
ABSTRACT

KANG, CHANGKU. Regression via clustering using Dirichlet mixtures. (Under the

direction of Subhashis Ghosal.)

Regression analysis is a fundamental problem of statistics. When the regression

function has an unknown form, parametric analysis is sometimes inappropriate. In

such a situation, the regression function should be estimated by nonparametric meth-

ods. Often, the regressor variable is sampled from several different subpopulations

and the regression function has different forms depending on the source. The labels

of these source subpopulations are not observable. Although a nonparametrically

specified regression function can capture the overall regression function, nonparamet-

ric regression estimates are usually dependent on the assumption of homoscedasticity

of additive errors. If the underlying distribution of X has unknown clusters, then

the usual assumption, the homoscedasity does not hold. In estimating the regres-

sion function, we propose the idea of first finding clusters in the regressor variables

by the Dirichlet mixture to impute lost subpopulation labels. A standard regression

method such as linear or polynomial regression then may be used within each cluster.

Markov Chain Monte Carlo (MCMC) sampling method is used to find the clusters

and for each sample the estimated regression functions can be obtained. We also

apply our method to the large p, small n problem, where the number of variables p

is much greater than the number of samples n. In several simulation experiments,

our method is compared to other methods such as kernel and smoothing splines in

the univariate case and GAM (generalized additive model) and MARS (Multivari-

ate Adaptive Regression Splines) in the multivariate case. The consistency issue is



discussed without explicit proof.
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Chapter 1

Introduction

1.1 Overview

A common problem of data analysis in modern statistics is the estimation of

a regression function based on sampled data (X1, Y1), . . . , (Xn, Yn). The regression

function, that is the mean of Y given X, is often specified as a given function such

as a polynomial of certain order with unknown coefficients. Suppose the underly-

ing distribution of X is a mixture of several distributions in that X may arise from

different subpopulations. In such a situation, it is quite plausible that the regres-

sion function may have different parameters when the sample comes from different

groups. However, we do not observe the group labels. The mixture distribution can

arise in many real situations such as it does in biology or economics. For example,

in marketing data, suppose that consumers rate the quality of a product. Different

customers may give different weights to various factors depending upon their back-

ground and mentality. In other words, the population actually consists of different
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subpopulations where different regression functions are in effect, but subpopulation

membership is abstract and is not observable. Had we observed the labels, regression

analysis would have been straightforward. In the absence of the labels, we use the

auxiliary measurements to impute the labels and use simple regression analysis within

each hypothetical group. It is not unreasonable to expect that subjects within similar

measurement are likely to have similar background and mentality. If customers of dif-

ferent types are identified, we may use simple regression analysis within each cluster

and the true overall regression function will be estimated as a weighted combination

of all regression estimates. In the whole analysis, uncertainty in group membership

as well as the number of groups should be taken into consideration.

In this thesis we propose a method to estimate an unknown regression function by

splitting it into an unknown number of clusters and then using some simple regres-

sion models within each cluster. In finding the clusters, a Bayesian nonparametric

method is considered. Standard regression methods are used in fitting a regression

function within each cluster. We also give an intuitive argument why consistency of

our estimator is expected.

Suppose we are given data (X1, Y1), . . . , (Xn, Yn) where Xi is p-variate continuous

variables and Yi is univariate. We want to consider the regression model,

Yi = f(Xi) + εi, i = 1, . . . , n, (1.1)

where εi
iid
∼ N(0, T 2). It is not assumed that f(·) has a specific structure, such as

linearity. Now, let the population of X consist of several groups, say k groups, which
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are, respectively, distributed as

N(µ1,Σ1), . . . , N(µk,Σk); (1.2)

here µj is the mean vector and Σj is the p×p variance covariance matrix corresponding

to the jth group. Let J be the latent variable which indicates the index of the group

where the observation belongs. The prior distribution of J is given by πj = P (J = j)

and thus the posterior distribution given that an X observation is equal to x is given

by πj(x) = P (J = j|X = x). Let the conditional distribution of X given J and the

conditional distribution of Y given X and J be given by

X|J = j ∼ N(µj,Σj), (1.3)

Y |X = x, J = j ∼ N(fj(x), T
2
j ), j = 1, . . . , k,

where fj(x) is the regression function in group j. Then, by the law of total probabil-

ities,

E(Y |X = x) =
k∑

j=1

E(Y |X = x, J = j) · P (J = j|X = x) =
k∑

j=1

fj(x)πj(x). (1.4)

Also, the conditional variance is given by

Var(Y |X = x) = EJ(Var(Y |X = x, J)) + VarJ(E(Y |X = x, J))

= EJ(T 2
J ) + VarJ(fJ(x))

=
k∑

j=1

T 2
j πj +

k∑

j=1

f 2
j (x)πj(x) −

( k∑

j=1

fj(x)πj(x)
)2

. (1.5)

Note here that if T 2
j are all equal, then first term in (1.5) is constant but the other

terms may not be constant in x. For example, Figure 1.1 shows that there are two

groups and the conditional mean and variance are given. That is, the regression
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Figure 1.1: The plot of the conditional expectation and variance which depend on
the value of X. X is distributed by the mixture of two normals with π1 = π2 = 0.5,
µ1 = 0, µ2 = 1, Σ1 = Σ2 = 0.42, f1(x) = 0.5 + 1.2x, f2(x) = 1.3 − 1.7x, and
T 2

1 = T 2
2 = 0.52.

may not be homoscedastic. This shows that usual nonparametric regression model

is unable to handle this simple and intuitive structure in model (1.3). Of course

heteroscedastic nonparametric model contains (1.3), but it is very difficult to estimate

the regression function under that scenario.

The idea of estimation of the regression function in this situation has two steps. In

the first step, as we assume that the underlying distribution of X follows the mixture

distribution, we may try to recover lost subpopulation labels by identifying clusters

in the data. Second, once the clusters have been identified, standard parametric

regression techniques may be used within each cluster.

To form the clusters, one of most popular methods in Bayesian nonparametrics,

namely that of Dirichlet mixture (DM), will be used (see Chapter 3). We assign
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Dirichlet mixture of normal prior for the density of X observations which means that

we model the density of X as a mixture of normal densities and true mixing dis-

tribution given the Dirichlet process prior. Because Dirichlet samples are discrete

distributions and observations arise according to a Polya urn scheme (see Chapter

3), the Dirichlet mixture prior has the ability to automatically produce clusters. The

means of the hidden groups are generated by an MCMC algorithm. In fact, we only

need the configuration of the ties among the latent means to identify the clusters at

each MCMC step but the group means and hyperparameters need not be updated

within MCMC iteration. This will allow substantial reduction of computational com-

plexity at the MCMC step.

Once the clusters have been identified, we can use a standard regression method,

such as the method of least squares for linear regression, within each cluster. Poly-

nomial regression may be used if we suspect the lack of linearity in the model. In the

multidimensional case, a parsimonious model building is an important issue so that

a variable selection method is usually used in regression problems. A useful method

which can automatically select the important variables while estimating regression is

given by the LASSO regression method [Tibshirani (1996)]. Unlike other shrinkage

methods such as the ridge regression [Hoerl and Kennard (1988)], LASSO can shrink

certain coefficients to exactly zero depending on the value of some tuning parameter.

A cross validation method can be applied to find the optimal value of the tuning

parameter.

When we use the Dirichlet mixture model, we do not do a fully Bayesian analysis

because the computation time of full MCMC updating procedure may be too long.
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For instance, the inversion of high dimensional covariance matrix may be needed for

the fully Bayesian method. Instead we use simple non-Bayesian estimates so that we

can save substantial computing time.

There is a challenging problem, so-called the large p small n problem, where the

number of variables p is large relative to the number of samples n. This happens in

many applications such as the microarray data analysis. The method of least squares

is inappropriate to handle this problem because of singularity while LASSO tends to

have erratic behavior. We propose using the elastic net method suggested by Zou

and Hastie (2005) and use it in each cluster to estimate parameters of each regression

function after DM procedure finds the clusters.

We will compare our method with several nonparametric methods. A lot of meth-

ods using local smoothing such as the kernel method and spline smoothing in the

univariate case were provided by many authors. These methods can be applied when

there is only one regressor variable. In the multivariate case, the data are sparsely

distributed even for a large sample size. This well known difficulty is called “the curse

of dimensionality”. Many standard nonparametric techniques suffer from this prob-

lem. Therefore, it is necessary to consider certain approaches to overcome this kind

of problem, especially in a high dimensional situation. Among the important non-

parametric regression techniques in higher dimension are Multivariate Adaptive Re-

gression Splines (MARS) [Friedman (1991)] and Generalized Additive Model (GAM)

[Hastie and Tibshirani (1990)]. These methods are briefly described in Chapter 2.

In comparison to other methods, we conduct several simulation experiments and
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evaluate L1-error and L2-error given in (5.1). These are common measures of distance

between true regression function and the estimated function in a global sense. An

advantage of our method is that there is no need to select to the bandwidth parameter.

In the Dirichlet mixture model in (3.1), we need to specify constant M , distribution

G0 and prior for σ. The parameter M is called “precision parameter” because of its

role in controlling the spread of the Dirichlet process. We can specify the prior for M

but a fixed small value is used here. The posterior distribution of k only depends on

the number of clusters in certain MCMC steps so we can easily update and get the

information of k. In fact, the value of k obtained from MCMC step is an overestimate

of the number of clusters. But, this does not harm much in estimating the regression

function; see explanations given in Section 5.3.

In this thesis, we mainly do simulation work and compare the results to those of

other methods in the proceeding chapters. The literature reviews for non-Bayesian

regression methods, including the linear regression model as a simple case and non-

parametric method, are given in Chapter 2. Preliminaries used in this thesis, such as

the Dirichlet process, are described in Chapter 3. The main procedure and algorithms

are presented in Chapter 4. In Chapter 5, we summarize the simulation results in

univariate and multivariate situations, paying special attention to the large p, small

n problem. We also analyze a real data collected by a nonprofit organization as an

application of our method. Finally some conclusions and future work are given in

Chapter 6.
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Chapter 2

Non-Bayesian and Bayesian

Methods for Regression

In this chapter we review the literature about the regression method from the

non-Bayesian and Bayesian nonparametric perspectives. Suppose that there are a

vector X = (X1, . . . , Xp) and a real valued random variable Y of interest which is

influenced by X. Regression describes the approximate relationship between X and Y

given data (X1, Y1) . . . , (Xn, Yn) where Xi = (X1
i , . . . , X

p
i ). The variable X is called

the independent or predictive variable and Y is called the dependent or response

variable.

The general heteroscedastic regression model is defined by

Yi = f(Xi) + εi, (2.1)

where εi is usually assumed by the independent normal distribution having mean 0

and variance σ2
i (x). Note that here, the conditional variance of Y given X depends
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on the covariate vector X. If the functional form of f(·) such as linearity is not

given, then the model is nonparametric. The simplest and most popular one is the

homoscedastic linear regression as a parametric regression by assuming f(x) = Xβ

and σ2
i (x) = σ2. In our problem, we focus on using linear regression within each

cluster after finding several candidate groups.

The ordinary least squares (OLS) method is very popular and a simple method of

estimation in linear regression models. We begin with a review of the linear regression

along with its modification such as the ridge regression and the LASSO method. Then

nonparametric regression method will be reviewed. This method has certain difficulty

in the multidimensional case, known as “the curse of dimensionality”. Several meth-

ods were developed to overcome this drawback. A generalized additive model (GAM)

is suggested to restrict the form of the function and multivariate adaptive regression

splines (MARS) is developed as the generalization of recursive partitioning regression

model.

If we consider Bayesian nonparametric regression methods, we want to use Bayesian

method under flexible assumption of the unknown regression function. Gaussian

process will be given first. An approach is to consider expansion with respect to some

basis for an appropriate function space and put priors on the coefficients of expansion.

For examples, the spline basis, the Fourier basis and wavelet bases are commonly used

to expand a function. There is an alternative approach proposed by Muller, Erkanli

and West (1996) by using density estimation method because the regression function

is the conditional expectation under joint distribution of (X,Y ).

