
abstract

Belasco, Eric Joseph. Three Essays on Modeling Risk in Fed Cattle Production.
(Under the direction of Barry K. Goodwin).

This study examines issues that arise when modeling risk associated with fed cattle

production. While research concerning crop yield and revenue risks are numerous,

studies focusing on production risk in livestock are much less frequent. The first

essay evaluates the relationship among four variables associated with the health and

performance of feedlot cattle, and the resulting production and profit risk. The four

variables of interest include feed conversion rates, average daily gain, veterinary

costs, and mortality rates, which are conditional on characteristics that are known

when the pen is placed into a commercial feedlot. Conditional variables include gen-

der, average weight, feedlot location, and season of placement. A multivariate Tobit

model is used to characterize the relationship among the four dependent variables,

where each element in the covariance matrix is conditional on placement character-

istics. The second essay focuses on modeling cattle mortality rates, alone and as

part of a system. A zero-inflated log-normal distribution is developed and shown

to have advantages in model fit and prediction tests with this data set, relative

to classical methods. A simulated data set is also utilized to assess the potential

bias from assuming a Tobit model when the data are more accurately characterized

through a mixture model. The third essay quantifies the amount of risk inherent in

cattle feedlot operations through the use of simulation techniques. More specifically,

ex-ante profit risks are evaluated under scenarios that utilize varying levels of price

protection through the use of forward contracts and the options market.
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Chapter 1

Background on Cattle Feeding

Risk

This section is intended to offer background on risks in the cattle feeding industry.

The first section begins with a discussion on agricultural risk and available forms

of risk management tools. The discussion then outlines the direction of past and

present farm insurance programs, as well as current cattle insurance offerings. The

final section focuses on describing characteristics unique to cattle feedlots in order

to understand their position in U.S. agriculture and the cattle industry.

1.1 Overview of Agricultural Risk

While risk and risk management strategies are nothing new to agriculture, federal

insurance policies are still attempting to find better ways to insulate farmers from

extreme risks. The formation of the Federal Crop Insurance Corporation (FCIC)

by Congress in 1938 was the first major step towards insuring farmers against risk

using federal funds. The goal of this program was to protect farmer’s income from

crop failure or price collapse. The Great Depression and major droughts throughout

the 1930s led to the formation of federal crop insurance offerings to help farmers

manage risk. This program was originally plagued with low participation rates and

large losses, leading to the reduction of such programs (Goodwin and Smith, 1995).
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Major reforms came in 1980 and 1994, resulting in private/public partner-

ships and the attempted elimination of ad hoc disaster relief. Since then, crop

insurance programs have benefitted from higher participation rates and more pre-

cise premium calculation. As with any insurance program, whether it be public or

private, information regarding the riskiness of the insured agent is critical. Some

of the first federal crop insurance products insured against weather-related loss of

yields. Weather related events leading to lower yields might include drought, hail,

or extreme temperatures. In order to insure against these events at an actuarially

fair rate, the principle insurer must understand the probability of a loss event and

the implications of such an event. An actuarially fair rate occurs when the price of

the policy is equal to the expected loss (Mas-Colell et al., 1995), at which point the

risk averse agent will insure and the program is actuarially sound.

In this way, crop insurance contracts offer farmers a form of risk management

to allow them to manage operations in spite of bad weather. Additional subsidies

further support farm operations to lower the prices of insurance policies. Typically,

farmers have the option of guarding against a minimum level of expected yields,

where expected yields are a function of past performance. In the case where the

realized yields fall below a specified percentage of expected yields, an indemnity

payment is collected by the farmer to make up the difference.

Over the last 10 years, insurance policies have evolved to include revenue

insurance products and area wide plans. Revenue insurance guards against farm

revenue, which is a function of both price and yields. The idea behind this plan is

that price and yields are negatively related so that when yields are low, supply falls,

and prices rise. This causes fewer indemnity payments, relative to yield insurance.

Area-wide plans work to minimize moral hazard distortions by basing expected

and realized yields on an entire area, rather than a single farm. Moral hazard is

one of the largest problems in insurance and occurs when insured agents adjust

2



their behavior, based on level of insurance. In farm operations this includes less

chemicals or fertilizer as a result of the safety net offered by insurance. Fraud can

also be minimized through the use of are-wide programs.

This rebirth of federal crop insurance programs over the past 20 years has

inspired an extensive amount of literature aimed at characterizing agricultural yields.

This motivation can be found in much of the crop insurance literature that attempts

to characterize conditional mean yield densities to evaluate the risks involved with

crop management and accurately price crop insurance premiums.

Some research has focused on the use of the Normal distribution to char-

acterize crop yields (Just and Weninger, 1999). They argued that using a normal

distribution is not unreasonable, given their inability to reject normality. Atwood,

Shaik and Watts (2003) reiterate the importance of not overlooking the normal

distribution and argue in favor of proceeding with caution when dealing with het-

eroscedastic errors. Ramirez et al. (2003) find that corn and soybean yields are

non-normally distributed due to the negative skewness. Sherrick et al. (2004) use

goodness-of-fit measures to test the economic differences between different distri-

butional assumptions and find that the Beta and Weibull distributions best char-

acterize corn and soybean yields, while normal and log-normal distributions fail to

describe the sample data.

Other research has focused on the Beta distribution as an alternative para-

metric measure of crop yields due to its flexibility in allowing for skewness and

kurtosis (Coble et al., 1996; Nelson, 1990; Nelson and Preckel, 1989). Skewness and

kurtosis are commonly found in yield data. Ker and Coble (2003) use Illinois corn

data to show that the Beta outperforms the normal in small samples, while the op-

posite holds in larger samples. However, they point out that most agricultural data

samples tend to be insufficient in size to statistically validate almost any reasonable

parametric model. Gallagher (1987) uses a Gamma distribution in his study and
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proposes a technique for dealing with heteroscedastic yield data.

A major hurdle in most parametric tests is that data is rarely sufficient

enough to eliminate the use of some reasonable parametric forms, while accepting

others. Additionally, a parametric assumption will cause biased estimates when the

assumed distribution is not the true density. To mitigate this problem, both semi-

parametric and Bayesian methods have been proposed by Ker and Coble (2003) and

Ozaki et al. (2006), respectively. A survey of these issues is further examined by

Goodwin and Ker (2002).

1.2 The Evolution of Federal Insurance From Crops to

Livestock

The Agricultural Risk Protection Act of 2000 mandated the development of livestock

insurance plans. Currently, producers of hogs, fed cattle, and feeder cattle can

purchase an insurance policy to guard against unexpected declines in prices with

Livestock Risk Protection (LRP) and Livestock Gross Margin (LGM) insurance.

LRP protects fed cattle producers from unexpected declines in market value, while

LGM offers protection against loss of gross margin (market value of livestock minus

feeder cattle and feed costs). To be more specific, the LRP program protects against

adverse declines in live cattle prices, while the LGM program jointly protects against

adverse swings in gross margin, which is a function of live cattle prices and feed

prices. According to these policies, beef producers may insure up to 4,000 head of

heifers and steers per crop year, weighing between 1,000 and 1,400 pounds. The

length of insurance contract can be from 13 to 52 weeks. Coverage can range from

70% to 95% of the expected ending value.

This program offers advantages over purchasing futures and options on the

Chicago Mercantile Exchange (CME) since the federal insurance contracts can be
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specially tailored to the unique needs of each producer (Hart, Babcock and Hayes,

2001). Additionally, insurance participation rates may eventually be higher than

the amount of producers who currently use futures and options market to manage

risk. Specific knowledge needed to participate in the futures and options market is

not necessary in order to participate in federal livestock insurance programs.

The offering of livestock insurance products involves a much different set of

risk variables when compared to traditional crop insurance offerings. Most crop

programs are based on insuring against adverse swings in yields, as yields are the

largest risk factor. These programs are intended to offset the risks associated with

extreme weather or crop disease. Livestock products are much less sensitive to

extreme weather conditions or shocks that affect yields. While yields can certainly

be variable with livestock, most risk comes in the form of price changes (Schroeder

et al., 1993). This is most notably seen as demand can change dramatically due

to changing consumer preferences, animal disease outbreaks1, or trade restrictions

with major trading partners. Other risk factors with fed cattle production include

feeding performance, mortality, veterinary costs, and corn prices. One of the major

questions facing the early pilot livestock insurance programs is which risk factors

should be covered under these programs when risks can come from production and

price risk.

A recent update of existing federal livestock insurance programs was offered

by Babcock (2005). During this hearing it was pointed out that all states involved

in LRP or LGM programs have less than 2% of the eligible feeder cattle insured.

The low participation rates may be the result of a new insurance program that has

yet to fully gain acceptance among cattle owners, coupled with the closure of both

programs in 2003 due to the discovery of BSE in the United States. In regard to the
1The most notable outbreaks that have affected the demand for beef products include foot-and-

mouth disease (FMD) and Bovine Spongiform Encephalopathy (commonly referred to as BSE or
“mad cow” disease). The effects from food safety outbreaks on meat demand has been analyzed by
Piggott and Marsh (2004).
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development of such a program, crop insurance programs illustrated that acceptance

of new insurance products takes time. The number of head insured by existing cattle

insurance programs is shown in Table 1.1.2 In 2006, 29,593 fed cattle were insured

under existing federal insurance plans, which is tiny relative to the nearly 12 million

cattle on feed in the U.S. as of December 1, 2006 on 1,000+ head capacity feedlots.3

Table 1.1: Head of cattle insured through existing federal livestock insurance pro-
grams, by State and Plan Type

LRP - Fed Cattle LRP - Feeder Cattle LGM
State 2004 2005 2006 2004 2005 2006 2006
Texas 0 37 46 7,364 4,702 5,257 0
Kansas 0 3,023 4,612 27,754 22,565 32,563 3,300
Nebraska 67,884 7,267 9,505 4,396 13,295 22,340 2,613
Colorado 0 530 0 210 1,650 2,340 0
South Dakota 0 3,700 2,016 12,586 18,828 27,864 823
Iowa 28,123 4,406 4,827 252 2,105 3,793 15,273
Oklahoma 0 50 242 14,587 16,923 25,087 1,951
Other 944 6,606 8,345 1,174 22,232 27,566 1,695
Total U.S. 96,951 25,619 29,593 68,323 102,300 146,810 25,655
Source: FCIC Summary of Business (as of 01/15/2007)

While much of the success of this program has yet to surface and will be

revealed over the next few years, it will admittedly avoid some of the moral hazard

problems associated with some crop policies. This is due to the fact that prices

are based on futures prices that cannot be influenced by the actions of individual

policy holders. Specifically, the live cattle prices are from the Chicago Mercantile

Exchange (CME), while feed costs are from the Chicago Board of Trade (CBOT).

In order for livestock insurance policies to be sound and successful, it is essential
2Total head of cattle insured under Livestock Risk Protection plans include both feeder and fed

cattle. Livestock Gross Margin plans became available in 2006.
3Estimated figure published in Cattle on Feed by the National Agricultural Statistics Service,

which was released on December 22, 2006. Cattle on feed for the current month are computed by
starting with the cattle on feed for day one of the prior month and adding the difference over the past
month. This difference is the sum of new placements minus marketed and other disappearances,
which includes mortalities and transfers to other feedlots.
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(as with crop insurance) to accurately model risks. This research attempts to fur-

ther studies into cattle feeder risk by accurately modeling risk components using a

multivariate framework, then combining the risk components together to ultimately

assess profitability risks associated with fed cattle production.

1.3 Overview of Cattle Feeding

The primary function of commercial cattle feedlots is to serve as an intermediate

producer between the period of time when cattle graze in pastures and are send to

packers for slaughter. During this span of time, pens of cattle are fed a high energy

diet, intended to rapidly add weight. Typically beef cattle are transported to begin

the feedlot phase of their life cycle at 11-14 months of age. Upon arriving at the

feedlot, pens of cattle are weighed and given necessary vaccinations and other health

checks. Most cattle weigh between 500 to 900 pounds and are placed on feed for

3 to 6 months where they will usually gain over 3 pounds per day. The amount

of time cattle are on feed is usually set upon entrance to the feedlot, but can vary

slightly due to extreme weather around the expected marketing dates. The number

of days a pen of cattle is placed on feed is largely dependent on the average weight

of the pen. For transportation and feeding reasons, it is desirable to have relatively

homogenous cattle placed together in the pen.

Because feed is largely corn-based, there is natural synergy between corn

growers and cattle feeders. Historically, the Central Corn Belt4 served as the dom-

inant cattle feeding region due to its close proximity to corn(Williams and Stout,

1964). This dominant position began giving way to the plain states over the 1960s

and 1970s, who utilized irrigation rows to grow supplies of grain sorghum that can

be used to feed cattle. Grain sorghum, also known as milo, is more adaptable to
4The Central Corn Belt is defined as Iowa, Illinios, Indiana, and Ohio by Williams and Stout

(1964).
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extreme weather and different types of soil, when compared to corn. The major

growing region for grain sorghum consists of Kansas, Nebraska, Oklahoma, north-

ern Texas, western Colorado, and western New Mexico (Thompson and O’mary,

1983). This region currently holds a large majority of the cattle on feed5 shown in

Table 1.2 because of its grain sorghum production and its relatively mild and dry

temperatures.

Table 1.2: Average Monthly Number of Cattle on Feed in 2005, by State
Cattle on Feed Proportion of Total US

State (1,000 Head) (%)
Texas 2,803 25.8
Kansas 2,318 21.4
Nebraska 2,118 19.5
Colorado 969 8.9
California 525 4.8
Iowa 443 4.1
Oklahoma 335 3.1
Other States a 1,344 12.4
Total US 10,854
a Other States include Arizona, Idaho, South Dakota, Washington, and New Mexico

Source: Cattle on Feed released by the National Agricultural Statistics Service (NASS)

The strong spatial relationship between corn and cattle feedlots illustrates

their interdependence. This relationship is further investigated by Anderson and

Trapp (2000) where a corn price multiplier effect is developed. Feed costs typically

make up more than half of total operating costs on commercial feedlots. Feed

components are purchased throughout the feeding period on a cash or contract

basis, then mixed and distributed to fence-line bunks for consumption. Most feedlots

typically use a corn-based feed that is comprised of grains, roughage, and protein

supplements. Major grains include corn and milo, where a mixture of the two is used
5The USDA defines cattle on feed as “animals being fed a ration of grain, silage, hay and/or

protein supplement for slaughter market that are expected to produce a carcass that will grade
select or better. It excludes cattle being ’backgrounded only’ for later sale as feeders or later
placement in another feedlot.”
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in the southern plains. Roughage components are the second largest ingredients in

cattle feed, which can comprise of corn silage, sorghum silage, or alfalfa hay. The

exact combination of feed used largely depends on location in an effort to minimize

cost and utilize home markets. Once cattle weight over 700 pounds, their diet

typically consists of protein that accounts for 11% of total feed matter (PSU, 2001).

Protein supplements are comprised of many ingredients, including soybean meal,

urea, ammonia, brewers grains, and cottonseed meal (Ritchie, 1994). Upon arrival

to the feedlot, cattle are continued on a diet of grass and quickly transitioned to

a high-energy diet over a 2-3 week period. This transition takes place with the

gradual decrease of hay and replacement of feed diet. Feed used for finishing diets

are roughly three-fourths corn.

The largest source of risk within fed cattle production is the vulnerability to

changes in cattle prices (Schroeder et al., 1993). This risk is a major reason why

cow/calf breeders sell ownership of their cattle before they are placed on feed. When

cattle are ready to be placed on feed, the cattle owner faces a decision concerning

whether to retain ownership of the pen or sell for the feeder cattle price. Changes in

this price are highly correlated with the price of cattle at the end of feeding, which

is the fed cattle price. While both cattle prices change significantly throughout the

year, lighter-weight cattle of the same grade cost more per pound. Major tools for

managing this risk comes from the purchasing of futures and options through the

Chicago Mercantile Exchange or newly released insurance products from the federal

government. Profits from cattle ownership can largely influence incomes when the

market for fed cattle takes a dramatic turn.

There is a distinct difference between owning feedlot facilities and owning

cattle on feed. Custom feeding of cattle is a popular offering at larger feedlots.

Over the last 20 years, large-scale feedlots have played a growing role in the cattle

industry as shown in Table 1.3.
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Table 1.3: Proportion of U.S. fed cattle sales by feedlot size
Feedlot capacity (number of head)

Less than 1,000- 2,000- 4,000- 8,000- 16,000- More than
Year 1,000 1,999 3,999 7,999 15,999 32,00 32,000
1985 19.0 4.0 6.1 7.3 15.0 19.7 29.0
1990 15.6 4.1 7.0 7.5 14.5 23.0 28.2
1995 9.7 4.1 5.3 8.1 14.2 21.1 37.6
2000 14.2 3.2 4.6 7.6 11.1 19.4 39.8
Note: Figures are reported as percentages

Source: United States Department of Agriculture (2001)

Custom feeding contracts split risk between the cattle owner and the feedlot

owner to differing degrees, depending on the type of contract. By custom feeding

ones herd of cattle, the cattle owner can retain ownership in order to reap the

benefits from genetic advantages or market changes, while taking advantage of the

feeding expertise of the commercial feedlot. There are three major types of contracts

between the feedlot and cattle owners; a yardage fee plus feed costs (YF) contract;

a yardage fee plus feed costs and a markup on feed costs (YFMU); and a guaranteed

cost-of-gain (GCOG) contract (Weimar and Hallam, 1990). These contracts differ

in the way price, production, and cost of feed risk is distributed between the cattle

owner and feedlot operator. The cattle owner is sometimes the cow/calf breeder,

but can also be an outside investor, the feedlot itself, or the packer.6

Historically, most fed and feeder cattle are sold on a cash basis through

livestock auctions (RTI, 2007). Here the price is based on the average weight of

the entire pen, which ignores any quality differentiation.7 More recently, the beef

industry has moved to offer additional options when it comes to marketing live

cattle. These new offerings include grid pricing and dressed weight pricing. Dressed

weight alternative options are further explained by Fausti and Feuz (1995) as well as
6This is an issue that was investigated by United States Department of Agriculture (2001).
7This paper focuses its attention to production risk and assumes that cattle are marketed on

a cash basis in its profit simulations. However, an area of increasing interest is the modeling of
quality risk to accommodate grid pricing formulas.
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Marsh (1999). Alternatively, grid pricing has been discussed by Fausti and Qasmi

(2002) among others.
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Figure 1.1: Location of Cattle Feedlots, 2002
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Chapter 2

A Multivariate Evaluation of

Ex-ante Cattle Feeding Risks

2.1 Introduction

Cattle feeding can be a risky venture. From the time of cattle placement to finishing,

which usually lasts 3-5 months, the value and profitability of cattle can change

immensely. Most of this risk comes in the form of fed and feeder cattle price risk,

but can also come from large swings in feed prices. Both of these factors, which

pose more than half of the variability in cattle feeder profits, are out of the cattle

owners’ control. In addition, the overall productivity of the pen can present risks

that are akin to yield risks with crops.

Research from the crop insurance literature has indicated that agricultural

yields can be modeled in a number of different ways. These differ in the restrictions

that are imposed on the data. For example, parametric methods assume a particular

distributional assumption, which is efficient when the form is correct, but biased

when the assumption is incorrect. Different distributions have been argued to be

the most accurate characterization of crop yields, which include the normal, log-

normal, beta, gamma, and weibull distributions to name a few.

In modeling the ex-ante risks, variables known at the time of placement
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that may affect the expected mean or variance must be taken into account. Past

cattle feeder research has shown that cattle feed conversion, average daily gains,

mortality rates, and health are significantly affected by variables such as gender,

location of the feedlot, average weight of the pen, and time of year the pen is

placed. By conditioning on these variables, each pen of cattle can be modeled using

a multivariate regression model.

Cattle yields present some additional complexities when compared to crop

yields. The first difference is that production risk can be represented by four separate

measures. These four yield components are usually highly correlated and have a

dynamic relationship. A recent study by Belasco et al. (2006) modeled each of the

four yield measures separately then using the parameter estimates computed the

covariance matrix. Significant efficiency can potentially be gained in a multivariate

framework, with the additional information that can be learned on the dynamic

nature of the yields relationship.

The second complexity associated with cattle production yields is the intro-

duction of a censored variable into the set of yield factors. Mortality rates in cattle

feeding present a significant degree of censoring as nearly half of all pens in the data

used in this research, had no mortalities. More specifically, mortality rates can be

modeled as a latent variable where the variable is observable for positive values and

unobservable for small positive values of the distributional realizations. To account

for this relationship, a dynamic multivariate Tobit model will serve to model the

latent mortality variable.

Once the dynamic multivariate relationship is characterized with the previ-

ously mentioned yield variables, profits will be simulated based on random draws

from these yield variables. The profit function will consist of the six previously

mentioned random variables. In order to model profits, the random variables will

need to be jointly modeled by allowing for conditional covariance between the yield
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variables. Once the profit model is identified and characterized, profit simulations

will provide insights into the effects from shocks on profits and revenue.

2.2 Literature Review

Studies investigating the risk factors associated with cattle feeding have keyed on

the fact that risk comes from many different sources. To add to the complex nature

of this risk, the variability changes as many of the key variables change.

One of the earlier studies focusing on cattle feeding profitability came from

Swanson and West (1963). This study regressed returns to cattle feeding as a func-

tion of the gains from the price margin (difference between fed and feeder cattle

prices times the purchase weight) and the value of feeding margin gain. To measure

the influence of each independent variable to the overall variability, the coefficient

of separate determination method was employed. This method was originally sug-

gested by Wright (1921) and has the admitted problem of erratic estimates resulting

from correlation between the independent variables. In spite of this limitation, this

method allows for a direct measure of the variable’s effect on overall variation.

This study found that variation in returns are partially explained by price margin

variation (38%) and feeding margin gain (44%), while 18% of the variation was

unexplained.

This methodology provided a strategy to isolate the effects of cattle feeder

risks. The next step was to estimate a profit function with more detail so that

risks can be isolated to more specific components of cattle feeding. This step was

taken in a study by Schroeder et al. (1993) where over 6,000 pens of steers from

two major Kansas feedlots were evaluated. They concluded that 70 to 80 percent

of the variation in cattle feeder profits came from variation in fed and feeder cattle

prices, while the price of corn explained 6 to 16 percent of the variation, and cattle

performance (which included average daily gain and feed efficiency) accounted for
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less than 10 percent.

Langemeier, Schroeder and Mintert (1992) included both steer and heifer

pens in their sample and found that fed and feeder prices accounted for 50 and 25

percent of variability in cattle feeding profits, respectively. Meanwhile, corn price

variability explained up to 22 percent of variability and animal performance ex-

plained less than 1 to 3.5 percent variability. In addition to echoing the results from

Schroeder et al. (1993), this research also identified variables that affect the ex-

pected value and variability of profits. More specifically, 22 percent of the difference

in steer and heifer profits are directly attributed to differences in feed conversion.

Also, the impact from average daily gain on profits increases with placement weight.

It is important to point out that not only does profit variability come from a few

different sources, but these impacts change with different pen characteristics.

With the two previously mentioned studies of cattle feeder variability using

data from large Kansas feedlots, a study by Lawrence, Wang and Loy (1999) utilized

data from smaller Midwest feedlots. With their data set consisting of 223 different

feedlots and over 1,600 pens, their hypothesis was that with feedlot locations spread

over 5 states with wider climatic variations and smaller operations would result in

a greater role from animal performance on profit risk. They essentially replicated

earlier studies again using the coefficient of separate determination, but now to

include a much different data set. Fed and feeder cattle prices together still explained

around 70 percent of profit variability. As expected, animal performance (average

daily gain) played a larger role in profit risk in explaining between 6 to 15 percent

of the overall profit variation. The effects from corn variation fell below that of

animal performance. Two possible explanations are given for the differences with

previous research in animal performance’s impact on profit variation; (1) climactic

variation in Iowa and its surrounding states are higher than in Kansas; and (2)

greater differences amongst feedlot operations.
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Up to this point, research has focused on the amount of variability coming

from prices and animal performance, while not explicitly evaluating the effect that

pen characteristics might have on changes in variability and expected profits. 1

In an updated study by Mark, Schroeder and Jones (2000), an enhanced data set

included over 14,000 pens from two major Kansas feedlots. The focus here is to

evaluate the relationship between fed price, feeder price, corn price, interest rate,

feed conversion, and average daily gain with expected profits and the variability

of profits using standardized beta coefficients. The method of standardized beta

coefficients can be summarized in the following manner. If we define the following

function

Y = f(X1, X2, ..., Xk) (2.1)

then by regressing the normalized independent variables on the normalized depen-

dent variables, a unitless coefficient, β∗j is obtained from equation (2.2)

Yi − Ȳ

SY
=

k∑
j

β∗j
Xij − X̄j

SXj

+ ε (2.2)

where S indicates the standard deviation. This method allows for the estimation

of the relative impacts each independent variable contributes to the overall vari-

ability of the dependent variable. The previously mentioned research indicates that

variability can change for different values of placement weight, season, and gen-

der. Additionally, Mark and Schroeder (2002) explicitly show that the season of

placement has significant effects on profitability and animal performance.

Using a different strategy, Buccola (1980) builds a model of break-even feeder

cattle prices to investigate the influence of important supply and demand factors

on feeder cattle price differentials. Emphasis is placed on the price differences from
1The exception to this statement is the discussion of the differences between steer and heifer

pens (Langemeier, Schroeder and Mintert, 1992).

17



weight and sex categories. Twenty years of Virginia state-graded feeder cattle trans-

action data were used and separated by year, sex, and season. Sale prices were

then regressed or conditioned on these variables. Results indicated that feed price

changes impacted light-weight feeder cattle prices more than heavy-weight feeder

cattle prices, suggesting corn prices have less influence on profit per head as place-

ment weight increases. An important point to this paper is that a strictly linear

relationship between ration cost, live cattle futures price, and feeder-cattle price is

not the most appropriate representation of the feeder-cattle market.

To advance the point that profits cannot be linearly determined, Anderson

and Trapp (2000) demonstrate that changes in the price of corn can lead to changes

in placement weight, slaughter weight, and feed conversion rates. They also state

that a break-even price model strategy allows for the multiplicative effects of the

variables to be taken into account.

With the previously mentioned studies in mind, we can point to a few facts

that run throughout the literature. First, most cattle feeder profit risk stems from

swings in fed and feeder cattle prices. With this being said, any risk management

strategy must begin with managing the possibility of cattle prices dramatically drop-

ping during the feeding period. Second, animal performance factors significantly

contribute to risk and are the only identified sources of risk that the feeder can af-

fect through operational and placement decisions. Third, variables such as gender,

placement weight, and time of placement can have significant effects on expected

profits and variability.

2.3 Yield Modeling Framework

This section will lay out the framework used for modeling the four identified yield

factors in fed cattle production. The first section will lay out the general strategy

of modeling yields within an ex-ante framework, describing which variables are con-
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ditioned on at the beginning of the feeding cycle. The next section will make the

case for a multivariate modeling strategy. Then a proposed method for estimation

will be explained that allows for censored observations.

2.3.1 Ex-ante Conditional Modeling Strategy

Within the framework of insuring risks, current ex-ante information and past ex-

post information is usually all that is available. In the case of insuring owners

of cattle on feed, it is important to note certain variables that can have an effect

on both the expected value and variance of profits. These characteristics include

pen characteristics such as gender, weight upon entrance to the feedlot, location

of the feedlot, and the season of placement. Conditioning on variables known to

influence variable outcomes focus attention on risks associated with activity that

occurs throughout the production process. Past studies have shown that these

conditioning variables can have a significant effect on the first two moments of

expected profits and each of the yield factors (Belasco et al., 2006). Each pen with

its own unique characteristics should be expected to bring a different set of risks

and expected values. The strategy of this research is derive a probabilistic measure

for the four yield factors, in order to jointly model production aspects, profits, or

revenue.

This framework utilizes the information known when a contract is made with

the insured party. This strategy allows the model to control for information that is

known at the time of placement, while characterizing the distributional character-

istics of the error components that reflect the areas of risk during the feeding cycle.

As with any type of insurance, characteristics of the insured will affect the premium

rate for coverage. This occurs because certain characteristics make certain events

more likely. For example, mortality rates should be lower for pens that enter with

higher weights due to their superior maturity and shorter stay on the feedlot. The
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point here is that it is important to grasp onto these variables that affect the mean

and covariance of performance.

2.3.2 The Case for Multivariate Modeling

One major difference between modeling crop yields and that of fed cattle production

is that one can identify four separate correlated yield measures, of which each con-

tribute to overall yields and profitability. In the case where each of the four yields

are unrelated, it would not be problematic to model each yield factor separately to

estimate the marginal effects on the mean and variance. However, if the yields are

correlated with one another, then a framework that accounts for this dependency

will potentially improve model efficiency.

