
Abstract

LEON, SELENE REYES. Semiparametric Efficient Estimation of Treatment Effect

in a Pretest-Posttest Study with Missing Data. (Under the direction of Anastasios

A. Tsiatis and Marie Davidian.)

Inference on treatment effect in a pretest-posttest study is a routine objective

in medicine, public health, and other fields, and a number of approaches have been

advocated. Typically, subjects are randomized to two treatments, the response is

measured at baseline and a prespecified follow-up time, and interest focuses on the

effect of treatment on follow-up mean response. Covariate information at baseline

and in the intervening period until follow-up may also be collected. Missing posttest

response for some subjects is routine, and disregarding these missing cases can lead

to biased and inefficient inference. Despite the widespread popularity of this design,

a consensus on an appropriate method of analysis when no data are missing, let alone

on an accepted practice for taking account of missing follow-up response, does not

exist.

We take a semiparametric perspective, making no assumptions about the distribu-

tions of baseline and posttest responses. Exploiting the work of Robins et al. (1994),

we characterize the class of all consistent estimators for treatment effect, identify



the efficient member of this class, and propose practical procedures for implementa-

tion. The result is a unified framework for handling pretest-posttest inferences when

follow-up response may be missing at random that allows the analyst to incorporate

baseline and intervening information so as to improve efficiency of inference. Simu-

lation studies and application to data from an HIV clinical trial illustrate the utility

of the approach.
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Chapter 1

Introduction

The pretest-posttest trial is ubiquitous in research in medicine, public health,

and numerous other felds. In the usual study, subjects are randomized to one of two

treatments (e.g., treatment and control) and the response of interest is ascertained for

each at baseline (pre-treatment) and follow-up. The objective is to evaluate whether

treatment affects follow-up response, with baseline responses serving as a basis for

comparison. For instance, in many HIV clinical trials, interest focuses on comparing

treatment effects on viral load or CD4 count after a specified period, with baseline

observations on these quantities routinely available.

A number of strategies have been advocated for evaluation of treatment effect in

this setting, including the two-sample t-test comparing follow-up observations in each

group, ignoring baseline; the paired t-test comparing differences between follow-up

and baseline responses; and analysis of covariance procedures applied to the follow-

up responses, with either baseline response only or baseline and its interaction with
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treatment included as a covariates in a linear model, referred to by Yang and Tsiatis

(2001) as ANCOVA I and ANCOVA II, respectively. A nonparametric approach in

a different spirit was proposed by Quade (1982); we do not consider this here. The

two-sample t-test seems predicated on the assumption that baseline and follow-up

responses are uncorrelated, so that no precision is to be gained from incorporating

baseline information, while the others (paired t-test and ANCOVA I and II) implicitly

rely on an apparent assumption of linear dependence between follow-up and baseline

response. All are often associated with the assumption of normality.

Several authors (e.g., Brogan and Kutner, 1980; Crager, 1987; Laird, 1983; Stanek,

1988; Stein, 1989; Follmann, 1991) have studied these approaches under various as-

sumptions, including normality or equality of variances of baseline and follow-up re-

sponses. Despite this work and the widespread interest in this problem, there is still

no consensus on which approach is preferable under general conditions; in our expe-

rience with HIV clinical trials the paired t-test is often used because “interest focuses

on differences,” with no theoretical justification. An attempt to address this issue

was presented by Yang and Tsiatis (2001), who studied the large-sample properties

of treatment effect estimators based on these approaches under very general condi-

tions where only the first and second moments of baseline and follow-up responses

exist and may differ and their joint distribution conditional on treatment may be

arbitrary. They also considered a “generalized estimating equation” (GEE) approach

(e.g., Singer and Andrade, 1997) where baseline and follow-up data are treated as a

multivariate response with arbitrary mean and covariance matrix. Yang and Tsiatis
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(2001) showed that all these estimators are consistent and asymptotically normal;

the GEE estimator is asymptotically equivalent to that from ANCOVA II and most

efficient; when the randomization probability is 0.5 or covariance between baseline

and follow-up responses is the same for both treatment and control, the ANCOVA

I estimator is asymptotically equivalent to ANCOVA II/GEE; and, if baseline and

follow-up responses are uncorrelated, the two-sample t-test estimator achieves the

same precision as ANCOVA II but is inefficient otherwise, while the paired t-test is

equivalent to ANCOVA II only if the difference between follow-up and baseline is

uncorrelated with baseline within each treatment.

As the ANCOVA approaches are derived from a supposed linear relationship be-

tween baseline and follow-up, some practitioners are reluctant to use them; asymptotic

equivalence of the GEE estimator indicates it involves the same considerations. Yang

and Tsiatis (2001) showed that consistency and asymptotic normality hold even if

linearity is violated. However, as their study restricted attention to such “linear”

estimators, it did not address whether or how it might be possible to improve upon

these approaches under deviations from linearity and without limiting distributional

assumptions.

Such deviations are commonplace, as illustrated by data from AIDS Clinical Trials

Group (ACTG) protocol 175 involving 2467 HIV-infected subjects randomized origi-

nally to four treatment groups, zidovudine (ZDV) alone, ZDV plus didanosine (ddI),

ZDV plus zalcitabine (ddC), or ddI alone in approximately equal numbers (Hammer

et al., 1996). Analysis of the primary endpoint of time to progression to AIDS or
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death showed ZDV to be inferior to the other three therapies, which showed no differ-

ences. Figure 1.1 plots CD4 counts at 20 ± 5 weeks, a follow-up measure that reflects

early response to treatment subsequent to the often-observed initial rise in CD4 (e.g.

Tsiatis, DeGruttola, and Wulfsohn, 1995), versus baseline CD4 for the ZDV-only

(“control”) and other therapies combined (“treatment”) groups and suggests a possi-

ble departure from a straight-line relationship. Figure 1.2, which plots CD4 counts at

96 ± 5 weeks, shows similar behavior. Indeed, nonlinear relationships are a routine

feature of biological phenomena, as is nonnormality; histograms of CD4 counts at

baseline and follow-up for each group (not shown) exhibit the usual asymmetry that

motivates the standard analysis on the log, fourth-, or cube-root scale.

A further complication facing the data analyst, particularly in lengthy studies, is

that of missing follow-up response for some subjects, the proportion of whom may

be nontrivial. A typical approach of this problem is to undertake a “complete-case”

analysis, disregarding data from subjects with missing follow-up and using one of the

above techniques; with GEE, data on all subjects may be used. However, as is well

known, unless these data are missing completely at random (MCAR) (Rubin 1976),

these strategies may yield biased inference on β. Often, baseline demographic and

physiologic characteristics are collected on each participant; moreover, during the in-

tervening period from baseline to follow-up, additional covariate information, includ-

ing intermediate measures of the response, may be obtained. Missingness at follow-up

is often associated with baseline response and baseline and intermediate covariates,

a relationship that may be differential by intervention. Under such circumstances,
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the assumption that follow-up is missing at random (MAR) (Rubin 1976), associ-

ated only with these observable quantities and not the unobserved response, may be

reasonable. Even if such a MAR mechanism may be postulated, valid methods to

take appropriate account of missingness in pretest-posttest analysis have not been

widely applied by practitioners, and, rather, ad hoc approaches such as complete-case

analysis have been commonplace.

Semiparametric models, written in terms of a finite-dimensional parameter of in-

terest and an unspecified infinite-dimensional component, have gained considerable

popularity as they embody less restrictions (and thus fewer potentially incorrect as-

sumptions) than fully parametric models. In a landmark paper, Robins, Rotnitzky,

and Zhao (1994) derived an asymptotic theory of inference for general semiparamet-

ric models with data MAR. Generically, for parameter β in a statistical model, an

estimator β̂ based on iid observations Wi, i = 1, . . . , n, is asymptotically linear with

influence function ϕ(W ) if n1/2(β̂−β) = n−1/2
∑n

i=1 ϕ(Wi)+op(1) and E{ϕ(W )} = 0,

E{ϕT (W )ϕ(W )} < ∞; regular, asymptotically linear (RAL) estimators (Newey 1990)

β̂ are consistent and asymptotically normal under weak conditions with asymptotic

variance E{ϕT (W )ϕ(W )}. Thus, by identifying all influence functions for a partic-

ular model, consistent estimators may be deduced. Robins et al. (1994) not only

characterized the class of influence functions for all RAL estimators for the paramet-

ric component of general semiparametric models with data MAR, but also identified

the efficient member of the class with smallest variance.

In light of these developments, rather than study the pretest-posttest problem with
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MAR data under specific distributional assumptions or adapt “popular” estimators

such as ANCOVA to handle MAR on a case-by-case basis, a more broadly-applicable

strategy is to take a semiparametric perspective and use this theory to elucidate a

unified framework for pretest-posttest analysis. Interestingly, despite the ubiquity of

the pretest-posttest study in numerous fields and the simplicity of the model when no

data are missing, to our knowledge, explicit application of this pioneering theory to

pretest-posttest inference with data MAR with an eye toward development of practical

estimators on its basis and associated detailed study and illustration of performance

of resulting techniques has not been reported.

A main objective of this dissertation is to develop practical strategies for esti-

mation of β in a semiparametric pretest-posttest model from the perspective of the

Robins et al. (1994) theory by indicating the class of influence functions for all RAL

estimators for β when follow-up response is MAR, including the most efficient. We

first apply this theory in this setting, using it to identify the class of all influence

functions when no follow-up data are missing by casting the full-data situation as

an “artificial” missing data problem by defining counterfactual follow-up responses

(e.g. Holland 1986). A key finding is that the resulting estimators exploit the rela-

tionship of baseline response and covariates to follow-up response in a way that leads

to substantial efficiency gains over “popular” approaches such as ANCOVA or the

paired t-test, which are revealed to yield inefficient members of the class of consistent

estimators for β.

Armed with this developments, we explicate how relationships among responses
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and covariates play a role in enhancing precision, demonstrate how the theory leads

to practical estimators, and study the performance of such approaches.

In Chapter 2, we first introduce the model and derive the semiparametric class of

full-data influence functions using counterfactuals. Then in Section 2.2, we describe

how the class of all observed data influence functions under MAR follows from the

Robins et al. (1994) theory. Chapter 3 presents strategies for constructing estimators,

and performance is demonstrated via simulation in Chapter 4 and by application to

data from an HIV clinical trial in Chapter 5, for both full data and observed data

cases. As in any missing-data context, plausibility of the MAR assumption for follow-

up response is critical and may be best justified with availability of rich baseline and

intervening information.
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Figure 1.1: ACTG 175: CD4 counts after 20 ± 5 weeks vs. baseline CD4 counts for

patients randomly assigned to a. ZDV alone (“control”) and b. the combination

of ZDV+ddI, ZDV+ddC, or ddI alone (“treatment”). The solid lines were obtained

using the Splus function loess() (Cleveland, Gross, and Shyu, 1993); in b., use of

different span values and deletion of the apparent “high leverage” points with the

largest baseline CD4 all lead to similar curvilinear fits.
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Figure 1.2: ACTG 175: CD4 counts after 96 ± 5 weeks vs. baseline CD4 counts for

patients randomly assigned to a. ZDV alone and b. the combination of ZDV+ddI,

ZDV+ddC, or ddI alone. The solid lines were obtained using the Splus function

loess() (Cleveland, 1979); in b. use of default span values.
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Chapter 2

MODEL

2.1 Full data model

In this section, assume no missing follow-up and that each subject i = 1, . . . , n is

randomized to treatment with known probability δ, so Zi = 0 or 1 as i is assigned

to control or treatment, respectively. Let Y1i and Y2i be i’s observed baseline and

follow-up responses, leading to observed data for i (Y1i, Y2i, Zi); the subscript i is

suppressed when no ambiguity will result.

We develop the model by conceptualizing the situation in terms of counterfactuals

or potential outcomes, a key device in the study of causal inference (e.g., Holland,

1986), and then expressing the observable data in terms of these quantities. The

variables Y1 and Z represent phenomena prior to treatment action, while Y2 is a post-

treatment characteristic. Thus, let Y
(0)
2 , Y

(1)
2 be the follow-up responses a subject

potentially would exhibit if assigned to control and treatment, respectively. The full
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set of counterfactual random variables (Y
(0)
2 , Y

(1)
2 ) is obviously not observable for any

subject but rather represents what potentially might occur at follow-up under both

treatments, including that “counter to the fact” of what might actually be assigned in

the trial. We place no restrictions on the joint distribution of the counterfactuals and

Y1, such as equal variance or independence, and define µ1 = E(Y1), σ11 = var(Y1);

for c = 0, 1, µ
(c)
2 = E(Y

(c)
2 ), σ

(c)
22 = var(Y

(c)
2 ); and σ

(c)
12 = cov(Y1, Y

(c)
2 ). Thus, e.g.,

µ
(0)
2 = E(Y

(0)
2 ) denotes mean follow-up response if all subjects in the population were

assigned to control. It is natural to assume that the observed follow-up response

under the subject’s actual, assigned treatment corresponds to what potentially would

be seen if the subject were assigned to that treatment; i.e., Y2 = Y
(0)
2 (1−Z)+Y

(1)
2 Z.