9



2.1 Classical Methods

2.1.1 Linear regression

The simplest regression model is the linear regression which assumes that regres-

sion function is a linear function of X. Assume that we have the regression model in

(1.1). The linear regression model assume f(·) has the linear structure

Yi =

p∑

j=0

Xijβj + εi, (2.2)

where εi is distributed by the independent normal distribution having mean 0 and

variance σ2 and Xi0 = 1 for all i = 1, . . . , n. We may assume that Xi’s are distributed

according to a certain distribution such as a normal distribution. The regression

function can be expressed as the conditional expectation of Y given X, E(Y |X). This

model includes the polynomial regression model. For example, if X is univariate, then

by defining X2 = X2
1 quadratic relationship can be incorporated into by the model.

Let X be the n× (p+ 1) matrix with (i, j)th component as Xi,j and similarly let

Y be the column vector of length n whose ith entry Yi. Then, model (2.2) can be

expressed as

Y = Xβ + ε, (2.3)

where β = (β0, . . . , βp)
T and ε = (ε1, . . . , εn)T . The OLS estimator is obtained by

minimizing the sum of squared error (SSE)

SSE (β) = (Y − Xβ)T (Y − Xβ), (2.4)

leading to the solution

β̂OLS = (XTX)−1XTY.
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Note that here we have assumed that XTX is a non-singular matrix. If the design

matrix XTX is singular, we can use a generalized inverse of XTX.

The Gauss-Markov theorem states that OLS estimator has the minimum variance

among any other unbiased linear estimators. However, OLS method suffers in pre-

diction particularly if XTX is singular or near singular. The prediction error can be

improved by reducing variance but allowing some bias. Ridge regression and LASSO

regression are penalization techniques applied to the model.

Ridge regression, introduced by Hoerl and Kennard (1970), penalizes the size of

the regression coefficient. The estimate is obtained by minimizing the penalized sum

of squares,

SSE (β, λ) = (Y − Xβ)T (Y − Xβ) + λβT β, (2.5)

where λ is a complexity parameter that controls the amount of shrinkage. If λ in-

creases to infinity, the amount of shrinkage is larger. Now the solution of (2.5) is,

β̂ridge = (XTX + λI)−1XTY, (2.6)

where I is the (p + 1) × (p + 1) identity matrix. Equivalently the ridge coefficient

minimizes the usual SSE in (2.4) subject to the constraint that
∑p

j=0 β
2
j ≤ s, where

s is the parameter playing the same role of λ. The difference between the ridge

coefficients and OLS coefficients is λ times the identity matrix added to XTX. In

fact, (XTX + λI) is not singular even if XTX is a singular matrix. For XTX nearly

singular, Var(β̂ridge) can be substantially lower than Var(β̂OLS). This is the main

motivation behind ridge regression.

Ridge coefficients minimize SSE subject to a bound L2-norm of the coefficients.
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LASSO, introduced by Tibshirani (1996), minimizes SSE subject to a bound on the

L1-norm. Unlike the ridge regression, the LASSO can make some coefficients exactly

zero so that we can choose a subset of the predictors which have relatively stronger

effect on the dependent variable Y . There is a discrete variable selection procedure so

called best subset. However, the LASSO method works both as a continuous shrinkage

and an automatic variable selection technique. Similar to the ridge method, the

LASSO coefficients can be defined that minimizes the SSE subject to
∑p

j=0 |βj| ≤ s.

Tibshirani (1996) and Fu (1998) compared above methods in terms of prediction

error but there is no one which is superior to the other method. Recently, Zou and

Hastie (2005) developed a method which combined the ridge regression and LASSO

to give what is called the “elastic net (EN)” and used in microarray data analysis.

Especially EN outperforms the LASSO when the number of predictors, p, is much

larger than the number of observations, n, (“the large p, small n” problem) and when

there is a group of highly correlated variables.

In our problem, if there are unknown clusters we want to apply above regression

methodologies at the second step, given several candidate clusters. In low dimension

(p ≤ 4, say), variable selection may not be important. For higher dimension (p > 4),

variable selection is necessary to avoid overfitting and to achieve stability. In such

cases, we propose using the LASSO regression, which automatically selects a simpler

model.

12



2.1.2 Nonparametric regression

The linear regression model has the advantages of simple interpretation and easy

computation. But, it has a limited flexibility and produces accurate estimates only

when the true form of the regression function is close to the linear function. This

motivates the use of more flexible models.

Univariate case

On estimation of nonparametric regression function there are roughly three para-

digms such as local parametric, piecewise fitting and roughness penalty method.

• Local parametric fitting : There are two main issues in this method. One is

how big the neighborhoods are and the other is how to average the target value

in each neighborhood. Bin smoother, which is also known as “regressogram”

is a basic method like histogram for density estimation. If we use the least

square method in a neighborhood then the running line method is obtained.

A useful and popular estimator is the kernel estimator proposed by Nadaraya

(1964) defined by

f̂(X) =

∑n

i=1Kh(X −Xi)Yi∑n

k=1Kh(X −Xk)
, (2.7)

where Kh(·) = 1
h
K( ·

h
) is a kernel function having bandwidth h > 0 and K(·) is

a symmetric density function. It is useful to represent this in matrix notation.

f̂(X) = SY, where Si,j =

∑n

i=1Kh(Xj −Xi)∑n

k=1Kh(X −Xk)
, (2.8)

and X and Y are vector of length n. Then, the n×n matrix S is called smoother

13



matrix. For the method of least squares, the smoother matrix is nothing but the

hat matrix H = X(XTX)−1XT . This representation also applies to smoothing

splines and other nonparametric methods.

There may be many choices for the kernel functions but it is known that the

choice of bandwidth h is more important than that of the kernel function. A

common choice for the kernel function is the standard normal distribution. A

common method for bandwidth selection is that of cross validation (CV). For

given data (X1, Y1), . . . , (Xn, Yn), for i = 1, . . . , n, we leave (Xi, Yi) out and fit

the estimate of f , say f̂(−i) then calculate the error as

CV =
1

n

n∑

i=1

(
Yi − f̂(−i)(Xi)

)2

=
1

n

n∑

i=1

(Yi − f̂(Xi)

1 − Si,i

)2

,

where Si,i is the diagonal elements of the smoother matrix S. Note here, f̂(−i)

and f̂ depend on the bandwidth h. The optimal h can be obtained by min-

imizing CV. Alternatively generalized cross validation (GCV) is proposed by

replacing Si,i by 1
n

tr(S). Craven and Wahba (1979) proposed GCV method

and established the optimal property of GCV. In this thesis, we will use the

method which was proposed by Sheather and Jones (1991). This is already

implemented in R package, “KernSmooth” with function “dpik” and “ksmooth”.

• Piecewise fitting : This method basically divides the domain region into several

intervals and approximate the regression function with low order of polynomials

within each interval. The cut-off points necessary for this method are called

knots. Continuity at the all the knots is imposed. The usual method is the

polynomial regression spline method. The cubic spline approximates the third
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order of polynomial at each subregion. The main difficulty is to select the order

of polynomial as well as the knots. Splines can be represented by different

basis functions. For example, cubic regression splines can be expressed by the

following.

f̂(x) = β0 + β1x+ β2x
2 + β3x

3 +
N∑

j=1

θj(x− ξj)
3
+, (2.9)

where ξ1, . . . , ξN are given knots and (a)+ = max(a, 0).

• Roughness penalty method : A Sobolev space is defined as a normed space of

functions for which derivatives upto a certain order satisfy some integrability

restrictions. Let f(x) be a function in the second order Sobolev space on unit

interval, W2[0, 1], then a smoothing spline is a function f ∈ W2[0, 1] which

minimizes

1

n

n∑

i=1

(
Yi − f(Xi)

)2

+ λ

∫ 1

0

(
f ′′(x)

)2

dx, (2.10)

where λ > 0 is a smoothing parameter. The second term of (2.10) penalize

the roughness or the curvature of estimator. The parameter λ controls the

bias-variance trade off. For example, if λ = 0, the f̂(Xi) = Yi and if λ = ∞

then f̂ is the least square regression line. The solution of (2.10) is called cubic

spline with knots X1, . . . , Xn. It is important to choose λ properly. The func-

tion “smooth.spline” in R, uses CV method to find such λ and fit the resulting

function.
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Multivariate case

Nonparametric regression method is challenged in the multidimensional case be-

cause of the curse of dimensionality, which means that in high dimensions, a neighbor-

hood containing a fixed percentage of data points can be very big. There have been

many studies to overcome this difficulty. Mostly, a dimension reduction technique

is considered and then smoothing methods are used even though there are direct

smoothing approaches such as thin-plate spline and classification and regression trees

(CART). Here we review some of recent methods such as the generalized additive

model (GAM) and multivariate adaptive regression splines (MARS).

The additive model is a generalization of the usual linear regression model, where

the regression function is assumed to be a sum of functions on lower-dimensions. The

additive model is defined as

Yi =

p∑

j=1

fj(Xj,i) + εi, i = 1, . . . , n, (2.11)

where εi
iid
∼ N(0, T 2). Note that fj’s are arbitrary univariate functions, one for each

predictor. Hastie and Tibshirani (1990) adapted this additive model to generalized

linear models, and this is called the generalized additive model (GAM). The GAM

differs from a generalized linear model in that an additive part replaces the linear

predictor. The GAM is defined as

g(µ) =

p∑

j=1

fj(Xj), (2.12)

where the mean µ(X) = E(Y |X) is linked through g(·). The estimation method

in the additive model is known as the “back-fitting” method. For the GAM, the
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local scoring procedure plays a role as the iteratively reweighted least square method

in a generalized linear model. In R, “gam” function is implemented in the package

“mgcv”. Since it is necessary to use the nonparametric estimation method to estimate

each function fj, the bandwidth parameters are selected by some suitable data driven

methods. In R, “gam” function uses the generalized cross validation method to select

the bandwidth parameter.

MARS is a method for flexible modeling in high dimensional data, motivated

from the recursive partitioning model by Friedman (1991) . This does not assume

any parametric form of f(X). MARS constructs the function from a set of coefficients

and basis functions only from the data. The model is defined by

Yi = β0 +
M∑

m=1

βmBm(Xi) + εi, i = 1, . . . , n, (2.13)

where Bm is a basis function. For example, suppose we consider the class,

C = {(Xj − t)+, (t−Xj)+|t ∈ {X1,j, . . . , Xn,j}, j = 1, . . . , p},

where (s)+ = s if s > 0, 0 otherwise. Then Bm is either a function in C or a product

of two or more such functions. By allowing the order of interactions, the above model

can be an interactive model instead of the additive one. In R, this can be controlled

by the option “degree” in the function “mars”.

17



2.2 Bayesian Methods

2.2.1 Gaussian process method

A Gaussian process is a collection of random variables and the finite number of

which have joint normal distributions. A Gaussian process can be specified by the

mean function m(x) and covariance function K(x, x′). Let f(x) denote the regres-

sion function distributed as a Gaussian process (GP) with mean function m(x) and

covariance function K(x, x′), then f ∼ GP (m,K). The choice of an appropriate co-

variance function enables to have a large support in the space of all smooth functions.

For example, the covariance function K(x, x′) = 1
τ
e−γ(x−x′)2 with varying γ spans the

space of all smooth functions. The weak but crucial assumption for the covariance

function is that it generates non-negative definite matrix for any set of inputs.

Suppose we have given data (X1, Y1), . . . , (Xn, Yn) and we want to predict the

estimate of f(xn+1) at given xn+1. Let f = (f(X1), . . . , f(Xn))T and m = (m(X1), . . . ,

m(Xn))T and Σ0 the covariance matrix having the (i, j)th element K(Xi, Xj). The

conditional distribution of f given data is

f |(X1, Y1), . . . , (Xn, Yn) ∼ GP (m∗, K∗), (2.14)

where

m∗(x) = m(x) +K(x,X)T Σ−1
0 (f − m),

K∗(x,X) = K(x, x) −K(x,X)T Σ−1
0 K(x,X),

and K(x,X) = (K(x,X1), . . . , K(x,Xn))T . The above expression is easily obtained

by the fact that random vectors f(X1), . . . , f(Xn), f(xn+1) are distributed as multi-
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variate normal distribution, and the distribution of f(xn+1) is the conditional distri-

bution from the joint normal.

Now the specification of hyper parameters such as putting a prior for τ, γ in above

example covariance function gives us posterior updating formula. An MCMC method

is considered by Neal (1997) and MacKay (1999). One difficulty for this method is its

long computing time, as the covariance function, which depends on the data size needs

to be inverted. Before modern cheap and fast computing machine it was not feasible

to compute the inverse of matrix whose dimension is more than hundred. But, now it

is feasible to apply this method in the case of more than thousands of samples. The

strength of GP method is the conceptual simplicity and the flexibility in modeling.

