
ABSTRACT

GUPTA, GAURAV. Investigation of Vector Antennas and their Applications. (Under the
direction of Prof. Gianluca Lazzi).

The use of multiple antennas at the transmitter and receiver can significantly

improve the performance of wireless communication systems. In recent years, there has been

a lot of interest in vector or multi-polarized antennas that can provide a compact alternative

to spatial array antennas that are conventionally used in multiple antenna systems. In

this dissertation, we investigate the performance benefits (like degrees of freedom, channel

capacity, mean signal energy etc) that vector antennas can provide when used in two types of

multiple antenna systems: multiple-input multiple-output (MIMO) communication systems

and frequency selective surfaces (FSSs).

We first characterize the degrees of freedom of fields produced by a linear array of

tri-polarized antennas in a MIMO communication system. Using signal space concepts, we

derive a sufficient condition for three-fold increase in the degrees of freedom for a system

that uses tri-polarized antennas as compared to a system that uses uni-polarized antennas.

We show that this condition holds true for three different types of antenna elements: in-

finitesimally small antennas, finite length dipoles and long wire traveling wave antennas.

Since the degrees of freedom determines the slope of channel capacity vs. signal-to-noise

ratio (SNR) curve at high SNRs, this result indicates the possibility of increasing channel

capacity using tri-polarized antennas.

We then consider practical aspects of vector antenna design. Using simulations,

we design two types of vector antennas, one with half-wavelength dipole elements and

second with meanderline traveling wave antenna elements. These vector antennas were

then fabricated and tested to verify that they provide low return loss and inter-element

mutual coupling. We calculated the channel capacity of the system obtained by arranging

these antennas in a linear array configuration. As predicted by the degrees of freedom result,

we found that the capacity increased three-fold in both cases as compared to an analogous

system with uni-polarized antennas.



Finally, we consider the use of vector antennas as unit elements of FSSs. FSSs act

as filters to the incident electromagnetic waves based on their frequency and polarization.

The reflected signal acts as a signature and can be used to detect the presence of FSS.

We design and integrate two prototypes of vector antennas on fabric. Using a monostatic

transceiver, we show that FSSs that use vector antennas provide a higher reflected mean-

signal-energy (MSE) compared to FSSs that use uni-polarized antennas. We also found that

the use of vector antennas makes the FSS more robust to misalignment with the transceiver.
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Chapter 1

Introduction

Antenna design is as much an art as it is science. Even though several computation

techniques are available today that can analyze any given antenna structure, fundamen-

tal understanding of electromagnetic theory is still indispensable for good antenna design.

Based on one such fundamental insight, Andrews et al [1] proposed the concept of using

six electromagnetic states of polarization (three electric and three magnetic) in an antenna

system. These antennas are known as vector antennas or multi-polarized antennas. Their

work spawned plethora of research on vector antennas to correctly assess the benefits they

can provide in wireless communication systems.

The aim of the present work is to investigate these vector antennas and their

applications. In particular, we study the impact of vector antennas when used in multiple-

input multiple-output (MIMO) wireless communication systems and frequency selective

surfaces (FSSs). Both these systems are formed from antenna arrays. The next section

describes MIMO systems in detail. We then discuss FSSs in section 1.2. In section 1.3, we

introduce the concept of vector antennas. Finally, we give a summary of the contributions

of the present work in section 1.4.

1.1 MIMO Communication Systems

MIMO communication systems employ multiple antennas at the transmitter as

well as the receiver, thus providing substantial increase in channel capacity in a rich scat-

tering multi-path environment as compared to a single-input single-output (SISO) antenna

systems. Figure 1.1 illustrates a MIMO communication system. The presence of scatterers
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causes the transmitted signal to undergo multipath fading. If the delay between the signals

reaching the receiver is small compared to the symbol time, then the channel is said to be

frequency non-selective [2]. This occurs commonly in indoor wireless channels, where all

the scatterers are located close to each other. Let hij denote the fading channel coefficient

between j-th transmitter and the i-th receiver element. Then the M × 1 vector of received

signals can be compactly expressed with the following matrix equation

r =
√

ρ

N
Hx + n (1.1)

where ρ is the signal-to-noise ration (SNR) per receive antenna, H = (hij) is the M × N

matrix of channel coefficients, x is the N × 1 vector of transmitted signals and n is the

additive receiver noise. It is a common assumption that the transmitted signals undergo

Rayleigh fading and get corrupted by complex additive white gaussian noise (CAWGN).

The pioneering work of Foschini and Gans [3] and Telatar [4] showed that under

suitable conditions the ergodic capacity of a communication system with N transmitters

and M receivers is min (M, N) times the ergodic capacity of a single-input single-output

system. Most conventional MIMO systems use spatial diversity by placing antennas three

to ten wavelengths apart, thus achieving decorrelation of fading path gains which results in

increased channel capacity.

Increased capacity can also be obtained by exploiting polarization and pattern

diversity. Dual-polarized antennas have been used quite effectively for communication pur-

poses. Andrews et al [1] suggested that the use of three orthogonally-polarized antennas

(tripole) can provide a three-fold increase in capacity as compared to uni-polarized anten-

nas. These antennas are capable of sensing more than one component of the electromagnetic

field and are therefore referred to as vector antennas.

1.2 Frequency Selective Surfaces

In this section, frequency selective surfaces (FSSs) and their characteristics are

introduced. Then the application of vector antennas in these surfaces is discussed.

FSSs are essentially periodic array structures, often in the form of printed struc-

tures on a substrate or apertures in a conducting plane. Figure 1.2 illustrates a typical FSS

formed by arranging a unit element in two-dimensional array with inter-element spacings

dx and dz along x- and z-axis, respectively. When an electromagnetic wave with strength
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Ei is incident on the FSS, a part of it is reflected (with strength Er) and another part is

transmitted (with strength Et). It is customary to define the reflection coefficient as

Γ =
|Er|
|Ei| (1.2)

and the transmission coefficient as

T =
|Et|
|Ei| . (1.3)

These surfaces behave as filters for incident electromagnetic waves based on frequency,

polarization and angle of incidence of incident field. In other words, Γ(f) and T (f) are

functions of the frequency of the incident field. Depending on the type and size of the

elements as well as their spacing, certain frequencies are strongly reflected while others are

strongly transmitted as illustrated in Figure 1.3. The resonant frequency, fr, depends on

the individual element of the unit cell that is repeated to produce the FSS. The bandwidth

(f2−f1) of the surface depends on the type of element as well as the spacing between them.

In fact, for a relatively large spacing the reflection coefficient response is narrowband and

there is considerable variation in the backscattered response with the angle of incidence.

If instead, the inter-element spacing is reduced together, the variation of the reflection

coefficient with angle of incidence is lesser. In this case, however, the backscattered response

is relatively broadband. The unit element can be categorized into four groups:- (i) center-

connected or N-poles, (ii) loop types, (iii) solid interior or plate types and (iv) combinations

of the above groups. An exhaustive survey of the types of unit element and their frequency

response is available in [5, 6].

