
ABSTRACT

DWEKAT, ZYAD A. Practical Fair Queuing Schedulers: Simplification through Quantiza-
tion. (Under the direction of Dr. George Rouskas and Dr. Mladen Vouk).

Many packet scheduling schemes have been proposed, but most of them suffer

from one of two extremes. A scheduling scheme may have simple implementation with

low fairness qualities, or it may have good fairness qualities but high complexity. Our

goal in this research is to design a frame work of schedulers that has both the desired

qualities of fairness and simple implementation. We began our research by conducting a

survey of the scheduling techniques and associated analysis models proposed during the

last decade. Then, in the first part of this thesis we present a suite of packet fair queuing

schedulers with low complexity and good fairness and delay properties. Our designs employ

the concept of quantization by exploiting two widely-observed characteristics of the Internet,

namely that service providers offer some type of tiered service with a small number of

service levels, and that a small number of packet sizes dominate. Taken together, these two

observations permit us to design a good fair queuing algorithm in a manner that packet

sorting operations only need to consider a small, fixed number of packets, independent

of the number of flows, and hence can be performed in constant time. Specifically, the

scheduler we present is equivalent to WF2Q, with the additional advantage that the virtual

time function can be computed in O(1) time. Our tiered-service schedulers operate under

assumptions that are valid under a wide range of practical scenarios, and combine provable

good performance with amenability to hardware implementation in high-speed routers. In

the second part of this thesis, we use quantization of virtual time to design a novel packet

scheduler called Worst-Case Bin Sort Queuing (WBSQ). WBSQ has constant complexity,

and can be utilized in a simple hardware implementation. The WBSQ scheduler uses two

methods of quantization. First, WBSQ exploits quantization of virtual time in a manner

similar to the bin sorting idea in BSFQ [1] scheduler. In addition, WBSQ simplifies the

system virtual time implementation of WF2Q+ [2]. Worst-Case Bin Sort Queuing has good

worst-case fairness and delay properties that are demonstrated through both analytical

results and simulations.
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Chapter 1

Introduction

1.1 Quantization and Packet Scheduling Implementation

During the past few years, the popularity of multimedia applications that use

computer networks instead of circuit-switched networks has increased. Applications like

VOIP teleconferencing, streaming video and audio, email, file transfer etc., all share the

same network. Each of these applications has its own requirements of loss rate, delay

bound and delay jitter. Sharing introduces the problem of contention for shared resources.

The exponential growth of the users of these applications has placed high demand on the

network links. As a consequence, control of congestion and maintaining the quality of service

of such networks is a challenging task. Given a set of resource requests in a service queue,

a server uses scheduling discipline to decide which request to serve next. Packet scheduling

is an important means of controlling or avoiding congestion and providing specific quality

of service in packet-switched networks.

Many scheduling schemes have been proposed in recent years. For example,

weighted fair queuing schemes which emulate the general processor sharing (GPS). These

schemes have the best performance in terms of fairness and isolation properties but at the

expense of high complexity. This makes these schemes unsuitable for high speed trans-

mission. Many lighter versions of weighted fair queuing have been proposed but still have

high complexity. In contrast, weighted round robin (WRR) and its derivative deficit round

robin (DRR) have low complexity but have problems with short term fairness. The goal of

this research is to design an efficient scheduling schemes that have low complexity and high
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Table 1.1: Notation used in this dissertation
N the number of flows in the system
p the number of tiered weight classes in the system
r total link bandwidth
ri guranteed bandwidth for flow fi

φi = ri
r the weight associated with flow fi

lM maximum packet size
Si(t1, t2) the amount of work received by session i during [t1, t2)
F k

i the finishing time of packet k of flow fi

Qi the queue size of flow fi at time t

pk
i the kth packet on flow fi

performance regarding fairness and isolation. We had exploited quantization to achieve our

goals. In the first scheduler discipline, we used service quantization as our way to build low

complexity scheduler. In the second scheduler, we used virtual time quantization. Both

approaches resulted in worst-case fair and low complexity implementations.

1.2 Thesis Notations

Major notations used in this dissertation are summarized in Table 1.1. There are

N flows f1, f2, · · · , fN sharing a link of bandwidth r as shown in Figure 2.1. Each flow fi

has a minimum guaranteed rate of ri. We will assume that
∑N

i=1 ri ≤ r. The weight φi

of flow fi is defined as its guaranteed rate normalized with respect to the total rate of the

link, i.e.,

φi =
ri

r
. (1.1)

The other quantities in Table 1.1 will be discussed in more detail at the time they are

introduced in the text.

1.3 Thesis Organization

This thesis is organized as follows. In Chapter 2 we discuss packet scheduling re-

quirements and review a number of scheduling disciplines. Then, we present a new schedul-

ing algorithm called Tiered-Service Fair Queuing (TSFQ). TSFQ represents our first quan-
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tization approach which is quantizing the service offered by schedulers. In Chapter 3, we

discuss the fixed-size packet case of TSFQ while we discuss the general variable-size packet

case in Chapter 4. In Chapter 5 we present another new packet scheduler called the Worst-

Case Bin Sort Queuing (WBSQ). WBSQ represents our second approach of quantization

which is quantizing the virtual time of the scheduler. Finally, we conclude the thesis and

discuss future work in Chapter 6.
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Chapter 2

Packet Scheduling

In packet-switched networks, packets from various users (flows) have to share the

network resources, including buffer space at the routers and link bandwidth. Whenever

resources are shared, contention arises among users seeking service. Consequently, shared

resources employ a scheduling discipline to resolve contention by determining the order in

which users receive service. In particular, the scheduling algorithm is a central component

of the quality of service (QoS) architecture of packet switched networks. In this chapter,

we discuss the requirements for link scheduling disciplines, we review and classify a number

of packet schedulers, and we describe their properties and the trade-offs involved. This

discussion sets the stage for the introduction in the few chapter of two new, scalable packet

schedulers that is based on the concept of quantization.

2.1 Scheduling Objectives and Requirements

As the Internet has developed into a ubiquitous global communication medium,

it is used to carry a constantly evolving mix of applications that is becoming richer as

innovation and improvements in technology spawn new services and uses of the network.

Nevertheless, network applications can be broadly classified into two fundamental classes:

best-effort and guaranteed-service. The two types of applications differ in terms of their

sensitivity to delay and availability of bandwidth, as well as in terms of the level of service

quality they expect from the network, as we discuss next.

Most of the applications that were originally developed for the Internet (including
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email, file transfer, and web browsing) continue to be quite common today, and have elastic

requirements from the network. In other words, such applications are able to adapt to

the bandwidth, delay, or loss performance they experience. Elastic applications do not

require any explicit guarantees and work correctly with a best-effort service under which

the network only makes a promise to attempt to deliver their packets.

On the other hand, real-time and interactive applications (including streaming

audio and video, multimedia conferencing, etc) do require performance bounds from the

network in terms of bandwidth, delay, or delay jitter. For instance a voice-over-IP (VoIP)

application requires both a minimum bandwidth (generally, between 20-80 Kbps, depend-

ing on the voice codec used) and a round-trip delay of about 150 ms (dictated by human

ergonomics) to ensure a “good” user experience. These applications require a guarantee of

service quality from the network, and the latter must reserve resources on their behalf. Fur-

thermore, the performance that guaranteed-service applications receive is directly affected

by the scheduling discipline employed by the nodes along their path, as these disciplines are

responsible for scheduling packets on the outgoing links.

Based on this discussion, it is desirable that a packet scheduler possesses three

important properties [3]:

• Isolation and fairness. When serving best-effort flows, it is important that the sched-

uler provide isolation among the competing flows and ensure that each flow receives

its fair share of the link bandwidth. Isolation prevents misbehaving flows (e.g., flows

transmitting too fast) from affecting other flows sharing the same link. In this context,

fairness typically refers to max-min fair allocation [4] of link bandwidth among the

flows, whereby flows with “small” bandwidth demands receive what they want while

flows with “large” demands receive an equal share of the remaining link bandwidth.

• Performance bounds. Typically, guaranteed-service applications require a bandwidth

bound, i.e., they must receive a minimum amount of bandwidth (measured over an

appropriate interval of time). In addition, certain real-time and/or interactive appli-

cations may require bounds on packet delay. Such bounds may be expressed deter-

ministically (e.g., in the form of a worst-case delay that no packet must exceed) or

statistically (i.e., in the form of a delay threshold and a probability that any packet’s

delay will not exceed the threshold). Other performance bounds that have been con-
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sidered include bounds on the delay jitter (defined as the difference between the largest

and smallest delays experience by any packet of a flow) and on packet loss.

• Low algorithmic complexity. A link scheduler may need to select the next packet to

serve every time a packet departs. As optical link speeds increase from a few Gbps

currently to tens of Gbps and beyond, a scheduler may have only a few microseconds

or less to make a decision. Hence, in order to operate at wire speeds, the scheduling

discipline must be amenable to hardware implementation and require few, preferably

simple, operations. In particular, since the links of backbone networks may serve

hundreds of thousands of simultaneous flows, the number of operations involved in

making a scheduling decision should be independent of the number of flows sharing

the link.

These requirements are often contradictory. For instance, the first-come, first-

served (FCFS) discipline maintains a single queue of packets and transmits them in the

order of their arrival to the queue. This discipline is easy to implement in hardware and is

widely deployed in routers. However, since an FCFS scheduler cannot distinguish between

different flows, it cannot provide isolation among flows or guarantee per-flow performance

bounds. To guarantee such bounds, a scheduler must maintain additional scheduling state

in the form of separate queues and information regarding the requirements of each flow,

which increases the complexity of its implementation.

In the following section, we review the most common packet scheduling disciplines

and we discuss the tradeoffs involved with respect to the three requirements above.

2.2 Packet Scheduling Disciplines

In general, packet schedulers can be classified according to their internal structure

as follows:

• Timestamp-based schedulers maintain a global variable, usually referred to as virtual

time, to sort arriving packets and serve them in that order.

• Frame-based schedulers divide time into slots of fixed or variable length, and assign

slots to flows in some sort of round-robin fashion.
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Figure 2.1: Model of link scheduler serving n flows; φi is the weight assigned to flow i

• Hybrid schedulers combine features from both timestamp-based and frame-based sched-

ulers.

Figure 2.1 illustrates the general scheduler model that we will use in our discussion.

Specifically, we assume that the scheduler serves n flows and employs per-flow queuing such

that an arriving packet belonging to flow i, i = 1, . . . , n, is inserted at the tail of the queue

dedicated to this flow. As a result, each flow queue is sorted in increasing order of packet

arrival times and its packets are served in a FCFS order. As shown in the figure, each flow

i is associated with a positive real weight φi that is determined in advance (e.g., based on

the application’s bandwidth or delay requirements). The scheduler uses the weights in some

discipline-specific manner to determine which of the head-of-line packets in the flow queues

to serve next.

2.2.1 Timestamp-Based Schedulers

Timestamp schedulers emulate the ideal but unimplementable generalized proces-

sor sharing (GPS) algorithm by maintaining a virtual time function. Packets are assigned

a timestamp based partly on the virtual time value at the time of their arrival, and are

transmitted in increasing order of timestamp. In general, timestamp schedulers have good

delay and fairness properties, but high implementation complexity, hence there has been
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limited deployment of such schedulers in high-speed routers.

The complexity of timestamp schedulers arises from two factors.

1. Packet sorting. The scheduler selects among the head-of-line packets of the backlogged

flows the one with the smallest timestamp to serve next; if there are n backlogged

flows, this operation takes time O(log n) using a priority queue. Whereas current

router technology makes it possible to support millions of flows, each with its own

queue, the logarithmic complexity and the fact that the priority queue structure is

not suited to hardware implementation pose significant challenges.

2. Virtual time computation. In order to assign a timestamp to an arriving packet, the

scheduler must compute the virtual time function at the time of arrival; as we explain

shortly, this computation can be expensive. One of the differentiating characteristics

of timestamp scheduler variants is their use of simplified virtual time functions that

are more efficient to compute.

It has also been shown that achieving a delay bound relative to GPS that is

independent of the number of flows is impossible if the scheduler has a complexity below

O(log n) [5].

Generalized Processor Sharing (GPS)

Generalized processor scheduling (GPS) [6] is an ideal scheduler, a theoretical con-

struct that serves both as a starting point for designing practical scheduling disciplines and

as a reference point for evaluating the fairness and delay properties of these disciplines. GPS

visits each backlogged flow queue in turn and serves an infinitesimal fraction of the head-

of-line packet at each queue. If flows are assigned different weights φi (refer to Figure 2.1),

then the service they receive from GPS is proportional to their weight.

If a queue is empty, GPS skips it to serve the next non-empty queue. There-

fore, whenever some queues are empty, backlogged flows will receive additional service in

proportion to their weights. Consequently, GPS achieves an exact max-min weighted fair

bandwidth allocation [3]. It also provides isolation (protection) among flows, since a mis-

behaving flow is restricted to its fair share and does not affect other flows.

