
ABSTRACT 
 

 
AYLOR, DAVID LAWRENCE. Not Just Another Trait: Methods for the Genetic Analysis 
of Gene Expression.  (Under the direction of Zhao-Bang Zeng.) 

 
Gene expression refers to the process by which DNA is transcribed to mRNA.  It is 

now possible to measure genome-wide transcript abundance in many genetically distinct 

individuals.  Genetical genomics refers to the application of quantitative genetic techniques 

to such data.  We present two analyses of gene expression in distinct experimental 

populations.   

 We first present a method for a classical epistasis analysis that includes gene 

expression measurements. We propose a framework for estimating and interpreting epistasis 

that borrows from both classical and quantitative approaches.  Regression analysis estimates 

the effects of gene deletions as well as interactions and significant effects are selected such 

that a reduced model describes each expression trait.  We then show how the resulting 

models correspond to specific hierarchical relationships between two regulator genes and a 

target gene.  These hierarchical relationships are the building blocks of systems diagrams and 

genetic pathways.  Our framework can serve as a foundation for future epistasis analyses 

based on genomic data. 

Secondly, we analyze expression quantitative trait locus mapping (eQTL) results in a 

segregating yeast population.  We use prior information about yeast pathways to group 

expression measurements and ask questions about pathway regulation.  We find that while 

many genes share quantitative trait loci, sharing is not prevalent within pathway groups.  We 



 

propose a possible explanation for our observations and describe how they fit in with 

previous interpretations of these data. 

Lastly, we present a tool for manipulating sequence data within a population.  Our 

software enables the user to pull out important features from a multiple alignment such as 

variable sites, unique haplotypes, and insertions or deletions.  The output is compatible with 

a number of existing tools for population genetic analysis.
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Quantitative Genetics Concepts and Data 

From the time of Mendel until the characterization of the genetic code, genes were 

physically unobserved.  Mendel observed that offspring inherit traits from their parents in 

discrete units, and the term gene was later coined to describe this functional unit of heredity.  

Alleles are functionally distinct forms of a particular gene.  Some traits vary continuously 

rather than discretely and at first did not appear to be inherited according to Mendel’s rules.  

These traits were termed quantitative, meaning that they can be measured; they traits are also 

referred to as complex traits. Quantitative genetics is the study of such traits (Lynch and 

Walsh 1998).  R.A. Fisher (1918) showed how combinations of multiple genes could explain 

quantitative variation in a population, and this has been a fundamental assumption of most 

subsequent quantitative genetic models.  Non-genetic effects such as those imposed by 

different environments can also affect quantitative traits. 

 Two types of data are required for quantitative genetic analyses.  These are the 

phenotypic variation and the genetic structure of the study population.  Phenotypic variation 

or trait values can be measured in a variety of ways depending on the continuous trait being 

investigated.  The degree of relatedness is usually a product of experimental design.  Such 

analyses estimate such quantities as the proportion of heritable variation in a trait and its 

potential response to selection.  These estimates are statistical in nature and describe the 

population of study organisms rather than any one individual.  The methods used are 

predominately regression-based and rely on several assumptions about the properties of 

quantitative characters.  Chief among these assumptions is that the effects of individual genes 



 3 

are additive and should be modeled as such.  Deviations from additivity are interpreted as 

interactions between genes.  Dominance refers to interactions between alleles within a locus.  

Epistasis refers to interactions between alleles at separate loci.  Some models are extended to 

include such interaction effects. 

 Linkage analysis refers to a body of methods based on the observation that alleles do 

not always segregate independently.  If two traits are observed together in offspring often but 

not always, then the allele combinations not observed in the parents are called recombinants, 

and recombination frequency is the fraction of these offspring.  This concept was extended to 

create the first genetic map in fruit flies (Sturtevant 1919).   To construct a linkage map, one 

must assume that genes exhibiting low frequency of recombination are located closer to each 

other on the chromosome, which had recently been validated as vectors of heredity (Morgan 

1910).  These frequencies are the genetic distance upon which the map is based.  In 

eukaryotes, recombination is now known to be due to the biological phenomenon of crossing 

over during meiosis.  It is notable that the original markers were phenotypes of mutants, and 

linkage maps predated many of the concepts we now associate with them. 

 The physical material of genes was unknown until the 1950s, when the structure of the 

DNA molecule was discovered and the gene concept expanded to describe something both 

functional and physical.  A gene in this sense is a molecular region that is a template for an 

mRNA transcript.  In the intervening years, the field of molecular genetics has provided 

details about how genes are transcribed into mRNA that is subsequently translated into 

proteins. These advances made it possible to link a function with a region of the genome.  
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Molecular Markers and QTL Mapping 

 Polymorphisms are individual differences in the DNA molecules within a population.  

In modern genetics, observed polymorphisms are called molecular markers and can be used to 

create linkage maps.  Various types of markers exist including microsatellites, Restriction 

Fragment Length Polymorphisms (RFLPs), and Single Nucleotide Polymorphisms (SNPs).  

These are often associated with a particular technology for detecting variation. 

Quantitative Trait Locus (QTL) mapping takes advantage of the gene’s dual nature, 

by associating variation in observed traits with molecular markers.  In short, the functional 

gene is mapped to a physical location.  The goal of QTL mapping is to locate the physical 

regions of an organism’s DNA that are linked to the trait of interest. Regions that are linked 

to a particular trait are called quantitative trait loci (QTLs).  QTL mapping begins with 

observed trait measurements, a study population with a known degree of relatedness, and 

molecular markers from each individual in the study population.  The relationship between 

individuals in the mapping population is usually a product of the experimental design.  The 

molecular marker data should be sufficient to create a linkage map; it is common to have 

between a few dozen to a few hundred genetic markers spread throughout the genome of the 

study population.  As mapping populations undergo more generations of recombination, they 

require more markers to study.  This generally translates to increased resolution but less 

power to detect QTLs.   
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The simplest method of associating markers with trait values is the single marker 

analysis (SMA).  For each marker, individuals are separated into two groups based on their 

marker allele and we test if the trait mean is different between the groups. The weaknesses of 

this approach are that it cannot identify multiple QTLs, cannot estimate QTL position, 

underestimates the QTL effect, and is not very powerful (Zeng 2000).  A vast body of 

literature outlines more sophisticated methods for mapping the location of QTLs and the 

magnitude of their effect.   

 Interval mapping (IM) (Lander and Botstein 1989) extends the simple SMA test by 

testing association with the regions between two markers.  This method is notable because it 

accounts for recombination between the markers and the QTL.  The QTL is assumed to be 

located somewhere in the interval and at some genetic distance from each marker.  A 

likelihood ratio (LR) test is used for each interval along the linkage map, and relates the 

hypothesis that a QTL in the given interval has an effect on the trait versus the hypothesis 

that it does not.  The LR test statistic is usually reported as a log of odds (LOD) score, which 

is the same value arbitrarily scaled differently and historically used in human genetics.   

 Composite Interval Mapping (CIM) allows multiple QTLs to be evaluated in the same 

genetic model (Zeng 1993; Zeng 1994).  This more closely agrees with the theory of 

quantitative traits, in which many genes combine to determine trait values.  Multiple QTL 

models are accomplished in a sequential manner by first adding one QTL to the model in the 

manner of IM, then conditioning on that QTL when searching for additional QTLs.  Multiple 
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Interval Mapping (MIM) (Kao et al 1999; Zeng et al 1999) refines CIM by virtue of an 

improved search procedure and allowance of more complex genetic models.   The need for a 

QTL significance threshold is common to all these methods.  This is an area of current 

development due to the computational burden of permutation testing, which has been the 

most successful approach (Churchill and Doerge 1994; Doerge and Churchill 1996). 

 Each QTL is assumed to contain one or more individual genes that contribute to the 

observed phenotype.  However, QTL mapping is limited in resolution by the size of the 

mapping population, the amount of recombination in the population, and the density and 

distribution of markers.  For these reasons, relatively few causative genes have been identified 

despite thousands of QTLs found for myriad traits.  Generally, additional data must be 

incorporated to fine-map QTLs.  However, following up on QTL results with additional 

genetic data is increasingly feasible because of advances in sequencing technology and the 

subsequent lower costs. 

 QTL mapping revolutionized genetic data analysis during an era in which phenotypic 

data was plentiful and genetic markers increased in availability.  In model organisms, QTL 

mapping has led to discovery of new genes linked to well-studied phenotypes.  It has allowed 

for advances in plant and animal breeding through identification of regions linked to traits of 

interest and marker-assisted selection.  Most importantly, QTL mapping has provided new 

insights into the architecture of quantitative traits such as the distribution of QTL effects, the 

prevalence of heterosis, and the heritability of important traits.  
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The Genomic Era and Expression QTL Mapping 

Again, advances in molecular biology are pushing the cutting edge of quantitative 

genetics.  A genome is the entirety of the unique DNA belonging to a particular species, and 

the 1990s saw a flurry of genome projects for a variety of species. The goal of these projects 

is to create a physical map that contains the nucleotide sequence of an entire genome.  Genes 

and other features are all placed on the map by processes referred to collectively as genome 

annotation.  Some genes are located because they physically “look like” other genes.  Others 

genes are mapped to specific functions through experimental means.  Much of the progress in 

annotation was due to new technologies that allowed many simultaneous measurements.  A 

litany of words ending in “omics” describes methods for measuring many molecules 

simultaneously – be they cellular proteins, metabolites, or mRNA transcripts.  Gene 

expression refers to the relative amount of mRNA transcript produced by a particular gene, 

and the number of these experiments skyrocketed since the advent of cDNA microarrays and 

later manufactured oligonucleotide arrays for model organisms.  These high throughput 

technologies have steadily grown in popularity, improved in quality, and lessened in cost 

over the past decade.  During this time, procuring traditional phenotype data has not 

translated well to high-throughput methods and is relatively costly and time-consuming. 

As gathering genomic data for segregating populations has become feasible, these data 

have been considered as continuous traits and candidates for QTL mapping in what has been 

called “genetical genomics.” (Jansen and Nap 2001)  Expression QTL (eQTL) mapping 
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substitutes gene expression measurements for phenotype and uses essentially the same 

methods as traditional QTL mapping.  However, rather than considering one or a few classical 

traits, many or even thousands of expression traits (e-traits) are considered.  In practice, 

eQTL mapping is generally performed by iteratively applying traditional QTL mapping 

techniques to each individual expression measurement. 

 Expression traits have several appealing properties.  Foremost, a physical location is 

associated with each trait, and one can distinguish between proximate cis-QTLs and trans-

QTLs that locate elsewhere in the genome.  Cis-QTLs indicate variation located in the same 

physical location as the gene itself.  This may reflect variation in promoters or allelic 

variation.  QTLs that regulate traits that are not collocated are called trans-QTL.  Trans- 

regulatory polymorphisms may reside in regulatory proteins such as transcription factors, be 

indirect effects from genes upstream in regulatory pathways (Brem et al. 2002), or represent 

other mechanisms of regulatory feedback.  Two patterns have been apparent in all eQTL 

studies to date.  The first is a significant group of e-traits linked to a cis-QTL.  The second 

pattern is multiple trans-QTLs that are shared by many traits, sometimes called hotspots. 

These two features have become starting points for how we describe expression QTL results 

and are central to how we interpret them. 

 Additionally, it is an important difference from phenotypic measurements that expression 

traits have an intrinsic molecular biological role (Schadt et al. 2003).  Bioinformatics databases 

store wealth of information about specific genes.  Therefore, expression traits can be 
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associated with phenotypes and molecular biological functions without any additional 

experimentation.  Likewise, e-traits can be grouped according to such data.  This additional 

information can generate hypotheses regarding the gene underlying QTL. 