The goal of current research is to design FSSs on fabric such that the reflected

signal has a distinguishing feature or ‘signature’. This signature could be in the form

of a specific frequency response or polarization of the reflected signal. Since individual

components of the vector antenna interact with different components of the electromagnetic

field, vector antennas can be used in FSSs. To illustrate this point, consider an element

which consists of two crossed dipoles, one that is open and the other short. If the incident

field has components along both the dipoles the reflected field will contain component only

along the shorted dipole. This polarization information acts as a ‘signature’.
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1.3 Vector Antenna

In this section a detailed description of vector antennas and their design consider-

ations is given. A survey of previous research, analysis and fabricated prototype designs of

these antennas is also provided.

1.3.1 Description

Conceptually, a vector antenna consists of multiple elements that can sense differ-

ent components of the electromagnetic field. In its simplest form, three dipoles and three

loops can be placed orthogonally to constitute a vector antenna as shown in the Figure 1.4.

This configuration, theoretically, should sense all the components of both the electric and

magnetic fields.
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1.3.2 Design considerations

MIMO vector antennas have certain design considerations in addition to the design

criterion for general antennas. In this subsection these design considerations are described

through a set of metrics.

1. Reflection Coefficient

The reflection coefficient (Γ) is defined as the ratio of the signal being reflected from

the antenna to the signal being fed to the antenna. The magnitude of reflection

coefficient is called the return loss and it is customary to represent it in decibels

(20 log10(|Γ|)). ‖Γ|2 is a measure of the power that is reflected back from the antenna

and hence unusable. A low (typically less than -10 dB) value of return loss is desirable.

2. Mutual Coupling

Mutual coupling refers to the phenomenon of a voltage or current signal being induced

at one antenna due to a signal source at another antenna. This is especially important

in the case of vector antennas in which individual elements are closely located and

hence mutual coupling is no longer negligible. Research is ongoing to assess the impact

of mutual coupling on MIMO antenna performance.

3. Radiation Efficiency

The radiation efficiency is the ratio of power radiated by the antenna to the power

fed to the antenna. The return loss, mutual coupling and ohmic losses in the antenna

contribute to the reduction in radiation efficiency.

4. Radiation Pattern

The radiation pattern is a description of the power radiated by the antenna as a

function of angular coordinates. Certain antennas have highly directive patterns to

increase signal-to-noise ratio (SNR) towards the receiving antennas and reduce in-

terference for other antennas. Other antennas have omni-directional patterns for

broadcast applications. The radiation pattern is very important for MIMO vector an-

tennas because the antenna elements are placed very close together. Therefore their

radiation patterns in isolation are modified due to the presence of other elements.
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1.3.3 Analysis

Much research has been done to analyze and understand the benefits of vector

antennas. Andrews et al [1] proposed that vector antenna can provide a six-fold increase in

capacity as compared to uni-polarized antenna because of the existence of six independent

(three electric and three magnetic) field components in the presence of multi-path. They

simulated a vector antenna in a transceiver configuration with two reflecting surfaces and

obtained 6 independent channels (non-zero eigenvalues of the channel).

Marzetta [7] analyzed the case of two-dimensional arrays of vector antennas and

suggested that they behave differently from single vector antennas. Using plane-wave spec-

tral decomposition he deduced that two-dimensional arrays of vector antennas can offer

only a four-fold increase in capacity as compared to arrays of uni-polarized antennas. In

his view, using three-dimensional arrays or using element spacing less than half-wavelength

can produce only a logarithmic increase in capacity.

Poon et al [8] used a decomposition similar to the singular-value decomposition

of the Green’s function kernel to conclude that the increase in the number of degrees of

freedom due to tri-polarization in arrays is two-fold as compared to arrays of uni-polarized

antennas. Therefore, in the high SNR regime there can be only two-fold increase in capacity

due to polarization.

Vector antennas can also perform better electromagnetic source localization than

uni-polarized antennas as shown by Nehorai et al [9] since these antennas can use all the

available information in the different components of electromagnetic field.

1.3.4 Fabricated designs

Several prototypes of vector antennas have been fabricated and tested. Andrews

et al [1] used three standard sleeves arranged orthogonally to form a tripole. Stancil et al

[10] designed a two-element vector antenna using a conventional half-wavelength dipole and

a magnetic dipole (Kandoian loop) for their experiments. Konanur et al [11] designed a

three-element (two half-wavelength dipoles and a center-fed loop) planar antenna and a four-

element (three half-wavelength dipoles and a center-fed loop) vector antenna. Rajagopalan

et al [12] recently published a three-element (two bowtie and a loop) ultrawideband vector

antenna.
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1.4 Overview of Contributions

In this dissertation, we use theoretical, simulation and measurement techniques to

assess the performance improvements that vector antennas can provide in multiple antenna

systems.

In chapter 2, we analyze a linear array of vector antennas using signal-space con-

cepts. More specifically, it has been shown that the degrees of freedom of the fields produced

by a linear array of tri-polarized antennas is three times that of uni-polarized antennas. This

increase in the degrees of freedom implies the possibility of a three-fold increase in channel

capacity at high SNR.

Next, we focus our attention on practical aspects of antenna design. In chapter

3, we have used method of moments to simulate and optimize antenna structures to meet

the design guidelines prescribed in section 1.3.2. Based on these designs, narrowband and

broadband tri-polarized antennas have been fabricated. We then illustrate an experimental

setup that can be used to perform MIMO channel measurements in a laboratory setting. The

measurement setup consists of a network analyzer, which is used to determine the channel

path gains by measuring the S21 parameters between every pair of transmit and receive

antennas. The scatterers are placed according to the two-dimensional model proposed in

[13].

To assess the improvement in spectral efficiency due to polarization, we calculate

channel capacity of MIMO systems using the fabricated vector antennas in chapter 4. As a

reference, capacity of MIMO systems using infinitesimally small tri-polarized antennas has

also been evaluated. Detailed three-dimensional channel models [14, 15] have been used for

simulating arrays of different length. Both the simulation and measurement results show

that a three-fold increase in capacity can be obtained using array of tri-polarized antennas

as compared an equivalent array of uni-polarized antennas.

Multiple antennas are also used in frequency selective surfaces in two-dimensional

array configuration. In chapter 5, we study the improvement in the reflected energy that

vector antennas can provide as compared to conventional uni-polarized antennas when inte-

grated on FSS. For this purpose, we have fabricated and tested several prototypes of FSSs

on fabric with vector antennas as unit elements. Our results show that the use of vector

antennas increases the reflected mean-signal-energy and also makes the design more robust

to misalignment.
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Chapter 2

Degrees of Freedom

2.1 Introduction

In this chapter, we analyze the degrees of freedom of linear arrays of tri-polarized

antenna systems. The degrees of freedom of fields radiated from uni-polarized antenna

systems for arbitrary geometries have been calculated by Bucci et al [16] and Poon et al

[8]. They have considered antenna systems as continuous sources, i.e., every point of the

antenna system can be excited by arbitrary current density. This assumption leads to two

drawbacks. Firstly, it allows for the possibility of infinite degrees of freedom. Secondly, the

current density on any practical antenna element is determined by its geometry and cannot

be arbitrarily adjusted. In the present work, we circumvent the first problem by considering

that the antenna system has only finite number of antenna elements, each of which has its

own current excitation. This automatically limits the degrees of freedom of the system to

finite values. In addition, the current profile on each antenna element is assumed to be

determined by its geometry.

