
ABSTRACT

XU, LISONG Performance Analysis of Optical Burst Switched Networks. (Under the

direction of Dr. Harry G. Perros and Dr. George N. Rouskas.)

In this dissertation, we studied the performance of Optical Burst Switching (OBS).

OBS is a promising new solution for the next-generation optical Internet.

In the first part of the dissertation, we studied a novel WDM ring network with

OBS. The ring consists of N nodes, and each node owns a home wavelength on which

it transmits its bursts. The ring operates under the fixed transmitter tunable receiver

(FTTR) scheme. Control information is transmitted on a separate control channel.

We proposed five different burst switching access protocols. We also studied the per-

formance of these access protocols in terms of throughput, packet delay, throughput

fairness, and delay fairness under different network parameters: average packet ar-

rival rate, maximum burst size, and minimum burst size. Finally, we proposed a new

offset calculation method, which can significantly simplify the access protocol design,

and reduce the packet delay for all access protocols.

In the second part of the dissertation, we analyzed an edge node of a WDM OBS

mesh network using a new burst arrival process, which is more realistic than the

well-known Poisson process. The edge node is modeled as a closed non-product-form

queueing network, consisting of special nodes with orbiting customers. Despite the

rich literature in queueing network analysis, this particular queueing network with

orbiting customers has not been analyzed before. We developed algorithms for both

the single-class and multi-class queueing networks. The single-class queueing net-

work is solved using Marie’s method. In the case of no converters, we obtained a

closed-form expression of the conditional throughput of the special node with or-

biting customers. The multi-class queueing network is analyzed by decomposition.

Specifically, a multiple-class queueing network is decomposed into a set of two-class

queueing networks, and each of them is then solved by Neuse and Chandy’s Heuristic

Aggregation Method. We also developed a much faster approximation algorithm for

the analysis of an edge OBS node with a large number of wavelengths. Comparisons

against simulation data suggest that our algorithms have a good accuracy.
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Chapter 1

Introduction

1.1 Optical Switching

Wavelength division multiplexing (WDM) appears to be the solution of choice for

providing a faster networking infrastructure that can meet the explosive growth of

the Internet. Several different technologies have been developed for the transfer of

data over WDM, such as wavelength routing (optical circuit switching) [20], optical

packet switching [35, 37], and optical burst switching (OBS) [25]. Wavelength-routed

optical networks have already been deployed and, currently, they represent the most

promising technology for optical networks. However, wavelength-routed optical net-

works, which employ circuit switching, may not be the most appropriate technology

for the different applications that will use the emerging optical Internet. Optical

packet switching is an alternative technology that appears to be the optimum choice.

However, at this moment the technology is not mature enough to provide a viable

solution. Optical burst switching is a switching technique that occupies the mid-

dle of the spectrum between the well-known circuit switching and packet switching

paradigms, borrowing ideas from both to deliver a completely new functionality.
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1.1.1 Optical Circuit Switching

Even though wavelength-routed optical networks have already been deployed, but

it may not be the most appropriate for the emerging optical Internet. For example,

it takes at least a round-trip delay to establish a lightpath. This leads to a poor

wavelength utilization if the connection holding time is very short. The bursty nature

of the data traffic also leads to a poor wavelength utilization. Therefore, in order to

fully utilize the wavelength, sophisticated traffic grooming mechanism is needed to

support statistical multiplexing of data from different users.

1.1.2 Optical Packet Switching

Optical packet switching [35, 37] is an alternative technology that appears to be

the optimum choice. However, at this moment the technology is not mature enough

to provide a viable solution.

• One major challenge is the requirement for synchronization [37]. Optical packet

switches usually work synchronously. For example, packets arriving at different

input ports must be aligned before they enter the switch fabric. However, it is

difficult and expensive to implement the synchronization component.

• The second serious issue in the design of optical packet switches is the lack of

commercially viable optical buffers. The basic idea of packet switching is the

“Store and Forward”, which means that packets are first stored in the packet

switches, and then forwarded to the next switch. This is necessary due to output

port contention. However, currently there are no random access optical buffers.

As an alternative method, optical fibers are used to emulate buffers by delaying

packets for a fixed time [35].

• The third difficulty in implementing optical packet switches is the amount of

time required to configure the optical switch fabric. Consider an optical packet

switch which takes 1 ms to set up a connection from an input port to an output

port (an optimistic value given the current state of the art). At a data rate
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of 2.5 Gbps, typical of today’s communication systems, it takes about 5 µs to

transmit a 1500-byte packet. Therefore, if a switch operates at the packet level,

less than 0.5% of the time is used for switching data, while the rest is wasted

in setting up the switch fabric.

1.1.3 Optical Burst Switching

The concept of burst switching first emerged in the context of voice communica-

tions in early 1980s [2, 3]. More recently, optical burst switching [25, 27] has received

considerable attention as an alternative to optical packet switching. In essence, op-

tical burst switching considers the optical layer merely as a buffer-less transparent

media for applications [1]. However, there is no universal definition of optical burst

switching. Dolzer et al. [12] summarized some widely accepted common characteris-

tics as follows. Note that, not all proposed optical burst switching mechanisms have

all those features described below.

• Granularity: the transmission unit size of optical burst switching is between the

optical circuit switching and optical packet switching

• Separation of Control and Data: control information is transmitted on a sepa-

rate wavelength (or channel)

• One-Way Reservation: Resources are allocated using one-way reservation. That

is, a source node does not need to wait for the acknowledgement back from the

destination node, before it starts transmitting of the burst.

• Variable Burst Length: The size of burst is variable

• No Optical Buffering: The intermediate node in the optical network does not

require optical buffers. Bursts go through the intermediate node without any

delay.

Specifically, the unit of transmission is a burst, which may consist of several IP

packets, a stream of ATM cells, HDTV frames, or the raw bit streams from remote
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data sensors. The transmission of each burst is preceded by the transmission of a

control packet, which usually takes place on a separate signaling channel. Unlike

circuit switching, a source node does not wait for confirmation that a path with

available resources has been set up; instead, it starts transmitting the data burst

soon after the transmission of the control packet. We will refer to the interval of time

between the transmission by the source node of the first bit of the control packet and

the transmission of the first bit of the data burst as the offset. The control packet

carries information about the burst, including the offset value, the length of the burst,

its priority, etc. The purpose of the control packet is to inform intermediate nodes

of the upcoming data burst, so that they can make a routing decision and configure

their fabric to switch the burst to the appropriate output port. However, in case of

congestion or output port conflicts, an intermediate node may drop bursts. Thus, as

in connectionless packet switching, there is no guarantee of delivery. Also, consecutive

bursts between a given source-destination pair may be routed independently of each

other.

Optical burst switching is quite similar to the Fast Reservation Protocol in ATM

or ATM Block Transfer with Immediate Transmissions (ATM-IT) [24]. However, in

the former, all packets or cells in a burst are processed together as a whole by the

switch, while in the later, each packet or cell is stored and forwarded individually by

the switch.

1.2 Previous Work

1.2.1 Burst Offset

The burst offset is the interval of time between the transmission by the source

node of the first bit of the control packet and the transmission of the first bit of the

data burst. Based on the length of the burst offset, optical burst switching can be

classified into the following three classes.
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• No Reservation: The burst is sent immediately after the control packet. That

is, the offset is only the transmission time of the control packet. This scheme is

practical only when the switch configuration time and the switch processing time

of a control packet are very short. This class is very close to the optical packet

switching. The optical burst switching scheme called Tell And Go (TAG) [32]

belongs to this class.

• One-Way Reservation: A burst is sent shortly after the control packet, and the

source node does not wait for the acknowledgement back from the destination

node. Therefore, the size of the offset is between transmission time of the control

packet and the round-trip delay of the control packet. Different optical burst

switching mechanisms may choose different offset values in this range.

In just-enough-time (JET) proposed by Qiao and Yoo [25] , the offset is selected

in a manner that takes into account the processing delays of the control packet

at the intermediate switches. Thus when the burst arrives at the intermediate

switches, those switches are already configured. At the destination node, the

burst arrives just after it has been configured. Yoo et al. [38] also described

a priority scheme for JET to support multi-class traffic. Specifically, a burst

with a higher class is assigned with an additional offset. They also analyzed

the performance of this priority scheme assuming no class interference. Dolzer

and Gauger [11] proposed an iteration algorithm to analyze approximately this

priority scheme considering the class interference, and they found that the burst

interarrival time distribution has only a small impact on the burst loss proba-

bility, while the burst length distribution and the ratio of the mean burst length

of the classes have a great impact on the burst loss probability.

Verma et al. [28] and Chaskar et al. [9] presented a traffic shaping scheme which

randomizes the offset to reduce the burst loss probability.

• Two-Way Reservation: The offset is the time required to receive an acknowl-

edgement from the destination. This class is very close to optical circuit switch-

ing in that it incurs a round-trip delay to set up the transmission, and since
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the control packet reserves resources, delivery of the burst is guaranteed. The

optical burst switching scheme called Tell And Wait (TAW) [32] belongs to this

class. The major drawback of this class is the long offset time, which causes the

long data delay.

Düser and Bayvel [13] proposed a wavelength-routed optical burst switching

(WR-OBS), which uses two-way reservation. Different from other two-way

reservations, which send out the control packet after aggregating the burst,

WR-OBS sends out the control packet during the aggregation process. Specif-

ically, at some point during the aggregation process, the source node sends a

control packet to reserve the resources along the path to the destination node.

The source node continues aggregating packets into the burst, until it receives

the acknowledgement. The burst is then sent to the destination node. There-

fore, the average data delay is reduced. However, the source node must estimate

the size of the final burst by monitoring the buffer filling statistics, when it sends

out the control packet.

1.2.2 Wavelength Reservation Schemes

This subsection describes different wavelength reservation schemes for optical

burst switching based on one-way reservation. Depending on when the reservation

starts and ends, Baldine et al. [4] described the following four types of wavelength

reservation schemes as shown in Figure 1.1.

• Scheme 1: Explicit setup and explicit release. In this scheme, the setup message

(control packet) contains the offset of the burst, but not the duration of the

burst. The reservation starts immediately after the switch receives the setup

message, and ends after the release message arrives. Therefore, only a single

on/off bit is required to record the status of a single wavelength. “On” means

that the wavelength is busy, and “off” means that the wavelength is free. The

on/off bit is triggered by the setup and release messages.
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Figure 1.1: Four types of wavelength reservation schemes

• Scheme 2: Explicit setup and estimated release. In this scheme, the setup

message contains both the offset and the duration of the burst. Each wavelength

is associated with a deadline, which indicates when the wavelength will become

free. The reservation starts both after the switch receives the setup message,

and after the deadline. The reservation ends at the end of the burst, which is

calculated using the duration of the burst.

• Scheme 3: Estimated setup and explicit release: In this scheme, the setup

message contains the offset of the burst, but not the duration of the burst. The
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reservation starts at the beginning of the burst, which is calculated using the

offset of the burst, and ends after the release message arrives.

• Scheme 4: Estimated setup and estimated release. In this scheme, the setup

message contains both the offset and the duration of the burst. The reservation

starts at the beginning of the burst, which is calculated using the offset of the

burst, and ends at the end of the burst, which is calculated using the duration

of the burst. Each wavelength is associated with a vector of time period, which

indicates the period the wavelength is busy.

Just-in-time (JIT) proposed by Wei and McFarland [30] belongs to scheme 1.

The Horizon scheme proposed by Turner [27] for a scalable burst switch architecture

belongs to scheme 2. just-enough-time (JET) proposed by Qiao and Yoo [25] belongs

to scheme 4. Gauger et al. [15] introduced a new reservation scheme based on JET

for optical switches with optical buffers. Xiong et al. [33] and Callegati et al. [8]

studied the LAUC-VF scheme (Latest Available Unused Channel with Void Filling),

which belongs to scheme 4. Yang et al. [36] proposed a new wavelength reservation

algorithm based on LAUC-VF to support DiffServ.

Dolzer et al. [12] compared the burst loss probabilities of scheme 1, 2, and 4.

They found that with variable offset time, scheme 4 achieves the lowest burst loss

probability, followed by scheme 2, and scheme 1 achieves the highest burst loss prob-

ability. If the offset time is constant, then scheme 4 and 2 achieve the same burst

loss probability. However, the lower burst loss probability comes at a price of higher

complexity at the scheduler in the switch, as well as significant amounts of memory

on the signaling board [19].

The JumpStart project [1] is an ARDA-supported research project between NCSU

and MCNC, addressing the design, specification, performance evaluation, and hard-

ware implementation of a signaling protocol for OBS networks. The signaling protocol

follows the just-in-time (JIT) approach, and part of this signaling scheme has been

reported by Baldine et al. [4]. The JumpStart project [1] is designed to support both

scheme 1 and scheme 2, both unicast and multicast, both short bursts and light-

paths, both persistent path setup and on-the-fly path setup, and both best-effort and
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quality-of-service.

1.2.3 Contention Resolution

Contention resolution is necessary in order to handle the case where more than one

burst are destined to go out of the same output port at the same time. In an optical

burst switch, techniques designed to address this problem include the following four

methods.

• Exploiting the wavelength domain: In WDM, several wavelengths run on a

fiber link that connects two optical switches. This can be exploited to minimize

contention as follows. Let us assume that two bursts are destined to go out of

the same output port at the same time. Then, they can be still transmitted

out but on two different wavelengths. This method may have some potential in

minimizing contention, particularly since the number of wavelengths that can

be coupled together onto a single fiber continues to increase. For instance, it is

expected that in a year there will be as many as 200 wavelengths per fiber.

• Optical buffering: Optical buffering currently can only be implemented using

optical delay lines (ODL). An ODL can delay a burst for a specified amount

of time, which is related to the length of the delay line. Delay lines may be

acceptable in prototype switches, but they are not commercially viable. The

alternative, of course, is to convert the optical packet to the electrical domain

and store it electronically. This is not an acceptable solution, since electronic

memories cannot keep up with the speeds of optical networks.

• Deflection routing: Deflection routing is ideally suited to switches that have

little buffer space or no buffer space. When there is a conflict between two

bursts, one will be routed to the correct output port, and the other will be

routed to any other available output port. In this way, no or little buffer is

needed. However, the deflected burst may end up following a longer path to its

destination. As a result, the end-to-end delay for a burst may be unacceptably



10

high. Also, bursts will have to be re-ordered at the destination since they are

likely to arrive in an out-of-sequence manner.

• Burst segmentation: In burst segmentation, when contention happens, a node

does not drop the entire burst, however, it breaks the burst into multiple seg-

ments, and only the overlapping segments are dropped. In this way, even though

the burst loss probability does not change, but the loss probability of the data

contained in the burst is reduced.

Yoo et al. [38] studied the effect of the optical delay line on the burst loss proba-

bility, and they found that optical delay lines can reduce the burst loss probability,

and the length of the optical delay line required to achieve a given burst loss prob-

ability can be significantly reduced as the number of wavelength increases. Kim et

al. [16] presented a deflection routing algorithm. Besides the normal offset time, each

burst is assigned a “routing offset time” to accommodate the extra burst delay of

the deflection routing. They found that by introducing a 10% “routing offset time”,

the burst loss probability could be significantly reduced. Detti et al. [10] proposed

the optical composite burst switching (OCBS). It uses both wavelength dimension

and burst segmentation to solve contention. They found that burst segmentation can

reduce the burst loss probability, and the larger the number of packets in a burst, the

better performance the OCBS can obtain. Vokkarane et al. [29] studied the contention

resolution using both burst segmentation and deflection routing.

1.2.4 Analytical Model

All the performance studies of OBS networks proposed in the literature are based

on either simulation or simple analytical models. In [9, 12, 11, 28], an output port

of an OBS node is analyzed assuming Poisson arrivals and no buffering. Under these

assumptions, an output port can be modeled by a finite number of servers, each

representing a wavelength, with no queue. Then, the probability that a burst destined

to this output port is lost can be obtained from the Erlang B formula. In [27, 38], an

output port is analyzed assuming Poisson arrivals and buffering. It is then modeled
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by an M/M/m/K queue, where m is the number of wavelengths and K − m is the

capacity of the buffer. Wei and McFarland [31] considered multiple classes of bursts,

each of which is a Poisson arrival process.

However, It is well-known that the Poisson process is not a good model for wide

area traffic [22], and it is unlikely that the burst arrival processes in future optical

networks will be accurately characterized by the Poisson model. Another problem

is that in the Poisson process, an arrival occurs instantaneous, and the service time

required by the arrival is independent of the inter-arrival time of two consecutive

bursts. However, in optical burst switching, the service time of a burst is the duration

of the burst, which is not independent on the inter-arrival time of the bursts. For

example, the inter-arrival time of between a very long burst and the following burst

must be very long, too. Therefore, more sophisticated models are required in order

to advance our understanding of the performance and the potential of OBS networks.

In [10], an OBS node is analyzed assuming the On/Off traffic, which is more real-

istic than the Poisson process. However, the arriving burst is assigned a destination

output port following the uniform distribution. This is not a practical assumption,

since in most cases, a particular output port has more traffic than other output ports.

It also assumes that all input wavelengths have the same On/Off process. That is

not a practical assumption, either. Finally, the problem with On/Off process is that

it only models a single class of bursts.

1.3 Thesis Organization

To the best of our knowledge, all the performance studies of OBS networks in the

literature are for optical networks with a mesh topology, and none of them study the

optical networks with a ring topology. However, ring networks represent a significant

investment on the part of carriers, and are currently being upgraded to support

WDM. Therefore, performance studies of OBS networks with a ring topology are

necessary. Chapter 2 considers an OBS network with a ring topology. Several access

protocols are proposed to solve receiver collisions, and their performance in terms of
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throughput, delay, and fairness is analyzed by simulation. A new offset calculation is

also proposed to simplify the protocol design.

In chapter 3, we propose a burst arrival process described by a 3-state Markov

process, which is more realistic than Poisson process. It permits short and long bursts

to be modeled, and the parameters of the model can be selected to capture a wide

range of behaviors in the arrival stream.

Chapter 4 considers an edge node of an OBS mesh network with traffic modeled

by the burst arrival process described in chapter 3. The arriving burst is assigned a

destination output port following the arbitrary distribution. The OBS mesh network

consists of OBS nodes interconnected by bi-directional fiber links. An OBS node

consists of a non-blocking space-division switch fabric with no optical buffers. The

message between a user and the edge node follows the signaling protocols defined in

the JumpStart project [1]. The edge node is modeled as a closed non-product-form

queueing network consisting of special nodes with orbiting customers. We developed

algorithms for the analysis of both the single-class and multi-class queueing networks.

The single-class queueing network is solved using Marie’s method with a novel ex-

pression for the conditional throughput of the special nodes with orbiting customers.

The multi-class queueing network is analyzed by decomposition. Comparisons against

simulation data suggest that our algorithms have a reasonable fast speed and a good

accuracy.

In chapter 5, we studied the OBS edge node with a large number of wavelengths.

Based on our observations when the number of wavelength increases, we proposed an

approximation algorithm for the analysis of an edge OBS node with a large number

of wavelengths.

Finally, a summary of research contributions and suggested future work are given

in chapter 6.
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Chapter 2

Access Protocols for an OBS Ring

Network

2.1 Introduction

Optical burst switching has been studied in the context of wide area networks

with a mesh topology [33, 25, 27, 28]. In this chapter, we study OBS access protocols

for WDM ring networks. Our focus on ring topologies is motivated by the wide

deployment of SONET/SDH rings. These networks represent a significant investment

on the part of carriers, and are currently being upgraded to support WDM. To the

best of our knowledge, this is the first study of burst switching protocols specifically

for ring networks. Our vision of the OBS ring is that it will be used to transport

different types of traffic, such as IP, ATM, and Frame Relay traffic, and also HDTV

and sensor traffic that may not be transported over IP, ATM or Frame Relay. The

objective of this chapter is to analyze the performance and fairness of five different

OBS access protocols. How these protocols can be used to provide different classes

of services to different applications is beyond the scope of this chapter.
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This chapter is organized as follows. Section 2.2 describes the optical burst switch-

ing used in the ring network, and proposed a new offset calculation method that

simplifies the protocol design. Section 2.3 describes the ring network we consider and

the basic operation of burst switching in such an environment. Section 2.4 provides

a detailed description of the various burst switching access protocols studied in this

chapter. Section 2.5 presents the simulation results on the performance of these burst

switching access protocols, and finally Section 2.6 provides some concluding remarks.