GPS is defined in a theoretical fluid flow model in which multiple queues may be

served simultaneously. In a practical packet system, on the other hand, packet transmissions
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may not be preempted and only one queue may be served at any given time. The schedulers

we describe in the following subsections attempt to emulate GPS but are designed for

packetized systems.

Weighted Fair Queuing (WFQ)

Weighted fair queuing (WFQ) [6, 7] is an approximation of GPS that serves packets

in the order they would complete service had they been served by GPS. Therefore, the WFQ

scheduler needs to emulate the operation of the GPS server. To this end, a virtual time

function V (t) was proposed in [6] to track the progress of GPS. The rate of change of V (t)

is:
ϑV (t + τ)

ϑτ
=

1∑
i∈B(t) φi

(2.1)

where B(t) denotes the set of backlogged flows at time t and φi is the weight assigned to

flow i. Let r be the rate of the link (server). In GPS, if flow i is backlogged at time t, it

receives a rate of
ϑV (t + τ)

ϑτ
φi r =

φi∑
i∈B(t) φi

r. (2.2)

In other words, V (t) is the marginal rate at which backlogged flows receive service in GPS.

Suppose that the k-th packet of flow i arrives at time ak
i , and has length Lk

i . Let

Sk
i and F k

i denote the virtual times at which this packet begins and completes service,

respectively, under GPS. Letting F 0
i = 0 for all flows i, we have [6]:

Sk
i = max{F k−1

i , V (ak
i )} (2.3)

F k
i = Sk

i +
Lk

i

φi
. (2.4)

The WFQ scheduler serves packets in increasing order of their virtual finish times F k
i , a

policy referred to as “smallest virtual finish time first (SFF)” [2].

Let us consider the complexity of WFQ. At packet departure instants, the SFF

policy is used to select the next packet to transmit. This selection can take O(log n) time,

where n is the number of (backlogged) flows, if packet virtual finish times are organized in

a heap-based priority queue data structure. In addition, there is the cost of maintaining

the virtual time function V (t) at packet arrival and departure instants. The worst-case

complexity of computing V (t) can be O(n), although the average-case complexity is O(1) [8].
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Therefore, WFQ is expensive to implement within core routers that may handle hundreds-

of-thousands to millions of flows at any given time.

The degree to which WFQ approximates GPS is determined by two properties

that were established in [6]:

• Bounded delay property. A packet will finish service in a WFQ system no later than

the time it would finish in the corresponding GPS system plus the transmission time

of a maximum size packet.

• Weak service property. The service (in terms of total number of bits) that a flow

receives in a WFQ system does not fall behind the service it would receive in the fluid

GPS system by more than one maximum packet size.

While due to the second property above a WFQ system may not fall behind GPS

by more than one maximum packet size, it may in fact be ahead of GPS in terms of the

service provided to some flows. In particular, it was shown in [9] that WFQ may introduce

substantial unfairness relative to GPS in terms of the worst-case fairness index (WFI).

WFI is a metric introduced in [9] to represent the maximum time a packet arriving to an

empty queue will have to wait before receiving its guaranteed service rate. Specifically,

GPS has a WFI of zero, but the WFI of WFQ increases linearly with the number of flows

n. Consequently, there may be substantial discrepancies in the service experienced by

individual flows under the WFQ and GPS schedulers.

Worst-Case Fair Weighted Fair Queuing (WF2Q)

The WF2Q algorithm was introduced in [9] as a better packet approximation of

GPS than WFQ. Specifically, WF2Q employs a “smallest eligible virtual finish time first

(SEFF)” policy for scheduling packets. A packet is eligible if its virtual start time is no

greater than the current virtual time; hence, the WF2Q scheduler only considers the packets

that have started service in GPS when selecting the packet to be transmitted next. It has

been shown [9] that WF2Q is work-conserving, maintains the bounded delay property of

WFQ, and has these two additional properties:

• Strong service property. The service (in terms of total number of bits) that a flow

receives from a WF2Q system cannot fall behind (respectively, be ahead of) the service
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it would receive in the fluid GPS system by more than one maximum packet size

(respectively, a fraction of the maximum packet size).

• Worst-case fairness property. The worst-case fairness index of WF2Q is a constant

independent of the number n of flows served by the scheduler.

The first property implies that the WF2Q scheduler closely tracks the GPS system

in terms of the service received by each flow, and due to the second property, WF2Q is an

optimal packet scheduler in terms of worst-case fairness [9].

However, the worst-case complexity of WF2Q is O(n), identical to that of WFQ,

as both schedulers need to compute the virtual time function V (t).

WF2Q+

A lower-complexity scheduler, WF2Q+ was introduced in [2]. The WF2Q+ sched-

uler is work-conserving, has the same bounded delay, strong service, and worst-case fairness

properties of WF2Q, but uses a different virtual time function that can be computed more

efficiently than the function V (t) in (2.1) used by WFQ and WF2Q. The new function is [2]:

VWF 2Q+(t + τ) = max
{

VWF 2Q+(t) + τ, min
i∈B(t)

{
S

hi(t)
i

}}
. (2.5)

In the above expression, B(t) is the set of backlogged flows at time t, hi(t) is the sequence

number of the packet at the head of flow i’s queue at time t, and S
hi(t)
i is the virtual

start time of that packet. The minimum operation in the right-hand side of (3.6) can be

performed in time O(log n) in the worst-case using a priority queue structure, hence the

overall complexity of WF2Q+ is O(log n), significantly lower than the O(n) complexity of

WFQ and WF2Q.

As pointed out in [2], the WF2Q+ scheduler implementation can be further sim-

plified by maintaining a single pair of start and finish virtual time values per flow, rather

than on a per-packet basis. Specifically, only a single pair of values, Si and Fi, needs to be

maintained for each flow i, corresponding to the virtual start and finish times, respectively,

of the packet at the head of the queue of flow i. Let Qi(t−) denote the queue size of flow i

just before time t. When a new packet reaches the head of the queue at time t, the values
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of Si and Fi are updated according to the following expressions [2]:

Si =





Fi, Qi(t−) 6= 0

max{Fi, VWF 2Q+(t)}, Qi(t−) = 0
(2.6)

Fi = Si +
Lk

i

φi
(2.7)

where Lk
i is the length of this packet and φi is the weight assigned to the flow.

Overall, the WF2Q+ scheduler achieves tight delay bounds and good worst-case

fairness with a relatively low O(log n) algorithmic complexity.

Self-Clocked Fair Queuing (SCFQ)

The O(n) worst-case algorithmic complexity of the WFQ and WF2Q schedulers is

due to the fact that the order of packet transmissions in these queuing schemes is determined

by tracking the progress of the fluid-flow GPS reference system, which, in turn, requires

the computation of the virtual time function V (t) whose rate of change is defined in (2.1).

Self-clocked fair queuing (SCFQ) [8] avoids the computationally expensive emulation of

a hypothetical reference system by adopting a self-contained approach to fair queuing.

Specifically, instead of using a virtual time to compute the finish times of packets as in

expressions (5.1) and (5.2), SCFQ computes the finish time F k
i of the k-th packet of flow i

as:

F k
i = max{F k−1

i , Fcur} +
Lk

i

φi
(2.8)

where Fcur is the finish time of the packet currently in service, and finish times are initialized

to F 0
i = 0 for all flows i. Since the finish times can be computed in O(1) time using

expression (2.8), the algorithmic complexity of SCFQ is O(log n) because of the requirement

to select the packet with the smallest finish time for transmission.

Although the rule (2.8) that SCFQ uses to compute packet finish times is easy

to implement, the tradeoff is a much larger delay bound than WFQ. In particular, the

delay bound provided by SCFQ increases linearly with the number n of flows served by the

scheduler, in the worst case [10]. The worst-case fair index (WFI) of SCFQ is the same as

that of WFQ, i.e, proportional to the number n of flows.
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Start-Time Fair Queuing (SFQ)

Start-time fair queuing (SFQ) [11] is a variant of SCFQ that maintains both a

start time and a finish time for each packet. Upon arrival, the k-th packet of flow i is

assigned the start time:

Sk
i = max{F k−1

i , Scur} (2.9)

where Scur is the start time of the packet in service at the time of arrival. The finish time

F k
i of the k-th packet is computed as:

F k
i = Sk

i +
Lk

i

φi
. (2.10)

Unlike the other packet fair schedulers we have considered so far, SFQ serves packets in

increasing order of their start times, not their finish times.

It can be seen that expressions (2.9) and (2.10) may be computed in constant

time, hence SFQ has the same low algorithmic complexity O(log n) as SCFQ. However, it

has been shown [11] that the worst-case delay of SFQ is significantly lower than with SCFQ.

The worst-case fairness properties of SFQ are similar to those of WFQ and SCFQ.

Virtual Clock (VC)

The scheduler introduced in [12] was the first to adopt the notion of a virtual

clock to represent the progress of a queuing system in terms of work (service) performed.

Whereas the similar notion of virtual time has been used by fair packet queuing schedulers

such as WFQ to emulate GPS, the virtual clock scheduler instead emulates time division

multiplexing (TDM). Specifically, the k-th packet of flow i arriving at time t is assigned the

finish time:

F k
i = max{F k−1

i , t} +
Lk

i

φi
(2.11)

Note that the above expression uses real time t instead of virtual time, greatly simplifying

the computation of finish times. The scheduler serves packets in increasing order of their

finish times, hence the complexity of virtual clock is O(log n).

Despite its simplicity, the virtual clock scheduler is able to provide delay bounds

to flows. However, the use of real time t in (2.11) does not accurately represent the progress

of work in the system upon the arrival of the packet. As a result, the worst-case fairness

index of virtual clock can be arbitrarily large [13], even in the case of only two sessions.
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2.2.2 Frame-Based Schedulers

Even with simplified virtual time computations, timestamp-based schedulers incur

a substantial per-packet overhead that is related to selecting the packet with the smallest

finish time to be transmitted next. Frame-based schedulers eliminate the need for packet

sorting and hence achieve an O(1) packet processing operation. Such schedulers typically

operate by dividing time into frames. Within each frame (also referred to as round), flows

are mapped to time slots of fixed or variable length and are served in a round-robin manner.

Because of their low implementation complexity, frame-based schedulers have been widely

deployed in high-speed routers. However, these schedulers have poor delay bound and

fairness properties under most realistic traffic conditions.

Weighted Round-Robin (WRR)

The round-robin scheduler, which serves a single packet from each flow with back-

logged traffic, is the simplest emulation of GPS and an early form of fair queuing. If all

packets have the same size (e.g., as in ATM networks), and all flows are assigned identical

weights, then round-robin is a reasonably good approximation of GPS. If flows have differ-

ent weights, the more general weighted round-robin (WRR) scheduler may be used. WRR

serves a number of packets from a flow in proportion to the flow’s weight.

Despite its simplicity, the WRR scheduler has several limitations. In networks

with variable packet sizes, emulating GPS correctly requires advance knowledge of each

flow’s mean packet size. Specifically, to allocate bandwidth fairly, the WRR scheduler must

serve the flows according to a set of normalized weights obtained by dividing the weight

of each flow by its mean packet size. In practice, however, the mean packet size for a flow

may be difficult or even impossible to predict, e.g., when the flow carries compressed video

whereby the packet sizes are strongly dependent on the nature of the video scenes. If mean

packet sizes cannot be accurately predicted, the bandwidth allocation under WRR may be

significantly different than under GPS.

A second drawback of WRR is that each backlogged flow is served exactly once

within every frame. As a result, the WRR scheduler is fair only over time scales longer than

the frame size: once a flow is served, it must wait for n− 1 other flows before it gets service

again. If the number n of flows is large, as is the case in core routers, this may lead to long
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periods of unfairness. A related issue has to do with burstiness: within each frame, a flow

transmits all its packets at once, which will arrive at the downstream router in a burst. As

a result, WRR has poor delay and burstiness properties.

Deficit Round-Robin (DRR)

Deficit round-robin (DRR) [14] is an improved version of WRR that makes it

possible to allocate bandwidth fairly in a network with variable packet sizes without advance

knowledge of each flow’s mean packet size. To this end, the DRR scheduler maintains a

quantum and a deficit counter for each flow that it serves. The quantum of each flow i is

proportional to its weight φi. The deficit counter of each flow i is initialized to zero, and it

is used to keep track of the currently unused portion of its allocated bandwidth.

Within each frame (round), the DRR scheduler visits each backlogged flow exactly

once, and serves a number of packets such that the sum of their lengths does not exceed

the sum of the flow’s quantum and deficit counter. The value of the deficit counter is then

updated to the unused portion (if any) of this latter amount, and carried over to the next

round. As a result, each flow receives its fair share of the bandwidth without the need for

the scheduler to estimate the mean packet size for each flow it serves.

