association between the evidence of osteopenia,

a binary endpoint, and the underlying hormone patterns over the menstrual cycle

in peri-menopausal women, and to understand the underlying hormone patterns of

this population, which can only be observed in this study through the longitudinal

progesterone levels derived from urine (PDG).

The censored-endpoint joint model is appropriate for data from the AIDS Clinical

Trials Group (ACTG) Protocol 175 (Hammer et al., 1996). In this study, more than

2000 HIV-1-infected subjects enrolled between December 1991 and October 1992

were followed for their CD4 counts from week 8, and every 12 weeks thereafter, until

November 30, 1994. The “event” defined in this study is a composite of ≥50% decline

in CD4, progression to AIDS, or death. It is of interest to study the prognostic value

of CD4 counts and its inherent trajectory over time for such a population.

In both of the proceeding examples, the longitudinal measurements, PDG and

CD4 counts, are subject to assay error and intra-subject variation so that the true

longitudinal process is unobservable. The joint model characterizes the true longitu-

dinal process as an “inherent” trajectory represented above as Di(u)αi, depending

on unobserved latent random effects, plus a deviation due to these sources. Interest

focuses on the relationship between the “inherent” trajectory and the simple-response

or censored endpoint. Thus the model relating the simple-response endpoint or the

censored endpoint to the longitudinal process depends on these unobserved latent

variables.
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Among many others, Verbeke and Lesffre (1997) studied the effect of misspecify-

ing the model for random effects in linear mixed models for longitudinal data, and

Heagerty and Kurland (2001) explored the impact of such model misspecification

in generalized linear mixed models. The models they considered can be viewed as

one of the two component models involved in joint models. Relatively limited study

has been done on the consequences of the violation of the model assumption on the

random effects in the context of joint models. Wang et al. (2000) considered the

simple-response joint models and proposed three methods to estimate the primary

regression parameters. One key assumption in their methods is that the random ef-

fects in the longitudinal model follow a multivariate normal distribution. A natural

concern is the effect on inference when this normality assumption is violated. Li et

al. (2004) also studied the simple-response joint models and proposed conditional

score estimators (CSE) for the primary regression parameters, which require no as-

sumption on the random effects. The drawbacks with the CSE approach are that

one cannot capture the nature of the random-effect distribution and that the infor-

mation in longitudinal data is not used efficiently. The latter drawback is common

for semiparametric methods, like the conditional score method, in which the distri-

bution of the random effects is left unspecified. Tsiatis and Davidian (2001) also

proposed CSE for the primary regression parameters in the censored-endpoint joint

model. Song et al. (2002) considered the censored-endpoint joint model and modeled

the random effects using the seminonparametric (SNP) representation of Gallant and

Nychka (1987) to gain flexibility and efficiency. Moreover, they observed in simula-

tion studies remarkable robustness of the maximum likelihood estimator (MLE) to
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the normality assumption on the random effects. Hsieh et al. (2006) investigated this

robustness aspect of joint models via simulation and provided a heuristic explanation

for this phenomenon.

1.4 A Brief Tour

As noted in Section 1.1, we start with structural measurement error models to

present the framework for assessing latent-model robustness. In Chapter 2, we de-

fine two theoretical conditions needed to achieve robustness. We use several specific

measurement error models as examples to demonstrate how to check these conditions

and by so doing understand the reasons for (non)robustness. Even though these the-

oretical tools can shed light on the sensitivity of inference to model assumptions on

the true predictors in structural measurement error models, checking the conditions

analytically is often involved. A graphical device better suited to practical use to

assess latent-model robustness is given in Chapter 3. This graphical diagnostic tool

leads to a way of examining the theoretical robustness conditions empirically. We

also present in Chapter 3 several test statistics that can provide numerical evidence

of (non)robustness.

The graphical device and test statistics are applied to structural measurement

error models in Chapter 4. We use examples, some of which also appear in Chapter 2,

to demonstrate the performance of these methods. In addition to simulated examples,

we also implement the methods to Framingham study data. For these data we are

interested in the robustness of estimates for the regression parameter in a primary

11



model relating evidence of coronary heart disease to long-term systolic blood pressure.

In the analysis, the long-term systolic blood pressure is the latent variable that is

linked to the observed systolic blood pressure via an additive measurement error

model.

In Chapter 5 we adapt these methods to joint models. We show in Section 5.1

that inference on the primary regression parameters is expected to be robust to model

assumptions on latent variables in the mixed effects model for the longitudinal data,

as well as to intra-subject random errors when there is sufficient longitudinal infor-

mation. Due to some extra complexity in joint models compared to measurement

error models, it becomes more computationally expensive to implement the meth-

ods demonstrated in Chapter 4, especially for the censored-endpoint joint models.

To reduce computational burden when examining robustness under this complicated

setting, we propose a refined graphical diagnostic method. This, along with the use

of the test statistics defined in Chapter 3, is illustrated via simulated examples in

Sections 5.2 and 5.3. Section 5.4 presents the analysis of SWAN data and ACTG

175 data. Because model fitting and parameter estimation for these data sets has

been carried out by other authors (for example Li et al., (2004) analyzed SWAN

data and Song et al., (2002) analyzed ACTG 175 data), in our analyses we focus on

demonstrating how to use the graphical diagnostic tool and test statistics to reveal

the potential impact of different model assumptions on random effects in these joint

models.

We conclude with a summary of our work in Chapter 6. Some unresolved issues

in the current study and thoughts on related future research are also discussed.

12



Chapter 2

Theoretical Robustness

In this chapter we focus on structural measurement error models. The view of

model robustness described in Section 1.2 is formulated theoretically and a strategy

for checking robustness is developed. The theory and methods are illustrated using

several specific structural measurement error models.

2.1 Full Latent-Model Robustness

To formalize this idea, without loss of generality we henceforth take the true

predictor X and its error-prone version W to be scalars, which suffices for the pur-

pose of motivating and illustrating the proposed methods. We first define exact, or

full, latent-model robustness. Using the assumed model for X given by the density

13



f
(a)
X (x; τ (a)), consider the structural-model likelihood

L(θ, τ (a)) =
n∏

i=1

fY, W (Yi,Wi;θ, τ
(a))

=
n∏

i=1

∫
∞

−∞

fY |X(Yi|x;θ)fW |X(Wi|x;σ2
U
)f

(a)
X (x; τ (a)) dx; (2.1)

the maximum likelihood estimators (MLEs) for (θ,τ (a)) under this assumed structural

model are the values maximizing (2.1). Denote by θ∗ the true value of θ determining

the conditional distribution of Y given X. Let

ψ(y, w,θ, τ (a)) =

(
(∂/∂θ) log

{
fY, W (y, w;θ, τ (a))

}

(∂/∂τ (a)) log
{
fY, W (y, w;θ, τ (a))

}

)
, (2.2)

and define θ( · ) and τ (a)( · ) as functions of σU implicitly via

E[ψ{Y,W,θ(σU), τ (a)(σU)}] = 0. (2.3)

The expectation in (2.3) is with respect to the distribution of (Y, W ) with density

fY, W (Y,W ;θ) =

∫
∞

−∞

fY |X(Y |x;θ)fW |X(W |x;σ2
U
)f ∗

X
(x) dx,

where f ∗

X
(x) is the true density of X.

We say that the structural model MLE for θ is robust to choice of model for X

provided

θ(σU) ≡ θ∗, for σU ≥ 0. (2.4)

It is worth pointing out that the model forX does not have to be correctly specified

for robustness of the structural model MLE for θ. For example, if the assumed model

for X is flexible enough such that the moments of the true model, on which θ(σU)

depends, are estimated consistently, then robustness can be achieved in some simple
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models. Two examples given next illustrate the consequence of using models with

different degree of flexibility for X.

Example 2.1: Y given X follows a normal distribution with mean β0+β1X. Assume

Y |X = x ∼ N (β0 + β1x, σ
2
ǫ
). If one assumes X to be normal, then normality of X

is not necessary for consistency of the structural MLE for θ = (β0, β1, σǫ)
T (Fuller,

1987, p 17). The explanation lies in the facts that the regression coefficients are

functions of the first- and second-order moments and that the population moments

are consistently estimated regardless of the true distribution of X. The key to this

positive finding is that the assumed normal model for X is flexible enough to permit

consistent estimation of all required moments.

We now consider a less flexible normal model. Specifically, suppose that the

distribution of X is assumed to be normal with mean equal to the variance. That is,

assume that

f
(a)
X (x; τ (a)) =

1√
2πτ (a)

exp
{
−(x− τ (a))2/2τ (a)

}

is the model used to construct the likelihood (2.1) and define estimators for θ and

τ (a). The functions θ( · ) and τ (a)( · ) defined through (2.3) give the probability limits

(n→ ∞) of the MLEs for θ and τ (a). If the true distribution of X is not normal with

mean and variance equal, then the assumed model is incorrect and too restrictive to

permit consistent estimation of the first two moments of the true distribution of X.

This will lead to potential bias in the estimator for θ, with the magnitude of the bias

generally increasing with increasing σU .

Figure 2.1 (a)–(b) displays plots of the limiting MLEs for θ and τ as functions
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of σU for three true distributions of X, N(1, 1), N(0.5, 1), and N(1.5, 1), when the

true values of the parameters in the model for Y |X are β0 = 0, β1 = 1, and σǫ = 1.

In the latter two cases, the assumed model is incorrect and too restrictive compared

to the true density. As shown in the plots, the misspecification and lack of flexibility

in modeling X result in asymptotic biases in θ̂ that increase in magnitude as σU

increases.

In the foregoing example, we consider three true distributions of X while fixing

the assumed model for X at a very restrictive distribution. In the next example,

we fix the true distribution of X and compare the structural MLEs under several

assumed models for X.

Example 2.2: Y given X follows a Bernoulli distribution with mean probit(β0 +

β1X). Assume Y is binary and P (Y = 1|X = x) = Φ(β0 + β1x), where Φ( · ) is the

standard normal cumulative distribution function, and the true distribution f ∗

X
(x) of

X is the mixture normal, 0.1N(2.35, 0.642) + 0.9N(−0.26, 0.622). In this case θ∗ =

the true value of (β0, β1)
T = (0, 1)T , and the true density f ∗

X
(x) is right-skewed with

a small secondary mode.

Three assumed models for X are chosen to construct the likelihood (2.1). First,

assume X ∼ N(µX, σ
2
X
). Second, assume X follows a distribution with the density

defined as the second-order seminonparametric (SNP) density given by

1

η
φ
(x− ξ

η

){
a0 + a1

(x− ξ

η

)
+ a2

(x− ξ

η

)2}2

, (2.5)

where φ(.) is the standard normal density function, (ξ, η, a0, a1, a2) are unknown
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parameters of the density, and (a0, a1, a2) are constrained so that (2.5) integrates

to one. The general SNP density provides a flexible family that is able to capture

certain features related to high-order moments that deviate from those of a normal

distribution, and includes the normal as a special case. Third, assume X follows a

mixture normal distribution. Compared to the true model of X, the first assumed

model is incorrect and probably too restrictive, the second assumed model is also

incorrect but more flexible than the first one, and the third model class includes the

true distribution f ∗

X
(x).

Denote the densities of (Y , W ) in (2.1) corresponding to the three assumed models

for X as f
(n)
Y , W (Y,W ;θ, τ (n), σU), f

(s)
Y , W (Y,W ;θ, τ (s), σU), and f

(m)
Y , W (Y,W ;θ, τ (m), σU),

i.e., the joint density assuming X follows a normal distribution, a distribution with

SNP density (2.5), and a mixture normal distribution, respectively, where θ=(β0, β1)
T ,

τ (n) = (µx, σx)
T , τ (s) = (ξ, η, a0, a1, a2)

T , and τ (m) = (µ1, σ1, µ2, σ2, α)T . The in-

tegral in (2.1) can be solved analytically when X is assumed to be normal or mixture

normal but not when modeling X with SNP. The resulting joint densities for (Y,W )

are given in the Appendix A.