In previous research work, the degrees of freedom of polarized antenna systems

has been analyzed only heuristically [8, 7]. Our analysis shows a three-fold increase in

degrees of freedom of an array of tri-polarized antennas compared to an equivalent array of

uni-polarized antennas. More specifically, this finding holds true for three different types of

antenna elements:- infinitesimally small dipoles, finite length dipoles and long wire traveling

wave antennas. This three-fold increase in degrees of freedom is a necessary condition to

obtain a corresponding three-fold increase in channel capacity at high signal-to-noise ratio

(SNR).
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In the subsequent sections, we consider the electric field generated by a linear

array of tri-polarized antennas on the surface of a large surrounding sphere. Our aim is

to demonstrate that the number of degrees of freedom (DoF) available in this system is

exactly three times the number available in a corresponding linear array of uni-polarized

antennas. Thus, the use of tri-polarized antennas increases the number of available signaling

dimensions by a factor of three relative to an array of uni-polarized antennas.

In the following analysis we use vector-phasor notation U(r) to represent the time-

harmonic function

U(r, t) = Re
[
U(r)eiωt

]
(2.1)

of position r, center angular frequency ω and time t. The magnitude and the unit vector

corresponding to any vector u are denoted by u and û = u/u, respectively. We first consider

the case of antenna elements that are infinitesimally small to describe the concept of degrees

of freedom. The tools developed in section 2.2 serve as an aid to analyze the more practical

finite length antenna elements, namely dipoles (section 2.3) and long-wire antennas (section

2.4).

2.2 Linear Array of Infinitesimally Small Antennas

We model the array as a current source of length 2L oriented along the z-axis

and centered at the origin, as shown in Figure 2.1. If the array consists of N infinitesimal

tripoles located at {r′ = z′sẑ : z′s ∈ [−L,L] for s = 1, 2, . . . , N}, where ẑ is the unit vector

along the z-axis, then the current source distribution can be expressed as

J(r′) =
N∑

s=1

Jsδz′−z′s (2.2)

where Js = [Jsx, Jsy, Jsz]T ∈ C3 and δ· is the Dirac function.

The rectangular components of the electric field in the far-field region (in air) due

to this current source are given by [8]

E(r) =
∫

V ′

G(r, r′)J(r′)dv′ (2.3)

G(r, r′) =
iωµ

4π

eikr

r
(I− r̂r̂T )e−ikr̂T r′ (2.4)
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where G(r, r′) is the Green’s function, µ is the magnetic permeability of air, c is the speed

of light, k = ω/c is the angular wavenumber and r̂ = [sin θ cosφ sin θ sinφ cos θ]T .

A simpler formulation can be obtained by expressing the electric field in spherical

components. Using the transformation matrix C [17, eq. VII-12a] the spherical components

can be written as



Er

Eθ

Eφ


 =




sin θ cosφ sin θ sinφ cos θ

cos θ cosφ cos θ sinφ − sin θ

− sinφ cosφ 0




︸ ︷︷ ︸
C




Ex

Ey

Ez


 . (2.5)

We use the following simplification when substituting (2.3) in (2.5)

C(I− r̂r̂T ) =




0 0 0

cos θ cosφ cos θ sinφ − sin θ

− sinφ cosφ 0


 . (2.6)

This field is observed on the surface of a sphere of radius r À L centered at the origin.

Since r is constant on this sphere, the explicit dependence of the field on r can be dropped.

Further, since the radial component vanishes in the far-field (which is evident from (2.6)),

we only consider the θ and φ components of the electric field in spherical coordinates as

E(θ, φ) = [Eθ(θ, φ) Eφ(θ, φ)]T = N(θ, φ)A(θ, φ) (2.7)

where

N(θ, φ) = iω


cos θ cosφ cos θ sinφ − sin θ

− sinφ cosφ 0


 (2.8)

and A(θ, φ) is the vector potential

A(θ, φ) =
µ

4π

eikr

r

∫

V ′

e−ikr̂T r′J(r′)dv′ . (2.9)

Substituting (2.2) into (2.9), we obtain

A(θ, φ) = D(θ) =
N∑

s=1

Jsas(θ) (2.10)

where as(θ) = µ
4π

eikr

r e−ikz′s cos θ, 1 ≤ s ≤ N . The collection of all fields E(θ, φ) that can be

produced by varying J1, . . . ,JN clearly constitutes a complex linear space LE of functions
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over 0 ≤ θ < π, −π ≤ φ < π. We now show that the dimension of this space, which

is called the degrees of freedom, is exactly three times the dimension of a corresponding

uni-polarized system. To this end, we first consider the complex linear space LD of all

functions D(θ) produced by varying J1, . . . ,JN (this is the same linear space LA of all

vector potentials A(θ, φ)). Note that as(θ), 1 ≤ s ≤ N are continuous scalar functions of

θ. Thus D(θ) must also be continuous. For uni-polarized antenna systems, the vectors

J1, . . . ,JN lie in a one-dimensional subspace. Without loss of generality, suppose these

vectors are aligned with the x-axis, Js = [Jx,s, 0, 0]T , 1 ≤ s ≤ N . In this case, we have

D(θ) = [Dx(θ), 0, 0]T , where Dx(θ) is any element in the complex linear space L spanned

by a1(θ), . . . , aN (θ). If the dimension of L is denoted by d ≤ N , then for uni-polarized

antennas dim(LA) = dim(LD) = d.

In the tri-polarized case, the components of J1, . . . ,JN can be selected indepen-

dently, so the three components of D(θ) are arbitrary elements of L. It follows that

LD = L3 and dim(LD) = 3d. To show that dim(LE) for tri-polarized antenna systems

is three times as large as that for uni-polarized antenna systems, it only remains to show

dim(LE) = dim(LD) in both cases. From (2.7), we see that a set of functions that span

LE can by obtained from any set of functions that span LD by multiplying by N(θ, φ);

hence dim(LE) ≤ dim(LD). To show dim(LE) = dim(LD), we need only to show that the

mapping D(θ) → N(θ, φ)D(θ) is invertible. From (2.7) and (2.10) observe

Dx(θ) cos θ = 2

π∫

−π

cosφ Eθ(θ, φ) dφ

Dy(θ) cos θ = 2

π∫

−π

sinφ Eθ(θ, φ) dφ

Dz(θ) sin θ = −
π∫

−π

Eθ(θ, φ) dφ (2.11)

Thus D(θ) can be recovered from Eθ(θ, φ) for θ 6= 0, π/2, π, 3π/2 and the remaining val-

ues can be obtained from continuity of D(θ). We therefore conclude D(θ) → E(θ, φ) =

N(θ, φ)D(θ) is invertible and dim(LE) = dim(LD) = 3d.