Rasmussen (1996) has compared GP with other nonparametric regression methods

and shown that GP has better performance among them. Geostatistics is a common

application area of GP, where the predictor is of two or three dimensions [Cressie

(1993)]. Choi and Schervish (2004) established the posterior consistency of Gaussian

process priors for the regression function in normal error case in one dimension.

2.2.2 Basis expansion method

Many Bayesian methods for nonparametric regression problem use some basis

expansion such as splines, the Fourier basis and wavelet bases. Suppose that given a

basis {f1, . . . , fM}, the regression function can be expressed by

f(·) =
M∑

j=1

bjfj(·), (2.15)

where b = (b1, . . . , bM) is a vector of basis coefficients.
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Splines commonly use basis functions as

{1, x, x2, x3, (x− ξ1)
3
+, . . . , (x− ξp)

3
+}, (2.16)

where (x)+ = max(x, 0) and ξ = (ξ1, . . . , ξp) is a vector of knots. For a given ξ, the

regression function can be formed by the coefficients b = (b1, . . . , bM). The specifica-

tion of prior for (ξ, b, σ) enable to set up a Bayesian model in this problem. There

are many approaches depending on different priors on b (see Section 3.1 in Muller

and Quintana (2004)). Updating ξ, a vector of knots, is somewhat difficult when

the number of knots and locations are unknown. Denison et al. (1998) proposed a

procedure which enables to add, delete and change knots from the data by using the

reversible jump MCMC method. For the multivariate case, the additivity assump-

tion is common. Denison et al. (1998) assumed the additive structure. Alternatively,

Denison et al. (1998b) proposed Bayesian approach to MARS by using the reversible

jump MCMC method. They showed that Bayesian MARS have a high predictive

power due to posterior averaging.

Wavelet basis methods provide an orthonormal L2 basis of the space of square

integrable functions. Any L2 function f can be represented by the wavelet expansion,

f(x) =
∑

j

∑

k

dj,kψj,k(x), (2.17)

with basis function ψj,k(x) = 2
j

2ψ(2jx−k). This representation is usually very sparse

so that there are only a few coefficients having relatively large values. The idea is to

first consider the discrete wavelet transform from given data and then discard those

small coefficients by thresholding. With those coefficients, one can reconstruct the

original data by the inverse of discrete wavelet transformation. Let d∗j,k denote the
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empirical coefficients obtained by applying discrete wavelet transform to the data

(Y1, . . . , Yn). Then, Bayesian wavelet regression methods need to get the posterior

distribution of dj,k|d
∗
j,k by putting a prior on dj,k. Chipman et al. (1997) put an

independent prior on dj,k,

dj,k|γj,k ∼ γj,kN(0, c2jν
2
j ) + (1 − γj,k)N(0, ν2

j ),

where γj,k ∼Bernoulli(pj) and all the hyperparameters are determined by empirical

methods. Then, the posterior distribution is also a mixture of two normal distribu-

tions because d∗ has a normal distribution with mean dj,k and a fixed variance.

Abramovich et al. (1998) placed independent priors on dj,k as

dj,k ∼ pjN(0, τ 2
j ) + (1 − pj)δ(0),

where δ(0) is degenerate probability at 0. Vidakovic (1998) proposed a mixture of a

point mass and a t−distribution. Holmes and Denison (1999) considered an infinite

mixture of normals.

2.3 Other methods

DeSarbo and Cron (1988) proposed a conditional mixture maximum likelihood

methodology for performing clusterwise linear regression. The term of “clusterwise

regression” was first used by Spath (1979). First, it needs to use AIC (Akaike’s

information criterion) in order to estimate the number of cluster k. Then, given k,

the weighted linear regression function can be estimated by using EM algorithm.
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Muller, Erkanli and West (1996) suggested a nonparametric Bayesian curve fitting

method. Their idea is that once the distribution of joint density (X, Y ) is known then

the conditional distribution of Y |X can be easily obtained. The joint distribution

of (X, Y ) is assumed to be a mixture. Dirichlet mixtures of normals prior was used

to estimate the joint distribution. Their method is a fully Bayesian method. The

method suffers in higher dimensional case and the large p small n problem and also

when the conditional mean is not linear in each subpopulation.

Geweke and Keane (2005) developed a flexible model called smoothly mixing re-

gression method. They use the multinomial probit model for the posterior probability

of unknown cluster given covariates. The main reason of using this model is that it

produces simple and tractable posterior distributions in Gibbs sampling algorithm.

They give two illustrations for their method, earning data and stock return data.

There are two important difficulties. One is that the evaluating the conditional prob-

ability density is somewhat awkward. The other is a well known difficulty in high

dimension, the curse of dimensionality in the order of the conditioning covariates.
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Chapter 3

Preliminaries

In this chapter we review Bayesian nonparametric method concepts such as the

Dirichlet process, and the Dirichlet mixture process and their properties. The poste-

rior is typically computed using the MCMC method of Gibbs sampling. The MCMC

sampling scheme and the consistency of posterior distribution will be reviewed in this

chapter.

3.1 Dirichlet process and Dirichlet mixture process

Nonparametric inference is concerned about an unknown parameter of infinite

dimension. Functions such as density distribution, regression function or survival

functions may be of interest in an inference problem. Bayesian methods usually

require prior information about the unknown parameters. Therefore, Bayesian non-

parametrics requires the construction of a prior on infinite dimensional space such

as the space of probability measure. A popular prior, which is a stochastic process
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whose sample paths are probability measures, is the Dirichlet process introduced by

Ferguson (1973).

Let M(X) be the space of probability measure on X. Let G be a probability

measure on (X,B) where B is the Borel σ-field.

Definition 1 Let M > 0 and G be a probability measure on (X,B). A random

probability measure P follows a Dirichlet process on (X,B) if for any finite partition

{B1, . . . , Bk} of X, the joint distribution of the vector (P (B1), . . . , P (Bk)) has the

Dirichlet distribution with parameter (MG(B1), . . . ,MG(Bk)).

The Dirichlet distribution for variables (x1, . . . , xk) with parameter (p1, . . . , pk) is

defined by

f(x1, . . . , xk) =
1

C

k∏

i=1

xpi−1
i ,

when x1, . . . , xk ≥ 0,
∑k

i=1 xi = 1 and p1, . . . , pk > 0. The constant C is given by

∏k

i=1 Γ(pi)/Γ(
∑k

i=1 pi), where Γ(·) is the gamma function. We denote “DP (M,G)”

as the Dirichlet process with parameter (M,G). Note here,

E(P (B)) = G(B), Var(P (B)) =
G(B)(1 −G(B))

1 +M
. (3.1)

If M gets larger, then P approaches G. The number M is called the precision para-

meter and G is called the center measure, and MG is referred to as the base measure

of DP (M,G). An attractive mathematical property of Dirichlet process is that given

a set of realizations θ1, . . . , θn from P ∼ DP (M,G0), the posterior distribution of P

is also a DP (M∗, G∗
0) where M∗ = M +n and G∗

0 = (MG0 +
∑n

i=1 δθi
)/(M +n); here

δθ(·) is the indicator function, I{x = θ}. This can be illustrated by the Polya urn

24



scheme model which also gives a construction of the Dirichlet process [Blackwell and

MacQueen (1973)].

θ1 ∼ G0 (3.2)

θi|θ1, . . . , θi−1 ∼
MG0 +

∑i−1
j=1 δθj

M + i− 1
, for i = 1, 2, . . . .

Therefore the predictive distribution of θn+1 can be derived by the following

θn+1|θ1, . . . , θn ∼
M

M + n
G0 +

1

M + n

n∑

i=1

δθi
. (3.3)

Sethuraman (1994) gave a useful construction of Dirichlet process. Suppose P is

from DP (M,G). Then

P =
∞∑

i=1

Viδθi
, (3.4)

where θ1, θ2, . . . are a sequence i.i.d. random variable from G, Vi = Yi

∏i−1
j=1(1 − Yj)

and Y1, Y2, . . . are i.i.d. random variables from Beta(1,M). Thus probabilities are

assigned by “stick breaking” at randomly distributed points. It can be easily shown

that
∑∞

i=1 Vi = 1 almost surely. With this definition of Dirichlet process, we can

generate a realization of the Dirichlet process by truncation at some finite stage. It

follows that Dirichlet process is almost surely discrete.

The weak support of Dirichlet process, DP (M,G) can be shown to be {P ∈

M(X) : supp(P ) ⊂ supp(G)}. This means that if the support of G is X, then the

space of all probability measures is the support of P . For example, if we have normal

distribution as G, then the Dirichlet process can choose any probability measure.

Since the Dirichlet process puts all its mass on the subset of all discrete distribu-

tions, smoothing the Dirichlet process is particularly important for density estimation.
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Suppose that X1, . . . , Xn are drawn as a random sample from the distribution of

f(·, G) =

∫
K(·, θ, σ)dG(θ), (3.5)

where K(·, θ, σ) is a density function given θ, σ and G ∼ DP (M,G0). This was de-

veloped by Ferguson (1983) and Lo (1984), and is called “Dirichlet mixture process”.

The kernel K(·, θ, σ) can be any density function. The normal distribution with mean

θ and variance σ2 is a common choice and we will work with this one. Note that we

can put the Dirichlet prior on the distribution of θ or (θ, σ2). In the latter case, the

center distribution G0 is the joint distribution of (θ, σ2). If we consider the Dirichlet

prior on the mean θ, then the normal Dirichlet mixture process model is

f(·, G) =

∫
N(·; θ, σ2)dG(θ), (3.6)

where N(·; θ, σ2) is the p.d.f. of normal distribution with mean θ and variance σ2.

There is an alternative useful representation in terms of a hierarchical model, given

below:

Xi|θi
ind
∼ N(·; θi, σ

2), (3.7)

θi|G
iid
∼ G,

G ∼ DP (M,G0).

In Bayesian inference, we get the posterior distribution of all the parameters that we

are interested in. The joint distribution of (θ1, . . . , θn, σ
2) is not analytically tractable,

so the Gibbs sampling technique is considered for which we need to sample iteratively

from one dimensional conditional distributions. More precisely, the idea of Gibbs

sampling scheme can be summarized as follows:
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Suppose we are interested in sampling θ = (θ1, . . . , θn) from the distribution

π(θ). Let θ−i = {θj; j 6= i} for i = 1, . . . , n. Assume that the full conditional

distributions π(θi|θ−i) are given and it is easy to sample from it.

(i) Set initial values θ(0) = (θ
(0)
1 , . . . , θ

(0)
n ).

(ii) Obtain a new value θ(j) = (θ
(j)
1 , . . . , θ

(j)
n ) from θ(j−1) through succesive sampling

θ
(j)
1 ∼ π(θ1|θ

(j−1)
2 , . . . , θ(j−1)

n ),

θ
(j)
2 ∼ π(θ2|θ

(j)
1 , θ

(j−1)
3 . . . , θ(j−1)

n ),

...

θ(j)
n ∼ π(θn|θ

(j)
1 , . . . , θ

(j)
n−1). (3.8)

(iii) Increase the counter j to j+1 and repeat the step (ii) until certain convergence

rule is satisfied.

The Gibbs sampler is a very powerful algorithm and its implementation is often easy

in many complex problems. According to the Gibbs sampler, we only need to obtain

the conditional distribution of θi given θ−i,X and σ2. The following gives the basic

idea on how to implement MCMC steps in a Dirichlet mixture model.

Algorithm (1).

θi|θ−i, σ
2,X ∝ qi0Gi(θi) +

∑

j 6=i

qijδθj
(θi), (3.9)

where

qi0 ∝

∫
N(Xi, θ, σ

2)dG0(θ),
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qij ∝ N(Xi; θj, σ
2),

n∑

j=1

qij + qi0 = 1,

Gi(θi) ∝ N(Xi; θ, σ
2)dG0(θ).

Since there are many ties during the updating of θi, the above algorithm is not efficient

and an alternative algorithm is usually considered. Let φ be the set of distinct θi’s

and let k be the number of distinct elements of θ1, . . . , θn. Let s = (s1, . . . , sn) be the

configuration vector defined by

si = j if and only if θi = φj, i = 1, . . . , n j = 1, . . . , k.

Let H = {I1, . . . , Ik} be a cluster which is defined by

Ij = {i : si = j}.