  

Three Intergenic Relationships in Expression QTL Experiments 

Traditional QTL mapping reflects a relationship between a physical region and a 

phenotype.  Inasmuch as we assume a causative gene underlies the QTL, this can be 

considered a gene-trait relationship.  Since in eQTL mapping the trait is itself a gene, the 

trans-QTL is a relationship between two genes.  A polymorphism in one gene affects the 

expression of another.  Epistasis can be modeled just as in traditional QTL mapping, as part 

of the genetic model.  Based on the same assumption that a gene underlies each QTL, this is 

also a relationship between genes.  Polymorphisms in two genes affect the expression of a 

third, or one of the genes themselves if one of the QTL is in cis-.  Lastly, there are 

relationships between the expression measurements that represent a third relationship 

between genes.  Expression traits can be correlated (co-expression of genes), share a QTL (co-

regulation of genes), or represent genes of shared function.  These three relationships allow us 

to interpret eQTL results in the context of regulatory networks.  Depending on the 

experiment, additional relationships between genes and phenotype can also be explored. 

We present several lines of research from the past five years in this context.  

Pioneering work in yeast helped describe the basic patterns how expression is regulated by 
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genetic variation.  Mice studies showed system level genetics in the context of different 

organs, and the community has made unique contributions to exploring the relationships 

between expression traits.  Plant research has contributed the most in terms of integrating 

expression QTL mapping with phenotype and other biomolecular data. 

 

Expression QTL in Yeast 

In a series of papers, Leonid Kruglyak and colleagues presented expression QTL 

mapping results from yeast (Brem and Kruglyak 2005; Brem et al. 2005; Brem et al. 2002; 

Yvert et al. 2003).  A wild isolate from a vineyard was crossed with a standard laboratory 

strain, and expression was measured on 112 haploid segregants.  Yeast have a haploid phase 

in their life cycle, so these segregants are genetically comparable to a diploid F1.  Both 

capture one generation of recombination.  Preliminary results were released based on 40 

segregants and later 86 segregants.  Gene expression was measured for 6216 trait genes; 489 

were eventually disregarded due to an independent survey of the yeast genome (Kellis et al. 

2003), leaving 5727 genes.  In a controlled environment, one quarter of the expression traits 

measured were differentially expressed between the parent strains at P < 0.005.  They 

estimated a median heritability of 0.84 using mid-parent/offspring regression.  Because there 

is no dominance in haploid organisms, this is heritability in both the broad and narrow sense.  

3312 genetic markers were typed.  

In the initial study using 40 individuals, 308 of the differentially expressed traits were 

linked to at least one marker in a single marker analysis.  A third of these linkages were cis-

acting.  Transgressive segregation was common and may have complicated detecting linkage.  
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Eight shared trans-regulators accounted for over 40% of QTL, and each was characterized as 

being enriched for genes of a common function. For the shared regulators that also have a 

cis- linkage, the trait with the cis- linkage was inferred to be the gene harboring a causative 

polymorphism.  Candidate regulator genes were supposed by prior knowledge of genes in the 

linkage region, but for which the corresponding expression trait had no cis-QTL. 

In a follow-up paper, Yvert et al (Yvert et al. 2003) found many additional linkages 

using 86 segregants (2294 at P < 3.4 × 10-5, 992 at P < 5 × 10-7).  The number of shared 

trans-regulators grew to thirteen.  In this report they used correlation-based k-means 

clustering to group similar traits based on their expression profiles.  Thirty percent of 

expression traits clustered with at least one other gene.  They found 593 clusters of at least 

two genes and 205 larger clusters. This grouping approach is independent of the linkage 

analysis, but groups based solely on data generated from the experimental cross.  These 

clusters were enriched for genes with shared annotations, and the mean expression of genes 

within each cluster linked to genetic variation for over half of clusters.  They found that 

trans-QTLs regulating clusters were rarely transcription factors and noted diverse biological 

functions among putative trans-regulator genes.  This may be due to strong evolutionary 

conservation among transcription factors. 

 With additional samples (Brem and Kruglyak 2005), they estimated slightly more 

expression traits with at least one QTL (2984 at FDR = 0.05).  Most of these traits had high 

heritability of over 0.69.  They explored the number of loci underlying these high heritability 

traits by fitting additive genetic models composed of one through ten QTLs of equal effect.  
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There was a direct relationship between increasing model complexity and the proportion of 

traits supporting each model, suggesting that expression traits are regulated by many QTL. 

 The additional information associated with expression traits can be used to identify the 

candidate genes underlying QTL.  These methods have perhaps been developed best in yeast 

due to the wealth of biological information available on its molecular biology.  Prior 

knowledge regarding the function of the genes in a QTL region has in several cases provided a 

clear candidate for positional cloning and functional assays.  However, it is not feasible to 

conduct additional experiments for more than a few QTL.  Computational approaches 

combine experimental data with bioinformatics.  Bing and Hoeschle (2005) correlated the 

expression profiles of genes located in each QTL region with the expression profile of traits 

linked to that QTL.  This approach assumes that related genes have strong correlations in 

their expression.  It also indirectly assumes that the causative gene has a cis-QTL, since the 

marker would necessarily be correlated with both expression profiles if they were correlated 

with each other.  However, they identified candidate genes for both cis- and trans-QTL, 

suggesting for the trans-QTLs that the underlying cis- regulation did not meet the significance 

threshold needed to declare a QTL in the linkage analysis. 

 

Epistasis: Results from Yeast 

 The same yeast cross has also led to insights in the second intergenic relationship -- 

epistasis.  Epistasis can be defined as interaction between two alleles at different loci.    
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Modeling epistasis in a segregating population involves statistically testing for interaction 

between each pair of loci or putative QTL.  Testing all possible pair of loci is 

computationally demanding and has low power because of the enormous number of tests that 

must be performed.  Epistasis is not always included in traditional QTL models, but such 

issues are compounded when thousands of expression traits are analyzed.  Brem et al (2005) 

used a two-stage search strategy to find secondary loci only after conditioning on a primary 

locus, and then fitting a model including effects for both loci and an interaction.  They found 

65% of expression traits showed significant epistasis at P < 0.05.  Creating yeast strains with 

each of the four allelic combinations validated a significant interaction between MAT and 

GPA1 loci.  The ability to manipulate yeast so easily makes them ideal for epistasis analyses 

at a range of genetic variation.  Zou and Zeng applied Multiple Interval Mapping to the same 

data set, which also searches for models including epistasis (Zou and Zeng 2008). 

  

Expression QTL in Mice 

 Schadt and colleagues showed that similar approaches could be used in mice (Schadt et al. 

2003).  They profiled 111 F2 mice from a cross of standard laboratory strains (C5BL/6J × 

DBA2J). They measured gene expression in liver cells because of the liver’s role in obesity, 

which was their target phenotype.  Using interval mapping, they observed that cis-QTLs 

were generally of larger effect than trans-QTLs, and found QTL associated with the major 

differences between parent strains that they expected.  They combined their QTL analysis 
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with phenotype by measuring fat pad mass on the mice.  The expression data allowed them 

to identify two distinct expression profiles among the high fat mice, suggesting disease 

subtypes controlled by unique QTLs. 

 Two concurrently released papers extended this approach using the BXD recombinant 

inbred (RI) strains (Bystrykh et al. 2005; Chesler et al. 2005) to profile expression QTLs in 

two tissues.   Using a 10% FDR they found that 83 of 88 QTLs were cis- in the brain.  This 

is consistent with cis-QTLs having larger effects sizes than trans-QTLs; the more 

conservative the significance threshold is, the higher the ratio of cis- to trans- should be.  

Hotspots were prevalent but did not collocate between these three experiments, meaning that 

genetic control of transcription is tissue specific. 

 

Relationships Between Expression Traits 

It is intuitive to group expression traits that share a QTL and ask whether those traits 

may be related biologically.  Another approach is to group related traits before the mapping 

analysis.  Several methods have been explored that fall into two general types.  The first type 

groups traits based on expression measurements from the experimental data. Clustering traits 

by expression profiles is a simple method that has been prevalent in the literature.  

Alternately, sets of genes can be defined a priori.  Kliebenstein et al (Kliebenstein et al. 2006) 

mapped QTL for twenty networks in Arabidopsis; each network was pulled from previously 
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published studies or cumulative experimental results.   We present an a priori analysis for 

yeast in Chapter 3. 

Composite trait mapping has been used in a variety of organisms (Ghazalpour et al. 

2006; Kliebenstein et al. 2006; Yvert et al. 2003).  This refers to mapping a trait derived from 

averaging or otherwise combining multiple grouped expression traits.  In yeast and mice, the 

expression trait values within each cluster were averaged for every individual, and this 

average was treated as that individual’s trait value for linkage analysis.  In yeast, 304 of 593 

clusters showed some linkage at P < 3.4 × 10-5.  The idea behind composite traits mapping is 

to increase the power to identify shared regulators.  However, shared regulators may not be 

present for every group and this could lead to incorrect conclusions. 

 A method for composite trait mapping is illustrated clearly in mice (Ghazalpour et al. 

2006).  They propose a four-step process in which traits are related by constructing a gene 

co-expression network, the biological significance of each module is determined from 

referencing bioinformatics data, a composite (average) trait is mapped to QTLs, and the 

relationship between QTL and module is reevaluated for biological relevance.  They group 

traits based on pair-wise correlation of expression values, and refer to such groups as 

network modules.  The biological significance of each module is determined by enrichment 

for Gene Ontology (GO) terms or pathways from the Kyoto Encyclopedia of Genes and 

Genomes (KEGG).  QTLs linked to the composite trait for a given module are called module 

QTLs (mQTLs).  Markers within each mQTL region were evaluated based on correlation 

with each trait within the module.  This framework captures the essentials of most composite 

trait mapping methods. 
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Expression QTL in Plants 

 A recent study in Arabidopsis captures variation from 211 recombinant inbred lines (RIL) 

(West et al. 2007).  Sixty-nine percent of 22,746 e-traits linked to QTLs at a P < 0.05 

significance threshold.  One third of these had a cis-QTL, which is slightly more than in 

yeast.  One explanation for this is more variation was captured in the parental generation.  In 

general, patterns in plants match those in other eukaryotes, including the relative proportion 

of cis- and trans- and the presence of hotspots. 

While the techniques of eQTL mapping vary little between organisms, the plants 

community has contributed the most in terms of integrating the many levels of biomolecular 

variation including markers, expression, metabolites, and phenotypes.  Jansen and Nap 

(2001) envisioned such an approach when they conceived genetical genomics and mentioned 

it explicitly.  However, such data remain rare because of their complexity and expense.  When 

gene expression correlates with a complex phenotype, the corresponding expression traits 

may reflect the molecular basis of that phenotype at a level intermediate between genotype 

and phenotype.  The presumption is that expression QTL will collocate with metabolic and 

phenotypic QTL. 

 Results have in part confirmed this architecture.  Expression QTLs for genes involved in 

flowering time were located at the same position as known QTLs for circadian period length 

and other related phenotypes (Keurentjes et al. 2007).  For genes involved in glucosinolate 
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metabolite production, all expression QTLs were in the same region as QTLs for the 

metabolite levels (Wentzell et al. 2007).  However, metabolic QTL did not always collocate 

with eQTL.  This provides important insight on how to integrate various levels of biological 

information and the mechanisms by which genetic variation affects an organism. 