The material in this chapter was presented in Networking 2002 [34].

2.2 Optical Burst Switching

There are several variants of burst switching, mainly differing on the length of the

offset. In the burst switching scheme called Tell And Go (TAG) [32], the burst is

transmitted immediately after the burst header packet. That is, the offset is only the

transmission time of the burst header packet. This scheme is practical only when the

switch configuration time and the switch processing time of a burst header packet are

very short. At the other extreme, the Tell and Wait (TAW) [32] scheme requires the

offset to be at least equal to the time required to receive an acknowledgement from

the destination. TAW is equivalent to circuit switching in that it incurs a round-

trip delay to set up the transmission, and since the burst header packet reserves

resources, delivery of the burst is guaranteed. Another advantage of TAW is that it

eliminates receiver collisions, since a node returns an acknowledgment only for bursts

it is prepared to accept.

An intermediate burst switching scheme, known as Just Enough Time (JET) [25],

selects the offset in a manner that takes into account the processing delays of the

burst header packet at the intermediate switches. Let T
(p)
i denote the processing

delay of a burst header packet at an intermediate switch, T
(p)
d denote the processing

delay of a burst header packet at the destination switch, and T
(s)
d denote the time to

setup (configure) the destination switch. Then, the offset value for JET is :
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offsetJET =

(∑
i

T
(p)
i

)
+ T

(p)
d + T

(s)
d (2.1)

The offset calculation for the JET protocol is illustrated in Figure 2.1 for a path

that includes two intermediate switching nodes between the source and destination

of the burst. As can be seen, the offset needs to be long enough to account for the

processing time of the burst header packet at the two intermediate nodes and the

destination plus the switch setup time at the destination. If the offset time is less

than that, then there is a possibility that the burst may arrive at a node before the

node is ready to switch the burst.

One issue that arises in computing the offset under JET is determining the number

of intermediate switching nodes (hops) between the source and destination. In OBS

networks, information about the number of hops in a path may not, in general, be

readily available; even when such information is somehow known, because of the

effects of routing changes, it is not guaranteed to be valid when used. Thus, it is
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desirable to use an offset value that does not depend on the path used and does not

require the exchange of information among network nodes.

As we can see from expression (2.1), the part of the offset value that depends

on the path between the source and destination is the sum of the processing times

at intermediate nodes. Given the recent advances in hardware implementation of

communication protocols, it is reasonable to assume that the processing time T
(p)
i in

(2.1) will be very short for most common functions of the signaling protocol (i.e., no

exception conditions). In this case, fiber delay lines of reasonable length may be used

at intermediate nodes to delay each incoming burst by an amount of time equal to

T
(p)
i . Given such fiber delays, the first term in the right hand side of (2.1) can be

omitted when computing the offset. We call this new scheme the Only Destination

Delay (ODD) protocol, and its offset is given by:

offsetODD = T
(p)
d + T

(s)
d (2.2)

Furthermore, instead of using destination-specific values for the processing and

switching delays in (2.2), one may use a constant offset value by taking the maxi-

mum of these values over all destinations. A constant offset that does not depend

on the path (number of hops) to the destination significantly simplifies the design

and implementation of signaling protocols and optical switches for burst switching

networks.

2.3 The Network Under Study

2.3.1 Ring and Node Architecture

We consider N OBS nodes organized in a unidirectional ring, as shown in Fig-

ure 2.2. The ring can be a metropolitan area network (MAN) serving as the backbone

that interconnects a number of access networks, and transporting multiple types of

traffic from users, such as IP traffic, ATM traffic, Frame Relay traffic, HDTV traffic,
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and sensor traffic. Each fiber link between two consecutive OBS nodes in the ring

can support N +1 wavelengths. Of these, N wavelengths are used to transmit bursts,

and the (N + 1)-th wavelength is used as the control channel.

Each OBS node is attached to one or more access networks. In the direction from

the access networks to the ring, the OBS node acts as a concentrator. It collects and

buffers electronically data, transmitted by users over the access networks, which need

to be transported over the ring. Buffered data are subsequently grouped together

and transmitted in a burst to the destination OBS node. A burst can be of any

size between a minimum and maximum value. Bursts travel as optical signals along

the ring, without undergoing any electro-optic conversion at intermediate nodes. In

the other direction from the ring to the access networks, an OBS node terminates

optical bursts destined to itself, electronically processes the data contained therein,

and delivers them to users in its attached access networks.

The architecture of an OBS node is shown in Figure 2.3. Each node is equipped

with one optical add-drop multiplexer (OADM), and two pairs of optical transceivers.
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The first pair consists of a receiver and transmitter fixed tuned to the control wave-

length, and are part of the control module in Figure 2.3. The control wavelength is

dropped by the OADM at each node, and added back after the control module has

read the control information and (possibly) has inserted new information (the follow-

ing subsection provides more details on the operation of the control wavelength).

The second pair of transceivers consists of a transmitter that is fixed tuned to

the node’s home wavelength, and an agile receiver (or a receiver array) that can

receive from all N wavelengths that transmit bursts. Each OBS node has a dedicated

home wavelength on which it transmits its bursts. The OADM at each node removes

the optical signal from the node’s home wavelength by dropping the corresponding

wavelength, as Figure 2.3 illustrates. The OADM also drops the optical signal on

other burst wavelengths, whenever they contain bursts for this node. In the case

where multiple bursts arrive, each on a different wavelength, at an OBS node, the

receive module in Figure 2.3 employs a collision resolution strategy to determine

which burst will be accepted.
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To support ODD, an extra fiber delay line (not shown in Figure 2.3) is added into

the node to delay outgoing bursts on all wavelengths except the control wavelength

and the node’s home wavelength.

Data waiting for transmission is organized into (logical) transmit queues according

to their destination. The data buffer at each OBS node is shared by N − 1 transmit

queues, each corresponding to one of the N −1 destination nodes. The order in which

transmit queues are served is determined by the scheduler module in Figure 2.3. The

transmit queues are served in a Round-Robin manner.

2.3.2 Control Wavelength Operation

The control wavelength is used for the transmission of control slots. In a ring

with N nodes, N control slots, one for each node, are grouped together in a control

frame which continuously circulates around the ring. Depending on the length of

the circumference of the ring, there may be several control frames circulating simul-

taneously. In this case, control frames are transmitted back-to-back on the control

wavelength.

Each node is the owner of one control slot in each control frame. Each control

slot contains several fields, as Figure 2.4 illustrates. The format and type of the fields

depend on the OBS protocol used (for more details, refer to the description of the

protocols in Section 2.4). In general, however, each control slot includes fields for the

destination address, the offset, and the burst size. Other fields, such as a token field,

may be included for some of the protocols, as necessary.

When acting as a source, a node waits for the next control frame and writes the

burst information (destination address, burst length, and, if applicable, the offset)

in its own control slot. If it has nothing to transmit, it just clears all the fields in

its control slot. At each node, the entire control frame is read first to determine

whether any control slots indicate a burst transmission to this node. If so, and

assuming that the node is not in the process of receiving another burst, it instructs

its tunable receiver to tune to the appropriate wavelength to receive the burst; in

other words, preemption is not allowed. In case of a receiver collision (i.e., when
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the address of this node is specified in multiple control slots, which may give rise to

overlapping transmissions), the destination node selects one of the bursts to receive.

In an acknowledgment-based protocol, the node also modifies the appropriate field as

an indication to the source node to transmit its burst.

We note that each node in the ring acts as a source node (inserting bursts in

its home wavelength), as an intermediate node (passing through bursts traveling to

downstream nodes), and as a destination node (terminating bursts sent to it). As

a result, each node must read each control frame in its entirety before determining

what action to take (i.e., whether to write in its own control slot to indicate its

intention to transmit a burst, and/or whether to acknowledge the request of a burst

transmission). Therefore, in a ring network the time to process a control frame is the

same for intermediate and destination nodes (i.e., T
(p)
i = T

(p)
d ). The control frame is

delayed by this amount of time as it passes through each node. This delay is the sum

of the control frame transmission time plus the time to process the control frame,

and it can be kept short by employing a simple protocol implemented in hardware.

A number of OBS protocols having these features are described in the next section.

2.4 OBS Protocols

Since each OBS node is assigned a unique home wavelength, bursts may be lost due

to receiver collisions. This occurs when two or more source nodes transmit (each on its



21

home wavelength) bursts to the same destination node, and the burst transmissions

overlap in time. In this chapter, we proposed a number of different access protocols

that differ mainly in the way that receiver conflicts are resolved. These protocols can

be classified in the following three classes, depending on who is responsible to resolve

receiver collisions.

• Source Node. In this class of protocols, a source node resolves receiver collisions

using the information transmitted on the control wavelength.

• Destination Node. In this class of protocols, a source node must get permission

from the destination node, before it can send its burst. The destination node

schedules all incoming requests so that to avoid collisions.

• Other. In this class of protocols, neither the source node nor the destination

node are responsible for receiver collision resolution. For example, a common

method in ring networks is to use tokens to resolve receiver collisions.

Our emphasis is on protocols that use few rules, are simple to implement in hard-

ware (i.e., they can operate at wire speeds) and are distributed in nature (i.e., each

node locally executes an identical copy of the protocol and makes transmit decisions

by its local knowledge). We have deliberately avoided protocols that are central-

ized in nature, or they require the collection of transmit queue sizes, or they require

network-wide synchronization (e.g., TDM-based schemes).

In this chapter, we propose five access protocols, namely: RR/R, RR/P, RR/NP,

RR/ACK, and RR/Token. The first three protocols belong to the “source node” class,

RR/ACK belongs to the “destination node” class, and the last one belongs to “other”

class. Before we proceed with the description of the five protocols, a short discussion

on the assumptions we make is necessary. We define a burst as an encapsulation of IP

packets, ATM cells, Frame Relay frames, or some other types of packets containing

data. A burst format is needed so that the destination node can correctly extract the

data from the received burst. The format of a burst is outside the scope of this work.

While any burst format incurs overheads that affect performance measures such as

throughput and delay, the various protocols are affected in the same degree. Since we
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are interested in the relative performance of the five protocols, we have ignored this

burst format overhead.

A transmit queue is eligible for service if its size is larger than MinBurstSize,

or the first data of the transmit queue has waited for more than TimeOut time. If

the size of the eligible transmit queue is less than MaxBurstSize, then a burst that

includes all data in the transmit queue is constructed. Otherwise, a burst of at most

size MaxBurstSize is constructed, and the data remaining in the transmit queue is

served at a later time.

In the following five subsections, we describe the proposed OBS access protocols.

Numerical results are given in Section 2.5.

2.4.1 Round-Robin with Random Selection (RR/R)

The first protocol we consider uses a round-robin scheduler at each node to serve

the transmit queues, and lets each receiver randomly select a burst from the bursts

that arrive simultaneously. Thus, we call this protocol Round-Robin with Random

Selection (RR/R). More specifically, the operation of the protocol at node i is as

follows.

• At the transmitting side, the scheduler of node i visits all eligible transmit

queues in a round-robin fashion. Suppose that, at time t1, transmit queue j

is selected for service, then node i waits for the first control frame that arrives

after time t1. When the frame arrives, node i writes the burst information and

destination address j in its own control slot (i.e., the i-th slot of the control

frame). After a delay equal to the offset value, node i transmits the burst on

its home wavelength.

• At the receiving side, when a control frame arrives at node i, it scans the control

slots of the control frame, checking for any slot that has i in the destination

address field. If more than one such slots are found, node i randomly selects one

of them, say k (since all the corresponding bursts will arrive at node i at the

same time for both JET and ODD, and at most one of them can be accepted).
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In this case, all bursts to node i except the burst from node k will be lost. Node

i then checks whether its receiver is free at the time when the burst from node

k arrives at node i, and checks whether its receiver has enough time to tune

to another wavelength. If so, it instructs its receiver to tune to node k’s home

wavelength in order to receive the burst transmission. Otherwise, it gives up

on the burst from node k.

Because of the randomness involved in resolving receiver conflicts, RR/R is a fair

protocol. However, burst loss may occur due to these conflicts.

2.4.2 Round-Robin with Persistent Service (RR/P)

The Round-Robin with Persistent Service (RR/P) protocol is similar to the RR/R

protocol, but it is designed to eliminate receiver conflicts that can be detected prior

to the transmission of a burst. The operation of this protocol at node i is as follows.

• At the transmitting side, node i maintains a variable EarliestFreeTime(j) for

each destination node j, which specifies the earliest time at which the receiver

of node j would be free. This variable is updated by monitoring the burst

information in control slots that have j in the destination address field.

The scheduler at node i visits all eligible transmit queues in a round-robin

fashion. Suppose that, at time t1, transmit queue j is selected for service, then

node i waits for the first control frame that arrives after time t1. Suppose it

arrives at time t2, then node i updates the variable EarliestFreeTime(j) based

on relevant information (if any) in the control frame. Node i also computes the

time t3 that the first bit of its burst would arrive at node j. t3 is calculated as

follows.

t3 = t2 + T
(p)
i + offset + δij (2.3)

where δij is the burst propagation delay from node i to node j. If EarliestFreeTime(j)

plus the receiver tuning time at node j is less than t3, then node i writes its
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burst information in its own control slot, and sends the burst after a delay

equal to the offset. If, on the other hand, EarliestFreeTime(j) plus the re-

ceiver tuning time at node j is greater than t3, then node i knows that sending

its burst will result in a receiver conflict. In this case, node i does not transmit

the burst; instead it waits for the next control frame and repeats the process of

transmitting the burst to node j. This is the persistent feature of the protocol,

in that the round-robin scheduler does not proceed to serve the next transmit

queue until the burst to node j has been sent.

We note that deferring the transmission of a burst based on a calculation of

the earliest free time for receiver j does not altogether eliminate receiver colli-

sions. Suppose that two nodes simultaneously determine (based on information

they read in different control frames) that it is safe to send a burst to some

destination j. This simultaneous transmission may result in a receiver conflict,

which neither of the nodes is able to predict. When the downstream node later

receives the control frame with the upstream nodes burst information, it will

detect the conflict. Despite this fact, the downstream node proceeds with its

burst transmission, and its scheduler also proceeds to serve the next eligible

transmit queue after queue j.

• At the receiving side, the operation of the protocol is identical to RR/R.

RR/P does eliminate some receiver collisions, but it does not completely eliminate

receiver collisions.

2.4.3 Round-Robin with Non-Persistent Service (RR/NP)

The operation of the Round-Robin with Non-Persistent Service (RR/NP) protocol

is identical to the operation of the RR/P protocol with one exception. Suppose that

at time t1 node i has selected transmit queue j for service using the RR scheduler.

Suppose also that once the first control frame arrives after time t1, the node determines

that transmitting a burst to j would result in a collision. The node refrains from
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transmitting the burst, but, instead of continuing its attempt to serve transmit queue

j (the persistent feature of RR/P), its scheduler proceeds to serve the next eligible

transmit queue upon arrival of the next control frame.

The RR/NP protocol may result in lower delay than RR/P. However, since a

node gives up its burst transmission whenever it determines that it will lead to a

collision, RR/NP may lead to the starvation of certain transmit queues, and thus, it

has fairness problems. Specifically, a node’s priority to transmit to a given destination

depends on the relative location in the ring. Node i has the highest (lowest) priority

to transmit bursts to node (iª 1) (respectively, node (i⊕ 1)), where ª and ⊕ denote

subtraction and addition, respectively, modulo N .

As in RR/P, RR/NP does not completely eliminate receiver collisions.

2.4.4 Round-Robin with Tokens (RR/Token)

This protocol uses tokens to resolve receiver collisions at the receivers. Different

from traditional token-based protocols, such as the IBM token ring and FDDI, which

are single token access protocols, this protocol uses multiple tokens (Cai et al. [7]

proposed a multiple token access protocol for a different WDM ring architecture).

There are N tokens, one for each destination node. A token may be either available

or in use. The status of token j is indicated in a binary field (located in the “other

fields”) of the j-th control slot. If it is available, then the binary field is set to one.

Otherwise, it is set to zero. If token j is available, then this will be marked in the

j-th control slot of only one control frame. In the remaining control frames, this

binary field will be set to zero. A node can only transmit to a destination node j, if

it captures the j-th token. The transmit queues at each node are served in a Round-

Robin manner. Thus, we call this protocol Round-Robin with Tokens (RR/Token).

The operation of the protocol at node i is as follows.

• At the transmitter side, node i monitors each received control frame. If it finds

an available token, node i removes it from the control frame, and puts it in

its FIFO token queue. Node i also serves the transmit queues in the arrival
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order of tokens. More specifically, suppose that the first token in the token

queue is token j, node i first checks whether transmit queue j is eligible for

service. If not, node i releases token j, i.e. it removes it from its token queue,

and it places it in the next control frame, and it then proceeds with the next

token in the queue. Otherwise, node i constructs the burst to node j, writes

the burst information in the next control frame, and sends it after a delay equal

to the offset value. Once the burst transmission is complete, node i releases

token j to the next control frame. It then proceeds to serve the transmit queue

corresponding to the next token in the token queue. Since every node has a

FIFO token queue, the order in which tokens circulate around the ring is fixed.

Recall that there are only N tokens, one for each destination node. Therefore,

transmit queues are served in a Round-Robin manner.

• At the receiver side, node i checks each incoming control frame for any control

slot indicating a burst transmission to this node. If such a control slot is found,

node i instructs its receiver to tune to the appropriate home wavelength for

receiving the burst.

Because of the token operation, there will be at most one burst transmission

arriving at a destination node at any time. That is, RR/Token is a receiver collision

free protocol.

2.4.5 Round-Robin with Acknowledgement (RR/ACK)

The Round-Robin with Acknowledgment (RR/ACK) protocol is based on the Tell

and Wait (TAW) scheme [32]. A source node i first sends a request (including desti-

nation and size) to transmit a burst to the destination node j. When node j receives

the request, it calculates an offset value, and sends it back to node i in the offset

field of control slot i. We note that a source node is not allowed to have more than

one outstanding request; in other words, it is not permitted to send out another re-

quest to a different destination node while it is waiting for an acknowledgement. This
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rule avoids transmitter conflicts, i.e., the situation in which a source node receives ac-

knowledgements from two or more different destinations which may cause overlapping

burst transmissions.

• At the transmitter side, node i selects a transmit queue j using Round-Robin

among all eligible transmit queues. It then waits for the next incoming control

frame, and it writes a request in its own control slot i. The request consists

of the destination address (in this case, j), and the burst length. Note that

the source node i does not write the offset field in the control slot; the offset

value will be provided by the destination node as the acknowledgment. After

node i receives the acknowledgment from node j one round-trip time later, it

instructs its transmitter to send out the burst at the time specified by node j

in the acknowledgement.

Let τ be the round-trip delay of a control frame (i.e., the propagation time

around the ring plus the sum of the processing time of a control frame at each

node in the ring). Let t be the time (in the future) at which the current burst

transmission to node j will complete. In order to improve the utilization of

the ring under the RR/ACK scheme, we define the next safe request point for

node i as t − τ . Node i will wait until time t − τ before it submits a new

request for transmission to another destination k. Thus, when node i receives

the acknowledgment from node k at time (t− τ)+ τ = t, the burst transmission

to node j will be complete and its transmitter will be free to transmit a burst

to node k.