To illustrate, consider the extreme weather case. Belasco et al. (2006) demon-

strate that pens placed in the fall and fed as the temperatures drop into colder winter

temperatures, typically have higher feed conversion rates and mortality rates. Ad-

ditionally, veterinary costs are insignificant, however a higher mortality rate may

allow for less of the pen to be cared for. Based on this, an extremely cold winter

may exaggerate these relationships, leading to correlated error residuals among the

yield factors. Efficiency gains can be made in this case by modeling the system of

equations simultaneously.

Another example is the strong relationship between the feeding efficiency and

daily gains for cattle. As cattle are able to convert pounds of feed into weight gain

more efficiently, the speed of weight gain will increase. Both examples illustrates

the interdependence of the four yield factors. Shocks that are not controlled for by

the conditioning factors are likely to affect each one of the conditioning variables.

To take this a step further, it will also be important to control for any

dynamic effects on the correlation structure. For example, some entry characteristics

may lead to stronger or weaker relationships between the variables. If there is
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shown to be a relationship between the data and the correlation between dependent

variables, then it is important that it is captured as part of this model.

2.3.3 Econometric Model

The variables that introduce production yield risk into the cattle feeder profit func-

tion are dry matter feed conversion (DMFC), average daily gain (ADG), the mor-

tality rate (MORT), and veterinary cost per head (VCPH). As seen in past studies,

these variables are influenced by pen characteristics such as gender, location, av-

erage in-weight, and season of placement. These factors affect both the expected

value and variance for each yield measure. Additionally, there are significant corre-

lations between each yield measure. The modeling strategy to follow will account

for each of these complexities and characterize the probabilistic models of the cat-

tle yield factors involved with fed cattle production. Additionally, the proposed

model accounts for cross correlation between yields by using a multivariate normal

distribution, rather than the uncorrelated univariate normals that was originally

proposed by Belasco et al. (2006).

The model is specified as follows:

Yi = XiB + εi (2.3)

E[εi|Xi] = 0 (2.4)

V ar[εi|Xi] = Σi = Σ(Xi) (2.5)

where εi are independent, Yi = [DMFCi, ADGi,MORTi, V CPHi] and B is a px4

matrix containing the marginal effects of each conditioning variable on all four yield

factors. Xi is a 1xp matrix containing the following seven conditioning variables

for each observation that include a constant term, the log of average in weight, and
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binary variables indicating gender, location, and season of placement.

X ′
i =



1

Steers

Mixed

KS

Log(Inwt)

Winter

Fall

Spring



(2.6)

The 1x4 vector of errors, εi is assumed to have mean zero and covariance matrix,

Σi. Σi contains the covariance elements and is a 4x4 unknown positive definite (p.d)

matrix. Notice that the covariance matrix is allowed to vary by observation. We

propose to model Σi = Σ(Xi) using the following unique decomposition of a p.d.

matrix (Lau, 1978):

Σi = T ′
iDiTi (2.7)

where Ti is upper triangular with ones along the main diagonal and Di is diagonal

matrix with positive diagonal entries. More specifically,

Ti =


1 t12i t13i t14i

0 1 t23i t24i

0 0 1 t34i

0 0 0 1

 (2.8)
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and

Di =


d1i 0 0 0

0 d2i 0 0

0 0 d3i 0

0 0 0 d4i

 (2.9)

Upper off-diagonal elements of Ti are unrestricted while the diagonal elements

of Di are restricted to positive values. We use a linear regression to model Ti and

Di as follows:

log


d1i

d2i

d3i

d4i

 = GX ′
i (2.10)

where G is a 4xp matrix of regression coefficients. The off-diagonal terms within

Ti are also a linear function of the conditioning variables and have the following

relationship 

t12i

t13i

t14i

t23i

t24i

t34i


= AX ′

i (2.11)

where A is a 6xp matrix of regression coefficients. Covariance terms are first-order

fully flexible within the regression framework. This model is an improvement from

the two-step method used in Belasco et al. (2006).

The maximum likelihood method to obtain parameter estimates uses the

23



following likelihood function:

L(B,A, G|Y, X) =
n∏

i=1

|Σi|−
1
2 exp

(
−1

2

n∑
i=1

(Yi −XiB)Σ−1
i (Yi −XiB)′

)
. (2.12)

Given n observations, this leads to the following negative log likelihood function (up

to an additive constant) that is minimized with respect to elements within B, G,

and A.

LL =
1
2

n∑
i=1

ln |Σi|+
1
2

n∑
i=1

(Yi −XiB)Σ−1
i (Yi −XiB)′ (2.13)

By modeling yields in the preceding manner, the model is flexible enough

to allow for expected values and covariances between the yields to vary with the

conditioning variables. These are key components to modeling the nature of risk in

fed cattle production where the expected distributional properties can change, given

the characteristics of the pen.

Thus far, the model assumes that all variables are completely observable

across observations and free from any censoring or truncation bias. However, in

the case of mortality rates, these values are censored at zero. This problem may

cause us to underestimate mortality rates due to biased parameter estimates caused

by the censoring mechanism (Greene, 2003). The most widely accepted solution to

regressing censored dependent variables in the univariate case was first proposed by

Tobin (1958) and is known as the Tobit Model. This method essentially assumes

there is a latent variable, y∗i , which linearly depends on the associated independent

variables, Xi, where we observe yi in the following way:

yi =

 0 if y∗i ≤ ci

y∗i if y∗i > ci

(2.14)

where ci is the censored value. Notice that when yi is censored at zero, the only
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information we have is that y∗i ≤ 0. So the likelihood function becomes

L(β, σ2|x) =
∏

i:yi>0

φ

(
yi − xiβ

σ

)
1
σ

∏
i:yi=0

Φ
(
−xiβ

σ

)
(2.15)

where Φ is the CDF and φ is the PDF of a standard normal distribution, respec-

tively. In the case of censored dependent variables, the use of maximum likelihood

estimation has been shown to result in estimators that are consistent and asymptot-

ically normal (Amemiya, 1973), provided the assumed parametric model is correct.

This method has been useful in applications spanning consumption, production, and

income.

Censored univariate regressions have been extended to multivariate modelds

and shown to posses the same attractive asymptotic properties as in the univariate

case (Amemiya, 1974; Lee, 1993). The multivariate Tobit model has been consid-

ered in a number of recent studies. Cornick, Cox and Gould (1994) formulate a

multivariate Tobit model in order to analyze fluid milk consumption expenditures

and account for the correlations across milk types. Eiswerth and Shonkwiler (2006)

investigate the success of plant seeding that follows wildfire on arid rangeland, where

all types of grass do not typically grow together simultaneously due to geograph-

ical differences. Also, Chavas and Kim (2004) use a dynamic multivariate Tobit

model to evaluate price dynamics when price floors exist in a given market. The

dynamic component plays an important role in this analysis as the data is evaluated

over time, where the correlations between prices adjust over different time periods.

While the covariance matrix changes over time, it is held constant for differing values

of the other conditioning variables. Here, we expand on these studies by allowing

for the interdependence between the dependent variables to be a function of the

data. The idea is to model the latent variables through the use of a multivariate

Tobit model, using a dynamic multivariate sampling distribution under conditional

heteroskedasticity while allowing for interdependence between the residuals.
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In the univariate case, each observation can fall into one of two possible

regimes where the dependant variable is either censored or not. However, within

the framework of a generalized multivariate Tobit model, the possible censoring

regimes increase to 2m where m is the number of censored dependent variables. For

our purposes, four dependent variables lead to 16 possible regimes. Due to the fact

that only one variable is censored, only two regimes are possible. For observations

with multiple censored dependent variables, integration becomes more complex by

adding a dimension for each censored variable. As long as this dimension is not

greater than three, standard maximum likelihood methods can be used (Chavas

and Kim, 2004).

To obtain the likelihood function, each observation must be ordered as cen-

sored or noncensored variables for each regime. To this end, Yi will be partitioned

into its censored variables, y
(1)
i , and uncensored variables, y

(2)
i , under each regime:

Y ′
i =

 y
(1)
i

y
(2)
i

 (2.16)

Further, the sample log-likelihood function corresponding to each individual, can be

expressed as follows:

LL =
∑

i:Mort>0

{ln [φ(Yi;µi,Σi)]}+
∑

i:Mort=0

{
ln
[
φ(y(2)

i ;µ(2)
i ,Σ22i)

]
+ ln [Φ(0; γi, λi)]

}
(2.17)

where φ(y;µ,Σ) refers to the multivariate normal probability density function with

mean vector, µ, and variance covariance matrix, Σ, while Φ(0; γ, λ) denotes the uni-

variate cumulative distribution function evaluated at 0 with mean, γ, and variance,

λ. The censored variable is modeled based on a multivariate normal density and is

a function of the observable variables within the same observation. For this reason,
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the conditional mean and variance for y
(1)
i given y

(2)
i are respectively:

γi = µ
(1)
i + Σ12iΣ−1

22i

(
y

(2)
i − µ

(2)
i

)
(2.18)

λi = Σ11i − Σ12iΣ−1
22iΣ21i (2.19)

where Σi is decomposed into the following components:

Σi =

 Σ11i Σ12i

Σ21i Σ22i

 (2.20)

where Σ11 corresponds to the censored variables and Σ22 corresponds to the non-

censored variables. This illustrates the major difference between the univariate and

multivariate Tobit models, in that the expected mean and variance are a function

of the other observed dependent variables. The negative log likelihood function is

now given by

LL =
1
2

∑
i:Morti>0

{
ln
(
|Σ−1

i |
)

+ (Yi −XiB) Σ−1
i (Yi −XiB)′

}
+

1
2

∑
i:Morti=0

ln
(
|Σ−1

22i|
)

+
(
y

(2)
i −X

(2)
i B(2)

)
Σ−1

22i

(
y

(2)
i −X

(2)
i B(2)

)′
+

ln

(
Φ
[
− γi√

λi

])
(2.21)

where B can be broken into two components containing the parameter estimates

for the censored variable (e.g., MORT), B(1), and the parameter estimates for the

uncensored variables (e.g., DMFC, ADG, and VCPH), B(2).2

2One drawback from using the model described above is that the optimization routine necessary
to estimate all parameters may take quite long to converge. The next essay will focus on a Zero-
inflated regression model that may work to shrink the computational burden from estimating so
many parameters, as well as improve estimation efficiency.
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2.4 Data

The proposed model is fitted to a comprehensive set of data collected from five

commercial cattle feedlots located in Kansas and Nebraska. Proprietary production

and cost data were obtained for 11,397 pens of cattle from 1995 to 2004. Table 2.1

contains summary statistics from the data sample.

Table 2.1: Variable Descriptions and Summary Statistics
Std Min Max

Variable Description Mean Dev Value Value
DMFC Dry matter feed conversion 6.19 0.72 4.00 24.00

(lbs feed / lbs gain)
ADG Average Daily Gain (lbs gain / day) 3.36 0.48 0.74 5.78
VCPH Veterinary cost per head ($) 11.83 6.25 0.00 60.00
MORT Percentage of pen that die 0.93 1.53 0.00 25.83

Uncensored observations only 1.71 1.73 0.16 25.83
Percentage of censoring (%) 46.60

InWeight Average weight per head of 737.50 87.22 500.00 900.00
cattle upon entrance (lbs)

Winter Binary variable equal to 1 if 0.25
entry between Dec-Feb

Spring Binary variable equal to 1 if 0.23
entry between Mar-May

Fall Binary variable equal to 1 if 0.25
entry between Sep-Nov

Steers Binary variable equal to 1 if 0.51
entire pen were Steers

Mixed Binary variable equal to 1 if 0.12
pen was mixed gender

KS Binary variable equal to 1 if 0.80
Kansas feedlot location

Total sample size n=11,397 pens of cattle

Dry Matter Feed Conversion (DMFC) measures the pounds of dry feed re-

quired per pound of live weight gain. To compute the average DMFC for a given

pen, total dry feed consumed is divided by the total weight gained during the feeding

cycle. Average daily gain (ADG) captures the average pounds gained throughout
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the feeding period. Veterinary costs per head (VCPH) are calculated by dividing the

total dollar amount spent on veterinary services by the pen size upon entry. The

mortality rate (MORT) is a percentage calculated as the number of death losses

during the feeding period divided by the number of head initially placed on feed.

Figure 2.1 shows the extent of correlation among the dependent variables.

The size of a pen of cattle averaged 134 head with an average placement

weight of 738 pounds and an average finished weight of 1,178 pounds. InWeight is

measured as the average weight per head in each pen upon placement on feed.3 The

log of InWeight is used as a conditioning variable. To capture seasonal effects, binary

variables are constructed to denote Winter, Spring, Summer, and Fall seasons. In

the U.S. there are distinct seasonal trends to placing feeder cattle on feed. Feeder

cattle marketings peak in the fall when the calf crop is weaned and transported,

while young cattle go on grass in the spring, which coincides with a slow-down

in feedlot placements. While there is evidence in favor of placement time of year

having an effect on production yield factors (Mark, Jones and Mintert, 2002), cattle

need to be placed at all times of year so that feedlots remain near full capacity.

Additionally, to keep feedlots near full capacity, pens of cattle must move along

their feeding cycles keeping with a relatively tight schedule. Table 2.2 illustrates

the unique pen characteristics that are associated with pen placements at different

times of year.

Typically, pens of cattle finish near their scheduled dates for two major rea-

sons; in order to keep cattle moving through the feedlots so that new pens can enter

and contracts with packing plants restrict the flexibility feedlots have to release pens

of cattle whenever optimal. Finishing days can adjust slightly and are mainly due

to extreme weather. In this data, fall placements tend to be lighter than any other

season, while spring placements tend to bring heavier weights (see Table 2.3).
3Pens with average placement weights below 500 pounds and above 900 pounds were excluded

from our sample.
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Figure 2.1: Scatter plots of dependent variables
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Table 2.2: Pen characteristics of different placement seasons
Variable fall winter spring summer
Observations 2,884 2,898 2,615 3,000
DMFC 6.44 6.10 6.07 6.15
ADG 3.22 3.29 3.45 3.48
Intake 20.48 19.89 20.73 21.11
VCPH 13.11 11.50 10.64 11.96
MORT 1.14 0.92 0.70 0.95
InWt 719.69 730.77 760.65 740.93
OutWt 1,160.91 1,170.64 1,187.43 1,192.96
Days on Feed 134.66 131.52 120.90 127.55
Proportion of sample:
Steers 0.51 0.56 0.47 0.50
Heifers 0.36 0.32 0.41 0.39
Mixed 0.13 0.12 0.12 0.11

Table 2.3: Comparison of Different Weight Classes
Variable 500-600 600-700 700-800 800-900
Observations 815 2,876 4,545 3,061
DMFC 6.22 6.13 6.19 6.25
ADG 2.93 3.19 3.40 3.56
Intake 18.03 19.30 20.81 22.00
VCPH 17.79 13.86 10.91 9.73
MORT 1.97 1.22 0.79 0.61
InWt 561.09 656.93 749.90 841.34
OutWt 1,091.14 1,124.00 1,181.86 1,245.66
Days on Feed 176.23 143.01 123.78 110.55
Proportion of sample:
Winter 0.26 0.28 0.26 0.22
Spring 0.10 0.17 0.25 0.29
Summer 0.25 0.25 0.27 0.28
Fall 0.39 0.31 0.22 0.21
Steers 0.28 0.35 0.50 0.74
Heifers 0.52 0.50 0.38 0.19
Mixed 0.21 0.15 0.12 0.07
KS 0.62 0.80 0.84 0.81
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On average, pens spent 129 days on feed, meaning most pens are fed through-

out more than one season. For example, a pen placed in the pleasant fall months will

likely be on feed while temperatures drop towards colder winter averages. Binary

variables are also used to differentiate pens by gender (Steers, Heifers, and Mixed)

where pens comprised of all steers make up more than half of the data sample.

Steers are more often used for feeding due to the faster pace with which they put

on weight, whereas heifers put on weight slower, max out at a lower weight, and are

used for reproduction.

Binary variables are also used to differentiate feedlot location by state, which

include Kansas and Nebraska. Feedlot locations could additionally be split by feed-

lot, however within Nebraska and Kansas each feedlot does not appear to be signif-

icantly different. The two Kansas feedlots are relatively larger than the Nebraska

feedlots. Additionally, the Nebraska feedlots keep their pens for more days on feed,

resulting in lower DMFC and wider weight swings. Table 2.4 illustrates the major

differences among feedlots located within Kansas and Nebraska in our data set.

Table 2.4: Comparison of Kansas and Nebraska Feedlots
Variable Kansas Nebraska
Observations 9,157 2,240
DMFC 6.04 6.79
ADG 3.40 3.20
VCPH 11.34 13.85
MORT 0.929 0.952
InWt 741.6 720.8
OutWt 1,171.9 1,202.6
Days on Feed 124.0 148.7
Total sample size n=11,397 pens of cattle

The Kansas feedlots also have set up contracts with backgrounding oper-

ations (also known as stocker operations), where pens of cattle are more slowly

transitioned from feeding on grass to the protein-rich diets they receive once at the
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feedlot. Background operations are advantageous to larger feedlots since lighter

weight cattle are riskier in production. Lighter weighted cattle are shown to have

significantly higher mortality rates and lower rates of average daily gain, as shown

in Table 2.3. To minimize this risk, background operations prepare lighter weight

cattle to go on feed by grazing for a period of time before they are placed on feed.

Histograms of the dependent variables and entry weight are shown in figure

2.2. Here the positively skewed nature of DMFC, VCPH, and MORT are quite ap-

parent. For this reason the log of DMFC and VCPH is taken in order to symmetrize

the variables. Unfortunately, there is no mechanism to take the log of mortality rates

since so many observations are zero. Alternatively, ADG is already distributed sim-

ilar to a normal distribution centered at 3.4. These histograms also illustrate the

importance in recognizing the yield factors are not fixed and should be thought of

as components of risk in order to more accurately describe fed cattle production.

Additional data from the CBOT and CME databases may be used in order to

utilize expected fed cattle and corn prices. More specifically, based on the placement

date, a 5 month live cattle futures price reflects the expected selling price, given the

cattle are feeding for 5 months. Additionally, estimated feed costs can be estimated

with a 2 month corn futures price to average the expected price of corn over the 5

month feeding cycle.

An additional complexity is the censored nature of mortality rates within

the data. Nearly 40% of the observations contained no death losses, while some

observations had mortality rates above 20%. With a large portion of the observa-

tions containing zero values, the parameter estimates will be biased. Belasco et al.

(2006) used a Tobit model to correct for censoring, however this was in a univariate

setting. The Tobit model was expanded by Chavas and Kim (2004) to account for

a dynamic multivariate Tobit model under conditional heteroscedasticity. This re-

search employs a similar strategy, with the additional flexibility that the correlations
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Figure 2.2: Histograms of quantitative variables
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between variables are allowed to vary, given the unique conditioning variables.

2.5 Estimation Results

The four cattle production yield variables must be estimated by taking into account

the finding that each conditioning variable has an effect on the mean and covariance

terms. Due to this, it is necessary to discuss the results from each conditioning vari-

able in the context of all yield measures. These parameter estimates contained in

matrices B and G are displayed in Table 2.5. This section begins with an interpre-

tation of the parameter estimates on the mean components of the system. The next

section deals primarily with the covariance parameter estimates. The estimation

results accompanying this discussion can be found in Table 2.6.

Table 2.5: Maximum likelihood parameter estimates
DMFC ADG MORT VCPH

Variables coeff. se. coeff. se coeff. se coeff. se
Intercept: 0.675∗ 0.046 -3.445∗ 0.213 24.049∗ 1.225 10.708∗ 0.224
Steers: -0.069∗ 0.002 0.300∗ 0.008 0.191∗ 0.045 0.065∗ 0.009
Mixed: -0.027∗ 0.003 0.128∗ 0.013 0.597∗ 0.084 0.214∗ 0.015
Kansas: -0.123∗ 0.002 0.169∗ 0.010 -0.102 0.048 -0.221∗ 0.008
Log(inwt): 0.193∗ 0.007 1.002∗ 0.033 -3.610∗ 0.187 -1.241∗ 0.034
Winter: -0.003 0.002 -0.171∗ 0.010 -0.088 0.054 -0.081∗ 0.010
Fall: 0.050∗ 0.002 -0.221∗ 0.011 -0.032 0.060 0.003 0.010
Spring: -0.018∗ 0.002 -0.041∗ 0.010 -0.228∗ 0.055 -0.080∗ 0.011
Heteroskedasticity:
Intercept: -9.067∗ 0.739 -8.804∗ 0.723 12.716∗ 0.886 7.168∗ 0.788
Steers: -0.060 0.030 0.058 0.030 -0.042 0.038 -0.527∗ 0.031
Mixed: 0.481∗ 0.044 0.143∗ 0.044 0.583∗ 0.055 -0.265∗ 0.046
Kansas: -0.127∗ 0.034 -0.038 0.034 0.133∗ 0.044 0.413∗ 0.035
Log(inwt): 0.646∗ 0.113 0.890∗ 0.110 -1.760∗ 0.136 -1.438∗ 0.120
Winter: 0.013 0.037 0.085 0.037 -0.109 0.048 0.466∗ 0.038
Fall: 0.356∗ 0.037 0.186∗ 0.037 0.312∗ 0.047 0.340∗ 0.038
Spring: -0.351∗ 0.038 0.127∗ 0.038 -0.117 0.052 0.769∗ 0.041
∗Denotes the estimate is statistically significant at the 0.05 level
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2.5.1 Performance Effects From Gender

Gender differences are known to play a large role in cattle feedlot performance.

Steer cattle are known to gain weight at a much faster rate than heifer cattle and

are commonly marketed at a higher weight. Additionally, some heifers need to be

used to stock new generations of cattle. For these reasons, steer cattle are more

prevalent in feedlots than their heifer counterparts. This is also true within the

given data set where steer pens compose 51% of the pens placed on feed.

To assist in capturing the effect that gender has on production, pens were

identified as entirely steer, entirely heifer, or some mixture of the two. For estimation

purposes, binary variables were developed for each type of pen. Results shown

in Table 2.5 are relative to heifer pens. Not surprisingly, both steer and mixed

pens have lower feed conversion rates and higher rates of average daily gain. More

specifically, pounds of feed are converted into pounds of weight gain more efficiently

by 6.9% and 2.7% for steer and mixed pens, respectively. This superior ability to

convert feed into weight gain directly assists in the higher rates of ADG for steer and

mixed pens, relative to heifer pens. The data suggests that steer pens gain weight

faster than heifer pens by 0.30 pounds per day.4 Results from Mark, Schroeder and

Jones (2000) indicate that steer pens had similar performance advantages with a

feed conversion that was 4% lower than heifer pens, while gaining an average of 0.34

pounds more per day.

While ADG and DMFC results make steer pens more desirable than heifer

pens, the results from the regression equations for MORT and VCPH indicate that

steer pens are inferior to heifer pens in general health measures. The percentage of

mortality losses while on feed are higher for steer and mixed pens by 0.10 and 0.32,

respectively.5 Given the higher mortality rates for steer and mixed pens, it is not
4While 0.30 pounds per day may appear to be a small gain, it amounts to 39 extra pounds over

130 days on feed. This amounts to a 3% gain in out weight over the average heifer pen
5To interpret the marginal effects within the Tobit model, MLEs must be multiplied by the
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surprising that veterinary costs are higher for these types of pens.6 Steer pens incur

6.5% higher veterinary costs than heifer pens, while mixed pens are quite expensive

with 21% higher veterinary costs.

The heteroskedasticity parameter estimates offer insight into the influence

conditioning variables have on the variance. A parameter estimate that is posi-

tive indicates an increasing effect on the variance. Variance increases when γk > 0

and decreases when γk < 0. While steer pens do not differ significantly with vari-

ance, mixed pens bring on higher variance parameters for most variables, with the

exception of veterinary costs.

2.5.2 Performance Effects From Location

As previously mentioned, the data contain results from five major cattle feedlots

where two reside in Kansas and three in Nebraska. Differences in location are

identified with binary variables indicating the state of residences. The main reason

for this distinction is due to the geographic closeness of the feedlots within the same

state and the similar management practices discussed earlier.7 The binary location

variable is then intended to control for any differences due to different weather

systems as well as different management practices.8

One of the most distinguishing characteristics of the data is the higher entry

proportion of non-censored observations in the sample (Greene, 2003, pg. 766), which is 53.404%
within the data.

6Veterinary costs at cattle feedlots can be incurred due to precautionary checks, which are
typically performed at the beginning of the feeding cycle and consist of vaccinations and health
checks, and visits due to deteriorating health. While this data does not distinguish between the two,
it is assumed that all feedlots incur similar expenses for precautionary visits, so that any variation
in veterinary costs can be linked to the health of the pen.

7Initially binary variables were used to distinguish between each feedlot until it was found that
significant differences between the feedlots can be found by differentiating by state, since feedlots
were typically not significantly different relative to feedlots within similar states.

8Management practices within this data do not represent state-wide practices. In 1996, there
was an estimated 670 feedlots with a 1,000+ capacity within the state of Nebraska (NASS, 1997, pg.
109). While fewer feedlots reside within Kansas, a higher proportion of the feedlots are operations
with capacities over 32,000 head. (NASS, n.d.).
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weights and lower days on feed associated with feedlots residing in Kansas. This may

be due to the practice of backgrounding on Kansas feedlots. According to Neville and

McCormick (1981), calves that are weaned at an early age and well-fed need less time

at the feedlot. The other more obvious reason is that cattle with higher placement

weights need less time to reach the desire marketing weight. This finding appears

consistent within our data where the Kansas lots have their cattle backgrounded to

prepare them for the diet at feedlots. The results in Table 2.5 indicate that DMFC

is 12% lower and ADG is higher by 0.17 in Kansas feedlots. Cattle feeding in Kansas

feedlots do not have a significantly different rate of mortality, however veterinary

costs are lower due to the less days on feed. Vet costs per head per day, which can

be computed by dividing VCPH by days on feed, are roughly similar for each state

at $0.09. Kansas feedlots within this data sample have mixed influences on variance

for each dependent variable.

2.5.3 Performance Effects From Entry Weight

Entry weight is the only quantitative conditioning variable. This allows parameter

estimates to be interpreted as elasticities for logged dependent variable regressions.

The coefficient from the regression on DMFC implies that a 10% increase in entry

weight corresponds to an increase in feed conversion by 1.9%. Similar results have

been concluded by past studies (Mark et al., 2000; Schroeder et al., 1993). Increases

in entry weight by 10% lead to an increase in ADG by 0.10. The increase in daily

gain for heavier pens of cattle is partly due to the less time these types of pens

spend on the feedlot. Higher feed conversion and daily gains imply an increase in

intake for heavier placed cattle.9

Pens of cattle that are more mature in age and weight tend to have less

health problems. According to Smith (1998), cattle mortalities in feedlot settings
9Intake (lbs of feed / day) = DMFC (lbs feed / lbs gain) × ADG (lbs gain / day).
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come mostly from respiratory diseases and digestive disorders. A great majority of

health problems occur in the first 90 days cattle are on feed. This is also shown by

the results contained within regression results for MORT and VCPH. Mortality rates

fall significantly for heavier weights as a one percentage point increase in placement

weight is associated with a decrease in the rate of mortality by 0.04 percentage

points. Intake per head per day increases steadily with entry weight from 18.03

pounds for the smallest weight class (500 - 600 lbs) to 22.00 for the highest weight

class (800 - 900 pounds). These results are shown in Table 2.3. Additionally, feed

conversion does not appear to increase linearly as it is maximized for extremely low

and high entry weight classes.

Different weight classes also appear to strongly affect other characteristics

such as time of placement and gender. Heavier placements appear to be dominated

by steer pens, while the lighter placements comprise mostly of heifer pens. More

than 50% of the pen placements with average weight below 700 pounds are heifers,

while 74% of the heaviest placements (800-900 pounds) consists of steer pens. Also,

lighter pens are introduced more typically in the fall months and rarely in spring

months. Pens on the heavier side (>700 pounds) are mostly placed in spring or

summer months. Entry weight has an increasing effect on the variability of DMFC

and ADG, while the variability of mortality and veterinary costs diminishes for

higher placement weights.

2.5.4 Performance Effects From Placement Season

Changes in temperature can have dramatic changes in cattle feedlot performance.

Mark and Schroeder (2002) point out that optimal cattle performance typically

occurs between 40 to 60 degrees. Deviations from this range, as well as variability

in weather or precipitation, can lead to lower performance. Higher temperatures

often result in less weight gain due to lower rates of consumption, while colder
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temperatures can lead to less efficient feeding as energy is used to maintain body

heat. Feeding usually lasts anywhere from 3 to 5 months, meaning most pens will

enter in one season and leave in the next.

Parameter estimates for the DMFC regression imply that fall placements

have the highest feed conversion rate and are significantly different from summer.

This is not surprising given the fact that pens placed in the fall months are fed as the

temperatures drop, so that the coldest months are likely near the end of their feeding

cycle. A binary variable indicating summer placements is left out of the regression

so that parameter estimates are relative to that season. The feed conversion rate

for spring placements are significantly lower than summer placements, while winter

placements are not significantly different. All seasons experienced significantly lower

gains on a daily basis, relative to summer.