Due to the complexity of these joint densities, it is tedious, if possible at all, to

derive (2.2) analytically and computationally inefficient to find the functions θ( · ) and

τ ( · )( · ) by solving (2.3). Accordingly we maximize the expectations E{log(f
(n)
Y ,W )},

E{log(f
(s)
Y ,W )}, and E{log(f

(m)
Y ,W )} to obtain these functions of σU numerically. All

three expectations are with respect to the true joint distribution of (Y , W ), of which

the density is given by (A.5) with τ (m) replaced by τ ∗.
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Denote by θ(n)(σU), θ(s)(σU) and θ(m)(σU) the parameter values defined by (2.3)

under these assumed models for X. Theoretically, θ(m)(σU) ≡ θ∗, as it results from

the correct modelling. Hence we use it as the gold standard to which θ(n) and θ(s)

are compared. The differences, θ(n) − θ(m) and θ(s) − θ(m), are plotted against σU in

Figure 2.2 (a)–(b). The component curves in θ(n) − θ(m) show deviation away from

the zero-reference line that becomes more pronounced as σU increases. In contrast,

the component curves in θ(s) − θ(m) are flatter and stay closer to the zero-reference

line along the range of σU . The plots indicate that θ(s)(σU) is much more robust than

θ(n)(σU) and closely matches θ(m)(σU).

Figure 2.2 (c)–(d) are Monte-Carlo estimated finite-sample versions of Fig. 2.2 (a)–

(b). In the simulation study, 100 datasets each of size 500 were generated from the

true structural measurement error model with the same parameter values given above.

For each dataset, θ̂ was computed by maximizing (2.1), depending on the assumed

model for X. The expectations, E(θ̂(·)), are estimated by the corresponding Monte-

Carlo averages. Clearly, no procedure can do better than the true-model estimator,

θ̂(m), and we again use it as the gold standard to which θ̂(n) and θ̂(s) are compared.

The Monte-Carlo averages of the differences, θ̂(n) − θ̂(m) and θ̂(s) − θ̂(m), as functions

of σU are depicted in Figure 2.2 (c)–(d). Similar to the observations from Figure 2.2

(a)–(b), the component curves in θ̂(n) − θ̂(m) deviate from the zero-reference line

more dramatically as σU increases, while the component curves in θ̂(s) − θ̂(m) overlap

with the flat zero-reference line closely. This indicates the robustness of θ̂(s) and the

nonrobustness of θ̂(n).
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2.2 First-order Latent-Model Robustness

The condition for robustness in (2.4) is not easily verified except in very simple

models. Also, it is not obvious that it can be satisfied in general, without making

some assumptions on the true distribution of X, except in simple models. Thus its

utility is limited. However, note that if (2.4) is satisfied, then the derivatives of θ(σU)

with respect to σU of any order are identically 0. More generally, whether (2.4) is

satisfied or not, θ(σU) has the MacLaurin series expansion (for σU near 0)

θ(σU) = θ∗ +
σ2

U

2
θ′′(0) + o

(
σ2

U

)
.

Thus, a necessary, first-order condition for robustness is that θ′′(0) = 0. This condi-

tion is somewhat easier to verify than (2.4). The required derivatives θ′′(0) can be

obtained in principle by implicit differentiation as in Stefanski (1985). The following

two examples illustrate the first-order condition.

Example 2.3: First-order latent-model robustness of location-scale models in simple

linear regression. Consider the simple linear regression model in which Y given X is

N (β0 + β1X, σ
2
ǫ
). Suppose that the distribution of X is modeled with a location-scale

family; that is,

fX (x; τ ) = τ2h(τ1 + τ2x)

for some fixed, known, but otherwise arbitrary density h(·). For this model it can be
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shown that θ′′(0) is a non-singular matrix multiple of the vector




τ ∗2β
∗

1E

{
h′(τ ∗1 + τ ∗2X)

h(τ ∗1 + τ ∗2X)

}

β∗

1 + τ ∗2β
∗

1E

{
Xh′(τ ∗1 + τ ∗2X)

h(τ ∗1 + τ ∗2X)

}

0



, (2.6)

where β∗

1 is the true value of the slope parameter and τ ∗1 and τ ∗2 are the probability lim-

its of the MLEs for τ1 and τ2 in the location-scale model in the case of no measurement

error. Regardless of whether the true density of X is in the assumed location-scale

family, τ ∗1 and τ ∗2 satisfy the location-scale (asymptotic) likelihood equations

E

{
h′(τ ∗1 + τ ∗2X)

h(τ ∗1 + τ ∗2X)

}
= 0, (2.7)

E

{
Xh′(τ ∗1 + τ ∗2X)

h(τ ∗1 + τ ∗2X)

}
+

1

τ ∗2
= 0. (2.8)

Equations (2.7) and (2.8) imply that (2.6) is equal to 0. Thus, estimation of θ =

(β0, β1, σǫ)
T in the simple linear regression measurement error model is first-order

robust for arbitrary location-scale models for the distribution of X. The robustness

associated with the normal distribution assumption noted in Example 3.1 is a special

case of the first-order robustness of location-scale families in general.

Example 2.4: First-order latent-model robustness of the normal distribution model

in quadratic regression. Consider the simple quadratic regression model in which Y

given X is N (β0 + β1X + β2X
2, σ2

ǫ
). Suppose that the distribution of X is modeled as

N(τ1, τ2). For this model it can be shown that θ′′(0) is a non-singular matrix multiple
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of the vector



−2β∗

2τ
∗

2 + β∗

1E(X) + 2β∗

2E(X2) − 2β∗

2τ
∗

1E(X) − β∗

1τ
∗

1

−β∗

1τ
∗

2 − 4β∗

2τ
∗

2E(X) − β∗

1τ
∗

1E(X) − 2β∗

2τ
∗

1E(X2) + β∗

1E(X2) + 2β∗

2E(X3)

−6τ ∗2β
∗

2E(X2) − 2τ ∗2β
∗

1E(X) + β∗

1E(X3) + 2β∗

2E(X4) − β∗

1τ
∗

1E(X2) − 2β∗

2τ
∗

1E(X3)

0



,

(2.9)

where β∗

1 and β∗

2 are the true values of the regression parameters, and τ ∗1 and τ ∗2 are

the probability limits of the MLEs for τ1 and τ2 in the N(τ1, τ2) model in the case of

no measurement error. Thus τ ∗1 = E(X) and τ ∗2 = E(X2) − {E(X)}2 = σ2
X
.

The fourth component of (2.9) is identically 0. Substituting τ ∗1 = E(X) and

τ ∗2 = E(X2)−{E(X)}2 = σ2
X

in (2.9) and simplifying reveals that the first component

of (2.9) is also identically 0. The second component of (2.9) reduces to 2β∗

2σ
3
X
κX, 3

where κX, 3 is the skewness ofX. The third component of (2.9) simplifies to β∗

1σ
3
X
κX, 3+

2β∗

2 [σ4
X
{κX, 4 − 3} + 3µXσ

3
X
κX, 3] where κX, 4 is the kurtosis of X. Thus, estimation of

the coefficients in the quadratic model with an assumed normal model for X is first-

order robust in general only if the distribution of X satisfies κX, 3 = 0 and κX, 4 = 3. Of

course, if the model for X is correctly specified, that is, if X is normally distributed,

then X has skewness=0 and kurtosis = 3 and all components of (2.9) are 0.

Both full robustness and first-order robustness are valuable analytic constructs

for understanding sensitivity of inference to model misspecification. First-order ro-

bustness is easier to assess than full robustness, but is still quite involved for many

models. The more relevant problem for data analysis is assessing the robustness to a

choice of model for X in a particular application. We describe a practical approach

in the context of structural measurement error models in the next chapter.
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Figure 2.1: Figures (a)–(b) illustrate Example 2.1, plots of β0(σU) and β1(σU) for
assumed model N(τ (a), τ (a)) and three true X distributions, N(1, 1) (solid line),
N(0·5, 1) (dashed line) and N(1·5, 1) (dashed-dotted line); (c)–(d) single-sample re-
measurement versions of (a)–(b) as described in Example 4.1.
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Figure 2.2: Plots for Example 2.2 with Y |X linear-probit. (a)–(b), θ(n)(σU)−θ(m)(σU)
and θ(s)(σU) − θ(m)(σU); (c)–(d) Monte-Carlo estimates based on 100 replicates, of
finite-sample, n = 500, version of (a)–(b). The solid line and the dashed line corre-
spond to the normal modelling and seminonparametric modelling, respectively. The
dotted line is the reference line.

23



Chapter 3

Remeasurement Method and Test

of Robustness

This chapter first reviews the remeasurement method, or simulation-extrapolation

(SIMEX) method, as preparation for its use in diagnosing latent-model robustness in

the following chapters. Then testing procedures for assessing latent-model robustness

are developed based on the remeasurement method.

3.1 Remeasurement Method

The remeasurment method was developed originally for measurement error mod-

els. Thus it is natural, and notationally easier, to review it first in the context of such

models. The generalization of the remeasurement method to more complex latent

variable models is discussed in Chapters 4 and 5.

The remeasurement method (Cook & Stefanski, 1994; Stefanski & Cook, 1995;
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Carroll et al., 1995, Ch. 4) is a simulation-based technique for determining the

effects of measurement error, such as bias and variance, on a statistic. The idea is

that the effects of measurement error from a particular dataset are determined by

computing the statistic on simulated “remeasured” data sets, in which the variables

measured with error are further contaminated with Monte-Carlo-generated, pseudo-

measurement errors. Once the dependence of the statistic on the variance of the added

pseudo-measurement errors is estimated using simple regression models, the biasing

effects of measurement error can be lessened by extrapolating the fitted regression

model to the case of no measurement error.

The discussion of theoretical robustness in Chapter 2 shows that, when an inad-

equate model for X is assumed, the bias in θ̂ is manifested by a nonconstant plot of

θ(σU). With a single data set there is only one true error variance σ2
U

and only one cal-

culated statistic, thus at first blush it appears that empirically mimicking the theory

in Chapter 2 is not possible. However, data sets with different levels of measurement

error can be created by simply adding noise to those variables measured with errors.

Using the remeasurement method, one can construct empirical versions of the plots

shown in Chapter 2 and thus check for lack of robustness. Specifically, this is done

via the following four steps, in which we assume W and X are scalars.

Denote the observed data from the measurement error models defined in Section

1.2 as Q , {Qi}n
i=1 , {Yi,Wi}n

i=1. Then for each of several chosen positive constant

values of λ :

• Step 1. For b = 1, . . . , B, generate the bth λ-remeasured data, denoted by

25



{Qb,i(λ)}n
i=1 , {Yi,Wb,i(λ)}n

i=1, in which Wi are replaced by

Wb,i(λ) = Wi +
√
λσUZb,i, i = 1, . . . , n, (3.1)

where Zb,i (i = 1, . . . , n) are i.i.d. standard normal random errors.

• Step 2. Estimate the parameters based on {Qb,i(λ)}n
i=1. Denote the estimate

for θ as θ̂b(λ), b = 1, . . . , B.

• Step 3. Compute θ̂B(λ) =
∑B

b=1 θ̂b(λ)/B.

• Step 4. Plot θ̂B(λ) versus λ ≥ 0, where θ̂B(0) is the estimate based on the

observed data Q. We call such plots SIMEX plots in the sequel.

In practice σ2
U

is usually unknown but replicate measurements of X are available.

In this case σU in (3.1) is substituted by its estimate. For example, in the structural

measurement error model described in Section 1.2, suppose there are mi replicate

measures of Xi, then an estimator for σ2
U

is given by (Carroll et al. 1995),

σ̂2
U

=

∑n
i=1

∑mi

j=1(Wij −W i·)
2

∑n
i=1(mi − 1)

, (3.2)

where W i· = n−1
∑mi

j=1Wij. In the joint models defined in Section 1.3, an estimate for

σ2
U

used in generating remeasured data is the estimated intra-subject error variance

σ̂2
U

obtained along with the other parameter estimates in the joint models based on

the observed data.