• At the receiver side, node j acknowledges (i.e. fills in the corresponding offset

field) each request it receives in a first-come, first-served manner. Specifically,

after acknowledging a request from node i, node j computes the time t′ at which

it will receive the last bit of node i’s burst. Node j’s receiver is free after time

t′. When the next request arrives, say, from node k, node j sends an offset that

is computed such that the first bit of node k’s burst will arrive at node j after

time t′ plus the tuning latency of the receiver.
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No Protocol Name Offset Calculation

1 RR/R ODD
2 RR/P ODD
3 RR/NP ODD
4 RR/Token ODD
5 RR/R JET
6 RR/P JET
7 RR/NP JET
8 RR/Token JET
9 RR/ACK TAW

Table 2.1: OBS protocols used in the simulation

RR/ACK is a receiver collision free protocol.

2.5 Numerical Results

In this section we use simulation to compare the protocols listed in Table 2.1. For

each of the four protocols RR/R, RR/P, RR/NP, and RR/Token, we consider two

variants: one in which the offset calculation is based on ODD, using expression 2.2,

and one in which the offset calculation is based on JET, using expression 2.1. Recall

that the main difference between the two offset calculations is that the ODD offset

includes only the processing and setup delay at the destination, while the JET offset

includes additional terms representing the processing delays at intermediate nodes. As

we shall see, the ODD offset calculation results in smaller delay for all four protocols,

and higher throughput for the RR/Token protocol, the only receiver collision free

protocol. Moreover, ODD makes it possible to design a delay fair protocol. However,

the reader should keep in mind that this performance improvement is achieved at the

expense of more complex burst switching nodes, since the latter must implement fiber

delay lines to delay incoming bursts for an amount of time equal to the processing

delay of a burst header packet. Finally, we also simulate the RR/ACK protocol which

is a tell-and-wait (TAW) protocol.
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In our simulation study we consider a ring network with 10 nodes, each with an

electronic buffer of 10 MBytes. The distance between two successive nodes in the

ring is taken to be 5 kilometers. We assume that the control wavelength runs at 622

Mbps, while each burst wavelength runs at 2.5 Gbps. Each control slot in a control

frame is 100 bytes long regardless of the protocol used in the ring. That is, the

duration of a control slot is 1.286 µs. The processing time of a control frame at both

the intermediate (T
(p)
i ) and destination nodes (T

(p)
d ) is set to be 10 slot times, or

12.86 µs, and the setup time at the destination nodes T
(s)
d is 1 µs.

We assume that data arrives in packets, and the packet arrival process to each node

is described by a modified Interrupted Poisson Process (IPP) [14]. This modified IPP

is an ON/OFF process, where both the ON and the OFF periods are exponentially

distributed. Packets arrive back to back during the ON period at the rate of 2.5

Gbps. No packets arrive during the OFF period. The packet size is assumed to

follow a truncated exponential distribution with an average size of 500 bytes and a

maximum size of 5000 bytes. The last packet in an ON period may be truncated so

that its last bit arrives at the end of the ON period. We use the squared coefficient of

variation, c2, of the packet inter-arrival time to measure the burstiness of the arrival

process. c2 is defined as the ratio of the variance of the packet inter-arrival time

divided by the squared mean of the packet inter-arrival time. We use the expression

for the c2 of an IPP, where the packet size is not truncated. We have

c2
IPP = 1 +

2 λ µ1

(µ1 + µ2)2
(2.4)

where 1/λ = (500 bytes) / (2.5 Gbps) = 1.6 µs, and 1/µ1 and 1/µ2 are the mean

times of the ON and OFF periods, respectively. We have found experimentally that

it is very close to the c2 of the modified IPP used in this simulation. To completely

characterize the arrival process, we use the above expression for the c2 and another

equation that involves the mean times of the ON and OFF periods. We define the

quantity

Average Arrival Rate = (2.5 Gbps) × µ2

µ1 + µ2

(2.5)
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Given the c2 and the average packet arrival rate, we can calculate the quantities

µ1 and µ2, and therefore the arrival process is completely characterized.

In all the figures given in this section, simulation results are plotted along with

95% confidence intervals estimated by the method of batch mean. The number of

batches was set to 30, with each batch run lasting until each node has transmitted at

least 10,000 bursts. As the reader will notice, however, most confidence intervals are

very narrow and are barely visible in these figures.

In Section 2.5.1 we present a comparison of the performance of the RR/R, RR/P,

RR/NP, and RR/Token protocols with ODD offsets. In Section 2.5.2 we investigate

the impact of the offset calculation JET versus ODD on the performance of the

protocols. In Section 2.5.3, we compare RR/ACK that uses the TAW scheme with

RR/Token that uses the ODD offset. In these three sections, the traffic to the ring

is symmetric. That is, each node is fed with an arrival process that has the same

parameters, and a packet arriving at a node is assigned a destination node following

the uniform distribution. In Section 2.5.4, we study the performance of the access

protocols assuming asymmetric traffic.

2.5.1 Performance of Protocols with ODD Offset

Effect of Average Arrival Rate

In this section, we investigate the performance of the first four protocols listed in

Table 2.1 for which the calculation of the offset is based on ODD. Specifically, we are

interested in five performance measures, namely: throughput, loss, delay, fairness,

and buffer requirement. These performance measures are estimated by varying the

average arrival rate from 0.5 Gbps to 2.0 Gbps with an increment of 0.3 Gbps. (The

average arrival rate we refer to, is the average arrival rate into a single node). Packets

arriving at a node are assigned a destination node following the uniform distribution.

c2 of the packet inter-arrival time at each node is set to 20. We also set MaxBurstSize

to 112 Kbytes, MinBurstSize to 16 Kbytes, and TimeOut to 4 ms, which is about ten

times the round-trip delay of the control frame.
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Figure 2.5: ODD: Mean node throughput vs. average arrival rate

Figure 2.5 plots the mean node throughput versus the average arrival rate for all

four protocols. The mean node throughput is defined as the average number of bits

received by all nodes in a unit time divided by the number of nodes. We observe

that RR/Token, a receiver collision free protocol, achieves the highest throughput.

Among the three protocols in which receiver collisions are possible, RR/P achieves

the highest throughput, followed by RR/NP and RR/R.

We distinguish between two types of loss. First, packets arriving to find a full

buffer at the source node are dropped. In our simulation experiments, we observed

that only RR/Token has a 0.01% packet loss rate (i.e., the number of packets lost

divided by the number of all packets arrived) due to buffer overflow, when the average

arrival rate is 2.0 Gbps. That means RR/Token requires a larger buffer than the other

three protocols.

The second type of loss occurs when a burst is dropped at the destination due to a

receiver collision. Figure 2.6 plots the burst loss rate due to receiver collisions versus

the average arrival rate. The burst loss rate is the total number of lost bursts in all



32

0

5

10

15

20

25

30

35

40

45

0.5 0.8 1.1 1.4 1.7 2

B
ur

st
 L

os
s 

R
at

e 
du

e 
to

 C
ol

lis
io

ns
(%

)

Average Arrival Rate (Gbps)

RR/R/ODD
RR/P/ODD

RR/NP/ODD
RR/Token/ODD

Figure 2.6: ODD: Burst loss rate due to receiver collisions vs. average arrival rate

nodes divided by the total number of transmitted bursts on the ring. As a receiver

collision free protocol, RR/Token never incurs loss due to receiver collisions. For the

other three protocols, RR/P has the least burst loss rate, followed by RR/NP and

RR/R.

Next, we give an intuitive explanation of the burst loss plots in Figure 2.6. Recall

that a burst loss means that two or more bursts overlap in time. Therefore, intuitively

the more irregular the burst size, the larger the burst loss rate. We use the c2 of the

burst size to measure how irregular the burst size is. We found that if all other

parameters are kept the same, a larger burst size c2 leads to a larger burst loss rate

due to receiver collisions. Figure 2.7 shows the c2 of the burst sizes as a function of

the average arrival rate. We note that the plots in both Figures 2.6 and 2.7 have the

same pattern. As the average arrival rate increases, the c2 of the burst size of RR/R

and RR/NP increases, and so does the burst loss rates. As for RR/P, as the average

arrival rate increases, the burst size c2 first increases, then peaks at 1.4 Gbps, and

finally it decreases. The burst loss rate follows the same pattern. The reason for the
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Figure 2.7: ODD: c2 of burst size vs. average arrival rate

change in the c2 of burst size is that when the burst size reaches a specific point, the

MaxBurstSize starts to limit the c2 of burst size.

From the simulation, we also found that the burst loss rate due to receiver collisions

of RR/P depends not only on the c2 of the burst size, but also on another important

parameter, the EnoughData probability. Recall that in a node, a transmit queue is

not eligible for service unless its size is at least equal to the value of MinBurstSize.

Therefore, when a node turns to serve a transmit queue, the transmit queue may

or may not be eligible for service. The probability that a transmit queue is eligible

for service when a node turns to serve it is the EnoughData probability. We found

that for RR/P, an EnoughData probability equal to or very close to one leads to a

lower burst loss rate due to receiver collisions than an EnoughData probability close

to zero. Figure 2.8 shows the EnoughData probability versus the average arrival rate.

The EnoughData probability of RR/P increases as the average arrival rate increases.

Especially, it reaches almost 1 when the average arrival rate reaches 1.7 Gbps.

Figure 2.9 plots the mean packet delay versus the average arrival rate. The mean
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Figure 2.8: ODD: EnoughData probability vs. average arrival rate

packet delay is the average packet delay over all transmit queues and nodes, where

the packet delay includes both the queueing and the propagation delay. The packet

queueing delay is defined as the time interval from the instance that the packet arrives

at a node to the instance that the packet leaves the node. RR/R has the least delay,

followed by RR/NP, RR/P and RR/Token. We observe that, as the average arrival

rate increases, the mean packet delay in all protocols first decreases, and then it

increases. This is due to the fact that when the traffic intensity is low, the time for a

transmit queue to reach the MinBurstSize accounts for the major part of the packet

delay. Therefore, as the average arrival rate increases, the time for a transmit queue

to reach MinBurstSize decreases, which causes the mean packet delay to decrease.

The 95% percentile packet delay was also calculated in the simulation. Since the plot

trend is the same as that of the mean packet delay, the figure is not shown here.

Let us now compare the four protocols in terms of fairness. We distinguish two

types of fairness, namely, throughput fairness and delay fairness. We define the

throughput fairness index of a node i as the c2 of the throughput from node i to all
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Figure 2.9: ODD: Mean packet delay vs. average arrival rate

other nodes.

Throughput Fairness Index of Node i =

(
10∑

j=1,j 6=i

(Hij − Hi)
2

)
× 1

Hi
2 (2.6)

where Hij is the throughput from node i to node j, i.e. the average number of bits

transmitted by node i and received by node j in a unit time, and Hi = (
∑10

j=1,j 6=i Hij)/9

. We then define the throughput fairness index of a protocol as the average of the

throughput fairness indeces of all nodes. According to this definition, the smaller

the throughput fairness index of a protocol, the better the throughput fairness of the

protocol.

Figure 2.10 shows the throughput fairness index of the four protocols versus the

average arrival rate. We observe that RR/R and RR/Token have values very close

to zero, meaning that they are throughput fair protocols. In Appendix A, we give

additional figures of the throughout from node 0 to all other nodes under the four pro-

tocols. We observed that both RR/NP and RR/P protocol provide better throughput

to nodes closer to the source than to nodes far away. This follows directly from the
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Figure 2.10: ODD: Throughput fairness index of protocols vs. average arrival rate

operation of RR/NP and RR/P described in Section 2.4.3 and 2.4.2.

The second type of fairness we consider is related to delay. For this, we define the

delay fairness index of a node i as the c2 of the mean packet queueing delay of the

transmit queues. We have

Delay Fairness Index of Node i =

(
10∑

j=1,j 6=i

(Wij − Wi)
2

)
× 1

Wi
2 (2.7)

where Wij is the mean queueing delay of a packet in transmit queue j in node i,

and Wi = (
∑10

j=1,j 6=i Wij)/9. We also define the delay fairness index of a protocol

as the average of the delay fairness indeces of all nodes. (Note that in defining the

fairness index we use the queueing delay only, not the total delay which also includes

the propagation delay which depends on the destination node). According to this

definition, the smaller the delay fairness index of a protocol, the better the delay

fairness of the protocol. Specifically, if the delay fairness index of a protocol is zero,

the protocol is perfectly fair since the queueing delay of a packet is insensitive to

the source and destination of the packet. For unfair protocols, access to the burst
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Figure 2.11: ODD: Delay fairness index of protocols vs. average arrival rate

wavelengths may depend on factors such as the relative position of the source and

destination nodes in the ring. In this case, some transmit queues may take longer to

serve than others, increasing the queueing delay of the respective packets relative to

others, and thus, increasing the delay fairness index of the node and protocol.

Figure 2.11 shows the delay fairness index of the four protocols versus the average

arrival rate. We observe that only RR/R has delay fairness index values very close

to zero, meaning that it is the only fair protocol in terms of delay. In Appendix A,

we give additional figures of the mean packet queueing delay of each transmit queue

in node 0 for all protocols. We observed that RR/NP provides better delay access

to wavelengths of nodes far away than to wavelengths of nodes close to the source

of bursts, and RR/P and RR/Token do not always provide the best or worst delay

access to a specific node. For further details, the reader is referred to Appendix A.

Overall, based on the above experimentation, RR/Token achieves the highest

mean node throughput, followed by RR/P, RR/NP and RR/R. RR/R has the smallest

mean packet delay, followed by RR/NP, RR/P and RR/Token. RR/R also requires
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the smallest mean buffer requirement, followed by RR/NP, RR/P and RR/Token.

The burst loss rate due to receiver collisions for the protocols which are not receiver

collision free depends on the burst size c2. The burst loss rate of RR/P also depends

on the EnoughData probability. Only RR/R is a delay fair protocol, while both RR/R

and RR/Token are throughput fair protocols.

Effect of MaxBurstSize

We varied the value of MaxBurstSize from 32 Kbytes to 112 Kbytes with an

increment of 16 Kbytes. MinBurstSize is 16 Kbytes. The average arrival rate to

each node is 1.7 Gbps, c2 of the packet inter-arrival time at each node is 20, and, and

TimeOut is 4 ms. A packet arriving at a node is assigned a destination node following

the uniform distribution.

Simulation results showed that an increase in MaxBurstSize leads to an increase

in the burst size c2 and to a small change of the EnoughData probability, which

lead to the increase in the burst loss rate due to receiver collisions, and finally lead

to the decrease in the throughput of RR/R, RR/NP, and RR/P, as shown in Fig-

ure 2.12. However, the decrease in the throughput of RR/R and RR/NP is very

small. RR/Token requires a large MaxBurstSize so that no packets will be lost due

to buffer overflow.

Figure 2.13 plots the mean burst delay against MaxBurstSize. We observe that the

delay of RR/R and RR/NP is not sensitive to the MaxBurstSize. We also observe that

as the MaxBurstSize increases, the delay of RR/P and RR/Token first decreases, and

then increases. The intuitive reason for the decrease is that a larger MaxBurstSize

means that a node can transmit more packets at a time, which makes the delay go

down. The intuitive reason for the increase is that a larger MaxBurstSize permits

other nodes to transmit more packets at a time, so that the node must wait for a

longer time to transmit its burst, which causes the delay to increase. Finally, we

observe that only a very small MaxBurstSize can lead to a very long delay.
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Figure 2.12: ODD: Mean node throughput vs. maximum burst size
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Figure 2.13: ODD: Mean packet delay vs. maximum burst size
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Effect of MinBurstSize

We varied MinBurstSize from 16 Kbytes to 96 Kbytes with an increment of 16

Kbytes. MaxBurstSize is 112 KBytes. The average arrival rate to each node is 1.7

Gbps, c2 of the packet inter-arrival time at each node is 20, and TimeOut is 4 ms.

A packet arriving at a node is assigned a destination node following the uniform

distribution.

Simulation results showed that an increase in MinBurstSize leads to a decrease in

the burst size c2 and a decrease in EnoughData. For RR/R and RR/NP, the decrease

in the burst size c2 leads to a small decrease in the burst loss rate due to collisions,

which finally leads to a small increase in the mean node throughout, as shown in

Figure 2.14. However, for RR/P, a big decrease in the EnoughData probability leads

to an increase in the burst loss rate due to receiver collisions, which finally leads to a

decrease in the mean node throughout. Changes in MinBurstSize do not lead to any

change in the mean node throughput of RR/Token. Increases in MinBurstSize also

lead to increases in the mean packet delay of all protocols, as shown in Figure 2.15.

2.5.2 JET vs. ODD

In this section we focus on the difference between the JET and ODD offset cal-

culations. In our comparisons, we will only consider two protocols: RR/Token and

RR/R. RR/Token is selected since it is free of receiver collisions, while RR/R is se-

lected as a representative protocol among the three protocols that suffer from receiver

collisions.

Simulation experiments were carried out with the same parameters as in sec-

tion 2.5.1. The results showed that, compared to ODD, JET leads to a longer mean

packet delay for all protocols (see Figure 2.16), which in turn leads to a larger mean

buffer requirement (see Figure 2.17), and to a larger packet loss rate due to buffer

overflow (see Figure 2.18). Therefore, as a receiver collision protocol, RR/Token has

a lower mean node throughput with JET than with ODD. Moreover, JET naturally

leads to delay unfair protocols, but does not change the throughput fairness property
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of the protocols.

The effect of MaxBurstSize was also investigated. The results showed that all

protocols are more sensitive to MaxBurstSize with JET than with ODD. A much

larger MaxBurstSize is required in JET than in ODD, in order to get a higher mean

node throughput and lower mean packet delay.

Results also showed that both ODD and JET are not very sensitive to MinBurstSize.

As the MinBurstSize increases, for RR/R, ODD and JET are almost same. But for

RR/Token, ODD is always much better than JET in both the mean node throughput

and the mean packet delay.

2.5.3 TAW vs. ODD

RR/ACK is the only protocol using TAW, and it is receiver collision free. We com-

pared RR/Token using ODD with RR/ACK using TAW using the same parameters

as in section 2.5.1.
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Simulation results showed that when the MaxBurstSize is small, RR/Token with

ODD gets both a higher mean node throughput and a lower mean packet delay

than RR/ACK with TAW, as shown in Figure 2.19 and 2.20, respectively. When

the MaxBurstSize is large, in most cases, both protocols have similar mean node

throughput and mean packet delay. However, when both the average arrival rate and

the MaxBurstSize are very large, RR/ACK gives a higher mean node throughput and

lower mean packet delay than RR/Token. As for fairness, RR/ACK is a throughput

fair protocol, but not a delay fair protocol.

2.5.4 Asymmetric Traffic

In this section, we investigate the performance of the protocols under asymmetric

traffic. We vary the average arrival rate from 0.5 Gbps to 1.3 Gbps with an increment

of 0.2 Gbps, and set the c2 of the packet inter-arrival time to 20, MaxBurstSize to

112 Kbytes, MinBurstSize to 16 Kbytes, and TimeOut to 4 ms. At all nodes except
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Figure 2.20: TAW: Mean packet delay vs. maximum burst size

node 0, the probability that a packet is destined to node 0 is 1/6, and the probability

to other nodes is uniformly distributed. At node 0, a packet is assigned a destination

node following the uniform distribution.

Among the four protocols based on ODD, we found that RR/Token achieves

the highest mean node throughput, followed by RR/P, RR/NP and RR/R (see Fig-

ure 2.21), and RR/R has the smallest mean packet delay, followed by RR/NP, RR/P

and RR/Token (see Figure 2.22). We also compared the simulation results of RR/R

and RR/Token based on ODD with that of RR/R and RR/Token based on JET,

and we found that JET leads to a longer mean packet delay for both protocols. Fi-

nally, we found that RR/ACK with TAW achieves the same mean node throughput

as RR/Token with ODD, but has a longer mean packet delay than RR/Token with

ODD.
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2.6 Concluding Remarks

This chapter described a WDM metro ring architecture with optical burst switch-

ing. Several access protocols are proposed and their performance is analyzed by

simulation.