Therefore, H is a partition of I = {1, . . . , n}. Now given the configuration vector s

and φ, θ and H are uniquely determined by the following rule.

φ1 = θ1

φj = θi, if j ≥ 2 and i = min{m : θm 6= φ1, . . . , θm 6= φj−1} (3.10)

Let the following be the notations when the observation i is removed:

• θ−i = {θj : 1 ≤ j ≤ n, j 6= i},

• k−i: the number of clusters formed by θ−i,

• φ−i : the set of distinct observations among θ−i,

• n−i,j : the number of elements in cluster j when the ith observation is removed.
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The following is the alternative simplified algorithm for (3.9);

(θi|θ−i, σ
2,X) ∝ qi0Gi(θi) +

∑

φk∈φ−i

n−i,kqikδφk
(θi), (3.11)

where qik ∝ N(Xi|φk, σ
2).

It is known that above algorithm is not efficient because there is a small chance

to have a new value of θ during procedure. There is a technique of “remixing”

the φj after every step to prevent this problem. The vector of (θ1, . . . , θn) can be

fully determined by knowing the configuration vector (s1, . . . , sn) and distinct values

(φ1, . . . , φk). Therefore sampling θi is equivalent to sampling si and φi given s, φ−i,

i = 1, . . . , k. Note here that if si = j ≤ k−i, then the new θi = φj and if si = k−i + 1,

then let the new value θi be sampled from Gi. This gives an alternative and more

efficient updating procedure.

Algorithm (2).

Under the notation of (3.11), the distribution of si is

P (si = j|s−i, φ−i,X) ∝ n−i,jN(Xi;φj, σ
2),

P (si = k−i + 1|s−i, φ−i,X) ∝ M

∫
N(Xi; θ, σ

2)dG0(θ), (3.12)

and the posterior distribution of φ1, . . . , φk are

P (φj|s,X) ∝ dG0(φj)
∏

i∈Ij

N(Xi;φj, σ
2) for j = 1, . . . , k. (3.13)

3.2 Evaluation of clustering

In the previous section, our first step is to find the clustering among data by

using the Dirichlet mixture model. The key idea is that the clustering obtained
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from Dirichlet process can give us a “good” partition. Now the question is how the

clustering is good? According to Rand (1971), an objective criterion should have

the following three basic properties. First, clustering is discrete, that is every point

is assigned to a specific cluster. Second, clusters are defined just as much by those

points which they do not contain as by those points which they do contain. Third,

all points are of equal importance in the determination of clustering.

Given n points, θ1, . . . , θn and two clustering vectors, s = {s1, . . . , sk1} and s′ =

{s′1, . . . , s
′
k2
}, define a measure d be defined by

d(s, s′) =

∑n

i<j γij(
n

2

) , (3.14)

where

γij =






1, if there exist k and k′ such that both θi and θj are in both sk and s′k′ ,

1, if there exist k and k′ such that θi is in both sk and s′k′ while θj

is in neither sk or s′k′ ,

0, otherwise.

(3.15)

In practice, we use a simple computational formula for d:

d(s, s′) =
[(n

2

)
− 0.5(

∑

i

(
∑

j

nij)
2 +

∑

j

(
∑

i

nij)
2) +

∑ ∑
n2

ij

]
/

(
n

2

)
, (3.16)

where nij is the number of points simultaneously in the ithcluster of s and the jth

cluster of s′. This is the measure of similarity and ranging from 0 to 1. When d = 0

the two clusterings have no similarities, and when d = 1 the clusterings are identical.

In this thesis, this measurement of similarity is used in MCMC steps. We call it

“Rand’s measure”.
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3.3 Inference about M

In MCMC updating scheme, a suitable choice of M is important because M

controls the number of clusters, k. We may put a value for M as an initial moderate

choice and a prior on M lets the data choose the appropriate M . In this section we

review the distribution of k. The aim is to give the posterior distribution of M so

that we can update during MCMC procedure. This approach originally came from

Escobar and West (1995). There are alternative ways to put a prior on M . Escobar

(1994, 1998) used a discrete probability on a suggested grid points. Liu (1996) showed

how to obtain the maximum likelihood estimate of M .

The distribution of the number of component k is the following:

P (k|M,n) = Cn(k) · n! ·Mk ·
Γ(M)

Γ(M + n)
, (3.17)

where Cn(k) = P (k|M = 1, n). The expectation of k is given by

E(k) =
n∑

i=1

M

M + i− 1
≈M log

(M + n

M

)
. (3.18)

Then, we can obtain the posterior of M given data X,

P (M |k, θ,X) = P (M |k) (∵ the independence of M, θ, and X given k)

∝ P (M) · P (k|M)

∝ P (M) · n! ·Mk ·
Γ(M)

Γ(M + n)
(∵ Cn(k) does not depend on M)

∝ P (M)MkB(M,n)

= P (M)Mk

∫ 1

0

ηM−1(1 − η)n−1du, (3.19)
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where B(a, b) = Γ(a)Γ(b)/Γ(a+ b). Then, P (M |k) can be considered as the marginal

distribution from a joint for M and a continuous quantity η such that

P (M, η|k) ∝ P (M) ·MkηM−1(1 − η)n−1, M > 0, 0 < η < 1.

Thus, if P (M) = Gamma(a, b), then the posterior of M is

P (M |η, k) ∝ Ma−1e−bMMkηM−1

∝ Ma+k−1e−M(b−log η)

= Gamma(a+ k, b− log η). (3.20)

These distributions are well defined for all gamma priors and

P (η|M,k) ∝ ηM−1(1 − η)n−1, 0 < η < 1.

Therefore in MCMC sampling steps, repeating to sample η and M will give us an

appropriate value of M . Now, the estimated posterior distribution of M can be

obtained by the following:

P (M |Data) ≈
1

N

N∑

i=1

P (M |ηi, ki) (3.21)

where ηi are the sample values of η.

3.4 Posterior consistency

In this section we briefly review the literature on the consistency of the posterior

distribution. In Bayesian inference, consistency is important because a posterior may

be misled towards a wrong value without it. The posterior is consistent if it concen-

trates near the true value as more data are collected. This means that the information
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from the data eventually dominates whatever prior information was. We will briefly

illustrate some preliminary definitions and give an argument which indicates poste-

rior consistency in the Dirichlet mixture model. Formally speaking, let Πn be the

posterior given samples X1, . . . , Xn. Then Πn is consistent at θ0 if Πn(U) → 1 a.s. for

every neighborhood U of θ0. It is equivalent to Πn
w
→ δθ0 , “w” denotes convergence of

measures in the weak sense. Naturally, posterior consistency depends on the topology

on the parameter space.

A fundamental theorem is given by Schwartz (1965) but it seems to be difficult

to apply her theorem to our regression problem directly. We shall extend the consis-

tency property in Dirichlet mixture of normal model of Ghosal et al. (1999) to the

multivariate case. At present the weak consistency result is only proved. A result

from Donoho (1988) showed that the number of mixture is a lower semi-continuous

functional indicating that asymptotically the number of clusters produced by the

Dirichlet mixture is at least equal to the number of components in the true mixture

distribution. This will be discussed in Chapter 4.

Consistency under two topologies, the weak topology and the strong topology will

be discussed in this chapter. We first give some definitions of neighborhoods on the

space of all density functions. Let F be the space of all densities on R with respect

to the Lebesgue measure. On F, the weak topology and the norm topology can be

considered as natural topologies. Since a topology can be formed by defining the

system of neighborhoods, we can start by giving two natural types of neighborhoods.

Definition 2 If f0 ∈ F, a weak neighborhood of f0 is a set containing a set of the
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form:
{
f ∈ F :

∣∣∣
∫
ψif −

∫
ψif0

∣∣∣ < ε for i = 1, . . . , k
}
, (3.22)

where ψi are bounded continuous functions on R. This topology is called “weak topol-

ogy”.

A strong neighborhood is a set containing a set of the form:

{f ∈ F : ‖f − f0‖ < ε},

where ‖ · ‖ denotes a metric.

Definition 3 A prior Π is said to be weakly consistent at f0, if

Π(U |X1, . . . , Xn) → 1

with probability 1 for all weak neighborhoods U of f0.

The closeness between two functions can be measured by a metric, norm and so

on. One such measure is the Kullback-Leibler divergence.

Definition 4 (K-L divergence) The Kullback-Leibler divergence between two den-

sities f, f0 is given by

K(f0, f) =

∫
f0(x) log

f0(x)

f(x)
dx.

Definition 5 (K-L support) For any f0 ∈ F, the Kullback-Leibler neighborhood of

radius ε around f0, is given by Kε(f0) = {f : K(f0, f) < ε}.

Let Π be a prior on F, we say that f0 is in the K-L support of Π if

Π(Kε(f0)) > 0 for all ε > 0.
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Theorem 1 [Schwartz (1965)]. If f0 is in the K-L support of Π, then the posterior

is weakly consistent at f0.

For the strong consistency, Barron, Schervish and Wasserman (1999) used the

Hellinger bracketing entropy while Ghosal et al. (1999) used L1-metric entropy which

gives a condition weaker than Barron et al. (1999).

Theorem 2 [Ghosal et al. (1999)]. Suppose f0 is in the K-L support of the prior

Π and for every ǫ > 0 there exists a δ < ǫ, c1, c2 > 0, β < ǫ2/2 and Fn such that

(i) Π(F c
n) < c1e

−nc2,

(ii) J(δ,Fn) < nβ, where J(δ,Fn) is the logarithm of the minimal number of balls

of radius δ in the total variation metric needed to cover the Fn.

Then the posterior is consistent in the total variation distance.

Because our regression method is based on the estimation of the underlying mixing

distribution which is an inverse problem, establishing consistency seems to be difficult

at present. In this thesis, we have not attempted to prove consistency explicitly, but

we do give some useful asymptotic results which indicate the plausibility of consis-

tency of our procedure. Moreover, Ghosal and van der Vaart (2001)’s result on the

convergence rate of the Dirichlet mixture of normal model imply that the problem is

nearly parametric, and therefore a fast convergence rate of our method is expected.
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Chapter 4

Dirichlet Mixture Regression

In this chapter we show how to implement our proposed method to estimate the

regression function under the mixture structure. It includes the specification of up-

dating scheme of posterior using Gibbs sampling method and updating corresponding

of hyperparameters. However, we do not actually update the hyperparameters; rather

we replace by the empirical estimates. We do this to minimize computational com-

plexity. Some theoretical results based on certain well known theorems about the

Dirichlet mixture model will also be presented along the sequel.

4.1 Estimation via MCMC sampling

Suppose that we have the following model.

Xi|θi
ind
∼ N(θi,Σ), i = 1, . . . , n

θi|G
iid
∼ G,
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G ∼ DP (M,G0), (4.1)

where G0(θ) = φ(θ; m,Φ) is a p.d.f. of multivariate normal distribution with mean

vector m and covariance matrix Φ.

Note here, the center measure is considered to have hyperparameters m and Φ.

In this way we can expect a more flexible model compared to using a fixed center

measure. The p−variate case is considered here since it includes the univariate case.

Then,

θi|θ−i,X ∼ q0,iGi(θi) +
∑

qj,iδθj
(θi), (4.2)

where

qj,i ∝ φ(Xi; θi,Σ),

q0,i ∝M

∫
φ(Xi; θi,Σ)dG0(θ),

∑

j 6=i

qj,i + q0,i = 1,

and Gi(θi) is the posterior distribution of θi given Xi with the prior G0(θi) and the

likelihood N(θi,Σ). That is,

dGi(θi) ∝ φ(θi; Xi,Σ)φ(θi; m,Φ).

There is also another equivalent form of (4.2).

θi|θ−i,X ∼ q0,iGi(θi) +
∑

φk∈φ−i

n−i,kqk,iδφk
(θi).

Given the assumptions in (4.1), the distribution of si given s−i, θ
∗
−i and X is the

following:
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Let θ∗ be the vector of the distict value of θ. For j = 1, . . . , k−i,

P (si = j|s−i, θ
∗
−i,X) ∝ n−i,jφ(Xi; θ

∗
j ,Σ),

P (si = k−i + 1|s−i, θ
∗
−i,X) ∝ M

∫
φ(Xi; θ

∗,Σ)dG0(θ
∗). (4.3)

Since it is useful to consider only the update of s rather than s and θ∗ both, we

can integrate out θ∗j from the above theorem.

