
Abstract

Drake, Kimberly J. Analysis of Numerical Methods for Fault Detection and Model Identi-

fication in Linear Systems with Delays. (Under the direction of Steve Campbell.)

Recently an approach for multi-model identification and failure detection in the presence

of bounded energy noise over finite time intervals has been introduced. This approach

involved offline computation of an auxiliary signal and online application of a hyperplane

test.

This approach has several advantages; but, as presented, observation over the full time

interval was required before a decision could be made. We develop an algorithm which

modifies this approach to permit early decision making with the hyperplane test.

In addition, we extend this approach to handle problems that include delays. The

original method requires the formulation and solution of an optimal control problem. We

approach these problems in three ways. The first is through the Method of Steps, reformu-

lating the system without delays so that we might apply existing theory with modifications.

Also, we approximate the delayed systems using splines and central differences, eliminating

the delay so that existing theory will apply. Approximations allow for more complicated

models than the Method of Steps; however, the Method of Steps is a true solution, rather

than an approximate one. Thus, solutions using the Method of Steps serve as a basis of

comparison and verification of the approximate methods.

ANALYSIS OF NUMERICAL METHODS FOR FAULT

DETECTION AND MODEL IDENTIFICATION IN LINEAR

SYSTEMS WITH DELAYS

by

Kimberly J. Drake

a dissertation submitted to the graduate faculty of

north carolina state university

in partial fulfillment of the

requirements for the degree of

doctor of philosophy

applied mathematics

raleigh, north carolina

August 22, 2003

approved by:

Dr. Stephen Campbell Dr. Pierre Gremaud

chair of advisory committee

Dr. Ralph Smith Dr. Hien Tran

For my beloved niece, Kaitlyn,

One day when you were a very, very little girl, you put on the apron and vest from my

waitressing uniform and you played at taking orders from everyone in the house, including

your dolls. You were so sweet, sassy and small, going from person to doll with equal gravity,

taking orders in a language the rest of the family was too old to remember. As I watched

you, I realized that you were not just playing at being a waitress; you were playing at being

me. I realized that day how very important it is that I be a woman who you could become.

You are my inspiration.

Always remember that nothing is beyond your reach.

ii

Biography

Kimberly J. Drake was born in Dover, NJ on January 7, 1970. She grew up in the small

town of Budd Lake, NJ and graduated in 1988 from Mt. Olive High School. She worked

her way through college, graduating from Montclair State University in 1996 with a B.S. in

mathematics and computer science, as well as a teaching certificate.

After college, she moved briefly to Livermore, CA where she interned at the Lawrence

Livermore National Laboratory. Leaving sunny California behind, Kimberly moved to

Raleigh, NC where she attended graduate school at North Carolina State University, work-

ing with Steve Campbell.

Her graduate school years included a time working at the Boeing Company with John

Betts in Bellevue, WA and a time working at INRIA-Rocquencourt with Ramine Nikoukhah

in Le Chesnay Cedex, France. After graduating with her Ph.D. in Applied Math, she plans

to move to Philadelphia, PA to work for the Navy.

iii

Acknowledgements

First, I would offer my gratitude to my advisor, Dr. Stephen L. Campbell. In addition to

being a brilliant and successful scholar, he is also a patient and generous mentor.

I am grateful to the members of my committee: Dr. Pierre Gremaud, Dr. Ralph Smith,

and Dr. Hien Tran. I am grateful to them for ensuring the quality of my work as well as for

being excellent teachers. I would offer a special thanks to Dr. Gremaud who so cheerfully

gave me many hours of his time through four courses and the qualifying exams, preparing

me to do this work.

I would also like to thank Dr. John Betts and The Boeing Company, as well as Dr.

Ramine Nikoukhah and INRIA-Rocquencourt. My time working with these men at their

respective institutions was invaluable to my education and a true pleasure.

I also offer my thanks to the National Science Foundation, which supported this work.

I would like to thank Dr. Leona Harris-Clark and Dr. Doug Cochran. The support of

close friends is invaluable.

I am grateful to my family for their patience and understanding.

Finally, I would like to thank God. Without Him, none of this would have been possible.

iv

Table of Contents

List of Figures vi

1 Introduction and Background 1
1.1 Mathematical Background . 2

1.1.1 Optimal Control . 2
1.1.2 Solving the Optimal Control Problem 4
1.1.3 Approximation Theory . 6

1.2 FDMI: Introduction and Prior Research . 7
1.2.1 Other Prior Research . 8

1.3 Fault Detection via the Minimum Energy Detection Signal 10
1.3.1 Minimum Energy Detection Signal 11
1.3.2 Model Identification by the Separating Hyperplane 20

1.4 Outline of Thesis . 24
1.5 Contributions of Thesis . 24

2 Early Detection 26
2.1 What is Early Detection and Why Bother? 26
2.2 Analytical Breakdown of Problem . 27
2.3 Algorithm . 31
2.4 Computational Tests . 36

3 True Solutions: The Method of Steps 39
3.1 Introduction to the Problem . 39
3.2 True Solutions with the Method of Steps . 42

3.2.1 The Basic Problem . 42
3.2.2 Necessary Conditions of the Optimal Control Problem and Proof of

Optimality . 47
3.2.3 Minimum Energy Detection Signal Algorithm for the Method of Steps 54
3.2.4 Problem Variations . 55

v

4 Approximated Solutions: PDE’s and Central Differences 59
4.1 Reformulating the Delayed System with a PDE 62
4.2 Explanation of the Central Differences Approximation 63
4.3 Necessary Conditions for the Fault Detection Problem 65

5 Approximated Solutions: Spline Approximations 69
5.1 Explanation of the Spline Approximation 69
5.2 The Optimal Control Problem Using Splines 76
5.3 Theoretical Results . 78

5.3.1 Review of Familiar Theorems and Definitions 79
5.3.2 Some Useful Lemmas . 81
5.3.3 How Close Are the Real and Approximated Output Sets? 88
5.3.4 A Hyperplane Which Separates the Real Sets Separates the Approx-

imated Sets . 90
5.3.5 A Hyperplane Which Separates the Approximated Sets Separates the

Real Sets . 97

6 Examples and Analysis 101
6.1 Steps, Differences and Splines on a Single Delay 102
6.2 Splines and Differences on Multiple Delays 104
6.3 Splines and Differences on Mixed and Multiple Delays 105
6.4 Mach Number in a Wind Tunnel . 106
6.5 Conclusions about Numerical Examples . 108

7 Future Work and Conclusions 109
7.1 Future Work . 109
7.2 Conclusions . 112

A Software 115
A.1 M-files . 115
A.2 Method of Steps . 115

A.2.1 Matlab Driver for the Method of Steps 115
A.2.2 Method of Steps Driver . 122

A.3 Splines . 141
A.3.1 Matlab Spline Driver . 141
A.3.2 Spline Driver . 151

A.4 Differences . 162
A.4.1 Matlab to Generate System Matrices 162
A.4.2 Differences Driver . 170

List of References 184

vi

List of Figures

1.1 The figure illustrates a proper detection signal, v, pushing the output sets,
Ai(v), apart. 13

1.2 Using the hyperplane, a test can be formulated that will determine if y lies
above the plane or below it, determining from which model the output is
produced. 21

2.1 An example of ψi,j . 28
2.2 When ψi,j , the value of the hyperplane test which is calculated as the output

y becomes available, crosses δ̂i,j or −δ̂i,j , the test is complete. In 100 trials
on each model, detection takes place around .75ω. 37

2.3 Detection time distribution for 100 trials of each model. The figures show
that over 60% of the trials had resulted in detection by t = 15, which is a
reduction of 25% . 38

3.1 Diagram illustrating the Method of Steps: A new variable is assigned to each
interval of length h of the detection horizon, where h is the length of the
delay. Then variable zi−1 is the past history of variable zi and the system
can be reformulated without the delay term. Using these new variables, a
system of equations is set up, allowing the solution for the entire detection
horizon to be found simultaneously. A boundary condition zi−1(h) = zi(0) is
included to ensure continuity between variables. 44

4.1 We reformulate the delayed system into a PDE by letting U(t, s) = x(t+ s)
for 0 ≤ t ≤ ω,−h ≤ s ≤ 0. In the figure, U(t̄, s) is x(t̄). The dashed section
of the curve represents U(t̄, s) for −h ≤ s ≤ 0; that is, U(t̄, s) and its past
history. 62

4.2 Having reformulated the problem into a PDE, we now use the method of
lines and central differences to approximate the PDE with an ODE. We first
define a mesh −h = s0 < s1 < · · · sρ = 0, where each delay must be a mesh
point. Then we let Uk(t) = U(t, sk). This illustration represents the new
variables when t = 0. Notice that the new variables will represent the past
history needed because of the restriction that each delay must be a mesh
point. 64

vii

5.1 The illustration represents piecewise, linear spline functions, BN
k (θ), of the

scheme for N = 4. Notice that tNk = −kr
N
, k = 0, . . . , N so that as k increases,

tNk travels backward in time. Notice also that tN0 = 0 and tNN = −r where r
is the length of the longest delay. Thus, the spline functions are defined on
an interval the size of the longest delay. 72

5.2 If a hyperplane separates the real output sets, then it also separates the
approximated output sets. More specifically, we show that given < y, a > ≥
ε where a is a hyperplane, then for any δ > 0, there exists N such that if
n > N then for all yN ∈ AN

i (v), < yN , a > ≥ ε− δ. 91

6.1 The figure shows the Method of Steps, the spline approximation and the
difference approximation on the models (7.4) which have a single delay. A
mesh size of 20 is used in each approximation. 102

6.2 The figure compares the Method of Steps and the spline and difference ap-
proximations on example (7.4). On the left, we have the auxiliary signal,
v, calculated using several meshes and the difference approximation plotted
together with the signal determined using the Method of Steps. On the right,
we have a similar plot but the signal was approximated using splines. 103

6.3 The figure shows the detection signal found for example 6.2, which has mixed
delays. One of our models has a delay of 1 while the other has a delay of .4.
In both cases, we use mesh sizes of 6. 104

6.4 Comparison of the spline approximation and the central difference approxi-
mation on mixed and multiple delays from example (6.3). 105

6.5 This figure represents the detection signals found using splines, differences
and the Method of Steps when calculating the signal for a linearized, model
of the control of the Mach number in a wind tunnel. A spline approximation
of grid size N = 6 was used while a difference approximation of grid size
ρ = 7 was used. 107

viii

Chapter 1

Introduction and Background

Fault, or failure, detection is a process by which it is determined whether a system is working

in a manner which is ’normal’. Examples include determining that the pump in a sewage

plant is malfunctioning, the brakes on a car are performing inadequately, or the engine on an

aircraft is experiencing problems. In each of these cases, determining a system failure allows

for a controlled shut down of the system, preventing a catastrophic event. Beyond simple

detection is model identification or isolation. In the case of model identification, there are

multiple models, each representing a particular ’failure’ of the system. Determining which

model represents the system at the time of the test then determines the specific nature of

the system failure.

Recently an approach for robust failure detection and multi-model identification in the

presence of bounded energy noise over short time intervals has been introduced [12] . The

fault detection and model identification (FDMI) algorithm sets up and solves an optimiza-

tion problem, the solution of which is a detection, or auxiliary, signal. The detection signal

is designed so that the model output sets are separated when it is applied to the system.

Once the signal is applied, the system output is tested in a hyperplane test. The hyperplane

test is done in real time but the computation of the detection signal is done offline.

In this thesis, we extend the approach to systems which include delays [11, 8, 10], in

addition to looking at whether it is possible to make the model identification decision early

[9]. In Chapter 1, we discuss background and prior research. More specifically, Section

1.1 reviews mathematical background related to the research. Section 1.2 offers a broader

view of fault detection and model identification, providing context for the research in this

1

Chapter 1. Introduction and Background 2

thesis. Then in Section 1.3, we review the particular approach to fault detection and model

identification that we extend.

1.1 Mathematical Background

In this section, we briefly review some mathematical concepts which are relevant to this

thesis. There is a huge body of work associated with each topic and they are the subject

of many books. Rather than trying to even broadly review them, which would be a book

in its own right, we simply include the barest essentials which will be used throughout this

thesis.

1.1.1 Optimal Control

The FDMI algorithm solves the fault detection problem by finding and utilizing a detection

signal. The detection signal is the solution to an optimal control problem. In addition,

the FDMI algorithm will use the necessary conditions of another optimal control problem

as constraints when finding the detection signal. Because of the fundamental role it plays

in this work, we briefly discuss the optimal control problem and the necessary conditions

needed to solve it.

A subproblem of the auxiliary signal design algorithm is finding the necessary conditions

of the following optimal control problem:

min
x0,µ

J = φ(x0) +

∫ tf

t0

L(t, x, µ) dt (1.1a)

subject to ẋ = f(t, x, µ) (1.1b)

0 = g(t, x, µ) (1.1c)

where t0 and tf are fixed. x is a state variable and µ is a control. Both are dependent on

the time, t. J is called the cost or performance index of our problem. Using the control,

µ, our objective is to minimize J while constrained by the dynamics (1.1b) and algebraic

constraint (1.1c).

L(t, x, µ) may have many physical interpretations. It may represent energy with the

goal of the problem being to minimize the energy in a system. The function φ represents

some weighted function of the initial condition. Note that optimal control problems are

Chapter 1. Introduction and Background 3

often formulated as functions of the final state, rather than the initial state. In this, our

problem diverges from what might typically be found in a text book. There are many other

types of optimal control problems, with different costs and different constraints; but, we

focus on this problem here as it is the problem related to our algorithms.

The constrained minimum of J is at a stationary point of J ′, or J ′ = 0, where J ′ is

formed by adjoining the constraints to the cost with multipliers. That is, we set up

J ′ = φ(x0) +

∫ tf

t0

[L+ λT (f − ẋ) + ηT g] dt.

Letting H(t, x, µ) = L+ λT f + ηT g be the Hamiltonian, we have

J ′ = φ(x0) +

∫ tf

t0

[H − λT ẋ] dt.

To find the unconstrained minimum of J ′, we determine when dJ ′ = 0. Using Leibnitz rule1

and incrementing J ′ as a function of increments in x, λ, η, and µ, we have

dJ ′ = φT
x dx(t0) +

∫ tf

t0

[HT
x δx+HT

µ δµ− λ δẋ+ (Hλ − ẋ)T δλ+Hη δη] dt.

Note that since our problems have fixed initial and final times, any variations in these are

0 and are not included in dJ ′. Eliminating the variation in ẋ with an integration by parts

and using the fact that dx(t0) = δx(t0) and dx(tf) = δx(tf) since there is no variation in

initial or final time, we have

dJ ′ = (φT
x + λ(t0)) dx(t0) + (−λ(tf)) dx(tf)

+

∫ tf

t0

[(HT
x + λ̇T) δx+HT

µ δµ+ (Hλ − ẋ)T δλ+Hη δη] dt.

Then to determine when dJ ′ = 0, we set the coefficients of δλ, δx, δη, δµ, dx(t0) and dx(tf)

1
Leibnitz rule: if x(t) ∈ Rn is a function of t and

∫ tf

t0
h(x(t), t) dt where J(·) and h(·) are both real scalar

functionals, then dJ = h(x(tf)tf)dtf − h(x(t0), t0)dt0 +
∫ tf

t0
[hT

x (x(t), t)δx] dt. [44]

Chapter 1. Introduction and Background 4

to 0. We arrive at the conditions

ẋ = Hλ = f(t, x, µ)

−λ̇ = Hx = Lx + λT fx + ηT gx

0 = Hη = g

0 = Hµ = Lµ + λT fµ + ηT gµ

λ(t0) = −φx

λ(tf) = 0.

More information on optimal control theory can be found in [44, 2, 45, 28].

1.1.2 Solving the Optimal Control Problem

In order to solve our detection problem, we will need to use optimization software. We use

the package Sparse Optimal Control Software (SOCS) [7, 6] provided by The Boeing Com-

pany. SOCS is a package of FORTRAN subroutines which can solve complex optimization

problems.

The problem that SOCS has to solve includes not only the necessary conditions for (1.1)

but also inequality constraints and has the more general form

min
t0≤t≤tf

J(t, x, u)

subject to

ẋ = f(t, x, u) (1.7a)

0 = g(t, x, u) (1.7b)

c1 ≤ h(t, x, u) ≤ c2 (1.7c)

where t0 and tf are fixed. As a direct transcription code, SOCS first discretizes the problem

across the entire time interval. It divides the time interval [t0 tf] into n parts by selecting

mesh points t0 < t1 < . . . tn−1 < tn = tf . Then a discretization scheme is applied, forming

a nonlinear programming problem. Several discretization methods are available to the user

of SOCS. Below we will briefly review a few of them.

Let uk = u(tk). Let t̃k = 1
2(tk + tk+1) and let ũ(t̃k) = ũk. Let hk = tk − tk−1.

Chapter 1. Introduction and Background 5

1. Euler’s Method is a simple first order method. The discretization is given by

xk = xk−1 + hk(fk)

where fk = f(tk, xk, uk).

2. Compressed Hermite-Simpson is a fourth order method. The discretization is given

by

xk = xk−1 +
hk

6
(fk + 4f̃k + fk−1)

where f̃k = f(t̃, x̃k, ũk) and x̃k = 1
2(xk−1 + xk) + hk

8 (fk−1 + fk).

3. The trapezoidal rule is a second order method. The discretization is given by

xk = xk−1 +
hk

2
(fk−1 + fk)

where fk = f(tk, xk, uk).

4. The classic 4-stage Runge-Kutta method is a fourth order method. The discretization

is given by

xk = xk−1 +
1

6
(k1 + 2k2 + 2k3 + k4)

where

k1 = hkf(tk−1, xk−1, uk−1)

k2 = hkf(t̃k, xk−1 +
k1

2
, ũk)

k3 = hkf(t̃k, xk−1 +
k2

2
, ũk)

k4 = hkf(tk, xk−1 + k3, uk).

For more information on discretization and numerical integration, see [13, 59, 55, 27].

Once the problem has been discretized, then SOCS solves it using a Sequential Quadratic

Programming (SQP) technique. An SQP algorithm solves the nonlinear programming prob-

lem by solving a sequence of smaller problems [25]. For each subproblem, it replaces the

objective function with the quadratic approximation and replaces the constraint functions

by linear approximations.

Chapter 1. Introduction and Background 6

Once SOCS finds a solution to the NLP problem, it assesses the accuracy of the solution.

Then if necessary, it refines the mesh that it is working on and starts the optimization again

with a finer discretization.

For more information on optimization, see [7, 40, 45, 20, 2, 5].

1.1.3 Approximation Theory

Approximation theory is the study of how quantities can be approximated by other quanti-

ties, usually by simpler quantities. It is also concerned with the error in the approximation

process. In this section we will briefly review some of the basic ideas of approximation

theory.

A complicated function f(t) is approximated by a less complicated function φ(t, a)

where a = [a0, a1, . . . , an] are parameters characterizing the approximation. There are

3 basic types of approximation approaches, which are based on how one defines a ‘best’

approximation [18].

1. Interpolation: In the case of interpolation, the parameters, ai, are chosen so that at a

fixed set of points {ti} for i = 0, 1, . . . , n, the interpolating function, φ, and the true

function,f , agree both in function value and sometimes at one or more derivatives.

That is, φ(ti, a) − f(ti) for i = 0, 1, . . . , n.

2. Least Squares: In a least squares approximation, the parameters are chosen so as to

minimize the expression ‖f(t) − φ(t, a)‖2 where ‖ · ‖2 is the 2-norm.

3. Min-max : In a min-max approximation, the parameters are chosen so as to minimize

the expression ‖f(t) − φ(t, a)‖∞ where ‖ · ‖∞ is the max-norm.

Spline Interpolation

Of particular interest to us will be a local approximation method known as spline inter-

polation. With spline interpolation, we approximate our function on subintervals with

polynomials of small degree. In Section 5.1 , we will discuss a linear, piecewise polynomials

in a spline method at length. Also common are the cubic splines. In this case, the ap-

proximating functions are piecewise, cubic polynomials. They are chosen to agree with the

Chapter 1. Introduction and Background 7

true function values at the end points of the subintervals. In addition, the first and second

derivatives are made to be continuous between intervals [18].

For more information on approximation theory, in general, and splines, in particular,

see [36, 34, 18, 59, 45].

1.2 FDMI: Introduction and Prior Research

Introduction

In an increasingly automated society, fault, or failure, detection plays a more vital role

in system maintenance and stability all the time. For a myriad of reasons, understanding

how a system is functioning while it is operating is of much value. Obvious examples

include understanding how the pump in a sewage plant is working or understanding how

the reactor in a nuclear power plant is functioning. Maintenance of these systems is crucial

to public health, safety and comfort. Allowing a breakdown of these systems could be an

environmental disaster. Yet, there is a desire to maintain the systems in a cost effective

manner with minimal disturbance to the system as it is running.

Related to fault detection is model identification. In this case, the system is modelled

mathematically by two or more models, each representing some particular state of the sys-

tem. Model identification, or isolation, means determining which model best represents

the current state of the system. One of the models represents the properly working sys-

tem, while the other models represent failure states. Using different models to represent

individual failures allows for very specific detection.

Passive and Active Methods

There are two basic approaches to the fault detection problem: active and passive. In a

passive approach, system inputs and outputs are monitored without direct interaction with

the system. The detector must determine if a failure has occurred only from monitoring

inputs and outputs and executing some sort of comparison to ‘normal’. An unfortunate

problem associated with passive failure detection is that failures can be hidden and go

undetected. An example of this limitation, taken from Campbell and Nikoukhah [12], is the

following,

Chapter 1. Introduction and Background 8

A more dramatic example was in 1987 when a pilot flying an F-117 Nighthawk,

which is a twin tailed aircraft known as the stealth fighter, encountered bad

weather during a training mission. He lost one of his tail assemblies and pro-

ceeded back and landed his plane without ever knowing that he was missing part

of the tail. The robustness of the control system in this case had the beneficial

effect of enabling the pilot to return safely. However, it also had the effect that

the pilot did not realize that his aircraft had reduced capability and that the

plane would not have performed correctly if a high speed maneuver was required.

In contrast to the passive approach is the active approach. Direct interaction with

the system is possible. Rather than continuously monitoring the system, as is usually the

case with a passive approach, in the active approach, an input known as a detection signal

or auxiliary signal is periodically put in the system for a short test period. During the

detection period, system outputs are monitored and used to answer the detection question.

An example of an active fault detection test might be tapping the brakes on a car in the

rain. The driver taps the brakes to ensure that they are working, before they are needed to

prevent a collision. The tap is an input to the system, allowing the driver to examine the

output or reaction of the car.

Campbell, Nikoukhah, et al. have written several papers on the subject of active fault

detection and model identification. This thesis is an extension of a method they developed

with K. Horton which utilizes an auxiliary signal. The auxiliary signal is designed so that

with the application of a hyperplane test to the output of the system, the detection decision

can be made. The reader is referred to [51, 50, 15, 14, 52]. More details on the method will

be given in Section 1.3.

1.2.1 Other Prior Research

According to Frank [21], there are essentially two ways of generating signals for use in

model-based detection: state estimators and parameter estimators. Much work has been

done in both of these areas in the last twenty years or so. There are several good survey

articles [21, 32, 23] and books [12, 4] available on the topic of fault detection and model

identification. Below we review prior research on fault detection and identification. The

review is broken into two parts. The first part is a more general review of detection and

Chapter 1. Introduction and Background 9

identification on delayed systems. The second part is specifically about approximation of

delayed systems, as approximation methods are a pivotal part of our research.

Detection, Identification and Delays

In [62], Zhang et al. look at a detection on nonlinear, delayed systems where they attempt to

identify unknown inputs. Using a feedback control which is supposed to act as the ’model’

of the system, the state of the system is compared to that of the plant. From this, they use

a sequence of feedback controls to construct and approximate the unknown control. In [29],

Hartfung et al. solves a parameter estimation problem using an Euler-type approximation.

Hu and Gu [26] propose two algorithms using piecewise Chebyshev polynomials to examine

a parameter estimation problem on linear time-varying delay systems. According to the

authors, these algorithms are superior to those derived from shifted Chebyshev polynomials.

In [56], Pourboghrat and Chyung look at parameter identification on a class of linear

delay equations. The authors use a recursive least squares identification algorithm for

online identification of system matrices. Banks, et al. [3] look at system identification and

parameter estimation, as well as estimation of delay. In addition to introducing applications,

they develop two approaches. The first approach involves an averaging approximation and

the second is a spline approximation.

Another important class of problems is stochastic models with delays. Although we will

not go into these systems beyond these remarks, we refer the interested reader to [19, 17,

64, 63, 61, 43, 53] for some articles on these systems.

Approximation of Delayed Systems

As we will see, approximation of delayed systems will be an important part of this thesis.

Thus, we take a few minutes to specifically review some of the work done in this field.

We will use an approximation schemed developed by Ito and Kappel using linear, piecewise

splines found in A Uniformly Differentiable Approximation Scheme for Delay Systems Using

Splines [34]. Ito and Kappel have done much important work in this field and other works of

theirs include some thoughts on approximation of infinite delay and Volterra type equations

[33], approximation of Cauchy problems [35], and approximation of PDE’s [36]. In addition,

they wrote Evolution Equations and Approximations [37].

Chapter 1. Introduction and Background 10

Kappel has also been author or co-author of a number of other papers, including a survey

on the approximation of Linear Quadratic Regulator (LQR) problems for delay systems [39]

and a spline approximation for autonomous nonlinear functional-differential equations[38].

In [57], Prager discusses a one parameter family of spline-type approximation schemes

of the system ẋ(t) = A0x(t) +A1x(t− r) + f(t) based on the transformation of the system

into the abstract Cauchy problem ż(t) = Az(t) + (f(t), 0), with the state space M 2 =

R2 × L2(−r, 0;Rn), z(0) = φ, and φ ∈M 2.

Partington and Mäkilä write about a shift operator induced approximation of delay

systems in [47]. The method allows one to write low-order approximations of the delay

system. On a similar theme, they write about Laguerre and Kautz shift approximations

of delay systems in [46] and Partington also writes about approximation of certain delay

systems by Fourier-Laguerre series in [54].

In [42], Lee and Tsay approximate solutions for linear time-delay systems with first

order Padé approximation and orthogonal polynomial expansions. Glader et al. propose

a Hankel optimal rational approximation for delay systems in [24] and compare it to Padé

approximation of delay systems and to the Carathodory-Fejér method for real rational

approximation of Trefethen and Gutknecht as found in [60].

1.3 Fault Detection via the Minimum Energy Detection Sig-

nal

In this section, we describe the minimum energy detection signal algorithm as developed in

[30]. This approach to fault detection and model identification has two steps. The first step

is finding an auxiliary signal which is the result of a carefully designed, non-standard optimal

control problem. The signal is designed so that when it is applied to the system, the output

sets from each model will be disjoint. Finding the detection signal can be computationally

intensive but can be done offline.

The second step of solving the fault detection problem is the design of a hyperplane test.

After application of the test signal to the system, the convex output sets are disjoint. As

that they are convex and disjoint, we know there exists a hyperplane between them. Using

a test designed around this hyperplane, the system output can be used to determine from

Chapter 1. Introduction and Background 11

which model the output originated, completing the model identification.

What follows is an intuitive description of the signal detection algorithm and the hy-

perplane test, intended to serve as a basis and background for the rest of this thesis. For a

more rigorous re-examination, see [30, 12, 52, 14, 15, 51].

1.3.1 Minimum Energy Detection Signal

Problem Set Up

Assume we have a system which can be modelled by one of the following models

ẋi = Aixi +Biv +Miµi (1.9a)

yi = Cixi +Niµi (1.9b)

for i = 0 and 1, for t ≥ 0. Here xi, yi, v, µi are the system states, output, detection signal

and noise, respectively. Ai, Bi, Ci,Mi, Ni are matrices of appropriate dimension. v and

µi are taken to be in L2[0, ω] = L2. This implies that xi and yi are in L2, as well. We

can say that model 0 represents the properly working system, while the rest of the models

each represent a failure of the system. Note that the only commonality between the two

models is the detection signal, v. For clarity in exposition, in this thesis we only discuss two

constant, linear coefficient models. However, the approach, with appropriate modifications,

is applicable to more than two models, as well as linear, time-varying models. In the case

that there are more than two models, an appropriate test signal can be found to separate

all of the output sets. The hyperplane test can only be applied to two models at a time

and used to determine which model the output did not come from. However, by comparing

two models at a time, eliminating the possibilities, the model identification decision can be

made.

Without some kind of bound on the noise, any output would be possible from either

model and perfect model identification would be impossible. Thus, we assume that the

noise is bounded in the L2 norm. That is, we let Si be the noise measure where

Si(xi(0), µi) = xi(0)
TQixi(0) +

∫ ω

0
|µi(t)|2 dt < 1, i = 0, 1. (1.10)

Note that the choice of 1 as the bound is for simplicity. We could have easily chosen a

different bound (see Lemma 2.2 of [30]). The bound of (1.10) differs from much of the failure

Chapter 1. Introduction and Background 12

detection literature where stochastic assumptions are made on the noise, µi. The approach

based on (1.10) allows for a variety of problems including some with small nonlinearities

and disturbances with unknown statistical properties. There are alternatives discussed in

[12]. Once the noise is bounded, we can consider the outputs of the models.

Let Ai(v) be the output set of model i for i = 0 and 1, where model 0 represents the

properly working system and model 1 represents the faulted or failing system. Perfect fault

detection would imply that

A0(v) ∩ A1(v) = ∅. (1.11)

Define Li(f) =
∫ T

0 eAi(t−s)f(s)ds so that Li(f) is the solution of ż = Aiz + f with

z(0) = 0. Let ξi be the free initial condition for ODE (1.9). Then

yi = ȳi + (CiLiMi +Ni)µi + Cie
Aiξi

where ȳi = CiLi(Biv) is a vector which is linearly dependent on the detection signal,

{(CiLiMi + Ni)µi : ‖µi‖ < 1} is an open, convex set, and {Cie
Aitξi : ξi ∈ RN} is a finite

dimensional subset of L2[0, ω].

Thus, the output sets, Ai(v), are translates of open sets by ȳi and they are affinely

dependent upon the detection signal, v. We say a detection signal is proper if it gives

disjoint output sets. That is, the detection signal v, is proper if the translation by the

vector ȳi pushes the sets apart. As we are looking for the minimum energy detection signal,

then we will find a proper detection signal of minimum norm. Figure 1.3.1 illustrates a

proper detection signal pushing the output sets apart. A detection signal is strictly proper

if the output sets are a positive distance apart.

Formulating the problem in terms of the definition of proper

A proper detection signal separates the output sets of the two models. We now consider the

definition of proper in detail and develop a computational criteria for a proper detection

signal. If (x0, µ0, x1, µ1) satisfies the models (1.9) and satisfies the noise bound (1.10), then

a proper detection signal, v, ensures that the output sets of the models will be distinct.

Another way to look at this is to say, if (x0, µ0, x1, µ1) satisfy the models and v is a proper

detection signal, but the outputs are still not distinct, then (x0, µ0, x1, µ1) must not satisfy

Chapter 1. Introduction and Background 13

A (v)

y

A (v)
1

A (0) A (0)1

y

0

0

0 1

Figure 1.1: The figure illustrates a proper detection signal, v, pushing the output sets,

Ai(v), apart.

the noise bound. Recall that we assumed that the noise in the models was bounded. That

is, we assumed

Si(xi(0), µi) = xi(0)
TQixi(0) +

∫ ω

0
|µi(t)|2 dt < 1, i = 0, 1. (1.12)

Thus, if (x0, µ0, x1, µ1) satisfies the models and v is a proper detection signal, but an output,

y, is still in both output sets, it must be that

max{S0(x0(0), µ0),S1(x1(0), µ1)} ≥ 1. (1.13)

As this must be true for all possible (x0, µ0, x1, µ1) which satisfy the models but do not

have distinct outputs, it is sufficient to ensure it is true for the minimum of them. Thus,

we have

min
xi,µi

max{S0(x0(0), µ0),S1(x1(0), µ1)} ≥ 1.

With this in mind, we can give a technical characterization of the term proper.

Lemma 1 (Proper Detection Signal). The auxiliary signal, v, is proper if and only if

for all (x0, µ0, x1, µ1, y) satisfying

ẋ1 = A0x0 +B0v +M0µ0

y = C0x0 +N0µ0

Chapter 1. Introduction and Background 14

and

ẋ1 = A1x1 +B1v +M1µ1

y = C1x1 +N1µ1

then

min
xi,µi

max{S0(x0(0), µ0),S1(x1(0), µ1)} ≥ 1. (1.16)

v is called not proper if (1.16) does not hold.

The inner maximization is not continuous in the sense that it is over the discrete set i.

Thus, the next step in formulating the optimal control problem which we will solve to find

the test signal is to replace the discontinuous maximum problem with a continuous one and

to switch the max and min (see Theorem 2.1 in [30]). That is, we replace

min
xi,µi

max{S0(x0(0), µ0),S1(x1(0), µ1)} ≥ 1

with

max
0≤β≤1

{min
xi,µi

βS0(x0(0), µ0) + (1 − β)S1(x1(0), µ1)} ≥ 1

Then finding the minimum energy, proper detection signal is equivalent to finding

min ‖v‖2

such that

max
0≤β≤1

min
xi,µi

βS0(x0(0), µ0) + (1 − β)S1(x1(0), µ1) ≥ 1

subject to

ẋi = Aixi +Biv +Miµi

y = Cixi +Niµi

for i = 0, 1.

We note that the output y in both models is the same. Thus, we can eliminate the

output by replacing

y = Cixi +Niµi

Chapter 1. Introduction and Background 15

for i = 0, 1 with

0 = C0x0 − C1x1 +N0µ0 −N1µ1.

If we let

ẋ = Ax+Bv +Mµ be





ẋ0 = A0x0 +B0v +M0µ0

ẋ1 = A1x1 +B1v +M1µ1

and let

0 = Cx+Nµ be 0 = C0x0 − C1x1 +N0µ0 −N1µ1

then we can let

Jv(β) =





minxi,µi
βS0(x0(0), µ0) + (1 − β)S1(x1(0), µ1),

subject to

ẋ = Ax+Bv +Mµ

0 = Cx+Nµ.

Using these terms, the problem of finding the minimum energy detection signal becomes:

Find min ‖v‖2

such that

max
0≤β≤1

Jv(β) ≥ 1.

The final step in the process of formulating the optimal control problem we will solve

to find the minimum energy signal is to find the necessary conditions of the Jv(β) problem.

That is, we need to find

min
xi,µi

βS0(x0(0), µ0) + (1 − β)S1(x1(0), µ1) (1.18)

subject to

ẋ = Ax+Bv +Mµ

0 = Cx+Nµ.

