
ABSTRACT

JANA, KALIDAS. Canonical Correlations and Instrument Selection in Econometrics. (Un-

der the direction of Alastair R. Hall.)

This dissertation relates to three recent methods of instrument selection in econometrics,

namely, the Canonical Correlations Information Criterion (CCIC), the Relevant Moments

Selection Criterion (RMSC) and the approximate Mean Square Error Criterion (MSE).

Usual canonical correlations measure the degree of association between two random vectors

and provide the basis for construction of the CCIC. A new kind of canonical correlations

called Long Run Canonical Correlations (LRCC) has recently emerged in econometrics

and provides the basis for construction of the RMSC. Although the concept of LRCC has

emerged in the literature, methods of their estimation and inference have not been de-

veloped. Developing these methods constitutes the first chapter of the dissertation. In

addition, this chapter illustrates the usefulness of LRCC beyond their usefulness in rele-

vant moments selection for GMM models in dynamic nonlinear settings. In particular, it

demonstrates how LRCC can be used to develop econometric tests that play a role in (i)

structural stability testing, and (ii) exogeneity testing of regressors in time series models

where the regressors are nonstationary.

Although the properties of each of the above three methods of instrument selection

have been explored by their proponents, there have been no comparative studies of these

methods to date. The second chapter of this dissertation fills that gap.

The final and third chapter extends the statistical theory of the CCIC by considering

the case where the number of instruments tends to infinity at an appropriate rate as the

sample size tends to infinity. The importance of this extension stems from the fact that

this can lead to a further gain in efficiency of the estimator by systematically capturing all

relevant instruments from the growing candidate set.
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Chapter 1

Introduction

Ordinary Least Squares (OLS) estimation yields inconsistent estimators of parameters of

linear regression models where regressors are correlated with errors of the model. In such

models a popular method for obtaining consistent estimators is application of the Instru-

mental Variables (IV) method. To implement the IV method in practice, the researcher

must choose a set of instruments from a candidate set. Such choice has been informal

at best and fails to satisfy many of the now recognized desirable properties of instrument

selection. Recently, a number of instrument selection criteria has been proposed in the

literature to help guide a practitioner in this regard.

This dissertation relates to three among these proposed criteria, namely, the Canonical

Correlations Information Criterion (CCIC) of Hall and Peixe (2003), the Relevant Moments

Selection Criterion (RMSC) of Hall and Inoue (2003) and the approximate Mean Square

Error Criterion (MSE) of Donald and Newey (2001).

As the name suggests, at the heart of the Canonical Correlations Information Criterion

(CCIC) are canonical correlations. In the section below, we present a formal description of

these correlations.
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1.1 Canonical Correlations

The standardized covariance, Cov(xt,zt)√
V ar(xt)

√
(V ar(zt)

, known as the simple correlation coefficient

proposed by Galton (1888) measures the degree of linear dependence between two random

scalars xt and zt. The multiple correlation coefficient is a generalization of this idea and

measures the degree of linear association between a random scalar xt and a random vector

zt. Canonical correlations proposed by Hotelling (1935, 1936) generalize this notion even

further to measure the degree of linear dependence between two random vectors.

More specifically, the multiple correlation coefficient chooses a weight vector α such that

the correlation between the scalar xt and the linear combination α′zt,
Cov(xt,α′zt)√

V ar(xt)
√

(V ar(α′zt)
,

is maximum. Canonical correlations generalize this idea one step further by choosing weight

vectors α and β such that the correlations between the linear combinations α′xt and β′zt,

Cov(α′xt,β′zt)√
V ar(α′xt)

√
(V ar(β′zt)

are maximum.

To elaborate the notions of canonical correlations a little further, let

vt =




xt
p×1

zt
q×1


 ∼ N(0, Σv), q ≥ p, Σv =




Extx
′
t Extz

′
t

Eztx
′
t Eztz

′
t


 =




Σxx Σxz

Σzx Σzz


 .

Then define a pair of variables: ζ1 = α′1xt, ω1 = β′1zt such that ρ1 = Max
α1,β1

Cov(ζ1, ω1)

subject to V ar(ζ1) = V ar(ω1) = 1, that is, ρ1 = Max
α1,β1

Cov(α′1xt, β′1zt) subject to

V ar(α′1xt) = V ar(β′1zt) = 1.

Now find another pair of variables: ζ2 = α′2xt, ω2 = β′2zt, whose elements are uncorre-

lated with the corresponding elements of the first pair, such that ρ2 = Max
α2,β2

Cov(ζ2, ω2)

subject to Cov(ζ1, ζ2) = Cov(ω1, ω2) = Cov(ζ1, ω2) = Cov(ζ2, ω1) = 0, and V ar(ζ2) =

V ar(ω2) = 1, that is, ρ2 = Max
α2,β2

Cov(α′2xt, β′2zt) subject to Cov(α′1xt, α
′
2xt)

= Cov(β′1zt, β
′
2zt) = Cov(α′1xt, β

′
2zt) = Cov(α′2xt, β

′
1zt) = 0, and V ar(α′2xt) = V ar(β′2zt) =

1, and so on. Thus, it is possible to decompose random vectors xt and zt into mutually inde-

pendent linear combinations of their elements displaying pairwise maximal correlations such

that the quantities ρi = Cov(α′ixt, β′izt)√
V ar(α′ixt)

√
V ar(β′izt)

, i = 1, ..., p, are maximized subject to the re-

2



strictions Cov(α′ixt, α
′
jxt) = Cov(β′izt, β

′
jzt) = Cov(α′ixt, β

′
jzt) = 0 ∀ i 6= j, and the normal-

izing conditions V ar(α′ixt) = V ar(β′izt) = 1, i = 1, ..., p. The pairs (α′ixt, β
′
izt), i = 1, ..., p

are called canonical variables and the correlations ρi, i = 1, ..., p, are called canonical cor-

relations. It turns out that the canonical correlations can be obtained as square roots

of the ordered solutions of the generalized eigenvalue problem, that is, as square roots of

the ordered eigenvalues of the determinantal equation |ΣxzΣ−1
zz Σzx − λΣxx| = 0, that is,

ρi =
√

λi, for λ1 ≥ λ2 ≥, ...,≥ λp. Canonical correlations are widely used in multivari-

ate statistics [Anderson (1984), ch.12; Dhrymes (1970), Ch. 2]. One of their principal

applications is in testing independence of random vectors.

Early use of canonical correlations in econometrics traces back to Sargan (1958). He

demonstrates that the asymptotic variance of the instrumental variables (IV) estimators

can be written as a function of the population canonical correlations between regressors

and instruments.

Recently, in the literature of Generalized Method of Moments (GMM) estimation (Hansen,

1982), canonical correlations have emerged to provide a natural metric for the purpose of

moment selection (Hall and Inoue, 2003). The latter has introduced the concept of long

run canonical correlations (LRCC).

To understand how canonical correlations arise in moment selection, we must first briefly

summarize the recent literature on moment selection, to which we now turn.

1.2 Canonical Correlations and Moment Selection

In many applications of interest where GMM estimation is appropriate, the underlying

economic/statistical model implies a candidate set of population moment conditions. In

deciding which elements of this set to choose for estimation, it has been a standard practice

to use the overidentifying restrictions tests. However, such practice suffers from repeated

testing problem, namely, the type I error of a given test in a sequence of tests will differ

3



from the significance level of the same test performed in isolation. This renders inference

suspect.

For inference about the parameters of the model based on “conventional” asymptotic

theory to hold, it is desirable for selected population moment conditions to satisfy four

conditions which Hall and Peixe (2003) refer to as (i) the identification condition: they be

satisfied at only one value in the parameter space; (ii) the orthogonality condition: this

value be the “true” parameter value, θ0 say, implying that the selected population moment

conditions represent valid information; (iii) the efficiency condition: they minimize the

asymptotic variance of the estimator; and (iv) the non-redundancy condition: none of

the selected population moment conditions is redundant in the sense that the asymptotic

variance of the estimator increases if any element of the selected vector is excluded. All

these conditions impact directly on the asymptotic distribution theory of the estimator, θ̂T

say, where T is the sample size, or on the adequacy of this theory as an approximation to

the finite sample behavior of the estimator.

In practice, it is impossible to verify a priori which elements of the candidate set

satisfy the four conditions enumerated above for any given data set. Instead, it is an

empirical matter. Hall and Peixe (2003) note that once the selection process becomes data

dependent, a fifth condition becomes important, a condition that the selection process must

not contaminate the asymptotic distribution theory of the estimator. So they introduce an

inference condition which requires that the asymptotic distribution of the estimator be the

same as if the selected moment conditions had been picked a priori. As already noted

above, the standard practice of applying overidentifying restrictions tests to choose from a

candidate set of moment conditions fails to satisfy this inference condition.

To remedy this problem, Andrews (1999) proposes an information criterion approach

that does not require repeated tests. He modifies the overidentifying restrictions test by

adding to the overidentifying restrictions test a bonus term that is a function of the number

of overidentifying restrictions. He provides a set of conditions under which his information

4



criterion satisfies the inference condition. But while his procedure satisfies the inference

condition, it suffers from a weakness. In terms of the other four conditions described above,

it can be recognized that Andrews’ (1999) method selects moment conditions on the basis of

the orthogonality condition because the latter is the null hypothesis of the overidentifying

restrictions test. But while this method weeds out any invalid moment conditions in the

candidate set, it makes no distinction between redundant and non-redundant moment con-

ditions. This can have a serious consequence. As demonstrated by Hall and Peixe (2003),

the use of this method can lead to the inclusion of redundant moment conditions which

in turn can cause asymptotic distribution theory to provide a poor approximation to the

finite sample behavior of the estimator.

To rectify the above problem, Hall and Peixe (2003) propose a method of moments

selection based on the combination of the efficiency and non-redundancy conditions. The

authors refer to this combination as the relevance condition. They focus exclusively on

the particular class of GMM models in which the population moment condition takes the

form E[ztut(θ0)] = 0 where ut(.) is a scalar, possibly nonlinear function of a set of dynamic

random variables, zt is a vector of instruments and the asymptotic variance of the GMM

estimator is given by σ2
0{E[(∂ut(θ0)/∂θ)z′t]E[ztz

′
t]
−1E[zt(∂ut(θ0)/∂θ)′]}−1. Because in most

cases of interest, ut(θ0) is implied by the underlying economic model, the problem of moment

selection reduces to one of choosing a vector of instruments zt from a candidate set, Z, say.

Developing a method for selecting instruments based on relevance requires a suitable

metric for relevance. Hall and Peixe (2003) show that the population canonical correlations

between ∂ut(θ0)/∂θ and zt provide such a metric. This leads them to propose a canonical

correlations information criterion (CCIC) which is the sum of two parts: (i) a function of

the sample canonical correlations between ∂ut(θ̃T )/∂θ and zt, where θ̃T is a preliminary

estimator, and (ii) a penalty term which is a function of the number of overidentifying

restrictions. The selected instrument vector is then the choice which minimizes this crite-

rion. They provide regularity conditions under which this procedure satisfies the inference

5



condition stated above.

Just as Andrews’ (1999) method focuses on orthogonality and ignores relevance, Hall

and Peixe’s (2003) method focuses on relevance and ignores orthogonality. Because both

orthogonality and relevance are desirable properties of the selected instruments, intuition

suggests that a combination of the two methods should have the strength of both without

the weaknesses of either. Hall and Peixe (2003) verify this to be the case. While Hall

and Peixe’s results indicate that the sequence is inconsequential in terms of asymptotic

properties, their simulation results suggest that it is preferable to select instruments first

based on relevance and then based on orthogonality.

The relevance of the CCIC is limited to a particular class of GMM models as described

above. Hall and Inoue (2003) generalize the CCIC for the relevant instruments selection in

this special class of GMM models to the Relevant Moments Selection Criterion (RMSC) for

the entire class of GMM models in nonlinear dynamic setting. From this work a concept

of a new kind of canonical correlations has emerged. These canonical correlations have

been called long run canonical correlations (LRCC). Hall and Inoue (2003) show that the

asymptotic variance of the GMM estimator can be written in terms of the population

LRCC between population moment conditions used in estimation and the unknown true

score vector associated with the data. They exploit this result for the purpose of moment

selection. Hall and Inoue (2003) show that the log of the determinant of the asymptotic

variance matrix can be decomposed into two parts of which one depends on the LRCC and

the other equals the log of the determinant of the information matrix. This decomposition

of the asymptotic variance provides the basis for efficiency comparisons based on LRCC

without actually calculating the individual canonical correlations.

6



1.3 Contributions of this Dissertation

Although the concept of LRCC has originated in Hall and Inoue (2003), methods of their

estimation and inference have not been developed. Developing these methods constitutes

the first chapter of the dissertation. In addition, this chapter shows that the usefulness of

LRCC extends beyond moment selection. In particular, it demonstrates how LRCC can be

used to develop econometric tests that play a role in (i) structural stability testing, and (ii)

exogeneity testing of regressors in time series models where the regressors are nonstationary.

Hall and Peixe (2003), Hall and Inoue (2003), and Donald and Newey (2001) explore the

properties of their proposed methods. However, to date, there have been no comparative

studies of these methods. The second chapter of this dissertation fills that gap. To this end,

it (i) establishes a relation between contemporaneous and long run canonical correlations

in a linear simultaneous equations model, (ii) shows an analytical connection among the

CCIC, the RMSC and the MSE in the context of a simple linear IV model, and (iii) assesses

the relative performance of these three methods via a simulation study that investigates

the finite sample behavior of the post selection estimator of this simple linear IV model

by comparing median bias of the post selection estimator and coverage probability of 90%

confidence interval under the three criteria.

The final and third chapter extends the statistical theory of the CCIC by considering

the case in which the candidate set of instruments increases with the sample size. The

importance of this extension stems from the fact that it can lead to a further gain in

efficiency of the estimator by systematically capturing all relevant instruments from the

growing candidate set.
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Chapter 2

Long Run Canonical Correlations:

Estimation, Inference and

Usefulness in Econometric

Analysis of Time Series

2.1 Introduction

In this chapter, we first present Hall and Inoue’s (2003) definition of LRCC. Then we

formally derive LRCC and present a lemma that is at the heart of Hall and Inoue’s (2003)

definition of redundancy of moment conditions. Next, we discuss methods of estimating

LRCC. To this end, we first establish a link between the concept of LRCC and that of

canonical coherence, which has previously been developed in the frequency domain analysis

of time series. Finally, we close this chapter by illustrating the usefulness of LRCC in

econometric analysis of time series, beyond their usefulness in moment selection.

8



2.2 Long Run Canonical Correlations

The short run, that is, contemporaneous canonical correlations between two random vectors

xt and zt are correlations between certain linear combinations of xt and zt which are chosen

to satisfy certain orthogonality and normalization constraints.

Hall and Inoue (2003) extend the concept of short run canonical correlations to capture

the association between the standardized sums XT = T−1/2
∑T

t=1 xt and ZT = T−1/2
∑T

t=1 zt.

They refer to the resulting statistics as the “long run” canonical correlations between xt

and zt. We present below their definition of LRCC.

Definition 2.2.1 Let xt and zt be p× 1 and q × 1, respectively, where q ≥ p. Suppose that

T−1/2
∑T

t=1 vt
D→ N(0, Σv) where vt = (x

′
t, z

′
t)
′ and Σv = limT→∞V ar[T−1/2

∑T
t=1 vt] is a

finite positive definite matrix. Partition Σv as follows:

Σv =




Σxx Σxz

Σzx Σzz




using the obvious notation. The population long run canonical correlations between xt and zt

are denoted by {ρi; ı = 1, 2, . . . , p}, where by convention ρi ≥ 0 for i = 1, ..., p, and ρi ≥ ρi+1

for i = 1, 2, . . . , p − 1, and have the following properties: (i) {ρ2
i } are the solutions to the

determinantal equation |ΣxzΣ−1
zz Σzx − ρ2Σxx| = 0; (ii) {ρ2

i } are the p largest solutions to

the determinantal equation |ΣzxΣ−1
xx Σxz − ρ2Σzz| = 0; and (iii) ρi = α

′
iΣxzβi where αi and

βi satisfy (ΣxzΣ−1
zz Σzx − ρ2Σxx)αi = 0 and (ΣzxΣ−1

xx Σxz − ρ2Σzz)βi = 0 for i = 1, 2, . . . , p.

1

It can be recognized that the only difference between the short run canonical correla-

tions and their long run counterpart lies in the form of the variance-covariance matrices

in the determinantal equation. Specifically, the short run canonical correlations are calcu-

lated using the contemporaneous variance-covariance matrices while the long run canonical

1Recall that the linear combinations are chosen so as to normalize the variances to one, that is, α
′
iΣxxαi =

β
′
iΣzzβi = 1.
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correlations are calculated using the long run variance-covariance matrices.

Definition of long run canonical correlations is predicated on the existence of long run

variance-covariance matrices. Following Andrews (1991), we present a lemma that guar-

antees the existence of such matrices. However, because the lemma uses the concept of

α-mixing sequence, we define an α-mixing sequence first.

Definition 2.2.2 Suppose {vt} is a sequence of vectors defined on a common probability

space (Ω,F , P ). Denote for j ≥ 0,

α(j) = suptsupA∈Ft
−∞,B∈F∞t+j

|P (A ∩B)− P (A)P (B)|

where F t−∞ is the minimal σ-field generated by vt, vt−1, . . . and F∞t+j is the minimal σ-

field generated by vt+j , vt+j+1, . . . . Then {vt} is called an α-mixing sequence with mixing

coefficient α(j) if limj→∞α(j) = 0.

Thus, in essence, α-mixing is a notion of asymptotic independence. The mixing coefficient

α(j) measures the memory of the process. To be more precise, it measures how much

dependence exists between events separated by at least j time periods. With this preamble

on α-mixing, we are now ready for our desired lemma.

Lemma 2.2.1 Suppose {vt} is a mean zero, fourth order stationary α-mixing sequence of

random vectors. If supt≥1E ‖ vt ‖4ν< ∞ and
∑∞

j=1 j2α(j)(ν−1)/ν < ∞ for some ν > 1,

then
∑∞

j=0 supt≥1E ‖ vtv
′
t+j ‖< ∞ and thus the long run variance-covariance matrix of

{vt} exists and is uniformly bounded.

The condition on the mixing numbers in Lemma 2.2.1 is satisfied if they are of size −3ν/(ν−
1), i.e., if α(j) = O(j−ε−3ν)/(ν−1)) for some ε > 02.

In the next section, we formally derive long run canonical correlations.

Derivation of Long Run Canonical Correlations:

The derivation of the long run canonical correlations is similar to that of the contempo-

raneous canonical correlations [Rao (1973), p. 583]. The only difference is that here one
2{vt} is an α-mixing sequence of size −c0 if α(j) = O(j−c) for some c > c0.
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works with the vectors of standardized sums, XT and ZT , instead of the original vectors xt

and zt. Thus, the long run canonical correlations and the long run canonical variates are

obtained as solutions to the following maximization problem:

Max
α, β

Cov(α′XT , β′ZT )√
V ar(α′XT )

√
V ar(β′ZT )

= Max
α, β

α′Σxzβ√
α′Σxxα

√
β′Σzzβ

In words, the objective is to choose p and q dimensional vectors α and β, respectively, such

that the correlation between the linear combinations α′XT and β′ZT is maximum. The

maximand clearly is homogeneous of degree zero in α and β. Thus if α0 and β0 are a solution

to the above problem, then so are c1α0 and c2β0 for arbitrary c1 and c2. To eliminate this

scale indeterminacy and achieve a unique solution, one imposes the normalizing conditions:

V ar(α′XT ) = α′Σxxα = 1,

V ar(β′ZT ) = β′Σzzβ = 1.