The observed assignment Z is made at random, so without regard to baseline status

or prognosis; thus, assume Z is independent of (Y1, Y
(0)
2 , Y

(1)
2 ). As usual, we assume

(Y1i, Y
(0)
2i , Y

(1)
2i , Zi) and hence (Y1i, Y2i, Zi) are independent and identically distributed

(i.i.d.) across i.

Interest focuses on the difference in population mean follow-up response, which,

under the usual causal inference perspective (Holland, 1986), may be thought of as

the difference in means if all subjects in the population were assigned to control

or treatment, respectively; i.e., β = µ
(1)
2 − µ

(0)
2 = E(Y

(1)
2 ) − E(Y

(0)
2 ). Under our

assumptions, in fact β = E(Y2|Z = 1) − E(Y2|Z = 0), the usual expression for the

difference of interest in a randomized trial; and E(Y2|Z) = µ2+βZ and E(Y1|Z) = µ1,

writing µ2 = µ
(0)
2 = E(Y

(0)
2 ) for brevity.

The advantage of this framework and expression of β in terms of counterfactual
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means is that it reveals a structure analogous to that in missing data problems. As

we are interested in the difference of the two marginal quantities µ
(1)
2 and µ

(0)
2 , we may

view estimation of each mean separately, without reference to the joint distribution of

Y
(0)
2 , Y

(1)
2 ; thus, if we identify estimators for µ

(1)
2 and µ

(0)
2 that are “optimal” in some

sense, the “optimal” estimator for β may be obtained as their difference. Accordingly,

focus on µ
(1)
2 ; considerations for µ

(0)
2 are similar. If we could observe the “full data”

(Y1, Y
(1)
2 , Z) for all n subjects, then we would would estimate µ

(1)
2 by the sample mean

n−1
∑n

i=1 Y
(1)
2i . However, we only observe Y

(1)
2 for subjects with observed assignment

Z = 1, so that Y
(1)
2 is “missing” for subjects with Z = 0; i.e., we only observe

(Y1, ZY
(1)
2 , Z), where Y

(1)
2 is observed with probability P (Z = 1|Y1, Y

(1)
2 ) = P (Z =

1) = δ, so that Y
(1)
2 is “missing completely at random” (MCAR; Rubin, 1976). Thus,

the two-sample t-test estimator based on observed sample averages,

n−1
1

n∑

i=1

ZiY2i − n−1
0

n∑

i=1

(1 − Zi)Y2i, n1 =
n∑

i=1

Zi, n0 =
n∑

i=1

(1 − Zi) (2.1.1)

may be regarded as a “complete case” estimator for β. As such, while it may be unbi-

ased for β under MCAR, it is likely inefficient, as it takes no account of observations

on Y1. This suggests that a more refined approach to missing data problems may

lead to improved estimators that exploit information in Y1 and the interrelationships

among observed variables.

Robins et al. (1994) developed a general large-sample theory of estimation in semi-

parametric models where data are missing at random (so including MCAR). They

described the class of all (regular, excluding “pathological” cases) estimators under

these conditions by characterizing the form of the influence functions of all members
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of the class of asymptotically linear estimators (e.g., Newey, 1990), which are con-

sistent and asymptotically normal under general conditions. An estimator β̂ for β is

asymptotically linear with influence function I if n1/2(β̂ − β) = n−1/2
∑n

i=1 Ii + op(1)

and E(I) = 0, E(ITI) < ∞, and the asymptotic variance of β̂ is the variance of the

influence function. Robins et al. (1994) identified the most efficient regular, asymp-

totically linear (RAL) estimator, namely, that whose influence function has smallest

variance. We apply this general theory to our model to characterize all estimators

for β through their influence functions. This allows us not only to demonstrate that

the two-sample t-test, paired t-test, and ANCOVA I and II estimators are inefficient

members of this class but also to elucidate the form of the most efficient estimator

for β. If for each c = 0, 1 we were able to observe the “full data” (Y1, Y
(c)
2 , Z) for all

subjects, we would estimate µ
(c)
2 by the sample mean n−1

∑n
i=1 Y

(c)
2i , with influence

function ϕ(c)(Y
(c)
2 ) = Y

(c)
2 − µ

(c)
2 . Because µ

(c)
2 , c = 0, 1, is an explicit function of

the distribution of Y
(c)
2 , which we take to be unrestricted, ϕ(0) and ϕ(1) are the only

such “full data” influence functions for estimators for µ
(0)
2 and µ

(1)
2 (Newey, 1990).

Of course, we only observe (Y1, Y2, Z) for each subject; thus, we require estimators

that may be expressed in terms of these quantities. By the analogy to missing data

problems, it follows from the theory of Robins et al. (1994) that all RAL estimators

for β based on the observed data have influence function of form

{
Zϕ(1)(Y2)

δ
+

(Z − δ)

δ
h(1)(Y1)

}
−

[
(1 − Z)ϕ(0)(Y2)

1 − δ
+

{(1 − Z) − (1 − δ)}

1 − δ
h(0)(Y1)

]
,

(2.1.2)
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where h(0), h(1) are arbitrary functions such that var{h(c)(Y1)} < ∞, c = 0, 1; (2.1.2)

is the difference of the forms of all observed data influence functions for estimators

for µ
(1)
2 and µ

(0)
2 . For arbitrary h with var{h(Y1)} < ∞, we may rewrite (2.1.2) as

Z(Y2 − µ2 − β)/δ − (1 − Z)(Y2 − µ2)/(1 − δ) + (Z − δ)h(Y1), (2.1.3)

Thus, (2.1.3) characterizes all consistent estimators for β, and we expect that the in-

fluence functions for the “popular” estimators in the next section may be represented

in this form.

Popular Estimators

The two-sample t-test estimator for β is given in (2.1.1). The paired t-test estima-

tor is D1−D0, where D1 = n−1
1

∑n
i=1 Zi(Y2i − Y1i) and D0 = n−1

0

∑n
i=1 (1 − Zi)(Y2i − Y1i).

As in Yang and Tsiatis (2001), the ANCOVA I estimator for β is obtained by ordi-

nary least squares (OLS) regression of Y2 on (Y1, Z), and the ANCOVA II estimator is

obtained by OLS regression of (Y2−Y 2) on {(Y1−Y 1), (Zi−Z), (Y1−Y 1)(Zi−Z)}T .

It is straightforward to show that all of these estimators have influence functions of

the form
Z(Y2 − µ2 − β)

δ
−

(1 − Z)(Y2 − µ2)

1 − δ
+ (Z − δ)(Y1 − µ1)η, (2.1.4)

where η = 0, −1/{δ(1 − δ)}, −{δσ(1)
12 + (1 − δ)σ

(0)
12 }/{σ11δ(1 − δ)}, and −{(1 −

δ)σ
(1)
12 + δσ

(0)
12 }/{σ11δ(1− δ)} for the two-sample t-test, paired t-test, ANCOVA I, and

ANCOVA II estimators, respectively. Thus, from (2.1.4), these estimators are all in

class (2.1.3) with h(Y1) = η(Y1 − µ1) and hence are consistent and asymptotically

normal.
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The observations of Yang and Tsiatis (2001) are immediate: If δ = 0.5, η is

identical for ANCOVA I and II and these estimators are asymptotically equivalent.

If σ
(c)
12 = 0, c = 0, 1, i.e., uncorrelated baseline and follow-up, η = 0 for ANCOVA I/II

and both are asymptotically equivalent to the two-sample t-test. Finally, if Y
(c)
2 −Y1 is

uncorrelated with Y1 so σ
(c)
12 = σ11, c = 0, 1, the paired t-test is equivalent to ANCOVA

I/II. Interestingly, while η values for ANCOVA I/II both involve a “weighted average”

of σ
(0)
12 and σ

(1)
12 , the “weighting” for the latter seems counterintuitive in that (1−δ) =

P (Z = 0) and δ = P (Z = 1) are the coefficients of the covariances for treatments 1

and 0, whereas one might expect the reverse.

Not only are all the “popular” estimators in class (2.1.3), they belong to the

subclass with h a linear function of Y1, suggesting there is room for improvement via

more general h.

We close this section by sketching steps to identify the most efficient influence func-

tion ϕeff in class (2.1.3). Following the theory of Robins et al. (1994), the set of all

functions of (Y2, Y1, Z) of the form (Z−δ)h(Y1), E{h2(Y1)} < ∞, is a linear subspace

of the Hilbert space of all mean-zero functions ϕ(Y1, Y1, Z) with E{ϕ2(Y1, Y1, Z)} < ∞

with covariance inner product. Denoting this subspace as Λ2, the most efficient esti-

mator for β is that with influence function

{
Z(Y2 − µ2 − β)

δ
−

(1 − Z)(Y2 − µ2)

(1 − δ)

}
−Π

{
Z(Y2 − µ2 − β)

δ
−

(1 − Z)(Y2 − µ2)

(1 − δ)

∣∣∣∣ Λ2

}
,

(2.1.5)

where Π( · |Λ2) is the projection of the argument onto Λ2. Because projection is a lin-

ear operation, the projection may be found as the difference of the projections of the
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components of the first term in (2.1.5). To find Π {Z(Y2 − µ2 − β)/δ| Λ2}, we must

find h(1)(Y1) such that E [{Z(Y2 − µ2 − β)/δ − (Z − δ)h(1)(Y1)
}

(Z − δ)h(Y1)
]

= 0

for all h(Y1); i.e., we require that E [{Z(Y2 − µ2 − β)/δ − (Z − δ)h(1)(Y1)
}

(Z − δ)| Y1

]
=

0 a.s. This may be written equivalently as E {Z(Y2 − µ2 − β)(Z − δ)/δ| Y1} = h(1)(Y1)

E {(Z − δ)2| Y1} a.s. Using independence of Z and Y1, the left-hand side of this ex-

pression equals {E(Y
(1)
2 | Y1) − µ2 − β}(1 − δ) and E{(Z − δ)2| Y1} = δ(1 − δ), so

that h(1)(Y1) = {E(Y
(1)
2 | Y1) − µ2 − β}/δ, which yields Π{Z(Y2 − µ2 − β)/δ|Λ2} =

(Z − δ){E(Y
(1)
2 |Y1) − µ2 − β}/δ. Similarly, Π{Z(Y2 − µ2)/(1 − δ)|Λ2} = (Z −

δ){E(Y
(0)
2 |Y1) − µ2}/(1 − δ). Substituting into (2.1.5) yields the result:

[
Z(Y2 − µ2 − β)

δ
+

(Z − δ){E(Y2|X0, Y1, Z = 1) − µ2 − β}

δ

]

−

[
(1 − Z)(Y2 − µ2)

1 − δ
+

(Z − δ){E(Y2|X0, Y1, Z = 0) − µ2}

1 − δ

]
. (2.1.6)

In Chapter 3 we discuss approaches to deducing estimators for β from this re-

sult when full data are available that offer dramatic improvements in efficiency over

“popular” methods.

2.2 Observed data influence functions

Now suppose Y2 is missing for some subjects, with all other variables observed,

and define R = 0 or 1 as Y2 is missing or observed. Then the data observed for subject

i may be represented as Oi = (X0i, Y1i, X1i, Ri, RiY2i, Zi). We formalize the assump-

tion that Y2 is MAR as P (R = 1|Y1, X0, X1, Y2, Z) = P (R = 1|Y1, X0, X1, Z) =

π(Y1, X0, X1, Z) ≥ ε > 0, reflecting the reasonable view for a pretest-posttest trial
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that there is a positive probability of observing Y2 for any subject. Here, depen-

dence of the missingness mechanism on all data is taken not to involve the unob-

served Y2 but may be associated with baseline and intermediate characteristics and

be differential by intervention, the latter highlighted by the equivalent representation

π(Y1, X0, X1, Z) = Zπ(1)(Y1, X0, X1) + (1 − Z)π(0)(Y1, X0, X1) for π(c)(Y1, X0, X1) =

π(Y1, X0, X1, c) ≥ ε > 0, c = 0, 1.

