
Abstract

IWANCIO, KATHLEEN MARIE. Use of Integral Signatures and Hausdorff Distance
in Planar Curve Matching. (Under the direction of Irina A. Kogan.)

Curve matching is an important problem in computer image processing and image

recognition. In particular, the problem of identifying curves that are equivalent under

a geometric transformation arises in a variety of applications. Two curves in R2 are

called congruent if they are equivalent under the action of the Euclidean group, i.e. if

one curve can be mapped to the other by a combination of rotations, reflections, and

translations. In theory, one can identify congruent curves by using differential invari-

ants, such as infinitesimal arc-length and curvature. The practical use of differential

invariants is problematic, however, due to their high sensitivity to noise and small

perturbations. Other types of invariants that are less sensitive to perturbations were

proposed in literature, but are much less studied than classical differential invariants.

In this thesis we provide a detailed study of matching algorithms for planar curves

based on Euclidean integral invariant signatures. Several types of local and global

signatures are considered. We examine numerical approximations of signatures, sen-

sitivity to perturbation, dependence on parametrization and a choice of initial point,



and effects of the symmetries of the original image on signatures. Furthermore, we use

Hausdorff distance between signatures to define a distance between congruence classes

of curves.



Use of Integral Signatures and Hausdorff Distance in Planar Curve Matching

by
Kathleen Marie Iwancio

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Mathematics

Raleigh, North Carolina

2009

APPROVED BY:

I. A. Kogan
Chair of Advisory Committee

R. O. Fulp

P. Gremaud K. Hollebrands



Dedication

This thesis is dedicated to my parents, Michael and Mary, who have supported me in

everything I have done.

ii



Biography

Kathleen Marie Iwancio was born November 27, 1980 in Washington, D.C. to Michael

and Mary Iwancio. She has one younger brother, Matthew. Katie graduated from Elon

University in 2003 with bachelors degrees in Mathematics and Physics. In August 2003

she began graduate studies in Mathematics at North Carolina State University, where

she received a masters degree in December 2005. On July 18, 2009 she married Mark

Lovin, who has continually supported her as she pursued her Ph.D. at North Carolina

State University.

iii



Acknowledgements

First and foremost, thanks to my advisor, Irina Kogan, for her guidance and infinite

patience.

I would also like to thank members of the REU/REG group, Alex Abatzoglou,

Mandy Smith, and Jessica WebsterLove for their assistance during the summer in

2007. Alex provided the main ideas of the proofs that appear in Section 3.3. Mandy

and Jessica wrote a first version of the Matlab code to compute integral signatures.

Thanks to my husband Mark for his love and support. I could not have finished

this thesis without him. Nor could I have finished without the love and support of my

parents, Michael and Mary, to whom I have dedicated this thesis. I also thank my new

family, the Lovin’s, for their encouragement.

Love and thanks to my friends, especially to Laura Peveler, who has kept me smiling

for the past year. Special thanks also to Michelle Snyder.

Finally, I would like to acknowledge my grandparents. Daisy and Daniel Paska

taught me that I can do anything I set my mind to, and they taught me about faith.

They are a large part of who I am today. I also acknowledge Carolyn Iwancio for her

love. I regret that Marion Iwancio was not with us longer to lend his support.

iv



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Curve Matching Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Group Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Differential Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 Differential Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Differential Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Integral Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Integral Variables and Invariants . . . . . . . . . . . . . . . . . . . . . 31

3.2 Discrete Approximation of Invariants . . . . . . . . . . . . . . . . . . . 35

3.3 Global Integral Signatures . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.1 Some Properties of the Global (R, I1) Signature . . . . . . . . . 42

v



3.3.2 Some Properties of the Global (R, I2) Signature . . . . . . . . . 46

3.4 Local Integral Invariants and Signatures . . . . . . . . . . . . . . . . . 48

3.4.1 Properties of (l, I loc1 (l)) and (l, I loc2 (l)) Signatures . . . . . . . . . 50

3.4.2 Properties of (I loc1 , I loc2 ) Signature . . . . . . . . . . . . . . . . . 52

4 Distance Between Congruence Classes of Curves . . . . . . . . . . . . . . . . . . . 54

4.1 A Metric on the Space of Curves and Their Congruence Classes . . . . 54

4.2 Experiments, Conclusions, and Future Work . . . . . . . . . . . . . . . 57

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

vi



List of Tables

Table 3.1 I2(n) for γ = (t, cos t) and a rotation with N = 10 partitions of

t ∈ [0, π] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Table 3.2 I2(n) for γ = (t, cos t) and a rotation with N = 100 Partitions of

t ∈ [0, π] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Table 4.1 Hausdorff distance between signatures for images . . . . . . . . . . . . . . . . . . . 57

Table 4.2 Distance between congruence classes of images . . . . . . . . . . . . . . . . . . . . . . 58

Table 4.3 Distance for congruence classes of images continued . . . . . . . . . . . . . . . . . 58

vii



List of Figures

Figure 1.1 Orbits for SO(2) acting on the plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 2.1 Graph of κ as a function of t for γ = (t, cos t) and γ̃ = (t3, cos t3) . . 26

Figure 2.2 Euclidean differential signature, (|κ|, |κs|) for γ = (t, cos t) and γ̃ =

(t3, cos t3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 2.3 Graph of γ = (t, cos t) and a 45◦ rotation of γ . . . . . . . . . . . . . . . . . . . . . 28

Figure 2.4 Euclidean differential signature, (|κ|, |κs|) for γ = (t, cos t) and a 45◦

rotation of γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 2.5 Graph of γ = (t, cos t) and its small perturbation given in (2.5) . . . . 29

Figure 2.6 Euclidean differential signature for a small perturbation of γ =

(t, cos t) computed using exact formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 2.7 Euclidean differential signature for a small perturbation of γ =

(t, cos t) computed by discrete approximation given in [14] . . . . . . . . . . . . . . . . 30

viii



Figure 3.1 Geometric interpretation of I1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 3.2 Approximation of invariant I1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 3.3 (R, I1 ) Signature for γ = (t, cos t) and its perturbation γ̃ given by

equation (2.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 3.4 Three leaf rose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 3.5 (R, I1) for three leaf rose starting at (0, 1) . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 3.6 (R, I1) for three leaf rose starting at (0, 0) . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 3.7 (R, I1) for γ = (t, et) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 3.8 (R, I1) for γ̄ = (−t, et) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 3.9 (R, I1) for three leaf rose traced twice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 3.10 (R, I2) for γ = (t, cos t) and a small perturbation . . . . . . . . . . . . . . . . . . 46

Figure 3.11 (R, I2) for three leaf rose with initial point (0, 1) . . . . . . . . . . . . . . . . . . 47

Figure 3.12 (R, I2) for three leaf rose with initial point (0, 0) . . . . . . . . . . . . . . . . . . 47

Figure 3.13 (R, I2) for three leaf rose traced three times . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 3.14 (l, I loc1 (l)) for three leaf rose with initial point (0, 1) . . . . . . . . . . . . . . . . 50

Figure 3.15 (l, I loc1 (l)) for three leaf rose with initial point (0, 0) . . . . . . . . . . . . . . . . 50

ix



Figure 3.16 (l, I loc2 (l)) for three leaf rose with initial point (0, 1) . . . . . . . . . . . . . . . . 51

Figure 3.17 (l, I loc2 (l)) for three leaf rose with initial point (0, 0) . . . . . . . . . . . . . . . . 51

Figure 3.18 (l, I loc1 (l)) for three leaf rose reflected about the y-axis . . . . . . . . . . . . . 51

Figure 3.19 (l, I loc2 (l)) for three leaf rose reflected about the y-axis . . . . . . . . . . . . . 51

Figure 3.20 (l, I loc1 (l)) for one leaf of the three leaf rose . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 3.21 (l, I loc1 (l)) for three leaf rose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 3.22 (I loc1 , I loc2 ) for three leaf rose with initial points (0, 1) and (0, 0) . . . . 52

Figure 3.23 (I loc1 , I loc2 ) for three leaf rose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 3.24 (I loc1 , I loc2 ) for one leaf of the three leaf rose . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 4.1 Illustration of δH1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 4.2 Integral invariant Aγ from [39] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 4.3 Effects of control parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

x



Chapter 1

Introduction

In this thesis we define distance between congruence classes of curves with respect to

the Euclidean action. The motivation for this work comes from problems in computer

vision, and we begin by discussing some of the approaches that are used in this field.

The general goal in machine and computer vision is to teach a computer how to

“see.” One of the motivations behind machine vision is the use of computers in man-

ufacturing [68]. One of the early problems in machine vision was optical character

recognition. Optical character recognition deals with reading text and converting it to

machine language. This was studied as early as the 1950’s [68]. Another problem in

machine vision is that of pattern analysis. The study of pattern analysis has received

support from several organizations, including the National Institute of Health (NIH),

the military, National Aeronautics and Space Administration (NASA), and the U.S.

Geological Survey (USGS).

One of the problems the NIH has been interested in is the use of pattern recognition
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Chapter 1. Introduction

and analysis for use in chromosome, blood, and tissue analysis. Machine vision in

general is of interest to the NIH for the purpose of understanding how the human eye

works. The military, NASA, and USGS make use of surveillance photos, and have

supported research and development in machine vision for the purpose of automating

the interpretation of such photos [68]. As computers have become more accessible and

sophisticated, the study of machine and computer vision has grown.

Some other applications in computer vision include facial recognition [21, 6, 17],

document processing [7, 28, 4, 34, 11], and biomedical imaging [2, 20, 3, 56, 10, 37].

The curve matching problem has applications in automated jigsaw puzzle solving [13,

24, 67], and handwriting recognition [25]. We will briefly discuss jigsaw puzzle solving

and handwriting recognition later in this chapter.

Other problems of interest include object recognition and reconstruction. The im-

portance of invariance was recognized early in the development of computer vision

[44]. One important type of invariance is that of photometric properties. The study of

photometric invariance led to the development of edge detectors [44]. Another type of

invariance that is important for machine and computer vision is geometric invariance.

We will mention edge detection briefly and then focus on geometric invariance.

Edge Detection Edge detection is important in computer image recognition because

edges form the boundary of an object, separating it from the background [49]. Many

algorithms for edge detection exist. One commonly used method for edge detection

is the Canny method [15]. Canny developed a method of edge detection with three

specific goals. The first goal is that the edge detector should find all the edges. The

second goal is to minimize the distance between the computed edge and the actual

2



Chapter 1. Introduction

edge. The final goal is to avoid defining multiple edges when there should be only one

[15].