When remeasurment is used to assess and reduced bias, there is an extrapolation

step that entails modeling θ̂B(λ) as a function of λ ≥ 0 and extrapolating the fitted

model to λ = −1.
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For our purpose of diagnosing latent-model robustness we do not need the extrap-

olation step even though we still use the name SIMEX or remeasurement method to

refer to our diagnostic method. Our diagnostic method exploits the fact that, if

fY, W (Y,W ;θ, τ (a)) =

∫
fY |X(Y |x;θ)fW |X(W |x;σ2

U
)f

(a)
X (x; τ (a))dx

is a correct model for (Y,W ), then

fY, W (λ){Y,W (λ);θ, τ (a)} =

∫
fY |X(Y |x;θ)fW |X{W |x; (1 + λ)σ2

U
}f (a)

X (x; τ (a))dx

is a correct model for (Y,W+λ1/2σUZ) for all λ > 0, where Z ∼ N(0, 1) independently

of (Y,W ). Consequently, if the assumed model for X is correct, or robust in the sense

defined in Chapter 2, an estimator for θ derived from the latter model fitted to

remeasured data {Yi,Wi + λ1/2σUZi}n
i=1 should be consistent for θ regardless of the

size of λ, and therefore should exhibit no dependence on λ. Conversely, if the model

is incorrect and nonrobust, then absolute bias will tend to increase with increasing

measurement error, and this will be manifested by a dependence on λ. For simulation-

extrapolation estimation, Carroll et al. (1995) recommend taking λ ∈ [0, λmax] with

1 ≤ λmax ≤ 3. For our diagnostic purposes, we take λmax = 1 or 3 in most of our

examples. Note that the added variance is λσ2
U
. Thus, if σ2

U
is small, the amount of

added noise will also be small provided λ is not extremely large.

Note that our method is not specific to parametric likelihood estimation. For

example, if
∑
ψ(Yi,Wi,θ, τ

(a), σ2
U
) is a correct or robust estimating equation for θ,

the same is true of
∑
ψ{Yi,Wb,i(λ),θ, τ (a), (1 + λ)σ2

U
}, and robustness of the M-

estimator obtained from ψ(·) can be checked with the remeasurement method. Hence,

even though in Chapter 2 we consider MLEs and their asymptotic limits, one may
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also diagnose other estimators for robustness. With this understanding, we next

give an improved version of the remeasurement method and several test statistics for

assessing robustness without restricting the discussion to measurement error models

or to MLE.

The simulation step given above requires estimating θ and other parameters in

the full parameter vector Ω repeatedly B times at each fixed λ > 0. This can be

very computationally prohibitive, especially for estimators that are computationally

intensive. We can reduce the computational burden by replacing Steps 2 and 3 above

with Step 2* implemented in the following way. Suppose, based on the observed data

Q, an estimator for Ω is obtained by solving the system of estimating equations,

n∑

i=1

ψ(Qi;Ω) = 0, (3.3)

where the summand ψ(Qi;Ω) satisfies

E
[
ψ{Qi;Ω(0)}

]
= 0. (3.4)

Denote the estimator by Ω̂(0), where the “0” indicates that no additional noise has

been added to the data. Now, instead of taking Steps 2 and 3, in Step 2*, for a fixed

λ > 0, obtain the estimator Ω̂(λ) by solving the averaged estimating equations

n∑

i=1

ψ(B){Q(B)

i (λ);Ω} = 0, (3.5)

where

ψ(B){Q(B)

i (λ);Ω} =
1

B

B∑

b=1

ψ{Qb,i(λ);Ω}, (3.6)

and Q(B)

i (λ) = {Qb,i(λ)}B
b=1. In the original Steps 2 and 3, θ̂B(λ), along with the

other parameters in Ω that make up the full parameter estimate Ω̂B(λ), is obtained
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by solving the estimating equations, with solutions denoted by Ω̂b,

n∑

i=1

ψ{Qb,i(λ);Ω} = 0, (3.7)

for b = 1, . . . , B. With Step 2*, θ̂B(λ) only requires solving the estimating equation

(3.5) once. Furthermore, the estimating equations in (3.5) are usually “smoother”

than those in (3.7), making it easier to solve (3.5) than (3.7). Hereafter we refer to the

improved remeasurement method to distinguish from the traditional remeasurement

method with Steps 1 ∼ 4.

The improved and traditional remeasurement method are interchangable as diag-

nostic devices because the solution to (3.5), Ω̂(λ), is asymptotically equivalent to the

average of the solutions to (3.7) for b = 1, . . . , B, that is, Ω̂B(λ) =
∑B

i=1 Ω̂b(λ)/B. This

asymptotic equivalence can be demonstrated by noting that, if the summand in (3.7),

ψ{Qb,i(λ);Ω}, satisfies E
[
ψ{Qb,i(λ);Ω(λ)}

]
= 0, then Ω̂b(λ)

p
// Ω(λ) , and obvi-

ously Ω̂B(λ)
p

// Ω(λ) follows. It also follows that E
[∑B

b=1ψ{Qb,i(λ);Ω(λ)}/B
]

=

0, so that the summand in (3.5) satisfies

E
[
ψ{Q(B)

i (λ);Ω(λ)}
]

= 0, (3.8)

leading to Ω̂(λ)
p

// Ω(λ) .

3.2 Test of Robustness

Even though the remeasurement SIMEX plot provides a graphical indication of

(non)robustness, objective assessment is also necessary. We next describe four statis-

tics for testing the (non)robustness in θ̂(λ). In this section we assume Ω is finite di-
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mensional of length q. Moreover we partition Ω into three subsets, Ω = (θT ,γT , σ2
U
)T ,

where γ includes all the parameters in Ω other than the primary regression parameter

of central interest, θ, and the error variance σ2
U
. For example, in the measurement

error model and simple-response joint models defined in Section 1.3, γ = τ (a), the

parameters in the presumed latent-variable model.

The hypotheses corresponding to the question of whether or not the estimator for

Ω is robust can be formulated as H0 : Ω(0) = Ω(λ) versus Ha : Ω(0) 6= Ω(λ), where

Ω(0) = {θ(0)T ,γ(0)T , σ2
U
(0)}T and Ω(λ) = {θ(λ)T ,γ(λ)T , σ2∗

U
(λ)}T are determined

by (3.4) and (3.8), respectively. It is worth pointing out that the relationship between

σ2
U
(0) and σ2∗

U
(λ) is different from the relationship between θ(0) and θ(λ), or that

between γ(0) and γ(λ). Take MLE and simple-response joint model as an example,

that is, one applies the remeasurement method to simple-response joint model and

computes MLE for Ω. Under H0, θ(0) = θ(λ) are the limits of MLE as n → ∞

for the same parameter corresponding to the primary regression model; similarly

γ(0) = γ(λ) are the limits of MLE for the same parameter corresponding to the

presumed latent-variable model. But σ2
U
(0) is the limit of MLE for the intra-subject

error variance of the raw data before adding extra simulated noise, and σ2∗
U

(λ) is the

limit of MLE for the intra-subject error variance of the λ-remeasured data. Therefore,

under H0, σ
2∗
U

(λ) = (1 + λ)σ2
U
(0). We define σ2

U
(λ) = σ2∗

U
(λ)/(1 + λ) so that under

H0, σ
2
U
(λ) = σ2

U
(0). The corresponding estimators are similarly denoted with hats on

the preceding notations. Specifically, Ω̂(0) = {θ̂(0)T , γ̂(0)T , σ̂2
U
(0)}T satisfies

n∑

i=1

ψ{Qi; θ̂(0), γ̂(0), σ̂2
U
(0)} = 0; (3.9)
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Ω̂(λ) = {θ̂(λ)T , γ̂(λ)T , σ̂2∗
U

(λ)}T satisfies

n∑

i=1

ψ(B){Q(B)

i ; θ̂(λ), γ̂(λ), σ̂2∗
U

(λ)} = 0,

or equivalently,
n∑

i=1

ψ(B){Q(B)

i ; θ̂(λ), γ̂(λ), (1 + λ)σ̂2
U
(λ)} = 0. (3.10)

The four test statistics are based on the following four q × 1 statistics, for a fixed

λ > 0,

T 1 =
√
n{Ω̂(0) − Ω̂(λ)}, (3.11)

T 2 =
1√
n

n∑

i=1

ψ(B){Q(B)

i ; θ̂(0), γ̂(0), (1 + λ)σ̂2
U
(0)}, (3.12)

T 3 =
1√
n

n∑

i=1

ψ{Qi; θ̂(λ), γ̂(λ), σ̂2
U
(λ)}, (3.13)

T 4 =
1

2
(T 2 − T 3). (3.14)

The first statistic, T 1, is a direct assessment of the difference in the parameter esti-

mates for different levels of measurement error variance, σ2
U

versus (1 + λ)σ2
U
, with

large absolute value indicating lack of robustness. So high T 1 in absolute value implies

nonrobustness. The intuition leading to T 2 and T 3 is that, under H0, the estimates

that solve the estimating equations evaluated at the raw data Q should also solve,

at least approximately, the estimating equations evaluated at the λ-remeasured data

Q(B), and vice versa. Therefore under H0, T 2 and T 3 should be close to zero and

significant deviation from zero implies nonrobust estimates. T 4 is a symmetrized

version of T 2 and T 3.

The estimators for the variance-covariance matrix of T k, denoted by V̂
2

k, are given
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by

V̂
2

k =
1

n− 1

n∑

i=1

(Rki −Rk·)(Rki −Rk·)
T ,

where Rk· is the average of Rki over i = 1, . . . , n for k =1, 2, 3, 4;

R1i = Â
−1

1 {Q; θ̂(0), γ̂(0), σ̂2
U
(0)}ψ{Qi; θ̂(0), γ̂(0), σ̂2

U
(0)} −

Â
−1

2 {Q(B); θ̂(λ), γ̂(λ), σ̂2∗
U

(λ)}ψ(B){Q(B)

i ; θ̂(λ), γ̂(λ), σ̂2∗
U

(λ)};

(3.15)

R2i = ψ(B){Q(B)

i ; θ̂(0), γ̂(0), (1 + λ)σ̂2
U
(0)} − Â2{Q(B); θ̂(0), γ̂(0), (1 + λ)σ̂2

U
(0)}

Â
−1

1 {Q; θ̂(0), γ̂(0), σ̂2
U
(0)}ψ{Qi; θ̂(0), γ̂(0), σ̂2

U
(0)};

(3.16)

R3i = ψ{Qi; θ̂(λ), γ̂(λ), σ̂2
U
(λ)} − Â1{Q; θ̂(λ), γ̂(λ), σ̂2

U
(λ)}

Â
−1

2 {Q(B); θ̂(λ), γ̂(λ), σ̂2∗
U

(λ)}ψ(B){Q(B)

i ; θ̂(λ), γ̂(λ), σ̂2∗
U

(λ)};

(3.17)

R4i =
1

2

[
ψ(B){Q(B)

i ; θ̂(0), γ̂(0), (1 + λ)σ̂2
U
(0)} − Â2{Q(B); θ̂(0), γ̂(0), (1 + λ)σ̂2

U
(0)}

Â
−1

1 {Q; θ̂(0), γ̂(0), σ̂2
U
(0)}ψ{Qi; θ̂(0), γ̂(0), σ̂2

U
(0)} −

ψ{Qi; θ̂(λ), γ̂(λ), σ̂2
U
(λ)} + Â1{Q; θ̂(λ), γ̂(λ), σ̂2

U
(λ)}

Â
−1

2 {Q(B); θ̂(λ), γ̂(λ), σ̂2∗
U

(λ)}ψ(B){Q(B); θ̂(λ), γ̂(λ), σ̂2∗
U

(λ)}
]
;

(3.18)

Â1{Q; θ̂(·), γ̂(·), σ̂2
U
(·)} = − 1

n

n∑

i=1

∂ψ{Qi;θ,γ, σ
2
U
}

∂(θT ,γT , σ2
U
)


θ=

ˆθ(·),γ=γ̂(·),σ2
U

=σ̂2
U

(·)
(3.19)

is the empirical estimator for

A1{θ(·),γ(·), σ2
U
(·)} = E

[
− ∂ψ{Qi;θ,γ, σ

2
U
}

∂(θT ,γT , σ2
U
)

]
θ=θ(·),γ=γ(·),σ2

U
=σ2

U
(·)

;
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and

Â2{Q(B); θ̂(·), γ̂(·), (1 + λ)σ̂2
U
(·)}

= − 1

n

n∑

i=1

∂ψ(B){Q(B)

i ;θ,γ, σ2∗
U
}

∂(θT ,γT , σ2∗
U

)


θ=

ˆθ(·),γ=γ̂(·),σ2∗
U

=(1+λ)σ2
U

(·)
(3.20)

is the empirical estimator for

A2{θ(·),γ(·), (1+λ)σ2
U
(·)} = E

[
−∂ψ

(B){Q(B)

i ;θ,γ, σ2∗
U
}

∂(θT ,γT , σ2∗
U

)

]
θ=θ(·),γ=γ(·),σ2∗

U
=(1+λ)σ2

U
(·)
.