Then the problem is to maximize α′Σxzβ subject to α′Σxxα = 1 and β′Σzzβ = 1. Hence

the Lagrangean is:

L = α′Σxzβ − λ1

2
(α′Σxxα− 1)− λ2

2
(β′Σzzβ − 1)

where λ1 and λ2 are Lagrangean multipliers. Differentiating the Lagrangean with respect

to α and β and setting them equal to zero yields

Σxzβ − λ1Σxxα = 0, (2.2.1)

Σzxα− λ2Σzzβ = 0. (2.2.2)

Premultiplying (2.2.1) by α′ yields α′Σxzβ = λ1 and premultiplying (2.2.2) by β′ yields

β′Σzxα = λ2. Again, β′Σzxα is a scalar and hence equal to its transpose. Thus β′Σzxα =

α′Σxzβ = λ2. Therefore, λ1 = λ2 = ρ, say. Premultiplying (2.2.1) by ΣzxΣ−1
xx and by

adding it to to ρ times (2.2.2), gives

ΣzxΣ−1
xx Σxzβ − ρΣzxα + ρΣzxα− ρ2Σzzβ = 0

11



or,

(ΣzxΣ−1
xx Σxz − ρ2Σzz)β = 0. (2.2.3)

Thus ρ2 is an eigenvalue and β is the corresponding eigenvector obtained from the deter-

minantal equation

|ΣzxΣ−1
xx Σxz − ρ2Σzz| = 0. (2.2.4)

Let ρ2
1, . . . , ρ

2
q be the eigenvalues and β1, . . . , βq the corresponding eigenvectors. Further, let

B = (β1, . . . , βq). Then by the theorem of simultaneous diagonalization of square matrices,

B′ΣzzB = I or, Σzz = B′−1B−1;

B′ΣzxΣ−1
xx ΣxzB = R2 or, ΣzxΣ−1

xx Σxz = B′−1R2B
−1,

(2.2.5)

where R2 is the diagonal matrix of eigenvalues ρ2
1, . . . , ρ

2
q . Similarly, we obtain the deter-

minantal equation

|ΣxzΣ−1
zz Σzx − ρ2Σxx| = 0 (2.2.6)

with eigenvalues ρ2
1, . . . , ρ

2
p and corresponding eigenvectors α1, . . . , αp. The non-zero eigen-

values of (2.2.4) and (2.2.6) are the same. The multiplicity of zero roots is however different

in the two cases. If A and R1 correspond to B and R2 in (2.2.5), then

A′ΣxxA = I or, Σxx = A′−1A−1;

A′ΣxzΣ−1
zz ΣzxA = R1 or, ΣxzΣ−1

zz Σzx = A′−1R1A
−1.

(2.2.7)

The non-zero roots ρ1 ≥ ρ2 ≥, . . . are the long run canonical correlations and the linear

combinations

α′1XT , . . . , α′pXT and β′1ZT , . . . , β′qZT

are the long run canonical variates. ¥

Next, collecting above results we present a lemma that is at the heart of Hall and Inoue’s

(2003) construction of RMSC.

Lemma 2.2.2 Let αi be the ith column of A and βi be the ith column of B, where A and
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B are, respectively, matrices of generalized eigenvectors corresponding to the determinantal

equations (2.2.6) and (2.2.4) above. Then the following identities hold:

Σxx = A
′−1

A−1,

ΣxzΣ−1
zz Σzx = A

′−1
R2A−1

where R = diag(ρ1, ρ2, . . . , ρp).

Proof of Lemma 2.2.2 We begin by noting that the matrices A and B reduce the dis-

persion matrix of the transformed variables (A′XT , B′ZT ) to the simpler form:




Ip Rp×q

R′
p×q Iq




where Ip and Iq are unit matrices of order p and q, respectively, and Rp×q is a p× q matrix

with first k = rank(Σxz) diagonal elements as ρ1, . . . , ρk and the rest of the elements zero.

That the above simplification holds can be seen as follows. We know

V ar




A′XT

B′ZT


 =




A′ΣxxA A′ΣxzB

B′ΣxzA B′ΣzzB


 .

Now the terms on the main diagonal are, respectively, A′ΣxxA = Ip from (2.2.7) and

B′ΣzzB = Iq from (2.2.5). To determine the off-diagonal terms, consider the i-th equation

of (2.2.1):

Σxzβi = ρiΣxxαi.

Premultiplying by α′i, we have

α′iΣxzβi = ρiα
′
iΣxxαi = ρi.

Premultiplying by α′j , we have

α′jΣxzβi = ρiα
′
jΣxxαi = 0.
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Therefore,

A
(p×p)

′ Σxz
(p×q)

B
(q×q)

= (α1, α2, . . . , αp)′ Σxz (β1, β2, . . . , βq)

=




α′1

α′2
...

α′p




Σxz (β1, β2, . . . , βq)

=




α′1Σxzβ1 α′1Σxzβ2 α′1Σxzβ3 · · · α′1Σxzβk α′1Σxzβk+1 · · · α′1Σxzβq

α′2Σxzβ1 α′2Σxzβ2 α′2Σxzβ3 · · · α′2Σxzβk α′2Σxzβk+1 · · · α′2Σxzβq

α′3Σxzβ1 α′3Σxzβ2 α′3Σxzβ3 · · · α′3Σxzβk α′3Σxzβk+1 · · · α′3Σxzβq

...
...

...
...

...
...

...
...

α′kΣxzβ1 α′kΣxzβ2 α′kΣxzβ3 · · · α′kΣxzβk α′kΣxzβk+1 · · · α′kΣxzβq

...
...

...
...

...
...

...
...

α′pΣxzβ1 α′pΣxzβ2 α′pΣxzβ3 · · · α′pΣxzβk α′pΣxzβk+1 · · · α′pΣxzβq




=




ρ1 0 0 · · · 0 0 · · · 0

0 ρ2 0 · · · 0 0 · · · 0

0 0 ρ3 · · · 0 0 · · · 0
...

...
...

...
...

...
...

...

0 0 0 · · · ρk 0 · · · 0
...

...
...

...
...

...
...

...

0 0 0 · · · 0 0 · · · 0




= R
(p×q)

(2.2.8)

Hence,

V ar




A′XT

B′ZT


 =




A′ΣxxA A′ΣxzB

B′ΣxzA B′ΣzzB


 =




Ip Rp×q

Rq×p Iq


 .

From A′ΣxxA = I and B′ΣzzB = I, it follows, respectively, that Σxx = A′−1A−1 and
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Σzz = B′−1B−1. Again from A′ΣxzB = R, it follows that Σxz = (A′)−1R(B)−1. Therefore,

we have

ΣxzΣ−1
zz Σzx = (A′)−1 R (B−1)BB′(B−1′R′A−1)

= A′−1 R (B−1B)(B−1B)′R′A−1)

= A′−1RR′A−1 = A′−1R2A−1. ¥

2.3 Estimation of Long Run Canonical Correlations

Because the long run canonical correlations are solutions to a generalized eigenvalue prob-

lem where the determinantal equation involves long run variance-covariance matrices, one

obvious first step in estimating the LRCC is to obtain consistent estimators Σ̂xx, Σ̂zz and

Σ̂xz of the long run variance-covariance matrices Σxx,Σzz and Σxz, then to solve the gen-

eralized eigenvalue problem by replacing the population variance-covariance matrices by

their estimated values. Or, equivalently, as part (iii) of Definition 1 suggests, the LRCC

can be estimated as ρ̂i = α̂
′
iΣ̂xzβ̂i, which is the positive square root of the i-th generalized

eigenvalue, where α̂i and β̂i are the corresponding i-th generalized eigenvectors satisfying

(Σ̂xzΣ̂−1
zz Σ̂zx−ρ2Σ̂xx)α̂i = 0 and (Σ̂zxΣ̂−1

xx Σ̂xz−ρ2Σ̂zz)β̂i = 0 for i = 1, 2, . . . , p, and Σ̂xx, Σ̂zz

and Σ̂xz are consistent estimators, respectively, of Σxx, Σzz and Σxz.

Which ever of the above two alternative methods one adopts, the first step involves

estimation of the long run variance-covariance matrices Σij , (i, j = x, z) which are given by

the sum of variance-covariance matrices at lags s ranging from −∞ to +∞:

Σij =
∞∑

s=−∞
Σij(s).

However, in practice, sample size T is finite. So it is instructive to estimate the sum by

truncating it at a finite lag s = T − 1 since with T observations one can estimate at most

T − 1 autocovariances. Thus one could obtain the estimated long run variance-covariance
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matrices as:

Σ̂ij =
(T−1)∑

s=−(T−1)

Σ̂ij(s),

where

Σ̂ij(s) = T−1
T∑

t=s+1

vtv
′
t−s

are the autocovariance matrices at lag s. Such estimators, however, have two undesirable

features. One is that if true autocovariances at arbitrarily large lags are non-zero, in finite

samples, such estimators need not be consistent. The reason being that the larger is the

autocovariance lag s, the smaller is the number of observations available to estimate them.

The second undesirable feature is that such estimators can fail, in finite samples, to be

positive semidefinite.

In time series models, where the data exhibit heteroscedasticity and autocorrelation

of unknown form, one popular class 3 that overcomes the above mentioned problems and

delivers consistent estimators of the long run variance-covariance matrices is known as

the Heteroscedasticity and Autocorrelation Consistent Covariance (HACC) estimator. The

estimators belonging to this class are called kernel HACC estimators. The kernels, by

assigning appropriately declining weights to autocovariances at distant lags, yield consistent

and positive semidefinite estimators. These estimators take the form

Σ̂ij =
(T−1)∑

s=−(T−1)

k(
s

MT
) Σ̂ij(s).

where k(.) is a “kernel” or “lag window generator” that belongs to the set K given by

K ={k(.) : R 7→ [−1, 1] | k(0) = 1, k(x) = k(−x) ∀x ∈ R,
∫ ∞

−∞
|k(x)| dx < ∞, k(.) is continuous at 0 and at all

but a finite number of other points}.

The conditions k(0) = 1 and k(.) is continuous at 0 ensure that the variance-covariance

matrices estimated at lag zero receive weight equal to one and at lags near zero weights
3(see Andrews, 1991)
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close to one. Finally, MT is a “window” or “bandwidth parameter” that depends on T

and stretches or contracts the window, and hence is also known as a “scale parameter”.

If k(x) = 0 for |x| > 1 and k(x) 6= 0 for some |x| arbitrarily close to 1, then MT is also

referred to as the “lag truncation parameter”, because lags of order s > MT are assigned

weight zero.

Two kernels, among others, that are widely used econometrics and are members of the

above class K, are the following:

Bartlett: kBT (x) =





1− |x| for |x| ≤ 1,

0 for |x| > 1.

Parzen: kPR(x) =





1− 6x2 + 6|x|3 for 0 ≤ |x| ≤ 1/2,

2(1− |x|)3 for 1/2 ≤ |x| ≤ 1,

0 for |x| > 1.

The use of the Bartlett kernel was introduced by Newey and West (1987) and that of

the Parzen kernel was introduced by by Gallant (1987, p. 533). Consistency of Σ̂ij under

these kernels requires the bandwidths go to infinity as a power of the sample size:

MT →∞ as T →∞, and MT = o(T 1/2).

In the next section, we show a connection between LRCC and canonical coherences that

have previously been developed in the frequency domain analysis of time series.

2.4 Link between LRCC and Canonical Coherences

Canonical coherences in the frequency domain are defined similarly as the canonical cor-

relations in the time domain. The only difference is that they are the solutions of the

determinantal equation where the variance-covariance matrices are replaced by their corre-
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sponding spectral- and cross-spectral density matrices. 4

Proposition 2.4.1 In addition to Assumption 1, let xt and zt be covaraince stationary

time series with covariance function that satisfies
∑∞
−∞ |h|γ(h)| = L < ∞. Then canonical

correlations between XT and ZT , that is, LRCC between xt and zt are equal to canonical

coherences between xt and zt at frequency zero.

Proof of Proposition 2.4.1:

We note that Σv = limT→∞ Var
(
XT
ZT

)
= limT→∞




EXT X
′
T EXT Z

′
T

EZT X
′
T EZT Z

′
T


 .

Now,

EXT X
′
T = E




X2
1T X1T X2T · · · X1T XpT

X2T X1T X2
2T · · · X2T XpT

...
...

...
...

XpT X1T XpT X2T · · · X2
pT




.

Again,

EX2
1T = E 1√

T

∑T
t=1 xt1

1√
T

∑T
j=1 xj1 = 1

T

∑T
t=1

∑T
j=1 Ext1xj1

= 1
T

∑T
t=1

∑T
j=1 γx1x1(t− j) =

∑T−1
h=−(T−1)

T−|h|
T γx1x1(h).

Then by Kronecker’s Lemma (Lemma 3.1.4, Fuller, 1996, p. 126),

limT→∞EX2
1T =

∑∞
h=−∞ γx1x1(h).

Now following (4.1.2) of Fuller (1996, p. 144), the spectral density of x1 at frequency ω is:

fx1x1(ω) =
1
2π

∞∑

h=−∞
e−iωhγx1x1(h).

This implies

fx1x1(0) =
1
2π

∞∑

h=−∞
γx1x1(h),

which, in turn, implies
∞∑

h=−∞
γx1x1(h) = 2πfx1x1(0).

4See Hannan (1970) [Theorem 14, p. 299]
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Thus, limT→∞EX2
1T = 2πfx1x1(0), where fx1x1(0) denotes spectral density of x1 at fre-

quency zero.

Similarly,

EX1T X2T = 1
T

∑T
t=1

∑T
j=1 Ext1xj2

= 1
T

∑T
t=1

∑T
j=1 γx1x2(t− j) =

∑T−1
h=−(T−1)

T−|h|
T γx1x2(h)

and by Kronecker’s Lemma,

limT→∞EX1T X2T =
∑∞

h=−∞ γx1x2(h). Then from cross-spectral density at frequency

ω:

fx1x2(ω) =
1
2π

∞∑

h=−∞
e−iωhγx1x2(h)

we have

fx1x2(0) =
1
2π

∞∑

h=−∞
γx1x2(h)

from which it follows that
∞∑

h=−∞
γx1x2(h) = 2πfx1x2(0).

Thus, limT→∞EX1T X2T = 2πfx1x2(0), where fx1x2(0) denotes cross-spectral density of x1

and x2 at frequency zero.

Proceeding in a like manner, we have

lim
T→∞

EXT X
′
T = Σxx = 2π




fx1x1(0) fx1x2(0) · · · fx1xp(0)

fx2x1(0) fx2x2(0) · · · fx2xp(0)
...

...
...

...

fxpx1(0) fxpx2(0) · · · fxpxp(0)




= 2πfxx(0).

Similarly,

lim
T→∞

EXT Z
′
T = Σxz = 2πfxz(0); lim

T→∞
EZT X

′
T = Σzx = 2πfzx(0); and

lim
T→∞

EZT Z
′
T = Σzz = 2πfzz(0).

Thus,

Σv =




Σxx Σxz

Σzx Σzz


 = 2π




fxx(0) fxz(0)

fzx(0) fzz(0)


 = 2πfv(0).
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Therefore, the long run variance-covariance matrices are equal to a constant 2π times the

corresponding spectral and cross-spectral density matrices at frequency zero. Hence the

solutions of the determinantal equation |ΣxzΣ−1
zz Σzx − ρ2 Σxx| = 0 are identical to those of

the determinantal equation |fxz(0)f−1
zz (0)fzx(0)−ρ2fxx(0)| = 0, that is, long run canonical

correlations are equal to canonical coherences at frequency zero. ¥

2.5 Usefulness of LRCC in Econometric Analysis of Time

Series

Hall and Inoue (2003) show how LRCC provide a metric for the purpose of relevant moments

selection in Generalized Method of Moments (GMM) models (Hansen, 1982) in dynamic

nonlinear settings. Usefulness of this metric derives from the fact that moments selected

on the basis of this metric yields the most efficient GMM estimator. The objective of this

section is to illustrate further usefulness of LRCC in econometric analysis of time series.

2.5.1 Structural Stability Testing

One intriguing area of econometric testing is structural stability testing. Andrews and

Fair (1988), Ghysels and Hall (1990a, b), Hall and Sen (1999), among others, develop such

tests. These tests assume that subsamples on either side of the break are asymptotically

independent. Here we show how this can be expressed as a hypothesis about the LRCC

between the subsamples.

As an illustrative example, suppose that vt is a k × 1 vector of random variables and

that we are interested in testing the null hypothesis

H0 : E[vt] = µt = µ, ∀t
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against the alternative hypothesis

H1 : E[vt] = µ1, t ≤ [0.5T ]

= µ2, t > [0.5T ]

where [0.5T ] denotes the integer part of 0.5T . Thus we are interested in testing constancy

of the mean throughout the sample against a break midway through the sample. This is

an example of structural stability testing where the break point is fixed.

Following Andrews and Fair (1988) this can be tested using the Wald statisitc

WT = T (µ̂1,T − µ̂2,T )′
(

Ω̂1,T

[0.5T ]/T
+

Ω̂2,T

1− [0.5T ]/T

)−1

(µ̂1,T − µ̂2,T ) (2.5.1)

where

µ̂1,T =
1

[0.5T ]

[0.5T ]∑

t=1

vt,

µ̂2,T =
1

[0.5T ]

T∑

t=[0.5T ]+1

vt,

Ω̂1,T = Γ̂1,0 +
T−1∑

i=1

k(
i

T
){Γ̂1,i + Γ̂

′
1,i},

Ω̂2,T = Γ̂2,0 +
T−1∑

i=1

k(
i

T
){Γ̂2,i + Γ̂

′
2,i},

Γ̂1,i =
1

[0.5T ]

[0.5T ]∑

t=i+1

(vt − µ̂1,T )(vt−i − µ̂1,T )
′
,

Γ̂2,i =
1

[0.5T ]

T∑

t=[0.5T ]++i+1

(vt − µ̂2,T )(vt−i − µ̂2,T )
′
,

and k(.) is a kernel giving desired weights to the autocovariance matrices Γ̂1,i, Γ̂
′
1,i, Γ̂2,i and

Γ̂
′
2,i.

Andrews and Fair (1988) show that under H0 : E[vt] = µt = µ,∀t the Wald statistic

WT
D→ χ2

k. Their conditions imply that



[0.5T ]−1/2 ∑[0.5T ]
t=1 vt

[0.5T ]−1/2 ∑T
t=[0.5T ]+1 vt


 ≡




V1,T

V2,T


 D−→ N







µ1

µ2


 ,




Ω11
0.5 0

0 Ω22
0.5





 (2.5.2)
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which, in turn, implies that

lim
T→∞

Cov(V1,T , V2,T ) = 0. (2.5.3)

To see the above result, we modify the definition of LRCC to conform it to the structural

stability testing framework. Let

XT (π)
p×1

= T−1/2
∑[πT ]

t=1 xt,

ZT (π)
q×1

= T−1/2
∑T

t=[πT ]+1 zt,

and m = min(p, q). Further, let

VT (π) =




XT (π)

ZT (π)


 ,

and

Σv(π) = limT→∞ Var(VT (π)) = limT→∞




Σxx(π) Σxz(π)

Σzx(π) Σzz(π)


 .

Then LRCC’s for fraction π, denoted ρi(π), i = 1, 2, 3, . . . , m, where by convention ρi(π) >

0, i = 1, 2, 3, . . . , m, and ρi(π) ≥ ρi+1(π) for i = 1, 2, 3, . . . , m − 1, are such that {ρ2
i (π)}

are the m largest solutions to |Σxz(π)Σ−1
zz (π)Σzx(π)− ρ2(π)Σxx(π)| = 0.

Next, we show that the LRCC’s must be zero if T−1/2
∑[πT ]

t=1 xt satisfies FCLT. To

establish this result, set xt = zt and assume that XT (π) ⇒ Σ1/2
xx Bp(π), where (a) Σ1/2

xx Σ1/2
xx =

Σxx(1), and (b) Bp(π) is a p-vector Brownian motion. Then, by the property of the vector

Brownian motion [Hamilton (1994), p. 544], it follows that

Σzx(π) = lim
T→∞

Cov[XT (π), XT (1)−XT (π)]

= O
p×p

,

implying that ρ2
i (π) = 0 ∀i.

Thus, using the definition of LRCC, it can be seen that (2.5.3) is equivalent to the re-

striction that ρi = 0 for i = 1, 2, · · · , k, where {ρi}k
i=1 are the LRCC between {vt}[0.5T ]

t=1 and
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{vt}T
t=[0.5T ]+1. This suggests that asymptotic independence of subsamples can be tested by

conducting a test of zero LRCC between subsamples. This, in turn, by virtue of Propo-

sition 2.4.1, is equivalent to a test of zero canonical coherence at frequency zero between

subsamples.

To simplify matters, in what follows, we set k = 1 and so vt is now a scalar random

variable. This reduces canonical coherences at frequency zero between two subsamples of

random vectors to a simple coherence at frequency zero between two subsamples {vt}[0.5T ]
t=1

and {vt}T
t=[0.5T ]+1 of scalar random variables:

ρ12(0) =
f12(0)√

f11(0)
√

f22(0)

where ρ12(.) denotes coherence between subsamples {vt}[0.5T ]
t=1 and {vt}T

t=[0.5T ]+1, f12(.) de-

notes cross-spectral density between subsamples {vt}[0.5T ]
t=1 and {vt}T

t=[0.5T ]+1, f11(.) denotes

spectral density of subsample {vt}[0.5T ]
t=1 , and f22(.) denotes spectral density of subsample

{vt}T
t=[0.5T ]+1.

The population coherence ρ12(.) can be consistently estimated by the sample coherence:

ρ̂12(0) =
f̂12(0)√

f̂11(0)
√

f̂22(0)

where the hats denote consistent estimates of the corresponding population quantities.