Based on our experimentation, we found that, RR/Token achieves the highest

mean node throughput, followed by RR/P, RR/NP and RR/R. RR/R has the small-

est mean packet delay, followed by RR/NP, RR/P and RR/Token. MaxBurstSize

affects both the mean node throughput and the mean packet delay, but only a very

small MaxBurstSize leads to a much lower mean node throughput under RR/Token,

and a much longer mean packet delay under RR/P and RR/Token. Increases in

MinBurstSize lead to an increase in the mean packet delay of all protocols, but do

not affect the mean node throughput of RR/Token. We also observed that JET leads

to a longer mean packet delay and to a larger packet loss rate due to buffer overflow

than ODD. The protocols become more sensitive to MaxBurstSize with JET than

with ODD. Compared to RR/Token with ODD, RR/ACK with TAW achieves bet-

ter performances when both the MaxBurstSize and the average arrival rate are very

large. In the simulations with symmetric traffic, we found that only RR/R is a delay

fair protocol, while both RR/R and RR/Token are throughput fair protocols.

Finally, we note that the results were obtained by setting MaxBurstSize and

MinBurstSize to values which are not very small. If we set them to very small values

(for example, set MinBurstSize to zero), we will get different results. However,

very small values of MaxBurstSize and MinBurstSize are not reasonable, since some

optical device overheads (e.g., the setup delay of a node) may greatly degrade the

performance of the ring.
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Chapter 3

Burst Arrival Process

3.1 Model Description

In most analytical models of OBS networks proposed in the literature [9, 12, 11,

28, 27, 38, 30], it is assumed that the burst arrival process is Poisson. However, it

is well-known that the Poisson process is not a good model for wide area traffic [22],

and it is unlikely that the burst arrival processes in future optical networks will

be accurately characterized by the Poisson model. Another problem is that in the

Poisson process, an arrival occurs instantaneous, and the service time required by the

arrival is independent of the inter-arrival time of two consecutive bursts. However,

in optical burst switching, the service time of a burst is the duration of the burst,

which is not independent on the inter-arrival time of the bursts. For example, the

inter-arrival time of between a very long burst and the following burst must be very

long, too. Therefore, more sophisticated models are required in order to advance our

understanding of the performance and the potential of OBS networks.

We use the three-state Markov process shown in Figure 3.1 to model arrivals on

a given burst wavelength. The arrival process may be in one of three states: short

burst, long burst, or idle. If it is in the short burst (respectively, long burst)
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Figure 3.1: The burst arrival process

state, then a short (respectively, long) burst is being transmitted on this wavelength.

If it is in the idle state, then no burst is being transmitted on this wavelength. The

duration of a burst, whether short or long, is assumed to be exponentially distributed.

In this model, we assume that the wavelength becomes idle after the transmission of

each burst. That is, bursts are not transmitted back-to-back. This assumption can be

easily removed by modifying the three-state Markov process in Figure 3.1 to include

transitions between the short burst and long burst states. Also, more compli-

cated burst arrival processes can be modeled by introducing additional states and

appropriate transitions between them. For instance, instead of using only two burst

lengths (short and long), we may introduce multiple burst lengths, each associated

with a different state of the Markov process. Non-exponentially distributed burst

lengths can also be accounted for by describing the length of a burst by a Coxian dis-

tribution. The analysis of the queueing network model that represents an edge OBS

node, which we develop in the following chapters, can be extended in a straightforward

manner to include these more general burst arrival processes. However, incorporating

more general arrival processes in the model does introduce additional complexities in

the expressions we use. Therefore, to keep the analysis simple we only consider the

three-state Markov process in Figure 3.1.

The burst arrival process of Figure 3.1 is characterized completely by the following

four parameters:

• 1/γ, the mean duration of the idle state,

• 1/φs and 1/φl, the mean durations of the short burst and long burst states,

respectively, and
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• ps, the probability that a burst is a small burst

3.2 Burst Duration

Since a burst may be either short or long with probability ps and 1 − ps, respec-

tively, the burst duration distribution is a two-stage hyperexponential distribution.

It is well-known that this distribution is equivalent to a two-stage Coxian distribution

with the squared coefficient of variation larger than or equal to 1 (see Figure 3.2).

We will let µ1 and µ2 denote the service rate of the first and second stages of the

corresponding Coxian server, respectively, and a denote the probability that, upon

completion of the first service stage, the customer in the Coxian server will proceed to

the second stage. The values of µ1, µ2, and a are uniquely determined by the values

of 1/φs, 1/φl, and ps as follows [23]. In this thesis, we will work with the Coxian

representation of the burst duration.

µ1 = φs, µ2 = φl, a =
(1 − ps)(φs − φl)

φs

(3.1)

Let B be the random variable denoting the burst duration. The mean E(B)

and the squared coefficient of variation c2(B) of the burst duration are given by the

following expressions:

E(B) =
ps

φs

+
1 − ps

φl

(3.2)

c2(B) =
2

E2(B)

(
ps

φ2
s

+
1 − ps

φ2
l

)
− 1 (3.3)
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Most of the analytical models [9, 28, 27, 38, 30] of OBS networks in the literature

assume that the burst duration follows exponential distribution (with c2(B) = 1).

However, it is well-known that the packet size is not exponentially distributed, and

it is unlikely that the burst duration will be exponentially distributed. Therefore,

our model which permits a hyperexponential distribution (with c2(B) ≥ 1) is more

realistic.

3.3 Burst Interarrival Time

Let A, B, and I be random variables denoting the burst interarrival time, burst

duration, and idle time, respectively. Their relationship is shown in Figure 3.3. Let

LA(s), LB(s), and LI(s) denote their Laplace transform, respectively. We have that:

LB(s) = φs

φs+s
+ (1 − ps)

φl

φl+s

LI(s) = γ
γ+s

LA(s) = LB(s)LI(s)

=
(
ps

φs

φs+s
+ (1 − ps)

φl

φl+s

)
γ

γ+s

(3.4)

By differentiating LA(s), we obtain the first two moments of the interarrival time

A as follows:

E[A] = ps
1

φs

+ (1 − ps)
1

φl

+
1

γ
(3.5)

E[A2] = 2ps

(
1

φ2
s

+
1

γφs

+
1

γ2

)
+ 2(1 − ps)

(
1

φ2
l

+
1

γφl

+
1

γ2

)
(3.6)
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Then, the squared coefficient of variation of the inter-arrival time of successive bursts

(short or long), c2(A), is given by:

c2(A) =
E(A2)

E2(A)
− 1 (3.7)

The squared coefficient of variation c2(A) is a measure of the burstiness of the arrival

process. Unlike the Poisson process which is smooth (c2(A) = 1), one may introduce

any degree of burstiness into the arrival process of Figure 3.1 by appropriately select-

ing the parameters of the three-state Markov process. In appendix B, we show how

c2(A) and c2(B) change with γ, φs, φl and ps.

We note that the inter-arrival times of successive bursts are i.i.d. It is possible

to introduce correlation among the inter-arrival times by allowing bursts to arrive

back-to-back, as we explained above in section 3.1. In this thesis, we do not consider

correlated inter-arrival times.

3.4 Control Parameters

Below, we define three sets of parameters to control the burst arrival process. The

first set is just the four parameters described in section 3.1. They are γ, φs, φl, and

ps. The second set includes the following parameters.

• l, the load of the burst arrival process, which is the percentage of time that

there is a burst (short or long) being transmitted on the wavelength,

• s, the mean duration of a burst,

• r, the ratio of the long burst duration to the short burst duration, and

• ps, the probability that a burst is a small burst
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Given the first set of parameters, the second set of parameters can be obtained as

follows. 


l = ps/φs+(1−ps)/φl

1/γ+ps/φs+(1−ps)/φl

s = ps
φs

+ 1−ps

φl

r = φs

φl

ps = ps

(3.8)

Given the second set of parameters, the first set of parameters can be obtained as

follows. 


γ = l
(1−l)s

φs = ps+(1−ps)r
s

φl = φs

r

ps = ps

(3.9)

The third set includes E(B), E(A), c2(A), and ps, where E(B), E(A), and c2(A)

are defined in section 3.2 and section 3.3. Given the third set of parameters, the first

set of parameters can be obtained as follows.


γ = l
E(A)−E(B)

φs =
−rb+

√
rb

2−4rarc

2ra

φl = (1−ps)φs

φsE(B)−ps

ps = ps

(3.10)

where ra, rb, and rc are defined as follows.


ra = −c2(A)E2(A)(1 − ps) + E2(A)(1 − ps) − 2E(A)E(B)(1 − ps) + 2E2(B)

rb = −4E(B)ps

rc = 2ps

(3.11)

and r2
b ≥ 4rarc.

We would like to mention that given the values of E(B), E(A), and c2(A), then

c2(B) can be uniquely determined by the following equation.

c2(B) =
(c2(A) + 1)E2(A) − 2E(A)(E(A) − E(B))

E2(B)
− 1 (3.12)

We note that the parameters of the first set are independent of each other. For

example, the choice of φl does not depend on the values of γ, φs, and ps. The
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parameters of the second set are also independent of each other. For example, the

choice of r does not depend on the values of l, s, and ps. However, the parameters of

the third set are dependent of each other. For example, the choice of c2(A) depends

on the values of E(B), E(A), and ps. For instance, if E(B) = 1, E(A) = 1.2, and

ps = 0.9, then c2(A) must be smaller than 14.
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Chapter 4

An Edge Node of an OBS Mesh

Network

4.1 Introduction

In this chapter, we develop for the first time a queueing network model of an edge

OBS node using the burst arrival process described in the previous chapter. The

edge OBS node serves a number of users, each connected to the OBS node by a fiber

link, which can support multiple wavelengths. Each wavelength is associated with a

separate burst arrival process. We consider an OBS edge node both with and without

converters, and we model it as a closed non-product-form queueing network, which

we analyze by decomposition. We develop algorithms for both the single-class and

multi-class cases; in the former, all wavelengths have the same arrival process, while

in the latter, each wavelength has a different arrival process. In particular, we present

a new computationally efficient method for analyzing multi-class queueing networks

by decomposing them into a set of two-class networks. This method is not limited to

the model at hand, and it can be applied to general multi-class queueing networks.
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Finally, we use our algorithms to gain new insight into the performance of an edge

OBS node.

Following this introduction, we describe briefly the operation of an edge OBS

node in section 4.2. In section 4.3, we describe a queueing network model of the

edge OBS node. Sections 4.4 and 4.5 describe a method for analyzing this queueing

network without and with wavelength converters, respectively, assuming a single-class

of customers. That is, all the wavelengths are associated with the same burst arrival

process. In section 4.6, we describe a decomposition method for analyzing a multi-

class generalization of this queueing network. In section 4.7, we consider a number of

limiting cases, for which we can obtain simple analytic expressions. We validate the

accuracy of the algorithm in section 4.8 by comparing it to simulation results, and

we conclude the chapter in section 4.9.

4.2 The Edge OBS Node

In this chapter, we model an edge OBS node employing the JumpStart JIT sig-

naling protocol. The JumpStart project [1] is a joint NCSU/MCNC research effort

addressing the design, specification, performance evaluation, and hardware imple-

mentation of a signaling protocol for OBS networks. The signaling protocol follows

the just-in-time (JIT) approach, and is based on the work by Wei and McFarland [30].

We now describe the aspects of the JumpStart signaling protocol that are necessary

for modeling an edge OBS node; for the full details, the interested reader is referred

to [4].

We consider an OBS network consisting of OBS nodes (switches) interconnected by

bidirectional fiber links, as shown in Figure 4.1. Each fiber link between a user and an

OBS edge node, or between two adjacent OBS nodes, can support W +1 wavelengths.

Of these, one wavelength (referred to as control wavelength) is used to transmit control

packets, and the other W wavelengths (referred to as burst wavelengths) are used to

transmit data bursts. A user is equipped with W + 1 pairs of optical transceivers,

each fixed tuned to one of the W + 1 wavelengths. (Alternatively, a user may be
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Figure 4.1: Users connected to an edge switch of an OBS network

equipped with fewer than W + 1 pairs of tunable or fixed transceivers; in this case,

however, it is not possible for a user to access all wavelengths at the same time.)

Following the JumpStart JIT signaling protocol [4], a user first sends a setup

message to its edge OBS node. The setup message includes the source and destination

addresses, the wavelength on which the source prefers to transmit the burst, and other

information. We assume that an OBS node consists of a non-blocking space-division

switch fabric, with no optical buffers. If the edge node can switch the burst on the

specified wavelength, it returns a setup ack message to the user. The setup ack

message contains the offset field that informs the user how long it should wait before

transmitting its burst. It is possible, however, that a setup message be refused if

the preferred wavelength on the destination output port is busy, or in the case of

full wavelength converters, if all the wavelengths on the destination output port are

busy. In this case, the edge node returns a reject message. The user goes through a

random delay, and it then re-transmits the setup message. In our model, we assume

that the user continues to re-transmit the setup message until it receives a setup

ack message, although this assumption can be easily removed.
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In order to reduce the user delay in the case of an edge node with no wavelength

converters, the JumpStart signaling protocol provides for an alternative way to send

a burst. When an edge node receives a setup message, and the wavelength indicated

by the user is busy on the destination port, it then checks whether other wavelengths

are free on the destination port. If so, the edge node, rather than returning a reject

message, it returns a setup ack message with which it informs the user to transmit

its burst on one of the free wavelengths. Note that, if we assume that the time for a

wavelength converter to convert an optical signal to another wavelength is negligible

(compared to the propagation delay and the burst duration), then the throughput of

this method is exactly the same as that of the previous method under the assumption

that the edge node is equipped with wavelength converters. Therefore, we only model

the previous method in this paper.

We assume that the node allocates resources within its switch fabric for a burst at

the moment that it decides to accept the setup message. An alternative approach is

to allocate the necessary resources near the time the edge node expects the burst to

arrive. Assuming that the estimate regarding the burst arrival time is accurate, the

latter approach minimizes the holding time of the resource for a burst. On the other

hand, it also requires a complex scheduling algorithm, as well as significant amounts

of memory on the signaling board that processes the OBS signals [4, 19]. Therefore,

in JumpStart we have decided to follow the former approach, which is the one we

model in this work.

Another design issue is related to the time when the node frees the resources

allocated to a burst. One way of resolving this problem is for the source to indicate

the length of the transmission of the burst in the setup ack message. Assuming

that the node knows when the burst will start to arrive, it can then calculate the

time when it will free its resources. Alternatively, the user does not communicate to

the edge node the length of its burst, but it simply sends a release message to the

node to indicate the end of its transmission. Upon receipt of the release message,

the node frees the resources allocated to the burst. The latter solution seems to be

easier to implement, but it gives rise to a larger number of signaling messages. Our

model can take into account either method, due to the inherent abstractions in the
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Figure 4.2: Signaling messages in JumpStart

underlying queueing network.

The sequence of messages exchanged between a user and its edge node is shown

in Figure 4.2. A user can be seen as being in one of the following three states: (1)

idle, i.e., no bursts to transmit; (2) busy transmitting a burst; or (3) blocked, i.e.,

undergoing a delay before it re-transmits a setup message. If a user can simultane-

ously transmit bursts on different wavelengths, then it can be in a different state for

each burst wavelength.

4.3 A Queueing Network Model of the Edge OBS

Node

As shown in Figure 4.1, an edge OBS node is connected to a number of users and

to a number of other OBS nodes. Consequently, it receives bursts both from users and
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other OBS nodes. In this work, we assume that there is no burst traffic from other

OBS nodes to the edge OBS node, and we only consider the burst traffic from the

users to the edge node 1. Let P and N denote the number of input (or output) ports

of an edge node and the number of the users connected to the edge node, respectively.

Note that, P ≥ N .

The traffic on each incoming wavelength from a user to the edge node is generated

by the burst arrival process described in chapter 3. Since each user can simultaneously

transmit bursts on all its W burst wavelengths, the user is associated with W different

burst arrival processes. Therefore, an edge node with N users has a total of NW burst

arrival processes. Recall that a setup message is refused if, at the time it arrives at

the edge node, the output port is busy transmitting another burst. In this case, the

corresponding burst arrival process undergoes an exponential delay, and then the user

re-transmits its setup message. Thus, at any time, there may be a number of burst

arrival processes undergoing an exponential delay for each output wavelength.

4.3.1 The Edge OBS Node without Converters

Let us first consider an edge OBS node with no converters. In this case, a burst on

an incoming wavelength can only be switched to the same wavelength on each output

port, and user bursts arriving to the edge switch on different wavelengths do not

interfere with each other. Consequently, the edge node can be decomposed exactly

into W sub-systems, one per burst wavelength. Each sub-system w,w = 1, · · · ,W , is

a P ×P switch with N users, but each input and output port has a single wavelength,

which corresponds to wavelength w of the original edge switch. Therefore, each sub-

system has N burst arrival processes.

The queueing network model of a sub-system is shown in Figure 4.3; it consists of

1This is a reasonable assumption for an edge OBS node. Most traffic from other OBS nodes to
the edge node is in the direction from the OBS network to the users, while in this work we are
interested in modeling the performance of an edge node in the direction from the users to the OBS
network. We are currently extending the techniques we present in this work to analyze a network of
OBS nodes in order to investigate the performance of burst traffic as it travels along an end-to-end
path of OBS nodes.
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Figure 4.3: Queueing network model of a sub-system of an edge switch without
converters

P +1 nodes numbered 0, 1, · · · , P . Node 0 is an infinite server node, and it represents

the burst arrival processes which are in the idle state. Node i, i = 1, · · · , P , represents

the (single) wavelength on output port i. Each node i consists of a single transmission

server and an infinite server. The customer (if any) occupying the transmission server

represents the burst arrival process whose burst is being transmitted by output port

i. The customers (if any) in the infinite server represent those burst arrival processes

which are undergoing a delay before their users re-transmit the corresponding setup

messages. The total number of customers in this closed queueing network model of a

sub-system is equal to N (i.e., it is equal to the total number of burst arrival processes

in the sub-system).

Let us now follow the path of a customer through the queueing network model

in Figure 4.3. Let us assume that the customer starts in the idle state, i.e., it is in

node 0. The time it spends in the idle state is exponentially distributed with mean

1/γ. Upon completion of its service at node 0, it moves to node i with probability

pi; this corresponds to the transmission of a setup message for a burst with output
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port i. If the single transmission server at node i is free, the customer enters service

immediately. The service time is exponentially distributed with a mean of 1/φs or 1/φl

with probabilities ps or 1−ps, corresponding to the transmission of short or long burst,

respectively. If the transmission server is busy (i.e., output port contention occurs),

the customer enters the infinite server at node i, where it undergoes an exponential

delay with mean 1/ω; this delay models the delay until the retransmission of the

setup message. Upon completion of the exponential delay, the customer again tries

to seize the transmission server. If the transmission server is busy, the customer joins

the infinite server again, and it undergoes another delay, and so on, until it succeeds

to get hold of the transmission server. The customers in the infinite server are often

referred to in the literature as orbiting customers. Note that it is possible for the

transmission server to become idle while there are one or more customers orbiting.

In this case, it is possible that a new customer arrives from node 0 and starts service

immediately.

In the case where all N customers have the same burst arrival process, the closed

queueing network model can be seen as consisting of a single class of N customers

and P + 1 nodes. If each customer has a different burst arrival process, then the

queueing network becomes a multi-class queueing network with P + 1 nodes and N

classes, where each class contains exactly one customer.