Some other edge detection methods include Marr-Hildreth [41], Shen-Castan [55],

Roberts [51], Prewitt [50], and Sobel [58, 30]. Many other edge detection methods

exist, but we will restrict our focus to Sobel edge detection. Sobel’s edge detection is

the method we use for our experiments in Chapter 4.

Edge detection is affected by noise and by changes in the image intensity [45].

Therefore, it is related to differentiation. The Sobel operator estimates the gradient

of the brightness of the image [68]. This gradient is estimated for each image point,

and shows how the image is changing, thus giving information about location and

orientation of edges. The Sobel method is the default edge detection method in the

Image Processing Toolbox in Matlab.

Computer Image Recognition and Geometric Invariants

One of the central problems in computer vision is computer image recognition.

One wants to geometrically describe objects in images to recognize the object and to

describe the object in three dimensions. There are many approaches to object recog-

nition that rely on geometric invariants [44]. One of the difficulties in recognizing an

object in an image is that the image object depends on the viewpoint. Using geomet-

ric invariants to describe the image will eliminate this problem. By using geometric

invariants, one does not need to consider the position and orientation of the camera.

Oftentimes image recognition is simplified to the problem of matching curves. We will

discuss several methods for object recognition and curve matching.

3



Chapter 1. Introduction

One can use geometric invariants to create a database of images, sometimes re-

ferred to as a model library. Models in the library are often indexed by their invariant

description. Use of indexing functions decreases the computation time of comparing

the test image with the database.

Group Transformations The projective, affine, and Euclidean groups of trans-

formations are most commonly used in computer vision. (For definitions, see Section

1.2.) Oftentimes the group of interest is the projective group. When obtaining an im-

age, one projects a three-dimensional object into two-dimensions. Projective transfor-

mations consist of central projection and affine transformations. In central projection,

parallel lines meet at a point. For example, consider looking at railroad tracks. As

they get farther away, the tracks appear to meet. Projective transformations preserve

straight lines and certain ratios to be discussed later.

On the other hand, affine transformations consist of parallel projection and simi-

larity transformations. Affine transformations also preserve lines, and parallel lines do

not appear to meet.

Another group of interest in computer vision is the Euclidean group, consisting of

reflections, rotations, and translations. In applications such as jigsaw puzzle assembly,

the special Euclidean group is of interest.

Compared to the groups mentioned thus far, the projective group is the most gen-

eral. The invariants for the projective group action are the most complex because the

transformations have more parameters than Euclidean, similarity, or affine transfor-

mations.
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Chapter 1. Introduction

Algebraic Invariants One class of invariants that can be used in image recog-

nition is the class of algebraic invariants. In [52], Rothwell et al., consider matching

images against a database of known objects. They use algebraic invariants to find

shape descriptions that index the library. Using indexing functions prevents one from

having to test the image against every model in the library. Rothwell et al. fit an

algebraic curve to a set of points and compute several projective invariants to define

a “feature vector.” The feature vector gives a hypothesized match. The match is then

tested by transforming the model in the database to the image.

To compute algebraic invariants, one estimates a curve by a polynomial. In [62],

Weiss points out a couple of problems with algebraic invariants.

1. It is not always possible to find a polynomial fit for a shape.

2. Algebraic invariants are global and not equipped to deal with occlusions.

Joint invariants are also used in computer vision. Joint invariants depend on sets

of points, lines, conics, etc. extracted from the image. In [18], Coehlo et al. discuss the

use of several projective joint invariants in computer vision applications. For example,

let l1 and l2 represent two lines, and let x1 and x2 be two points. Let lixj represent the

distance between line li and point xj. Then I1 = l1x1

l2x1
· l2x2

l1x2
is a joint invariant under

the action of the projective group.

Another joint invariant under the projective action that is discussed in [18] is defined

by considering the coefficient matrices for two coplanar conic curves, C1 and C2. The

conics are defined by xtCix = 0, where xt = (x, y, z). Then I1 = trace(C−1
1 C2) and

I2 = trace(C−1
2 C1) are projective invariants.
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Chapter 1. Introduction

In [48], Olver classifies joint invariants, depending on sets of points extracted from

the image, under the actions of the Euclidean, equi-affine, affine, and projective groups.

The Euclidean distance between two points is a joint invariant under the action of

the Euclidean group. The interpoint Euclidean distances generate all joint invariants

for the Euclidean group action.

Suppose we have a simplex with vertices x1, . . . ,xm+1 in Rm, where xi = (x1
i , . . . x

m
i )t.

Then the signed volume of this simplex is defined by

V (1, 2, . . .m+ 1) =
(−1)m

m
det

 x1 x2 . . . xm+1

1 1 . . . 1

 . (1.1)

All joint invariants for the special affine group action are functions of such volumes.

The joint invariants for the affine group, A(m), acting on Rm are generated by ratios

of simplex volumes.

Now consider the action of the projective group, PSL(m + 1,R) on Rm. All joint

invariants are functions of the cross-ratio of volumes (1.1). For the one-dimensional

case, the cross ratio is defined by:

(x2 − x1)(x4 − x3)

(x2 − x3)(x4 − x1)
.

If we consider the action of PSL(2,R), then the joint invariants of five points are

generated by two cross-ratios. These cross-ratios are defined by:

V (1,2,3)V (1,4,5)
V (1,2,4)V (1,3,5)

, V (1,2,3)V (2,4,5)
V (1,2,4)V (2,3,5)

.
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Notice that V (1, 2, 3) = 1
2
det


x1

1 x1
2 x1

3

x2
1 x2

2 x2
3

1 1 1

, and the other volumes are computed

similarly.

Some examples of applications of joint invariants for points can be found in [35, 9,

31, 42].

Moment Invariants In [32], Hu introduces the use of moment invariants in

pattern recognition. In [59], Taubin and Cooper present a method for matching planar

curves under the action of the affine group. Their method can be used to recognize

objects in cluttered environments. The authors use moment invariants to index images

for comparison against a database.

Taubin and Cooper compute moment invariants given a grey scale image repre-

sented by a function f . A moment is an integral of the form

∫
R2

g(x, y)f(x, y)dxdy,

where g is a polynomial in variables x and y [19]. It is sufficient to choose a monomial

function g(x, y) = xiyj. One can take translation into consideration by considering

normalized moments. Normalized moments are computed by translating the image so

that its center of mass is located at the coordinate origin [19]. One then considers

how the moments are affected by linear transformations. Taubin and Cooper compute

affine moment invariants as functions of normalized invariants by reducing the problem

to one of computing eigenvalues for square matrices [59].
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Xu and Li also apply affine moment invariants to 3-dimensional object recognition

in [65]. Applications of moment invariants in image analysis are also discussed in [43].

Differential Invariants and Signatures A possible solution to the problems

presented by algebraic invariants, is to consider differential invariants. Differential

invariants may be used for local comparison, and thus are well-equipped for images

with occlusions. Euclidean curvature and the derivative of curvature with respect

to arc length are two well known differential invariants. One can similarly define

differential invariants for the affine and projective group actions. The difficulty is that

the curvatures for different parametrizations of a curve may not coincide. A curve can

always be reparametrized with respect to arc length, but this may be very difficult in

practice. In [5], and [14], the authors use differential invariants for the Euclidean, affine,

and projective group actions to define differential signatures. Differential signatures

may be used to solve the curve matching problem, and they have the advantage of

being independent of a choice of parameter. The practical utilization of differential

signatures is problematic due to the sensitivity of derivatives to small perturbations.

Weiss considers affine and projective differential signatures, based on arc length and

curvatures, and presents more robust methods for computation of differential invariants

[62]. One of the computational difficulties is that the curve of interest is given by a

parametrization (x(t), y(t)), with t being some arbitrary and not necessarily invariant

parameter. Weiss remarks that the necessary order of differentiation can be reduced if

the parameter problem is eliminated. In [62], Weiss presents a method that does not

have the problem of parametrization, thus reducing the order of differentiation needed.

By reducing the order of differentiation needed to compute differential invariants, the

8



Chapter 1. Introduction

effects of noise and small perturbations are reduced. Weiss’ method relies on a change

of coordinates, such that some of the derivatives are already defined. He calls the new

coordinate system a “canonical” system.

Semi-Differential Invariants Van Gool et al. consider semi-differential invari-

ants in [60]. Their discussion is limited to planar contours. The method presented is

a combination of correspondence searching and numerical differentiation. In a corre-

spondence search, one looks for corresponding points on a contour in the image and a

model contour. Van Gool et al. use reference points when prolonging the action of the

group to derivatives. The use of reference points and differentiation is what leads to

these semi-differential invariants. The authors look for invariants of a predefined form

to avoid having to solve systems of partial differential equations. By predefining the

form of the invariant, they reduce the problem to solving a system of linear equations.

The drawback is that this approach will only find invariants of the predefined form and

does not necessarily compute a complete set of invariants.

Brill et al. consider invariants that may also be classified as semi-differential [12].

The authors compute derivatives along a curve, but they use multiple image points to

reduce the order of differentiation that is necessary for computing differential invariants.

These invariants are based on the tangents of a curve, curvature, and torsion.

We emphasize that the use of semi-differential invariants decreases the effects of

noise and small perturbations because the necessary order of differentiation is reduced.

Another approach to reducing the effects of noise and small perturbations is the use

of integro-differential invariants as discussed in [53]. Sato and Cipolla consider the

actions of the Euclidean and Affine groups on curves. They define invariants that are

9



Chapter 1. Introduction

integrals of the Euclidean and affine curvatures.

Integral Invariants The use of strictly integral invariants will further reduce

the effects of noise and small perturbations. Hann and Hickman define potentials and

use them to calculate integral invariants for the Euclidean and affine group actions on

curves in R2 [29]. There are challenges defining such invariants for the projective group

action on curves in R2, so the authors use integro-differential invariants in this case.

Manay et al. introduce two integral invariants with respect to the Euclidean and

similarity groups [40]. These invariants are based on distance and area. The integral

invariant based on area will be discussed further in Chapter 4 in this thesis. They plot

a signature curve parametrized by the derivative of the integral area invariant and the

integral area invariant. This signature depends on the choice of initial point. They

also briefly mention using the Hausdorff distance between signature curves as a way of

defining the distance between shapes. However, they do not run experiments based on

this definition of distance.