Forming the Hamiltonian of this system, we get

H =
1

2
xT

0Qβx0 +
1

2
µTVβµ+ λ(−ẋ+Ax+Bv +Mµ) + η(Cx+Nµ)

Chapter 1. Introduction and Background 16

where
1

2
xT

0Qβx0 = βx0(0)
TQ0x0(0) + (1 − β)x1(0)

TQ1x1(0) (1.20)

and
1

2
µTVβµ = β‖µ0‖2 + (1 − β)‖µ1‖2. (1.21)

Using the Euler equations, we get the necessary conditions

ẋ = Ax+Bv +Mµ

λ̇ = −ATλ+ CT η

0 = Vβµ−MTλ+NT η

0 = Cx+Nµ

λ(0) = −Qβx(0), λ(ω) = 0.

Then the optimization problem for finding the minimum energy, proper detection signal is

to minimize the detection signal subject to

1. An expression for the value of Jβ .

2. The necessary conditions for the Jβ problem.

3. The constraint Jβ ≥ 1.

This is equivalent to finding

min ‖v‖2

subject to ẋ = Ax+Bv +Mµ

λ̇ = −ATλ+ CT η.

Ż =
1

2
µTVβµ

0 = Vβµ−MTλ+NT η

0 = Cx+Nµ

Z(0) =
1

2
xT

0Qβx0, Z(ω) ≥ 1

λ(0) = −Qβx(0), λ(ω) = 0

0 < β < 1.

Chapter 1. Introduction and Background 17

The minimum energy detection signal algorithm (MEDS)

Having developed the optimization problem for solving the minimum energy detection sig-

nal problem, we can now describe the algorithms and precise problems which are solved.

Included with each step of the algorithm is the name of the software which can be used in

that step. As we used MATLAB, by The MathWorks, Inc. [31], and SOCS, by The Boeing

Company [7], they are given. However, other software packages would work just as well. In

addition to MATLAB and SOCS, Maple, by Waterloo Maple, Inc. [49], was used to gener-

ate the FORTRAN subroutines needed for SOCS. Note that the description below includes

a change in variable resulting in a reduction of the dimensions of the problem and rewriting

the Jv(β) problem in LQR form. As it added little to the understanding of the approach,

these things weren’t mentioned above. However, they are included here for completeness.

In [30], Horton includes a Riccati form of the problem but that is also not included here as

we have not used it.

The minimum energy detection signal(MEDS) algorithm:

1. Perform QR decomposition on NT
i (MATLAB)

NT
i = QiRi

where the Qi are unitary. Then

Ni = RT
i Q

T
i .

2. Perform constant orthogonal coordinate changes on µi (MATLAB).

(a) Let RT
i =

[
N i 0

]
where N i is invertible.

(b) Let QT
i µi =


µi

µ̃i


 with the same partitioning as RT

i . Thus,

Niµi =
[
N i 0

]

µi

µ̃i


 .

Chapter 1. Introduction and Background 18

(c) Let MiQ
−T
i =

[
M iM̃i

]
with the same partitioning as RT

i . Thus

Miµi = MiQ
−t
i QT

i µi =
[
M iM̃i

]

µi

µ̃i


 .

Now, the system model is

ẋ = Ai +Bi +M iµi + M̃iµ̃i (1.25a)

y = Cixi +N iµi. (1.25b)

3. Reduce model dimension by eliminating y and µ0 (MATLAB).

(a) Combine both equations (i = 0, 1) for y, solve for µ0, and substitute into (1.25)

for i = 0. Then,

ẋ0 = (A0 −M0N
−1
0 C0)x0 +M0N

−1
0 C1x1 +B0v + M̃0µ̃0 +M0N

−1
0 N1µ1.

(b) Let

x =


x0

x1


 , A =


A0 −M0N

−1
0 C0 M0N

−1
0 C1

0 A1


 , B =


B0

B1


 ,

M =


M̃0 M0N

−1
0 N1 0

0 M1 M̃1


 , µ =




µ0

µ1

µ̃i


 .

The system model is now

ẋ = Ax+Bv +Mµ.

4. Compute new system matrices (MATLAB).

(a) Let C =
[
C0 −C1

]
and N =

[
0 N1 0

]
, with the columns of N conforming

to µ.

(b) Let H = −4βCTN and Q = 2βCTC.

Chapter 1. Introduction and Background 19

(c) Let

R = 2




βI 0 0

0 (1 − β)I + βN
T
1N1 0

0 0 (1 − β)I




with the rows and columns of R conforming to µ.

(d) Compute A,B,M,H,Q,R.

5. Perform one of the following constrained optimization problems (SOCS)

(a) Problem formulation 1:

(γ∗)2 = max
v,β

Z(ω) (1.30)

subject to the constraints

ẋ = Ax+Bv +Mµ (1.31a)

λ̇ = −Qx− 1

2
Hµ−ATλ, λ0 = λω = 0 (1.31b)

θ̇ = vT v, θ(0) = 0, θ(ω) = 1 (1.31c)

Ż =
1

2
[xTQx+ xTHµ+ µTRµ], Z(0) = 0 (1.31d)

0 = Rµ+
1

2
HTx+MTλ (1.31e)

0.01 < β < 0.99. (1.31f)

(b) Problem formulation 2:

(γ∗)2 = min
v,β

∫ ω

0
‖ v ‖2 dt

subject to the constraints

ẋ = Ax+Bv +Mµ

λ̇ = −Qx− 1

2
Hµ−ATλ, λ(0) = λ(ω) = 0

Ż =
1

2
[xTQx+ xTHµ+ µTRµ], Z(0) = 0, Z(ω) ≥ 1

0 = Rµ+
1

2
HTx+MTλ

0.01 < β < 0.99.

The constraint (1.31f) uses .01 and .99 rather than 0 and 1 to bound β away

from 0 and 1 early in the optimization process.

Chapter 1. Introduction and Background 20

1.3.2 Model Identification by the Separating Hyperplane

Applying the detection signal from the MEDS algorithm guarantees that the output sets

from the models are distinct, convex sets. However, it does not reveal the model with which

the output is associated. In order to determine from which model the output originated,

other steps need to be taken. As we know that application of the detection signal causes the

output sets to be disjoint and convex, we know that there exists a hyperplane separating

them. Using this hyperplane, we can devise a test function, φ, and the identification can

be made.

The Problem

Let

ẋi = Aixi +Biv̂ +Miµi (1.34a)

yi = Cixi +Niµi (1.34b)

for i = 0 and 1, be the previously defined normal and failed models with the exception that

v̂ is now the minimum energy detection signal as found in the MEDS algorithm. Also, as

we know that the minimum energy signal provides distinct output sets, y now has an index.

Due to the design of the detection signal, we know that the output sets, Ai(v), are open,

convex sets. We also know that while the output sets are distinct since we found a proper,

minimum energy detection signal, the closures of the output sets are not distinct and must

share at least one point. The reason for this is that the detection signal is minimal. If a

detection signal which is infinitesimally smaller than the minimum energy detection signal

were applied then the signal would not be proper and the output sets would not be disjoint.

However, if the open output sets intersect with the application of an infinitesimally smaller

detection signal, the closures of the output sets must intersect with the application of the

minimum energy, proper detection signal.

It is possible that the closures might have more than one intersection. This could

happen when both of the sets are not strictly convex. Should the Ai matrices share a

common eigenvector, then the sets have a straight, parallel side. A matrix manipulation

can eliminate this problem and it is assumed that this problem has been taken care of if it

should occur.

Chapter 1. Introduction and Background 21

a

y

y

y

Figure 1.2: Using the hyperplane, a test can be formulated that will determine if y lies

above the plane or below it, determining from which model the output is produced.

Let us assume there is a unique point of intersection. This is guaranteed if at least one

of the sets is strictly convex. Also, recall that the equations y = Cixi + Niµi for i = 0, 1

were combined to eliminate the y. Thus, when the optimal trajectory x1 and the optimal

noise µ1 are substituted into this expression, the resulting y is the point of intersection of

the closures of Ai(v). Let the resulting y be y.

Because the output sets are convex and disjoint, there exists a hyperplane passing

through y which separates the sets. Using this hyperplane, a test can be formulated such

that it will determine if the y lies above the plane or below it, thus determining from which

model the output is produced. Figure 1.2 illustrates this. To state it more formally, there

exists a function a(t) in L2 such that

φ(y) = 〈a, y − y〉 =

∫ ω

0
a(t)T [y(t) − y(t)] dt (1.35)

and φ is non-negative on one output set and non-positive on the other. The function a(t)

is the normal function to the separating hyperplane and φ is called the test function.

As it is more numerically robust to work away from the boundary of the output sets,

we improvise by artificially forcing the sets apart. Suppose that the points closest to each

other on the sets are y0 and y1. Then the line segment between them would be defined by

y0 − y1 and it would be normal to both sets as the points are the closest to each other in

the sets. Using this, we can approximate the hyperplane.

Chapter 1. Introduction and Background 22

We note here that a larger multiple of the minimum energy detection signal is still

proper. More specifically, if v is proper, than (1 + c)v is also proper [30, 39], where c is

some positive constant. Intuitively, if v pushes the output sets apart, then a detection

signal larger than v will also push them apart. Any proper signal can be used to find the

hyperplane.

We force the sets further apart by shrinking the noise components. This is equivalent to

increasing the detection signal. To see this, consider the following system, where 0 ≤ ε ≤ 1:

ẋ = Ax+Bv̂ +Mεµ (1.36a)

y = Cx+Nεµ. (1.36b)

Multiplying this model by 1
ε

and letting z = x
ε
, w = y

ε
, and δ = 1

ε
, we get

ż = Az +Bδv̂ +Mµ (1.37a)

w = Cz +Nµ (1.37b)

which is the original model with the larger detection signal and no modification of the noise.

Thus, we will use the model:

ẋi = Aixi +Biv̂ +Miεµi (1.38a)

yi = Cixi +Niεµi. (1.38b)

As we want the points on the boundaries of the closures of the sets which are closest to

each other, we change the noise measure to

‖ µi ‖2≤ 1, i = 0, 1. (1.39)

To compute the normal to the separating plane, we minimize ‖ y0 − y1 ‖2 subject to

(1.38) and (1.39). Then the difference of the solutions can be normalized and is normal to

the hyperplane. We use the midpoint of the line segment between y0 and y1 as the point

needed to define the hyperplane.

Model Identification Algorithm

1. Let v̂ be the minimum energy proper detection signal from the MEDS algorithm.

(SOCS)

Chapter 1. Introduction and Background 23

2. Choose a value for ε < 1.

3. Perform constrained optimization (SOCS)

min ‖ y0 − y1 ‖2 (1.40)

subject to the constraints

ẋi = Aixi +Biv̂ +Miεµi (1.41a)

yi = Cixi +Niεµi (1.41b)

q̇i = µT
i µi, qi(0) = 0, qi(ω) ≤ 1 (1.41c)

for i = 0, 1.

4. Let y0,ε and y1,ε be the closest points computed by the optimization.

5. Compute aε(t) be the separating hyperplane (MATLAB)

aε =
y0,ε − y1,ε

‖ y0,ε − y1,ε ‖
.

6. Compute yε(t), the point on the separating hyperplane, as the midpoint, of the line

segment connecting y0,ε and y1,ε (MATLAB)

yε =
y0,ε + y1,ε

2
.

7. Let φε(z) = 〈aε, z − yε〉 be the test function. Then

φε(y0) = 〈aε, y0 − yε〉 > ε

φε(y1) = 〈aε, y1 − yε〉 < ε

where yi is an unknown output from model i, i = 0, 1.

8. Suppose a known output from model 0 produces a positive test function value. Then

if an unknown output produces a positive test function value, the unknown output

derives from model 0. If the unknown output produces a negative test function value,

it derives from model 1. If a zero test function value is produced, an error has occurred

and a smaller value of ε should be selected.

Chapter 1. Introduction and Background 24

Numerical error increases due to division by small numbers, potentially effecting the

results of the hyperplane test. This problem can be avoided the calculations are done

to a sufficient level of accuracy. However, a suitable value of ε will also do. For a more

detailed discussion of the choice of ε, see Chapter 3 in [30].

Multiple models

It is possible to find a detection signal with the MEDS algorithm which works for multiple

models. Moreover, the model identification algorithm is applicable to multiple models, as

well. When there are more than two models the output, y, may not come from either model

being compared. Then the test becomes

if y ∈
m⋃

p=1

Ap(v), then




φi,j < εi,j ⇒ y 6∈ Ai(v)

φi,j > εi,j ⇒ y 6∈ Aj(v)
.

1.4 Outline of Thesis

In the chapter that follows, we explore the possibility of making the detection decision early.

Then in Chapter 3, we introduce the delayed detection problem and look at solutions to

it using the Method of Steps. With this background in the delayed detection problem, in

Chapter 4, we look at a solution to the delayed detection problem by reformulating the

problem into a partial differential equation (PDE) and then approximating the solution to

the PDE with central differences. We look at another approximation in Chapter 5. This

approximation adapts a spline method found in a paper by Ito and Kappel [34]. Then

in Chapter 6, we look at some numerical examples. In the final chapter, we review some

potentially interesting extensions to this work and give our conclusions.

1.5 Contributions of Thesis

The work done as part of this thesis appears in the following papers :

• S. Campbell, K. Drake, R. Nikoukhah, and F. Delebecque, Rapid Multi-Model Identi-

fication In Systems With Delays, 3rd IFAC Workshop on Time Delay Systems (TDS

2001), Dec. 8-10, Sante Fe, New Mexico, 2001, pp. 296-301.

Chapter 1. Introduction and Background 25

• S. Campbell, K. Drake, R. Nikoukhah, Early Decision Making When Using Proper

Auxillary Signals, Proc. IEEE Conference on Decision and Control, Dec.10-13, Las

Vegas, Nevada, 2002, pp. 1832-1837.

• S. Campbell, K. Drake, R. Nikoukhah, Auxillary System Design for Multimodel Iden-

tification in Systems with Multiple Delays, Proc. 10th Mediterranean Conference on

Control and Automation, Lisbon, July 7-11, 2002.

• S. Campbell, K. Drake, R. Nikoukhah, Analysis of Spline Based Auxiliary Signal

Design for Failure Detection in Delay Systems, Paper accepted by IEEE CSMC 2003.

• Kimberly J. Drake, An Examination of the Potential of Using the World Wide Web

to Create User Interfaces , M&CT-TECH-00-013, December 2000, Mathematics and

Computing Technology, A Division of the Boeing Co.

In addition, a number of other computational studies on systems without delays which

are not discussed in this thesis are included in Chapter 4 of [12].

Chapter 2

Early Detection

2.1 What is Early Detection and Why Bother?

We have,

ẋi = Aixi +Biv̂ +Miµi (2.1a)

yi = Cixi +Niµi (2.1b)

for i = 0 . . .m, for t ≥ 0 where xi, y, v, µi are the system states, output, detection signal

and noise, respectively. Ai, Bi, Ci,Mi, Ni are matrices of appropriate dimension. v and µi

are taken to be in L2[0, ω] = L2. This implies that xi and yi are in L2, as well. We also

assume that v is proper in the sense defined in Section 1.3 and that the output sets of the

two models using this signal are distinct. According to the model identification algorithm

of Section 1.3.2, we can then construct the hyperplane test function

φi,j(y) =< y − ȳi,j , a >=

∫ ω

0
ai,j(t)

T (y(t) − ȳi,j(t)) dt

where a is a normal to a hyperplane between the output sets, ȳ is a point on the hyperplane,

and [0, ω] is the test interval. As a and ȳ are computed offline, the hyperplane test is the

calculation of a single integral which can be computed as the output, y, becomes available.

Thus, the hyperplane test can be carried out in real time.

The question we wish to address in this chapter is whether it is necessary to wait until

the end of the test interval to make the model identification decision. By developing a

modified hyperplane test, based on the original test, we will show that it is possible to make

26

Chapter 2. Early Detection 27

an early decision and computational tests will show that it is possible to reduce the time for

the hyperplane test by about 25% on average and still maintain perfect model identification.

2.2 Analytical Breakdown of Problem

Assume we have the test function as described in Section 1.3.2

φi,j(y) =< y − ȳi,j , a >=

∫ ω

0
ai,j(t)

T (y(t) − ȳi,j(t)) dt

where the test interval is [0, ω], ai,j(t) ∈ L2[0, ω] is the normal to the separating hyperplane

and ȳi,j is a point on the plane. We also assume that if φi,j(y) > εi,j > 0 we know the

output did not originate from model j. If φi,j(y) < εi,j < 0, we know the output is not

from model i.

In the worst case, we may have to wait until the end of the interval in order to conclu-

sively determine from which model the output originates. However, it is possible that

we might be able to make this determination sooner. Let c ∈ [0, ω]. Let φi,j(y) =

ψi,j(y, c) + ∆i,j(y, c) where

ψi,j(y, c) =

∫ c

0
ai,j(t)

T (y(t) − yi,j(t)) dt

and

∆i,j(y, c) =

∫ ω

c

ai,j(t)
T (y(t) − yi,j(t)) dt.

Notice that ψi,j is the value of the hyperplane test function calculated until time c, as the

output y becomes available, and ∆i,j is that part which is left to be calculated over the

remaining test period [c, ω].

We have assumed that if φi,j(y) < εi,j , we know the output is not from model i. But, if

φi,j(y) = ψi,j(y, c) + ∆i,j(y, c) < εi,j ⇒ y 6∈ Ai(v),

then

ψi,j(y, c) < εi,j − ∆i,j(y, c) ⇒ y 6∈ Ai(v).

The idea behind our early decision test is to devise an estimate for ∆i,j(c) which will act as

a threshold. Once ψi,j passes the threshold, the decision making process will be complete.

Chapter 2. Early Detection 28

0 2 4 6 8 10 12 14 16 18 20
0. 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
 Resulting from Output from Model 2

Time

ψ2

ψ2

Figure 2.1: An example of ψi,j

In a worst case, we may not be able to make a decision until the end of the test interval.

However, it is likely that we will be able to reach a decision earlier. Figure 2.1 shows ψi,j

from an example we will discuss later in this chapter.

Let Lp(f) =
∫ T

0 eAp(t−s)f(s)ds be the solution of ż = Apz + f with z(0) = 0. Let xp(0)

be the free initial condition for model p. Using this notation, we have

y = CpLp(Bpv) + (CpLpMp +Np)µp + Cpe
Apxp(0). (2.4)

Then ∆ can be rewritten as

∆i,j(c) =

∫ ω

c

aT
i,j(CpLp(Bpv) + Cpe

Apsxp(0)p + (CpLM +Np)µp − ȳi,j) ds. (2.5)

Notice that in estimating ∆i,j(y, c) a smaller estimate is available by grouping as many

terms together as possible. That is,

∆i,j(c) =

∫ ω

c

aT
i,j(CpLp(Bpv) ds+

∫ ω

c

aT
i,j(Cpe

Apsxp(0)) ds

+

∫ ω

c

aT
i,j(CpLM +Np)µp − ȳi,j) ds.

Theorem 1. Suppose that v is a proper m-model auxiliary signal. Suppose that y ∈

Chapter 2. Early Detection 29

⋃m
p=1 Ap(v). Let

δi,j(c) =

(∫ ω

c

|ai,j |2 ds
) 1

2

= ‖ai,j‖L2[c,ω] (2.7a)

Ki(c) = ‖CiLiMi +Ni‖L2[c,ω] (2.7b)

γi,j,k(c) =

∣∣∣∣
∫ ω

c

aT
i,j(s) (CpLpBpv(s) − ȳi,j(s)) ds

∣∣∣∣ (2.7c)

θp(c) =

(∫ ω

c

|Cpe
ApsQ− 1

2 |2 ds
) 1

2

. (2.7d)

Then

1. If for some 0 < t < ω we have that

ψi,j(y, t) > εi,j + max
p

[γi,j,p(t) + (Kp(t) + θp(t))δi,j(t)], then y 6∈ Aj(v)

2. If for some 0 < t < ω we have that

ψi,j(y, t) < εi,j − max
p

[γi,j,p(t) + (Kp(t) + θp(t))δi,j(t)], then y 6∈ Ai(v).

Proof. We know that

if y ∈
m⋃

k=1

Ap(v), then




φi,j < εi,j ⇒ y 6∈ Ai(v)

φi,j > εi,j ⇒ y 6∈ Aj(v).

Suppose y ∈ Ap(v) but we do not know what p is. Then ∆ can be rewritten in the form

of (2.5). In estimating ∆i,j(y, c) a smaller estimate is available by grouping as many terms

Chapter 2. Early Detection 30

together as possible. That is,

∆i,j(y, c) =

∫ ω

c

aT
i,j(CpLp(Bpv) − ȳi,j) ds+

∫ ω

c

aT
i,j(Cpe

Apsxp(0)p) ds

+

∫ ω

c

aT
i,j(CpLM +Np)µp ds

≤ ‖
∫ ω

c

aT
i,j(CpLp(Bpv) − ȳi,j) ds‖ + ‖

∫ ω

c

aT
i,j(Cpe

Apsxp(0)p) ds‖

+‖
∫ ω

c

aT
i,j(CpLpM +Np)µp ds‖

≤ γi,j,p + ‖
∫ ω

c

aT
i,j(Cpe

Apsxp(0)p) ds‖ + ‖
∫ ω

c

aT
i,j(CpLM +Np)µp ds‖

≤ γi,j,p +

(∫ ω

c

|aT
i,j |2 ds

) 1

2

[(∫ ω

c

|(Cpe
Apsxp(0))|2 ds

) 1

2

+

(∫ ω

c

|(CpLM +Np)µp|2 ds
) 1

2

]
by the Cauchy-Schwartz inequality for L2

≤ γi,j,p + δi,j (θp +Kp) since ‖µ‖ ≤ 1 and |Q− 1

2xp(0)| < 1 by the noise measure

≤ max
p

[γi,j,p + δi,j (θp +Kp)] since we don’t know what p is

Then we have

φi,j(y) = ψi,j(y, c) + ∆i,j(y, c) < εi,j ⇒ y 6∈ Ai(v)

so that

ψi,j(y, c) < εi,j − ∆i,j(y, c) ⇒ y 6∈ Ai(v).

But, since ∆i,j(y, c) < maxp[γi,j,p + δi,j(c) (θp(c) +Kp)], then

εi,j − max
p

[γi,j,p + δi,j(c) (θp(c) +Kp)] < εi,j − ∆i,j(y, c).

Thus, if

ψi,j(y, c) < εi,j − ∆i,j(y, c) ⇒ y 6∈ Ai(v),

then

ψi,j(y, c) < εi,j − max
p

[γi,j,p + δi,j(c) (θp(c) +Kp)] ⇒ y 6∈ Ai(v).

Similarly, we have

φi,j(y) = ψi,j(y, c) + ∆i,j(y, c) > εi,j ⇒ y 6∈ Aj(v)

Chapter 2. Early Detection 31

so

ψi,j(y, c) > εi,j − ∆i,j(y, c) ⇒ y 6∈ Aj(v).

But, since

εi,j − ∆i,j(y, c) ≤ εi,j + |∆i,j(y, c)|

≤ εi,j + max
p

[γi,j,p + δi,j(c) (θp(c) +Kp)]

then

ψi,j(y, c) > εi,j + max
p

[γi,j,p + δi,j(c) (θp(c) +Kp)] ⇒ y 6∈ Aj(v).

♦

2.3 Algorithm

The theorem of the previous section shows that early decision making is possible. In this

section, we provide the algorithm for the early decision test. We use standard numeri-

cal packages in the calculations. As the quantities involve functions, we use differential

equations in the calculations.

Calculating δi ,j (c) = ‖ai ,j ‖L2 [c,ω]

Let’s consider the function g(c) = ‖f(t)‖2
L2[c,ω] =

∫ ω

c
|f(t)|22 dt for c ∈ [0, ω]. First, we note

that g is monotonically decreasing on the interval [0, ω] and we note that g(0) = ‖f‖2
L2[c,ω]

while g(ω) = 0. Then given values of the function f , it is possible to compute g(c) by solving

ġ = −|f(c)|22, g(0) = ‖f‖2
2, 0 ≤ t ≤ ω (2.14)

or

ġ = −|f(c)|22, g(ω) = 0, 0 ≤ t ≤ ω. (2.15)

As we have ai,j precalculated from the model identification algorithm, we can use (2.15) to

calculate the value δi,j(c) = ‖ai,j‖L2[c,ω]. That is, we solve

ġ0 = −aT
i,jai,j g(ω) = 0

δi,j = g
1

2

0 .

Chapter 2. Early Detection 32

Calculating γi ,j ,k (c) =
∣∣∣
∫ ω

c
aT
i ,j (s) (CpLpBpv(s) − ȳi ,j (s)) ds

∣∣∣

Using a similar technique as above, we can solve the following boundary value problem to

find γi,j,k(c). As

γi,j,k(c) =

∣∣∣∣
∫ ω

c

aT
i,j(s) (CpLpBpv(s) − ȳi,j(s)) ds

∣∣∣∣ ,

we solve

ġ1p(t) = Apg1p(t) +Bpv(t), g1p(0) = 0

ġ2p(t) = aT
i,j(s) (Cpg1(t) − ȳi,j(s)) , g2p(ω) = 0

γi,j,i(t) = |g2p|.

Calculating θp(c) =

(∫ ω

c
|Cpe

ApsP
− 1

2
p |2 ds

) 1
2

The following initial value problem determines θp(c):

ġ3p(t) = |Cpe
AptP

− 1

2
p |2, g3p(ω) = 0

θ(t) = g
1

2

3p(t).

Calculating Kp(c) = ‖CpLpMp + Np‖L2 [c,ω]

The Kp term is a bit more complicated. First, we note that separating the Mp and Np

terms will make little difference computationally. Thus, we estimate ‖CpLpMp‖L2[c,ω] and

‖Np‖L2[c,ω] separately. First,

‖Npµ‖L2[c,ω] =

(∫ ω

c

|Np|22|µ|22 dt
) 1

2

≤ |Np|2
(∫ ω

c

|µ|22 dt
) 1

2

≤ |Np|2‖µ‖L2[0,ω]

≤ |Np|2 since ‖µ‖L2[0,ω] < 1.

As Np is constant, |Np|2 is very easy to calculate. We can estimate ‖Npµ‖L2[c,ω] by finding

|Np|2 .

Chapter 2. Early Detection 33

We also need to calculate estimates for ‖CpLp(Mpµ)‖L2[c,ω]. First we show that there

exists M̃p such that,

‖CpLp(Mpµ)‖L2[c,ω] ≤ M̃p(t)‖µ‖L2[c,ω].

We know that

‖Lp(Mpµ)(t)‖L2[c,ω] =

(∫ ω

c

|CpLp(Mpµ)(t)|22 dt
) 1

2

.

Lets consider a particular t ∈ [0, ω]. Now,

|CpLp(Mpµ)(t)|2 ≤
∣∣∣∣
∫ t

0
Cpe

Ap(t−s)Mpµ(s) ds

∣∣∣∣
2

for t ∈ [0, ω]

≤
∫ t

0
|Cpe

Ap(t−s)Mp|2|µ(s)|2 ds

by Cauchy-Schwartz Inequality ≤
(∫ t

0
|Cpe

Ap(t−s)Mp|22 ds
) 1

2
(∫ t

0
|µ(s)|22 ds

) 1

2

.

Now, let us consider |Cpe
Ap(t−s)Mp|2. Since s ≤ t are both in [0, ω], we know that t − s ∈

[0, ω], so |Cpe
Ap(t−s)Mp|2 = |Cpe

AptMp|2. Also, there exists an M p(t) such that

|Cpe
AptMp|2 ≤Mp(t) for all t ∈ [0, ω].

Thus,

|Lp(Mpµ)(t)|2 ≤
(∫ t

0
Mp(s)

2 ds

) 1

2
(∫ t

0
|µ(s)|22 ds

) 1

2

=

(∫ t

0
Mp(s)

2 ds

) 1

2

‖µ‖L2[0,t] for t ∈ [0, ω].

Then letting
(
M̃p(t)

) 1

2

=
(∫ t

0 Mp(s)
2 ds

) 1

2

, M̃p(t) will satisfy the differential equation,

˙̃
Mp(t) = M

2
p

M̃p(0) = 1

where Mp = |Cpe
AptMp|2. Thus, we have for a particular t that

|CpLp(Mpµ)(t)|2 ≤
(
M̃p(t)

) 1

2 ‖µ‖L2[0,ω] since t ∈ [0, ω].

Now, we go back and reconsider ‖CpLp(Mpµ)(t)‖L2[c,ω]. We have

Chapter 2. Early Detection 34

‖CpLp(Mpµ)(t)‖L2[c,ω] =

(∫ ω

c

|CpLp(Mpµ)(t)|22 dt
) 1

2

≤
(∫ ω

c

(
M̃p(t)

1

2 ‖µ‖L2[0,ω]

)2
dt

) 1

2

=

(∫ ω

c

M̃p(t)‖µ‖2
L2[0,ω] dt

) 1

2

= ‖µ‖L2[0,ω]

(∫ ω

c

M̃p(t) dt

) 1

2

.

Note that to calculate
(∫ ω

c
M̃p(t) dt

) 1

2

, we can solve

˙̃
M̃p(t) = −M̃p

˙̃
Mp(t) = M

2
p

M̃p(0) = 1

˜̃
Mp(ω) = 0

where Mp = |Cpe
AptMp|2. In order to calculate this, we need M p(t). There are several ways

one might do this. For moderately sized problems, MATLAB offers several functions useful

for calculating this value. The MATLAB function expm.m uses a Padé approximation to

calculate eApt. expm2.m calculates the value of eApt using a Taylor series. Also, MATLAB

provides expm3.m which calculates eApt by first diagonalizing Apt. Once the value of eApt

has been found, norm.m and normest.m can be used to find the value of |Cpe
AptMp|2.

Once the above quantities have been found, we can calculate Kp using

˙̃
Mp(t) = M

2
p, M̃p(0) = 1

˙̃
M̃p(t) = −M̃p,

˜̃
Mp(ω) = 0

Kp(t) = |Np| + ˜̃
M

1

2

p .

To summarize and state the above in a concise algorithm, we have the following:

1. Estimate Mp for p = 0...m.

Calculate Mp = |eAp(t)|2.

Chapter 2. Early Detection 35

2. Estimate Kp for p = 0...m.

Calculate Kp = ‖CpLpMp + Np‖L2[c,ω] by calculating M̃p(t) =
∫ t

0 Mp(s)
2 ds

˜̃
Mp =

∫ ω

c
M̃p(t) dt.

˙̃
Mp = M

2
p, M̃p(0) = 0

˙̃
M̃p = −M̃p,

˜̃
Mp(ω) = 0

Kp(t) = |Np| + ˜̃
Mp

1

2

.

3. Estimate γi,j,p for p = 0...m.

Calculate γi,j,k(c) =
∣∣∣
∫ ω

c
aT

i,j(s) (CpLpBpv(s) − ȳi,j(s)) ds
∣∣∣ using

ġ1p(t) = Apg1p(t) +Bpv(t), g1p(0) = 0

ġ2p(t) = aT
i,j(s) (Cpg1p(t) − ȳi,j(s)) , g2p(ω) = 0

γi,j,p(t) = |g2p|.

4. Estimate θp(c) for p = 0...m.

Calculate θp(c) =

(∫ ω

c
|Cpe

ApsP
− 1

2
p |2 ds

) 1

2

with

ġ3p(t) = |Cpe
AptP

− 1

2
p |2, g3p(ω) = 0

θ(t) = g
1

2

3p(t).

5. Estimate δi,j(c).

Use ai,j to calculate δi,j(c) = ‖ai,j‖L2[c,ω]

ġ0 = −aT
i,jai,j g(ω) = 0

δi,j = g
1

2

0 .

6. Estimate δ̂i,j(y, t).

Calculate

δ̂i,j = max
p

[γi,j,p(t) + (Kp(t) + θp(t))δi,j(t)].

Then the early decision test is

Chapter 2. Early Detection 36

(a) If for some 0 < t < ω, we have that

ψi,j < εi,j + δ̂i,j , then y 6∈ Aj(v).

(b) If for some 0 < t < ω, we have that

ψi,j(y, t) > εi,j − δ̂i,j , then y 6∈ Ai(v).

Note that if there are only two models, then the test becomes

1. If for some 0 < t < ω, we have that

ψi,j < εi,j + δ̂i,j , then y ∈ Ai(v).

2. If for some 0 < t < ω, we have that

ψi,j(y, t) > εi,j − δ̂i,j , then y ∈ Aj(v).

2.4 Computational Tests

In order to evaluate the early decision test, we ran 200 simulations using random noises and

initial conditions. We considered the following 2-model example.

ẋ0 = −2x0 + v + (1 0)µ0

y = x0 + (0 1)µ0

ẋ1 = −x1 + v + (1 0)µ1

y = x1 + (0 1)µ1

0 ≤ t ≤ 20.

We use Q0 = Q1 = I as the weight on the initial condition. In order to find random initial

conditions and noises, we first generated on [−1, 1] a set of random coefficients for the first

20 Fourier Sine functions and a random initial condition. We then normalized them on L2

and RN , respectively. Next, as we needed initial conditions and 2 noises for each model

which would satisfy the noise bound Si(xi(0), µi) = xi(0)
TQixi(0) +

∫ ω

0 |µi(t)|2 dt < 1,

we generated 3 random coefficients on [0, 1] which scale the noises and initial conditions to

Chapter 2. Early Detection 37

0 2 4 6 8 10 12 14 16 18 20
8

6

4

2

0

2

4

6

8
100 Outputs from Model 1

δ

−δ

Time
0 2 4 6 8 10 12 14 16 18 20

8

6

4

2

0

2

4

6

8
100 Outputs from Model 2

Time

δ

δ−

Figure 2.2: When ψi,j , the value of the hyperplane test which is calculated as the output

y becomes available, crosses δ̂i,j or −δ̂i,j , the test is complete. In 100 trials on each model,

detection takes place around .75ω.

satisfy the noise measure. Figure 2.2 shows the results of the 200 tests where the outputs

came from Models 0 and 1 respectively. The smooth curves are δ̂i,j and −δ̂i,j and the other

curves are the 100 graphs of ψi,j . For Model 0, detection time ranged between 14.444 to

15.9722 with an average time of 15.028. Results on Model 1 were similar, with the range

between 14.0278 and 15.278 and an average of 14.651. Figure 2.3 gives the actual time

distributions for detection. Figure 2.3 shows that over 60% of the trials had resulted in

detection by t = 15, which is a reduction of 25%. It is worth noting that the jumps in

Figure 2.3 are due to the step size in the numerical integrator used in the simulation. It is

also worth noting that there is a clustering of detection around .75ω. Detection is unlikely

in the beginning of the interval. The end of the interval represents the worst case, which is

also unlikely to occur in a random generation of noises.