4.3.2 The Edge OBS Node with Converters

Let us now consider an edge OBS switch with converters. In this case, a setup

message for output port i of the switch is accepted as long as at least one wavelength

is free on this output port. Otherwise, the setup message is rejected, and the user

undergoes a delay before retransmitting the message. Clearly, the above decompo-

sition of an edge switch into sub-systems per wavelength is no longer possible, since

user bursts arriving on different wavelengths may interfere with each other. However,

the edge switch as a whole can be modeled by a closed queueing network very similar

to the one shown in Figure 4.3. The new queueing network consists of P + 1 nodes

and a total of NW customers (since there are now NW arrival processes). Node 0
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Parameter Description
N number of users connected to an edge switch
P number of input (output) ports of an edge switch
W number of burst wavelengths in a fiber
1/γ mean duration of the idle state
1/φs mean duration of the short burst
1/φl mean duration of the long burst
1/ω mean orbiting time of a user
ps probability that a burst is a small burst
pi probability that the destination output port of a burst is i
E(B) mean duration of a burst (short or long)
µ1, µ2, a parameters of the 2-stage Coxian distribution of the burst size

Table 4.1: Notation used in the analysis

in the new queueing network is identical to node 0 in the network of Figure 4.3.

Similarly, each node i, i = 1, · · · , P , in the new queueing network corresponds to

each of the output ports of the edge switch. The main difference is that each node

i, i = 1, · · · , P , consists of an infinite server and W (rather than one) transmission

servers, each corresponding to one of the W wavelengths of output port i.

In the following sections, we describe a technique for solving the queueing network

in Figure 4.3. We note that, despite the rich literature in queueing network analysis,

this particular queueing network with orbiting customers has not been analyzed be-

fore. The notation used in the analysis is summarized in Table 4.1. In section 4.4, we

analyze the queueing network assuming a single class of customers (i.e., all burst ar-

rival processes are identical) and no wavelength converters. In section 4.5, we analyze

the network assuming a single class of customer and wavelength converters. Finally,

the analysis of the multi-class network is presented in section 4.6.
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4.4 Analysis of the Single-Class Queueing Network

w/o Converters

The queueing network shown in Figure 4.3 is a non-product-form queueing network

with Coxian service times. We analyze it using Marie’s algorithm [17, 18]. The idea

in Marie’s method is to replace each non-BCMP node by an equivalent node with

a load-dependent exponential service rate, obtained by calculating the conditional

throughput of the non-BCMP node in isolation under a load-dependent arrival rate.

In the following subsection, we calculate the conditional throughput of each node i,

i = 1, · · · , P . Node 0 is an infinite server that is a BCMP node, so we do not need to

construct a flow equivalent node for it. We note that, to the best of our knowledge,

Marie’s method has not been applied to nodes with orbiting customers. Consequently,

the derivation in the next subsection of a flow equivalent server for such a node is a

new contribution.

4.4.1 The Flow Equivalent Server

Let us consider node i, i = 1, · · · , P , of the queueing network shown in Figure 4.3.

Let λi(ni) be the arrival rate into this node when there are a total of ni customers

in the node. We also assume that the service time is a two-stage Coxian distribution

with parameters µ(i,1), µ(i,2), and ai. The state of node i can be described by the

triplet: (n
(t)
i , ki, n

(o)
i ), where n

(t)
i = 0, 1, indicates whether the transmission server is

busy or not, ki = 0, 1, 2, is the Coxian phase of the transmission server (ki = 0 if and

only if n
(t)
i = 0), and n

(o)
i = 0, 1, · · · , N − 1, gives the number of orbiting customers

occupying the infinite server. The state transition diagram of node i is shown in

Figure 4.4. In order to simplify the notation, and since we are only concerned with

the analysis of node i in isolation, we drop the index i in Figure 4.4 and throughout

the rest of this subsection.

Let p(n(t), k, n(o)) be the steady-state probability of the state (n(t), k, n(o)). From
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Figure 4.4: State transition rate diagram of node i, i = 1, · · · , P , of the queueing
network of Figure 4.3

Figure 4.4, we have the following global balance equations:

p(0, 0, n)(λ(n) + nω) = p(1, 1, n)(1 − a)µ1 + p(1, 2, n)µ2, 0 ≤ n < N (4.1)

p(1, 1, n−1)(λ(n)+µ1) = p(0, 0, n)nω+p(1, 1, n−2)λ(n−1)+p(0, 0, n−1)λ(n−1), 0 < n ≤ N

(4.2)

p(1, 2, n−1)(λ(n)+µ2) = p(1, 1, n−1)aµ1+p(1, 2, n−2)λ(n−1), 0 < n ≤ N (4.3)

Let p(n) denote the steady-state probability that there are a total of n customers

in the node. We have that:

p(n) =




p(0, 0, 0) n = 0

p(0, 0, n) + p(1, 1, n − 1) + p(1, 2, n − 1) 0 < n < N

p(1, 1, N − 1) + p(1, 2, N − 1) n = N

(4.4)

Let υ(n) denote the conditional throughput of the node, calculated as follows:

υ(n) =

{
0 n = 0
p(1,1,n−1)

p(n)
(1 − a)µ1 + p(1,2,n−1)

p(n)
µ2 n > 0

(4.5)

We now have the following two theorems:
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Theorem 1 p(n − 1)λ(n − 1) = p(n)υ(n), 0 < n ≤ N

Proof: By adding equations (4.1), (4.2), and (4.3) together, and after simplifying the

result using equations (4.4) and (4.5), we obtain:

p(0)λ(0) = p(1)υ(1), n = 0 (4.6)

p(n)λ(n) + p(n)υ(n) = p(n − 1)λ(n − 1) + p(n + 1)υ(n + 1), 0 < n < N(4.7)

p(N)υ(N) = p(N − 1)λ(N − 1), n = N (4.8)

Using equations (4.6) and (4.7) recursively, we finally get:

p(n − 1)λ(n − 1) = p(n)υ(n), 0 < n ≤ N (4.9)

completing the proof of the theorem.

Theorem 2 The conditional throughput υ(n) of the node is given by the expression:

υ(n) =




0, n = 0

µ1ω(λ(1)−aλ(1)+µ2)
(λ(1)+ω)(λ(1)+aµ1+µ2)

, n = 1

nµ1ω(λ(n−1)+(n−1)ω)(λ(n)−aλ(n)+µ2)
(λ(n)+nω)((n−1)ω(µ1+µ2+λ(n)−υ(n−1))+λ(n−1)(aµ1+µ2+λ−υ(n−1)))

, otherwise

(4.10)

Proof: By means of expression (4.5), we can rewrite expression (4.1) as follows:

p(0, 0, n)(λ(n) + nω) = p(1, 1, n)(1 − a)µ1 + p(1, 2, n)µ2

= p(n + 1)υ(n + 1)

= p(n)λ(n) (4.11)

We can also rewrite expression (4.2) as:

p(1, 1, n − 1)(λ(n) + µ1) = p(0, 0, n)nω + p(1, 1, n − 2)λ(n − 1) + p(0, 0, n − 1)λ(n − 1)

= p(0, 0, n)nω +
p(1, 1, n − 2) + p(0, 0, n − 1)

p(n − 1)
p(n − 1)λ(n − 1)

= p(0, 0, n)nω +
p(1, 1, n − 2) + p(0, 0, n − 1)

p(n − 1)
p(n)υ(n) (4.12)
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Using expressions (4.4), (4.5), (4.11), and (4.12), we get the following group of

equations for n > 1:


p(n) = p(0, 0, n) + p(1, 1, n − 1) + p(1, 2, n − 1)

p(n − 1) = p(0, 0, n − 1) + p(1, 1, n − 2) + p(1, 2, n − 2)

υ(n) = p(1,1,n−1)
p(n)

(1 − a)µ1 + p(1,2,n−1)
p(n)

µ2

υ(n − 1) = p(1,1,n−2)
p(n−1)

(1 − a)µ1 + p(1,2,n−2)
p(n−1)

µ2

p(0, 0, n)(λ(n) + nω) = p(n)λ(n)

p(0, 0, n − 1)(λ(n − 1) + (n − 1)ω) = p(n − 1)λ(n − 1)

p(1, 1, n − 1)(λ(n) + µ1) = p(0, 0, n)nω + P (1,1,n−2)+p(0,0,n−1)
p(n−1)

p(n)υ(n)

(4.13)

Now, assuming that p(0, 0, n), p(0, 0, n−1), p(1, 1, n−1), p(1, 1, n−2), p(1, 2, n−1),

p(1, 2, n − 2), and υ(n) are unknown variables, we can solve the group of equa-

tions (4.13) to obtain the following expression for υ(n) (n > 1):

υ(n) =
nµ1ω(λ(n − 1) + (n − 1)ω)(λ(n) − aλ(n) + µ2)

(λ(n) + nω)((n − 1)ω(µ1 + µ2 + λ(n) − υ(n − 1)) + λ(n − 1)(aµ1 + µ2 + λ − υ(n − 1)))
(4.14)

Similarly, we can solve the following group of equations for p(0, 0, 1), p(1, 1, 0),

p(1, 2, 0), and υ(1):


p(1) = p(0, 0, 1) + p(1, 1, 0) + p(1, 2, 0)

υ(1) = p(1,1,0)
p(1)

(1 − a)µ1 + p(1,2,0)
p(1)

µ2

p(0, 0, 1)(λ(1) + ω) = p(1)λ(1)

p(1, 1, 0)(λ(1) + µ1) = p(0, 0, 1)ω + p(1)υ(1)

(4.15)

to obtain the following expression for υ(1):

υ(1) =
µ1ω(λ(1) − aλ(1) + µ2)

(λ(1) + ω)(λ(1) + aµ1 + µ2)
(4.16)

Since υ(0) is obviously equal to 0, the proof is complete.

We use the conditional throughput υ(n) as the load-dependent service rate µ(n)

of the node in the iterative algorithm described in the next subsection.
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We use the following approximate expressions to calculate the parameters of the

transmission servers, since they are consistent with expression (4.33) used for the

multi-class cases of this queueing network.


µ1 = 2
E(B)

µ2 = 1
E(B)c2(B)

α = 1
2c2(B)

(4.17)

4.4.2 The Iterative Algorithm

We use Marie’s algorithm [17, 18] to analyze the queueing network of Figure 4.3.

The main steps of the algorithm are summarized as follows:

• Step 1. Initialize the service rate µi(ni) of flow equivalent server i, i = 1, · · · , P ,

to 1/E(B), for ni > 0, and set the service rate µ0(n0) of flow equivalent server 0

to γn0.

• Step 2. For each node i, i = 1, · · · , P , do the following steps:

– Step 2.1. Calculate the arrival rate λi(ni) of node i by short-circuiting

node i in the substitute product-form closed queueing network, where each

node j has an exponential service time of µj(nj).

– Step 2.2. Calculate the conditional throughput υi(ni) of node i using

Theorem 2.

– Step 2.3. Calculate the steady-state probability pi(ni) of node i using

Theorem 1.

• Step 3. Check the following two convergence conditions. If both are satisfied,

then stop. Otherwise, set µi(ni) to υi(ni) for all i = 1, · · · , P , and go back to

Step 2.

1. The first convergence condition ensures that the sum of the mean number of

customers at all nodes is equal to the number of customers in the queueing
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network: ∣∣∣∣∣N − ∑P
i=0

∑N
j=0 jpi(j)

N

∣∣∣∣∣ < ε (4.18)

2. The second convergence condition makes sure that the conditional through-

puts of each node are consistent with the topology of the queueing network:∣∣∣∣∣ri − 1
P+1

∑P
j=0 rj

1
P+1

∑P
j=0 rj

∣∣∣∣∣ < ε, i = 0, 1, · · · , P (4.19)

where

ri =

{
1
pi

∑N
j=0 pi(j)µi(j), i = 1, · · · , P∑N

j=0 pi(j)µi(j), i = 0
(4.20)

4.5 Analysis of the Single-Class Queueing Network

with Converters

As we discussed in section 4.3, the only difference between the queueing network

model of an edge switch with wavelength converters and the queueing network of

Figure 4.3 (which models a single wavelength sub-system of an edge switch without

wavelength converters) is that, in the former model, each node i, i = 1, · · · , P , has W

transmission servers, while in the latter model each node i has a single transmission

server. Unfortunately, when each node i has multiple transmission servers, we cannot

obtain a closed-form solution for the conditional throughput of the node. Instead, we

solve each node i numerically using the Gauss-Seidel method [23], to get pi(ni), the

steady probability that node i has ni customers. Then, we calculate the conditional

throughput υi(ni) as follows:

υi(ni) =
pi(ni − 1)λi(ni − 1)

pi(ni)
(4.21)

Finally, we use the same iterative algorithm described in section 4.4.2, to analyze this

more general queueing network.
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4.6 Analysis of the Multi-Class Queueing Network

with or w/o Converters

In this section, we extend our analysis of the queueing network model of the edge

OBS switch to the case where each customer has a different burst arrival process.

This is taken into account by associating each customer with a different class. The

resulting queueing network is a closed non-product-form queueing network with mul-

tiple classes, each of which has only a single customer. The number of classes is

C = NW , where N is the number of users connected to the edge OBS node and W

is the number of wavelengths per fiber. We note that, for realistic values of N and

W , the number of classes can be very large (i.e., in the order of 100s).

This type of multi-class closed non-product-form has been studied in the liter-

ature [21, 5], mainly by extending Marie’s algorithm [17]. Neuse and Chandy [21]

proposed an algorithm called the heuristic aggregation method (HAM) to solve such

a queueing network. HAM is a natural extension of Marie’s method [17], but it

involves two types of time-consuming computations which limit its applicability to

networks with a very small number of classes only. First, it involves the numerical

analysis of a node with multi-class load-dependent arrivals and a two-stage Coxian

service time. Second, it involves the computation of the normalization constant in a

multi-class queueing network. Baynat and Dallery [5], presented an alternative ex-

tension of Marie’s method to multi-class queueing networks. Specifically, to avoid the

computation of the normalization constant of a multi-class network, they decompose

a C-class network into C single-class networks. The interaction of the customers in

different classes is taken into account in the analysis of each node in isolation. They

also proposed a class aggregation technique that reduces significantly the complexity

of the analysis of a node. However, the arrival rate to the aggregate class is calcu-

lated by aggregating the arrival rate to each individual class [5, Equation (14)]. This

aggregation process takes time that increases exponentially with the number of the

classes. Consequently, while Baynat and Dallery’s method is much faster than Neuse

and Chandy’s HAM, it still cannot be used in networks with a large number of classes.
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Based on the above observations, we first show in section 4.6.1 how to use HAM

to solve networks with only two classes of customers, and in section 4.6.2 we present a

new method for solving queueing networks with more than two classes of customers.

Specifically, we decompose a network with multiple classes of customers into a set

of two-class networks, each of which is solved using HAM. We also employ a class

aggregation technique to reduce the complexity of the analysis of a node. However,

we use the convolution algorithm [23] to calculate the arrival rate to the aggregate

class, not Baynat and Dallery’s method [5], since, as we mentioned above, the latter

is not scalable.

4.6.1 The Two-Class Queueing Network

In this subsection, we assume that there are only two classes of customers in the

queueing network of Figure 4.3, namely, class 1 and 2. Also, we assume that each

node i, i = 1, · · · , P , of the queueing network consists of W ≥ 1 transmission servers.

Therefore, the analysis applies to edge OBS switches with converters (W > 1) or

without (W = 1).

We first construct a flow equivalent node for each node i, i = 1, · · · , P , of the

queueing network in Figure 4.3. Let λ
(1)
i (n

(1)
i , n

(2)
i ) and λ

(2)
i (n

(1)
i , n

(2)
i ) denote the

arrival rate of class 1 and class 2 customers, respectively, to node i when there are

n
(1)
i class 1 customers and n

(2)
i class 2 customers in the node. We also assume that

the service time of class j, j = 1, 2, at the transmission server is a two-stage Coxian

distribution with parameters µ
(j)
(i,1), µ

(j)
(i,2), and a

(j)
i . The state of node i can be described

by the vector:

(n
(t1,1)
i , n

(t2,1)
i , n

(o,1)
i , n

(t1,2)
i , n

(t2,2)
i , n

(o,2)
i ) (4.22)

where

• n
(t1,1)
i and n

(t1,2)
i are random variables representing the number of class 1 and

class 2 customers, respectively, being served by the transmission servers in phase

one,
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• n
(t2,1)
i and n

(t2,2)
i are random variables representing the number of class 1 and

class 2 customers, respectively, being served in phase two, and

• random variables n
(o,1)
i and n

(o,2)
i represent the number of orbiting customers of

class 1 and 2, respectively.

Let pi(n
(t1,1)
i , n

(t2,1)
i , n

(o,1)
i , n

(t1,2)
i , n

(t2,2)
i , n

(o,2)
i ) be the steady-state probability that node i

is in state (n
(t1,1)
i , n

(t2,1)
i , n

(o,1)
i , n

(t1,2)
i , n

(t2,2)
i , n

(o,2)
i ). We use the Gauss-Seidel method

to calculate the steady-state probability numerically. We then obtain the conditional

throughput υi(ni) of node i as:

υi(ni) =
pi(ni − 1)λi(ni − 1)

pi(ni)
(4.23)

where pi(ni) and λi(ni) are calculated by:

pi(ni) =
∑

n
(t1,1)
i +n

(t2,1)
i +n

(o,1)
i +n

(t1,2)
i +n

(t2,2)
i +n

(o,2)
i =ni

pi(n
(t1,1)
i , n

(t2,1)
i , n

(o,1)
i , n

(t1,2)
i , n

(t2,2)
i , n

(o,2)
i )

(4.24)

λi(ni) =
1

pi(ni)

∑
n

(1)
i +n

(2)
i =ni

pi(n
(t1,1)
i , n

(t2,1)
i , n

(o,1)
i , n

(t1,2)
i , n

(t2,2)
i , n

(o,2)
i )[λ

(1)
i (n

(1)
i , n

(2)
i )+λ

(2)
i (n

(1)
i , n

(2)
i )]

(4.25)

where n
(1)
i = n

(t1,1)
i + n

(t2,1)
i + n(o,1), and n

(2)
i = n

(t1,2)
i + n

(t2,2)
i + n

(o,2)
i .

The conditional throughput υi(ni) is used as the load-dependent service rate µi(ni)

of the flow equivalent server of node i.

We solve this two-class product-form network consisting of the flow equivalent

servers using the convolution algorithm to obtain the arrival rates λ
(1)
i (n

(1)
i , ni(2)) and

λ
(2)
i (n

(1)
i , n

(2)
i ) to each node i, i = 1, · · · , P . This process is repeated until convergence,

as dictated by Marie’s algorithm described in section 4.4.2.

4.6.2 An Iterative Algorithm for Analyzing More Than Two

Classes

As we observed above, the complexity of HAM increases exponentially with the

number of classes, thus it can only be applied to networks with a small number of
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classes. We now introduce a new method for solving queueing networks with a large

number of classes. The main idea of our algorithm is to approximate the original

multi-class network with a set of two-class networks, each of which is solved using

HAM. Below, we first describe a mechanism for aggregating a number of classes

into a single class, and subsequently we describe an iterative algorithm for analyzing

multi-class queueing networks.

Class Aggregation

Let C denote the number of classes in a network, C = NW . For a network with

C classes, we create C two-class networks. For each two-class network c, c = 1, · · · , C,

the first class is class c in the original network, and the second class is the aggregate

class of all the other classes in the original network. For the aggregate class, we have

to specify the branching probability p
(agg)
i that an aggregate class customer leaving

node 0 will enter node i, the parameters of the service rate µ
(agg)
(i,1) , µ

(agg)
(i,2) , and α

(agg)
i

of the aggregate class at the transmission server of node i, i = 1, · · · , P , and the

parameters of the service rate µ
(agg)
0 of the aggregate class at node 0.

Assuming that we know the mean response time T
(k)
i of class k at node i, then we

can calculate the throughput H(k) of class k in the network as follows:

H(k) =
N (k)

T
(k)
0 +

∑P
i=1 T

(k)
i × p

(k)
i

(4.26)

where N (k) is the number of class k customers, (i.e., N (k) = 1 for all k), and p
(k)
i is the

branching probability in the original network that a class k customer leaving node 0

will enter node i.