Pens placed in the spring months appear to have the fewest health problems

as indicated by the significant negative parameter estimates in both MORT and

VCPH. Fall placements are not statistically different from summer concerning the

mortality rate, while winter placements incur fewer veterinary costs.

2.5.5 Conditioning Variable Effects on Covariance Terms

One major benefit of the large set of data available for this research is the chance to

allow covariance terms to be a function of the data. In a recent study by Belasco et

al. (2006) covariance terms in this system of equations were assumed to be constant

for all observations. However, OLS regressions indicated that the cross product

residuals were correlated with the conditioning variables.10 The individual-specific

covariance matrix as defined in equation (2.7) allows for the added flexibility in the
10One way to test for heteroskedasticity is to regress the squared residual on the variables as

defined by the White test (Greene, 2003). If variables are found to significantly effect an error term
that is assumed to be independent, then heteroskedasticity must be controlled for. Alternatively,
one may also take the cross product of residuals from a system of equations to determine if the
covariance terms are in fact independent. This was the preliminary strategy which led to the finding
that covariance terms were significantly effected by the conditioning variables.

40



off-diagonal elements in equation (2.8) to be a function of the data.

Not all variables are expected to be highly correlated with one another, how-

ever one can make a strong case for a few relationships to be strongly correlated.

For example, feed conversion rates and rates of average daily gain certainly com-

plement one another, while veterinary costs and mortality rates can both arise with

unhealthy or sick pens. Each of these examples are shown to have almost all con-

ditioning variables significantly effecting the level of covariance as seen in Table

2.6.

Covariance elements for an individual observation are contained in the matrix

Σi, which is a product of two separate matrices, Ti and Di, and are linearly deter-

mined by the conditioning variables and parameter estimates from matrices A and

G. To illustrate, the covariance between DMFC and ADG for a given observation,

i, is estimated through the following equation:

σ12i = d1it12i =
(
a1x

′
i

)
e(g1x′i) = (a11xi1 + . . . + a1pxip) e(g11xi1+...+g1pxip) (2.22)

where σ12i indicates the element within Σi and a1 is the first row of A and is a

1×8 matrix containing the parameter estimates for the covariance level, based on

the full sample. This form allows the unique characteristics of each pen to imply a

different set of covariance parameters. The covariance terms account for effects that

concurrently effect the cattle production yields. The high frequency of significant

variables indicate the importance of including this flexibility.

The covariance matrix can be converted into an empirical correlation matrix

in order to understand the correlation structure between two variables for a set of

conditioning variables. To illustrate, correlation between DMFC and ADG can be

estimated as follows:

ρ12i =
σ12i√

σ11iσ22i
(2.23)
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Table 2.6: Maximum likelihood covariance parameter estimates
ADG MORT VCPH

Variables coeff. se coeff. se coeff. se
with DMFC:
Intercept: 0.119 1.391 0.367 10.142 -0.123 2.466
Steers: -0.477∗ 0.058 -0.099 0.482 -0.287∗ 0.101
Mixed: 0.166∗ 0.076 0.170 0.768 0.117 0.144
Kansas: 0.166∗ 0.065 1.605∗ 0.521 0.159 0.093
Log(inwt): -0.603∗ 0.213 0.909 1.545 0.055 0.375
Winter: 0.490∗ 0.070 0.413 0.586 -0.102 0.111
Fall: 0.224∗ 0.067 -0.380 0.603 -0.010 0.104
Spring: 0.136 0.083 1.281 0.668 -0.352∗ 0.143
with ADG:
Intercept: 3.273 4.712 -0.930 0.907
Steers: -0.452∗ 0.174 0.013 0.037
Mixed: -0.509 0.320 -0.039 0.058
Kansas: -0.020 0.187 -0.132∗ 0.033
Log(inwt): -0.543 0.713 0.112 0.137
Winter: -0.088 0.215 0.404∗ 0.040
Fall: 0.213 0.236 0.094∗ 0.040
Spring: -0.156 0.216 0.184∗ 0.045
with MORT:
Intercept: 0.701∗ 0.103
Steers: -0.028∗ 0.005
Mixed: -0.010 0.006
Kansas: 0.023∗ 0.005
Inwtlog: -0.095∗ 0.016
Winter: -0.004 0.006
Fall: 0.005 0.005
Spring: 0.015∗ 0.007
∗Denotes the estimate is statistically significant at the 0.05 level
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Next, the empirical correlation matrix is computed for each observation in order to

illustrate the distributional characteristics associated with the correlation between

dependent variables, which is shown in Figure 2.3.

The empirical correlation matrix evaluated at the mean levels of X is also

shown below in Table 2.7.

Table 2.7: Correlation matrix relationship evaluated at the means
Variable DMFC ADG MORT VCPH
DMFC 1.000 -0.801 0.341 0.026
ADG 1.000 -0.319 -0.064
MORT 1.000 0.363
VCPH 1.000

It is no surprise to see high levels of correlation between vet costs / mortality

rates and feed conversion / average daily gain for the reasons stated earlier. There

also exists a high degree of positive correlation between feed conversion and mortality

rates. This can be explained by the higher feed conversion rates that come from

unhealthy cattle, while healthy cattle are more efficient at gaining weight. Almost

all correlation terms are above 20%, with the exception of VCPH with DMFC and

ADG.

Due to the heterogeneous nature of the data, a unique covariance matrix cor-

responds to every unique set of variables, implying a unique correlation matrix. To

illustrate this fact, two hypothetical pens are chosen at approximately one standard

deviation from the mean entry weight. The results below in Table 2.8 demonstrate

that these two observations have a distinct correlation structure.

Pen A corresponds to a pen that is placed into a Kansas feedlot in the

fall, comprised fully of steers. Conversely, Pen B corresponds to a pen that is

comprised of heifers and was placed into a Kansas feedlot during the summer months.

Three major differences between these observations include the dramatic difference
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Figure 2.3: Histogram of Predicted Empirical Correlations Between Dependent Vari-
ables

Table 2.8: Comparison of correlation matrices for two separate pens

Pen Aa Pen Bb

Variable DMFC ADG MORT VCPH DMFC ADG MORT VCPH
DMFC 1.000 -0.834 0.283 0.020 1.000 -0.811 0.385 0.090
ADG 1.000 -0.263 -0.086 1.000 -0.342 -0.181
MORT 1.000 0.459 1.000 0.390
VCPH 1.000 1.000
aPen A represents a pen entering with a low average weight of 650 pounds
bPen B corresponds to a heavier pen with an average entry weight of 815 pounds
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in weight, as well as different placement months and gender.11 The result is two

correlation matrices with very different off-diagonal elements.

To further illustrate the point that changes in the conditioning variables

influence elements within the covariance matrix and the implied correlation between

two variables, average entry weight can be changed from the mean entry weight

(737.5 lbs.) and increased by 10 percent (811.3 lbs.) while maintaining mean values

for all other conditioning variables, resulting in Table 2.9.

Table 2.9: Percentage change in correlation matrix elements from increasing entry
weight by 10% from mean

Variable DMFC ADG MORT VCPH
DMFC – 0.13% 11.34% 16.95%
ADG – 12.74% 7.91%
MORT – -11.04%
VCPH –

Table 2.9 provides interesting insights into how correlations between the de-

fined dependent variables change for different levels of placement weights. Most

notably, a 10 percent increase in weight from the mean results in increased correla-

tions between MORT with DMFC and ADG by 11.34% and 12.74%, respectively.

This relationship demonstrates the changing relationship between performance and

health factors. In fact, we can broadly say that health factors and performance

factors become more correlated as entry weight increases. The reason for this move-

ment has much to do with the point that pens placed at heavier weights typically

spend less time on feed. Because of this limited time on feed, sick animals have less

time to recover from a performance stand point. Alternatively, a pen that is placed

on feed at a light entry weight and gets sick upon arrival still has time to attain

higher performance levels upon recovery.
11Pen A contains an entry of 650 pounds, which is lower than 79% of the placement weights in

the data sample. Also, Pen B weighs in at 815 pounds, which is lower than 18% of the observations.
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Additionally, with an increase in placement weight by 10 percent, there is a

weakened relationship between MORT and VCPH. An explanation for this move-

ment includes the point that lighter cattle are more prone to high mortality rates, in

which situations veterinary treatments may not be as effective. Therefore, at lighter

weights, feedlots are likely to experience high VCPH and MORT with a pen that

arrives sick. Alternatively, as pens mature the expected mortality rate decreases and

they are more adaptable to different occurrences, such as adverse weather. Because

of this, veterinary car is likely to be effective and not result in mortality, which

points to a weaker relationship between the variables.

The same figures can be computed to understand the relationship between

variables for different pen genders. In Table 2.10 a steer pen is compared to a

heifer pen, holding all other variables at their means. Biological differences between

steer and heifer beef cows imply different relationships between dependent variables.

It is interesting to note that the sign of correlation between DMFC and VCPH

switches depending on the gender of the pen. Evaluating a heifer pen at mean

values, this correlation is 0.046, which changes by -115.07% to -0.007 for a steer

pen. Accounting for the differences that arise from different pen characteristics is

an important addition from this model.

Table 2.10: Percentage change in correlation matrix elements in a steer pen, relative
to heifer pen

Variable DMFC ADG MORT VCPH
DMFC – 2.52% -2.28% 115.06%
ADG – 11.58% -47.36%
MORT – -11.97%
VCPH –

The proportion of statistically significant covariance parameter estimates

provide evidence in favor of including these variables. A restricted case of this

model is where covariance parameters are constant across individuals. This restric-
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tion is typical in studies of this nature due to the elimination of many parameter

estimates (Belasco et al., 2006; Chavas and Kim, 2004). For our purposes, a re-

striction that assumes a constant covariance structure across observations increases

degrees of freedom by 42, as the parameters estimates drops from 112 to 70. To test

the effectiveness of this restriction on the given data set, a likelihood ratio test can

be applied.

Within the likelihood ratio test framework, the flexible model described

above will be the unrestricted case, while the restricted model will assume con-

stant covariance terms. The restricted model reduces equation (2.11) to include

only the covariance terms, which now are not a function of the data. Formally, the

restriction can be stated as follows:

H0 : aj,k = 0 (2.24)

HA : aj,k 6= 0 (2.25)

for all j = {1, 2, ..., 6} and k = {2, 3, ..., 8}, where aj,k elements are contained within

the matrix A. Two components are important when we compare the restricted and

unrestricted model performance, which include model fit and predictive power. In

order to test both components we split the data into thirds, using a randomly

selected two-thirds of the data for estimation and the final third to examine out of

sample prediction. In order to test model fit, a likelihood ratio test to examine the

loss in explanatory power and the gain in degrees of freedom when moving from the

unrestricted to the restricted model. The null hypothesis stated above, tests whether

the conditioning variables have a significant impact on the covariance terms. The

results from the implied likelihood ratio test are shown in Table 2.11.

These results strongly reject the notion of constant covariances within this data set.

However, this restriction may be helpful when evaluating more homogenous produc-

tion. The heterogeneity of cattle herds is an important aspect to this research and
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Table 2.11: Likelihood Ratio Test Results based on estimation portion of data

Log Likelihood P Statistic Critical Value p-value
Model Values (α = 0.05)
Unrestricted -15,683.8 112
Constant Covariance -15,748.2 70 128.8 55.8 < .001

led to the usage of covariance measures that were not constant across observations.

To examine predictive power based on out of sample observations, we use

Mean Squared Prediction Error (MSPE) which is computed based on the following

relationship:

MSPE =
1
m

m∑
i=1

(ŷi − yi)
2 . (2.26)

Based on prediction results, based on the two tests it is not clear which

model possess superior predictive ability. The results based on the out of sample

observations can be found below in Table 2.12

Table 2.12: Mean Squared Prediction Error Results based on out of sample predic-
tion

Model DMFC ADG MORT VCPH
Unrestricted 0.008 0.182 2.691 0.174
Restricted 0.009 0.232 2.617 0.216

Superior predictive performance on the unrestricted model is found based

on smaller MSPE. An interesting result is the fact that the only variable without a

superior fit is that of mortality rates, which happen to be censored. However, with

the exception of this variable, the unrestricted model is found to better characterize

within and out of sample observations. This finding offers further support for the

dynamic multivariate Tobit model proposed in this chapter. The next section will

focus on using the estimation results from this model to simulate ex-ante cattle

feeding profits.
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2.6 Modeling Profits

With accurate distributional modeling of cattle production yield characteristics,

coupled with assumed distributional characteristics of price variation, and taking

into account the joint correlation between these variables, conditional ex-ante mea-

sures of profits can be computed. These profits will be a function of the unique

characteristics of each pen, so that each set of characteristics lead to a unique profit

distribution. This will be important in analyzing the extent of risk involved in over-

all profits. Simulation methods are used to incorporate the estimated distributional

characteristics of yields, the assumed distributional characteristics of prices, and the

marginal and joint effects from the conditioning variables. Here different shocks can

occur that may affect the expected profits, variability, and covariance. An example

of such a shock would be to the variability of fed cattle prices, or corn prices. It is

also worth mentioning that shocks to fed cattle and corn prices will be independent

of yield shocks.12 Based on daily cash prices from 1980 - 2005, a correlation of -0.14

was used to characterize the relationship between fed cattle and corn prices.13

2.6.1 The Profit Function

In order to model profitability risk, the following ex-ante profit function takes into ac-

count both the revenue and costs specific to cattle feeding. A similar profit function

was used by Belasco et al. (2006). Based on the fact that it is ex-ante conditional

profits that we are interested in, profits are a function of characteristics that are

known at the time a pen is placed. Based on this information, inferences can be
12This is mostly a simplifying assumption and may need further analysis. An argument has been

formulated by Anderson and Trapp (2000) that changes in the price of corn can cause feedlots
to substitute away from corn and towards other grains, like wheat. While this substitution will
help the feedlots to keep their costs down, it may have an effect on feed conversion. Additionally,
changes in corn prices may also effect the characteristics of cattle placed on feed. For example,
placement weight may increase as a way to minimize days on feed.

13To compute the correlation coefficient, daily cash prices were obtained for #2 yellow corn at
Central Illinois and TX/OK live cattle spot prices.
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made concerning different areas of production risk that have previously been men-

tioned, in order to make inferences about expected profit distributions. Following

is the set of equations that explain the fed cattle production profit function. Per

head cattle feeding profits are the net difference between revenue and costs accrued

during the cattle feeding period.

P = TR− FDRC − Y C − FC − IC − V CPH (2.27)

where P are per head profits, TR is the total revenue per head from cattle feeding,

FDRC is the per head cost of purchasing feeder cattle, YC is the per head fixed cost

(yardage cost) of feeding cattle, FC is the per head feed cost, IC is an interest cost,

and VCPH are the per head costs associated with veterinary care. TR is defined as

TR = FP × (0.96)× CSW × (1−MORT ) (2.28)

where FP is the price per hundred weight ($/cwt) of fed cattle and CSW is the

average sell weight of the finished cattle, which is estimated based on the following

equation

CSW = CPW + ADG×DOF. (2.29)

CPW is the average weight of the feeder cattle at placement and DOF is the number

of days the pen of cattle is in the feedlot.

TR is adjusted for death loss using the MORT variable and a standard 4%

live-weight shrinkage factor is applied to reflect the expected loss in weight during

transport from the feedlot to the packing plant. Sell weight is a function of a random

performance variable (ADG) and therefore is not fixed. This profit function allows

days on feed to be specified, while allowing sell weight to be determined by the

average weight upon entry, ADG, and the length of time on feed. Cattle are assumed

to be marketed on a cash basis as opposed to a price based on dressed weight or grid
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pricing.14 To capture the expected FP at the time of placement, the futures price

from the CME can be used to proxy the price for the expected end date. FDRC is

defined as

FDRC = FRP × CPW (2.30)

where FRP is the price per hundred weight of feeder cattle. This cost is a large

portion of total costs and reflects the value of the cattle upon entering the feedlot.

On a per pound basis, FRP is greater than FP. YC is defined as

Y C = (0.40)×DOF (2.31)

which assumes that $0.40 is a typical per head day cost for feedlots in Kansas and

Nebraska. FC is defined as

FC = CP ×

{
DMFC

0.88

[
CSW × (1−MORT )− CPW

]}
(2.32)

where FC is the price per bushel of corn and is divided by 56 to convert this price

into a per pound measure. The expected price of corn is based on the futures price

for corn from the CBOT halfway through the feeding period. The reason for this

timing is to capture an average price of corn over the entire feeding period. Further,

dry matter is multiplied by the corn-based feed ration, which is assumed to 12%

moisture. DMFC is adjusted to reflect the “as fed” feed conversion. IC is defined

as

IC =

{
1
2

[
Y C + FC + V CPH

]
+ FRC

}
×IntRate× DOF

365
(2.33)

where IR is the interest rate. This expression assumes that an interest charge is
14For cattle sold on a grid, quality risk must enter the profit function. For the purposes of this

research, quality risk is not taken into account. Cash prices are based on the average weight of the
pen, without regard for the quality of the carcass. Evaluating quality risk remains an area of future
research.
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applied to the full amount of the feeder cattle cost, FRC, and half the total cost

of yardage, feed, and veterinary fees. This assumption is based on the need to

purchase feed throughout the feeding period, while the feeder cattle must be entirely

purchased at the beginning of the feeding period.

It will be important to compare this function with ex-post profits, which is

contained within the data set. To this end, the data set contains the actual feed

charges and vet costs. Additionally, through the use of local Dodge City weekly

prices for fed and feeder cattle, ex-post profits can be obtained.

However, these two profit measures will clearly differ due to variation that

occurs throughout the feeding period. This variation will come through the ran-

dom variables in this model. Analyzing the difference in ex-post and ex-ante will be

informative in identifying the reasons for departures from expected values.15 Ad-

ditionally, once we model profits, one might realize that revenue and net margins

are also contained within the profit function, which are measures used for livestock

insurance purposes. Modeling these aspects will be important for the next part of

this research.

2.6.2 Simulation of Profits

The formulated model in this study offers a flexible multivariate regression that

characterizes production risk in fed cattle production by accounting for characteris-

tics that impact the mean and covariance of the four defined cattle production yield

factors. The implied estimation results assist understanding placement character-

istics of pens that affect different areas of production. These areas of production

range from the health of the pen to performance measures. This estimation allows

for better prediction of yield characteristics. With knowledge of the mean and co-
15This research does not attempt to sort out the origins of unexplained variation, however an

area of future research might include this endeavor. Major sources of variation are likely to come
from unexpected or extreme weather or unobservable genetic traits.
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variance of each particular yield factor, predictions for the system of equations can

be estimated with relative accuracy. This accuracy is largely due to the flexibility

offered by the large data set. Random draws from a multivariate normal distribution

simulate a collection of predictions for each of the yield factors.

Random draws from a multivariate normal distribution simulate a collection

of predictions for each of the yield factors. Given this information, the profit model

described in equations (2.27)-(2.33) can be simulated, conditional on entry pen char-

acteristics. In practice, this profit function can serve as a means for cattle owners

or those in the cattle industry to understand expected profits that are a function of

the unique characteristics of a pen of cattle placed on feed. To illustrate, a sample

pen consists of its own unique characteristics, such as location, gender, entry weight,

and placement season. This information influences the inferences made on produc-

tion yield factors that were modeled using a multivariate normal dynamic regression

model that describes production risk. The four dimensional multivariate dynamic

regression model allows the mean values to change as a function of the parameter

estimates and also the variance to change as a function of covariance parameter esti-

mates. Simulated realizations of the cattle production yield variables and prices are

plugged into the profit function (P) to obtain a distribution of conditional ex-ante

profits.

In addition to production risk, the model must also account for price risk.

The expected prices and variance for fed cattle and corn can be obtained by using

futures and options measures from the CME and CBOT. This is all the information

necessary to characterize the profit function for simulation. Repeated random draws

are taken in order to illustrate profits as a distribution.16 To further illustrate, the

characteristics denoted in Table 2.13 are used to emulate a pen of cattle entering a

Kansas feedlot on February 14th of 2007 (02/14/2007).
16For purposes of this study, 100,000 random draws were found to be enough to obtain a suitable

profit distribution.
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Table 2.13: Characteristics of Simulated Pen of Cattle
Placement Characteristics Price Characteristicsa

Date 2/14/2007 Corn Futures Price 4.25
Weight(lbs) 750 Fed Cattle Futures Prices 93.60
Gender Steer Feeder Cattle Cash Price (DC) 97.98
Location Kansas Corn Volatility .30
Season Winter Fed Cattle Volatility .20
aExpected prices based on 3 and 4 month futures price for corn and fed cattle, respectively.

Futures prices are used to approximate price expectations for corn and fed

cattle. For corn, a 3-month futures price is used to approximate the average cost

of corn over the entire feeding period. Fed cattle price expectations are estimated

using a 4-month futures price, to denote the expected value of a fed steer when it

is ready to be marketed. The Fed cattle volatility measure was assumed to be 20%,

while the rise in corn volatility over the past year has led to the higher rate of 30%.17

While this simulation has aspects unique to the current production situation,

inputs can be changed for other purposes. Figure 2.4 shows the expected distribution

of profits, given the previously mentioned inputs. It is not surprising that profits

are near zero, with wide tails. Expected profits are centered at $17.14 per head,

with a standard deviation of $251.71. Recent increases in corn prices add to rising

feeding costs, which negatively influence profits. One thing to note is that higher

corn prices typically cause the demand for heavier feeder cattle to increase as it is

seen as desirable to send pens to the feedlot for fewer days.

The distribution of ex-ante profits exhibits two distinct characteristics. First,

the mean of profits are centered close to zero. The second characteristic is the large

tails that indicate a small probability of heavy gains or significant losses. Some of

this variation may be unobservable in the data, but observable by the producer. For

example, a particular breeder may have a superior genetics program that is known
17The rise in corn price and volatility over the last year is largely the result of a strong summer

drought in the midwest during 2006, coupled with the increased demand for ethanol production.
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Figure 2.4: Distribution of ex-ante conditional profits
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in the industry. This producer could demand a premium the pen for sale, which

would be expected to outperform average pens. Alternatively, some owners may

pay less for a pen with low expectations in hopes of making a profit with higher

than expected performance. So, even though this pen performs poorly, relative to

the average, it still may be profitable. The point here is that the cattle owner

may have more information about a particular pen than is in this data set. This

asymmetric information between the econometrician and the producer might lead

to wider variation for the econometrician.

2.7 Conclusions

Risks involved with agricultural production distinguish these enterprises from most

other ventures. Particular emphasis has been placed on characterizing production

risks in crop production through the use of a conditional probability density function.

The same techniques do not transfer directly when evaluating live animals, such as

cattle. One complication is that productive efficiency can be characterized by a set of

dependent variables, which are usually highly correlated. The second complication

is the censoring mechanism found in one of these variables (MORT). To efficiently

characterize cattle production yield risk, both complexities must be accounted for

in a modeling strategy.

To this end, the cattle production yield risks are modeled through the use of

a dynamic, multivariate Tobit model that consistently estimates the latent variable

and captures the correlated nature of the dependent variable. The construction

of this model leads to a positive definite hessian matrix, which guarantees that a

maximum value will be uniquely defined.

A comprehensive data set, including 11,397 pens of cattle place on feed in

Kansas and Nebraska feedlots from 1995 - 2004, were used to examine the risks

associated with feeding cattle. The results indicate that conditioning variables,

56



such as average placement weight, gender, location, and season of placement, had a

significant effect on both the mean and covariance estimates for the four cattle pro-

duction yield variables. Additionally, an empirical correlation matrix was computed

from sample covariance matrices to illustrate the finding that correlations change

significantly across observations.

Using a conditional multivariate normal distribution to characterize yield

risks, along with implied price risks from the futures and options market, simulations

were conducted to compute ex-ante conditional profit distributions. These profit

distributions aid in our understanding of cattle feeding risks that can change over

time (price risks) or for varying entry characteristics (yield risks).
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Chapter 3

Modeling Censored Data Using

Zero-Inflated Regressions with

an Application to Cattle

Production Yields

3.1 Introduction

The expanded use and availability of micro-level data sets has led to an increased

demand for methods that model limited dependent variables efficiently. The tra-

ditional and most popular method of estimating censored data is to use the Tobit

model. This method assumes there is a latent variable, y∗i , which linearly depends

on the associated independent variables, xi, and is typically modeled by using max-

imum likelihood estimation. Recent studies have focused on extending the Tobit

model into multivariate cases. However, a major limitation of the Tobit model is

its assumption of normality. Inconsistent estimation results arise when residuals

are positively skewed. Additionally, maximum likelihood estimation becomes com-

plicated with a system of equations when censoring occurs in multiple equations

because of the problem of integrating more than three integrals in the likelihood
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function. Furthermore, the most restrictive assumption in the Tobit model is that

censored and non-censored observations come from the same set of functional rela-

tionships.

In this study we consider the use of a mixture model to characterize censored

dependent variables as an alternative to the Tobit model. This particular mixture

model arises from a generalized zero-inflated model. This model will be shown to

nest the Tobit model, while major advantages include the flexibility in distributional

assumptions and an increased efficiency in situations involving a high degree of cen-

soring. Mixture models characterize the censored dependent variable as a function

of two distributions in the following manner:

Y = V B. (3.1)

First, B measures the likelihood of zero or positive outcomes, which have been char-

acterized in the literature using Bernoulli and Probit model specifications. Then,

the positive outcomes are independently modeled as V , which have traditionally

consisted of count models, such as the Poisson distribution. For our purposes, we

examine the use of a zero-inflated log-normal and a zero-inflated Gamma distribu-

tion to evaluate the observed positive continuous dependent variables. This model

is then extended to accommodate multivariate situations where one variable is cen-

sored and the others are not, which naturally extends to allow for situations where

multiple variables are censored.

Data will be simulated to test the ability of each model to fit data and predict

out of sample observations. Results from the zero-inflated mixture model will be

compared to Tobit results through the use of goodness-of-fit and predictive power

measures. By simulating data, the two models can be compared in situations where

the data generating process is known, which is rarely the case when dealing with

real world data.
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In addition, a comprehensive data set will be used that includes proprietary

cost and production data from 5 feedlots in Kansas and Nebraska, amounting to

over 11,000 pens of cattle during a 10 year period. Cattle mortality rates on a

feedlot, which are provided in this data set, provide valuable insights into the prof-

itability and performance of cattle on feed. Additionally, cattle mortality rates may

be more accurately characterized by a mixture model that takes into account the

positive skewness of mortality rates, as well as allowing censored and non-censored

observations to be modeled independently. Moreover, a zero-inflated specification

is used rather than other mixture specifications, such as the Hurdle model, to more

accurately capture measures of cattle production yields. In both univariate and

multivariate situations, the proposed mixture model more efficiently characterizes

the data. Placement characteristics, such as gender, average entry weight, date, and

location, which significantly impact the health and performance of pens of cattle are

also included in this data.

Additionally, a multivariate setting can be applied to these regression models

by taking into account other variables that describe the health and performance of

feedlot cattle. These variables include dry matter feed conversion (DMFC), average

daily gain (ADG), and veterinary costs (VCPH). DMFC is measured as the average

pounds of feed a pen of cattle require to add a pound of weight gain, while ADG

is the average daily weight gain per head of cattle. VCPH is the amount of veteri-

nary costs that are incurred over the feedlot stay. Three unique complexities arise

when modeling these four correlated yield measures. First, the conditioning vari-

ables potentially influence the mean and variance of the yield distributions. Since

variance may not be constant across observations, we assume multiplicative het-

eroskedasticity within our model and model conditional variance as a function of

the conditioning variables. Second, the four yield variables are usually highly cor-

related, which is accommodated through the use of multivariate modeling. Third,
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mortality rates present a censoring mechanism where almost half of the fed pens

contain no death losses prior to slaughter. This clustering of mass at zero presents

biases when traditional least squares methods are used.

This research focuses on the third complexity, while accommodating the first

two. While the focus of this particular research deals with cattle production yield

modeling, a large proportion of censored observations are also commonly found in

other production and consumption data sets. Modeling consumption, the spread of

animal disease, or production processes that contain multivariate relationships, can

also be the beneficiary of such research.

This paper provides two distinct contributions to existing research. The first

is to develop a continuous zero-inflated model as an alternative modeling strategy

to the Tobit model and more traditional mixture models. This model will originate

in a univariate case, then be extended to allow for multivariate settings. The second

contribution is to more accurately describe production risk for cattle feeders by

examining model performance of different regression techniques. Mortality rates

play a vital role in cattle feeding profits, particulary due to the skewed nature of

this variable. A clearer understanding of mortality occurrences will assist producers

as well as private insurance companies, who offer mortality insurance, in managing

risk in cattle operations. Additionally, production risk in cattle feeding enterprises

play a significant role in profit variability, but is currently uninsured by current

federal livestock insurance programs. An accurate characterization of production

risk plays an important role in addressing risk for producers or insurers.