As noted in Chapter 1, it is common under these conditions to conduct a complete-

case analysis. E.g., using the two-sample t-test, estimate β by the difference in sample

means based only on data for subjects with Y2 observed, yielding β̂ =
∑n

i=1 RiZiY2i/nR1−

∑n
i=1 Ri(1 − Zi)Y2i/nR0, where nRc =

∑n
i=1 RiI(Zi = c), c = 0, 1. It is easy to ver-

ify that this estimator and, indeed, those for each mean, are not consistent for β

and µ
(c)
2 , c = 0, 1, respectively. A simple remedy is to incorporate “inverse weight-

ing” of the complete cases (IWCC; e.g. Horvitz and Thompson 1952). For example,

noting the complete-case estimator for µ
(1)
2 solves

∑n
i=1 RiZi(Y2i − µ(1)) = 0, weight

each contribution by the inverse of the probability of seeing a complete case; i.e.,

solve
∑n

i=1 RiZi(Y2i − µ(1))/π
(1)
i (X0i, Y1i, X1i) = 0, yielding the estimator Y

(1)

2 =

{
∑n

i=1 RiZiY2i/π
(1)(X0i, Y1i, X1i)}/nRZ1, nRZ1 =

∑n
i=1 RiZi/π

(1)(X0i, Y1i, X1i), and

analogously for µ
(0)
2 . It is straightforward to show that Y

(c)

2 are consistent for µ
(c)
2 ,

c = 0, 1, and to find the associated influence functions given by

RZ(Y2 − µ
(1)
2 )

δπ(1)(X0, Y1, X1)
and

R(1 − Z)(Y2 − µ
(0)
2 )

(1 − δ)π(1)(X0, Y1, X1)
; (2.2.7)

each has the form of the corresponding full-data influence function weighted by 1/π(1)
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for the complete cases only. IWCC may be similarly applied to any RAL estimator

with influence function in class (2.1.3), including “popular” ones, to yield consistent

inference. However, although simple IWCC leads to consistency, methods with greater

efficiency are possible.

The pioneering advance of Robins et al. (1994) was to derive for a general semi-

parametric model the class of all influence functions for a parametric component

based on the data observed under complex forms of MAR, where different subsets

of the full data may be missing in different ways, and to characterize the efficient

influence function. The development follows geometric principles, complicated by the

need to distinguish between the ideal, full data, denoted by V here, and the data

O observed under MAR. Now, the Hilbert space H in which influence functions are

elements is that of all mean-zero, finite-variance random functions h(O), with inner

product E(hT
1 h2). The key is to identify the corresponding nuisance tangent space,

and hence representation of influence functions, which is a considerably more complex

and delicate enterprise than that for the full-data problem sketched in Section 2.1.

The theory reveals, perhaps not unexpectedly, that there is a relationship between

influence functions based on the full and observed data. In particular, when the

function describing the probability that full data are observed, π(O∗), is known, as

we assume for now, which under MAR depends only on the subset of V that is al-

ways observed, denoted O∗, then if ϕF (V ) is any full-data influence function, Robins

et al. showed that all observed-data influence functions under MAR have the form

RϕF (V )/π(O∗)+ g(O), where g(O) is an arbitrary function of the observed data sat-
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isfying E{g(O)|V } = 0. In cases like that here, where a single subset of V is either

missing or not for all subjects, this becomes

RϕF (V )

π(O∗)
+

R − π(O∗)

π(O∗)
g(O∗) (2.2.8)

where now g(O∗) is an arbitrary function of the data always observed. In (2.2.8),

note that the first term has the form of an IWCC full-data influence function; the

second term, which has mean zero, depending only on data observed for all subjects,

“augments” (e.g. Robins 1999) the first, which leads to increased efficiency provided

that g is chosen judiciously.

In the special case of the pretest-posttest problem, focusing on estimation of the

treatment mean µ
(1)
2 = µ2 + β, with O∗ = (X0, Y1, X1, Z), (2.1.2) and (2.2.8) imply

that the class of all observed-data influence functions when Y2 is MAR is

R{Z(Y2 − µ
(1)
2 ) − (Z − δ)h(1)(Y1, X0)}

δπ(Y1, X0, X1, Z)
−

R − π(Y1, X0, X1, Z)

π(Y1, X0, X1, Z)
g(1)(Y1, X0, X1, Z),

(2.2.9)

for arbitrary h(1) and g(1) such that var{h(1)(X0, Y1)} < ∞ and var{g(1)(Y1, X0, X1, Z)}

< ∞.

Robins et al. (1994) provide a general mechanism for deducing the optimal choices

of h(1)eff and g(1)eff leading to the efficient influence function. For special cases

like (2.2.8) and (2.2.9), it is straightforward and instructive to identify these choices

and to gain insight into how “augmentation” increases efficiency over IWCC estima-

tors directly via geometric arguments. To this end, it proves convenient to define

g(1)′(Y1, X0, X1, Z) = (Z − δ)h(1)(Y1, X0) + δg(1)(Y1, X0, X1, Z). We may write (2.2.9)
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equivalently as

RZ(Y2 − µ
(1)
2 )

δπ(Y1, X0, X1, Z)
−

(Z − δ)

δ
h(1)(Y1, X0) −

R − π(Y1, X0, X1, Z)

δπ(Y1, X0, X1, Z)
g(1)′(Y1, X0, X1, Z);

(2.2.10)

there is a one-to-one correspondence between (2.2.9) and (2.2.10). It is straight-

forward to show that the second and third terms in (2.2.10) are uncorrelated and

thus define orthogonal subspaces of mean-zero functions in H. Writing (2.2.10) as

A−B1−B2, it is easy to deduce that minimizing the variance under these conditions

is equivalent to minimizing the variances of A − B1 and A − B2 separately, which

may be viewed as finding the separate projections of A onto the spaces defined by B1

and B2. Thus, as in the argument for the efficient full-data influence function at the

end of Section 2.1, dividing by known δ, we wish to find heff(1) and geff(1)′ such that

E[ {RZ(Y2 − µ
(1)
2 )/π(Y1, X0, X1, Z) − (Z − δ)heff(1)(X0, Y1)}(Z − δ)h(1)(X0, Y1) ] = 0

and E
(

[RZ(Y2 − µ
(1)
2 )/π(Y1, X0, X1, Z) − geff(1)′(Y1, X0, X1, Z){R − π(Y1, X0, X1, Z)}

/π(Y1, X0, X1, Z)]g(1)′(Y1, X0, X1, Z){R − π(Y1, X0, X1, Z)}/π(Y1, X0, X1, Z)
)

= 0 for

all h(1) and g1)′ . By a conditioning argument as in Section 2.1, it may be deduced that

heff(1)(X0, Y1) = E(Y2|X0, Y1, Z = 1)−µ
(1)
2 and geff(1)′(X0, Y1) = Z{E(Y2|X0, Y1, X1, Z)−

µ
(1)
2 } = Z{E(Y2|X0, Y1, X1, Z = 1) − µ(1)2}. That is,

RZ(Y2 − µ2 − β)

δπ(Y1, X0, X1, Z = 1)
−

(Z − δ)

δ
{E(Y2|Y1, X0, Z = 1) − µ

(1)
2 }

−
R − π(Y1, X0, X1, Z = 1)

δπ(Y1, X0, X1, Z = 1)
E(Y2|Y1, X0, X1, Z = 1) − µ

(1)
2 ; (2.2.11)

Note that geff(1)′ does not depend on heff(1), and heff(1) is identical to the optimal

choice for the full-data case. These features need not hold for general semiparametric
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models; here they are a consequence the simple structure of the pretest-posttest

problem.

From the form of geff(1)′ and the representation of π, for the purpose of finding

estimators “close to” that with efficient form, discussed in the next section, it thus

suffices to restrict attention to the subclass of (2.2.10) with g(1)′(X0, Y1, X1, Z) =

Zq(1)(X0, Y1, X1) for arbitrary square-integrable q(1) given by

ψ(X0, Y1, X1, R, RY2, Z) =
RZ(Y2 − µ

(1)
2 )

δπ(1)(X0, Y1, X1)
−

(Z − δ)

δ
h(1)(X0, Y1)

−
{R − π(1)(X0, Y1, X1)}Z

δπ(1)(X0, Y1, X1)
q(1)(X0, Y1, X1); (2.2.12)

(2.2.12) includes the optimal g(1)′ but rules out choices that cannot have the efficient

form.

The foregoing results take π and hence π(1) to be known, which is unlikely in

practice unless Y2 is missing purposefully by design for some subjects depending on a

subject’s baseline and intermediate information. In practice, this is usually addressed

by positing a parametric model for π(1) in terms of a (s × 1) parameter γ. Thus, to

exploit (2.2.12) to derive consistent estimators when π(1) is not known, intuition sug-

gests that such a model be correctly specified, although we discuss this further below.

Hence, write π(1)(X0, Y1, X1; γ); e.g., for definiteness, consider a logistic regression

model π(1)(X0, Y1, X1; γ) = exp{γT d(X0, Y1, X1)}/[1 + exp{γT d(X0, Y1, X1)}], where

d(X0, Y1, X1) is a vector of functions of its argument. This introduces an additional

parametric component in the semiparametric model, and implementation would re-

quire that γ be estimated from the data (X0, Y1, X1, R, Z) and substituted in estima-

tors derived from (2.2.12). It may be shown using the Robins et al. (1994) theory
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in this case that, as long as an efficient procedure is used to estimate γ, the class of

influence functions containing the optimal g(1)′ corresponding to (2.2.12) is

ψ(X0, Y1, X1, R,RY2, Z) + dT (X0, Y1, X1)A
−1
(1)(bq(1) − b(1))

{R − π(1)(X0, Y1, X1)}Z

δ
,

(2.2.13)

where b(1) = E[(Y2−µ
(1)
2 ){1−π(1)(X0, Y1, X1)}d(X0, Y1, X1)|Z = 1], bq(1) = E[q(1)(X0,

Y1, X1){1 − π(1)(X0, Y1, X1)}d(X0, Y1, X1)|Z = 1] and A(1) = E[π(1)(X0, Y1, X1){1 −

π(1)(X0, Y1, X1)}d(X0, Y1, X1)d
T (X0, Y1, X1)|Z = 1]; and π(1)(X0, Y1, X1) is evaluated

at the true value of γ, which is suppressed here and in the sequel unless otherwise

specified.

Several key results with implications for practice follow from the Robins et al.

(1994) theory. Estimators for µ
(1)
2 with influence functions in class (2.2.13) may be

found by finding estimators with influence functions in class (2.2.12) (so for γ known)

and substituting the maximum likelihood (ML) estimator for γ. Modeling the mecha-

nism separately for Z = 0, 1 rather than jointly as π(X0, Y1, X1, Z), although restrict-

ing the class of missingness models, does not restrict the class of efficient estimators;

in fact, if the true relationship follows a parametric model π(X0, Y1, X1, Z; γ), induc-

ing models π(c)(Y1, X0, X1; γ), c = 0, 1, estimating γ separately by ML for Z = 0, 1

will lead to a more efficient estimator for µ
(1)
2 than that found by estimating γ jointly.

Thus, we take γ to be estimated separately for Z = 0, 1.

In the case where q(1)(Y1, X0, X1) has the efficient form E(Y2|X0, Y1, X1, Z =

1) − µ
(1)
2 , b(1) = bq(1), and hence, even if γ is estimated, the last term in (2.2.13)
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is identically equal to zero, but this will not necessarily be true otherwise. This re-

flects the general result shown by Robins et al. (1994) that an estimator derived from

the efficient influence function will have the same properties whether γ is known (so

known missingness mechanism) or estimated.

In fact, the theory also implies the seemingly counterintuitive result that, even if γ

is known, it is possible to gain efficiency by estimating it anyway; i.e., for a particular

choice of h(1) and q(1), the variance of an influence function of form (2.2.13) is smaller

than that of (2.2.12). Geometrically, this is because (2.2.13) is the residual found

from projection of ψ(X0, Y1, X1, R,RY2, Z) onto the linear subspace of H spanned by

the score for γ when γ is estimated from data with Z = 1 only, Sγ(X0, Y1, X1, Z; γ0) =

d(X0, Y1, X1){R− π(1)(X0, Y1, X1; γ0)}Z, given by {BSγ(X0, Y1, X1, Z) for all (p× s)

matrices B}, where γ0 is the true value of γ. To see this, consider the simple, spe-

cial case of the IWCC in (2.2.7), so with h(1) ≡ q(1) ≡ 0. Then bq(1) = 0, and

the projection of Sγ onto this space of form B0Sγ(X0, Y1, X1, Z, γ0) must satisfy

E
(
[RZ(Y2 − µ

(1)
2 )/{δπ(1)(X0, Y1, X1; γ0)} − B0Sγ(X0, Y1, X1, Z, γ0)](BSγ(X0, Y1, X1,

Z, γ0)) = 0 for all B. By a conditioning argument similar to that used above, the

projection is equal to the second term in the influence function

RZ(Y2 − µ
(1)
2 )

δπ(1)(X0, Y1, X1)
− dT (X0, Y1, X1)A

−1
(1)b(1)

{R − π(1)(X0, Y1, X1)}Z

δ
, (2.2.14)

which is (2.2.13) in this special case.