The DRR scheduler performs a constant amount of work every time it visits the

queue of a flow, its operation is easy to implement in hardware, and variants of this scheme

are employed in commercial high-speed routers. However, within each frame, a flow trans-

mits its entire quantum at once, and must then wait for all other flows to transmit before it

is served again. Consequently, DRR has the same drawbacks as WRR, namely, unfairness

at short time scales and poor delay and burstiness properties.

2.2.3 Hybrid Schedulers

As we have seen, the design of packet schedulers involves tradeoffs between algo-

rithmic complexity, on the one hand, and performance bounds and fairness, on the other

hand. Specifically, frame-based schedulers are simple to implement but provide poor delay

bounds and suffer from short-term unfairness, while timestamp-based schedulers have good

delay and fairness properties but high implementation complexity. More recently, hybrid

designs have been proposed that incorporate some elements of timestamp-based schedulers
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into a frame-based scheme, the latter usually being a version of DRR. In doing so, hybrid

schedulers attempt to combine the best of both worlds, i.e., improve the delay, fairness, and

output burstiness properties of the frame-based scheduler while maintaining low implemen-

tation complexity.

Smoothed Round-Robin (SRR)

We note that the limitations of DRR in terms of short-term fairness and high

output burstiness are due to the fact that the scheduler visits each flow exactly once within

each frame (round), and transmits an amount of data from its queue equal to its quantum

(plus the deficit counter, if a smaller amount was served in the previous round). Hence, the

service each flow receives consists of long periods of inactivity (whose length is proportional

to the number n of flows served by the scheduler) followed by short periods of service

that result in back-to-back data transmissions (bursts). Clearly, if the service that a flow

receives could be spread over the entire frame, then the fairness and output burstiness of

the scheduler would be improved.

The smoothed round-robin (SRR) scheduler [15] addresses this shortcoming of

DRR by spreading the quantum of service allocated to a flow over the frame using a tech-

nique based on a “weight spread sequence.” The SRR scheduler needs O(1) time to select

a packet for transmission, and has better delay bounds than DRR. On the other hand, the

worst-case delay that a packet may experience is proportional to the number n of flows

served by the scheduler.

Bin Sort Fair Queuing (BSFQ)

Bin sort fair queuing (BSFQ) [1] takes a different approach to reducing the com-

plexity of timestamp-based schedulers. In particular, BSFQ is designed to reduce the com-

putational effort required for the two main operations of a timestamp-based scheduler:

computing the virtual finish time (timestamp) of each arriving packet, and sorting packets

in increasing order of timestamps. To this end, virtual time is divided into slots (bins)

of length ∆, where ∆ is a configurable parameter, and the scheduler maintains a virtual

system clock that is equal to the left endpoint of the current slot. Arriving packets are

assigned a virtual finish time using an expression similar to the one for SCFQ in (2.8), that
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can be computed in constant time. Packets with finish times that fall within the same slot,

are inserted in a first-in, first-out (FIFO) queue associated with this slot. In other words,

there is no sorting of packets that have finish times “close” to each other, as determined

by the length ∆ of a slot. Therefore, this “bin sorting” operation takes O(1) time. When

the virtual clock is equal to the left endpoint of slot i, the scheduler serves all the packets

in the FIFO queue associated with slot i. When all the packets of the queue have been

transmitted, the virtual clock is incremented by ∆ and the scheduler serves the FIFO queue

of the next slot i + 1.

The BSFQ scheduler is scalable and is easy to implement in hardware. Its fairness

and delay guarantees depend strongly on the value of parameter ∆. When ∆ is large,

BSFQ reduces to FCFS, while when ∆ is small, its operation is similar to that of SCFQ.

While smaller ∆ values result in better fairness and delay guarantees, the amount of state

information that the scheduler needs to maintain increases and its efficiency decreases as

the value of ∆ decreases. Therefore, determining an appropriate value for ∆ is a complex

task that involves several tradeoffs.

Stratified Round-Robin (S-RR)

Stratified round-robin (S-RR) [16] operates by grouping (“stratifying”) flows into

flow classes based on their weights. An exponential grouping is used, such that the k-th flow

class consists of flows i with weights such that: 1
2k ≤ φi < 1

2k−1 . S-RR has two scheduling

components: an intra-class schedulerand an inter-class scheduler.The inter-class scheduler

assigns a scheduling interval to each flow class such that the k-th class is assigned an interval

of length 2k slots. Within a class, flows are scheduled in the associated scheduling intervals

using a variant of DRR that gives each flow a quantum that is proportional to its weight.

S-RR has low complexity and provides delay and fairness guarantees similar to

those of DRR. However, it improves the worst-case delay a single packet may experience to

a small constant, whereas under DRR and BSFQ this value is proportional to the number

n of flows served by the scheduler.
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Fair Round-Robin (FRR)

The fair round-robin (FRR) scheduler [17] is similar to S-RR in that flows are

grouped into classes using the same exponential grouping, and has the same structure in

that it employs both an intra-class and an inter-class scheduling component. The inter-

class scheduler is timestamp-based, and determines the time a packet from each class is to

be scheduled by taking into account the time-varying weight of each class (which changes

over time as flows within a class become active or inactive). FRR assigns finish times to

flow classes, not individual flows, by keeping track of the corresponding GPS system. This

scheduler always serves the eligible flow class with the smallest finish time; eligibility of a

flow class is defined as a generalization of the eligibility criterion introduced by the WF2Q

scheduler. Since the inter-class scheduler operates on the basis of flow classes, emulating

GPS (i.e., computing the virtual time function) takes time proportional to the number m

of classes, which, for a given system is a small constant (determined by the exponential

grouping employed) that is independent of the number n of flows.

The intra-class scheduler has two functions. First, it needs to compute the class

weight to pass to the inter-class scheduler; the latter uses these weights to determine the

order in which each class is served, as we explained above. Second, it must decide the order

in which packets from the various flows within the class will be transmitted whenever the

inter-class scheduler serves this class. The intra-class scheduler uses a frame-based approach

similar to DRR, but with a modification to account for the weight differences among the

flows within the same class.

The FRR scheduler has O(1) algorithmic complexity, is worst-case fair, and pro-

vides a single packet delay bound that is equal to a small constant, similar to S-RR.
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Chapter 3

Tiered-Service Fair Queuing

(TSFQ)- The Fixed-Size Packet

Case

As we explained in the previous chapter, the high algorithmic complexity of ti-

mestamp-based schedulers is due to two fundamental operations: (1) computation of the

virtual time function to track the corresponding GPS system, and (2) packet sorting to

select the packet with the smallest timestamp to serve next. The WF2Q+ scheduler we

described in Section 2.2.1 implements both operations in time O(log n), where n is the

number of flows served. Importantly, WF2Q+ closely emulates the ideal GPS fluid-flow

scheduler, and thus it provides tight delay bounds to all flows and achieves a constant

worst-case fair index. Although several timestamp-based or hybrid scheduler variants have

been developed with lower complexity, these schedulers provide looser delay and fairness

guarantees than WF2Q+. As a result, the service received by individual flows under these

simpler schedulers may be significantly different than the service they would receive under

GPS.

We also note that the packet schedulers we reviewed in the previous chapter were

designed under the assumption that both flow weights and packet sizes may take arbitrary

values. This fundamental assumption underlies the high complexity of the virtual time

computation and packet sorting operations. However, two important observations regarding
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Internet traffic characteristics suggest that the implementation of packet schedulers may be

simplified significantly without compromising their delay and fairness properties.

• Flow weights. First, traffic flows are unlikely to have arbitrary weights. For instance,

flows of guaranteed-service applications may be grouped into a small set of classes

depending on the nature of the application (e.g., “voice”, “video,” “game,”, etc) with

the flows in each class having similar bandwidth and delay requirements. On the

other hand, whereas best-effort applications have elastic requirements that adjust to

the available rate, their bandwidth requirements are typically limited to the access

bandwidth available to the user. Recall also that most Internet service providers

offer some type of tiered service in which users may select only from a small set of

bandwidth tiers. The practical implication of this fact is that the rates requested by

flows (equivalently, the flow weights in the fair queuing system) are not arbitrary, but

are limited to a small set of values that are typically known in advance. As we explain

shortly, it is possible to speed up considerably the computation of the virtual time

function if the scheduler is designed so as to handle only a small set of discrete flow

weights.

• Packet sizes. The second observation is that in the Internet, the vast majority (i.e., up

to 90%) of packets have a fixed length that takes one of a small number of values [18,

19]. Therefore, the scheduler may employ simple queuing structures that simplify, or

even completely eliminate the need for, packet sorting operations.

The main contribution of this chapter is a new implementation of WF2Q+ that

exploits the above observations to ensure that the two main scheduling operations, namely,

computing the virtual time function and selecting the next packet to be transmitted, are

performed in time that is independent of the number n of flows, while at the same time

maintaining the excellent delay and fairness properties of the original scheduler. We refer

to this scheduler as tiered-service fair queuing (TSFQ) [20].

In this chapter we make the additional assumption that all packets of all flows have

constant size L (i.e., Lk
i = L ∀ i, k). We will remove this assumption in the next chapter;

however, we note that the implementation we present in this chapter is of practical impor-

tance to ATM networks. In the remainder of this chapter, we first explain the operation

of TSFQ, we study TSFQ fairness analytically, and we present experimental performance
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results.

3.1 Tiered Service Fair Queuing (TSFQ)

We consider a link scheduler which serves n flows and employs per-flow queuing,

i.e., it allocates a FIFO buffer to each flow, as shown in Figure 2.1. The scheduler supports

p distinct tiers of service, where p ¿ n is a small constant (e.g., p ≈ 10 − 15). The l-th

tier is characterized by a positive real weight φl, l = 1, . . . , p. Each flow i is mapped to

one of the p service levels, i.e., it is assigned one of the p weights φl; we assume that this

assignment remains fixed throughout the duration of the flow. The mapping of flows to

service tiers is performed at the time the flow enters the network by taking into account

the QoS requirements of the application or the bandwidth tier to which the user subscribes.

We make the assumption that the link is configured with the number p of service tiers and

the associated weights φj . These parameters may be determined in advance by the network

provider as part of the network planning process, by using empirical information regarding

the user demands and employing the techniques we developed in earlier chapters of this

book.

Before proceeding, we emphasize that our assumption regarding flow weights is

different from the approach taken by the stratified round-robin (S-RR) [16] and fair round-

robin (FRR) [17] schedulers. Specifically, S-RR and FRR allow flows to have arbitrary

weights, but “stratify” them into a small number of classes using exponential grouping. In

contrast, we assume that all flows within a service tier are assigned the same weight. To

make the distinction clear, we use the term flow tier to refer to a set of flows with the same

weight, instead of the term flow class that was used in [16, 17] to refer to a group of flows

with similar weights as determined by the specific exponential grouping method employed.

3.1.1 Logical Operation

The tiered service fair queuing (TSFQ) scheduler operates in a manner similar to

WF2Q+ in that:

• it uses the same virtual time function shown in expression (3.6);

• it maintains a single pair of values, Si and Fi for each flow i, corresponding to the
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virtual start and finish times, respectively, of the packet at the head of the FIFO

queue of flow i; these values are updated according to expressions (2.6) and (2.7); and

• it employs the SEFF policy to serve packets.

The TSFQ scheduler logically consists of two components, as illustrated in Fig-

ure 3.1. The first component comprises of p identical intra-tier schedulers, while the second

component is a single inter-tier scheduler. The main function of each component is as

follows:

• Intra-tier scheduler. The l-th intra-tier scheduler uses the SEFF policy to select,

among the flows of the l-th service tier, l = 1, . . . , p, only, the flow i with the minimum

virtual finish time Fi. The structure and operation of the intra-tier scheduler are

described in detail in the following sections.

• Inter-tier scheduler. The inter-tier scheduler simply serves the packet at the head

of the queue with the smallest virtual finish time among the p flows selected by the

corresponding intra-tier schedulers. Since p is a small constant for the given link,

the packet to be transmitted next can be determined in time that is independent of

the number of flows, and in fact, this operation can be performed in constant time

in hardware. Hence, the implementation of the inter-tier scheduler is straightforward

and does not require any priority queue data structure to be maintained.

