
Abstract
ZACK, LAURIE. Nilpotent Lie Algebras with a Small Second Derived Quotient. (Under
the direction of Ernie L. Stitzinger.)

There are many parallels between groups and Lie algebras, and mathematicians have

been studying the similarities between them for decades. Many times researchers can

look at results from group theory and translate them over into results in Lie algebras and

vice versa. In 2003, Csaba Schneider published a paper in the Journal of Algebra about

finite p-groups G, with the properties G′′ 6= 1 and |G′/G′′| = p3. Schneider used Lie

algebra calculations to inspire the ideas behind the group structure when G is generated

by two elements. He then extended the group ideas to find the structure of G when

generated by more than two elements and stated that it would be interesting to look at

these results in Lie algebras. This paper completes the analogous Lie algebra problem,

when L is a nilpotent Lie algebra with properties dim(L′/L′′) = 3 and L′′ 6= 0. In this

paper, not only have we found all the Lie algebra analogues to Schneider’s results, we

have also classified these algebras over the complex numbers.
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Chapter 1

Introduction

In a recent paper, Csaba Schneider [5] found the structure of finite p-groups with

properties |G′/G′′| = p3 and G′′ 6= 1 for odd primes. He found that |G2/G3| = p =

|G3/G4| = |G4/G5|, and that G5 = G′′. He went on to prove that G is a central product

of two simpler groups, H and U , where H is generated by at most five elements, U ′ ⊆ G5,

and that H and U centralize each other. Schneider commented that to obtain the first

of these results, he solved the analogous Lie algebra problem and then followed a similar

pattern in p-groups. This paper was inspired by another one of Schneider’s remarks that

it would be interesting to solve the Lie algebra analog to the central product result. In

this papaer, after obtaining this Lie algebra decomposition, L = H + U , we go on to

classify the possible H’s and U ’s over the complex numbers. We find H can be one of

fourteen isomorphism classes and U is the direct sum of a generalized Heisenberg Lie

algebra and an abelian Lie algebra.

For the analog to the second part of Schneider’s results, we show general results

which correspond to work of P. Hall and N. Blackburn [2], and in particular use the

Lie algebra counterpart to a subgroup defined by Blackburn [1]. Finally, we find the

fourteen possible classifications of H over the complex numbers, results which as of yet
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have no group theory analog.
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Chapter 2

Preliminaries

We begin by introducing notation and definitions to be used throughout the remain-

der of the paper. The majority of our definitions come from notes written for a Lie

algebra class at North Carolina State University [4]. Let L be a finite dimensional nilpo-

tent Lie algebra of class t, Li the ith term of the lower central series, and we define

the derived series L′ = [L, L], L′′ = [L′, L′], and L′′′ = [L′′, L′′]. So there exists a chain

L ⊇ L1 ⊇ L2 ⊇ · · · ⊃ Lt+1 = 0 where L2 = [L, L], L3 = [L, L2], . . . , Ln = [L, Ln−1] and

L is said to be nilpotent of class t. Using notation from N. Blackburn [1], we will define

L1 = {x ∈ L|[x, L2] ⊆ L4}. By definition, Lie algebras satisfy the Jacobi identity,

[x, [y, z]] = [[x, y], z] + [y, [x, z]] for all x, y, z ∈ L

which is heavily used throughout many of the proofs in this paper. Since many times

we will be using more than three elements, we will simplify the bracket structure when

the brackets are left justified we will use [· · · [[x1, x2], x3], · · · , xn] = [x1, x2, . . . , xn].
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Chapter 3

A General Lemma and some

Consequences

We start with a general lemma and some results that parallel Schneider’s work.

Lemma 1. Let L be a nilpotent Lie algebra and H is a subalgebra of L such that L2 =

H2 + L3. Then

Li = H i + Li+1 for all i ≥ 2 and

Li = H i for all i ≥ 2.

Moreover, H is an ideal of L.

Proof. We will use induction on i.

For i = 2 we have L2 = H2 + L3 which is the assumption of the lemma. Suppose that

Li−1 = H i−1 + Li is true for i − 1 ≥ 2. Now we will show the result for i. We know

that H i + Li+1 ⊆ Li because Li+1 ⊆ Li and H i ⊆ Li. So we need only show that
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Li ⊆ H i + Li+1. By definition we have

Li = [Li−1, L]

= [H i−1 + Li, L]

= [H i−1, L] + [Li, L]

= [H i−1, L] + Li+1.

So it is enough to show that [H i−1, L] ⊆ H i +Li+1 Now [H i−1, L] = [H i−2, H, L], and by

the Jacobi identity we have [H i−2, H, L] ⊆ [L, H i−2, H]+[H, L, H i−2]. Since H i−2 ⊆ Li−2

and [L, Li−2] = Li−1 we have that

[L, H i−2, H] ⊆ [Li−1, H]

= [H i−1 + Li, H]

= [H i−1, H] + [Li, H]

⊆ H i + Li+1

and [H, L, H i−2] ⊆ [L2, H i−2]

= [H2 + L3, H i−2]

= [H2, H i−2] + [L3, H i−2]

⊆ H i + Li+1

So [H i−1, L] = [H i−2, H, L] ⊆ H i + Li+1. Therefore, Li = H i + Li+1 for all i ≥ 2.