Algorithm (3)

Given the assumptions in (4.1), the distribution of si given s−i and X is the following:

For j = 1, . . . , k−i,

P (si = j|s−i,X) ∝ n−i,j

∫
φ(Xi; θ

∗,Σ)dH−i,j(θ
∗),

P (si = k−i + 1|s−i,X) ∝ M

∫
φ(Xi; θ

∗,Σ)dG0(θ
∗)

∝ Mφ(Xi; m,Σ + Φ), (4.4)

where H−i,j is the posterior distribution based on the prior G0 and all observations

Xl for which l ∈ Ij and l 6= i. That is,

dH−i,j(φ) =
1

Ci,j

[ ∏

l∈Ij ,l 6=i

φ(Xl; θ
∗,Σ)

]
dG0(θ

∗),

where Ci,j is the normalizing constant.

Note that here, the above formula can be simplified by using certain updating

equation. The first quantity can be expressed as the following:

∫
φ(Xi; θ

∗,Σ)dH−i,j(θ
∗) =

∫
φ(Xi; θ

∗,Σ)
[∏

l∈Ij ,l 6=i φ(Xl; θ
∗,Σ)

]
φ(θ∗; m,Φ)dθ∗

∫ [ ∏
l∈Ij ,l 6=i φ(Xl; θ∗,Σ)

]
φ(θ∗; m,Φ)dθ∗

.

(4.5)
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The only difference between the numerator and denominator is in the term φ(Xi; θ
∗
j ,Σ)

which is additional in the numerator. When we add or delete one datum from the

original, we can easily update the sample mean and sample variance without recom-

puting the same for the whole data except the deleted observation. This should be

helpful in calculating above ratio of two integrals. The result is again the ratio of two

normal p.d.f.’s which is multiplied with another normal p.d.f. The equation of (4.5)

can be written as

n−i,j

n−i,j + 1
φ(Xi; X+i,j,

n−i,j

n−i,j + 1
Σ) ×

φ(m; X+i,j,
1

n−i,j+1
Σ + Φ)

φ(m; X−i,j,
1

n−i,j
Σ + Φ)

, (4.6)

where X−i,j = 1
n−i,j

∑
l∈Ij ,l 6=i Xl and X+i,j = 1

n−i,j+1

( ∑
l∈Ij ,l 6=i Xl + Xi

)
.

4.1.1 Estimation of Σ and m,Φ

We assumed that Σ is the same with all Xi, but the more general setting is

possible as the following.

Xi|θi
ind
∼ N(θi,Σi), i = 1, . . . , n, (4.7)

θi|G
iid
∼ G,

G ∼ DP (M,G0).

In this case, G0 a distribution of two variables, θi and Σi. The rest of the procedure

is straightforward. By obtaining the full conditional distributions of θi and Σi, the

posterior can be sampled from. Moreover, some prior for (m,Φ), may be considered

so that the fully Bayesian hierarchical inference is possible.

39



However, we can make it simpler so that the computing time can be substantially

reduced. Instead of updating the hyperparameters (m,Φ), we may replace them by

their respective estimators:

m̂ = X,

Φ̂ =
1

n

n∑

i=1

(X i − X)(X i − X)T − Σ̂.

Also, it is necessary to estimate Σ.

Σ̂ =
1

n

k∑

j=1

∑

l∈Ij

(X l − Xj)(X l − Xj)
T ,

where Xj = 1
nj

∑
l∈Ij

X l. The estimator Φ̂ is a positive definite matrix because

Φ̂ =
1

n

n∑

i=1

(X i − X)(X i − X)T −
1

n

k∑

j=1

∑

l∈Ij

(X l − Xj)(X l − Xj)
T

=
1

n

k∑

j=1

∑

l∈Ij

[
(X l − X)(X l − X)T − (X l − Xj)(X l − Xj)

T
]

=
1

n

k∑

j=1

nj(Xj − X)(Xj − X)T . (4.8)

The last term in (4.8) is essentially the standard estimator of covariance matrix in

jth group, so it is a positive definite matrix provided that nj > 1. This assures that

our estimator Φ̂ is a positive definite estimator.

4.1.2 The procedure of the estimation of E(Y |X)

We assumed that X observations are generated from several clusters and the

cluster labels are not observable.

X|J = j ∼ N(θj,Σ), j = 1, . . . , k,
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where J is a latent variable which indicates the group membership. We assume that

there are k distinct groups,

Note that here, X is a p-variate vector and Σ is p× p variance-covariance matrix.

Within a specific group, the unknown mean function can be obtained,

Y |X = x, J = j ∼ N(fj(x), T
2), j = 1, . . . , k.

By the Bayes rule, we have,

P (J = j|X = x) = πj(x) =
πjφΣ(x− θj)∑K

l=1 πlφΣ(x− θl)
, (4.9)

where πj is the prior distribution and φΣ(·) is a multivariate normal p.d.f. with mean

vector zero and variance-covariance matrix Σ. Then eliminating J , we obtain

E(Y |X = x) =
k∑

j=1

E(Y |X = x, J = j) × P (J = j|X = x) =
k∑

j=1

fj(x)πj(x). (4.10)

Now, the suggested procedure to estimate mean function E(Y |X = x) is the following.

(DP method - Ave)

• Step 1: Find the clustering only for X by using the Dirichlet mixture process

prior in MCMC sampling.

• Step 2: Suppose we have s(t), the configuration vector, t = 1, . . . , N , in the tth

MCMC step. Then we can fit the regression function within each group. Simple

linear regression, the LASSO method or polynomial regression with quadratic

or cubic may be considered. Let us say there are k̂(t) clusters. Then

f̂ (t)(x) =

bk(t)∑

j=1

π̂j(x)f̂j(x), (4.11)
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where π̂j(x) ∝
n

(t)
j

n
φbΣ(x − φ̂j), φ̂j = 1

n
(t)
j

∑
l∈I

(t)
j

Xl, and f̂j is the estimated

regression function in the jth cluster.

• Step 3: Average out for all f̂ (t)(x), t = 1, . . . , N ,

f̂(x) =
1

N

N∑

t=1

f̂ (t)(x).

(DP method - Most likely)

Instead of averaging out regression fitted function with some weight as in (4.11),

we may also consider the value of f̂j(x) corresponding to the j for which π̂j(x)

is highest. This is also implemented in our simulations. We call it the “Most

likely” method.

• Step 1: Find the clustering only for X by using DP prior in MCMC sampling.

• Step 2: Suppose we have s(t), the configuration vector, t = 1, . . . , N , in the tth

MCMC step. Then we can fit the regression function within each group. Then

f̂ (t)(x) = f̂j∗(t)(x),

where j∗(t) is the index which indicate group with the highest probability attain,

given x, that is, j∗(t) = argmaxj πj(x). Note that j∗(t) could have values

{1, 2, . . . , k̂(t)}.

• Step 3: Average out for all f̂ (t)(x), t = 1, . . . , N ,

f̂(x) =
1

N

N∑

t=1

f̂ (t)(x).
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4.1.3 Merging clusters

During the MCMC procedure, it may happen that some clusters contain only a

few data points. Fitting the regression function in that cluster may be problematic.

For example, there needs to be at least two points to fit the regression line in the

univariate case. For higher dimensional cases, the problem could be more prominent.

We suggest merging some clusters to a new cluster to avoid problems of small clusters.

Suppose we have k clusters, I1, . . . , Ik where

Ij = {i : si = j, i = 1, . . . , n}.

Now, check whether |Ij| ≥ c for all j = 1, . . . , k, where c is a fixed constant and |Ij| is

the number of elements in cluster Ij. If the condition holds, go to the next step in our

procedure. If not, find j∗ such that |Ij∗| = minj |Ij|. Then for all si ∈ Ij∗ rearrange

si = l, l 6= j∗,

with the probability

P (si = l|X) = πl(Xi) (see the equation (4.9)).

Repeat this until above condition is satisfied.

4.2 Confidence band for regression function

In this section, we discuss a method of constructing a confidence band for a regres-

sion function. This band enables us to see the region in which the entire regression
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function lies. Confidence limits in the standard regression problem is well-known.

But, the difficulty in our model arises because the clusters are unknown.

Let x be a fixed point in the space of the regressor. Suppose we know 100(1−α0)%

confidence limits for a single mean response as Lj, Uj within cluster j = 1, . . . , k, where

Lj is the lower limit and Uj is the upper limit. Thus

P (Lj ≤ E(Y |X = x) ≤ Uj|J = j) = 1 − α0. (4.12)

Our goal is to find 100(1 − α)% the confidence limit L and U such that

P (L ≤ E(Y |X = x) ≤ U) ≥ 1 − α. (4.13)

We claim that if L is a γ

2
quantile of L1, . . . , Lk and U is a 1− γ

2
quantile of U1, . . . , Uk,

respectively, where γ = α− α0 and the probabilities are π1(x), . . . , πk(x), then above

inequality (4.13) holds. Note that,

P (E(Y |X = x) ≤ L) =
k∑

j=1

P (E(Y |X = x) ≤ L|J = j)P (J = j)

=
∑

{j:Lj≤L}

P (E(Y |X = x) ≤ L|J = j)P (J = j)

+
∑

{j:Lj>L}

P (E(Y |X = x) ≤ L|J = j)P (J = j)

≤ 1 ·
∑

{j:Lj≤L}

P (J = j) +
α0

2

∑

{j:Lj>L}

P (J = j)

≤
γ

2
+
α0

2
. (4.14)

Similarly we can get, P (E(Y |X) ≥ U) ≤ γ

2
+ α0

2
. Therefore, by letting α = α0 + γ,

we can get the inequality (4.13). This is a somewhat conservative confidence region.

Within each group we choose 1 − α0 confidence limit. Then our actual confidence

band for the regression function is selected by the γ

2
quantiles of the confidence limits
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along the groups. For example, let γ is given 0.025 and α0 = 0.025. Therefore if we

want to find 95% confidence band, in each group at given MCMC step it is needed

to obtain 97.5% confidence limits.

4.3 Theoretical Results

In this section we show weak posterior consistency for estimating the mixture

density by generalizing the work of Ghosal et al. (1999) to the multivariate case.

Suppose we have a Dirichlet mixture model as (4.1) where Σ = σ2Ip. The sample, Xi

is a p-variate vector and the p.d.f. of Xi is given as

fσ,P (x) =

∫
N(x; θ, σ2)dP (θ). (4.15)

Note that this is the convolution φΣ ∗ P . The prior for (σ, P ) is denoted by µ× Π.

Theorem 3 Let f0 be the true density of the form

f0(x) = fσ0,P0(x) =

∫
φΣ0(x− θ)dP0(θ),

where x, θ are p-variate vector and Σ0 = σ2
0Ip. If P0 is compactly supported and

belongs to the support of Π and σ0 is in the support of µ, then Π(Kε(f0)) > 0 for all

ε > 0.

Proof. The true P0 is a finite discrete distribution so we can assume that P0(A) = 1

where A = [−a, a] × · · · × [−a, a]. Since P0 is in the weak support of Π then, Π{P :

P (A) > 1
2
} > 0.
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We want to show that

Π
{
f :

∫
f0 log

(fΣ0,P0

fΣ,P

)
< ε

}
> 0. (4.16)

We may split the expression in (4.16) into two parts.

∫
f0 log

(fΣ0,P0

fΣ,P

)
=

∫
f0 log

(fΣ0,P0

fΣ,P0

)
+

∫
f0 log

(fΣ,P0

fΣ,P

)
. (4.17)

First, we show that the second term on the right hand side of (4.17) is less than ε
2

with positive prior probability.

We need to divide the space R
p into 3p pieces. Each part can be classified by three

types.

B1 =

p∏

i=1

[−b, b], B2 =

p∏

i=1

((−∞,−b) ∪ (b,∞)), B3 = (B1 ∪B2)
c,

where b is chosen by the following. For η > 0, choose b such that

∫

x∈Bc
1

max(1,

p∑

i=1

|xi|,

p∑

i=1

x2
i )f0(x)dx1 · · · dxp < η.