Chapter 2. Early Detection 38

0 10 20 30 40 50 60 70 80 90 100
14.4

14.6

14.8

15

15.2

15.4

15.6

15.8

16
Detection Times for Outputs from Model 1

Time

Trials
0 10 20 30 40 50 60 70 80 90 100

14

14.5

15

15.5
Detection Times for Outputs from Model 2

Time

Trials

Figure 2.3: Detection time distribution for 100 trials of each model. The figures show that

over 60% of the trials had resulted in detection by t = 15, which is a reduction of 25%

Chapter 3

True Solutions: The Method of Steps

3.1 Introduction to the Problem

Frequently, we assume that the future of a system is independent of past states and relies

only on the present. This is not always a realistic representation of the systems under

study. Models which are dependent on the past history of the state are common in many

applications. For example, a model of measles spread in a city is given by

Ṡ = −β(t)S[2γ + s(t− 14) − S(t− 12)] + γ (3.1)

with S(t) representing the susceptibles in the population at time t days, γ representing the

rate at which individuals enter the population, and β(t) representing a function charac-

teristic of the population. An individual exposed at time t is infectious during the period

[t− 14, t− 12] [27].

The circumnutation1 of sunflowers has been modelled by [27]

α̇ = −k
∫ ∞

1
f(θ) sin(α(t− θ − t0)) dθ (3.2)

where α represents the angle the top of the plant makes with the vertical. The equation

ẋ = −αx(t− 1)[1 + x(t)]

has been used to model the distribution of primes [27]. Later in this chapter, we will present

an example of a model used in simulation of Mach number in a wind tunnel [48]. In each of

1circumnutation: The successive bowing or bending in different directions of the growing tip of the stems
of many plants, especially seen in climbing plants.

39

Chapter 3. True Solutions: The Method of Steps 40

these cases, the past history of the system plays a vital role in its future. This past history

enters the models in the form of delays, sometimes simply as a single, constant delay, as

in the measles model (3.1), or sometimes in a more complex way, as in the model of the

sunflower (3.2).

In this chapter, we consider detection on models with delays. The simplest of these

models have the form:

ẋ = Ax(t) +Gx(t− h) +Bv(t) +Mµ(t), t ≥ 0 (3.3a)

x(0) = η, (3.3b)

x(t) = φ(t) a.e. on [−h, 0) (3.3c)

y(t) = Cx(t) +Nµ(t), t ≥ 0. (3.3d)

This model illustrates some key similarities and differences between delayed models and

models without delays. As usual, we take A, B, M , N , and C to be constant matrices

to simplify discussion. G, the coefficient matrix of the delayed term, is also taken to be a

constant matrix. Again, µ is the noise and v is the detection signal. They are assumed to be

functions in L2[0, ω], where ω is the detection horizon. Notice that rather than having just

an initial condition, we have the addition of an initial function, φ ∈ L2[−h, 0), describing

the past history of the state. In a delayed system, state space is infinite dimensional. This

constitutes a significant difference from previously studied models and will require special

handling in signal design.

Also, notice that we have no assumption of continuity between the initial function

and the initial condition. That is, we do not assume that φ(0) = x(0). This will have

ramifications when we consider the necessary conditions which we use as constraints in

finding the detection signal.

There are two ways we can approach the fault detection question on such a model.

One way would be to return to first principles, developing a new theory and a new signal

design for this class of problems. While this is certainly possible, it is difficult in that we

would need to consider optimal control on delayed systems. We need to determine the

necessary conditions for (1.18) analytically in order to solve for the detection signal. This

is a non-trivial task with a delayed system.

The second way is the time honored mathematical tradition of reducing the problem

Chapter 3. True Solutions: The Method of Steps 41

to one we have done before. By approximating these infinite dimensional systems by finite

dimensional ones, we are able to extend previously developed theory to this new class of

problems. There are technical and theoretical issues which must be addressed. However,

the transition is smooth.

Among the technical and theoretical issues associated with this new class of problem is

how the addition of this initial function, φ, is handled. Recall the noise measure in Section

1.3

Si(xi(0), µi) = xi(0)
TQixi(0) +

∫ ω

0
|µi(t)|2 dt.

The initial condition, x(0), is included in the noise measure and treated as a disturbance of

the system. Perfect detection is possible only because we bound the noise. Like the initial

condition, the initial function will be treated as a disturbance and will contribute to the

bounded noise. The noise measure becomes

Si(xi(0), φi, µi) = xi(0)
TQixi(0) +

∫ 0

−h

|φi(t)|2 dt+

∫ ω

0
|µi(t)|2 dt. (3.4)

Note that if ω < h then (3.4) is actually

Si(xi(0), φi, µi) = xi(0)
TQixi(0) +

∫ ω−h

−h

|φi(t)|2 dt+

∫ ω

0
|µi(t)|2 dt. (3.5)

Also, if ω < h, then

ẋ = Ax(t) +Gx(t− h) +Bv(t) +Mµ(t), t ≥ 0 (3.6a)

= Ax(t) +Gφ(t− h) +Bv(t) +Mµ(t), for all t ∈ [0, ω]. (3.6b)

Since φ is considered a disturbance, then (3.6b) can be rewritten as

ẋ = Ax(t) +Bv(t) + M̃µ̃(t), t ≥ 0

where M̃ = [G M] and µ̃ =


φ
µ


 . The problem has been rewritten without delays and

requires no further special care. Thus, we will only consider the case when ω > h.

We approach the problem of reformulating the delay system in three ways. The first is

through the Method of Steps, as discussed in Chapter 3. Then we look at reformulating the

problem into a PDE and using a central difference approximation, as discussed in Chapter

Chapter 3. True Solutions: The Method of Steps 42

4. Finally, we look at a direct approximation using splines, as is discussed in Chapter 5.

Approximations allow for more complicated models than the Method of Steps. However, the

Method of Steps provides a true solution, rather than an approximate one. Thus, solutions

using the Method of Steps serve as a basis of comparison and verification of the other two

methods.

3.2 True Solutions with the Method of Steps

In this section, we will introduce the Method of Steps. By breaking up the detection horizon

into pieces which are the length of the delay and assigning to those pieces a new variable,

the delay term can be eliminated from the system. With a few modifications, the theory

of previous chapters will apply. Unfortunately, while the Method of Steps provides a true

solution, it only works on a small class of problems.

3.2.1 The Basic Problem

A simple illustrative example

In order to motivate the ideas behind the Method of Steps, we first consider a simple

example. Suppose we wish to find a continuous solution to the differential delay equation

(DDE) given by

ẋ(t) = x(t− 1) (3.8a)

x(t) = φ = 1 for − 1 < t ≤ 0. (3.8b)

Then if (3.8) is to hold for 0 < t ≤ 1, we need

ẋ(t) = x(t− 1) for 0 < t ≤ 1

= x(s) for − 1 < s ≤ 0.

Finding x on 0 < t ≤ 1 is no more difficult than solving a simple differential equation.

That is,

ẋ(t) = x(t− 1)

= 1.

Chapter 3. True Solutions: The Method of Steps 43

Thus,

x(t) = t+ c

for c a constant. As we require continuity in x and x(t) must satisfy (3.8b), we have

x(0) = 1

0 + c = 1

c = 1.

Thus, we have,

x(t) =





1 −1 < t ≤ 0

t+ 1 0 < t ≤ 1.

This process is repeated, solving for x on 1 < t ≤ 2 with x(1) = 2, and so on. In this way,

x can be determined for all time. This example illustrates the Method of Steps, sometimes

called the Method of Continuation, by which the solution is extended forward from interval

to interval.

Clearly, solving the same differential equations repeatedly over short time intervals may

not be desirable computationally. In order to avoid this, we reformulate the problem into a

system of higher dimension in which the delayed term has been eliminated. To accomplish

this, a new variable is assigned to each interval of length h of the detection horizon, where

h is the length of the delay. Then variable zi−1 is the past history of variable zi and the

system can be reformulated without the delay term. Using these new variables, a system

of equations is set up, allowing the solution for the entire detection horizon to be found

simultaneously. A boundary condition zi−1(h) = zi(0) is included to ensure continuity

between these new variables. Figure 3.1 illustrates this.

Chapter 3. True Solutions: The Method of Steps 44

1 2

0 h 2h 3h 0 h

z z
3

1z

2z
z 3

z

z

Figure 3.1: Diagram illustrating the Method of Steps: A new variable is assigned to each

interval of length h of the detection horizon, where h is the length of the delay. Then

variable zi−1 is the past history of variable zi and the system can be reformulated without

the delay term. Using these new variables, a system of equations is set up, allowing the

solution for the entire detection horizon to be found simultaneously. A boundary condition

zi−1(h) = zi(0) is included to ensure continuity between variables.

Method of steps formalism

Having considered a simple, heuristic example, we present the Method of Steps formalism.

Suppose we have two models

ẋ0 = A0x0(t) +G0x0(t− h) +B0v(t) +M0µ0(t), t ≥ 0 (3.13a)

y(t) = C0x0(t) +N0µ0(t), t ≥ 0. (3.13b)

x0(0) = η0, (3.13c)

x0(t) = φ0(t) a.e. on [−h, 0) (3.13d)

and

ẋ1 = A1x1(t) +G1x1(t− h) +B1v(t) +M1µ1(t), t ≥ 0 (3.14a)

y(t) = C1x1(t) +N1µ1(t), t ≥ 0. (3.14b)

x1(0) = η1, (3.14c)

x1(t) = φ1(t) a.e. on [−h, 0) (3.14d)

where Ai, Bi, Mi, Ni, Gi and Ci are constant matrices and v and µ are in L2[0, ω]. Notice

that both models have the same delay.

Chapter 3. True Solutions: The Method of Steps 45

Also, we assume that ω = κh with an integer κ ≥ 1.

Eliminating y, as discussed in Section 1.3, reduces the systems (3.13) and (3.14) to

ẋ0 = A0x0(t) +G0x0(t− h) +B0v(t) +M0µ0(t), t ≥ 0 (3.15a)

ẋ1 = A1x1(t) +G1x1(t− h) +B1v(t) +M1µ1(t), t ≥ 0 (3.15b)

0 = C0x0(t) − C1x1(t) +N0µ0(t) −N1µ1(t), t ≥ 0. (3.15c)

x0(t) = φ0(t), x1(t) = φ1(t) a.e. on [−h, 0) (3.15d)

x0(0) = η0, x1(0) = η1. (3.15e)

The reformulation of the problem using Method of Steps is given by the following:

Let κ = κ− 1. Let zi,j = xi(t+ jh), µi,j = µi(t+ jh), and vi = v(t+ jh) for t on [0, h]

and j = 1 . . . κ. For 0 ≤ t ≤ h, let γi(t) = φi(t− h). Then the system is

ż0,0 = A0z0,0 +G0γ0 +B0v0 +M0µ0,0. (3.16a)
... (3.16b)

ż0,κ = A0z0,κ +G0z0,κ−1 +B0vκ +M0µ0,κ (3.16c)

ż1,0 = A1z1,0 +G1γ1 +B1v0 +M1µ1,0 (3.16d)
... (3.16e)

ż1,κ = A1z1,κ +G1z1,κ−1 +B1vκ +M1µ1,κ (3.16f)

0 = C0z0,0 − C1z1,0 +N0µ0,0 −N1µ1,0, t ≥ 0 (3.16g)
... (3.16h)

0 = C0z0,κ − C1z1,κ +N0µ0,κ −N1µ1,κ, t ≥ 0 (3.16i)

zi,0(0) = xi(0) i = 0, 1 (3.16j)

zi,j(0) = zi,j−1(h) i = 0, 1 j = 1, . . . , κ. (3.16k)

It should be clear from the above that the size of the problem increases significantly as κ

increases which occurs when the delay gets small relative to the detection horizon. In fact,

in the next section, we shall see that this increase is even more dramatic, as there will also

be an increase in the number of multipliers introduced in finding the necessary conditions

to the inner minimum of the MEDS algorithm. Depending on the choice of optimization

software, this can significantly increase computational effort. A sparse, direct transcription

code like SOCS finds a mesh on the interval [0, h] which corresponds to the mesh on [0, ω].

Chapter 3. True Solutions: The Method of Steps 46

A significant computational difference is only seen if the mesh on [0, h] is much finer than

would be necessary to resolve the dynamics on [0, ω].

It should be noted that, technically, it is possible to have more than one delay or

different delays and use the Method of Steps. Suppose we have delays ri for i = 1 . . . n and

our detection test is on the interval from [0, ω]. Then by choosing h such that h divides ri

for all i and h divides ω, we can set up a system similar to (3.16) on [0, h]. However, solving

the problem in this way will dramatically increase the dimensions of the computational

problem. For example, later in Chapter 6, we will look at an example with delays of −1 and

−.4 where the detection horizon is [0, 2]. In order to solve this problem with the Method of

Steps, we would need to choose h = .1. This means for each model, we would be increasing

the number of states from 1 to 20. Thus, on even a simple example with mixed delays, this

is a non-trivial restriction and we will not even consider it as a genuine option.

For ease in discussion, we will write the system (3.16) on [0, h] as

ż = Az +Bv +Mµ

0 = Cz +Nµ

zi(0) = zi−1(h) for i = 1 . . . κ, κ+ 2 . . . 2κ+ 2

where r =


r0
r1


 for r = z, µ and R = diag{R0, R1} for A,B,M,N, and C with Bi =

diag{Bi, . . . , Bi}, Ci = diag{Ci, . . . , Ci}, Ai =




Ai 0 0 0

Gi Ai 0
. . .

0
. . .

. . .
. . .

0 0 Gi Ai




, zi =




zi,0
...

zi,κ


, v =




v0
...

vκ


,

µi =




γi

µi,0

...

µi,κ




, N i =




0 Ni 0 . . .

0 0
. . .

...

0 0 0 Ni


, and M i =




Gi Mi 0 . . .

0 0
. . .

...

0 0 0 Mi


 .

Notice that γi, which represents the initial function of our original system, is now in-

corporated in the noise vector and will be treated as a disturbance as previously discussed.

Chapter 3. True Solutions: The Method of Steps 47

Thus, the noise measure for the system is

Si(z, µ) = z(0)TQizi,0(0) +

∫ h

0
|µi(t)|2 dt (3.18)

where Qi = diag{Qi, . . . , Qi}.

3.2.2 Necessary Conditions of the Optimal Control Problem and Proof

of Optimality

Having reformulated the system without a delay, we now consider the signal design problem

of Section 1.3. More specifically, we must find

min ‖v‖2

such that

max
0≤β≤1

min
zi,µi

βS0(z0(0), µ0) + (1 − β)S1(z1(0), µ1) ≥ 1 (3.19)

subject to

ż = Az +Bv +Mµ

0 = Cz +Nµ

zi(0) = zi−1(h) for i = 1 . . . κ, κ+ 2 . . . 2κ+ 2

for i = 1, 2.

To create the optimal control problem which we will solve for the detection signal, we

must first derive the necessary conditions for the inner minimum of (3.19). Then we will

prove the optimality of the conditions we derive.

Deriving necessary conditions of the inner minimum

We need to find the optimality conditions of the following problem. We have

min
z,µ

z(0)TQβz(0) +
1

2

∫ h

0
µTVβµ dt (3.21)

where 1
2µ

TVβµ = β‖µ0‖2 + (1 − β)‖µ1‖2 and Qβ = diag{βQ0, (1 − β)Q1} subject to

ż = Az +Bv +Mµ

0 = Cz +Nµ

Chapter 3. True Solutions: The Method of Steps 48

with the boundary conditions zi(0) = zi−1(h) for i = 1 . . . κ, κ + 2 . . . 2κ + 2 and z0(0),

zκ+1(0), zκ(h), z2κ+2(h) free.

First, we define some notation for the derivation of the necessary conditions. Note that

we drop the bar notation for simplicity in this section. Let

φ(z(0)) = z(0)TQβz(0) = βzT
0 (0)Q0z0(0) + (1 − β)zT

1 (0)Q1z1(0)

and

ψ(z(0), z(h)) = P1z(0) + P2z(h) =




0

z1(0) − z0(h)
...

zκ(0) − zκ−1(h)

0

zκ+2(0) − zκ+1(h)
...

z2κ+2(0) − z2κ+1(h)




.

Let

f = Az +Bv +Mµ

g = Cz +Nµ

L =
1

2
µTVβµ.

We find the necessary conditions by adjoining the constraints to the cost with multipliers.

That is, we set up

J ′ = φ+ νTψ +

∫ h

0
[L+ λT (f − ż) + ηT g] dt.

Letting H = L+ λT f + ηT g be the Hamiltonian, we have

J ′ = φ+ νTψ +

∫ h

0
[H − λT ż] dt.

Using Leibnitz’s rule and incrementing J ′ as a function of increments in z, λ, ν, η, and µ,

gives

dJ ′ = (φT
z + νTψz(0)) dz(0) + νTψz(h) dz(h) + ψTdν

+

∫ h

0
[HT

z δz +HT
µ δµ− λ δż + (Hλ − ż)T δλ+Hη δη] dt.

Chapter 3. True Solutions: The Method of Steps 49

Eliminating the variation in ż with an integration by parts and using the fact that dz(0) =

δz(0) and dz(h) = δz(h) since there is no variation in initial or final time, we have

dJ ′ = (φT
z + νTψz(0) + λ(0)) dz(0) + (νTψz(h) − λ(h)) dz(h) + ψTdν

+

∫ h

0
[(HT

z + λ̇T) δz +HT
µ δµ+ (Hλ − ż)T δλ+Hη δη] dt.

Setting coefficients of δz, δη, δµ, dν, and δλ to 0, we get the expected conditions

ż = Az +Bv +Mµ

λ̇ = −AT
λ+ C

T
η.

0 = Vβµ−M
T
λ+N

T
η

0 = Cz +Nµ

zj(0) = zj−1(h) for j = 1 . . . κ, κ+ 2 . . . 2κ+ 2.

Now we consider the transversality conditions in detail. We have

φT
z + νTψz(0) + λ(0) = 0 and νTψz(h) − λ(h) = 0.

Expanding these vectors, we have,

φT
z + νTψz(0) + λ(0) =




2βQ0z0(0) + λ0(0)

ν1 + λ1(0)
...

νκ + λκ(0)

2(1 − β)Q1zκ+1(0) + λκ+1(0)

νκ+2 + λκ+2(0)
...

ν2κ+2 + λ2κ+2(0)




= 0

Chapter 3. True Solutions: The Method of Steps 50

and

νTψz(h) − λ(h) =




−ν1 − λ0(h)
...

−νκ − λκ−1(h)

−λκ(h)

−νκ+2 − λκ+1(h)
...

−ν2κ+2 − λ2κ+1(h)

−λ2κ+2(h)




= 0.

Then using the above 2(2κ+ 2) equations, we can eliminate ν entirely and finish with the

boundary conditions

2βQ0z0(0) + λ0(0) = 0

2(1 − β)Q1zκ+1(0) + λκ+1(0) = 0

λi(0) − λi−1(h) = 0 for i = 1 . . . κ, κ+ 2 . . . 2κ+ 2

λj(h) = 0 for j = κ, 2κ+ 2.

Finally, we have the following necessary conditions:

ż = Az +Bv +Mµ (3.32a)

λ̇ = −AT
λ+ C

T
η. (3.32b)

0 = Vβµ−M
T
λ+N

T
η (3.32c)

0 = Cz +Nµ (3.32d)

λj(0) = λj−1(h) for j = 1 . . . κ, κ+ 2 . . . 2κ+ 2 (3.32e)

0 = 2βQ0z0(0) + λ0(0) (3.32f)

0 = 2(1 − β)Q1zκ+1(0) + λκ+1(0) (3.32g)

zj(0) = zj−1(h) for j = 1 . . . κ, κ+ 2 . . . 2κ+ 2 (3.32h)

λj(h) = 0 for j = κ, 2κ+ 2. (3.32i)

Chapter 3. True Solutions: The Method of Steps 51

We wish to show that the above necessary conditions yield an optimal solution to the

problem defined in (3.21).

Theorem 2. Suppose that z, µ, λ, η is a solution to (3.21) using the necessary conditions

(3.32). Then µ is optimal.

Proof. (For ease in exposition, we drop the bar from the notation in this proof.) Let

J = Jv,β(z, µ) = zT (0)Qβz(0) + µTVβµ. We show that J(µ̂) ≥ J(µ) for every µ satisfying

our conditions by showing that the function f(s) = J(s(z, µ)+(1−s)(ẑ, µ̂)) has a minimum

at s = 1 for all (z, µ).

Let J0 = ẑT (0)Qβz(0)+ < µ̂, Vβµ >, J = zT (0)Qβz(0)+ < µ, Vβµ >, and Ĵ =

ẑT (0)Qẑ(0)+ < µ̂, Vβµ̂ > . Then f is quadratic in s and has a minimum at

s =
Ĵ − J0

J − 2J0 + Ĵ
.

If J0 = J , then s = 1. We have

J0 − J = ẑT (0)Qβz(0) − zT (0)Qβz(0)+ < Vβµ, µ̂ > − < Vβµ, µ >

= (ẑT (0) − zT (0))Qβz(0)+ < Vβµ, µ̂− µ >

= (ẑT (0) − zT (0))Qβz(0)+ < MTλ−NT η, µ̂− µ >

= (ẑT (0) − zT (0))Qβz(0)+ < λ,M(µ̂− µ) > − < η,N(µ̂− µ) >

= (ẑT (0) − zT (0))Qβz(0)+ < λ,M(µ̂− µ) > + < η,C(ẑ − z) >

= (ẑT (0) − zT (0))Qβz(0)+ < λ,M(µ̂− µ) > + < CT η, (ẑ − z) >

= (ẑT (0) − zT (0))Qβz(0)+ < λ,M(µ̂− µ) > + < λ̇+ATλ, ẑ − z >

= (ẑT (0) − zT (0))Qβz(0)+ < λ,M(µ̂− µ) > + < λ̇, ẑ − z >

+ < ATλ, ẑ − z >

= (ẑT (0) − zT (0))Qβz(0)+ < λ,M(µ̂− µ) > + < λ̇, ẑ − z >

+ < λ,A(ẑ − z) >

= (ẑT (0) − zT (0))Qβz(0)+ < λ,M(µ̂− µ) > + < λ̇, ẑ − z >

+ < λ, (˙̂z − ż) −B(v̂ − v) −M(µ̂− µ) > .

Chapter 3. True Solutions: The Method of Steps 52

But v̂ = v, so we have,

J0 − J = (ẑT (0) − zT (0))Qβz(0)+ < λ,M(µ̂− µ) >

+ < λ̇, ẑ − z > + < λ, (˙̂z − ż) > − < λ,M(µ̂− µ) >

= (ẑT (0) − zT (0))Qβz(0)+ < λ̇, ẑ > + < λ, ˙̂z > −(< λ̇, z > + < λ, ż >).

We eliminate < λ, ż > with an integration by parts. That is, we have

< λ, ż > =

∫ h

0
λT ż dt

= λT z|h0 −
∫ h

0
λ̇z dt

= λT z|h0− < λ̇, z > .

Then we have

J0 − J = (ẑT (0) − zT (0))Qβz(0)+ < λ̇, ẑ > + < λ, ˙̂z > −(< λ̇, z > +λT z|h0− < λ̇, z >).

Consider the first few terms of λ
T
z|h0 . We have

λ
T
z|h0 = λ0(h)z0(h) − λ0(0)z0(0) + λ1(h)z1(h) − λ1(0)z1(0)

+ λ2(h)z2(h) − λ2(0)z2(0) + λ3(h)z3(h) − λ3(0)z3(0)
...

+ λκ+1(h)zκ+1(h) − λκ+1(0)zκ+1(0) + λκ+2(h)zκ+2(h) − λκ+2(0)zκ+2(0)

+ λκ+3(h)zκ+3(h) − λκ+3(0)zκ+3(0) + λκ+4(h)zκ+4(h) − λκ+4(0)zκ+4(0)
...

+ λ2κ+1(h)z2κ+1(h) − λ2κ+1(0)z2κ+1(0) + λ2κ+2(h)z2κ+2(h) − λ2κ+2(0)z2κ+2(0).

Chapter 3. True Solutions: The Method of Steps 53

However, we know that zj(0) = zj−1(h) for j = 1 . . . κ, κ+ 2 . . . 2κ+ 2, so, we have

λ
T
z|h0 = λ0(h)z0(h) − λ0(0)z0(0) + λ1(h)z1(h) − λ1(0)z0(h)

+ λ2(h)z2(h) − λ2(0)z1(h) + λ3(h)z3(h) − λ3(0)z2(h)
...

+ λκ+1(h)zκ+1(h) − λκ+1(0)zκ+1(0) + λκ+2(h)zκ+2(h) − λκ+2(0)zκ+1(h)

+ λκ+2(h)zκ+2(h) − λκ+2(0)zκ+2(h) + λκ+4(h)zκ+4(h) − λκ+4(0)zκ+3(h)
...

+ λ2κ+1(h)z2κ+1(h) − λ2κ+1(0)z2κ(h) + λ2κ+2(h)z2κ+2(h) − λ2κ+2(0)z2κ+1(h).

Factoring the z′s, we get

λ
T
z|h0 = −λ0(0)z0(0)

+z0(h)(λ0(h) − λ1(0))

+z1(h)(λ1(h) − λ2(0))

+z2(h)(λ2(h) − λ3(0))
...

−λκ+1(0)zκ+1(0)

+zκ+1(h)(λκ+1(h) − λκ+2(0))

+z2κ+1(h)(λ2κ(h) − λ2κ+1(0))
...

+λ2κ+2(h)z2κ+2(h).

Chapter 3. True Solutions: The Method of Steps 54

Then we have

J0 − J = (ẑT
0 (0) − zT

0 (0))βQ0z0(0) + (ẑT
κ+1(0) − zT

κ+1(0))(1 − β)Q1zκ+1(0) − λT z|h0
+ < λ̇, ẑ > + < λ, ˙̂z >

= ẑT
0 (0)βQ0z0(0) − zT

0 (0)ββQ0z0(0) + ẑT
κ+1(0)(1 − β)Q1zκ+1(0)

−zT
κ+1(0)(1 − β)(1 − β)Q1zκ+1(0) − λ0(0)z0(0) − λκ+1(0)zκ+1(0)

+ < λ̇, ẑ > + < λ, ˙̂z > by the boundary conditions

= ẑT
0 (0)βQ0 − [zT

0 (0)ββQ0 + λ0(0)]z0(0) + ẑT
κ+1(0)(1 − β)Q1

−[zT
κ+1(0)(1 − β)(1 − β)Q1 + λκ+1(0)]zκ+1(0)+ < λ̇, ẑ > + < λ, ˙̂z >

by the boundary conditions

= ẑT
0 (0)βQ0 + ẑT

κ+1(0)(1 − β)Q1+ < λ̇, ẑ > + < λ, ˙̂z >

by the boundary conditions

= 0 by going through the process above again.

So, J0 − J = 0 and we have proved the optimality of our solution. ♦

3.2.3 Minimum Energy Detection Signal Algorithm for the Method of

Steps

Having found the necessary conditions for the inner minimum, we are able to concisely state

the algorithm for finding the minimum energy detection signal for the reformulated delayed

problem. The optimal control problem consists of

1. The necessary conditions for minz,µ

{
z(0)TQβz(0) + 1

2

∫ h

0 µ
TVβµ dt

}
.

2. An expression with value minz,µ

{
z(0)TQβz(0) + 1

2

∫ h

0 µ
TVβµ dt

}
.

3. The constraint minz,µ

{
z(0)TQβz(0) + 1

2

∫ h

0 µ
TVβµ dt ≥ 1

}
.

4. The boundary conditions.

MEDS algorithm incorporating the Method of Steps

1. Find κ̄ = ω
h
.

Chapter 3. True Solutions: The Method of Steps 55

2. Form A,B,C,M,N according to the notation of Section 3.2.1 .

3. Solve

min ‖v‖2

subject to

ż = Az +Bv +Mµ

λ̇ = −AT
λ+ C

T
η

Ż =
1

2
µTVβµ,

0 = Vβµ−M
T
λ+N

T
η

0 = Cz +Nµ.

λj(0) = λj−1(h) for j = 1 . . . κ, κ+ 2 . . . 2κ+ 2

zj(0) = zj−1(h) for j = 1 . . . κ, κ+ 2 . . . 2κ+ 2

λ0(0) = −2βQ0z0(0)

λκ+1(0) = −2(1 − β)Q1zκ+1(0)

λj(h) = 0 for j = κ, 2κ+ 2

Z(0) = z0(0)
TQβz0(0)

Z(h) ≥ 1

.01 ≤ β ≤ .99

where 1
2µ

TVβµ = β‖µ0‖2 + (1 − β)‖µ1‖2 and Qβ = diag{βQ0, (1 − β)Q1}.

3.2.4 Problem Variations

Variation in the control

There are several possible problem variations that we can solve with our approach. For

example, sometimes, the problem will have a control or reference trajectory, u, that acts

along the same channels as the detection signal. Such a model would have the form

Chapter 3. True Solutions: The Method of Steps 56

ẋi = Aixi(t) +Gixi(t− h) +Biv(t) +Biu(t) +Miµi(t), t ≥ 0

xi(0) = η,

xi(t) = φi(t) a.e. on [−h, 0)

yi(t) = Cixi(t) +Niµi(t), t ≥ 0.

This case is easily handled. By defining ū in the same way as v̄, the system after reformu-

lation with the Method of Steps is

ż = Az +Bv +Bu+Mµ

0 = Cz +Nµ

zi(0) = zi−1(h) for i = 1 . . . κ, κ+ 2 . . . 2κ+ 2.

Rather than finding the smallest, proper v, the minimization problem becomes find the

smallest v with proper v + u.

Delay in the control

A delay in the control is handled similarly to the way a delay in the state is handled. The

reformulation of the problem is done in the same way. An important difference between a

delay in the state and a delay in the control to note is that if there are some elements in

the output set which are not immediately effected by the auxiliary signal, then there may

be a minimum time, ω, below which model identification is not possible.

Other costs

Another variation on the problem would be using other possible costs. The cost we use,

(1.10), is designed so that the test uses the smallest signal. However, other costs may be

more appropriate.

For example, one might want a weight on the initial function, φ. Then we have the cost

function

Si(xi(0), µi, φi) = xi(0)
TQixi(0) +

∫ 0

−h

φi(t)
TPφi(t) dt+

∫ ω

0
|µi(t)|2 dt < 1, i = 0, 1.

Chapter 3. True Solutions: The Method of Steps 57

Since φ is included in the noise vector µ, this modification in the noise function involves a

change in the matrix, M . That is, we let

M i =




GiP
1

2 Mi 0 . . .

0 0
. . .

...

0 0 0 Mi


 .

Another possible variation in the cost is measuring the initial function as a difference from

a trajectory, ri(t). In that case, our noise measure becomes

Si(xi(0), µi, φi) = xi(0)
TQixi(0) +

∫ 0

−h

|φi(t) − ri(t)|2 dt+

∫ ω

0
|µi(t)|2 dt < 1, i = 0, 1.

The changes in our problem set up include letting δi = φi − ri. Then we let

ż = Az +Bv +Hu+Mµ

0 = Cz +Nµ

zi(0) = zi−1(h) for i = 1 . . . κ, κ+ 2 . . . 2κ+ 2

where µ =




δi

µi,0

...


, H i =




Gi 0

0 0
. . .

...
...

. . .
. . .

...

0 0




, u =




ri

0
...


 . Then the problem can be

formulated as before.

It may be that we are less interested in minimizing the disturbance to the system than

we are in having the system be close to 0 at the end of the test period. Or, we may be

interested in leaving some specific part of the system undisturbed while another part of the

system can withstand a strong disturbance. For such scenarios as these, we might have a

cost measure

Si(ξ(ω), µi) = ξi(ω)TQiξi(ω) dt+

∫ ω

0
|µi(t)|2 + ξT

i (t)Uξi(t) dt < 1, i = 0, 1 (3.47)

where Q and U are positive semi-definite matrices of appropriate sizes and ξ is a function

satisfying

ξ̇i = Fξi + Ev. (3.48)

F and E are chosen to satisfy design considerations of the system being tested. For the

case without delays (3.47) and (3.48) are discussed in [16].

Chapter 3. True Solutions: The Method of Steps 58

Integral delay terms

Another possible variation in these problem is the inclusion of integral terms with delays.

In this case, the model starts as

ẋ(t) = Ax(t) +Gx(t− h) +

∫ 0

−h

Ex(t+ τ) dτ +Bv +

∫ 0

−h

Fv(t+ τ) dτ +Mµ(t).

Note that we have a distributed delay in the state and in the control. To formulate this

problem using the Method of Steps, we rewrite the delayed integrals as

∫ 0

−h

g(t+ τ) dτ =

∫ t

t−h

g(s) ds =

∫ t

ih

g(s) ds+

∫ ih

t−h

g(s) ds.

New variables are given as additional differential equations and boundary conditions. That

is, we write

ẋ(t) = Ax(t) +Gx(t− h) + Ex(zi + wi−1) +Bv + Fv(ui + ri−1) +Mµ(t)

żi(t) = xi(t), zi(0) = 0, i > 0

ẇi(t) = xi(t), wi(h) = 0, i > 0

u̇i(t) = vi(t), ui(0) = 0, i > 0

ṙi(t) = vi(t), ri(h) = 0, i > 0

ẇ0 = φ, w0(h) = 0

ṙ0 = ψ.

φ is given as the past history of the state and given in the normal problem statement. ψ

is the past history of the detection signal. As the detection signal has no past history, a

logical value for ψ is ψ = 0.

Chapter 4

Approximated Solutions: PDE’s and Central

Differences

We now move on to the more general delayed system. We assume we have models of the

form

ẋi(t) = Aix(t) +

ri∑

j=1

Gixi(t+ θi,j) +Biv(t) +Miµi(t), t ≥ 0 (4.1a)

xi(0) = xi0, xi(t) = φi(t) a.e. on [−h, 0) (4.1b)

y(t) = Cixi(t) +Niµi(t), t ≥ 0 (4.1c)

where −h = θl < · · · < θ0 = 0. We assume Ai, Bi, Ci, Mi, and Ni are system matrices,

v ∈ L2[0, ω] is an auxiliary signal, and µi ∈ L2[0, ω] are noises. We also continue to

assume that ω > h. The initial condition, xi0, and the initial function, φi, are taken to

be disturbances or noises. As mentioned in the previous chapter, the noise bound for this

system is

Si(xi(0), φi, µi) = xi(0)
TQixi(0) +

∫ 0

−h

|φi(t)|2 dt+

∫ ω

0
|µi(t)|2 dt (4.2)

where Qi is symmetric, positive, semi-definite. Note that it is possible to have systems

which are still more general. Those systems may include integral terms, as was seen in the

previous chapter and as will be seen in Chapter 5.

In the previous chapter, we solved the delayed detection problem using the Method of

Steps. Unfortunately, the Method of Steps, while providing a ’true’ solution works only

for a small class of problems. It does not apply to most problems with multiple delays.