Now if L is nilpotent of class c then Lc+1 = Hc+1 = 0. Suppose Li+1 = H i+1 for

some i such that 3 ≤ i ≤ c + 1. Then by the previous result we have Li = H i + Li+1

= H i + H i+1 = H i. Then by induction, Li = H i for all i ≥ 2. Moreover, since

[H, L] ⊆ [L, L] ⊆ L2 = H2 ⊆ H then H is an ideal of L. 2
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From this lemma, we obtain the following corollary, which again parallels work done

by Schneider.

Corollary 1. Let L be a Lie algebra. Then

(i) If dim(L2/L3) = 1, then L has a 2 generator ideal H such that Li = H i for all

i ≥ 2.

(ii) If dim(L2/L3) = 2, then L has a 3 generator ideal H such that Li = H i for all

i ≥ 2.

Proof (i). Suppose L2 = [a, b] + L3 for some a, b ∈ L and H = 〈a, b〉. Since

L2 = [a, b] + L3 ⊆ H2 + L3 ⊆ L2, we have L2 = H2 + L3. So by the previous lemma we

have H is an ideal of L and Li = H i for all i ≥ 2.

Proof (ii). Suppose dim(L2/L3) = 2. Then {[a, b] + L3, [c, d] + L3} is a basis for

L2/L3 for some a, b, c, d ∈ L. Now select the subalgebra H in L as follows:

if [a, c], [a, d], [b, c], [b, d] ∈ L3 then let H = 〈a, b + c, d〉. Then looking at H2 we get

[a, b + c] = [a, b] + [a, c] ∈ [a, b] + L3. So [a, b] = [a, b + c]− [a, c] ∈ H2 + L3 and

[b + c, d] = [b, d] + [c, d] ∈ [c, d] + L3. So [c, d] = [b + c, d]− [b, d] ∈ H2 + L3.

We have [a, b] + L3 ⊆ H2 + L3 and [c, d] + L3 ⊆ H2 + L3 which implies L2 ⊆ H2 + L3.

Therefore L2 = H2 + L3 and the result holds by Lemma 1.

Without loss of generality, suppose that [a, c] /∈ L3. So [a, c] = α[a, b] + β[c, d]

mod L3 for some α, β where at least one of them is not 0. Now, if α 6= 0 then set

H = 〈a, c, d〉. Then α[a, b] = [a, c]−β[c, d] ∈ H2. Hence [a, b] ∈ H2, and since [c, d] ∈ H2,

L2 ⊆ H2 + L3 and L2 = H2 + L3.

Otherwise set H = 〈a, b, c〉. Then similarly we have L2 = H2 + L3. In either case,

by the previous lemma, H is an ideal of L and Li = H i for all i ≥ 2. 2
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3.1 Proof of Theorem 1

We now move to our first theorem of characterizing the Lie algebras. This theorem

helps with the classification of the Lie algebras later by finding the dimension of the

second derived quotient.

Theorem 1. Let L be a nilpotent Lie algebra over a field of with characteristic not equal

to 2, dim(L′/L′′) = 3, and L′′ 6= 0. Then dim(L2/L3) = 1 and L′′ = L5.

Proof. Suppose L is finite dimensional such that dim(L′/L′′) = 3. If dim(L′/L3) =

1, then L′′ = [L′, L′] ⊆ L5 because

[L′, L′] = [〈a〉+ L3, 〈a〉+ L3]

= 〈[αa + x, βa + y]〉 for all x, y ∈ L3

= 〈α[a, y] + β[x, a] + [x, y]〉 for all x, y ∈ L3

⊆ [〈a〉, L3] + [〈a〉, L3] + [L3, L3]

= [〈a〉+ L3, L3]

= [L′, L3] ⊆ L5.

Thus there exists a chain of ideals L ⊃ L′ = L2 ⊃ L3 ⊃ L4 ⊃ L5 ⊇ L′′ 6= 0. Hence,

L′′ = L5 by the counting of dimensions.

Now assume the dim(L′/L3) = 2. By the previous corollary, there exists a three

generator ideal H = 〈a, b, c〉 of L such that H i = Li for all i ≥ 2. Therefore we may

work with H and for the remainder of the proof we will call it L. Since L′′ ⊆ L4 and by

counting the dimensions, we have that L′′ = L4. We may also assume that L is nilpotent

of class 4, hence L5 = 0.

Now L′/L3 is abelian with dimension 2. So there exists α, β, δ not all equal to 0 such
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that

α[a, b] + β[a, c] + δ[b, c] = 0 mod L3.