Exploiting conditions of Theorem 11 of Hannan [1970, pp. 288-289] and Proposition A.1.

of Hall and Inoue (2003), it follows from Hannan [1970, p. 290] that, under H0 : ρ12(0) = 0,

ν

2
ρ̂12(0)2 D→ χ2

1

where ν, given in Hannan [1970, p. 281 and Table 1, p. 282], is the equivalent number of

degrees of freedom of relevant spectral and cross-spectral density estimators. We call these

tests Hannan tests.

We also consider LR test inspired by Hannan [1970, pp. 299-306]. Under H0 : ρ12(0) =

0,

−ν

2
ln[1− ρ̂12(0)2] D→ χ2

1.
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The formula for the equivalent degrees of freedom, ν, for the Bartlett kernel is: ν = 3T/MT ,

and for the Parzen kernel is: ν = 3.709T/MT .

In the following section, we conduct a simulation study to explore the finite sample

performance of the three statistics: the Wald statistic WT for structural stability testing;

Hannan statistic ν
2 ρ̂12(0)2 and LR statistic −ν

2 ln[1−ρ̂12(0)2] for pre-testing the assumption

of the Wald structural stability testing, that is, for pre-testing the assumption of asymptotic

independence of subsamples.

2.5.2 Simulation Design for Hannan and LR Tests of Persistence and

Wald Test of Structural Stability

In this section, we simulate data from a time series model following AR(1) scheme:

vt = θvt−1 + et, t = 1, 2, · · · , T (2.5.4)

where et ∼ N(0, 1) and the autoregressive parameter θ is generated as in Phillips (1987) by

θ = exp(cT /T ), (−∞ < cT < ∞) (2.5.5)

where T is the sample size and cT is a noncentrality parameter. The noncentrallity param-

eter cT measures deviations of the model from the unit root process. When cT = 0, the

model is unit root. When cT < 0 and T is finite, 0 < θ < 1 and the model is stationary

AR(1). When cT > 0 and T is finite, θ > 1 and the model is explosive. When cT → 0 and

so θ → 1 as T →∞, the model is described as having a root that is local to unity.

We are interested in exploring the effectiveness of the Hannan and LR tests in screening

out cases where the data are too persistent to allow asymptotic independence of subsamples,

thereby rendering the Wald test of structural stability invalid. With this objective in mind,

we choose values of noncentrality parameter cT that generate the corresponding persistence

parameter θ = 0.10, 0.25, 0.50, 0.75, 0.80, 0.85, 0.90, 0.95 and 1.00. We set the sample

size T = 50, 100, 250, 500 and 1000. We use two kernels: Bartlett and Parzen. For the
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Bartlett kernel, the values of the bandwidth chosen corresponding to the above values of T

are, respectively, 3, 4, 6, 7 and 9. For the Parzen kernel, the corresponding values of the

bandwidth chosen are, respectively, 4, 6, 8, 10 and 12.

We also conduct the above tests for the above five values of T for the near-integrated

case. To this end, we set the values of the non-centrality parameter: cT = -8.1259465,

-5.2680258 and -2.5646647, that start us, respectively, at θ = exp(cT /T ) = 0.85, 0.90 and

0.95 for T = 50. Thus, given each value of cT , as T gets bigger and bigger, θ gets closer

and closer to one, thereby generating a near-integrated process.

The above tests are first conducted without prewhitening and recoloring. Then they

are conducted with prewhitening and recoloring along the lines of Andrews and Monahan

(1992). For this purpose, we first estimate the AR(1) model given by (2.5.4) to obtain θ̂

and then filter the series to give wt = vt − θ̄vt−1, where

θ̄ =





0.97 if θ̂ ≥ 0.97,

θ̂ if |θ̂| ≤ 0.97,

−0.97 if θ̂ ≤ 0.97.

We then estimate the long-run variance of the prewhitened series wt, call this σ̂2
w, by an

HACC estimator. Finally, we apply recoloring to this HACC estimate to obtain our desired

estimate of the long-run variance as σ̂2
w/(1− θ̄)2.

We note that if v0 = 0 and θ = 1, then the data generating scheme is a unit root process

and vt =
∑t

i=1 ei, and by Functional Central Limit Theorem, T−1/2
∑[πT ]

i=1 ei ⇒ B(π), where

B(π) ∼ N(0, π), is a standardized Wiener or Brownian motion process for 0 ≤ π ≤ 1.
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Therefore, T−1/2vt ⇒ B(π) for [πT ] = t. Then

 1√

T

[0.5T ]∑

t=1

vt





 1√

T

T∑

t=[0.5T ]+1

vt


 = T 2


 1

T

[0.5T ]∑

t=1

T−1/2vt





 1

T

T∑

t=[0.5T ]+1

T−1/2vt




= T 2


 1

T

[0.5T ]∑

t=1

T−1/2vt





 1

T

T∑

t=1

T−1/2vt − 1
T

[0.5T ]∑

t=1

T−1/2vt




⇒ T 2

∫ 0.5

0
B(r)dr

[∫ 1

0
B(r)dr −

∫ 0.5

0
B(r)dr

]
(2.5.6)

where we have used Lemma 1(a) of Phillips (1986) to obtain T−3/2
∑[0.5T ]

t=1 vt ⇒
∫ 0.5
0 B(r)dr

and T−3/2
∑T

t=1 vt ⇒
∫ 1
0 B(r)dr where “ ⇒ ” denotes Weak Convergence of probability

measures.

From (2.5.6) it follows that, with probability one, lim
T→∞

Cov
[

1√
T

∑[0.5T ]
t=1 vt,

1√
T

∑T
t=[0.5T ]+1 vt

]

diverges to ∞ at rate T 2. Thus, under unit root situations, as T → ∞, the asymptotic

covariance between subsamples grows without bound. Therefore, the assumption of asymp-

totic independence is invalid, and hence, use of the Wald test of structural stability is

misleading.

2.5.3 Simulation Results of Hannan and LR Tests of Persistence and

Wald Test of Structural Stability

The simulation results are presented in Tables 2.1-2.24. Tables 2.1-2.6 furnish results for

AR(1) and unit root case without using prewhitening and recoloring. Tables 2.7-2.12 give

results for the near-integrated case without prewhitening and recoloring. Tables 2.13-2.18

and Tables 2.19-2.24, respectively, provide results corresponding to the above cases but

using prewhitening and recoloring. The results show the empirical size of the test when the

nominal size is 5%. All results are computed using 10,000 simulations.

Inspection of results in Tables 2.1-2.2 reveals a clear pattern in the empirical size of

the Hannan test: as the value of the persistence parameter θ increases, even when it stays

below one, the empirical size increases, that is, the test becomes more and more oversized.
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When the unit root in θ is reached, the time series process becomes nonstationary and the

empirical size of the test increases significantly as we would expect since the null hypothesis

of zero coherence between subsamples is now false.

The results in Tables 2.3-2.4 for the LR test show a pattern in the empirical size similar

to that of the Hannan test. Such similarity in results, however, should come as no surprise

since the LR statistic −ν
2 ln[1 − ρ̂12(0)2] and the Hannan statistic ν

2 ρ̂12(0)2 constitute a

one-to-one mapping.

The results in Tables 2.5-2.6 clearly show that the Wald test rejects the null (truth)

of no structural break too often: the empirical probability of rejecting the null increases

significantly with the increase in the persistence in data. This corroborates our claim that

inference based on Wald test of structural stability is misleading when data are persistent.

Corresponding results for the near-integrated case presented in Tables 2.7-2.12 lead to

similar conclusions as above. Tables 2.7-2.10 clearly show that the Hannan and LR test

of persistence perform nicely and Tables 2.11-2.12 provide evidence that the Wald test of

structural stability is misleading when the time series is near-integrated.

However, as results in Tables 2.13-2.24 reveal, the picture changes dramatically when

prewhitening and recoloring is used. Tables 2.13-2.18 show that the empirical size of all

three tests, namely, the Hannan and LR tests of persistence as well as the Wald test of

structural stability for AR(1) and unit root case is close to the nominal size of 5%, other

than for large sample sizes in the unit root case. Similarly, the results for the near-integrated

case using prewhitening and recoloring, furnished in Tables 2.19-2.24, yield empirical size

of the test contrary to what we would expect and thus indicating a deterioration in the

performance of the Hannan and LR test of persistence when prewhitening and recoloring

is used.
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2.5.4 Exogeneity Testing of Regressors in a Cointegration Model

In this section, we illustrate yet another use of LRCC. It is how testing exogeneity of

integrated regessors can also be reduced to testing hypothesis about LRCC. Following

Wooldridge (1994, Handbook of Econometrics, Vol. 4, p. 2713) consider the linear model

yt
1×1

= α0
1×1

+ x′t
1×k

β0
k×1

+ ut
1×1

, t = 1, 2, · · · , (2.5.7)

where ut is an I(0), zero-mean process, and the regressor vector xt is an I(1) process:

xt
k×1

= xt−1
k×1

+ vt
k×1

, (2.5.8)

where vt is an I(0), zero-mean process, and there are no cointegrating relations among the

xt (x0 is an arbitrary random vector).

Let {wt ≡ (ut, v
′
t)
′} be a (1 + k)× 1 strictly stationary, weakly dependent stochastic

process with zero mean and finite second moments. Define

Σ ≡ E(wtw
′
t), Λ ≡

∞∑

s=1

E(wtw
′
t−s),

and

Ω ≡ Σ + Λ + Λ′ ≡ lim
T→∞

V ar

[
T−1/2

T∑

t=1

wt

]
≡




Ω11 Ω′21

Ω21 Ω22


 .

Note that

Σ21 ≡ E(vtut), Λ21 ≡
∞∑

s=1

E(vtut−s),

and

∆21 ≡ Σ21 + Λ21.

The model specified by (2.5.7) and (2.5.8) imply that yt and xt are cointegrated, and

because the coefficient on yt is normalized to unity, there is only one cointegrating vector.

The parameters α0 and β0 can be estimated by OLS regression of

yt on 1, xt, t = 1, · · · , T.
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Using Lemma 11.1 of Wooldridge 1994, Handbook Vol. 4, p. 2714, Park and Phillips (1988)

derive the limiting distribution of T (β̂T − β0):

T (β̂T − β0)
D→

[∫ 1

0

−
B2(r)′

−
B2(r) d(r)

]−1 [∫ 1

0

−
B2(r)′dB1(r) + ∆21

]
, (2.5.9)

where
−
B2 denotes the demeaned process B2, that is, for each 0 ≤ r ≤ 1,

−
B2(r) = B2(r)−

∫ 1

0
B2(s)ds (2.5.10)

where B1(r) and B2(r) are independent Brownian motions of dimension 1 and k, respec-

tively, with variance matrices Ω11 and Ω22. The integral
∫ 1
0

−
B2(r)′dB1(r) is a vector of

stochastic integrals with respect to the univariate Brownian motion B1(r) and the matrix
∫ 1
0

−
B2(r)′

−
B2(r) d(r) is a quadratic functional of the demeaned vector Brownian motion

−
B2(r) and is nonsingular with probability one.

The limiting distribution (2.5.9) depends, in an intractable way, on the nuisance parame-

ters Ω21 and ∆21. However, there is one case where this limiting distribution is independent

of the nuisance parameters, namely, the case where the regressors are strictly exogenous in

the sense that

E(∆x′tus) = 0, ∀t and s. (2.5.11)

The above condition implies that ∆21 = Ω21 = 0, so that the long run variance-covariance

matrix of the (1 + k)× 1 vector wt ≡ (ut, v
′
t)
′ becomes block-diagonal:

Ω ≡ Σ + Λ + Λ′ ≡ lim
T→∞

V ar

[
T−1/2

T∑

t=1

wt

]
≡




Ω11 Ω′21

Ω21 Ω22


 =




Ω11 0

0 Ω22


 . (2.5.12)

Using the definition of LRCC, it can be seen again that this condition is equivalent to

the restriction that ρ = 0, where ρ is the LRCC between {ut} and {vt}. Thus test of

exogeneity is reduced to a test of zero LRCC between two error processes. This, in turn,

again by the virtue of Proposition 1, is equivalent to a test of zero canonical coherence at

frequency zero between the error processes. Because in the model under consideration, the
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long run correlation concerns correlation between a scalar and a vector, the test becomes a

test of zero long run multiple correlation and as a corollary of Proposition 2.4.1, it becomes

equivalent to a test of zero multiple coherence at frequency zero.

2.5.5 Simulation Design for Exogeneity Testing

In this section, we construct a simulation design where both the regressor xt and the

regressand yt are scalar variables that are generated as follows:

xt = xt−1 + vt; vt ∼ N(0, 1),

ut = γvt + et; et ∼ N(0, 1),

yt = α0 + xtβ0 + ut.

We set the values of the parameters: α0 = 1.0; β0 = 2.0; γ = 0.0,−0.8,−0.4, 0.4 and 0.8. It

is to be noted that γ = 0.0 corresponds to the case of exogeneity while γ 6= 0.0 corresponds

to the case of endogeneity. Finally, the sample size: T = 50, 100, 250, 500 and 1000. We

calculate the empirical size of the test when the nominal size is 5%, and also compute the

empirical coverage probability of the 95% confidence interval of the estimator of the slope

parameter β0. All results are computed using 10,000 simulations.

2.5.6 Simulation Results of Exogeneity Testing

Results pertaining to the empirical size of the test are shown in Tables 2.25 - 2.28. The

first row in each of these tables corresponds to the endogeneity parameter γ = 0.0. Hence,

the results on the first row correspond to case where the null hypothesis that the regressor

xt is exogenous, is true. As a consequence, we would expect the actual size of the test

to be close to the nominal size of 5%, and that is precisely what we observe. Results on

the remaining four rows in each of these tables correspond to the endogeneity parameter

γ 6= 0.0. Hence, the null hypothesis that the regressor xt is exogenous, is false. Therefore,
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in these four cases, we would expect the actual size of the test to be much larger than

5%, and that is exactly what the results show. In particular, the higher is the endogeneity

and/or the sample size, the higher is the rejection rate. In addition, it is worth noting that

the test performs highly satisfactorily even in moderate size samples.

Results relating to the empirical coverage probability of the 95% confidence interval of

the estimator of β0 are presented in Tables 2.29 - 2.30. As in the earlier four tables, the

first row in each of these tables corresponds to the endogeneity parameter γ = 0.0. Hence,

the null hypothesis is true. Hence, we would expect the empirical coverage probability to

be close to the nominal coverage probability of 95%, and the results show precisely that.

Results on the remaining four rows in each of these tables correspond to the endogeneity

parameter γ 6= 0.0. Hence, the null hypothesis is false. So, in these four cases, we would

expect to see distortions in actual coverage rates and the results bear testimony to that.

Specifically, these results show that the higher the degree of endogeneity, the higher is the

distortion.

Thus the above results clearly demonstrate the usefulness of long run canonical corre-

lations in testing exogeneity of regressors in a cointegration model with a very high degree

of accuracy.

2.6 Conclusions

The objective of this chapter has been to present the definition of LRCC, to formally derive

LRCC and to prove a lemma that is the basis of Hall and Inoue’s (2003) construction

of RMSC. It also describes methods for estimating the LRCC and it establishes a link

between LRCC and canonical coherence that has formerly been developed in frequency

domain analysis. The final objective has been to present two additional uses of LRCC in

econometric analysis of time series beyond their usefulness in moments selection for GMM

estimation. One of them is development of the Hannan and LR tests of persistence designed
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to pre-test the assumption of asymptotic independence of subsamples underlying structural

stability testing. The other additional use of LRCC show how they can be used for testing

exogeneity of nonstationary regressors. We call these test of exogeneity the Hannan and

LR tests of exogeneity.

This chapter also presents simulation studies of the above tests. It conducts the Han-

nan and LR tests of persistence and the Wald test of structural stability, both without

prewhitening and recoloring and with prewhitening and recoloring. Simulation results

without prewhitening and recoloring show that the Hannan and LR tests perform well

and corroborate our claim that the use of the Wald test of structural stability is misleading

when date are persistent because the empirical probability of rejecting the null (truth) of no

structural break significantly increases with the increase in persistence. However, quality

of performance of the Hannan and LR test of persistence deteriorates substantially when

these tests are conducted using prewhitening and recoloring.

Finally, simulation results of the Hannan and LR tests of exogeneity indicate that their

performance is highly satisfactory.
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Table 2.1: Hannan Test of Persistence using Bartlett Kernel.

Empirical Size of the test

θ � T 50 100 250 500 1000

0.10 0.075 0.061 0.054 0.060 0.057

0.25 0.096 0.080 0.070 0.064 0.068

0.50 0.143 0.121 0.100 0.090 0.081

0.75 0.257 0.219 0.165 0.150 0.131

0.80 0.292 0.263 0.199 0.178 0.159

0.85 0.335 0.305 0.254 0.218 0.196

0.90 0.384 0.370 0.309 0.282 0.266

0.95 0.453 0.460 0.424 0.413 0.393

1.00 0.511 0.565 0.638 0.697 0.776

Note: Nominal Size = 0.05.
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Table 2.2: Hannan Test of Persistence using Parzen Kernel.

Empirical Size of the test

θ � T 50 100 250 500 1000

0.10 0.052 0.049 0.046 0.051 0.051

0.25 0.068 0.057 0.054 0.051 0.056

0.50 0.096 0.084 0.074 0.066 0.059

0.75 0.180 0.148 0.125 0.111 0.092

0.80 0.210 0.184 0.154 0.129 0.113

0.85 0.243 0.219 0.201 0.164 0.145

0.90 0.287 0.266 0.254 0.217 0.202

0.95 0.349 0.360 0.370 0.348 0.320

1.00 0.403 0.466 0.590 0.653 0.734

Note: Nominal Size = 0.05.
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Table 2.3: Likelihood Ratio Test of Persistence using Bartlett Kernel.

Empirical Size of the test

θ � T 50 100 250 500 1000

0.10 0.094 0.072 0.062 0.064 0.060

0.25 0.115 0.094 0.078 0.068 0.071

0.50 0.171 0.138 0.109 0.095 0.083

0.75 0.285 0.240 0.176 0.156 0.135

0.80 0.321 0.282 0.212 0.185 0.163

0.85 0.361 0.327 0.267 0.224 0.200

0.90 0.414 0.392 0.321 0.290 0.270

0.95 0.477 0.476 0.436 0.421 0.397

1.00 0.537 0.579 0.646 0.701 0.778

Note: Nominal Size = 0.05.
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Table 2.4: Likelihood Ratio Test of Persistence using Parzen Kernel.

Empirical Size of the test

θ � T 50 100 250 500 1000

0.10 0.081 0.065 0.056 0.056 0.054

0.25 0.096 0.079 0.064 0.056 0.059

0.50 0.136 0.108 0.084 0.070 0.063

0.75 0.228 0.180 0.139 0.118 0.097

0.80 0.258 0.215 0.166 0.139 0.117

0.85 0.294 0.254 0.219 0.173 0.151

0.90 0.335 0.304 0.272 0.226 0.208

0.95 0.402 0.394 0.385 0.360 0.327

1.00 0.455 0.497 0.604 0.659 0.737

Note: Nominal Size = 0.05.
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Table 2.5: Wald Test of Structural Stability using Bartlett Kernel.

Empirical Size of the test

θ � T 50 100 250 500 1000

0.10 0.089 0.071 0.065 0.063 0.057

0.25 0.108 0.086 0.075 0.065 0.060

0.50 0.175 0.134 0.098 0.082 0.077

0.75 0.324 0.248 0.172 0.145 0.130

0.80 0.370 0.299 0.214 0.171 0.161

0.85 0.436 0.356 0.268 0.224 0.205

0.90 0.508 0.443 0.354 0.305 0.277

0.95 0.601 0.580 0.494 0.447 0.426

1.00 0.713 0.751 0.799 0.848 0.882

Note: Nominal Size = 0.05.
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Table 2.6: Wald Test of Structural Stability using Parzen Kernel.

Empirical Size of the test

θ � T 50 100 250 500 1000

0.10 0.104 0.075 0.063 0.062 0.055

0.25 0.107 0.080 0.067 0.058 0.055

0.50 0.143 0.107 0.079 0.064 0.059

0.75 0.255 0.194 0.138 0.108 0.090

0.80 0.296 0.241 0.176 0.128 0.114

0.85 0.353 0.292 0.227 0.172 0.145

0.90 0.429 0.374 0.310 0.242 0.202

0.95 0.526 0.520 0.457 0.385 0.347

1.00 0.652 0.711 0.782 0.827 0.859

Note: Nominal Size = 0.05.

Table 2.7: Hannan Test of Persistence using Bartlett Kernel; Near-Integrated Case.

Empirical Size of the test

c � T 50 100 250 500 1000

-8.125946 0.344 0.407 0.490 0.581 0.667

-5.268026 0.380 0.448 0.528 0.626 0.695

-2.564665 0.446 0.508 0.582 0.664 0.729

Note: Nominal Size = 0.05.
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Table 2.8: Hannan Test of Persistence using Parzen Kernel; Near-Integrated Case.