Thus we have established that the degrees of freedom for the electric field due to

tri-polarized antennas is three times that due to uni-polarized antenna systems in the case

of infinitesimally small elements. From (2.11), we further observe that it is not necessary to
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observe the entire electric field to obtain all the 3d degrees of freedom. Observing Eθ(θ, φ)

alone suffices to provide all 3d degrees of freedom.

2.3 Linear Array of Finite Length Antennas

We now consider the more practical case of antenna elements with finite length.

Let the current distribution on each antenna element be given by function f(·), then the

current source distribution in (2.2) has to be modified to

J(r′) =
N∑

s=1

F(r′, z′s)Js (2.12)

where

F(r′, z′s) =




f(x′)δy′,z′−z′s 0 0

0 f(y′)δx′,z′−z′s 0

0 0 f(z′ − z′s)δx′,y′


 . (2.13)

Substituting (2.13) in (2.9) and solving the integration

A(θ, φ) = B(θ, φ)
N∑

s=1

as(θ)Js (2.14)

= B(θ, φ)D(θ) (2.15)

where

B(θ, φ) =




B(x/r) 0 0

0 B(y/r) 0

0 0 B(z/r)


 (2.16)

=




Bx(θ, φ) 0 0

0 By(θ, φ) 0

0 0 Bz(θ, φ)


 (2.17)

and

B(u) =
∫

l

e−ikwuf(w)dw. (2.18)

B(u) is responsible for the different radiation patterns that the antenna elements have due

to their current distributions. The expression in (2.15) is similar to section 2.2 but the

vector potential has been modified by B(θ, φ) to include the effect of current distribution.
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Figure 2.2: Finite length dipole antenna

The electric field, E(θ, φ) = N(θ, φ)A(θ, φ) still has the same expression as in (2.7). For a

z-directed thin dipole of length l we have [17] (see Figure 2.2),

f(w) = sin
[
k

(
l

2
− |w|

)]
, |w| ≤ l

2
(2.19)

and

Eθ = i
ωµ

k

1
2π

eikr

r

[
cos(kl

2 cos θ)− cos(kl
2 )

sin θ

]
. (2.20)

Substituting (2.19) in (2.18) we obtain

B(u) = −2
k

[
cos(kl

2 u)− cos(kl
2 )

1− u2

]
. (2.21)

Using (2.17) with the above equation and recalling [x, y, z] = [r sin θ cosφ, r sin θ sinφ, r cos θ],

we can write

Bx(θ, φ) = −2
k

[
cos(kl

2 sin θ cosφ)− cos(kl
2 )

1− (sin θ cosφ)2

]
(2.22)

By(θ, φ) = −2
k

[
cos(kl

2 sin θ sinφ)− cos(kl
2 )

1− (sin θ sinφ)2

]
(2.23)

Bz(θ, φ) = −2
k

[
cos(kl

2 cos θ)− cos(kl
2 )

sin2 θ

]
(2.24)
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(2.25)

We now proceed to show that the mapping D(θ) → E(θ, φ) = N(θ, φ)B(θ, φ)D(θ)

is invertible for dipole antennas of any length. It is helpful to write (2.7) in expanded form

using (2.15)

Eθ(θ, φ) =iω[cos θ cosφBx(θ, φ)Dx(θ)

+ cos θ sinφBy(θ, φ)Dy(θ)− sin θBz(θ, φ)Dz(θ)]

Eφ(θ, φ) =iω[− sinφBx(θ, φ)Dx(θ) + cosφBy(θ, φ)Dy(θ)]

(2.26)

Note that both Bx and By are even functions of φ. Thus D(θ) can be obtained from E(θ, φ)

by doing the following operations in succession

π∫

−π

cosφEφ(θ, φ)B∗
y(θ, φ)dφ = iωDy(θ)

π∫

−π

|By(θ, φ)|2

× cos2 φdφ

iωBx(θ, φ)Dx(θ) sin φ = −Eφ(θ, φ)

+ iωBy(θ, φ)Dy(θ) cosφ

−iωBz(θ, φ)Dz(θ) sin θ = Eθ(θ, φ)

− iωBx(θ, φ)Dx(θ) cos θ cosφ

− iωBy(θ, φ)Dy(θ) cos θ sinφ

(2.27)

provided

(a)
π∫
−π
|By(θ, φ)|2 cos2 φdφ 6= 0 ⇔ By(θ, φ) 6= 0 for all φ

(b) Bx(θ, φ) sinφ 6= 0 for all φ

(c) Bz(θ, φ)Dz(θ) sin θ 6= 0

For z-directed dipoles, conditions (a) and (b) can possibly be violated at θ = 0

and (c) when cos θ = 1 − (nλ)/(l) n = 0, 1, 2, . . .. Since these values of θ are isolated,

D(θ) can be obtained by continuity. Thus we have proved that the mapping D(θ) →
N(θ, φ)B(θ, φ)D(θ) is invertible and dim(LE) = dim(LD).

2.4 Linear Array of Traveling Wave Antennas

We now consider the long wire antenna element which is a type of traveling wave

antenna. The current flows on a traveling wave antenna in the form of traveling waves as
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Figure 2.3: Long wire traveling wave antenna

compared to standing waves on resonant antenna like dipoles which we discussed in the

previous section. Usually these antennas are broadband structures. A z-directed long wire

traveling wave antenna element is shown in Figure 2.3. The current distribution on this

element is given by [17]

f(w) = e−(α+ik)w (2.28)

where k is the propagation constant of the traveling wave. As the wave travels, it loses

energy which is accounted by the attenuation factor α. It is assumed that an ideal matched

termination resistance RL absorbs all the waves traveling in the positive z-direction and

there are no reflections. The termination resistance should equal the value of the radiation

resistance of the antenna [18, 19] (this is usually in the region of 200Ω to 300Ω). Substituting

the current distribution in (2.18), we get

B(u) =
1− e−[α+ik(1+u)]l

α + ik(1 + u)
(2.29)
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Using (2.17) and observing that x = sin θ cosφ, y = sin θ sinφ and z = cos θ we have

Bx(θ, φ) =
1− e−[α+ik(1+sin θ cos φ)]l

α + ik(1 + sin θ cosφ)
(2.30)

By(θ, φ) =
1− e−[α+ik(1+sin θ sin φ)]l

α + ik(1 + sin θ sinφ)
(2.31)

Bz(θ, φ) =
1− e−[α+ik(1+cos θ)]l

α + ik(1 + cos θ)
(2.32)

Again, D(θ) can be obtained from E(θ, φ) by using (2.7) in conjunction with (2.15) and

doing the following operations in succession

Eφ(θ,
π

2
) = −iωBx(θ,

π

2
)Dx(θ)

Eφ(θ, 0) = iωBy(θ, 0)Dy(θ)

iω sin θBz(θ, 0)Dz(θ) = iω cos θBx(θ, 0)Dx(θ)− Eθ(θ, 0)

(2.33)

provided

(a) Bx(θ, π
2 ) 6= 0,

(b) By(θ, 0) 6= 0 and

(c) sin θBz(θ, 0) 6= 0.