The preceding development assumes π(1) is correctly specified. If the postulated

model is incorrect, then it is readily apparent that estimators derived from special
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cases of (2.2.13), such as (2.2.7) and (2.2.14), may be inconsistent, as the influence

function no longer has mean zero. However, in general, it may be shown that the

“augmentation” in (2.2.8) induces the interesting property that, estimators derived

from (2.2.8) will be consistent if either (i) the optimal choice of g(O∗) is used, but

π(O∗) is misspecified or (ii) π is correctly specified, but the choice g(O∗) does not

correspond to the optimal one but π(O∗) is correctly specified. This follows be-

cause under either (i) or (ii), the resulting influence function still turns out to have

mean zero. Such an estimator will of necessity be inefficient, as its influence func-

tion is no longer the optimal one. This property has been referred to as “double

robustness” (e.g., Scharfstein, Robins, and Rotnitzky 1999, sec.; van der Laan and

Robins 2003 sec. 1.6). In the case of the pretest-posttest model, this corresponds

in (2.2.12), for example, to (i) taking h(1)(X0, Y1) = E(Y2|X0, Y1, Z = 1) − µ
(1)
2 and

q(1)(X0, Y1, X1) = E(Y2|X0, Y1, X1, Z = 1)−µ
(1)
2 but specifying π(1)(X0, Y1, X1) incor-

rectly or (ii) taking h(1) and q(1) to be something other than these choices but positing

a model for π(1)(X0, Y1, X1) corresponding to the truth. Of course, in practice, one

would not know these conditional expectations, so they would presumably have to be

estimated somehow. This is discussed in the next chapter.

The same considerations outlined here lead to influence functions for estimators

for µ
(0)
2 of forms similar to those for µ

(1)
2 in particular, the efficient influence function

is of the form (2.2.12) with Z, π(1), h(1), q(1), and δ in the denominators replaced by

1 − Z, π(0), h(0) = E(Y2|X0, Y1, Z = 0) − µ(0), q(0) = E(Y2|X0, Y1, X1, Z = 0) − µ
(0)
2 ,
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and (1 − δ), respectively, with similar modifications in the case of (2.2.13):

RZ(Y2 − µ
(0)
2 )

(1 − δ)π(Y1, X0, X1, Z = 0)
+

(Z − δ)

1 − δ
{E(Y2|Y1, X0, Z = 0) − µ

(0)
2 }

−
R − π(Y1, X0, X1, Z = 0)

δπ(Y1, X0, X1, Z = 0)
E(Y2|Y1, X0, X1, Z = 0) − µ

(0)
2 ;

The optimal influence function for the treatment effect β is the difference of the

optimal influence function for the treatment mean and for the control mean, which

is equal to

RZ(Y2 − µ2 − β)

δπ(Y1, X0, X1, Z = 1)
−

R(1 − Z)(Y2 − µ2)

(1 − δ)π(Y1, X0, X1, Z = 0)

− (Z − δ)

{
(E(Y2|Y1, X0, Z = 1) − µ

(1)
2 )

δ
+

(E(Y2|Y1, X0, Z = 0) − µ
(0)
2 )

1 − δ

}

−
R − π(Y1, X0, X1, Z = 1)

δπ(Y1, X0, X1, Z = 1)
(E(Y2|Y1, X0, X1, Z = 1) − µ

(1)
2 )

+
R − π(Y1, X0, X1, Z = 0)

(1 − δ)π(Y1, X0, X1, Z = 0)
(E(Y2|Y1, X0, X1, Z = 0) − µ

(0)
2 ). (2.2.15)
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Chapter 3

Practical Implementation

3.1 Full data

To exploit (2.1.6), one must identify estimators for β with this influence function,

which will then be “optimal” as described in chapter 2. This may be accomplished

by finding estimators for µ
(1)
2 = µ2 + β and µ

(0)
2 = µ2 with the influence functions

in (2.1.6) and taking their difference. An obvious complication is the involvement of

the unknown conditional expectations E(Y2|Y1, Z = c), c = 0, 1, which depend on

the unspecified joint distribution of the observed data; thus, a way of deducing these

quantities is required. One might use a form of nonparametric smoothing to estimate

E(Y2|Y1, Z = c) or fit specific parametric models based on inspection of plots like

those in Figure 1.1 (Robins et al., 1994). Nonparametric estimators typically do not

attain usual parametric n−1/2-convergence rates, raising concern that effects of such

smoothing will degrade performance of the estimator for β in small samples relative to
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that achieved with a correct, parametric specification. For larger n, such smoothing

may be a viable alternative; however, if baseline covariates X0 are incorporated, multi-

dimensional smoothing is required, which may be prohibitive if dim(X0) is large. On

the other hand, although the estimator for β will still be consistent and asymptotically

normal as a member of the general class if the chosen parametric form is incorrect,

the resulting estimator no longer need have the optimal influence function, so could

in fact be inferior to the “popular” estimators. Choosing a parametric model can be

tricky; for the ACTG 175 data, the nature of the “true” relationship is ambiguous,

and Figure 1.1 suggests several plausible parametric models for each group, e.g., a

linear, quadratic, or nonlinear (exponential) function. Regardless, one is still faced

with the issue of deriving appropriate estimators for µ
(1)
2 and µ

(0)
2 .

We propose a strategy that may be regarded as a “compromise” between fully

nonparametric smoothing and parametric modeling and that leads straightforwardly

to a general form of an estimator for β that will improve on the “popular” ones

and has the optimal influence function under conditions we elucidate shortly. The

approach is based on restricting the search for estimators for β to those with influence

functions of the form

Zi(Y2 − µ2 − β)

δ
−

(1 − Zi)(Y2 − µ2)

1 − δ
+ (Z − δ)fT (Y1)α, α ∈ <k, (3.1.1)

where f(Y1) = {f1(Y1), . . . , fk(Y1)}
T is a k-vector of basis functions. E.g., the (k−1)-

order polynomial basis takes f(Y1) = {1, Y1, Y
2
1 , . . . , Y k−1

1 }T ; alternatively, one may

choose a spline basis or discretization basis with f(Y1) = {I(Y1 < t1), I(t1 ≤ Y1 <
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t2), . . . , I(tk−2 ≤ Y1 < tk−1), I(Y1 ≥ tk−1)}
T for t1 < t2 < · · · < tk−1. Thus, (3.1.1)

may be viewed as restricting the search for h in (2.1.6) to the linear space spanned

by f(Y1). If the basis is sufficiently rich so that this space is a good approximation to

the space of all possible h, then the resulting estimators should be close to “optimal”

if they are “optimal” within the restricted class.

We thus find the most efficient influence function in class (3.1.1), which follows by

identifying α minimizing the variance of (3.1.1). Under our assumptions, the first two

terms of (3.1.1) are uncorrelated, so this is equivalent to minimizing var(A − BT α),

where A corresponds to the first two terms and B = −(Z − δ)f(Y1). This is an

unweighted least squares problem, so that αT = cov(A,B){var(BT )}−1, which may be

shown to be αT = −{(1−δ)Σ
(1)T
fY2

+δΣ
(0)T
fY2

}Σ−1
ff /{δ(1−δ)}, where Σ

(0)
fY2

= E{f(Y1)(Y2−

µ2 − β)|Z = 1}, Σ
(1)
fY2

= E{f(Y1)(Y2 − µ2)|Z = 0}, and Σff = E{f(Y1)f
T (Y1)}. In

fact, this α may be found by the sum of separate regressions of each term on B. Thus,

the optimal influence function in the class (3.1.1) is




Zi(Y2 − µ2 − β)

δ
−

(Z − δ)Σ
(1)T
fY2

Σ−1
ff f(Y1)

δ




 −





(1 − Z)(Y2 − µ2)

1 − δ
+

(Z − δ)Σ
(0)T
fY2

Σ−1
ff f(Y1)

1 − δ






(3.1.2)

=
Zi(Y2 − µ2 − β)

δ
−

(1 − Z)(Y2 − µ2)

1 − δ
− (Z − δ)





(1 − δ)Σ

(1)
fY2

+ δΣ
(0)
fY2

δ(1 − δ)






T

Σ−1
ff f(Y1) (3.1.3)

Derivation of an estimator for β with influence function (3.1.3) is straightforward

by considering the equivalent representation (3.1.2) to deduce estimators for each

of µ
(1)
2 = µ2 + β and µ

(0)
2 = µ2 and taking their difference. An estimator for µ

(1)
2

with influence function equal to the first term in braces in (3.1.2) may be found by
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equating the sample average of such terms to zero to obtain µ
(1)
2 =

[
n−1

∑n
i=1{ZiY2i−

(Zi − δ)Σ
(1)T
fY2

Σ−1
ff f(Y1)}

]
/{n−1

∑n
i=1 Zi}, which suggests the estimator for µ

(1)
2 found

by substituting sample moment analogs for each quantity in this expression. Using

similar calculations for the second term in braces in (3.1.2) to isolate µ
(0)
2 and defining

S
(c)
fY2

=
∑n

i=1 I(Zi = c)f(Y1i)(Y2i − Y
(c)

2 ), c = 0, 1; Sff =
∑n

i=1 f(Y1i)f
T (Y1i); and

SfZ =
∑n

i=1(Zi − n1/n)f(Y1i), by taking the difference, we obtain the estimator for

β

β̂ = Y
(1)

2 − Y
(0)

2 − n

(
S

(1)
fY2

n2
1

+
S

(0)
fY2

n2
0

)T

S−1
ff SfZ , (3.1.4)

which may be shown to have influence function (3.1.3). It is straightforward to show

that the variance of (3.1.3), and hence the large-sample variance of n1/2(β̂ − β), is

given by

σ
(1)
22

δ
+

σ
(0)
22

1 − δ
− δ(1 − δ)

(
Σ

(1)
fY2

δ
+

Σ
(0)
fY2

1 − δ

)T

Σ−1
ff

(
Σ

(1)
fY2

δ
+

Σ
(0)
fY2

1 − δ

)
, (3.1.5)

which suggests the estimator for sampling variance of β̂ given by

S
(1)
22

n2
1

+
S

(0)
22

n2
0

− n1n0

(
S

(1)
fY2

n2
1

+
S

(0)
fY2

n2
0

)T

S−1
ff

(
S

(1)
fY2

n2
1

+
S

(0)
fY2

n2
0

)
, (3.1.6)

where S
(c)
22 =

∑n
i=1 I(Zi = c)(Y2i − Y

(c)

2 )2, c = 0, 1.

A modification is to use different sets of basis functions, f (c)(Y1), c = 0, 1, say,

for each term in (3.1.2). Alternatively, these developments suggest applying a similar

approach to (2.1.6), representing E(Y2|Y1, Z = c), c = 0, 1, by linear combinations of

basis functions. It is straightforward to show that this leads to the same class of esti-

mators represented by (3.1.1), suggesting that, in practice, insight may be gained into

the choice of basis by examining plots such as Figure 1.1. Thus, the approach may be
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viewed as intermediate to completely nonparametric and fully parametric estimation

of the E(Y2|Y1, Z = c), approximating these quantities by a finite-dimensional, flexible

form emphasizing the predominant trend apparent in the data. From the derivation

of the optimal α, to achieve efficiency gains, it is essential that this be carried out

by unweighted regression, even if var(Y2|Y1, Z = c), c = 0, 1, is not constant with

respect to Y1. When the true conditional expectations follow exactly such a form and

k and the basis functions are correctly chosen, the method will yield asymptotically

the most efficient estimator for β; otherwise, we expect gains over the “popular” esti-

mators as long as the basis approximates a broad range of relationships. In the next

chapter, we demonstrate that close-to-“optimal” inference is obtained when the true

relationship is nonlinear but the basis representation captures its salient features.

The influence function and its variance depend on moments of squares and crossprod-

ucts of elements of f(Y1) through Σff and the covariances of Y
(c)
2 , c = 0, 1, with

elements of f(Y1) through Σ
(c)
fY2

, which are estimated in (3.1.4) and (3.1.6) by sample

analogs. Thus, e.g., the quadratic basis f(Y1) = (1, Y1, Y
2
1 )T used in the next chapter

involves estimation of not only σ11, σ
(c)
12 , and σ

(c)
22 but also of cov(Y 2

1 , Y
(c)
2 ), c = 0, 1,

and the coefficients of skewness and excess kurtosis of the distribution of Y1. This

suggests that attempting to gain efficiency over “popular” estimators in this way with

small sample sizes is unwise. However, in situations such as large clinical trials, this

approach may be fruitful. The simulation evidence in Chapter 4 indicates that im-

pressive efficiency gains are possible in the moderate-to-large sample sizes where the

improved estimators are expected to perform well.
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When baseline covariates are available, the strategy is immediately extended by

replacing f(Y1) in (3.1.1) by a k-vector of basis functions f(X0, Y1); e.g., one might

choose a polynomial basis including interactions of powers of Y1 with elements of X0.