59

Chapter 4. Approximated Solutions: PDE’s and Central Differences 60

Moreover, even when it does apply, if the delay is small relative to the detection horizon,

finding the solution using the Method of Steps becomes so computationally intensive as

to be impractical. On the other hand, to approach the delayed detection problem directly

involves using the theory of optimal control of delayed systems which is a path fraught with

technical difficulties.

In order to solve our fault detection problem, we must find the necessary conditions for

the inner minimum described in (1.18). The necessary conditions for an LQR problem are

not straight forward. Suppose we have the equation

ẋ+
N∑

i=0

Bi(t)x(t− hi) +

∫ 0

−h

B(t, τ)x(t+ τ) dτ + C(t)u(t) = 0 t ≥ 0

x(0) = φ0

x(t) = φ1(t) t ≥ 0

φ = (φ0, φ1) ∈ H

where H = Rn × L2(−h, 0;Rn) and we are minimizing the cost function J(u) where

J(u) = x(ω)T [Qx(ω) + 2q] +

∫ ω

0
[x(t)TW (t)x(t) + 2w(t)Tx(t) + u(t)Tu(t)] dt (4.4)

and Q = QT ≥ 0, W (t) = W (t)T ≥ 0 for every t ∈ [0, T], W is bounded and absolutely

integrable, and w is square integrable. Then, from [22] we take the following theorem, which

gives the necessary conditions for finding the optimal control.

Theorem 3. For every initial condition φ ∈ H of (4.3) in the problem (4.4), there is a

unique optimal control u ∈ L2(−h, 0;Rm). The optimal control is fully characterized by the

following set of canonical equations, satisfied almost everywhere on [0, ω] [22, pp. 334]:

ẋ = −
N∑

i=0

Bi(t)x(t− hi) −
∫ 0

−h

B(t, τ)x(t+ τ) dτ + C(t)u(t) t ≥ 0 (4.5a)

ṗ(t) =
N∑

i=0

Bi(t+ hi)p(t+ hi) +

∫ 0

−h

B(t− τ, τ)T p(t− τ) dτ (4.5b)

+W (t)x(t) + w(t)

Chapter 4. Approximated Solutions: PDE’s and Central Differences 61

with

p(ω) = Qx(ω) + q, (4.6a)

p(t) = 0, t > ω (4.6b)

u(t) = C(t)T p(t) (4.6c)

x(0) = φ0 (4.6d)

x(t) = φ1(t) t ≥ 0 (4.6e)

φ = (φ0, φ1) ∈ H (4.6f)

At first glance, these conditions might not seem to present technical difficulties. However,

it must be kept in mind that in order to use these conditions, we must first reformulate our

models, eliminating the output, y, in (4.1c). Then we need to rewrite our system so that

this algebraic constraint is included in (4.5a) by making the coefficient matrices singular.

Unfortunately, existence and uniqueness of the solutions to this problem depend on the

coefficient matrix of ẋ having a bounded inverse. In addition, the equations defining the

necessary conditions are not strictly retarded. For models in which the coefficient matrices

are not constant, the necessary conditions introduce advanced ’delays’ in the coefficients.

The necessary conditions are a hybrid of retarded and advanced functional differential equa-

tions. Developing a new theory for solving the fault detection problem with these equations

is a non-trivial task.

Another way to approach these problems is to approximate the delayed system with an

ODE system. Then the well-developed theory of Section 1.3.1 can be applied. Of course,

in approximating, questions are raised about how accurate the approximations are, how

close the detection signal of the approximated solution is to that of the ’true’ detection

signal, how close the approximated output set is to that of the ’true’ output set, among

other things. It should be noted that because of the nature of our problem, our interest is

in finding a good approximation of the detection signal, rather than the optimal states.

There are many ways of approximating delayed systems with ODE’s as we discussed

in Section 1.2.1. Since different approximation schemes can lead to different models, it

is best to use the same scheme across all the models. There is a risk that if different

schemes are used, the detection signal found will be tuned to detecting differences due to

the approximation scheme, rather than in the original models. In the next two chapters,

Chapter 4. Approximated Solutions: PDE’s and Central Differences 62

t -h 0

x(t)
U(t, s)

st
t-h

Figure 4.1: We reformulate the delayed system into a PDE by letting U(t, s) = x(t + s)

for 0 ≤ t ≤ ω,−h ≤ s ≤ 0. In the figure, U(t̄, s) is x(t̄). The dashed section of the curve

represents U(t̄, s) for −h ≤ s ≤ 0; that is, U(t̄, s) and its past history.

we examine two methods of approximation. In Chapter 4, we look at a reformulation of

the delayed system as a PDE and an approximation of the resulting PDE with central

differences. In Chapter 5, we look at a spline approximation from Ito and Kappel’s A

Uniformly Differentiable Approximation Scheme for Delay Systems Using Splines[34].

4.1 Reformulating the Delayed System with a PDE

First, we reformulate the delayed system with a PDE. Suppose that we have one of the

models of the form (4.1). We suppress the subscript i to simplify the notation and describe

the approximation process for a single model. Let U(t, s) = x(t + s) for 0 ≤ t ≤ ω,−h ≤
s ≤ 0. Then for a fixed t̄, U(t̄, s) is a function in L2 which is x on the interval [t̄ − h, t̄].

That is, for a fixed t̄, U(t̄, s) is the value of x(t̄) and its history. Figure 4.1 illustrates this.

In order to ensure we have the right model, we define the following partial differential

Chapter 4. Approximated Solutions: PDE’s and Central Differences 63

equation:

Ut(t, s) = Us(t, s) (4.7a)

Ut(t, 0) = AU(t, 0) +
r∑

j=1

GjU(t,−θj) +Bv(t) +Mµ(t) (4.7b)

U(0, s) = φ(s) (4.7c)

U(0, 0) = x0. (4.7d)

4.2 Explanation of the Central Differences Approximation

There are many ways of approximating PDE’s such as (4.7). One method is the use of

central differences and the method of lines. Again, we temporarily suppress the i subscript.

We choose a mesh for [−h, 0] of the form

−h = s0 < s1 < · · · sρ = 0. (4.8)

The one restriction on this mesh is that each −θj has to be a mesh point smj
. We suppose

then that −θj = smj
. The value of h and the delays may vary from model to model. Let

Uk(t) = U(t, sk).

Then we get the following ODE system

U ′
0(t) =

2∑

h=0

α0,hUh(t) (4.9a)

U ′
k(t) =

1∑

h=−1

αk,hUk+h(t), 0 < k < ρ− 1 (4.9b)

U ′
ρ(t) = AUρ(t) +

r∑

j=1

GjUmj
(t) +Bv(t) +Mν(t) (4.9c)

Uk(0) = φ(sk) (4.9d)

Uρ(0) = x0 (or φi(0)) (4.9e)

where the sum in (4.9c) is an approximation for the spatial derivative. If we have 0 < k < ρ

Chapter 4. Approximated Solutions: PDE’s and Central Differences 64

=0sss s1 2 ρ0-h=

U (0)0 U (0)1 U (0)2
U (0)ρ

Figure 4.2: Having reformulated the problem into a PDE, we now use the method of

lines and central differences to approximate the PDE with an ODE. We first define a

mesh −h = s0 < s1 < · · · sρ = 0, where each delay must be a mesh point. Then we

let Uk(t) = U(t, sk). This illustration represents the new variables when t = 0. Notice that

the new variables will represent the past history needed because of the restriction that each

delay must be a mesh point.

with δ = sk+1 − sk and ε = sk − sk−1, then we can take

αk,1 =
ε

δ(ε+ δ)
, αk,−1 = − δ

ε(ε+ δ)
, αk,0 =

ε

δ(ε+ δ)
− δ

ε(ε+ δ)
. (4.10)

This provides an approximation for the spatial derivative in (4.9c) which is O(δε). To get a

similar accuracy for U0 in equation (4.9a) we need to use a one sided approximation using

two extra values. Let δ = s1 − s0, ε = s2 − s1. We can then take

α0,0 = −α0,2 − α0,1, α0,1 =
δ + ε

δε
, α0,2 = − δ

ε(δ + ε)
.

Two things should be noticed. First we have

ak,1 ≤ 1

δ
, ak,−1 ≤ 1

ε

so that the coefficients only grow as one over the mesh size. Secondly if ε = δ, then (4.10)

simplifies to

ak,1 =
1

2δ
, ak,0 = 0, ak,−1 = − 1

2δ
.

This has transformed the delay model equation to an approximate ordinary differential

equation model. We also must transform the noise measure (4.2). Let Ui,j be the jth vector

in the approximation for model i. Let γi,j be the collocation coefficients for approximating

integrals on [−hi, 0] using the grid points si,j . Then we can approximate
∫ 0
−h

|φi(t)|2 dt

Chapter 4. Approximated Solutions: PDE’s and Central Differences 65

with
∑ρi−1

j=0 γi,j‖Ui,j(0)‖2 + γi,ρi
|φi(0)|2. Notice that we do not say that Ui,j(0) = φi(0) as

Ui,j(0) = xi(0) and we have no assumption of continuity between our initial function and

initial condition. Then our noise measure, (4.2), becomes

S̃i(φi, µi, xi,0) =

ρi−1∑

j=0

γi,j‖Ui,j(0)‖2 + γi,ρi
|φi(0)|2 (4.14a)

+Ui,ρi
(0)TQiUi,ρi

(0) +

∫ ω

0
‖µi‖2 dt ≤ 1. (4.14b)

We use collocation schemes for which all the γi,j > 0. For example, if we are using a

Trapezoidal approximation, then we have (suppressing the i subscript on all terms)

γ0 =
s1 − s0

2
, γρ =

sρ − sρ−1

2
, γj =

sj+1 − sj−1

2
if j 6∈ {0, ρ}. (4.15a)

4.3 Necessary Conditions for the Fault Detection Problem

Now that we have transformed the delayed system to an ODE system, we can explicitly

state the optimization problem which needs to be solved. First, we define some notation.

While the notation we will define is for the case of two models, it easily and obviously

extends to more than two models. We let

r̄ =


r0
r1




for r̄ = U, µ̄ where Ui =




Ui,0

...

Ui,ρ


. We let

R̄ =


R̄0 0

0 R̄1




Chapter 4. Approximated Solutions: PDE’s and Central Differences 66

for R̄ = Ā, B̄, M̄ where

Āi =




α0,0 α0,1 α0,2 0 · · · · · · · · · 0

α1,−1 α1,0 α1,1 0
. . .

. . .
. . .

...

0 α2,−1 α2,0 α2,1 0
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

. . .
...

...
. . . 0 αk,−1 αk,0 αk,1 0

...
...

. . .
. . .

. . .
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0 αρ−1,−1 αρ−1,0 αρ−1,1

Gi,ρ · · · · · · · · · · · · Gi,2 Gi,1 Ai




with Gi,k defined in (4.7) or 0 otherwise, B̄i =


 0

Bi


, and M̄i =


 0

Mi


. We let

P̄ =


P̄0 0

0 −P̄1




for P̄ = N̄ , C̄ where C̄i =
[
0 Ci

]
and N̄i =


 0

Ni


. We let Q̄i = diag{γi,0 . . . γi,ρ−1 Qi},

so that 1
2Q̄β =


βQ̄0 0

0 (1 − β)Q̄1


, and 1

2 µ̄
TVβµ̄ = β‖µ̄0‖2 + (1 − β)‖µ̄1‖2.

Then in this notation, the system can be written as

U̇ = ĀU + B̄v + M̄µ̄

0 = C̄U + N̄ µ̄

and the noise measure can be written as

S̄(U(0), µ̄) =
1

2
U(0)T Q̄βU(0) +

1∑

i=0

γi,ρi
|φi(0)|2 +

1

2
µ̄TVβµ̄ dt.

Thus, finding necessary conditions for the inner minimum means we must find

min
U,µ

{
1

2
U(0)T Q̄βU(0) +

2∑

i=0

γi,ρi
|φi(0)|2 +

1

2
µ̄TVβµ̄ dt

}
(4.19a)

subject to U̇ = ĀU + B̄v + M̄µ̄ (4.19b)

0 = C̄U + N̄ µ̄. (4.19c)

Chapter 4. Approximated Solutions: PDE’s and Central Differences 67

First we note that φi(0) appears only in the noise measure (4.19a) and is completely inde-

pendent of the states and the control. Thus, it appears only in the cost of our optimization

problem. Since we have a positive term appearing only in the cost, we see that we need the

extra condition that φi(0) = 0. Failure to use the extra condition, φi(0) = 0, while using the

rest of the approximation leads to ridiculous approximations of the detection signal, v. As

we saw while working our examples, not only were the signals found wrong, they were near

0. Also, neglecting to use the condition, φi(0) = 0, causes problems for the optimization

software.

Using the theory developed in Section 1.3.1, we have that

U̇ = AU +Bv +Mµ

λ̇ = −AT
λ+ C

T
η.

0 = Vβµ−M
T
λ+N

T
η

0 = CU +Nµ.

λ(0) = −QβU(0)

λ(ω) = 0.

The optimal control problem using differences

Having found the necessary conditions for the inner minimum, we can now state the optimal

control problem which must be solved. We must find

min ‖v‖2

Chapter 4. Approximated Solutions: PDE’s and Central Differences 68

subject to

U̇ = AU +Bv +Mµ (4.21a)

λ̇ = −AT
λ+ C

T
η (4.21b)

Ż =
1

2
µTVβµ, (4.21c)

0 = Vβµ−M
T
λ+N

T
η (4.21d)

0 = CU +Nµ (4.21e)

λ(0) = −QβU(0) (4.21f)

λ(ω) = 0

Z(0) = U(0)TQβU(0) (4.21g)

Z(ω) ≥ 1 (4.21h)

φi(0) = 0 (4.21i)

.01 ≤ β ≤ .99. (4.21j)

Also, it should be clear that as the size of the mesh we choose in (4.8) grows, so does the

size of our optimization problem. As we have
∑n

i=0 dim(xi) states from the n models, when

we approximate the systems, we have
∑n

i=0 ρi dim(xi) states. Then finding the necessary

conditions adds extra states to the optimization problem, so that we have
∑n

i=0[2ρi dim(xi)]

states. The cost (4.21c) adds another state to the problem. One can see that the number

of states in our optimization problem becomes
∑n

i=0[2ρi dim(xi)] + 1. Thus, increasing the

size of ρi can increase the size of the problem significantly. Because of this, when working

with these approximations, it will be in our desire to work on as coarse a grid as possible.

In Chapter 6, we will see that the difference approximation does a good job of ap-

proximating the detection signal. However, first we turn our attention to another type of

approximation.

Chapter 5

Approximated Solutions: Spline Approximations

Next, we look at a spline approximation scheme adapted from Ito and Kappel’s paper A

Uniformly Differentiable Approximation Scheme for Delay Systems Using Splines [34]. A

difference between our system and Ito and Kappel’s system is our noise term. However, as

our noises are also considered controls, if we consider that B =
[
B M

]
and u =


v
µ


, then

our system is in the same form as Ito and Kappel’s. We will approach this problem in the

same way that we have approached the problem using the Method of Steps and differences.

That is, we will reformulate the problem using the spline method and then apply the theory

developed in Section 1.2.

First, we offer some of the details of the spline approximation given in [34]. Then we

discuss the necessary conditions and formulation of the optimal control problem. Then

we discuss some theoretical results concerning the accuracy of the approximation of the

detection signal, v. In particular, we explain the good approximations for v which are

found though the approximations do not converge uniformly in φ.

5.1 Explanation of the Spline Approximation

In this subsection, we detail our adaptation of the spline approximation developed by Ito

and Kappel in [34]. Our explanation differs from Ito and Kappel’s in that it includes the

69

Chapter 5. Approximated Solutions: Spline Approximations 70

noise term µ as discussed above. We have the delay equation

ẋi(t) =

ri∑

j=1

Aix(θi,j) +

∫ 0

−h

Ãi(s)x(t+ s) ds+Biv(t) +Miµi(t), t ≥ 0 (5.1a)

xi(0) = xi0, xi(t) = φ(t) a.e. on [−h, 0) (5.1b)

y(t) = Cixi(t) +Niµi(t), t ≥ 0. (5.1c)

where −h = θl < · · · < θ0 = 0, x(t) ∈ Rn, v(t) ∈ Rm, y(t) ∈ Rp, µ(t) ∈ Rl, Ãi(·) is n × n

in L2[−h, 0] and Ai, Bi, Ci, Mi, Ni, Gi, Ãi(s) are matrices, v is an auxiliary signal, and the

µi are noises.

Reformulating the problem in terms of the semi-group S

For simplicity, we drop the subscript on the models in this part of the discussion. Let S(t),

for t > 0 be

S(t)(η, φ) = (x(t), xt), t ≥ 0, (η, φ) ∈ Z = Rn × L2(−r, 0;Rn)

where x(t) is the solution to (5.1) with v ≡ 0, µ ≡ 0, (η, φ) the initial data, and xt is

x(θ) = x(t+ θ), θ ∈ [−r, 0).
Notice that z = (η, φ) ∈ Z is a point and its past history. The family S(·) is a strongly

continuous semi-group on Z = Rn × L2(−r, 0;Rn) with infinitesimal generator, A, where

A is given by

domA = {(η, φ) ∈ Z|φ ∈ H1(−r, 0;Rn), η = φ(0)}

A(φ(0), φ) = (Lφ, φ̇), for (φ(0), φ) ∈ domA

where for continuous φ

L(φ) =
l∑

j=0

Aφ(θ) +

∫ 0

−r

Ãi(s)x(t+ s)ds.

Let B : Rn → Z, C : Z → Rn, M : Rl → Z, and N : Rl → Rn by

Bv = (Bv, 0) u ∈ Rm

Mµ = (Mµ, 0) µ ∈ Rl

Nµ = Nµ µ ∈ Rl

C(η, φ) = Cη (η, φ) ∈ Z.

Chapter 5. Approximated Solutions: Spline Approximations 71

Then our original system is equivalent to the abstract system in Z,

ż = Az(t) + Bv(t) + Mµ(t) t ≥ 0, z(0) = (η, φ) (5.4a)

y(t) = Cz(t) + Nµ(t). (5.4b)

So, x : [0,∞) → Rn is a solutions of our original system iff the function

z(t) = (x(t), xt), t ≥ 0

is a mild solution of the abstract system. That is,

z(t) = S(t)(η, φ) +

∫ T

0
S(t− s)(Bu(s) + Mµ(s))ds, t ≥ 0.

The adjoint semigroup S∗(·) has infinitesimal generator A∗ is given by

domA∗ = {(y, ψ) ∈ Z|w ∈ H1(−r, 0;Rn), ψ(−r) = AT
l }

A∗(y, ψ) = (ψ(0) +AT
0 y,A

T (·)y − ẇ), for (y, ψ) ∈ domA∗

where w = ψ+
∑l−1

i=1A
T
l yχ[−r,θi), and χM denotes the characteristic function of the set M .

Let l : domA → H1 be given by

l(φ(0), φ) = φ for (φ(0), φ) ∈ domA

l−1φ = (φ(0), φ) for φ ∈ H1.

Then l is an isomorphism from domA to H1 with the graph norm.

The scheme

Let tNk = −kr
N
, k = 0, . . . , N, with tN−1 = 0, tNN+1 = 0 for N = 1, 2, Let BN

k , k = 0, . . . , N

be the first order splines on the interval from [−r, 0] on mesh tN0 , . . . , t
N
N . So

BN
k (θ) =





N
r
(θ − tNk+1) for tNk+1 ≤ θ ≤ tNk

N
r
(tNk−1 − θ) for tNk ≤ θ ≤ tNk−1

0 elsewhere.

Let

EN
k (θ) = χ[tN

k
,tN

k−1
) =





1 for [tNk , t
N
k−1)

0 elsewhere.

Chapter 5. Approximated Solutions: Spline Approximations 72

4
0t4

1t4
2t

4
3t4

4t

Figure 5.1: The illustration represents piecewise, linear spline functions, BN
k (θ), of the

scheme for N = 4. Notice that tNk = −kr
N
, k = 0, . . . , N so that as k increases, tNk travels

backward in time. Notice also that tN0 = 0 and tNN = −r where r is the length of the longest

delay. Thus, the spline functions are defined on an interval the size of the longest delay.

Let

ÊN
0 = (In, 0), ÊN

k = (0, EN
k In), k = 1, . . . , N.

We also use the spaces:

WN = span(EN
1 In, . . . , E

N
N In) ⊂ L2(−r, 0;Rn)

ZN = Rn ×WN = span(ÊN
0 , . . . , Ê

N
N) ⊂ Z

XN = span(BN
0 In, . . . , B

N
N In) ⊂ H1

ZN
1 = l−1XN ⊂ domA.

We have the basis matrices:

EN = (EN
1 In, . . . , E

N
N In)

ÊN = (ÊN
0 , . . . , Ê

N
N)

BN = (BN
0 In, . . . , B

N
N In)

l−1BN = (l−1BN
0 In, . . . , l

−1BN
N In).

Then in the notation above, z = (η, φ) ∈ ZN can be written as

zN = (η,ENan) = ÊN




η

a1

...

aN




Chapter 5. Approximated Solutions: Spline Approximations 73

where aN
k ∈ Rn and aN is the coordinate vector of φ ∈WN with respect to the basis EN .

This leads to Lemma 2.1 in [34] and the orthogonal projections PN : Z → ZN .

Lemma 2. In the notation and assumptions defined above, we have

(a) For (η, φ) ∈ Z

PNz = (η,ENaN), where aN
k =

N

r

∫ tN
k+1

tN
k

φ(s) ds, k = 1, . . . , N.

(b) For ψ ∈ H1

PN
1 ψ = BNbn, where bNk = ψ(tNk), k = 0, . . . , N.

Then by definition of the spaces ZN
1 , Z

n and the operators A,B, and M, we have [34]

AzN ∈ ZN for any zN ∈ ZN
1 (5.8a)

Bξ ∈ ZN for any ξ ∈ Rn (5.8b)

Mµ ∈ ZN for any µ ∈ Rl. (5.8c)

To get a mild solution, z(t), of the abstract system, (5.4), we need an approximation

wN (t) ∈ ZN
1 of z(t). If z(t) is a strong solution of the system, then ż is probably not

in domA but is in the subspace generated by Az(t) + Bv(t) + Mµ(t). But, we know that

AwN (t) +Bv(t) +Mµ(t) ∈ ZN , t ≥ 0. But, ẇN is in ZN
1 ⊂ domA. So, we must determine

wN (t) such that

PN ẇN =
d

dt
PNwN (t) = AwN (t) + Bv(t) + Mµ(t), t ≥ 0.

This brings us to a Lemma 2.2 in [34](adapted to include µ).

Lemma 3. We have

(a) PN restricted to ZN
1 is a bijection ZN

1 → ZN . Its matrix representation (with respect

to the basis l−1BN of ZN
1 and the basis ÊN of ZN is given by

QN =




1 0 · · · · · · 0

1
2

1
2

. . .
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 1
2 · · · 0 1

2




⊗ In ∈ Rn(N+1)×n(N+1)

Chapter 5. Approximated Solutions: Spline Approximations 74

(b) A restricted to ZN
1 is a map ZN

1 → ZN with the matrix representation

HN =




DN
0 · · · · · · DN

N

0 · · · · · · 0
... · · · · · · ...
... · · · · · · ...

0 · · · · · · 0




+
N

r




0 · · · · · · · · · 0

1 −1 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 1 −1




⊗ In ∈ Rn(N+1)×n(N+1)

where DN
k = L(BN

K) =
∑l

j=0AjB
N
K (θj) +

∫ 0
−r
A(θ)BN

K (θ) dθ, k = 0, . . . , N.

(c) The matrix representation of B considered as a map into ZN is

BN =




B

0
...

0



∈ Rn(N+1)×m.

The matrix representation of M considered as a map into ZN is

MN =




M

0
...

0



∈ Rn(N+1)×l.

The matrix representation of C restricted to ZN is

CN =
[
B 0 · · · 0

]
∈ Rp×n(N+1).

The matrix representation of N is

NN = N ∈ Rp×l.

Chapter 5. Approximated Solutions: Spline Approximations 75

Let

LN = (PN |ZN
1

)−1, AN = ALN = A(PN |ZN
1

)−1

and put

zN (t) = PNwN (t), t ≥ 0.

Then,

żN (t) = ANzN (t) + Bv(t) + Mµ(t), t ≥ 0

and AN is an operator ZN → ZN . AN has the matrix representation

AN = HN (QN)−1.

Let bN (t) and aN (t) be the coordinate vectors of wN (t) and zN (t). That is, zN (t) =

ÊN (η, aN) = ÊNaN (t). Then

zN (t) = QNbN (t), t ≥ 0

and, we have

Qnḃ(t) = HNbN (t) +BNv(t) +MNµ(t), t ≥ 0

and

ȧ(t) = ANaN (t) +BNv(t) +MNµ(t), t ≥ 0.

Thus, we have approximated the delayed system and we have the system (including the

subscripts again)

ȧi(t) = AN
i a

N
i (t) +BN

i v(t) +MN
i µi(t) (5.10a)

y(t) = NN
i a

N
i (t) + CN

i µi(t). (5.10b)

Writing the noise measure in the new variables

Now, we must write the noise measure

Si(xi(0), µi) = xi(0)
TQixi(0) +

∫ 0

−h

|φi(t)|2 dt+

∫ ω

0
|µi(t)|2 dt

Chapter 5. Approximated Solutions: Spline Approximations 76

in the variables of our approximation. Recall that z = (η, φ) ∈ Z is written as

zN (t) = (η,ENaN) = ÊN




η

a1

...

aN



.

Then we have

Si(z
N
i (0), µi) = zN

i,0(0)
TQiz

N
i,0(0) +

N∑

k=1

∫ tN
k−1

tN
k

|zN
i,k(0)E

N
k |2 dt+

∫ ω

0
|µi(t)|2 dt

= zN
i,0(0)

TQiz
N
i,0(0) +

N∑

k=1

∫ tN
k−1

tN
k

|zN
i,k(0)|2 dt+

∫ ω

0
|µi(t)|2 dt

= zN
i,0(0)

TQiz
N
i,0(0) +

N∑

k=1

ri

N
|zN

i,k(0)|2 dt+

∫ ω

0
|µi(t)|2 dt.

If we let QN
i = diag{Qi

ri

N
. . . ri

N
}, then we can rewrite our noise measure as

Si(z
N
i (0), µi) = zN

i (0)TQN
i z

N
i (0) +

∫ ω

0
|µi(t)|2 dt.

5.2 The Optimal Control Problem Using Splines

Having approximated models we can now turn our attention to stating the optimal control

problem which we need to solve to find the detection signal, v. Note that to avoid a conflict

in notation later in this document, we are going to make a slight change in notation and

assume that our approximated model i is

żN
i (t) = AN

i z
N
i (t) +BN

i v(t) +MN
i µi(t) (5.13a)

y(t) = NN
i z

N
i (t) + CN

i µi(t) (5.13b)

and noise measure i is

Si(z
N
i (0), µi) = zN

i (0)TQiz
N
i (0) +

∫ ω

0
|µi(t)|2 dt.

We apply the theory of Section 1.2. First, we rewrite the system so that both of the

models are included in a single set of matrices. Let zN =


z

N
0

zN
1


. We let RN =


R

N
0 0

0 RN
1




Chapter 5. Approximated Solutions: Spline Approximations 77

for RN = AN , BN , MN . We let PN =


P

N
0 0

0 −PN
1


 for PN = NN , CN . Let 1

2Q
N
β =


βQ

N
0 0

0 (1 − β)QN
1


, and 1

2µ
TVβµ = β‖µ0‖2 + (1 − β)‖µ1‖2. Then our system and noise

measure can be written as

żN (t) = ANzN (t) +BNv(t) +MNµ(t) (5.15a)

y(t) = NNzN (t) + CNµ(t) (5.15b)

and

S(zN (0), µ) =
1

2
zN (0)TQβz

N (0) +
1

2
µ(t)TVβµ(t).

We apply the necessary conditions of Section 1.2 and we find that we need to solve the

following problem:

min ‖v‖2

subject to ż = ANzN +BNv +MNµ

λ̇ = −ANTλ+ CNT η.

Ż =
1

2
µTVβµ

0 = Vβµ−MNTλ+NNT η

0 = CNzN +NNµ

Z(0) =
1

2
zN (0)TQN

β z
N (0), Z(ω) ≥ 1

λ(0) = −QN
β z

N (0), λ(ω) = 0

.01 < β < .99.

Solving this problem will yield the detection signal we need. As we shall see, the

detection signal resulting from this approximation is excellent. Next, we turn our attention

to a more theoretical look at this approximation.

Chapter 5. Approximated Solutions: Spline Approximations 78

5.3 Theoretical Results

In this section we examine the spline approximation more theoretically. It is important to

note that our interest is not in the accuracy of the approximation of the states so much as

in the accuracy of the approximation of the auxiliary signal, v. We are also interested in

the approximation of the output sets, Ai.

Suppose we have the system

ẋ = Ax(t) +Gx(t− r) +Bu(t) +Mµ(t), t ≥ 0

x(0) = η, x(t) = φ(t) a.e. on [−r, 0)

y(t) = Cx(t) +Nµ(t), t ≥ 0

and its approximated counterpart, zN = ÊNaN where aN is the solution to

żN (t) = ANzN (t) +BNv(t) +MNµ(t) (5.19a)

y(t) = NNzN (t) + CNµ(t) (5.19b)

as described in Section 5.1.

Note that in the approximation, we are dealing with state variables z(t)N = (xN (t), aN)

where aN is a vector of spline coefficients of the past history of xN (t). The matrices CN , BN ,

and MN have zeros appended to them such that the dimensions for the matrix arithmetic

are correct. If we are picking off the xN (t), which has the dimensions of x(t), then it is also

valid to use the matrices C,B, and M ; and, the dimensions for the matrix arithmetic are

also correct.

We assume that N has the form [Ñ 0] and M has the form [0 M̃]. Thus, we may say

that µ = [µ1 µ2] where µ1 and µ2 have appropriate dimensions, so that Nµ = Ñµ1 and

Mµ = M̃µ2. Then we can rewrite (5.18a) as

ẋ(t) = Ax(t) +Gx(t− r) +Bv(t) + M̃µ2(t), t ≥ 0 (5.20a)

y(t) = Cx(t) + Ñµ1(t), t ≥ 0 (5.20b)

x(0) = η, x(t) = φ(t) a.e. on [−r, 0). (5.20c)

This is not too restrictive an assumption, as we are simply assuming that the noises in the

dynamics and in the output are independent.

Chapter 5. Approximated Solutions: Spline Approximations 79

First, in Section 5.3.1, we review some well-known definitions and theorems which will

be of use in our arguments. Of particular importance will be the definition of a compact

linear operator and the Compactness Criterion. While the spaces we are working in are

not compact, the fact that our operators are compact will allow us to use compactness

techniques in our proofs.

In Section 5.3.2, we prove a few lemmas. It is hoped that the use of the lemmas will

make the proofs of our main results more transparent to the reader. Lemma 8 is especially

important. In this lemma we find a finite number of elements in the permissible initial data

set so that image of every element in the set is close to the image of at least one of those

elements.

In the subsequent sections are our main results. In our main results, we try to answer

several questions. We examine the relationship between the real and approximated output

sets. We also examine the relationship between the hyperplane and the approximated

output sets, as this is crucial to the solving of the fault detection problem. One problem

that we run into is that in the approximated systems, we do not have uniform convergence

with respect to the initial functions, φi. However, by noting that our operators are compact,

we will work around this problem to get uniformity in our results.

5.3.1 Review of Familiar Theorems and Definitions

There are several theorems and definitions which we will make use of in proving our main

results. We begin with the definition of a Compact Linear Operator. As the spaces we

are working in are not finite dimensional, by noting that our operators are compact linear

operators, we can make infinite sets retain some of the properties of finite dimensional ones.

Definition 1 (Compact Linear Operator). [41, pp. 405] Let X and Y be Banach spaces.

An operator T : X → Y is called a compact linear operator(or, a completely continuous

linear operator) if T is linear and if for every bounded subset M of X, the image T (M) is

relatively compact, that is, the closure T (M) is compact.

Once we have defined a compact linear operator, we recall the theorem commonly re-

ferred to as the Compactness Criterion. As the name suggests, this theorem establishes

Chapter 5. Approximated Solutions: Spline Approximations 80

criteria for determining if an operator is compact.

Theorem 4 (Compactness Criterion). [41, pp. 407] Let X and Y be Banach spaces

and T : X → Y a linear operator. Then T is compact if and only if it maps every bounded

sequences {xn} onto a sequence {Txn} in Y which has a convergent subsequence.

Next, we recall two familiar definitions. The first is that of a uniformly bounded family

of continuous functions and the second is equicontinuous. In a moment, we will recall the

Ascoli-Arzela Lemma and these definitions play a key role in the lemma.

Definition 2. Let F be a family of continuous functions defined on a set E ⊂ R with

values in Rn[1, pp. 22]. Then

1. F is called uniformly bounded if there is a nonnegative constant M such that |f(t)| ≤
M for all t ∈ Eand for all f ∈ F .

2. F is called equicontinuous on E if for every ε > 0 if there is a δ = δ(ε) > 0 (inde-

pendent of t1, t2 and f) such that |f(t1) − f(t2)| < ε whenever |t1 − t2| < δ for all

t1, t2 ∈ E and for all f ∈ F .

Theorem 5 (Ascoli-Arzela Lemma). [1, pp. 22] Let E be a closed and bounded subset

of R and let {fn} be a sequence of functions in C(E,Rn). If {fn} is equicontinuous and

uniformly bounded on E, then there is a subsequence {nk} of {n} and a function f ∈
C(E,Rn) such that {fnk

} converges uniformly to f on E.

We note that unlike many statements of the Ascoli-Arzela Lemma, we state this version

for {fn} a sequence of functions in C(E,Rn). The usual proof of the lemma easily extends

once it is noted that the Bolzano-Weirstrauss theorem generalizes to Rn by iterating in the

following way. If {xn} is a bounded sequence in Rn, then {xn1
} (the first element from each

xi) is a bounded sequence of real numbers and has a convergent subsequence. Call {x1n}
the subsequence of {xn} defined by the convergent subsequence from {xn1

}. Then {x1n}
is a sequence of Rn in which the first ”row” is a convergent sequence. Then {x1n2

} is a

bounded sequence of real numbers and has a convergent subsequence. Thus, we can define

a sequence, {x2n}, which is subsequence of {xn} with the first two ”rows” as convergent

Chapter 5. Approximated Solutions: Spline Approximations 81

sequences. Proceeding similarly through all the n ”rows”, we can create a subsequence of

{xn} which is convergent. Creating the subsequences in this way, the usual proof of the

Ascoli-Arzela Lemma holds.