Since α 6= 0 conditions (a) and (b) cannot be violated. Condition (c) can be

violated only at the isolated point θ = 0 where D(θ) can be obtained by continuity. Thus

we have proved that the mapping D(θ) → N(θ, φ)B(θ, φ)D(θ) is invertible and dim(LE) =

dim(LD).
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Chapter 3

Antenna Design and Experimental

Setup

3.1 Introduction

The degrees of freedom analysis in chapter 2 assumed that the radiation patterns

of antenna elements are ideal and that they radiate independently of each other. In a prac-

tical system, however, the radiation patterns of the antenna elements can become distorted

and inter-element mutual coupling increases as they are brought closer. Therefore, in this

chapter we present several antenna system designs and fabricated prototypes that account

for these non-idealities. More specifically, sections 3.2 and 3.3 discuss the design and fab-

rication process of tri-polarized antenna systems with dipole and traveling wave antenna

elements. We will also describe measurement techniques in section 3.4 that will help in

assessing the performance benefits of tri-polarized antenna systems in chapter 4.

3.2 Design of Tripole

In this section we describe the design of a co-located tri-polarized antenna with

dipole elements. A four-element polarized antenna with three orthogonal dipoles and a

loop has been fabricated and studied in [20]. In that design, the dipoles had to be fed

off-centered to accommodate all the four feed elements (SMA connectors) resulting in inter-

element spacing. Reducing this spacing is important to ensure that any increase in capacity

is due to polarization instead of spatial diversity. The design presented here aims to achieve



22

this by feeding the dipole through a co-planar strip (CPS). Figure 3.1 shows a schematic

of the tripole arrangement of co-located printed dipoles, where each individual element is

designed based on the idea proposed in [21].

The dipoles were fabricated on a substrate with relative dielectric permittivity of

2.6. The return loss and coupling for the design simulated with the commercial software

Agilent ADS is compared with the results obtained using fabricated antennas in Figure 3.2.

Further, the return loss and coupling for the designed tripole for all possible pairs are shown

in figure 3.3. The return loss is below −10 dB and the coupling is below −20 dB in the

frequency range 3.75 to 3.85 GHz in all cases and hence satisfactory for our purpose. While

measuring the S-parameters between any pair of elements of a vector antenna, the other

elements are always terminated in matched loads.

3.3 Design of Traveling Wave Antenna

In this section, the practical design of a traveling wave antenna is described. Figure

3.4(a) shows a long wire antenna that is terminated in a matched load RL. As mentioned

in section 2.4, the purpose of the termination resistor is to suppress any reflections which

may result in standing waves. There are a couple of practical problems with this design.

Firstly, it requires the ground plane to extend to one of the terminals of the resistor. The

extended ground plane can cause high coupling between the elements when used in a tri-

polarized setup. Secondly, it requires the availability of a broadband matched resistor that

has negligible parasitics at high frequencies used for communication purposes (around 1-10

GHz). These resistors are quite costly and can increase the cost of the antenna.

Both the problems mentioned above can be avoided if the length of the antenna is

made several wavelengths long as shown in Figure 3.4(b). In this case, the forward traveling

wave attenuates due to radiation as well as losses before it reaches the end of the wire and

therefore the resistor is not required. Even though the matched load is not required in this

design, it becomes unwieldy in applications where space may be limited. An alternative is to

use a meanderline antenna to compress the length in a small space as shown in Figure 3.4(c).

Warnagiris et al [22] have used meanderline concept to design antennas at lower frequencies

(30-60 MHz). Based on this design, Seong et al [23] fabricated a miniaturized dipole at 2.5

GHz and 5.25 GHz with meanderline for laptop computers. In both these designs, there

exist current components that are not along z-axis. Therefore, the field produced by this
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(b) Fabricated tripole

Figure 3.1: The Tri-polarized Antenna
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Figure 3.2: Comparison of simulated and measured return loss and coupling between ele-
ments of tripole antenna
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(b) y-directed and z-directed dipole
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(c) z-directed and x-directed dipole

Figure 3.3: Pairwise return loss and coupling between elements of tripole antenna
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design will not coincide with that mentioned in section 2.4. We can overcome this problem

with the design shown in Figure 3.4(d). The arms with oppositely directed (perpendicular

to z-axis) have been brought closer so that the fields produced by these arms cancel in

the far-field. This arrangement also minimizes the length of the arms that are parallel but

distant from z-axis.

This design has been simulated in Agilent ADS and results show that traveling

waves are indeed being setup in the structure. Figure 3.5 shows that current density reduces

as the distance from the feed point increase. This design has been fabricated on a substrate

with relative dielectric permittivity of 2.6 (see Figure 3.6). Three such antennas have been

used in a setup as shown in Figure 3.7 to form a tri-polarized traveling wave antenna. The

return loss and coupling between two meanderline traveling wave antenna elements in this

setup is shown in Figure 3.8. The return loss is below −10 dB and the coupling is below

−15 dB in the frequency range f1 = 7.3 GHz to f2 = 8.5 GHz and hence satisfactory for

our purpose.

3.4 Channel Measurements

The channel measurement system comprises of N antenna elements at the trans-

mitter, M antenna elements at the receiver and Q scatterers. The direct path between

the transmitter and the receiver is blocked to simulate a non-line of sight (NLOS) channel.

The scatterers are placed in the azimuthal plane at randomly generated angles, (φ), with

uniform probability density function. This is a popular model for azimuthal distribution of

scatterers [13]. The number of scatterers (Q = 16) was chosen based on the average num-

ber of paths between the transmitter and receiver as reported in [14]. The aim of channel

measurements is to determine the channel matrix for this M ×N MIMO system.

The schematic for the measurement test-bed is shown in Figure 3.9. Consider the

i-th receiver at port 2 and the j-th transmitter at port 1. Let V1 and V2 represent the total

voltages at ports 1 and 2, respectively. By definition

hij =
V2

V1
=

V +
2 + V −

2

V +
1 + V −

1

(3.1)

where the “+” and “-” superscripts indicate incident and reflected voltages, respectively.