3.2 Missing at random follow-up.

The form of the efficient influence function given in 2.2.15is a natural starting point

from which to derive estimators with good properties. In addition to postulating

a parametric model for π, the analyst must characterize somehow the conditional

quantities E(Y2|X0, Y1, Z = c) and E(Y2|X0, Y1, X1, Z = c), c = 0, 1. This may be

challenging, as we now demonstrate.

One possibility is to adopt parametric models for the conditional expectations

based on usual regression considerations, fit these, obtain predicted values for each

subject, substitute in (2.2.11), and deduce estimators as described below from the re-

sulting expressions for each i. Because of the assumption of MAR, E(Y2|X0, Y1, X1, Z,R)

does not depend on R; thus, E(Y2|X0, Y1, X1, Z) = E(Y2|X0, Y1, X1, Z,R = 1), im-

plying that such a model may be postulated and fitted based only on the complete

cases. Let êq(c)i be the resulting estimator for E(Y2i|X0i, Y1i, X1i, Zi = c), c = 0, 1,

for subject i. Considerations for E(Y2|X0, Y1, Z) are trickier. Ideally, the chosen

model for this quantity must be compatible with that for E(Y2|X0, Y1, X1, Z), as

E(Y2|X0, Y1, Z) = E{E(Y2|X0, Y1, X1, Z)|X0, Y1, Z}. Several practical strategies are

possible, although none is guaranteed to achieve this property and hence yield an
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efficient estimator for µ
(1)
2 . One approach is to independently adopt a model for

E(Y2|X0, Y1, Z) directly and hope that it is “close enough” to be “approximately

compatible.” E.g., if E(Y2|X0, Y1, X1, Z) is linear in all its arguments, one may be

comfortable choosing a model for E(Y2|X0, Y1, Z) that is also linear. If all of X0, Y1, X1

are continuous, an assumption of joint normality may be a reasonable approximation,

in which case standard results may be used to deduce both models; as these variables

are likely to be a mix of continuous and discrete components, this strategy may be of

limited practical utility. Note that for any chosen model for E(Y2|X0, Y1, Z), it is no

longer appropriate to fit the model based on the complete cases only. Thus, fitting

would need to be carried out by a procedure that takes account of the fact that Y2 is

MAR; e.g., an IWCC version of standard regression techniques. Following any such

approach, predicted values êh(c)i, say, would follow from the resulting estimator for

E(Y2i|X0i, Y1i, , Zi = c), c = 0, 1.

Alternatively, one might use the relationship E(Y2|X0, Y1, Z) = E{E(Y2|X0, Y1,

X1, Z)|X0, Y1, Z}. For example, if X1 is one-dimensional, a distributional model

for X1|X0, Y1, Z might be postulated and fitted based on the (X0i, Y1i, X1i, Zi), i =

1, . . . , n, which are observed for all subjects; integration with respect to this model

would lead to the desired conditional quantities for c = 0, 1. When X1 is binary, as

in the simulations in section 4.2, a logistic model for P (X1 = 1|X0, Y1, Z) may be

used, and such integration is straightforward. Instead, one might invoke an empirical

approximation; for example, one might obtain the predicted value êh(c)i, c = 0, 1 for

each i by averaging estimates of E(Y2i|X0i, Y1i, X1j, Zi = c) over subjects j sharing
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the same values for (X0, Y1, Z) as i; this would likely be feasible only in specialized

circumstances. A cruder version of this strategy would be to average over all X1j for

j in the same group as i; of course, this would yield the desired result only if X1 is

conditionally independent of (X0, Y1) given Z.

However predicted values êq(c)i, êh(c)i, c = 0, 1 are deduced for each i, an estimator

for µ
(1)
2 may be constructed by setting the sum for i = 1, . . . , n of terms of the form

in (2.2.12) for each subject to zero; substituting êh(1)i − µ
(1)
2 and êq(1)i − µ

(1)
2 for

h(1)(X0i, Y1i) and q(1)(X0i, Y1i, X1i), respectively; and solving for µ
(1)
2 ; an analogous

development is possible for µ
(0)
2 . Letting π̂

(c)
i = π(c)(X0i, Y1i, X1i; γ̂) and n̂RZ(c) =

∑n
i=1 RiI(Zi = c)/π̂

(c)
i and substituting δ̂ = n1/n for δ, simple algebra yields the

estimator for β given by µ̂
(1)
2 − µ̂

(0)
2 , where µ̂

(1)
2 = n−1

1 {
∑n

i=1 RiZiY2i/π̂
(1)
i −

∑n
i=1(Zi −

δ̂)êh(1)i −
∑n

i=1(Ri − π̂
(1)
i )Ziêq(1)i/π̂

(1)
i } and µ̂

(0)
2 = n−1

0 {
∑n

i=1 Ri(1 − Zi)Y2i/π̂
(0)
i −

∑n
i=1(Zi − δ̂)êh(0)i −

∑n
i=1(Ri − π̂

(1)
i )(1 − Zi)êq(1)i/π̂

(0)
i }.

The asymptotic variance for β̂ = µ̂
(1)
2 − µ̂

(0)
2 can be obtained from the expectation

of the square of 2.2.15, which, after some simplification yields,

E

{
(Y2 − µ

(1)
2 )2

π(1)(X0, Y1, X1)δ

∣∣∣∣∣ Z = 1

}
+ E

{
(Y2 − µ

(0)
2 )2

π(0)(X0, Y1, X1)(1 − δ)

∣∣∣∣∣ Z = 0

}

− δ(1 − δ)E

{
E(Y2|X0, Y1, Z = 1) − µ

(1)
2

δ
+

E(Y2|X0, Y1, Z = 0) − µ
(0)
2

1 − δ

}2

−
∑

c=0,1

(
I(c = 1)

δ
+

I(c = 0)

1 − δ

)
E

[
1 − π(c)

π(c)
{E(Y2|X0, Y1, X1, Z = c) − µ

(c)
2 }

]
.

(3.2.7)

If the models used to obtain the predicted values and those for π(c), c = 0, 1,
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are correctly specified, then the resulting estimator should be efficient in the sense

described earlier. Although additional regression parameters must be estimated, be-

cause of the geometry, there is no effect asymptotically. The “double robustness”

property discussed at the end of Chapter 2.2 ensures that consistent estimators for β

and µ
(c)
2 , c = 0, 1, will be obtained as long as either set of models is correct; however,

efficiency is no longer guaranteed. To address possible misspecification of models

for E(Y2|X0, Y1, X0, Z) and E(Y2|X0, Y1, Z), one might contemplate using a form of

nonparametric smoothing to estimate these quantities; e.g., locally weighted polyno-

mial smoothing (Cleveland, Gross, and Shyu 1993) or generalized additive modeling

(Hastie and Tibshirani 1990). However, this involves several difficulties. If X0, X1

are high-dimensional, such smoothing is likely to be problematic. Even if not, usual

fitting a nonparametric model for E(Y2|X0, Y1, Z) would need to be modified to take

into account that Y2 is MAR, and one would still face the issue of compatibility. If

instead an estimate of E(Y2|X0, Y1, Z) were derived from the nonparametric fit of

E(Y2|X0, Y1, X1, Z), integration following the smoothing would be required.

To summarize, despite the relative simplicity of the pretest-posttest model, except

in low-dimensional, simple situations, identifying estimators with the efficient influ-

ence function may be a daunting task in practice. In the next section, we consider

an alternative approach.
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3.2.1 Estimators Based on a Restricted Class of Influence

Functions

A strategy for finding estimators that circumvents the above difficulties and that

has been used successfully in other contexts (e.g., Bang and Tsiatis 2000; Leon et

al. 2003) is to restrict attention to a judiciously-chosen subclass of influence func-

tions of the form (2.2.13) and find the efficient estimator within this subclass. In

particular, we consider the subclass of (2.2.13) with h(1)(X0, Y1) = αT f(X0, Y1)

and q(1)(X0, Y1, X1) = ηT `(X0, Y1, X1), where α ∈ <k; η ∈ <m; and f(Y1, X0) =

{f1(X0, Y1), . . . , fk(X0, Y1)}
T and `(X0, Y1, X1) = {`1(X0, Y1, X1), . . . , `m(X0, Y1, X1)}

T

are k- and m-vectors of basis functions, respectively, chosen by the analyst. E.g., the

polynomial basis f(X0, Y1) of order 2 is (1, X0, Y1, X0Y1, X
2
0 , Y

2
1 )T , and k = 6, and

similarly for `(X0, Y1, X1). Other choices of bases are discussed by Leon et al. (2003).

Thus, the subclass corresponds to restricting the choice h(1) and q(1) in (2.2.13) to the

linear spaces spanned by the selected bases f(X0, Y1) and `(X0, Y1, X1). The rationale

is that, if the bases are sufficiently flexible to provide a good approximation to the

spaces of all possible h(1) and q(1), then estimators derived from the resulting influence

function should be “close” to “optimal” if they are efficient within the subclass.

Accordingly, we propose to find the most efficient influence function in the re-
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stricted class

[
RZ(Y2 − µ2 − β)

δπ(1)(X0, Y1, X1)
− bT

(1)A
−1
(1)d(Y1, X1, X0)

{R − π(1)(X0, Y1, X1)}Z

δ

]
−

(Z − δ)

δ
fT (X0, Y1)α −

{R − π(1)(X0, Y1, X1)}Z

δ

{
`T (Y1, X1, X0)

π(1)(X0, Y1, X1)
−

dT (X0, Y1, X1)A
−1
(1)b`(1)

}
η, (3.2.8)

where b`(1) = E[{1 − π(1)(X0, Y1, X1)}d(X0, Y1, X1)`
T (Y1, X1, X0)|Z = 1]. To find

the efficient influence function in class (3.2.8), we must identify α and η such that

the variance of (3.2.8) is minimized. (3.2.8) is of form A − BT
1 α − BT

2 η, and it may

be shown that B1 and B2 are uncorrelated. Thus, the values α(1) and η(1), say,

minimizing this variance may be found from separate unweighted regressions of A on

B1 and B2 and are given by α(1) = Σ−1
ff Σ

(1)
fY2

, and η(1) = (Σ
(1)
`` − bT

`(1)A
−1
(1)b`(1))

−1(Σ
(1)
`Y2

−

bT
`(1)A

−1
(1)b(1)), where Σff = E{f(Y1)f

T (Y1)}, Σ
(1)
fY2

= E{f(Y1)(Y2 − µ
(1)
2 )|Z = 1},

Σ
(1)
`` = E[{1 − π(1)(X0, Y1, X1)}`(X0, Y1, X1)`

T (X0, Y1, X1)/π
(1)(X0, Y1, X1)|Z = 1],

and Σ
(1)
`Y2

= E[(Y2 − µ
(1)
2 ){1 − π(1)(X0, Y1, X1)}`(X0, Y1, X1)/π

(1)(X0, Y1, X1)|Z = 1].

We thus desire to deduce estimators for µ
(1)
2 with influence function (3.2.8), with

α = α(1) and η = η(1). Recall from the discussion following (2.2.13) that, to find

estimators with influence functions in this class, it suffices to find estimators with

influence functions of the form (2.2.12) and substitute the ML estimator for γ.

Accordingly, we consider influence functions of form (2.2.12) with h(1)(X0, Y1) and

q(1)(X0, Y1, X1) replaced by fT (X0, Y1)α
(1) and `T (X0, Y1, X1)η

(1), respectively. An

estimator may be found by setting the sum of terms of the form of (2.2.12) with

these choices of h(1) and q(1) for i = 1, . . . , n equal to zero, solving for µ
(1)
2 , and

36



substituting estimators for quantities that appear in the resulting expressions. Write

π̂
(1)
i = π(1)(X0i, Y1i, X1i; γ̂) and n̂RZ(1) =

∑n
i=1 RiZi/π̂

(1)
i as before, fi = f(X0i, Y1i),

`i = `(X0i, Y1i, X1i), and di = d(X0i, Y1i, X1i). Now define Σ̂ff = n−1
∑n

i=1 fif
T
i ,

b̂`(1) = n−1
1

∑n
i=1 Zi(1 − π̂

(1)
i )di`

T
i , Σ̂

(1)
`` = n−1

1

∑n
i=1 Zi(1 − π̂

(1)
i )`i`

T
i /π̂

(1)
i , Â(1) =

n−1
1

∑n
i=1 Zi(1−π̂

(1)
i )π̂

(1)
i did

−1
i , ĉf(1) = n−1

1

∑n
i=1 Zifi, ĉ`(1) = n−1

1

∑n
i=1 Zi(1−π̂

(1)
i )`i/π̂

(1)
i ,

ĉd(1) = n−1
1

∑n
i=1 Zi(1 − π̂

(1)
i )di, ĉfY2(1) = n̂−1

RZ(1)

∑n
i=1 RiZiY2ifi/π̂

(1)
i , ĉ`Y2(1) = n̂−1

RZ(1)

∑n
i=1 RiZiY2i`i(1 − π̂

(1)
i )/π̂

(1) 2
i , ĉdY2(1) = n̂−1

RZ(1)

∑n
i=1 RiZiY2i(1 − π̂

(1)
i )di/π̂

(1)
i , and

δ̂ = n1/n. Then, defining Σ̂``•bA(1) = Σ̂
(1)
`` − b̂T

`(1)Â
−1
(1)b̂`(1), the resulting estimator

µ̂
(1)
2 is

n∑

i=1

RiZiY2i/π̂
(1)
i −

n∑

i=1

(Zi − δ̂)fT
i Σ̂−1

ff ĉfY2(1) −

{
n∑

i=1

(Ri − π̂
(1)
i )Zi`

T
i /π̂

(1)
i

}
Σ̂−1

``•bA(1)

n̂RZ(1) −
n∑

i=1

(Zi − δ̂)fT
i Σ̂−1

ff ĉf(1) −

{
n∑

i=1

(Ri − π̂
(1)
i )Zi`

T
i /π̂

(1)
i

}
Σ̂−1

``•bA(1)

(ĉ`Y2(1) − b̂T
`(1)Â

−1
(1)ĉdY2(1))

(ĉ`(1) − b̂T
`(1)Â

−1
(1)ĉd(1))

(3.2.9)

Note that the quotient of the leading terms in the numerator and denominator of

(3.2.9) is the IWCC estimator for µ
(1)
2 , where γ is estimated, so that (3.2.9) may be

interpreted as a modification of this simple approach to increase efficiency.