5.3.2 Some Useful Lemmas

Using these common theorems and definitions, we will build a store of lemmas for later

use. By proving these lemmas now, we hope to make the proofs of our main theorems more

transparent. Some of the lemmas are short and, perhaps, trivial; however, they are included

for completeness. Other lemmas will play a key role in our main results.

The first lemma we prove has to do with the compactness of the operator T (µ) =
∫ t

a
k(s, t)µ(s)ds.

Lemma 4. Let T : L2([a, b],Rn) → L2([a, b],Rn) be defined by T (µ) =
∫ t

a
k(s, t)µ(s)ds, t ∈

[a, b], with |k(s, t)| < K for some K ∈ R and all s, t ∈ [a, b]. Then T is a compact linear

operator.

Proof. Let M = {µ| µ ∈ L2([a, b],Rn), ‖µ‖ ≤ Q, for some fixed Q ∈ R}. By the

Compactness Criterion, if T maps every bounded sequence {µn} in M onto a sequence

{T (µn)} in L2[a, b] with a convergent subsequence, then T is a compact linear operator.

Let {µn} be a bounded sequence in M . Then {T (µn)} is a sequence in L2([a, b],Rn). If

we can show that {T (µn)(t)} is equicontinuous and uniformly bounded on [a, b] for all n,

then by the Ascoli-Arzela Lemma there exists a subsequence {T (µnl
)} and a functional f in

C([a, b],Rn) such that {T (µnl
)} converges uniformly to f on [a, b]. Of course, since such an

f is in C([a, b],Rn), then f is in L2([a, b],Rn). Then {T (µn)} has a uniformly convergent

subsequence in the L2 sense and, thus, T is compact.

Chapter 5. Approximated Solutions: Spline Approximations 82

First, we show that {T (µn)} is uniformly bounded for each n.

|(Tµn)(t)| =

∣∣∣∣
∫ t

a

k(s, t)µn(s)ds

∣∣∣∣ , t ∈ [a, b]

≤
∫ t

a

|k(s, t)µn(s)| ds, t ∈ [a, b]

by Holders Inequality ≤
(∫ t

a

|k(s, t)|2ds
) 1

2
(∫ t

a

|µn(s)|2ds
) 1

2

, t ∈ [a, b]

≤
(∫ b

a

|k(s, t)|2ds
) 1

2
(∫ b

a

|µn(s)|2ds
) 1

2

≤
(∫ b

a

K2ds

) 1

2

Q

≤ QK(b− a)
1

2 .

Thus, T (µn) is uniformly bounded for all µn.

Next, we show that T (µn) is equicontinuous. Let ε > 0 be given. Suppose |t1 − t2| <
δ = ε2

QK2 , t1, t2 ∈ [a, b] with t2 > t1. Then

|T (µn)(t1) − T (µn)(t2)| =

∣∣∣∣
∫ t1

a

k(s, t)µn(s)ds−
∫ t2

a

k(s, t)µn(s)ds

∣∣∣∣

=

∣∣∣∣
∫ t2

t1

k(s, t)µn(s)ds

∣∣∣∣

≤
∫ t2

t1

|k(s, t)µn(s)|ds

≤
(∫ t2

t1

|k(s, t)|2ds
) 1

2
(∫ t2

t1

|µn(s)|2ds
) 1

2

≤
(∫ t2

t1

|k(s, t)|2ds
) 1

2
(∫ b

a

|µn(s)|2ds
) 1

2

≤
(∫ t2

t1

|k(s, t)|2ds
) 1

2

Q

≤
(∫ t2

t1

K2ds

) 1

2

Q

≤
(
K2(t2 − t1)

) 1

2 Q

≤
(
K2δ)

) 1

2 Q

≤ ε

Chapter 5. Approximated Solutions: Spline Approximations 83

Thus, T (µn) is equicontinuous and T is compact. ♦

Our next lemma is a simple consequence of the definition of a compact set.

Lemma 5. If B is a compact set, then for any given ε > 0, there exists K1(ε) and

{b1, b2, . . . , bK1(ε)} ⊂ B such that for all b ∈ B, ‖b−bi‖ < ε for some i in i = 1, 2, . . . ,K1(ε).

Proof. Suppose B is a compact set. Let ε > 0 be given. Let Bε be the open covering

of B consisting of open balls, Bε(b) of size ε around each point b ∈ B. Then Bε has

a finite uncovering. This implies there exists b1, b2, . . . , bK1(ε) such that for all b ∈ B,

b ∈ ⋃K1(ε)
i=1 Bε(bi). Then for all b ∈ B, there exists some j ∈ 1, . . . ,K1(ε) such that |b−bj | < ε.

♦

Our next lemma shows that the sum of two compact linear operators is also a compact

linear operator. Although this might seem obvious, notice that the two operators have

different domains. This fact makes this lemma somewhat different than what is typically

seen in Analysis texts.

Lemma 6. Let T1 : X1 → Y and T2 : X2 → Y be compact linear operators. Then

T : X1 ×X2 → Y defined by T (x1, x2) = T1(x1) + T (x2) is also a compact linear operator.

Proof. Let T̃1 : X1 ×X2 → Y be defined by T̃1(x1, x2) = T1(x1). Since T1 is compact

linear operators, then for every bounded subset B1 of X1, T1(B1) is compact. Then for

every bounded subset B of X1 ×X2, T̃1(B) is compact and T̃1 is a compact linear operator.

Let T̃2 : X1 × X2 → Y be defined by T̃2(x1, x2) = T1(x1). Since T2 is compact linear

operators, then for every bounded subset B2 of X2, T2(B2) is compact. Then for every

bounded subset B of X1 ×X2, T̃2(B) is compact and T̃2 is a compact linear operator.

Then T = T̃1 + T̃2 is the sum of two compact linear operators and T is a compact linear

operator. ♦

Lemmas 7 and 8 will play an important role in our main results. By using the fact that

the closure of the image of a bounded set is compact if the operator is compact, we can, in

some sense, pull back the compactness to our domain. We will use this to show that there

exists a finite number of (x0i
, φi, µi) in our permissible initial data set so that given any

Chapter 5. Approximated Solutions: Spline Approximations 84

solution x to the delayed system, for some i, ‖x(t, x0, φ, µ) − x(t, x0i
, φi, µi))‖ < δ for some

given δ.

Lemma 7. Let M = {x | ‖x‖ < c, x ∈ X, a normed space}. If T is a compact

operator on M then for any given ε > 0, there exists K(ε) and {x1, x2, . . . , xK(ε)} ⊂ M

such that for all x ∈M , ‖T (x) − T (xi)‖ < ε for at least one i = 1, 2, . . . ,K(ε).

Proof. Suppose T is a compact operator on M. This implies that T (M) is a compact

set. Let B =
⋃

x∈M BT (x) be the open cover of T (M) consisting of open balls, BT (x), of

radius ε about the elements of T (M).

Note that this does cover T (M). It clearly covers T (M). It covers any accumulation

point of T (M), since by definition, if z is an accumulation point of T (M), then every

neighborhood of z contains an element of T (M) other than x. Thus, an ε
2 ball about z

contains some element b 6= z in T (M). But, this would imply that the ε ball about b

contains z. Thus, B contains T (M).

Since B is an open cover of T (M), then B admits a finite subcover. Since the open balls

are all centered around points in T (M) , then there must be a K(ε) and x1, x2, . . . , xK(ε)

such that for any x ∈M , ‖T (x) − T (xi)‖ < ε for at least one i in {1, 2, . . . ,K(ε)}. ♦

Lemma 8. Let M1 = {x0 | |x0| < 1, x ∈ Rn}, M2 = {φ | ‖φ‖ < 1, φ ∈ L2([a, b],Rn)},
and M3 = {µ | ‖µ‖ < 1, µ ∈ L2([a, b],Rn)}. Let M = {(x0, φ, µ) ∈M1×M2×M3 | xT

0 Px0+

‖φ‖ + ‖µ‖ < 1} for P some positive, semi-definite, constant matrix. For any given δ > 0,

there exists {(x0, φ, µ)1, (x0, φ, µ)2, . . . , (x0, φ, µ)K1(δ)} ⊂M such that for all (x0, φ, µ) ∈M

‖x(t, x0, φ, µ) − x(t, x0i
, φi, µi))‖ < δ

for some i ∈ {1, 2, . . . ,K1(δ)} }.

Proof. Suppose

1. L1(x0) = X(t)x0

2. L2(φ) =
∫ 0
−r
X(t− s− r)Gφ(s)ds

3. L3(f) =
∫ t

0 X(t− s)Mf(s)ds

Chapter 5. Approximated Solutions: Spline Approximations 85

4. L4(f) =
∫ t

0 X(t− s)Bf(s)ds.

Then x(t, x0, φ, µ) = L1(x0)+L2(φ)+L4(v)+L3(µ). We need to find (x∗0, φ
∗, µ∗) such that

x∗(t, x∗0, φ
∗, µ∗) = L1(x

∗
0) + L2(φ

∗) + L4(v) + L3(µ
∗) for a fixed v and

‖x− x∗‖ ≤ δ.

Let T (x0, φ, µ) = L1(x0) + L2(φ) + L3(µ).

For any x∗,

‖x− x∗‖ = ‖L1(x0) + L2(φ) + L4(v) + L3(µ) − (L1(x
∗
0) + L2(φ

∗) + L4(v) + L3(µ
∗))‖

≤ ‖L1(x0) + L2(φ) + L3(µ) − (L1(x
∗
0) + L2(φ

∗) + L3(µ
∗))‖

≤ ‖T (x0, φ, µ) − T (x∗0, φ
∗, µ∗)‖.

But, L1 is a compact linear operator since any closed, bounded subset of Rn is compact.

L2 and L3 are compact linear operators by Lemma 4. Thus, by Lemma 6, T is a compact

linear operator.

Since T is a compact linear operator on M1 ×M2 ×M3 and M is a bounded subset of

M1 ×M2 ×M3 , then by Lemma 7, for any given δ > 0, there exists

{(x0, φ, µ)1, (x0, φ, µ)2, . . . , (x0, φ, µ)K1(δ)} ⊂M

such that for all (x0, φ, µ) ∈M

‖T (x0, φ, µ) − T (x0i
, φi, µi)‖ < δ

for some i = 1 . . .K1(δ). ♦

Later we will make use of a convergence theorem from Ito and Kappel [34]. However, the

statement of this theorem is for controls in L1[a, b], so here we take a moment to formally

note that L2[a, b] is a subset of L1[a, b] since [a, b] is a finite interval.

Lemma 9. If −∞ < a < b <∞, then L2[a, b] ⊆ L1[a, b].

Proof. Suppose f ∈ L2[a, b]. Obviously, the constant function 1 ∈ L2[a, b]. Then by

Holder’s inequality,

Chapter 5. Approximated Solutions: Spline Approximations 86

∫ b

a

|f(t)1| dt ≤ ‖f‖L2‖1‖L2

∫ b

a

|f(t)| dt ≤ ‖f‖L2‖1‖L2

‖f‖L1 ≤ ‖f‖L2‖(b− a)
1

2 .

Thus, f ∈ L2[a, b] ⇒ f ∈ L1[a, b]. ♦

Our next lemma shows a relationship between strong convergence in operators and the

inner product. It will be useful in our results concerning approximated output sets and the

hyperplane.

Lemma 10. Suppose X and Y are Hilbert spaces. Suppose Tn : X → Y and T : X → Y.

If Tn → T strongly and ‖y‖ < K, then for any given ε there exists N(x, ε) such that

< y, Tnx > ≤ < y, Tx > +ε

for N ≥ N(x, ε).

Proof. Let ε be given and choose δ = ε
K
.

< y, Tnx > = < y, (Tn − T + T)x >

= < y, (Tn − T)x > + < y, Tx >

≤ ‖y‖‖(Tn − T)x‖+ < y, Tx >

≤ Kδ+ < y, Tx > for some N ≥ N(x, ε)

≤ K
ε

K
+ < y, Tx > for some N ≥ N(x, ε)

≤ < y, Tx > +ε for some N ≥ N(x, ε).

♦

Lemma 11 establishes a relationship between compact operators and strong convergence.

As we will see, while some of the operators we are using only converge strongly, we will be

able to get a type of uniform convergence nonetheless.

Chapter 5. Approximated Solutions: Spline Approximations 87

Lemma 11. Suppose X and Y are Hilbert spaces. Suppose S : X → Y is a compact

operator, PN : Y → Y is bounded for each N with PN → I strongly, and M ⊂ X is

bounded. Then PNS → S uniformly.

Proof. Suppose not. If not, then this implies that for any given ε, there exists {zm}
such that

‖PNSzm − Szm‖ > ε

for each m. But, since S is compact, by the Compactness Criterion (Theorem 4), S takes

a bounded sequence, {zm}, to a sequence, {Szm}, which has a convergent subsequence.

Clearly, {zm} ⊂ M is bounded. Thus, there is a subsequence {zmk
} such that {Szmk

}
converges. Suppose Szmk

→ α. This implies that

Szmk
= α+ δk with δk → 0.

Then

‖PNSzmk
− Szmk

‖ = ‖PN (α+ δk) − (α+ δk)‖

= ‖(PN − I)α+ (PN − I)δk‖ > ε

for all k. But, δk → 0 and (PN − I)α→ 0. Thus, we have a contradiction. ♦

Our last lemma and its corollary note the relationship between bounded operators and

sequences of operators which converge strongly.

Lemma 12. Suppose X and Y are Hilbert spaces and PN : Y → Y , Tn : X → Y , and

T : X → Y . If ‖PN‖ < K for all N and TN → T strongly, then PNTN → PNT strongly.

Chapter 5. Approximated Solutions: Spline Approximations 88

Proof. Let ε be given and choose δ = ε
K
. For all z,

‖PNTNx− PNTx‖ = ‖PN (TNx− Tx)‖

≤ ‖PN‖‖(TNx− Tx)‖

≤ K‖(TNx− Tx)‖

≤ Kδ for sufficiently large N

≤ K
ε

K

≤ ε.

♦

Corollary 1. Suppose X and Y are Hilbert spaces and that Q : X → Y , Tn : X → Y ,

and T : X → Y. If ‖Q‖ < K and TN → T strongly then, QTN → QT strongly.

Proof. Let PN = Q for all N . Then by Lemma 12, QTN → QT strongly. ♦

5.3.3 How Close Are the Real and Approximated Output Sets?

The first question we ask is ‘How close are the real and approximated model output sets?’

One way to measure this is to show that given a y ∈ Ai, there is a yN ∈ AN
i close to

it. Another question we ask is, “Is this closeness uniform in some way?” As is shown in

Theorem 6, the answer to the question is ‘yes’.

Theorem 6. Suppose we have the system (5.20). If xt
0Px0 + ‖φ‖+ ‖µ‖ ≤ 1, then there

exists N̄(ε) such that for any ε > 0, and for any y ∈ Ai(v), there is a yN ∈ AN
i (v) such

that ‖y − yN‖ < ε whenever N > N̄(ε).

Proof. Let M1 = {x | ‖x‖ ≤ 1, x ∈ Rn}, M2 = {φ | ‖φ‖ ≤ 1, φ ∈ L2([a, b],Rn)}, and

M3 = {µ2 | ‖µ2‖ ≤ 1, µ2 ∈ L2([a, b],Rn)}. Let M = {(x0, φ, µ2) ∈M1×M2×M3 | xT
0 Px0+

‖φ‖ + ‖µ2‖ ≤ 1}.
We wish to show that there exists N̄(ε) such that for any ε > 0 , if N > N̄(ε), for any

y ∈ Ai(v), there is some yN ∈ AN
i (v) such that ‖y − yN‖ < ε.

Chapter 5. Approximated Solutions: Spline Approximations 89

Now, as

‖y(t, x0, φ, µ) − y(t, x0, φ, µ)N‖ = ‖C(x− xN) +N(µ− µN)‖

≤ |C|‖(x− xN)‖Ñ(µ1 − µN
1)‖

≤ |C|‖(x− xN)‖ + |Ñ |‖(µ1 − µN
1)‖.

Since we can consider any value of µN
1 , as N is not dependent on the value µN

1 we choose

µN
1 = µ1 and ‖(µ1 − µN

1)‖ = 0.

Now, suppose that ε > 0 is given and δ = ε
2|C| . Assume for the moment that there exists

{(x0, φ, µ2)1, (x0, φ, µ2)2, . . . , (x0, φ, µ2)K1(ε)} ⊂M such that for all (x0, φ, µ2) ∈M

‖x(t, x0, φ, µ2) − x(t, x0i
, φi, µ2i

)‖ < δ

for some i ∈ {1, 2, . . . ,K1(ε)} .

Now, we know that [34, pp. 233] for all x, ‖x − xN‖ → 0 as N → ∞. Then for each

(x0, φ, µ2)i, there exists an Ni such that

‖x(t, x0i
, φi, µ2i

) − xN (t, x0i
, φi, µ2i

)‖ < δ

whenever N > Ni. Thus, for N(ε) = maxi{Ni} with i ∈ {1, 2, . . . ,K1(ε)}

‖x(t, x0i
, φi, µ2i

) − xN (t, x0i
, φi, µ2i

)‖ < δ

for all i whenever N > N(ε).

Then for all x there is an xi = x(t, x0i
, φi, µ2i

) and xN
i = xN (t, x0i

, φi, µ2i
) such that

|C|‖x− xN
i ‖ = |C|‖(x− xi + xi − xN

i)‖

≤ |C|(‖x− xi‖ + ‖xi − xN
i ‖)

≤ |C|(δ + δ)

≤ |C|(ε

2|C| +
ε

2|C|)

≤ ε

whenever N > N(ε). Now, as N(ε) was independent of µ1, for any y, we can form µi =
µ1

µ2i


 and

‖y(t, x0, φ, µ) − y(t, x0i
, φi, µi)

N
i ‖ ≤ ε

Chapter 5. Approximated Solutions: Spline Approximations 90

whenever N > N(ε) for some i in 1 . . .K1(ε).

Thus, it remains to show only that there exists {(x0, φ, µ2)1, (x0, φ, µ2)2, . . . , (x0, φ, µ2)K1(ε)} ⊂
M such that for all (x0, φ, µ2) ∈M

‖x(t, x0, φ, µ2) − x(t, x0i
, φi, µ2i

)‖ < δ

for some i ∈ {1, 2, . . . ,K1(ε)} such that xt
0i
Px0i

+ ‖φi‖ + ‖µ‖ ≤ 1.

We know that y = Cx+Nµ = Cx+ Ñµ1 with ‖µ1‖ = α for some 0 ≤ α ≤ 1. Then as

xt
0Px0 +‖φ‖+‖µ‖ ≤ 1, this implies that xt

0Px0 +‖φ‖+‖µ2‖ ≤
√

1 − α2. Let c =
√

1 − α2.

Consider x̂ = 1
c
x = x(t, 1

c
x0,

1
c
φ, 1

c
µ2). Clearly, if xt

0Px0+‖φ‖+‖µ2‖ ≤ c then 1
c
xt

0P
1
c
x0+

‖1
c
φ‖ + ‖1

c
µ2‖ ≤ 1. Then by Lemma 8, for any given δ > 0, we can find

{(x0, φ, µ2)1, (x0, φ, µ2)2, . . . , (x0, φ, µ2)K1(ε)} ⊂M

such that for all (x0, φ, µ2) ∈M,

‖x̂(t, x0, φ, µ2) − x(t, x0i
, φi, µ2i

)‖ < δ

for some i ∈ {1, 2, . . . ,K1(ε)} . But, this implies that

‖x(t, x0, φ, µ2) − x(t, cx0i
, cφi, cµ2i

))‖ < cδ ≤ δ

as c ≤ 1. And, as xt
0i
Px0i

+ ‖φi‖ + ‖µ2i
‖ ≤ 1, then cxt

0i
Pcx0i

+ ‖cφi‖ + ‖cµ2i
‖ ≤ c, so

xt
0i
Px0i

+ ‖φi‖ + ‖µi‖ ≤ 1. ♦

5.3.4 A Hyperplane Which Separates the Real Sets Separates the Ap-

proximated Sets

After the detection signal is found, the next step is to determine the separating hyperplane,

as discussed in Section 1.3.2. In this section, we show that a hyperplane which separates

the true output sets by a non-zero amount will also separate the approximated output sets.

Theorem 7. Suppose we have the system (5.20). If xt
0Px0 + ‖φ‖+ ‖µ‖ ≤ 1 and Ai(v)

is the output set of model i, AN
i (v) is the approximated output set of model i, with a as any

supporting hyperplane such that for all y ∈ Ai(v),

< y, a > ≥ ε.

Chapter 5. Approximated Solutions: Spline Approximations 91

}ε−δ δ }

A i
NA i

a

Figure 5.2: If a hyperplane separates the real output sets, then it also separates the ap-

proximated output sets. More specifically, we show that given < y, a > ≥ ε where

a is a hyperplane, then for any δ > 0, there exists N such that if n > N then for all

yN ∈ AN
i (v), < yN , a > ≥ ε− δ.

Then for any δ > 0, there exists N such that if n > N then for all yN ∈ AN
i (v),

< yN , a > ≥ ε− δ.

Proof. Take some yN (t, xN
0 , µ

N
1 , v, µ

N
2) ∈ AN

i (v). Then

< yN , a > = < y, a > −(< y, a > − < yN , a >) for any y ∈ Ai(v)

≥ ε− (< y, a > − < yN , a >)

≥ ε− (< C(x− xN) +N(µ1 − µN
1), a >).

Thus, we need to find N such that for all yN ∈ AN
i (v), if N > N , then

< C(x− xN) +N(µ1 − µN
1), a > < δ

for some y ∈ Ai(v).

Let us consider

< C(x− xN) +N(µ1 − µN
1), a > = < C(x− xN), a > + < N(µ1 − µN

1), a >

≤ < C(x− xN), a > +|N |‖µ1 − µN
1 ‖‖a‖.

Chapter 5. Approximated Solutions: Spline Approximations 92

Thus far, the y (and consequently, x and µ) have been arbitrary. That is, what we have

said is true of any y in Ai(v). Since we can consider any value of µ1, as N is not dependent

on the value µN
1 , we choose µ1 = µN

1 and ‖µ1 − µN
1 ‖ = 0. Suppose, for the moment, that

we can find a particular y or finite subset of y’s such that < C(x − xN), a >< δ. Then we

would have

< C(x− xN) +N(µ1 − µN
1), a > = < C(x− xN), a > +|N |‖µ1 − µN

1 ‖‖a‖

< δ

and we are done.

Thus, it remains to show that we can find a y such that < C(x− xN), a >< δ.

For convenience, we change variables, using the variables as described in [34] and Section

5.1. Note that MN = M, CN = C, and BN = B. Suppose

1. L1(z0) = S(t)z0

2. LN
1 (z0) = SN (t)PNz0

3. L2(φ) =
∫ t

0 S(t− s)Mf(s)ds

4. LN
2 (φ) =

∫ t

0 S
N (t− s)Mf(s)ds

5. L3(f) =
∫ t

0 S(t− s)Bf(s)ds

6. LN
3 (f) =

∫ t

0 S
N (t− s)Bf(s)ds

where SN is the semigroup on ZN generated by AN , i.e., SN (t) = eA
N t, in the approximated

system. Let a =


 a

0


 so that the dimensions are appropriate for our problem. Then

< C(x− xN), a > = < C (z − zN), a >

= < C ((L1(z0) + L2(µ) + L3(v)) − (LN
1 (z0) + LN

2 (µ) + LN
3 (v))), a >

= < C (L1(z0) − LN
1 (z0) + (L2(µ) + L3(v) − (LN

2 (µ) + LN
3 (v))), a >

= < C (L1(z0) − LN
1 (z0)), a >

+ < C (L2(µ) + L3(v) − (LN
2 (µ) + LN

3 (v))), a > .

Chapter 5. Approximated Solutions: Spline Approximations 93

We note that by:

By theorem 3.4 in [34, pp. 232], we have that SN∗PN − S∗ → 0 strongly. Then by

Lemma 12,

PNSN∗PN − PNS∗ → 0 strongly. (5.36)

Also, by Lemma 11, we have

PNS∗ − S∗ → 0 uniformly (5.37)

and by Lemma 1

S∗PN − S∗ → 0 strongly. (5.38)

Now, let us consider < C (L1(z0) − LN
1 (z0)), a > . We have

< (L1(z0) − LN
1 (z0)), a > = < S(t)z0 − SN (t)PNz0,C

∗a >

= < (S(t) − SN (t)PN)z0,C
∗a >

≤ < (S(t) − SN (t)PN)z0, P
NC ∗a > +δ1

for N > N(δ1, a) by Lemma 10 since PN → I

≤ < z0, (S
∗(t) − PN∗SN∗(t))PNC ∗a > +δ1

for N > N(δ1, a)

≤ < z0, (S
∗(t)PN − PNSN∗(t)PN)C ∗a > +δ1

for N > N(δ1, a)

≤ < z0, (S
∗(t) − PNSN∗(t)PN)C ∗a > +δ1 + δ2

for N > max {N(δ1, a), N(δ2)}

by Lemma 10 and (5.38)

≤ < z0, (P
NS∗(t) − PNSN∗(t)PN)C ∗a > +δ1 + δ2 + δ3

for N > max {N(δ1, a), N(δ2), N(δ3, a)}

by Lemma 10 and (5.37)

≤ ‖z0‖‖(PNS∗(t) − PNSN∗(t)PN)C ∗a‖ + δ1 + δ2 + δ3

≤ δ1 + δ2 + δ3 + δ4

for N > max {N(δ1, a), N(δ2), N(δ3, a), N(δ4, a)}

by (5.36).

Chapter 5. Approximated Solutions: Spline Approximations 94

Thus, by choosing δ1, δ2, δ3 and δ4 such that their sum is less than δ
2 , we have

< C (L1(z0) − LN
1 (z0)), a > ≤ δ

2

for all z0, whenever N > max {N(δ1, a), N(δ2), N(δ3, a), N(δ4, a)}.
Now, we consider < C (L2(µ) + L3(v) − (LN

2 (µ) + LN
3 (v)), a > . We note that L2(µ) +

L3(v) − (LN
2 (µ) + LN

3 (v))) represents the difference in solutions to the actual and approx-

imated problem with 0 initial condition and 0 initial function. We know by Corollary 3.5

in [34, pp. 233], all solutions converge in the controls uniformly, for controls in bounded

subsets of L1[0, T]. Our sets are bounded in L2; but, we know by Lemma 9 that bounded

in L2 implies bounded in L1 (on a finite interval). So, for all δ > 0 there is an N̂ such that

if N > N̂ , then

< C (L2(µ) + L3(v) − LN
2 (µ) + LN

3 (v)), a > ≤ |C |‖(L2(µ) + L3(v)

−(LN
2 (µ) + LN

3 (v)))‖‖a‖

≤ δ

2|C |‖a‖ .

Thus, we have for N > max{N̂ ,N(δ1, a), N(δ2, a), N(δ3, a), N(δ4, a))},

< C(x− xN), a > = < C (z − zN), a >

= < C (L1(z0) − LN
1 (z0)), a >

+ < C (L2(µ) + L3(v) − (LN
2 (µ) + LN

3 (v))), a >

<
δ

2
+
δ

2

< δ.

♦

As a corollary to the previous theorem, we have that a strictly proper, approximated

detection signal for the real models is also strictly proper for the approximated models.

Corollary 2. Suppose we have the system (5.20). Suppose vN → v, Ai(v
N) is the

output set of model i, and AN
i (vN) is the approximated output set of model i, with a as any

supporting hyperplane such that for all y ∈ Ai(v
N),

< y, a > ≥ ε whenever N > N(ε).

Chapter 5. Approximated Solutions: Spline Approximations 95

Then for any δ > 0, there exists N such that if n > N then for all yN ∈ AN
i (vN),

< yN , a > ≥ ε− δ.

Proof. Let

yN = yN (t, xN
0 , µ

N
1 , v

N , µN
2) ∈ AN

i (vN),

y = y(t, x0, µ1, v
N , µ2) ∈ Ai(v

N),

yN (v) = yN (t, xN
0 , µ

N
1 , v, µ

N
2) ∈ AN

i (v),

and

y(v) = y(t, x0, µ1, v, µ2) ∈ Ai(v).

Then

< yN , a > = < y, a > −(< y, a > − < yN , a >) for any y ∈ Ai(v
N)

≥ ε− (< y, a > − < yN , a >) whenever N > N(ε).

Thus, we need to find N such that for all yN ∈ AN
i (vN), if N > N , then

< y − yN , a > < δ

for some y ∈ Ai(v
N). For convenience, we change variables, using the variables as described

in [34] and Section 5.1. Note that MN = M, CN = C, and BN = B. Suppose

1. L1(z0) = S(t)z0

2. LN
1 (z0) = SN (t)PNz0

3. L2(φ) =
∫ t

0 S(t− s)Mf(s)ds

4. LN
2 (φ) =

∫ t

0 S
N (t− s)Mf(s)ds

5. L3(f) =
∫ t

0 S(t− s)Bf(s)ds

6. LN
3 (f) =

∫ t

0 S
N (t− s)Bf(s)ds

Chapter 5. Approximated Solutions: Spline Approximations 96

where SN is the semigroup on ZN generated by AN , i.e., SN (t) = eA
N t, in the approximated

system. Let a =


 a

0


 so that the dimensions are appropriate for our problem. Then

< y − yN , a > = < C (z − zN), a > + < N(µ1 − µN
1), a >

= < C [(L1(z0) + L2(µ) + L3(v
N))

−(LN
1 (z0) + LN

2 (µ) + LN
3 (vN))], a > + < N(µ1 − µN

1), a >

= < C [(L1(z0) + L2(µ) + L3(v
N)) − (LN

1 (z0) + LN
2 (µ) + LN

3 (vN))

+LN
3 (v) − LN

3 (v) + L3(v) − L3(v)], a > + < N(µ1 − µN
1), a >

= < C [(L1(z0) + L2(µ) + L3(v)) − (LN
1 (z0) + LN

2 (µ) + LN
3 (v))

+LN
3 (vN) − LN

3 (v) + L3(v
N) − L3(v)], a > + < N(µ1 − µN

1), a >

= < (y(v) − yN (v)), a > + < C (LN
3 (vN − v) + L3(v

N − v)), a >

= < (y(v) − yN (v)), a > +‖C (LN
3 (vN − v) + L3(v

N − v))‖‖a‖.

But, we have by assumption that vN → v and since we are working on a closed and

bounded interval, there exists an N1(
δ
2) such that for N > N1(

δ
2), ‖C (LN

3 (vN − v) +

L3(v
N − v))‖‖a‖ < δ

2 . And, from the proof of our previous theorem, we know we can make

< (y(v) − yN (v)), a > < δ
2 for some N2(

δ
2). Thus, we have

< (y(v) − yN (v)), a > + < (LN
3 (vN − v) + L3(v

N − v)), a > < < (y(v) − yN (v)), a > +
δ

2

<
δ

2
+
δ

2

< δ for

N > max{N1(
δ

2
), N2(

δ

2
)}.

Then we have that

< yN , a > ≥ ε− δ whenever N > max{N1(
δ

2
), N2(

δ

2
), N(ε)}.

♦

Chapter 5. Approximated Solutions: Spline Approximations 97

5.3.5 A Hyperplane Which Separates the Approximated Sets Separates

the Real Sets

Another question of interest to us is whether a hyperplane which separates the approximated

output sets will separate the real output sets. In the next theorem, we see that this is the

case.

Theorem 8. If xt
0Px0 +‖φ‖+‖µ‖ ≤ 1 and if Ai(v) is the output set of model i, AN

i (v)

is the approximated output set of model i, with a as any supporting hyperplane such that

for all yN ∈ AN
i (v),

< yN , a > ≥ ε whenever N > N(ε).

Then for any δ > 0, there exists N such that if n > N then for all y ∈ Ai(v),

< y, a > ≥ ε− δ.

Proof. Take some y ∈ Ai(v). Then

< y, a > = < yN , a > −(< yN , a > − < y, a >) for any yN ∈ AN
i (v)

≥ ε− (< yN − y, a >) whenever N > N(ε).

Thus, we need to find N such that for all y ∈ Ai(v), if N > N , then

< yN − y, a > < δ

for some yN ∈ AN
i (v). But,

< yN − y, a > ≤ ‖yN − y‖ ‖a‖.

And, we know that for any y ∈ Ai(v) we can find a yN ∈ AN
i (v) such that ‖yN − y‖ ≤ δ

‖a‖

whenever N > N(δ
‖a‖) by Theorem 6. Then we have that

< y, a > ≥ ε− δ whenever N > max{N(ε), N(
δ

‖a‖)}

for any y ∈ Ai(v). ♦

Chapter 5. Approximated Solutions: Spline Approximations 98

As a corollary to our previous theorem, we have that an approximated detection signal

which is strictly proper for the approximated models is also strictly proper for the real

models for sufficiently large N .

Corollary 3. Suppose vN → v and for some N sufficiently large, there is an approxi-

mated detection signal vN such that for all yN ∈ AN
i (vN),

< yN , a > ≥ ε whenever N > N(ε)

where a as any supporting hyperplane. Then for any δ > 0, there exists N such that if

n > N then for all y ∈ Ai(v
N),

< y, a > ≥ ε− δ.

Proof. Let

1. yN = yN (t, xN
0 , µ

N
1 , v

N , µN
2) ∈ AN

i (vN)

2. y = y(t, x0, µ1, v
N , µ2) ∈ Ai(v

N)

3. yN (v) = yN (t, xN
0 , µ

N
1 , v, µ

N
2) ∈ AN

i (v)

4. y(v) = y(t, x0, µ1, v, µ2) ∈ Ai(v)

Then

< y, a > = < yN , a > −(< yN , a > − < y, a >) for any y ∈ Ai(v
N)

≥ ε− (< yN , a > − < y, a >).

Thus, we need to find N such that for all yN ∈ AN
i (vN), if N > N , then

< yN − y, a > < δ

for some y ∈ Ai(v
N).

For convenience, we change variables, using the variables as described in [34] and Section

5.1. Note that this is merely a change in representation of the system, not an approximation

of the system. Note also that MN = M, CN = C, and BN = B. Suppose

Chapter 5. Approximated Solutions: Spline Approximations 99

1. L1(z0) = S(t)z0

2. LN
1 (z0) = SN (t)PNz0

3. L2(φ) =
∫ t

0 S(t− s)Mf(s)ds

4. LN
2 (φ) =

∫ t

0 S
N (t− s)Mf(s)ds

5. L3(f) =
∫ t

0 S(t− s)Bf(s)ds

6. LN
3 (f) =

∫ t

0 S
N (t− s)Bf(s)ds

where SN is the semigroup on ZN generated by AN , i.e., SN (t) = eA
N t, in the approximated

system. Let a =


 a

0


 so that the dimensions are appropriate for our problem. Then

< y − yN , a > = < C (z − zN), a > + < N(µ1 − µN
1), a >

= < C [(L1(z0) + L2(µ) + L3(v
N))

−(LN
1 (z0) + LN

2 (µ) + LN
3 (vN))], a > + < N(µ1 − µN

1), a >

= < C [(L1(z0) + L2(µ) + L3(v
N)) − (LN

1 (z0) + LN
2 (µ) + LN

3 (vN))

+LN
3 (v) − LN

3 (v) + L3(v) − L3(v)], a > + < N(µ1 − µN
1), a >

= < C [(L1(z0) + L2(µ) + L3(v)) − (LN
1 (z0) + LN

2 (µ) + LN
3 (v))

+LN
3 (vN) − LN

3 (v) + L3(v
N) − L3(v)], a > + < N(µ1 − µN

1), a >

= < (y(v) − yN (v)), a > + < C (LN
3 (vN − v) + L3(v

N − v)), a >

= < (y(v) − yN (v)), a > +‖C (LN
3 (vN − v) + L3(v

N − v))‖‖a‖.