Empirical Size of the test

c � T 50 100 250 500 1000

-8.125946 0.252 0.308 0.434 0.524 0.614

-5.268026 0.275 0.344 0.477 0.574 0.645

-2.564665 0.346 0.408 0.531 0.615 0.686

Note: Nominal Size = 0.05.

Table 2.9: Likelihood Ratio Test of Persistence using Bartlett Kernel; Near-Integrated Case.

Empirical Size of the test

c � T 50 100 250 500 1000

-8.125946 0.371 0.427 0.501 0.587 0.670

-5.268026 0.405 0.466 0.538 0.631 0.698

-2.564665 0.472 0.528 0.591 0.669 0.733

Note: Nominal Size = 0.05.

Table 2.10: Likelihood Ratio Test of Persistence using Parzen Kernel; Near-Integrated Case.

Empirical Size of the test

c � T 50 100 250 500 1000

-8.125946 0.299 0.342 0.449 0.532 0.618

-5.268026 0.330 0.379 0.494 0.582 0.649

-2.564665 0.396 0.440 0.546 0.623 0.690

Note: Nominal Size = 0.05.
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Table 2.11: Wald Test of Structural Stability using Bartlett Kernel; Near-Integrated Case.

Empirical Size of the test

c � T 50 100 250 500 1000

-8.125946 0.434 0.506 0.573 0.669 0.736

-5.268026 0.510 0.563 0.652 0.719 0.790

-2.564665 0.605 0.657 0.719 0.775 0.824

Note: Nominal Size = 0.05.

Table 2.12: Wald Test of Structural Stability using Parzen Kernel; Near-Integrated Case.

Empirical Size of the test

c � T 50 100 250 500 1000

-8.125946 0.358 0.436 0.535 0.625 0.684

-5.268026 0.430 0.500 0.622 0.673 0.749

-2.564665 0.529 0.602 0.694 0.740 0.785

Note: Nominal Size = 0.05.
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Table 2.13: Hannan Test of Persistence using Bartlett Kernel and Prewhitening

and Recoloring.

Empirical Size of the test

θ � T 50 100 250 500 1000

0.10 0.076 0.055 0.050 0.050 0.051

0.25 0.075 0.057 0.050 0.049 0.051

0.50 0.074 0.056 0.051 0.051 0.048

0.75 0.080 0.060 0.053 0.050 0.048

0.80 0.077 0.060 0.054 0.054 0.053

0.85 0.076 0.065 0.055 0.049 0.051

0.90 0.077 0.061 0.051 0.051 0.055

0.95 0.076 0.065 0.059 0.056 0.053

1.00 0.073 0.056 0.069 0.129 0.328

Note: Nominal Size = 0.05.
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Table 2.14: Hannan Test of Persistence using Parzen Kernel and Prewhitening

and Recoloring.

Empirical Size of the test

θ � T 50 100 250 500 1000

0.10 0.051 0.047 0.045 0.049 0.050

0.25 0.055 0.049 0.048 0.047 0.051

0.50 0.054 0.048 0.049 0.049 0.048

0.75 0.055 0.050 0.051 0.049 0.047

0.80 0.057 0.051 0.051 0.052 0.052

0.85 0.055 0.057 0.054 0.047 0.050

0.90 0.055 0.055 0.049 0.049 0.054

0.95 0.057 0.056 0.056 0.054 0.053

1.00 0.053 0.048 0.069 0.128 0.327

Note: Nominal Size = 0.05.
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Table 2.15: Likelihood Ratio Test of Persistence using Bartlett Kernel and Prewhitening

and Recoloring.

Empirical Size of the test

θ � T 50 100 250 500 1000

0.10 0.094 0.065 0.056 0.055 0.055

0.25 0.093 0.069 0.057 0.052 0.054

0.50 0.092 0.066 0.058 0.055 0.050

0.75 0.101 0.072 0.062 0.054 0.050

0.80 0.098 0.071 0.061 0.058 0.055

0.85 0.097 0.075 0.062 0.052 0.053

0.90 0.095 0.071 0.058 0.054 0.057

0.95 0.096 0.074 0.066 0.059 0.057

1.00 0.089 0.068 0.076 0.136 0.332

Note: Nominal Size = 0.05.
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Table 2.16: Likelihood Ratio Test of Persistence using Parzen Kernel and Prewhitening

and Recoloring.

Empirical Size of the test

θ � T 50 100 250 500 1000

0.10 0.077 0.064 0.053 0.055 0.053

0.25 0.082 0.068 0.056 0.052 0.054

0.50 0.081 0.063 0.058 0.055 0.051

0.75 0.084 0.069 0.059 0.053 0.050

0.80 0.085 0.070 0.061 0.057 0.054

0.85 0.084 0.075 0.063 0.053 0.054

0.90 0.083 0.073 0.058 0.053 0.058

0.95 0.085 0.077 0.065 0.059 0.056

1.00 0.081 0.066 0.077 0.137 0.332

Note: Nominal Size = 0.05.
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Table 2.17: Wald Test of Structural Stability using Bartlett Kernel and Prewhitening

and Recoloring.

Empirical Size of the test

θ � T 50 100 250 500 1000

0.10 0.069 0.062 0.059 0.059 0.051

0.25 0.060 0.060 0.060 0.054 0.052

0.50 0.049 0.055 0.056 0.049 0.051

0.75 0.026 0.039 0.046 0.051 0.048

0.80 0.020 0.033 0.046 0.049 0.050

0.85 0.013 0.021 0.038 0.048 0.046

0.90 0.009 0.010 0.030 0.041 0.045

0.95 0.005 0.006 0.014 0.030 0.040

1.00 0.005 0.050 0.374 0.634 0.784

Note: Nominal Size = 0.05.
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Table 2.18: Wald Test of Structural Stability using Parzen Kernel and Prewhitening

and Recoloring.

Empirical Size of the test

θ � T 50 100 250 500 1000

0.10 0.096 0.073 0.062 0.062 0.055

0.25 0.088 0.071 0.064 0.056 0.054

0.50 0.079 0.067 0.058 0.052 0.054

0.75 0.055 0.052 0.050 0.054 0.050

0.80 0.044 0.048 0.051 0.052 0.053

0.85 0.034 0.033 0.041 0.051 0.048

0.90 0.023 0.020 0.035 0.044 0.047

0.95 0.017 0.012 0.018 0.034 0.043

1.00 0.013 0.059 0.373 0.625 0.771

Note: Nominal Size = 0.05.
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Table 2.19: Hannan Test of Persistence using Bartlett Kernel and Prewhitening and

Recoloring; Near-Integrated Case.

Empirical Size of the test

c � T 50 100 250 500 1000

-8.125946 0.082 0.059 0.054 0.067 0.131

-5.268026 0.078 0.063 0.059 0.076 0.185

-2.564665 0.075 0.059 0.061 0.098 0.240

Note: Nominal Size = 0.05.

Table 2.20: Hannan Test of Persistence using Parzen Kernel and Prewhitening and

Recoloring; Near-Integrated Case.

Empirical Size of the test

c � T 50 100 250 500 1000

-8.125946 0.059 0.054 0.051 0.066 0.131

-5.268026 0.058 0.056 0.056 0.075 0.185

-2.564665 0.056 0.055 0.061 0.097 0.241

Note: Nominal Size = 0.05.
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Table 2.21: Likelihood Ratio Test of Persistence using Bartlett Kernel and Prewhitening

and Recoloring; Near-Integrated Case.

Empirical Size of the test

c � T 50 100 250 500 1000

-8.125946 0.100 0.069 0.060 0.071 0.134

-5.268026 0.094 0.074 0.066 0.080 0.189

-2.564665 0.092 0.070 0.069 0.102 0.244

Note: Nominal Size = 0.05.

Table 2.22: Likelihood Ratio Test of Persistence using Parzen Kernel and Prewhitening

and Recoloring; Near-Integrated Case.

Empirical Size of the test

c � T 50 100 250 500 1000

-8.125946 0.088 0.074 0.061 0.071 0.136

-5.268026 0.086 0.075 0.066 0.082 0.190

-2.564665 0.083 0.074 0.070 0.104 0.247

Note: Nominal Size = 0.05.
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Table 2.23: Wald Test of Structural Stability using Bartlett Kernel and Prewhitening

and Recoloring; Near-Integrated Case.

Empirical Size of the test

c � T 50 100 250 500 1000

-8.125946 0.014 0.008 0.033 0.204 0.463

-5.268026 0.010 0.007 0.089 0.305 0.575

-2.564665 0.006 0.009 0.195 0.455 0.664

Note: Nominal Size = 0.05.

Table 2.24: Wald Test of Structural Stability using Parzen Kernel and Prewhitening

and Recoloring; Near-Integrated Case.

Empirical Size of the test

c � T 50 100 250 500 1000

-8.125946 0.034 0.016 0.037 0.201 0.444

-5.268026 0.026 0.013 0.093 0.300 0.557

-2.564665 0.019 0.017 0.194 0.445 0.647

Note: Nominal Size = 0.05.
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Table 2.25: Hannan Test of Exogeneity using Bartlett Kernel.

Empirical Size of the test

γ � T 50 100 250 500 1000

0.0 0.050 0.049 0.051 0.046 0.051

-0.8 0.871 0.978 1.000 1.000 1.000

-0.4 0.407 0.599 0.833 0.973 0.999

0.4 0.402 0.589 0.830 0.976 0.998

0.8 0.870 0.975 0.999 1.000 1.000

Note: Nominal Size = 0.05.

Table 2.26: Hannan Test of Exogeneity using Parzen Kernel.

Empirical Size of the test

γ � T 50 100 250 500 1000

0.0 0.045 0.047 0.052 0.046 0.050

-0.8 0.851 0.946 0.999 1.000 1.000

-0.4 0.374 0.504 0.806 0.954 0.998

0.4 0.373 0.505 0.802 0.953 0.998

0.8 0.846 0.949 0.999 1.000 1.000

Note: Nominal Size = 0.05.
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Table 2.27: Likelihood Ratio Test of Exogeneity using Bartlett Kernel.

Empirical Size of the test

γ � T 50 100 250 500 1000

0.0 0.060 0.055 0.054 0.048 0.052

-0.8 0.885 0.980 1.000 1.000 1.000

-0.4 0.437 0.619 0.841 0.974 0.999

0.4 0.436 0.611 0.838 0.976 0.998

0.8 0.884 0.978 0.999 1.000 1.000

Note: Nominal Size = 0.05.

Table 2.28: Likelihood Ratio Test of Exogeneity using Parzen Kernel.

Empirical Size of the test

γ � T 50 100 250 500 1000

0.0 0.057 0.055 0.056 0.048 0.052

-0.8 0.869 0.952 0.999 1.000 1.000

-0.4 0.411 0.534 0.815 0.957 0.998

0.4 0.411 0.530 0.811 0.955 0.998

0.8 0.867 0.954 0.999 1.000 1.000

Note: Nominal Size = 0.05.
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Table 2.29: Hannan Test of Exogeneity using Bartlett Kernel.

Coverage Probability of 95% Confidence Interval for β0

γ � T 50 100 250 500 1000

0.0 0.926 0.932 0.936 0.944 0.943

-0.8 0.833 0.837 0.846 0.855 0.850

-0.4 0.886 0.895 0.907 0.910 0.909

0.4 0.887 0.901 0.906 0.911 0.916

0.8 0.832 0.836 0.845 0.845 0.856

Table 2.30: Hannan Test of Exogeneity using Parzen Kernel.

Coverage Probability of 95% Confidence Interval for β0

γ � T 50 100 250 500 1000

0.0 0.925 0.929 0.936 0.944 0.943

-0.8 0.833 0.834 0.845 0.854 0.850

-0.4 0.885 0.893 0.907 0.910 0.910

0.4 0.886 0.898 0.906 0.911 0.915

0.8 0.832 0.832 0.845 0.844 0.855
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Chapter 3

A Comparative Study of the

CCIC, the RMSC and the MSE

3.1 Introduction

The objective of this chapter is to do a comparative study of the three methods CCIC,

RMSC and MSE in the context of a simple linear IV model:

yt = xtθ0 + ut, (3.1.1)

xt = zt
′π0 + et, t = 1, 2, . . . , T (3.1.2)

where yt is the dependent variable, xt is a scalar regressor correlated with the regression

error ut which has a mean zero and which could exhibit heteroscedasticy and autocorrela-

tion. A q×1 vector of valid instruments, zt, is available so that cov(xt, zt) 6= 0 and satisfies

the population moment conditions E[ztut(θ0)] = 0. The last condition implies that we are

considering instrument selection in models that are correctly specified.

The contribution of the paper to the emerging literature on instrument selection is that

it brings the above three papers together, synthesizes and unifies them by showing through

an analytical comparison the common thread that runs between them, and brings out their
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relative strengths and weaknesses via a simulation study.

Although the three methods under study are tied by the common goal of instrument

selection, they are different in terms of their underlying objectives. Donald and Newey’s

(2001) objective is to achieve an improved finite sample risk property of the estimators.

They attain this goal by minimizing the approximate MSE. The objective of Hall and

Peixe (2003) and Hall and Inoue (2003), on the other hand, is to achieve an improved

quality of asymptotic approximation to the finite sample behavior of the estimators. They

gain this objective by eliminating the redundant moment conditions based, respectively, on

SRCC and LRCC.

Even though each of the aforementioned papers explores the properties of its proposed

method, there have been to date no comparative studies of these methods. What, if any,

is the analytical connection among the three methods? Is there any systematic pattern in

the finite sample properties of the post selection estimators obtained by the three methods

so that a unique ranking of these methods emerge? If no systematic pattern emerges, can

we still provide guidance to a practitioner as to which of these methods should be used in

any particular real life application of interest?

In this chapter, we explore the above issues. We begin by briefly summarizing the

CCIC, the RMSC and the approximate MSE, and by presenting the corresponding criteria

in the context of a simple linear IV model specified in Section 1 and to be subsequently

used in simulation. Then we establish a relation between contemporaneous and long run

canonical correlations in a linear simultaneous equation model. Next we show an analytical

connection among the three criteria. Then we follow it up by an assessment of their relative

performance via a simulation study that investigates the finite sample behavior of the post

selection estimator. To this end, we compare median bias of the post selection estimator

and coverage probability of 90% confidence interval under the three criteria.
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3.2 Summary of the three Criteria

3.2.1 Hall and Peixe’s Canonical Correlations Information Criterion

The objective of Hall and Peixe (2003) is to develop a method of instrument selection from

a fixed candidate set in the context of Generalized Method of Moments (GMM) models

(Hansen, 1982) by satisfying five desirable conditions of moment selection, namely, (i)

identification: the moment conditions be satisfied at only one value in the parameter space;

(ii) orthogonality: this value be the “true” parameter value, θ0 say, implying that they

represent valid information; (iii) efficiency: they minimize the asymptotic variance of the

estimator; (iv) non-redundancy: the asymptotic variance increases if any element of the

selected vector is excluded, and (v) inference: the selection process must not contaminate

the asymptotic distribution theory of the estimator. The authors define a qmax×1 selection

vector c to index the instrument vector which they denote as zt(c). The value of qmax is

fixed, independent of sample size, and the elements of c indicate which elements of the

candidate set are included in zt(c) and which elements are excluded: cj = 1 implies that

the jth element is included, and cj = 0 implies that the jth element is excluded. They

focus exclusively on the particular class of GMM models in which the population moment

conditions take the form

E[zt(c)ut(θ0)] = 0 (3.2.1)

where ut(.) is a scalar possibly nonlinear function of a set of dynamic random variables,

zt(c) is a vector of instruments selected from a candidate set that is fixed and the asymptotic

variance of the GMM estimator is

V (c) = σ2
0 {E[dt(θ0)zt(c)

′
]{E[zt(c)zt(c)

′
]}−1[zt(c)dt(θ0)

′
]}−1 (3.2.2)

where σ2
0 is the variance of ut(θ0) under the assumption of conditional homoscedasticity,

that is, σ2
0 = E[ut(θ0)2|Ωt], Ωt is the information set at date t, and dt(θ0) = ∂ut(θ0)/∂θ.
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Validity of the “conventional” asymptotic distribution theory of the estimator used for

inference about the parameters of the underlying model as well as for adequacy of this

theory as an approximation to the finite sample behavior hinges crucially on simultaneous

satisfaction of the above five conditions. Existing methods of instrument selection fail to

meet this requirement. For example, while Andrews’ (1999) proposed information criterion

approach satisfies the conditions of orthogonality and inference, it need not satisfy the con-

dition of non-redundancy. It depends on moment condition and whether or not there are

any redundant moment conditions. Hall and Peixe (2003) show that the use of this method

can lead to inclusion of redundant instruments which causes a deterioration in the quality

of the conventional asymptotic approximation to the finite sample behavior of the estima-

tor. This evidence motivates Hall and Peixe (2003) to consider the problem of instrument

selection based on a combination of the efficiency and non-redundancy conditions which

they refer to as the relevance condition.

Basing instrument selection on relevance condition requires a metric of relevance. Hall

and Peixe (2003) show that certain canonical correlations provide a natural metric for

relevance by adapting Sargan’s (1958) arguments that the asymptotic variance V (c) in

(3.2.2) above can be rewritten as

V (c) = σ2
0A(c)Λ(c)−2A(c)

′
(3.2.3)

where Λ(c) = diag(ρ1(c) . . . ρp(c)), {ρi(c); i = 1, 2, . . . p} are canonical correlations between

dt(θ0) and zt(c), and A(c) is the p × p matrix whose ith row contains the weights in the

linear combinations associated with dt(θ0) in the ith canonical correlation, that is,

Corr[ai(c)
′
dt(θ0), bi(c)

′
zt(c)] = ρi(c) (3.2.4)

where bi(c) is used to denote the vector of weights associated with zt(c).

Equation (3.2.3) reveals that the asymptotic variance depends crucially on the popu-

lation canonical correlations. Hall and Peixe (2003) exploit this result to show how these
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population canonical correlations can provide a suitable metric for redundancy. To this end,

they define an additional set of instruments to be redundant1 when the inclusion of this

set has no impact on the population canonical correlations. This implies through equation

(3.2.3) that the inclusion of this set should have no impact on the asymptotic variance of

the estimator. Thus, formally,

Definition 3.2.1 Let ci ∈ C for i = 1, 2 and satisfy c′1c2 = 0, then zt(c2) is redundant

given zt(c1) if and only if V (c1 + c2) = V (c1) where V (c) is given by (3.2.2).

Conversely, they define an additional set of instruments to be non-redundant when

the inclusion of this set increases2 at least one of the population canonical correlations.

This, in turn, implies through equation (3.2.3), that the exclusion of this set increases the

asymptotic variance of the estimator, and hence, formally,

Definition 3.2.2 Let ci ∈ C for i = 1, 2 and satisfy c′1c2 = 0, then zt(c2) is redundant

given zt(c1) if and only if V (c1 + c2)− V (c1) is negative definite.

Thus the above definitions of redundancy and non-redundancy show how the population

canonical correlations can be used to deduce which instruments are redundant, and so form

the natural basis for a method of instrument selection based on relevance. They characterize

a set of instruments to be relevant if, given this set, the remaining elements of the candidate

set are redundant and no element of this set is redundant given the other elements of this

set. Their objective is to select from a valid candidate set this relevant instrument set with

probability one in the limit and their proposed canonical correlations information criterion

(CCIC) is defined to be

CCIC(c) = ΞT (c) + P (T, |c|) (3.2.5)

where the statistic

ΞT (c) = T

p∑

i=1

ln[1− r2
i,T (c)] (3.2.6)

1For other equivalent definitions of redundancy, see Breusch, Quian, Schmidt, and Wyhowski (1999).
2Note that the population canonical correlations can never decrease as a result of augmenting the instru-

ment vector.
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captures the sample information, |c| = c′c equals the number of elements in zt(c) and

P (T, |c|) is a “penalty” term which satisfies the following conditions: (i) P (T, |c|) =

h(|c|)µT ; (ii) h(.) is non-negative and strictly increasing; (iii) µT → ∞ as T → ∞ and

µT = o(T ).

In our specified simple linear IV model given by equations (3.1.1) and (3.1.2) above, the

regressor xt is a scalar. Therefore, the CCIC involves only one sample canonical correlation

rT which is equal to the multiple correlation coefficient, also commonly known as the

coefficient of determination. Thus our criterion takes the form

CCIC(c) = T ln[1− r2
T (c)] + P (T, |c|). (3.2.7)

Possible choices of the penalty term P (T, |c|) correspond to Akaike’s (1974) criterion where:

h(|c|) = |c| − p, µT = 2; Schwarz’s (1978) criterion where: h(|c|) = |c| − p, µT = lnT ; and

Hannan and Quinn’s (1979) criterion where: h(|c|) = |c|−p, µT = QlnlnT, for some Q > 2.