In [23], Feng, Kogan, and Krim define potentials as in [29] and use inductive vari-

ation, [36], of the moving frame method, [46], to calculate strictly integral invariants

for the Euclidean and affine actions on curves in R2 and R3. As in the case of differ-

ential invariants, the integral invariants depend on the choice of parameter. To avoid

this dependence, the authors define an integral signature. Two types of signatures are

defined in [23], a global signature that involves integration along the entire curve, and

a local signature that involves integration on segments of the curve.
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Chapter 1. Introduction

Applications of Euclidean Curve Matching As this thesis concentrates on the

problem of equivalence for planar curves under Euclidean group actions, we would like

to specifically mention two of many possible applications of Euclidean curve matching.

Jigsaw Puzzle Application One of the applications of curve matching with

respect to the Euclidean group is the automated solution of an apictorial jigsaw puzzle,

which arises, in particular, in programming assembly robots. Assembly depends only

on the shape of the puzzle pieces. We discuss one of many methods for jigsaw puzzle

solving.

In [64], Wolfson uses a method for curve matching that is similar to the method

presented in [14]. Wolfson et al. discuss the use of curve matching for automated

jigsaw puzzle matching in [63].

Oftentimes, one begins solving a jigsaw puzzle by identifying “frame” pieces vs.

“interior” pieces. The frame pieces will have at least one straight edge. Examples of

this type of approach can be found in [13, 24, 67]. For example, to assemble a jigsaw

puzzle, Zisserman et al. [67] assume that each piece consists of four sides. The sides are

classified as edges, tabs, or slots based on concavity. Their matching algorithm begins

placing a corner, which has two straight edges. This corner piece defines a frame for

the puzzles construction. The puzzle is then assembled piece by piece based on the

fact that the tabs and slots will have the same invariant shape description.

Handwriting Recognition Liu et al. discuss past methods for handwriting

recognition and present new methods in [38]. Smirnova and Watt have developed a

user interface called Mathink that can be used on Tablet PCs, and SmartBoards. They

11



Chapter 1. Introduction

discuss Mathink and mathematical handwriting recognition in [57].

In [25], Golubitsky et al. consider the use of the integral invariants computed

in [23] for recognizing handwritten characters independent of their orientation. The

trace of the symbol is a two-dimensional curve, so symbol recognition is a problem of

classifying curves. Golubitsky et al. consider a method of classifying curves based on

integral invariants and compare it to a method based on geometric moment functions.

They focus on the action of the special orthogonal group, i.e. the group of rotations.

The authors conclude that using integral invariants to classify curves performs

better than the method using moment invariants. In addition, the use of integral

invariants is more efficient computationally [25].

Thesis Outline The goal of this thesis is to complete a detailed study of Euclidean

integral invariants and integral signatures for curves in R2. In particular, we study

global and local Euclidean signatures. In addition, we study the use of Hausdorff

distance to define the distance between congruence classes of curves. We occasionally

restrict our interest to classifying curves under the action of the special Euclidean

group.

This thesis begins with a statement of the curve matching problem and provides

background material on group actions, prolongations of group actions, and various

types of invariants. A brief discussion of the use of differential invariants for curve

matching follows. As previously mentioned, the use of differential invariants is prob-

lematic due to their sensitivity to small perturbations, so we follow the work of [29]

and [23] to define integral invariants and signatures.

We study the properties of integral signatures and their numerical approximations,

12
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making some observations on how symmetries of the original curve are reflected in

the signature. We then define distance between congruence classes of curves as the

Hausdorff distance between signatures. The advantage to using Hausdorff distance is

that it is independent of parametrization and starting point. We conclude our thesis

with experiments and a comparison of our methods with the method presented in [39].

Siddharth Manay et al. calculate use an area integral invariant, and define a

distance between equivalence classes of curves, which they call a group invariant

distance. This group invariant distance is a modification of the L2 distance be-

tween integral invariants as functions of arc length. Manay et al. define distance

between shapes as the invariant distance between boundaries. Thus the distance

between shapes has the following desirable properties, 1) the distance is zero if the

shapes are equivalent under Euclidean transformations, and 2) the distance is small

if there is a small perturbation of the image. Note that our goal is also to define

distance between congruence classes so that these properties hold. The authors of

[39] test their results on some images from the Kimia silhouette database found at

http://www.lems.brown.edu/vision/software/index. We also use the Kimia silhouette

database to test our algorithms for curve matching.

1.1 Curve Matching Problem

Given a group action on a manifold, two submanifolds are equivalent if one can be

mapped to the other by an element of the group. In general, given a group action,

one may be interested in finding classes of equivalent manifolds and describing the

13



Chapter 1. Introduction

symmetry groups of each class of manifolds.

In this thesis we are particularly interested in the equivalence problem for curves in

R2 under the action of the Euclidean group and therefore give the following definition.

Definition 1.1.1. Two curves in R2 are congruent if there is an element of the

Euclidean group that maps one curve to the other.

We work with parametric curves γ(t) = {(x(t), y(t))|t ∈ Iγ} ⊆ R2, where Iγ is an

interval in R. Congruence of γ1 and γ2 is denoted by γ1
∼= γ2, and [γ1] denotes the

class of curves congruent to γ1.

1.2 Group Actions

We begin by reviewing some basic facts about group actions. For a more detailed

presentation, see [8].

Definition 1.2.1. Let G be a group and let S be a set. The action of G on S is a

mapping α : G× S → S satisfying the following:

1. α(e, s) = s, where e is the identity in G and s is any element in S.

2. α(gg′, s) = α(g, α(g′, s)) for all g, g′ ∈ G and s ∈ S.

We will usually denote the action by α(g, s) = gs.

An example of a group action is the action of the general linear group, GL(n) on

Rn. One can also consider several important subgroups of GL(n). One such subgroup

is the special linear group, SL(n), defined as the set {A ∈ GL(n)|det(A) = 1}. Two

14
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other important subgroups are the orthogonal group, O(n), and the special orthogonal

group SO(n). The orthogonal group is defined as O(n) = {A ∈ GL(n)|ATA = I}.

The special orthogonal group is defined by SO(n) = {A ∈ O(n)|det(A) = 1}.

Notice that O(2) is the set of rotations and reflections on the plane, and SO(2) is

the set of rotations on the plane. Some other examples are the actions of the Euclidean,

affine, similarity, and projective groups. We denote the Euclidean group acting on Rn

by E(n) and the affine group by A(n). These groups are defined as the semi-direct

products of matrix groups with Rn.

E(n) = O(n) n Rn

A(n) = GL(n) n Rn.

The similarity group is defined as the direct product R×E(n). Another group which

plays an important role in computer vision is the projective group, PSL(n+1,R). The

projective group is defined as the quotient GL(n + 1,R)/{λI}, where λ is a nonzero

real number, and I is a unit matrix.

Example 1.2.2 (Projective Group Action on R2). The local action of PSL(3,R) on

R2 is given by:

x̄ =
a11x+ a12y + a13

a31x+ a32y + a33

(1.2)

ȳ =
a21x+ a22y + a23

a31x+ a32y + a33

.
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The above action is defined for a31x+ a32y + a33 6= 0.

Note that R2 can be embedded in P2. In homogeneous coordinates, the point (x, y)

in R2 corresponds to the point (x, y, 1) in P2.

Let A ∈ GL(3,R) be given by

A =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 .

In homogeneous coordinates the action 1.2 corresponds to:


x̄

ȳ

z̄

 =


a11 a12 a13

a21 a22 a23

a31 a32 a33




x

y

1

 .

Example 1.2.3 (Affine Group Action on R2). The affine group, A(2,R) acts on R2

in the following way:

x̄ = a11x+ a12y + v1

ȳ = a21x+ a22y + v2,

where a11, a12, a21, a22, v1, v2 are real numbers.

The affine group is a subgroup of the projective group. We can represent (x, y) as
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a column vector x = (x, y, 1)t, and the action of A(2,R) can be written as the product:


x̄

ȳ

1

 =


a11 a12 v1

a21 a22 v2

0 0 1




x

y

1

 =


a11x+ a12y + v1

a21x+ a22y + v2

1

 .

Example 1.2.4 (Euclidean Group Action on R2). The Euclidean group action consists

of reflections, rotations, and translations. The transformations are given by:

x̄ = cosφx− ε sinφ y + v1

ȳ = sinφx+ ε cosφ y + v2,

where v1, v2, φ ∈ R and ε = ±1.

Notice that the Euclidean group is a subgroup of the affine group. Thus, the action

of the Euclidean group can be written similarly as:


x̄

ȳ

1

 =


cos θ −ε sin θ v1

sin θ ε cos θ v2

0 0 1




x

y

1

 =


cos θ x− ε sin θ y + v1

sin θ x+ ε cos θ y + v2

1

 .

We will focus primarily on the action of the special Euclidean group, SE(2), which

is defined as above, with ε = 1.

Example 1.2.5 (Similarity Group Action on R2). The similarity group is also a sub-
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group of the affine group, with action on R2 given by:

x̄ = λ(cosφx− sinφ y) + v1

ȳ = λ(sinφx+ cosφ y) + v2,

for v1, v2 ∈ R and a nonzero real number, λ.

The action of the similarity group on R2 can also be written as the matrix product:


x̄

ȳ

1

 =


λ cosφ −λ sinφ v1

λ sinφ λ cosφ v2

0 0 1




x

y

1

 .

where λ is a real number not equal to zero. This group consists of reflections, rotations,

scaling, and translations.

Definition 1.2.6. Let s ∈ S. The orbit of s is defined as the set of points orbG(s) =

{gs ∈ S|g ∈ G}.

The orbits of two points are either equal or disjoint. As a result, orbits provide a

partition of the set S into equivalence classes.

Example 1.2.7. Consider the group of rotations, SO(2), acting on the plane. The

orbit of the origin is the origin. The orbit of any other point in the plane is a circle.

See Figure 1.1.

Example 1.2.8. The orbit for any point (x, y) ∈ R2 under the Euclidean group action

is R2.
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Figure 1.1: Orbits for SO(2) acting on the plane

Example 1.2.9. Similarly, the orbit for (x, y) ∈ R2 under the affine group action is

the entire plane.

Definition 1.2.10. The action of G on S is said to be transitive if there exists an

s ∈ S such that orbG(s) = S.

We can show that if the action is transitive, then orbG(s) = S for every s ∈ S.

Proof. Suppose G is a group acting transitively on S. Let s′ ∈ S be an element such

that orbG(s′) = S. Consider another point s1 ∈ S. We know s1 ∈ orbG(s1) because

es1 = s1. Hence orbG(s1) 6= {∅}. Suppose orbG(s1) 6= S. Then orbG(s1) ∩ orbG(s′) =

{∅} because orbits are equal or disjoint. This implies that orbG(s1) = {∅} which is a

contradiction. Therefore orbG(s1) = S.