For a given class c, the branching probabilities p
(agg)
i of the aggregate class can be

calculated by:

p
(agg)
i =

∑
k 6=c (H(k)p

(k)
i )∑

k 6=c H(k)
(4.27)

We employ the class aggregation technique in Baynat and Dallery’s method [5] to

obtain the parameters of the service time distribution of the aggregate class at the

transmission server of node i, i = 1, · · · , P . Since the distribution of each class is
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a two-stage hyper-exponential distribution, the distribution of the aggregate class is

also a hyper-exponential distribution, but with more than two stages. The first two

moments Ei(Agg) and Ei(Agg2) of the distribution of the aggregate class at node i

can be easily calculated as follows.

Ei(Agg) =

∑
k 6=c H(k)p

(k)
i E(B(k))∑

k 6=c H(k)p
(k)
i

(4.28)

Ei(Agg2) =

∑
k 6=c H(k)p

(k)
i E2(B(k))(1 + c2(B(k)))∑

k 6=c H
(k)
i p

(k)
i

(4.29)

c2
i (Agg) =

Ei(Agg2) − E2
i (Agg)

E2
i (Agg)

(4.30)

where E(B(k)) and c2(B(k)) are the mean and the squared coefficient of variation of

the burst duration of class k, respectively. E(B(k)) and c2(B(k)) can be calculated

using expressions (3.2) and (3.3), respectively. We approximate the service time

distribution of the aggregate class as a two-stage Coxian distribution by moment

matching. We use Marie’s method [18] to match the first two moments, as follows:

µ
(agg)
(i,1) =

2

Ei(Agg)
(4.31)

µ
(agg)
(i,2) =

1

Ei(Agg)c2
i (Agg)

(4.32)

α
(agg)
i =

1

2c2
i (Agg)

(4.33)

The parameters of the service rate µ
(agg)
0 of the aggregate class at node 0 can be

obtained as follows:

1/µ
(agg)
0 =

∑
k 6=c H(k)/γ(k)∑

k 6=c H(k)
(4.34)

where 1/γ(k) is the mean duration of the idle state of class k.

The Iterative Algorithm

As we described in the previous subsection, if we know the mean response time

of each class at each node in a network with C classes, then we can decompose the

network into C two-class queueing networks. Using HAM, we can solve each of these
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C two-class queueing networks, and then we can re-calculate the mean response time

of each class at each node. We repeat this process until it converges. The following

steps summarize our iterative algorithm.

• Step 1. Initialize the mean response time T
(c)
i to 1 for all i, c, i = 0, 1, · · · , P, c =

1, · · · , C. Initialize the load-dependent service rate µi(ni) of node i, i = 1, · · · , P ,

in each two-class network to
∑

i H(c)p
(c)
i∑

i H(c)p
(c)
i E(B(c))

for ni > 0.

• Step 2. For each i = 0, 1, · · · , P , and each c = 1, · · · , C, do

– Step 2.1. Calculate the throughput of each class using expression (4.26).

– Step 2.2. Aggregate all classes except class c into one class using expres-

sions (4.27), (4.33), and (4.34) to obtain the two-class queueing network c,

which consists of class c and the aggregate class.

– Step 2.3. Solve the two-class product-form queueing network c using the

convolution algorithm to obtain the arrival rate to node i of both class c

and the aggregate class.

– Step 2.4. Solve node i numerically using the Gauess-Seidel method to ob-

tain the steady-state probabilities pi(n
(t1,1)
i , n

(t2,1)
i , n

(o,1)
i , n

(t1,2)
i , n

(t2,2)
i , n

(o,2)
i ).

– Step 2.5. Calculate the conditional throughput υi(ni) of node i using

expression (4.23), and use this value as the load-dependent service rate

µi(ni) of the flow equivalent server of node i in the two-class network c.

– Step 2.6. Set variable OLDT
(c)
i to T

(c)
i .

– Step 2.7. Calculate the new mean response time T
(c)
i of class c at node i.

• Step 3. Check whether the mean response times T
(c)
i , i = 0, 1, · · · , P, c =

1, · · · , C, satisfy the following convergence criterion. If so, then stop. Otherwise,

repeat from Step 2. √∑
i,c(T

(c)
i − OLDT

(c)
i )2√∑

i,c(T
(c)
i )2

< ε (4.35)
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4.7 Limiting Cases

In this section, we consider several limiting cases for which we can obtain closed-

form expressions.

4.7.1 Infinite Orbiting Time

Let us first consider the case where the mean orbiting time 1/ω tends to infinity.

For simplicity, we consider the single-class queueing network with converters analyzed

in section 4.5. In the limiting case, it is easy to see that some customers will be

orbiting for ever, whereas the remaining customers will be circulating through the

network between node 0 and the transmission servers. We expect that, in steady

state, there will be exactly W customers which are circulating within the network. If,

at some time, there are more than W customers circulating within the network, then

there is a non-zero probability that one of these customers will find all transmission

servers busy when it arrives at a node, and it will become orbiting for ever. The

number of circulating customers will continue to decrease until it reaches W . In this

case, none of these W customers will ever find all transmission servers busy when it

arrives at a node, since each node i, i = 1, · · · , P , has W transmission servers.

The sojourn time of one of these W customers is E(B) + 1/γ. In view of this, the

throughput of node i is piW/(E(B) + 1/γ). The mean number of customers orbiting

at node i is approximately (NW − W )pi. Using Little’s theorem, the mean waiting

time of a customer at node i is (N − 1)(E(B) + 1/γ).

4.7.2 Single Hot Spot

Let us now consider the special case where there is one hot output port, say output

port k, and all traffic goes to this output port (i.e., pk = 1, and pi = 0, for all i 6= k).

The corresponding queueing network is shown in Figure 4.5. It consists of an idle

node (node 0) and a node corresponding to output port k.

For simplicity, we analyze the queueing network in Figure 4.5 with a single class



77

...
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node 1node 0

Transmission
server Infinite server

Figure 4.5: Queueing model of an edge switch with a hot spot

of customers. Let T (t) denote the mean service time at the transmission server (i.e.,

T (t) = E(B)), T (i) denote the mean service time at the idle server (i.e., T (i) = 1/γ),

and T (w) denote the mean waiting time of a customer at the orbiting server before

it succeeds to receive service at the transmission server (that is, it is equal to mean

orbiting time times the mean orbiting number). Note that the mean sojourn time of

a customer is T (t)+T (i)+T (w). Let ρ denote the utilization of the transmission server.

In case of multiple transmission servers (e.g., in an edge switch with converters), ρ is

the mean utilization of all transmission servers. Let Q denote the mean number of

customers at the orbiting server. Also, we use ω, N , W as defined in Table 4.1.

The mean number of customers at the orbiting server, Q, is given by:

Q = NW
T (w)

T (t) + T (i) + T (w)
(4.36)

The mean number of customers at the transmission server can be calculated in

a similar manner, and it is equal to NW T (t)

T (t)+T (i)+T (w) . Since the mean number of

customers at the transmission server is also equal to ρW , we obtain the following

expression:

ρ = N
T (t)

T (t) + T (i) + T (w)
(4.37)

Now, we calculate ρ approximately as follows. We first consider the extreme case

that the utilization of output port k is almost 1. In this case, there are always orbiting

customers. However, the utilization cannot reach 1, because when a transmission
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server becomes free, it takes a mean time equal to 1/(Qω) for the first orbiting

customer to enter the transmission server. Thus, the utilization of output port k can

be calculated approximately as:

ρ =
T (t)

T (t) + 1/(Qω)
(4.38)

For the case where the utilization of output port k is not very close to 1, we use

the following expression, which is an intuitive extension of expression (4.38).

ρ =
T (t)

T (t) + ρ/(Qω)
(4.39)

Now, we have three unknown variables: Q, ρ, and T (w). By solving equations (4.36),

(4.37), and (4.39), we obtain:


T (w) = (N
ρ
− 1)T (t) − T (i)

Q = W (N − ρ − ρT (i)

T (t) )

ρ =
(N+1)WωT (t)+WωT (i)−

√
((N+1)WωT (t)+WωT (i))

2−4NWωT (t)(WωT (t)+WωT (i)−1)

2(WωT (t)+WωT (i)−1)

(4.40)

When the number of wavelengths is very large (i.e., W → ∞), we have that

ρ = 1. This result is due to the fact that, when there is an infinite number of orbiting

customers (note that limW→∞ Q = ∞), the mean time 1/(Qω) for the first orbiting

customer to enter the transmission server becomes zero. In this case, we obtain:


T (w) = (N − 1)T (t) − T (i)

Q = ∞
ρ = 1

(4.41)

4.8 Numerical Results

In this section, we examine the accuracy of our approximation algorithm, by

comparing the approximate results to results obtained from a simulation program

of an edge OBS switch. In all the figures given in this section, simulation results

are plotted along with 95% confidence intervals estimated by the method of batch

mean. The number of batches was set to 30, with each batch run lasting until each
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Name Description
Mean waiting time of a user Average waiting time of the user before

transmitting a burst to the switch

Utilization of a wavelength Percentage of time that the wavelength is busy
Throughput of a wavelength Number of bursts transmitted on the wavelength

in a unit of time

Utilization of an output port Average utilization of all wavelengths in the
output port

Throughput of an output port Sum of throughput of all wavelengths in the
output port

Mean waiting time of Average waiting time of all users before
an output port transmitting a burst to the output port

Switch utilization Average utilization of all output ports of the switch
Switch throughput Sum of throughput of all output ports of the switch
Switch mean waiting time Average waiting time of all users before

transmitting a burst to the switch

Table 4.2: Performance measures in each experiment

wavelength has transmitted at least 100,000 bursts. As the reader will notice, however,

most confidence intervals are very narrow and are barely visible in these figures.

For each experiment, we are interested in the performance measures listed in

Table 4.2.

The edge switch that we consider has 8 fiber links for users and 2 other links

connecting it to other 2 OBS nodes. As mentioned before, we assume that there is

no traffic from the other 2 OBS nodes to this edge switch. We only model traffic

generated by the users, which is destined to the 2 OBS nodes, and to the users them-

selves. We have P + 1 nodes in our queueing network model, where P = 10. Nodes 1

to 8 represent the output ports connected to the users, nodes 9 and 10 represent the

output ports connected to the other two OBS nodes, and node 0 represents the burst

arrival processes in the idle state.
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4.8.1 Edge Switch with Homogeneous Users and w/o Con-

verters

In this subsection, we assume that the edge switch is not equipped with wave-

length converters. As described in section 4.3, the analysis of an edge node can be

decomposed into multiple sub-systems, one per burst wavelength. Therefore, in this

subsection, we analyze the edge switch with only one wavelength for each input and

output port (i.e. W = 1). We also assume that all wavelengths have identical burst

arrival processes. That is, the queueing network model is a single-class queueing

network with N = 8 customers.

Unless noted otherwise in the rest of this subsection, we set the mean duration of a

short burst 1/φs to 1, the mean duration of the long burst 1/φl to 100 (i.e. φl = 0.01),

the probability ps that a burst is a short burst to 0.8, the mean duration of the idle

state 1/γ to 10 (i.e. γ = 0.1), the mean orbiting time 1/ω to 10 (i.e. ω = 0.1), the

probability pi that a burst is destined to output port i to 0.1 for all i = 1, 2, · · · , 10.

In the first experiment, we vary φl from 0.1 to 0.01, and increase ps from 0.1 to

0.9 with an increment of 0.1. Figures 4.6 and 4.7 show the switch utilization and

switch mean waiting time, respectively. We observe that the approximation method

has a good accuracy (the percent error is less than 5%). We also observe that the

error is larger with φl=0.01 than with φl=0.1. This is because a smaller φl leads to a

larger squared coefficient of variation of the service time of the transmission server,

as calculated in Equation 3.3. We also observe that as the ps increases, the switch

utilization goes down. This is because we keep γ unchanged (i.e. the mean duration

of the idle state), the increase of ps leads to the decrease of the percentage of time

that the user is transmitting, and subsequently the decrease of the switch utilization.

This is also the reason for the decrease of the switch utilization when we decrease the

mean duration of the long burst.

In the second experiment, we increase γ from 0.001 to 0.01, 0.1, 1, and 10. Fig-

ures 4.8 and 4.9 show the switch utilization and switch mean waiting time, respec-

tively. We observe that the error increases as the γ increases (i.e. as the burst traffic
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Figure 4.6: Switch utilization for φl=0.1, and 0.01
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Figure 4.7: Switch mean waiting time for φl=0.1, and 0.01
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Figure 4.8: Switch utilization vs. γ

increases). The maximum error is about 10%. We find that the switch utilization

and switch mean waiting time go up when γ increases. This is because when γ is in-

creased, the mean duration of the idle state decreases. That is, the user will transmit

more bursts.

In the third experiment, we increase ω from 0.0001 to 0.001, 0.01, 0.1, 1, and

10. Figures 4.10 and 4.11 show the switch utilization and the switch mean waiting

time, respectively. The utilization and the waiting time with an infinite small ω are

also plotted (based on the calculation in section 4.7.1). We observe that the switch

utilization goes up as ω increases. This is because when ω increases, the orbiting

customers attempt to seize the transmission server more often, and therefore the

server utilization goes up. We also observe that when ω is 0.0001, the simulation

result is close to the result of the limiting case, and the error of the approximation

algorithm is very large. However, a very small ω is not reasonable in practice, since

it leads to a lower utilization and a longer waiting time.

In the last experiment, we consider a hot spot case by increasing p10 from 0.1 to
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Figure 4.9: Switch mean waiting time vs. γ
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Figure 4.10: Switch utilization vs. ω
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Figure 4.11: Switch mean waiting time vs. ω

0.9 with an increment of 0.2, and setting pi (i = 1, · · · , 9) to (1−p10)/9. Figures 4.12,

4.13, and 4.14 show the utilization of output port 1, output port 10 and the switch,

respectively. Figures 4.15, 4.16, and 4.17 plot the mean waiting time of output port

1, output port 10 and the switch, respectively. We observe that the approximation

algorithm has a better accuracy for output port 10 than for output port 1. The

maximum error is about 10%.

In all experiments reported in this subsection, the simulation usually takes about

half an hour to run, while the approximation algorithm only takes about 1 second.

4.8.2 Edge Switch with Homogeneous Users and with Con-

verters

In this subsection, we assume that the edge switch is equipped with wavelength

converters. We increase the number of wavelength W in each fiber from 1 to 3, 5,
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Figure 4.12: Utilization of output port 1 vs. p10
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Figure 4.13: Utilization of output port 10 vs. p10



86

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

10 30 50 70 90

S
w

itc
h 

U
til

iz
at

io
n

p_10 (%)

Simulation
Approximation

Figure 4.14: Switch utilization vs. p10
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Figure 4.15: Mean waiting time of output port 1 vs. p10
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Figure 4.16: Mean waiting time of output port 10 vs. p10
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Figure 4.17: Switch mean waiting time vs. p10
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Figure 4.18: Switch throughput vs. W

7, and 9. We also assume that all wavelengths have identical burst arrival processes.

Therefore, the corresponding queueing network model is still a single-class queueing

network, but the number of customers is 8 × W instead of 8, and the number of

transmission servers is W instead of one.

We also set φs=1, φl=0.01, ps=0.8, γ=0.1, ω=0.1, pi=0.1 for all i = 1, 2, · · · , 10.

Figures 4.18, 4.19 and 4.20 show the switch throughput, switch utilization and switch

mean waiting time, respectively. We observe that as W increases, the switch uti-

lization and the switch throughput increase, while the switch mean waiting time de-

creases. We also observe that the approximation algorithm has a larger error (about

20%) of the switch mean waiting time when W = 9. However, the absolute difference

between the simulation result and the numerical result is very small at that point.

We also note that the approximation algorithm takes a much shorter time to get the

result than the simulation. For example, when W = 9, the approximation algorithm

takes about 1 minute to run, and the simulation takes about 7 hours.
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Figure 4.19: Switch utilization vs. W
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Figure 4.20: Switch mean waiting time vs. W
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4.8.3 Edge Switch with Heterogeneous Users and w/o Con-

verters

In this subsection, we assume that the edge switch is not equipped with wavelength

converters. We use the same edge OBS node used in the experiments described

in previous subsection 4.8.1. We assume that the edge switch has only one burst

wavelength for each input and output port (i.e. W = 1), and each wavelength has a

different burst arrival process. That is, the queueing network model is a multi-class

queueing network with N = 8 classes, each of which has a single customer.

First, we consider a hot spot case. The edge switch has the same parameters as in

the hot spot case in subsection 4.8.1, with the exception that a user can not transmit

bursts to itself. Let pj(i) denote the probability that a burst from user i will go to

output port j. We set pj(i) for all i = 1, 2, · · · , 8 as follows.

pj(i) =




phot if j = 10
1−phot

8
if j 6= 10 and j 6= i

0 if j = i

(4.42)

We increase phot from 0.1 to 0.9 with an increment of 0.2, and set φs=1, φl=0.01,

ps=0.8, γ=0.1, ω=0.1. Figures 4.21 and 4.22 show the utilization of output port 1

and output port 10, respectively. Figures 4.23 and 4.24 plot the mean waiting time of

output port 1 and output port 10, respectively. We observe that the maximum error

of the approximation algorithm is about 10%.

Secondly, we consider the case where each user has a different burst size distribu-

tion. For simplicity, we set φs of all users to 1, γ of all users to 0.1, and only vary

φl and ps as in Table 4.3. We set pj(i) to 1/9 for all j 6= i, and to 0 for all j = i.

We also set ω=0.1. Figures 4.25, 4.26, and 4.27 plot the mean waiting time of user 1,

user 8 and the switch mean waiting time, respectively. Figure 4.28 shows the switch

utilization. We observe that the maximum error of the approximation algorithm is

about 5%.

In both experiments, the simulation usually takes half an hour, whereas the ap-

proximation algorithm takes about 1 second.
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Figure 4.21: Utilization of output port 1 vs. phot
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Figure 4.22: Utilization of output port 10 vs. phot
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Figure 4.23: Mean waiting time of output port 1 vs. phot
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Figure 4.24: Mean waiting time of output port 10 vs. phot
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user 1 user 2 user 3 user 4 user 5 user 6 user 7 user 8
case 1: φl 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

ps 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
case 2: φl 0.5 0.5 0.5 0.5 0.1 0.1 0.1 0.1

ps 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7
case 3: φl 0.5 0.5 0.5 0.1 0.1 0.1 0.05 0.05

ps 0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.8
case 4: φl 0.5 0.5 0.1 0.1 0.05 0.05 0.01 0.01

ps 0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9

Table 4.3: Case where all users have different burst size distributions
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Figure 4.25: Mean waiting time of user 1 for each case
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Figure 4.26: Mean waiting time of user 8 for each case

0

1

2

3

4

5

6

7

8

9

1 2 3 4

S
w

itc
h 

M
ea

n 
W

ai
tin

g 
T

im
e

Case

Simulation
Approximation

Figure 4.27: Switch mean waiting time for each case
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Figure 4.28: Switch utilization for each case

4.8.4 Edge Switch with Heterogeneous Users and with Con-

verters

In this subsection, we consider the same edge switch analyzed in the previous

subsection, but we assume that it is equipped with wavelength converters, each fiber

supports W burst wavelengths, and the number of the transmission server is W . We

also assume that different wavelengths have different burst arrival processes. That

is, the queueing network has N × W = 8 × W classes and one customer per class.

For simplicity, we assume that the burst arrival processes associated with the W

wavelengths of the same user have the same parameters.

First, we consider a hot spot case. We increase W from 1 to 9 with an increment 2.

For all burst arrival process, we set φs=1, φl=0.01, ps=0.8, γ=0.1, and set pj(i) using

equation 4.42 with phot=0.3. We also set ω=0.1. Figures 4.29, 4.30 and 4.31 show the

switch throughput, switch utilization and switch mean waiting time, respectively. We

observe that the approximation algorithm has a good accuracy, and the maximum
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Figure 4.29: Switch throughput vs. W

error is about 2%. We note that when W = 9, the simulation takes about 12 hours,

and the approximation algorithm takes about 2 hours (the number of iterations is 3).