Denote by Tk,d the dth element in T k, and define ν̂k,d =

√
V̂ k(d, d), for d = 1, . . . , q

and k =1, 2, 3, 4. The test statistics for testing the robustness of the dth parameter in

Ω are T ∗

k,d = Tk,d/ν̂k,d, for d = 1, . . . , q and k =1, 2, 3, 4. Define T ∗

k = (T ∗

k,1, . . . , T
∗

k,q)
T

for k=1, 2, 3, 4. The derivations of Rki and the asymptotic distributions of T k (k=1,

2, 3, 4) are given in Appendix B.

As indicated in the proof in Appendix B, the four test statistics are asymptotically

equivalent and thus are expected to have similar operating characteristics in large

sample. This equivalence was verified by some simulation studies that are not reported

herein. The statistics T 1, T 3, and T 4 depend on Ω̂(λ) whereas T 2 does not. Thus,

T ∗

2 has the advantage of not requiring computation of Ω̂(λ). However, taking the

time to compute Ω̂(λ) may be worthwhile when it is of interest to make the SIMEX

plot to visualize how bias depends on error variance. In the following chapters, we

use T ∗

1 for hypothesis testing of robustness when entertaining simpler latent variable

models and focus on T ∗

2 when the models are more complicated and computing Ω̂(λ)

is time-consuming.
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Chapter 4

Latent-Model Robustness in

Measurement Error Models

In this chapter the traditional remeasurement method described in Section 3.1 is

applied to structural measurement error models and the test statistic T ∗

1 is used to

test robustness of θ̂. The utility of these methods are demonstrated by application to

simulated data and data from the Framingham study descried in Section 1.2.

4.1 Simulated Examples

We present three examples based on simulated data. In each example, we con-

struct the SIMEX plot or plot the deviation of parameter estimates from “gold stan-

dard” estimates as described in Example 2.2 in Section 2.1. Deviations from a hori-

zontal plot indicate non-robustness to the chosen model for the true predictor X.

Example 4.1: Y given X follows a normal distribution with mean β0 + β1X. A
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sample of n = 500 was generated based on the simple linear regression model Y |X ∼

N(β0 + β1X, σ
2
ǫ
) with β0 = 0, β1 = 1, and σǫ = 1, for each of the three cases

X ∼ N(1, 1), X ∼ N(0.5, 1), and X ∼ N(1.5, 1). Given X, Y and W were

generated from the conditional models Y |X ∼ N(X, 1) and W |X ∼ N(X, 0.5). In

all three cases the likelihood was constructed assuming the N(τ (a), τ (a)) distribution

for X. B = 500 λ-remeasured data sets were generated for each fixed λ varying from

0 to 1. Figure 2.1 (c)–(d) displays the empirical version of the plots in Figure 2.1

(a)–(b).

For the case X ∼ N(1, 1), that is, when the assumed model is correct, the com-

ponent curves of θ̂B(λ) and τ̂
(a)
B (λ) are expected to be horizontal lines. This case is

easily recognized in each panel of Figure 2.1 (c)–(d). For the cases X ∼ N(0.5, 1)

and X ∼ N(1.5, 1) the assumed model is incorrect, which in general should result in

non-horizontal component curves of θ̂B(λ) and τ̂
(a)
B (λ). These cases are also readily

identified for the three regression model parameters.

Example 4.2: Y given X follows a Bernoulli distribution with mean probit(β0 +

β1X). Independent random pairs {yj, wj}2000
j=1 (n = 2000) were generated from the

measurement error model defined in Example 2.2 with measurement error variance

σ2
U

= 0.16. When generating remeasured data, we varied λ from 0 to 3 to obtain

λ-remeasured data sets with reliability ratio (Carroll et al., 1995, p. 22) varying

from 0.86 to 0.61. For each fixed λ, B = 100 remeasured data sets were generated.

Maximum likelihood estimates were calculated for each of the three assumed models

used in Example 2.2.
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Using a plotting strategy similar to that in Example 2.2, treating the estimates

from the mixture-normal modeling as the “gold standard,” deviations of the normal

and SNP estimates from the “gold standard” are plotted versus λ in Figure 4.1. The

plot shows that normal modeling, which is over-restrictive relative to the true model,

results in estimates that differ increasingly from the true values as the measurement

error variance increases. Flexible modeling via the SNP family of models results in es-

timates that are very close to those from the correct modeling. In fact, the estimated

moments of X (not shown) from SNP modeling are nearly equal to the moments of

true mixture normal density up to very high orders, indicating the estimated SNP

density approximates the true mixture normal density very well for this data set.

Example 4.3: Y given X follows a Bernoulli distribution with mean logistic(β0 +

β1X). In this example, the setup of the measurement error model and the three

assumed models for X are identical to those in Example 4.2, except that now P (Y =

1|X = x) = {1 + exp(−β0 − β1x)}−1.

In addition to the three sets of θ̂B(λ)’s under the three assumed models for X, the

conditional score estimator of θ (Stefanski and Carroll, 1987), denoted as θ̂∗(λ), was

also computed. The conditional score equation for this linear-logistic measurement

error model is derived from the conditional density of Y |∆, where ∆ = W + Y σ2
Uβ1.

It can be shown that, if X is treated as an unknown parameter and both σU and

β1 are assumed known, then ∆ is a sufficient statistic for X. Consequently, the

conditional density of Y |∆, and thus the conditional score equation, is free of X.

Hence, conditional score estimators that solve the conditional score equations are
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expected to be robust to the model specification for X.

Based on a random sample of size n = 2000 generated from the logistic mea-

surement error model, the conditional score estimates and three sets of MLEs were

computed for the generated λ-remeasured data sets. Figure 4.2 displays these esti-

mates as functions of λ. As expected, the conditional score estimates do not vary

much as λ varies; moreover, correct modeling (mixture-normal modeling) and flexi-

ble modeling (SNP modeling) also yield robust estimates, that are very close to the

conditional score estimates. In contrast, normal modeling leads to estimates with

apparent bias increasing as λ increases.

4.2 Test of Robustness

Corresponding to the analysis of the simulated data set presented in Figure 4.1

for Example 4.2, Table 4.1 gives the values of T ∗

1,1 and T ∗

1,2 for testing significance of

the differences β̂0, B(0)− β̂0, B(3) and β̂1, B(0)− β̂1, B(3), respectively, for each assumed

model for X. Using 1.96 as the critical value, the associated p-values in Table 4.1

indicate that the changes in the estimates are much more significant for the normal-

modeling than for the other two approaches.

Table 4.2 gives the values of T ∗

1,1 and T ∗

1,2 corresponding to Example 4.3 presented

in Figure 4.2. The p-values associated with the values of T ∗

1,1 and T ∗

1,2 in Table 4.2 are

nearly zero when normal modeling is assumed for X, and are high above 0.05 when

X is modeled as SNP or mixture normal, or for CSE. This also justifies the claims

made previously regarding robustness.
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Under the scenario and parameter settings in Example 2.2, we examined operating

characteristics of T ∗

1,1 and T ∗

1,2 via a Monte Carlo simulation study. In the simulation,

100 data sets of size n = 1000 were generated from the probit measurement error

model. For each data set, the remeasurement method was applied with B = 50 and

λ varying from 0 to 3, and T ∗

1,1 and T ∗

1,2 were computed for testing robustness of

β̂0,B and β̂1,B, respectively. Table 4.3 gives the rejection rates corresponding to T ∗

1,1,

defined as the proportion of MC replications with |T ∗

1,1| > 1.96, and the rejection rates

similarly defined corresponding to T ∗

1,2, associated with MLEs for β0 and β1 under

different assumed model for X. As θ̂
(m)

is expected to be robust with the assumed

latent-variable model being the true model, the low rejection rates resulting from

mixture-normal modeling suggest that the testing procedure with test statistics T ∗

1,1

and T ∗

1,2 has a reasonable size. The similarly low rejection rates for SNP modeling

agree with the conclusion drawn in Examples 2.2 and 4.2 that flexible modeling on

X leads to more robust estimates. With much higher rejection rates for normal

modeling and the nonrobustness observations from Examples 2.2 and 4.2, the test

appears to have high power to detect nonrobustness caused by an inadequate latent-

model assumption.

4.3 Application to Framingham Study

We apply the remeasurement method and testing procedure to data on 1615 in-

dividuals from the Framingham study described in Section 1.2. We take W to be the

average of two measurements of systolic blood pressure (SBP) for each individual at

Exam 2. We regard W as a contaminated version of true long-term SBP, X. Y is the
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binary indicator of evidence of CHD within the follow-up period. We use the SBP

measures from Exams 2 and 3 to estimate σ2
U

as in Carroll et al. (1995).

To construct the likelihood function, we assume P (Y = 1|X) follows probit(β0 +

β1X), withX modeled the same three ways as in Example 2.2. We want to investigate

the robustness of the resulting parameter estimates under three assumed models for

X with different degrees of flexibility. When generating λ-remeasured data sets, we

varied λ from 0 to 3, with B = 100 remeasured data sets generated for each fixed λ.

Figure 4.3 presents plots of the β̂0, B(λ) and β̂1, B(λ) versus λ for the three ways of

modeling and shows that the SNP modeling leads to the most robust estimates while

the normal modeling results in the least robust estimates. It again suggests gain in

robustness from flexible modeling of X.

The values of T ∗

1,1 and T ∗

1,2 for assessing the robustness of MLEs for β0 and β1

resulting from different modelings and the corresponding p-values are given in Ta-

ble 4.4. The fact that SNP modeling gives the smallest T ∗

1,1 and T ∗

1,2 in absolute value

and normal modeling yields the largest T ∗

1,1 and T ∗

1,2 in absolute value is consistent

with the visual impression of Figure 4.3.
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Table 4.1: Values of T ∗

1,1 and T ∗

1,2 assessing robustness of the regression parameter
estimates when λ = 0 and λ = 3 under three ways of modeling for the simulated data
used in Example 4.2. Corresponding p-values are given in the parentheses.

Normal SNP Mixture-Normal

Change in β̂0, B 6.91 (0.00) 0.12 (0.90) −0.83 (0.41)

Change in β̂1, B 4.99 (0.00) −0.20 (0.84) −0.32 (0.75)

Table 4.2: Values of T ∗

1,1 and T ∗

1,2 assessing robustness of the conditional score esti-
mates and MLEs for the regression parameter under three ways of modeling when
λ = 0 and λ = 3 for the simulated data used in Example 4.3. Corresponding p-values
are given in the parentheses.

Normal SNP Mixture-Normal Conditional-score

Change in β̂0, B 5.26 (0.00) 0.65 (0.52) 0.61 (0.54) 0.12 (0.90)

Change in β̂1, B 3.45 (0.00) 0.72 (0.47) 0.73 (0.47) −0.66 (0.51)

Table 4.3: Rejection rates (proportion of 100 data sets with |T ∗

1,·| > 1.96) in testing
robustness of the estimates using T ∗

1,1 and T ∗

1,2 for β0 and β1, respectively, when λ
varies from 0 to 3 under three ways of modeling for the simulated data. Numbers in
the parentheses are estimated standard errors of the rejection rates.

Normal SNP Mixture-Normal

Test the change in β̂0, B 1 (0) 0.08 (0.03) 0.07 (0.03)

Test the change in β̂1, B 0.99 (0.01) 0.1 (0.03) 0.1 (0.03)

Table 4.4: Values of T ∗

1,1 and T ∗

1,2 assessing robustness of the regression parameter
estimates when λ = 0 and λ = 3 under three ways of modeling for the Framingham
data. Corresponding p-values are given in the parentheses.