Definition 1.2.11. The stabilizer of a point s ∈ S is the set Gs = {g ∈ G|gs = s}.

It is a simple exercise to prove that the stabilizer forms a subgroup, often referred

to as the isotropy group.

Example 1.2.12. Let G be SO(2) and let S be the plane. Suppose s is a point other

than the origin. Then the stabilizer of s is the subgroup containing the identity of
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SO(2) and rotations by integer multiples of 2π. The isotropy group of the origin is the

entire group.

Definition 1.2.13. The action of G on S is called free if Gs = {e} for all s ∈ S.

In other words, the action is free if the identity element is the only element that

stabilizes all points in S.

Definition 1.2.14. Let H =
⋂
s∈S Gs. The set H is called the global stabilizer. The

action of G on S is called effective or faithful if H = {e}.

One can easily show that the global stabilizer is a normal subgroup. The global

stabilizer may also be referred to as the global isotropy group.

The group action is effective if each group element acts differently on the set. This

is equivalent to saying that the identity element of the group is the only identity

transformation acting on the set [46].

1.3 Invariants

Definition 1.3.1. For G acting on S, a function f : S → R is an invariant if

f(gs) = f(s) for all g ∈ G and s ∈ S.

It is worth noting that any function of an invariant is also an invariant. Also,

invariant functions are constant along the orbits. Depending on a class of actions,

different types of invariants may be considered. For example, if α is the action of

an algebraic group on an algebraic variety, then we would be interested in finding

polynomial and/or rational invariants [61].
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Example 1.3.2. Consider the action of R on R2 given by (x, y) 7→ (x+ ε, y) for a real

number ε. The orbit of a point (x, y) is a horizontal line passing through this point.

Then a generating invariant for this action is given by I(x, y) = y. In other words,

any function of y is an invariant for this group action. This is a simple example of a

polynomial invariant.

Example 1.3.3. Consider the action of R on R2 given by (x, y) 7→ (eεx, eεy), where

ε ∈ R. The orbits are open rays through the origin. Then a rational invariant for this

action is given by f(x, y) = x
y
. Notice that f is not defined for all of R2 because it is

undefined for y = 0. There are no polynomial invariants for this action.

In this thesis, we consider the actions of Lie groups on smooth manifolds and are

interested in finding smooth or locally smooth invariants. We begin with the definition

of local and global invariants for Lie groups acting on smooth manifolds.

Definition 1.3.4. Suppose G is a Lie group acting on a smooth manifold, M . Let U

be an open subset of M . A function f : M → R defined on U is a local invariant

if f(gx) = f(x) for every x ∈ U and every g in some neighborhood V ⊂ G, where

V contains the group identity and may or may not depend on x. The function f is

globally invariant if f(gx) = f(x) for all x ∈ U and for all g ∈ G such that gx ∈ U

[46].

Definition 1.3.5. For a Lie group G acting on a smooth manifold M , an invariant

function f : M → R is locally smooth if it is infinitely differentiable on some

neighborhood of M . The function f is smooth if it is infinitely differentiable on M .
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Example 1.3.6. If we look again at SO(2) acting on the points in the plane, then

the function r(x, y) =
√
x2 + y2 is a global invariant. The invariant function r is

simply the distance from the origin to a point (x, y). The function r is locally smooth.

Notice that because ∂r
∂x

= x√
x2+y2

, the function is not smooth in a neighborhood of

(x, y) = (0, 0).

One could also consider the invariant r1 = x2 + y2, which is a polynomial invariant

for SO(2) acting on points in the plane. This is a smooth global invariant. In some

situations, it may be advantageous to consider a polynomial invariant.

Example 1.3.7. Consider the action α : G× R2 → R2, where G = {(ε, τ)|ε ∈ R, τ =

±1} acts on a point (x, y) by (x + ε, τy). The orbit of a point (x, y), where y 6= 0,

consists of a horizontal line passing through (x, y) and a horizontal line passing through

(x,−y). The orbit of a point (x, 0) is the x-axis. Then a generating invariant for α is

I(x, y) = y2. Notice that f(x, y) = y is a local invariant, since f is an invariant for

the subgroup of G, consisting of elements g ∈ {(ε, 1)|ε ∈ R}.

There is an algorithm for finding a generating set of local smooth invariants called

the cross-section, or moving frame method. This method is based on the work of

Cartan, Griffiths, Green, Fels, and Olver [16, 27, 26, 22]. Any other local smooth

invariant is a smooth function of generating invariants.
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Differential Signature

2.1 Differential Invariants

We will now consider the action of the special Euclidean group, SE(2,R) on the plane,

R2. In other words, we consider rotations and translations of points in the plane.

This action is transitive, so the only invariants are constants. However, the induced

action on the infinite dimensional space of curves is not transitive and will produce

non-constant invariants. Let γ be a curve parametrized by (x(t), y(t)) for t in some

interval Iγ ⊂ R. Then the action on γ is given by:

x̄(t) = cos(φ)x(t)− sin(φ)y(t) + a (2.1)

ȳ(t) = sin(φ)x(t) + cos(φ)y(t) + b.

We prolong the action of SE(2,R) to the curve and its derivatives. Using the chain
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rule:

dȳ

dx̄
(t) =

dȳ
dx̄
dx̄
dt

=
sinφẋ(t) + cosφẏ(t)

cosφẋ(t)− sinφẏ(t)

d2ȳ

dx̄2
=

d
dt

(
dȳ
dx̄

)
dx̄
dt

=
ẋ(t)ÿ(t)− ẍ(t)ẏ(t)

(cosφẋ(t)− sinφẏ(t))3
(2.2)

d3ȳ

dx̄3
(t) =

d
dt

(
d2ȳ
dx̄2

)
dx̄
dt

=
(cosφẋ(t)− sinφẏ(t))(ẋ(t)

...
y (t)− ...

x (t)ẏ(t))− 3(ẋ(t)ÿ(t)− ẍ(t)ẏ(t)

(cosφẋ(t)− sinφẏ(t))5

...

The dots denote differentiation with respect to t.

Definition 2.1.1. A differential invariant is an invariant function under the pro-

longed action given in equations (2.1) and (2.2).

Then two well known differential invariants for this action are the Euclidean cur-

vature and the derivative of curvature with respect to arc length. The invariant dif-

ferential form ds =
√
ẋ2(t) + ẏ2(t)dt gives us the arc length parameter s =

∫ t
t0
ds.

We can then define the invariant differential operator d
ds

= 1√
ẋ2(t)+ẏ2(t)

d
dt

. Using this

invariant differential operator, we can write curvature and its derivative with respect

to arc length:

24



Chapter 2. Differential Signature

κ(t) =
ẋ(t)ÿ(t)− ẍ(t)ẏ(t)

(ẋ2(t) + ẏ2(t))
3
2

κs(t) =
d

ds
κ(t) =

1√
ẋ2(t) + ẏ2(t)

d

dt
κ(t) (2.3)

=
(ẋ2 + ẏ2)(ẋ

...
y − ...

x ẏ)− 3(ẋẍ+ ẏÿ)(ẋÿ − ẍẏ)

(ẋ2 + ẏ2)3
.

The curvature and its derivative are invariants under transformations that are suf-

ficiently close to the identity of the group. If we were to rotate by π, the signs would

change. To make these global invariants, we instead use the absolute values, |κ(t)| and

|κs(t)|. By taking absolute value, we obtain invariants for the entire Euclidean group

action. Restated, |κ(t)| and |κs(t)| are invariant with respect to rotations, translations,

and reflections.

In the next section, we will look at the use of curvature and its derivative for

classifying curves.

2.2 Differential Signature

We want to determine whether one curve can be transformed to another by a rigid

motion. It is known that if two curves have the same curvature as a function of arc

length, then they are equivalent under rigid motion. In practice, it is often difficult to

reparametrize the curve based on arc length. Under an arbitrary parametrization, the

curvatures of equivalent curves may not match. Consider the following example.

Example 2.2.1. Consider the following curve under different parametrizations, γ =
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(t, cos t) and γ̃ = (t3, cos t3), where t ∈ [0, π]. These parametrizations determine the

same curve, but the curvatures look very different. See Figure 2.1. In the figure, t is

on the horizontal axis, and κ(t) is on the vertical axis.

Figure 2.1: Graph of κ as a function of t for γ = (t, cos t) and γ̃ = (t3, cos t3)

We instead consider the differential Euclidean signature curve parametrized by

(|κ(t)|, |κs(t)|), where κ(t) is the Euclidean curvature and κs(t) is the derivative of

curvature with respect to arc length. The advantage to using the differential Euclidean

signature is that it does not depend on the parametrization [14]. We give a precise

definition of signature curve in Chapter 3.
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Theorem 2.2.2. If the differential Euclidean signature curves for two C3 smooth

curves overlap, then local segments of the two C3 smooth curves can be mapped to

each other by a combination of rotations, translations, and reflections.

For a proof of Theorem 2.2.2, see [14] or [47].

Again, consider γ = (t, cos(t)) and γ̃ = (t3, cos(t3)), for t ∈ [0, π]. The differential

Euclidean signature for both parametrizations is given in Figure 2.2.

Figure 2.2: Euclidean differential signature, (|κ|, |κs|) for γ = (t, cos t) and γ̃ =
(t3, cos t3)

The Euclidean differential signatures for the different parametrizations coincide as

expected. Again we will consider the curve γ = (t, cos t) for t ∈ [0, π]. A rotation of γ
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by 45◦ is given by γ = (
√

2
2
t−

√
2

2
cos t,

√
2

2
t+

√
2

2
cos t).

Figure 2.3: Graph of γ = (t, cos t) and
a 45◦ rotation of γ

Figure 2.4: Euclidean differential sig-
nature, (|κ|, |κs|) for γ = (t, cos t) and
a 45◦ rotation of γ

We observe in Figure 2.4 that the differential signatures for these curves do in fact

coincide. Now we consider a small perturbation of the cosine curve defined in equation

(2.5).

Example 2.2.3. Consider the curves defined by

γ(t) = (t, cos(t)), (2.4)

γ̃(t) = = (t+
1

100
cos(100t), cos(t) +

1

100
sin(100t)) (2.5)

for t ∈ [0, π].