But, we have by assumption that vN → v and since we are working on a closed and

bounded interval, so there exists an N1(
δ
2) such that for N > N1(

δ
2), ‖C (LN

3 (vN − v) +

L3(v
N − v))‖‖a‖ < δ

2 . And, from the proof of our previous theorem, we know we can make

< C (y(v) − yN (v)), a > < δ
2 for some N2(

δ
2). Thus, we have

< y(v) − yN (v), a > + < LN
3 (vN − v) + L3(v

N − v), a > < < C (y(v) − yN (v)), a > +
δ

2

<
δ

2
+
δ

2

< δ for

N > max{N1(
δ

2
), N2(

δ

2
)}.

Chapter 5. Approximated Solutions: Spline Approximations 100

Then we have that < y, a > ≥ ε− δ whenever N > max{N1(
δ
2), N2(

δ
2), N(ε)}. ♦

We have seen from our theoretical work that the spline approximation is more than

capable of getting us good approximations of our detection signal. We have shown that for

each ’real’ output, there is an approximated output nearby. We have also shown that if

a signal will separate the real output sets, then it will separate the approximated output

sets. We have seen that a hyperplane which strictly separates the real output sets will also

strictly separate the approximated output sets. While our theorems are important, they

do not address the question of comparing the various methods. We shall look into how the

methods compare in our next chapter by examining a few numerical experiments.

Chapter 6

Examples and Analysis

In this chapter, we compare the Method of Steps, the spline approximation and the central

difference approximation on some numerical examples. There are several things to keep in

mind as we consider the examples. The first is that our objective is not to find good ap-

proximations for the states but rather to find good approximations for the detection signal.

Also, as the approximation methods increase the dimensions of the computational problem

as we increase the spatial grid, our objective is to be able to get good approximations of the

detection signal on coarse grids. Finally, it is important to recall that the Method of Steps,

while providing a true solution, only works on a small class of problems. Thus, some of our

examples serve the purpose of demonstrating the more flexible approximation methods.

While the first few examples are on simple problems, they serve several purposes. The

first is to compare all three methods on a single, simple example. By comparing the ap-

proximation methods with the true solution given by the Method of Steps, we can visually

gauge how well the approximated solutions are doing. Then we compare the approximated

methods on a problem with multiple and mixed delays. Finally, we look at a more complex

example.

101

Chapter 6. Examples and Analysis 102

6.1 Steps, Differences and Splines on a Single Delay

We consider the problem

ẋ0 = −2x0 + x0(t− 1) + v + µ0,1 (6.1a)

y = x0 + µ0,2 (6.1b)

ẋ1 = −3x1 + x1(t− 1) + v + µ1,1 (6.1c)

y = x1 + µ1,2. (6.1d)

This is an interesting example because we compare the approximated solutions with the

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
2

0

2

4

6

8

10

12

14

16

time

Differences
 ρ=20

Splines
 N=20

Method of Steps

v

Figure 6.1: The figure shows the Method of Steps, the spline approximation and the dif-

ference approximation on the models (7.4) which have a single delay. A mesh size of 20 is

used in each approximation.

true solution given by the Method of Steps. We see in Figure 6.1 the detection signal

computed using the three methods plotted together, where ρ is the mesh size of the difference

approximation and N is the mesh size of the spline approximation. In this example, we use

mesh sizes of 20 for both approximations. It is clear from the figure that the approximated

methods do very well. It is difficult to distinguish the difference between the various plots.

The difference approximation never quite converges to the true solution. It is probably due

to a small error in weighting the initial condition. The norms of the three signals are all

Chapter 6. Examples and Analysis 103

quite close. The norm of the differences signal is 16.0348. The norm of the spline signal is

16.01667. Finally, the norm of the true signal, given by the Method of Steps, is 16.0434.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
2

0

2

4

6

8

10

12

14

16

time

Method of Steps

ρ=11,20
ρ=5

v

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
2

0

2

4

6

8

10

12

14

16

time

N=3

Method of Steps

N=4, 6, 20

v

Figure 6.2: The figure compares the Method of Steps and the spline and difference approx-

imations on example (7.4). On the left, we have the auxiliary signal, v, calculated using

several meshes and the difference approximation plotted together with the signal deter-

mined using the Method of Steps. On the right, we have a similar plot but the signal was

approximated using splines.

Figure 6.2 compares the Method of Steps, and the spline and difference approximations.

On the left, we have the auxiliary signal, v, calculated using the difference approximation

and mesh sizes of 5, 11, and 20. These are plotted together with the signal determined using

the Method of Steps. On the right, we have a similar plot but the signal was approximated

using splines.

There are several things to notice in these plots. First, one might notice that the spline

approximation at mesh size 4 and mesh size 20 are virtually the same. This is not true of the

difference approximation. On the other hand, at mesh size 11, the difference approximation

is practically indistinguishable from that of mesh size 20. Thus, we see that our objective

of using coarse approximations is better met by the spline method but for a large enough

ρ, both methods will do the job.

Chapter 6. Examples and Analysis 104

6.2 Splines and Differences on Multiple Delays

Next, we look at the problem

ẋ0 = −2x0 + x0(t− 1) + v + µ0,1 (6.2a)

y = x0 + µ0,2 (6.2b)

ẋ1 = −3x1 + x1(t− .4) + v + µ1,1 (6.2c)

y = x1 + µ1,2. (6.2d)

In Figure 6.3, we see the detection signal, v, for example 6.2, which mixed delays. This

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
2

0

2

4

6

8

10

Differences ρ=6

Splines N=6

v

time

Figure 6.3: The figure shows the detection signal found for example 6.2, which has mixed

delays. One of our models has a delay of 1 while the other has a delay of .4. In both cases,

we use mesh sizes of 6.

problem is significant in that it would be impossible to solve it with the Method of Steps

as there is more than one delay and the delays are not multiples of each other. At a mesh

size of only 6 for both approximations, we see the signals are quite similar. The norm for

the spline signal found with the spline approximation is 9.1527 while the norm of the signal

found with the difference approximation is 9.1436.

Chapter 6. Examples and Analysis 105

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
2

0

2

4

6

8

10

12

time

v

differences ρ=6

splines N=6

Figure 6.4: Comparison of the spline approximation and the central difference approxima-

tion on mixed and multiple delays from example (6.3).

6.3 Splines and Differences on Mixed and Multiple Delays

In this example, we compare the spline approximation and the central difference approxi-

mation on multiple delays. We look at the problem

ẋ0 = −2x0 + x0(t− 1) + v + µ0,1 (6.3a)

y = x0 + µ0,2 (6.3b)

ẋ1 = −3x1 + .5x1(t− .4) + .5x1(t− 1) + v + µ1,1 (6.3c)

y = x1 + µ1,2 (6.3d)

We see in Figure 6.4 the plot of v for example (6.3) with mesh sizes of 6 for both types of

approximations. Notice that these models are different from the simpler models of example

(6.2). Model 1 has two delays in it which is something many methods are unable to handle.

Moreover, Models 0 and 1 have different delays. The detection signals found are fairly close

in both approximations. The norm of the differences signal is 11.33 whereas the norm of

the splines is 11.72.

Chapter 6. Examples and Analysis 106

6.4 Mach Number in a Wind Tunnel

The next example is a linearized model of the control of the Mach number in a wind tunnel.

We adapted these models from Manitus and Tran’s Numerical simulation of a non-linear

feedback controller for a wind tunnel model involving a time delay([48]). Mach number is

the speed of an object divided by the speed of sound in the surrounding medium. For

example, an aircraft moving twice as fast as the speed of sound is said to be travelling at

Mach 2. Model 0 is given by

x′1(t) = −ax1(t) + akx2(t− h) + ν1 (6.4a)

x′2(t) = x3(t) + ν2 (6.4b)

x′3(t) = −β2x2(t) − 2ηβx3(t) + β2(u(t) + v(t)) + ν3 (6.4c)

y = x1 + ν4. (6.4d)

where a = (1.964)−1, k = −0.0117, β = 6, η = 0.8, h = 1s, and u(t) ≡ 2. Model 1 is given

by

x′1(t) = −ax1(t) + akx2(t− h) + ν1 (6.5a)

x′2(t) = x3(t) + ν2 (6.5b)

x′3(t) = −β2x2(t) − 2ηβx3(t) + β2(u(t) + v(t)) + ν3 (6.5c)

y = x1 + ν4 (6.5d)

where a = (1.2892)−1, k = −0.0117, β = 4, η = 0.8, h = 1s, and u(t) ≡ 2. In these models,

x1 is the Mach number, x2 is the actuator1 position (guiding vane angle in a driving fan),

x3 is the actuator rate, and v is the input to the actuator servomechanism2. The delay, h,

is the time of transport between the fan and the test section.

Note that the scaling of variables is set up so that for a constant control, u, we get the

set point (equilibrium) of x1 = ku, x2 = u, x3 = 0. We assume that u(t) = 2 and that the

detection horizon is [0, κh]. We will send the auxiliary signal down the same channel as u.

Notice that the failure mode is the same as the normal mode, except that a = (1.2.892)−1

and β = 4 in the failed model. This corresponds to a change in the driving fan. Note that

1An actuator is a mechanical device for moving or controlling something
2A servomechanism is a self-regulating feedback system

Chapter 6. Examples and Analysis 107

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
8

6

4

2

0

2

4

6

8

time

Splines
 N=6

Differences
 ρ=7

Method of Steps

Figure 6.5: This figure represents the detection signals found using splines, differences and

the Method of Steps when calculating the signal for a linearized, model of the control of

the Mach number in a wind tunnel. A spline approximation of grid size N = 6 was used

while a difference approximation of grid size ρ = 7 was used.

a and β do not appear in the equations defining the set point (equilibrium) so that at set

point operation, a change in either of these parameters would not be detectable no matter

how long the system was observed. Thus an auxiliary signal is needed to notice changes in

the models.

Figure 6.5 shows the detection signal, v, calculated using splines, differences and the

Method of Steps for κ = 1. Notice that both approximations did very well approximating

the true detection signal found using the method of steps. We used a fairly coarse grid of

N = 6 for the spline approximation. For the difference approximation, we used a grid of

size ρ = 7. The norms are also close, with the norm of the Steps signal being 5.5807, the

norm of the spline signal being 5.5398 and the norm of the difference signal being 5.58005.

Its worth noting that SOCS had trouble converging on the difference approximation. The

solution which we present here is the last solution given before SOCS terminated abnormally.

The abnormal termination was caused by a lack of sufficient working storage, technically.

However, the reason the storage requirements were so large was due to trying to resolve the

Chapter 6. Examples and Analysis 108

dynamics to a relative tolerance of .100E − 06. As SOCS had resolved the dynamics to a

relative tolerance of 0.35E − 05, we accepted this solution as sufficient for our purposes.

6.5 Conclusions about Numerical Examples

Our objectives in working with the approximations were two fold:

1. Good approximations of the detection signal.

2. Work on coarse grids.

The examples suggest that we have achieved our objectives. Unlike the Method of Steps,

approximations are able to work on problems with mixed and multiple delays. Moreover, we

see that for fairly coarse grids, we are getting good solutions. The difference approximation

does not seem to do as well as the spline approximation.

Chapter 7

Future Work and Conclusions

7.1 Future Work

In extending this fault detection and model identification algorithm to problems with delays,

we have shown that approximations to the delayed system yield detection signals which will

solve the problem, and we have demonstrated interesting theoretical and numerical results

on the approximation methods used. However, there remains far more work to be done in

this area and below we list just a few potential problems and applications.

Alternative Approximations

We examined only two methods of approximating our delayed system. As mentioned in

Section 1.2.1, there are many ways of approximating delayed systems with ODE systems

and it would be of benefit to look at some of these other methods. While the results of our

spline approximation were very good, perhaps other approximation methods would yield

faster, more accurate results.

In [36], Ito and Kappel present formulations of the Trotter-Kato Theorem for approx-

imations of linear C0-semigroups with the intent that they might be useful for showing

convergence of numerical methods for PDE’s. In Section 4.1, we reformulate the delayed

system into a PDE. This work of Ito and Kappel could be very useful in considering other

methods of approximation.

109

Chapter 7. Future Work and Conclusions 110

Stochastic Models

The work in this thesis is on deterministic models with uncertainty. However, stochastic

models are very common in real applications. A problem of interest would be examining the

fault detection and model identification algorithm on stochastic models. While the method

should extend naturally to stochastic models, there are some questions to be asked. It is

not clear how other information which is generally associated with detection on stochastic

models, like error probabilities, is to be derived.

Nonlinear Models

While our work extends the fault detection algorithm to linear models with delays, another

useful extension would be to nonlinear models and nonlinear models with delays. Nonlin-

earities are likely to offer computational difficulties in that having a suitable initial guess

is always an issue when looking at nonlinear problems. Also, in general, nonlinearities are

likely to produce only locally optimal solutions and cause a loss of convexity in the output

sets.

Different types of nonlinearities will raise different issues in problem formulation. In

[30], Horton suggests that there are 3 types of nonlinearities which their method should

extend to smoothly: small, norm-bounded, nonlinearities in the state, nonlinearities in the

control, and coefficient matrices dependent on the control.

Noise

Another important question is that of other types of noise. In this thesis, we examine the

question of deterministic models with additive uncertainty, but there are other cases in

which model uncertainty is important.

Thus far, we have considered models of the form,

ẋ = Ax+Bv +Mµ (7.1a)

y = Cx+Nµ (7.1b)

where the noise bound is given by

S(x(0), µ) = x(0)TQx(0) +

∫ ω

0
|µ(t)|2 dt < 1. (7.2)

Chapter 7. Future Work and Conclusions 111

A generalization of this model is the case where the detection signal, v, acts on the output

as well. That is, we have the model

ẋ = Ax+Bv +Mµ (7.3a)

y = Cx+ Pv +Nµ. (7.3b)

Notice that if P = 0, then we are back to our previous model.

One way to add model uncertainty to model (7.3) is to adapt an idea from [58] of Savkin

and Petersen. We use models of the form

ẋ = (A+D∆G)x+ (B +D∆H)v +Mµ

y = (C + F∆G)x+ (P + F∆H)v +Nµ

where D,F,G,H are constant matrices and ‖∆(t)‖ < 1. Then we can rewrite this system

as

ẋ = Ax+Bv +
[
D M

]

µ1

µ2


 (7.5a)

z = Gx+Hv (7.5b)

y = Cx+ Pv +
[
F N

]

µ1

µ2


 (7.5c)

with µ1 = ∆z, µ2 = µ.

Since µ1 = ∆z then, |µ1(t)| = |∆(t)z(t)| for all t ∈ [0 ω]. Thus, |µ1(t)| ≤ |z(t)| for all

t ∈ [0 ω] as ‖∆(t)‖ < 1. This gives us the condition that

∫ s

0
(|µ1|2 − |z|2) dt < 0 for all s ∈ [0, ω].

Thus, our noise measure becomes

x(0)TQx(0) +

∫ s

0
(|µ1|2 + |µ2|2 − |z|2) dt < 0 for all s ∈ [0, ω]. (7.6)

Of course, there are issues with this formulation. Notice that the problem now has the

parameter, s, in it and we have the added constraint (7.5b). Also,the noise measure now has

negative terms in it. Our analysis on additive noise models, we have shown the importance

Chapter 7. Future Work and Conclusions 112

of having bounded noise sets in the delayed case. This will remain important in the model

noise case.

If H = 0 and G is sufficiently small, the constraint (7.5b) could be eliminated by includ-

ing it directly. However, this will cause the noise bound to be more complex. Moreover, if

G is sufficiently small, then the quadratic in (7.6) will be positive definite.

Some research has been conducted on these types of models for the non-delayed case.

See [12, 16, 10] for more information.

7.2 Conclusions

We had several goals upon starting this work. First, we wished to determine if it was

possible to make the model identification decision early and to devise an algorithm for

making that determination when working with ODE models as described in 1.3. We also

wished to determine if it was possible to extend the FDMI algorithm to delayed systems by

approximating them with ODE systems. In addition, we wished to find an approximation

method which would not only find a good detection signal, but one which would do it on

coarse grids so as to reduce the computational overhead of solving the problem as much as

possible.

In Chapter 1, we reviewed material relevant to our research. First, we looked at some

mathematical concepts which were to be important throughout the body of our work. Then

we examined the work done by others. In addition to examining prior research done on

fault detection, model identification and approximation of delayed systems, we also looked in

detail at the FDMI algorithm developed in [30, 14, 52]. This work of Campbell, Nikoukhah,

and Horton served as the basis of our work.

Having developed the context for our problem, we went in Chapter 2 to explore the

question of whether or not it is possible to make the model identification decision early. We

showed that it is possible to make the determination early. We also devised an algorithm

which can be used to make the decision. Then we looked at some interesting computational

tests and showed that on average, it is possible to reduce the detection time by about 25%.

Next, we explored the question of whether it was possible to apply the FDMI algorithm

to problems with delays. Rather than develop a new theory directly in terms of delayed

Chapter 7. Future Work and Conclusions 113

systems, we extended the well-developed theory of [30] to our problems by reformulating

the delayed systems. First, we noted in Chapter 3 that it is possible to solve a small class of

these problems exactly using the Method of Steps. We detailed a derivation of the necessary

conditions for the Method of Steps problem and we proved the optimality of the conditions

we found. While the Method of Steps provides a true solution to the problem, its usefulness

is limited because of the small class of problems upon which it can be used. However, it

served as a basis for comparison for the approximated solutions we developed in Chapter 4

and Chapter 5.

In Chapter 4, we looked at first reformulating the delayed system into a PDE and then

approximating the solution to the PDE by central differences. We looked in detail at the

reformulation and necessary conditions for the FDMI algorithm. We noted that there is an

important addition to the necessary conditions resulting from converting our noise measure

to our new variable. That is, we noted that φ(0) = 0.

Then in Chapter 5, we looked at another approximation method. This method, based

on the work of Ito and Kappel [34], uses piecewise linear splines to approximate the delayed

system by an ODE system. We looked in brief detail at the approximation and formulation

of our optimization problem. Then we looked at the problem from a more theoretical point of

view, proving that the spline method provides a good approximation of the detection signal

by showing that the output sets of the approximated problem were a good approximation

of the output sets of the original problem. We also showed that a hyperplane which strictly

separates the real output sets strictly separates the approximated output sets. Moreover,

we showed that a hyperplane which strictly separates the approximated output sets, strictly

separates the real output sets.

Having examined the delayed detection problem analytically and theoretically, in Chap-

ter 6, we looked at some illustrative examples. We first looked at a simple, one dimensional

example on models with a single, constant delay. We compared the three methods of solving

the delayed problem on this example and observed that our approximations do a good job

of finding a detection signal on fairly coarse grids. We also looked at some one dimensional

examples which have multiple and mixed delays. These examples are relevant because

the Method of Steps, which provided a true solution, will not solve them. We saw in the

examples that the detection signals provided by the difference approximation and spline

Chapter 7. Future Work and Conclusions 114

approximation are very similar, both in shape and norm, though the spline approximation

seems to arrive at a good signal on a coarser grid than the difference approximation. As

grid size has a direct effect on the ease of computation, this is an important difference.

Finally, we look at a last, more complex example of the control of Mach Number in a wind

tunnel taken from Manitius and Tran [48]. We saw that the spline approximation does very

well on this example and the signals are very close for a coarse grid.

Appendix A

Software

A.1 M-files

make diag.m

The following function makes a block diagonal matrix from a given matrix

function new1= matrix_diag(matrix1, sizediag)

%create a blockdiagonal matrix

[n,m]=size(matrix1);

new1=matrix1; for i=2:sizediag

[n1,m1]=size(new1);

new1=[new1 zeros(n1,m);

zeros(n,m1) matrix1];

end

A.2 Method of Steps

A.2.1 Matlab Driver for the Method of Steps

%system matrices

115

Appendix A. Software 116

%define constants of problem(optional)

mya1=-3;

mya2=-2;

myb1=1

myb2=1

myg1=1;

myg2=1;

myc1=1;

myc2=1;

%define matrices for the original problem

myC1=[myc1];

myC2=[myc2];

myA1=[mya1]

myA2=[mya2]

myB1=[myb1]

myB2=[myb1]

myN1=[0 1]

myN2=myN1;

myM1=[1 0];

myM2=myM1;

myG1=[myg1]

Appendix A. Software 117

myG2=[myg2];

Zero3=zeros(3,3)

disp(’eigenvalues of A1’)

eig(myA1)

%matrices for the stacked problem.

% note: this is for stacked 2

%change the values of mystacks and the A’s

mystacks=2

myAbar1=[myA1 zeros(size(myA1))

myG1 myA1];

disp(’eigenvalues of ABar1’)

eig(myAbar1)

myAbar2=[myA2 zeros(size(myA2))

myG2 myA2];

%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%

% change nothing below this line

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

disp(’eigenvalues of ABar2’)

eig(myAbar2)

myBbar1= matrix_diag(myB1,mystacks);

myBbar2= matrix_diag(myB2,mystacks);

myCbar1= matrix_diag(myC1,mystacks);

myCbar2= matrix_diag(myC1,mystacks);

Appendix A. Software 118

%____________________________________

myMbar1temp1=matrix_diag(myM1,mystacks);

[myiMbar1temp1,myjMbar1temp1]=size(myMbar1temp1);

[myiG,myjG]=size(myG1);

myMbar1temp2=[myG1

zeros(myiMbar1temp1-myiG,myjG)];

myMbar1=[myMbar1temp2 myMbar1temp1];

%__

myMbar2temp1=matrix_diag(myM2,mystacks);

[myiMbar2temp1,myjMbar2temp1]=size(myMbar2temp1);

[myiG,myjG]=size(myG2);

myMbar2temp2=[myG2

zeros(myiMbar2temp1-myiG,myjG)];

myMbar2=[myMbar2temp2 myMbar2temp1];

%__

myNbar1temp1=matrix_diag(myN1,mystacks);

[myiG,myjG]=size(myG1);

[myiNbar1temp1,myjNbar1temp1]=size(myNbar1temp1);

myNbar1temp2=zeros(myiNbar1temp1,myjG);

myNbar1=[myNbar1temp2 myNbar1temp1];

%__

Appendix A. Software 119

myNbar2temp1=matrix_diag(myN2,mystacks);

[myiG,myjG]=size(myG2);

[myiNbar2temp1,myjNbar2temp1]=size(myNbar2temp1);

myNbar2temp2=zeros(myiNbar2temp1,myjG);

myNbar2=[myNbar2temp2 myNbar2temp1];

A0=myAbar1

A1=myAbar2

B0=myBbar1

B1=myBbar2

C0=myCbar1

C1=myCbar2

M0=myMbar1

M1=myMbar2

N0=myNbar1

N1=myNbar2

%may need to do constant orthogonal change of coords on the noise

%do it via a QR decomp on N_i^T to get [Nb_i 0],

%where Nb_i is invertible, also gives [Mb_i Mt_i]

[Q0,R0]=qr(N0’)

[Q1,R1]=qr(N1’)

pause

%now N_i^T = Q_i * R_i, so N_i = R_i^T * Q_i^T

%and Q_i^T is an orthogonal matrix

%absorb Q_i^T into the noise vector nu_i to get new noise vector

%and Nb_i becomes the invertible part of R_i^T

%may need to fix signs in Q_i and/or R_i

R0=-R0;

R1=-R1;

Appendix A. Software 120

Q0(1,1)=-Q0(1,1);

Q0(2,2)=-Q0(2,2);

Q1(1,1)=-Q1(1,1);

Q1(2,2)=-Q1(2,2);

%break down into Mb_i, Mt_i, Nb_i, and Nt_i (zeros)

[mN0,nN0]=size(N0);

[mN1,nN1]=size(N1);

mnN0=min(mN0,nN0);

mnN1=min(mN1,nN1);

mxN0=max(mN0,nN0);

mxN1=max(mN1,nN1);

N0n=R0’;

N1n=R1’;

Nb0=N0n(1:mnN0,1:mnN0);

Nb1=N1n(1:mnN1,1:mnN1);

Nt0=N0n(:,mnN0+1:mxN0); %just need the size of this

Nt1=N1n(:,mnN1+1:mxN1); %and this

M0n=M0*Q0’;

M1n=M1*Q1’;

Mb0=M0n(:,1:mnN0);

Mb1=M1n(:,1:mnN1);

Mt0=M0n(:,mnN0+1:mxN0);

Mt1=M1n(:,mnN1+1:mxN1);

%create reduced model system matrices

[mA0,nA0]=size(A0);

[mA1,nA1]=size(A1);

[mMt0,nMt0]=size(Mt0);

[mMt1,nMt1]=size(Mt1);

[mNb,nNb]=size(Nb1);

[mNt0,nNt0]=size(Nt0);

Appendix A. Software 121

[mNt1,nNt1]=size(Nt1);

A=[A0-Mb0*inv(Nb0)*C0 Mb0*inv(Nb0)*C1; zeros(mA1,nA0) A1]

M=[Mt0 Mb0*inv(Nb0)*Nb1 zeros(mMt0,nMt1); zeros(mMt1,nMt0) Mb1 Mt1]

B=[B0;B1]

C=[inv(Nb0)*C0 -inv(Nb0)*C1];

N=inv(Nb0)*[zeros(mNb,nNt0) Nb1 zeros(mNb,nNt1)];

%Q and H without beta

Qnb=2*C’*C

Hnb=-4*C’*N

%size of upper left block of R

ulident=nNt0

%Nb1’Nb0’^-1Nb0^-1Nb1 for the center block of R

Nb1

Nmess=Nb1’*inv(Nb0’)*inv(Nb0)*Nb1

[nnmess,mnmess]=size(Nmess)

%size of lower right block of R

lrident=nNt1

rtop=[eye(ulident,ulident) zeros(lrident, nnmess+lrident)]

rmiddle= [zeros(nnmess,ulident) Nmess zeros(nnmess,lrident)]

rbottom=[zeros(ulident, nnmess+ulident) eye(lrident,lrident)]

rtogether=[45*rtop;78*rmiddle;99*rbottom]

%end of routine

if(0)

save q.txt Qnb -ascii

save b.txt B -ascii

save c.txt C -ascii

save m.txt M -ascii

Appendix A. Software 122

save r.txt rtogether -ascii

save n.txt Nmess -ascii

save a.txt A -ascii

save h.txt Hnb -ascii

end

A.2.2 Method of Steps Driver

The following program is the driver for the Method of Steps for our first simple example.

PROGRAM setpoint1

c the big feature of this program is the restricted beta

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

INTEGER NIW,MAXPHS,NW,MAXCS,MAXDP

PARAMETER (NIW =20050000,MAXPHS = 5,NW = 20005000,MAXCS=1000500)

PARAMETER (MAXDP = 1000)

INTEGER IW(NIW),IPCPH(MAXPHS+1),IPDPH(MAXPHS+1),NEEDED,IER

DOUBLE PRECISION W(NW),CSTAT(MAXCS),DPARM(MAXDP)

DOUBLE PRECISION h,a1,a2,g1,g2,b1,b2,m1,m2

DOUBLE PRECISION n2,T0,c1,c2,tau1,tau,n1

EXTERNAL setpoint1IN,dumyig,setpoint1DE,GETTINGvPF,DUMYPR

Appendix A. Software 123

open (18, FILE=’darn.dat’, STATUS=’OLD’)

CALL HHSOCS(’ipuocp=18’)

CALL HHSOCS(’IPGRD=20’)

CALL HHSOCS(’IPODE=20’)

CALL HHSNLP(’MAXNFE=100000’)

CALL HHSOCS(’mxpcon=100’)

CALL HHSNLP(’NITMAX=500’)

c CALL HHSNLP(’KTOPTN=SMALL’)

c CALL HHSNLP(’tolpvt=.1’)

CALL HHSOCS(’MXSTAT=300’)

CALL HHSNLP(’IOFLAG=20’)

c CALL HHSNLP(’ALGOPT=FM’)

CALL HHSOCS(’MITODE=20’)

CALL HHSOCS(’ODETOL=1.D-7’)

CALL HHSOCS(’SPRTHS=SPARSE’)

CALL HHSOCS(’MTSWCH=3’)

CALL HHSOCS(’NSSWCH=1’)

C CALL HHSOCS(’ITSWCH=2’)

c CALL Hhsnlp(’CONTOL=1.D-6’)

c CALL HHSNLP(’OdeTOL=1.D-4’)

call hhsocs(’mxterm=200’)

write(18,*) ’**’

write(18,*) ’error code’, ier

write(18,*) ’needed’, needed

write(18,*) ’normal termination’

CALL HDSOCS(setpoint1IN,dumyig,setpoint1DE,GETTINGvPF,DUMYPR,

+ IW,NIW,W,NW,MAXPHS,CSTAT,MAXCS,IPCPH,DPARM,MAXDP,

+ IPDPH,NEEDED,IER)

write(*,*) ’**’

Appendix A. Software 124

write(*,*) ’error code’, ier

write(*,*) ’needed’, needed

close(18)

END

SUBROUTINE setpoint1IN(IPHASE,NPHS,METHOD,NSTG,NCF,NPF,NPV,NAV,

+ NGRID,INIT,MAXMIN,MXPARM,P0,PLB,PUB,PLBL,

+ MXSTAT,Y0,Y1,YLB,YUB,STSKL,STLBL,MXPCON,CLB,

+ CUB,CLBL,MXTERM,COEF,ITERM,TITLE,IER)

implicit double precision (a-h,o-z)

INTEGER IPHASE,NPHS,METHOD,NSTG,NCF(3),NPF(2),NPV,NAV,NGRID,

+ INIT,MAXMIN,MXPARM,MXSTAT,MXPCON,MXTERM,ITERM(4,MXTERM),

+ IER,NTERM,NPATH, indextracker

DOUBLE PRECISION P0(MXPARM),PLB(MXPARM),PUB(MXPARM),Y0(0:MXSTAT),

+ Y1(0:MXSTAT),YLB(-1:1,0:MXSTAT),YUB(-1:1,0:MXSTAT),

+ STSKL(0:MXSTAT+MXPARM,2),CLB(MXPCON),CUB(MXPCON),

+ COEF(MXTERM), initconditon, xi

CHARACTER PLBL(MXPARM+2)*80,STLBL(0:MXSTAT)*80,

+ CLBL(0:MXPCON)*80,TITLE(3)*60

c METHOD = 2

c NSTG = 2

NCF(1) = 9

NCF(2)=8

NAV = 10

Appendix A. Software 125

NCF(3)=1

maxmin=-1

npv=1

c number of point functions

npf(1)=3

npf(2)=0

write(*,*) ’ numstateeq=’, ncf(1), ’ TFinal= ’, TFinal

write(*,*) ’num algeq=’, ncf(2),’numcont=’, nav

NGRID=13

INIT = 1

c BIGBND = ONE/HDMCON(5)

C ----GUESS FOR INITIAL TIME AND BOUNDARY CONDITION

c ---------the beginning and final times are fixed.

Y0(0) = 0

Y1(0) = 1

YLB(-1,0) = Y0(0)

YUB(-1,0) = Y0(0)

YLB(1,0) = Y1(0)

YUB(1,0) = Y1(0)

write(*,*) ’y1’, y1(0)

C----DEFINE INITIAL guess and bounds CONDITIONS FOR STATE VARIABLES

c---on the first and last interval, we want psi minus and psi plus

c----------set everything to 0

DO 150 I=1, ncf(1)+nav

Y0(I) =10

Y1(I) =50

150 CONTINUE

Appendix A. Software 126

z1=0

z2=2

lam1=4

lam2=6

bigz=8

mu1=9

mu2=13

v=17

beta =0

c labels

stlbl(0)=’time time’

stlbl(1)=’z11 z11’

stlbl(2)=’z12 z12’

stlbl(3)=’z21 z21’

stlbl(4)=’z22 z22’

stlbl(5)=’lam11 lam1’

stlbl(6)=’lam12 lam12’

stlbl(7)=’lam21 lam21’

stlbl(8)=’lam22 lam22’

stlbl(9)=’bigz bigz’

c---------SET specific conditions

c-------lamda_0(0)=lamda_kappa(h)=0

c__________this is actually the last lam1

YLB(1,lam2)= 0

YUB(1,lam2)= 0

c__________this is actually the last lam2

YLB(1,bigz)= 0

Appendix A. Software 127

YUB(1,bigz)= 0

c-------Z(h)>=1

YLB(1,bigz+1)= 1

c---------------set the parameter

p0(1)=.5

c-------.01<=beta<=.99

PLB(1)= .45

PUB(1)= .69

plbL(1)=’BETA BETA’

c***

c***

c***

C------- Describes inequality or algebraic constraint

c------- these constraints are described in F

C defined an a loop

NTERM=0

NPATH=0

c--------define the terms that are the path constraints

DO 800 I=1,ncf(2)

NPATH = npath+1

nterm=nterm+1

c----calculate second point function

Appendix A. Software 128

c------------define what quantity term j belongs to

ITERM(1,NTERM) = npath

c-------------define which phase term j is computed in

ITERM(2,NTERM) = 1

c-------------define where in the phase the term is computed

c------------- t0=-1, during=0, tfinal=1

ITERM(3,NTERM) = 0

c--------------define which constraint this will be used in

ITERM(4,NTERM) = -i

CLB(i)=0

cub(i)=0

COEF(NTERM) = 1.