Let

a1 =
V +

1√
Z01

, a2 =
V +

2√
Z02

, b1 =
V −

1√
Z01

, b2 =
V −

2√
Z02

(3.2)
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Figure 3.5: Current density on Meanderline traveling wave antenna
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Figure 3.6: Fabricated prototype of meanderline traveling wave antenna
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Figure 3.7: Arrangement of dipoles to form a tri-polarized traveling wave antenna
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Figure 3.9: Schematic representation of experimental setup

where Z01 and Z02 are the characteristic impedances of ports 1 and 2, respectively. Substi-

tuting, (3.2) in (3.1), we get

hij =
(a2 + b2)

√
Z01

(a1 + b1)
√

Z01
. (3.3)

Since the antennas are matched to Z01 = Z01 = 50Ω we can consider the traveling voltage

waves to be essentially the total voltages at the respective ports, i.e., a2 = b1 = 0. Therefore,

we have

hij =
b2

a1
= S21. (3.4)

According to the above equation, the i,j-th entry of the channel transfer matrix H can be

found by measuring transfer S-parameter, S21, while the other antennas are terminated in

50Ω loads.

The S-parameter measurement has been facilitated by the use of Agilent 87130A-

K01 Switching Interface that can be controlled by Agilent E5071B ENA Series Network

Analyzer using the VISA library functions through the Agilent 82357A USB/GPIB Inter-

face. The Switching Interface can extend the capability of Network Analyzer to handle a

maximum of 6 antennas at both its ports. This means that upto 6× 6 MIMO systems can

be emulated. At any given time only one pair of transceiver ports in the Switching Inter-

face is active while the rest are terminated in 50Ω loads. A Visual Basic program has been
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Figure 3.10: Algorithm for measurement of channel matrix H

written that automatically cycles between all possible pairs of transceiver ports, makes the

measurement and saves the S-parameter data in appropriate directories for post-processing.

The algorithm used in the program for an M ×N system is depicted in the flowchart shown

in Figure 3.10. The ports and the antennas shown in red color have signal flowing through

them while those in blue have been terminated in 50Ω loads.
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Chapter 4

Capacity Calculations from

Simulation and Measurement

4.1 Introduction

In this chapter, we study the benefits of polarization from the channel capacity

point of view. Channel capacity is a very significant parameter for MIMO channels as it is

the upper bound on the amount of information that can be reliably transmitted over the

channel. Krishnamurthy et al [24, 25] used fabricated prototypes of vector antennas and

then compared their capacity to that of spatial array antennas. We do a similar capacity

calculation of the tri-polarized antennas described in chapter 3. We evaluate the capacity

offered by tri-polarized antennas in linear array configuration and compare that to their

uni-polarized counterparts. For comparison purposes, we also present the channel capacity

gains from simulation for the case of ideal infinitesimally small antennas.

4.2 Channel Model

In this section, we describe how to calculate the channel state information for the

case of infinitesimally small antennas. For this we require a channel model to evaluate the

channel matrix. An exhaustive survey of channel models is available in [26, 27]. However,

for the purpose of this study, we found the model proposed by Zwick et al [14, 15] most

appropriate because it explicitly models the directional location of scatterers and can be
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easily combined with the radiation pattern of antennas to generate the channel matrices

Φ(t, τ,ΩT , ΩR) =
Q(t)∑

i=1

Γi(t)u(τ − τi(t))×

δ(ΩT − ΩT,i(t))δ(ΩR − ΩR,i(t))

(4.1)

which describes the cumulative effect of Q multi-path components where the i-th path

originates towards the direction ΩT,i from the transmitter, the θ and φ components of the

field get transformed by a scatterer through the transfer matrix Γi and reaches the receiver

from the direction ΩR,i. The dispersion encountered in the path is described by the function

u(·) and delay is τi. All these parameters are functions of time t.

The MIMO channel response then becomes H = (hij) where

hij(t, τ) =
∫ ∫

CT
R,i(t,ΩR)Φ(t, τ,ΩT , ΩR)CT,j(t,ΩT )dΩT ΩR (4.2)

where CT,j and CR,i are the radiation patterns of the jth transmit and ith receive antennas

respectively.

The above model is very detailed; therefore, we make some simplifying assumptions

to retain only its salient features. We assume that the number of paths Q(t) does not vary

over time and the channel is not frequency selective (i.e. u(τ) = δ(τ)). We considered ‘Non

Line Of Sight’ (NLOS) scenarios, which is typical of indoor channel environments, and a

maximum delay relative to mean path delay τ ′max < 300 ns at 2.5 GHz [15]. Therefore

we assume that the multi-path components arrive at the receiver at the same time. The

elements of Γi(t) were generated using zero mean complex normal random variables, with

co- and cross- polarization weights given by Xθθ = 1, Xθφ = 0.1, Xφθ = 0.1, Xφφ = 1. The

following probability density functions were used for the directions ΩT and ΩR

p(θ) =





sin(θ)
2 θ ∈ [0, π)

0 otherwise
(4.3)

p(φ) =





1
2 φ ∈ [0, 2π)

0 otherwise
(4.4)

This formulation of the channel model can be used for the calculation of the theo-

retical capacity of a system employing uniformly spaced tri-polarized antennas, performed

in Section 4.3.
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4.3 Capacity Calculations

We consider the following model for the received signal

r =
√

ρ

l
Hx + n (4.5)

where H represents the channel matrix, x is the transmitted signal and the components of

the noise vector, n are independent and identically distributed ∼ CN(0, 1). We consider

the case where perfect channel state information (CSI) is available at the receiver but not

at the transmitter. The ergodic channel capacity for an l × l MIMO system under the

constraint of equal power distribution across all transmitting antennas, at SNR per receive

antenna, ρ is given by [3]

C = log2

∣∣∣I +
ρ

l
ĤĤ

†∣∣∣ (4.6)

where | · | denotes the determinant of a matrix and [·]† the conjugate transpose operation.

The CSI matrix, H, is a function of frequency, f, for broadband MIMO systems. Therefore,

the capacity of these systems is found by integrating 4.6 over the frequency range of interest

C =
1

fH − fL

WH∫

WL

log2

∣∣∣I +
ρ

l
Ĥ(f)Ĥ†(f)

∣∣∣ df (4.7)

where fL and fH denote the lower and higher ends of the frequency range of interest. The

CSI measured by the network analyzer is available only at discrete points in the frequency

domain fn, n = 1, 2, . . . , N . In this case, the capacity can be approximated by [28], [29]

C ≈ 1
N

N∑

n=1

log2

∣∣∣I +
ρ

l
Ĥ(fn)Ĥ(fn)†

∣∣∣ bits/s/Hz (4.8)

Note that the channel matrices in the above capacity calculation have been normalized

according to

Ĥ(fn) = H(fn)/α (4.9)

where α is the root-mean-squared value of the fading path gains that can be calculated

from the tri-polarized CSI, Htri(fn) by the following formula

α =

√√√√√
l∑

i=1

l∑
j=1

N∑
n=1

|Htri
ij (fn)|2

l2N
(4.10)

to remove the effect of pathloss.
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A measure of performance gain by using polarized antennas is the ratio of capacity

using tri-polarized antennas to the capacity using just uni-polarized antennas. As there

could be three possible directions for uni-polarized antennas we take the average of capacity

for each polarization. Therefore, the gain is given by

G =
E(Ct)

1
3

∑
i=x,y,z

E(Ci)
(4.11)

where E(·) denotes the expectation operation and i = t, x, y, z for the tri-polarized, x, y,

z-polarized cases respectively.