The curve γ̃ is a small perturbation of γ. The curves are very “close,” but the

differential signatures are not. See Figure 2.6. The differential signatures for the
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Figure 2.5: Graph of γ = (t, cos t) and
its small perturbation given in (2.5)

Figure 2.6: Euclidean differential sig-
nature for a small perturbation of γ =
(t, cos t) computed using exact formula

cosine curve and a small perturbation of the cosine curve in Figures 2.2 and 2.6 are

computed using explicit formulas. Because we use explicit formulas to compute the

Euclidean differential signature for the perturbed curve, we capture high amplitude

changes in curvature, and the range of κ and κs gets very large. If we discretize the

curve, we get the Euclidean differential signature given in Figure 2.7. The range is much

more reasonable because by sampling the curve, we miss some of the high frequency

perturbation. The signature computed by sampling the perturbed curve still does not

look like the differential signature for cosine.

We observe then that sensitivity to small perturbations make differential signatures

impractical. In Chapter 3 we will consider integral signatures that are much less

sensitive to small perturbations. We will begin by calculating integral invariants. We

can use these integral invariants to define several global and local integral signatures.

In Chapter 4, we will define a metric on the space of curves and their signatures to
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Figure 2.7: Euclidean differential signature for a small perturbation of γ = (t, cos t)
computed by discrete approximation given in [14]

give a precise meaning to the word “close.”
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Integral Signature

3.1 Integral Variables and Invariants

In this section we follow the presentation of [29] and [23] to define integral invariants

for the action of the Euclidean and affine groups on curves in the plane. We will then

use these to define Euclidean integral signatures for use in curve matching.

Let (x(t), y(t)) be a curve in R2, where t ∈ [0, b] for some b 6= 0 ∈ R. We will define

integral variables in the following way:

x(ij)(t) =

∫ t

0

xi(τ)yj(τ)dx(τ) (3.1)

y(ij)(t) =

∫ t

0

xi(τ)yj(τ)dy(τ).

The order of the integral variables is i + j. To calculate integral invariants, we will

only need integral variables up to second order.
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Furthermore, we will only need to consider the following integral variables:

y(10)(t) =

∫ t

0

x(τ)dy(τ)

y(11)(t) =

∫ t

0

x(τ)y(τ)dy(τ) (3.2)

x(11)(t) =

∫ t

0

x(τ)y(τ)dx(τ).

The other second order integral variables can be written in terms of x(t), y(t), y(10)(t),

y(11)(t), and x(11)(t) using integration by parts. For instance, we can rewrite x(01)(t) as

follows.

x(01)(t) =

∫ t

0

y(τ)dx(τ)

= x(t)y(t)− x(0)y(0)−
∫ t

0

x(τ)dy(τ) (3.3)

= x(t)y(t)− x(0)y(0)− y(10)(t).

For the curve (x(t), y(t)), the Euclidean transformations can be written in the

following way.

x̄(t) = cos(φ)x(t)− sin(φ)y(t) + a (3.4)

ȳ(t) = ε(sin(φ)x(t) + cos(φ)y(t) + b),

where φ, a, b ∈ R and ε = ±1.

We prolong this action to the variables y(10)(t), y(11)(t), and x(11)(t). We show the

32



Chapter 3. Integral Signature

calculations for ȳ(10)(t). The other calculations are done in a similar manner.

ȳ(10)(t) =

∫ t

0

x̄(τ)dȳ(τ)

=

∫ t

0

(cos(φ)x(τ)− sin(φ)y(τ) + a)d(sin(φ)x(τ) + cos(φ)y(τ) + b)

=
cos(φ) sin(φ)

2
[x2(t)− x2(0)− y2(t) + y2(0)]

+ cos2(φ)y(10)(t)− sin2(φ)x(01)(t)

= y(10)(t) +
cos(φ) sin(φ)

2
[x2(t)− x2(0)− y2(t) + y2(0)]

− sin2(φ)[x(t)y(t)− x(0)y(0)]

We will introduce new variables:

X(t) = x(t)− x(0) (3.5)

Y (t) = y(t)− y(0).

Using these variables, we consider the 5-dimensional space with coordinates

(X(t), Y (t), Y (10)(t), Y (11)(t), X(11)(t)). By making the translation to the origin, we

simplify the problem to finding integral invariants for the action:
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X̄(t) = cos(φ)X(t)− sin(φ)Y (t)

Ȳ (t) = sin(φ)X(t) + cos(φ)Y (t)

Ȳ (10)(t) = Y (10)(t) +
1

2
cosφ sinφ(X2(t)− Y 2(t))− sin2 φX(t)Y (t)

Ȳ (11)(t) = cosφY (11)(t)− sinφX(11)(t) +
1

3
cosφ sinφ[sinφX3(t) (3.6)

+ 3 cosφX2(t)Y (t)− 3 sinφX(t)Y 2(t)− cosφY 3(t)]

X̄(11)(t) = cosφX(11)(t) + sinφY (11)(t) +
1

3
cosφ sinφ[cosφX3(t)

− 3 sinφX2(t)Y (t)− 3 cosφX(t)Y 2(t) + sinφY 3(t)].

In [23], Feng, Kogan, and Krim calculate the following integral invariants:

R(t) =
√
X2(t) + Y 2(t)

I1(t) = Y (10)(t)− 1

2
X(t)Y (t) (3.7)

I2(t) = Y (11)(t)X(t)− 1

2
Y (20)(t)Y (t)− 1

6
X2(t)Y 2(t)

The invariant I2 can be rewritten as

X(t)Y (11)(t)− 1

2
X2(t)Y (t) +

1

2
Y (t)X(11)(t)− 1

6
X2(t)Y 2(t),

using integration by parts. Distance R is invariant under the Euclidean action, while

I1 and I2 are invariants under the special affine action. The invariant I1 has a straight-

forward geometric interpretation, shown in Figure 3.1 [23].
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Figure 3.1: Geometric interpretation of I1

For a curve (X(t), Y (t)), shifted to the origin, 1
2
X(t)Y (t) is the area of the right

triangle with hypotenuse from (0, 0) to the point (X(t), Y (t)) for some t ∈ R. The

term Y (10)(t) refers to the area under the curve from 0 to a real number t. Then I1(t)

corresponds to the area of the shaded region in Figure 3.1 at each point (X(t), Y (t)).

The invariant I2 has a somewhat more involved geometric interpretation. See [23]

for details.

3.2 Discrete Approximation of Invariants

We will apply integral invariants to discrete images and thus will need discrete approx-

imations of the invariants. We use the trapezoid rule for a discrete approximation of

I1. The formula for this approximation is

I1(n) =
n∑
j=1

Yj + Yj−1

2
(Xj −Xj−1)− X(n)Y (n)

2
. (3.8)

We prove that the approximation of I1 is invariant under the special affine group,
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and therefore under its subgroup, the special Euclidean group.

Theorem 3.2.1. The approximation of I1 is invariant under the action of the special

affine group, SA(2).

Proof. Invariance under translation is achieved by shifting the initial point of the curve

to the origin. It is then sufficient to prove that equation (3.8) is invariant with respect

to the action of SL(2).

Consider the case where n = 2. Then the formula for I1(2) is

I1(2) =
1

2
[(X1 −X0)(Y1 + Y0) + (X2 −X1)(Y2 + Y1)−X2Y2].

Expanding this out gives us

1

2
(X1Y1 +X1Y0 −X0Y1 −X0Y0 +X2Y2 +X2Y1 −X1Y2 −X1Y1 −X2Y2).

Canceling terms and using the fact that (X0, Y0) is equal to the origin, we end up with

1
2
(X1Y0−X0Y1 +X2Y1−X1Y2). Notice that X1Y0−X0Y1 = 0, and the last two terms

correspond to

−1

2

∣∣∣∣∣∣∣
X1 X2

Y1 Y2

∣∣∣∣∣∣∣ .
This term is invariant under SL(2) because determinants are invariant under this

action.
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Similarly, for a general value of n,

I1(n) = −1

2

n∑
j=1

∣∣∣∣∣∣∣
Xj−1 Xj

Yj−1 Yj

∣∣∣∣∣∣∣ .
Therefore, the approximation of I1 is invariant under SL(2).

Up to sign, the approximation of I1(n) is the sum of the areas of the triangles shown

in Figure 3.2. The area of a triangle is invariant under the action of SL(2).

Figure 3.2: Approximation of invariant I1

This is not the case for the discrete approximation of I2, which is given by

I2(n) = −X2(n)Y 2(n) +
3

2
X(n)

n∑
j=1

(
Yj + Yj−1

2

)2

(Xj −Xj−1)

+
3

2
Y (n)

n∑
j=1

(
Xj +Xj−1

2

)2

(Yj − Yj−1).
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Consider the cosine curve on [0, π] and a rotation of cosine by π
4
. We will use 10

partitions to approximate I2. In Table 3.1 We give I2(n) with N = 10 partitions of the

interval [0, π].

Table 3.1: I2(n) for γ = (t, cos t) and a rotation with N = 10 partitions of t ∈ [0, π]
Cosine Curve Rotation of Cosine

I2(1) 0 0
I2(2) -0.0001 -0.0008
I2(3) -0.0007 -0.0018
I2(4) 0.0011 0.0016
I2(5) 0.0119 0.0164
I2(6) 0.0385 0.0491
I2(7) 0.0835 0.1022
I2(8) 0.1413 0.1697
I2(9) 0.1932 0.2327
I2(10) 0.2079 0.2588

Now suppose we use 100 partitions. We will compare 10 of the values for I2(n).

Table 3.2: I2(n) for γ = (t, cos t) and a rotation with N = 100 Partitions of t ∈ [0, π]
Cosine Curve Rotation of Cosine

I2(10) 1.5357e-05 7.4927e-06
I2(20) 0.001 0.000992
I2(30) 0.0081 0.0081
I2(40) 0.0303 0.0304
I2(50) 0.0751 0.0753
I2(60) 0.1429 0.1432
I2(70) 0.2201 0.2205
I2(80) 0.2735 0.2740
I2(90) 0.2661 0.2668
I2(100) 0.2896 0.2903

As the total number, N , of partitions tends to∞, the approximation of I2 becomes

invariant.
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3.3 Global Integral Signatures

Definition 3.3.1. The signature of a curve is a plane curve parametrized by two

invariants.

For a curve γ(t), we can define signatures based on invariants R(t), I1(t), and I2(t).

Namely, we define the signatures:

• (R(t), I1(t)),

• (R(t), I2(t)),

• (I1(t), I2(t)).

These signatures are called global because their computations involve integration along

the entire curve. In [1], we showed that (R(t), I1(t)) classifies curves up to SE(2) and

that (R(t), I2(t)) classifies curves up to A(2). In [23], (I1(t), I2(t)) was used to classify

curves up to affine transformations. We will reproduce the proofs from [1].