800 CONTINUE

c***

c***

c---THE BOUNDARY CONDITIONS

c-----index tracker keeps track of the number of terms

c-----so that we may go back and use them to collect the

c-----second set

c__________z_1

c-----define point functions for bounds

Appendix A. Software 129

c--------this loop does -z_1(tf)

NTERM = NTERM + 1

NPATH = NPATH+1

c-------calculate first point function

c--------calculated at the begining of the phase

c------------define what quantity term j belongs to

ITERM(1,NTERM) = npath

c-------------define which phase term j is computed in

ITERM(2,NTERM) = 1

c-------------define where in the phase the term is computed

c------------- t0=-1, during=0, tfinal=1

ITERM(3,NTERM) = 1

c--------------define which constraint this will be used in

c-----------this is the index in the psi matrix

ITERM(4,NTERM) = z1+1

COEF(NTERM) = -1.

c-----this loop does z_1(0)

c-----it goes back to the npath that we started with before

NTERM = NTERM + 1

c----calculate second point function

c------------define what quantity term j belongs to

ITERM(1,NTERM) = npath

Appendix A. Software 130

c-------------define which phase term j is computed in

ITERM(2,NTERM) = 1

c-------------define where in the phase the term is computed

c------------- t0=-1, during=0, tfinal=1

ITERM(3,NTERM) = -1

c--------------define which constraint this will be used in

c-----we want x1(t0)-x2(tf), x2(t0)-x3(tf).....xn-1(t0)-xn(tf)

c---------the first set of terms (t0s) are in psi(1)..psi(n-1)

c----------the second set of terms (tfs) are in psi(n)...(2n-2)

ITERM(4,NTERM) = z1+2

CLB(npath)=0

cub(npath)=0

COEF(NTERM) = 1.

c***

c***

c---THE BOUNDARY CONDITIONS

c-----index tracker keeps track of the number of terms

c-----so that we may go back and use them to collect the

c-----second set

c__________z_2

c-----define point functions for bounds

c--------this loop does -z_1(tf)

NTERM = NTERM + 1

NPATH = NPATH+1

Appendix A. Software 131

c-------calculate first point function

c--------calculated at the begining of the phase

c------------define what quantity term j belongs to

ITERM(1,NTERM) = npath

c-------------define which phase term j is computed in

ITERM(2,NTERM) = 1

c-------------define where in the phase the term is computed

c------------- t0=-1, during=0, tfinal=1

ITERM(3,NTERM) = 1

c--------------define which constraint this will be used in

c-----------this is the index in the psi matrix

ITERM(4,NTERM) = z2+1

COEF(NTERM) = -1.

c-----this loop does z_1(0)

c-----it goes back to the npath that we started with before

NTERM = NTERM + 1

c----calculate second point function

c------------define what quantity term j belongs to

ITERM(1,NTERM) = npath

c-------------define which phase term j is computed in

Appendix A. Software 132

ITERM(2,NTERM) = 1

c-------------define where in the phase the term is computed

c------------- t0=-1, during=0, tfinal=1

ITERM(3,NTERM) = -1

c--------------define which constraint this will be used in

c-----we want x1(t0)-x2(tf), x2(t0)-x3(tf).....xn-1(t0)-xn(tf)

c---------the first set of terms (t0s) are in psi(1)..psi(n-1)

c----------the second set of terms (tfs) are in psi(n)...(2n-2)

ITERM(4,NTERM) = z2+2

CLB(npath)=0

cub(npath)=0

COEF(NTERM) = 1.

C***

DO 801 I=2,3

NPATH = npath+1

nterm=nterm+1

c----lambda1(0)-.5beta*x1(0)=0

c---this is evaluated in a point function

c------------define what quantity term j belongs to

ITERM(1,NTERM) = npath

c-------------define which phase term j is computed in

ITERM(2,NTERM) = 1

Appendix A. Software 133

c-------------define where in the phase the term is computed

c------------- t0=-1, during=0, tfinal=1

ITERM(3,NTERM) = -1

c------define which function this is

c------since

ITERM(4,NTERM) = -i

CLB(npath)=0

cub(npath)=0

COEF(NTERM) = 1.

801 continue

C***

c---------calculate Z(0)-blah=0

NPATH = npath+1

nterm=nterm+1

c----calculate first point function

c------add point function to the cost

c-------first term is for the x(0) term

c------------define what quantity term j belongs to

ITERM(1,NTERM) = npath

c-------------define which phase term j is computed in

ITERM(2,NTERM) = 1

c-------------define where in the phase the term is computed

c------------- t0=-1, during=0, tfinal=1

Appendix A. Software 134

ITERM(3,NTERM) = -1

c-------------

ITERM(4,NTERM) = -1

CLB(NPATH)= 0

cub(NPATH)=0

C***

c***

c***

c***

c***

c***

c---THE BOUNDARY CONDITIONS

c-----index tracker keeps track of the number of terms

c-----so that we may go back and use them to collect the

c-----second set

c__________lam_1

c-----define point functions for bounds

c--------this loop does -lam_1(tf)

NTERM = NTERM + 1

NPATH = NPATH+1

c-------calculate first point function

c--------calculated at the begining of the phase

c------------define what quantity term j belongs to

Appendix A. Software 135

ITERM(1,NTERM) = npath

c-------------define which phase term j is computed in

ITERM(2,NTERM) = 1

c-------------define where in the phase the term is computed

c------------- t0=-1, during=0, tfinal=1

ITERM(3,NTERM) = 1

c--------------define which constraint this will be used in

c-----------this is the index in the psi matrix

ITERM(4,NTERM) = lam1+1

COEF(NTERM) = -1.

c-----this loop does z_1(0)

c-----it goes back to the npath that we started with before

NTERM = NTERM + 1

c----calculate second point function

c------------define what quantity term j belongs to

ITERM(1,NTERM) = npath

c-------------define which phase term j is computed in

ITERM(2,NTERM) = 1

c-------------define where in the phase the term is computed

c------------- t0=-1, during=0, tfinal=1

ITERM(3,NTERM) = -1

Appendix A. Software 136

c--------------define which constraint this will be used in

c-----we want x1(t0)-x2(tf), x2(t0)-x3(tf).....xn-1(t0)-xn(tf)

c---------the first set of terms (t0s) are in psi(1)..psi(n-1)

c----------the second set of terms (tfs) are in psi(n)...(2n-2)

ITERM(4,NTERM) = lam1+2

CLB(npath)=0

cub(npath)=0

COEF(NTERM) = 1.

c***

c***

c***

c***

c***

c***

c---THE BOUNDARY CONDITIONS

c-----index tracker keeps track of the number of terms

c-----so that we may go back and use them to collect the

c-----second set

c__________lam_2

c-----define point functions for bounds

c--------this loop does -lam_2(tf)

NTERM = NTERM + 1

NPATH = NPATH+1

Appendix A. Software 137

c-------calculate first point function

c--------calculated at the begining of the phase

c------------define what quantity term j belongs to

ITERM(1,NTERM) = npath

c-------------define which phase term j is computed in

ITERM(2,NTERM) = 1

c-------------define where in the phase the term is computed

c------------- t0=-1, during=0, tfinal=1

ITERM(3,NTERM) = 1

c--------------define which constraint this will be used in

c-----------this is the index in the psi matrix

ITERM(4,NTERM) = lam2+1

COEF(NTERM) = -1.

c-----this loop does lam2(0)

c-----it goes back to the npath that we started with before

NTERM = NTERM + 1

c----calculate second point function

c------------define what quantity term j belongs to

ITERM(1,NTERM) = npath

c-------------define which phase term j is computed in

ITERM(2,NTERM) = 1

c-------------define where in the phase the term is computed

c------------- t0=-1, during=0, tfinal=1

Appendix A. Software 138

ITERM(3,NTERM) = -1

c--------------define which constraint this will be used in

c-----we want x1(t0)-x2(tf), x2(t0)-x3(tf).....xn-1(t0)-xn(tf)

c---------the first set of terms (t0s) are in psi(1)..psi(n-1)

c----------the second set of terms (tfs) are in psi(n)...(2n-2)

ITERM(4,NTERM) = lam2+2

CLB(npath)=0

cub(npath)=0

COEF(NTERM) = 1.

c***

C***

C Describes objective quadrature function

NCF(3) = 1

NTERM = NTERM + 1

NPATH = NPATH+1

ITERM(1,NTERM) = 0

ITERM(2,NTERM) = 1

ITERM(3,NTERM) = 0

ITERM(4,NTERM) = -(ncf(2)+1)

COEF(NTERM) = 1.

RETURN

END

Appendix A. Software 139

SUBROUTINE setpoint1DE(IPHASE,T,Z,NZ,P,NP,F,NF,IFERR)

implicit double precision (a-h,o-z)

INTEGER IPHASE,NZ,NP,NF,IFERR,IPATH

DOUBLE PRECISION T,Z(NZ),P(NP),F(NF)

F(1) = -3*Z(1)+Z(18)-Z(10)-Z(12)

F(2) = Z(1)-3*Z(2)+Z(19)+Z(11)

F(3) = -2*Z(3)+Z(18)-Z(15)-Z(17)

F(4) = Z(3)-2*Z(4)+Z(19)+Z(16)

F(5) = -2*P(1)*Z(1)+2*P(1)*Z(3)+2*P(1)*Z(13)+3*Z(5)-Z(6)

F(6) = -2*P(1)*Z(2)+2*P(1)*Z(4)+2*P(1)*Z(14)+3*Z(6)

F(7) = 2*P(1)*Z(1)-2*P(1)*Z(3)-2*P(1)*Z(13)+2*Z(7)-Z(8)

F(8) = 2*P(1)*Z(2)-2*P(1)*Z(4)-2*P(1)*Z(14)+2*Z(8)

F(9) = (2*P(1)*Z(1)-2*P(1)*Z(3))*Z(1)/2+(2*P(1)*Z(2)-2*P(1)*Z(4))*

#Z(2)/2+(-2*P(1)*Z(1)+2*P(1)*Z(3))*Z(3)/2+(-2*P(1)*Z(2)+2*P(1)*Z(4)

#)*Z(4)/2+(-4*P(1)*Z(1)+4*P(1)*Z(3))*Z(13)/2+(-4*P(1)*Z(2)+4*P(1)*Z

#(4))*Z(14)/2+Z(10)**2*P(1)+Z(11)**2*P(1)+Z(12)**2*P(1)+Z(13)**2+Z(

#14)**2+Z(15)**2*(2-2*P(1))/2+Z(16)**2*(2-2*P(1))/2+Z(17)**2*(2-2*P

#(1))/2

F(10) = 2*Z(10)*P(1)-Z(5)

F(11) = 2*Z(11)*P(1)+Z(6)

F(12) = 2*Z(12)*P(1)-Z(5)

F(13) = 2*Z(13)-2*P(1)*Z(1)+2*P(1)*Z(3)

F(14) = 2*Z(14)-2*P(1)*Z(2)+2*P(1)*Z(4)

F(15) = Z(15)*(2-2*P(1))-Z(7)

Appendix A. Software 140

F(16) = Z(16)*(2-2*P(1))+Z(8)

F(17) = Z(17)*(2-2*P(1))-Z(7)

F(18) = abs(Z(18))**2+abs(Z(19))**2

RETURN

END

SUBROUTINE GETTINGvPF(IPHASE,IPHEND,T,Z,NZ,P,NP,PSI,NPSI,IFERR)

INTEGER IPHASE,IPHEND,NZ,NP,NPSI,IFERR

double precision T,Z(NZ),P(NP),PSI(NPSI)

double precision t0

double precision Q1,Q2

double precision lamconst

lamconst=1

Q1=1

c---beta x_0(0)^T P x_0(0) + (1-beta) x_1(0)^T P x_1(0)

if (iphend.eq.-1) then

t0 = 2*Z(1)**2*P(1)*Q1+2*Z(3)**2*(1-P(1))*Q1

psi(1) = .5*t0-Z(9)

psi(2) = Z(7)+2*lamconst*Q1*(1-P(1))*Z(3)

psi(3) = Z(5)+2*lamconst*Q1*P(1)*Z(1)

endif

end

Appendix A. Software 141

A.3 Splines

A.3.1 Matlab Spline Driver

The following Matlab script generates the system matrices for the spline approximation.

%system matrices

%define constants of problem(optional)

%myHat(t1,t2,t3,N,r,theta)

%system matrices

%define constants of problem(optional)

mya=1/1.964;

myk=-.0117

mybeta1=6

mybeta2=4

myn=.8

%define matrices for the original problem

myC1=[1 1 0]

myC2=myC1;

myA1=[-mya 0 0

0 0 1

0 -mybeta1^2 -2*myn*mybeta1]

myA2=[-mya 0 0

0 0 1

0 -mybeta2^2 -2*myn*mybeta2]

myB1=[0;0;mybeta1^2]

myB2=[0;0;mybeta2^2]

myN1=[0 0 0 1]

Appendix A. Software 142

myN2=myN1;

myM1=[1 0 0 0

0 1 0 0

0 0 1 0];

myM2=myM1;

myG1=[0 mya*myk 0

0 0 0

0 0 0]

myG2=myG1;

%%%%%---------Problem vars---------

%mesh size

N2=5;

%system size

n=3; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%abs(delay)

r=1;

%identity which is system size

eyen=eye(n);

algA1=myA1;

algA2=myA2;

zerosn=zeros(n);

makehalf=[.5*eyen .5*eyen]

%note..we go to N+2 because 0,,N+1

for i=1:(N2+1)

Appendix A. Software 143

t(i)=-(i-1)/N2

end

%%%%-----estimate the hat functions---------%%%%

%%%Create Q

algQ=[eyen zerosn zerosn zerosn zerosn

makehalf zerosn zerosn zerosn zerosn

zerosn makehalf zerosn zerosn zerosn

zerosn zerosn makehalf zerosn zerosn

zerosn zerosn zerosn makehalf zerosn

zerosn zerosn zerosn zerosn makehalf];

%--note...the 0=t_-1=t_0 and -r=t_N=t_N+1

%--t=-1,0,1

algD0= myA1*myHat(t(2),t(1),t(1),N2,r,0)+myG1*myHat(t(2),t(1),t(1),N2,r,-r)

%--t=0,1,2

algD1= myA1*myHat(t(3),t(2),t(1),N2,r,0)+myG1*myHat(t(3),t(2),t(1),N2,r,-r)

%--t=1,2,3

algD2= myA1*myHat(t(4),t(3),t(2), N2,r,0)+myG1*myHat(t(4),t(3),t(2),N2,r,-r)

algD3= myA1*myHat(t(5),t(4),t(3), N2,r,0)+myG1*myHat(t(5),t(4),t(3) ,N2,r,-r)

algD4= myA1*myHat(t(6),t(5),t(4), N2,r,0)+myG1*myHat(t(6),t(5),t(4) ,N2,r,-r)

algD5= myA1*myHat(t(6),t(6),t(5), N2,r,0)+myG1*myHat(t(6),t(6),t(5) ,N2,r,-r)

algH1=[algD0 algD1 algD2 algD3 algD4 algD5

zerosn zerosn zerosn zerosn zerosn zerosn

zerosn zerosn zerosn zerosn zerosn zerosn

zerosn zerosn zerosn zerosn zerosn zerosn

zerosn zerosn zerosn zerosn zerosn zerosn

zerosn zerosn zerosn zerosn zerosn zerosn];

nreye=(N2/r)*eyen;

Appendix A. Software 144

mnreye=(-N2/r)*eyen;

algH2=[zerosn zerosn zerosn zerosn zerosn zerosn

nreye mnreye zerosn zerosn zerosn zerosn

zerosn nreye mnreye zerosn zerosn zerosn

zerosn zerosn nreye mnreye zerosn zerosn

zerosn zerosn zerosn nreye mnreye zerosn

zerosn zerosn zerosn zerosn nreye mnreye];

algH=algH1+algH2;

algB=zeros(((n*(N2+1))-n),1);

myB1=[myB1

algB];

t1=-1:1/100:0;

for i=1:length(t1)

plot(t1(i),myHat(t(6),t(6),t(5), N2,r,t1(i)),’.-’)

hold on

end

algM0=zeros(((n*(N2+1))-n),4);

myM1=[myM1

algM0];

algC=zeros(1,((n*(N2+1))-n));

myC1=[myC1 algC];

Appendix A. Software 145

myA1=algH*inv(algQ)

%_______________________________________

%--note...the 0=t_-1=t_0 and -r=t_N=t_N+1

%--t=-1,0,1

algD0= myA2*myHat(t(2),t(1),t(1),N2,r,0)+myG2*myHat(t(2),t(1),t(1),N2,r,-r)

%--t=0,1,2

algD1= myA2*myHat(t(3),t(2),t(1),N2,r,0)+myG2*myHat(t(3),t(2),t(1),N2,r,-r)

%--t=1,2,3

algD2= myA2*myHat(t(4),t(3),t(2), N2,r,0)+myG2*myHat(t(4),t(3),t(2) ,N2,r,-r)

algD3= myA2*myHat(t(5),t(4),t(3), N2,r,0)+myG2*myHat(t(5),t(4),t(3) ,N2,r,-r)

algD4= myA2*myHat(t(6),t(5),t(4), N2,r,0)+myG2*myHat(t(6),t(5),t(4) ,N2,r,-r)

algD5= myA2*myHat(t(6),t(6),t(5), N2,r,0)+myG2*myHat(t(6),t(6),t(5) ,N2,r,-r)

algH1=[algD0 algD1 algD2 algD3 algD4 algD5

zerosn zerosn zerosn zerosn zerosn zerosn

zerosn zerosn zerosn zerosn zerosn zerosn

zerosn zerosn zerosn zerosn zerosn zerosn

zerosn zerosn zerosn zerosn zerosn zerosn

zerosn zerosn zerosn zerosn zerosn zerosn];

nreye=(N2/r)*eyen;

mnreye=(-N2/r)*eyen;

algH2=[zerosn zerosn zerosn zerosn zerosn zerosn

nreye mnreye zerosn zerosn zerosn zerosn

zerosn nreye mnreye zerosn zerosn zerosn

zerosn zerosn nreye mnreye zerosn zerosn

zerosn zerosn zerosn nreye mnreye zerosn

zerosn zerosn zerosn zerosn nreye mnreye];

algH=algH1+algH2;

Appendix A. Software 146

algB=zeros(((n*(N2+1))-n),1);

myB2=[myB2

algB];

% t1=-1:1/100:0

% for i=1:length(t1)

% plot(t1(i),myE(t(2),t(3) ,t1(i)),’.-’)

% hold on

% end

algM0=zeros(((n*(N2+1))-n),4);

algM1=[1 0 0 0

0 0 1 0];

myM2=[myM2

algM0];

algN=[0 1];

algC=zeros(1,((n*(N2+1))-n));

myC2=[myC2 algC];

myA2=algH*inv(algQ)

A0= myA1

A1= myA2

B0=myB1

Appendix A. Software 147

B1=myB2

C0=myC1

C1=myC2

M0=myM1

M1=myM2

N0=myN1

N1=myN2

%%

%% From Kirk’s thesis

%%

%may need to do constant orthogonal change of coords on the noise

%do it via a QR decomp on N_i^T to get [Nb_i 0],

%where Nb_i is invertible, also gives [Mb_i Mt_i]

[Q0,R0]=qr(N0’)

[Q1,R1]=qr(N1’)

pause

%now N_i^T = Q_i * R_i, so N_i = R_i^T * Q_i^T

%and Q_i^T is an orthogonal matrix

%absorb Q_i^T into the noise vector nu_i to get new noise vector

%and Nb_i becomes the invertible part of R_i^T

%may need to fix signs in Q_i and/or R_i

R0=-R0;

R1=-R1;

Q0(1,1)=-Q0(1,1);

Q0(2,2)=-Q0(2,2);

Q1(1,1)=-Q1(1,1);

Q1(2,2)=-Q1(2,2);

%break down into Mb_i, Mt_i, Nb_i, and Nt_i (zeros)

[mN0,nN0]=size(N0);

[mN1,nN1]=size(N1);

mnN0=min(mN0,nN0);

Appendix A. Software 148

mnN1=min(mN1,nN1);

mxN0=max(mN0,nN0);

mxN1=max(mN1,nN1);

N0n=R0’;

N1n=R1’;

Nb0=N0n(1:mnN0,1:mnN0);

Nb1=N1n(1:mnN1,1:mnN1);

Nt0=N0n(:,mnN0+1:mxN0); %just need the size of this

Nt1=N1n(:,mnN1+1:mxN1); %and this

M0n=M0*Q0’;

M1n=M1*Q1’;

Mb0=M0n(:,1:mnN0);

Mb1=M1n(:,1:mnN1);

Mt0=M0n(:,mnN0+1:mxN0);

Mt1=M1n(:,mnN1+1:mxN1);

%create reduced model system matrices

[mA0,nA0]=size(A0);

[mA1,nA1]=size(A1);

[mMt0,nMt0]=size(Mt0);

[mMt1,nMt1]=size(Mt1);

[mNb,nNb]=size(Nb1);

[mNt0,nNt0]=size(Nt0);

[mNt1,nNt1]=size(Nt1);

A=[A0-Mb0*inv(Nb0)*C0 Mb0*inv(Nb0)*C1; zeros(mA1,nA0) A1]

M=[Mt0 Mb0*inv(Nb0)*Nb1 zeros(mMt0,nMt1); zeros(mMt1,nMt0) Mb1 Mt1]

B=[B0;B1]

C=[inv(Nb0)*C0 -inv(Nb0)*C1];

N=inv(Nb0)*[zeros(mNb,nNt0) Nb1 zeros(mNb,nNt1)];

%Q and H without beta

Qnb=2*C’*C

Appendix A. Software 149

Hnb=-4*C’*N

%size of upper left block of R

ulident=nNt0

%Nb1’Nb0’^-1Nb0^-1Nb1 for the center block of R

Nb1

Nmess=Nb1’*inv(Nb0’)*inv(Nb0)*Nb1

[nnmess,mnmess]=size(Nmess)

%size of lower right block of R

lrident=nNt1

rtop=[eye(ulident,ulident) zeros(lrident, nnmess+lrident)]

rmiddle= [zeros(nnmess,ulident) Nmess zeros(nnmess,lrident)]

rbottom=[zeros(ulident, nnmess+ulident) eye(lrident,lrident)]

disp(’the constants in Rtogether are for easy search and replacing’)

rtogether=[45*rtop;78*rmiddle;99*rbottom]

%end of routine

if(1)

save q.txt Qnb -ascii

save b.txt B -ascii

save c.txt C -ascii

save m.txt M -ascii

save r.txt rtogether -ascii

save n.txt Nmess -ascii

save a.txt A -ascii

Appendix A. Software 150

save h.txt Hnb -ascii

end

myHat.m

function new1= myHat(tkplus1,tk,tkminus1,N,r,theta)

if(tkplus1==tk)

if((tk <= theta) & (theta <=tkminus1))

new1=(N/r)*(tkminus1-theta);

disp(’2’)

elseif((tkplus1 <= theta) & (theta <=tk))

new1=(N/r)*(theta-tkplus1);

disp(’1’)

else

new1=0;

disp(’3’)

end

else

if((tkplus1 <= theta) & (theta <=tk))

new1=(N/r)*(theta-tkplus1);

disp(’1’)

elseif((tk <= theta) & (theta <=tkminus1))

new1=(N/r)*(tkminus1-theta);

disp(’2’)

else

Appendix A. Software 151

new1=0;

disp(’3’)

end

end

A.3.2 Spline Driver

The following program is a driver for SOCS which solves our first example using the spline

approximation.

PROGRAM splineapprox

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

INTEGER NIW,MAXPHS,NW,MAXCS,MAXDP

PARAMETER (NIW =20050000,MAXPHS = 5,NW = 20005000,MAXCS=1000500)

PARAMETER (MAXDP = 1000)

INTEGER IW(NIW),IPCPH(MAXPHS+1),IPDPH(MAXPHS+1),NEEDED,IER

DOUBLE PRECISION W(NW),CSTAT(MAXCS),DPARM(MAXDP)

EXTERNAL setpoint1IN,dumyig,setpoint1DE,GETTINGvPF,DUMYPR

call hhsocs(’default’)

call hhsnlp(’sparse default’)

c write(*,*) ’running’

open (55, FILE=’prog3.dat’, STATUS=’OLD’)

CALL HHSOCS(’ipuocp=55’)

c CALL HHSOCS(’socout=i9j9k9’)

CALL HHSOCS(’IPODE=20’)

CALL HHSOCS(’IPNLP=20’)

call hhsocs(’ipgrd=20’)

c CALL HHSOCS(’socout=i9a9b9c9d9e9f9g9h9j9k9l9m9n9o9p9q9r9’)

Appendix A. Software 152

CALL HHSNLP(’MAXNFE=5000000’)

CALL HHSOCS(’mxpcon=100’)

CALL HHSNLP(’NITMAX=500’)

c CALL HHSNLP(’KTOPTN=SMALL’)

c CALL HHSNLP(’tolpvt=.1’)

CALL HHSOCS(’MXSTAT=300’)

CALL HHSNLP(’IOFLAG=20’)

c CALL HHSNLP(’ALGOPT=FM’)

CALL HHSOCS(’MITODE=20’)

CALL HHSOCS(’ODETOL=1.D-7’)

CALL HHSOCS(’SPRTHS=SPARSE’)

CALL HHSOCS(’MTSWCH=3’)

CALL HHSOCS(’NSSWCH=1’)

C CALL HHSOCS(’ITSWCH=2’)

c CALL Hhsnlp(’CONTOL=1.D-6’)

c CALL HHSNLP(’OdeTOL=1.D-4’)

call hhsocs(’mxterm=200’)

c-------define parameters----------------

c we have the problem x’=ax(i)+bu(i)+gx(i-1)..kinda...see prob notes

T0=0

write(55,*) ’**’

write(55,*) ’main program’

write(55,*) ’ T0=’, T0, ’ TFinal= ’, TFinal,’Findex=’,Findex

write(55,*) ’**’

write(*,*) ’**’

Appendix A. Software 153

write(*,*) ’main prgram1’

write(*,*) ’**’

CALL HDSOCS(setpoint1IN,dumyig,setpoint1DE,GETTINGvPF,DUMYPR,

+ IW,NIW,W,NW,MAXPHS,CSTAT,MAXCS,IPCPH,DPARM,MAXDP,

+ IPDPH,NEEDED,IER)

write(*,*) ’**’

write(*,*) ’main prgram ’

write(*,*) ’error code’, ier

write(*,*) ’needed’, needed

write(*,*) ’**’

close(55)

END

C***

c***

SUBROUTINE setpoint1IN(IPHASE,NPHS,METHOD,NSTG,NCF,NPF,NPV,NAV,

+ NGRID,INIT,MAXMIN,MXPARM,P0,PLB,PUB,PLBL,

+ MXSTAT,Y0,Y1,YLB,YUB,STSKL,STLBL,MXPCON,CLB,

+ CUB,CLBL,MXTERM,COEF,ITERM,TITLE,IER)

implicit double precision (a-h,o-z)

Appendix A. Software 154

INTEGER IPHASE,NPHS,METHOD,NSTG,NCF(3),NPF(2),NPV,NAV,NGRID,

+ INIT,MAXMIN,MXPARM,MXSTAT,MXPCON,MXTERM,ITERM(4,MXTERM),

+ IER,NTERM,NPATH

DOUBLE PRECISION P0(MXPARM),PLB(MXPARM),PUB(MXPARM),Y0(0:MXSTAT),

+ Y1(0:MXSTAT),YLB(-1:1,0:MXSTAT),YUB(-1:1,0:MXSTAT),

+ STSKL(0:MXSTAT+MXPARM,2),CLB(MXPCON),CUB(MXPCON),

+ COEF(MXTERM)

CHARACTER PLBL(MXPARM+2)*80,STLBL(0:MXSTAT)*80,

+ CLBL(0:MXPCON)*80,TITLE(3)*60

integer z1,z2,mu1 ,lam1,lam2,bigz,v,eta

write(*,*) ’**’

write(*,*) ’initialization’

write(*,*) ’**’

z1=0

z2=5

lam1=10

lam2=15

bigz=20

mu1=21

v=24

write(*,*) ’z1=’, z1,’ z2=’, z2

write(*,*) ’lam1=’, lam1,’ lam2=’, lam2

write(*,*) ’bigz=’, bigz,’ mu1=’, mu1

write(*,*) ’ v=’, v

C Number of differential equations

Appendix A. Software 155

NCF(1) = 21

c Number of algebraic equations

NCF(2)=3

c Number of quadrature equations

NCF(3)=1

c Number of algebraic variables

NAV = 4

c Optimization flag -1..min 0..fease...1..max

maxmin=-1

c Number of parameters

npv=1

c Initial Grid size

NGRID=23

c type of initial guess

INIT = 1

c number of point functions

npf(1)=11

npf(2)=0

C ----GUESS FOR INITIAL TIME AND BOUNDARY CONDITION

c ---------the beginning and final times are fixed.

c

Y0(0) = 0

Appendix A. Software 156

Y1(0) = 2

YLB(-1,0) = Y0(0)

YUB(-1,0) = Y0(0)

YLB(1,0) = Y1(0)

YUB(1,0) = Y1(0)

write(*,*) ’y1’, y1(0)

C----DEFINE INITIAL guess and bounds CONDITIONS FOR STATE VARIABLES

c---on the first and last interval, we want psi minus and psi plus

c----------set everything to 0

c

DO 150 I=1, ncf(1)+nav

Y0(I) =30

Y1(I) =50

150 CONTINUE

c--------lamdas

c-------set lam(omega)=0

DO 152 I=1, z2

YLB(1,lam1+i)= 0

YUB(1,lam1+i)= 0

c

YLB(1,lam2+i)= 0

YUB(1,lam2+i)= 0

152 CONTINUE

c-------Z(h)>=1

YLB(1,bigz+1)= 1

Appendix A. Software 157

c---------------set the parameter

p0(1)=.5

c-------.01<=beta<=.99

PLB(1)= .41

PUB(1)= .69

plbL(1)=’BETA BETA’

c***

c***

c***

C------- Describes inequality or algebraic constraint

c------- these constraints are described in F

C defined an a loop

NTERM=0

NPATH=0

c--------define the terms that are the path constraints

DO 800 I=1,ncf(2)

NPATH = npath+1

nterm=nterm+1

c------------define what quantity term j belongs to

ITERM(1,NTERM) = npath

c-------------define which phase term j is computed in

Appendix A. Software 158

ITERM(2,NTERM) = 1

c-------------define where in the phase the term is computed

c------------- t0=-1, during=0, tfinal=1

ITERM(3,NTERM) = 0

c--------------define which constraint this will be used in

ITERM(4,NTERM) = -i

CLB(i)=0

cub(i)=0

COEF(NTERM) = 1.

800 CONTINUE

c***

C***

DO 801 I=1,npf(1)

NPATH = npath+1

nterm=nterm+1

c----lambda1(0)-.5beta*x1(0)=0

c---this is evaluated in a point function

c------------define what quantity term j belongs to

ITERM(1,NTERM) = npath

c-------------define which phase term j is computed in

Appendix A. Software 159

ITERM(2,NTERM) = 1

c-------------define where in the phase the term is computed

c------------- t0=-1, during=0, tfinal=1

ITERM(3,NTERM) = -1

c------define which function this is

c------since

ITERM(4,NTERM) = -i

CLB(npath)=0

cub(npath)=0

COEF(NTERM) = 1.

801 continue

C***

C Describes objective quadrature function

NCF(3) = 1

NTERM = NTERM + 1

NPATH = NPATH+1

ITERM(1,NTERM) = 0

ITERM(2,NTERM) = 1

ITERM(3,NTERM) = 0

ITERM(4,NTERM) = -(ncf(2)+1)

COEF(NTERM) = 1.