4.3.1 Narrowband Antennas

In this section, we describe the capacity gain results for narrowband tri-polarized

antenna systems with dipole elements. The transmitter consists of two tripoles separated by

a distance of 24 cm which results in kL ≈ 31. The receiver is similar to the transmitter and is

placed in the far field of the transmitter. Figure 4.1 shows the measured capacity gain using

the setup described in section 3.4. It also shows the gain in capacity v/s SNR for a uniform

linear array of the same length with different number of infinitesimally small antennas using

the channel model described in (4.1). It can be seen that there is approximately three fold

increase in capacity for different number of antennas for a range of SNRs. For example, the

gain for the system simulated using 2 tripoles each at the transmitter and the receiver varies

from 2.7 to 2.95 for SNR from 0 to 100 dB respectively when the number of paths, Q = 16.

At 25 dB SNR, E(Ct)/maxE(Ci) = 2.88 where as G = 2.93, therefore E(Cx), E(Cy)

and E(Cz) are contributing equally to the gain G in (4.11). Figure 4.2 compares the

ergodic capacity of the 6 × 6 channel for a spatial array to a vector array of two tripoles.

The noise level is less than −80 dB whereas the measurements show that the most of the

channel measurements readings above −60 dB. Moreover, to verify that this noise was

not adversely affecting the measurements, channel measurements were done for the same

scattering environment. Figure 4.3 shows the capacity plots for 20 such measurements. The

mean capacity at 10 dB SNR is 15.3 bps/Hz and the variance is 0.058 bps/Hz.

4.3.2 Broadband Antennas

In this section, we describe the capacity gain results for two types of broadband

antenna systems, namely the ultrawideband antenna system designed by Rajagopalan [12]
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Figure 4.1: Average capacity gain v/s SNR for a uniform linear array of 2,5,9 and 13
tri-polarized antennas
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Figure 4.4: Three-element Ultrawideband vector antenna

and the meanderline antenna system described in section 3.3. Ultrawideband is a radio

technology used for short-range high-bandwidth communications. The Federal Communi-

cations Commission classifies a transmission system as ultrawideband if its signal bandwidth

exceeds 500 MHz or 20% of the center frequency. Figure 4.4 shows the three-element ul-

trawideband vector antenna used in this study. The bowtie is the broadband equivalent of

electrical dipole and the loop is the broadband equivalent of magnetic dipole. The antenna

operates in the frequency range f1 = 3.6 GHz to f2 = 8.5 GHz. In this range, the return

loss of loop is below -8 dB and that of both the bowties is below -10 dB. Mutual coupling

between any pair of elements is below -15 dB.

Figure 4.5 shows the gain in capacity v/s SNR for the 3 × 3 UWB tri-polarized

antenna systems. It also show the gain for 6×6 traveling wave antenna system (linear array

of two tri-polarized meanderline antennas at the transmitter as well as the receiver). As in



41

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

ρ (dB)

G

 

 

UWB Antenna

Meanderline TWA

Figure 4.5: Average capacity gain v/s SNR for UWB and Meanderline traveling wave
antenna elements



42

the case of narrowband dipole antennas, the gain is approximately three-fold for a range of

SNRs. The gain varies from 2.74 to 2.95 for UWB antenna and 2.9 to 2.97 for meanderline

antenna.
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Chapter 5

Frequency Selective Surfaces

5.1 Introduction

Frequency Selective Surfaces (FSSs) are periodic arrays (usually two dimensional)

often in the form of printed structures on substrate or apertures in a conducting plane.

These surfaces behave as filters for incident electromagnetic waves based on frequency and

polarization of incident field [5]. The resonant frequency as well as bandwidth of the FSS

depends on the unit antenna element used in the array.

In this study we consider FSSs that are embedded on a fabric. The aim is to

recognize the presence of the fabric from a remote location by illuminating it with microwave

radiation. The (passive) antennas on the fabric are designed so the reflected signal from the

fabric contains some distinct signature that helps in recognizing the fabric. In particular,

we study the benefits that the use of vector antennas can provide when embedded on

fabrics. Vector antennas offer polarization and pattern diversity which has been used in

communication systems to provide higher capacity and improved source localization [1, 30].

5.2 Formulation of the problem

A monostatic antenna is used for transmitting as well as receiving signals. This

transceiver antenna is connected to the network analyzer. A fabric embedded with passive

antennas is placed at a distance r in the far-field of the monostatic antenna. Two sets of

measurements were done to calculate the signature bearing signal, x(f). Let Sfree
11 and Sfab

11

denote the return loss measurements in the absence and presence of the fabric respectively.
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Table 5.1: MSE for FSS of open and shorted dipoles placed orthogonally with dipole
transceiver

MSE MSE (dB)
Transceiver aligned to r X̄ 10 log10(X̄)
Shorted dipole 30 cm 0.0017 -27.69
Shorted dipole 80 cm 1.09× 10−4 -39.59
Open dipole 30 cm 3.2137× 10−5 -44.92

A metric that carries the signature due to fabric is given by

x(f) = |Sfab
11 (f)|2 − |Sfree

11 (f)|2 (5.1)

To quantify the benefits of using these signatures we consider the mean signal energy (MSE),

X̄i over the bandwidth of interest

X̄i =

f2∫
f1

|xi(f)|df

f2 − f1
(5.2)

5.3 Measured Results

5.3.1 Single Transceiver

We use a single dipole as a transceiver. The vector antenna consists of an open and

a shorted dipole placed orthogonally to each other. The dimensions of the unit element and

the fabricated protoype are shown in Figure 5.1. The shorted dipole is supposed to reflect

while the open dipole is supposed to transmit most of the incident energy. The measured

signature signals for r=30 and 80 cm are shown in Figure 5.2 when the transceiver is aligned

along open and short dipoles. Table 5.1 summarizes the MSE for these cases. It can be

observed that at 30 cm the MSE is 17.23 dB higher when the transceiver is aligned with

the shorted dipole as compared to the open dipole as expected. In case the alignment of

the antennas on the fabric is not know a priori, we can use a circularly polarized antenna as

transceiver. In this case, MSE will be high only when the circularly polarized wave aligns

with the shorted dipole. This high change in MSE will occur twice in every cycle of the

polarized wave and can be used to ascertain the presence of the FSS.
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Figure 5.3: Vector antenna array embedded in fabric

5.3.2 Multiple Transceivers

If vector antennas are used in the monostatic transceiver as well as the fabric we

will receive multiple signals with signatures, xi(f) corresponding to each antenna element

of the vector antenna system.

The vector antenna used in this study consists of a square loop and two orthogonal

dipoles shorted at the center. The vector antenna was designed on the fabric using screen

printing process with silver ink. The inter-element spacing in the two dimensional array is

half-wavelength at the center frequency of 8 GHz. The geometry, dimensions and fabricated

prototype are shown in Figure 5.3. Two types of transceivers were used - (1) a square loop

and (2) a half-wavelength dipole. For comparison we use a uni-polarized system as reference.