An entirely similar development is possible for µ
(0)
2 . Define Σ

(0)
fY2

, Σ
(0)
`Y2

, Σ
(0)
`` , b`(0),

b(0), and A(0) analogous to the preceding expressions, where µ
(1)
2 and π(1) are re-

placed by µ
(0)
2 and π(0), respectively; conditioning is with respect to Z = 0; and

the vector d(X0, Y1, X1) may be different depending on the model π(0). One may

also define analogously the sample quantities b̂`(1), Σ̂
(0)
`` , Â(0), ĉf(0), ĉ`(0), ĉd(0), ĉfY2(0),

ĉ`Y2(0), and ĉdY2(0), where Zi is replaced by (1 − Zi) and π̂
(1)
i is replaced by π̂

(0)
i =

π̂(0)(X0i, Y1i, X1i; γ̂), and γ in π(0) is estimated based on the data from control sub-
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jects only. The estimator µ̂
(0)
2 is defined as in (3.2.9), substituting these expressions

in the obvious manner and replacing Zi, δ̂, and π̂
(1)
i by (1 − Zi), (1 − δ̂), and π̂

(0)
i ,

respectively, in the remaining quantities.

The estimator for β is thus given by β̂ = µ̂
(1)
2 − µ̂

(0)
2 , and has influence function

equal to the difference of the individual influence functions, which have the form

(3.2.8) with the optimal choices for α and η, with the appropriate substitutions for

the control mean. The asymptotic variance of β̂ is the variance of this difference,

which may be shown to be

E

{
(Y2 − µ

(1)
2 )2

π(1)(X0, Y1, X1)δ

∣∣∣∣∣ Z = 1

}
+ E

{
(Y2 − µ

(0)
2 )2

π(0)(X0, Y1, X1)(1 − δ)

∣∣∣∣∣ Z = 0

}

− δ(1 − δ)

(
Σ

(1)
fY2

δ
+

Σ
(0)
fY2

1 − δ

)T

Σ−1
ff

(
Σ

(1)
fY2

δ
+

Σ
(0)
fY2

1 − δ

)

−
∑

c=0,1

(
I(c = 1)

δ
+

I(c = 0)

1 − δ

)
(Σ

(c)
(`Y2) − bT

`(c)A
−1
(c)b(c))

T (Σ
(c)
`` − bT

`(c)A
−1
(c)b`(c))

−1

(Σ
(c)
(`Y2) − bT

`(c)A
−1
(c)b(c)) −

1

δ
bT
(1)A

−1
(1)b(1) −

1

1 − δ
bT
(0)A

−1
(0)b(0). (3.2.10)

This may be estimated by replacing all quantities in each term after the first two by the

estimators defined above, and estimating the first two terms by (δ̂n̂RZ(1))
−1

∑n
i=1 RiZi

(Y2i−µ̂
(1)
2 )2/π̂

(1) 2
i and {(1−δ̂)n̂RZ(0)}

−1
∑n

i=1 Ri(1−Zi)(Y2i−µ̂
(0)
2 )2/π̂

(0) 2
i , respectively.

One may use the same basis functions for each intervention group, as shown above,

or choose different bases f (c)(X0, Y1) and `(c)(X0, Y1, X1) for c = 0, 1. One may view

the approach as an attempt to approximate the quantities E(Y2|X0, Y1, Z = c) and

E(Y2|X0, Y1, X1, Z = c) by flexible, finite-dimensional representations that attempt

to capture the predominant relationships among variables. When the true conditional
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expectations follow exactly the form indicated by the bases, with k and m correctly

chosen, the asymptotically most efficient estimator will be obtained. Otherwise, if

the bases approximate a range of potential relationships, we expect efficiency gains

over methods such as simple IWCC. Evidence supporting this contention is presented

in the next chapter.

The form of (3.2.9), requiring estimation of complicated quantities, some by IWCC

estimation, suggests that it may be unwise to adopt this approach in small samples,

as there is a potential that these quantities may be poorly estimated, which could

lead to degradation of performance. However, in large studies, the proposed estimator

offers a feasible approach to consistent inference when Y2 is MAR that should offer

efficiency gains over simpler methods.
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Chapter 4

Simulation evidence

4.1 Full data.

We carried out several simulation studies, and report here on results for four

scenarios, each involving 5000 Monte Carlo replications, β = 0.5, δ = 0.5, and

Y1 ∼ N (µ1 = 0, σ11 = 1). We estimated β by the ANCOVA I and II; two-sample

t-test; and paired t-test estimators; (3.1.4) with quadratic polynomial basis, denoted

QUAD; and the estimator formed by estimating E(Y2|Y1, Z = c), c = 0, 1, via locally

weighted polynomial smoothing using proc loess in SAS (SAS Institute, 2000) using

quadratic polynomials, substituting in (2.1.6), finding estimators for µ
(0)
2 and µ

(1)
2 by

equating sample averages of each term in (2.1.6) to zero, and taking their difference,

denoted LOESS. For “popular” estimators, standard errors were obtained both by

substituting sample moments in the asymptotic variance formulæ suggested by their

influence functions, given explicitly in Section 2 of Yang and Tsiatis (2001), and us-
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ing the “usual” expressions for these estimators, e.g., for ANCOVA I and II obtained

from standard OLS formulæ. For QUAD and LOESS, standard errors were obtained

from (3.1.6) and the asymptotic formula. Nominal 95% Wald confidence intervals

for β were constructed as the estimate ±1.96 times the asymptotic-formula standard

error.

Follow-up responses for the first two scenarios were generated from the quadratic

model

Y2i = (µ2 + βZi) + β1(Y1i − µ1) + β2{(Y1i − µ1)
2 − σ11} + εi, εi ∼ N ((0, 1) (4.1.1)

with µ2 = −0.25. Normality of baseline and follow-up may be considered the “most

favorable” distribution for the “popular” estimators, which are often thought to be

predicated on normality, although from Section 2.1 these estimators are consistent

more generally. Situation Q1 is based on (4.1.1) with (β1, β2) = (0.5, 0.4), yielding a

discernible curvilinear relationship between baseline and follow-up, depicted in Fig-

ure 4.1(a). The “popular” estimators assume a linear relationship, thus, the linear

correlation of 0.40 between baseline and follow-up in each group is of interest. The

second situation, Q2, exemplified in Figure 4.1(b), with (β1, β2) = (0.1, 0.1), involves

“low” correlation of 0.10 in each group. Tables 4.1 and 4.2 shows results for n = 100,

500, which for n = 100 are similar to those of Yang and Tsiatis (2001), who used

(4.1.1) but with interactions between baseline and treatment and who mislabelled

Monte Carlo standard deviation and standard error estimates as “variance.” In all

cases, bias is negligible, standard error estimates are reliable, and coverage proba-

bilities are close to the nominal level. ANCOVA I/II are equivalent; for Q2, the
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two-sample t-test performs well, and the paired t-test is inefficient for both scenarios,

as expected. Most striking is the considerable gain in efficiency attained by QUAD

over the “popular” approaches in the realistic situation of Q1, with a moderate de-

gree of curvilinear association. The LOESS method is virtually equivalent to QUAD

for n = 500 in both Q1 and Q2 but for the smaller n = 100 exhibits some loss of

efficiency, perhaps reflecting the concern raised in Section 3.1. Overall, the proposed

approach, which seeks to enhance performance by exploiting the nature of the rela-

tionship between baseline and follow-up, can dramatically improve precision. From

Table 4.1, as expected, little is to be gained when this relationship is weak (Q2).

In Q1 and Q2, the basis functions coincided with the true form of E(Y2|Y1, Z).

To investigate performance for a more complicated relationship, we generated data

from

Y2i = β0 + βZi + eβ1+β2Y1i + εi, εi ∼ N (0, 1), (4.1.2)

where now µ2 depends on (β0, β1, β2). In the first situation, N1, (β0, β1, β2) =

(−4.0, 1.0, 0.5), resulting in curvature typified by Figure 4.1(c), with “high” linear

correlation between baseline and follow-up of about 0.80 in each group. Situation

N2, with (β0, β1, β2) = (−4.0, 1.4, 0.1), produces haphazard scatterplots as in Fig-

ure 4.1(d) and “weak” correlation of roughly 0.30. In (4.1.2), E(Y2|Y1, Z) is not

quadratic; thus, as an “ideal” benchmark, we also estimated β by taking the true

E(Y2|Y1, Z) to be known and finding the optimal estimator based on (2.1.6), denoted

as BENCHMARK in Tables 4.3 and 4.4 . For N1, LOESS and QUAD perform well

relative to the unachievable “ideal” and offer appreciable gains in efficiency relative

42



to the “popular” estimators, despite “high” correlation, although again LOESS is less

precise when n = 100. Not unexpectedly, for N2, with no discernible relationship, the

BENCHMARK, QUAD, and LOESS estimators offer no improvement over the best

“linear” estimators.

It is natural to wonder if these efficiency gains translate to increased power for

testing the usual hypothesis H0 : β = 0. Table 4.5 shows empirical size and power for

Wald tests of H0 under scenario N1. The tests achieve the nominal level, most exhibit-

ing some elevation when n = 100. The proposed approach yields 10–25% increases in

power over the nearest competitors except for n = 500 with large alternatives.

4.2 Missing at random follow-up

We carried out several simulation studies to assess performance of the proposed

approach. We report here on results for a quadratic scenario involving 1000 Monte

Carlo replications, β = 0.5, δ = 0.5, Y1 ∼ N (0, 1) (µ1 = 0, σ11 = 1) and intermediate

covariate X1 with X1|Y1, Z ∼ Ber(pX1
= (1 − Z)exp(κ

(0)
0 + κ

(0)
1 Y1)/{1 + exp(κ

(0)
0 +

κ
(0)
1 Y1)} + Zexp(κ

(1)
0 + κ

(1)
1 Y1)/{1 + exp(κ

(1)
0 + κ

(1)
1 Y1)}) with parameter values set

to (κ
(0)
0 , κ

(0)
1 ) = (1,−0.1) and (κ

(1)
0 , κ

(1)
1 ) = (−0.5, 0.1). The missing data generating

mechanism was simulated via logistic regression modeling with probability π(c) equal

to π(c) = (1−Z)exp(γ
(0)
0 +γ

(0)
1 Y1+γ

(0)
2 X1+γ

(0)
3 X1Y1)/{1+exp(γ

(0)
0 +γ

(0)
1 Y1+γ

(0)
2 X1+

γ
(0)
3 X1Y1)}+Zexp(γ

(1)
0 +γ

(1)
1 Y1 +γ

(1)
2 X1 +γ

(1)
3 X1Y1)/{1+exp(γ

(1)
0 +γ

(1)
1 Y1 +γ

(1)
2 X1 +

γ
(1)
3 X1Y1)} with parameter values set to (γ

(0)
0 , γ

(0)
1 , γ

(0)
2 , γ

(0)
3 ) = (0.2, 2.0, 0.1, 0.1) and
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(γ
(1)
0 , γ