A review of research examining different ways to model censored data are

described in section 3.2. Section 3.3 describes the Tobit model and develops the

zero-inflated mixture model to be used for estimation in this research. In both

cases, the univariate model will precede the development of a multivariate model.

The next section (3.4) will simulate data based on the given Tobit and zero-inflated
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models to evaluate the difference in assuming one model when the data comes from a

different process. This evaluation will consist of both how well the model fits the data

and the predictive accuracy. The advantage to this section will be to evaluate the

performance of the two postulated models in situations where the data generation

process is known. This will lead into an application where we evaluate data from

commercial cattle feedlots in Kansas and Nebraska, which is discussed in section 3.5.

Results from estimating the given data set using a Tobit and zero-inflated model will

be assessed using both univariate and multivariate models in section 3.6. Finally,

section 3.7 will provide the implications of this study and provide avenues of future

research.

3.2 Literature Review

Censored dependent variables have long been a complexity associated with micro

data sets. The most common occurrences are found in consumption and production

data. In studying consumption data sets, households typically do not purchase all

of the goods being evaluated in every time period. Similarly, a study evaluating the

number of defects in a given production process will likely have outcomes with no

defects. In both cases, ordinary least squares parameter estimates will be biased

when applied to these types of regressions (Amemiya, 1984).

The seminal work by Tobin (1958) was the first to recognize this bias and

offer a solution that is still quite popular today. In his study, household expenditures

on durable goods were evaluated by focusing on the fact that observed expenditures

cannot be negative. The resulting model later became known as the Tobit model,

due to its similarities with the Probit model. This method essentially assumes

there is a latent variable, y∗i , which linearly depends on the associated independent

variables, xi. In the case of left censoring, the observable dependent variable, yi,
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can be linked to the latent variable through the following relationship

yi = max(y∗i , si) (3.2)

where si indicates the location of censoring, which in many applications is 0. How-

ever, variables need not be restricted to censoring at 0. For example, prices may

be censored at market equilibrium or at some federally defined price floor. Alterna-

tively, it is also common to find right censoring, where the latent variable falls at a

point above si. Combining these two concepts, interval censoring can also be found

where observable data is bounded with both upper and lower limits.

Amemiya (1973) demonstrates that the parameters of the Tobit model can

be estimated through the use of maximum likelihood, while restoring consistency

and asymptotic normality. Univariate models have been extended, under a mild set

of assumptions, to include multivariate settings (Amemiya, 1974; Lee, 1993). While

empirical applications in univariate settings are discussed by Amemiya (1984), mul-

tivariate applications are becoming more frequent (Chavas and Kim, 2004; Cornick

et al., 1994; Eiswerth and Shonkwiler, 2006).

While the Tobit model has had a large impact on modeling censored depen-

dent variables, it is not without limitations. The two major assumptions made by

the Tobit model in its original derivations included the assumption of normality and

the point that both the observable and unobservable variable levels come from the

same distribution. The assumption of normality has made the Tobit model inflexible

to data generating processes outside of that major distribution (Bera et al., 1984).

Additionally, Arabmazar and Schmidt (1982) demonstrate that random variables

modeled by the Tobit model contain substantial bias when the true distribution is

non-normal and has a high degree of censoring.

Cragg (1971) generalized this model to allow for the probability of a limit

observation and the regression for the observed data to be independent processes.
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This model is commonly referred to as the hurdle model, which nests the standard

Tobit formulation. The hurdle model is formulated so that once a hurdle has been

crossed, an outcome can be characterized by a truncated-at-zero density function.

This model allows for zero observations to come from one data-generating process

and positive realizations to come from another. An extension of the hurdle model is

the double-hurdle model, which adds a second hurdle to the process. For example,

Jones (1989) uses a double-hurdle model to characterize cigarette consumption by

arguing that participation and consumption are two separate processes. First, the

consumer chooses whether to participate in the activity of smoking or not. Then,

a regression follows to model the amount of cigarette consumption. This model

allows for a participant defined as a ”smoker” to consume a non-negative amount of

cigarettes in any given period. The second hurdle in this case in the consumption of a

positive amount of cigarettes. The important point here is that variables influencing

the probability of a non-zero value need not also increase the conditional mean of

the positive values in the same way (Yen, 1993).

In most applications of the hurdle model, a Probit regression model is used

to model the probability of a non-zero value. The Probit regression model assumes

that the probability of a non-zero outcome can be modeled as

Pr(d = 1|x) = Φ(x′β) (3.3)

where d is a binary outcome variable, x is a set of regressors, and Φ is the CDF of

a standard normal distribution. Given a simple model with a latent variable, y∗,

where y∗ = x′β + ε and ε is normally distributed with constant variance, d is equal

to one when y∗ is positive and zero otherwise, which can be written as follows:

d = 1 if y∗ > 0

= 0 otherwise (3.4)
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Another important model that is also used to characterize observations con-

taining many zeros is the zero-inflated models. These models have been rarely used

in econometrics. The Poisson distribution is commonly placed into a zero-inflated

framework and is appropriately called the zero-inflated Poisson (ZIP) model. The

advantage to using this type of model is again that it recognizes that decisions or

production output processes are part of a two step process. However, this model

is slightly different than the hurdle model in practice. Here the only possible ob-

servation is 0 with probability ρ, while there is a 1 − ρ probability that a random

variable is observed from a Poisson distribution, which can still take on the value

of zero (Cameron and Trivedi, 2005). Zero-inflated models use a binary process to

model the likelihood of an outcome, leading to unbiased estimates of the conditional

mean, which is typically not the case with hurdle models. When applied to con-

tinuous data, the zero-inflated and hurdle models can be generalized to be similar.

As pointed out by Gurmu and Trivedi (1996), hurdle and zero-inflated models can

be thought of as refinements to models of truncation and censoring. Hurdle mod-

els typically use truncated-at-zero distributions, but are not restricted to truncated

distributions. For example, Cragg (1971) recommends the use of a log-normal dis-

tribution to characterize positive values. However, most applications of the hurdle

model assume a truncated density function.

The probability of a non-censored outcome in zero-inflated models can be

computed using a Bernoulli distribution. The Bernoulli distribution is a binary

probability density function which takes the value of 1 with probability ρ and the

value 0 with probability 1 − ρ. A Bernoulli density function is nested within a

Binomial distribution with 1 trial (n = 1).

A common application has been to model the number of defects in a pro-

duction process. In this case, a zero defect count is highly probable when the

production state is nearly perfect. Conversely, if the production process is highly
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imperfect, then defective outcomes become more likely. The interesting point here

is that a predicted outcome may still be zero, even though it is drawn randomly

from a Poisson distribution. The binary component models the likelihood that the

dependent variable can be described by the assumed distribution, which may still

take on zero values.

Lambert (1992) extended the classical ZIP model to include regression co-

variates, where covariate effects influence both ρ as well as the nonnegative outcome.

This study modeled defect counts on printed writing boards as a function of vari-

ables that characterize the manufacturing process. Maximum likelihood estimation

was used to regress the covariate effects for the ZIP model, which are further derived

in Hall (2000). Li et al. (1999) developed a multivariate zero-inflated Poisson model

that is motivated to evaluate production processes involving multiple defect types.

A further extension to zero-inflated models is introduced by Ghosh et al.

(2006), where a flexible class of zero-inflated models can be applied to discrete dis-

tributions within the class of power series distributions. The study also finds that

Bayesian methods have more desirable finite sample properties than maximum like-

lihood estimation, with their particular model. Computationally, a Bayesian frame-

work may have significant advantages over classical methods. In classical methods,

such as maximum likelihood, parameter estimates are found through numerical opti-

mization, which can be computationally intensive in the presence of many unknown

parameter values. Alternatively, Bayesian parameter estimates are found by drawing

realizations from the posterior distribution. Within large data sets the two meth-

ods are shown to be equivalent through the Bernstein-von Mises Theorem (Train,

2003), which was originally derived by contributions from Bernstein (1917) and von

Mises (1931). This property allows Bayesian methods to be used in place of classical

methods, which are asymptotically similar and may have significant computational

advantages. In addition to asymptotic equivalence, Bayes estimators, in a Tobit
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framework, have been shown to converge faster than maximum likelihood methods

(Chib, 1992).

Bayesian methods also possess important philosophical advantages to classi-

cal methods. First, in spite of all statistical models having subjective information

within the experiment, Bayesian techniques implement these components system-

atically (Robert, 2001). Within a Bayesian framework, subjective information is

summarized within the prior distribution π(θ). In this way, the posterior distribu-

tion (π(θ | x)) is a mixture of the prior distribution and a sampling distribution

(f(x | θ)).

π(θ | x) ∝ f(x | θ)π(θ) (3.5)

This illustrates the way in which Bayesian estimates are a mixture of prior infor-

mation and updated information from the sample data. This is a notable point in

agricultural applications given the fact that arguments for many different distribu-

tions have been made to characterize agricultural yields.

The second point involves the way in which subjective information is in-

troduced into the model. In maximum likelihood methods, assumptions are made

concerning the parametric characterization of the function. For example, crop yields

have been argued to be distributed as Normal, Beta, Gamma, and Weibull. Since

yield data are usually insufficient to reject any reasonable distributional assump-

tion (Ker and Coble, 2003), the argument can be made for a number of alternative

measures. In Bayesian analysis, prior information is less intrusive in that it can be

introduced as a tool by providing a summary of available prior knowledge. With

little or no prior knowledge, this element can be noninformative or vague. Even

with little prior information available, Bayesian estimators have been shown to out-

perform classical estimators in many areas, as discussed by Zellner (1985).

A major argument against Bayesian techniques is that prior distributions are

subjective and their form is debatable. While this subjectivity cannot be avoided
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using classical parametric methods, the prior can be noninformative so as to mini-

mize the subjectivity within a model. It is worth noting that as data samples grow,

the sampling distribution overpowers the prior distribution, so that prior distribu-

tion assumptions likely have little effect on parameter estimates. In this particular

application the data consists of a sufficient number of observations so that the priors

will have a minimal impact on the posterior inference.1

3.3 Modeling Censored Data

This section develops two strategies for modeling censored data sets. The Tobit

model is first described in both univariate and multivariate cases. The second

method is a zero-inflated mixture model which may possess characteristics that

make it more appropriate when censored variables are non-normal or have a two-

step process. The mixture model will be shown to nest the Tobit model and extend

to allow additional flexibility in modeling the probability of a non-zero outcome.

3.3.1 The Tobit Model

When faced with dependent variables that are censored, there are many models a re-

searcher can use. No method is more widely used in economics than the Tobit model.

In this section, a univariate Tobit model is developed that allows for heteroskedastic

errors, which will be generalized to accommodate a system of equations.

The standard likelihood function for a given random dependent variable yi

with n0 censored observations and n1 uncensored observations is written as follows:

L(β, σi|yi) =
n0∏
i=1

[
1− Φ

(
x′iβ

σi

)] n1∏
i=1

σ−1
i φ

[(
yi − x′iβ

σi

)]
(3.6)

1The complete data set consists of 11,397 observations, which will be split into thirds so that
two-thirds of the data (n = 7,598) is used to characterize the model, while the final third (n = 3,799)
is used to test predictive accuracy. A random selection process was used to place each observation
into one of these two categories.
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where Φ is the cumulative density function (CDF) and φ is the probability density

function (PDF) of a standard normal. Notice here that errors can also be assumed

to be homoskedastic by assuming that σi = σ for ∀i. Statistical inference essentially

involves an inversion process where parameter estimates are obtained from the data.

For maximum likelihood, the above likelihood function is used to maximize the log

of the likelihood function, with respect to the parameters.2 Notice here that the

Tobit model is flexible to allow for heteroskedastic errors (Greene, 2003).

From the likelihood function described in equation (3.6), we obtain the log-

arithmic likelihood function

LL =
n0∑
i=1

log

[
1− Φ

(
x′iβ

σi

)]
− 1

2

n1∑
i=1

[
log
(
σ2

i

)
+

(yi − x′iβ)2

σ2
i

]
(3.7)

where σ2
i can be written as a linear function of the data, expressed as

σ2
i = exp(x′iα) (3.8)

where the first element of α contains a constant variance term (log(σ2)). Equation

(3.7) can be rewritten to include (3.8) with the following equation

LL =
n0∑
i=1

log

[
Φ
(

−x′iβ

exp(x′iα)−.5

)]
− 1

2

n1∑
i=1

[
x′iα +

(yi − x′iβ)2

exp(x′iα)

]
(3.9)

This equation is maximized with respect to values of β and α to obtain the

MLEs and can be used in a variety of settings. These parameter estimates (MLEs)

are then used in prediction for the latent variable in the following way:

ŷ∗i = x′iβ̂ (3.10)
2The maximization of this function can be quite cumbersome and time-consuming given the use

of an iterative process such as the Newton-Raphson procedure. This complexity is magnified in
a multivariate framework, as computation time increases quickly when additional parameters are
added to the function.
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such that ŷi = max(ŷ∗i , 0).

Next, we consider the case of multiple related equations, where one or more

of the variables consists of censored variables, while the remaining variables are not

censored. Within this system of equations, an array of censoring regimes may occur.

For example, in a 4 equation system, there are 16 possible combinations of censoring

types. Additionally, when one variable is censored within a vector of dependent

variables, for a single observation, the uncensored variable levels offer information

about the censored observation. Therefore, when a single variable is censored, the

uncensored variable levels can enhance efficiency when they are accounted for while

computing the expected mean and variance for a given censored observation.

Recall that the univariate Tobit model above includes heteroskedastic er-

rors, which will be extended to include an appropriate covariance matrix within the

multivariate setting. This covariance matrix must account for both variance and

correlation effects between the dependent variables.

Equation (3.9) can be extended into the following multivariate form

LL = −1
2

n0∑
i=1

{
ln
(
|Σ−1

i |
)

+ (Yi −XiB) Σ−1
i (Yi −XiB)′

}
+

−1
2

n1∑
i=1

ln
(
|Σ−1

22i|
)

+
(
y

(2)
i −X

(2)
i B(2)

)
Σ−1

22i

(
y

(2)
i −X

(2)
i B(2)

)′
+

ln

(
Φ
[
− γi√

λi

])
(3.11)

where Yi is a 1 × j matrix and B is a k × j matrix containing marginal effects.

In this specification, j corresponds to the number of dependent variables and k is

the number of parameters. B can be broken into two components containing the

parameter estimates for the censored variable, B(1), and the parameter estimates

for the uncensored variables, B(2). When censoring occurs at an observation for one

or more dependent variables, it will also contain observable non-censored variable
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levels. Components from Yi, within an observation, will be segregated into two

vectors that differentiate the variables between censored, y
(1)
i , and uncensored, y

(2)
i .

For variables with censoring, the censored variables will have a standard normal

CDF applied, denoted as Φ, with a mean and variance respectively shown below

γi = µ
(1)
i + Σ12iΣ−1

22i

(
y

(2)
i − µ

(2)
i

)
(3.12)

λi = Σ11i − Σ12iΣ−1
22iΣ21i (3.13)

Notice here that the expected mean and variance of the censored variables account

for the variable levels of non-censored variables. The covariance matrix Σi can be

broken into the following components where Σ11i refers to the covariance matrix

of censored variables, Σ22i refers to the covariance matrix of uncensored variables,

while Σ12i and Σ21i measure the cross-covariances between the two components, at

observation i.

Σi =

 Σ11i Σ12i

Σ21i Σ22i

 (3.14)

Additionally, Σi is a j × j covariance matrix that is characterized as Σi =

T ′
iDiTi to ensure global concavity when the following specification is used.

Ti =


1 t12i t13i

0 1 t23i

0 0 1

 (3.15)

and

Di =


d1i 0 0

0 d2i 0

0 0 d3i

 (3.16)

where upper off-diagonal elements of Ti are unrestricted while the diagonal elements

of Di are restricted to non-negative values. Here we illustrate with a 3 parameter
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system that can easily be expanded to include more dependent variables. A linear

regression is used to model Di as follows:

log


d1i

d2i

d3i

 = GX ′
i (3.17)

where the 3xk matrix, G, is used to calculate the variance for each observation,

conditional on the unique variable levels. Elements of Ti are assumed to be constant

across all observations in this study. Elements of Ti can also be conditional on the

conditioning variables, which has been derived in the previous essay.

As mentioned previously, there exists two limitations with the Tobit model

in both multivariate and univariate cases. First, the assumption of normality, for

the latent variable, severely limits distributional assumptions that can be utilized.

The second limitation is that variables and parameters that influence the conditional

mean of positive values must also influence the probability of a non-zero observation.

This is also hypothesized to limit the model efficiency in cases where a high degree

of censoring occurs. In the next subsection, a zero-inflated mixture regression model

is developed to overcome the two major limitations of the Tobit model.

3.3.2 Zero-Inflated Mixture Regression Model

Here we focus on the two limitations of the Tobit model and derive a zero-inflated

mixture regression model that can be generalized to use any continuous distribution

to model non-censored observations. The univariate mixture model will be shown

to nest the Tobit model, while naturally extending to include the log-normal and

Gamma specifications and allowing for more flexible conditions. The next step will

be to extend the univariate log-normal model into a multivariate model. This par-

ticular mixture model will be derived from a generalized zero-inflated model, which
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will also have many of the same characteristics as a generalized hurdle model. Typ-

ically, zero-inflated regression models have been confined to count data. However,

there may be significant advantages in modeling censored data as part of this par-

ticular two-part process. This is particularly true in cases where participation in the

positive outcome group can be partially determined by the observed conditioning

variables.

A major difference between this model and the Tobit model is that unobserv-

able, censored observations are not directly estimated. Instead, the probability that

an observation takes on a positive value is regressed using a Bernoulli distribution,

conditional on the conditioning variables. In the case where the variable takes on

a positive value, the distribution V is used.3 A generalized zero-inflated model can

be characterized as follows:

f(y|θ) = 1− ρ(θ) y = 0

= ρ(θ)g(y|θ) y > 0 (3.18)

where
∫∞
0 g(y|θ)dy = 1 ∀θ. This formation includes the standard univariate Tobit

model when θ = (µ, σ), ρ(θ) = Φ
(µ

σ

)
, and g(y|θ) =

φ( y−µ
σ )

Φ(µ
σ ) I(y > 0). Notice that

in the log-normal and Gamma zero-inflated specifications to follow, ρ is modeled

independently of mean and variance parameter estimates, making them more flexible

than the Tobit model.

The above formulation may also be compared to a typical hurdle specification

when g(y|θ) is assumed to be a zero-truncated distribution and ρi(θ) is represented

by a Probit model. The hurdle model as specified by Cragg (1971) is not limited

to the above specification. In fact, the hurdle model can be generalized to include
3One potential drawback to this model is the loss in degrees of freedom due to the additional

parameters that estimate the likelihood of a censored outcome. However the additional parameters
do appear to more efficiently characterize the model given the high degree of censoring. This impact
is thought to decrease as the degree of censoring falls.
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any standard regression model that takes on positive values for g(y|θ) and any

decision model for ρi(θ) that takes on a value between 0 and 1. In their generalized

forms, both the hurdle and zero-inflated models appear to be similar, even though

applications for each have differed.

Next, we develop two univariate zero-inflated models that include covariate

variables, which then can be extended to allow for multivariate cases. Since only the

positive outcomes are modeled through the second component, the log of the depen-

dent variable can be taken. Taking the log of this variable works to symmetrize the

dependent variable that was originally positively skewed. Using a log-normal distri-

bution for the V random variable and allowing ρ to vary based on the conditioning

variables, we can transform the basic zero-inflated model into the following form

that can be generalized to include continuous distributions. We start by deriving

the normal distribution to model the logarithm of the dependent variable outcomes,

also known as the log-normal distribution, of the following form

f(yi|β, α, δ) = 1− ρi(δ) for yi = 0

= ρi(δ)
1
yi

φ

(
log(yi)− x′iβ

σi

)
otherwise (3.19)

where

ρi =
1

1 + exp(x′iδ)
(3.20)

σ2
i = exp(x′iα) (3.21)

which guarantees σ2
i to be positive and ρi to lie between 0 and 1 for all observa-

tions and all parameter values. Notice that this specification is nested within the

generalized version in equation (3.18) where g(y|θ) is a log-normal distribution and

θ = (δ, β, α).

In addition to deriving a zero-inflated log-normal distribution, we will also
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derive a zero-inflated Gamma distribution to demonstrate the flexibility of the zero-

inflated regression models and perhaps improve upon modeling a variable that pos-

sesses positive skewness. Within a univariate framework, the sampling distribution

can be easily changed by deriving V as an alternative distribution in much the same

way as equation (3.19). Following is the specification for the zero-inflated Gamma

distribution, where V is distributed as a Gamma distribution where λi is the shape

parameter, and ηi is the rate parameter.

f(yi|λi, ηi, δ) = 1− ρi(δ) for yi = 0

= ρi(δ)
yλi−1

i e−ηiyi

Γ(λi)
ηλi

i otherwise (3.22)

This function can be reparameterized to include the mean of Gamma, µ, by substi-

tuting λi = µiηi, where ηi = e(x′iκ) and µi = e(x′iγ). Within the Gamma distribution

specification, the expected value and corresponding variance can be found through

the following equations:

E(yi) = ρiµi (3.23)

V ar(yi) = ρi(1− ρi)µ2
i + ρi

µi

ηi
(3.24)

Both the Gamma and log-normal univariate specifications allow for a unique set

of mean and variance estimates to result from each distinct set of conditioning

variables.

To model multiple dependent variables in a way that captures the covariance

structure, we make a slight departure from the univariate version by utilizing the re-

lationship between joint density functions and conditional marginal functions. More

specifically, we use the following relationship when evaluating y1 and y2, where y1
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has a positive probability of taking on the value of 0 and y2 is a continuous variable.

f(y1, y2) = f(y1|y2)f(y2) (3.25)

where f(y1, y2) is the joint density function of y1 and y2, f(y1|y2) is the conditional

probability of y1, given y2, and f(y2) is the unconditional probability of y2. In order

to compare this model to that of the multivariate Tobit formulation, we derive a two-

dimensional version of y2, which can easily be generalized to fit any size. However,

this model restricts y1 to be one-dimensional under its current formulation.4

We begin by parameterizing, Z2i = log(y2), which will be distributed as a

multivariate normal, with mean, XiB
(2), and variance, Σ22i, as defined in equation

(3.11). The assumption of log-normality is often made due to the ease in which a

multivariate log-normal can be computed and its ability to account for skewness.

Using the previously defined notation, the function can be expressed as follows

Z2i ∼ N(XiB
(2),Σ22i) (3.26)

where Z2i is an n x j dimensional matrix of positive outcomes. This formulation

allows each observation to run through this mechanism, whereas the Tobit model

runs only censored observations through this mechanism.

The conditional probability of y1 given y2 is modeled through a zero-inflated

modeling mechanism that takes into account the realizations from y2 in the following

way

Y1|Y2 = y2 ∼ ZILN(ρi, µi(y2), σ2
i (y2)) (3.27)

where ZILN is a zero-inflated log-normal distribution, µi(y2) is the conditional mean
4This will remain an area of future research. Deriving a model that allows for multiple types of

censoring may be very useful, particularly when dealing with the consumption of multiple goods.
Using unconditional and conditional probabilities to characterize a more complex joint density
function with multiple censored nodes would naturally extend from this modeling strategy.
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of Z1i, which is defined as Z1i = log(y1), given Z2i, and σ2
i (y2) is the corresponding

conditional variance. These terms are similar to equations (3.12) and (3.13) and are

shown below

µi(y2i) = XiB
(1) + Σ12iΣ−1

22i

(
y2i −XiB

(2)
)

(3.28)

σ2
i (y2i) = Σ11i − Σ12iΣ−1

22iΣ21i (3.29)

which leads to the following probability density function

f(Z1i|Z2i) = 1− ρi(δ) for y1i = 0

= ρi(δ)
1

y1i
φ

Z1i − µi(y2i)√
σ2

i (y2i)

 for y1i > 0

(3.30)

Ghosh et al. (2006) demonstrate through simulation studies that similar zero-

inflated models have better finite sample performance with tighter interval estimates

when using Bayesian procedures instead of classical maximum likelihood methods.

Due to these advantages, the previously developed models will utilize recently de-

veloped Bayesian techniques. In order to develop a Bayesian model, the sampling

distribution is weighted by prior distributions as shown in equation (3.5). The

sampling distribution, f , is fundamentally equivalent to the likelihood function, L,

where

L(θ|yi) ∝ f(yi|θ) (3.31)

and θ represents the estimated parameters, which for our purposes will include

θ = (β, α, δ). While prior assumptions can have some effects in small samples,

this influence diminishes with larger sample sizes. Additionally, prior assumptions

can be uninformative in order to minimize any effects in small samples. For each
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parameter in the model, a non-informative normal prior will be assumed.

π(βkj) ∼ N(0,Λ1) (3.32)

π(αkj) ∼ N(0,Λ2) (3.33)

π(δkc) ∼ N(0,Λ3) (3.34)

for k = 1, ...,K, j = 1, ..., J , and c = 1, ..., C, where K is the number of conditioning

variables or covariates, J is the number of dependent variables in the multivariate

model, and C is the number of censored dependent variables. Note here that the

above formulation applies to univariate versions when J = 1 and C = 1. Addition-

ally, Λ must be large enough to make the prior relatively uninformative.5

Given the preceding specifications of a sampling density and prior assump-

tions, a full Bayesian model can be developed. Due to the difficulty in integrating a

posterior distribution that contains many dimensions, Markov Chain Monte Carlo

(MCMC) methods can be utilized to obtain samples of the posterior distribution

using WinBUGS programming software. Chib and Greenberg (1996) provide a sur-

vey of MCMC theory as well as examples of its use in econometrics and statistics.

MCMC methods allow for the computation of posterior estimates of parameters

through the use of Monte Carlo simulation based on Markov chains that are gener-

ated a large number of times. The draws arise from a Markov chain since each draw

depends only on the last draw, which satisfies the Markov property. As the poste-

rior density is the stationary distribution of such a chain, the samples obtained from

the chain are approximately generated from the posterior distribution following a

burn-in of initial draws.

Predictive values within a Bayesian framework come from the predictive dis-

tributions, which is a departure from classical theory. In the zero-inflated mixture
5Λ is assumed to be 1,000 in this study, so that a normal distribution with mean 0 and variance

1,000 will be relatively flat.
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model, predicted values will be the product of two posterior mean estimates. Pos-

terior densities for each parameter are computed from Markov Chain Monte Carlo

(MCMC) sampling procedures using WinBUGS software. MCMC methods allow us

to compute posterior density functions by sampling from the joint density function

that combines both the prior distributional information and the sampling distri-

bution (likelihood function).6 Formally, prediction in the zero-inflated log-normal

model is characterized as follows:

ŷi = vibi (3.35)

where vi and bi are generated from their predictive distributions. log(vi) is from

a normal distribution with mean (µi = x′iβ̂) and variance (σ2
i = exp(x′iα̂)), while

bi is from a Bernoulli distribution with parameter ρ(δ̂). Since many draws from a

Bernoulli will result in 0 and 1 outcomes, the mean will produce an estimate that

lies between the two values. To allow for prediction of both zero and positive values,

the median of the Bernoulli draws was used for prediction, so that observations that

contained more than 50% of 1 outcomes were given a 1 value and the rest were given

0. This allows for observations to fully take on the continuous random variable if

more than half of the time it was modeled to do so, while those that are more likely

to take on zero values, as indicated by the Bernoulli outcomes, take on a zero value.

3.4 Comparison Using Simulated Data

This section will focus on simulating data in order to evaluate model efficiency for

the two previously specified models. The major advantage to evaluating a simu-

lated set of data, is that the true form of the data generation process is known
6WinBUGS will fit an appropriate sampling method to the specified model to obtain samples

from the posterior distribution. Typically this implies Gibbs sampling with Metropolis-Hastings
steps.
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prior to evaluation. This will offer key insights into what to expect when evaluating

an application involving the cattle production data set to follow. Additionally, we

will evaluate data that come from Tobit and mixture processes, which will help to

assess the degree of losses when the wrong type of model is assumed. This will as-

sist in identifying the type of data that the cattle production data set most closely

represents. In simulating data, there will be two key characteristics that will align

the simulated data set with the cattle production data set to be used in the next

section. First, cattle production yield variables have been shown to possess het-

eroskedastic errors. To accommodate this component error terms will be simulated

based on a linear relationship with the conditioning variables. While the first set of

simulations will consist of homoskedastic errors, the remaining simulations will use

heteroskedastic errors. Second, we are concerned with simulated data that exhibit

nearly 50% censoring to emulate the cattle production data set to be used as an ap-

plication in the next section. While there are many different ways to simulate data,

the proposed method is aimed to offer guidance when evaluating cattle production

yields.