Normal SNP Mixture-Normal

Change in β̂0, B 3.16 (0.00) −0.18 (0.86) −0.81 (0.42)

Change in β̂1, B −3.21 (0.00) 0.19 (0.85) 0.81 (0.42)
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Figure 4.1: Deviations from the MLEs resulting from the mixture-normal modeling
when modeling X as normal and SNP, Example 4.2; (a) corresponds to β̂0,B; (b)

corresponds to β̂1,B. The correspondence of the line types and ways of modeling is
the same as used in Figure 2.2.
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Figure 4.2: MLEs under the three assumed models for X and conditional score es-
timates versus λ, Example 4.3; (a) corresponds to β̂0,B and β̂0,∗; (b) corresponds to

β̂1,B and β̂1,∗. True values of β0 and β1 are marked by the dotted reference lines.
Line types used for assumed models are identical to those used in Figure 2.2. The
long-short-dash line corresponds to the conditional score estimates.
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(s)
B (dashed line), and θ̂

(m)
B (dashed-dotted line) resulting

from applying the remeasurement method with B = 100 to Framingham study data.
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Chapter 5

Latent-Model Robustness in Joint

Models

5.1 Expected Robustness

We now consider joint models that have a linear mixed effect model for the longi-

tudinal process, where the random effect is a latent variable. Insensitivity of inference

on θ to the assumed random-effect model has been reported in the literature. Hsieh

et al. (2006) gave a heuristic explanation for this insensitivity “when reasonably large

numbers of longitudinal measurements are available per subject” using a Laplace ap-

proximation technique. In this section, we prove more explicitly that the insensitivity

to the assumed random-effect model is expected when the subject-specific information

on the longitudinal process is sufficiently large.

Without loss of generality, we consider the simple-response joint model defined in

Section 1.3 with observed-data density in (1.5). For brevity, in this section, we drop
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the subscript, that is the subject index i, in (1.5) and the other notations defined for

this model in Section 1.3. This gives the observed-data density as

fY, W (Y,W ;Ω) =

∫
fY |X (Y |x;θ)fW |X (W |x;σ2

U
)f

(a)
X (x; τ (a))dx, (5.1)

where fW |X (W |x;σ2
U
) is the density ofNm(Dx, σ2

U
Im). Recall thatm is the number of

longitudinal measures for a subject, also the length ofW , andD is the design matrix

in the linear mixed model for longitudinal process W = DX + U . Denote by X̂m

the ordinary least squares estimator (OLSE) for X, i.e., X̂m = (DTD)−1DTWm×1.

Assuming σ2
U

known and viewing X as an unknown parameter, X̂m is a complete

sufficient statistic for X, and X̂m|X ∼ Np{X, σ2
U
(DTD)−1}. Therefore, by the

Facterization Theorem,

fW |X (W |x;σ2
U
) = fW |X̂m

(W |X̂m;σ2
U
)fX̂m|X (X̂m|x;σ2

U
),

where fW |X̂m
(W |X̂m;σ2

U
) is free of X,

fX̂m|X (X̂m|x;σ2
U
) = |Gm|−1φ{G−1

m (X̂m − x)},

φ(·) is the density of p-dimensional standard normal distribution, and Gm satisfies

GmG
T
m = σ2

U
(DTD)−1. It immediately follows that the observed-data density (5.1)

is equal to

∫
fY |X (Y |x;θ)fW |X (W |x;σ2

U
)f

(a)
X (x; τ (a))dx

= fW |X̂m
(W |X̂m, σ

2
U
)

∫
fY |X (Y |x,θ)fX̂m|X (X̂m|x, σ2

U
)f

(a)
X (x; τ (a))dx. (5.2)
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Next consider the integral in (5.2). Specifically, consider the difference

∫
fY |X (Y |x,θ)fX̂m|X (X̂m|x, σ2

U
)f

(a)
X (x|τ (a))dx

−fY |X̂m
(Y |X̂m,θ)f

(a)
X (X̂m|τ (a)) (5.3)

=

∫
fY |X (Y |x,θ)f (a)

X (x|τ (a))|Gm|−1φ{G−1
m (X̂m − x)}dx−

∫
fY |X̂m

(Y |X̂m;θ)f
(a)
X (X̂m|τ (a))|Gm|−1φ{G−1

m (x− X̂m)}dx

=

∫ {
fY |X (Y |x;θ)f

(a)
X (x|τ (a)) − fY |X̂m

(Y |X̂m;θ)f
(a)
X (X̂m|τ (a))

}

|Gm|−1φ{G−1
m (x− X̂m)}dx

=

∫ {
fY |X (Y |X̂m +Gmz;θ)f

(a)
X (X̂m +Gmz|τ (a)) −

fY |X̂m
(Y |X̂m,θ)f

(a)
X (X̂m|τ (a))

}
φ(z)dz, (5.4)

where in (5.4) we have made the change of variables x = X̂m +Gmz.

Assume fY |X (Y |x)f
(a)
X (x) continuous and bounded in x for each fixed Y such that

|fY |X (Y |x)f
(a)
X (x)| ≤M for some constant M > 0 for each fixed Y. Then the absolute

value of the integrand in (5.4) is bounded by 2Mφ(z), which is integrable. We now

assume that as m → ∞, the minimum eigenvalue of σ−2
U
DTD diverges to +∞. In

other words, we assume that the subject-specific information increases without bound

as m → ∞. It follows that σ2
U
(DTD)−1 and thus Gm converges to the 0p×p matrix

as m → ∞, and consequently X̂m + Gmz → X̂m for each fixed z. Therefore, by

Lebesgue Dominated Convergence Theorem, (5.4), and thus (5.3), converges to zero

in probability as m→ ∞. Hence for large m

fW |X̂m
(W |X̂m, σ

2
U
)

∫
fY |X (Y |x,θ)fX̂m|X (X̂m|x, σ2

U
)f

(a)
X (x; τ (a))dx (5.5)

≈ fW |X̂m
(W |X̂m, σ

2
U
)fY |X̂m

(Y |X̂m,θ)f
(a)
X (X̂m|τ (a)). (5.6)
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Note that the parameter of interest, θ, appears only in the density of Y given X̂m,

fY |X̂m
(Y |X̂m,θ) in (5.6). Therefore, where m is sufficiently large, likelihoods con-

structed from (5.6) and (5.5) will be approximately equal. Clearly the MLE from

the former does not depend on f
(a)
X (·) and thus neither will the MLE of the latter as

m→ ∞.

When it is not clear in a specific application how much longitudinal information

is sufficient to achieve a robust estimator, it is preferable and safer to model X in

a way such that the resulting estimators for θ are insensitive to intra-subject errors.

We next apply the remeasurement method and the test statistics derived in Chapter

3 to test estimator robustness under various assumed random-effect models.

5.2 Simulated Examples

Two simulated examples are presented in this section to demonstrate the imple-

mentation and performance of traditional or improved remeasurement method. The

steps of these methods are similar to those implemented in Chapter 4 for structural

measurement error models. For completeness the methods are outlined next using

the notations defined in joint-model setting.

Denote the observed data generated from the joint models as Q , {Qi}n
i=1, where

Qi = {Yi,W i}n
i=1 in the simple-response joint models, and Qi = {Vi,∆i,W i, ti, Fi}

in the censored-endpoint joint models. For each of several chosen positive constants

values of λ :
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• Step 1. For b = 1, . . . , B, generate the bth λ-remeasured data, denoted by

{Qb,i(λ)}n
i=1, in which W i in the observed data are replaced by

W b,i(λ) = W i +
√
λσUZb,i, (5.7)

for i = 1, . . . , n, where Zb,i (i = 1, . . . , n) are i.i.d. mi-dimensional standard

normal random errors. Denote by Q(B)(λ) the entire B remeasured data for all

subjects, and Q(B)

i (λ) the B remeasured data for subject i, for i = 1, . . . , n.

• Step 2. Estimate the parameters based on {Qb,i(λ)}n
i=1. Denote the estimate

for θ as θ̂b(λ), b = 1, . . . , B.

• Step 3. Compute θ̂B(λ) =
∑B

b=1 θ̂b(λ)/B.

• Step 4. Plot θ̂B(λ) versus λ ≥ 0, where θ̂B(0) is the estimate based on the

observed data Q.

In practice σU in (5.7) is substituted by its estimate that is obtained based on Q the

same time the full parameter estimate for Ω is computed.

Partition the full parameter vector Ω into three subsets, Ω = (θT ,γT , σ2
U
)T , where

γ includes all the parameters in Ω other than the primary regression parameter θ and

the intra-subject error variance σ2
U
. For simple-response joint models, γ = τ (a), the

parameters in the assumed random-effect model; for censored-endpoint joint models,

γ = {τ (a)T , λ0(u)}T ; that is, γ also includes the infinite dimensional baseline hazards.

Suppose the full parameter estimator obtained based on Q, denoted by Ω̂(0) =
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{θ̂T
(0), γ̂T (0), σ̂2

U
(0)}T , satisfies

n∑

i=1

ψ{Qi; θ̂
T
(0), γ̂T (0), σ̂2

U
(0)} = 0, (5.8)

and the full parameter estimator obtained based on {Qb,i}n
i=1 in Step 2 given above,

denoted by Ω̂b(λ) = (θ̂
T

b (λ), γ̂T
b (λ), σ̂2∗

U,b(λ))T , satisfies

n∑

i=1

ψ{Qb,i; θ̂
T

b (λ), γ̂T
b (λ), σ̂2∗

U,b(λ)} = 0. (5.9)

The full parameter estimator obtained in Step 3 is given by Ω̂B(λ) =
∑B

b=1 Ω̂b(λ)/B.

In the improved remeasurement method, Steps 2 and 3 are replaced by Step 2*,

in which the full parameter estimator based on λ-remeasured data is obtained by

solving the average of estimating equations in (5.9) for b = 1, . . . , B. Denote the full

parameter estimator from Step 2* as Ω̂(λ) = {θ̂T
(λ), γ̂T (λ), σ̂2∗

U
(λ)}T . Then Ω̂(λ)

satisfies
n∑

i=1

ψ(B){Q(B)

i ; θ̂(λ), γ̂(λ), σ̂2∗
U
} = 0, (5.10)

where ψ(B){Q(B)

i ;θ,γ, σ2∗
U
} =

∑B
b=1ψ{Qb,i;θ,γ, σ

2∗
U
}/B.

Example 5.1: Simulation for the simple-response joint model. The simple-response

joint model defined in Section 1.3 is a direct generalization of the structural mea-

surement error model. The implementation of remeasurement method and test of

robustness are parallel with the examples presented in Chapter 4. For instance, as

in Example 4.3, we consider MLE and CSE in this example, where the MLEs are

obtained by directly maximizing the observed-data likelihood with different assumed

random-effect models. The only concept that needs some explanation is the multivari-

ate version of the reliability ratio. This multivariate generalization of the reliability
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ratio is described in Appendix C.

In this simulation, a data set of size n = 500 is generated from a simple-response

joint model. Specifically, a binary response Yi is generated from the logistic model

P (Yi = 1|X i) = {1 + exp(−β0 − β1X i)}−1, where X i = (X1i, X2i)
T and β1 =

(β11, β12)
T , so that the primary parameter vector θ = (β0, β

T
1 )T , with the true

values in the simulation (−2, 1, 1)T . The longitudinal measurements W i, with

mi = 5 measurements on each subject i taken at times tij = j (j = 1, . . . , 5), follow

the linear mixed model W i = DiX i +U i, where the design matrix Di is 5× 2 with

jth row (1, j), and U i ∼ N5(0, 0.6I5). TheX i’s are generated from a two-component

location mixture bivariate normal (BVN), (1−p)N2(δ, I2)+pN2(0, I2), with p = 0.4

and δ = (5, 0)T . In the remeasurement method, we take B = 50, and λ ranges from

0 to 2. This range of λ, along with the true value of σ2
U
(= 0.6), yield remeasured data

with multivariate reliability ratio varying from 0.93 to 0.84 (see Appendix C).

We consider the following four estimators for θ. One is the CSE studied by

Li et al. (2004) for the same joint model under consideration. Denote the CSEs

computed based on the bth λ-remeasured data as θ̂
(c)

b (λ) and the average of θ̂
(c)

b (λ)

for b = 1, . . . , B as θ̂
(c)

B
(λ). The other three estimators are MLEs when the assumed

models for X are a two-component location mixture BVN (MixBVN), BVN, and a

flexible distribution defined by the bivariate second-order, seminonparametric (SNP)

density f
(s)
X (x; τ (s)) = P 2

2 {G−1(xi−µ)}φ{G−1(xi−µ)}|G|−1, where the second-order

polynomial P2(z) = a00+a10z1+a01z2+a20z
2
1+a11z1z2+a02z

2
2 for z = (z1, z2)

T , and the

polynomial coefficients are constrained so that f
(s)
X (x; τ (s)) integrates to one. Denote

the three MLEs computed in Step 2 as θ̂
(m)

b (λ), θ̂
(n)

b (λ), and θ̂
(s)

b (λ), respectively; and
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define the final estimates obtained in Step 3 similarly with b replaced by B in the

subscript.