We note that the logical structure of the TSFQ scheduler is similar to the structure

of the S-RR and FRR schedulers which both consist of intra-class and inter-class scheduling

components. However, there are significant differences in the functionality and operation of

these schedulers. Specifically, the inter-class scheduler of S-RR assigns scheduling intervals

to each flow class, while the inter-class scheduler of FRR assigns weights to flow classes, not

individual flows, and serves the class with the smallest timestamp. The TSFQ inter-tier

scheduler, on the other hand, simply serves the flow with the smallest finish time among the

p such flows across the p tiers, hence its operation is much simpler. The intra-class scheduler

of S-RR serves flows within its assigned scheduling interval using a variant of DRR, while

the intra-class scheduler of FRR also uses a (different) variant of DRR. In contrast, the

intra-tier scheduler of TSFQ (described shortly) uses simple queuing structures to maintain

the flows within its tier sorted in decreasing order of finish time.
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Figure 3.1: Logical diagram of the TSFQ scheduler with p service tiers
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3.1.2 Virtual Time Computation

Let S(l)(t), l = 1, · · · , p, denote the virtual start time of the flow with the smallest

finish time among the flows of the l-th service tier at time t. Then, we may rewrite the

expression (3.6) of the virtual time function as:

VTSFQ(t + τ) = max
{

VTSFQ(t) + τ, min
l=1,...,p

{
S(l)(t)

}}
. (3.1)

Assuming that at any time t each intra-tier scheduler keeps track of the flow within its

tier with the smallest finish time, the minimum operation in the right-hand side of expres-

sion (3.1) can be implemented in O(1) time. Hence, the virtual time computation takes

time that is independent of the number n of flows.

So far, we have shown that both the virtual time computation and the inter-tier

scheduling operations take time that depends only on the number p of tiers, which is a small

constant for a given scheduler. Therefore, the critical component of TSFQ is the intra-tier

scheduler which is responsible for identifying (selecting) the flow with the minimum virtual

finish among the flows in its tier. In the next two sections we show that by employing

simple queuing structures this selection operation can be implemented efficiently.

3.2 Intra-Tier Scheduler

The l-th TSFQ intra-tier scheduler, l = 1, . . . , p, serves flows belonging to the l-th

service tier and have been assigned the same weight φl. The p intra-tier schedulers are

identical and operate independently of each other. Therefore, in this and the next section

we consider the operation of a single intra-tier scheduler in which all flows have identical

weights. For simplicity, we let φ denote the weight assigned to all the flows served by the

scheduler.

As we stated in the beginning of this chapter, we make the additional assumption

that all packets of all flows have constant size L (i.e., Lk
i = L ∀ i, k). We will remove this

assumption in the next chapter; however, we note that the implementation we present in

this chapter is of practical importance to ATM networks.

In a system with fixed-size packets and flows of identical weight, sorting flows

according to their virtual start times produces an identical order to sorting them according

to their virtual finish times. This property is formally expressed in the following lemma.
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Lemma 3.2.1 Consider flows i and j with φi = φj = φ and packets of fixed size L. Let Si

be the virtual start time of flow i, and Sj be the virtual start time of flow j. Then:

Si ≤ Sj ⇔ Fi ≤ Fj (3.2)

Proof. TSFQ assigns finish times to flows using the expressions (2.6) and 2.7). Under the

assumption of fixed packet size and identical weights, we may rewrite these expressions as:

Si =





Fi, Qi(t−) 6= 0

max{Fi, VTSFQ+(t)}, Qi(t−) = 0
(3.3)

Fi = Si +
L

φ
. (3.4)

Therefore, we have that:

Si ≤ Sj ⇔ Si +
L

φ
≤ Sj +

L

φ
⇔ Fi ≤ Fj . (3.5)

3.2.1 Queue Structure and Operation

The intra-tier scheduler for fixed-length packets consists of a simple FIFO queue,

as illustrated in Figure 3.2. The scheduler maintains a single token κi for each flow i that

it serves. Initially (i.e., at time t = 0, before any packet arrivals to the system), the FIFO

queue is empty. Tokens are inserted at the tail of the FIFO queue representing the order

in which flows will be served, and a token is removed from the head of the FIFO queue

whenever it is selected for service by the inter-tier scheduler.

The operation of the scheduler is fully described by the actions taken whenever a

relevant event takes place. The relevant events occur when (1) a packet arrives, (2) a flow

becomes eligible for service, or (3) a packet departs (is served).

• Packet arrival. A packet of flow i arriving at time t is inserted at the tail of this

flow’s queue. If flow i was active just prior to the arrival t (i.e., its queue was non-

empty, hence Qi(t−) 6= 0, using the notation of Section 2.2.1), then no other action is

taken. If, on the other hand, flow i was inactive prior to the arrival (i.e., Qi(t−) = 0),
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Figure 3.2: Queue structure of the intra-tier scheduler for fixed-size packets

then this arriving packet reaches the head of this flow’s queue at time t, and the

start time Si and finish time Fi of flow i are updated according to expressions (3.3)

and (3.4), respectively. If this previously inactive flow i becomes eligible at time t

(i.e., Si ≤ VTSFQ(t) after the update), then the next event is triggered, otherwise no

other action is taken.

• A flow becomes eligible for service. When a flow i becomes eligible at time t (i.e.,

Si = VTSFQ(t)), then the token κi corresponding to this flow is inserted at the tail of

the scheduler’s FIFO queue.

• Packet departure. Let κi be the token at the head of the scheduler’s FIFO queue at

the time the inter-tier scheduler selects this tier to serve. Then, the packet at the

head of the queue of flow i is served and token κi is removed from the scheduler’s

FIFO queue. If flow i becomes inactive, then no other action is taken. Otherwise,

a new packet reaches the head of this flow’s queue, and the start time Si and finish

time Fi are updated according to expressions (3.3) and (3.4), respectively. If the flow

becomes eligible, then the corresponding event above is triggered, otherwise no action

is taken.

Based on these actions, it is easy to see that token κi is in the scheduler’s FIFO
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queue if and only if flow i is eligible for service. Therefore, we have the following results.

Lemma 3.2.2 Considering only the flows of a given tier, the intra-tier scheduler of Fig-

ure 3.2 is identical to the WF2Q+ scheduler [2].

Proof. Since tokens are inserted into the FIFO queue at the moment the correspond-

ing flows become eligible for service (i.e., at the moment their virtual start time becomes

equal to the current time), tokens in the FIFO queue are sorted in increasing order of the

corresponding flows’ virtual start times. Because of Lemma 3.2.1, the queue is sorted in in-

creasing order of the virtual finish times, which is the order in which flows are served under

WF2Q+. Since (1) token arrivals to the FIFO queue take place at exactly the same instants

that the corresponding head-of-line packets are considered for service under WF2Q+, and

(2) the order of service is identical, the two schedulers are identical under the assumption

of flows with fixed-size packets and identical weights.

Lemma 3.2.3 The TSFQ scheduler consisting of p intra-tier schedulers and one inter-tier

scheduler is identical to WF2Q+.

Proof. Each of the p intra-tier schedulers maintains a FIFO queue that sorts the flows in

its tier in increasing order of their start (equivalently, finish) times, identical to the order in

which they are considered under WF2Q+. The inter-tier scheduler serves the p flows with

tokens at the head of the p intra-tier FIFO queues in increasing order of their virtual start

(finish) times. Consequently, the TSFQ scheduler overall is identical to WF2Q+.

Based on these results and the discussion in Section 3.1.2, we conclude that the

TSFQ (intra- and inter-tier) scheduler achieves the worst-case fairness and delay properties

of WF2Q+ with an algorithmic complexity of O(1). Note that this conclusion does not

contradict the findings of [5] which suggest that the O(log n) time complexity is fundamental

to achieving good delay bounds. The analysis in [5] assumes that flow weights and packet

sizes can take arbitrary values, whereas the result of Lemma 3.2.3 only holds under the

specific assumptions of fixed flow weights and packet lengths.
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3.2.2 Delta List Implementation

In TSFQ, we need to delay releasing the packets until they become eligible. This

task can be accomplished efficiently using a delta linked list. Each item of the delta list

corresponds to an event that is to take place at some future time; in this case, an event

corresponding to the release of some packet to the FIFO queue. The first item of the delta

list records the amount of time remaining until the first event is to take place, while the i-th

item, i > 1, records the amount of time for an event i to occur after event i− 1 has taken

place. At the instant the head-of-line packet of some flow i leaves the system, an item with

the appropriate time value is inserted at the tail of the delta list. A background process

periodically decrements the time value of the first item in the list based on the amount of

virtual time that has elapsed; this amount is determined by the amount of real time elapsed

since the last update and the rate of change in (2.1). Once the time value of the first item

reaches zero, the item is removed from the list and the corresponding packet is released to

the FIFO queue.

In TSFQ, we assign a circular delta linked list for each intra-tier queue as shown

in Figure 3.3. We maintain a pointer that represents the current system virtual time V (t)

value on the circular delta list. The algorithm uses the special characteristics for fixed-size

packet case, i.e., finishing time sorting is the same as start time sorting. If a packet P 1
i was

received as the first packet in the current busy time of the scheduler, this packet will be

released directly to the FIFO queue since its start time is equal to the current VTSFQ(t)

value and an entry will be inserted for this flow at the circular delta list, i.e., relative to

the current virtual time pointer. The value of delta entry xi for this flow in this case is L
φ .

This comes from the fact that the finishing time of this packet is the start time of the next

packet for this flow. In this case the next packet will only be released once VTSFQ(t) passes

this entry.

If any other flow fj receives its first packet P 1
j at time A1

j , this packet will be

released directly to the FIFO queue since its start time is equal to the current VTSFQ(t)

value and an entry will be added at the end of the delta list with delta value xi equal to

the difference between the two finishing times F 1
j − F 1

i since L
φ is a constant value for all

flows. If a packet arrives to a flow and there is an active entry in the circular delta list, this

packet will have to be kept in the flow’s queue. Scheduler will not release this packet until



29

Linked List

f1 (first flow release time relative to V(t)) 

f2 (second flow release time relative to f1) 

V(t) pointer (System Virtual Time pointer)

flow f(i−1) release time relative to f(i−2)

flow f(i) release time relative to f(i−1) x1

x2

x(i−1)

x(i)

Releasing Time Circular Delta

Figure 3.3: Intra-Tier Releasing Time Circular Linked List

it becomes the head of the line packet and the current VTSFQ(t) pointer passes through its

flow’s entry.

The current VTSFQ(t) pointer will not move from one point to another in the delta

linked list until the change in system virtual time is more than the next delta value. When

the pointer passes an entry of a flow, the next packet of that flow is released to the common

FIFO queue. If the pointer moved over the entry while there was no more packets, this

entry will be removed from the delta list and the flow will be considered inactive. If the

flow become active again, a new entry will be inserted at the end of the delta linked list.

Notice that due to identical length and weight properties, the only factor affecting

the order of these flows’ entries is the order of their arrival. That is why inserting the new

entries at the end of the list is sufficient to maintain the correct order.

As we mentioned before, the virtual time calculation uses the same expression as

WF2Q++ [2]:

VWF 2Q+(t + τ) = max
{

VWF 2Q+(t) + τ, min
i∈B(t)

{
S

hi(t)
i

}}
. (3.6)

where B(t) is the set of sessions backlogged in system at time t, and Si is the virtual start

time of the packet. We can observe there is a minimum operation that can introduce log(n)

complexity on the scheduler implementation. However, using the circular delta linked list

we can, in constant time, find the minimum active starting time mini∈B(t)

{
S

hi(t)
i

}
. In this

case, it is the first entry from the current virtual time pointer that has an active queue.
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3.2.3 Fairness Analysis

In this section, we will study the fairness of the TSFQ scheduler. First we will

study the fairness of the intra-tier scheduler alone, then we will conclude by giving the

overall fairness for both intra-tier and inter-tier schedulers combined. Fairness will be

assessed using two standard measures: proportional fairness and worst-case fairness.

Lemma 3.2.4 (Proportional Fairness for Intra-Tier TSFQ Scheduler) In any time

period (t1, t2) during which flows i and j are backlogged, we have that:
∣∣∣∣
Si(t1, t2)

ri
− Sj(t1, t2)

rj

∣∣∣∣ ≤ 6 L

ri
(3.7)

where Si(t1, t2) is the amount of work received by flow i during (t1, t2)

Proof.

Let us assume that two flows fi and fj were continuously backlogged at time

interval (t1, t2). Let P i
k represent the first packet that departed in this time interval from

flow fi at time Lk
i and assume P l

i be the last packet to depart in this time interval from

flow fi at time Ll
i as shown in Figure 3.4.

Since flow fi is continually backlogged in interval (t1, t2), the starting time

Sh
i = max(F h−1

i , V (Ah
i )) = F h−1

i (3.8)

for all h = k + 1, k + 2, ..., l − 1, l .

From this we can say that

l∑

x=k+1

L ≤ si(t1, t2) ≤
l+1∑

x=k

L (3.9)

where L is the packet length.

Since L and ri are constant for all flows

(l − k) L ≤ si(t1, t2) ≤ (l − k + 2) L (3.10)

Let us first find the upper limit. Since the virtual time V (t) is non-decreasing

function of time, we have

V (t2) − V (t1) ≥ V (Ll
i) − V (Lk

i ) (3.11)
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Figure 3.4: Packets in time interval (t1,t2).

Since TSFQ does not release packets to the common queue before the virtual time

is equal to its start time, packet Pl is not served at time Ll unless

V (Ll
i) ≥ Sl

i (3.12)

Since the flow is backlogged at this time.