Past research has focused on modeling agricultural yields, while research

dealing specifically with censored yields is limited. The main reason for the lack

of research into censored yields is because crop yields are not typically censored at

upper or lower bounds. However, with the emergence of new livestock insurance

products, new yield measures must be quantified in order for risks to be properly

identified. In contrast to crop yield densities, yield measures for cattle health possess

positive skewness, such as the mortality rate and veterinary costs. Crop yield densi-

ties typically possess a degree of negative skewness as plants are biologically limited

upward by a maximum yield, but can be negatively impacted by adverse weather,

such as drought. Variables such as mortality have a lower limit of zero, but can rise

quickly in times of adverse weather, such as prolonged winter storms or disease. The
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simulated data set used for these purposes will possess positive skewness as well as

a relatively high degree of censoring, in order to align with characteristics found in

cattle mortality data for cattle on feed.

First, a simplified simulated data set will be examined with a varying num-

ber of observations. We assume in this set of simulations that that errors are ho-

moskedastic. The simulated model will be as follows

y∗i = β0 + β1x1i + β2x2i + εi (3.36)

εi ∼ N(0, σ2) (3.37)

yi = max(y∗i , 0) (3.38)

Data are simulated using MATLAB software. It is also important to empha-

size the point that, in this scenario, the censored and uncensored variables come

from the same data generation process. For each sample size, starting seeds were

set in order to replicate results. Then, values for xi ranged from 1 to 10, based on

a uniform random distribution.7

Error terms are distributed as a normal, centered at zero with a constant

variance set to σ. y∗i is then computed from equation (3.36) and all negative values

are replaced with zeros, in order to simulate a censored data set. The degree of

censoring in these simulated data sets ranged from 49% to 62%.

Two thirds of this simulated data set is used for estimation, while the final

third is used for prediction. This allows us to test both model fit measures as

well as predictive power. In this study, Tobit regressions use classical maximum

likelihood estimation techniques, while zero-inflated models use Bayesian estimation
7Values for xi might also be simulated using a normal distribution. A uniform distribution will

more evenly spread values of xi from the endpoints, while a normal distribution would cluster the
values near a mean, without endpoints (unless specified). Additionally, a uniform distribution will
tend to result in fatter tails in the dependent variable due to the relatively high proportion of
extreme values for xi.

81



techniques. To derive measures of model fit we use the classical computation of

Akaike’s Information Criteria (AIC) (Akaike, 1974) and derive a similar measure

for Bayesian analysis, the Deviance Information criteria (DIC)(Spiegelhalter et al.,

2002). DIC results are interpreted similar to AIC in that smaller values of the

statistics reflect a better fit. A major difference is that AIC is computed based on

the optimized value of the likelihood function in the following manner:

AIC = −2logL(β̂, α̂) + 2P (3.39)

where P is the dimension of θ, which is 3 in the case of homoskedastic errors and

6 with heteroskedastic errors. Alternatively, DIC is constructed by including prior

information and is based on the deviance at the posterior means of the estimated

parameters. A penalization factor for the number of parameters estimated is also

incorporated into this measure. The formulation for DIC is as follows:

DIC = D̄ + pD (3.40)

where pD is the effective number of parameters and D̄ is a measure of fit that is

based on the posterior expectation of deviance, which is specified for our purposes

as follows

D̄ = E[−2logL(δ, β, α)|y] (3.41)

pD = D̄ + 2logL(δ̃, β̃, α̃) (3.42)

(3.43)

taking into account the posterior means, δ̃, β̃, and α̃.

Robert (2001) reports that DIC and AIC are equivalent when the posterior

distributions are approximately normal. The normality of all parameter estimates is
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supported by the posterior plots supplied by WinBUGS. Spiegelhalter et al. (2003)

warns that DIC may not be a viable option for model fit tests when posterior

distributions possess extreme skewness or bimodality. These do not appear to be

problematic in this study.

To measure the predictive power within a modeling strategy, we compute

the Mean Squared Prediction Error (MSPE) associated with the final third of each

simulated data set. MSPE allows us to test out of sample observations to assess how

well the model predicts dependent variable values. MSPE is formulated as follows:

MSPE =
1
m

m∑
i=1

(ŷi − yi)
2 (3.44)

where m is some proportion of the full data sample, such that m = n
b . For our

purposes, b = 3, which allows for prediction on the final third, based on estimates

from the first two thirds. This allows for a sufficient amount of observations available

for estimation and prediction.

We estimate the simulated data set, given the above specifications, with the

three models that have previously been formulated. MCMC sampling is used for

Bayesian estimation with a burn-in of 1,000 observations and three Markov chains.

WinBUGS uses different sampling methods, based on the form of the target distribu-

tion. For example, the zero-inflated Gamma distribution uses Metropolis sampling

that fine tunes some optimization parameters for the first 4,000 iterations, which

are not counted in summary statistics. MSPE calculations were conducted outside

of WinBUGS, while predicted values were computed during WinBUGS regressions

and compared with simulated data to align with the method used for predictions

from the Tobit model.

Results from regressions on the simulated data set with homoskedastic errors

can be found in Table 3.1. Based on AIC/DIC criteria, the zero-inflated log-normal

regression model outperforms the Tobit model at all data sample levels. This is
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particularly interesting given the fact that simulation was based on a Tobit model.

In cases where the degree of censoring is high, the parameter estimates that estimate

the likelihood of censoring add more precision to the model. This impact is likely

to diminish as the degree of censoring decreases and increases for higher degrees of

censoring.

Table 3.1: Simulation results based on Tobit model with homoskedastic errors
n Model MSPE LL AIC/DIC
200 Tobit 0.773 -86.044 184.088

ZILN 23.982 -58.162 122.934
ZIG 4.453 -165.280 337.138

500 Tobit 0.460 -258.590 529.179
ZILN 96.064 -170.905 350.238
ZIG 52.720 -497.998 1,002.490

1,000 Tobit 0.466 -508.902 1,029.805
ZILN 94.809 -400.526 809.331
ZIG 47.098 -985.960 1,977.590

The poor performance of the Gamma distribution highlights the problem

associated with assuming an incorrect distribution. The Gamma distribution does

particularly well with positive skewness, however, the degree of skewness in this

model is not sufficient to overcome the incorrect distributional assumption.

Lower MSPE indicates that the prediction of the out of sample portion of

the data set favors that of the Tobit model at all sample levels. MSPE penalizes

observations with large residuals that tend to be more prevalent as the dependent

variable value increases. Gurmu and Trivedi (1996) point out that mixture models

tend to overfit data. By overfitting the data, model fit tests might improve, while

prediction remains less accurate. This might explain part of the reason that mix-

ture models appear to fit this particular set of simulated data better, while lacking

prediction precision. Both zero-inflated models had particular trouble when pre-
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dicting higher values of y, resulting in high MSPE values. Recall, MSPE refers to

the average of the squared distance between predicted and actual values. It is also

worth mentioning that the wide spread of MSPE values is largely a result of simu-

lating data that contains a high level of variability and a relatively small number of

observations.

It is also important to point out that the Tobit model assumes positive

observations are distributed by a truncated normal distribution, while log-normal

and Gamma distributions also take on only positive values but look very different

than the truncated normal distribution. With roughly half of the sample censored,

the density function from a truncated normal density would likely predict a larger

mass near the origin, while the log-normal and Gamma distributions carry fatter

tails.

As previously mentioned, another major difference between the hurdle and

zero-inflated models in practice is the difference in modeling the binary decision

variable using a Probit and Bernoulli distributions, respectively. Based on the sim-

ulated data, the binary variables were computed using both methods and shown

below in Table 3.2. The Bernoulli method predicts just as well as the Probit model,

despite the fact that the data are generated based on a Tobit model, which assumes

that the binary process is based on a Normal distribution. For example, in the

n = 500 simulation, 167 observations were used to compare predictive accuracy

and the Bernoulli equation predicted 84 non-censored outcomes, while the Probit

overestimated 89 non-censored outcomes.

As an alternative to the preceding simulation process, data can also be simu-

lated using two separate data processes that emulate that of a mixture model more

consistent with zero-inflated models. The distinction between this simulation and

the previously developed Tobit-based data set, is that the probability of a censored

outcome is modeled according to equation (3.20). Additionally, outcomes that are
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Table 3.2: Comparison of binary methods of predicting positive outcomes from
simulation based on Tobit model with homoskedastic errors

n m Type Actual Probit Bernoulli
200 67 Count 41 43 42

Percentage 0.61 0.64 0.63

500 167 Count 86 89 84
Percentage 0.52 0.53 0.51

1,000 333 Count 160 165 166
Percentage 0.48 0.50 0.50

Note: m is the number of observations used solely for prediction

described by a probability density function must be positive, which is achieved by

taking the exponential of a normal distribution.8

Results from the second simulation can be found in Table 3.3. Once again,

the results indicate a superior model fit with the zero-inflated model, relative to the

Tobit model. Additionally, the zero-inflated models possess a substantially lower

MSPE, indicating better out of sample prediction performance. Both zero-inflated

formulations are capable of accounting for positive skewness. For the larger sample

sizes, the Gamma formulation shows superior prediction ability, while the log-normal

formulation fits the data best. These results may come from the data generating

process where the positive observations are generated from a log-normal distribution,

however, the Gamma formulation predicts the outcomes that may come furthest

from zero most accurately.

Accounting for both types of data generating processes, zero-inflated models

are better able to fit data that contain a high degree of censoring. Prediction

appears to depend on the data generation process. If the data comes from a zero-
8This is the same as assuming yi is distributed as a log-normal distribution. Alternatively, data

could be generated using a truncated normal distribution where simulations on a normal continues
until all values are positive through iterations that spit out negative values and keep only positive
values. The two methods would generate two very different data sets.
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Table 3.3: Simulation results based on mixture model with homoskedastic errors
n Model MSPE LL AIC/DIC
200 Tobit 1.953 -95.535 203.069

ZILN 0.280 -2.583 11.510
ZIG 0.303 6.905 -7.865

500 Tobit 2.153 -276.410 564.821
ZILN 0.079 29.148 -50.412
ZIG 0.083 13.379 -20.674

1,000 Tobit 1.189 -499.676 1,011.351
ZILN 0.044 21.211 -33.565
ZIG 0.046 82.563 -158.735

inflated model, then prediction is more efficient when it is from a zero-inflated

model. Alternatively, if all data comes from the same data generating process, then

the Tobit may predict better than the proposed alternatives. One notable feature

of the results generated from this simulation is that values for DIC appear to take

on both positive and negative values. As mentioned previously, lower DIC/AIC

indicate better fit measures. Therefore, a negative DIC is favorable to a positive

AIC, which is the case under this scenario.

Tests were once again performed to compare the results based on the Probit

and Bernoulli methods of predicting the binary choice component and are shown in

Table 3.4. As shown below, there does not appear to be any significant differences

between the two methods under this scenario.

The previous set of simulations assumed homoskedastic errors, which is a

simplyfying assumption which has not been shown to hold in the application of cattle

production yields. In order to more closely align with the given application, we now

move to simulate a data set containing heteroskedastic errors. Heteroskedasticity

is introduced into this data by constructing εi by substituting equation (3.45) for

equation (3.37) and accounting for the relationship between the error terms and the
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Table 3.4: Comparison of binary methods of predicting positive outcomes from
simulation based on a mixture model with homoskedastic errors

n m Type Actual Probit Bernoulli
200 67 Count 45 45 45

Percentage 0.67 0.67 0.67

500 167 Count 95 96 96
Percentage 0.57 0.57 0.57

1,000 333 Count 193 194 193
Percentage 0.58 0.58 0.58

Note: m is the number of observations used solely for prediction

conditioning variables, as shown in equation (3.46).

εi ∼ N(0, σ2
i ) (3.45)

σ2
i = exp(α0 + α1x1i + α2x2i) (3.46)

These equations impose a dependence structure on the error term, where the vari-

ance is a function of the conditioning variables. This specification is thought to

better characterize cattle production yield measures, such as mortality rates, based

on results from Essay 1.

Simulations were conducted in much the same manner as the previous set of

simulations, with the addition of heteroskedastic errors. The results from generating

data from a Tobit model with heteroskedastic errors are shown in Table 3.5.

The same general results apply with lower MSPE resulting from the Tobit

model, with slightly higher MSPE from the zero-inflated models. Also, results from

the simulation based on a mixture model are shown in Table 3.6.

Results from this simulation also align with the homoskedastic version.

Most current research concerning censored data is focused on multivariate

systems of equations. This is because of the many applications that make use of
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Table 3.5: Simulation results based on Tobit model with heteroskedastic errors
n Model MSPE LL AIC/DIC
200 Tobit 16.624 -87.057 186.114

ZILN 20.416 -57.162 123.416
ZIG 17.083 -187.151 381.949

500 Tobit 6.205 -248.387 508.774
ZILN 10.156 -168.842 348.661
ZIG 12.018 -546.32 1,100.390

1,000 Tobit 10.012 -453.739 919.478
ZILN 14.528 -358.822 728.513
ZIG 16.745 -1,024.810 2,058.140

Table 3.6: Simulation results based on mixture model with heteroskedastic errors
n Model MSPE LL AIC/DIC
200 Tobit 77.813 -40.024 92.049

ZILN 63.386 -26.204 60.732
ZIG 64.052 -76.506 160.651

500 Tobit 12.941 -130.961 273.923
ZILN 4.303 -102.802 214.994
ZIG 3.971 -235.094 478.824

1,000 Tobit 4.610 -272.204 556.407
ZILN 2.948 -183.034 376.549
ZIG 2.468 -430.032 867.893
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multivariate relationships in current studies. For this reason, it will be important to

simulate a multivariate data set that comes from both a Tobit and a two-step pro-

cess. Since multivariate data comes in both forms, it will be important to evaluate

each to see the potential bias from assuming, for example, that data are generated

from a multivariate Tobit model when a two-step process is more appropriate. The

Tobit process is constructed from a multivariate normal distribution that assumes a

covariance matrix constructed from equations equations (3.15) and (3.16). Censor-

ing in this case occurs when the censored dependent variable falls below a specified

level. Alternatively, the two-step process uses a Bernoulli distribution to estimate

the likelihood of a censored outcome, which is also a function of the conditioning

variables. To be consistent, the same variables that increase the likelihood of a cen-

sored outcome in the two-step case, also decrease the mean of the variable so that

they increase the likelihood of a variable being censored in the Tobit process. Y1

and Y2 are variables without censoring, while Y3 contains censoring in nearly half of

its observations.

The results from a simulated data set based on a multivariate Tobit model

are shown in Table 3.8. Overall, the fit of both models appear to be more closely

aligned with the Tobit model in the first two simulations, while the zero-inflated

model more accurately fits the model with the largest sample size. Additionally, the

Tobit model predicts more efficiently, as shown by the lower MSPE in most cases.

This is consistent with the univariate results and again is not surprising, given the

data were generated from a Tobit model.

It is surprising the closeness of model fit, when we compare the results from

data simulated from a mixture model, as shown in Table 3.8. Here, the zero-inflated

model strongly improves the model fit, relative to the Tobit formulation. It is

surprising that while most MSPE measures are close, they tend to favor the Tobit

model formulation. For an explanation of estimation and prediction of the zero-
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Table 3.7: Multivariate simulation results based on Tobit model
n Model Y1 MSPE Y2 MSPE Y3 MSPE LL AIC/DIC
200 Tobit 0.481 1.281 0.290 -168.227 378.454

ZILN 0.482 3.236 3.165 -156.399 354.223

500 Tobit 0.328 0.789 0.312 -477.028 996.056
ZILN 0.327 2.182 5.057 -499.801 1,043.380

1,000 Tobit 0.261 0.639 0.205 -912.345 1,866.691
ZILN 0.261 1.211 3.167 -907.265 1,859.090

inflated multivariate model, see Appendix 1.

Table 3.8: Multivariate simulation results based on mixture model
n Model Y1 MSPE Y2 MSPE Y3 MSPE LL AIC/DIC
200 Tobit 0.343 0.995 1.032 -197.166 436.332

ZILN 0.355 1.817 1.950 -107.884 243.534

500 Tobit 0.376 0.858 2.395 -2,636.920 5,315.839
ZILN 0.373 3.713 3.205 -347.296 739.812

1,000 Tobit 0.220 1.067 2.760 -4,599.517 9,241.034
ZILN 0.226 1.714 5.169 -585.280 1,216.920

These simulations were conducted to compare the efficiency of the two given

models in cases where the data are generated from a single data generating process,

and that of a two-step process. Simulation results indicate that both models do

relatively well in fitting the data, when the data come from a Tobit model. Alterna-

tively, the model fit tests quickly move in the direction of the zero-inflated model in

cases where the data comes from a mixture model, where non-zero observations are

modeled using a multivariate log-normal distribution. Prediction of out of sample

observations appear to be more efficiently characterized through the Tobit model.

This is interesting given the fact that classical Tobit prediction uses only the opti-

mized parameter values, while the zero-inflated model employs a Bayesian method
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that employs the entire posterior distribution of the estimated parameter values.

Overall, the ZILN model tends to fit the data particularly well whether the data are

generated from a Tobit or two-step process. This may result from the additional

parameters that characterize the probability of a non-zero outcome in mixture mod-

els. However, this over-fitting does not assist in improving prediction, as prediction

tends be more precise when the appropriate model is specified.

This section has offered some initial guidance into evaluating real data through

the use of simulated data sets. The simulated data sets offer the opportunity to eval-

uate the performance of the Tobit and zero-inflated mixture models in situations

where the true data generation process is known. The next section will look to eval-

uate the same postulated models in an application where the true data generating

process is unknown.

3.5 Data

This section applies the preceding models to cattle production risk variables. Past

simulation results offer initial guidance as we proceed to this particular application.

The data set that will be used for this section possesses many of the same proper-

ties from the last section, such as a relatively high degree of censoring and positive

skewness. The proposed zero-inflated mixture model is hypothesized to characterize

censored cattle mortality rates better than the Tobit model because of the two part

process that mortality observations are hypothesized to follow, as well as based on a

visual inspection of positive mortality observations being more closely characterized

by a log-normal distribution. Cattle mortality rates are thought to follow a two

step process because pens tend to come from the same, or nearby, producers and

are relatively homogenous. Therefore, a single mortality can be seen as a sign of a

pen that is prone to sickness or disease. Additionally, airborne illnesses are conta-

gious and can be spread rather quickly throughout the pen. Additional variables
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that describe cattle production performance are introduced and evaluated using the

previously developed multivariate framework. In this setting, it is proposed that the

mixture model improves upon the multivariate Tobit model used in the first essay

of this research.

This research focuses on the estimation and prediction of cattle production

yield measures. Cattle mortality rates from commercial feedlots are of particular

interest due to their censored nature and importance in cattle feeding profits. Typ-

ically, mortality rates are zero or small, but can rise significantly during adverse

weather, illness, or disease. The data used in this study consists of 5 commercial

feedlots residing in Kansas and Nebraska, and includes entry and exit character-

istics of 11,397 pens of cattle at these feedlots. Table 3.9 presents a summary of

characteristics for different levels of mortality rates, including no mortalities

Particular attention will be placed on whether zero or positive mortality rates

can be strongly determined based on the data at hand. The degree of censoring in

this sample is 54%, implying that 46% of the observations contain no mortality

losses. There is strong evidence that mortality rates are related to the previously

mentioned conditioning variables, but we will need to determine whether censored

mortality observations are from a different empirical process than observed positive

values. Positive mortality rates may be a sign of poor genetics coming from a

particular breeder or sickness picked up within the herd. The idea here is that

the cattle within the pen are quite homogeneous. Homogeneity within the herd is

desirable as it allows for easier transport, uniform feeding rations, medical attention,

and the amount of time on feed. If homogeneity within the herd holds, then pens

that have mortalities can be put into a class that is separate from those with no

mortalities.

However, mortalities also may be caused suddenly and without warning for

unknown reasons. Glock and DeGroot (1998) report that 40% of all cattle mortali-
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Table 3.9: Comparison of pens with differing mortality losses
Mortality Rate (%)a

Variable 0 0.01 - 1 1 - 2 2 - 3 3 - 4 >4
Observations 5,161 2,415 2,327 744 305 445
DMFC 6.05 6.27 6.21 6.34 6.42 6.85
ADG 3.49 3.35 3.28 3.11 3.06 2.82
Intake 20.96 20.82 20.15 19.52 19.49 18.88
VCPH 10.18 10.08 12.46 15.67 17.89 26.57
InWt 754.27 751.53 719.72 686.35 699.00 671.63
OutWt 1,188.72 1,179.90 1,168.75 1,152.95 1,158.40 1,144.66
HeadIn 120.24 182.04 126.19 123.14 114.72 110.57
Days on Feed 123.45 125.66 133.44 143.83 141.57 150.57
Proportion of sample:
Winter 0.24 0.27 0.26 0.29 0.29 0.21
Spring 0.26 0.24 0.21 0.16 0.17 0.10
Summer 0.27 0.26 0.26 0.25 0.24 0.30
Fall 0.23 0.23 0.27 0.30 0.30 0.39
Steers 0.53 0.56 0.49 0.43 0.42 0.35
Heifers 0.36 0.37 0.37 0.36 0.38 0.33
Mixed 0.10 0.07 0.14 0.20 0.20 0.32
KS 0.82 0.76 0.82 0.77 0.79 0.82
aNote: A mortality rate that results in a whole number is placed into the higher bins

(ie, 3.00% is placed in 3-4 bin)
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ties in a Nebraska feedlot study were directly caused by Sudden Death Syndrome.9

However, the authors also point out that these deaths were without warning, which

could be due to a “sudden death” or lack of observation by the feedlot workers.

Smith (1998) also reports that respiratory disease and digestive disorders are re-

sponsible for approximately 44.1% and 25.0% of all mortalities, respectively. The

high degree of correlation between dependent variables certainly indicates that lower

mortality rates can be associated with different performance in the pen. However,

the question in this study will be whether positive mortality rates significantly alter

the performance. For this reason, we estimate additional parameters to examine the

likelihood of a positive mortality outcome in the zero-inflated regression model.

A recent study by Belasco et al. (2006) found that the mean and variance of

mortality rates in cattle feedlots are influenced by entry-level characteristics such as

location of the feedlot, placement weight, season of placement and gender. These

variables will be used as conditioning variables. By taking these factors into account,

variations will stem from events that occur during the feeding period as well as

characteristics that are unobservable in the data. The influence of these parameters

will be estimated using the previously formulated models, based on two-thirds of

the randomly selected data set where n = 7, 598. The remaining portion of the data

set, m = 3, 799, will be used to test out of sample prediction accuracy. Predictive

accuracy is important in existing crop insurance programs where past performance

is used to derive predictive density functions for current contracts.10

After estimating expected mortality rates, based on pen-level characteristics,

we will focus our attention to estimating mortality rates as part of a system of

equations that includes other performance and health measures for fed cattle, such

as dry matter feed conversion (DMFC), average daily gain (ADG), and veterinary
9Glock and DeGroot (1998) loosely define Sudden Death as any case where feedlot cattle are

found dead unexpectedly.
10The most direct example of this is the Average Production History (APH) crop insurance

program that insures future crop yields that are based on a 16-year average of production history.
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costs (VCPH), which are additional measures of cattle production yields.

3.6 Estimation Results

The purpose of this section is to compare the results from the preceding models,

using an extensive data set. A favorable model will be one that fits the data in

estimation and is able to predict dependent variable values with accuracy. For these

reasons, these models will be compared in a way similar to the simulated data sets.

First, we begin with univariate results. Results from using a classical Tobit model

with heteroskedastic errors to model cattle mortality rates can be found in Table

3.10.

Table 3.10: Univariate Tobit estimates of fed cattle mortality parameters
β# α@

Variables coeff. se. coeff. se
Intercept: 25.782∗ 1.515 12.068∗ 1.114
Steers: 0.168∗ 0.055 -0.021 0.048
Mixed: 0.307∗ 0.124 0.984∗ 0.073
Kansas: -0.068 0.058 0.292∗ 0.058
log(inwt): -3.893∗ 0.231 -1.654∗ 0.172
Winter: 0.065 0.068 -0.243∗ 0.061
Fall: 0.043 0.079 0.315∗ 0.061
Spring: -0.089 0.069 -0.278∗ 0.065

LL: -11,389.353
AIC: 22,790.706
MSPE: 2.661
∗Denotes estimate is significant at the 0.05 level
#β measures the marginal change on the mean
of the latent variable

@α measures the relative impact on the variance

Tobit estimates for β measure the marginal impact of changes in the condi-

tional variables on the latent mortality rate.11 For example, the coefficient corre-
11The Tobit specification assumes that the latent variable is a continuous, normally distributed
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sponding to in-weight, states that a 10% increase in entry weight lowers the latent

variable by 3.9%. McDonald and Moffitt (1980) show how Tobit parameter estimates

can be decomposed into two parts, where the first part contains the effect on the

probability that the variable is above zero, while the second part contains the mean

effect, conditional on being greater than zero. Also, the estimates for α measure the

relative impact on the variance. For example, the estimation coefficient correspond-

ing to fall implies that a pen placed in that period is associated with a variance that

is 32% higher than the base months containing summer. MSPE is computed as the

average squared difference between the predicted and actual mortality rates.

The Tobit model employs maximum likelihood methods, which maximizes

the log-likelihood (LL) value by optimizing parameter estimates for β and α. The

LL is this optimized value, which is used to compute AIC. The high AIC results

mainly from the amount of unobservable variation that is not captured in mortality

rates. These values hold meaning when compared to other model specifications.

Next, we move to estimate the same set of data using the previously de-

veloped zero-inflated models in order to test our hypothesis that they will have a

better fit. Before proceeding to estimation, there are a few notable differences when

using classical and Bayesian methods. First, Bayesian point estimates are typically

computed as the mean from Monte Carlo simulations of the posterior density func-

tion. This estimation process is done in two parts; first the likelihood of a zero value

is modeled, followed by simulating the positive predicted realizations, based on a

log-normal distribution. In addition to the mean value, additional characteristics of

the posterior distributions are supplied, such as the median, 2.5 and 97.5 percentile

values, and the standard deviation, as well as the Monte Carlo standard error of the

variable that is observed for positive values and zero for negative values. Marginal changes in
the latent variable must then be converted to the marginal changes in the observed variable, in
order to offer inferences on the observable variable. The marginal impact on mortality rates can be
approximated by multiplying the marginal impact on the latent variable by the degree of censoring
(Greene, 1981)
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mean. Results from the zero-inflated log-normal model are shown below in Table

3.11.

Parameter estimates in the zero-inflated model refer to two distinct processes.

The first process includes the likelihood of a zero outcome or one described by a log-

normal distribution. This process is estimated through δ utilizing equation (3.20).

Based on this formulation, the parameter estimates can be expressed as the negative

of the marginal impact of the conditional variable on the probability of a positive

outcome, relative to the variance of the Bernoulli component:

δk = − ∂ρi

∂xki
· 1
ρi
·
[
1 + exp(x′iδ)

exp(x′iδ)

]
= − ∂ρi

∂xki
· 1
ρi(1− ρi)

(3.47)

where the variance is shown as ρi(1 − ρi). For example, entry weight largely and

negatively influences the likelihood of positive mortality rates. This is not surpris-

ing given that more mature pens are better equipped to survive adverse conditions,

whereas younger pens tend to be more likely to result in mortalities. Alternatively,

mixed pens have a negative δ coefficient which implies that there is a positive re-

lationship, relative to heifer pens. Therefore, if a pen is mixed, it has a higher

probability of incurring positive mortality realizations that can be modeled with a

log-normal distribution.

The Tobit model assumes that estimates for β and δ will work in the same

way. For most variables, δ coefficients are negatively related to β coefficients, which

points to directional consistency. For example, increases to entry weight shift the

mean of mortality rates downward and also decrease the probability of a positive

outcome. This does not necessarily mean that the two processes work identically,

as is assumed with the Tobit model, but rather tend to generally work in the same

direction.

Parameter estimates for β refer to the marginal impact that the conditioning

variables have on the positive realizations of mortality rates. Interpretations for
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Table 3.11: Univariate ZILN estimates of fed cattle parameters
node mean sd MC error 2.5% median 97.5% Parameter

Intercept 6.047 2.193 0.160 0.334 6.466 9.076
Steers 0.011 0.034 0.002 -0.066 0.014 0.070
Mixed 0.394 0.037 0.001 0.321 0.394 0.467

KS 0.118 0.028 0.001 0.062 0.119 0.172
log(inwt) -0.907 0.336 0.025 -1.371 -0.970 -0.033 β#

Winter -0.020 0.030 0.001 -0.078 -0.021 0.038
Fall 0.087 0.032 0.001 0.025 0.086 0.151

Spring -0.085 0.031 0.001 -0.148 -0.085 -0.023
Intercept -3.379 1.240 0.090 -5.008 -3.695 0.324

Steers 0.059 0.051 0.002 -0.043 0.059 0.157
Mixed -0.274 0.072 0.001 -0.414 -0.273 -0.133

KS 0.078 0.060 0.002 -0.034 0.078 0.199
log(inwt) 0.618 0.191 0.014 0.049 0.666 0.877 α@

Winter 0.163 0.061 0.001 0.046 0.163 0.280
Fall -0.069 0.06 0.001 -0.190 -0.069 0.048

Spring 0.229 0.065 0.001 0.100 0.229 0.357
Intercept -11.380 3.070 0.224 -16.160 -11.610 -4.508

Steers -0.007 0.063 0.003 -0.127 -0.007 0.118
Mixed -0.177 0.079 0.001 -0.331 -0.177 -0.023

KS 0.137 0.062 0.002 0.016 0.138 0.257
log(inwt) 1.686 0.469 0.034 0.639 1.720 2.419 δ!