Theorem 3.3.2. Let γ and γ̄ be two continuously differentiable curves such that for

each r > 0, γ and γ̄ intersect a circle of radius r at most once. Then γ and γ̄ are

equivalent with respect to SE(2) if their (R(t), I1(t)) signatures coincide.

Proof. In order to prove this statement, it is more convenient to use polar coordinates.

Let γ be given by θ = φ(R) and γ̄ given by θ = φ̄(R). Using translation, we can assume

that the initial point is zero, and so it is sufficient to prove the theorem for rotations.

In polar coordinates Iγ1 (R) is given by:

Iγ1 (R) =
1

2

∫ R

R0

R2 dφ

dR
dR. (3.9)
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Suppose that γ and γ̄ are related by a rotation. Then φ̄ = φ + θ0 for θ0 ∈ R. We

will show that Iγ1 (R) = I γ̄1 (R). Indeed, using equation (3.9), we obtain:

I γ̄1 (R) =
1

2

∫ R

R0

R2 dφ̄

dR
dR

=
1

2

∫ R

R0

R2d(φ+ θ0)

dR
dR

=
1

2

∫ R

R0

R2 dφ

dR
dR

Thus the (R, I1(R)) signatures coincide.

Now assume that Iγ1 (R) = I γ̄1 (R) for the curves γ and γ̄. We must show that

φ̄ = φ+ θ0 for θ0 ∈ R.

Iγ1 (R) = I γ̄1 (R) =⇒ 1

2

∫ R

R0

R2

(
dφ̄

dR
− dφ

dR

)
dR = 0. (3.10)

Differentiating 3.10 with respect to R gives us R2 d(φ̄−φ)
dR

= 0. Then d(φ̄−φ)
dR

= 0, which

implies that φ̄ = φ+ θ0 for θ0 ∈ R. Therefore γ and γ̄ are related by a rotation.

Theorem 3.3.3. Suppose γ and γ̄ are continuously differentiable curves such that for

each r > 0, γ and γ̄ intersect a circle of radius r at most once. Then γ and γ̄ are

equivalent with respect to A(2) if their (R, I2) signatures coincide.

Proof. Again, we will use polar coordinates to prove this theorem. As in the proof of
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Theorem 3.3.2, let us assume that γ is given by θ = φ(R) and γ̄ is given by θ = φ̄(R).

In polar coordinates, Iγ2 (R) is given by:

Iγ2 (R) = R sin θ

∫ R

R0

R3 cos θ
dθ

dR
dR−R cos θ

∫ R

R0

R3 sin θ
dθ

dR
dR. (3.11)

As seen in the proof of Theorem 3.3.2, it is a fairly straightforward exercise to show

that if γ and γ̄ are related by a rotation or reflection, then their (R, I2(R)) signatures

coincide.

We want to show that if Iγ2 (R) = I γ̄2 (R), then γ and γ̄ are related by a rotation or

reflection. We will begin by dividing I2(R) by R and then differentiating with respect

to R. This gives us the equation:

d

dR

Iγ2 (R)

R
= cosφ

dφ

dR

∫ R

R0

R3 cosφ
dφ

dR
dR + sinφ

dφ

dR

∫ R

R0

R3 sinφ
dφ

dR
dR. (3.12)

We will simplify the proof by introducing the following notation.

V1 =

∫ R

R0

R3 cosφ
dφ

dR
dR

V2 =

∫ R

R0

R3 sinφ
dφ

dR
dR

V1 =

∫ R

R0

R3 cos φ̄
dφ̄

dR
dR

V2 =

∫ R

R0

R3 sin φ̄
dφ̄

dR
dR
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Since
Iγ
2 (R)

R
=

I γ̄
2 (R)

R
, we have the equality:

sinφV1 − cosφV2 = sinφV1 − cosφV2. (3.13)

From 3.12, we obtain

dφ

dR
(cosφV1 + sinφV2) =

dφ̄

dR
(cosφV1 + sinφV2). (3.14)

To show that γ and γ̄ are related by a rotation or reflection, we must show that

dφ̄
dφ

= ±1. We will calculate dφ̄
dφ

and its square. Using the chain rule and equation (3.14),

we get:

dφ̄

dφ
=

dφ̄
dR
dφ
dR

=
cosφV1 + sinφV2

cosφV1 + sinφV2

(3.15)(
dφ̄

dφ

)2

=
V 2

1 + V 2
2 − (sinφV1 − cosφV2)2

V1
2

+ V2
2 − (sinφV1 − cosφV2)2

(3.16)

From 3.13 and 3.16, it follows that
(
dφ̄
dφ

)2

= 1 if V1
2

+ V2
2− (V 2

1 + V 2
2 ) = 0. At R0,

we have V1, V2, V1, and V2 equal to zero. Then dφ̄
dφ

= ±1, and we conclude that γ and

γ̄ are related by a rotation or reflection.

3.3.1 Some Properties of the Global (R, I1) Signature

Robustness to Small Perturbations We make several observations about the

(R, I1) signature. The first observation is that the (R, I1) signature is much less sen-
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sitive to the effects of a small perturbation. Recall in Chapter 2, Example 2.2.3, the

curves γ and γ̃ are given by Equations (2.4) and (2.5). This example illustrated that

the differential signatures for γ and γ̃ are very sensitive to small perturbations. Figure

3.3 shows the (R, I1) integral signature for the same curves. We note that the integral

signature of γ̃ is not very different from the integral signature of γ.

Figure 3.3: (R, I1 ) Signature for γ = (t, cos t) and its perturbation γ̃ given by equation
(2.5)

The signature curves are “close.” In order to define what is meant by “close,” we

will need to put a metric on the space of curves and their signature curves. We will

define and study a metric on the space of signature curves in Chapter 4. The distance

between signature curves may also be referred to as the distance between congruence

classes.

Dependence on Initial Points The (R, I1) signature is defined for the entire curve

and is dependent on the initial point. This may be problematic in the case where there

is not a clearly defined initial point, as in the following example.

Example 3.3.4. Consider the three leaf rose, given in polar coordinates by (θ = t, r =

cos(3t)).

The choice of initial point for this curve is arbitrary and will affect the signature
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Figure 3.4: Three leaf rose

curve. Suppose we choose an initial point of (0, 1) and an initial point of (0, 0). We

get the signature curves shown in Figures 3.5 and 3.6.

Figure 3.5: (R, I1) for three leaf rose
starting at (0, 1)

Figure 3.6: (R, I1) for three leaf rose
starting at (0, 0)

Later in this chapter we will look at a local signature that is independent of the

choice of initial point.
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Effects of Reflectional Symmetry of the Original Curve on its Signature

Recall that the (R, I1) signature classifies curves up to rotations and translations. We

note however that if a curve is reflected, its (R, I1) signature is also reflected.

Example 3.3.5. Let γ = (t, et) on [0, 1], and let γ̄ = (−t, et) on [0, 1]. The signature

curves for γ and γ̃ are shown in Figures 3.7 and 3.8.

Figure 3.7: (R, I1) for γ = (t, et) Figure 3.8: (R, I1) for γ̄ = (−t, et)

As a result of this property, if an image has reflectional symmetry, then its signature

curve will also have reflectional symmetry. For example, the signature curve in Figure

3.5 is symmetric.

Effects of Multiple Tracings of the Original Curve on its Signature When

a curve is traced multiple times, the (R, I1) signature is periodic. Consider the three

leaf rose on [0, π] traced twice. We get the (R, I1) signature shown in Figure 3.9.

This will occur regardless of the choice of initial point.
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Figure 3.9: (R, I1) for three leaf rose traced twice

3.3.2 Some Properties of the Global (R, I2) Signature

Robustness to Small Perturbations As with the (R, I1) signature, we see that the

(R, I2) signature for a curve is less affected by a small perturbation than the differential

signature.

Example 3.3.6. Consider γ = (t, cos t) for t ∈ [0, π] and a small perturbation of γ.

We get the following signature curves.

Figure 3.10: (R, I2) for γ = (t, cos t) and a small perturbation

Dependence on Initial Point The (R, I2) signature for a curve depends on the

chosen initial point, as is the case for the (R, I1) signature. Consider the following

example.
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Example 3.3.7. Let γ = (θ, cos(3θ)) for θ ∈ [0, π], with initial point (0, 1). Then the

(R, I2) signature is given by Figure 3.11.

Figure 3.11: (R, I2) for three leaf rose with initial point (0, 1)

Now use the same γ but with θ ∈ [π
2
, 3π

2
] and initial point (0, 0), whose signature is

given in Figure 3.12.

Figure 3.12: (R, I2) for three leaf rose with initial point (0, 0)

Effects of Multiple Tracings of the Original Curve on its Signature

Example 3.3.8. Let γ be the three leaf rose with (R, I2) signature given in Figure 3.11.

If we trace the three leaf rose three times, it begins to “fill in” as seen in Figure 3.13.

One would expect the (R, I2) signature to show periodicity when the original cure

is traced multiple times, and in fact it does, by “filling in.” The “filling in” occurs when
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Figure 3.13: (R, I2) for three leaf rose traced three times

the rose is traced multiple times because the first tracing of the signature curve does

not end exactly at I2 = 0.

3.4 Local Integral Invariants and Signatures

The invariants I1 and I2 require integration along the entire curve. Signatures based

on these invariants then are global, thus cannot be used for local comparisons. For

instance, global invariants cannot be used to detect occlusions. In [23], the authors use

local signatures for classifying curves up to A(2). We will consider the local (I loc1 , I loc2 )

signature for the action of the Euclidean group. We obtain local invariants by restrict-

ing I1 and I2 to subintervals.

In order to compute the local (I loc1 , I loc2 ) signature for a curve, we take the following

steps.

• Divide the curve into m equal intervals, ∆l for l = 1, . . . ,m of equal length.

• Approximate I loc1 (l) and I loc2 (l) on each interval, using formulas 3.17 and 3.18.

• Then the signature (I loc1 , I loc2 ) is defined as {(I loc1 (l), I loc2 (l))|l = 1, . . . ,m}
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I loc1 (l) =
(X(l + 1)−X(l)) (Y (l + 1)− Y (l))

2
(3.17)

−
N∑
j=1

(
Yj,(l+1) + Yj,l

2
− Yl

)(
Xj,(l+1) −Xj,l

)
I loc2 (l) = −

(
X(l+1) −Xl

)2 (
Y(l+1) − Yl

)2
(3.18)

+
3

2

(
X(l+1) −Xl

) N∑
j=1

(Yj−1,l − Yl)2 + (Yj,l − Yl)2

2

(
Xj,l −X(j−1),l

)
+

3

2

(
Y(l+1) − Yl

) N∑
j=1

(Xj−1,l −Xl)
2 + (Xj,l −Xl)

2

2

(
Yj,l − Y(j−1),l

)
,

where N is the number of partitions of intervals, ∆l, used to approximate the

integrals.