(1)
1 , γ

(1)
2 , γ

(1)
3 ) = (1.0,−1.0,−0.1, 0.1); resulting in an approximated proportion

of complete cases of 63% and 70% in the control and treatment groups, respec-

tively. The parameter of interest, β, was estimated, using complete cases only, by

the paired t-test, ANCOVA I and ANCOVA II and, using all cases, with IWCC

and the proposed estimator with linear and/or quadratic polynomial basis for Y1

used as the polynomial basis f(Y1, X0) = f(Y1) and linear and/or quadratic polyno-

mial function of Y1 and a linear polynomial function of X1 as the polynomial basis

`(Y1, X0, X1) = `(Y1, X1) for both treatment and control groups, with probability

of missingness correctly estimated from a logistic regression with the covariates Y1,

X1 and their interaction Y1X1, thus d(Y1, X1) = (1, Y1, X1, Y1X1)
T for both treat-

ment groups; or computing the sample proportion of follow-up complete cases in each

treatment group as an incorrectly specified model for the missing data generating

mechanism. Note a quadratic polynomial basis specification for X1 is redundant

since X1 is a bernoulli random variable. Thus, QUADQUAD LR estimator has basis

functions f(Y1) = (1, Y1, Y
2
1 )T and `(Y1, X1) = (Y 2

1 ) and BASIS LR has functions

f(Y1) = (1Y1Y
2
1 )T and `(Y1, X1) = (Y 2

1 , Y 2
1 X1)

T . We also included estimators dis-

cussed at the beginning of section 3.2, based on the efficient influence function given

in formulæ in 2.2.15 referred to as LOESS and REG, where E(Y2|Y1, Z = c) and

E(Y2|Y1, X1, Z = c), c = 0, 1 were estimated via local polynomial smoothing using

proc loess in SAS (SAS Institute, 2000) or via linear regression respectively, includ-

ing an intercept and the covariates (Y1, Y
2
1 )T in modeling E(Y2|Y1, Z = c), c = 0, 1 and

the covariates (1, Y1, X1, Y1X1, Y
2
1 , Y 2

1 X1)
T for modeling E(Y2|Y1, X1, Z = c), c = 0, 1,
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substituting in 2.2.15 or(2.2.10) and analog, finding estimators for µ
(0)
2 and µ

(1)
2 by

equating sample averages of each term in (2.2.10) to zero, and taking their difference.

A logistic model was used in both estimators to estimate the missing data mechanism.

To verify the robustness property discussed at the end of section 2.2, an estimator

called REG was included, with same modeling specifactions as REG LR but with

missingness estimated using sample proportions. For the Paired t-test, ANCOVA I

and ANCOVA II estimators, standard error estimates were obtained as in the full-

data case in 4.1. For IWCC LR, BASIS LR, QUADQUAD LR, standard errors were

obtained from (3.2.10) and a sandwich approach using (
∑n

i=1 S2
i )

1/2
, where Si is the

difference of the corresponding influence function of the estimator in (3.2.9) and its

analog for the control mean µ
(0)
2 , for each i with all unknown quantities replaced by

sample analogs. For , LOESS and REG, standard errors were obtained from 3.2.7,

and a sandwich approach using Si from 2.2.15, for each i with all unknown quanti-

ties replaced by sample analogs as well. Nominal 95% Wald confidence intervals for β

were constructed as the estimate ±1.96 times the asymptotic and sandwich formulæ

standard error estimates.

Follow-up responses for the quadratic scenario were generated using the quadratic

model

Y2i = (µ2 + βZi) + {β1 + β2(X1i − E(X1i|Z))}(Y1i − µ1) +

{β3 + β4(X1i − E(X1i|Z))}{(Y1i − µ1)
2 − σ11} + β5(X1i − E(X1i|Z) + εi,(4.2.3)

where εi ∼ N ((0, 1), considered by Yang and Tsiatis (2001), with µ2 = 0. Normality
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of baseline and follow-up responses may be considered the “most favorable” distribu-

tion for the paired t-test and the ANCOVA II estimators, which are often thought

to be predicated on normality, although the results of Yang and Tsiatis and Leon et.

al. (2003) show that these estimators are consistent under general conditions.

Situation Q1 is based on (4.2.3) with (β1, β2, β3, β4, β5) = (0.5, 0.3, 0.4, 0.3, 0.4),

corresponding to a discernible curvilinear relationship between baseline and follow-up,

as depicted in Figure 4.2(a). the paired t-test and ANCOVA II estimators assume a

linear relationship, thus, it is of interest to note the linear correlations of 0.62 and 0.61

between baseline and follow-up for the control and treatment groups, respectively.

The second situation, Q2, exemplified in Figure 4.2(b), takes (β1, β2, β3, β4, β5) =

(0.1,−0.1, 0.2,−0.1, 0.1) and results in “low” correlations of 0.32 and 0.33 and same

percent missingness as situation Q1. Tables 4.6 and 4.7 shows the results for

n = 1000.

The BENCHMARK estimator captures the true form of both E(Y2|Y1, Z) and

E(Y2|Y1, X1, Z).

For scenario Q1, the estimators based on complete cases such as paired t-test,

ANCOVA I and ANCOVA II showed relative biases over 10%, expect the paired t-

test, who showed a relative bias of 7%; also efficiency was degraded by almost half in

comparison to the BENCHMARK estimator. All estimators that attempted to model

missingness showed relative biases under 2% and high relative efficiency in comparison

to BENCHMARK. Note REG and IWCC LR show the “doubly robustness property”

as is indicated in the results by having almost identical values shown in 4.6 for the
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REG LR and BENCHMARK estimators that correctly specify (or estimate) a model

for E(Y2|Y1, X1, Z) and missingness. REG misspecifies a model for missingness and

IWCC LR mispecifies a model for E(Y2|Y1, X1, Z). The degradation in efficiency that

might be expected from missspecifying a correct model for E(Y2|Y1, Z) in the REG

estimator was not observed in 4.6.

In the case of scenario Q2, all estimators perform the same as expected. However,

a relative bias over 4% is observed in estimators based on complete cases. The same

efficiency is acheived by all estimators.

These simulations and others not reported suggest that, in general, larger biases

are introduced in estimators based on complete cases when follow-up observations

are missing at random. Estimators based on the efficient function or on the basis

functions approach improved efficiency, while they showed very small relative bias;

which suggest they are a plausible alternative for estimating treatment effect under

conditions highlighted along the dissertation.
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Figure 4.1: Simulated data for n = 500 from scenarios a. Q1 and b. based on (4.1.1)

and scenarios c. N1 and d. N2 based on (4.1.2), with smooth fits (solid line) obtained

using the Splus function lowess() (Cleveland, 1979). Each panel depicts data for

roughly 250 subjects randomized to control.
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Table 4.1: Simulation results for true quadratic relationship (4.1.1), 5000 Monte Carlo

data sets. Estimators and scenarios are as described in the text. MC Mean is Monte

Carlo average, MC SD is Monte Carlo standard deviation, Asymp. SE is the average

of estimated standard errors based on the asymptotic theory, OLS SE is the average

of estimated standard errors based on OLS for the “popular” estimators, MSE Ratio

is Mean Square Error (MSE) for QUAD divided by MSE of the indicated estimator,

CP is empirical coverage probability of confidence interval using asymptotic SEs.

Estimator MC Mean MC SD Asymp. SE OLS SE MSE Ratio CP

Scenario Q1, “moderate” association

n=100

LOESS 0.504 0.218 0.202 – 0.89 0.93

QUAD 0.507 0.205 0.200 – 1.00 0.93

ANCOVA II 0.506 0.237 0.228 0.231 0.75 0.94

ANCOVA I 0.506 0.233 0.228 0.231 0.77 0.94

Paired t-test 0.508 0.255 0.251 0.251 0.65 0.95

Two sample t-test 0.506 0.254 0.251 0.251 0.65 0.94

n=500

LOESS 0.501 0.090 0.091 – 0.98 0.96

QUAD 0.501 0.089 0.089 – 1.00 0.95

ANCOVA II 0.502 0.103 0.103 0.103 0.75 0.95

ANCOVA I 0.502 0.102 0.103 0.103 0.76 0.95

Paired t-test 0.501 0.111 0.112 0.112 0.64 0.95

Two sample t-test 0.503 0.112 0.112 0.112 0.63 0.95
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Table 4.2: Simulation results for true quadratic relationship (4.1.1), 5000 Monte Carlo

data sets. Columns are as described in table 4.1. Estimators and scenarios are as

described in the text.

Estimator MC Mean MC SD Asymp. SE OLS SE MSE Ratio CP

Scenario Q2, “weak” association

n=100

LOESS 0.506 0.214 0.189 – 0.90 0.91

QUAD 0.505 0.203 0.199 – 1.00 0.94

ANCOVA II 0.505 0.205 0.202 0.205 0.98 0.94

ANCOVA I 0.505 0.204 0.202 0.204 0.99 0.94

Paired t-test 0.511 0.269 0.272 0.272 0.57 0.95

Two sample t-test 0.505 0.204 0.204 0.204 0.99 0.95

n=500

LOESS 0.499 0.091 0.089 – 0.97 0.94

QUAD 0.499 0.089 0.089 – 1.00 0.95

ANCOVA II 0.499 0.091 0.090 0.091 0.98 0.95

ANCOVA I 0.499 0.090 0.090 0.090 0.98 0.95

Paired t-test 0.499 0.121 0.121 0.121 0.55 0.95

Two sample t-test 0.499 0.091 0.091 0.091 0.97 0.95
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Table 4.3: Simulation results for true nonlinear relationship (4.1.2), 5000 Monte Carlo

data sets. Estimators and scenarios are as described in the text. Column headings

are as in Table 4.1.

Estimator MC Mean MC SD Asymp. SE OLS SE MSE Ratio CP

Scenario N1, “high” association

n=100

BENCHMARK 0.507 0.203 0.205 – 1.05 0.94

LOESS 0.504 0.218 0.237 – 0.91 0.96

QUAD 0.507 0.207 0.201 – 1.00 0.93

ANCOVA II 0.506 0.236 0.228 0.231 0.77 0.93

ANCOVA I 0.506 0.232 0.228 0.231 0.80 0.94

Paired t-test 0.505 0.257 0.254 0.254 0.65 0.94

Two sample t-test 0.503 0.387 0.384 0.384 0.29 0.94

n=500

BENCHMARK 0.501 0.089 0.092 – 1.03 0.96

LOESS 0.501 0.090 0.096 – 1.00 0.96

QUAD 0.501 0.090 0.090 – 1.00 0.95

ANCOVA II 0.502 0.103 0.103 0.103 0.77 0.95

ANCOVA I 0.502 0.103 0.103 0.103 0.77 0.95

Paired t-test 0.502 0.114 0.114 0.114 0.63 0.95

Two sample t-test 0.504 0.173 0.172 0.172 0.27 0.95
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Table 4.4: Simulation results for true nonlinear relationship (4.1.2), 5000 Monte Carlo

data sets. Estimators and scenarios are as described in the text. Column headings

are as in Table 4.1.

Estimator MC Mean MC SD Asymp. SE OLS SE MSE Ratio CP

Scenario N2, “mild” association

n = 100

BENCHMARK 0.505 0.201 0.204 – 1.03 0.95

LOESS 0.506 0.214 0.191 – 0.90 0.92

QUAD 0.505 0.203 0.199 – 1.00 0.94

ANCOVA II 0.505 0.203 0.200 0.203 1.00 0.94

ANCOVA I 0.505 0.202 0.200 0.202 1.01 0.94

Paired t-test 0.509 0.231 0.233 0.233 0.77 0.95

Two sample t-test 0.503 0.219 0.217 0.217 0.86 0.95

n = 500

BENCHMARK 0.499 0.089 0.091 – 1.00 0.96

LOESS 0.499 0.091 0.089 – 0.97 0.95

QUAD 0.499 0.089 0.089 – 1.00 0.95

ANCOVA II 0.499 0.090 0.089 0.090 1.00 0.95

ANCOVA I 0.499 0.089 0.089 0.090 1.00 0.95

Paired t-test 0.499 0.103 0.104 0.104 0.75 0.95

Two sample t-test 0.499 0.098 0.097 0.097 0.84 0.95
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Table 4.5: Empirical size and power of Wald tests (estimate/asymptotic standard

error estimate) of H0 : β = 0 under scenario N1 with (4.1.2), each based on 5000

Monte Carlo data sets. Empirical size was found by simulations with β = 0. Empirical

power is under the indicated alternative.