V (Ll
i) ≥ F l

i − L

ri
(3.13)

Since Σallflows ri ≤ r, the packet will be serviced before or at its theoretical finishing

time, hence

V (Lk
i ) ≤ F k

i (3.14)

V (t2) − V (t1) > F l
i − L

ri
− F k

i (3.15)

Since flow fi is continuously backlogged at least since packet k

F l
i = F k

i +
x=l∑

x=k + 1

L

ri
= F k

i + (l − k)
L

ri
(3.16)

since L and ri are constant for all flows.

V (t2) − V (t1) > F k
i + (l − k)

L

ri
− L

ri
− F k

i (3.17)

V (t2) − V (t1) > (l − k − 1)
L

ri
(3.18)

from this equation and equation (3.10) we obtain:

si(t1, t2) < V (t2) − V (t1) +
3 L

ri
(3.19)
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si(t1, t2) ≤ V (t2) − V (t1) +
3 lmax

i

ri
(3.20)

To obtain the lower bound we need to consider two cases.

Case I: F k−1
i ≥ V (Ak

i )

Since there is no departure in (t1, Lk
i ), we have Lk − 1

i ≤ t1 then

V (t2) − V (t1) ≤ V (Ll + 1
i ) − V (Lk − 1

i ) (3.21)

Since we assume that the flows are not oversubscribed i.e. Σallflowsri ≤ r we have

V (Ll + 1
i ) ≤ F l + 1

i (3.22)

Since TSFQ only releases packets when their start time started in virtual time, we have

V (Lk − 1
i ) > Sk − 1

i or V (Lk − 1
i ) > F k − 1

i − L
ri

.

V (t2) − V (t1) ≤ F l + 1
i − F k − 1

i +
L

ri
(3.23)

Since flow fi is continually backlogged since packet k

F l + 1
i = F k

i +
l + 1∑

x=k + 1

L

ri
(3.24)

from case assumption F k
i = F k − 1

i + L
ri

then

F l + 1
i = F k − 1

i +
l + 1∑

x=k

L

ri
(3.25)

V (t2) − V (t1) <
l + 1∑

x=k

L

ri
+

L

ri
(3.26)

i.e

V (t2) − V (t1) < (l − k + 3)
L

ri
(3.27)

from this equation and equation (3.10)

si(t1, t− 2) > V (t2) − V (t1) − 3 L

ri
(3.28)

Case II: F k − 1
i < V (Ak

i )

Since flow fi is backlogged since t1 and there were no packet departures in (t1, Lk
i ),

hence Ak
i ≤ t1. Therefore

V (t2) − V (t1) ≤ V (Ll + 1
i ) − V (Ak

i ) (3.29)
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V (t2) − V (t1) ≤ F l + 1
i − V (Ak

i ) (3.30)

V (t2) − V (t1) ≤ F k
i +

l + 1∑

x=k + 1

L

ri
− V (Ak

i ) (3.31)

from case assumption F k
i = V (Ak

i ) + L
ri

. Then,

V (t2) − V (t1) ≤
l + 1∑

x=k

lxi
ri

(3.32)

i.e.,

V (t2) − V (t1) ≤ (l − k + 2)
L

ri
(3.33)

si(t1, t2) > V (t2) − V (t1) − 2 L

ri
(3.34)

Since the first case is lower than the second case, we will use (5.30) and from (3.10)
∣∣∣∣
si(t1, t2)

ri
− sj(t1, t2)

rj

∣∣∣∣ ≤ 6 L

ri
(3.35)

The worst-case fairness index (WFI) [9, 2] measures the maximum time Di that a packet

arriving at an empty flow queue needs to wait before it receives its guaranteed service rate

ri. We have the following lemma.

Lemma 3.2.5 (Worst-Case Fairness)

Di ≤ Qi

ri
+

2L

ri
(3.36)

where Qi is the total backlog of flow i and L is the packet length.

Proof. If a packet from flow fi arrives at time t1 and creates a total backlog of Qi. Let

t2 be the time when this Qi is transmitted. Since this scheduler releases one packet to the

FIFO queue when virtual time v is greater than the packets’s start time, this means at least

one packet is released every packet service time or counter time Ci then

Di ≤
X∑

1

Ci + Ci start + Ci end (3.37)
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where X is the number of flow i packets, Ci start and Ci end is the residual counter times at

the start and end of the time period (t1, t2) respectively. Since, each flow is served at least

with ri

Ci ≤ L

ri
(3.38)

From these two equations:

Di ≤
X∑

1

L

ri
+

L

ri
+

L

ri
(3.39)

Di ≤ Qi

ri
+

2L

ri
(3.40)

3.2.4 TSFQ Intra-Tier and Inter-Tier Fairness Analysis

Previously we studied the fairness of a single intra-tier scheduler. Now, we will

study the fairness of the whole scheduler which includes p intra-tier schedulers plus the inter-

tier scheduler. For a single TSFQ intra-tier scheduler, we have found that the proportional

fairness is 6 L
ri

but as we mentioned before that the inter-tier scheduler selects the smallest

finishing time among the p Head of line (HOL) packets. Considering this fact we have the

following lemma for proportional fairness.

Lemma 3.2.6 (Proportional Fairness) In any time period (t1, t2) during which flows i

and j are backlogged, we have that:∣∣∣∣
Si(t1, t2)

ri
− Sj(t1, t2)

rj

∣∣∣∣ ≤ 3 L

ri
+

3 L

rj
(3.41)

Proof. Each intra-tier scheduler has a bound in proportional fairness of 6 L
ri

from Lemma

3.2.4. Using the same proof but for two flows with different rates ri and rj

Similarly, worst-case fairness is defined by the following lemma

Lemma 3.2.7 (Worst-Case Fairness)

Di ≤ Qi

ri
+

2 L

ri
(3.42)
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Proof. From lemma 3.2.3 , TSFQ fixed-size packet is identical to WF2Q+. Hence, TSFQ

retains WF2Q+ strong service bound property across all intra-tier schedulers and the proof

of the previous lemma hold for p intra-tier schedulers.
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Chapter 4

Tiered-Service Fair Queuing

(TSFQ)- The Variable-Size Packet

Case

In this chapter, we will remove the assumption we made in the previous chapter

that all packets have a fixed size. As in the previous case, we consider the problem of

scheduling flows within a given service tier, therefore we assume that all flows are assigned

the same weight φ. In a network with variable-size packets, the statement of Lemma 3.2.1 is

no longer true, since the second term in the right-hand side of (3.4) is not constant. Hence,

in such a network, fair queuing schedulers in general require some form of packet sorting.

In the Internet, however, it is well known that certain packet sizes dominate [18,

19]. Specifically, the study in [18] found that packets of one of three common sizes make

up more than 90% of all Internet traffic; the three common packet sizes identified in the

study were 40, 576, and 1500 bytes, corresponding to TCP acknowledgments, the default IP

datagram size, and maximum-size Ethernet frames, respectively. A more recent study [19]

shows that (1) Internet traffic is mostly bimodal at 40 and 1500 bytes, (2) there is a shift

away from 576 bytes due to the proliferation of Ethernet, and (3) a new mode is forming

around 1300 bytes which the authors theorize is due to widespread use of VPNs. Similar

studies, which can be found on CAIDA’s web site (http://www.caida.org), confirm that

the length of the vast majority of Internet packets takes one of a small number of constant
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values. In the remainder of this section we show how we can exploit these facts regarding the

Internet packet length distribution to modify the intra-tier TSFQ scheduler we presented

in the previous section so that it can handle Internet traffic efficiently, i.e., by performing a

number of packet sorting operations independently of the number of flows.

4.1 Queue Structure and Operation

Instead of maintaining a single FIFO queue, as is the case for fixed-size packets

shown in Figure 3.2, the intra-tier scheduler for variable packet size networks maintains a

small number k of queues. The queue structure of this scheduler is illustrated in Figure 4.1

for the trimodal packet length distribution reported in [18]; the queue structure can be

modified in a straightforward manner to reflect any similar distribution. In this case, the

scheduler maintains k = 7 queues. Three of the queues are dedicated to packets of a

common size, i.e., 40, 576, and 1500 bytes, respectively, which define the three modes of the

distribution in [18]. The other four queues are for packets of sizes other than the common

values; as seen in Figure 4.1, there is one queue for packets of size less than 40 bytes, one

for packets of size 41-575 bytes, one for packets of size 577-1499 bytes, and one for packets

of size greater than 1500 bytes.

4.2 Intra-Tier Scheduler: The Variable-Size Packet Case

The operation of the intra-tier scheduler is very similar to the one we described in

Section 3.2.1, with only one difference. In particular, the actions taken at packet arrival and

departure events are identical to those in the fixed-packet case listed in Section 3.2.1. The

only difference is in the actions taken at instants when a flow becomes eligible for service:

• A flow becomes eligible for service. When a flow i becomes eligible at time t, then the

token κi corresponding to this flow is inserted into the queue corresponding to the

size of the packet at the head of the queue of flow i.

Similar to the fixed-packet case, token κi is in one of the intra-tier scheduler’s queues if and

only if flow i is eligible for service.

Since each of the p inter-tier schedulers maintains k distinct queues, the inter-tier

scheduler selects the flow to serve next as the one with the smallest virtual finish time
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Figure 4.1: Queue structure of the intra-tier scheduler for Internet packet traffic
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among the pk candidate flows whose tokens are at the head of the pk queues. Since both p

and k are small integers and their values are constant for a given system, this operation of

the inter-tier scheduler takes constant time, as in the fixed-size packet case.

4.2.1 Packet Sorting Operations

Note that Lemma 3.2.1 holds true for packets of a common size. Hence, the queues

dedicated to these packets operate in a FIFO manner, and packets are simply inserted at

the tail of these queues. Since packets of a common size make up more than 90% of

Internet traffic [18], no sorting operations are necessary for the vast majority of packets.

On the other hand, queues dedicated to packets of sizes between the common values must

be sorted appropriately at the time of a packet insertion. These sorting operations take

place infrequently (less than 10% of the time), and involve relatively short queues (since less

than 10% of the packets are spread over several such queues at p different service levels).

Moreover, the time complexity of the sorting operations is independent of the number m of

flows in the given service tier, and is a function only of the network load and the ratio of

packets with a non-common size.

We have the following results.

Lemma 4.2.1 The TSFQ scheduler for variable packet sizes, consisting of p intra-tier

schedulers as in Figure 4.1 and one inter-tier scheduler, is identical to WF2Q+.

Proof. The proof of Lemmas 3.2.2 and 3.2.3 also holds in this case, hence the scheduler is

equivalent to WF2Q+.

Finally, we note that, although consecutive packets of the same flow i may be

inserted into different queues in Figure 4.1, they will always be transmitted in order: not

only does the second packet have a larger virtual finish time than the first one, but since

there is exactly one token for each flow, the second packet cannot be considered for service

until the first one has departed from the scheduler.

4.2.2 Elimination of Packet Sorting Operations

The operation of the intra-tier scheduler may be further simplified by eliminating

packet sorting even for queues holding packets of sizes between the common values. Doing
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so may cause some packets to be served in incorrect order of virtual finish time, hence

introducing a small degree of unfairness. However, the overall impact is likely to be small.

Indeed, observe that packets of a non-common size represent only a small fraction of the

overall traffic seen by the server, and are distributed over a number of different queues

across p service tiers. Consequently, the arrival rate to each of these queues is likely to

be low, especially under typical operating conditions when the load offered to the server is

not too high. Now note that, since all flows within a service tier have the same weight φ

in expression (3.4), the order of packets in such a queue will depend on the relative values

of their virtual start time and length. Therefore, even when a small packet arrives to find

larger packets in the queue (i.e., packets with a larger value for the second term in the

right-hand side of (3.4)), the elapsed time since the previous arrival (which affects the first

term of (3.4)) may be sufficiently large so that the queue remains sorted.

This intuition is further supported by the coarse manner in which the leap forward

virtual clock [21] algorithm computes timestamps, and the mechanism employed by the bin

sort fair queuing (BSFQ) discipline [1] to sort packets. The results in [21, 1] indicate that

approximate sorting can be as good as exact sorting; moreover, in the case of our TSFQ

scheduler, approximate sorting is limited to a small fraction of all packets.

We emphasize that the queue structure shown in Figure 4.1 is for illustration

purposes only and is simply meant to convey the idea underlying the structure of the

scheduler for Internet packet traffic; we do not imply that routers have to be configured in

exactly this manner. Network operators may configure this queue structure to reflect the

specific packet distribution observed in their networks, and update it over time as traffic

conditions evolve. Similarly, they may optimize the number of service tiers and the flow

weights associated with them (e.g., using the techniques presented in earlier chapters) by

taking into account the prevailing user demands. Therefore, this framework of fair queuing

schedulers for tiered-service networks is quite flexible. Network providers may adapt the

specific elements of the framework to differentiate their offerings, and to provide users with

a menu of customized services.
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4.3 Fairness Analysis

In this section, we will study the fairness of the TSFQ scheduler for variable-size

packet case. First, we need to notice that each intra-tier scheduler in the variable-size packet

case is only an array of fixed packet size intra-tier scheduler. Each element of this array

represents a different packet size. From this, we can use the same proofs and results from

the previous chapter to analyze fairness of variable-size packet case.