We can define two other Euclidean signatures based on local integral invariants,

namely:

• (l, I loc1 (l)) for l = 1, . . . ,m.

• (l, I loc2 (l)) for l = 1, . . . ,m.

Observe that the signatures (l, I loc1 (l)), (l, I loc2 (l)),(I loc1 , I loc2 ) classify curves up to the

Euclidean group even though I1, I2 are affine integral invariants. This is because we

use the Euclidean invariant R to partition the curve into equal length intervals. In

addition to dividing the curve into intervals, we shift the initial point of each interval

to the origin. The advantage to using local integral signatures is that they can detect

occlusions. The local signatures depend on choice of m and N .
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3.4.1 Properties of (l, I loc
1 (l)) and (l, I loc

2 (l)) Signatures

These are local signatures and allow comparison of images with occlusions. These

signatures depend on selection of initial point in a predictable way. For different initial

points, the signatures will be the same up to translation. The advantage of (l, I loc1 (l))

is that the approximation of I loc1 (l) is invariant under SE(2). The (l, I loc1 (l)) signature

may be particularly useful when there is a clearly identified initial point.

Dependence on Initial Points We will consider the (l, I loc1 (l)) and (l, I loc2 (l)) signa-

ture curves for a three leaf rose with different initial points. See Figures 3.14 through

3.17

Figure 3.14: (l, I loc1 (l)) for three leaf
rose with initial point (0, 1)

Figure 3.15: (l, I loc1 (l)) for three leaf
rose with initial point (0, 0)

Effects of Reflectional Symmetry of the Original Curve on its Signature

The (l, I loc1 (l)) and (l, I loc2 (l)) signatures have the same properties with the exception of

the effect of reflection of the initial curve. Recall that I1 changes sign when the curve

is reflected, and I2 remains invariant with respect to reflection. If the original curve
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Figure 3.16: (l, I loc2 (l)) for three leaf
rose with initial point (0, 1)

Figure 3.17: (l, I loc2 (l)) for three leaf
rose with initial point (0, 0)

is reflected about a line, then the (l, I loc1 (l)) signature is reflected, and the (l, I loc2 (l))

signature remains the same.

Let γ be the reflection of the three leaf rose about the y-axis. Observe the signature

curves for γ and its reflection, given in Figures 3.18 and 3.19.

Figure 3.18: (l, I loc1 (l)) for three leaf
rose reflected about the y-axis

Figure 3.19: (l, I loc2 (l)) for three leaf
rose reflected about the y-axis

Rotational Symmetry of Original Curve Consider the (l, I loc1 (l)) signature for

one leaf of the three leaf rose. If we trace the entire three leaf rose using the same

choice of initial point, the signature will become periodic. See Figures 3.20 and 3.21.
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Figure 3.20: (l, I loc1 (l)) for one leaf of
the three leaf rose

Figure 3.21: (l, I loc1 (l)) for three leaf
rose

3.4.2 Properties of (I loc
1 , I loc

2 ) Signature

The dependence of (l, I loc1 (l)) and (l, I loc2 (l)) on initial point is problematic because

some curves do not have an obvious initial point. We wish to eliminate the dependence

on initial point and do so by considering the local (I loc1 , I loc2 ) signature. This local

signature does not depend on the choice of initial point.

We demonstrate the independence of choice of initial point using the three leaf rose.

Figure 3.22: (I loc1 , I loc2 ) for three leaf rose with initial points (0, 1) and (0, 0)

Notice that the three leaf rose has rotational symmetry. The (I loc1 , I loc2 ) signatures

for a single leaf and for the entire three leaf rose are the same.

In the next chapter, we will discuss how to define the distance between congruence
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Figure 3.23: (I loc1 , I loc2 ) for three leaf
rose

Figure 3.24: (I loc1 , I loc2 ) for one leaf of
the three leaf rose

classes. We will restrict our focus to the (I loc1 , I loc2 ) signature. We can make this

signature invariant with respect to the similarity group by considering how the scaling:

x 7→ λx

y 7→ λy,

where λ ∈ R, λ 6= 0, affects I1 and I2. It is shown in [23] that

I loc1 =
I loc1

max|I loc1 |
(3.19)

I loc2 =
I loc2

max[(I loc1 )2]
(3.20)

are invariant with respect to the similarity group.

We will now examine the use of distance in curve matching and define what is

meant by “close.”
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Distance Between Congruence

Classes of Curves

4.1 A Metric on the Space of Curves and Their

Congruence Classes

We noted in Chapter 3 that the integral signatures of a curve and its perturbations

are “close.” Now we must define a distance between the original curves. Let C be the

space of continuous curves in R2.

Definition 4.1.1. A function d : C×C → R is a distance function if for all γ1, γ2, γ3 ∈

C the following conditions are satisfied:

1. d(γ1, γ2) ≥ 0,

2. d(γ1, γ2) = d(γ2, γ1),
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3. γ1 = γ2 ⇐⇒ d(γ1, γ2) = 0, and

4. d(γ1, γ3) ≤ d(γ1, γ2) + d(γ2, γ3).

Given two parametric curves, γ1(t) = (x(t), y(t)) for t ∈ Iγ1 and γ2 = (x(τ), y(τ))

for τ ∈ Iγ2 , one could use a variation of the Lp norm to define a distance between these

curves. Using the Lp norm to define distance would require a synchronization of their

parametrizations, t = h(τ), and the distance will depend on the choice of h. One can

use the arc length parameter to match parametrizations, but in practice, parametrizing

a curve by arc length may be very difficult. Another issue with using the above distance

is that the two curves may not have the same arc length. Lastly, parametrization with

respect to arc length depends on the choice of initial point, which may not be clearly

defined for closed curves.

If we instead use Hausdorff distance, we do not need to define the correspondence

between parametrizations. Also, the Hausdorff distance does not depend on the initial

point of the curve. For examples of applications of Hausdorff distance in computer

vision, see [33] and [66]. Hausdorff distance is defined as follows.

Definition 4.1.2. For curves γ1(t), γ2(t) ∈ R2 and points p1 ∈ γ1(t), p2 ∈ γ2(t), the

Hausdorff distance dH(γ1(t), γ2(t)) is equal to max(dH1 , dH2), where

dH1 = sup
p2∈γ2

inf
p1∈γ1

||p1 − p2|| (4.1)

dH2 = sup
p1∈γ1

inf
p2∈γ2

||p1 − p2||, (4.2)

where ||p1 − p2|| is the usual Euclidean distance between two points in R2.
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In Figure 4.1, dH1 is the infimum of the δ’s as the point p1 moves along γ1.

Figure 4.1: Illustration of δH1

If one curve is related to another by a Euclidean transformation, the Hausdorff

distance between the two curves may be very large. Our next step is to define a

distance between congruence classes of curves.

Definition 4.1.3. Let γ1 and γ2 be two continuous curves with integral signatures Sγ1

and Sγ2, respectively. Then the distance between equivalence classes [γ1] and [γ2] is

defined as the Hausdorff distance between their signatures.

D([γ1], [γ2]) = dH(Sγ1 ,Sγ2). (4.3)

If γ1
∼= γ2, then Sγ1 = Sγ2 . Hence D([γ1], [γ2]) = 0, and D is indeed a distance

between equivalence classes of curves. We conclude then that the distance between

signature curves will give us the distance between congruence classes of curves.

Various signatures can be used to define the distance between congruence classes.

We will restrict ourselves to examining the distance based on the (I loc1 , I loc2 ) signature,
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where I loc1 and I loc2 are local integral invariants for the similarity group as defined by

Equations (3.19) and (3.20) in Chapter 3.

4.2 Experiments, Conclusions, and Future Work

Following the work in [39], we will look at images from the Kimia silhouette database

[54] and compare shape images to small perturbations of those images. The Hausdorff

distance between the original image and a small perturbation is 0.01. We now compare

images and calculate the distance between congruence classes. Table 4.1 provides a

small example. We look at images of an arctic hare, F-15, hand, and bonefish.

Table 4.1: Hausdorff distance between signatures for images

0.0339 0.3893 0.2926 0.3385

0.3944 0.0374 0.3156 0.3422

0.2974 0.3011 0.0189 0.3278

0.3472 0.3498 0.3477 0.0382

Notice that the smallest distances in Table 4.1, given in bold, are along the diagonal.

This reflects the fact that the signature for the arctic hare is closest to the signature

for a small perturbation of the arctic hare.
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Table 4.2: Distance between congruence classes of images
Arctic Hare Blacktail Desert Cotton Eastern Cotton European Hare F-15 F-16 Harrier Mig Phantom

Arctic Hare 0.0339 0.3915 0.4829 0.5430 0.3213 0.3893 0.4026 0.3575 0.4119 0.3912
Blacktail 0.3777 0.0280 0.3273 0.5996 0.3665 0.3253 0.3580 0.3356 0.4940 0.4636

Desert Cottontail 0.4633 0.3066 0.0749 0.4865 0.3963 0.3872 0.2820 0.2684 0.5207 0.3863
Eastern Cottontail 0.5236 0.5801 0.5397 0.0225 0.3318 0.4223 0.4492 0.2897 0.4595 0.5618

European Hare 0.3373 0.3689 0.4068 0.3778 0.0363 0.1986 0.3058 0.3078 0.4338 0.4097
F-15 0.3944 0.3156 0.3814 0.4431 0.2234 0.0374 0.2948 0.2821 0.4125 0.3716
F-16 0.4136 0.3440 0.2782 0.4558 0.2713 0.2904 0.0541 0.2994 0.3924 0.2479

Harrier 0.4053 0.3257 0.2823 0.2999 0.2614 0.2821 0.3298 0.0374 0.4498 0.4343
Mig 0.4191 0.4999 0.5160 0.4664 0.4505 0.4459 0.4036 0.4485 0.0197 0.5183

Phantom 0.3473 0.4921 0.4105 0.5746 0.4172 0.3758 0.2485 0.4463 0.4741 0.0619
Hand 0.2974 0.3407 0.4240 0.4192 0.2534 0.3011 0.3426 0.3120 0.5194 0.3400

Hand10 0.5549 0.6107 0.5689 0.3829 0.3648 0.4552 0.4490 0.2752 0.4917 0.5926
Hand90 0.6246 0.6817 0.6426 0.3658 0.4312 0.5214 0.5225 0.3517 0.3558 0.6632