Because in Akaike’s (1974) criterion µT = 2 does not tend to infinity, condition (iii)

above for the penalty term is violated, and so we adopt the specifications corresponding to

Schwarz (1978) and Hannan and Quinn (1979). Of these two, we have explored the case

corresponding to Schwarz.

3.2.2 Hall and Inoue’s Relevant Moments Selection Criterion

The objective of Hall and Inoue (2003) is to generalize the CCIC of Hall and Peixe (2003)

to Relevant Moments Selection Criterion (RMSC) for GMM models in nonlinear dynamic

setting. The RMSC is based on their result that the asymptotic variance of the GMM

estimator can be written in terms of the population long run canonical correlations between

the population moment condition used in the estimation and the unknown true score vector

associated with the data.

Hall and Inoue (2003) assume that the data generating process is strictly stationary and

ergodic. They consider the GMM estimator of the unknown parameter vector θ0 based on
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a finite set of population moment conditions: E[f(vt, θ0)] = 0 where f : V ×Θ → <q. This

estimator is defined to be

θ̂T (c) = Argminθ∈ΘgT (θ; c)
′
WT gT (θ; c) (3.2.8)

where θ̂T and gT are indexed by the selection vector c to indicate which moments from the

candidate set are included and which are excluded: cj = 1 implies that the jth moment is

included, cj = 0 implies that the jth moment is excluded; gT (θ; c) = T−1
∑T

t=1 f(vt, θ; c);

and WT is a positive semi-definite weighting matrix which converges in probability to S−1,

where

S = lim
T→∞

V ar[T 1/2gT (θ0)]. (3.2.9)

They premise their analysis on the assumption that the asymptotic distribution of θ̂T (c)

takes the following form:

T 1/2(θ̂T (c)− θ0)
d→ N(0, Ω(c)) (3.2.10)

where Ω(c) = [G
′
0(c)S

−1G0(c)]−1, G0(c) = E[∂f(vt, θ0; c)/∂θ
′
], and show that under certain

conditions, Ω(c) can be written as:

Ω(c) = L(c)R(c)−2L(c)
′

(3.2.11)

where R(c) = diag(ρ1(c), ρ2(c), . . . , ρp(c)), {ρi(c); i = 1, 2, . . . , p} are the set of popula-

tion long run canonical correlations between the population moment vector f(vt, θ0; c)

and the score vector sθ,t(ψ0; c), L(c) is the p × p matrix with ith column li(c), li(c) is

the generalized eigenvector satisfying [G0(c)
′
S−1G0(c) − ρi(c)2Iθ(c)]li(c) = 0 and Iθ(c) =

E[sθ,t(ψ0; c)sθ,t(ψ0; c)
′
].

The expression for Ω(c) in (3.2.11) above shows that the variance of the GMM estimator

depends crucially on the long run canonical correlations between the population moment

and the score. Hall and Inoue (2003) exploit this result to deduce a condition for redundancy

of moment conditions. They define a set of additional moment conditions as redundant if

59



inclusion of this set has no impact on the long run canonical correlations between the

population moment vector and the score vector. Using this concept of redundancy they

develop a method for the selection of the relevant set of moment conditions from a valid

candidate set. They characterize a set of moment conditions to be relevant if given this

set, all other members of the candidate set are redundant and no member of this set is

redundant given the remaining members of this set. The relevant set is asymptotically

efficient within the class of moment conditions that can be constructed from the valid set.

Thus the idea of Hall and Inoue (2003) is to construct an information criterion that involves

estimated asymptotic variance. Their proposed criterion is

RMSC = ln[|Ω̂(c)|] + µ(|c|, T ) (3.2.12)

where Ω̂(c) is a consistent estimator of Ω(c) and µ(|c|, T ) = (|c|−p)√
T

ln
√

T . 3

Specializing these results to our model given by equations (3.1.1) and (3.1.2) yields the

criterion:

RMSC(c) = ln
(|σ̂2

u[x′z(c){z(c)′z(c)}−1z(c)′x]−1|) +
(|c| − 1)√

T
ln
√

T . (3.2.13)

3.2.3 Donald and Newey’s Approximate Mean-Square Error Criterion

While Hall and Peixe (2003) and Hall and Inoue(2003) keep the candidate set of instruments

fixed, Donald and Newey (2001) allow the candidate set to grow with the sample size. Their

objective is to develop a criterion for instrument selection based on minimizing Nagar (1959)

type approximation of the mean square error (MSE) of the estimator. They show that this

method can improve the finite sample properties of IV estimators, including among others,

the two-stage least squares (2SLS) estimators. Choosing instruments to minimize MSE

helps reduce misleading IV inferences that can occur with many instruments. For 2SLS,

the MSE explicitly accounts for an important bias term [Bound, Jaeger, and Baker (1995)],
3This penalty is correct under (3.1.2), but not necessarily in all cases.
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so choosing instruments to minimize MSE avoids cases where asymptotic inferences are

poor due to the bias being large relative to the standard deviation.

In our notation, their model becomes

y = x θ0 + u; (3.2.14)

x = f(z) + e (3.2.15)

where they allow the function f(.) in the first stage reduced form equation (3.2.15) to be of

any unknown form that can be approximated arbitrarily closely by nonparametric methods.

Their method is based on higher-order asymptotics as follows. Expand the centered

and scaled 2SLS estimator:

√
T (θ̂ − θ0) = (

x′Px

T
)−1 x′Pu√

T

= (
f̂ ′f̂
T

)−1 f̂ ′u√
T

= Ĥ−1ĥ

= [H − (H − Ĥ)]−1[h + (ĥ− h)]

= [{I − (H − Ĥ)H−1}H]−1[h + (ĥ− h)]

= [H−1{I − (H − Ĥ)H−1}−1][h + (ĥ− h)]

= H−1[I + (H − Ĥ)H−1 + (H − Ĥ)2H−2 + · · · ][h + (ĥ− h)]

= H−1[h + ĥ− h + (H − Ĥ)H−1h + (H − Ĥ)H−1(ĥ− h) + (H − Ĥ)2H−2h + · · · ]

= H−1[ĥ + (H − Ĥ)H−1h + (H − Ĥ)H−1(ĥ− h) + (H − Ĥ)2H−2h + ...]

where P is the projection matrix of basis functions used to approximate the unknown

function f , H = f ′f
T , and h = f ′u√

T
. Now square the above expansion and take expectation

of terms that are largest in probability and are functions of the number of instruments q.

This yields the desired approximate mean square error criterion:

MSE(c) = σ2
eu

|c|2
T

+ σ2
u

f ′(I − P )f
T

. (3.2.16)
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Minimizing the approximate MSE requires estimating the approximate MSE. This in

turn requires preliminary estimates of the parameters of the model and a goodness of fit

criterion R(c) for estimation of the first stage reduced form using the instruments zt(c). For

example, the preliminary estimator might be an IV estimator with only as many instruments

as right-hand side variables, or it might be an IV estimator where the instruments are chosen

to minimize one of the first stage goodness of fit criteria. Donald and Newey (2001) consider

the cross-validation and Mallows’ (1973) reduced form goodness of fit criteria.

They minimize the approximate MSE of a linear combination λ̂′θ̂T (c) of the IV esti-

mator, where λ̂ is some vector of estimated linear combination coefficients. Because the

structural parameter θ0 in our model is a scalar, for our purposes, λ is equal to one.

Let θ̃T (c̃) and π̃T (c̃) be some preliminary estimators of θ0 and π0, respectively. Then

the estimated approximate MSE of the 2SLS estimator of our proposed model is

MSE(c) = σ̂2
eu

|c|2
T

+ σ̂2
u

(
R̂(|c|)− σ̂2 |c|

T

)
(3.2.17)

where for any preliminary selection vector c̃, σ̂eu = ẽ′(c̃)ũ(c̃)/T, ẽ(c̃) = ẽ(c)[π̃′(c̃)z′(c̃)z(c̃)

π̃(c̃)/T ]−1, ẽ(c) = [I − P (c)]x (Note, the vector of residuals ẽ(c) is calculated using all ele-

ments of the candidate set; cj = 1 for j = 1, 2, . . . , qmax), P (c) = z(c)[z(c)′z(c)]−1z(c)′, ũ(c̃) =

y − xθ̃T (c̃), σ̂2
u(c̃) = ũ(c̃)′ũ(c̃)/T, σ̂2(c̃) = ẽ(c̃)′ẽ(c̃)/T, and the cross-validation criterion

is,

R̂cv(c) =
1
T

T∑

i=1

[êi(c)]2

[1− Pii(c)]2

=
1
T

T∑

i=1

[
êi(c)

[1− Pii(c)

]2

and the Mallows’ criterion is,

R̂m(c) =
ê(c̃)′ê(c̃)

T
+

ê(c)′ê(c)
T

(2
|c̃|
T

).
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3.3 Relationship between Contemporaneous and Long Run

Canonical Correlations

In this section, we show the relationship between contemporaneous and long run canonical

correlations in the following linear simultaneous equation model:

yt
(1×1)

= x′t
(1×p)

θ0
(p×1)

+ ut
(1×1)

,

xt
(p×1)

= π0
(p×q)

zt
(q×1)

+ et
(p×1)

, t = 1, 2, . . . , T

(3.3.1)

where 


ut

et


 iid∼ N

(
0

(p+1)×1
, Σ
(p+1)×(p+1)

)
,

and

Σ
(p+1)×(p+1)

=




σ2
u

(1×1)

Σue
(1×p)

Σeu
(p×1)

Σee
(p×p)


 .

Proposition 3.3.1 Let vt = (x′t, z′t)′ be stationary and ψ0 = (θ′0, φ
′
0)
′. Then in a linear

simultaneous equation model described by equation (3.3.1) under the assumption of identi-

cally and independently jointly normally distributed structural and reduced form errors, the

population long run canonical correlations between the score vector sθ,t(ψ0) with respect to

the parameter on the endogenous regressor xt and the population moment vector f(vt, θ0)

are proportional to the contemporaneous canonical correlations between the endogenous re-

gressor vector xt and the instrument vector zt, where the constant of proportionality is given

by
√

σ2
ξ

ΣueΣ
−1
ee Σeu+σ2

ξ

.

The proof is presented in the appendix.
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3.4 Analytical Connection among the Three Methods

In this section, we investigate the analytical connection among the three criteria under the

proposed simple linear IV model:

yt
(1×1)

= xt
(1×1)

θ0
(1×1)

+ ut
(1×1)

,

xt
(1×1)

= zt
′

(1×q)
π0

(q×1)
+ et

(1×1)
, t = 1, 2, . . . , T.

In matrix notation the model becomes

y
(T×1)

= x
(T×1)

θ0
(1×1)

+ u
(T×1)

,

x
(T×1)

= z
(T×q)

π0
(q×1)

+ e
(T×1)

.

We know from (3.2.7)) that for this model the CCIC is given by

CCIC(c) = T ln[1− r2
T (c)] + (|c| − 1) lnT.

We also know from equation (3.2.13) that for this model the RMSC given by

RMSC(c) = ln

(
|σ̂2

u[
T∑

t=1

xtzt(c)
′{

T∑

t=1

zt(c)zt(c)
′}−1

T∑

t=1

zt(c)xt(c)
′
]−1|

)
+

(|c| − 1)√
T

ln
√

T

= ln

(
σ̂2

u
x′x
T r2

T (c)

)
+

(|c| − 1)√
T

ln
√

T

= ln

(
σ̂2

u

µ̂2
xr2

T (c)

)
+

(|c| − 1)√
T

ln
√

T , [where µ̂2
x =

x′x
T

],

which shows that RMSC is a function of the squared canonical correlation which in this

case is the squared multiple correlation, r2
T (c).

To explore the link of Donald and Newey’s (2001) approximate MSE criterion with the

canonical correlations, it is convenient to first obtain in their notation the following form of

their MSE. Substituting for S(K) from [p. 1167] into equation (2) on [p. 1166] of Donald
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and Newey (2001), the N times population approximate MSE:

E[N(δ̂ − δ0)(δ̂ − δ0)′] = σ2
ε H

−1 + H−1[σuεσ
′
uε

K2

N
+ σ2

ε

f ′(I − P )f
N

]H−1 + op(1)

= σ2
ε H

−1 + H−1[σuεσ
′
uε

K2

N
]H−1 + H−1[σ2

ε (
f ′f
N

− f ′Pf

N
)]H−1 + op(1)

= σ2
ε H

−1 + H−1[σuεσ
′
uε

K2

N
]H−1 + H−1[σ2

ε (H − f ′Pf

N
)]H−1 + op(1)

=
σ2

ε

H
+

σ2
uε

H2

K2

N
+

σ2
ε

H
− σ2

ε

H2

f ′Pf

N
+ op(1).

Therefore, the population approximate MSE in our model is given by

σ2
u

H
+

σ2
eu

H2

|c|2
T

+ op(1)

and hence the estimated approximate MSE is

MSE(c) =
σ̂2

u

Ĥ
+

σ̂2
eu

Ĥ2

|c|2
T

=
σ̂2

u

f̂ ′f̂
T

+
σ̂2

eu

( f̂ ′f̂
T )2

|c|2
T

=
T σ̂2

u

π̂′z′zπ̂
+

σ̂2
eu

(π̂′z′zπ̂)2
|c|2T

=
T σ̂2

u

[(z′z)−1z′x]′z′z[(z′z)−1z′x]
+

σ̂2
eu

([(z′z)−1z′x]′z′z[(z′z)−1z′x])2
|c|2T

=
T σ̂2

u

x′z(z′z)−1z′x
+

σ̂2
eu

[x′z′(z′z)−1z′x]2
|c|2T

=
σ̂2

u
x′x
T r2

T (c)
+

σ̂2
eu

[x′xT r2
T (c)]2

|c|2

=
σ̂2

u

µ̂2
xr2

T (c)
+

σ̂2
eu

[µ̂2
xr2

T (c)]2
|c|2,

thereby showing that Donald and Newey’s approximate MSE is also a function of canonical

correlations between regressors and instruments.

Thus, we see all three criteria are analytically connected through their dependence on

canonical correlations between regressors and instruments.
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3.5 Simulation

3.5.1 Design

We follow Donald and Newey (2001) and Hall and Peixe (2003) to design a Monte-Carlo

experiment using the simple linear IV model used in the previous sections:

yt = xtθ0 + ut,

xt = zt
′π0 + et, t = 1, 2, . . . , T.

For a fixed value of θ0 = 0.1 and for different specifications of π0, random samples are

generated under the assumption that vt ∼ N(0, Σv) where vt = [ut, et, z
′
t]
′. The main

diagonal of Σv are all set to unity; the only non-zero off diagonal elements are cov(ut, et) =

σue, that is, Σv(1, 2) and Σv(2, 1). Hahn and Hausman (2002) show that this specification

implies a theoretical first stage R-squared of the form

R2
f =

π′0π0

π′0π0 + 1
. (3.5.1)

We consider three models that differ in the specification of the π0 vector. Models 1 and 2

below are the models used by Donald and Newey (2001). Within the three models, each

experiment consists of a specification of (T, R2
f , σue, qmax). In Model 1, for a given value of

R2
f , the ith element of π0 is given by

π
(1)
0,i = c(qmax)

(
1− i

qmax + 1

)4

for i = 1, . . . , qmax, (3.5.2)

where the constant c(qmax) is chosen so that π
(1)
0,i
′π(1)

0,i =
R2

f

(1−R2
f )

, while in Model 2 it is given

by

π
(2)
0,i = π

(2)
0 =

√√√√ R2
f

qmax(1−R2
f )

for i = 1, . . . , qmax. (3.5.3)

For each model, experiments are conducted with the following specifications:

T ∈ {100, 500}, R2
f ∈ {0.1, 0.5, }, σue ∈ {0.1, 0.5, 0.9}, and qmax ∈ {20, 30}.
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In Model 1, one has apriori knowledge that instruments are from the best quality to

the worst, as given by (3.5.2). But a selection criterion does not say in which order the

instruments should be selected, and so, one could be curious to know what might happen

if selection proceeds from the worst quality instrument to the best instead of the other

way around. Therefore, we follow two selection strategies, namely, selection strategy 1 and

selection strategy 2. Under strategy 1, the selection vectors are given by ci = [ı′i, 0
′
qmax−i]

′

and ıi is a i × 1 vector of ones and 0qmax−i is a (qmax − i) × 1 vector of zeros and thus

selection proceeds from the best quality instrument to the worst. Under strategy 2, they

are given by ci = [0′i−1, ı
′
qmax−i+1]

′ where 0i−1 is a (i− 1)× 1 vector of zeros and ıqmax−i+1

is a (qmax − i + 1) × 1 vector of ones and thus selection proceeds from the worst quality

instrument to the best. In Model 2, where no apriori information exists about the quality

of the instruments, we use selection strategy 1 and thus selection proceeds from the first

element in the candidate set to the last.

We note that in the above three cases, the instruments are selected in an increasing

sequence of one, two, three, and so on, up to a total of qmax. Thus there are qmax selection

vectors. Each time, the selection vector is augmented by retaining the previously included

instruments and adding to the vector the next instrument from the candidate set. But

it is also of interest to explore the consequences of including different combinations of

redundant and non-redundant instruments. To investigate such consequences, we consider

a third model by modifying Model 1 along the lines of Hall and Peixe (2003). Because the

total number of possible combinations of instruments quickly grows large with the value of

qmax, we set a small value to qmax, equal to 8. Thus, π0 and zt are 8× 1 vectors. Even this

small value of qmax generates 255 possible combinations of instruments. For a given value

of R2
f , the ith element of π0 is generated by the scheme

π0,i = c(qmax)
(

1− i

qmax + 1

)4

, i = 1, 2;

= 0 for i = 3, . . . , qmax,
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where the constant c(qmax) is chosen so that π′0π0 =
R2

f

(1−R2
f )

. Each experiment consists

of a specification of (T,R2
f , σue, qmax) from the following sets: T ∈ {100, 500}, R2

f ∈
{0.1, 0.5, }, σue ∈ {0.1, 0.5, 0.9}, and qmax ∈ {8}. The selection vectors ck are com-

prised of combinations of i ones and 8− i zeros, k = 1, . . . , 255; i = 1, . . . , 8. As in Hall and

Peixe (2003), (zt,3, zt,4, . . . , zt,8) are redundant given (zt,1, zt,2) and so (zt,1, zt,2) constitute

the “relevant” instruments. For i > 2, zt(ck) contains i− 2 redundant instruments.

Because the total number of possible selection vectors is large, following Hall and Peixe

(2003) we group these possibilities into six cases: 1R, 2R, 1R/I, 2R/I∗, I and all, where

1R denotes the cases in which c = (a, 0′6)
′ for a ∈ {(1, 0), (0, 1)}, implying that that the

selection vector consists of only one of the relevant instruments; 2R denotes the case in

which c = (1, 1, 0′6)
′, indicating that the selection vector consists of only both relevant

instruments; 1R/I denotes the cases in which c = (a′, b′)′ for a given above and b 6= 06,

meaning that the selection vector consists of one relevant instrument and at least one

redundant instrument; 2R/I∗ denotes the cases in which c = (1, 1, d′)′ and d 6= 06 or

i6, that is, the selection vector consists of both relevant and at least one but not all six

redundant instruments; I denotes the cases in which c = (0, 0, b′)′ for b given above,

implying that the selection vector consists of only redundant instruments; and finally, all

denotes the case in which c = ı′8, indicating that the selection vector contains all eight

instruments, the two relevant instruments as well as the six redundant instruments.

To assess the relative performance of the CCIC, the RMSC and the approximate MSE,

we compare median bias of the post selection estimator and coverage probability of 90%

confidence intervals.

3.5.2 Results

The results are presented in Tables 3.1 through 3.14. All results correspond to 10,000

replications. First we look at the performance of the three criteria in terms of median bias.
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We begin with Model 1 under strategy 1. Recall that this is a case where the practitioner

has prior knowledge that all instruments in the candidate set are relevant but the relevance

is of a declining one. The order of selection of instruments is from the best quality to the

worst. The results for this case are shown in Tables 3.1 through 3.4. We find that for

both sizes of the candidate set, that is, qmax = 20 and qmax = 30, with T = 100, when

the first stage R-square, R2
f = 0.1 [Tables 3.1 and 3.3], for all values of endogeneity, σue, a

unique ranking emerges: CCIC ranks higher than approximate MSE which, in turn, ranks

higher than RMSC. However, when R2
f = 0.5 [Tables 3.2 and 3.4], the median bias becomes

very similar under each criterion and thus no unique ranking becomes possible. Also, with

T = 500, no unique ranking emerges under either value of R2
f .