 

Network Models 

Several studies suggest that genes with shared linkages and similar expression 

profiles are related within hierarchical genetic networks or pathways.  The definition of 

network varies widely.  For instance, groups of coregulated expression traits (referred to 

above as modules) may or may not represent a network, and we reserve the term for methods 

that go beyond simply grouping traits to constructing directed graphs that combine QTLs and 

e-traits. 

Structural equation modeling (SEM) is an extension of multivariate regression that 

allows for hierarchical relationships.  Variables are represented as nodes in the graph and the 

relationships between them as edges.  Edges are directed from independent variables to 

dependent variables.  In this context, that means edges are directed from QTLs to traits that 

are linked to those QTLs (Li et al. 2006).  Additionally, expression e-traits can explain 

variation in other e-traits, implying that a QTL affects the expression of a gene that in turn 

affects other genes.  This sort of regulatory cascade is expected biologically and these models 

provide a way of separating such downstream effects from direct QTL effects.  A model can 

consist of many equations describing relationships between the variables, and individual 

variables may be present in multiple equations.  The model is assessed for goodness-of-fit by 
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comparing expected and observed covariance matrices.  Using SEM for an traditional QTL 

analysis of obesity in mice revealed several QTLs linked to lean body weight and concluded 

lean body weight was causal to fat pad mass.  In other words, several QTLs were affecting 

obesity only indirectly.  SEM has not yet been used for expression QTL studies, but its 

ability to disentangle conditional relationships between QTLs and multiple traits makes it 

well suited for future network based analyses. 

Bayesian network modeling is a similar method that has been used for eQTL analyses 

with some success.  These networks also take the form of a directed graph and nodes and 

edges are the same as for the SEM approach.  The main difference between the two is that 

SEMs are based on correlation structure while Bayesian networks emphasize conditional 

probabilities.  The mouse liver eQTL data (Schadt et al. 2003) were used to demonstrate that 

causal relationships could be inferred by with eQTL information that could not be inferred 

using expression data alone (Zhu et al. 2004; Zhu et al. 2007).  Further refinements include a 

likelihood-based causality model selection (LCMS) test (Schadt et al. 2005).  One weakness 

of these methods is that the resulting graphs are acyclic, meaning there is no way to represent 

feedback in the model.  Additionally, strong assumptions are made for cis-QTLs being causal 

nodes.  This assumption could be tested by additional experiments targeting specific loci. 

 

Conclusions 

 Seven years ago, eQTL Mapping was just a concept.  We now have data from studies on 

yeast, mice, humans, nematodes, and plants, and a growing number of methodological 

articles with ideas for analyzing these data.  Several insights into the genetic architecture of 
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gene expression are now widely agreed upon (Gibson and Weir 2005).  Expression traits 

generally are controlled by multiple QTLs, with cis-QTL being less abundant but of larger 

effect size than trans-QTL.  Some eQTL are highly pleiotropic and are linked to many traits, 

forming hotspots.  

 However, much remains unknown about expression traits.  Estimates of heritability have 

varied widely between studies, from less than 0.1 to 0.95.  The role of epistasis has not been 

studied widely.  No articles have yet reported estimates of gene × environment interaction on 

gene expression, though it is expected to be large.  Ultimately, the challenge will be to 

integrate multiple levels of biomolecular data into these studies.  A recent experiment in 

yeast suggested few relationships between QTL controlling protein levels with those 

controlling expression (Foss et al. 2007).  More success has been found with metabolic QTL 

mapping (Wentzell et al. 2007).  The data for these types of multi-tier studies are sparse, and 

future experiments will shed light on these open questions.  Concurrently, new methods for 

gene networks should be refined to separate direct from indirect effects and shift results from 

lists of genes to graphical networks. 

 Currently, these experiments’ biggest weakness is the expense involved in generating 

expression and sequence data in a quantity appropriate to a highly powered study.  However, 

technology has improved and cheapened over just the past few years and we anticipate it will 

continue to do so.  Already, the linkage/QTL approach is being complimented by genome-

wide association studies (GWAS) due to the availability of SNP arrays for a number of 

organisms.  Gene expression measurement has improved markedly due to standard platforms 

and analysis methods, but new methods for quantifying cellular transcripts are always in 
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development.  Whatever technological changes the future brings, the essence of genetical 

genomics will remain unchanged － associating genetic variation with variation in the level 

of other measurable biomolecules.  Given the enthusiasm with which such inquiry has been 

embraced, it likely will remain at the forefront of biology in the coming decade or more.  
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Abstract 

Epistasis has long had two slightly different meanings depending on the context in 

which it is discussed.  The classical definition describes an allele at one locus completely 

masking the effect of an allele at a second locus.  Such relationships can be interpreted as 

hierarchical, and they can be combined to infer genetic pathways.  In quantitative genetics, 

epistasis encompasses a wide range of interactions and can be extended to more than two 

loci.  These two definitions coexist because they are typically applied to different types of 

study populations and different types of traits.   

The current trend is to treat gene expression as a trait in a variety of genetic 

backgrounds.  Gene expression data has been used in lieu of phenotype in both classical and 

quantitative genetic settings.  This provides a reason to revisit epistasis in this new context. 

We propose a framework for estimating and interpreting epistasis from a classical experiment 

that combines the strengths of each approach.  We accommodate the continuous nature of 

gene expression using ideas from quantitative genetics.  Regression analysis estimates the 

effects of gene deletions as well as interactions.  Significant effects are selected such that a 

reduced model describes each expression trait.  We show how the resulting models 

correspond to specific hierarchical relationships between two regulator genes and a target 

gene.  These hierarchical relationships are the building blocks of systems diagrams and 

genetic pathways.  This framework can serve as a foundation for future epistasis analyses 

based on genomic data. 
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Introduction 

Epistasis has traditionally been discussed in two distinct contexts, corresponding to 

the disciplines of classical molecular genetics and quantitative genetics.  In each case, the 

term describes an interaction between alleles at two or more loci.  However, the methods for 

detecting epistasis and interpretations of the underlying biology have kept historical divisions 

in place despite calls for synthesis (Phillips 1998).  This is largely because the two fields 

traditionally study different types of traits in different experimental populations. 

The classical epistasis experiment compares a double-mutant with two associated 

single-mutants.  Epistasis is present if the observed double-mutant phenotype is categorized 

as being the same as a single-mutant phenotype.  This implies a specific type of interaction in 

which an allele at one locus masks the effect of variation at the second locus.  This 

relationship is described as the first locus being epistatic to the second, and can be interpreted 

as one gene acting upstream of the other.  This hierarchical interpretation has been used to 

construct biological pathways via a series of epistatic gene pairs.  However, this approach is 

limited by the necessity of easily observed and categorized phenotypes (Hughes et al. 2000). 

In contrast, quantitative genetics examines traits that vary continuously and cannot 

easily be categorized.  Such trait distributions may result from the cumulative effects of 

many genes.  Each additional gene increases the possible combination of alleles, and the 

number of possible phenotypes grows exponentially.   An individual’s phenotype is the sum 

of the allelic effects at each gene and the effect of the environment.  Epistasis is defined as a 

deviation from these additive gene effects (Lynch and Walsh 1998).  A quantitative genetic 

model can include multiple loci and multiple interactions. Epistasis in this sense describes a 
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functional relationship between genes in the context of a trait, but it includes both 

hierarchical relationships and nonhierarchical relationships and there is no way to distinguish 

between these. 

Any genetic effect is only relevant to the population being studied due to the presence 

of genetic background.  Background is genetic variation that is unobserved in the population 

and cannot be modeled.  The classical experiment is performed using genetically 

homogenous laboratory strains so there is no background.  Quantitative genetics studies 

diverse populations and background variation is almost always present.  The implication of 

this is that epistasis may be detected in one experiment but not in another.  This has led to 

criticisms that epistasis in the quantitative genetic sense is a statistical construct rather than a 

true representation of biology. 

In fact, both approaches seek to illustrate underlying molecular architecture and each 

has its strengths.   A hierarchical interpretation of epistasis is attractive as increased focus is 

placed on genetic pathways and systems diagrams.  However, quantitative approaches are 

necessary to accommodate continuous data types such as gene expression, metabolite 

concentrations, and fitness.  Recent literature suggests that such approaches are being 

adopted.  For example, while early large-scale fitness profiles in yeast deletion mutants 

(Tong et al. 2001; Tong et al. 2004) were scored categorically, St Onge et al (St Onge et al. 

2007) measured fitness in 650 double-deletion yeast strains and employed a novel 

quantitative analysis.   

The rise in genomic techniques has broken down one of the traditional barriers 

discussed above: the same traits are now being used in both classical and quantitative settings 
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(Jansen and Nap 2001).  Gene expression is perhaps the most prevalent example.  Instead of 

a single phenotypic trait value, a vector of expression measurements describes each 

individual.  Expression profiling in single-deletion yeast strains found that 34% of mutants 

showed twenty or more differentially expressed genes (Hughes et al. 2000).  Expression 

quantitative trait locus (eQTL) mapping uses a linear modeling approach to associate genetic 

variation with gene expression traits (Brem et al. 2002; Bystrykh et al. 2005; Chesler et al. 

2005; Li and Burmeister 2005; Schadt et al. 2003).  Storey et al. (Storey et al. 2005) found 

over thirty percent of traits were jointly linked to two loci in yeast.  When gene expression 

correlates with a complex phenotype, the corresponding traits may reflect the molecular basis 

of that trait at a level intermediate between genotype and phenotype.  Some studies suggest 

that epistasis is pervasive among expression traits (Auger et al. 2005; Gibson et al. 2004; 

Gibson and Weir 2005) and such traits may have more QTLs than classical traits (Brem and 

Kruglyak 2005; Storey et al. 2005).  Since gene expression is being used in both classical and 

quantitative contexts, it is a valuable framework in which to compare the ability to detect 

epistasis and interpret the nature of relationships between genes. 

We propose a framework for estimating and interpreting epistasis using expression 

traits.   Our goal is to accommodate the continuous nature of the data, yet still preserve a 

hierarchical interpretation of epistasis.  Such interpretations are well established for classical 

epistasis experiments (Avery and Wasserman 1992), but have only recently been studied for 

complex data (Li et al. 2006).  We refine the classical interpretations by explicitly modeling 

gene expression.  Gene effects and interactions are estimated using a linear model, in a 

manner comparable to eQTL mapping.  Our method selects the best-fit regression model for 
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each trait, which describe the order and the nature of gene function.  Such relationships are 

the basic units of genetic pathways and systems biology. We specifically address how to use 

a continuous phenotype in a manner that is both statistically sound and consistent with the 

classical approach. 

We illustrate our method with publicly available expression measurements from 

Dictyostellium discoideum wild type (Van Driessche et al. 2002) and deletion mutant strains 

(Van Driessche et al. 2005).  This experiment is a classical epistasis analysis that targets the 

genes of the protein kinase (PKA) pathway and measures the gene expression profile of each 

strain.   

 

Results 

Modeling Epistasis for Continuously Variable Traits 

In the classical epistasis analysis, triplets of deletion mutants combine with a wild 

type to form a contrast.  Each contrast includes two single mutants and a double mutant.  

Each is described relative to the known wild type phenotype.  A hypothetical example of a 

trait affected by two genes, A and B, can be described as follows, where y is the trait value, 

! 
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is the expected value of the wild type, 

! 

"
A

 and 
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This adheres strictly to the classical definition, but there is a clear problem; there is no 

provision if the double mutant does not fall neatly into the same category as one of the single 

mutants.  Gene expression traits fit poorly into the classical framework for this reason. 