Figure 5.1 (a) and (b) present the SIMEX plots of four estimates for the simulated

data set. In order to see the typical trend in these four estimators as functions of λ in

the long run, the above experiment is repeated on N = 30 sets of “observed” data (in

contrast to remeasured data) of size n = 500 generated independently from the same

joint model. This gives 30 sets of estimates, and each set gives SIMEX plots similar

to Figure 5.1 (a) and (b). Figure 5.1 (c) and (d) show the average of these 30 MC

replications. In Figure 5.1, the range of the vertical axis is set to be two standard

deviations of θ̂
(n)

B
(0) below and above the average of θ̂

(c)

B
(0), θ̂

(m)

B
(0), θ̂

(n)

B
(0), and

θ̂
(s)

B
(0).

The nonrobustness of θ̂
(n)

B
(λ) stands out in Figure 5.1. This matches the intuition

that when the true model for X is a MixBVN while a relatively restrictive model

such as the BVN is assumed for X, bias due to measurement error is expected. Thus

in this example the longitudinal information with five equally spaced measures per

subject is not great enough to ensure that approximating (5.5) with (5.6) is reason-

able. The fairly flat trend in θ̂
(m)

B
(λ) is also expected, as it results from the correct

modeling for X. It is established elsewhere (Li et al., 2004) that θ̂
(c)

B
should also be

consistent and robust. This is reflected in the nearly constant plots of θ̂
(c)

B
(λ), which

are close to θ̂
(m)

B
(λ). The nearly constant plots of θ̂

(s)

B
suggest a gain in robustness

by using flexible modeling for the distribution of X.

Example 5.2: Simulation for the censored-endpoint joint model. The censored-
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endpoint joint model defined in Section 1.3 is more complex than all the previous

models we have considered so far. The complexity comes from the survival model,

for which we focus on proportional hazards model. The joint model is semipara-

metric due to the unspecified baseline hazard function λ0(u), and therefore Ω has

infinite dimension. It is no longer feasible to compute MLE by directly maximizing

the observed-data likelihood as before. In this example we adopt the expectation-

maximization (EM) algorithm as in Wulfsohn & Tsiatis (1997), Song et al. (2002),

and Hsieh et al. (2006) to obtain the MLEs of Ω. This algorithm exploits the fact that

the MLE of λ0(u) only has mass at each failure time and is equal to zero else where.

Because the EM algorithm is very computationally intensive, we use the improved

remeasurement method, in which the full parameter estimator solve (5.10).

In this simulation we use the simulation setting in Song et al. (2002) and gen-

erate a data set with n = 500 subjects. The longitudinal measures Wij = Xi(tij) +

Uij, where Uij ∼ N(0, σ2
U
), are generated at times tij =0, 2, 4, 8, 16, 24, 32, 40,

48, 56, 64, 72, 80 weeks, with a 10% missing rate at time u ≥ 16. The intra-

subject error variance is σ2
U

= 0.6, and Xi(u) = α0i + α1iu, where the subject-

specific random effects αi = (α0i, α1i)
T are generated from a two-component loca-

tion mixture BVN constructed in the manner described in Davidian and Gallant

(1993) with mixing proportion p = 0.5, sep = 4, E(αi) = (4.173,−0.0103)T , and

{var(α0i), cov(α0i, α1i), var(α0i)} = (4.96,−0.0456, 0.012), where “sep” is a mixture

separation measure in Davidian and Gallant (1993). The hazard rate defined in (1.6)

is assumed to be λi(u) = λ0(u) exp{θXi(u)} with θ = −1 and λ0(u) = 1 for u ≥ 16

and zero otherwise.
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The same four estimators as those in Example 5.1 are considered in this experi-

ment but the first-order SNP is used instead of the second-order SNP to simplify the

computation. In the improved remeasurement method we set B = 30 and λ =0, 1.

The CSE is computed according to Tsiatis and Davidian (2001).

Figure 5.2 (a) shows the SIMEX plot of four estimates from one simulated data

set. Figure 5.2 (b) depicts the plot from N = 50 MC replications of this experiment,

i.e., (b) can be viewed as the average of 50 plots identically distributed as that in

(a). The range of the vertical axis in Figure 5.2 is set to be one standard deviation

of θ̂
(n)
B (0) below and above the average of θ̂

(c)
B (0), θ̂

(m)
B (0), θ̂

(n)
B (0), and θ̂

(s)
B (0).

Even though θ̂
(n)
B appears to be slightly less robust than the other three estimates

in plot (a), after averaging the results from 50 MC replications, the four estimators

perform similarly in terms of robustness. As CSE is expected to be robust (Tsiatis

and Davidian, 2001) as is θ̂
(m)
B , plot (b) suggests that misspecifying the random-

effect model as BVN does not affect the consistency of MLE, which agrees with the

observations in Song et al. (2002) and Hsieh et al. (2006). This is an example where

the MLE is insensitive to model assumptions on random effects when the longitudinal

information is great enough. Under this simulation setting, there are approximately

seven measures per subject on average and the distribution of the time points differs

from subject to subject.
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5.3 Test of Robustness

The values of T ∗

1,d (d=1, 2, 3) assessing the robustness of β̂0, β̂11, and β̂12, respec-

tively, and the associated p-values corresponding to the simulation in Example 5.1

and Figure 5.1 (a) and (b) are given in Table 5.1. It is clear from Table 5.1 that the

change in θ̂
(n)

B
(λ) as λ increases from 0 to 2 is much more significant than the changes

in the other three estimates. For the simulation in Example 5.2, where the primary

regression parameter is a scalar θ, with plot given in Figure 5.2 (a), we obtained val-

ues of T ∗

2,1 corresponding to θ̂
(c)
B , θ̂

(m)
B , θ̂

(n)
B , and θ̂

(s)
B as 0.84 (0.40), −0.09 (0.93) −1.68

(0.09), and −0.64 (0.52), respectively, with the associated p-values in the parentheses.

These values of T ∗

2,1 seem to agree with the observations from Figure 5.2. Because of

the semiparametric nature of the joint model in Example 5.2, we use a simplifying

approximation in constructing T ∗

2,1 to test the robustness in the MLEs. This approx-

imation is not needed for a fully parametric model or when the dimension of Ω is not

overly large. But the validity of the approximation calls for further investigation.

In Example 5.2, in order to estimate the parameters of interest in the joint

model via EM algorithm, the original infinite dimensional full parameter vector

Ω = (θ, τ (a)T , σ2
U
, λ0)

T is regarded as finite dimensional with (2 + t+ L) parameters,

{θ, τ (a)T , σ2
U
, λ0(u1), . . . , λ0(uL)}T , where t is the dimension of τ (a) and (u1, . . . , uL)

are the observed failure times. Define λ∗

0 = {λ0(u1), . . . , λ0(uL)}T . This view of Ω

converts the problem from that of a semiparametric to parametric with the number

of unknown parameters the same order of the sample size n. The resulting high di-

mensional parameter space makes it infeasible to construct the test statistics defined
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in Section 3.2. We use the following approximation to compute T ∗

2,1.

Denote the contribution of subject i to the log likelihood as, assuming a scalar

primary regression parameter θ as in Example 5.2,

li(Qi; θ, τ , σ
2
U
,λ∗

0) = log{f(Qi; θ, τ
(a), σ2

U
,λ∗

0)}.

where the observed-data density f(Qi; θ, τ
(a), σ2

U
,λ∗

0) is given by (1.7). Suppose one

is only interested in θ, define

χ(Qi; θ, τ
(a), σ2

U
,λ∗

0) =
∂

∂θ
li(Qi; θ, τ

(a), σ2
U
,λ∗

0),

χ(B)(Q(B)

i ; θ, τ (a), σ2∗
U
,λ∗

0) =
1

B

B∑

b=1

χ(Qb,i; θ, τ
(a), σ2∗

U
,λ∗

0),

and the (t+ 1 + L) × 1 vector

ζ(Qi; θ, τ
(a), σ2

U
,λ∗

0) =
∂

∂(τ (a)T , σ2
U
,λ∗T

0 )T
li(Qi; θ, τ

(a), σ2
U
,λ∗

0).

Then the test statistic for testing the robustness of θ̂ is T ∗

2,1 = T2,1/ν̂2,1, where,

T2,1 =
1√
n

n∑

i=1

χ(B){Q(B)

i ; θ̂(0), τ̂ (a)(0), (1 + λ)σ̂2
U
(0), λ̂

∗

0(0)},

and

ν̂2,1 =

√√√√ 1

n− 1

n∑

i=1

(R2i,1 −R2,1)2,
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with R2,1 = n−1
∑n

i=1R2i,1, and R2i,1 as the first element of R2i in (3.16) given by

R2i,1 = χ(B){Q(B)

i ; θ̂(0), τ̂ (a)(0), (1 + λ)σ̂2
U
(0), λ̂

∗

0(0)} −
[ 1

n

n∑

j=1

∂χ(B){Q(B)

j ; θ, τ (a), σ2∗
U
,λ∗

0}
∂(θ, τ (a)T , σ2∗

U
,λ∗T

0 )


θ̂(0),τ̂ (a)

(0),(1+λ)σ̂2
U

(0),
ˆλ

∗

0(0)

]
(5.11)

[ 1

n

n∑

j=1

∂

∂(θ, τ (a)T , σ2
U
,λ∗T

0 )T

(
χ{Qj; θ, τ

(a), σ2
U
,λ∗

0}
ζ{Qj; θ, τ

(a), σ2
U
,λ∗

0}

)
θ̂(0),τ̂ (a)

(0),σ̂2
U

(0),
ˆλ

∗

0(0)

]
−1

(
χ{Qi; θ̂(0), τ̂ (a)(0), σ̂2

U
(0), λ̂

∗

0(0)}
ζ{Qi; θ̂(0), τ̂ (a)(0), σ̂2

U
(0), λ̂

∗

0(0)}

)
.

(5.12)

Because L is usually large, it is cumbersome or practically impossible to compute

(5.12), we replace ζ(·) in (5.12) with the first (t + 1) subvector consisting of its first

(t + 1) elements corresponding to (τ (a)T , σ2
U
)T . Denote this subvector as η(·). Then

we compute R2i,1 as

R2i,1 = χ(B){Q(B)

i ; θ̂(0), τ̂ (a)(0), (1 + λ)σ̂2
U
(0), λ̂

∗

0(0)} −
[ 1

n

n∑

j=1

∂χ(B){Q(B)

j ; θ, τ (a), σ2∗
U
, λ̂0

∗

(0)}
∂(θ, τ (a)T , σ2∗

U
)


θ̂(0),τ̂ (a)

(0),(1+λ)σ̂2
U

(0)

]

[ 1

n

n∑

j=1

∂

∂(θ, τ (a)T , σ2
U
)T

(
χ{Qj; θ, τ

(a), σ2
U
, λ̂

∗

0(0)}
η{Qj; θ, τ

(a), σ2
U
, λ̂

∗

0(0)}

)
θ̂(0),τ̂ (a)

(0),σ̂2
U

(0)

]
−1

(
χ{Qi; θ̂(0), τ̂ (a)(0), σ̂2

U
(0), λ̂

∗

0(0)}
η{Qi; θ̂(0), τ̂ (a)(0), σ̂2

U
(0), λ̂

∗

0(0)}

)
.

(5.13)

If the parameter space of θ is orthogonal to that of λ∗

0 in the sense that

∂2li(Qi; θ, τ
(a), σ2

U
,λ∗

0)

∂θ∂λ∗T
0

= 0, (5.14)

then the last L elements in expression (5.11) are zeros, and (5.12) is equal to (5.13).

As this orthogonality does not hold in general, the asymptotic difference between
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(5.12) and (5.13) and the adjustment to obtain a reasonable variance estimate ν̂2,1

needs further investigation.

Using the simulation setting in Example 5.2 except that n = 200 and only three

MLEs are considered, we carried out a simulation with N = 200 MC replications to

study the operating characteristics of T ∗

2,1 replacing (5.12) with (5.13). The averages

of the absolute values of T ∗

2,1 from N = 200 replications are 0.85 (0.04), 0.85 (0.05),

and 0.76 (0.04) for BVN-, SNP-, and mixture BVN-modeling, respectively, with the

standard errors of these averages given in the parentheses. The proportions of T ∗

2,1

that satisfy |T ∗

2,1| > 1.96 are 0.05 (0.01), 0.07 (0.02), and 0.04 (0.01) for BVN-, SNP-,

and mixture BVN-modeling, respectively, with the standard errors of these averages

given in the parentheses. These results agree with the observation from SIMEX plots

and also reconcile the finding in Song et al. (2002), that this is a situation where the

MLE is robust to the assumption on the random-effect model.