The TSFQ for the variable-size packet case consists of p intra-tier scheduler. Each

one of these intra-tier schedulers consists of k queues as shown in Figure 4.1. The inter-tier

scheduler has to choose the smallest finishing times among these pk queues. In the previous

chapter, we found that the proportional fairness for TSFQ intra-tier scheduler is 6 L
ri

. The

following lemma calculates the proportional fairness for the TSFQ variable-size packet case.

Lemma 4.3.1 (Proportional Fairness) In any time period (t1, t2) during which flows i

and j are backlogged, we have that:
∣∣∣∣
Si(t1, t2)

ri
− Sj(t1, t2)

rj

∣∣∣∣ ≤ 3 Li

ri
+

3 Lj

rj
(4.1)

Proof. Each intra-tier scheduler has a bound in proportional fairness of 6 L
ri

from Lemma

3.2.4. Using the same proof but for two flows with different rates and packet-sizes (ri, Li)

and (rj , Lj).

Similarly, worst-case fairness is defined by the following lemma.

Lemma 4.3.2 (Worst-Case Fairness)

Di ≤ Qi

ri
+

2 Lmax

ri
(4.2)

Proof. From lemma 4.2.1 , TSFQ variable-size packet is identical to WF2Q+. Hence,

TSFQ retains WF2Q+ strong service bound property across all intra-tier schedulers and

the proof of the previous lemma hold for p intra-tier schedulers. Taking Lmax as the worst-

case among the k packet-size queues.
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Figure 4.2: Testbed setup

4.4 Experimental Evaluation of TSFQ

We have developed implementations of the TSFQ scheduler for the ns-2 network

simulator and in the Linux kernel. The details of the ns-2 implementation are reported

in [22], along with a comprehensive set of simulation experiments that validate the op-

eration of TSFQ. In this section we present network experiments with the Linux kernel

implementation which is fully described in [23].

The TSFQ scheduler was implemented as a Linux kernel loadable module. The

Linux kernel version 2.6.26.2 [24] was used, the latest kernel available at the time of the

implementation in early 2008. The WF2Q+ discipline [2] was also implemented as a sepa-

rate loadable module for comparison purposes, since a Linux kernel implementation of the

WF2Q+ scheduler did not exist at the time.

4.4.1 Testbed and Experimental Setup

The experiments were carried out using a testbed consisting of three Linux ma-

chines connected as shown in Figure 4.2. The leftmost machine acts as the “sender” of UDP

traffic that is destined to the rightmost machine, the “receiver.” The middle machine is

configured as a “router” that receives packet traffic from the sender and forwards it to the

receiver. The Ethernet link from the sender to the router is configured to run at 1 Gbps,

while the link from the router to the receiver is configured to run at 10 Mbps. Consequently,

the latter link becomes the bottleneck, causing the queues at the router to build up.
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UDP traffic at the sender is generated by multiple simultaneous flows, each trans-

mitting to a different destination port on the receiver. The router implements the TSFQ

and WF2Q+ disciplines to schedule packets received from the sender for transmission on

the outgoing 10 Mbps link. It also employs per-flow queuing, assigning a separate FIFO

queue to each UDP flow. The router uses the port information carried by the packets to

determine the flow to which they belong and insert them into the appropriate queue. The

TSFQ and WF2Q+ schedulers use pre-configured weights to serve the queues of the various

flows.

The UDP flows at the sender continuously transmit packets to the receiver without

any form of flow control. Packet sizes L are randomly generated from the following discrete

distribution:

Pr[L = x] =





0.3, x = 40

0.3, x = 1200

0.3, x = 1500

0.1, 1 ≤ x ≤ 39, 41 ≤ x ≤ 1199, 1201 ≤ x ≤ 1499

(4.3)

This distribution generates traffic dominated by a small number (in this case, three) of

packet sizes, and is similar to the packet size distributions observed in [18, 19]. Consequently,

the intra-tier schedulers of TSFQ are configured with six queues, similar to the structure

shown in Figure 4.1 (the seventh queue of Figure 4.1 for packets of size greater than 1500

bytes is not used here, as no such packets are generated).

A number of experiments were carried out to investigate the behavior of the sched-

ulers under three scenarios:

• Scenario I. Several flows of different weights are started at the same time. After

the system reaches steady state, the flows are terminated one by one. This scenario

explores how the schedulers allocate excess bandwidth to the remaining flows.

• Scenario II. A small number of flows are started at the same time. After the system

reaches steady state, new flows of different weights are started. Once the system

reaches steady state again, the newly introduced flows are terminated. The start and

termination instants of the new flows are spread over time. These experiments are

used to investigate the impact of new flows on the bandwidth share of existing ones,

as well as the allocation of excess bandwidth.



44

• Scenario III. Many flows spanning a small number of service levels are run for a long

time. This scenario is used to evaluate the fairness of each scheduling discipline.

Specifically, we use Jain’s fairness index [25] to compare the WF2Q+ and TSFQ

schedulers. In a system with n competing flows and flow i having throughput share

fi, i = 1, . . . , n, Jain’s fairness index (FI) is defined as:

FI =
(
∑n

i=1 fi)
2

n
∑n

i=1 f2
i

, (4.4)

such that a value of 1 represents perfect fairness with all flows receiving an equal share

(= 1/n) of the available bandwidth.

4.4.2 Performance Results

In this section we present a set of illustrative experiments for the three different

scenarios described above.

Scenario I: Allocation of Excess Bandwidth

Figures 4.3 and 4.4 present the results of an experiment to investigate the relative

behavior of the WF2Q+ and TSFQ schedulers in allocating excess bandwidth. This exper-

iment involves four flows: flows 1 and 2 each have weight 0.15, while flows 3 and 4 each

are assigned weight 0.35. For this experiment, the TSFQ scheduler was configured with

p = 2 tiers, one with weight 0.15 and the other with weight 0.35; hence, flows 1 and 2 were

assigned to the first tier, and flows 3 and 4 were assigned to the second tier. All four flows

start transmission simultaneously at time t = 0, and are terminated one-by-one, in reverse

order of their index, at 10-second intervals.

Figures 4.3 and 4.4 plot the throughput of each flow (in Mbps) as a function of

time for the WF2Q+ and TSFQ schedulers, respectively. Recall that the bottleneck link in

the experimental setup was set to 10 Mbps, and this latter value represents the bandwidth

that is shared among the four flows. We observe that during the first 10 seconds of the

experiment when all four flows are active, both schedulers allocate the available bandwidth

in proportion to the flow weights, such that flows 1 and 2 (respectively, flows 3 and 4)

capture approximately 15% (respectively, 35%) of the total bandwidth each. When flow 4

terminates, the bandwidth share of each of the three flows that remain active increases



45

proportionally to its weight. In particular, flow 3 with the highest weight (.35) captures

most of the bandwidth that becomes available, while flows 1 and 2 of the same but lower

weight (0.15) capture an equal share of the excess bandwidth. The same behavior is observed

at the time the other flows are terminated. Importantly, the throughput curves of a given

flow are comparable across the two figures, implying that the TSFQ and WF2Q+ schedulers

perform similarly in terms of allocating bandwidth to flows in proportion to their weights.

Scenario II: Impact of New Flows

In order to demonstrate the performance of the two schedulers when flows both

arrive and depart, we run an experiment with the same flows as in Scenario I, i.e., two flows

of weight .35 and two of weight .15. In this case, the flows of lower weight (flows 1 and 2)

both become active at time t = 0. At time t = 10 seconds (respectively, t = 20 seconds)

flow 3 (respectively, flow 4) of higher weight becomes active. All four flows remain active

until time t = 30 seconds, at which time flow 3 departs, followed by flow 4 at time t = 40

seconds.

The results of this experiment are shown in Figures 4.5 and 4.6, which again

plot the time-varying throughput of each flow under the WF2Q+ and TSFQ scheduler,

respectively. During the first ten seconds of the experiment, the two active flows receive

an equal share of the available bandwidth despite their low weights, as expected. As the

other two flows are introduced, the bandwidth share of existing flows is reduced accordingly;

on the other hand, the bandwidth share of active flows increases as flows depart (i.e., are

terminated). Overall, we make three important observations: (1) at any point in time the

available bandwidth is shared among active flows in proportion to their weights; (2) as flows

arrive or depart, the bandwidth share of all the flows in the system quickly reaches a new

equilibrium; and (3) there is good agreement in the behavior of the two schedulers.

Scenario III: Long-Term Fairness

The first experiment of this section investigates qualitatively (i.e., graphically) the

long-term fairness of the WF2Q+ and TSFQ schedulers, and involves 32 flows that all start

at time t = 0 and remain active throughout the duration of the experiment. Two of the

flows have a weight of .35, ten flows have a weight equal to 0.05, and the remaining twenty
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flows have a weight of 0.01. Hence, for this experiment, the TSFQ scheduler was configured

with p = 3 tiers with weights of 0.35, 0.05, and 0.01, respectively, and the thirty-two flows

were assigned to the appropriate tier according to their individual weights.

Figures 4.7 and 4.8 plot the throughput of the thirty-two flows as a function of

time for the WF2Q+ and TSFQ schedulers, respectively. In both figures, the flows are

clearly separated into three groups, each corresponding to three TSFQ tiers, with flows

within each group receiving a share of bandwidth in line with their weight. Although

the throughput of the various flows shows more short-term variations under the TSFQ

scheduler, the overall behavior is similar in the two figures. In order to quantify the long-

term fairness of the two schedulers, we computed Jain’s fairness index from expression (4.4),

using the long-term throughput of the thirty-two flows, and normalizing these values by the

corresponding flow weight. The fairness index values are plotted in Figure 4.9 as a function

of time. The fairness index is about 10% higher under the WF2Q+ scheduler, reflecting the

lower throughput variations in Figure 4.7. Nevertheless, the curves of both schedulers are

relatively stable across the duration of the experiment, indicating that the two schedulers

have similar fairness characteristics.
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Chapter 5

The Worst-Case Bin Sort Queuing

(WBSQ)

In this chapter we present a new noble packet scheduler called the Worst-Case Bin

Sort Queuing (WBSQ). Similar to the TSFQ scheduler, WBSQ uses quantization to achieve

good fairness properties while maintaining low complexity. However, the quantization in

WBSQ is used in a different dimension than the one used in TSFQ. As we discussed before,

TSFQ quantize the service offered by the scheduler into p service tiers. WBSQ on the other

hand quantizes virtual time into buckets of time or bins to eliminate the need for sorting.

In addition, WBSQ utilizes this type of quantization in a special queue structure to achieve

constant worst-case fairness.

The virtual time stamp calculation in WBSQ is similar to the ones used by most

of the WFQ schemes. Suppose that the kth packet of a flow i arrives at time t, has weight of

φi, and has length Lk
i . Let Sk

i and F k
i denote the virtual times at which this packet begins

and completes service, respectively. Letting F 0
i = 0 for all flows i, we have [6]:

Sk
i = max{F k−1

i , V (ak
i )} (5.1)

F k
i = Sk

i +
Lk

i

φi
(5.2)

where ak
i is the arrival of packet k of flow i. For each arriving packet, its finish time is

computed according to equations (5.1) and (5.2). The scheduler serves packets in order of

their finish times for those which have their start time already started in GPS at time t
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i.e when system virtual time V (t) passes their starting time S. For system virtual time

V (t) calculation, WBSQ uses the simplified calculation proposed by WF2Q+ as in equation

(5.3).

v(t + τ) = max(v(t) + τ, min(Si)) (5.3)

for each flow fi, (i = l, ...N).

WBSQ scheduler employs the concept of bin sorting to eliminate the need for

sorting where the virtual time space is divided into equal intervals or bins. Each bin

represents an interval of virtual time between t and t + δ where δ is the bin width. Packets

are assigned virtual time stamps and inserted into their corresponding bins. The queuing

order within a bin is First In First Out, FIFO. WBSQ starts serving from the first bin and

gets the first eligible packet in that bin. A packet is eligible when the system virtual time

V (t) is greater than its start time Sk
i (t).

Notice that there are two major differences between WBSQ and Bin Sort Fair

queuing (BSFQ) as proposed in [1]. First, WBSQ uses WF2Q+ system virtual time V (t)

calculation (5.3) whereas BSFQ use the current bin finishing time value. The second differ-

ence is that WBSQ serves only eligible packets i.e when system virtual time V (t) is greater

than packets starting time. BSFQ on the other hand does not have a mechanism to check

eligibly. Thats the reason why WBSQ has constant worst-case fairness whereas BSFQ suf-

fers from O(N) worst-case fairness. However, both schedulers serve packets in FIFO order

within a single bin. That’s why bin width δ is an important design parameter as we will

see when we talk about fairness properties of WBSQ.