Next, we look at Model 1 under strategy 2. The results of this case are presented in

Tables 3.5 through 3.8. Recall that here the order of selection of instruments is reversed,

that is, selection proceeds from the worst quality to the best. When T = 100, we find that

a unique ranking emerges: approximate MSE performs better than CCIC which, in turn,

performs better than RMSC, for all values of qmax, R2
f and σue, except for the case where

qmax = 30, R2
f = 0.1, σue = 0.1 in Table 3.7. When sample size increases to T = 500, at

R2
f = 0.1 a unique ranking still emerges and approximate MSE still does the best but CCIC

and RMSC switch ranks. However, at R2
f = 0.5, no unique ranking of the three criteria

becomes possible.

The results of Model 2, where the instruments are of equal relevance, are shown in

Tables 3.9 through 3.12. Tables 3.9 and 3.11 indicate that at R2
f = 0.1, a unique ranking

emerges for both sizes of the candidate set qmax, for both sample sizes T , and for all values

of the endogeneity parameter σue. The CCIC ranks higher than MSE which, in turn,

ranks higher than RMSC. Tables 3.10 and 3.12 reveal that at R2
f = 0.5, similar result

holds. CCIC tends to outrank MSE which, in turn, outranks RMSC.

In Model 3, where the candidate set consists of a combination of both relevant and irrel-

evant instruments, Table 3.13 shows that at R2
f = 0.1, a unique ranking of the three criteria
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emerges: CCIC ranks higher than RMSC which, in turn, ranks higher than approximate

MSE. Table 3.14 shows that when the first stage R-square increases to R2
f = 0.5, a unique

ranking of CCIC and RMSC no longer holds as they perform almost equally well, but the

canonical correlation based criteria still rank higher than the approximate MSE.

Finally, we look at the coverage rate. Inspection of the results in Tables 3.1 through

3.14 reveals that no unique ranking of the three criteria in terms of coverage rate becomes

possible except in only two cases where R2
f = 0.5 and T = 500. In Model 1 under strategy 1

where the selection is from the best quality to the worst [Table 3.2], MSE outranks RMSC

which, in turn, outranks CCIC. In Model 2 where instruments are equally relevant [Table

3.12], RMSC ranks higher than MSE which, in turn, ranks higher than CCIC.

3.6 Conclusions

This chapter set out by raising three questions relating to three recent methods of in-

strument selection in econometrics. The first question concerns the analytical connection

among them. Because CCIC and RMSC are based on canonical correlations, it is no wonder

that they would be a function of canonical correlations. However, what was not clear is

whether approximate MSE could also be a function of canonical correlations. Our analytical

investigation shows that it is.

The second question under investigation was whether a unique ranking of the three

methods is possible in terms of the finite sample behavior of the post selection estimator.

Simulation results reveal that the answer to this question is a conditional one, in the sense

that, a unique ranking emerges under certain parameter configurations while it does not

under others.

The third question raised was what guidance we could provide a practitioner as to which

of these three methods one should use in any practical application of interest. In light of

the nature of the second answer, the answer to the third question is obviously a conditional
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one. For example, a practitioner would be better off implementing CCIC if the practitioner

is aware that all the instruments in the candidate set are relevant but the relevance is of

a declining one and the first stage R-square is small, or that all instruments are equally

relevant and the first stage R-square is small, or if the practitioner is not sure about the

composition of the candidate set and it is possible that the candidate set could contain

a mix of both relevant and irrelevant instruments. On the other hand, if one is aware

that all instruments are relevant but the relevance is of an increasing one and the the first

stage R-square is small, one would be better off implementing approximate MSE. In other

situations one would do about equally well using any of the three criteria. Finally, from

our study, no clear guidance emerges in terms of coverage rate.
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Mathematical Appendix

Proof of Proposition 3.3.1

The log-likelihood function implied by the model is

L(ψ0) = −Tp

2
ln(2π) +

T

2
ln |Σ−1| − 1

2

T∑

t=1

{(yt − x′tθ0) (xt − π0zt)′}Σ−1{
(yt − x′tθ0)

(xt − π0zt)
}

where

[
(yt − x′tθ0) (xt − π0zt)′

]
Σ−1




(yt − x′tθ0)

(xt − π0zt)




=
[
(yt − x′tθ0) (xt − π0zt)′

]



(σ2
u − ΣueΣ−1

ee Σeu)−1 −(σ2
u − ΣueΣ−1

ee Σeu)−1ΣueΣ−1
ee

−Σ−1
ee Σeu(σ2

u − ΣueΣ−1
ee Σeu)−1 (Σee − Σeu(σ2

u)−1Σue)−1




×




(yt − x′tθ0)

(xt − π0zt)




= (yt − x′tθ0)(σ2
u − ΣueΣ−1

ee Σeu)−1(yt − x′tθ0)

−(xt − π0zt)′Σ−1
ee Σeu(σ2

u − ΣueΣ−1
ee Σeu)−1(yt − x′tθ0)

−(yt − x′tθ0)(σ2
u − ΣueΣ−1

ee Σeu)−1ΣueΣ−1
ee (xt − π0zt)

+(xt − π0zt)′(Σee − Σeu(σ2
u)−1Σue)−1(xt − π0zt)

= (yt − x′tθ0)(σ2
u − ΣueΣ−1

ee Σeu)−1(yt − x′tθ0)

−2(yt − x′tθ0)(σ2
u − ΣueΣ−1

ee Σeu)−1ΣueΣ−1
ee (xt − π0zt)

+(xt − π0zt)′(Σee − Σeu(σ2
u)−1Σue)−1(xt − π0zt)

72



So, the score with respect to the parameter θ on the endogenous regressor xt is given by

∂L(ψ0)
∂θ

=
T∑

t=1

sθ,t(ψ0)

=
T∑

t=1

xt(yt − x′tθ0)(σ2
u − ΣueΣ−1

ee Σeu)−1 −
T∑

t=1

xt(σ2
u − ΣueΣ−1

ee Σeu)−1ΣueΣ−1
ee (xt − π0zt)

= (σ2
u − ΣueΣ−1

ee Σeu)−1
T∑

t=1

[xt(yt − x′tθ0)− xtΣueΣ−1
ee (xt − π0zt)]

= (σ2
u − ΣueΣ−1

ee Σeu)−1
T∑

t=1

[xtut(θ0)− xtΣueΣ−1
ee et]

= (σ2
u − ΣueΣ−1

ee Σeu)−1
T∑

t=1

xt[ut(θ0)− ΣueΣ−1
ee et]

= δ−1
T∑

t=1

xt[ut(θ0)− ΣueΣ−1
ee et], where δ = (σ2

u − ΣueΣ−1
ee Σeu).

Note that

ut = ΣueΣ−1
ee et + ξt

= E(ut|et) + ξt.

Because E(ut|et) = ΣueΣ−1
ee et is a linear projection of ut on et, the prediction error, ut −

E(ut|et) = ξt, is uncorrelated with the conditioning variable et : Eξte
′
t = 0.

The population long run canonical correlations between the score sθ,t(ψ0) and the pop-

ulation moment f(vt, θ0) are solutions to the determinantal equation |V −1
θ − ρ2Iθ| = 0

where

V −1
θ = lim

T→∞
E[

1√
T

T∑

t=1

sθ,t(ψ0)][
1√
T

T∑

t=1

f(vt, θ0)]′[ lim
T→∞

E(
1√
T

T∑

t=1

f(vt, θ0))(
1√
T

T∑

t=1

f(vt, θ0))′]−1

× lim
T→∞

E[
1√
T

T∑

t=1

f(vt, θ0)][
1√
T

T∑

t=1

sθ,t(ψ0)]′

= P1P
−1
2 P3;
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P1 = lim
T→∞

E[
1√
T

T∑

t=1

sθ,t(ψ0)][
1√
T

T∑

t=1

f(vt, θ0)]′,

P2 = lim
T→∞

E(
1√
T

T∑

t=1

f(vt, θ0))(
1√
T

T∑

t=1

f(vt, θ0))′,

P3 = lim
T→∞

E[
1√
T

T∑

t=1

f(vt, θ0)][
1√
T

T∑

t=1

sθ,t(ψ0)]′,

and

Iθ = lim
T→∞

E(
1√
T

T∑

t=1

sθ,t(ψ0))(
1√
T

T∑

t=1

sθ,t(ψ0))′.

Now

P1 = lim
T→∞

E[
1√
T

T∑

t=1

sθ,t(ψ0)][
1√
T

T∑

t=1

f(vt, θ0)]′

= lim
T→∞

E[
1√
T

1
δ

T∑

t=1

xtξt][
1√
T

T∑

t=1

ztut]′

=
1
δ

lim
T→∞

E[
1
T

T∑

t=1

T∑

s=1

xtξtu
′
sz
′
s]

=
1
δ

lim
T→∞

E[
1
T

T∑

t=1

T∑

s=1

xtξt(ΣueΣ−1
ee es + ξs)′z′s]

=
1
δ

lim
T→∞

1
T

T∑

t=1

T∑

s=1

E[xtξt(e′sΣ
−1
ee Σeu + ξ′s)z

′
s]

=
1
δ

lim
T→∞

1
T

T∑

t=1

T∑

s=1

E[xtξte
′
sΣ

−1
ee Σeuz′s + xtξtξ

′
sz
′
s]

=
1
δ

lim
T→∞

1
T

T∑

t=1

T∑

s=1

E[xtξte
′
sΣ

−1
ee Σeuz′s]

+
1
δ

lim
T→∞

1
T

T∑

t=1

T∑

s=1

E[xtξtξ
′
sz
′
s]

=
1
δ

lim
T→∞

1
T

T∑

t=1

T∑

s=1

E[(π0zt + et)ξte
′
sΣ

−1
ee Σeuz′s]

+
1
δ

lim
T→∞

1
T

T∑

t=1

T∑

s=1

E[xtξtξ
′
sz
′
s]
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=
1
δ

lim
T→∞

1
T

T∑

t=1

T∑

s=1

E[π0ztξte
′
sΣ

−1
ee Σeuz′s] +

1
δ

lim
T→∞

1
T

T∑

t=1

T∑

s=1

E[etξte
′
sΣ

−1
ee Σeuz′s]

+
1
δ

lim
T→∞

1
T

T∑

t=1

T∑

s=1

E[xtξtξ
′
sz
′
s]

=
1
δ

lim
T→∞

1
T

T∑

t=1

T∑

s=1

E[ξte
′
sΣ

−1
ee Σeuπ0ztz

′
s] +

1
δ

lim
T→∞

1
T

T∑

t=1

T∑

s=1

E[etξte
′
sΣ

−1
ee Σeuz′s]

+
1
δ

lim
T→∞

1
T

T∑

t=1

T∑

s=1

E[xtξtξ
′
sz
′
s]

=
1
δ

lim
T→∞

1
T

T∑

t=1

T∑

s=1

E[E(ξte
′
sΣ

−1
ee Σeuπ0ztz

′
s)|zs, zt] +

1
δ

lim
T→∞

1
T

T∑

t=1

T∑

s=1

E[etξte
′
sΣ

−1
ee Σeuz′s]

+
1
δ

lim
T→∞

1
T

T∑

t=1

T∑

s=1

E[xtξtξ
′
sz
′
s]

=
1
δ

lim
T→∞

1
T

T∑

t=1

T∑

s=1

E[xtξtξ
′
sz
′
s] since Eξte

′
s = 0 for all s and t

=
1
δ

lim
T→∞

1
T

(Tσ2
ξΣxz) since Eξtξ

′
s = 0 for all s 6= t

=
σ2

ξ

δ
Σxz,

where Σxz = E(xtz
′
t).

P2 = lim
T→∞

E(
1√
T

T∑

t=1

f(vt, θ0))(
1√
T

T∑

t=1

f(vt, θ0))′

= lim
T→∞

1
T

E[(
T∑

t=1

ztut)(
T∑

t=1

ztut)′]

= lim
T→∞

1
T

E
T∑

t=1

T∑

s=1

ztutu
′
sz
′
s

= lim
T→∞

1
T

T∑

t=1

T∑

s=1

E(ztutu
′
sz
′
s)

= lim
T→∞

1
T

T∑

t=1

E(u2
t )E(ztz

′
t) [zt is independent of ut, and E(utu

′
s) = 0 for s 6= t]

75



Again,

E(u2
t ) = E[E(ut|et) + ξt]2

= E[ΣueΣ−1
ee et + ξt]2

= ΣueΣ−1
ee ΣeeΣ−1

ee Σeu + 2ΣueΣ−1
ee E(etξt) + E(ξ2

t )

= ΣueΣ−1
ee Σeu + σ2

ξ [since E(etξt) = 0]

Therefore,

P2 = lim
T→∞

1
T

T (ΣueΣ−1
ee Σeu + σ2

ξ )Σzz

= (ΣueΣ−1
ee Σeu + σ2

ξ )Σzz

where Σzz = E(ztz
′
t).

P3 = (P1)′

= (
σ2

ξ

δ
Σxz)′

=
σ2

ξ

δ
Σzx

where Σzx = E(ztx
′
t).

Finally,

Iθ = lim
T→∞

E(
1√
T

T∑

t=1

sθ,t(ψ0))(
1√
T

T∑

t=1

sθ,t(ψ0))′

= lim
T→∞

E(
1√
T

1
δ

T∑

t=1

xtξt)(
1√
T

1
δ

T∑

t=1

xtξt)′

=
1
δ2

lim
T→∞

T∑

t=1

T∑

s=1

E(xtξtξ
′
sx
′
s)

=
1
δ2

lim
T→∞

1
T

T∑

t=1

E(ξ2
t )E(xtx

′
t) [E(ξtξ

′
s) = 0 for t 6= s and ξt is uncorrelated with xt]

=
1
δ2

lim
T→∞

1
T

Tσ2
ξΣxx

=
σ2

ξ

δ2
Σxx
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where Σxx = E(xtx
′
t).

Hence,

V −1
θ − ρ2Iθ =

σ2
ξ

δ
Σxz[(ΣueΣ−1

ee Σeu + σ2
ξ )Σzz]−1

σ2
ξ

δ
Σzx − ρ2

σ2
ξ

δ2
Σxx

=
σ2

ξ

δ2
[

σ2
ξ

ΣueΣ−1
ee Σeu + σ2

ξ

ΣxzΣ−1
zz Σzx − ρ2Σxx]

Therefore,

|V −1
θ − ρ2Iθ| = 0

⇒ |ΣxzΣ−1
zz Σzx − ρ2 1

k
Σxx| = 0

where

k =
σ2

ξ

ΣueΣ−1
ee Σeu + σ2

ξ

.

Thus we note that while the contemporaneous canonical correlations between the regressor

vector xt and the instrument vector zt are given by the solutions of the determinantal

equation

|ΣxzΣ−1
zz Σzx − r2Σxx| = 0,

the long run canonical correlations between the score vector sθ,t(ψ0) and the population

moment vector f(vt, θ0) are given by the solutions of the determinantal equation

|ΣxzΣ−1
zz Σzx − ρ2

k
Σxx| = 0.

Hence the proof is complete. ¥
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Table 3.1: Properties of MSE(c), CCIC(c) & RMSC(c).

Model 1 under strategy 1: Best to Worst

qmax = 20 T=100 T=500

R2
f = 0.1; σue = 0.1.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.032 0.021 0.041 0.012 0.008 0.012

90% Nom. Cov Rate 0.922 0.957 0.947 0.898 0.913 0.924

R2
f = 0.1; σue = 0.5.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.163 0.113 0.188 0.056 0.051 0.061

Cov Rate 0.756 0.872 0.818 0.844 0.874 0.868

R2
f = 0.1; σue = 0.9.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.229 0.191 0.341 0.079 0.087 0.105

Cov Rate 0.651 0.724 0.470 0.787 0.787 0.762

Notes: Nominal Coverage Rate = 90%; Best to Worst indicates that the order of

selection of instruments is from the best quality to the worst.
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Table 3.2: Properties of MSE(c), CCIC(c) & RMSC(c).

Model 1 under strategy 1: Best to Worst

qmax = 20 T=100 T=500

R2
f = 0.5; σue = 0.1.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.008 0.007 0.006 0.002 0.002 0.003

Cov Rate 0.898 0.904 0.914 0.901 0.898 0.900

R2
f = 0.5; σue = 0.5.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.033 0.031 0.034 0.010 0.010 0.010

Cov Rate 0.862 0.875 0.893 0.898 0.893 0.896

R2
f = 0.5; σue = 0.9.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.053 0.059 0.059 0.013 0.015 0.015

Cov Rate 0.809 0.798 0.831 0.883 0.873 0.881

Notes: Nominal Coverage Rate = 90%; Best to Worst indicates that the order of

selection of instruments is from the best quality to the worst.
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Table 3.3: Properties of MSE(c), CCIC(c) & RMSC(c).

Model 1 under strategy 1: Best to Worst

qmax = 30 T=100 T=500

R2
f = 0.1; σue = 0.1.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.042 0.029 0.046 0.016 0.010 0.013

Cov Rate 0.921 0.965 0.951 0.890 0.911 0.924

R2
f = 0.1; σue = 0.5.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.191 0.133 0.213 0.072 0.065 0.077

Cov Rate 0.723 0.880 0.798 0.817 0.859 0.851

R2
f = 0.1; σue = 0.9.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.285 0.235 0.384 0.104 0.117 0.132

Cov Rate 0.595 0.700 0.401 0.749 0.735 0.701

Notes: Nominal Coverage Rate = 90%; Best to Worst indicates that the order of

selection of instruments is from the best quality to the worst.
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Table 3.4: Properties of MSE(c), CCIC(c) & RMSC(c).

Model 1 under strategy 1: Best to Worst

qmax = 30 T=100 T=500

R2
f = 0.5; σue = 0.1.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.011 0.009 0.009 0.003 0.002 0.003

Cov Rate 0.897 0.904 0.921 0.903 0.901 0.908

R2
f = 0.5; σue = 0.5.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.048 0.045 0.046 0.012 0.012 0.013

Cov Rate 0.843 0.858 0.885 0.889 0.885 0.890

R2
f = 0.5; σue = 0.9.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.067 0.078 0.075 0.019 0.022 0.021

Cov Rate 0.780 0.753 0.810 0.868 0.844 0.862

Notes: Nominal Coverage Rate = 90%; Best to Worst indicates that the order of

selection of instruments is from the best quality to the worst.
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Table 3.5: Properties of MSE(c), CCIC(c) & RMSC(c).

Model 1 under strategy 2: Worst to Best

qmax = 20 T=100 T=500

R2
f = 0.1; σue = 0.1.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.022 0.098 0.099 0.024 0.086 0.034

Cov Rate 0.944 0.998 0.967 0.902 0.997 0.915

R2
f = 0.1; σue = 0.5.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.091 0.429 0.449 0.110 0.461 0.201

Cov Rate 0.804 0.952 0.669 0.648 0.960 0.564

R2
f = 0.1; σue = 0.9.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.057 0.802 0.807 0.001 0.799 0.741

Cov Rate 0.818 0.725 0.046 0.814 0.740 0.018

Notes: Nominal Coverage Rate = 90%; Worst to Best indicates that the order of

selection of instruments is from the worst quality to the best.
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Table 3.6: Properties of MSE(c), CCIC(c) & RMSC(c).

Model 1 under strategy 2: Worst to Best

qmax = 20 T=100 T=500

R2
f = 0.5; σue = 0.1.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.015 0.020 0.047 0.003 0.003 0.088

Cov Rate 0.895 0.939 0.969 0.903 0.899 0.966

R2
f = 0.5; σue = 0.5.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.078 0.102 0.235 0.019 0.019 0.019

Cov Rate 0.746 0.822 0.811 0.876 0.867 0.867

R2
f = 0.5; σue = 0.9.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.011 0.188 0.439 0.033 0.033 0.033

Cov Rate 0.821 0.550 0.366 0.812 0.792 0.788

Notes: Nominal Coverage Rate = 90%; Worst to Best indicates that the order of

selection of instruments is from the worst quality to the best.
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Table 3.7: Properties of MSE(c), CCIC(c) & RMSC(c).

Model 1 under strategy 2: Worst to Best

qmax = 30 T=100 T=500

R2
f = 0.1; σue = 0.1.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.017 0.100 0.088 0.034 0.101 0.089

Cov Rate 0.954 0.995 0.966 0.896 0.998 0.958

R2
f = 0.1; σue = 0.5.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.084 0.432 0.449 0.053 0.463 0.440

Cov Rate 0.856 0.949 0.665 0.727 0.964 0.524

R2
f = 0.1; σue = 0.9.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.112 0.804 0.809 0.007 0.814 0.804

Cov Rate 0.812 0.716 0.043 0.794 0.738 0.005

Notes: Nominal Coverage Rate = 90%; Worst to Best indicates that the order of

selection of instruments is from the worst quality to the best.
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Table 3.8: Properties of MSE(c), CCIC(c) & RMSC(c).