Expression is continuous and intermediate levels are expected.  Furthermore, even 

normalized trait values will inevitably include some measurement error.   For these reasons, 

the double mutant observation is rarely the same as either of the single mutant observations 

or the wild type.  Previous studies have attempted to circumvent this problem by relying on 

differences between the mutants to determine the most similar mutant pair.  However, the 

assumption that expression is completely masked is poor.  To address these issues, we move 

away from comparing trait values directly.  Instead, we evaluate each deletion according to 

whether it significantly affects the expression of the target and associate unique patterns of 

significance with models of gene action.  

We use a linear model to estimate the effect of each deletion.  This is a general way to 

relate all mutants and the wild type without making any assumptions about the nature of the 

double mutant.  We regress the trait value (e.g. expression) on indicator variables 

representing the presence or absence of each wild type allele and an interaction term.  The 

interaction describes effects that are unique to the double mutant.  The same example 

discussed above can be described as follows. 

 

Trait value = Wild Type + Effect of deleting A + Effect of deleting B + Interaction + error 
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Various techniques can be used to fit such a linear model.  We first fit a full model 

and then use stepwise backwards selection to drop model terms with coefficients that are not 

significant at a set level.  The resulting reduced model is termed the best-fit model.  For any 

trait, there are eight possible best-fit models.  For clarity, we number the reduced models as 

follows: 

! 

Model 1: y = µ + "A + #

Model 2 : y = µ + "B + #

Model 3 : y = µ + "I + #

Model 4 : y = µ + "A + "B + #

Model 5 : y = µ + "A + "I + #

Model 6 : y = µ + "B + "I + #

Model 7 : y = µ + "A + "B + "I + #

Model 8 : y = µ + #

 

When the best-fit model has been determined, we estimate parameter values using 

that model for each trait.  Thus, we have a best-fit model and coefficient estimates for each 

trait.  The terms in each best-fit model represent the significant gene and interaction effects 

acting on that trait.  Individual coefficients represent the estimated effect of deleting each 

gene.  Model 7 corresponds to the classical model above when the interaction between the 

two deletions offsets the effect of one of them, either 

! 

"
I

= #"
A
or 

! 

"
I

= #"
B
.  Model 8 

describes the case in which the deleted loci have no effect on the trait. 
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A best-fit model describes each gene expression trait.  As such, we have dealt with 

the continuous variable problem.  However, by embracing a quantitative genetic model we 

have lost the appealing feature of the classical experiment: the ability to interpret hierarchical 

relationships.  In the following section we identify sixteen hierarchical relationships and 

propose that a specific best-fit model supports each. 

 

Interpreting Hierarchical Epistasis 

 In quantitative genetics, the interaction term in the above model is considered epistasis.  

However, epistasis in this sense includes both hierarchical and nonhierarchical relationships.  

Conversely, while Model 7 can clearly be interpreted as hierarchical epistasis with the 

conditions described above, it does not apply to all possible hierarchies. 

We considered all combinations of gene order and action within simple ON/OFF 

models and then predicted the hypothetical effect of deleting genes on each of them (Figures 

2.1, 2.3, 2.4, 2.5). There are four points of variation to model for each gene pair relationship.  

The first is the identity of the upstream gene, i.e. the gene order.  Secondly, the upstream 

gene will turn the downstream gene either on (enhance) or off (repress).  Thirdly, the 

downstream gene can enhance or repress the expression of a target gene for which expression 

is observed.  Lastly, we consider that the upstream gene itself will be enhanced or repressed 

by some initiating factor such as a developmental cue or environmental perturbation.  Avery 

and Wasserman (Avery and Wasserman 1992) provide a general framework that has been 

widely used for interpreting epistasis in response to such signals, and note that the effect of a 

mutation is only observable for a specific signal state.  However, knowing the signal state 
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does not give any information about whether the upstream gene is enhanced or repressed in 

that state.  In our models, we focus on the effect on the upstream gene.  This model has 

sixteen possible variants describing hierarchical relationships between two genes and the 

target gene. 



 34 

 

Figure 2.1 Modeling the relationship A is an upstream repressor of B. 
Gene B in turn enhances a target gene X.  In this example, deleting A will change the 
state of the target gene from off to on.  Therefore, we include A’s effect in the 
corresponding regression model.  Deleting B leaves the target gene in the same state 
as the wild type and its effect is not included.  The AB double mutant is also not 
expected to deviate from the wild type despite the significance of the A deletion.  
Since A’s effect is already included in the model for this contrast, it must be offset by 
the interaction term.  We conclude that if A is enhanced by the signal, A represses B, 
and B enhances X, the corresponding best-fit regression model will include 
coefficients for A and an interaction term.  Similar logic applies to the case in which 
the signal represses A.  The signal represses A, thus deleting A has no downstream 
effects.  We expect only the coefficient corresponding to the downstream gene in the 
best-fit model. 
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The key to our approach is connecting each of the sixteen hierarchical models to one 

of the eight possible best-fit regression models.  If the deletion changes the state of a target 

gene relative to the wild type in a mutant, then that deletion is predicted to have a significant 

effect and it will be included in the regression model corresponding to that hierarchical 

model. Figure 1 gives an example of one possible model, in which A is enhanced by a signal; 

A is an upstream repressor to B; and B enhances a target gene X.  We conclude that the 

corresponding best-fit regression model will include coefficients for A and an interaction 

term.  Note that if the signal instead represses A, a different best-fit model represents the 

same relationship between A and B. 

We applied the same approach to each of the sixteen cases and note several trends.  

First, the downstream gene’s effect upon the target gene X does not influence the 

corresponding best-fit model.  This allows us to reduce the model space to eight hierarchical 

relationships (Table 2.1a).  This observation is convenient, because expression traits 

represent all the genes downstream of the deletions.  Regardless of the downstream gene’s 

direct effect, some traits will be enhanced while others are repressed.   When the upstream 

gene is a repressor, four distinct regression models represent four unique hierarchical 

relationships.  We can uniquely identify both the gene order and signal effect on the upstream 

gene.  We cannot discern gene order if the upstream gene is an enhancer because the same 

best-fit model describes both hierarchies. If the upstream gene is merely enhancing the effect 

of the downstream gene, deleting either gene will affect the trait gene similarly.  Six of the 
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Table 2.1.  Correspondence between regression models and biological 
models 
a.  Six of the eight possible regression models represent hierarchical 
relationships between genes.  If the upstream gene is a repressor we can 
identify gene order and the signal effect.  If the upstream gene is an enhancer, 
we can identify only the signal effect.  If the signal turns off an upstream 
enhancer, deleting either gene will have no effect.  b. Non-hierarchical 
relationships can be distinguished if both genes are activated by the signal.  
Model 3 suggests buffering, while Model 4 suggests independent effects, i.e. 
no epistasis.  If a potential regulator is turned off by the signal it has no effect 
on the target gene. 
 

a. Hierarchical Relationships 

 A upstream of B B upstream of A 

Upstream Gene ON OFF ON OFF 

Repressor µ+ßA+ßI  [5] µ+ßB  [2] µ+ßB+ßI  [6] µ+ßA  [1] 

Enhancer µ+ßA+ßB+ßI [7] µ  [8] µ+ßA+ßB+ßI [7] µ  [8] 

b. Non-hierarchical Relationships 

State of A/B ON/ON ON/OFF OFF/ON OFF/OFF 

Enhancer/Enhancer µ+ßI  [3] 

Enhancer/Repressor 
Or 

Repressor/Enhancer 
µ+ßA+ßB  [4] 

Repressor/Repressor µ+ßI  [3] 

µ+ßA  [1] µ+ßB  [2] µ  [8] 
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eight possible best-fit regression models correspond to the eight hierarchical relationships.  It 

is notable that hierarchies can be indicated even without an interaction effect in the model. 

We must also consider that there is no hierarchical relationship between A and B, or 

that they do not affect the target gene (Table 2.1b).  We can distinguish between two types of 

parallelism.  Model 4, the two-gene additive model with no interaction, represents no 

epistasis. Model 3 represents buffering epistasis, in which both genes act on the target in the 

same direction, and the effect of deleting either is not apparent unless both genes are deleted.  

We refer to this as nonhierarchical epistasis since neither gene is upstream of the other.  

Deleting a deactivated regulator gene has no effect on the target gene, making it impossible 

to identify a biological relationship when regulators are deactivated.   

The remainder of Table 2.1b represents cases in which one or both genes do not affect 

the target gene.  Expression traits supporting Model 8 (no significant terms) may represent 

target genes that do not lie downstream of A or B, and are uninformative.  The result is one-

to-many relationships between best-fit regression Models 1, 2, and 8 and their corresponding 

gene expression models.  If the upstream gene of a hierarchical pair is turned off, we cannot 

know whether it is upstream or uninvolved. 

Typically, expression is measured from thousands of genes simultaneously and we do 

not expect them all to be informative.  Even with clear interpretations for each trait 

individually, there is a challenge interpreting all traits together.  We examine the distribution 

of all traits. Among informative traits associated with a best-fit model, the majority may 

represent the underlying biological relationship between the deleted genes. 
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Validating the Two-Step Modeling Framework 

Van Driessche et al. used Dictyostellium discoideum wild type (Van Driessche et al. 

2002) and deletion mutant strains (Van Driessche et al. 2005) to infer hierarchical epistasis 

among genes of the protein kinase (PKA) pathway.  Each strain’s gene expression profile 

was measured using cDNA microarrays with a common reference over 24 hours.  These data 

are well suited for testing our methods for two reasons.  First, the epistatic relationships 

between the deleted genes already have been characterized experimentally.  Secondly, the 

mutant strains are genetically identical at all loci except the few being studied, i.e. there is no 

variation in their genetic background.   

The PKA pathway is associated with the developmental aggregation response to 

nutrient deprivation, which initiated midway through the time course.  Data before and after 

aggregation were considered separately so we can clearly interpret the deletion effects in 

each signal state.  The data represented fold-change on a logarithmic scale, which made the 

distribution of expression measurements approximately normal; we consider the implications 

of this in the discussion.  We studied 1553 expression traits.  The genes we used were 

measured in both experiments and differentially expressed in the wild type during 

aggregation (Van Driessche et al. 2002).  Five deletion strains target genes of the protein 

kinase A (PKA) pathway that is involved in the response to starvation and activates 

aggregation.  This provided three contrasts: pufA/pkaC, pufA/yakA, and regA/pkaR.  

Although there are ten possible contrasts for these five genes, only these three double 

mutants were generated, presumably because these are known direct relationships. 



 39 

For each contrast, some traits supported each model (Figure 2).  Additionally, large number 

of traits showed no deletion effects (i.e. support Model 8).  At a significance threshold of p < 

0.01, a majority of traits supported Model 8 for every contrast pre-aggregation (Figure S4) 

and for the regA/pkaR contrast post-aggregation.  According to our interpretive models, 

Model 8 can indicate three possibilities.  The first two are hierarchical relationships in which 

an upstream enhancing gene is turned off during aggregation.  The last possibility is that the 

genes are uninvolved in the expression of the target and the deletions have no effect. 

Since not all target genes are downstream of the PKA pathway, it is logical that the 

deletions have no effect on these genes.  Similarly, the PKA pathway is invoked during 

aggregation and it follows that the deletions may affect expression only after aggregation has 

begun.  We assume that the target genes supporting Model 8 are not downstream of the 

pathway, and that the majority of the remaining target genes reflect the relationship within 

the pathway.  To test this assumption, we looked at the overlap between the expression traits 

supporting Model 8 for each contrast.  We found that all of the expression traits supporting 

Model 8 for the pufA/yakA contrast also supported Model 8 for the other two contrasts.  