This system uses 2-dimensional array of dipoles (see Figure 5.4) on a fabric and a dipole as

transceiver.

All the antennas were first simulated in Agilent ADS software and then fabricated

on a substrate with εr = 2.6. Figure 5.5 shows the free space return loss of the dipole and

the loop used in the transceiver. The return loss for the loop and the dipole are below -8

dB and -10 dB, respectively, in the frequency range f1 = 7.8 GHz to f2 = 8.2 GHz.



48

Dimensions Fabricated prototype

18.2 mm

13.1 mm

6 mm

Figure 5.4: Dipole array embedded in fabric

Table 5.2: MSE for FSS of loop and orthogonal shorted dipole antennas with perfectly
aligned loop and dipole transceivers

MSE MSE (dB)
Array element Transceiver X̄ 10 log10(X̄)
Vector antenna Dipole 0.0023 -26.38
Vector antenna Loop 0.0034 -24.68
Dipole Dipole 0.0019 -27.21

The measured signatures obtained for vector antenna and dipole FSS when the

distance between the fabric and transceiver is 30 cm are shown in Figure 5.6. Table 5.2

summarizes the MSE for different combinations of fabric antennas and transceivers. It

can be observed that vector antenna fabric with dipole and loop as transceiver provides

1 dB and 2.5 dB gain respectively with respect to the conventional dipole array. These

individual gains can be further improved if additional signal processing is used to combine

the signature received by dipole and loop antennas. The simplest processing that can be

used on signatures is to combine the two signals

y(f) = x1(f) + x2(f) (5.3)

By combining the signal signatures from dipole and loop antennas, the MSE is raised to

Ȳ = −23.1 dB which is a gain of almost 4 dB with respect to using the conventional dipole
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Table 5.3: MSE for FSS of loop and orthogonal shorted dipole antennas with maximally
misaligned loop and dipole transceivers

MSE MSE (dB)
Array element Transceiver Misalignment X̄ 10 log10(X̄)
Vector antenna Dipole 45◦ 0.0013 -28.86
Vector antenna Loop 45◦ 0.0034 -24.68
Dipole Dipole 90◦ 4× 10−6 -53.92

array.

The above results are valid only when there is exact alignment between the vector

antennas on fabric and the transceiver. The orientation of the fabric is unknown at the

transceiver which can cause misalignment between them. To study the impact of misalign-

ment on the performance of vector antennas we consider the worst case scenario, that is

maximum misalignment. Due the symmetry of the vector antenna design the maximum

misalignment with the transceiver can be 45◦ only while for the conventional dipole array

it can be 90◦. Table 5.3 summarizes the MSE for different cases. It can be observed that

when the vector antenna is illuminated by loop and dipole the loss in MSE is 0 dB and 2.5

dB respectively with respect to perfectly aligned case. This loss is quite small as compared

to the 26.7 dB loss for the conventional dipole array illuminated by dipole antenna. It is

also interesting to note that even in the case of misalignment the MSE does not change

when the square loop is used as a transceiver. This is due to the fact that even tough the

shape of the loop is square it is actually behaving like a circular loop.

5.4 Conclusion

In this chapter, we proposed two types of vector antenna systems to be used

a unit elements of FSS. The two element vector antenna (orthogonal open and shorted

dipoles) is used with a dipole transceiver. As confirmed by measured results at 8 GHz, the

fabricated prototype is capable of providing an alignment dependent signature signal. The

three element vector antenna (two orthogonal dipoles and a square loop) has been used with

two transceivers (dipole and loop). A prototype design fabricated to work at 8 GHz was

tested. Measurement results show that vector antennas provide a higher MSE as compared

to conventional dipole antennas. The multiple signatures can be obtained by using loop and
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dipole antennas at the transceiver. These multiple signatures can be combined to provide

even higher MSE (≈ 4 dB) as compared to the system with two dimensional dipole array and

dipole transceiver. The vector antenna system is also much more resistant to misalignment

with the transceiver.
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Chapter 6

Conclusion and Future Work

In this work, we have studied vector antennas and their applications. In particular,

the performance of tri-polarized vector antennas has been evaluated through three different

approaches - theoretical analysis, computer simulation and experimental measurements. All

the three approaches lead to a consistent result that vector antennas can provide a three-fold

increase in channel capacity.

Linear arrays of tri-polarized antenna elements provide a three-fold increase in the

degrees of freedom as compared to analogous arrays of uni-polarized antennas. Three differ-

ent types of antenna elements have been investigated in this analysis, namely, infinitesimally

small antennas, finite length dipole and long wire traveling wave antenna. For experimental

investigation, two types of tri-polarized antenna systems have been designed. The nar-

rowband system consists of CPS-fed co-located dipole elements and the broadband system

consists of meanderline traveling wave antenna elements. These antennas have been used

in linear array MIMO configuration. From experimental channel measurements we found

that they indeed provide three-fold increase in capacity as compared to analogous arrays of

uni-polarized antennas. Therefore, these vector antennas are compact alternatives for use

in MIMO systems as compared to spatially separated linear arrays.

We also found vector antennas to be very useful for Frequency Selective Surfaces.

These antennas, when embedded on fabrics as unit elements, act like FSS and provide

certain signatures that can help in identifying its presence. We found that vector antenna

FSS provide higher reflected energy and are much more resistant to misalignment compared

to uni-polarized antenna FSS.
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6.1 Future Work

6.1.1 Degrees of Freedom

As a part of this study, we analyzed the degrees of freedom of only linear arrays of

vector antennas. It is of interest to extend this analysis for other types of array geometries

like circular and spherical arrays. For these geometries the analysis presented in this work

becomes cumbersome and mathematically intractable. A degrees of freedom analysis for

uni-polarized arrays with these geometries appears in [8] but the tri-polarized case has been

analyzed only heuristically.

6.1.2 Frequency Selective Surfaces

The present work on integrating vector antennas on fabrics to form Frequency

Selective Surfaces raises some important fundamental questions. It is of interest to develop

a model based on electromagnetic theory that correctly estimates the reflected signal from

the FSS. In this section, we describe the current setup that may serve as guideline for future

investigation. Figure 6.1 shows the experimental setup. As mentioned in chapter 5, we can

measure the reflection coefficient of the transceiver in free space (Sfree
11 ) and in the presence

of the fabric (Sfab
11 ). We also know from Friis transmission equation that

T1 = T2 =

√
GantGFSSλ2

(4πr)2
eikr (6.1)
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where r is the distance between the transceiver and the FSS. Gant and GFSS are the gains

of the transceiver and the FSS, respectively.

(Sfab
11 )a = (Sfree

11 )b + (T1ΓFSST2)c (6.2)

where a, b and c are unknowns. We believe that to correctly determine these constants, we

need understand how the reflected fields from the FSS interact with the transceiver to give

the total reflection coefficient.
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