Handbent1 0.3045 0.5163 0.4345 0.5986 0.4417 0.4001 0.3570 0.4707 0.5271 0.2988
Handbent2 0.3962 0.4049 0.4865 0.3883 0.2444 0.4081 0.3524 0.4288 0.2944 0.4574
Bonefish 0.3472 0.3169 0.4130 0.5021 0.3500 0.3498 0.3194 0.3459 0.5187 0.2845

Cardinal Fish 0.4381 0.4312 0.4333 0.3273 0.2603 0.2743 0.4214 0.3029 0.3469 0.5273
Dogfish Shark 1.0179 1.4042 1.3223 1.4865 1.3280 1.2879 1.0331 1.3577 1.3516 0.9274

Goat Fish 0.4224 0.3535 0.3888 0.5392 0.3264 0.3476 0.3700 0.3593 0.3002 0.2906
Herrings 0.4102 0.7837 0.7031 0.8667 0.7056 0.6669 0.4146 0.7357 0.7295 0.3087

Table 4.3: Distance for congruence classes of images continued
Hand Hand10 Hand90 Handbent1 Handbent2 Bone Fish Cardinal Fish Dogfish Shark Goat Fish Herrings

Arctic Hare 0.2926 0.5388 0.6453 0.3021 0.3810 0.3385 0.4233 1.0486 0.4145 0.4385
Blacktail 0.3512 0.5949 0.7027 0.5205 0.4054 0.3171 0.4276 1.3879 0.3307 0.7782

Dessert Cottontail 0.4277 0.4862 0.5914 0.4167 0.4878 0.3989 0.4352 1.2840 0.3690 0.6755
Eastern Cottontail 0.4002 0.3786 0.3504 0.6118 0.3854 0.4797 0.3074 1.4792 0.5401 0.8701

European Hare 0.2724 0.3752 0.4786 0.4666 0.2312 0.3403 0.2451 1.3326 0.3462 0.7213
F-15 0.3156 0.4404 0.5435 0.4285 0.4403 0.3422 0.3120 1.2957 0.3216 0.6856
F-16 0.3566 0.4503 0.5601 0.3599 0.3265 0.3194 0.3805 1.0571 0.3442 0.4489

Harrier 0.3226 0.2729 0.3851 0.4913 0.4356 0.3270 0.3071 1.3579 0.3174 0.7468
Mig 0.5094 0.5006 0.3682 0.5323 0.2853 0.5226 0.3516 1.3447 0.318 0.7335

Phantom 0.3422 0.5006 0.6731 0.3257 0.4740 0.2846 0.5288 0.9090 0.3621 0.3126
Hand 0.0189 0.4170 0.5190 0.2878 0.3439 0.3278 0.3039 1.1481 0.2333 0.5360

Hand10 0.4334 0.0483 0.2184 0.6015 0.2792 0.5115 0.3413 1.1284 0.5712 0.6343
Hand90 0.4987 0.2193 0.0231 0.6723 0.2755 0.5800 0.2528 1.2614 0.6413 0.7058

Handbent1 0.2711 0.5868 0.6945 0.0293 0.4984 0.3306 0.5527 0.8848 0.2949 0.2779
Handbent2 0.3468 0.2859 0.3007 0.5143 0.0271 0.3109 0.2242 1.3813 0.3650 0.7706
Bone Fish 0.3477 0.4985 0.6038 0.3455 0.3213 0.0382 0.3301 1.1278 0.2909 0.5166

Cardinal Fish 0.3172 0.3549 0.2741 0.5841 0.2415 0.3661 0.0323 1.4514 0.3955 0.8427
Dogfish Shark 1.1515 1.1315 1.2632 0.8705 1.3858 1.0928 1.4406 0.0223 1.0612 0.6154

Goat Fish 0.2198 0.5351 0.6415 0.2597 0.3451 0.2750 0.3911 1.0483 0.0665 0.4379
Herrings 0.5284 0.6187 0.7270 0.2943 0.7643 0.4706 0.8211 0.6200 0.4398 0.0229
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We now examine a larger set of images from the Kimia silhouette database. We

compare 5 different types of rabbits, 5 types of planes, 5 different hands, and 5 different

types of fish to small perturbations of each original image. Specifically, as in the small

example in Table 4.1, we will compare the signature for an arctic hare with the signature

for a small perturbation of the arctic hare. The original image’s signature will also be

compared with signature curves for small perturbations of the other 19 images. The

results are given in Tables 4.2 and 4.3.

Note that as in the small example, the smallest distance occurs when the original

image is compared to a small perturbation of that image. These smallest distances

are boldfaced. The italicized entries refer to the next smallest distance. We want the

distance to be defined such that the next smallest distance will be between the original

image and another image from that class. For example, if we look at the arctic hare,

we want the next smallest distance to be between the arctic hare and another rabbit.

In the tables, we see that this is sometimes the case, but in some of the comparisons

it is not. For example, notice that the next smallest distance for the dogfish shark is a

small perturbation of the herrings image, but the next smallest distance for the arctic

hare is with a small perturbation of the hand. We compare our results with those

obtained in [39].

Previous Work In [39], Manay et al. focus on closed curves with no self-intersections

and define an area integral invariant. For each point p on the curve γ, they define a ball

of radius r centered at p for some chosen value of r. Let Int(Br) refer to the interior

of the ball of radius r centered at p, and let Int(γ) refer to the interior of the curve γ.

Then the area of Int(Br) ∩ Int(γ) is an integral invariant under the Euclidean action
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and will be denoted by Aγ. For an illustration, see Figure 4.2. In the figure, the curve

of interest is denoted by C, and int(C) = C.

Figure 4.2: Integral invariant Aγ from [39]

Manay et al. remark that a naive approach for distance would be to look at the

difference between integral invariants. For this approach to have meaning, one would

have to compare similar parts of images. For instance, if the ears of a rabbit were

compared to the tail of another rabbit, then the distance between integral invariants

may be very large. Thus it is necessary to find the optimal correspondence between

points on the two shapes.

To find the optimal correspondence between points, the authors reparametrize the

curves and integral invariants by the use of what they call a disparity function. They

denote the disparity function by d(s), where s is the arc length parameter. This

disparity function accounts for curves with different lengths. Then they define an

energy functional based on d and the integral invariants Aγ1 , Aγ2 for curves γ1 and γ2.
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The energy functional is given by

E(Aγ1 ,Aγ2 , d) =

∫ 1

0

||Aγ1(s− d(s))−Aγ2(s+ d(s))||2ds+ α||d′(s)||2ds, (4.4)

where α > 0 is a constant. The constant α is a control parameter. The effect of α is

illustrated in Figure 4.3, taken from [39]. In the figure, (a) corresponds to α = 100,

(b) corresponds to α = 30, and (c) corresponds to α = 1. They observe that smaller

values for α emphasize geometrical differences.

Figure 4.3: Effects of control parameter

The disparity function that minimizes the energy functional in Equation (4.4) is

denoted by d∗(s). This function is defined by minimizing 4.4, then interchanging γ1 and

γ2 and minimizing again. Then d∗(s) is defined as the minimum between the two. Use

of d∗(s) ensures that the distance between equivalence classes of curves is symmetric,

i.e. neither curve is favored over the other. Then the group invariant distance between
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equivalence classes of curves is defined as

D(γ1, γ2) = E(Aγ1 ,Aγ2 , d
∗). (4.5)

There is still the issue of choosing an initial point and initial correspondence. A

quick way of determining the best initial correspondence does not exist. Oftentimes, an

exhaustive search is used. In such a search, one chooses a fixed point on one curve and

compares it with each point on the other curve to find the shortest path between the

two. Manay et al. note that the exhaustive search can be avoided by looking at strong

features. For example, corners may be used to find the optimal initial correspondence

quickly. The authors use Aγ1 for points with little to no curvature to define a subset

of points outside the ball used to determine Aγ1 . Then the set of points outside the

ball and their nearest neighbors on Aγ2 are likely initial correspondences.

Using the Hausdorff distance between integral signatures to define the distance

between congruence classes of curves is much less involved than the method presented

in [39]. However, Manay et al. get better results with their method.

Conclusions and Future Work In this thesis, we investigated several different in-

tegral invariants and signatures for the action of the Euclidean group on planar curves.

In the future we want to improve our methods of curve matching, and investigate inte-

gral invariants and signatures for other group actions, such as the affine and projective

groups. It would also be of interest to explore the possibility of extending our methods

to curves in R3.

To implement our methods, we used the trapezoid rule to estimate integrals. The
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advantage to using trapezoid rule is that the approximation of I1 is invariant as shown in

Chapter 3. The trapezoid rule however is not a very efficient method for approximating

integrals. We would like to investigate the use of other methods and note that it is

desirable to have a numerical approximation that is group invariant.

To compute local integral invariants and local integral signatures, we partitioned

the curve into equal length intervals, ∆l, for l = 1, . . .m. Our approximations of I loc1

and I loc2 depend on the choice of the number of intervals, m. A more careful study of

dependence of the result on the choice of m is needed. When m is small, we do not

capture enough of the curve. If we look at a perturbation of a curve and choose a large

value of m, we capture a lot of the perturbation.

In addition to investigating the use of various integral signatures for curve match-

ing, we defined a distance between congruence classes of curves. In particular, we

defined distance between congruence classes as the Hausdorff distance between signa-

ture curves. We focused on the Hausdorff distance between (I loc1 , I loc2 ) signatures for

shapes from the Kimia silhouette database.

It may be of interest in the future to run distance experiments using the Hausdorff

distance on the (l, I loc1 (l)) signatures. Recall that the (l, I loc1 (l)) signature depends on

initial point, but in a predictable way. The change of initial point corresponds to a

translation of the signature. The (l, I loc1 (l)) signature is of particular interest because

the approximation of I loc1 (l) is invariant, using trapezoid rule.

When comparing the Hausdorff distance between signature curves for real images,

we found that the smallest distance is between the image and a small perturbation

of that image. However, the next smallest distance is not always what we expect.
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It may be useful looking at other possible definitions for distance. Recall however

that the advantage to Hausdorff distance is that it does not require synchronization of

parameters. In choosing a distance function, it is also desirable for the computation to

be group invariant.

We would also like to look at the distance between congruence classes of curves

under the affine group action. Integral signatures for the affine group action are ex-

plored in [23]. Another problem of interest is to match curves under the projective

action using integral signatures and Hausdorff distance. There are challenges defining

strictly integral invariants for the projective action, so it may be worthwhile to begin

with applying Hausdorff distance to integro-differential invariants such as those in [53].
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