Winter -0.066 0.065 0.001 -0.196 -0.066 0.060
Fall -0.104 0.067 0.002 -0.237 -0.103 0.027

Spring 0.169 0.068 0.001 0.036 0.169 0.302
LL: -9,341.500

DIC: 18,742.300
MSPE: 2.399

#β measures the marginal change on the mean of the latent variable
@α measures the relative impact on the variance
!δ measures the negative relative impact in the probability of a non-zero entry
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these parameters refer to the marginal increase in the log of mortality rate. For

example, an increase in entry weight by 1.0% is associated with a reduction in

mortality rates by 0.9% for the observations that experience a positive mortality

rate.

It is interesting to note the different implications from parameter estimates

from the Tobit and ZILN models. For example, an insignificant mean parameter

estimate for the variable KS in the Tobit model implies that mortality rates are

not significantly impacted by feedlot location. However, parameter estimates from

the ZILN model infer that pens placed into feedlots located in Kansas have a lower

likelihood of a positive mortality realization by 13.7%, relative to Nebraska feedlots.

At the same time, pens placed in Kansas that have a positive mortality rate, can be

expected to realize a rate that is 11.8% higher than Nebraska feedlots. This might

seem strange to have significant impacts in opposite directions that influence both

the likelihood of a mortality and the positive mortality rate, but by distinguishing

between these processes we can isolate their respective impacts. One possible ex-

planation might be that Kansas lots spend more time to prevent mortalities from

occurring through vaccinations or backgrounding, but are not able to prevent the

spread of disease as quickly as the Nebraska feedlots. This is a notable departure

from the Tobit model which saw no significant influence since these impacts essen-

tially canceled each other out.

Another notable difference is in seasonal impacts on the mean of mortality

rates. While the none of the seasonal variables are significantly different than sum-

mer under the Tobit model, both Fall and Spring are significantly different under

the ZILN specification. The ZILN results are more inline with expectations as Fall

placement are put under stress from extremely cold weather, which is different from

summer placements. In fact, most of the pens with mortality losses above 10% in

this data sample come from pens placed in the fall months.
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The zero-inflated log-normal models also demonstrate a superior ability to

characterize and predict cattle feedlot observations. A DIC measure of 18, 742.3

demonstrates a closer fit, relative to the Tobit model, which as an AIC value of

22, 790.7. Additionally, MSPE is minimized when using the ZILN model. The likely

explanation for these findings is due to the data generating process. Cattle mor-

talities appear to be part of a two part process where once a pen experiences a

mortality, the rate of mortalities can be modeled using a distinct distribution from

those observations without mortalities. This method may prove to be fruitful in

situations where the data have some similar characteristics. Examples may be mod-

eling the prevalence of animal disease, where a Bernoulli distribution characterizes

the likelihood of an outbreak. Once an outbreak has occurred, a model describing its

biological spread is needed. This strategy may also extend into areas of bio-security

and food safety issues where biological processes may be allowed to spread within

a population once contamination has occurred. Additionally, data that are charac-

terized with a high degree of censoring can be efficiently characterized through the

use of a zero-inflated model, as shown in earlier simulations.

The given data set was also modeled using a zero-inflated Gamma (ZIG)

distribution. While the Bernoulli component is similar to the ZILN model, this

model characterizes the positive observations using a Gamma distribution, which

also can take into account highly skewed data. The results from the ZIG model are

shown below in Table 3.12.

In the process of running this model in WinBUGS, it became apparent that

the data did not result in any statistically significant variables used to estimate the

rate parameter, η. Additionally, model fit tests were conducted with and without

κ, which showed that the model did not lose any efficiency when estimating a single

intercept variable for κ. Because there were no apparent advantages to estimating

this set of variables, regressions were run using only an intercept term for κ, keeping
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Table 3.12: Univariate ZIG estimates of fed cattle parameters
node mean sd MC error 2.5% median 97.5% Parameter

Intercept 2.569 0.424 0.031 1.904 2.510 3.350
Steers -0.054 0.033 0.002 -0.115 -0.054 0.010
Mixed 0.379 0.044 0.002 0.295 0.379 0.466

KS 0.014 0.034 0.002 -0.054 0.015 0.079
log(inwt) -0.410 0.066 0.005 -0.533 -0.402 -0.310 γ

Winter 0.035 0.040 0.002 -0.040 0.034 0.118
Fall 0.134 0.040 0.002 0.057 0.133 0.217

Spring -0.188 0.044 0.002 -0.270 -0.190 -0.094
1.187 0.028 0.001 1.134 1.187 1.243 κ

Intercept -0.465 0.427 0.031 -1.426 -0.429 0.318
Steers 0.114 0.052 0.003 0.010 0.113 0.221
Mixed -0.168 0.078 0.003 -0.322 -0.166 -0.019

KS 0.167 0.055 0.003 0.063 0.165 0.280
log(inwt) 0.020 0.063 0.005 -0.102 0.015 0.156 δ

Winter -0.108 0.064 0.003 -0.240 -0.106 0.013
Fall -0.145 0.065 0.003 -0.280 -0.145 -0.018

Spring 0.212 0.063 0.003 0.074 0.215 0.330
LL: -10,985.850

DIC: 21,987.000
MSPE: 2.767
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η constant across all observations.12

Regressions from univariate mortality models offer information concerning

the relative impacts each conditioning variable has on mortality rates. However, this

variable is likely better characterized in a multivariate setting with other variables

that explain the health and performance of cattle on feedlots, ultimately describing

production risk in cattle feeding enterprises. To this end, the multivariate Tobit

model and multivariate zero-inflated models were used to characterize these four

variables, described earlier. The results from the multivariate Tobit model are shown

in table 3.13.

Results from this estimation mostly appear to be in line with the estimation

from Belasco et al. (2006), as well as the first essay. While the same data set was

used, this study employs two-thirds of the data for estimation and the final third for

out of sample prediction. Mortality rates contain the most variability in prediction,

mostly due to the relative lack of explanatory power from the conditioning vari-

ables. While these ex-ante variables offer information on expected mortality rates,

there does still appear to be a bit more unexplained variation than with the other

variables. Performance variables, such as DMFC and ADG, are largely determined

by observable biological traits. While not all of these biological traits are captured

in these data, there does not appear to be a large portion unexplained by these

variables.

The elements contained within the covariance matrix, Σi = T ′
iDiTi, are de-

scribed by equations (3.15) and (3.16) where estimates labeled as ’Heteroskedastic-

ity’ are contained within Di and covariance elements are contained within Ti. Since

all diagonal elements of matrix Di are guaranteed to be positive by construction the

sign of the covariance element describes the relationship between two variables. For
12This finding was interesting, given the fact that variance is not dependent on the conditioning

variables for this specification. While heteroskedasticity is quite apparent for the other specifica-
tions, it does not seem to add modeling efficiency for the Gamma specification. This finding may
be the result of the Gamma distribution accounting for the structure of the error terms.
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Table 3.13: Multivariate Tobit estimates of fed cattle parameters
DMFC ADG VCPH MORT

Variables coeff. se. coeff. se coeff. se coeff. se
Intercept: -1.208∗ 0.035 -2.684∗ 0.288 8.490∗ 0.178 24.001∗ 1.447
Steers: -0.092∗ 0.001 -0.083∗ 0.012 0.431∗ 0.007 0.141∗ 0.052
Mixed: -0.028∗ 0.002 0.152∗ 0.020 0.134 0.011 0.556∗ 0.098
Kansas: -0.137∗ 0.002 -0.253∗ 0.013 0.251∗ 0.007 -0.006 0.061
log(inwt): 0.481∗ 0.005 0.806∗ 0.044 -0.822∗ 0.027 -3.605∗ 0.221
Winter: 0.011∗ 0.002 0.003 0.014 -0.269∗ 0.008 -0.041 0.064
Fall: 0.069∗ 0.002 0.074∗ 0.014 -0.313∗ 0.008 0.126 0.070
Spring: -0.022∗ 0.002 -0.164∗ 0.016 -0.020 0.008 -0.215∗ 0.065
Heteroskedasticity:
Intercept: -9.032∗ 0.787 -8.387∗ 0.790 6.534∗ 0.929 12.713∗ 1.116
Steers: -0.038 0.036 -0.563∗ 0.036 0.117∗ 0.036 0.007 0.048
Mixed: 0.450∗ 0.054 -0.139∗ 0.056 0.242∗ 0.056 0.605∗ 0.070
Kansas: -0.269∗ 0.042 0.236∗ 0.042 0.014 0.041 -0.041 0.057
log(inwt): 0.683∗ 0.122 1.048∗ 0.122 -1.433∗ 0.141 -1.742∗ 0.170
Winter: -0.094∗ 0.045 0.075 0.046 0.082 0.046 -0.130∗ 0.061
Fall: 0.326∗ 0.045 0.170∗ 0.046 0.196∗ 0.046 0.209∗ 0.060
Spring: -0.355∗ 0.046 0.511∗ 0.051 0.126∗ 0.047 -0.124 0.065
Covariance(t):
Cov(DMFC VCPH:) 1.254∗ 0.054
Cov(DMFC MORT:) 7.503∗ 0.254
Cov(DMFC ADG:) -4.090∗ 0.031
Cov(VCPH MORT:) 1.039∗ 0.053
Cov(VCPH ADG:) -0.094∗ 0.006
Cov(ADG MORT:) 0.003 0.002
LL: -15,748.2
AIC: 31,636.5
DMFC MSPE: 0.009
VCPH MSPE: 0.232
ADG MSPE: 0.216
MORT MSPE: 2.617
∗Denotes the estimate is statistically significant at the 0.05 level
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example, DMFC and ADG are negatively related with a coefficient of -4.09, since a

healthy pen of cattle will be expected to have a low feed conversion rate and a high

rate of gain. Additionally, MSPE is broken out by dependent variable. MORT has

the highest MSPE, which illustrates the lack of predictive power with that variable.

Next, the multivariate zero-inflated model is applied to the cattle feedlot

data set and results are shown in Table 3.14. Estimates displayed here are con-

solidated, relative to the univariate table due to space constraints. In a Bayesian

framework, confidence intervals are typically computed using the highest posterior

density region, which will be different from a classical confidence interval when pos-

terior distributions are bi-modal or asymmetric. Since the posterior estimates do

not show bi-modal attributes, we proceed by taking the interval between the 2.5

and 97.5 percentiles to test whether the variable is significantly different from zero.

While this is a departure from Bayesian theory, it nearly aligns with significance

tests for the multivariate Tobit model. For example, in the zero-inflated model, if

the posterior density function does not cross zero in the given interval, which in-

cludes 95 percent of the posterior density, then it is said to be significant at the 5%

level.

Many of the same estimates appear in the zero-inflated table, with the ad-

dition of ’Delta’ terms, which describe the negative of the relative impact on the

probability of a non-zero outcome. These estimates are computed in the same way

as the univariate version of this model, leading to many of the same inferences.

Additionally, parameter estimates corresponding to DMFC, ADG, and VCPH are

mostly the same between the Tobit model and ZILN models. Parameter estimates

corresponding to MORT are different between the two models, as discussed with

the univariate model.

The zero-inflated model does a superior job of fitting the data and in terms

of prediction accuracy, relative to the Tobit model. DIC for the ZILN model is
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Table 3.14: Multivariate ZILN estimates of fed cattle parameters

DMFC ADG VCPH MORT
Variables coeff. se. coeff. se coeff. se coeff. se
Intercept: 0.767∗ 0.048 -2.091∗ 0.160 11.000∗ 0.215 11.220∗ 0.144
Steers: -0.069∗ 0.002 0.322∗ 0.010 0.073∗ 0.012 0.094∗ 0.021
Mixed: -0.030∗ 0.004 0.150∗ 0.016 0.218∗ 0.019 0.359∗ 0.034
Kansas: -0.121∗ 0.002 0.186∗ 0.012 -0.207∗ 0.012 0.111∗ 0.027
log(inwt): 0.178∗ 0.007 0.794∗ 0.025 -1.289∗ 0.033 -1.707∗ 0.022
Winter: -0.002 0.003 -0.193∗ 0.013 -0.073∗ 0.013 -0.020 0.027
Fall: 0.052∗ 0.003 -0.242∗ 0.014 0.016 0.013 0.047 0.027
Spring: -0.017∗ 0.003 -0.054∗ 0.013 -0.083∗ 0.014 -0.044 0.028
Heteroskedasticity:
Intercept: -1.606∗ 0.251 -7.182∗ 0.196 -2.983∗ 0.250 -0.357 9.925
Steers: -0.397∗ 0.026 0.253∗ 0.066 -0.045 0.060 -0.002 10.210
Mixed: 0.123∗ 0.040 0.365∗ 0.075 0.092 0.080 -1.067 10.210
Kansas: 0.148∗ 0.030 -0.155∗ 0.051 -0.207∗ 0.053 -1.876 9.530
log(inwt): -0.504∗ 0.038 0.790∗ 0.028 -0.271∗ 0.032 -9.971∗ 5.932
Winter: 0.160∗ 0.032 -0.189∗ 0.056 -0.120 0.063 0.322 10.720
Fall: 0.313∗ 0.032 0.194∗ 0.056 0.047 0.063 -0.018 9.713
Spring: 0.332∗ 0.037 -0.300∗ 0.069 -0.164∗ 0.070 -0.167 9.724
Delta:
Intercept: -16.060∗ 0.360
Steers: -0.062 0.049
Mixed: -0.181∗ 0.081
Kansas: 0.108 0.062
log(inwt): 2.402∗ 0.055
Winter: -0.051 0.064
Fall: -0.082 0.067
Spring: 0.152∗ 0.065
Covariance(t):
Cov(DMFC VCPH:) 4.696∗ 0.061
Cov(DMFC MORT:) 1.841∗ 0.113
Cov(DMFC ADG:) -1.742∗ 0.185
Cov(VCPH MORT:) 6.720∗ 0.584
Cov(VCPH ADG:) 0.483 0.401
Cov(ADG MORT:) 0.059 0.105
LL: -9,617.8
DIC: 19,348.0
DMFC MSPE: 0.008
VCPH MSPE: 0.182
ADG MSPE: 0.170
MORT MSPE: 1.296
∗Denotes the estimate is statistically significant at the 0.05 level
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substantially lower than AIC in the Tobit model, mainly due to the more accurate

fit for Mortality rates, which contributes quite a lot of unexplained variability to

the system of equations. The more efficient modeling of mortality rates stem from

the ability of the zero-inflated model to more accurately represent MORT by taking

into account the two part process inherent in mortality rates. MSPE measures are

approximately the same for each of the non-censored variables, largely because they

are modeled in a similar fashion. However, more information about mortality rates

in the zero-inflated model add to more accurately model the other variables. In

fact, the multivariate zero-inflated model predicts every dependent variable with

more precision, leading to large gains in both prediction and model fitting.

We can decompose the total DIC and LL values from the multivariate zero-

inflated model into dependent variable components, which is shown in Table 3.15.13

This table is helpful in breaking down model fit measures to identify the perfor-

mance of the model on each variable. MORT is more accurately characterized in a

multivariate setting because of the effects from other non-censored variables. Recall,

that the expected value and variance of MORT accounts for the uncensored variable

levels in the multivariate setting. D represents the estimation on the parameters of

’Delta’, which performs roughly similar in both multivariate and univariate situa-

tions, since it uses the same modeling mechanism in each case. DMFC is modeled

very tightly, as shown by the negative DIC, while ADG and VCPH leave some vari-

ability unestimated. The results from the total line are reported with the full model

results in Table 3.14.

Given the fact that the zero-inflated model outperforms the Tobit model for

the given feedlot data set, we next replicate the profit simulation conducted in essay

2 to quantify any distinct difference in expected ex-ante profits resulting from the

13LL values are computed by dividing Dhat by -2, since Dhat = −2 ∗ LL(β̂, γ̂, δ̂). This aligns
with LL values in the Tobit model which are computed based on optimized values. Along the same
lines, Dhat is computed by using the optimal posterior means.
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Table 3.15: Multivariate ZILN model fit estimates, by element
Variable Dbar Dhat pD DIC LL
ADG 7,923.6 7,911.5 12.1 7,935.7 -3,955.8
DMFC -15,002.6 -15,013.3 10.7 -14,991.8 7,506.7
MORT 7,195.6 7,179.1 16.5 7,212.0 -3,589.6
VCPH 8,964.0 8,954.1 9.9 8,973.9 -4,477.1
D 10,211.2 10,204.2 7.0 10,218.2 -5,102.1
total 19,291.8 19,235.6 56.2 19,348.0 -9,617.8

different functional forms. More specifically, we are interested in evaluating the

differences between the model assumed in essay 2 and that of the zero-inflated log

normal distribution. The two ex-ante profit density functions are plotted on the

same axis below in Figure 3.1.

The most notable difference between the densities is that the zero-inflated

model results in a reduction in the standard deviation by 16.4%. This is a meaningful

difference shown by the change in the first quartile by $20 per head. The additional

insight obtained by including this particular two-part model adds an important

component to modeling cattle production yields and ultimately adding precision to

simulated ex-ante cattle feeding profit densities.

3.7 Implications and Recommendations

Modeling censored data sets remains a large problem in economics. While use of

the Tobit model may be well-justified in certain instances, the results from both

simulated and actual cattle feeder data sets suggest the use of a zero-inflated mod-

eling mechanism. This is particularly true in instances where data come from a

mixture model. While two-step processes have been applied to hurdle models, zero-

inflated models have largely been ignored in economic studies. This is mainly a

result of the past limitation of zero-inflated models to count data. In this essay, a
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Scenario Mean Sd 25%
Tobit 17.14 251.71 -158.18
ZILN 6.98 210.34 -138.03

Figure 3.1: Distribution of ex-ante conditional profits per head based on multivariate
Tobit and zero-inflated log normal density functions
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zero-inflated model is developed that can handle both univariate and multivariate

situations rather efficiently, in addition to nesting the standard Tobit model. Ad-

ditionally, the inherent parametric flexibility allows for distributional assumptions

to change based on the data on hand, rather than strictly using truncated or nor-

mally distributions. Here we use a log-normal distribution to capture the positively

skewed nature of cattle feedlot mortality rates, which gives the zero-inflated model

significant advantages over the Tobit model. Advantages in model fit for the ZILN

model stem from the ability of the zero-inflated model to isolate the impacts from

observing a positive mortality rate and the level of mortality rates.

Production risk in cattle feeding enterprises is inherently complex, given the

many areas risk can originate. This study develops a zero-inflated model, in contrast

to the more commonly used Tobit model. Results from this research demonstrate the

potential gains from using this particular mixture model. Before applying this model

to the data, simulations were conducted to test the model’s ability to predict and fit

data generated in different forms. These simulations provided results that concluded

the advantages of the mixture model, in both prediction and model fit, when the

data is from a two-step process. Additionally, the mixture model demonstrated a

strong ability to fit the data, even when the data are generated based on a Tobit

model. These results are in general agreement with the results obtained within our

application of cattle feeding.

A solid understanding of cattle production risks is limited by our ability to

characterize variability. The proposed model takes a step forward in developing a

modeling strategy that can be used to measure other livestock or live animal produc-

tive measures. By more accurately characterizing these risks insurance companies,

animal producers, and operators can better understand the risks involved with an-

imal production. Additionally, the flexibility of this model allows for uses outside

of live animal yields. The major flexibility in the proposed model lies in the ability
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to make different distributional assumptions. Distributional assumptions typically

need to be made in cases when data cannot fully explain variability. However, non-

parametric and semi-parametric methods may be of particular interest when large

data sets are evaluated, since they allow empirical data to create a unique density.

With more data available on live animal yields, augmenting this model to include

these types of density functions may provide additional precision.
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Chapter 4

The Impact of Price Risk

Management on Overall Fed

Cattle Profit Risk

4.1 Introduction

Agricultural production is distinct from most other enterprises due to its inherent

risky nature. Risk in agriculture generally originates from both yield and price.

Yield risk refers to the variation in productive efficiency, which is often expressed

with a conditional probability density function. Productive efficiency varies mostly

due to uncertainty in weather, disease, or pests. However, with live animals, pro-

duction can also vary due to differences in placement characteristics such as weight,

gender, and season, as well as unknown genetic differences. Additionally, fluctua-

tions in price result from changes in world market demand or supply conditions.

Since 1980, the federal government has taken large strides to help farmers

reduce risk vulnerability by offering subsidized insurance. Historically, these pro-

grams have been mostly focused on crops and based on reducing yield risk exposure.

However, since 1997, revenue-based insurance programs have become the federal

government’s main tool in assisting farmers to manage risk. The major advantage
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to revenue-based insurance programs is that they account for risk originating from

yield and price variability and ultimately guarding farmers’ income more precisely.

Additionally, prices and yields tend to be negatively correlated, which leads to lower

indemnity payment levels and revenue variability relative to traditional yield-based

insurance products.

The recent interest in revenue-based programs within crop production leads

to the question of similar insurance offerings within cattle industries. Recently,

the federal government introduced two insurance programs to insure fed and feeder

cattle through Livestock Gross Margin (LGM) and Livestock Risk Protection (LRP)

policies. Both of these products insure cattle owners against adverse swings in

prices. These products are based on the finding that a large majority of risk in

cattle industries originate in prices. Alternatively, yield risk has been excluded

from existing federal cattle insurance policies which is likely because it is thought

to contain a relatively small amount of risk to profits. This research will quantify

the amount of risk arising from cattle production yield risks, once price risk is

accounted for through different risk management techniques, such as forward-pricing

and options contracts. Within this context, profit risk will be illustrated under

different scenarios where elements of price risk are stripped from profit risks.

The characterization of risk arising from production yield measures in live-

stock will be the first step in assessing the significance of production risk in cattle

feedlot operations. To comprehensively characterize profit risks, we must begin with

a clear understanding of risks that can be accounted for in both yield and price areas.

Using simulated and actual cattle feeding data, production risks will be quantified in

the presence of forward and option contracts on both live cattle and corn prices. In

using both risk management techniques, ex-ante conditional profit density functions

can be evaluated when price risk is no longer a risk factor. This will isolate cattle

production yield risks, which will allow us to quantify the amount of risk currently
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left uninsured.

There are three major contributions from this research. First, this study will

evaluate the amount of risk that can be attributed to different risk components in

cattle feeding production. Specifically, the amount of profit risk involved in cattle

feeding when components of price risk are peeled away. Second, the amount of

production risk that remains after price risk management efforts have been made

will be quantified. Four sources of production risk are identified and through the

use of simulation techniques describe profit risks. The amount of profit risk will be

illustrated through the use of probability density functions and cumulative density

functions. The major question this study asks is whether production risk is a signifi-

cant amount of risk to cattle feeders. This question is relevant to current policy that

only insures prices involved in livestock production. A previous study by Knoeber

and Thurman (1995) evaluated the relative contributions of price and yield risk in

the profitability in broiler production. The third contribution will be a sensitivity

analysis that examines the impact different price and production risk factors have

on expected profits.

The next section will move to discuss the current place of federal revenue

insurance programs in risk management strategies within crop farming. Following,

section 4.3 will discuss the current status of livestock insurance and its potential

need for insurance that accounts for production yield risk. Section 4.4 quantifies the

amount of risk currently uninsurable through federal insurance programs by using

probabilistic density functions that characterize ex-ante profits in cattle feeding

enterprises, as well as a sensitivity analysis in order to quantify the realistic bounds

on profitability that result from extreme price and yield adjustments. The final

section summarizes the findings from the previous sections and briefly describes

potential frameworks for dealing with moral hazard and adverse selection problems

when insuring cattle production risk and points to future directions of research in
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this area.

4.2 The Rise of Revenue Insurance Programs

This section is intended to offer some background information regarding the use

of revenue-based insurance products in managing risk in crop farming. Particular

emphasis will be placed on the relationship between yield and price risk in crop

production.

As of 1996, crop insurance programs had been confined to insuring crop

yield-risk, based on past performance. The most popular offering was the Actual

Production History (APH) program, where indemnity payments are triggered when

yields fall below a specified percentage of the average performance. Throughout the

80s and early 90s, the federal crop insurance programs were highly criticized for the

low participation rates, inability to eliminate disaster aid relief, and serious adverse

selection problems, as discussed by Goodwin and Smith (1995). Low participation

rates during this time may have been related to the problem associated with adverse

selection (Miranda, 1991).

The two major issues in most insurance products are moral hazard and ad-

verse selection. Adverse selection is problematic since it can lead to a limited pool

of insured agents who possess more information than the insuring body. This pool

of agents is typically populated by producers who participate only because they ex-

pect to receive more indemnity payments than pay through premium rates. Glauber

(2004) discusses the difficulty of overcoming adverse selection problems in the United

States from the 1981 to 1993, where agents received twice as much in indemnity pay-

ments as their premium rates.1

Moral hazard occurs when an insured agent take actions once insured that
1Within this period of time the U.S. experienced a major drought in 1988 that covered approx-

imately a third of the country at its peak, as well as a dramatic flood in 1993 that affected the
Midwest region, which increased loss ratios in 1998 and 1993 to nearly 2.5 and 2.3, respectively.
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affect the probability of an adverse event. For example, in crop production this might

include the use of less chemicals (Goodwin et al., 2004). An increase in monitoring

and surveillance through the RMA has been the major tool in minimizing moral

hazard. Additionally, new insurance products that are based on county-level yields,

such as the Group Risk Plan (GRP) and Group Risk Income Protection (GRIP)

programs, minimize moral hazard.

In 1996, revenue-based insurance plans were first offered to more directly in-

sulate farming incomes from risk that can originate from yield and price variability.

Since adverse price and yield events tend to be negatively correlated, indemnity pay-

ments decrease with lower variability in revenue risk. The introduction of revenue-

based products have started to replace traditional yield-based programs, such as

APH, as the major tool the federal government uses to guard farming incomes. For

example, 57% of the total amount of acres insured by federal crop insurance offerings

in 2006 were revenue-based products2, compared to 28% insured through the APH

product (FCIC, 2007). The total share of liability from revenue-based and APH

products was 59% and 26% in 2006, respectively. Hennessy et al. (1997) found that

revenue-insurance offerings provide additional benefits at a cost lower than existing

crop insurance programs. Pricing revenue-based products is complicated due to the

bivariate nature of prices and yields. Because of this relationship, prices and yields

must be quantified as well as their covariate relationship, which is discussed further

by Goodwin and Ker (2002) as well as Mahul and Wright (2003).

4.3 Current State of Cattle Insurance

The Agricultural Risk Protection Act (ARPA) of 2000 declared a fundamental shift

in federal insurance involvement. One major change was the expansion of insurance
2Revenue-based products offered by the Federal Crop Insurance Company (FCIC) currently

include Crop Revenue Coverage (CRC), Group Risk Income Protection (GRIP), Income Protection
(IP), and Revenue Assurance (RA).
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offerings to include new livestock products. Livestock offerings are expected to

double the size of existing crop insurance programs (Glauber, 2004). In addition

to the previously mentioned LGM and LRP productions, a new Group Risk Plan

(GRP) Pasture, Rangeland, Forage (PRF) Insurance product is currently offered

and provides risk protection to farmers and ranchers who use pasture, rangeland, or

forage for haying or grazing. Rangeland and pastures amount to almost 600 million

acres in the United States. Rangeland production is tied to two separate weather

indices based on rainfall and a vegetation index3.

Additionally, livestock insurance products include the insulation from price

risk in the form of LRP and LGM products. While the LRP product protects against

adverse swings in fed cattle prices, it is not much different from a put option on the

Chicago Mercantile Exchange (CME). Fackler (1989) discusses the relation between

futures, options, and government subsidies. The LGM product insures against both

output and input prices, and is formulated in Hart et al. (2001). The authors point

out that production risk is excluded from insurance due to its small magnitude,

relative to price risk. Past research has generally agreed that most cattle revenue

risk comes from price variability (Belasco et al., 2006; Lawrence et al., 1999; Mark

et al., 2000). The LGM product allows for cattle pens to be insured throughout

the year, while indemnity payouts are based on the total gross margin throughout

the year. The major advantage of both livestock insurance products is that they

do not allow producers to influence the probability of an indemnity payout by tying

prices to the futures market. This offers a convenient way for this particular type

of insurance to minimize problems associated with moral hazard.