RETURN

END

Appendix A. Software 160

SUBROUTINE setpoint1DE(IPHASE,T,Z,NZ,P,NP,F,NF,IFERR)

implicit double precision (a-h,o-z)

INTEGER IPHASE,NZ,NP,NF,IFERR

double precision E1,E2,E3, myE

DOUBLE PRECISION T,Z(NZ),P(NP),F(NF)

F(1) = -2*Z(1)-2*Z(2)+2*Z(3)-2*Z(4)+2*Z(5)+Z(25)-Z(22)

F(2) = 8*Z(1)-8*Z(2)

F(3) = -8*Z(1)+16*Z(2)-8*Z(3)

F(4) = 8*Z(1)-16*Z(2)+16*Z(3)-8*Z(4)

F(5) = -8*Z(1)+16*Z(2)-16*Z(3)+16*Z(4)-8*Z(5)

F(6) = -Z(6)-2*Z(7)+2*Z(8)-2*Z(9)+2*Z(10)+Z(25)-Z(24)

F(7) = 8*Z(6)-8*Z(7)

F(8) = -8*Z(6)+16*Z(7)-8*Z(8)

F(9) = 8*Z(6)-16*Z(7)+16*Z(8)-8*Z(9)

F(10) = -8*Z(6)+16*Z(7)-16*Z(8)+16*Z(9)-8*Z(10)

F(11) = -2*P(1)*Z(1)+2*P(1)*Z(6)+2*P(1)*Z(23)+2*Z(11)-8*Z(12)+8*Z(

#13)-8*Z(14)+8*Z(15)

F(12) = 2*Z(11)+8*Z(12)-16*Z(13)+16*Z(14)-16*Z(15)

F(13) = -2*Z(11)+8*Z(13)-16*Z(14)+16*Z(15)

F(14) = 2*Z(11)+8*Z(14)-16*Z(15)

F(15) = -2*Z(11)+8*Z(15)

F(16) = 2*P(1)*Z(1)-2*P(1)*Z(6)-2*P(1)*Z(23)+Z(16)-8*Z(17)+8*Z(18)

#-8*Z(19)+8*Z(20)

F(17) = 2*Z(16)+8*Z(17)-16*Z(18)+16*Z(19)-16*Z(20)

F(18) = -2*Z(16)+8*Z(18)-16*Z(19)+16*Z(20)

Appendix A. Software 161

F(19) = 2*Z(16)+8*Z(19)-16*Z(20)

F(20) = -2*Z(16)+8*Z(20)

F(21) = (2*P(1)*Z(1)-2*P(1)*Z(6))*Z(1)/2+(-2*P(1)*Z(1)+2*P(1)*Z(6)

#)*Z(6)/2+(-4*P(1)*Z(1)+4*P(1)*Z(6))*Z(23)/2+Z(22)**2*P(1)+Z(23)**2

#+Z(24)**2*(2-2*P(1))/2

F(22) = 2*Z(22)*P(1)-Z(11)

F(23) = 2*Z(23)-2*P(1)*Z(1)+2*P(1)*Z(6)

F(24) = Z(24)*(2-2*P(1))-Z(16)

F(25) = abs(Z(25))**2

RETURN

END

SUBROUTINE GETTINGvPF(IPHASE,IPHEND,T,Z,NZ,P,NP,PSI,NPSI,IFERR)

INTEGER IPHASE,IPHEND,NZ,NP,NPSI,IFERR

double precision T,Z(NZ),P(NP),PSI(NPSI)

double precision lamconst

double precision gamma1,gamma2

double precision Q1,Q2

Q1=1

Q2=1

lamconst=1

gamma1 = .5*.25

gamma2 = .5*.25

c---beta x_0(0)^T P x_0(0) + (1-beta) x_1(0)^T P x_1(0)

if (iphend.eq.-1) then

psi(1) = Z(11)+2*lamconst*Z(1)*Q1*P(1)

Appendix A. Software 162

psi(2) = Z(12)+2*lamconst*Z(2)*gamma1*P(1)

psi(3) = Z(13)+2*lamconst*Z(3)*gamma1*P(1)

psi(4) = Z(14)+2*lamconst*Z(4)*gamma1*P(1)

psi(5) = Z(15)+2*lamconst*Z(5)*gamma2*P(1)

psi(6) = Z(16)+2*lamconst*Z(6)*Q2*(1-P(1))

psi(7) = Z(17)+2*lamconst*Z(7)*gamma1*(1-P(1))

psi(8) = Z(18)+2*lamconst*Z(8)*gamma1*(1-P(1))

psi(9) = Z(19)+2*lamconst*Z(9)*gamma1*(1-P(1))

psi(10) = Z(20)+2*lamconst*Z(10)*gamma2*(1-P(1))

psi(11)=.5*(2*Z(1)**2*Q1*P(1)+2*Z(2)**2*gamma1*P(1)+2*Z(3)**2*gamma1

#*P(1)+2*Z(4)**2*gamma1*P(1)+2*Z(5)**2*gamma2*P(1)+2*Z(6)**2*Q2

#*(1-P(1))+2*Z(7)**2*gamma1*(1-P(1))+2*Z(8)**2*gamma1*(1-P(1))+2*

#Z(9)**2*gamma1*(1-P(1))+2*Z(10)**2*gamma2*(1-P(1)))-Z(21)

endif

end

A.4 Differences

A.4.1 Matlab to Generate System Matrices

%system matrices

%define constants of problem(optional)

%system matrices

%system matrices

%define constants of problem(optional)

%myHat(t1,t2,t3,N,r,theta)

%INPUT THE VALUE OF RHO

rho=4;

Appendix A. Software 163

%system matrices

%define constants of problem(optional)

mya1=-3;

mya2=-2;

myb1=1

myb2=1

myg1=1;

myg2=1;

myc1=1;

myc2=1;

%define matrices for the original problem

myC1=[myc1];

myC2=[myc2];

myA1=[mya1]

myA2=[mya2]

myB1=[myb1]

myB2=[myb1]

myN1=[0 1]

myN2=myN1;

myM1=[1 0];

myM2=myM1;

Appendix A. Software 164

myG1=[myg1]

myG2=[myg2];

s=-1:1/(rho):0;

sysize=1

%%%

%CALCULATE THE DELTAS, EPSILONS, AND ALPHAS

%CALCULATE THE FIRST SET OF ALPHAS

epsilon(1)=s(3)-s(2);

delta(1)=s(2)-s(1);

alpha(1,2)= (delta(1)+epsilon(1))/(delta(1)*epsilon(1)) ;

alpha(1,3)=-(delta(1)/(epsilon(1)*(epsilon(1)+delta(1))));

alpha(1,1)=-alpha(1,3)-alpha(1,2);

%CALCULATE THE REST OF THE ALPHAS

for i=2:(rho)

for j=2:(rho+1)

delta=s(i+1)-s(i);

epsilon=s(i)-s(i-1);

alpha(i,1)=-(delta /(epsilon *(epsilon +delta)))

alpha(i,2)=(epsilon /(delta *(epsilon +delta)))-(delta /(epsilon *(epsilon +delta)))

if(alpha(i,2)<1^(-14))

alpha(i,2)=0

end

Appendix A. Software 165

alpha(i,3)=(epsilon /(delta *(epsilon+delta)))

end

end

%%

%CREATE SOME UTILITY MATRICES FOR

%ENABLING VARIABLE SYSTEM SIZES

ident3=eye(sysize);

eye3=eye(sysize);

zeros3=zeros(sysize);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%CREATE THE A MATRIX

% the first row is unique

myA=[alpha(1,1)*eye3 alpha(1,2)*eye3 alpha(1,3)*eye3

alpha(2,1)*eye3 alpha(2,2)*eye3 alpha(2,3)*eye3];

[n1,m1]=size(myA);

% all the rest of the rows

for i=3:(rho)

[n1,m1]=size(myA);

myA=[myA zeros(n1,sysize);

zeros(sysize,m1-2*sysize) alpha(i,1)*ident3 alpha(i,2)*ident3 alpha(i,3)*ident3]

end

[sizegn,sizegm]=size(myG1);

[sizeA1n,sizeA1m]=size(myA1);

[n1,m1]=size(myA);

[Gn,Gm]=size(myG2)

zerosG=zeros(Gn,Gm)

Appendix A. Software 166

%%

% Create the bottom row of the A matrix.

% This will need changing per problem

%%

myA1=[myA;

myG1 zeros(sizeA1n, m1-sizeA1m-sizegm) myA1];

myA2=[myA;

myG2 zeros(sizeA1n,m1-sizeA1m-sizegm) myA2];

myB= zeros(1,(rho)*sysize);

myB1=[myB’

myB1];

myB2=[myB’

myB2];

[sizem1n,sizem1m]=size(myM1);

myM=zeros((rho)*sizem1n,sizem1m);

myM1=[myM;

myM1];

myM2=[myM;

myM2];

[sizec1n,sizec1m]=size(myC1);

myC=zeros(sizec1n,(rho)*sizec1m);

myC1=[myC myC1];

myC2=[myC myC2];

A0= myA1

A1= myA2

B0=myB1

Appendix A. Software 167

B1=myB2

C0=myC1

C1=myC2

M0=myM1

M1=myM2

N0=myN1

N1=myN2

%%%

%%% This is the change in coordinates taken for Kirk’s thesis.

%may need to do constant orthogonal change of coords on the noise

%do it via a QR decomp on N_i^T to get [Nb_i 0],

%where Nb_i is invertible, also gives [Mb_i Mt_i]

[Q0,R0]=qr(N0’)

[Q1,R1]=qr(N1’)

pause

%now N_i^T = Q_i * R_i, so N_i = R_i^T * Q_i^T

%and Q_i^T is an orthogonal matrix

%absorb Q_i^T into the noise vector nu_i to get new noise vector

%and Nb_i becomes the invertible part of R_i^T

%may need to fix signs in Q_i and/or R_i

R0=-R0;

R1=-R1;

Q0(1,1)=-Q0(1,1);

Q0(2,2)=-Q0(2,2);

Q1(1,1)=-Q1(1,1);

Q1(2,2)=-Q1(2,2);

%break down into Mb_i, Mt_i, Nb_i, and Nt_i (zeros)

[mN0,nN0]=size(N0);

[mN1,nN1]=size(N1);

mnN0=min(mN0,nN0);

Appendix A. Software 168

mnN1=min(mN1,nN1);

mxN0=max(mN0,nN0);

mxN1=max(mN1,nN1);

N0n=R0’;

N1n=R1’;

Nb0=N0n(1:mnN0,1:mnN0);

Nb1=N1n(1:mnN1,1:mnN1);

Nt0=N0n(:,mnN0+1:mxN0); %just need the size of this

Nt1=N1n(:,mnN1+1:mxN1); %and this

M0n=M0*Q0’;

M1n=M1*Q1’;

Mb0=M0n(:,1:mnN0);

Mb1=M1n(:,1:mnN1);

Mt0=M0n(:,mnN0+1:mxN0);

Mt1=M1n(:,mnN1+1:mxN1);

%create reduced model system matrices

[mA0,nA0]=size(A0);

[mA1,nA1]=size(A1);

[mMt0,nMt0]=size(Mt0);

[mMt1,nMt1]=size(Mt1);

[mNb,nNb]=size(Nb1);

[mNt0,nNt0]=size(Nt0);

[mNt1,nNt1]=size(Nt1);

A=[A0-Mb0*inv(Nb0)*C0 Mb0*inv(Nb0)*C1; zeros(mA1,nA0) A1]

M=[Mt0 Mb0*inv(Nb0)*Nb1 zeros(mMt0,nMt1); zeros(mMt1,nMt0) Mb1 Mt1]

B=[B0;B1]

C=[inv(Nb0)*C0 -inv(Nb0)*C1];

N=inv(Nb0)*[zeros(mNb,nNt0) Nb1 zeros(mNb,nNt1)];

%Q and H without beta

Qnb=2*C’*C

Appendix A. Software 169

Hnb=-4*C’*N

%size of upper left block of R

ulident=nNt0

%Nb1’Nb0’^-1Nb0^-1Nb1 for the center block of R

Nb1

Nmess=Nb1’*inv(Nb0’)*inv(Nb0)*Nb1

[nnmess,mnmess]=size(Nmess)

%size of lower right block of R

lrident=nNt1

rtop=[eye(ulident,ulident) zeros(lrident, nnmess+lrident)]

rmiddle= [zeros(nnmess,ulident) Nmess zeros(nnmess,lrident)]

rbottom=[zeros(ulident, nnmess+ulident) eye(lrident,lrident)]

disp(’the constants in Rtogether are for easy search and replacing’)

rtogether=[45*rtop;78*rmiddle;99*rbottom]

%end of routine

if(1)

save q.txt Qnb -ascii

save b.txt B -ascii

save c.txt C -ascii

save m.txt M -ascii

save r.txt rtogether -ascii

save n.txt Nmess -ascii

save a.txt A -ascii

Appendix A. Software 170

save h.txt Hnb -ascii

end

A.4.2 Differences Driver

The following program solves the first example using the difference approximation.

PROGRAM prog3

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

INTEGER NIW,MAXPHS,NW,MAXCS,MAXDP

PARAMETER (NIW =20050000,MAXPHS = 5,NW = 20005000,MAXCS=1000500)

PARAMETER (MAXDP = 1000)

INTEGER IW(NIW),IPCPH(MAXPHS+1),IPDPH(MAXPHS+1),NEEDED,IER

DOUBLE PRECISION W(NW),CSTAT(MAXCS),DPARM(MAXDP)

EXTERNAL setpoint1IN,dumyig,setpoint1DE,GETTINGvPF,DUMYPR

call hhsocs(’default’)

call hhsnlp(’sparse default’)

c write(*,*) ’running’

open (55, FILE=’prog3.dat’, STATUS=’OLD’)

CALL HHSOCS(’ipuocp=55’)

c CALL HHSOCS(’socout=i9j9k9’)

CALL HHSOCS(’IPODE=20’)

CALL HHSOCS(’IPNLP=20’)

call hhsocs(’ipgrd=20’)

c CALL HHSOCS(’socout=i9a9b9c9d9e9f9g9h9j9k9l9m9n9o9p9q9r9’)

CALL HHSNLP(’MAXNFE=5000000’)

CALL HHSOCS(’mxpcon=100’)

Appendix A. Software 171

CALL HHSNLP(’NITMAX=500’)

c CALL HHSNLP(’KTOPTN=SMALL’) c CALL HHSNLP(’tolpvt=.1’)

CALL HHSOCS(’MXSTAT=300’)

CALL HHSNLP(’IOFLAG=20’)

c CALL HHSNLP(’ALGOPT=FM’)

CALL HHSOCS(’MITODE=20’)

CALL HHSOCS(’ODETOL=1.D-7’)

CALL HHSOCS(’SPRTHS=SPARSE’)

CALL HHSOCS(’MTSWCH=3’)

CALL HHSOCS(’NSSWCH=1’)

C CALL HHSOCS(’ITSWCH=2’) c CALL Hhsnlp(’CONTOL=1.D-6’)

c CALL HHSNLP(’OdeTOL=1.D-4’)

call hhsocs(’mxterm=200’)

c-------define parameters---------------- c we have the problem

x’=ax(i)+bu(i)+gx(i-1)..kinda...see prob notes

CALL HDSOCS(setpoint1IN,dumyig,setpoint1DE,GETTINGvPF,DUMYPR,

+ IW,NIW,W,NW,MAXPHS,CSTAT,MAXCS,IPCPH,DPARM,MAXDP,

+ IPDPH,NEEDED,IER)

write(*,*) ’**’

write(*,*) ’main prgram2’

write(*,*) ’error code’, ier

write(*,*) ’needed’, needed

write(*,*) ’**’

close(55)

END

C***

c***

Appendix A. Software 172

SUBROUTINE setpoint1IN(IPHASE,NPHS,METHOD,NSTG,NCF,NPF,NPV,NAV,

+ NGRID,INIT,MAXMIN,MXPARM,P0,PLB,PUB,PLBL,

+ MXSTAT,Y0,Y1,YLB,YUB,STSKL,STLBL,MXPCON,CLB,

+ CUB,CLBL,MXTERM,COEF,ITERM,TITLE,IER)

implicit double precision (a-h,o-z)

INTEGER IPHASE,NPHS,METHOD,NSTG,NCF(3),NPF(2),NPV,NAV,NGRID,

+ INIT,MAXMIN,MXPARM,MXSTAT,MXPCON,MXTERM,ITERM(4,MXTERM),

+ IER,NTERM,NPATH

DOUBLE PRECISION P0(MXPARM),PLB(MXPARM),PUB(MXPARM),Y0(0:MXSTAT),

+ Y1(0:MXSTAT),YLB(-1:1,0:MXSTAT),YUB(-1:1,0:MXSTAT),

+ STSKL(0:MXSTAT+MXPARM,2),CLB(MXPCON),CUB(MXPCON),

+ COEF(MXTERM)

CHARACTER PLBL(MXPARM+2)*80,STLBL(0:MXSTAT)*80,

+ CLBL(0:MXPCON)*80,TITLE(3)*60

integer z1,z2,mu1 ,lam1,lam2,bigz,v

write(*,*) ’**’

write(*,*) ’initialization’

write(*,*) ’**’

z1=0

z2=6

lam1=12

lam2=18

bigz=24

Appendix A. Software 173

mu1=25

v=28

write(*,*) ’z1=’, z1,’ z2=’, z2

write(*,*) ’lam1=’, lam1,’ lam2=’, lam2

write(*,*) ’bigz=’, bigz,’ mu1=’, mu1

write(*,*) ’ v=’, v

C Number of differential equations

NCF(1) = 25

c Number of algebraic equations

NCF(2)=3

c Number of quadrature equations

NCF(3)=1

c Number of algebraic variables

NAV = 4

c Optimization flag -1..min 0..fease...1..max

maxmin=-1

c Number of parameters

npv=1

write(*,*) ’ numstateeq=’, ncf(1), ’ TFinal= ’, TFinal

write(*,*) ’num algeq=’, ncf(2),’numcont=’, nav

c Initial Grid size

Appendix A. Software 174

NGRID=13

c type of initial guess

INIT = 1

c number of point functions

npf(1)=13

npf(2)=0

C ----GUESS FOR INITIAL TIME AND BOUNDARY CONDITION c

---------the beginning and final times are fixed. c

Y0(0) = 0

Y1(0) = 2

YLB(-1,0) = Y0(0)

YUB(-1,0) = Y0(0)

YLB(1,0) = Y1(0)

YUB(1,0) = Y1(0)

write(*,*) ’y1’, y1(0)

C----DEFINE INITIAL guess and bounds CONDITIONS FOR STATE

VARIABLES c---on the first and last interval, we want psi minus

and psi plus c----------set everything to 0 c

DO 150 I=1, ncf(1)+nav

Y0(I) =10

Y1(I) =50

150 CONTINUE

c--------lamdas c-------set lam(omega)=0

DO 152 I=1, 6

YLB(1,lam1+i)= 0

YUB(1,lam1+i)= 0

c

Appendix A. Software 175

YLB(1,lam2+i)= 0

YUB(1,lam2+i)= 0

152 CONTINUE

c-------Z(h)>=1

YLB(1,bigz+1)= 1

c---------------set the parameter

p0(1)=.5

c-------.01<=beta<=.99

PLB(1)= .41

PUB(1)= .69

plbL(1)=’BETA BETA’

c***

c***

c*** C-------

Describes inequality or algebraic constraint c------- these

constraints are described in F

C defined an a loop

NTERM=0

NPATH=0

c--------define the terms that are the path constraints

DO 800 I=1,ncf(2)

NPATH = npath+1

Appendix A. Software 176

nterm=nterm+1

c----calculate second point function c------------define what

quantity term j belongs to

ITERM(1,NTERM) = npath

c-------------define which phase term j is computed in

ITERM(2,NTERM) = 1

c-------------define where in the phase the term is computed

c------------- t0=-1, during=0, tfinal=1

ITERM(3,NTERM) = 0

c--------------define which constraint this will be used in

ITERM(4,NTERM) = -i

CLB(i)=0

cub(i)=0

COEF(NTERM) = 1.

800 CONTINUE

c***

C***

DO 801 I=2,npf(1)

NPATH = npath+1

nterm=nterm+1

c----lambda1(0)-.5beta*x1(0)=0 c---this is evaluated in a point

Appendix A. Software 177

function c------------define what quantity term j belongs to

ITERM(1,NTERM) = npath

c-------------define which phase term j is computed in

ITERM(2,NTERM) = 1

c-------------define where in the phase the term is computed

c------------- t0=-1, during=0, tfinal=1

ITERM(3,NTERM) = -1

c------define which function this is c------since

ITERM(4,NTERM) = -i

CLB(npath)=0

cub(npath)=0

COEF(NTERM) = 1.

801 continue

C***

c---------calculate Z(0)-blah=0

NPATH = npath+1

nterm=nterm+1

c----calculate first point function c------add point function to

the cost

c-------first term is for the x(0) term c------------define what

quantity term j belongs to

ITERM(1,NTERM) = npath

Appendix A. Software 178

c-------------define which phase term j is computed in

ITERM(2,NTERM) = 1

c-------------define where in the phase the term is computed

c------------- t0=-1, during=0, tfinal=1

ITERM(3,NTERM) = -1

c-------------

ITERM(4,NTERM) = -1

CLB(NPATH)= 0

cub(NPATH)=0

C***

C*** C

Describes objective quadrature function

NCF(3) = 1

NTERM = NTERM + 1

NPATH = NPATH+1

ITERM(1,NTERM) = 0

ITERM(2,NTERM) = 1

ITERM(3,NTERM) = 0

ITERM(4,NTERM) = -(ncf(2)+1)

COEF(NTERM) = 1.

RETURN

END

Appendix A. Software 179

SUBROUTINE setpoint1DE(IPHASE,T,Z,NZ,P,NP,F,NF,IFERR)

implicit double precision (a-h,o-z)

INTEGER IPHASE,NZ,NP,NF,IFERR

DOUBLE PRECISION T,Z(NZ),P(NP),F(NF)

DOUBLE PRECISION t3,t8,t19,t24,t34,t38

DOUBLE PRECISION t41,t43,t45,t46,t47,t48

DOUBLE PRECISION t50,t54,t58,t61,t63, t67

DOUBLE PRECISION t74,t76,t77,t78,t88,t89

t3 = 0.25E1*Z(3)

t8 = 0.25E1*Z(4)

t19 = 0.25E1*Z(9)

t24 = 0.25E1*Z(10)

t34 = 0.25E1*Z(14)

t38 = 0.25E1*Z(15)

t41 = 0.25E1*Z(16)

t43 = 0.25E1*Z(17)

t45 = P(1)*Z(6)

t46 = 2*t45

t47 = P(1)*Z(12)

t48 = 2*t47

t50 = 2*P(1)*Z(27)

t54 = 0.25E1*Z(20)

t58 = 0.25E1*Z(21)

t61 = 0.25E1*Z(22)

t63 = 0.25E1*Z(23)

t67 = t45-t47

t74 = Z(26)**2

t76 = Z(27)**2

Appendix A. Software 180

t77 = Z(28)**2

t78 = 1-P(1)

t88 = abs(Z(29))

t89 = t88**2

F(1) = -0.75E1*Z(1)+10*Z(2)-t3

F(2) = -0.25E1*Z(1)+t3

F(3) = -0.25E1*Z(2)+t8

F(4) = -t3+0.25E1*Z(5)

F(5) = -t8+0.25E1*Z(6)

F(6) = 0.1E1*Z(1)-0.3E1*Z(6)+Z(29)-Z(26)

F(7) = -0.75E1*Z(7)+10*Z(8)-t19

F(8) = -0.25E1*Z(7)+t19

F(9) = -0.25E1*Z(8)+t24

F(10) = -t19+0.25E1*Z(11)

F(11) = -t24+0.25E1*Z(12)

F(12) = 0.1E1*Z(7)-0.2E1*Z(12)+Z(29)-Z(28)

F(13) = 0.75E1*Z(13)+t34-Z(18)

F(14) = -10*Z(13)+t38

F(15) = 0.25E1*Z(13)-t34+t41

F(16) = -t38+t43

F(17) = -t41

F(18) = -t46+t48+t50-t43+0.3E1*Z(18)

F(19) = 0.75E1*Z(19)+t54-Z(24)

F(20) = -10*Z(19)+t58

F(21) = 0.25E1*Z(19)-t54+t61

F(22) = -t58+t63

F(23) = -t61

F(24) = t46-t48-t50-t63+0.2E1*Z(24)

F(25) = t67*Z(6)-t67*Z(12)-2*t67*Z(27)+t74*P(1)+t76+t77*t78

F(26) = 2*Z(26)*P(1)-Z(18)

F(27) = 2*Z(27)-2*t45+2*t47

Appendix A. Software 181

F(28) = 2*Z(28)*t78-Z(24)

F(29) = t89

RETURN

END

SUBROUTINE GETTINGvPF(IPHASE,IPHEND,T,Z,NZ,P,NP,PSI,NPSI,IFERR)

INTEGER IPHASE,IPHEND,NZ,NP,NPSI,IFERR

double precision T,Z(NZ),P(NP),PSI(NPSI)

double precision t1,t4,t7 ,t10,t13,t16

double precision t21,t23,t26,t29,t32,Q1,Q2

double precision t32,t35,t38,t19,t39

double precision lamconst

double precision gamma13,gamma14,gamma15,gamma16

double precision gamma18,gamma19,gamma20,gamma11

double precision gamma12,gamma17,Q1,Q2

Q1=1

Q2=1

lamconst=1

gamma11=.2

gamma12=.2

gamma13=.2

gamma14=.2

gamma15=.2

gamma16=.2

gamma17=.2

Appendix A. Software 182

gamma18=.2

gamma19=.2

gamma20=.2

c-------my c---beta x_0(0)^T P x_0(0) + (1-beta) x_1(0)^T P x_1(0)

if (iphend.eq.-1) then

t1 = Z(1)**2

t4 = Z(2)**2

t7 = Z(3)**2

t10 = Z(4)**2

t13 = Z(5)**2

t16 = Z(6)**2

t19 = Z(7)**2

t21 = 1-P(1)

t23 = Z(8)**2

t26 = Z(9)**2

t29 = Z(10)**2

t32 = Z(11)**2

t35 = Z(12)**2

t38 = t1*gamma11*P(1)+t4*gamma12*P(1)+t7*gamma13*P(1)+t10*gamma14*

#P(1)+t13*gamma15*P(1)+t16*Q1*P(1)+t19*gamma16*t21+t23*gamma11*t21+

#t26*gamma18*t21+t29*gamma19*t21+t32*gamma20*t21+t35*Q2*t21

t39 = 2*t38

t32 = 1-P(1)

psi(1) = t39-Z(25)

psi(2) = Z(14)+2*lamconst*Z(2)*gamma12*P(1)

psi(3) = Z(15)+2*lamconst*Z(3)*gamma13*P(1)

psi(4) = Z(16)+2*lamconst*Z(4)*gamma14*P(1)

psi(5) = Z(17)+2*lamconst*Z(5)*gamma15*P(1)

psi(6) = Z(18)+2*lamconst*Z(6)*Q1*P(1)

Appendix A. Software 183

psi(7) = Z(19)+2*lamconst*Z(7)*gamma16*t32

psi(8) = Z(20)+2*lamconst*Z(8)*gamma11*t32

psi(9) = Z(21)+2*lamconst*Z(9)*gamma18*t32

psi(10) = Z(22)+2*lamconst*Z(10)*gamma19*t32

psi(11) = Z(23)+2*lamconst*Z(11)*gamma20*t32

psi(12) = Z(24)+2*lamconst*Z(12)*Q2*t32

psi(13) = Z(13)+2*lamconst*Z(1)*gamma11*P(1)

endif

end

List of References

[1] Panos J. Antsaklis and Anthony N. Michel. Linear Systems. McGraw-Hill, 1997.

[2] Michael Athans and Peter L. Falb. Optimal Control: An Introduction to the Theory

and Its Applications. McGraw-Hill Book Company, 1966.

[3] H. T. Banks. Approximation of delay systems with applications to control and identi-

fication. In Functional differential equations and approximation of fixed points (Proc.

Summer School and Conf., Univ. Bonn, Bonn, 1978), volume 730 of Lecture Notes in

Math., pages 65–76. Springer, Berlin, 1979.

[4] M. Basseville and I. V. Nikiforov. Detection of Abrupt Changes: Theory and Applica-

tion. Information and System Science Series. Prentice-Hall, 1993.

[5] J. T. Betts. Practical Methods for Nonlinear Control Using Nonlinear Programming.

Number 3 in Advances in Design and Control. SIAM, 2000.

[6] J. T. Betts and P. D. Frank. A sparse nonlinear optimization algorithm. Journal of

Optimization Theory and Applications, 82:519–541, 1994.

[7] J. T. Betts and W. P. Huffman. Sparse Optimal Control Software socs. Mathematics

and Engineering Analysis Technical Document mea-lr-085-r1, Boeing Information and

Support Services, July 2000.

[8] S. Campbell, K. Drake, and R. Nikoukhah. Auxillary system design for multimodel

identification in systems with multiple delays. In Proc. 10th Mediterranean Conference

on Control and Automation, Lisbon, July 7-11 2002.

184

References 185

[9] S. Campbell, K. Drake, and R. Nikoukhah. Early decision making when using proper

auxillary signals. In Proc. IEEE Conference on Decision and Control, pages 1832–1837,

Las Vegas, Nevada, Dec.10-13 2002.

[10] S. Campbell, K. Drake, and R. Nikoukhah. Analysis of spline based auxiliary signal

design for failure detection in delay systems. In Proc. IEEE CSMC, Washington, DC,

October 2003.

[11] S. Campbell, K. Drake, R. Nikoukhah, and F. Delebecque. Rapid multi-model identi-

fication in systems with delays. In 3rd IFAC Workshop on Time Delay Systems (TDS

2001), pages 296–301, Sante Fe, New Mexico, Dec. 8-10 2001.

[12] S. Campbell and R. Nikoukhah. Auxiliary Signal Design for Failure Detction. Prince-

ton University Press, 2004, In Press.

[13] S. L. Campbell, K. E. Brenan, and L Petzold. Numerical Solution of Initial-Value

Problems in Differential-Algebraic Equations. SIAM, 1996.

[14] S. L. Campbell, K. Horton, R. Nikoukhah, and F. Delebecque. Rapid model selection

and the separability index. Proc. SAFEPROCESS, 2000.

[15] S. L. Campbell, K. Horton, R. Nikoukhah, and F. Delebecque. Optimaization for-

mulations of auxiliary signal desing for rapid multi-model identification. Automatica,

38:1313–1325, 2002.

[16] S. L. Campbell and R. Nikoukhah. Auxiliary design for robust active failure detection:

the general cost case. Proc. SAFEPROCESS, 2003.

[17] Rong Chen and Kenneth A. Loparo. Identification of time delays in linear stochastic

systems. Internat. J. Control, 57(6):1273–1291, 1993.

[18] Moody Chu. Notes for MA780. World Wide Web, http://www4.ncsu.edu/∼ mtchu/

Teaching/ Lectures/ MA530/ ma780.html, 1996–2003.

[19] Anastasios Delopoulos and Georgios B. Giannakis. Consistent identification of stochas-

tic linear systems with noisy input-output data. Automatica J. IFAC, 30(8):1271–1294,

1994.

References 186

[20] J. E. Dennis and Robert B. Schanabel. Numerical Methods for Unconstrained Opti-

mization and Nonlinear Equations. Number 16 in Classics in Applied Mathematics.

SIAM, Philadelphia, PA, 1996.

[21] Paul M. Frank. Fault diagnosis in dynamic systems using analytical and knowledge-

based redundancy -a survey and some new results. Automatica, 26(3):459–474, May

1990.

[22] H. Górecki, S. Fuksa, P. Grabowski, and A. Korytowski. Analysis and Synthesis of

Time Delay Systems. John Wiley & Sons, 1989.

[23] J. J. Gertler. Survey of model-based failure detection and isolation in complex plants.

IEEE Control Systems Magazine, 1988.

[24] C. Glader, G. Högnäs, P. M. Mäkilä, and H. T. Toivonen. Approximation of delay

systems -a case study. Internat. J. Control, 53(2):369–390, 1991.

[25] H.J. Greenberg. Mathematical Programming Glossary. World Wide Web, http://www.

cudenver.edu/∼hgreenbe/glossary/, 1996–2003.

[26] Xing Sheng Gu and Yang Zeng Hu. System analysis and parameter identification

of linear time-varying delay systems via piecewise multiple Chebyshev polynomials.

Control Theory Appl., 8(2):154–162, 1991.

[27] Jack Hale and S.M.V Lunel. Introduction to Functional Differential Equations, vol-

ume 99. Springer Verlag, 1993.

[28] A. M. Hardie. The Elements of Feedback and Control. Oxford University Press, 1964.

[29] Ferenc Hartung and Janos Turi. Identification of parameters in delay equations with

state-dependent delays. Nonlinear Anal., 29(11):1303–1318, 1997.

[30] Kirk Horton. Fault Detection And Model Identification In Linear Dynamical Systems.

PhD thesis, North Carolina State University, 2001.

[31] Waterloo Maple Inc. http://www.mathworks.com/.

References 187

[32] R. Isermann. Process fault detection based on modeling and estimation methodsa

survey. Automatica, 20(4):387404, July 1984.

[33] K. Ito and F. Kappel. Approximation of infinite delay and Volterra type equations.

Numer. Math., 54(4):405–444, 1989.

[34] K. Ito and F. Kappel. A uniformly differentiable approximation scheme for delay

systems using splines. Applied Mathematics and Optimization, 23:217–262, 1991.

[35] Kazufumi Ito and Franz Kappel. Approximation of semilinear Cauchy problems. Non-

linear Anal., 24(1):51–80, 1995.

[36] Kazufumi Ito and Franz Kappel. Evolution equations and approximations, volume 61

of Series on advances in mathematics for applied sciences. World Scientific Pub, River

Edge, NJ, 2002.

[37] Kazufumi Ito and Franz Kappel. Evolution equations and approximations, volume 61 of

Series on Advances in Mathematics for Applied Sciences. World Scientific Publishing

Co. Inc., River Edge, NJ, 2002.

[38] F. Kappel. Spline approximation for autonomous nonlinear functional-differential

equations. Nonlinear Anal., 10(5):503–513, 1986.

[39] F. Kappel. Approximation of LQR-problems for delay systems: a survey. In Com-

putation and control, II (Bozeman, MT, 1990), volume 11 of Progr. Systems Control

Theory, pages 187–224. Birkhäuser Boston, Boston, MA, 1991.

[40] C. T. Kelley. Iterative Methods For Linear and Nonlinear Equations. Frontiers In

Applied Mathematics. SIAM, 1995.

[41] Erwin Kreyszig. Introductory Functional Analysis with Applications. John Wiley and

Sons, 1989.

[42] T. T. Lee and S. C. Tsay. Approximate solutions for linear time-delay systems via

the Padé approximation and orthogonal polynomials expansions. Control Theory Adv.

Tech., 3(2):111–128, 1987.

References 188

[43] Cornelius T. Leondes and Edward C. Wong. An identification algorithm for linear

stochastic systems with time delays. Internat. J. Control, 36(3):445–459, 1982.

[44] Frank L. Lewis and Vassilis L. Syrmos. Optimal Control. John Wiley & Sons, New

York, 2nd edition, 1995.

[45] David G. Luenberger. Otimization by Vector Space Methods. John Wiley & Sons, 1969.

[46] P. M. Mäkilä and J. R. Partington. Laguerre and Kautz shift approximations of delay

systems. Internat. J. Control, 72(10):932–946, 1999.

[47] P. M. Mäkilä and J. R. Partington. Shift operator induced approximations of delay

systems. SIAM J. Control Optim., 37(6):1897–1912 (electronic), 1999.

[48] A. Manitius and H. Tran. Numerical simulation of a non-linear feedback controller

for a wind tunnel model involving a time delay. Optimal Control Applications and

Methods, 7:19–39, 1986.

[49] The MathWorks. http://www.maplesoft.com/.

[50] R. Nikoukhah, S. L. Campbell, and F. Delebecque. Detection signal design for failure

detection: a robust approach. Int. J. Adaptive Control and Signal Processing, 14:701–

724, 2000.

[51] R. Nikoukhah, S. L. Campbell, K. Horton, and F. Delebecque. Auxiliary signal design

for robust multi-model identification. IEEE Tran. Aut. Cont, 47:158–163, 2002.

[52] R. Nikoukhah, F. Delebecque, S. L. Campbell, and K. Horton. Multi-model identifi-

cation and the separability index. Proc. Mathematical Theory Networks & Systems,

2000.

[53] Ramine Nikoukhah. Innovations generation in the presence of unknown inputs: appli-

cation to robust failure detection. Automatica J. IFAC, 30(12):1851–1867, 1994.

[54] Jonathan R. Partington. Approximation of delay systems by Fourier-Laguerre series.

Automatica J. IFAC, 27(3):569–572, 1991.

References 189

[55] Linda R. Petzold and Uri M. Ascher. Computer Methods for Ordinary Differential-

Algebraic Equations. SIAM, 1998.

[56] Farzad Pourboghrat and Dong Hak Chyung. Parameter identification of linear delay

systems. Internat. J. Control, 49(2):595–627, 1989.

[57] W. Prager. A one parameter family of spline-type schemes for approximation of delay

systems. J. Math. Anal. Appl., 177(1):135–165, 1993.

[58] A. V. Savkin and I. R. Petersen. New approach to model validation and fault diagnosis.

J. Optim. Theory Appl., 94(1):241–250, 1997.

[59] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Number 12 in Texts in

Applied Mathematics. Springer-Verlag, second edition, 1991.

[60] Lloyd N. Trefethen and Martin H. Gutknecht. The Carathéodory-Fejér method for

real rational approximation. SIAM J. Numer. Anal., 20(2):420–436, 1983.

[61] Elvio Vidal Castedo, José R. Perán González, and Rafael Grossi Calleja. Recursive

estimation and delay processes subject to important stochastic perturbations. Rev.

Inform. Automát., 21(3):22–30, 1988.

[62] P. Zhang, S. X. Ding, G. Z. Wang, and D. H. Zhou. Fault detection for multirate

sampled-data systems with time delays. Internat. J. Control, 75(18):1457–1471, 2002.

[63] Wei Xin Zheng and Chun Bo Feng. An optimizing search-based identification method

for stochastic time-delay systems. Inform. and Control (Shenyang), 18(1):19–26, 1989.

[64] Wei Xing Zheng and Chun Bo Feng. Identification of stochastic time lag systems in

the presence of colored noise. Automatica J. IFAC, 26(4):769–779, 1990.