Now,

∫

Rp

f0(x) log(
fΣ,P0(x)

fΣ,P (x)
)dx =

∫

B1

f0(x) log
(fΣ,P0(x)

fΣ,P (x)

)
dx

+

∫

Bc
1

f0(x) log
(fΣ,P0(x)

fΣ,P (x)

)
dx,

(4.18)
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∫

Bc
1

f0(x) log
(fΣ,P0(x)

fΣ,P (x)

)
dx ≤

∫

Bc
1

f0(x) log
(∫

A
φΣ(x− θ)dP0(θ)∫

A
φΣ(x− θ)dP (θ)

)
dx

=

∫

B2

f0(x) log
(∫

A
φΣ(x− θ)dP0(θ)∫

A
φΣ(x− θ)dP (θ)

)

+

∫

B3

f0(x)
(∫

A
φΣ(x− θ)dP0(θ)∫

A
φΣ(x− θ)dP (θ)

)
dx

≤

∫

B2

f0(x) log
( φΣ(x+ a)

φΣ(x− a)P (A)

)
dx

+

∫

B3

f0(x)
(∫

A
φΣ(x− θ)dP0(θ)∫

A
φΣ(x− θ)dP (θ)

)
dx

<
(
C1

1

σ2
+ C2

2a

σ2
+ log 2

)
η, (4.19)

provided that P (A) > 1
2

and C1, C2 are the fixed constants depending only p.

To assist understanding the above inequality (4.19), it is helpful to consider the

R
2 case as an example. We have the partition of R

2 as shown in Figure 4.1. In Figure

4.1, B2 is the region (1) and B3 is the region (2). First, consider the left bottom

region (−∞,−b) × (−∞,−b) in B2, then it is easy to show that in region B2 the

following inequality holds.

log
(∫

A
φΣ(x− θ)dP0(θ)∫

A
φΣ(x− θ)dP (θ)

)
≤ log

( φσ(x1 + a)φσ(x2 + a)

φσ(x1 − a)φσ(x2 − a)P (A)

)

≤
2a

σ2
(|x1| + |x2|) + log 2. (4.20)

Similarly in all regions (1), above inequality (4.20) holds except changing signs in a.

Now, consider B3, region (2) in Figure 4.1. Suppose (x1, x2) is given in the middle

bottom part, [−b, b] × (−∞,−b), then also it can be shown by

log
(∫

A
φΣ(x− θ)dP0(θ)∫

A
φΣ(x− θ)dP (θ)

)
≤ log

( φσ(0)

φσ(a+ b)

φσ(x2 + a)

φσ(x2 − a)P (A)

)

≤
b2

σ2
+

2a|x2|

σ2
+ log 2. (4.21)

47



(1)

(1)

(1)

(1)

(2)

(2)

(2)

(2)(3)−b

−b−b

b

b

Figure 4.1: The partition of two dimensional space into 9(= 32) pieces.

Note that,

b2
∫ b

−b

∫ −b

−∞

f0(x)dx2dx1 ≤

∫ b

−b

∫ −b

−∞

x2
2f0(x)dx2dx1.

In a similar way we can show that in all regions Bc
1 = B2∪B3, either inequality (4.20)

or (4.21) holds. Therefore, in region Bc
1 the inequality (4.19) holds in two dimensional

problem.

If we consider the compact set of B1 then, φΣ(x − θ) is bounded below for all

θ ∈ R
p, so we can get

c = inf
|x|∈B1

inf
θ∈Rp

φΣ(x− θ). (4.22)

Note here c > 0.

The family of functions {φΣ(x − θ) : x ∈ B1} viewed as a set of functions of

θ ∈ R
p, is uniformly equicontinuous. By the Arzela-Ascoli theorem, given any δ > 0,

there exist finitely many points x(1), . . . , x(m) such that for any x ∈ B1, there exists
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an i with

sup
θ∈Rp

|φΣ(x− θ) − φΣ(x(i) − θ)| < c · δ. (4.23)

Let

N(P0) =
{
P :

∣∣∣
∫
φΣ(x− θ)dP0(θ) −

∫
φΣ(x(i) − θ)dP (θ)

∣∣∣ < cδ, i = 1, . . . ,m
}
.

Then N(P0) is a weak neighborhood of P0, Π(Bp) > 0.

Let P ∈ N(P0). Then for any x ∈ B1, by choosing an appropriate x(i) from (4.23)

and using a simple triangulation argument, we get

∣∣∣
∫
φΣ(x− θ)dP0(θ) −

∫
φΣ(x− θ)dP (θ)

∣∣∣ < 3cδ,

and
∫
φΣ(x− θ)dP0(θ) > c · P0(A) = c. Therefore,

∣∣∣
∫
φΣ(x− θ)dP (θ)∫
φΣ(x− θ)dP0(θ)

− 1
∣∣∣ <

3cδ

c
= 3δ.

By the fact that if |x− 1| < ǫ then | 1
x
− 1| < ǫ

1−ǫ
where x > 0, we have that

∣∣∣
∫
φΣ(x− θ)dP0(θ)∫
φΣ(x− θ)dP (θ)

− 1
∣∣∣ <

3δ

1 − 3δ
.

Then,

∫

B1

f0(x) log
(fΣ,P0(x)

fΣ,P (x)

)
<

∫

B1

f0(x)
∣∣∣
∫
φΣ(x− θ)dP0(θ)∫
φΣ(x− θ)dP (θ)

− 1
∣∣∣ <

3δ

1 − 3δ
, (4.24)

since log(x) < log(1 + |x− 1|) < |x− 1| for any x > 0.

Now, from (4.18), the second term can be expressed as

∫
f0(x) log

(fΣ,P0(x)

fΣ,P (x)

)
< (3p − 1)

(2a

σ2
+ log 2

)
η +

3δ

1 − 3δ
. (4.25)
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The first term in (4.18) decreases to 0 as Σ → Σ0 (i.e. σ → σ0) because of the

following. ∫
φΣ0(x− θ)dP0(θ)∫
φΣ(x− θ)dP0(θ)

< sup
θ∈Rp

φΣ0(x− θ)

φΣ(x− θ)
.

Since σ0 is in the support of µ, for given any ǫ > 0, choose a neighborhood N(σ0) of

σ0 such that if σ ∈ N(σ0), the first term on the right hand side of (4.18) is less than

ǫ
2
. Then, choose η and δ so that for any σ ∈ N , the right hand side of (4.25) is less

than ǫ
2
.

�

In order to prove the strong consistency, we need to apply Theorem 2 in Chapter 3

to the DM problem. There is the result in univariate case by Ghosal et al (1999),

but the proof in multivariate case seems to be difficult at present. The difficulty lies

in the estimate of entropy using their method. A more refined entropy estimate is

expected to resolve the problem. If the support of base measure of Dirichlet process

is a compact set the proof can be easily done along the extension of Theorem 7 in

Ghosal et al (1999). In this case, the space of densities is compact with respect to

L1. Thus L1 topology is equivalent to the weak topology. Arguably, the assumption

of compact support is restrictive and in particular does not apply to the conjugate

normal base measure.

Although we can not complete the verification of strong consistency of the DM in

multivariate case, it is worth mentioning some results. Suppose we assume that fn

converges to f in L1 sense. Then, by the well-known fact, it is true Pn
w
→ P . Thus

total variation convergence of densities implies weak convergence of mixing measures.
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From now on we discuss the property of the number of mixture in our problem.

According to Donoho (1988) it can be asserted that the k normal mixtures can not

be approximated by less number of k mixture of normal. He considered the number

of mixture complexity K(F ) is an integer-valued functional and it is only possible to

make a one-sided nonparametric confidence statement.

Donoho (1988) showed that certain functionals, for example K(F ) and the num-

ber of modes of a density, are norm semi-continuous. For such functionals it is not

possible to make two-sided nonparametric confidence statement but one-sided state-

ment is possible. Using Dirichlet mixture in finding appropriate clusters will give

us asymptotically at least the larger number of clusters than the true number of

mixtures.

Definition 6 The functional J is said to be norm lower semi-continuous if for every

sequence Fn of distributions satisfying ‖Fn − F‖ → 0, we have

lim inf
n→∞

J(Fn) ≥ J(F ),

where ‖ · ‖ is the Kolmogorov-Smirnov norm defined by

‖F −G‖ = sup
t

|F (t) −G(t)|.

Let {Gθ; θ ∈ Θ} be a parameterized family of distributions and let K(F ) be the

mixture complexity of F , that is the least number of components necessary to exactly

represent F . Formally,

K(F ) = inf{k : F =
k∑

i=1

βiGθi
},

where
∑
βi = 1, βi ≥ 0 for all i.
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Lemma 1 [Donoho (1988)] The functional K(F ) is norm lower semicontinuous.

The essential assumption of above result is that there exists a sequence Fn converg-

ing to F in Kolmogorov-Smirnov distance. Suppose under that assumption, we are

in a certain MCMC step and we have the estimate of the number of clusters k̂. Then

the event that k̂ is greater than or equal to the true number k0 has high probability

in an asymptotic sense. In fact, if there are more groups than the true one then the

fitting within those groups does harm only with a higher variance. The number of ob-

servations falling in the true groups tends to infinity as the corresponding probability

is positive. Thus the regression function within each group is consistently estimable

provided that misclassification effects are small. On the other hand, merging two

or more genuine groups by error introduces serious bias and hence underestimation

of the true number of clusters is more harmful. In Figure 4.2 it is obvious that the

mixture of three normals can approximate well if the true distribution is the mixture

of two normals. But, the converse does not work well.

Further, since there are only finitely many groups, the number of observations cor-

responding to each group simultaneously go to infinity at the same rate of n no matter

what the dimension p is. Thus our method clearly avoids curse of dimensionality. In

this way we can hope that our estimator f̂(x) has good asymptotic properties. Unfor-

tunately Donoho’s lower semi-continuity has been proved only under norm topology

result, not in the weak sense. Moreover, we have not shown that effect of misgrouping

is negligible. Therefore, we can not directly apply his result to our DM problem. We

like to address this issue in the future work.
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Figure 4.2: The plot of two and three mixture of normals.
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Chapter 5

Simulation study and Applications

In this chapter we do several simulations to evaluate the performance of our

method. First, data are generated from a mixture of normal distributions in the

univariate and the multivariate case, and in different groups different regression func-

tions are given with several parameters. We proceed to estimate the fitted regression

function using our proposed method and also some other methods such as kernel and

spline smoothing in the univariate case and MARS and GAM in the multivariate

case. We compare the empirical L1-error and L2-error between estimates and the

true regression function,

L1E(f̂) =
1

n

n∑

i=1

∣∣∣f̂(xi) − f(xi)
∣∣∣, (5.1)

L2E(f̂) =
( 1

n

n∑

i=1

(
f̂(xi) − f(xi)

)2) 1
2
.

Comparing the result to other methods will show the strength and weakness of our

proposed method. Simulation studies are conducted under several different combina-

tions of the true model and different sample sizes. To see how accurate the clustering
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is, we use the measure of similarity which we call Rand’s measure; see Section 3.2.

We also apply our method to the challenging large p, small n problem. A simple

simulation work is conducted by showing how it works. Some real data examples in-

cluding microarray data for large p, small n problem are given in this chapter. All of

simulation work is done by the program R (version 2.0.1.), a statistical programming

language.

5.1 One dimension

To give a simple example we consider a univariate predictorX having the following

distribution.

X ∼ 0.3N(−0.9, σ2) + 0.2N(−0.3, σ2) + 0.4N(0.4, σ2) + 0.1N(1.0, σ2),

where σ2 = 0.01, 0.02, 0.03, 0.04 are considered.

First generate 100 samples of X from above mixture of normals. And for gener-

ating Y four linear functions with different coefficients are given within each group.

f1(x) = 2.3 + 1.1x, f2(x) = 1.5 − 0.6x,

f3(x) = 0.8 + 0.9x, f4(x) = 1.7 − 0.2x,

with an additive noise term having mean 0 and variance T 2 = 0.03.

In the MCMC sampling step, we generate 5000 samples and ignore 1000 as a burn-

in period. For appropriate selection of burn-in period, the trace plot of the number

of distinct clusters was used. This simulation work is repeated 100 times and for one
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Figure 5.1: (One dimension) : The plots of data and fitted regression function with
σ2 = 0.03 and T 2 = 0.03. The solid line is the true mean function and dotted line is
fitted line using DM-AVE. 95% confidence band is calculated as given in Section 4.2.
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simulation it takes about 5 minutes. To compare with other classical methods, kernel

method and spline smoothing are considered. We use the criterion of the empirical

L1-error and L2-error. Rand’s measure defined in Section 3.2 is computed at each

MCMC steps. Since the appropriate cluster selection is crucial to our method, Rand’s

measure is monitored and the average value is given. Also the number of clusters in

MCMC steps k̂(t) is also obtained.