Secondly, we consider the case where all users have different burst size distribu-

tions. We increase W from 1 to 9 with an increment 2. We set φs of all users to 1, γ

of all users to 0.1, and set φl and ps to the case 4 in Table 4.3. We set pj(i) to 1/9 for

all j 6= i, and to 0 for all j = i. We also set ω=0.1. Figures 4.32, 4.33 and 4.34 show

the switch throughput, switch utilization and switch mean waiting time, respectively.

We observe that the approximation algorithm has a good accuracy. We also note that

when W = 9, the simulation takes about 9 hours, and the approximation takes about

5 hours (the number of iterations is 5).

We would like to mention that when W = 9, the corresponding queueing network

has NW = 8 ∗ 9 = 72 classes, with one customer per class. In both experiments,

the algorithm takes several hours. This is because the 72-class queueing network

is decomposed into 72 two-class queueing networks, and then all these 72 two-class

queueing networks need to be solved. If we know in advance that some burst arrival
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Figure 4.30: Switch utilization vs. W
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Figure 4.31: Switch mean waiting time vs. W
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Figure 4.32: Switch throughput vs. W
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Figure 4.33: Switch utilization vs. W
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Figure 4.34: Switch mean waiting time vs. W

processes have the same parameters, then we can construct a queueing network with

less than NW classes. For example, in these two experiments, the burst arrival pro-

cesses associated with the W wavelengths of the same user have the same parameters,

we can construct a queueing network with only N = 8 classes, with W = 9 customers

per class. In this case, the algorithm will take much less time, because the 8-class

queueing network will be decomposed into 8 two-class queueing networks, and then

only 8 two-class queueing networks need to be solved.

4.8.5 Limiting Cases

In this subsection, we consider the limiting cases discussed in section 4.7. Since

we already discussed the limiting case when the orbiting time is infinite in subsec-

tion 4.8.1, we only discuss the limiting case of a single hot spot in this subsection.

We assume that the edge switch is equipped with wavelength converters, each fiber

supports W burst wavelengths, and the number of the transmission server is W . We
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Figure 4.35: Utilization of output port 10 vs. W

also assume that all wavelengths have the same burst arrival process. That is, the

queueing network has a single class.

Limited by the simulation time, we only increase W from 1 to 64. We set φs = 1,

φl = 0.01, γ = 0.1, and ps = 0.8. We set pi to 100% for i = 10, and to 0 for all

i 6= 10. We also set ω=0.1. Figure 4.35 shows the utilization of output port 10. We

observe that the utilization increases as the number of wavelength increases, and it

gets close to 1 after W ≥ 16. Figure 4.36 shows the mean waiting time of the output

port 10. Figure 4.37 shows the throughput of output port 10. We observe that the

approximation has a good accuracy. Finally, note that as W increases, the simulation

time grows very quickly. When W = 64, the simulation takes 3 days, whereas the

approximation time takes less than 1 second.
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Figure 4.37: Throughput of output port 10 vs. W
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4.9 Conclusions

In this chapter, we consider an edge optical burst switching (OBS) node with or

without converters, and with no buffering. The OBS node is modeled as a closed

non-product form queueing network. Comparisons against simulation data suggest

that our algorithm has a reasonable fast speed and a good accuracy, except in the

limiting case when the orbiting time is infinite. However, this limiting case is not a

practical case. We also analyzed a single hot spot case.

Let us take a look at the experiments described in this chapter with P = 10, N =

8, and W = 9. In the case of the single-class queueing network without wavelength

converters, the simulation usually takes half an hour, and the algorithm usually takes

1 second. For the single-class queueing network with wavelength converters, the

simulation usually takes 7 hours, and the algorithm usually takes 1 minute. In the case

of the multi-class queueing network without wavelength converters, the simulation

usually takes half an hour, and the algorithm usually takes 1 second. For the multi-

class queueing network with wavelength converters, the simulation usually takes about

10 hours, and the algorithm takes about 4 hours. For the special case, when all traffic

goes to a single hot spot, it always takes less than 1 second to get the analytical result

using the closed-form expressions described in section 4.7.2.

We note that in our models analyzed in this chapter, we assume that a user

continues to transmit the setup message until it gets a setup ack message back

from the edge node. In real life, a user may drop the burst, and go back to the idle

state, if it receives a reject message. If the destination of the next burst is always

the same as that of the one just dropped, then the edge node can still be modeled by

the queueing network described in this chapter, by setting ω = γ. If the destination of

the next burst is chosen randomly without any reference to the previous destination,

then the edge node can be modeled by a closed queueing network with blocking

with repetitive service with random destination, and reversible routing matrix. If we

assume that the burst size is exponentially distributed, then this queueing network

has a product-form solution. For more details, the reader is referred to Perros [23].
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Chapter 5

An Edge Node with a Large

Number of Wavelengths

The algorithm described in the previous chapter has a good accuracy for ana-

lyzing the performance of an OBS edge node. However, it is still computationally

intensive, and it cannot be used to solve an OBS edge node with a very large num-

ber of wavelengths, say 128 wavelengths per fiber. In this chapter, we propose an

approximation algorithm for the analysis of an edge node with a large number of

wavelengths. This chapter is organized as follows. In section 5.1, we present some

observations regarding the behavior of the queueing network when the number of the

wavelengths increases. A new algorithm, based on these observations, is presented

for a single-class and multi-class queueing network in section 5.2 and section 5.3,

respectively. Finally, numerical results are shown in section 5.4.
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5.1 Observations when the Number of Wavelengths

is Large

In this section, we discuss two observations regarding the OBS queueing network,

when the number of wavelengths is very large. The algorithms described later in this

chapter are based on these two observations.

5.1.1 Exponentially Distributed Burst Size

In this chapter, we will use the second set of parameters, as described in section 3.4,

to control the burst arrival process. They are: the load l of the burst arrival process,

the mean duration s of bursts, the ratio r of the mean duration of long bursts to the

mean duration of short bursts, and the probability ps that a burst is a short burst.

The first observation is that as the number of the wavelengths increase, the queue-

ing network with the same mean burst size, but with different ratio r and probability

ps, tends to have the same performance. That is, when the number of the wave-

lengths is large enough, the ratio r and the probability ps almost do not affect the

performance of a queueing network.

Figure 5.1 shows the switch mean waiting time for r = 1, 10, 100, as the number

of wavelengths W is increased from 2 to 32. The number of users N = 4, the number

of output (input) ports P = 5, and the mean orbiting rate ω = 0.1. All burst arrival

processes are identical with load l = 0.7, mean burst size s = 1, probability ps = 0.9,

and probability pi = 1.0 for i = 5, and pi = 0 for i = 1, 2, 3, 4. We observe that

when W = 2, the difference between the switch mean waiting times is very large.

As W increases, this difference decreases, and when W is equal to 32, the difference

becomes very small.

Figure 5.2 shows the switch mean waiting time for ps = 0.1, 0.5, 0.9, as the number

of wavelengths W varied from 2 to 32. The parameters of the experiment are the same

as the parameters in the previous experiment, with the exception of ratio r which is

fixed to 100. We observe that when W = 2, the difference between the switch mean
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Figure 5.1: Switch mean waiting time for different r vs. W

waiting times is very large. As W increases, this difference decreases, and when W

is equal to 32, the difference becomes very small.

Overall, as W increases, the queueing networks with the same mean s, but with

different ratio r and probability ps, tend to have the same performance. If we fix ratio

r to 1, and probability ps to 0.5, then we have a burst arrival process in which the

size of both short bursts and long bursts is exponentially distributed with the same

mean s. That is, when we analyze an OBS edge switch with a very large number

of wavelengths, we can use the exponential distribution to approximate the original

hyper-exponential distribution of the burst size. The algorithm for the single-class

queueing network described in section 5.2 is based on this observation.

A similar observation was reported in Bolch et al [6]. They found using simulation

that if arbitrarily distributed service times are replaced by exponentially distributed

service times in a closed queueing network, the deviation of the performance measures

is tolerable. It is referred to as the robustness of the closed queueing network. In

their experiments, for a network with only -/G/1 FCFS nodes, if they analyze it by
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Figure 5.2: Switch mean waiting time for different ps vs. W

replacing -/G/1 node by -/M/1 node, then the mean deviation is about 6%. For a

network with only -/G/m node, the mean deviation is about 2%. Especially, for a

network with only -/G/∞ node, the mean deviation is zero. They summarized their

observations as follows

• This approximation works better, if the c2 of the service time is less than 1,

and/or is not very large.

• This approximation works better, if there is a bottleneck in the queueing net-

work.

• The larger the number of customers, the better the approximation.

Note that, in our case, as W increases, the number of both the customers and the

servers increases.
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user 1 user 2 user 3 user 4
load l 0.2 0.4 0.6 0.8
mean burst size s 2 4 6 8
ratio r 20 40 60 80
probability ps 0.2 0.4 0.6 0.8
probability pi 1 if i = 5 1 if i = 5 1 if i = 5 1 if i = 5

0 otherwise 0 otherwise 0 otherwise 0 otherwise

Table 5.1: Parameters of the burst arrival processes

5.1.2 Arrivals See the Same Mean Waiting Time

The second observation is for the OBS node with multiple wavelengths, each asso-

ciated with different burst arrival processes and converters. This node is modeled by a

queueing network with N ×W classes, with one customer per class. For presentation

purposes, we number sequentially all the classes of the queueing network, so that the

class corresponding to wavelength j (j = 1, 2, · · · ,W ) of user i (i = 1, 2, · · · , N) is

identified by the number (j − 1) × N + i. For example, the class corresponding to

wavelength 1 of user 1 is class 1, and the class corresponding to wavelength 1 of user

3 is class 3. We observed that as the number of the wavelengths increases, the mean

waiting time of a class at a node i = 1, 2, · · · , P becomes closer to the mean waiting

time of all classes at the same node.

Figure 5.3 shows the mean waiting time of class 1, 2, 3, 4 and of all classes at

output port 4, as the number of wavelengths W is increased from 2 to 32. The number

of users N = 4, the number of output (input) ports P = 5, and the mean orbiting

rate ω = 0.1. For simplicity, we assume that the wavelengths of the same user have

identical burst arrival processes. The parameters of the burst arrival processes are

listed in Table 5.1.

We observe that when W = 2, the difference between the mean waiting time of

different classes is very large. As W increases, this difference decreases. When W is

equal to 32, the mean waiting times of class 1, 2, 3, and 4 all become very close to

the mean waiting time of all classes. This observation implies that when we analyze

an OBS edge switch with a very large number of wavelengths, we can use a single-
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class queueing network to approximate the multi-class queueing network described in

the previous chapter. The algorithm for a multi-class queueing network described in

section 5.3 is based on this observation.

This observation can be intuitively explained as follows. For clarity and simplicity,

suppose we have a product-form closed queueing network with two classes and with

a population vector (n1, n2), where n1 and n2 are the number of customers of class

1 and 2, respectively. The closed queueing network consists of M/M/1 FIFO nodes

and M/G/∞ nodes. At M/M/1 nodes, both classes have the same service time

distribution, but at M/G/∞, classes have different service time distributions. Now,

let’s look at a M/M/1 node i, and suppose the service rate at node i is µi.

Let Wij(n1, n2) denote the mean waiting time of a class-j customer at node i in

a network with a population vector (n1, n2), and Ni(n1, n2) denote the mean cus-

tomer number at node i in a network with a population vector (n1, n2). By arrival

theorem, the distribution of the number of customers seen by a class-j customer at

the time of arrival to node i is the same as that of the number of customers at node
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i with one less class-j customers in the network. The mean waiting time of a class-1

customer and a class-2 customer can be obtained as follows.

Wi1(n1, n2) = Ni(n1 − 1, n2)/µi

Wi2(n1, n2) = Ni(n1, n2 − 1)/µi

(5.1)

In a special case, where n1 = 1 and n2 = 1, the mean waiting time of a class-1

customer and a class-2 customer can be obtained as follows.

Wi1(1, 1) = Ni(0, 1)/µi

Wi2(1, 1) = Ni(1, 0)/µi

(5.2)

A population vector (0, 1) means that there is only a class-2 customer in the network,

and a population vector (1, 0) means that there is only a class-1 customer in the

network. Since class 1 and 2 have different service time distribution at M/G/∞ nodes,

Ni(0, 1) is different from Ni(1, 0). Therefore, Wi1(1, 1) is different from Wi2(1, 1).

In another extreme case, where n1 = 1000 and n2 = 1000, the mean waiting time

of a class-1 customer and a class-2 customer can be obtained as follows.

Wi1(1000, 1000) = Ni(999, 1000)/µi

Wi2(1000, 1000) = Ni(1000, 999)/µi

(5.3)

A population vector (999, 1000) means that there are a total of 1999 customers in

the network, including 999 class-1 customers and 1000 class-2 customers. A popu-

lation vector (1000, 999) means that there are a total of 1999 customers in the net-

work, including 1000 class-1 customers and 999 class-2 customers. We can see that

there are 1998 common customers between these two population vectors. That is,

1998/1999=99.95% customers are same in both population vectors. Therefore, intu-

itively, the percentage difference between Ni(999, 1000) and Ni(1000, 999) is smaller

than the percentage difference between Ni(0, 1) and Ni(1, 0). Then, intuitively, the

percentage difference between Wi1(1000, 1000) and Wi2(1000, 1000) is smaller than

the percentage difference between Wi1(1, 1) and Wi2(1, 1). That is, the mean waiting

time of different classes tends to become same as the number of customers increases.
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5.2 Analysis of the Single-Class Queueing Network

This queueing network is a non-product form queueing network, and we analyze

it using Marie’s algorithm [17, 18]. The idea in Marie’s method is to replace each

non-BCMP node by an equivalent node with a load-dependent exponential service

rate, obtained by calculating the conditional throughput of the non-BCMP node in

isolation under a load-dependent arrival rate. In the following subsection, we calculate

the conditional throughput of each node i, i = 1, · · · , P . Node 0 is an infinite server,

that is, a BCMP node, so we do not need to construct a flow equivalent node for it.

5.2.1 The Conditional Throughput

Let us consider node i, i = 1, · · · , P , of the queueing network shown in Figure 5.4.

Let λi(ni) be the arrival rate into this node when there are a total of ni customers in

the node. We assume that the service time of the transmission server is exponentially

distributed with mean 1/µi, i.e. 1/µi = s. The state of node i can be described by

(n
(t)
i , n

(o)
i ), where n

(t)
i = 0, 1, ..,W indicates the number of busy transmission servers,

and n
(o)
i = 0, 1, .., (N − 1)W gives the number of orbiting customers occupying the

infinite server. In order to simplify the notation and since we are only concerned with

the analysis of node i in isolation, we drop the index i throughout the rest of this

subsection.

Let υ(n) denote the conditional throughput of the node with n customers. It can

be obtained as follows. (If there is only one transmission server, υ(n) can be obtained

by theorem 2)

υ(n) =
p(n − 1)λ(n − 1)

p(n)
(5.4)

Where p(n) is the steady-state probability that there are a total of n customers in

the node. It can be calculated as follows:

p(n) =
∑

n(t)+n(o)=n

p(n(t), n(o)) (5.5)

Where p(n(t), n(o)) is the steady-state probability of the state (n(t), n(o)). It can be

obtained by solving the node numerically. For N = 2 and W = 2, the state transition
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Figure 5.4: Queueing model of an edge switch

diagram is shown in Figure 5.5, and the transition rate matrix Q is shown in Table 5.2.

We note that it is a block tri-diagonal matrix, and each diagonal block is a tri-diagonal

matrix. Therefore, we use block Gauss-Seidel method, see Stewart [26], to solve it.

Note that, since each diagonal block is a tri-diagonal matrix, it is very easy to get

its LU decomposition, and then each block equation can be solved by a forward and

backward substitution.

5.2.2 The Iterative Algorithm

The queueing network is analyzed following Marie’s algorithm as follows:

• step 1: Initialize the service rate µi(ni) of flow equivalent server i, i = 1, 2, · · · , P ,

to ni/s, and set the service rate µ0(n0) of flow equivalent server 0 to γn0.

• step 2: For each node i, i = 1, 2, · · · , P , do the following steps:

– step 2.1: Calculate the arrival rate λi(ni) of node i by short-circuiting node
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00 10 20 01 11 21 02 12 22
00 −λ(0) λ(0)

10 µ −µ−λ(1) λ(1)

20 2µ −2µ−λ(2) λ(2)

01 ω −ω−λ(1) λ(1)

11 ω µ −ω−µ−λ(2) λ(2)

21 2µ −2µ−λ(3) λ(3)

02 2ω −2ω−λ(2) λ(2)

12 2ω µ −2ω−µ−λ(3) λ(3)

22 2µ −2µ

Table 5.2: Transition rate matrix Q of the node
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i in the substitute product-form closed queueing network, where each node

j has an exponential service time of µj(nj).

– step 2.2: Calculate the steady-state probability pi(n
(t)
i , n

(o)
i ) of node i using

the block Gauss-Seidel method.

– step 2.3: Calculate the conditional throughput υi(ni) of node i using equa-

tion 5.4.

• step 3: Check the following two convergence conditions. If both convergence

criterions are satisfied, then stop. Otherwise, set µi(ni) to υi(ni) for all i =

1, 2, · · · , P , and go back to step 2.

– Convergence condition 1: to make sure that the sum of the mean number

of the customers at all nodes is equal to the total number of the customers

in the queueing network.

∣∣∣NW − ∑P
i=0

∑NW
j=0 jpi(j)

NW

∣∣∣ < ε (5.6)

– Convergence condition 2: to make sure that the conditional throughputs

of each node are consistent with the topology of the queueing network.

∣∣∣ri − 1
P+1

∑P
j=0 rj

1
P+1

∑P
j=0 rj

∣∣∣ < ε for i = 0, 1, · · · , P (5.7)

where
ri = 1

pi

∑NW
j=0 pi(j)µi(j) if i = 1, · · · , P

ri =
∑NW

j=0 pi(j)µi(j) if i = 0

5.2.3 The Mean Waiting Time

The mean waiting time T
(w)
i of a customer at node i, i = 1, 2, · · · , P , is the average

time from the instance when the customer enters the node to the instance when the

customer gets service at the transmission server. The mean response time T
(r)
i of a

customer at node i, i = 1, 2, · · · , P , is the average time from the instance when the
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customer enters the node to the instance when the customer leaves the node. We

have

T
(w)
i = T

(r)
i − 1/µi (5.8)

The mean response time T
(r)
i can be obtained by the Little’s law as follows.

T
(r)
i = N

(r)
i /λi (5.9)

Where N
(r)
i is the mean number of customers in node i, and λi is the mean arrival

rate into node i. They can be obtained as follows.

N
(r)
i =

(N−1)W∑
j=0

W∑
k=0

(k + j)pi(k, j) (5.10)

λi =

(N−1)W∑
j=0

W∑
k=0

λi(k + j)pi(k, j) (5.11)

Note that, the utilization of the transmission server at node i is λi/(Wµi). It can

also be obtained as follows.

1

W

(N−1)W∑
j=0

W∑
k=0

kpi(k, j) (5.12)

Therefore, we have

λi/(Wµi) =
1

W

(N−1)W∑
j=0

W∑
k=0

kpi(k, j) (5.13)

We solve it for µi, and we get

1/µi =
1

λi

(N−1)W∑
j=0

W∑
k=0

kpi(k, j) (5.14)

By substituting equation 5.9 and 5.14 to equation 5.8, we get

T
(w)
i =

1

λi

(N−1)W∑
j=0

W∑
k=0

jpi(k, j) (5.15)
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5.3 Analysis of the Multi-Class Queueing Network

In this section, we extend our analysis of the queueing network model of the edge

OBS switch to the case where each customer has a different burst arrival process.

This is taken into account by associating each customer with a different class. The

resulting queueing network is a closed non-product form queueing network with mul-

tiple classes, each of which has only a single customer. The number of classes is

N × W . For example, the number of classes in the queueing network model of an

OBS node with 8 users and 128 wavelengths is 1024.