Model 1 under strategy 2: Worst to Best

qmax = 30 T=100 T=500

R2
f = 0.5; σue = 0.1.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.024 0.042 0.052 0.005 0.005 0.009

Cov Rate 0.894 0.991 0.971 0.906 0.896 0.913

R2
f = 0.5; σue = 0.5.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.093 0.216 0.255 0.027 0.027 0.048

Cov Rate 0.657 0.954 0.817 0.842 0.826 0.782

R2
f = 0.5; σue = 0.9.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.007 0.414 0.450 0.005 0.050 0.293

Cov Rate 0.840 0.847 0.395 0.839 0.661 0.338

Notes: Nominal Coverage Rate = 90%; Worst to Best indicates that the order of

selection of instruments is from the worst quality to the best.
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Table 3.9: Properties of MSE(c), CCIC(c) & RMSC(c).

Model 2: Equally Relevant Instruments

qmax = 20 T=100 T=500

R2
f = 0.1; σue = 0.1.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.058 0.053 0.067 0.025 0.024 0.032

Cov Rate 0.945 0.988 0.954 0.901 0.968 0.935

R2
f = 0.1; σue = 0.5.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.303 0.290 0.338 0.167 0.133 0.176

Cov Rate 0.676 0.925 0.708 0.645 0.873 0.721

R2
f = 0.1; σue = 0.9.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.548 0.500 0.602 0.263 0.233 0.301

Cov Rate 0.489 0.719 0.144 0.628 0.693 0.322

Notes: Nominal Coverage Rate = 90%.
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Table 3.10: Properties of MSE(c), CCIC(c) & RMSC(c).

Model 2: Equally Relevant Instruments

qmax = 20 T=100 T=500

R2
f = 0.5; σue = 0.1.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.015 0.022 0.023 0.004 0.004 0.008

Cov Rate 0.899 0.921 0.943 0.909 0.903 0.913

R2
f = 0.5; σue = 0.5.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.092 0.094 0.101 0.018 0.018 0.038

Cov Rate 0.738 0.778 0.857 0.876 0.861 0.855

R2
f = 0.5; σue = 0.9.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.168 0.170 0.183 0.046 0.033 0.063

Cov Rate 0.641 0.495 0.642 0.748 0.792 0.748

Notes: Nominal Coverage Rate = 90%.

87



Table 3.11: Properties of MSE(c), CCIC(c) & RMSC(c).

Model 2: Equally Relevant Instruments

qmax = 30 T=100 T=500

R2
f = 0.1; σue = 0.1.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.065 0.064 0.075 0.035 0.026 0.042

Cov Rate 0.949 0.992 0.964 0.895 0.980 0.938

R2
f = 0.1; σue = 0.5.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.330 0.329 0.363 0.215 0.163 0.218

Cov Rate 0.695 0.937 0.696 0.601 0.907 0.693

R2
f = 0.1; σue = 0.9.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.611 0.578 0.656 0.323 0.258 0.376

Cov Rate 0.486 0.717 0.105 0.585 0.744 0.227

Notes: Nominal Coverage Rate = 90%.
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Table 3.12: Properties of MSE(c), CCIC(c) & RMSC(c).

Model 2: Equally Relevant Instruments

qmax = 30 T=100 T=500

R2
f = 0.5; σue = 0.1.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.023 0.020 0.026 0.006 0.006 0.011

Cov Rate 0.892 0.960 0.946 0.905 0.898 0.920

R2
f = 0.5; σue = 0.5.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.125 0.112 0.128 0.031 0.029 0.049

Cov Rate 0.642 0.869 0.848 0.832 0.824 0.851

R2
f = 0.5; σue = 0.9.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.205 0.199 0.223 0.068 0.050 0.085

Cov Rate 0.609 0.705 0.597 0.696 0.656 0.705

Notes: Nominal Coverage Rate = 90%.
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Table 3.13: Properties of MSE(c), CCIC(c) & RMSC(c).

Model 3: Combinations of Relevant & Irrelevant Instruments

qmax = 8 T=100 T=500

R2
f = 0.1; σue = 0.1.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.071 0.027 0.042 0.030 0.004 0.005

Cov Rate 0.984 0.935 0.947 0.958 0.913 0.919

R2
f = 0.1; σue = 0.5.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.380 0.130 0.210 0.369 0.019 0.033

Cov Rate 0.740 0.841 0.804 0.733 0.901 0.897

R2
f = 0.1; σue = 0.9.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.799 0.214 0.477 0.813 0.030 0.084

Cov Rate 0.294 0.645 0.253 0.377 0.875 0.766

Notes: Nominal Coverage Rate = 90%.
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Table 3.14: Properties of MSE(c), CCIC(c) & RMSC(c).

Model 3: Combinations of Relevant & Irrelevant Instruments

qmax = 8 T=100 T=500

R2
f = 0.5; σue = 0.1.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.006 0.003 0.003 0.002 0.001 0.001

Cov Rate 0.911 0.903 0.906 0.905 0.902 0.903

R2
f = 0.5; σue = 0.5.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.031 0.012 0.017 0.006 0.002 0.001

Cov Rate 0.884 0.901 0.903 0.904 0.908 0.908

R2
f = 0.5; σue = 0.9.

MSE CCIC RMSC MSE CCIC RMSC

Med Bias 0.124 0.019 0.027 0.024 0.002 0.002

Cov Rate 0.720 0.877 0.876 0.860 0.900 0.898

Notes: Nominal Coverage Rate = 90%.
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Chapter 4

Selection of Instruments when the

Number of Instruments Tends to

Infinity

4.1 Introduction

While Hall and Peixe (2003) and Hall and Inoue (2003) keep the candidate set of instruments

zt and the candidate set of moments f(.), respectively, fixed, when sample size T increases,

Donald and Newey (2001) allow the candidate set of instruments zt to increase with the

sample size T . In this chapter, our objective is to extend the statistical theory of the CCIC

by considering the case in which the candidate set of instruments increases with the sample

size. We first define canonical correlations where the regressor xt is a vector and then

extend the statistical theory of the CCIC by limiting our focus to the case where xt is a

scalar.

With this objective in mind we let vt,qT = (x
′
t, z

′
t,qT

)′ where: (i) xt is p × 1, zt,qT is

qT × 1 and qT ≥ p; (ii) for every T , {vt,qT ∈ V; t = 1, 2, . . . , T ; V ⊆ <p+qT } is a sequence

of covariance stationary random vectors with mean vector zero and variance-covariance
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matrix

Ωv
(p×p)

= E( vt,qT

(p+qT )×1

vt,qT
′

1×(p+qT )

) =




Extx
′
t Extz

′
t,qT

Ezt,qT xt
′ Ezt,qT z

′
t,qT




=




Ωxx
(p×p)

Ωxz
(p×qT )

Ωzx
(qT×p)

Ωzz
(qT×qT )




(4.1.1)

where the second subscript qT on the instrument vector zt indicates that the size, q, of the

instrument vector zt, now depends on the sample size T . So {zt,qT } constitutes a double

array of random variables.

4.2 Definition and Existence of Canonical Correlations

We define the squared population canonical correlations between xt and zt,qT denoted by

{ρ2
i,qT

; ı = 1, 2, . . . , p}, where ρi,qT ≥ ρi+1,qT for i = 1, 2, . . . , p − 1, as solutions to the

determinantal equation

| Ωxz
(p×qT )

Ω−1
zz

(qT×qT )

Ωzx
(qT×p)

− ρ2
qT

Ωxx
(p×p)

| = 0. (4.2.1)

However, because Ωzz becomes infinite dimensional when qT → ∞ as T → ∞, for these

solutions to exist, certain structure on zt and Ωzz needs to be imposed.

Case: p = 1.

To explore conditions that guarantee the existence, we begin with the case where p = 1,

that is, regressor xt is a scalar.

To fix the idea, we begin with a simple linear IV model:

yt
(1×1)

= xt
(1×1)

θ0
(1×1)

+ ut
(1×1)

(4.2.2)

xt
(1×1)

= γqT

′
(1×qT )

zt,qT

(qT×1)

+ εt
(1×1)

(4.2.3)

zt,q∞ = limT→∞zt,qT (4.2.4)
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The regression (4.2.2) is the object of interest. The relation (4.2.3) states that the

regressor xt is stochastically related to qT instruments zt,qT . Finally, (4.2.4) indicates that

the number of instruments tends to infinity as the sample size T tends to infinity.

The population moment condition for IV estimation implied by the model is:

E[ zt,qT

(qT×1)

(yt − xtθ0)
(1×1)

] = 0
(qT×1)

. (4.2.5)

and the resulting IV estimator is:

θ̂T = { 1
T

T∑

t=1

xtz
′
t,qT

(
1
T

T∑

t=1

zt,qT z
′
t,qT

)−1
1
T

T∑

t=1

zt,qT xt
′}−1

1
T

T∑

t=1

xtz
′
t,qT

(
1
T

T∑

t=1

zt,qT z
′
t,qT

)−1
1
T

T∑

t=1

zt,qT yt

= {X ′
T ZT (Z ′T ZT )−1Z ′T XT }−1X ′

T ZT (Z ′T ZT )−1Z ′T YT (4.2.6)

We restrict attention to the ordered sequence of candidate sets {zt,qT } and consider the

following specification of the γ∞ vector.

Specification of γ∞:

∞∑

i=1

γ2
i < ∞, and there does not exist finite s such that γi = 0 for i > s. (4.2.7)

In other words, this is a case where every additional instrument is useful in approximating

xt.

For xt scalar, the determinantal equation (4.2.1) reduces to

Ωxz
(1×qT )

Ω−1
zz

(qT×qT )

Ωzx
(qT×1)

− ρ2
qT

Ωxx
(1×1)

= 0 (4.2.8)

or,

Extz
′
t,qT

(
Ezt,qT z

′
t,qT

)−1
Ezt,qT xt − ρ2

qT
Extx

′
t = 0. (4.2.9)

Thus the eigenvalue, which is the squared population canonical correlation, is given by

ρ2
qT

=

Ωxz
(1×qT )

Ω−1
zz

(qT×qT )

Ωzx
(qT×1)

Ωxx
(1×1)

=
Extz

′
t,qT

(
Ezt,qT z

′
t,qT

)−1
Ezt,qT xt

Ex2
t

(4.2.10)
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Therefore, for xt scalar, the squared population canonical correlation is equal to the squared

population multiple correlation coefficient, commonly denoted R2.

The corresponding squared sample canonical correlation r2
qT

is given by the solution of

1
T

T∑

t=1

xtz
′
t,qT

(
1
T

T∑

t=1

zt,qT z
′
t,qT

)−1
1
T

T∑

t=1

zt,qT xt
′ − r2

qT

1
T

T∑

t=1

xtx
′
t = 0 (4.2.11)

Thus,

r2
qT

=
1
T

∑T
t=1 xtz

′
t,qT

(
1
T

∑T
t=1 zt,qT z

′
t,qT

)−1
1
T

∑T
t=1 zt,qT xt

1
T

∑T
t=1 x2

t

(4.2.12)

Consistency and asymptotic normality of the linear IV estimator, and existence of the

inverses
(
Ezt,qT z

′
t,qT

)−1
and

(
1
T

∑T
t=1 zt,qT z

′
t,qT

)−1
and hence that of ρ2

qT
and r2

qT
take place

under certain conditions. Portnoy (1984, 1985) shows that such conditions place restrictions

on the design matrix ZT . They require that the empirical distribution of the vectors {zt,qT }
be near a distribution in <qT with an appropriately smooth density. He shows that these

conditions will hold in probability whenever the distribution of the sample {zt,qT } is not too

concentrated in any fixed direction, that is, the distribution of {a′zt,qT } does not depend

too strongly on the direction, a/||a||. Equivalently, the directions {zt,qT /||zt,qT ||} should be

at least somewhat smoothly distributed over the unit sphere. Such conditions rule out cases

where there may be different rates of information accumulating along different directions,

such as the case when there are both trending and non-trending regressors.

Following Portnoy (1984, 1985), we formally impose the conditions referred to above on

the design matrix Zt.

Conditions on ZT : Let

I(w, c) = {t = 1, 2, ..., T : |z′t,qT
w| ≤ c}

and let S be the ball in <qT of radius δ and S∗ be the sphere of radius 1.

(i) For any c > 0 and ε > 0, there are constants δ′ > 0 and C > 0 such that for all
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γ ∈ S, w ∈ S∗ and T=1, 2, ...

∑

t∈J

(z′t,qT
w)2 ≤ εT where J = I(γ, c) ∩ I(w, C).

(ii) There exist constants b and B with 0 < b ≤ B < ∞ such that

λmax(Z ′T ZT ) ≤ BT a.s., λmin(Z ′T ZT ) ≥ bT a.s.

Condition (i) above [Portnoy (1984, p. 1300)] is designed for the situation where

Cov(zt,qT ) = Ezt,qT z
′
t,qT

= I. It is innocuous because if it does not hold, then the transfor-

mation z̃t,qT = Ω−1/2
zz zt,qT , β = Ω1/2

zz γqT yields an equivalent problem with Cov(z̃t,qT ) = I.

Then under the assumption that in the population, {zt,qT } constitutes a sequence of

orthonormal vectors, and thus Ezt,qT z
′
t,qT

= I, the inverse (Ezt,qT z
′
t,qT

)−1 always exist in

the population. Again, by virtue of condition (ii), the inverse
(

1
T

∑T
t=1 zt,qT z

′
t,qT

)−1
always

exist in the sample. So, the existence of the population squared canonical correlation

ρ2
qT

=
Extz

′
t,qT

Ezt,qT xt

Ex2
t

(4.2.13)

and of the sample squared canonical correlation

r2
qT

=
1
T

∑T
t=1 xtz

′
t,qT

(
1
T

∑T
t=1 zt,qT z

′
t,qT

)−1
1
T

∑T
t=1 zt,qT xt

1
T

∑T
t=1 x2

t

(4.2.14)

is guaranteed.

4.3 Consistency of the Sample Canonical Correlation

Having guaranteed the existence of ρ2
qT

and r2
qT

, we now proceed to establish the consistency

of r2
qT

for ρ2
qT

. To this end, let

Extz
′
t,q∞Ezt,q∞xt = ξ < ∞. (4.3.1)

Then we have

Proposition 4.3.1 Assume that (i) {zt,qT } is a sequence of qT × 1 i.i.d. random vectors
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with E{zt,qT } = 0 and Cov{zt,qT } = I, (ii) {εt} is a sequence of i.i.d. random variables with

mean zero and variance σ2 and is uncorrelated with {zt,qT }, (iii) sup
T

max
t=1,...,T

||Extz
′
t,qT

|| ≤ k,

a finite constant, and (iv) qT
2

T → 0 . Then r2
qT

p→ ρ2
qT

.

Proof of Proposition 4.3.1:

By the triangle inequality,

| 1
T

T∑

t=1

xtz
′
t,qT

(
1
T

T∑

t=1

zt,qT z
′
t,qT

)−1
1
T

T∑

t=1

zt,qT xt − ξ|

≤ | 1
T

T∑

t=1

xtz
′
t,qT

(
1
T

T∑

t=1

zt,qT z
′
t,qT

)−1
1
T

T∑

t=1

zt,qT xt − Extz
′
t,qT

Ezt,qT xt|

+|Extz
′
t,qT

Ezt,qT xt − ξ|

= | 1
T

T∑

t=1

xtz
′
t,qT




(
1
T

T∑

t=1

zt,qT z
′
t,qT

)−1

− I


 1

T

T∑

t=1

zt,qT xt|

+| 1
T

T∑

t=1

xtz
′
t,qT

1
T

T∑

t=1

zt,qT xt − Extz
′
t,qT

Ezt,qT xt|

+|Extz
′
t,qT

Ezt,qT xt − ξ|

= A + B + C, say, (4.3.2)

where

A = | 1
T

T∑

t=1

xtz
′
t,qT




(
1
T

T∑

t=1

zt,qT z
′
t,qT

)−1

− I


 1

T

T∑

t=1

zt,qT xt|, (4.3.3)

B = | 1
T

T∑

t=1

xtz
′
t,qT

1
T

T∑

t=1

zt,qT xt −Extz
′
t,qT

Ezt,qT xt|, (4.3.4)

C = |Extz
′
t,qT

Ezt,qT xt − ξ|. (4.3.5)

Then,

B = | 1
T

T∑

t=1

xtz
′
t,qT

1
T

T∑

t=1

zt,qT xt − Extz
′
t,qT

Ezt,qT xt|

≤ || 1
T

T∑

t=1

xtz
′
t,qT

− Extz
′
t,qT

||
2

+2 ||Extz
′
t,qT

|| || 1
T

T∑

t=1

xtz
′
t,qT

−Extz
′
t,qT

|| (4.3.6)
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where

1
T

T∑

t=1

xtz
′
t,qT

− Extz
′
t,qT

=
1
T

T∑

t=1

(
γqT

′zt,qT + εt

)
z
′
t,qT

−E[
(
γqT

′zt,qT + εt

)
z
′
t,qT

]

=
1
T

T∑

t=1

γqT

′zt,qT z
′
t,qT

+
1
T

T∑

t=1

εtz
′
t,qT

− E(γqT

′zt,qT z
′
t,qT

)

[since E(εtz
′
t,qT

) = 0]

= γqT

′[
1
T

T∑

t=1

zt,qT z
′
t,qT

− Ezt,qT z
′
t,qT

] +
1
T

T∑

t=1

εtz
′
t,qT

.

(4.3.7)

Now, from our imposed condition on the sequence of γ’s it directly follows that, ||γqT || =

O(1).
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1
T

T∑

t=1

zt,qT z
′
t,qT

−Ezt,qT z
′
t,qT

=
1
T

T∑

t=1

zt,qT z
′
t,qT

− I

=
1
T

T∑

t=1




zt,1

zt,2

...

zt,qT




(
zt,1 zt,2 . . . zt,qT

)
− I

=
1
T

T∑

t=1




zt,1
2 zt,1zt,2 . . . zt,1zt,qT

zt,2zt,1 zt,2
2 . . . zt,2zt,qT

. . .

zt,qT zt,1 zt,qT zt,2 . . . zt,qT
2




− I

=




1
T

∑T
t=1 zt,1

2 − 1
Op( 1√

T
)

1
T

∑T
t=1 zt,1zt,2

Op( 1√
T

)

. . . 1
T

∑T
t=1 zt,1zt,qT

Op( 1√
T

)

1
T

∑T
t=1 zt,2zt,1

Op( 1√
T

)

1
T

∑T
t=1 zt,1

2 − 1
Op( 1√

T
)

. . . 1
T

∑T
t=1 zt,2zt,qT

Op( 1√
T

)

...
...

...
...

1
T

∑T
t=1 zt,qT zt,1

Op( 1√
T

)

1
T

∑T
t=1 zt,qT zt,2

Op( 1√
T

)

. . . 1
T

∑T
t=1 zt,qT

2 − 1
Op( 1√

T
)




(4.3.8)

Therefore, || 1T
∑T

t=1 zt,qT z
′
t,qT

− Ezt,qT z
′
t,qT

|| = Op( qT√
T

) [where we use the Frobenius norm:

||A|| =
√

tr(A′A)].

Next we note that, ε1z1,qT , ε2z2,qT , . . . , εT zT,qT
are a sequence of qT × 1 i.i.d. ran-

dom vectors with E (εtzt,qT ) = 0 by independence of εt and zt,qT , and Cov (εtzt,qT ) =

E (εtzt,qT zt,qT
′εt) = E

(
ε2
t

)
E (zt,qT zt,qT

′) = σ2I by E
(
ε2
t

)
= σ2 and E (zt,qT zt,qT

′) = I.
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Therefore, by Theorem 1.1 of Portnoy (1986) [p. 572], || 1T
∑T

t=1 εtz
′
t,qT

|| = Op( 1√
T

). Hence,

B = | 1
T

T∑

t=1

xtz
′
t,qT

1
T

T∑

t=1

zt,qT xt −Extz
′
t,qT

Ezt,qT xt|

≤ ||γqT
′[

1
T

T∑

t=1

zt,qT z
′
t,qT

−Ezt,qT z
′
t,qT

] +
1
T

T∑

t=1

εtz
′
t,qT

||2

+ 2 ||Extz
′
t,qT

|| || 1
T

T∑

t=1

xtz
′
t,qT

−Extz
′
t,qT

||

≤ ||γqT

′[
1
T

T∑

t=1

zt,qT z
′
t,qT

−Ezt,qT z
′
t,qT

]||2 + 2||γqT

′[
1
T

T∑

t=1

zt,qT z
′
t,qT

− Ezt,qT z
′
t,qT

]|| || 1
T

T∑

t=1

εtz
′
t,qT

||

+ || 1
T

T∑

t=1

εtz
′
t,qT

||2 + 2 ||Extz
′
t,qT

|| || 1
T

T∑

t=1

xtz
′
t,qT

−Extz
′
t,qT

||

≤ O(1)Op(
qT

2

T
) + 2 O(1)Op(

qT√
T

)Op(
1√
T

) + Op(
1
T

) + 2 O(1)Op(
qT√
T

)

= Op(
qT√
T

)

= op(1) since
qT√
T
→ 0.