In Figure 5.2, our two suggested methods are considered. We have four different

σ2 values. The results are exactly same in this case except a few values so we only

present one method, “DM-AVE”. Figure 5.3 is the result for three methods including

our method.

For kernel estimation, we used normal kernel regression estimate. This method

was already implemented in R (version 2.0.1) program with package “KernSmooth”

and function name is “ksmooth”. There are a lot of bandwidth selection methods

such as the ‘plug-in bandwidth selection’ suggested by Sheather and Jones (1991)

and described in detail in Section 3.6 of Wand and Jones (1995). This can also be

found in the package “KernSmooth” and “dpik” function. We measure the empirical

L2-error and L1-error. It shows that our method has good performance for all the cases

we investigated. The larger value of σ2 means that each group are overlapped more

than the small value case. Rand’s measure decreases as σ2 increases. This is expected

because if some of clusters are severely overlapped, it is hard to determine the correct

cluster. For the choice of σ2, it is selected in the moderate level of overlapping data

excluding two extreme cases. One is that there is only one cluster. The other is that

the cluster is obvious to separate.
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Figure 5.2: (One dimension) : The plots of L1-error with two Dirichlet mixture
methods, “DM-AVE” and “DM-Most likely”. Four different σ2 are considered and
the measures of similarity on average are 0.94, 0.87, 0.83 and 0.81, respectively.
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Figure 5.3: (One dimension) : The plots of L2-error. Rand’s measures on average are
0.94, 0.87, 0.83 and 0.81, respectively.
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To compare above methods we use paired t-test. The result shows that DM-AVE

is better than DM-ML in all cases.

σ2 0.01 0.02 0.03 0.04
DM-AVE vs DM-ML < 0.01 < 0.01 < 0.01 < 0.01
DM-AVE vs kernel < 0.01 < 0.01 0.02 0.88
DM-AVE vs spline < 0.01 < 0.01 < 0.01 0.89

Table 5.1: The P-values from the paired t-test for the performances. The first row
shows our suggested two method, DM-AVE and DM-ML are very similar to each
other. The null hypothesis in the second row is that two means of L2-error of kernel
and DM-AVE methods are same. The third row is the result of spline smoothing and
DM-AVE.

From Table 5.1, we can assure that in three cases, σ2 = 0.01, 0.02, 0.03 with 95%

significant level, the mean of DM-AVE method has average error smaller than other

two methods. For the largest σ2 value, we can not say that there exists significant

difference among those methods.

The distribution of the number of clusters is given in Figure 5.4. As we mentioned

that the estimated number of cluster tends to be greater than the true number as-

ymptotically. We observe that all the values are greater than four, the true number

of clusters. According to the plots in Figure 5.4, the larger σ2 is, the less the number

of clusters is. This can be investigated in higher dimension cases. We need to be

careful in the interpretation of the number of clusters obtained from MCMC steps

because it is not an estimate of the true number of clusters.

Let us consider the case that the true regression function is not linear. In the

previous simulation, we assumed that the true regression function has the linear

form and we used the linear regression method. But, here we want to look at the

performance under misspecified models. Suppose X is generated by the following
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Figure 5.4: (One dimension) : The plots of the distribution of k

distribution

X ∼ 0.3N(−1.9, σ2) + 0.3N(−0.3, σ2) + 0.4N(1.4, σ2),

where σ2 = 0.01, 0.02, 0.03, 0.04 are considered. The regression function in each clus-

ter is given by

f1(x) = 0.3 + 0.3 sin(2πx), f2(x) = 1.2 − 0.6 sin(2πx),

f3(x) = 0.5 + 0.9 sin(2πx).

Note here that we have three clusters in this case. Other settings such as 5000 MCMC

samples used and the number of repetition are same to previous ones. In this case,

we use the cubic regression as well as the linear regression. Figure 5.5 tells us that

the cubic regression performs better than the linear regression method and other
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methods. Table 5.2 shows that DM-AVE method is better than kernel methods. The

spline method seems to be best.
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Figure 5.5: (One dimension) : The case where the true model is not linear. The plots
of L1-error are shown. Rand’s measures are 0.97, 0.96, 0.95 and 0.94, respectively.
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σ2 0.01 0.02 0.03 0.04
DM-AVE(C) vs DM-ML(C) 0.99 0.98 1.00 0.97

DM-AVE(C) vs kernel < 0.01 < 0.01 < 0.01 < 0.01
DM-AVE(C) vs spline 0.90 1.00 1.00 1.00

Table 5.2: The P-values from the paired t-test for the performances under misspeci-
fication. In our methods, DM-AVE and DM-ML, the cubic regression was used. The
first row shows our suggested two method, DM-AVE and DM-ML are very similar
to each other. The null hypothesis in the second row is that two means of L1-error
of kernel and DM-AVE methods are same. The third row is the result of spline
smoothing and DM-AVE.

5.2 Two dimension

We first consider the two dimensional case, which is the simplest multivariate

problem. Here, X is distributed as a mixture of bivariate normal. We set up our

conditions very similar to the univariate case.

X ∼ 0.3N2

((
1

1

)
,Σ

)
+ 0.2N2

((
2

5

)
,Σ

)
+ 0.4N2

((
4

0.5

)
,Σ

)
+ 0.1N2

((
5

3

)
,Σ

)

E(Y |X, J = j) = fj(X), for j = 1, 2, 3, 4,

where

f1(X) = 2.3 + 1.1X1 − 2X2, f2(X) = 1.5 − 0.6X1 + 1.2X2,

f3(X) = 0.8 + 0.9X1 − 1.1X2, f4(X) = 1.7 − 0.2X1 + 1.2X2,

and Σ = σ2I2, σ
2 = 0.2, 0.4, 0.6, 0.8, 1.0.

Figure 5.6 is the data plot of X. The true number of clusters is four and those

clusters are overlapped with each other. By the fact that σ2 value determines how

much the clusters are overlapped, we consider moderate values of σ2. The extreme

two cases are not of our interest. The variance, T 2 is still the same as the previous

one, 0.1. Figure 5.6 shows four clusters are overlapped with each other.
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Figure 5.6: (Two dimension): data plot and Rand’s measure with σ2 = 0.8.

In MCMC sampling step, we generate 5000 samples and ignore 1000 as a burn-

in period. To compare other methods such as GAM and MARS, we consider the

L2-error. To allow certain flexibility, we set the degree of interaction to two, which

means that it allows interaction between two variables.

σ2 GAM MARS DM-ML
0.2 < 0.01 < 0.01 0.78
0.4 < 0.01 < 0.01 1.00
0.6 < 0.01 < 0.21 0.99
0.8 < 0.01 0.01 1.00
1.0 < 0.01 0.29 1.00

Table 5.3: P-values from the paired t-test for the performances. At each row, different
five σ2 values are used. At each time, the comparison of DM-AVE and other three
methods is conducted. In all cases, L1-error was calculated and compared.

Table 5.3 gives the P-values of the comparison of the L1-errors between GAM,
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Figure 5.7: (Two dimension) : The plots of the L2-error.
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MARS, DM-ML and DM-AVE. The alternative hypothesis is that the mean L1-error

of DM-AVE is less than others. Therefore, with 95% confidence level we can say

DM-AVE has lower L1-error than GAM and MARS except in the σ2 = 1.0 case.

Again, there is no significant difference between DM-AVE and DM-ML. It is worth

mentioning that we also calculated L2-error and the result is very similar with L1-error

case.

5.3 Higher dimension

We consider the case when the predictor X has 10 variables and distributed as a

mixture of four multivariate normal:

X ∼

4∑

j=1

ωjN10

(
µj,Σ

)
,

E(Y |X, J = j) = fj(X1, . . . , X10), for j = 1, 2, 3, 4.

We let Σ = σ2I10, σ
2 = 0.2, 0.3, 0.4, 0.5 and T 2 = 0.1. The four mean vector mj is

chosen as the following:

µ1 = (1, 1, 1, 1, 2, 4, 2, 4, 4, 0.5)T , µ2 = (4, 0.5, 5, 3, 5, 3, 1, 1, 1, 1)T ,

µ3 = (2, 5, 2, 5, 4, 0.5, 4, 0.5, 5, 3)T , µ4 = (5, 3, 1, 1, 1, 1, 2, 5, 2, 5)T .

Let the weights be ω = (0.3, 0.2, 0.4, 0.1). We generated 200 sample data from the

following formula:

fj(x) = αj + βT
j x, j = 1, . . . , 4,

where (α1, . . . , α4) = (2.3, 1.5, 0.8, 1.7) and βj’s are the vectors of length 10 given by
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σ2 0.2 0.3 0.4 0.5
β (1) (2) (3) (4)
β∗ (5) (6) (7) (8)

β∗, optimal for LASSO s (9) (10) (11) (12)

Table 5.4: (Ten dimension): The number represents the simulation sequence. s is the
tuning parameter in the LASSO regression scaled 0 to 1.

the following:

β1 = (1.1,−2, 1.1,−2,−0.6, 1.2,−0.6, 1.2, 0.9,−1.1)T ,

β2 = (0.9,−1.1,−0.2, 1.2,−0.2, 1.2, 1.1,−2, 1.1,−2)T ,

β3 = (−0.6, 1.2,−0.6, 1.2, 0.9,−1.1, 0.9,−1.1,−0.2, 1.2)T ,

β4 = (−0.2, 1.2, 1.1,−2, 1.1,−2,−0.6, 1.2,−0.6, 1.2)T . (5.2)

We consider another simulation when βj’s are the same except that the last four

components are replaced by zero. Let us call these β∗
j for j = 1, . . . , 4.

β∗
1 = (1.1,−2, 1.1,−2,−0.6, 1.2, 0, 0, 0, 0)T ,

β∗
2 = (0.9,−1.1,−0.2, 1.2,−0.2, 1.2, 0, 0, 0, 0)T ,

β∗
3 = (−0.6, 1.2,−0.6, 1.2, 0.9,−1.1, 0, 0, 0, 0)T ,

β∗
4 = (−0.2, 1.2, 1.1,−2, 1.1,−2, 0, 0, 0, 0)T . (5.3)

The simulation sequences are given in Table 5.4. We consider four different σ2’s and

two models such as full β are given as in (5.2) or β∗ where some of coefficients are

zero. We consider the LASSO regression method with a given tuning parameter s or

optimally selected based on the observations. Two fixed numbers for s, 0.5 and 0.7

are considered and the optimal value is chosen by using CV method.

In the MCMC sampling scheme, we generate 5000 samples after ignoring first
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σ2 0.2 0.3 0.4 0.5
vs GAM < 0.01 < 0.01 0.02 0.94
vs MARS < 0.01 < 0.01 < 0.01 0.66

Table 5.5: P-values from the paired t-test for the performances. The alternative
hypothesis in the first row is that the mean of L1-error of GAM is greater than that
of DM-AVE method. The second row is the result of MARS versus DM-AVE.

σ2 0.2 0.3 0.4 0.5
vs GAM < 0.01 < 0.01 < 0.01 0.12
vs MARS < 0.01 < 0.01 < 0.01 0.01

Table 5.6: P-values from the paired median test for the performances. The alternative
hypothesis in the first row is that the median of L1-error of GAM is greater than that
of DM-AVE method. The second row is the result of MARS versus DM-AVE.

1000 as burn-in. Figure 5.8 shows that our method is still best in the first top panel

among all others. Note that the LASSO regression method is used in DM-AVE. In

other panels, the difference between DM and other two methods is smaller. In order

to make a statistical decision, paired t-test is used again. Table 5.5 shows that in

the cases with σ2 = 0.2, 0.3, 0.4, our DM-AVE method outperforms other methods.

However there is some evidence that the distribution of the mean of L1-error is not

distributed normally. Thus the nonparametric test, Wilcoxon’s rank test will be used

to test the median of the L1-errors. According to Table 5.6, DM-AVE method is

better than two other methods for almost all the four cases.

We consider sparse model, that is, there are some zero coefficients. In Figure

5.9 the result is very similar to previous ones. But, if we compare the P-value from

paired t-test, Table 5.7 shows that the difference between DM method and other two

method is greater than before. This can be explained by the fact that LASSO is an
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effective method under the sparse model.