In order to keep constant implementation complexity, WBSQ needs to avoid using

the minimum operation that exists in the calculation of system virtual time (3.6). In fact,

WBSQ needs to emulate two minimum operations to keep constant complexity. The first

minimum operation is needed to select the packet with minimum finishing time F equation

(5.2) i.e sorting. The second minimum operation is needed to calculate virtual system time

V (t) according to WF2Q+ equation (5.3). These two operations normally cost log(N) where

N is the number of flows. In order to maintain constant time implementation, WBSQ uses

a new idea that utilizes the bin sort concept, circular buffers and linked lists to represent

and sort the finishing time and starting time of the flows.
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Figure 5.1: WBSQ scheduler.

5.1 Queue Structure and Operation

As shown in Figure 5.1, WBSQ uses two circular buffers that are divided into

virtual time bins. One buffer represents the finishing time and the second buffer represents

the starting time. Both buffers are organized into N bin bins where N bin is the number of

bins in the circular buffer. N bin is a system design parameter and must be set to a value

that is equal to, or greater than a certain threshold to allow scheduler to use all available

buffers. Each bin is implicitly labeled with a virtual time interval and each interval has

length δ. The parameter δ is another system design parameter of the scheduler and its

value has a significant impact on performance. The intervals of the bins are disjointed and

their union spans a continuous range of the virtual time space that represents finishing and
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starting times.

Each bin in these two circular buffers maintains a pointer to a linked list. In the

finishing time circular buffer, each bin points to a linked list of flows that have finishing times

corresponding to the bin virtual time interval. Similarly, in the starting time circular buffer,

each bin points to a linked list of flows that have starting times corresponding to the bin

virtual time interval. In each circular buffer, there is a moving starting pointer that points to

the bin with the minimum value. In the finishing time circular buffer case, the pointer Pminf

points to the bin with time interval (tminbin , tminbin + δ) that holds the minimum finishing

time. Similarly, the pointer Pmins points to the bin with time interval (tminbin , tminbin + δ)

that holds the minimum starting time of all flows. Notice that the N bin bins in each circular

buffer will be used to represent virtual time interval from (tminbin , tminbin + (N bin −1)∗ δ)

where N bin is the number of bins in the circular buffer. Since the finishing time is an

increasing function of time, the minimum finishing time is always moving forward. This

makes the represented virtual time range (tminbin , tminbin + (N bin −1)∗δ) a forward sliding

window. There is another moving pointer in the finishing time circular buffer called Pv that

points to the bin which has the current system virtual time V (t) value as shown in Figure

5.1.

When a packet becomes the head of the flow, two entries will be assigned to it. One

in the finishing time linked list corresponding to its finishing time and one in the starting

time linked list corresponding to its starting time. The bin number Pf corresponding to the

packet finishing time Fi(t) will be calculated relative to the bin Pv represent the current

V (t) as follows.

Pf = Pv +
⌊

Fi(t) − V (t)
δ

⌋
(5.4)

If this value is equal to Pv, flow finishing time will be represented in the current V (t) bin Pv,

and otherwise, it is represented in the Pf bin relative to the Pv. If Pf is greater than Nm,

the packet is discarded. In the same manner, the starting time entry will be inserted into

the starting time circular buffer using a similar equation but with reference to the current

minimum starting time minS .

PS = PminS +
⌊

Si(t) − minS

δ

⌋
(5.5)

where PminS is the bin holding the minimum starting time value of all active flows.
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When choosing the next packet to serve, WBSQ always starts from the starting

point reference PminF bin and serves the first flow in the FIFO linked list that has a starting

time Si(t) less than or equal to V (t). If no flow was found with this criteria at a certain bin,

WBSQ will move to the next bin and so on. Notice here that even in the case of serving a

packet from a bin that might be different than the starting point PminF reference, WBSQ

will start from the same start point PminF in the next service cycle. However, there is some

unfairness introduced in packet selection due to using FIFO within a bin. As we will show

in the next section, this unfairness is proportional to bin width δ.

All pointers of WBSQ’s circular buffers are continuously updated at arrivals and

departures. Such that, whenever the V (t) value changes, the pointer Pv will be advanced to

the bin that holds the new value of V (t). Similarly, PminS and PminF also shift according

to the new value of Smin and Fmin respectively. Also, when the next packet of a flow comes

to the head of the line, the old entries for previous packet starting time and finishing time

are removed and the new values are inserted.

However, when the starting time entry for the flow that has the minimum starting

time minS are removed, the starting pointer PminS will choose the next minimum starting

time. The new Smin will be chosen from the FIFO linked list in the current PminS . If no

more entries exist in that bin, WBSQ will choose from the next bin and so on. Note here

that there is a possibility that the new selected Smin is not the actual minimum starting

time. This error is introduced due to lack of sorting within a single bin. This could lead

to having Smin with δ greater than the actual minimum starting time. We will discuss the

effect of this error in the scheduler analysis section. If the entry for the minimum finishing

time were removed, the next finishing time entry with same or next bin is chosen for PminF

pointer. On the other hand, if a packet with a finishing time less than the existing Fmin

were inserted, PminF pointer will point to this new packet bin.

All of these operations can be accomplished at constant time, and by updating the

two circular buffers and their pointers, we can get the minimum finishing time and minimum

starting time without expensive minimum operations. Hence, we can keep constant time

complexity for packet sorting and V (t) calculations. In the next section, we will prove

that WBSQ scheduler provides an end-to-end delay and a fairness guarantee. Also we will

discuss its worst-case fairness.



56

5.2 Scheduler Analysis

5.2.1 Accuracy of Virtual Time Calculation

The time stamps calculations in WBSQ is not performed using the exact virtual

time equation (5.3) that W2FQ+ uses. Instead, these calculations are done through ap-

proximation methods to avoid the log(N) complexity of minimum operation. However, this

approximation introduces some error in the calculations. Errors in calculations are intro-

duced from two main sources. The first is introduced when selecting the next minimum

starting time Smin from a bin in the starting time circular buffer. Since there is no sorting

within a bin, this minimum could be δ greater than the actual minimum starting time. This

could advance V (t) by δ ahead as in equation (5.3). As a result, errors are introduced when

packets time stamps are calculated using the new value of V (t) in (5.1) and (5.2). This

could advance finishing and starting time by δ for the new traffic that arrives after this

error in V (t) is introduced. However, in the worst-cast, this error may give an advantage

for up to δ r worth of packets only.

The second source of error comes from selecting the next packet to service within

a bin in the finishing time bin array. Since packets are not sorted within a bin, this can

lead to selecting a packet other than the packet with the minimum finishing time. However,

WBSQ would not service a packet if it not eligible for service. This condition limits the

worst-case difference to Σallflows
Lmax

ri
or Lmax

r .

Lemma 5.2.1 The Maximum total service Wδ that all flows fj may receive within a virtual

time bin [t, t + δ] before serving an eligible flow fi is bound by:

Wδ ≤ r δ + Lmax (5.6)

where j = 1, 2, ..., N where j 6= i

Proof.

From our discussion earlier in this section, the worst-case error in finishing time

calculation could lead up to δ in advantage to old packets. Let assume that flow i actual

finishing time F actual
i (t) was increased by δ due to the introduced virtual time error. If flow

j has finishing time Fj(t) > F actual
i (t) but due the introduced error it becomes

Fj(t) > F actual
i (t) + δ
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The only packets that can be served from flow j are those that have a finishing

time

Fj(t) < F actual
i (t) + δ.

Since flow j finishing time increase is proportional to rj , the maximum service

that flow j could have before flow i is rj δ.

Hence, the total service that all flows can have before flow i is

Σallflows rj δ = r δ (5.7)

Now let us consider the case when FF
i (t) ≤ FF

j (t) where PF
i is the first packet

of flow i in virtual time [t, t + δ]. Let us assume that the order of packets was reversed due

to the lack of sorting within a bin. Since WBSQ serves packet in FIFO within a bin, flow j

packet will be considered first. However, only those packets from flow j who started service

in GPS V (t) ≥ Sm
j (t) could be served before serving PF

i packet. Let consider worst-case

scenario when flow j restarted being active with packet PF
j

SF
j (t) = max(V (t), FF−1

j (t)) = V (t)

Since FF
i ≤ FF

j

SF
i (t) − LF

i
ri

≤ V (t)− LF
j

ri

V (t) ≥ SF
i (t) +

LF
j

ri
− LF

i
ri

Now, if packet PF
j is served before PF

i , the new starting time for flow j is

SF+1
j (t) = FF

j (t) = V (t) +
LF

j

ri

Even if packet PF+1
j has been inserted into the bin’s linked list before packet PF

i ,

the following condition has to be true for updated `V (t)
`V (t) ≥ SF+1

j (t) ≥ V (t) +
LF

j

ri

Since we are using WF2Q+ virtual time calculations. This means that WBSQ

virtual time calculations meet the GBT property in terms of the virtual system time and

the virtual start time. This means:

Si(t) − Lmax
ri

≤ V (t) ≤ Si(t) + Lmax
ri

Hence, the maximum value that V (t) can go in advance is Lmax
ri

. This means that

the total service that all flows can get before serving packet PF
i is Lmax

From this equation and (5.7), the Maximum total service Wδ that all flows fj may
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Figure 5.2: Packets in time interval (t1, t2).

receive within a virtual time bin [t, t + δ] before serving an eligible flow fi is bound by:

Wδ ≤ r δ + Lmax (5.8)

5.2.2 Proportional Fairness

The fairness measure of Golestani [8] essentially requires that the difference be-

tween the normalized service received by any two backlogged flows fi and fj , over any time

period (t1, t2), be bounded by a small constant. This section analyzes the performance of

WBSQ scheduler with respect to the fairness measure of Golestani.

Theorem 5.2.1 (Golestani fairness). In any time period (t1, t2) during which flows fi and

fj are backlogged,
∣∣∣∣
Si(t1, t2)

ri
− Sj(t1, t2)

rj

∣∣∣∣ ≤ 3(
lmax
i

ri
+

lmax
j

rj
+ δ) (5.9)

where Si(t1, t2) is the amount of data sent for flow i during the time period (t1, t2)

Proof.

Let us assume that two flows fi and fj were continuously backlogged at time

interval (t1, t2). Let P i
k represent the first packet that depart in this time interval from flow

fi at Lk
i and assume P l

i be the last packet depart in this time interval from flow fi at time

Ll
i as shown in Figure 5.2.

Since flow fi is continually backlogged in interval (t1, t2), the starting time

Sh
i = max(F h−1

i , V (Ah
i )) = F h−1

i (5.10)
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for all h = k + 1, ..., l + 1.

from this we can say that

l∑

x=k+1

lxi ≤ Si(t1, t2) ≤
l+1∑

x=k

lxi (5.11)

Let us first, find the upper limit. Since V (t) is non-decreasing function of time,

we have

V (t2) − V (t1) ≥ V (Ll
i) − V (Lk

i ) (5.12)

Since WBSQ is worst-case scheduler, packet P l
i is not served at time Ll

i unless

V (Ll
i) ≥ Sl

i (5.13)

Since flow is backlogged at this time and there are δ margin of error in finishing time

calculation

V (Ll
i) ≥ F l

i − lli
ri

− δ (5.14)

Since Σallflows ri ≤ r the packets will be serviced before or at its theoretical finishing

time, then

V (Lk
i ) ≤ F k

i (5.15)

V (t2) − V (t1) > F l
i − lli

ri
− δ − F k

i (5.16)

Since flow fi is continuously backlogged at least since packet k

F l
i = F k

i +
x=l∑

x=k + 1

lxi
ri

(5.17)

V (t2) − V (t1) > F k
i +

x=l∑

x=k + 1

lxi
ri

− lli
ri

− δ − F k
i (5.18)

V (t2) − V (t1) >

x=l − 1∑

x=k + 1

lxi
ri

− δ (5.19)

from this equation and equation (5.11)

Si(t1, t2) < V (t2) − V (t1) +
lki
ri

+
lli
ri

+
ll + 1
i

ri
+ δ (5.20)
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Si(t1, t2) ≤ V (t2) − V (t1) +
3 lmax

i

ri
+ δ (5.21)

To get the lower bound we need to consider to cases.

Case I: F k−1
i ≥ V (Ak

i )

Since there is no departure in (t1, Lk
i ), we have Lk − 1

i ≤ t1 then

V (t2) − V (t1) ≤ V (Ll + 1
i ) − V (Lk − 1

i ) (5.22)

Since we assume that flows are not oversubscribed i.e. Σallflowsri ≤ r we have

V (Ll + 1
i ) ≤ F l + 1

i (5.23)

Since WBSQ only serves packets when their start times started in virtual time and since

there is δ margin of error in finishing time calculations, we have V (Lk − 1
i ) > Sk − 1

i − δ

or V (Lk − 1
i ) > F k − 1

i − lk − 1
i

ri
− δ.