5.4 Application to SWAN and ACTG 175

5.4.1 Application to SWAN

We now analyze a data set with similar structure as the data generated from

Example 5.1. We apply the diagnostic methods to a data set from the SWAN study

introduced in Section 1.3. The data set contains information on n = 632 subjects.

The response is the indicator of absence of osteopenia (bone mineral density above the

33rd percentile). Specifically, for subject i (= 1, . . . , 632), Yi = 1 indicates absence of

osteopenia, and Yi = 0 indicates presence. The observed longitudinal measurements,
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W i, are the natural log of progesterone levels from urine (PDG) collected over one

menstrual cycle of subject i, with the length of cycle being standardized to a reference

of 28 days. For i = 1, . . . , 632, the number of longitudinal measurements, mi, varies

from 6 to 14 among i = 1, . . . , 632 subjects. Adopting the joint model studied in Li

et al. (2004) but excluding the observable explanatory variables considered in their

paper, we consider the logistic primary model as in Example 5.1, P (Yi = 1|X i) =

{1 + exp(−β0 −β1X i)}−1, and the piecewise linear mixed model for the longitudinal

measurements, Wij = X1i +X2i(tij − 1.4)+ − 2X2j(tij − 2.1)+ +Uij, for i = 1, . . . , 632

and j = 1, . . . ,mi, where u+ = u if u > 0 and 0 otherwise, time tij is in units of 10

days, Uij are i.i.d. N(0, σ2) random errors, X1i is the subject-specific underlying log

PDG up to day 14, and X2i is the subject-specific “slope” of the symmetric rise (days

14–21) and fall (days 21–28).

Before carrying out the remeasurement method, to gain some idea of how noisy

the observed longitudinal measures are, we estimated the multivariate reliability ratio

for this data set based on the definition of reliability ratio in this context given in

(C.2), i.e., RR = trace{(V X + V U)−1V X}/2, as X is a bivariate random variable in

this case. We first estimated the intra-subject error variance σ2
U

by

σ̂2
U

= n−1

n∑

i=1

{ mi∑

j=1

(Wij − Ŵij)
2/(mi − 2)

}
,

where Ŵij is the OLS estimate for Wij for i = 1, . . . , n and j = 1, . . . ,mi. This gives

an estimate of V U as V̂ U = n−1
∑n

i=1 σ̂
2
U
(DT

i Di)
−1 for i = 1, . . . , n. Next V X in

(C.2) is estimated by V̂ X =
∑n

i=1(X̂ i −X)(X̂ i −X)T/(n − 1) − V̂ U , where X̂ i is

the OLS estimate for X i, and X is the average of X̂ i for i = 1, . . . , n. Finally the

reliability ratio for this data set is estimated by trace{(V̂ X + V̂ U)−1V̂ X}/2. We found
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that the estimated multivariate reliability ratio of the observed longitudinal measures

is 0.93. For the remeasurement method we computed θ̂
(c)

B
(λ), θ̂

(m)

B
(λ) and θ̂

(n)

B
(λ),

with B = 50 and λ ranging from 0 to 2, corresponding to the estimated multivariate

reliability ratio ranging from 0.93 to 0.78.

Figure 5.3 shows the SIMEX plots for β0 and β12. Table 5.2 gives the values

of T ∗

1,d (d=1, 2, 3) for different types of estimators. In Figure 5.3, the range of

the vertical axis is set to be one standard deviation of θ̂
(c)

B
(0) below and above the

average of θ̂
(c)

B
(0), θ̂

(m)

B
(0), and θ̂

(n)

B
(0). Even though Figure 5.3 seems to indicate

slight nonrobustness of θ̂
(n)

B
(λ) compared to θ̂

(c)

B
(λ) and θ̂

(m)

B
(λ), the values of T ∗

1,d

(d=1, 2, 3) in Table 5.2 suggest that none of θ̂
(c)

B
(2), θ̂

(m)

B
(2), and θ̂

(n)

B
(2) changes

significantly from their counterpart values at λ = 0. The observed robustness can be

explained by the finding in Li et al. (2004) that the estimated density for X “does

not deviate considerably from multivariate normality.”

5.4.2 Application to ACTG 175

We now analyze the data from the ACTG 175 described in Section 1.3, which has

a similar structure as the data generated for Example 5.2. For this application we

model the true log10 CD4 count by Xi(u) = αi0 + αi1u as in Example 5.2 and Song

et al. (2002) to describe the longitudinal trajectory after week 12. Different from

the study in Song et al. (2002), we assume a proportional hazards model for the

event time T, a composite of ≥ 50% decline in CD4, progression to AIDS, or death,

with Xi(u) as the only covariate, and hazard rate as λ0(u) = λ0(u) exp{θXi(u)}, to

simplify the problem somewhat. The data set includes information on 2279 patients,
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among which there were 350 events. There were approximately 8 CD4 measures per

subject on average.

Due to the large sample size, it becomes fairly time-consuming to implement the

traditional remeasurement method. Therefore we did not make the SIMEX plot for

this example and only compute T ∗

2,1 corresponding to the MLE for θ with presumed

random-effect model as BVN, first-order SNP, and mixture BVN. With B = 30, we

found T ∗

2,1 to be 13.84, 13.82, and 19.21, respectively, for these three MLEs. As for

the parameter estimates based on the raw data, the estimated first two moments

of the random effects are similar to those obtained by Song et al. (2002), but the

estimated θ is not comparable with the estimates presented in Song et al. (2002). For

instance, in Table 3 of Song et al. (2002), θ̂ = −2.487 with estimated standard error

0.091 when the presumed random-effect model is BVN, while we got θ̂(n) = −3.405

with estimated standard error 0.066. However because we assume the proportional

hazards model without a second treatment indicator convariate but only Xi(u) while

Song et al. (2002) include this covariate in their model, it may not be meaningful to

compare to their estimates.

The values of T ∗

2,1 for these data suggest that none of three presumed models lead

to a robust MLE even though Song et al. (2002) indicate that this is an example

where MLE is robust to model assumptions on random effect. The discrepancy in

our finding and that of Song et al. may be due to the use of a different assumed

proportional hazards model. It may also be a result of overoptimistic ν̂2,1 bearing in

mind the concern of approximating (5.12) with (5.13) brought up in Section 5.3 when

the joint model is actually semiparametric.

60



Table 5.1: Values of T ∗

1,d (d=1, 2, 3) used to assess the changes in θ̂
(c)

B
(λ), θ̂

(m)

B
(λ),

θ̂
(n)

B
(λ), and θ̂

(s)

B
(λ), as λ increases from 0 to 2 corresponding to the simulation in

Example 5.1 and Figure 5.1 (a). Corresponding p-values are in the parentheses.

CSE Mixture BVN-MLE BVN-MLE SNP-MLE

β̂0,B 0.47 (0.64) 0.74 (0.46) 3.60 (0.00) 1.52 (0.13)

β̂11,B −0.58 (0.56) −0.66 (0.51) −3.61 (0.00) −1.43 (0.15)

β̂12,B −0.33 (0.74) −0.52 (0.63) −1.99 (0.05) −0.04 (0.97)

Table 5.2: Values of T ∗

1,d (d=1, 2, 3) used to assess changes in θ̂
(c)

B
(λ), θ̂

(m)

B
(λ), and

θ̂
(n)

B
(λ) as λ increases from 0 to 2 for the SWAN data. Corresponding p-values are in

the parentheses.

CSE Mixture BVN-MLE BVN-MLE

β̂0,B 0.47 (0.64) −0.46 (0.65) −1.70 (0.09)

β̂11,B 0.99 (0.32) −0.01 (0.99) −0.68 (0.50)

β̂12,B −0.48 (0.63) 0.43 (0.67) 1.70 (0.09)
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Figure 5.1: Plots (a) and (b) show MLE’s assuming mixture BVN, BVN, and SNP
random effects, and CSE’s as function of λ obtained at Step 3 of remeasurement
method with B = 50 to one “observed” data set. Plots (c) and (d) show averages of
N = 30 sets of estimates plotted in (a) and (b) for N = 30 MC replications. Only
the plots of the first two regression parameters, β0 and β11, are shown. The line types

for θ̂
(c)

B (λ), θ̂
(m)

B (λ), θ̂
(n)

B (λ), and θ̂
(s)

B (λ) are dash-multiple-dotted line, dash-dotted
line, solid line, and dashed line, respectively. Horizontal lines are reference lines at
the true values, β0 = −2 and β11 = 1.
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Figure 5.2: Plot (a) depicts CSEs and MLEs obtained at Step 2* of remeasurement
method with B = 30 when αi is modeled as MixBVN, BVN, and SNP, for θ at λ =0,
1. Plot (b) shows the average of N = 50 sets of estimates ploted in (a) resulting
from N = 50 MC replications. The dotted line is for CSE, the dashed line, solid line,
and dash-dotted line are for MLE assuming mixture BVN, BVN, and first-order SNP
random effects, respectively. The horizontal line is the reference line at the true θ
value θ = −1.
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Figure 5.3: Plots of MLE’s corresponding to mixture BVN and BVN modeling, θ̂
(m)

B
,

θ̂
(n)

B
, and CSE, θ̂

(c)

B
, obtained at Step 3 with B = 50 as functions of λ, using SWAN

data. Line types for θ̂
(c)

B
(λ), θ̂

(m)

B
(λ), and θ̂

(n)

B
(λ) are the same as those in Figure 5.1.
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Chapter 6

Discussion

We proposed methods for diagnosing estimator robustness to distributional spec-

ification of latent variable models in the structural measurement error models and

joint models. We defined analytic robustness conditions in Chapter 2. In Chapters

4 and 5 we demonstrated the implementation and performance of remeasurement

method and its improved version along with several test statistics. The models we

studied cover a wide range of latent-variable models that are suitable in many ap-

plications. In principle, these methods can be applied to any latent variable models

with some sort of error model whose effects on the observed data can be simulated

so that remeasured data can be generated. Therefore, these methods provide data

analyst with a systematic approach useful for practical use.

The traditional remeasurement method is usually time-consuming, and the im-

proved version saves a considerable amount of computation time, as does the test

statistic T ∗

2 in (3.12) compared to the other proposed test statistics in (3.11), (3.13),

and (3.14) given in Section 3.2. However if the latent variable model involves non-
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or semiparametric component, or when the dimension of the entire parameter space

Ω is large, as in the censored-endpoint joint models based on a proportional hazards

model, it is problematic to obtain a variance estimator that leads to a valid T ∗

k (k=1,

2, 3, 4), namely the variance estimator for T k, because it becomes formidable to

compute (3.15)–(3.18) directly. We took an “ad hoc” approach of dropping the nui-

sance infinite dimensional part out of Ω, computing the variance estimate as if this

part of Ω were fixed constants with values equal to their estimates. This approach is

exact only when the estimates for the ignored infinite dimensional part are orthog-

onal to the estimates for the rest of Ω in the sense of (5.14) described in Section

5.3. When the orthogonality does not hold, it may lead to an overoptimistic variance

estimator, and thus adjustment is needed to obtain valid test statistics. One may

use bootstrap to obtain a variance estimate for T k. Yet the combination of two com-

putationally expensive methods, remeasurement method plus bootstrap, makes this

approach unattractive in practice. Further study is needed to find a more efficient

and reliable solution to this issue.