σ2 0.2 0.3 0.4 0.5
DM-AVE vs GAM < 0.01 0.28 0.62 0.81
DM-AVE vs MARS < 0.01 0.16 0.58 0.88

Table 5.7: The P-values from the paired t-test for the performances. The alternative
hypothesis in the first row is that the mean of L2-error of GAM is greater than that
of DM-AVE method. The second row is the result of MARS versus DM-AVE.

σ2 0.2 0.3 0.4 0.5
vs GAM < 0.01 < 0.01 < 0.01 < 0.01
vs MARS < 0.01 < 0.01 < 0.01 0.02

Table 5.8: The P-values from the paired t-test for the performances. The alternative
hypothesis in the first row is that the mean of L2-error of GAM is greater than that
of DM-AVE method. The second row is the result of MARS versus DM-AVE.

To select the tuning parameter s, we used the common method of CV. Figure

5.10 shows the comparison of L1-error with respect to the choice of s. We choose

two fixed values as 0.5 and 0.7. The optimal choice of s among MCMC sampling will

be various. However the performance of the choice of optimal s is better than other

two fixed numbers. Note that the range of s value is [0, 1] and if s is equal to 1, the

LASSO coefficients are the same as the least squares estimates.
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Figure 5.8: (Ten dimension): The plots of L1-error with respect to σ2 values. Sim-
ulation numbers are (1) – (4) in the order. Average Rand’s measures are 0.84, 0.77,
0.76 and 0.76, respectively.
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Figure 5.9: (Ten dimension): The plots of L1-error with respect to σ2 values. Sim-
ulation numbers are (5) – (8) in the order. Average Rand’s measures are 0.84, 0.77,
0.76 and 0.76, respectively.
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Figure 5.10: (Ten dimension): The plots of L1-error with various s values, where s is
the tuning parameter in LASSO.
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5.4 Large p, small n case.

When the number of sample n is smaller than the number of variables p, the least

square method does not apply anymore while LASSO automatically selects variables.

However, its behavior tends to be erratic in that estimated coefficients can change

sign. Also LASSO may fail to pick up all variables when a group is correlated. Because

of these drawbacks of LASSO, Zou and Hastie (2005) suggested the so called method

of “elastic net (EN)”. To introduce EN criterion, we first give the definition of naive

EN which is defined by finding β minimizing

RSS (β, λ) = (Y − Xβ)T (Y − Xβ) + λ1

p∑

i=1

|βi| + λ2

p∑

i=1

β2
i . (5.4)

The EN regression coefficient is nothing but a rescaled naive EN coefficient by the

following,

β̂EN = (1 + λ2)β̂naive EN.

Zou and Hastie (2005) argue that EN can select variables as in LASSO but does not

suffer from similar difficulties. Their efficient algorithm called “LARS-EN” can solve

the EN which is based on the proposed algorithm least angle regression (LARS) of

Efron et al. (2004).

We want to use the Dirichlet mixture to find the clustering and EN to fit the

regression within each cluster. The difficulty of using our method in this problem is

that the covariance matrix can be singular. In equation (4.6), estimates of Σ and Φ

are needed to calculate the inverse matrix. It is not possible to invert the resulting

matrix because of its singularity. However, suppose we assume that Σ = σ2I, then we

can substitute the estimate of σ2, not of Σ. This assumption is somewhat restrictive,
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but we can work with this simple model so as to make the computation simple. Thus

the parameter in the base measure, Φ = τ 2I can be estimated accordingly. The

estimates of those parameters are given by

σ̂2 =
1

np

p∑

r=1

k∑

j=1

∑

i∈Ij

(X i,r − Xj,r)
2 (5.5)

and

τ̂ 2 =
1

np

p∑

r=1

n∑

i=1

(X i,r − X
�,r)

2 − σ̂2, (5.6)

where Xj,r = 1
nj

∑
i∈Ij

X i,r and X
�,r = 1

n

∑n

i=1 X i,r. The following simulation work

will show how our method works in the large p, small n problem.

Let p = 500 and n = 100 be the number of dimension of X and samples, respec-

tively.

X ∼ 0.3Np(µ1,Σ) + 0.7Np(µ2,Σ), (5.7)

where µ1 and µ2 were chosen by the following

µ1 = (a1, . . . , a250︸ ︷︷ ︸
250

, 0.5, . . . , 0.5︸ ︷︷ ︸
250

),

µ2 = (b1, . . . , b250︸ ︷︷ ︸
250

,−0.5, . . . ,−0.5︸ ︷︷ ︸
250

),

where ai, bi
iid
∼ N(0, 0.52), i = 1, . . . , 250. Let Σ be σ2Ip, σ

2 = 0.22 and T 2 = 0.52. The

linear functions in two groups are given by

f1(X) = Xβ1, f2(X) = Xβ2, (5.8)

where β1 = (1, . . . , 1︸ ︷︷ ︸
30

, 0, . . . , 0), β2 = (−1, . . . ,−1︸ ︷︷ ︸
30

, 0, . . . , 0). This data is artificial but

it can at least illustrate the usefulness of our method in the large p, small n case.
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We choose 1000 MCMC samples after 1000 burn-in. For selection of proper tuning

parameters, we consider two dimensional CV method. For given choice of λ’s (drop-

ping subscript in λ2) (0.05, 0.1, 1, 5), the optimal s value is calculated. To evaluate

how clustering is appropriate, the Rand’s measure of similarity is used. The aver-

age Rand’s measure is 0.62. The estimated L2-error for four λ values are calculated.

According to Table 5.9 the selection of λ = 1 is the best.

λ = 0.05 λ = 0.1 λ = 1.0 λ = 5.0
L2-error 0.67 0.68 0.48 0.54

Table 5.9: (Large p, small n): L2-error values for different λ values.

As a real data example, we consider leukaemia data consist of 200 genes and 38

samples analyzed in Zou and Hastie (2005). The original data consist of 7129 genes,

but by prescreening 200 most significant genes are selected. There are two types of

leukaemia – Type 1 leukaemia (acute lymphoblastic leukaemia) and type 2 leukaemia

(acute myeloid leukaemia). There are 27 patients having Type 1 leukaemia and 11

patients having Type 2 leukaemia. To apply our method, we consider the Dirichlet

mixture method to find two types of leukaemia. However, the result is somewhat

undesirable because our method finds 19 clusters with only two points in each cluster.

We may consider merging of some clusters in MCMC steps to rectify this problem.

Originally this is a classification problem where we already know which one is type

1 or 2. If we use the merging cluster method from Section 4.1.3 to the leukaemia data,

19 clusters can be reduced to the small number of clusters. Since all the clusters have

two elements, we first randomly select among those clusters. For various constant c,
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then 19 clusters reduced to a smaller number of clusters. To evaluate whether our

clustering is correct or not, we can calculate Rand’s measure. Before using merging

method, Rand’s measure was 0.43. This merging method improves the clustering

because highest Rand’s measure value is 0.66 after merging clusters when c = 4, see

Figure 5.11.
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Figure 5.11: By using merging clusters Rand’s measure is calculated for various
choices of c.
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5.5 Real data example

The data from a nonprofit organization that relies on fundraising campaigns to

support their effort is considered as a real example. Originally this data is a sample

data set in “Enterprise Miner” which is the data mining program from SAS. Depen-

dent variable, Y measured how much the person actually donated in U.S. dollars and

8 predictors are chosen by,

X1 = (donor’s age) ,

X2 = (income level (integer values 0 - 9)) ,

X3 = (% of household in local government) ,

X4 = (% of household in state government) ,

X5 = (% of household in federal government) ,

X6 = (total number of promotions) ,

X7 = (donor’s gifts to card promotions) ,

X8 = (time between first and second donation) ,

X9 = (donor’s average gift).

Note that income level is an ordinal data but we can consider it as an interval variable.

Our goal is to predict the donation for each selected person and investigate whether

there are clusters. The data set has 200 samples and all eight variables are numeric

values.

First, we use the LASSO method without clustering. By using optimal tuning

parameter through five-fold CV method, only two variables, % of household in local
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government and donor’s average gift, have nonzero coefficients. This is a somewhat

unexpected result. Now, we use the Dirichlet mixture method assuming that there

are certain unknown clusters. To select the appropriate burn-in period, the trace

plot of the number of clusters is monitored. Figure 5.12 shows 1000 burn-in is a

reasonable choice. After burn-in, we get 5000 MCMC samples. The merging cluster

method is used because there are some clusters having only a few points (two or

three). Therefore, the number of clusters is decreased compared to previous one and

shown in Figure 5.13.

For model construction in regression fitting, we need to transform Y , since there

are some zero values. The new response variable Y ′ = log Y after adding a fixed small

number, 0.1 to the zero observation. After the fitting procedure, the original variable

Y will be calculated by the inverse transformation. Figure 5.14 shows the plots of

two interesting variables, Age and Income level versus the amount of donation. The

number of clusters is also of our interest. Figure 5.15 shows that the distribution of

the modified number of clusters.
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Figure 5.12: The trace plot of the number of clusters in first 2000 MCMC samples.
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Figure 5.13: After using merging clusters the trace plot of the number of clusters in
first 2000 MCMC samples.
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Figure 5.14: The estimated values at given age and income level. Left panel shows
that the amount of donation according to age. Right panel is the plot of donation
and the income level ranging from 1 to 7.
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Figure 5.15: Nonprofit organization data: the distribution of the number of clusters.
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Y X1 X2 X3 X4 X5 X6 X7 X8 X9

0 50 4 1 2 5 23 2 1 6.8
15 46 7 9 3 0 41 2 3 12.4
0 67 6 0 0 0 67 11 26 7.5
12 66 2 7 2 4 29 1 12 11.4
0 50 5 5 4 2 40 3 24 15.5
20 86 2 4 0 9 44 1 15 8.8
15 41 5 5 3 2 102 9 14 10.7
0 60 5 4 9 5 22 1 9 13
14 55 3 16 3 2 94 5 7 12.4
0 55 5 3 2 2 62 4 7 14
0 73 2 15 2 2 55 8 5 5.7
9 77 7 7 4 1 67 10 4 5.1
5 63 4 6 31 3 83 25 4 4.2
12 74 4 6 5 1 54 8 8 8.2
21 48 3 4 11 5 21 1 11 15
0 80 4 10 0 2 64 11 5 10.7
0 73 4 14 2 2 23 1 15 10
17 48 7 26 7 0 47 4 13 13.5
10 70 1 8 1 2 80 19 7 4.4
0 71 5 7 0 0 41 3 12 9.1
10 54 5 8 3 2 23 1 6 15
0 54 4 18 18 2 44 1 23 17
0 86 2 7 1 0 64 7 6 5.5
18 72 5 6 7 2 45 2 0 10
8 88 2 10 3 1 65 9 12 6.1
0 45 4 2 12 0 70 9 4 5.6
0 75 4 2 0 0 37 1 6 11.3
0 50 4 10 3 2 63 6 3 14
0 73 2 6 3 2 57 7 7 14
0 74 5 5 2 3 54 4 3 10.6
5 85 1 13 0 1 70 18 10 4.9
12 71 5 3 0 2 63 12 3 9.9
...

...
...

...
...

...
...

...
...

...

Table 5.10: Nonprofit organization data: the parts of the data samples from the
original 200 data samples.
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Chapter 6

Conclusions and Future Work

Our method gives a new way to estimate the regression function where unknown

clusters exist in the data by combining the technique of estimating clusters by Dirich-

let mixtures and then estimating regression in each cluster. In simulation experiments

in Chapter 5, we can conclude DM method works well compared to other nonpara-

metric methods in most cases. The DM regression method discussed in this thesis

exploits the existence of clusters in the data. The DM method may be useful in mar-

keting data or microarray data. We were unable to obtain permission to use actual

marketing data due to proprietary issues. However, the program used in this thesis

is a free R program which anyone can access. Muller et al.(1996) developed a DM

based regression estimate by estimating the joint density of (X, Y ). But, if we are in-

terested in getting the regression function only, DM method discussed here would be

a simpler method. Especially, in higher dimension our method works well no matter

how large the dimension is, even in the large p, small n problems.
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We have indicated an argument why the proposed method is expected to give

correct estimates asymptotically. In the future, we like to construct explicit proof

although that seems to be a challenging problem. For the large p, small n problem,

we only considered one simple restricted case where all the regressor variables are

independent and have the same variance σ2. More general models such as varying

variance or dependence may be considered.
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