Size Power

β = 0 β = 0.25 β = 0.40 β = 0.50

n 100 500 100 500 100 500 100 500

BENCHMARK 0.07 0.05 0.26 0.80 0.52 0.99 0.70 1.00

LOESS 0.04 0.04 0.18 0.76 0.39 0.99 0.56 1.00

QUAD 0.07 0.05 0.25 0.79 0.53 0.99 0.71 1.00

ANCOVA II 0.07 0.05 0.21 0.69 0.43 0.97 0.60 1.00

ANCOVA I 0.06 0.05 0.21 0.69 0.43 0.97 0.60 1.00

Paired t-test 0.06 0.05 0.17 0.61 0.37 0.94 0.52 0.99

Two sample t-test 0.06 0.05 0.11 0.32 0.19 0.66 0.26 0.83
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Figure 4.2: Simulated data for n = 1000 from scenarios a. Q1 and b. based on

(4.2.3) and scenarios c., with smooth fits obtained using the Splus function loess()

(Cleveland, 1979). Solid lines are fitted utilizing only complete cases (observations in

black), in contrast, dotted lines are based on the “full” data, as if all observations were

available (cases considered as missing follow-up response are colored in light grey).

Data represented with triangles are observations with intermediate bernoulli value

X1 = 1. Each panel depicts data for roughly 500 subjects randomized to control.
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Table 4.6: Simulation results for true quadratic relationship (4.2.3), 1000 Monte Carlo

data sets with sample size of n = 1000. Estimators and scenarios are as described

in the text. Bias is the percent relative bias. Columns headings are as described in

table 4.1. MSE Ratio is Mean Square Error (MSE) for BENCHMARK divided by

MSE of the indicated estimator, CP and CPsw are empirical coverage probabilities

of confidence interval using asymptotic and sandwich SEs respectively. Treatment

effect parameter value is β = 0.51.

MC Standard Error MSE

Estimator Mean Bias MC SD Asymp. OLS Sand. ratio CP CPsw

Scenario Q1, “moderate” association

BENCHMARK 0.50 -1.8 0.08 0.07 – 0.08 1.00 0.94 0.95

LOESS LR 0.51 0.1 0.08 0.08 – 0.08 0.98 0.95 0.95

REG LR 0.52 0.9 0.08 0.07 – 0.08 1.00 0.94 0.95

BASIS LR 0.51 -0.4 0.08 0.08 – 0.08 0.97 0.95 0.96

QUADQUAD LR 0.51 0.0 0.08 0.08 – 0.08 0.97 0.95 0.96

IWCC LR 0.52 1.1 0.10 0.10 – 0.10 0.85 0.85 0.85

REG 0.52 0.9 0.08 0.08 – 0.08 1.00 0.95 0.95

IWCC 0.43 -16.3 0.09 0.10 – 0.10 0.38 0.85 0.85

GEE 0.45 -11.6 0.09 0.09 – – 0.55 0.90 –

ANCOVA II 0.45 -11.6 0.09 0.09 0.09 – 0.55 0.90 –

ANCOVA I 0.45 -11.5 0.09 0.09 0.09 – 0.56 0.90 –

Paired t-test 0.48 -6.9 0.09 0.10 0.10 – 0.61 0.94 –
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Table 4.7: Simulation results for true quadratic relationship (4.2.3), 1000 Monte Carlo

data sets. Estimators and scenarios are as described in the text. Column headings

are as decribe in Table 4.6. The total sample size is n = 1000 and treatment effect

parameter value is β = 0.50.

MC Standard Error MSE

Estimator Mean Bias MC SD Asymp. OLS Sand. ratio CP CPsw

Scenario Q2, “weak” association

BENCHMARK 0.50 1.1 0.08 0.07 – 0.08 1.00 0.92 0.93

LOESS LR 0.50 -0.3 0.08 0.07 – 0.07 0.99 0.92 0.93

REG LR 0.50 0.2 0.08 0.07 – 0.08 1.00 0.93 0.93

BASIS LR 0.50 0.1 0.08 0.08 – 0.08 0.99 0.93 0.93

QUADQUAD LR 0.50 0.3 0.08 0.08 – 0.08 1.00 0.93 0.94

IWCC LR 0.50 0.3 0.08 0.08 – 0.08 0.99 0.93 0.94

REG 0.50 0.2 0.08 0.07 – 0.07 1.00 0.93 0.93

IWCC 0.50 -4.2 0.08 0.08 – 0.08 0.90 0.93 0.93

GEE 0.48 -3.5 0.08 0.08 – – 0.93 0.93 –

ANCOVA II 0.48 -3.5 0.08 0.08 0.08 – 0.92 0.93 –

ANCOVA I 0.48 -3.4 0.08 0.08 0.08 – 0.93 0.93 –

Paired t-test 0.52 4.6 0.10 0.10 0.10 – 0.53 0.94 –
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Chapter 5

Treatment effect in ACTG 175

We apply methods developed in previous chapters to evaluate treatment effect in

CD4 count at 20 ± 5 and 96 ± 5 week post-randomization.

5.1 20 ± 5 CD4

Figure 1.1 shows a possibly nonlinear baseline-follow-up relationship in each ACTG

175 group (with correlations of 0.55 and 0.65 for control and treatment); here,

δ = 0.75. It is standard to analyze CD4 counts on a scale where they appear sym-

metrically distributed to achieve the approximate normality widely thought required

for valid inference via “popular” methods, although Section 2.1 shows this is not

needed for consistency. If interest focuses on mean CD4, inference under a monotone

transformation to normality instead addresses median CD4.

Table 5.1 presents results using the approaches studied in Section 4 for data from
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2130 subjects, excluding those missing baseline or 20 ± 5 week CD4. Also given

are two estimators incorporating baseline covariates X0 = {weight (kg), Karnofsky

score (0-100), days of pre-study antiretroviral therapy, symptomatic status (0/1), IV

drug use (0/1)}, one using basis functions f(X0, Y1) = (1, Y1, Y
2
1 , X01, . . . , X05)

T and

the other obtained by fitting E(Y2|X0, Y1, Z = c), c = 0, 1, via generalized additive

models (Hastie and Tibshirani, 1990). The proposed methods have the smallest

standard errors, and incorporation of baseline covariates yields further improvement.

The gains are slight, however, likely owing to the weak curvature in Figure 1.1 and

weak prognostic effect of the covariates.

5.2 96 ± 5 CD4

In many HIV studies, loss to follow-up is often thought a consequence of review

by participants and their healthcare providers of available information, such as inter-

mediate measures of disease status; dropout may also be more likely among subjects

with certain baseline characteristics. To illustrate the proposed methods, we consider

data from AIDS Clinical Trials Group (ACTG) protocol 175, which randomized 2467

HIV-infected individuals to four groups: zidovudine (ZDV) monotherapy, ZDV plus

didanosine (ddI), ZDV plus zalcitabine (ddC), or ddI (Hammer et al. 1996). On the

basis of the primary outcome, time to progression to AIDS or death, ZDV was shown

inferior to the other three treatments. Thus, we consider two interventions, ZDV alone

(“control”) and the combination of the other three (“treatment”). Secondary analy-
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ses in such trials often focus on changes in measures of immune or virologic response;

accordingly, we consider follow-up CD4 count at 96 ± 5 weeks post-randomization,

missing for 37% of the subjects. Figure 1.2 shows the relationship between baseline

and follow-up CD4 among subjects for whom both are available and suggests a pos-

itive, possibly curvilinear relationship in each group. In addition to baseline CD4,

numerous covariates, such as hemophilia status, sexual preference, intravenous drug

use, Karnofsky score, prior antiretroviral treatment experience, gender, race, and so

on, were recorded at baseline, and intervening measures of CD4, CD8, and treatment

status were collected over the 96-week period. Exploratory analyses of associations

between these covariates and follow-up status show that missingness is related to a

several of them, in many cases differentially by treatment.

Figure 1.2 shows that 96± 5 CD4 follows a similar trend with respect to baseline

CD4 in each ACTG 175 group (with correlations of 0.55 and 0.54 for control and

treatment).

Table 5.2 presents results using the approaches studied in Section 4 for data

from 2120 subjects, excluding those cases missing baseline or intervening covari-

ate. Paired t-test, ANCOVA I and ANCOVA II were estimated from 1460 cases

with available 96 ± 5 week CD4. Also given are two estimators incorporating base-

line covariates X0 = {weight (kg), Karnofsky score (0-100), days of pre-study an-

tiretroviral therapy, symptomatic status (0/1), IV drug use (0/1)} and follow-up

covariates X1 = {20 ± 5 week CD4, 20 ± 5 week CD8}, one using basis functions

f(X0, Y1) = (1, Y1, Y
2
1 , X01, . . . , X05)

T and `(X1, X0, Y1) = (1, Y 2
1 , X2

11, X
2
12)

T and
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modelling the probability of missingness with a logistic regression with all baseline

covariates and linear polynomials of the follow-up covariates. The estimator called

REG, obtained by fitting E(Y2|X0, Y1, Z = c), c = 0, 1, via linear regression on the

same covariates as the basis function f(Y1, X0) and fitting E(Y2|X0, Y1, X1, Z = c),

c = 0, 1, via linear regression on the same covariates as the basis function `(Y1, X0, X1)

is also given, with missingness modeled using sample proportions.

The proposed methods have the smallest standard errors, and incorporation of

baseline covariates yields further improvement. We see a potential bias introduced

in the estimation of treatment effect in ANCOVA I, ANCOVA II and paired t-test

estimators. However, both bias and improvement in the standard error estimation

is slight, probably because of the weak curvature showed in Figure 1.2 and weak

prognostic factor effect of the covariates.
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Table 5.1: Treatment effect estimates for 20±5 week CD4 counts for ACTG 175. The

methods are as denoted as in Tables 4.1-4.5; in addition, BASE-QUAD denotes the

proposed basis function method including up to quadratic terms in baseline CD4 and

linear terms involving baseline covariates, and BASE-GAM denotes the proposed

method estimating the conditional expectations using generalized additive models.

Asymptotic SE is estimated standard error based on the influence function and OLS

SE is estimated standard error based on the “usual” approaches for the “popular”

estimators as described in Section 4.

Estimator β̂ Asymptotic SE OLS SE

BASE-GAM 50.001 5.080 –

BASE-QUAD 50.837 4.957 –

LOESS 49.799 5.222 –

QUAD 49.792 5.330 –

ANCOVA II 49.404 5.384 5.842

ANCOVA I 49.313 5.385 5.840

Paired t-test 50.148 5.686 6.109

Two sample t-test 45.506 6.767 7.203
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Table 5.2: Treatment effect estimates for 96 ± 5 week CD4 counts for ACTG 175.

BASIS LR denotes the proposed approximating method using quadratic polynomial

basis and intermediate covariates for modeling missingness. Asymp. SE is estimated

standard error based on asymptotic formulæ and OLS SE is estimated standard er-

ror based on the “usual” approaches for the “popular” estimators as described in

Chapter 4.

Estimator β̂ Asymp. SE OLS SE Sandwich SE

REG LR 62.87 7.91 – 8.22

BASIS LR 63.13 8.05 – 8.31

REG 63.32 8.19 – 8.33

ANCOVA I 65.66 8.27 8.75 –

ANCOVA II 65.59 8.45 8.80 –

Paired t-test 67.57 8.94 8.93 –

Two sample t-test 54.50 10.36 10.53 –
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Chapter 6

Discussion

Casting the pretest-posttest problem in a counterfactual framework, we have ex-

ploited advances in the missing data literature to characterize a general class of esti-

mators for treatment effect. We have shown that “popular” approaches are inefficient

and that improvement is possible by taking into account the nature of the relationship

between baseline and follow-up response via our approach. We do not recommend

the proposed estimators in very small samples, as they require estimation of fea-

tures that may be not be well-identified under these conditions. The formulation

also yields an approach for incorporating baseline covariate information to further

improve efficiency. Our strategy differs from that of directly modeling parametrically

the relationship between follow-up and baseline and other factors. In this approach,

consistency is predicated on correct specification of the model (and possible distribu-

tional assumptions), while that here will yield consistent estimators of treatment effect

regardless, e.g., if the chosen basis does not accurately reflect the true relationship.
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When there exists an interaction between baseline response and treatment, a

philosophical issue is whether interest should indeed focus on main effects. Proponents

of the “large, simple trial” (e.g., Friedman, Furberg, and DeMets, 1996, p. 56)

downplay interactions and focus on overall effect, while researchers in other settings

have a different view. We do not take a position in this debate. The proposed

estimators are for such a main effect; whether there is an interaction or not, the

methods estimate this effect consistently and exploit relationships among variables

solely to gain efficiency.

It is in fact straightforward to extend the development to more than two treat-

ments and to observational studies where treatment assignment is not random and

it is assumed that treatment assignment is independent of prognosis (i.e., follow-up

counterfactuals) given baseline covariates.

We extended the method to include cases with follow-up missing data, and showed

the utility of the proposed estimators when the data is missing at random. We see

that meaningful bias can be introduced in the estimation if failed to considering

the possible underlying missing mechanism present in the data. We believe that

the contribution of Robins et. al. (1994) to modeling missing data can be best

assessed by making such methods easily available on settings commonly found by

practitioners, like the pretest-posttest problem. Also, the simplicity of the problem

allows to elucidate understanding about the utility of those methods for modeling

missing data.
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