One more involved question closely related to our current study is the diagnosis

of model misspecification on random effects in generalized linear mixed effect models

where there is no such error model as W = DX +U , that is, the observed data are

only realizationa of Y with no W as in the models we have studied. The methods we

have proposed all rely on manipulating some sort of error model. Without an error

model, new approaches are required to reveal model misspecification in generalized

linear mixed effect models. This is an area for future research.
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Appendix A

Joint densities of (Y , W ) in

Example 2.2

The closed-form expression of f
(n)
Y , W (y, w;θ, τ (n), σU) is

f
(n)
Y,W (y, w;θ, τ (n), σU) = c(w, µx, σx, σU)[Φ{h(w,θ, σU)}]y[1 − Φ{h(w,θ, σU)}]1−y,

for y=0, 1, and −∞ < w < +∞, where τ (n) = (µx, σx)
T ,

c(w, µx, σx, σU) = {2π(σ2
U

+ σ2
x)}−1/2 exp

{
− (w − µx)

2

2(σ2
U

+ σ2
x)

}
, (A.1)

h(w,θ, τ (n), σU) =
β1 + βxB(w, µx, σx, σU)

{1 + A(βx, σx, σU)}1/2
, (A.2)

A(βx, σx, σU) =
β2

xσ
2
U
σ2

x

σ2
U

+ σ2
x

, (A.3)

B(w, µx, σx, σU) =
wσ2

x + µxσ
2
U

σ2
U

+ σ2
x

. (A.4)

The closed-form expression of f
(m)
Y , W (y, w;θ, τ (m), σU) is

f
(m)
Y,W(y, w;θ, τ (m), σU) = αc(w, µ1, σ1, σU)py

1(1 − p1)
1−y +

(1 − α)c(w, µ2, σ2, σU)py
2(1 − p2)

1−y, (A.5)
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for y =0, 1, −∞ < w < +∞, where p1 = Φ{h1(w,γ, σU)}, p2 = Φ{h2(w,γ, σU)},

τ (m) = (µ1, σ1, µ2, σ2, α)T ; c(.) is defined from (A.1) by replacing µx and σx with

either µ1 and σ1 or µ2 and σ2; h1(.) is defined from (A.2)–(A.4) by replacing µx and

σx with µ1 and σ1; h2(.) is defined from (A.2)–(A.4) by replacing µx and σx with µ2

and σ2.

Finally, f
(s)
Y,W(y, w;θ, τ (s), σU) is

f
(s)
Y,W(y, w;θ, τ (s), σU) =

∫
∞

−∞

{Φ(β1 + βxx)}y{1 − Φ(β1 + βxx)}1−y × 1

σU

φ
(w − x

σU

)
×

1

η
φ
(x− ξ

η

){
a0 + a1

(x− ξ

η

)
+ a2

(x− ξ

η

)2}2

dx,

for y =0, 1, −∞ < w < +∞, where τ (s) = (ξ, η, a0, a1, a2)
T .
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Appendix B

Estimation of var(Tk) in Section 3.2

Recall that Qi is the observed data for subject i with measurement error variance

σ2
U
, and Q(B)

i is the B λ-remeasured data for subject i, where the measurement error

variance is (1+λ)σ2
U
. Suppose that E

[
ψ{Qi;Ω(0)}

]
= 0 uniquely determines Ω(0) =

{θ(0)T , τ (a)T (0), σ2
U
(0)}T , and E

[
ψ({Q(B)

i ;Ω(λ)}
]

= 0 uniquely determines Ω(λ) =

{θT (λ), τ (a)T (λ), σ2∗
U

(λ)}T , where the expectations are with respect to the true density

ofQi andQ(B)

i , respectively. Denote estimators for Ω(0) and Ω(λ) by Ω̂(0) and Ω̂(λ),

obtained by solving (3.3) and (3.5), respectively.

The test statistics T ∗

k (k=1, 2, 3, 4) are for testing hypothesis H0 : Ω(0) = Ω(λ)

versus Ha : Ω(λ) 6= Ω(0). The variance-covariance estimators V̂
2

k in Section 3.2 are

derived next.

We first derive a variance-covariance estimator for T 1. By the theory forM -estimating

equation, one has the following approximation using the influence functions (Casella
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and Berger, 2002, p.517),

√
n{Ω̂(0) − Ω(0)} ≈ 1√

n

n∑

i=1

A−1
1 {Ω(0)}ψ{Qi;Ω(0)}, (B.1)

√
n{Ω̂(λ) − Ω(λ)} ≈ 1√

n

n∑

i=1

A−1
2 {Ω(λ)}ψ(B){Q(B)

i ;Ω(λ)}. (B.2)

Subtracting (B.2) from (B.1) yields

T 1 ≈
√
n{Ω(0) − Ω(λ)} +

1√
n

n∑

i=1

[
A−1

1 {Ω(0)}ψ{Qi;Ω(0)} −A−1
2 {Ω(λ)}ψ(B){Q(B)

i ;Ω(λ)}
]

,
√
n{Ω(0) − Ω(λ)} +

1√
n

n∑

i=1

R∗

1i. (B.3)

Because the summands in (B.3) R∗

1i for i = 1, . . . , n, are independent with mean

zero, by Central Limit Theorem (CLT), T 1 has asymptotic distribution as normal

with variance-covariance matrix V 1 =var(R∗

1i). Define

B1{Ω(0)} = var
[
ψ{Qi;Ω(0)}

]
,

B2{Ω(λ)} = var
[
ψ(B){Q(B)

i ;Ω(λ)}
]
,

C{Ω(0),Ω(λ)} = cov
[
A−1

1 {Ω(0)}ψ{Qi;Ω(0)}, A−1
2 {Ω(λ)}ψ(B){Q(B)

i ;Ω(λ)}
]
,

then the asymptotic variance-covariance matrix of T 1 is given by, dropping the ar-

guments in A1(·), A2(·), B1(·), B2(·), C(·) when it causes no confusion given the

context,

V 1 = var
[
A−1

1 {Ω(0)}ψ{Qi;Ω(0)} −A−1
2 {Ω(λ)}ψ(B){Q(B)

i ;Ω(λ)}
]

= A−1
1 B1(A

−1
1 )T +A−1

2 B2(A
−1
2 )T − 2C.
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Substituting Ω̂(0), Ω̂(λ), and Â1(·), Â2(·) gives R1i in (3.15) as an estimator for

V 1 = R∗

1i, so that an estimator for var(R∗

1i), V̂ 1, follows.

Moreover if Ha is in the form,

Ha : Ω(λ) = Ω(0) + ∆/
√
n, (B.4)

the asymptotic noncentrality parameter (NCP) of T 1 is equal to

NCP1 = ∆TV −1
1 ∆ = ∆T (A−1

1 B1A
−1T
1 +A−1

2 B2A
−1T
2 − 2C)−1∆. (B.5)

Next we derive a variance estimator for T 2. Under H0, applying a first-order Taylor

expansion of T 2 around Ω(0) leads to, dropping the remainder terms of order op(1)

for MLE,

T 2 ≈ 1√
n

n∑

i=1

ψ(B){Q(B)

i ;Ω(0)} +
1√
n

n∑

i=1

ψ̇
(B){Q(B)

i ;Ω(0)}{Ω̂(0) − Ω(0)}

≈ 1√
n

n∑

i=1

ψ(B){Q(B)

i ;Ω(0)} −A2{Ω(0)} 1√
n

n∑

i=1

A−1
1 {Ω(0)}ψ{Qi;Ω(0)},(B.6)

=
1√
n

n∑

i=1

[
ψ(B){Q(B)

i ;Ω(0)} −A2{Ω(0)}A−1
1 {Ω(0)}ψ{Qi;Ω(0)}

]

,
1√
n

n∑

i=1

R∗

2i. (B.7)

where (B.6) follows from (B.1) and that Â2{Q(B); Ω̂(0)} converges to A2{Ω(0)} in

probability. Because R∗

2i, for i = 1, . . . , n, are mean-zero independent random quan-

tities, by CLT, under H0, T 2 has asymptotic distribution as normal with mean zero
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and some variance-covariance matrix denoted by V 2 =var(R∗

2i), that is,

V 2 = var
[
ψ(B){Q(B)

i ;Ω(λ)} −A2{Ω(λ)}A−1
1 {Ω(0)}ψ{Qi;Ω(0)}

]

= B2 +A2A
−1
1 B1(A

−1
1 )TAT

2 − 2cov(ψ(B), ψ)(A−1
1 )TAT

2

= A2[A
−1
1 B1(A

−1
1 )T +A−1

2 B2(A
−1
2 )T − 2cov{(A−1

2 )Tψ(B), A−1
1 ψ)]AT

2

= A2V 1A
T
2 . (B.8)

R2i given in (3.16) is obtained by substituting the parameter estimates in R∗

2i, and

V̂ 2, the sample variance-covariance of R2i, is an estimator for V 2 = var(R∗

2i).

Under Ha given by (B.4), applying the first-order Taylor expansion of T 2 around

Ω(λ) leads to,

T 2 ≈ 1√
n

n∑

i=1

ψ(B){Q(B)

i ;Ω(λ)} +
1√
n

n∑

i=1

ψ̇
(B){Q(B)

i ;Ω(λ)}{Ω̂(0) − Ω(0) − ∆/
√
n}

=
1√
n

n∑

i=1

ψ(B){Q(B)

i ;Ω(λ)} +
1

n

n∑

i=1

ψ̇
(B){Q(B)

i ;Ω(λ)}
[√

n{Ω̂(0) − Ω(0)} − ∆
]

≈ 1√
n

n∑

i=1

ψ(B){Q(B)

i ;Ω(λ)} −A2{Ω(λ)}A−1
1 {Ω(0)} 1√

n

n∑

i=1

ψ{Qi;Ω(0)}

+A2{Ω(λ)}∆

= A2{Ω(λ)}∆ +

1√
n

n∑

i=1

[
ψ(B){Q(B)

i ;Ω(λ)} −A2{Ω(λ)}A−1
1 {Ω(0)}ψ{Qi;Ω(0)}

]

= A2{Ω(λ)}∆ +
1√
n

n∑

i=1

R∗

2i (B.9)

Therefore the mean of the asymptotic distribution of T 2 is A2{Ω(λ)}∆. It follows

that the NCP of T 2 is equal to

NCP2 = (A2∆)T (A2V 1A
T
2 )−1(A2∆) = NCP1. (B.10)
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Following the same line of reasoning, the variance-covariance estimator for T 3, V̂ 3,

can be derived and its asymptotic distribution with mean zero under H0 and variance

equal to V 3 = A1V 1A
T
1 . Under Ha, and specifically (B.4), the asymptotic mean of

T 3 becomes −A1{Ω(0)}∆, leading to NCP same as NCP1. With the derivations to

reach the results for T 2 and T 3, the results for T 4 follows immediately. It should be

obvious at this point howR4i is derived. The asymptotic variance of T 4 is V 4 = (A1+

A2)V 1(A1 +A2)
T/4. Moreover, under Ha in (B.4), T 4 has asymptotic distribution

as normal with mean (A1 +A2)∆/2 and NCP of T 4 is the same as NCP1.

Having the same NCP, T k (k=1, 2, 3, 4) are equivalent in terms of hypothesis testing

when Ha is in the form of (B.4).
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Appendix C

Definition of Reliability Ratio

An important concept often used in the measurement-error field is the reliability

ratio (Carroll et al. 1995, p. 22). For a simple scalar measurement error model,

W = X+U , where W is a measurement of the unobservable variable X contaminated

by an additive measurement error U , which is a mean-zero normal random variable

with variance σ2
U
, denoting the variance of X as σ2

X
, the reliability ratio is defined as

RR = σ2
X
/(σ2

X
+ σ2

U
). (C.1)

The reliabilty ratio is a useful general measure of the effects of measurement error.

When RR ≈ 1, it means that σ2
U
/σ2

X
is small and thus bias due to measurement error

will be small. In fact, in simple linear regression, the relative bias in the estimator

for slope due to measurement error is just RR.

When it comes to the simple-response joint model defined in Section 1.3, viewing

U as the measurement-error vector when measuring DX, denoting the covariance

matrix of Xp×1 as V X , an analogy to (C.1) is the reliability matrix (V X +V U)−1V X,
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where V U is the covariance matrix of the “best” estimator, i.e., OLSE, forX given in

Section 5.1 just as σ2
U

is the variance of the “best” estimator for X, namely W , in the

simple scalar measurement error model. Gleser (1992) has shown the importance of

the reliability matrix (V X + V U)−1V X in linear models. We define a scalar function

of the reliability matrix as

RR =
1

p
trace{(V X + V U)−1V X}, (C.2)

and use it as a general measure of the amount of measurement error in the longitudinal

data. Note that in the absence of intra-subject errors, that is, when σU = 0, V U = 0,

and RR defined in (C.2) is equal to one. It is obvious that 0 < RR < 1 in the presence

of intra-subject errors. Therefore, the reliability ratio defined in (C.2) has the same

range and implication as the reliability ratio in the measurement-error field.
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