(4.3.9)

Again,

A = | 1
T

T∑

t=1

xtz
′
t,qT

I−1(I − 1
T

T∑

t=1

zt,qT z
′
t,qT

)(
1
T

T∑

t=1

zt,qT z
′
t,qT

)−1 1
T

T∑

t=1

zt,qT xt|

[Using E−1 − F−1 = F−1(F − E)E−1]

≤ || 1
T

T∑

t=1

xtz
′
t,qT

|| ||I − 1
T

T∑

t=1

zt,qT z
′
t,qT

|| ||
(

1
T

T∑

t=1

zt,qT z
′
t,qT

)−1
1
T

T∑

t=1

zt,qT xt|| = abc

(4.3.10)

where

a = || 1
T

T∑

t=1

xtz
′
t,qT

||, (4.3.11)

b = ||I − 1
T

T∑

t=1

zt,qT z
′
t,qT

||, (4.3.12)

c = ||
(

1
T

T∑

t=1

zt,qT z
′
t,qT

)−1
1
T

T∑

t=1

zt,qT xt||. (4.3.13)
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Again,

a = || 1
T

T∑

t=1

xtz
′
t,qT

|| = || 1
T

T∑

t=1

xtz
′
t,qT

−Extz
′
t,qT

+ Extz
′
t,qT

||

≤ || 1
T

T∑

t=1

xtz
′
t,qT

−Extz
′
t,qT

||+ ||Extz
′
t,qT

||,

= Op

(
qT√
T

)
+ O(1)

= O(1).

(4.3.14)

By our earlier result we know, b = ||I − 1
T

∑T
t=1 zt,qT z

′
t,qT

|| = Op( qT√
T

).

Next,
(

1
T

∑T
t=1 zt,qT z

′
t,qT

)−1
1
T

∑T
t=1 zt,qT xt = γ̂qT ,OLS = γ̂qT ,OLS − γqT + γqT

≤ ||γ̂qT ,OLS − γqT ||
op(1)under the condition

qT√
T
→0 by Portnoy (1984)

+ ||γqT ||
O(1)

= O(1).

and thus, c = ||
(

1
T

∑T
t=1 zt,qT z

′
t,qT

)−1
1
T

∑T
t=1 zt,qT xt|| = O(1).

Hence, A = abc = O(1) Op( qT√
T

) O(1) = op(1), since qT√
T
→ 0.

Also, C = |Extz
′
t,qT

Ezt,qT xt − ξ| → 0 by the definition of ξ.

So it only remains to show that 1
T

∑T
t=1 x2

t
p→ Ex2

t , where

Ex2
t = E[

(
γqT

′zt,qT + εt

) (
zt,qT

′γqT + εt

)
]

= γqT

′E(zt,qT zt,qT

′)γqT + γqT

′E(zt,qT εt) + E(εtzt,qT

′)γqT + Eε2
t

= γqT
′γqT + σ2 [since E(zt,qT zt,qT

′) = I, E(zt,qT εt) = 0 and Eε2
t = σ2].

(4.3.15)

Now,

1
T

T∑

t=1

x2
t =

1
T

T∑

t=1

[
(
γqT

′zt,qT + εt

) (
zt,qT

′γqT + εt

)
]

= γqT

′γqT +
1
T

T∑

t=1

εtzt,qT

′γqT + γqT

′ 1
T

T∑

t=1

zt,qT εt +
1
T

T∑

t=1

ε2
t .

(4.3.16)

Let ST = 1
T

∑T
t=1 εtzt,qT

′γqT and note that ST is a scalar. Also,

E(ST ) =
1
T

T∑

t=1

{E(εt)}{E(zt,qT
′γqT )} = 0 [by independence of {εt} and{zt,qT }] (4.3.17)
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and

V ar(ST ) = E(S2
T ) = E(

1
T

T∑

t=1

εtzt,qT

′γqT )2 =
1
T 2

T∑

t=1

{E(ε2
t )}{E(zt,qT

′γqT )2}

=
σ2

T 2

T∑

t=1

γqT
′γqT =

σ2

T 2
T

qT∑

i=1

γi
2 =

σ2

T

qT∑

i=1

γi
2.

(4.3.18)

Therefore, by Chebychev’s inequality, P (|ST | ≥ ε) ≤ V ar(ST )
ε2 = O( 1

T ) → 0 as T → ∞.

Also, by WLLN, 1
T

∑T
t=1 ε2

t
p→ Eε2

t = σ2. Thus, 1
T

∑T
t=1 x2

t
p→ [γqT

′γqT + σ2] = Ex2
t < ∞.

Hence, r2
qT

p→ ρ2
qT

. ¥

4.4 Consistency and Asymptotic Normality of the Linear IV

Estimator

Proposition 4.4.1 Assume conditions (i) and (ii) on the design matrix ZT and assump-

tions of Proposition 1 above hold. Then

(a) θ̂T
P→ θ0, and

(b) T 1/2(θ̂T − θ0)
D→ N(0, σ2[Ω∞xz(Ω

∞
zz

=I
)−1Ω∞zx)]−1) ≡ N(0, σ2[Ω∞xzΩ

∞
zx]−1).

Proof of Proposition 4.4.1:

(a) From (4.2.6) we have

θ̂T = θ0 + { 1
T

T∑

t=1

xtz
′
t,qT

(
1
T

T∑

t=1

zt,qT z
′
t,qT

)−1
1
T

T∑

t=1

zt,qT xt
′}−1

1
T

T∑

t=1

xtz
′
t,qT

(
1
T

T∑

t=1

zt,qT z
′
t,qT

)−1
1
T

T∑

t=1

zt,qT εt

= θ0 + MqT

1
T

T∑

t=1

zt,qT εt (4.4.1)

where

MqT = { 1
T

T∑

t=1

xtz
′
t,qT

(
1
T

T∑

t=1

zt,qT z
′
t,qT

)−1
1
T

T∑

t=1

zt,qT xt
′}−1

1
T

T∑

t=1

xtz
′
t,qT

(
1
T

T∑

t=1

zt,qT z
′
t,qT

)−1

. (4.4.2)
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By WLLN, 1
T

∑T
t=1 xtz

′
t,qT

P→ Extz
′
t,qT

,
(

1
T

∑T
t=1 zt,qT z

′
t,qT

)
P→ Ezt,qT zt,qT

′.

Then, by Continuous Mapping Theorem, MqT

P→ M , where

M = {Extz
′
t,qT

(Ezt,qT zt,qT
′)−1Ezt,qT xt

′}−1Extz
′
t,qT

(Ezt,qT zt,qT
′)−1.

Again by WLLN, 1
T

∑T
t=1 zt,qT εt

P→ Ezt,qT εt = 0. Therefore,

plim θ̂T = θ0 + plim Mt,qT plim 1
T

∑T
t=1 zt,qT εt = θ0 + M × 0 = θ0. ¥

(b) From (4.4.1) we have

T 1/2(θ̂T − θ0) = { 1
T

T∑

t=1

xtz
′
t,qT

(
1
T

T∑

t=1

zt,qT z
′
t,qT

)−1
1
T

T∑

t=1

zt,qT xt
′}−1

1
T

T∑

t=1

xtz
′
t,qT

(
1
T

T∑

t=1

zt,qT z
′
t,qT

)−1
1√
T

T∑

t=1

zt,qT εt

= MqT

1√
T

T∑

t=1

zt,qT εt (4.4.3)

As noted in the proof of Proposition 4.3.1, z1,qT ε1, z2,qT ε2, . . . , zT,qT
εT are a sequence

of qT × 1 i.i.d. random vectors with E (zt,qT εt) = 0 by independence of zt,qT and εt,

and Cov (zt,qT εt) = E (zt,qT εtεtzt,qT
′) = E

(
ε2
t

)
E (zt,qT zt,qT

′) = σ2I by E
(
ε2
t

)
= σ2 and

E (zt,qT zt,qT
′) = I. Therefore, by Theorem 1.1 of Portnoy (1986) [p. 572],

1√
T

T∑

t=1

zt,qT εt
D→ N(0, σ2I). (4.4.4)

Assume that a Lindberg-type condition holds for the elements of the vector xtz
′
t.qT

, that is,

limT→∞maxt≤T maxq≤qT x2
t z

2
t,q/

T∑

t=1

qT∑

q=1

x2
t z

2
t,q = 0. (4.4.5)

Then, by Central Limit Theorem, 1√
T

∑T
t=1(xtz

′
t,qT

− E[xtz
′
t,qT

]) D→ N(0, V ) where V =

limT→∞V ar( 1√
T

∑T
t=1 xtz

′
t,qT

), and it follows that 1
T

∑T
t=1 xtz

′
t,qT

P→ E(xtz
′
t,qT

) = Ω∞xz.

Similarly, assume that a Lindberg-type condition holds for the elements of the matrix

zt,qT z
′
t,qT

, that is,

limT→∞maxt≤T maxq≤qT z2
t,q/

T∑

t=1

qT∑

q=1

z2
t,q = 0. (4.4.6)
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Then, by Central Limit Theorem, 1√
T

∑T
t=1(zt,qT z

′
t,qT

−E[zt,qT z
′
t,qT

]) D→ N(0, Γ) where Γ =

limT→∞V ar( 1√
T

∑T
t=1 zt,qT z

′
t,qT

), and it follows that 1
T

∑T
t=1 zt,qT z

′
t,qT

P→ E(zt,qT z
′
t,qT

) =

Ω∞zz = I. Then by Continuous Mapping Theorem, MqT

P→ (Ω∞xz(Ω
∞
zz)

−1Ω∞zx)−1Ω∞xz(Ω
∞
zz)

−1 =

(Ω∞xzΩ
∞
zx)−1Ω∞xz . Finally, applying Slutsky’s Theorem completes the proof. ¥

4.5 Canonical Correlations Information Criterion

Hall and Peixe’s (2003) canonical correlations information criterion is given by:

CCIC(c) = ΞT (c) + P (T, |c|) (4.5.1)

where the statistic

ΞT (c) = T

p∑

i=1

ln[1− r2
i,T (c)] (4.5.2)

captures the sample information, and P (T, |c|) is the penalty term which satisfies the fol-

lowing conditions: (i) P (T, |c|) = h(|c|)µT ; (ii) h(.) is non-negative and strictly increasing;

(iii) µT →∞ as T →∞ and µT = o(T ).

The functional form of ΞT (c) is motivated by the form of a likelihood ratio statistic when

the dimension of the parameter vector underlying the model of interest is fixed. Suppose

that xt is generated by the following model

xt
1×1

= γ′
1×q

zt(c)
q×1

+ et
1×1

(4.5.3)

= γ′1
1×q1

zt(c1)
q1×1

+ γ′2
1×q2

zt(c2)
q2×1

+ et
1×1

(4.5.4)

where the number of instruments, q = (q1 + q2) is fixed, zt(c) = [zt(c1)′, zt(c2)′]′, c′1c2 = 0

and E[et|zt] = 0. The statement that zt(c2) is redundant given zt(c1) is equivalent to the

null hypothesis H0 : γ2 = 0. If et ∼ IN(0, Ω0), then the likelihood ratio statistic is

LRT = Ξ0
T (c1)− Ξ0

T (c) (4.5.5)

where Ξ0
T (c) = T

∑p
i=1 ln[1 − r2

i,T (c)] and ri,T (c) is the ith sample canonical correlation

between xt(θ0) and zt(c).
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It can be seen that the two components of CCIC(c) (4.5.1) move in opposite directions

in response to the inclusion of an additional instrument: the first term ΞT (c) either stays

the same or decreases, while the second term P (T, |c|) increases. Hence, if the selection

vector is chosen to minimize CCIC(c) then the resulting instrument vector retains only

those instruments whose inclusion reduces ΞT (c) sufficiently to offset the increase in the

penalty term P (T, |c|).
In contrast to model (4.5.3) above, our model becomes

xt
1×1

= γ′qT
1×qT

zt,qT (c)
qT×1

+ et
1×1

(4.5.6)

= γ′q1T
1×q1T

zt,qT (c1)
q1T×1

+ γ′q2T
1×q2T

zt,qT (c2)
q2T×1

+ et
1×1

(4.5.7)

where the number of instruments, qT = (q1T + q2T ) →∞ as T →∞, zt,qT (c) = [zt,qT (c1)′,

zt,qT (c2)′]′, c′1c2 = 0 and E[et|zt] = 0. Similarly to the Hall and Peixe (2003) setting above,

the statement that zt,qT (c2) is redundant given zt,qT (c1) is equivalent to the null hypothesis

H0 : γq2T = 0. Although the dimension of γq2T → ∞ as T → ∞, given our specification

of the γ∞ vector in (4.2.7), it follows from the consistency of sample canonical correlation

given by Proposition 1 above, that the CCIC(c) of Hall and Peixe (2003) will lead to the

selection of all relevant instruments with probability one.

Theorem 4.5.1 Assume that (i) the specification of the γ∞ vector in (4.2.7) holds; (ii)

c̃T = argmin
c∈C

CCIC(c) where C is the set of all possible choices of c; (iii) the penalty

function P (T, |c|) = h(|c|)µT , satisfies the following conditions: (a) h(.) is non-negative

and strictly increasing; (b) µT → ∞ as T → ∞ and µT = o(T ). Then c̃T
P→ cr,∞, where

cr,∞ is the set of all relevant instruments.

Proof of Theorem 4.5.1 As in Hall and Peixe (2003), the proof relies on considering

the limiting behavior of CCIC(c) when the instrument vector zt,qT (c1) is augmented by

including the vector zt,qT (c2). Let ρ̂T be the sample canonical correlation between xt and

zt,qT (c), rT be the sample canonical correlation between xt and zt,qT (c1).
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Then,

∆ = CCIC(zt,qT (c))− CCIC(zt,qT (c1))

= T ln[1− ρ̂2
T [xt : (zt,qT (c1), zt,qT (c2))]] + h(|c|)µT

− T ln[1− r2
T [xt : (zt,qT (c1)]]− h(|c1|)µT

= T ln

{
1− ρ̂2

T [xt : (zt,qT (c1), zt,qT (c2))]
1− r2

T [xt : (zt,qT (c1)]

}
+ [h(|c|)− h(|c1|)]µT .

Hence,

∆
T

= ln

{
1− ρ̂2

T [xt : (zt,qT (c1), zt,qT (c2))]
1− r2

T [xt : (zt,qT (c1)]

}
+ [h(|c|)− h(|c1|)]µT

T
.

Now, from the specification of the γ∞ vector, it follows that zt,qT (c2) is not redundant given

zt,qT (c1) and that inclusion of the additional instruments zt,qT (c2) will yield the result that

ρ̂T [xt : (zt,qT (c1), zt,qT (c2))] > rT [xt : (zt,qT (c1)].

Therefore, because sample canonical correlations are consistent estimators of the population

canonical correlations, as T →∞,

ln

{
1− ρ̂2

T [xt : (zt,qT (c1), zt,qT (c2))]
1− r2

T [xt : (zt,qT (c1)]

}
P→ k < 0,

where k is a constant. Again, as a consequence of |c| > |c1| and of condition (ii)(a), [h(|c|)−
h(|c1|)] > 0. Finally, by condition (ii)(b), as T → ∞, µT /T → 0. Thus, ∆ < 0 with

probability one in the limit, implying that implementation of the CCIC(c) of Hall and

Peixe (2003) will continue to decrease the value of the criterion and thus inclusion of the

relevant instruments until the vector cr,∞ is selected in the limit. ¥
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4.6 Conclusions

The objective of this chapter has been to extend the statistical theory of the CCIC of Hall

and Peixe (2003) to the case in which the the candidate set of instruments increases with

the sample size. It focuses on the case where the regressor xt is a scalar. It establishes

consistency of the sample canonical correlation and also proves consistency and asymptotic

normality of the linear IV estimator. Finally, this chapter shows that for the specific

instrument generating scheme considered, implementation of the CCIC of Hall and Peixe

(2003) will lead to the selection of all relevant instruments from the growing candidate set

with probability one in the limit.
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Chapter 5

Summary and Directions of Future

Work

In this dissertation we develop methods of estimation of a new kind of canonical correlations

called Long Run Canonical Correlations (LRCC) that has recently emerged in econometrics

to provide a metric of relevance for moments used in GMM estimation. In addition, we

show further usefulness of LRCC beyond their usefulness in moment selection. In particular,

we show how LRCC can be used to develop econometric tests that can play a role in (i)

structural stability testing, and (ii) exogeneity testing of regressors in a cointegration model.

To this end, we establish a link between LRCC and canonical coherence at frequency zero.

By exploiting this result, we develop what we call the Hannan and LR tests of persistence

and the Hannan and LR tests of exogeneity. The importance of tests of persistence is

that they can be used to pre-test data to screen out cases where subjecting the data to

the Wald test of structural stability would be misleading. The importance of tests of

exogeneity of regressors in a cointegration model is that in the case of strict exogeneity,

the limiting distribution of the estimator of the slope vector becomes nuisance parameter

free. Simulation results of the Hannan and LR tests of persistence are mixed. It is seen

that if the tests are conducted without prewhitening and recoloring, then they perform
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well. However, if they are implemented with prewhitening and recoloring, then the quality

deteriorates. Simulation results of the Hannan and LR tests of exogeneity, on the other

hand, indicate that the tests are highly satisfactory.

Next, we conduct a comparative study of three recent methods of instrument selection

in econometrics, namely, the CCIC of Hall and Peixe (2003), the RMSC of Hall and Inoue

(2003), and the approximate MSE of Donald and Newey (2001). In this context, we explore

three questions: (i) What, if any, is the analytical connection among the three methods? (ii)

Is a unique ranking of the three methods possible in terms of the finite sample behavior of

the post selection estimator? (iii) What guidance can we provide a practitioner as to which

of these three methods one should use in any practical application of interest? The answer

to the first question reveals that all three methods are functions of canonical correlations.

The answer to the second is a conditional one, in the sense that, a unique ranking emerges

under certain parameter configurations while it does not under others. In light of the nature

of the second answer, the answer to the third question is obviously found to be a conditional

one as well.

Finally, we extend the statistical theory of the CCIC of Hall and Peixe (2003) to the

case where the number of instruments goes to infinity with the sample size. Here, we limit

our focus to the case where there is only one endogenous regressor and show that, for the

particular kind of instrument generation scheme considered, implementation of the CCIC of

Hall and Peixe (2003) will lead to the selection of all relevant instruments from the growing

candidate set with probability one in the limit.

So far we discussed works that have been done in this dissertation. Now we turn to

directions of future works that emerge as a natural outgrowth of this research.

Although the methods of estimation of LRCC have been developed, methods of their

inference have not been developed. It is of interest to know how many population LRCC

are different from zero; that is, how many long run canonical variates are needed to explain

the correlations between XT and ZT . The number of nonzero LRCC is equal to the rank
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of Σxz. One could be interested in testing the null hypothesis that all LRCC are zero:

ρ1 = ρ2 = . . . = ρp = 0, i.e., Σxz = 0. If this is accepted, then there are clearly no useful

long run canonical variates. If it is rejected, then it is possible that ρ1 > ρ2 = . . . = ρp = 0,

and so, rank(Σxz) = 1, in which case only the first long run canonical variates are useful.

If this is tested and rejected, we can test whether the smallest p - 2 LRCC are zero, and so

on. Thus, we have a sequence of hypotheses Hk: ρk+1 = . . . = ρp = 0 for k = 0, 1, . . . , p−1.

By exploiting the result of Proposition 2.4.1 of Chapter 2 of this dissertation, we can

conduct a likelihood ratio test in the frequency domain by adapting Theorem 15 of Hannan

[(1970), p. 300]. It can be implemented through Wilk’s lambda statistic: 1

Λ̂ =
|f̂xx(0)− f̂xz(0)f̂−1

zz (0)f̂zx(0)|
|f̂xx(0)|

=
p∏

i=k+1

(1− ρ̂2
i )

Deriving the asymptotic distribution of the above lambda statistic under the null hypoth-

esis:

Hk : ρk+1 = . . . = ρp = 0

for k = 0, 1, . . . , p− 1, is one of the areas of future work.

Other areas of future research relate to: generalizing result (2.5.6) to near-integrated

processes along the lines of Phillips (1987); modifications of CCIC(c) for other specifications

of the γ∞ vector; extension of analysis of Chapter 4 to the case where p > 1, that is, where

the regressor xt is a vector, and comparing the performance of CCIC(c) in expanding

parameter case with that of Donald and Newey’s (2001) MSE(c).

1Hannan [(1970), p. 301]
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