V (t2) − V (t1) ≤ F l + 1
i − F k − 1

i +
lk − 1
i

ri
+ δ (5.24)

Since flow fi is continually backlogged since packet k

F l + 1
i = F k

i +
l + 1∑

x=k + 1

Lx
i

ri
(5.25)

from case assumption we have

F k
i = F k − 1

i +
Lk

i

ri
(5.26)

then

F l + 1
i = F k − 1

i +
l + 1∑

x=k

Lx
i

ri
(5.27)

V (t2) − V (t1) <
l + 1∑

x=k

Lx
i

ri
+

lk − 1
i

ri
+ δ (5.28)

S(t1, t2) > V (t2) − V (t1) − Lk
i

ri
− Ll + 1

i

ri
− Lk − 1

i

ri
− δ (5.29)

S(t1, t2) > V (t2) − V (t1) − Lk
i

ri
− 3 Lmax

i

ri
− δ (5.30)

Case II: F k − 1
i < V (Ak

i )
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Since flow fi is backlogged since t1 and there was no packets departures in (t1, Lk
i ),

hence Ak
i ≤ t1. Therefore

V (t2) − V (t1) ≤ V (Ll + 1
i ) − V (Ak

i ) (5.31)

V (t2) − V (t1) ≤ F l + 1
i − V (Ak

i ) (5.32)

V (t2) − V (t1) ≤ F k
i +

l + 1∑

x=k + 1

lxi
ri
− V (Ak

i ) (5.33)

from case assumption

F k
i = V (Ak

i ) +
lki
ri

(5.34)

Then

V (t2) − V (t1) ≤
l + 1∑

x=k

lxi
ri

(5.35)

and
l∑

x=k+1

lxi ≥ V (t2) − V (t1) − 2 lmax
i

ri
(5.36)

Since first case is lower than second case, we will use (5.30) and from (5.11)
∣∣∣∣
Si(t1, t2)

ri
− Sj(t1, t2)

rj

∣∣∣∣ ≤ 3(
lmax
i

ri
+

lmax
j

rj
+ δ) (5.37)

5.2.3 Worst-Case Fairness

Before we start discussing the worst-case fairness properties of WBSQ, we will

introduce a corollary that will be used in the analysis.

Since WBSQ will not service a packet from next bin until all eligible packet in the

current bin are serviced. The only difference in packet service between WBSQ and WF2Q+

happens within a single bin. In the worst-case all eligible packets will be served before the

eligible flow fi within that single bin only.

This means that if a flow fi was eligible to be serviced within a bin and was served

the last one due to FIFO. From lemma (5.2.1), the maximum service that all flows would

get is Wδ ≤ δ r + Lmax
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Corollary 5.2.1 The difference ∆ between the departure dWBSQ
i in WBSQ and the depar-

ture dWF 2Q+
i in the corresponding WF2Q+ system of eligible flow fi is bound by

∆ ≤ δ +
Lmax

r
(5.38)

where δ is the bin width

Proof.

Since WBSQ and WF2Q+ use the same finishing time calculation, the difference

comes from scheduling flows that are inserted into the same bin. The discrepancy comes

from the fact that WBSQ uses FIFO within a bin while WF2Q+ does not. From (5.6)

above, the maximum delay in service that a flow will experience in WBSQ relative to the

service it would receive under WF2Q+ is when packets within a bin are serviced before this

packet due to the virtual time calculation errors. Hence, from (5.6)

∆ ≤ δ +
Lmax

r
(5.39)

The fairness measure of Bennet-Zhang (also called worst-case fairness) is a more

refined notion of fairness. Rather than comparing the relative amounts of service received

by two flows fi and fj , it compares the service received by a single flow fi to the service

it would receive in the ideal case, i.e., when fi has exclusive access to an output link of

bandwidth ri . Suppose a packet belonging to flow fi arrives, creating a total backlog of

qi in fi’s queue. The fairness measure of Bennet-Zhang requires a bound on the maximum

time Di that elapses before the packet is transmitted, thereby ”draining” the backlog of qi.

In particular, it is desired to bound how much Di is in excess of qi ri , which is the amount

of time it would take to clear a backlog of qi with an output link of bandwidth ri. Theorem

(5.2.2) gives a bound for Di.

Theorem 5.2.2 DWBSQ
i ≤ δ + 2 Lmax

r

Proof.

The proof follows from the fact that WBSQ and WF2Q+ use the same virtual time

calculation. The only difference between them is the fact that WBSQ uses FIFO within
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20 flows S0 N1 R0.
.

Figure 5.3: Simulated network topology.

a bin. But WBSQ will not service a flow from a bin before serving all eligible flows that

belong to preceding bins. So, WBSQ and WF2Q+ only differ in using FIFO within a single

bin. From [2] DWF 2Q+
i for WF2Q+ is at most Lmax

r .

From this expression and (5.39), we have

DWBSQ
i ≤ Lmax

r + δ + Lmax
r

DWBSQ
i ≤ δ + 2

Lmax

r
(5.40)

5.3 Experimental Results

In this section we will report the results of our simulation experiments which were

designed to investigate WBSQ properties in practical situations and to compare WBSQ

with two scheduling disciplines, WF2Q+ and BSFQ. All experiments were performed using

ns-2, to which we added WBSQ and BSFQ queuing classes. While we carried out extensive

simulations, we will only report the results of two representative experiments, one for short-

term throughput and the other one for end-to-end average delay variation. Figure 5.3 shows

the network topology used in the experiments. All the links have a bandwidth of 2Mbps

and a propagation delay of 1 ms. In all experiments, there are 20 CBR flows from S0 node

to R0 node. The average flow rates range from 10Kbps to 280Kbps. All 20 flows start

within interval (0, 2) seconds and stop after ten seconds.

In the first set of experiments, we selected flow number 6 for our measurements.

We calculated the average throughput of flow 6 over 100 ms intervals. The x-axis in Figures
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5.4,5.5 and 5.6 represents these time intervals and the y-axis represents the throughput in

bits per second (bps). These experiments were run for three types of schedulers: BSFQ,

WBSQ and WF2Q+. Figure 5.4 shows the results of this set of experiments when δ = 1000

for both BSFQ and WBSQ where δ is the bin width.

As we can see in Figure 5.4, WF2Q+ has the best throughput performance which

is almost constant and close to the guaranteed bandwidth of flow 6 which equals 120Kbps.

On the other hand, BSFQ has the largest throughput variation. Hence, BSFQ has the worst

throughput performance among the three schedulers. Although our scheduler WBSQ has

some throughput variation it is much smaller than BSFQ and most of the time very close

to the guaranteed rate of 120Kbps.

In Figures 5.5 and 5.6, we repeat the same set of experiments for a lower value of

bin width (δ). As we can observe, BSFQ still suffers from high throughput variation even

with lower values of bin width. On the other hand, WBSQ throughput variation almost

reached the same level of performance as that of WF2Q+. From these sets of experiments,

we conclude that WBSQ has a much better throughput variation over that of BSFQ. Also,

we observe that for small bin width values, the throughput variation performance of WBSQ

is very close to that of WF2Q+.

In the second experiment, we measured the average end-to-end delay variation

for the a single flow for different δ values and compared it with WF2Q+ and BSFQ. We

calculated the average end-to-end delay variation for flow 6 over the whole run time of

10 seconds. The variation in the arrivals of all packets was measured and divided by the

number of packets to get the average delay variation. These measurements were recorded

for different bin width values as shown in Figure 5.7. The x-axis in Figure 5.7 represents

the bin width while the y-axis represents the average delay variation.

From Figure 5.7, we can see that WF2Q+ has the lowest delay variation which

is also constant because WF2Q+ does not use bins. On the other hand, BSFQ has the

highest average delay variation and its performance does not improve for lower bin width

values. However, WBSQ has much better average delay variation than that of BSFQ. Also,

we notice that the average delay variation gets even better for smaller bin width values.

Looking at Figure 5.7, we notice that the average end-to-end delay variation for

WBSQ is much closer to that of WF2Q if compared with BSFQ for all delta values. Also

as bin width δ becomes smaller, WBSQ’s average delay variation gets closer to WF2Q++.
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Figure 5.4: Short Term throughput for δ=1000.
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Figure 5.5: Short Term throughput for δ=600.
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Figure 5.6: Short Term throughput for δ=200.

5.4 Concluding Remarks

We have proposed a new worst-case fair queuing (WBSQ) scheduler that has a

constant complexity. The scheduler combines two main simplification ideas. The first idea

comes from bin sort concept which represents virtual time in virtual bins of time intervals.

The second idea utilizes the simplified virtual time calculation of WF2Q+. Theoretical

analysis showed that WBSQ has constant proportional and worst-case fairness indexes. We

also compared WBSQ with two other schedulers BSFQ and WF2Q+’s through simulations.

The experiments showed that WBSQ was close to WF2Q+ short-term throughput and

average delay variation specially for smaller bin size values. WBSQ has constant complexity

implementation and can easily be implemented by hardware. Therefore, we believe that

employing WBSQ scheduling within high-speed routers will enable network operators to

significantly enhance their ability to offer and guarantee a wide range of services.
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Chapter 6

Summary and Future Work

In this thesis we provided a solution for packet schedulers in high speed networks.

In such an environment there is a need for both low complexity and fairness. Most sched-

ulers that have been proposed improve one property at the expense of the other. Our

solution is based on the quantization approach. In the first part of this thesis, we utilized

the quantization of the service offered by the scheduler where we proposed a new family of

tiered-service fair queuing (TSFQ) schedulers. TSFQ was motivated by two key observa-

tions: that providers typically offer a small number of service levels, and that the Internet

packet length distribution exhibits a small number of prominent modes. Within each tier,

the schedulers employ a fixed number of queues to handle packets with few or no sorting

operations. The intra-tier scheduler simply serves the packet with the smallest timestamp

among a constant number of packets at the front of the intra-tier queues. The simple struc-

ture and operation of the schedulers are practically realizable and especially attractive for

hardware implementation. We have shown that, despite their low complexity, the TSFQ

algorithms have good delay and fairness properties; in fact, they are equivalent to WF2Q

with the additional property that the virtual time function can be computed in O(1) time.

Therefore, we believe that employing TSFQ scheduling within high-speed routers will en-

able network operators to significantly enhance their ability to offer and guarantee a wide

range of services.

In the second part of this thesis, we utilize the quantization of virtual time. A new

scheduler was proposed called Worst-Case Bin Sort Queuing (WBSQ). WBSQ scheduler

has worst-case fairness property while maintaining a constant complexity. The scheduler
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combines two main simplification concepts. The first originates from the bin sort idea

which represents virtual time in virtual time interval bins. The second idea utilizes the

virtual time quantization to calculate system virtual time V (t) of WF2Q+ in constant

time. Our analysis showed that WBSQ have constant proportional and worst-case fairness

indexes. In addition, we compared WBSQ with two other schedulers BSFQ and WF2Q+

through ns − 2 simulations. The experiments showed that WBSQ was close to WF2Q+

in short-term throughput and average delay variation, especially for smaller bin size δ

values. WBSQ has constant complexity implementation and can easily be implemented

by hardware. Therefore, we believe that employing WBSQ scheduling within high-speed

routers will enable network operators to significantly enhance their ability to offer and

guarantee a wide range of services.

6.1 Future Work

Our work can be extended in several directions.

1. TSFQ as an end-to-end scheduling algorithm. The traffic quantization and (TSFQ)

scheduler framework can be utilized to design an end-to-end scheduling algorithm

that uses weight metrics to schedule packets across multi hops of the network. The

packets can carry two items of information in their headers. The first value represents

the weight class or tier that a flow belongs to. The other information represents the

total time that the packet had to wait in its local queue before it was released to the

common queue. We can come up with an algorithm where core routers give preference

to the packets that had to wait the longest in their queues. Also this algorithm can

advise a way to guarantee an end-to-end delay for flows among the whole network.

2. Quantizing both service and time. In our approach we only utilize either service or

virtual time for quantization. Future approaches could utilize both of these parameters

together for quantization. For example, we can use weight as a tier criteria as we did

in TSFQ. In addition, we can use virtual time quantization for each of these intra-tier

schedulers instead of using separate intra-tier for each packet-size group.

3. UNIT scheduler. In TSFQ, we construct the scheduler from multiple intra-tier sched-

ulers and one inter-tier scheduler. This idea can be extended to find a framework for
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a UNIT scheduler. The UNIT scheduler should be simple and generic to represent a

building block for the entire scheduler. By combining these UNIT schedulers together,

a more complex scheduler can be built. One advantage of using this idea is that it

simplifies the fairness analysis of the whole scheduler. For example, knowing the fair-

ness properties of the intra-tier scheduler in TSFQ simplified the fairness analysis of

the entire scheduler.
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