These traits strongly support the assumption that they are not downstream of the PKA 

pathway. 

When we looked at these genes for both the pufA/pkaC and pufA/yakA contrasts, there 

was strong support for one model over all others post-aggregation.  Not only did these 

models explain more traits post-aggregation, but the models also fit better.  On average, the 

best-fit model explained over half of the expression variation (R2 ≥ 0.5, adjusted for degrees 
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of freedom in the model) for traits in the pufA/pkaC and pufA/yakA contrasts, and for both 

contrasts the R2 increased post-aggregation (t-test with p < 0.0001). 
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Figure 2.2 Post-aggregation distributions of best-fit models at p <0.01 
significance thresholds 
The frequency distribution of best-fit regression models can be interpreted as 
hierarchical relationships between genes. Model 8 corresponds to no deletion 
effects and is supported by a large number of traits in each contrast; these 
genes are likely not downstream of the deletions. The model supported by the 
majority of remaining traits is assumed to represent the true relationship. 
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 For the pufA/pkaC contrast, Model 2 had the most support of the seven non-null models.  

Model 2 corresponds to two possible interpretations.  The first is that pkaC is the downstream 

gene, that pufA is a repressor, and that the pufA is turned off in the presence of the 

aggregation signal.  Alternately, we could interpret it to mean that only pkaC has an effect on 

the downstream targets and that pufA is unrelated.  For the pufA/yakA contrast, Model 6 had 

the most support among non-null models.  This model has a one-to-one correspondence to 

our interpretive models.  It asserts that yakA is an upstream repressor of pufA, and that yakA 

is turned on at aggregation.  These conclusions both agree with what has been determined 

previously about the roles these three genes play during development (Souza et al. 1999).  

YakA represses pufA, which then ceases to repress pkaC. 

The regA/pkaR was problematic because almost all traits supported Model 8, the 

model with no effect terms.  For the previous two cases, we assumed that these traits were 

not downstream of the pathway.  Given this assumption, we could have concluded that regA 

and pkaR were not involved with aggregation.  However, the other two contrasts had 435 and 

528 traits supporting Model 8, while regA/pkaR has 1497.  Because of this discrepancy, we 

suggest that some proportion of these genes support the hierarchical model corresponding to 

Model 8: that one gene is an enhancer of the other and is deactivated by aggregation.  

According to previously published results, regA and pkaR work together to repress pkaC pre-

aggregation and are in fact deactivated post-aggregation (Shaulsky et al. 1998).  This is 

consistent with the potential hierarchical relationship.   

Because we are modeling nonadditive interactions, the logarithmic scale 

transformation on these data can potentially alter the results relative to untransformed data 
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(Frankel and Schork 1996; Lynch and Walsh 1998).  To test this, we exponentiated the data 

and repeated our method.  Despite dramatic changes to the shape of the data distribution, the 

resulting distribution of best-fit models agreed with the results presented above.  Again, a 

majority of traits showed no deletion effects (i.e. support Model 8).   Model 2 had the most 

support for the pufA/pkaC contrast, Model 6 had the most support for the pufA/yakA contrast, 

and Model 8 had near complete support for the regA/pkaR contrast using the post-

aggregation data (Figure S5).  Interestingly, this does not imply that each trait supports the 

same model regardless of the scale transformation.  In fact, only 57% and 47% of traits 

support the same model with the untransformed data for the pufA/pkaC contrast and 

pufA/yakA contrast respectively.  However, in both these cases the vast majority of changed 

traits support Model 8.  This result amends our previous interpretation of the traits supporting 

Model 8; in addition to genes not downstream of the pathway, there may be some proportion 

of genes for which expression changes due to deletion is not detectable due to issues of scale. 

Fewer traits supported Model 8 using transformed data, suggesting that these data may be 

more informative using the logarithmic transformation. 

Thus, in all three cases our best-fit regression models correspond to a set of 

interpretative models that includes the true relationship between the genes.  Certain 

regression models have a one-to-many relationship with the interpretive models, but in these 

cases the number of candidate interpretive models is reduced to a few.  Only one 

interpretation corresponds to Model 6, which makes the pufA/yakA contrast straightforward 

to describe.  In evaluating pufA/pkaC, Model 2 corresponds to one hierarchical model and 

one single-gene model.  Since the pufA/yakA contrast provides evidence that deleting pufA 
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has an effect, the hierarchical model is a preferable interpretation to the pkaC only model.  

As we vary the significance threshold for model selection, our results are robust.  The best-fit 

model among models 1-7 was the same for p-value thresholds from 0.05 to 0.001 (Figure 

S6).  As the selection criterion becomes stricter we reject more effects as not significant, and 

more traits support Model 8. 

 

Discussion 

Measuring transcript abundance within a cell will remain a fundamental interest to 

biologists.  Gene expression technologies have become popular over the past decade because 

of their ability to capture many genes simultaneously.  Analyses that traditionally focused on 

a few genes now must be expanded to consider entire genomes.  At this scale, the 

relationships between genes are of as much interest as the genes’ individual effects.  Many 

methods exist to infer gene networks or pathways from expression profiles (Bansal et al. 

2007).  Most of these require large datasets and result in large network diagrams that are 

difficult to interpret.  These approaches are useful because they provide a genome scale view 

of transcription, and they are convenient because they can be applied to data from a variety 

of easily accessible sources.   

However, there is a continuing need for experiments that allow us to infer pathways 

directly.  The classical epistasis experiment we recount in our results (Van Driessche et al. 

2005) is one such approach.  Because it targets gene pairs directly, we can build pathways a 

relationship at a time.  This local approach results in pathway diagrams that are easily 

comprehended and biologically relevant. Additionally, it associates genetic variation with 
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expression variation.  For these reasons, these types of experiments will be increasingly 

useful in constructing biological systems diagrams.  While there are currently few 

experiments that measure expression in a genetically variable population, their number is 

increasing rapidly.  Our motivation is to provide a conceptual framework in which these and 

related experiments can be interpreted.  We have addressed the simplest genetically variable 

data structure for identifying epistasis, in which individuals vary at only two loci, but our 

ideas can be applied to a range of similar data. 

Because expression data are continuous by nature, we must address them with 

quantitative methods.  Regression analysis is a standard technique to relate continuous 

variables. Using a multiple regression model to estimate gene effects and interactions has 

several advantages.  First, it allows us to consider information from all the deletion mutants 

and the wild type simultaneously.  Additionally, it estimates an effect for each allele, allows 

for variance in allelic effects, and separates these effects from error variance. In a traditional 

epistasis analysis the double mutant is compared to each single mutant in a rule-based 

manner, and the two nearest trait values determine epistasis.  In contrast to our method, this 

method does not take advantage of all the information from a given contrast, and it is 

difficult to distinguish signal from noise. Myriad sophisticated techniques exist for fitting 

multiple regression models, and these should be employed based on the distributional 

properties of particular data. 

We consider individual expression traits rather than an expression profile.  A gene 

expression model represents each trait, but we must infer the correct biological model 

through the results from the regression step.  A corresponding regression model represents 
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each possible gene expression model, but these relationships are not always one-to-one.  

Hierarchies in which an upstream gene is turned off by a signal are confounded with cases in 

which the gene has no effect.  It makes sense that we cannot observe the effect of a deletion 

if the gene is already turned off in the wild type.  Nonetheless, our framework was consistent 

with previous characterizations of the pathway in every case. 

Scale transformations are common in genetics and genomics so that data meet 

statistical testing assumptions such as normality and homoscedascity (Lynch and Walsh 

1998).  Logarithmic transformations are ubiquitous in the literature for gene expression data 

such as those presented in our results.  However, models with nonadditive interactions are 

subject to the scale of the data, and transformations can result in support for alternative 

models.  This is a long-standing problem with describing epistasis for complex traits (Frankel 

and Schork 1996).  Often it is difficult to know the most biologically appropriate scale, and 

the scale is instead often chosen arbitrarily based on the available measurement or statistical 

convenience.  For gene expression traits the scale issue is even more complex.  Since there 

are wide differences in the range of expression variation between genes, it is likely that no 

one scale will allow detection of the underlying biological interactions for all expression 

traits.  The relationship between scale and epistasis is an area that demands further study, 

particularly in this era of genetics on biomolecular traits such as gene expression that have 

not been well studied in this context. 

When we performed the same analysis on log-transformed and untransformed post-

aggregation data, about half the traits supported a different best-fit model, yet the distribution 

of results led to the same conclusions regarding the underlying relationship between the 
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deleted genes.  This suggests our conclusions may be robust to scale effects that would affect 

single traits because they are based on the distribution of all traits.  Those traits that are 

affected by scale trend toward having no detectable deletion effects with untransformed data.  

This further confounds the roughly one-third of traits supporting Model 8, which may also 

suggest an upstream enhancer or a trait truly unaffected by the deletions.  While we do not 

discount scale effects, we assume most of these traits fit the last category because of the high 

percentage of these traits, the consistency of traits supporting Model 8 between contrasts, and 

the logic that deletions should affect only downstream genes.  Whichever the case, these 

concerns make a strong argument for interpreting the distribution of results across expression 

traits.  This contrasts with methods that consider all traits as an expression profile.  These 

assume the profile as a whole supports one underlying pathway (Van Driessche et al. 2005). 

Using our method, it is straightforward to interpret a range of experiments. The 

alleles being studied do not need to be null alleles, e.g. deletions.  The same method could be 

applied to over-expressed genes, or any polymorphic locus.  Additionally, the method can 

accommodate experiments investigating multiple loci and higher order interactions.  Three-

way and four-way epistasis models follow from the same principles as the two-way models 

we present.  The regression model is very flexible and easy to extend by adding a parameter 

for each locus plus interaction terms.  Connecting these statistical models to biological 

models follows the same process we have illustrated.  The strengths of our approach are 

particularly apparent in multi-locus models because we provide a means for estimating 

effects using the entire population of mutants simultaneously.  The number of genotypes 

increases by a power of two for each additional gene included in the experiment; with a 
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three-locus experiment having eight genotypes.  As the number of necessary pair-wise 

comparisons increases, they will contain more undetected error and become more difficult to 

interpret.  Environmental effects can also be included in the model at the expense of 

increased complexity in interpretation.  We considered observations before aggregation and 

after aggregation separately in our example for simplicity. 

By proceeding to add genetic and environmental complexity, it is apparent how the 

classical epistasis framework connects to the quantitative genetic paradigm.  An additional 

benefit of our method is that it enables comparisons between any population-based 

expression analyses.  Whether study populations consist of deletion mutants, experimentally 

designed crosses, inbred lines, chromosome substitution strains, or natural populations, each 

expression trait is the same.  For this reason, comparing these results is highly desirable.  

Estimating the allelic effects and interactions for each expression trait allows direct 

comparison across a variety of genetic backgrounds.  By embracing a common interpretive 

framework to a range of experiments that use gene expression as a trait, we can integrate 

results and form clearer insights into the genetic control of systems. 

 

Data and Methods 

Dictyostellium gene expression data 

We used data originally presented by Van Driessche et al.  We use data from Dictyostellium 

discoideum wild type (Van Driessche et al. 2002) and eight deletion mutant strains (pufA-, 

pkaC-, pufA-pkaC-, yakA-, pufA-yakA-, regA-, pkaR-, regA-pkaR-) (Van Driessche et al. 2005).  