However, Hall et al. (2003) report that drought and cattle price variability

were the greatest two concerns to ranch income by cattle ranchers in Texas and Ne-
3The rainfall index is maintained by NOAA’s Climate Precipitation Center, while the vegetation

index is the U.S. Geological Survey’s Earth Resources Observation and Science (EROS) normalized
difference vegetation index (NDVI)
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braska, followed by extremely cold weather and disease. Of the four largest concerns,

only price variability is covered by existing federal insurance programs. Drought has

an indirect effect on the feed supplies and prices, since lower corn yields generally de-

crease supplies and increase the price of corn used to feed cattle. Extreme weather,

in the form of drought or extreme cold, can negatively impact the performance and

health of cattle in all stages of life. Disease can have different effects depending on

its severity. Disease impacting the food supply can have extremely large impacts

on the entire livestock industry as past outbreaks have led to temporary stoppages

with important trading partners, as well as a hesitation to consume products that

are found to have disease outbreaks. The less severe scenario includes a spread of

disease throughout the herd, causing diminished performance and/or an increase in

mortality rates.

Low participation rates in existing insurance offerings and reliance on other

risk management methods, such as understocking pasture and storing hay, may in-

dicate inadequate insurance offerings or a lack of educational outreach with existing

programs. The exclusion of production risk from existing federal livestock insurance

plans may also be due to the relative lack of data evaluating production risks, when

compared to the wealth of available information on livestock prices (Hart, 2006). In

response, this study utilizes a comprehensive data set to evaluate cattle production

risks and their impact on profit risks.

Establishing that production risk is significant in overall profit risk does not

necessarily make it an insurable component. Issues of moral hazard and adverse

selection are the biggest obstacles in protecting against production risk. With many

different breeds and an array of genetic potential within herds of cattle, insuring

performance and health becomes a difficult task. A successful insurance product will

prevent the insurance pool from consisting strictly of the lower performing cattle

that have characteristics that are unobservable to the insurer, but observable to the
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rancher. As a first step, this research moves forward with the goal of quantifying

the relative amount of production risk in cattle feedlot operations.

4.4 Production Risk in Cattle Feeding

The purpose of this section is to quantify the relative amount of production risk in

cattle feeding enterprises. This element of risk is uninsured under current federal

livestock insurance policy. Here, we look to isolate the amount of risk that arises

strictly from production variability that can originate in performance or health

factors. Hart et al. (2001) point out that most of the production risk in livestock

production originates from disease, mechanical failure, or variability in weight gain.

After identifying four sources of production risk, we move to quantify this risk

through the use of probability density functions that isolate production risk from

price risk. Four different scenarios of coverage levels are used and include fed cattle

price protection only, corn price protection only, both fed cattle and corn price

protection, and no price protection. Using these four scenarios, we first define price

protection through the use of forwarding contracts so that prices are fixed and no

volatility is associated with the expected price. Next, the use of options contracts

are utilized to manage adverse price risks.

Before quantifying the amount of production risk in cattle feeding, we must

first understand the origins of this risk. We identify two main areas of production

risk: performance and health. It is true that these two areas are highly correlated,

but measure separate outcomes. To evaluate production risk, we once again utilize

the feedlot data set from the previous essays. Additionally, data from the Chicago

Mercantile Exchange (CME) and Chicago Board of Trade (CBOT) are used for price

information.

First, cattle performance measures the ability of feedlot cattle to gain weight

and can be thought of as similar to crop yield measure. Two measures are used
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to gauge performance which include Average Daily Gain (ADG) and Dry Matter

Feed Conversion (DMFC). ADG measures the average pounds of weight gain the

pen gains on a daily basis. Feeding rations can be adjusted to keep this measure

near a normal level, which is usually above 3 pounds per head, per day. DMFC is

measured as the amount of dry feed needed for a head of cattle to gain one pound.

These two measures are negatively correlated and together describe the performance

of a pen of cattle. This performance can vary due to extreme weather, unobservable

genetics, or management. Variation in ADG directly impacts ending weight, which

is a direct input into revenues. DMFC has a large impact on feed costs, since a

high feed conversion rate will force the feedlot operator to use more feed in order to

attain the desired weight results.

To characterize the health of a pen of cattle, veterinary costs per head

(VCPH) and mortality rate (MORT) are used. These variables vary for many of

the same reasons that performance varies and can be highly correlated. Disease can

cause these variables to jump quickly as is demonstrated by the positively-skewed

nature of these variables. Both variables show a significant amount of skewness as

they can rise quickly when disease spreads or the pen has poor health. While VCPH

is an independent cost that influences profits, MORT directly impacts the bottom

line since cattle that perish during the feeding period are not sold, but have already

been purchased as feeder cattle.

The next few sections will focus on different scenarios that can impact cattle

feeder profits. First, a forward-pricing scenario allows a cattle owner to hedge by

locking in on the expected prices of fed cattle and corn early in the feeding process.

This section will be followed by a sensitivity analysis of these results when allowing

expected values of the mean and volatility of prices to vary in high and low scenarios.

Additionally, production risk will be quantified where all price risk is managed, yet

production risk variables are adjusted in order to evaluate their relative impact on
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expected profits. The final section will simulate expected profits when the options

market is used to hedge downward risk.

4.4.1 Forward-pricing contract

In order to quantify the amount of risk a cattle owner confronts when placing their

pen on feed, we use previously developed simulation methods from chapter 2 to char-

acterize ex-ante profit risks, conditional on entry level pen characteristics. These

density functions characterize variability in profits under different scenarios. We

have four scenarios of interest in this section, which are shown in Table 4.1. Each

scenario is analyzed through the use of a forward-pricing contract as well as a con-

tract in the options market. Here we illustrate the use of each scenario in the case of

forward-pricing. The first scenario assumes a forwarding contract made on the price

of fed cattle to be made at the end of the feeding period. According to RTI (2007),

an average of 17.3% of cattle sold by ”large” producers used forward contracts, while

”small” producers used forward contracts only 3.0%. By locking in this price, the

cattle owner essentially eliminates any price risk associated with fed cattle prices.

The owner is no longer subject to downward price risk, however, also surrenders

the likelihood of upward price risk. It is hypothesized that this forward contract

will eliminate most profit risk. The second scenario assumes a forward-pricing con-

tract made on the price of corn. This is of particular interest at this time, when

the volatility for corn prices have increased with the additional demand for corn

from federal mandates of increased ethanol production. The third scenario assumes

forward-pricing contracts on both corn and fed cattle prices. This type of contract

would likely include two separate contracts with two sellers. More importantly, for

our purposes, it characterizes a situation where a cattle owner has eliminated all

price risks and is left with only production risks arising from health and performance

measures. The fourth scenario is a control scenario where the cattle owner assumes
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all risks arising from both prices and production.

Table 4.1: Risk management scenarios in this study
Scenario Description Forward-pricing Options market

1 Cattle Protection Live Cattle Put Option on Live Cattle
2 Corn Protection Corn Call Option on Corn
3 Full Price Protection Both Both
4 No Price Protection None None

The performance and health measures for each of these scenarios will be

based on a hypothetical pen, placed on July 16, 2007. The steer pen is placed into

a Kansas feedlot with 150 head, with an average entry weight of 750 pounds. The

anticipated marketing date is in 130 days (November 23, 2007). The price of the corn

forwarding price is assumed to be equal to the September 2007 futures settlement

of 3.346 per bushel, plus a basis adjustment. This price is intentionally placed at a

midway point of the feeding period to measure an average price.

In order to simulate scenarios where forward-pricing contracts are not made,

an implied volatility associated with each futures price needs to be computed. The

implied volatility associated with a strike price of $3.50 for a corn call option expiring

in September was 30.59% and is computed based on the generalized Black-Scholes

formulation. While this analysis isn’t explicitly focused on price variability, a sen-

sitivity analysis might be worthwhile to evaluate the impacts from different types

of swings in prices. There is particular interest concerning corn prices over the past

couple of years, which have shown an incredible amount of volatility.

The price of the fed cattle forward contract price is assumed to be equal to

the December 2007 futures settlement of 97.675 per 100 pounds. The fed cattle price

is meant to emulate the expected price near the marketing date. Once again, an

implied volatility measure was calculated for a live cattle put option with a target

price of $92 that expires in December. The implied volatility resulting from this
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price was 16.42%. The information obtained from the options market will be used

in the next set of exercises that employ the options market to help manage risk.

Simulations were conducted based on the previously mentioned information

to emulate the four different scenarios discussed previously. To illustrate the results,

a density function is used to characterize the ex-ante profit risk in each case, and

can be found in Figure 4.1.

Probability density functions offer a flexible way to illustrate expected profits

for cattle feeding enterprises, where we can visually inspect differences in the mean,

variability, and skewness under the four highlighted scenarios. It is no surprise

that when we eliminate price risks that the variability in expected profits decrease.

We can see this as the tails thin out and the cluster of mass towards the mean

increases. Alternatively, for the scenario where no price risk measures are taken, we

can see that cattle feeding becomes a very risky business. In this scenario, there

is a mean of -$7.36 in profits per head and a standard deviation of 202.34. The

tails of this density expand with a smaller mass near the mean, implying a higher

probability of large losses or gains. Ninety percent of this density lies between

the interval between -$324.61 and $345.33 as measured in profits per head. The

wide spread in this density is largely driven by large implied volatilities in both fed

cattle and corn prices and demonstrates the importance of managing risk in cattle

feeding. To visually inspect the profit levels associated with different percentile

levels, cumulative density function plots are shown in Figure 4.2.

The recent federal mandates and consumer demand for ethanol production

have caused feedlot producers to pay a higher price for corn used to feed livestock.

The expected prices are also associated with very high volatilities over the last year

and a half, that moved upward of 40%. In this scenario, the implied volatility

for corn was 31%, which is a quarter of the amount associated with this options

contract from one month previous. One way of managing the risks involved with
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Scenario Mean Sd 5% 25% 75% 95%
No Price Risk 0.19 49.30 -81.60 -33.18 33.47 81.65

Cattle Protection -0.74 77.34 -133.94 -49.15 52.80 118.36
Corn Protection -2.03 193.53 -291.19 -137.58 118.60 340.45

No Protection -7.36 202.34 -324.61 -151.62 124.61 345.33

Figure 4.1: Distribution of ex-ante conditional profits under four types of risk cov-
erage
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Figure 4.2: Cumulative Density of ex-ante conditional profits under four types of
risk coverage
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high corn volatility is to enter into a forward-pricing contract that assumes the

futures settlement price of corn. This is scenario two, and is shown in the previously

mentioned plot of densities. In spite of the high volatility for corn prices, fed cattle

prices still drive much of the volatility, however, we do see a reduction in risk when

this strategy is used. For example, the lower 5% of the density increased by $33,

while the upper tail 95% is reduced by $15. However, in cases where the corn futures

price and implied volatility measures are high, eliminating corn risk can be seen as a

way to reduce more downward profit variability than upward profits. The reason for

this is the positively skewed nature of prices, which are assumed to be distributed

as a log-normal. Because of this positive skewness, there is a small probability that

corn prices will go very high, which negatively impacts profits. While the mean is

mostly unchanged and the the variation is slightly less, the lower end of the tail has

been reduced.

While managing corn price risk may be useful, it still leaves quite a bit of

variability in profits uninsured. Because cattle prices are thought to be the main

contributor to profit risk, the next scenario includes a forward-pricing contract on fed

cattle prices. By essentially guaranteeing a marketing price per weight, the cattle

owner is able to eliminate fed cattle price risk. By doing this, both upward and

downward risks associated with the price of fed cattle are eliminated, leading to an

implied volatility in this scenario of zero. The owner is still left with uncertainty from

corn prices and production activities. This type of contract reduces the standard

deviation by 62% when compared to the case where all risks are included. Here,

90% of the density lies within the interval of -$133.94 to $118.36. Here the position

of the .05 and .95 percentiles shrink by 59% and 66%, respectively. The average of

this density is mostly unchanged at -$0.74.

While this scenario has shrunk the profit density tails substantially, there

still remains a lot of variability. For example, one might interpret the above results
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to mean there is a 5% chance that one might expect to lose at least $133.94 per

head. Given our hypothetical pen of 150 head, this would amount to a loss of more

than $20,091.00 in profits. The remaining variability is likely a major driver behind

the LGM product, as an alternative to the LRP product.

By protecting cattle owners against price risks originating from corn and fed

cattle prices, the LGM product is the most comprehensive cattle insurance product

currently available. The final scenario focuses on the risk that is left uninsured under

this type of plan. Here, both prices are fixed through the use of forward contracts

to eliminate any price volatility. The remaining variability occurs due to variability

within the production process, conditional on the entry level characteristics of the

cattle pen.

The lower 5th percentile is located at -$81.60, while the upper 95th percentile

lies at $81.65. As expected, this is a substantial difference from the prior scenarios

that left some element of price risk uninsured. Even though this scenario presents

substantially less risk, it is important to understand the amount of risk that is still

present. The 5th percentile implies that there is a 5% probability of a pen of 150

head to lose at least $12,240.

The large variability resulting from productive variability comes the previ-

ously identified sources. Health measures, such as veterinary costs and mortality

rates, are each positively skewed and can take large values in pens that are sick

or experience adverse weather conditions. Mortality rates that rise above 5% can

very quickly make positive profits hard to realize. Performance measures, such as

feed conversion rates and daily gain rates, can vary based on unobservable genetic

potential or weather conditions. While daily gain rates can often be managed by

feeding rations, feed conversion rates move upward quickly when pens are not in

optimal form. Feed conversion rates are also positively skewed. While much of the

variability is reduced through forward pricing strategies that eliminate price risk, a

127



significant amount of variability is left over.

In the next section, a sensitivity analysis will be performed in order to identify

the sensitivity of our results to variability in price and production risk factors. This

allow us to make more general comments about the risks that face cattle feeding

profits as well as their origins.

4.4.2 Sensitivity analysis

This section will focus on evaluating the sensitivity of our results by allowing for a

low and high range of values pertaining to both price and production risk factors.

In changing the mean values that characterize risk in our simulated results, we

can evaluate the impact on overall profits per head, while holding all other factors

constant. The mean of the distribution is shifted to the 5th and 95th percentile

levels in order to evaluate upper and lower shocks to the distribution.

First, we will focus our attention on shifts in production risk factors under full

price coverage, meaning a forward contract on both corn and fed cattle prices. With

price risk set to zero in this case, we are able to evaluate the range in profits that

result from low and high shocks in production risk factors. Under these scenarios,

expected values for production risk factors were adjusted upward and downward to

examine the impact on profits per head when these risk factors take on extreme

values. The results can be found in Figure 4.3.

In the data used in this study, 5 percent of the observations contained mor-

tality rates of at least 3.41%. To evaluate the impact a head loss of this magnitude

would have on overall profits, simulations were conducted with a mean of 3.41%

death loss. The result is a shift in the per head profit distribution, where the mean

is reduced by $29 over the baseline case. It is no surprise that such a large mortality

loss in the pen would result in a significant decrease in profits.

Next average daily gain is adjusted in both directions to develop a range of
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Scenario Mean Sd 5% 25% 75% 95%
Baseline - No Price Risk 0.19 49.30 -81.60 -33.18 33.47 81.65

High MORT (3.41%) -28.99 53.88 -115.29 -66.07 6.49 63.02
Low ADG (2.56 lbs/day) -73.78 44.15 -146.15 -103.79 -44.27 -0.86
High ADG (4.14 lbs/day) 32.95 51.61 -53.03 -1.93 67.88 117.90

Low FC (5.26 lbs feed/lbs gain) 18.73 49.96 -64.43 -14.97 52.40 101.13
High FC (7.43 lbs feed/lbs gain) -54.49 47.51 -132.93 -86.45 -22.76 24.30

Figure 4.3: Distribution of ex-ante conditional profits from shocks to production
risk factors, under full price coverage
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profits that is based solely on shifting this variable. The impacts are dramatic as

the mean shifts downward to -$73.78 in the low scenario and $32.95 in the high

scenario. Average daily gain directly impacts the amount of weight that is available

for sale at the end of the feed period. ADG rates of 2.56 and 4.14 demonstrate the

lower and upper bounds of feeding efficiency, respectively. Lastly, feeding efficiency

is also adjusted in both directions to contrast an efficient feeder with a conversion

rate of 5.26, with that of an incredibly inefficient feeder at 7.43. While 90 percent

of the data fall within this range, it once again offers a range in which profits will

vary based solely on feed conversion rates.

Feed conversion rates directly impact the amount of corn that is used to

add weight, meaning an inefficient feeder will cause feed costs to increase quickly.

Once again there are dramatic effects as a pen that is expected to have a high

feed conversion rate will have a profit density function that crosses the zero profit

threshold just above the 5% level. Alternatively, the highly efficient pen has more

than a 70% chance of positive profits. It is also worth mentioning that these results

might be even more exaggerated with higher corn prices.

The next set of scenarios evaluate the sensitivity of our results to changes in

corn prices and volatility in corn prices. Corn prices and volatilities have changed

dramatically over the last few years. The main reasons include mandates for alter-

native fuel which have increased the demand for the commodity, as well as increases

in transportation costs. The last few years have been characterized by extreme

highs in cash prices as well as increased volatility. First, we focus on the changes in

cash prices by assuming the high and low cash settlement prices, based on the 5th

and 95th percentile price levels since 2005, for corn at $3.93 and $1.94 per bushel,

respectively. The results can be found in Figure 4.4

In each scenario, one detects a strong shift at all levels with changes in

the corn price. With corn still a main component of feed in livestock, this is not
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Scenario Mean Sd 5% 25% 75% 95%
Low Scenario (1.935 per bu.)

No Price Risk 80.01 52.27 -6.83 44.72 115.46 165.49
Cattle Protection 79.47 62.54 -27.64 38.20 122.27 179.52
Corn Protection 77.79 194.34 -212.55 -58.02 198.62 421.78

No Protection 77.26 202.05 -229.46 -64.27 203.83 432.99
High Scenario (3.9325 per bu.)

No Price Risk -32.98 48.19 -112.64 -65.59 -0.66 47.01
Cattle Protection -34.08 85.06 -182.17 -85.44 24.93 95.75
Corn Protection -35.20 193.24 -324.75 -170.24 85.27 307.60

No Protection -36.30 214.63 -364.23 -184.62 97.87 330.49

Figure 4.4: Distribution of ex-ante conditional profits from shocks to expected corn
prices
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surprising. With mean profits jumping to nearly $90 in all scenarios concerning the

low corn price of $1.94 per bushel, profits are strongly impacted by dramatic shifts

in the expected price of corn. Alternatively, a high price of $3.93 per bushel strongly

decreases profits to about-$35 per head, which is a dramatic change from scenario

with the low corn price.4

Another reality of cattle feeders today, beyond the high corn prices, are the

higher than normal implied volatility associated with options contracts for corn. To

illustrate the impact wide swings in corn volatility has on cattle feeding profits, we

use the same simulations as before with high and low volatility scenarios of 42.2%

and 10.45%, respectively. In the previous cases we focused our attention mostly on

the mean, as the adjustments mostly caused shifts in the density functions without

changing variability too dramatically. However, as shown in Figure 4.5, the tails of

the profit distributions fluctuate quite dramatically.

For example, when no forward pricing contracts are used, the lower bound

of the 90% confidence interval changes from -$347.84 under the high scenario and

-$298.47 in the low scenario. A difference of $50 that results merely from a change in

the volatility. Most of the mean elements are mostly unchanged in these scenarios.

Two scenarios that eliminate all corn price risk will be identical in these scenarios,

which include corn protection and no price risk scenarios. It is interesting to note

that even when fed cattle prices are hedged, the 90% interval still changes quite

dramatically between the two scenarios in the tails.

In addition to corn price risk, fed cattle prices can also have very large

impacts on profits from changes in level and volatility. In an ex-ante evaluation

of profits, if we were to shock fed cattle prices upward and downward, we would

need to similiarly shock feeder prices up and down as well. Because of this, results

from shocking prices are less dramatic that previously seen, since really the margin
4High and low corn price scenarios were based on cash price information from 2000 - 2007.
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Scenario Mean Sd 5% 25% 75% 95%
Low Scenario (vol = 0.1045)

No Price Risk 0.19 49.30 -81.60 -33.18 33.47 81.65
Cattle Protection -0.10 53.08 -87.61 -35.83 35.33 87.08
Corn Protection -2.03 193.53 -291.19 -137.58 118.60 340.45

No Protection -2.32 197.35 -298.47 -140.35 120.49 347.37
High Scenario (vol = 0.4220)

No Price Risk 0.19 49.30 -81.60 -33.18 33.47 81.65
Cattle Protection -1.15 97.60 -177.22 -54.68 65.98 138.74
Corn Protection -2.03 193.53 -291.19 -137.58 118.60 340.45

No Protection -3.37 221.42 -347.84 -155.33 135.63 370.76

Figure 4.5: Distribution of ex-ante conditional profits from shocks to expected corn
price volatility
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between feeder and fed prices is where profits are made and lost. Figure 4.6 shows

the results from these scenarios where feeder and fed cattle prices were brought to

$98.32 and $79.12 in the low scenario and $128.38 and $96.01 in the high scenario,

respectively.

The large spread between fed and feeder prices in the above scenario keep the

men of profits strongly negative. One notable feature of cattle prices is that volatility

has dramatic impacts on overall profits per head (Belasco et al., 2006). To test this

hypothesis, we conducted to same sensitivity test to cattle price volatility. Since

feeder prices are known at the time of placement, this only impacts the distribution

of expected fed cattle prices. These results can be found in Figure 4.7.

In spite of the range around cattle price volatility being somewhat less that

corn price volatility, it still has a rather dramatic impact on the variance around

profits. Again, we notice with volatility shocks that the mean values stay relatively

unchanged, with notable differences in the tails. For example, with an implied

volatility of 28% in fed cattle prices the lower 5% of the distribution decreases by

$250, while the upper 5% increases by almost $400 when moving from an implied

volatility of 12% to 28%. This dramatically shows why fed cattle prices have such

an impact and are the focus of so many current risk management tools.

So far we have demonstrated how shocks to risk factors can impact the

distribution of profits. For the final sensitivity analysis, weight is shocked so that we

can see the impact on profits. Because placement weight is so closely tied to days

on feed, days on feed is adjusted to reflected the average days on feed associated

with the given weight. The high and low scenarios for weight will refer to average

placement weights of 582 pounds and 872 pounds, which corresponds to 177 and 95

days on feed, respectively. The results for this sensitivity analysis can be found in

Figure 4.8.

There appears to be a strong incentive to bring in lighter pens under this test.
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Scenario Mean Sd 5% 25% 75% 95%
Low Scenario (98.32(fc) and 79.12(lc) per cwt)

No Price Risk -87.48 38.96 -152.04 -113.72 -61.38 -22.86
Cattle Protection -88.41 71.24 -213.57 -131.26 -39.21 19.87
Corn Protection -89.28 156.50 -323.40 -198.62 8.01 188.09

No Protection -90.21 175.15 -359.50 -211.57 20.07 208.99
High Scenario (128.38(fc) and 96.01(lc) per cwt)

No Price Risk -122.43 48.37 -202.70 -155.17 -89.83 -42.43
Cattle Protection -123.36 76.75 -255.55 -171.04 -70.16 -5.38
Corn Protection -124.61 190.21 -409.00 -257.76 -6.02 212.15

No Protection -125.54 207.17 -442.55 -271.22 3.78 230.66

Figure 4.6: Distribution of ex-ante conditional profits from shocks to expected cattle
prices

135



Scenario Mean Sd 5% 25% 75% 95%
Low Scenario (vol = 0.12)

No Price Risk 0.19 49.30 -81.60 -33.18 33.47 81.65
Cattle Protection -0.74 77.34 -133.94 -49.15 52.80 118.36
Corn Protection -1.40 144.99 -223.39 -102.68 91.28 248.41

No Protection -2.33 164.17 -260.85 -116.89 105.12 273.99
High Scenario (vol = 0.28)

No Price Risk 0.19 49.30 -81.60 -33.18 33.47 81.65
Cattle Protection -0.74 77.34 -133.94 -49.15 52.80 118.36
Corn Protection -4.07 350.58 -479.09 -251.12 189.07 634.89

No Protection -5.00 363.77 -509.13 -262.22 199.16 659.65

Figure 4.7: Distribution of ex-ante conditional profits from shocks to expected cattle
price volatility
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Scenario Mean Sd 5% 25% 75% 95%
Low Scenario (weight=581, dof=177)

No Price Risk 79.75 60.21 -18.95 38.74 120.35 179.67
Cattle Protection 78.62 94.02 -83.17 19.87 143.69 223.12
Corn Protection 77.62 189.14 -204.22 -55.86 195.76 410.24

No Protection 76.48 211.56 -247.32 -71.58 209.67 438.83
High Scenario (weight=872, dof=95)

No Price Risk -65.19 38.83 -130.57 -90.81 -39.14 -1.97
Cattle Protection -65.91 60.60 -170.76 -103.57 -23.92 27.18
Corn Protection -67.42 193.01 -356.38 -202.51 51.99 274.96

No Protection -68.15 204.88 -380.15 -210.74 58.78 289.33

Figure 4.8: Distribution of ex-ante conditional profits from shocks to average place-
ment weight
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Even though feeder prices are lower for heaver weighted pens on a per pound basis,

the value added doesn’t get over this cost hurdle. However, it should be noted that

this model assumes linear weight gain in pens of cattle, which is not necessarily true.

Making inference on weight distinctions should be reserved until further analysis

when a non-linear growth curve is assumed. However, by conditioning on weight,

we do assume higher feed conversion rates which adds to per costs associated with

feed. On average, we are able to capture growth linearly, but to be more specific,

a non-linear growth path would be more accurate. For example, as beef cows get

near their finishing weight, the do not put on weight as quickly as when they were

younger. They begin to converge to a physical capacity before they are finished.

This section focused on conducting a sensitivity analysis in order to gauge

the sensitivity of our results to changes in prices, which change over time, and

production factors, which change for different characteristics. The implications of

this research point to the use of flexible modeling mechanisms, like the one used

here, in order to capture the dynamic effects that occur for changes in price and

yield risks. Another implication is the fact that both should be taken into account

when evaluating profits. As shown in the first analysis, even when all price risk is

taken out, risk from production areas such as mortality, feed conversion, and average

daily gain, can shift the distribution of profits dramatically.

The next section focuses on a risk management technique that is used almost

as frequently as forward contracting and includes the use of options contract to help

hedge risk. These contracts will add a new dimension to this research by including

upside risk into a strategy that still eliminates downside risk. The advantage to this

type of strategy is that if allow for upside profit gains, while eliminating large losses.
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4.4.3 Options contract

An alternative risk management strategy might include the use of the options market

to manage price risk. As in the previous simulation, we will use the four scenarios of

varying price coverage with a call option on corn and a put option on fed cattle prices.

Simulations will be conducted in much the same way, with the exception of a bound

on both prices that result from the options purchase. For corn price insurance, a

call option offers the opportunity to purchase a futures contract at a specified price,

protecting the buyer from corn prices above the strike price. Alternatively, for fed

cattle price insurance, a put option offers the opportunity to sell at a specified price,

protecting the buyer from falling fed cattle prices. While this strategy secures the

contract holder from adverse price shocks, it leaves open the possibility of favorable

shocks to prices.

The price paid for the options contract accounts for the premium associated

with securing this risk as well as an assumed commission rate of $.02 per bushel and

$.10 per 100 pounds for corn and fed cattle, respectively. Commission rates vary by

commodity broker, but are relatively inexpensive compared to premium rates. The

rates used in this study are found in Purcell and Koontz (1998). Expected profits

from this set of simulations are shown in Figure 4.9. Since only downward variability

is restricted, the left tails vary substantially based on the level of protection. The

right tails converge, since an observation in that portion of the distribution expe-

riences fortunate circumstances and likely do not utilize the protection established

through options. For these observations, the only losses occur from the purchasing of

options contracts though the premium rate. Premium rates are based on the end of

day settlement prices from the CBOT and CME options contract information. For

July 16, 2007, the settlement premiums for options on corn will be $.091 per bushel

with a strike price of $3.50 and $1.25 per hundred pounds of cut-weight with a strike

price of $92 for fed cattle. On average, the price of corn and live cattle coverage
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per head of cattle were $6.19 and $15.74, respectively, at the given prices. Given

the cost of insurance, it was particularly surprising that the upper tails converged

as quickly as shown in the given plots.

Because the lower tails diminish as the amount of protection increases, the

mean shifts substantially. The lower tails diminish because of the insurance against

adverse events, while the cost of insurance reduces the upper tail as protection

increases. The mean shifts from -$2.96 with no protection to $39.33 with protection

on both corn and fed cattle prices. The top two quantile levels illustrated in Figure

4.9 are approximately similar in all cases, which is quite different from the wide

spread apparent in the lower two quantiles.