In section 5.1, we observed that as the number of the wavelengths increases, the

mean waiting time of a class at a node becomes closer to the mean waiting time of all

classes at the node. This observation implies that when we analyze a queueing network

with a very large number of classes, we can use a single-class queueing network to

approximate the multi-class queueing network. Below, in subsection 5.3.1, we describe

an aggregation technique for constructing a single-class queueing network, which is

equivalent to the multi-class queueing network under study, and in subsection 5.3.2,

we present an iterative algorithm for analyzing the multi-class queueing network.

5.3.1 Class Aggregation

For the equivalent single-class queueing network, we have to specify the branching

probability p
(agg)
i that a customer leaving node P will enter node i, and the mean

service rate µ
(agg)
i at node i, i = 0, 1, 2, · · · , P .

Let p
(j)
i denote the branching probability that a class j (j = 1, 2, · · · , NW ) cus-

tomer leaving node P will enter node i in the original multi-class queueing network,

E(B(j)) denote the mean burst size of class j, and 1/γ(j) denote the mean duration

of the idle state of class j.

Suppose we know the mean waiting time T
(w)
i of all class customers at node i,

then we can approximately calculate the throughput H(j) of class j in the network as
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follows.

H(j) = 1/(
1

γ(j)
+

P∑
i=1

(T
(w)
i + E(B(j)))p

(j)
i ) (5.16)

In the equivalent single-class queueing network, the branching probabilities p
(agg)
i ,

i = 1, · · · , P , can be calculated as follows.

p
(agg)
i =

∑
j H(j)p

(j)
i∑

j H(j)
(5.17)

The mean service rate µ
(agg)
i , i = 1, · · · , P can be obtained as follows.

1/µ
(agg)
i =

∑
j H(j)p

(j)
i E(B(j))∑

j H(j)p
(j)
i

(5.18)

The mean service rate µ
(agg)
0 can be obtained as follows.

1/µ
(agg)
0 =

∑
j H(j)/γ(j)∑

j H(j)
(5.19)

5.3.2 The Iterative Algorithm

As shown in the previous subsection, if we know the throughput of each class

in a multi-class queueing network, we can aggregate it into a single-class queueing

network. However, in order to calculate the throughput of each class in the multi-

class queueing network, we need the mean waiting time of all class customers, which

can be obtained by solving the single-class queueing network. Therefore, we use an

iterative algorithm to solve the multi-class queueing network as follows.

• step 1: Initialize the throughput H(j) of each class j to 1.

• step 2: Construct the equivalent single-class queueing network by aggregating

all classes into one class using equations 5.17, 5.19, and 5.18.

• step 3: Solve the equivalent single-class queueing network using the algorithm

described in section 5.2.
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• step 4: Calculate the mean waiting time of all class customers using equa-

tion 5.15

• step 5: Set H
(j)
old to H(j), j = 1, 2, · · · , NW

• step 6: Calculate H(j) using equation 5.16, j = 1, 2, · · · , NW

• step 7: Check whether the throughput H(j) satisfy the following convergence

criterion. If yes, then stop. Otherwise, go to step 2.√∑
j

(H(j) − H
(j)
old)

2/

√∑
j

(H(j))
2

< ε (5.20)

5.4 Numerical Results

In this section, we examine the accuracy of our approximation algorithm, by

comparing the approximate results to results obtained from a simulation program

of an edge OBS switch. In all the figures given in this section, simulation results

are plotted along with 95% confidence intervals estimated by the method of batch

mean. The number of batches was set to 30, with each batch run lasting until each

wavelength has transmitted at least 100,000 bursts. As the reader will notice, however,

most confidence intervals are very narrow and are barely visible in these figures.

The edge switch that we consider is equipped with wavelength converters, and has

8 fiber links for users and 2 other links connecting it to 2 other OBS nodes. For the

approximation algorithm, we increase the number of wavelength W in each fiber from

2 to 4, 8, 16, 32, 64, and 128. However, limited by the running time of the simulation

program, we only run simulations with W equal to 2, 4, 8, 16, and 32.

As described in section 4.3, we assume that there is no traffic from the other two

OBS nodes to this edge switch. We only model traffic generated by the users, which

is destined to the 2 OBS nodes, and to the users themselves. We have P +1 nodes in

our queueing network model, where P = 10. Nodes 1 to 8 represent the output ports

connected to the users, nodes 9 and 10 represent the output ports connected to the

other two OBS nodes, and node 0 represents the burst arrival processes in the idle
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state. When all wavelength are associated with the identical burst arrival process,

the corresponding queueing network is a single-class queueing network. When all

wavelengths are associated with different burst arrival processes, the corresponding

queueing network has N × W = 8 × W classes and one customer per class.

Traffic Load

In this subsection, we describe three experiments. In the first experiment, we

assume that all wavelengths are associated with the same burst arrival process with

the following parameters: load l = 0.1, mean burst size s = 1, burst size ratio

r = 100, short burst probability ps = 0.9, and destination probability pi = 0.3 if

i = 9, 10, otherwise pi = (1 − 0.3 − 0.3)/8 = 0.05. The mean orbiting time 1/ω is

set to be 10 times of the mean burst size (i.e. 1/ω = 10 ∗ 1 = 10, or ω = 0.1). The

second and the third experiments have the same parameters as the first experiment,

except that load l is set to 0.5 and 0.9, respectively.

Figure 5.6 shows the switch mean waiting time obtained from these three exper-

iments. As we expected, we observe that the higher the load, the longer the mean

waiting time. We also observe that the mean waiting time decreases, as the number

of wavelength increases. Recall that in a switch with wavelength converters, a user

has to wait for retransmitting of the setup message, if and only if all wavelengths

at the destination output port are busy. Intuitively, the larger the number of wave-

lengths, the smaller the probability that all wavelengths are an output port are busy.

Therefore, as the number of wavelengths increases, the mean waiting time decreases.

We observe that in all three experiments, the error decreases as W increases.

When W = 32, the approximation results are almost the same as the simulation

results. We also note that when W = 32, the simulation takes about 60 hours,

whereas the approximation takes about 30 seconds.
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Figure 5.6: Traffic Load: Switch mean waiting time vs. W

Destination Probability

In this subsection, we give the results obtained from three experiments. In the first

experiment, we assume that all wavelengths are associated with the same burst arrival

process with the following parameters: load l = 0.9, mean burst size s = 1, burst size

ratio r = 100, short burst probability ps = 0.9, and destination probability pi = 0.1

if i = 9, 10, otherwise pi = (1 − 0.1 − 0.1)/8 = 0.1. The mean orbiting time 1/ω is

set to be 10 times of the mean burst size (i.e. ω = 0.1). The second experiment has

the same parameters as the first one, except that the destination probability pi = 0.2

if i = 9, 10, otherwise pi = (1 − 0.2 − 0.2)/8 = 0.075. In the third experiment,

destination probability pi = 0.3 if i = 9, 10, otherwise pi = (1 − 0.3 − 0.3)/8 = 0.05.

Figure 5.7 shows the switch mean waiting time for these three experiments. We

observe that the larger the p9 and p10, the longer the mean waiting time. Note that,

when p9 and p10 are 0.1, the switch has a uniform traffic. This is, a switch with a hot

spot traffic has a longer mean waiting time than a switch with a uniform traffic.
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Figure 5.7: Destination Probability: Switch mean waiting time vs. W

We observe that in all three experiments, the error decreases as W increases.

When W = 32, the approximation results are almost the same as the simulation

results. We also note that when W = 32, the simulation takes about 60 hours,

whereas the approximation takes about 30 seconds.

Orbiting Rate

As before, we give results for three experiments. In all three experiments, we

assume that all wavelengths are associated with the same burst arrival process with

the following parameters: load l = 0.9, mean burst size s = 1, burst size ratio

r = 100, short burst probability ps = 0.9, and destination probability pi = 0.3 if

i = 9, 10, otherwise pi = (1 − 0.3 − 0.3)/8 = 0.05. The mean orbiting time 1/ω is

set to be 1, 10,and 100 times of the mean burst size, respectively in the first, second,

and third experiment. That is, ω = 1, 0.1, 0.01, respectively in the first, second, and

third experiment.
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Figure 5.8: Orbiting Rate: Switch mean waiting time vs. W

Figure 5.8 shows the switch mean waiting time for these three experiments. As

we expected, we observe that the smaller the orbiting rate (the longer the orbiting

time), the longer the mean waiting time.

We observe that in all three experiments, the error decreases as W increases. When

W = 32, the maximum percentile error is 8%. We also note that when W = 32, the

simulation takes about 80 hours, whereas the approximation takes about 60 seconds.

Different Burst Arrival Processes

In this subsection, we assume that wavelengths are associated with different burst

arrival processes. But for simplicity, we assume that the wavelengths of the same user

are associated with the identical burst arrival processes. The parameters are listed in

Tabel 5.3. The mean orbiting time 1/ω is set to be 10 times of the mean burst size

(i.e. ω = 0.1).

Figure 5.9 shows the mean waiting time of class 2, 4, 6, and 8. Recall that, class
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user 1 user 2 user 3 user 4 user 5 user 6 user 7 user 8
load l 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
mean burst size s 1 2 3 4 5 6 7 8
ratio r 10 20 30 40 50 60 70 80
probability ps 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
probability p9, p10 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4
other pi 0.1 0.1 0.075 0.075 0.05 0.05 0.025 0.025

Table 5.3: Parameters of burst arrival processes

2, 4, 6, and 8 correspond to the first wavelength of user 2, 4, 6, and 8, respectively.

We observe that the error decreases as W increases. When W = 32, the maximum

percentile error is 12%. We also note that when W = 32, the simulation takes about

60 hours, whereas the approximation takes about 5 minutes.

5.5 Conclusions

In this chapter, we consider an edge OBS node with a large number of wavelengths,

which is modeled as a closed non-product form queueing network with a large number

of classes. Our approximation algorithm is very fast, and has a good accuracy when

the number of wavelengths is large. Let us take a look at the experiments described

in this chapter with P = 10, N = 8, and W = 32. In the case of the single-class

queueing network, the simulation usually takes 60 hours, the algorithm described in

the previous chapter usually takes 1 hour, and the approximation algorithm described

in this chapter usually takes 1 minute. In the case of the multi-class queueing network,

the simulation takes about 60 hours, the algorithm described in the previous chapter

takes more than 60 hours, and the approximation algorithm described in this chapter

takes 5 minutes.

Finally, we would like to mention that for a node with a very large number of

wavelengths, the corresponding closed queueing network has also a very large number

of customers (in the hundreds). In this case, we may get underflows or overflows

when calculating the normalization constant. That is, the value of the normalization
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Figure 5.9: Different Burst Arrival Processes: Mean waiting time vs. W

constant may be out of the range of the JAVA double type, whose largest positive

finite value is 1.8E308, and whose smallest positive value is 4.9E-324. In order to solve

this problem, we developed a new JAVA data type BigDouble, whose largest positive

finite value is 1.8E2147483647, and whose smallest positive value is 4.9E-2147483647.
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Chapter 6

Summary and Future Work

6.1 Summary of Research Contributions

In chapter 2, we studied for the first time WDM ring networks employing Optical

Burst Switching. The studied OBS ring network consists of N OBS nodes connected

by optical fibers, and each fiber can support N + 1 wavelength, including one control

wavelength and N burst wavelengths. Each node in the OBS ring network is equipped

with a tunable receiver and a fixed transmitter to access the burst wavelength. The

major traffic loss in the OBS ring network is caused by the receiver collision, which

happens when two or more bursts destined to the same node overlap in time.

We proposed a group of access protocols to solve receiver collisions, and these

access protocols are simple and easy to implement. We also studied the performance

of these access protocols in terms of throughput, packet delay, throughput fairness,

and delay fairness under different network parameters: average packet arrival rate,

maximum burst size, and minimum burst size. Finally, we proposed a new offset

calculation method, which can significantly simplify the access protocol design, and

reduce the packet delay for all access protocols.

In chapter 3, we proposed a burst arrival process described by a 3-state Markov
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process, which is more realistic than the well-known Poisson process. It models

two classes of bursts, short bursts and long bursts, and each class of bursts has an

exponentially distributed burst size. It can be easily extended to have more than two

classes of bursts, where each class of bursts has a Coxian distributed burst size. The

burst arrival process captures the burstiness of the arrival process, which is defined

as the squared coefficient of the variation of the burst inter-arrival time. It can also

be easily extended to capture the auto-correlation of the burst inter-arrival time by

allowing back-to-back bursts.

In chapter 4, we analyzed the edge node in a WDM mesh network with Op-

tical Burst Switching. The studied OBS mesh network consists of OBS nodes in-

terconnected by bi-directional fiber links. An OBS node consists of a non-blocking

space-division switch fabric, with no optical buffers. Each fiber can support W + 1

wavelengths, including one control wavelength and W burst wavelengths. The mes-

sage between a user and the edge node follows the signaling protocols defined in the

JumpStart project.

If an edge OBS node is not equipped with converters, a burst on an incoming

wavelength can only be switched to the same wavelength on each output port, and

bursts arriving to the edge switch on different wavelengths do not interfere with each

other. Consequently, the edge node can be decomposed exactly into W sub-systems,

one per burst wavelength. Each sub-system is modeled as a closed non-product-

form queueing network, which consists of special nodes with orbiting customers. In

the case where all incoming burst wavelength have the same burst arrival process,

the closed queueing network model can be seen as consisting of a single class of

customers. If each incoming burst wavelength has a different burst arrival process,

then the queueing network becomes a multi-class queueing network, where each class

contains exactly one customer corresponding to an incoming burst wavelength. If

an edge OBS node is equipped with converters, the above decomposition of an edge

switch into sub-systems per wavelength is no longer possible, since bursts arriving on

different wavelengths may interfere with each other. However, the edge switch as a

whole can be modeled by a closed queueing network very similar to the one described

above.
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Despite the rich literature in queueing network analysis, this particular queueing

network with orbiting customers has not been analyzed before. We developed algo-

rithms for both the single-class and multi-class queueing networks. The single-class

queueing network is solved using Marie’s method. In the case of no converters, we

got the closed-form solution of the conditional throughputs of the special node with

orbiting customers. The multi-class queueing network is analyzed by decomposition.

Specifically, a multiple-class queueing network is decomposed into a set of two-class

queueing network, and each of them is then solved by Neuse and Chandy’s Heuris-

tic Aggregation Method. We also employed a class aggregation technique to reduce

the complexity of the analysis of a node, and we used the convolution algorithm to

calculate the arrival rate of the aggregate class.

In chapter 5, we studied the OBS edge node with a large number of wavelengths.

We found that as the number of wavelengths increases, the queueing networks with the

same mean burst size, but with different burst size ratio and short burst probability,

tend to have the same performance. We also found that as the number of wavelengths

increases, different classes tend to have the same mean waiting time at the same node.

Based on these observations, we proposed an approximation algorithm for the analysis

of an edge OBS node with a large number of wavelengths.

6.2 Future Work

6.2.1 Performance Analysis of the OBS Ring Networks

In this thesis, we proposed some access protocols for an OBS ring network, and

analyzed their performance by simulation. The next step is to study Quality-of-

Service (QoS) issues. For example, we may introduce different priorities for different

classes of bursts.
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6.2.2 Queueing Analysis of the OBS Edge Node

In this thesis, we described a queueing network model for the edge node, and

proposed some approximation algorithms to solve it. The next step is to obtain the

departure process from the output port of the edge node, which can be used in the

analysis of a queueing network representing of the mesh network.

6.2.3 Queueing Analysis of the OBS Mesh Networks

In this thesis, we proposed the algorithms and queueing models for the edge node

of an OBS mesh network. The next step is to build a queueing model for an OBS

mesh network, and design the approximation algorithm to solve it. For example, the

network can be decomposed into small sub-networks, and the arrival processes of each

sub-networks are the departure processes of the neighbor sub-networks. Each sub-

network is analyzed separately, and the results from the sub-networks are combined

together through an iterative scheme.
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Appendix A

Fairness of Access Protocols

To further explore the nature of fairness of the access protocols described in chap-

ter 2, we show the throughout from node 0 to all other nodes under RR/R, RR/NP,

RR/P and RR/Token with 1.7 Gbps (the throughput from other nodes is very sim-

ilar) in Figures A.1, A.2, A.3, and A.4, respectively. We observe that under RR/R,

the throughput from node 0 to all other nodes is almost identical. The same applies

to RR/Token. We also observe that under RR/NP and RR/P, the throughput is the

highest for bursts destined to node 1, and it then decreases, as the destination of the

burst is further away from node 0. Thus, both RR/NP and RR/P protocol provide

better throughput to nodes closer to the source than to nodes far away. This follows

directly from the operation of RR/NP and RR/P described in section 2.4.3 and 2.4.2.

To further explore the nature of delay fairness, we show the mean packet queueing

delay of each transmit queue in node 0 for all protocols in Figures A.5 to A.9 (the

mean queueing delays of packets originating at other nodes are very similar). In

Figure A.5, regardless of the destination node, the mean packet queueing delays

under RR/R with a 1.7 Gbps average arrival rate are almost identical. Figure A.6

shows the corresponding mean packet queueing delays under RR/NP protocol with

a 1.7 Gbps average arrival rate. We observe that the mean queueing delay is the

highest for packets destined to node 1 (the node immediately downstream from the
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Figure A.1: Throughput from node 0 to other nodes, RR/R, 1.7 Gbps
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Figure A.2: Throughput from node 0 to other nodes, RR/NP, 1.7 Gbps
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Figure A.3: Throughput from node 0 to other nodes, RR/P, 1.7 Gbps
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Figure A.4: Throughput from node 0 to other nodes, RR/Token, 1.7 Gbps
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Figure A.5: Mean packet queueing delays in transmit queues in node 0, RR/R, 1.7
Gbps

source node 0), and it decreases as the destination of the packet is further away from

node 0. Thus, the RR/NP protocol provides better delay access to wavelengths of

nodes far away than to wavelengths of nodes close to the source of a packet. This

behavior follows directly from the operation of the RR/NP protocol described in

section 2.4.3. Figures A.7 and A.8 show the corresponding mean packet queueing

delays under RR/P with 0.8 and 1.7 Gbps average arrival rates, respectively. We

observe that the increasing and decreasing patterns in these two figures are not same.

That is, RR/P does not always provide the best or worst delay access to a specific

node. We also observe that in Figure A.8 the delays are not monotonically increasing

with the distance of a node from node 0. Our simulations show that RR/Token does

not always provide the best or worst delay access to a specific node, either. The mean

packet queueing delay under RR/Token with a 1.7 Gbps average arrival rate is shown

in Figure A.9 .
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Appendix B

c2(A) and c2(B) of the Burst Arrival

Process

In this appendix, we show how the c2(A) and c2(B) of the burst arrival process

change with γ, φs, φl, and ps. Figure B.1 shows c2(A) as a function of γ and φl. The

plot were obtained by setting φs = 1 and ps = 0.8. We observe that when γ is very

small, c2(A) is equal to 1 for all φl. This is because when γ is small enough, the burst

arrival process becomes a Poisson process with a rate of γ. We also observe that

with a fixed φl, c2(A) first decreases and then increases, as we increase γ. Finally, we

observe that the larger the difference between φs and φl, the larger the c2(A).

Figure B.2 shows c2(B) as a function of γ and φl. The plot were obtained by

setting φs = 1 and ps = 0.8. We observe that c2(B) is independent of γ. We also

observe that the larger the difference between φs and φl, the larger the c2(B). Finally,

we observe that c2(B) is equal to c2(A) shown in Figure B.1 when γ is very large.

This is because when γ is large enough, the idle state becomes negligible so that

the distribution of the burst interarrival times becomes the distribution of the burst

durations.

Figures B.3 and B.4 show c2(A) and c2(B), respectively, as a function of ps and
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φl, with φs = 1 and γ = 0.1. We observe that the larger the ps, the larger the c2(A)

and c2(B).
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