They measured each strain’s gene expression profile over a time course using cDNA 
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microarrays and a common reference that was pooled from all time points.  Expression was 

measured thirteen times over 24 hours and captured the developmental aggregation response 

to nutrient deprivation, which initiated midway through the time course.  We grouped 

observations before (hours 0,2,4,6) and after (hours 14,16,18,20) aggregation.  Expression at 

these time points is highly correlated (Figure 2 in (Van Driessche et al. 2002)) and consistent 

with the regulatory changes previously reported. This data pooling increased the sample size 

for our regression analysis.  Observations during the transitional period (hours 8,10, and 12) 

were disregarded, as were observations in the late stages of development that were less 

correlated (hours 22 and 24).   The data represented fold-change on a logarithmic scale.  We 

studied 1553 genes that were measured in both experiments and differentially expressed in 

the wild type during aggregation (Van Driessche et al. 2002). 

 

Regression analysis 

We fit models in the R statistical environment (R Development Core Team).  Stepwise 

backwards selection entails fitting a fully parameterized model, then eliminating model terms 

that do not meet a specified significance threshold.  The model is refit with the remaining 

terms until no further terms can be dropped. 
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Figure 2.3 Modeling the relationship A is an upstream repressor of B, 
which represses a target gene. 
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Figure 2.4 Modeling the relationship A is an upstream enhancer of B, 
which represses a target gene. 
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Figure 2.5 Modeling the relationship A is an upstream enhancer of B, 
which enhances a target gene. 
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Figure 2.6 Distribution of best-fit models pre-aggregation. 
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Figure 2.7 Distribution of best-fit models post-aggregation 
(untransformed data) 
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Figure 2.8  Distribution of best-fit models at varying significance 
thresholds pre-aggregation. 
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Figure 2.9  Distribution of best-fit models at varying significance 
thresholds post-aggregation. 

 



 60 

 
 
 
 
 
 
 
 
 
 
 

 

Chapter 3 
 
 

An Expression QTL Survey of Yeast 
Pathways 
 
David L. Aylor and Zhao-Bang Zeng 



 61 

Abstract 
Expression QTL mapping is among the latest strategies for untangling complex traits.  Since 

hundreds of expression traits can be measured simultaneously, one goal is to assess patterns 

of co-regulation among traits.  If a common biological process relates a set of trait genes, 

their shared QTLs may be regulators for that process. One approach to finding such 

regulators is to define related gene sets a priori and then evaluate these sets for shared QTLs.  

We survey QTL results for all yeast pathways in the Saccharomyces Genome Database and 

report the prevalence of shared QTLs, the degree of sharing between pathway genes, and the 

relative proportion of cis- versus trans- pathway regulation.  Genes within yeast pathways 

often share QTLs, but QTLs are rarely shared by a majority of the pathway genes.  Hotspot 

QTL are linked to the expression of genes in many different pathways.  We also present a 

web-based browser for visualizing our results.
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Introduction 

Background 

Linking genetic variation to changes in gene expression is among the latest strategies 

for untangling complex traits.  Such methods are a new application of existing techniques for 

mapping quantitative trait loci (QTL).  QTL mapping is a genome-wide inference of the 

relationship between quantitative phenotypes and genotypes of QTL.  In expression QTL 

(eQTL) mapping, some measure of transcript abundance is substituted for a traditional 

phenotypic measure.  However, we must make several special considerations for eQTL 

mapping.   

Microarray technology has enabled the expression of thousands of genes to be 

measured simultaneously.  Typically, linkage mapping for each expression trait is done 

individually.  However, the results from all traits are often interpreted together.  The basic 

assumption in many eQTL studies is that gene expression measurements capture an 

intermediate level between genotype and a complex phenotype.  Implicit to this assumption 

is that gene expression traits are most meaningful in groups that work together biologically.  

The challenge is to group traits appropriately to explain the molecular basis of the phenotype.   

Even when no particular phenotype is under study, we assume that regulatory networks 

govern the expression of any given gene and expression traits are best studied in groups for 

that reason.  Methods for grouping expression traits and analyzing groups of traits are the 

subject of much of the current eQTL literature. 

The complete set of all expression traits is the largest group for any experiment.  Two 

genome-wide patterns have been apparent in all eQTL analyses reported to date.  First, some 
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portion of traits have been linked to a cis-QTL, which reflects variation located in the same 

physical location as the gene itself.  This is interpreted as a polymorphism in a gene’s coding 

region or promoter region that regulates that gene’s expression.  QTLs that regulate traits that 

are not collocated are called trans-QTL.  The second common pattern is multiple trans-QTLs 

that are shared by many traits, sometimes called hotspots.  These two features have become 

starting points for how we describe expression QTL results and central to how we interpret 

them.   

Early studies suggested that shared trans-QTLs affect groups of genes having similar 

functions (Brem et al. 2005; Brem et al. 2002; Yvert et al. 2003), and they have been 

interpreted as controlling regulatory networks related to these functions.  More recent reports 

(West et al. 2007) have suggested that while many functions are affected by the hotspot QTL, 

no functions are overrepresented relative to what is expected by chance.  A complementary 

approach is to group genes of shared function and map QTLs shared within the group. 

Two types of methods have been employed to group expression traits.  The first type 

groups traits based on data or results from the cross itself, generally by some clustering 

method.  An intuitive approach to this is to group traits with shared QTL.  Brem et al (2002) 

identified eight shared trans- regulators and grouped the traits accordingly.  Each group was 

characterized by shared annotations in the yeast genome database, and the trait with cis- 

linkage was inferred to be the gene harboring a causative polymorphism.  In a follow-up 

paper, Yvert et al (2003) used correlation-based k-means clustering to group similar traits 

based on their expression profiles.  This approach is independent of the linkage analysis, but 

nonetheless groups based solely on data generated from the experimental cross.  The clusters 
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also were enriched for genes with shared annotations.  Yvert et al (2003) was also the first 

appearance of linkage analysis of a composite trait derived from multiple grouped expression 

traits.  The expression trait values within each cluster were averaged for every individual, and 

this average was treated as a trait. Composite trait mapping is now common in eQTL 

literature.  A similar clustering approach was used to group expression traits in mice 

(Ghazalpour et al. 2006).  QTLs linked to grouped trait averages were called module QTLs 

(mQTLs). 

Alternately, sets of genes can be defined a priori.  Kliebenstein et al (2006) mapped 

QTLs for twenty networks in Arabidopsis.  These networks were largely inferred from 

coordinate expression, but separate experiments determined these groupings, not expression 

data from the QTL mapping population.  In a conceptually similar approach, the mammalian 

phenotype ontology (MPO) was used to systematically pair genes associated with similar 

phenotypes (Bao et al. 2006).  These gene pairs were compared to eQTL results to uncover 

potential regulatory relationships.  Human eQTLs were linked to Gene Ontology terms, 

canonical pathways, and disease using Ingenuity pathway analysis software (Wessel et al. 

2007).  Myriad data sources exist for grouping genes, and each provides a new lens through 

which to interpret linkage results.  

The composite trait or trait averaging strategy can be used with previously defined 

gene groups or groups clustered from the data.  Composite trait mapping assumes that a few 

shared QTLs affect most or all of the individual traits in a group, and that pooling these traits 

will increase the ability to find these QTLs.  Two issues potentially complicate these 

analyses.  First, QTLs having a large effect on a single trait within the group can be inferred 
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as module QTL.  On the other hand, QTLs of smaller effect are likely to go undetected if 

they are not shared.  Averaging trait values has been prevalent in the literature, but principal 

components have also been mapped as composite traits. 

 

Motivation 

 In a series of papers, Kruglyak and colleagues presented expression QTL mapping 

results from yeast (Brem et al. 2005; Brem et al. 2002; Yvert et al. 2003).  Additionally, yeast 

has a well-characterized molecular biology and many bioinformatics resources are available.  

As such, several natural a priori groups of gene sets exist for yeast.  However, no study to 

date has used such an approach with these data.   Our survey begins with the mapping results 

from an eQTL analysis.  We chose to use Multiple Interval Mapping results from Zou and 

Zeng (2008) based on familiarity and MIM’s power to detect multiple QTL models.   

However, this choice is arbitrary and our method can be applied to linkage results produced 

by a range of methods. 

We survey all yeast genetic pathways in the Saccharomyces Genome Database, with 

a focus on QTL shared within pathways.   Because we used results from individually mapped 

expression traits, we captured both shared QTLs and those linked to only one trait. We report 

the proportion of shared QTLs and the degree of sharing between QTLs.  Module QTLs 

presumably represent individual QTLs shared by multiple related traits (Ghazalpour et al. 

2006), but we avoid that term because it has been previously defined in the context of a 

composite (averaged) trait.  We instead refer to such QTLs as putative pathway regulators.  
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However, this approach has important implications for composite trait mapping, since the 

degree of QTL sharing determines its success. 

 

Data and Methods 

Yeast Linkage Data and Analysis  

 A wild isolate was crossed with a standard laboratory strain, and expression was 

measured on 112 haploid segregants (Brem et al. 2005).  Gene expression was measured for 

6216 trait genes and 2957 genetic markers were typed.  Expression measurements in the 

segregants were referenced against the wild parent strain.  In a controlled environment, one 

quarter of the expression traits measured were differentially expressed between the parent 

strains at P < 0.005 (Brem et al. 2002).  

In a single marker analysis (SMA), 2984 traits had at least one QTL (FDR = 0.05). 

Approximately a third of these linkages were cis-acting (Brem et al. 2002).  Fitting multiple 

QTL models suggested that the majority of highly heritable traits had more than one QTL.  

Zou and Zeng (2008) applied Multiple Interval Mapping (MIM) to the same data.  MIM uses 

a sequential procedure to find the best genetic model for each trait.  Whereas SMA tests each 

marker separately, MIM conditions on QTLs already in the model as it searches for 

additional QTLs.  This provides power to detect additional QTLs with smaller effects.  Cis-

QTLs tend to be of larger effect than trans-QTLs, thus more trans-QTLs are detected with 

MIM.  We use the MIM results for our analysis.  The start and end of the physical QTL 

regions are determined by a 1.5 log odds (LOD) interval from the QTL peak.    
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Saccharomyces Genome Database Pathways 

The Saccharomyces Genome Database (SGD) contains a wide variety of information 

on the molecular biology of yeast. It primarily contains 6608 genes or predicted genes (open 

reading frames) and their annotations, but also has complementary data (Hong et al. 2005).  

The Yeast Biochemical Pathways database was built using the Pathway Tools PathoLogic 

module, software developed at SRI Laboratories (Karp et al. 2002).  It is then manually 

curated and corrected based on the relevant literature.  It contains reactions, enzymes, genes, 

and compounds.  We used the gene list for each pathway as an a priori grouping of 

expression traits.   

There are 135 pathways in the database. Only 468 genes of the 6608 total are found in 

the pathway database, meaning that the majority of known genes have not yet been 

associated with a specific pathway.  Nonetheless, we expect pathway genes to be closely 

related biologically.  As with any study using a priori data to group genes, our conclusions 

are dependent on this assumption. 

On average, five genes are associated with each pathway.  The pathway with the 

largest gene list has 22 genes.  Sixteen pathways have only one gene listed and an additional 

21 have only two genes. 

 

Visualizing Results 

 In order to visualize QTL distributions within and across pathways, we created a variety 

of graphs using Support Vector Graphics (SVG).  Each is a variation on the popular plot 

found in most expression QTL literature, which features expression traits on the y-axis and 
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QTL physical location on the x-axis.  First, we created the standard plot for just the 468 

genes found in the SGD Pathway database.  Next, we created a plot for each of the 135 yeast 

pathways (two examples are shown in Figure 3.1).  These plots are a resource for additional 

characterization of individual pathways.  Lastly, we provide a heat map summarizing QTL 

sharing (Figure 3.2).  All plots are available at http://statgen.ncsu.edu/aylor. 