While the upper tails appear to converge rather quickly when using options as

risk management tools, it should be mentioned that the majority of mass is stacked

near the zero profits. For these components of the distributions, paying extra money

for insurance may be the difference between turning a profit and being stuck with

losses. In the upper part of the tail where large profits are realized, the relatively

small amount of insurance appears to have an impact that is marginal at best. Under

this scenario the lower tail under full price protection is much more negative than

in the forward-pricing situation. More specifically, the 5% under full coverage lies

at -$138.42, which is almost twice as negative as under forward-pricing. The reason

for this is that even though the contract holder is protected at a certain level, there

still remains a small amount of downside risk in prices, whereas forward-pricing

eliminates this risk. Under this scenario, one might still anticipate a 5% chance of

losing over $20 thousand for our hypothetical pen of 150 head, which is a loss of

-10% of total selling value. Alternatively, one might expect to lose $11,034.00 with

25% probability.

This section has simulated profits based on a hypothetical pen and allowed

for both forward-pricing contracts and options contracts to be used for risk manage-

140



Scenario Mean Sd 5% 25% 75% 95%
No Price Risk 39.33 155.98 -138.42 -73.56 118.21 347.42

Cattle Protection 25.47 167.12 -188.50 -89.32 112.41 343.22
Corn Protection 10.91 200.09 -287.76 -130.44 134.19 362.92

No Protection -2.96 210.36 -324.73 -150.93 128.26 359.55

Figure 4.9: Distribution of ex-ante conditional profits under four types of risk cov-
erage using options
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Figure 4.10: Cumulative Density of ex-ante conditional profits under four types of
risk coverage using options
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ment. Even under the scenario where both corn and live cattle prices are managed,

there appears to be a substantial amount of downward risk to profits. The risk

that is left after using risk management techniques can be mostly attributed to pro-

duction risk. While insuring production risk is much more complicated than with

prices, there does appear to be reason to consider such a product.

4.5 Concluding Comments

This research has focused on quantifying the amount of risk inherent in fed cattle

production for different types of risk management strategies. Specific attention was

focused on the degree of risk left uninsured as cattle owners purchase higher lev-

els of insurance protection. Even though some current risk management strategies

for managing price risk can eliminate a good portion of overall risk, a significant

amount of risk still exists in production areas. In this study, we evaluate the use

of forward-pricing contracts and options contracts as two risk management strate-

gies. Currently, both allow cattle owners to eliminate a significant amount of risk.

However, given the direction of crop insurance programs as well as the relatively

new involvement in federal livestock insurance, the question remains as to whether

a true livestock revenue insurance is appropriate. Major sources of uncertainty in

this industry involve adverse weather, through drought and extremely cold weather.

These are events not currently covered, outside of disaster aid relief, through federal

insurance programs.

One limitation of this study is that it spans 5 distinct feedlot locations. Even

though the feedlots are distinguished by binary variables that indicate the state of

residency, some variability might be attributed to differences among the feedlots.

Additionally, the five feedlots in this sample are not representative of the cattle

feeding industry as a whole. For these reasons, a future study should include an

evaluation of production risk by feedlot location. While controlling for placement
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characteristics should control for most of the covariate effects that control risk, a

further study to evaluate the difference in variability amongst feedlots might produce

interesting results. Currently, two methods are used in crop insurance settings,

which include individual and county-level production history. Within each state, the

feedlots are relatively close, making county-level aggregations a possibility. Future

research should evaluate both alternatives and isolate any significant differences

between the two methods.

The degree of comfort a cattle owner has, given this amount of risk, strongly

depends on their aversion to risk. A future direction of work should include the

evaluation of expected utility given differing levels of risk aversion. By evaluating

a menu of different risk aversion coefficients may illustrate how different layers of

protection may be more or less necessary to different types of participants in the

cattle industry. For example, a speculator or investor might have a higher risk

threshold and take on more risk, while a rancher would likely be more risk averse

and prefer additional layers of coverage. An analysis of this type would also allow for

simulations to approximate the likelihood of taking on production risk or demanding

a product that protects against production risk.

Additionally, some future work is also needed to characterize production risk

from an ex-post perspective. For example, an evaluation into the influence that

weather has on performance and health factors may lead to a better understand-

ing of the sources of risk throughout the production process. Additionally, weather

outcomes are out of the producer’s control and may be an appropriate variable to

correlate with realized production outcomes. Miranda and Vedenov (2001) recom-

mend the use of index-based derivatives in developing countries where production

data are limited and administration costs must be kept low. In particular, weather-

based indices can be designed to be highly correlated with productive outcomes,

while not creating an incentive for the insured agents to change production efforts
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(Turvey et al., 2002). Recently, a temperature-humidity index was proposed to pro-

tect against reduced milk from dairy production in times of extreme weather (Deng

et al., 2007). This is the first attempt to utilize a weather-based index to character-

ize ex-post livestock productivity. The authors point out that since weather data is

publicly available, the lack of information asymmetry work to minimize distortions

from moral hazard or adverse selection. Future research should evaluate the impact

of weather on beef cattle health and productivity.
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Chapter 5

Conclusion

Agricultural production holds a unique position in the U.S. economy in the way

that risk enters into production. Variability around prices and yields impose large

uncertainties concerning profits. This relationship between risk and production is

quite apparent in the area of cattle feeding. While large quantities of research have

been devoted to understanding variability around crop yield risk, little research has

focused on livestock. The 2000 Agricultural Risk Protection Act shifted the way

risk is managed in livestock industries by encouraging federal insurance programs

that cover livestock.

As a result of the mandate for new research evaluating livestock insurance,

two major programs (LRP and LGM) have been developed and are currently ex-

panding into new states. These programs, which are in line with most past research,

have focused on guarding price risk in cattle feeding enterprises. In contrast to these

studies, this research looks to evaluate cattle feeding profit variability by recognizing

that risks originate in both price and yield areas.

When pens of cattle are transported to feedlots, where they will spend the

next 3 - 5 months gaining incredible amounts of weight, financial plans must be

made. In assessing the possibilities that may occur over the next few months, a

cattle owner is left with an array of uncertainties. First, cattle prices can change

immensely which can dramatically change the value of the pen and ultimately the
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realized profits. Because prices are determined based on global supply and demand,

this is out of the control of the cattle owner. This is no more apparent than with

the variability associated with corn prices, which is the second type of uncertainty.

Corn prices largely impact the price of feed, since nearly 70% of feed used for beef

cattle at the feedlot stage. Changes in the demand for corn in other areas, such

as ethanol production, can dramatically impact the ability to make profits feeding

cattle.

In addition to these two types of uncertainty, risk can also come from produc-

tion yields, which in this industry include both performance and health measures.

Concerning performance, the ability to gain weight and the efficiency with which

weight is gained can also be thought of as random variables, particularly from an

ex-ante perspective since unknown genetics or weather can play a strong role in

determining performance outcomes. In addition, health and mortalities are major

sources of mortality and can cause quick losses to profits in an industry where profits

are already close to zero in most cases.

This research attempted to address some fundamental questions related as-

sessing the risks related to fed cattle production. Chapter 2 specifically addressed

the multivariate nature of the four elements that jointly affect production risk in

cattle production. The first step in this process was to identify areas of ex-ante pro-

duction risk, which includes average daily gain (ADG), dry matter feed conversion

(DMFC), mortality rates (MORT), and veterinary costs (VCPH). Additionally, con-

ditioning variable were identified that influence the mean and covariance between

these four variables.

A multivariate Tobit model was used to capture the censored nature of mor-

tality rates. Two complexities arose which demanded extending the traditional

Tobit model; the individual variance associated with each performance risk vari-

able changes for difference levels of the conditioning variables and the correlations
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between these variables change with the conditioning variables. For example, as

placement weight increases the amount of variability around mortality rates de-

crease. This occurs as more mature beef cows are able to sustain through extreme

winter storm or disease. Additionally, the correlation between mortality rates and

veterinary costs weaken for higher placement weight levels. In order to take these

effects into account, the Tobit model was extended to allow for all covariance ele-

ments to change with the conditioning variables. Likelihood ratio tests were used to

examine the gains from adding the additional parameter estimates needed for our

extended model and demonstrated the gains in efficiency. Further research in this

area would be helpful in order to quantify the amount of bias to expected profits

that result from imposing constant correlation between these variables.

In addition, conditioning variables significantly impacted the mean and co-

variance elements in most of the equations. The size of the data allows us to evaluate

the impacts that variables, which are known when a pen is placed on feed, has on

both the mean and covariance elements. These variables are useful in feedlot man-

agement, as well as an understanding of overall profit risk that accounts for all of

the identified areas of risk. Additional impacts come from differences in gender,

location, and season of placement.

Chapter 3 focused on modeling censored variables as an individual variable

and as part of a system. This essay originated with the idea that mortalities may

be generated as part of a two-step process, rather that a one-step as assumed by the

Tobit model. Possible reasons for the two-step process fundamentally begin with the

observation of homogeneity within a pen of cattle. Because a pen of cattle tend to

come from the same producer and therefore have similar genetics programs, positive

mortalities may be a sign of poor genetics inherent in the pen. In a more general

way, variables that influence the level of positive mortality rates need not influence

the probability that a non-zero amount of mortalities occur.
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In order to test this hypothesis, a zero-inflated log-normal distribution is

developed, using Bayesian theory, to evaluate mortality rates using an appropriate

mixture model. A major advantage of this model is the flexibility in distributional

assumptions, which is in contrast to the Tobit model. Additionally, past research

has demonstrated the advantages of using Bayesian methods with censored data

(Chib, 1992; Ghosh et al., 2006). First, data are simulated to examine the loss

in efficiency from model fit and predictive power when assuming a Tobit model

when the data is generated from a mixture model, and vice versa. The zero-inflated

log-normal model performed extremely well when the data was generated from a

mixture model and even had a better fit when the data was generated from a Tobit

model with a high degree of censoring. The data demonstrated significant gains

in model fit and predictive power in both the univariate and multivariate models

that were developed and compared to the Tobit counterparts. In addition to added

efficiency, variables are more accurately characterized. For example, location (KS)

has no statistical impact on the mean of mortality rates when evaluated using the

Tobit model. However, the zero-inflated log-normal distribution demonstrated a

significantly negative relationship between KS and mean mortality rates, coupled

with a positive relationship with KS and the positive amount of mortalities. The

point here is that Kansas feedlots appear to be more successful in preventing any

mortality rates, which may be a result of a strong backgrounding or vaccination

program, while positive mortality rates result in higher rates. Higher positive mor-

tality rates may be the result of more extreme weather or more contagious diseases

in the Kansas feedlots. While the Tobit assumptions led to an insignificant variable

estimate, this masked the true two-part relationship with that variable.

In addition to evaluating mortality rates, a multivariate model was developed

and shown to perform more efficiently that the multivariate Tobit model. By recog-

nizing the link between joint probabilities with conditional and marginal densities, a
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multivariate model is developed that is able to consistently regress more than three

censored variable, which is a major limitation of frequentist methods.

Future research in this area is needed to better characterize mortality rates.

Of the four variables evaluated in this study, mortality rates have the largest vari-

ance. One problem is the bi-modal and positively skewed empirical distribution,

which might more closely be characterized with a log-normal distribution. One sug-

gestion is to model this variable as a mixture of two log-normal distributions so

that the bi-modal nature can be more accurately captured. Another suggestion is

to utilize weather forecasts, that are known when the pen is placed, to evaluate the

importance of weather forecasts in predicting mortality rates. If we are interested

in an ex-post evaluation, there is an obvious link to using weather to evaluate the

impact on all health and performance measures. For example, the development of

an index that accounts for winter storms, heat, humidity, and other components

that impact the production of cattle should be evaluated in order to understand

this impact on production and ultimately on profits.

Profit risk is the focus of chapter 4, which evaluates this risk in the face

of different shocks to production and prices. A major contribution of this chap-

ter includes the quantification of profit risk under different price risk management

strategies. Forward pricing and options contracts are used to manage profit risks

under corn price protection, fed cattle price protection, both, and neither. Under

full price protection, we are able to see that a significant portion of risk still exists

simply from production risk components. An extension of this work might include

a direct quantification of the proportion of variability that is eliminated with prices

are controlled for. However, for the purposes of this research production risk does

appear to be a significant amount. This research demonstrates that cattle feeding

profits can be drastically impacted by shocks coming from many different areas.

A sensitivity analysis was conducted that allows for a visual representation
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of the impact that extreme shocks in prices and production have on overall expected

profits. The purpose of this analysis was to provide a range of values associated with

profit distributions that can occur given two opposing extremes.

This evaluation of profit risk under different scenarios is an area of research

that needs more attention. For example, a quantification into the amount of ex-post

profit risk that is accounted for when weather is accounted for would add a quite a

bit to existing research. The major advantage to using weather to gauge production

risk is that in an insurance perspective, it minimizes moral hazard and is widely

available to the public. Future research evaluating different opportunities to offer

insurance products against overall profit risk in cattle production appears to be an

important area of research, given the current limitations in offerings.
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Appendix 1: Multivariate Zero-Inflation Regression Win-

BUGS code

Overall Strategy

This section outlines the steps taken to characterize a multivariate Zero-

inflated regression model which can be used in WinBUGS software. The code used

for running this model will be supplied at the end of this section. We consider a

setup where three variables are contained within the dependent variable Y , where

Y =
[

Y1 Y21 Y22

]
=
[

Y1 Y2

]
(1)

We assume that Y1 has a positive probability of taking on the value of 0, while Y2

contains two variables, Y21 and Y22, and is continuous. The first step is to formulate

the joint density between Y1 and Y2, which can be written as

f(Y1, Y2) = f(Y1|Y2)f(Y2) (2)

Y2 will be distributed as a multivariate normal, with the variance as described

below and a standard mean. The conditional probability of Y1 given Y2 is modeled

through a zero-inflated modeling mechanism that takes into account the realizations

from Y2 in the following way

Y1|Y2 ∼ ZIN(ρi, µi(Y2), σ2
i (Y2)) (3)

where ZIN refers to the zero-inflated normal density function, µi(Y2) is the condi-

tional mean of Y1 given Y2 and σ2
i (Y2) is the corresponding conditional variance.

Modeling Non-censored values
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This section will describe how the continuous variables are modeled within

this framework. The first objective will be to model Y2 as a multivariate normal,

which consists of 2 continuous variables, Y21 and Y22. The specifications are laid

out below for ease of use in WinBUGS software and is equivalent to a multivariate

normal specification. These variables are utilized in the following manner,

Y21i ∼ N(µ1i,Σ1i)

Y22i ∼ N(µ2i,Σ2i) (4)

where the mean is specified as follows

µ1i = XiB1

µ2i = XiB2 + Σ12i(Y21i −XiB1) (5)

and the covariance matrix is constructed from Σi = T ′
iDiTi,

with

Ti =


1 t12 t13

0 1 t23

0 0 1

 and Di =


d1i 0 0

0 d2i 0

0 0 d3i



where Σi =


Σ1i Σ12i Σ13i

Σ2i Σ23i

Σ3i

 is a symmetric and positive definite hessian ma-

trix. Additionally, diagonal elements of D are functions of exp(Xiγ). Additionally,

elements of Σi are a function of elements from Ti and Di and be written as follows:

Σi =


d1i t12d1i t13d1i

t212d1i + d2i t12t13d1i + t23d2i

t213d1i + t223d2i + d3i


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Modeling Censored values

This section will focus on modeling Y1 as a zero-inflated normal distribution.

The specification begins with the Bernoulli component that models the likelihood

of a value that is modeled according to the specified distribution

ωi ∼ Ber(ρi) (6)

where ρi is specified as follows:

ρi =
1

[1 + exp(Xiδ)]
(7)

For our purposes, the specified distribution will be a normal, specified as

follows

Y1i ∼ N(µ3i, Cov3i) (8)

where the conditional mean is specified as follows

µ3i = XiB4 + Σ13iΣ−1
1i (Y21i −XiB1) + Σ23iΣ−1

2i (Y22i −XiB2) (9)

and the element Σ3i incorporates elements from noncensored variable outcomes, by

construction above. Additionally, the accompanying conditional variance is shown

below:

Cov3i = Σ3i − Σ13iΣ−1
1i Σ13i − Σ23iΣ−1

2i Σ23i (10)

The code used for estimation in WinBUGS software follows:
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model{

for(i in 1:n){

#Model the observed non-censored variables as desired:

ldmfc[i] ~ dnorm(mean1[i], cov1[i])

lvcph[i] ~ dnorm(mean2[i], cov2[i])

adg[i] ~ dnorm(mean3[i], cov3[i])

#Define the characteristics of the normal

mu1[i] <- beta1[1] + beta1[gen[i]] + beta1[loc[i]] + beta1[7]*inwtlog[i]

+ beta1[season[i]]

mu2[i] <- beta2[1] + beta2[gen[i]] + beta2[loc[i]] + beta2[7]*inwtlog[i]

+ beta2[season[i]]

mu3[i] <- beta3[1] + beta3[gen[i]] + beta3[loc[i]] + beta3[7]*inwtlog[i]

+ beta3[season[i]]

tau1[i] <- exp(gam1[1] + gam1[gen[i]] + gam1[loc[i]] + gam1[7]*inwtlog[i]

+ gam1[season[i]])

tau2[i] <- exp(gam2[1] + gam2[gen[i]] + gam2[loc[i]] + gam2[7]*inwtlog[i]

+ gam2[season[i]])

tau3[i] <- exp(gam3[1] + gam3[gen[i]] + gam3[loc[i]] + gam3[7]*inwtlog[i]

+ gam3[season[i]])

mean1[i] <- mu1[i]

mean2[i] <- mu2[i] + cov12[i]*(ldmfc[i] - mu1[i])

mean3[i] <- mu3[i] + cov13[i]*(ldmfc[i] - mu1[i]) + cov23[i]*(lvcph[i] - mu2[i])

cov1[i] <- 1/tau1[i]

cov2[i] <- 1/(t12*t12*tau1[i] + tau2[i])

cov3[i] <- 1/(t13*t13*tau1[i] + t23*t23*tau2[i] + tau3[i])

cov12[i] <- t12*tau1[i]

cov13[i] <- t13*tau1[i]

cov23[i] <- t12*t13*tau1[i] + t23*tau2[i]

#Model the observed zeros as bernoulli trials:

w[i] ~ dbern(p[i])

p[i] <- 1/(1 + exp(delta[1] + delta[gen[i]] + delta[loc[i]] + delta[7]*inwtlog[i] +

delta[season[i]]))

}

#Model the observed non-zeros as desired:

for(i in 1:n1){

lmort[i] ~ dnorm(mean4[i], cov4[i])

mu4[i] <- beta4[1] + beta4[gen[i]] + beta4[loc[i]] + beta4[7]*inwtlog[i]

+ beta4[season[i]]

tau4[i] <- exp(gam4[1] + gam4[gen[i]] + gam4[loc[i]] + gam4[7]*inwtlog[i]

+ gam4[season[i]])

#Mean takes into account the conditional terms

mean4[i] <- mu4[i] + cov14[i]*cov1[i]*(ldmfc[i] - mu1[i]) +
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cov24[i]*cov2[i]*(lvcph[i] - mu2[i]) + cov34[i]*cov3[i]*(adg[i] - mu3[i])

cov14[i] <- t14*tau1[i]

cov24[i] <- t12*t14*tau1[i] + t24*tau2[i]

cov34[i] <- t13*t14*tau1[i] + t23*t24*tau2[i] + t34*tau3[i]

cov4[i] <- 1/(t14*t14*tau1[i] + t24*t24*tau2[i] + t34*t34*tau3[i] + tau4[i])

}

#PREDICTION

for(h in 1:m){

mu1.pred[h] <- beta1[1] + beta1[genp[h]] + beta1[locp[h]] + beta1[7]*inwtlogp[h]

+ beta1[seasonp[h]]

mu2.pred[h] <- beta2[1] + beta2[genp[h]] + beta2[locp[h]] + beta2[7]*inwtlogp[h]

+ beta2[seasonp[h]]

mu3.pred[h] <- beta3[1] + beta3[genp[h]] + beta3[locp[h]] + beta3[7]*inwtlogp[h]

+ beta3[seasonp[h]]

tau1.pred[h] <- exp(gam1[1] + gam1[genp[h]] + gam1[locp[h]] + gam1[7]*inwtlogp[h]

+ gam2[seasonp[h]])

tau2.pred[h] <- exp(gam2[1] + gam2[genp[h]] + gam2[locp[h]] + gam2[7]*inwtlogp[h]

+ gam2[seasonp[h]])

tau3.pred[h] <- exp(gam3[1] + gam3[genp[h]] + gam3[locp[h]] + gam3[7]*inwtlogp[h]

+ gam3[seasonp[h]])

mean1.pred[h] <- mu1.pred[h]

mean2.pred[h] <- mu2.pred[h] + cov12.pred[h]*(ldmfcp[h] - mu1.pred[h])

mean3.pred[h] <- mu3.pred[h] + cov13.pred[h]*(ldmfcp[h] - mu1.pred[h]) +

cov23.pred[h]*(lvcphp[h] - mu2.pred[h])

cov1.pred[h] <- 1/(tau1.pred[h])

cov2.pred[h] <- 1/(t12*t12*tau1.pred[h] + tau2.pred[h])

cov3.pred[h] <- 1/(t13*t13*tau1.pred[h] + t23*t23*tau2.pred[h] + tau3.pred[h])

cov12.pred[h] <- t12*tau1.pred[h]

cov13.pred[h] <- t13*tau1.pred[h]

cov23.pred[h] <- t12*t13*tau1.pred[h] + t23*tau2.pred[h]

p.pred[h] <- 1/(1 + exp(delta[1] + delta[genp[h]] + delta[locp[h]] +

delta[7]*inwtlogp[h] + delta[seasonp[h]]))

mu4.pred[h] <- beta4[1] + beta4[genp[h]] + beta4[locp[h]] + beta4[7]*inwtlogp[h]

+ beta4[seasonp[h]]

tau4.pred[h] <- exp(gam4[1] + gam4[genp[h]] + gam4[locp[h]] + gam4[7]*inwtlogp[h]

+ gam4[seasonp[h]])

mean4.pred[h] <- mu4.pred[h] + cov14.pred[h]*cov1.pred[h]*(ldmfcp[h]

- mu1.pred[h]) + cov24.pred[h]*cov2.pred[h]*(lvcphp[h]

- mu2.pred[h]) + cov34.pred[h]*cov3.pred[h]*(adgp[h] - mu3.pred[h])

cov14.pred[h] <- t14*tau1.pred[h]

166



cov24.pred[h] <- t12*t14*tau1.pred[h] + t24*tau2.pred[h]

cov34.pred[h] <- t13*t14*tau1.pred[h] + t23*t24*tau2.pred[h] + t34*tau3.pred[h]

cov4.pred[h] <- 1/(t14*t14*tau1.pred[h] + t24*t24*tau2.pred[h]

+ t34*t34*tau3.pred[h] + tau4.pred[h])

}

#Priors:

beta1[1:3] ~ dmnorm(beta11[], Tau11[,]), beta1[5] ~ dnorm(beta12, Tau12),

beta1[7:10] ~dmnorm(beta13[], Tau13[,]), gam1[1:3] ~ dmnorm(gam11[], STau11[,])

gam1[5] ~ dnorm(gam12, STau12), gam1[7:10] ~dmnorm(gam13[], STau13[,])

beta2[1:3] ~ dmnorm(beta21[], Tau21[,]), beta2[5] ~ dnorm(beta22, Tau22)

beta2[7:10] ~dmnorm(beta23[], Tau23[,]), gam2[1:3] ~ dmnorm(gam21[], STau21[,])

gam2[5] ~ dnorm(gam22, STau22), gam2[7:10] ~dmnorm(gam23[], STau23[,])

beta3[1:3] ~ dmnorm(beta31[], Tau31[,]), beta3[5] ~ dnorm(beta32, Tau32)

beta3[7:10] ~dmnorm(beta33[], Tau33[,]), gam3[1:3] ~ dmnorm(gam31[], STau31[,])

gam3[5] ~ dnorm(gam32, STau32), gam3[7:10] ~dmnorm(gam33[], STau33[,])

beta4[1:3] ~ dmnorm(beta41[], Tau41[,]), beta4[5] ~ dnorm(beta42, Tau42)

beta4[7:10] ~dmnorm(beta43[], Tau43[,]), gam4[1:3] ~ dmnorm(gam41[], STau41[,])

gam4[5] ~ dnorm(gam42, STau42), gam4[7:10] ~dmnorm(gam43[], STau43[,])

delta[1:3] ~ dmnorm(delta1[], DTau1[,]), delta[5] ~ dnorm(delta2, DTau2)

delta[7:10] ~dmnorm(delta3[], DTau3[,])

t12 ~dnorm(4,.1)

t13 ~dnorm(-4.4, .1)

t23 ~dnorm(1.4, .1)

t14 ~dnorm(.4,.1)

t24 ~dnorm(4.3, .1)

t34 ~dnorm(.8, .1)

beta1[4] <- 0, beta1[6] <- 0, beta1[11] <- 0, gam1[4] <- 0, gam1[6] <- 0

gam1[11] <- 0, beta2[4] <- 0, beta2[6] <- 0, beta2[11] <- 0, gam2[4] <- 0

gam2[6] <- 0, gam2[11] <- 0, beta3[4] <- 0, beta3[6] <- 0, beta3[11] <- 0

gam3[4] <- 0, gam3[6] <- 0, gam3[11] <- 0, beta4[4] <- 0, beta4[6] <- 0

beta4[11] <- 0, gam4[4] <- 0, gam4[6] <- 0, gam4[11] <- 0, delta[4] <- 0

delta[6] <- 0,delta[11] <- 0}

Data:

list(n=7598, n1=4135, m=3799, beta11 = c(0,0,0), beta21 = c(0,0,0), beta31 =

c(0,0,0), beta13 = c(0,0,0,0), beta23 = c(0,0,0,0), beta33 = c(0,0,0,0),

beta12 = 0, beta22 = 0, beta32 = 0, beta41 = c(0,0,0), beta43 = c(0,0,0,0),

beta42 = 0, gam11 = c(0,0,0), gam21 = c(0,0,0), gam31 = c(0,0,0), gam13 =

c(0,0,0,0), gam23 = c(0,0,0,0), gam33 = c(0,0,0,0), gam12 = 0, gam22 = 0,

gam32 = 0, gam41 = c(0,0,0), gam43 = c(0,0,0,0), gam42 = 0,

delta1 = c(0,0,0), delta3 = c(0,0,0,0), delta2 = 0,

Tau11=structure(.Data = c(0.01,0,0,0,0.01,0,0,0,0.01), .Dim = c(3,3)),

Tau21=structure(.Data = c(0.01,0,0,0,0.01,0,0,0,0.01), .Dim = c(3,3)),

Tau31=structure(.Data = c(0.01,0,0,0,0.01,0,0,0,0.01), .Dim = c(3,3)),

Tau41=structure(.Data = c(0.01,0,0,0,0.01,0,0,0,0.01), .Dim = c(3,3)),

Tau12=0.01, Tau22=0.01, Tau32=0.01, Tau42=0.01,
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Tau13=structure(.Data = c(0.01,0,0,0,0,0.01,0,0,0,0,0.01,0,0,0,0,0.01),.Dim=c(4,4)),

Tau23=structure(.Data = c(0.01,0,0,0,0,0.01,0,0,0,0,0.01,0,0,0,0,0.01),.Dim=c(4,4)),

Tau33=structure(.Data = c(0.01,0,0,0,0,0.01,0,0,0,0,0.01,0,0,0,0,0.01),.Dim=c(4,4)),

Tau43=structure(.Data = c(0.01,0,0,0,0,0.01,0,0,0,0,0.01,0,0,0,0,0.01),.Dim=c(4,4)),

STau11=structure(.Data = c(0.01,0,0,0,0.01,0,0,0,0.01), .Dim = c(3,3)),

STau21=structure(.Data = c(0.01,0,0,0,0.01,0,0,0,0.01), .Dim = c(3,3)),

STau31=structure(.Data = c(0.01,0,0,0,0.01,0,0,0,0.01), .Dim = c(3,3)),

STau41=structure(.Data = c(0.01,0,0,0,0.01,0,0,0,0.01), .Dim = c(3,3)),

STau12=0.01, STau22=0.01, STau32=0.01, STau42=0.01,

STau13=structure(.Data = c(0.01,0,0,0,0,0.01,0,0,0,0,0.01,0,0,0,0,0.01),.Dim=c(4,4)),

STau23=structure(.Data = c(0.01,0,0,0,0,0.01,0,0,0,0,0.01,0,0,0,0,0.01),.Dim=c(4,4)),

STau33=structure(.Data = c(0.01,0,0,0,0,0.01,0,0,0,0,0.01,0,0,0,0,0.01),.Dim=c(4,4)),

STau43=structure(.Data = c(0.01,0,0,0,0,0.01,0,0,0,0,0.01,0,0,0,0,0.01),.Dim=c(4,4)) ,

DTau1=structure(.Data = c(0.01,0,0,0,0.01,0,0,0,0.01), .Dim = c(3,3)), DTau2=0.01,

DTau3=structure(.Data = c(0.01,0,0,0,0,0.01,0,0,0,0,0.01,0,0,0,0,0.01),.Dim=c(4,4)) )
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