 

Results and Discussion 

Summary of Pathway QTL Distributions 

 The QTL distribution for the 468 expression traits in the pathway database closely 

resembles the QTL distribution over all traits.  Seventy-three percent of traits have at least 

one QTL and seventeen percent of those traits have cis-QTL. This compares to 54 percent of 

6216 traits measured overall having at least one QTL, and 22 percent of those being cis-.  

The 468 traits linked to 573 QTLs, which matches the estimate of slightly more than one 

QTL per trait in the complete data. In other words, the expression traits found in the pathway 

database constitute a representative sample of the entire data set. 

Ninety-five percent of pathways contain at least one trait that is linked to one or more 

QTLs with an average of slightly more than four per pathway.  Half of these pathways have 

at least one shared QTL.  Cis-QTLs are found in 60 pathways.  We asked if any pathway had 

more cis-QTLs than expected by chance.  To test this, we treated the number of cis-QTLs per 

pathway as a binomial random variable distributed with n pathway genes and success 

probability equal to the proportion of all traits with cis-QTLs.   We conclude that cis-QTLs 

are randomly distributed between pathways. 
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These results suggest that the yeast cross has captured regulatory variation affecting a 

broad range of biological functions and that some regulators are indeed affecting groups of 

related genes.  However, only 15 percent of traits share a QTL with a member of the same 

pathway.  The discrepancy between the high incidence of sharing overall and the paucity of 

sharing within individual pathways bears further examination.  The implication is that few 

traits that share each QTL.  There was no consistent pattern between individual pathways.  

Within the valine biosynthesis pathway, all QTLs were shared by a majority of traits (Figure 

3.1a).  However, the tryptophan degradation pathway had several QTLs but almost no 

sharing among twelve traits (Figure 3.1b).  We asked which pattern was prevalent over all 

pathways. 

 

Finding Pathway Regulators 

To report on the degree to which individual QTLs are shared within pathways, we 

eliminated pathways with two or fewer genes. No sharing is possible if a pathway only has 

one gene, and pathways with two genes make the degree of sharing hard to assess since a 

QTL is shared among all genes or none.  This left 486 QTLs linked to 98 pathways.  Twenty-

six percent (126) of these QTLs are shared.  Importantly, only six percent of shared QTLs are 

cis-.  This is evidence that pathway regulation is not due to downstream effects of cis-

regulated pathway genes as some have suggested.  Instead, this observation supports a model 

in which trans- acting factors initiate changes in gene expression. 

We calculated the percentage of traits in each pathway affected by each shared QTL.  

The median degree of sharing was 33 percent.  Because of the small size of SGD pathways, 
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this means that more than half of shared QTLs affect only two expression traits.  This 

explains the discrepancy introduced in the previous section.  Over all pathways, 96 percent of 

QTLs affect fewer than 60 percent of traits within the pathways to which they are linked 

(Figure 3.2). Since extensive sharing is so rare, we conclude that most pathways are not 

regulated as units in this cross.  Individual pathway genes appear to be regulated 

independently and have few downstream effects on expression of other genes in the same 

pathway. 

Thirty QTLs regulated greater than 60 percent of pathway traits.  We consider these 

QTL as putative pathway regulators (Table 3.1).  These QTLs affect 23 pathways, with seven 

pathways having two QTLs regulating a high percentage of traits.
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a.  

b.  

Figure 3.1 Contrasting Pathway eQTL Plots 
Two pathways are shown above.  Each row along the y-axis represents an 
expression trait corresponding to a gene in the pathway.  The x-axis is QTL 
location.  Black bars are QTL linked to that trait.  Red circles mark the 
physical location of the trait gene. a. Valine Biosynthesis has two clear 
pathway QTL.  The QTL on Chromosome III affects all the traits in the 
pathway and is cis- for ILV6 (YCL009C).  The associated gene product 
catalyzes the first step of valine biosynthesis, so the colocalized trans-QTL 
may be interpreted as downstream effects of the cis-QTL. b. The Tryptophan 
Degradation pathway is linked to several QTL but almost none are shared. 
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Pathway Enrichment of trans-Hotspots 

We next asked if the putative pathway regulator QTLs were unique to individual 

pathways or regulated groups of related pathways.  Nine biosynthesis pathways all have a 

putative regulator QTL on chromosome III.  The affected traits are not the same in every 

pathway, suggesting a higher order control of biosynthesis.  However, this same region on 

chromosome III is also the largest hotspot region when considering all traits independently 

and is linked to 87 traits in 64 different pathways. 

Of the thirty putative pathway regulators, twenty-five are located in the five largest 

genome-wide hotspot regions.  Since these regions affect so many traits, this presents the 

question of whether the high percentage of traits affected is due to chance.  To test this, we 

treated the number of linked traits per pathway as a binomial random variable distributed 

with n pathway genes and success probability equal to the proportion of all traits from the 

SGD pathway database with linkages to that QTL region.  We calculated a p-value by 

summing the probabilities of the observed data and more extreme data (additional linkages 

with pathway genes). 
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Figure 3.2 Most QTLs are shared by Less Than 40% of Pathway Genes 
Ninety-eight pathways of at least three genes each are listed along the y-axis 
above.  The x-axis is the location of QTL.  Each row illustrates the QTLs 
linked to traits in that pathway.  A QTL affecting one or few genes would 
appear as a blue bar, while warmer colors illustrate a QTL that controls a high 
percentage of pathway genes.  About half of pathways have at least one shared 
QTL.  However, these QTL are typically shared by only a few expression 
traits.  In the plot above, 30 of 486 QTL are linked to over 60% of the 
expression traits within a pathway (red or orange bars).  These putative 
pathway regulators affect 23 pathways.  
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On chromosome III, five of nine biosynthesis pathways were highly significant (P < 

0.0035), as was the sulfate assimilation pathway.  However, several putative pathway 

regulators were rejected with a P < 0.01 threshold (Table 3.1), especially for smaller 

pathways.  None of the previously suggested pathway regulators on chromosomes II or XV 

were significant at that level.  However, two pathways were overrepresented in the hotspot 

QTLs despite linkages with fewer than 60% of traits in those pathways.  Eight of fifteen 

gluconeogenesis genes were linked to the hotspot on chromosome XIV (P < 1.5 × 10-4) and 

eight of nineteen TCA cycle gene were linked to the hotspot on chromosome II (P < 3 × 10-

3).  Only seven putative regulators are significant with a very conservative Bonferroni 

correction (P < 4 × 10-3). 

Linkage analysis is limited in resolution and consequently QTLs often span large 

physical regions containing many genes.  We cannot exclude the possibility that multiple 

causative polymorphisms underlie hotspot QTL and that each affects a subset of expression 

traits.  For instance, the linkages observed in valine biosynthesis pathway may indeed be due 

to the effects of a cis- polymorphism in the upstream gene ILV6, yet be unrelated to the 

linkages to expression traits in other pathways. 



 75 

Table 3.1 Putative Pathway Regulator QTL 
Thirty QTLs were linked to 60 percent or more of the traits within a pathway.  
However, many of these QTL co-locate with genome-wide hotspots.  For 
these shared QTL, we tested each pathway to see if the number of pathway 
traits linked to that QTL were greater than expected by chance.  Two 
pathways were overrepresented for linkages to hotspot QTL despite fewer 
than 60 percent of traits being linked. 
 

Pathway Definition Traits in 
Pathway 

QTL 
Chromosome 

Traits Sharing 
QTL (%) 

P-value 

polyamine degradation 3 
 

II 
 

66.7 
 

0.056 
TCA cycle, aerobic respiration 19 II 42.1 0.003 
sulfate assimilation pathway II 
 

6 
 

III 
 

100.0 
 

4.14 × 10-5 
valine biosynthesis 
 

6 
 

III 
 

100.0 
 

4.14 × 10-5 
leucine biosynthesis 
 

6 
 

III 
 

100.0 
 

4.14 × 10-5 
isoleucine biosynthesis 
 

7 
 

III 
 

85.7 
 

2.44 × 10-4 
arginine biosynthesis 
 

7 
 

III 
 

85.7 
 

2.44 × 10-4 
serine biosynthesis 
 

4 
 

III 
 

75.0 
 

0.022 
chorismate biosynthesis 
 

4 
 

III 
 

75.0 
 

0.022 
histidine biosynthesis 
 

7 
 

III 
 

71.4 
 

0.0033 
homoserine biosynthesis 
 

3 
 

III 
 

66.7 
 

0.091 
homoserine methionine biosynthesis 
 

3 
 

III 
 

66.7 
 

0.091 
glycogen catabolism 
 

3 
 

V 
 

66.7 
 

9.6 × 10-3 
m-cresol degradation 
 

6 
 

X 
 

66.7 
 

1.24 × 10-6 
toluene degradation, via catechol 
 

6 
 

X 
 

66.7 
 

1.24 × 10-6 
mevalonate pathway 
 

8 
 

XII 
 

87.5 
 

6.35 × 10-7 
ergosterol biosynthesis 
 

14 
 

XII 
 

85.7 
 

5.91 × 10-11 
m-cresol degradation 
 

6 
 

XII 
 

66.7 
 

0.0012 
toluene degradation, via catechol 
 

6 
 

XII 
 

66.7 
 

0.0012 
valine biosynthesis 
 

6 
 

XIII 
 

66.7 
 

1.31 × 10-4 
glycine degradation 
 

5 
 

XIII 
 

60.0 
 

1.58 × 10-3 
phospholipid biosynthesis 
 

3 
 

XIV 
 

66.7 
 

0.042 
proline biosynthesis 
 

3 
 

XIV 
 

66.7 
 

0.042 
glycolysis 
 

14 
 

XIV 
 

64.3 
 

7.69 × 10-6 
gluconeogenesis 15 XIV 53.3 1.6 × 10-4 
asparagine biosynthesis 
 

4 
 

XV 
 

75.0 
 

0.013 
polyamine degradation 
 

3 
 

XV 
 

66.7 
 

0.064 
glutamate degradation I 
 

3 
 

XV 
 

66.7 
 

0.064 
methylglyoxal catabolism 
 

3 
 

XV 
 

66.7 
 

0.064 
glycogen catabolism 
 

3 
 

XV 
 

66.7 
 

0.064 
starch and cellulose biosynthesis 
 

5 
 

XV 
 

60.0 
 

0.029 
glycogen biosynthesis 5 

 
XV 

 
60.0 

 
0.029 
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Conclusions  
 

Combined with findings in other expression QTL studies, these results give new 

insights into the genetic control of expression and the role of pathways.  While most 

pathways appear to be under genetic control, the control points are distributed throughout the 

pathway and tend to affect the expression of only one or two genes.  Downstream expression 

effects within a pathway are limited.  However, the impact of differential expression in one 

or few genes could affect the output of the pathway as a whole, specifically through the 

effects on protein levels, metabolites, or other molecules.  Our results for yeast pathways will 

inform future studies investigating QTL linked to metabolite production.  Integrating such 

studies could elucidate the underlying mechanisms of pathway control.  Just as interesting as 

knowing which genes can be upregulated or downregulated within a pathway to affect 

metabolite production, is knowing which genes are robust to genetic perturbations. 

Every published eQTL study has found many genes co-expressed and linked to a 

genetic hotspot region, and we found these linkages span genes from many different 

pathways.  We conclude that modules of co-expressed genes are not the same thing as 

pathways, but that there is an important relationship that bears further examination.  We 

conjecture that such modules are a higher order of transcriptional control with phenotypic 

consequences.  In this study, perhaps these module QTLs are adaptations related to the wild 

yeast strain’s ability to survive in its natural environment.  This adaptation encompasses 

changes in the function of many pathways.   Our findings suggest that this may be 

accomplished by differentially regulating very few genes from each pathway. 
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This model of transcription control has important implications for future studies.  

Currently, regulatory modules are generally examined for biological similarity via external 

data sources such as Gene Ontology or even pathway databases such as SGD.  In our model, 

modules can be viewed primarily as a collection of intermediate regulators, which in turn 

govern the production of other biomolecules.  Strong similarity within modules is not 

necessary.  The analytical challenge in testing such a model is separating downstream 

expression effects from primary pathway regulation.  A hotspot QTL may directly affect 

relatively few genes corresponding to a few key pathways, resulting in a cascade that results 

in a particular phenotype.  However, this cascade is likely to have secondary effects on the 

expression of many genes, which also appear linked to the hotspot QTL. 

 The repercussion for composite trait mapping is significant.  Such strategies are primarily 

used to gain power to detect module QTLs and to save computation by mapping fewer traits 

overall.  They are undoubtedly effective in both respects.  However, they must be used with 

caution because they assume shared regulators within groups.  If applied to groups like yeast 

pathways the resulting QTLs could be incorrect.  One must also consider what is lost in such 

an approach.  We found the majority of QTLs are unique to specific traits and may not show 

up in a composite averaging approach. 
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Abstract 

We have added two software tools to our application suite for working with DNA sequences 

sampled from populations.  SNAP Map collapses DNA sequence data into unique 

haplotypes, extracts variable sites, and manipulates output into multiple formats for input into 

existing software packages for evolutionary analyses.  Map includes novel features such as 

recoding indels, including or excluding variable sites that violate an infinite-sites model and 

the option of collapsing sequences with corresponding phenotypic information, important in 

testing for significant haplotype-phenotype associations.  SNAP Combine merges multiple 

DNA sequence alignments into a single multiple alignment file.  The resulting file can be the 

union or intersection of the input files.  SNAP Combine currently reads from and writes to 

several sequence alignment file formats including both sequential and interleaved formats.  

Combine also keeps track of the start and end positions of each separate alignment file 

allowing the user to exclude variable sites or taxa, important in creating input files for 

multilocus analyses.   SNAP Combine and Map are freely available at 

(http://snap.cifr.ncsu.edu/).  These programs can be downloaded separately for Mac, 

Windows and Unix operating systems or bundled in SNAP Workbench.  Each program 

includes online documentation and a sample dataset.  A description of system requirements 

and installation instructions can be found at http://snap.cifr.ncsu.edu/. 
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Introduction 

Recent advances in theoretical approaches for exploring population processes from 

DNA sequence variation within populations have resulted in a surge of new software tools 

(Beerli, 2006; Coop and Griffiths, 2004; De Iorio and Griffiths, 2004; De Iorio and Griffiths, 

2004; De Iorio, et al., 2005; Hey and Nielsen, 2004; Lyngsø, et al., 2005; Song, et al., 2005).  

These tools are often designed and validated using simulated data with unique input file 

formats and rarely make provisions for converting data into those formats.  As a result, 

biologists with real data of varying complexity must create input files manually.  Large 

multilocus data sets make this increasingly complex, and necessitate the development of 

software tools to make multiple DNA sequence alignments accessible to new evolutionary 

methods.  We have developed two such tools that we report here.  SNAP Combine and Map 

will help researchers to visualize the distribution of DNA sequence variation within 

populations, extract and merge information from one or multiple sequence alignments, and 

enable further analysis by creating input files for several population genetic analysis 

programs. 

 

Systems and Methods 

Previously we developed a workbench program that can manage and coordinate a Suite of 

Nucleotide Analysis Programs (SNAP; Price and Carbone, 2005).  SNAP Map will 

manipulate raw DNA sequence data from population samples into a variety of useful formats.  

The utility was conceived both to extract and characterize sequence variation in multiple 

sequence alignments and to serve as a bridge between existing applications requiring 
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dissimilar input file formats.  Variation includes both single nucleotide polymorphisms 

(SNPs) and insertions or deletions (indels).  An indel is defined as one or more contiguous 

sites in a multiple sequence alignment that contain gaps in at least one sequence.  Beyond 

identifying variable sites, SNAP Map provides the option to include or exclude indels, 

missing data, or infinite-sites violations.  The infinite-sites model is based on the assumption 

that few polymorphic sites will have more than two nucleotides present (Hartl and Clark, 

1997), and recent software such as Beagle (Lyngsø, et al., 2005) and Shrub (Song, et al., 

2005) requires that sites violating this assumption be eliminated from input data.  

Additionally, we have included the ability to merge biogeographic or other phenotypic 

information with genetic sequence data to enable association-based analyses (Dean, et al., 

2005).  Our goal was to maximize flexibility of the program so that it may be used to catalog 

sequence variation or simply convert multiple sequence alignments into specific file formats 

(Table 4.1). 

A key feature of SNAP Map is the ability to collapse individual sequences into 

unique haplotypes, and to keep track of the count of each haplotype in the population sample.  

This is a necessary step for analyses that assume an infinite sites model, and is a requirement 

for several of the software implementations we support (Table 4.1).  A haplotype is a specific 

sequence of alleles or SNPs.  Haplotypes are a useful way of grouping individuals according 

to genotype and are part of a powerful framework for testing significant associations with 

phenotype (Carbone, et al., 2004; Dean, et al., 2005; Phillips, et al., 2002). 

A novel extension of the collapse functionality is the option to collapse indels to 

unique integers.  Indels are often removed from multiple sequence alignments because of the 
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difficulty in modeling the mutation process at these sites.  Our software provides the user 

with the option to extract indels and recode each unique indel with a one-digit integer.  The 

appropriate integer is reinserted into each individual sequence, yielding alignments in which 

gaps are recoded as a single polymorphic site.  By recoding indels, we can take full 

advantage of variation at these sites in parsimony analyses and identify those sites that are 

compatible with an infinite-sites model.  For example, the recoding of multilocus 

microsatellite and fingerprint data has important applications in phylogenetics and allows us 

to combine rapidly evolving markers with more slowly evolving base substitutions when 

reconstructing patterns of descent (Carbone, et al., 1999; Dettman and Taylor, 2004). 

SNAP Combine is designed to facilitate multilocus analyses.  Since most existing 

software has no provisions for multilocus sequences, we developed a tool that could 

seamlessly merge sequence data for each individual/locus within the population.  The 

merging operation performs a union of the input loci by default but intersection is also 

supported.  The intersection is important to accommodate loci with missing sequence data for 

some taxa, thereby allowing researchers to start on data analysis while continuing the work to 

fill-in missing data.  SNAP Combine merges multiple, potentially heterogeneously formatted, 

input files into an output file of specified format.  Combine supports the following 

interleaved sequence formats for input and output: PHYLIP, NEXUS, FASTA and 

CLUSTAL.  PHYLIP, NEXUS, and FASTA are also supported as sequential sequence 

formats.  SNAP Combine can be used to extract sequence subregions or taxon subsets and 

create new alignment files with specific combinations of loci.  This is a powerful 
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functionality and has been useful for examining patterns of sequence variation within and 

among loci (Charles, et al., 2005). 

The lack of standard file formats for population analysis software is a ubiquitous 

problem and the process of manually converting between different file formats can be tedious 

and problematic.  Both SNAP Map and Combine will simplify this process.  The input file 

for SNAP Map is a sequential PHYLIP formatted sequence alignment, a standard output file 

option in sequence alignment programs, such as CLUSTAL W (Thompson, et al., 1994), 

Sequencher Version 4.5 (Gene Codes Corporation, Ann Arbor, MI) and phylogeny inference 

packages, such as PHYLIP (Felsenstein, 2004) and PAUP (Swofford, 1998).  To facilitate 

the conversion, SNAP Combine has the added functionality of converting CLUSTAL W and 

NEXUS-formatted alignment files into the sequential PHYLIP-formatted files for SNAP 

Map and vice versa.  The conversion of combined PHYLIP files to CLUSTAL format is 

especially important when excluding strains from multiple alignments; this may result in 

suboptimal alignments with unnecessary alignment gaps that can easily be removed by 

realigning with CLUSTAL W. 

 

Implementation 

Our current implementation of SNAP Map generates more than ten distinct output formats 

(Table 4.1).  These particular formats were included from necessity as they are the required 

input file formats for the various analysis tools we use frequently in our laboratory and centre 

(Carbone, et al., 2004; Dean, et al., 2005).  Each tool requires a specific input format that is 

not generated by other programs; this can be a source of frustration and error if generating 
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these files manually.  These are primarily applications developed for analyzing population 

structure and history within a nonparametric, coalescent or Bayesian framework but are also 

useful in multilocus macro-evolutionary analyses (Charles, et al., 2005; Geml, et al., 2006).  

Several of these tools can include geographical location or other phenotypic data in their 

analyses of population processes, and SNAP Map can merge specific individuals or 

haplotypes with corresponding phenotypic data.  This ability allows us to take full advantage 

of both nonparametric and parameter-rich sequence-based models in testing for significant 

genotype-phenotype associations.   

SNAP Map generates a summary table output that provides a visual overview of 

sequence variation in the population sample.  This serves as a convenient reference and as a 

tool for exploring evolutionary processes at specific variable sites.  The summary table 

numbers each site and gives the position of the variable site in the original sequence 

alignment.  Each site is further labeled as a transition/transversion and 

informative/uninformative polymorphism.  If the sequences have been collapsed to 

haplotypes, the summary table includes the frequency of each haplotype and provides a 

haplotype consensus sequence. 

 

Framework 

SNAP Combine is written in Java and Map in ANSI C.  They were developed on Apple’s OS 

X operating system, but can be compiled on any platform.  Both are part of the SNAP suite 

of software tools developed in the Carbone laboratory at North Carolina State University 

(http://snap.cifr.ncsu.edu).  SNAP WorkBench provides an event-driven graphical user 
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interface for integrating SNAP Map, Combine and other command-line tools.  Several 

program calls to SNAP Map, each including different options, can be included in the SNAP 

Workbench menus; we recommend using Map with the Workbench for maximum ease of 

use.  These and other SNAP tools can be downloaded from our web site.
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Table 4.1 File formats currently generated using SNAP Combine and 
Map 
1IM (Hey and Nielsen, 2004) file format is also supported. 
2Refers to the file formats for the programs Seqtomatrix, Permtest, Permchi, 
and Snn developed by R. Hudson. 
3Can also combine multiple single locus MIGRATE files into one multilocus 
file. 
 

File Format Includes Phenotypic 
Information Reference 

NEXUS No Maddison, et al., 1997 
CLUSTAL No Thompson, et al., 1994 
FASTA No Pearson and Lipman, 1988 
PHYLIP No Felsenstein, 2004 
MDIV1 Yes Nielsen and Wakeley, 2001 
GENETREE Optional Griffiths and Tavaré, 1994 
RECOM58 No Griffiths and Marjoram, 1996 
RECMIN No Myers and Griffiths, 2003 
RECPARS No Hein, 1993 

HUDSON2 Yes Hudson, 2000 
Hudson, et al., 1992 

MIGRATE3 Yes Beerli, 2006 
Beerli and Felsenstein, 1999 

SHRUB and 
HAPBOUND No Song, et al., 2005 

BEAGLE No Lyngsø, et al., 2005 
 