The three vectors are linearly dependent, so if α = β = 0 then δ 6= 0 would imply

that [b, c] = 0 mod L3. If α = 0, β 6= 0 then β[a, c] + δ[b, c] = 0 mod L3. Then let

a′ = βa + δb, b′ = b and c′ = c. Then 〈a′, b′, c′〉 is still a generating set because


a′

b′

c′

 =


β δ 0

0 1 0

0 0 1




a

b

c


where β 6= 0, so the representation matrix is nonsingular. Furthermore [a′, c′] = [βa +

δb, c] ∈ L3.

Similarly, if α 6= 0, β = 0, then replace a′′ = −αa + δc, b′′ = b, c′′ = c and again

〈a′′, b′′, c′′〉 is a generating set. Then

[a′′, b′′] = [−αa + δc, b] = −α[a, b] + δ[c, b] = −α[a, b]− δ[b, c] ∈ L3.

Finally, if α 6= 0, β 6= 0 replace ã = (β/α)a+(δ/α)b, b̃ = b+(β/α)c, c̃ = c. Similarly,

〈ã, b̃, c̃〉 is still a generating set and

[ã, b̃] = [(β/α)a + (δ/α)b, b + (β/α)c]

= (β/α)[a, b] + (β2/α2)[a, c] + (δβ/α2)[b, c]

= (βα[a, b] + β2[a, c] + δβ[b, c])(
1

α2
)

= (α[a, b] + β[a, c] + δ[b, c])(
β

α2
)

= 0 mod L3

∈ L3.
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Therefore, we may assume without loss of generality that L = 〈a, b, c〉, L′/L3 =

〈[a, b] + L3, [a, c] + L3〉 and [b, c] ∈ L3. Hence L′ = 〈[a, b], [a, c]〉+ L3.

Since [b, c] ∈ L3, then [b, c, a] ∈ L4 and also the Jacobi identity [a, b, c] + [b, c, a] +

[c, a, b] = 0 implies [a, b, c] = −[b, c, a]− [c, a, b]. Hence,

[a, b, c] = [a, c, b] mod L4. (3.1)

Since L′′ 6= 0 and L5 = 0 then

L′′ = [L′, L′] = 〈[[a, b], [a, c]]〉

= 〈[a, b, a, c] + [a, [a, b, c]]〉

= 〈[a, b, a, c]− [a, b, c, a]〉 6= 0 (3.2)

and

[[a, c], [a, b]] = [[a, c, a], b] + [a, [a, c, b]] = [a, c, a, b]− [a, c, b, a] 6= 0 and

[a, c, b, a] = [a, b, c, a] by (3.1)

If [a, b, a] ∈ L4 then [a, b, a, c] ∈ L5 = 0. Similarly, if [a, b, c] ∈ L4 then [a, b, c, a] ∈

L5 = 0. So either [a, b, a] or [a, b, c] /∈ L4. Similarly, either [a, c, a] or [a, c, b] /∈ L4.

Now [b, c] ∈ L3 which forces [a, c, b] + [b, a, c] ∈ L4. Hence [a, c, b] ∈ L4 if and only if

[a, b, c] ∈ L4 by (3.1). Hence either [a, c, a] /∈ L4 or [a, b, c] /∈ L4.

Now suppose [a, b, c] ∈ L4. Then both [a, c, a] and [a, b, a] /∈ L4 but they are in L3.

So we will change bases such that [a, b, c] /∈ L4. Since dim(L3/L4) = 1, then there exists
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α 6= 0 such that

[a, b, a] = α[a, c, a] mod L4.

So [a, b− αc, a] = 0 mod L4. Then let b′ = b− αc

which implies [a, b′, a] = 0 mod L4

Also, [b′, c] = [b−αc, c] = [b, c] ∈ L3 and [a, b′, a] ∈ L4. Then 〈a, b′, c〉 is a generating

set since 
a

b′

c

 =


1 0 0

0 1 −α

0 0 1




a

b

c


and again the matrix representation is nonsingular. Dropping the prime we have L =

〈a, b, c〉, [b, c] ∈ L3 and [a, b, a] ∈ L4. So [a, b, c] /∈ L4.

Thus we may assume that

[a, b, a] ∈ L4 , [a, b, c] /∈ L4 and [b, c] ∈ L3 (3.3)

which implies that

[a, b, c] = [a, c, b] mod L4

[a, b, c] = [a, c, b] + x where x ∈ L4

[a, b, c, a] = [a, c, b, a] + [x, a] where [x, a] ∈ L5 = 0

Thus [a, b, c, a] = [a, c, b, a] 6= 0 since [a, b, a] ∈ L4. Hence a /∈ CL(L3).

On the other hand, by the Jacobi identity [a, b, a, b] + [[a, b], [a, b]] + [[b, [a, b]], a] = 0.
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Therefore, [a, b, a, b] = −[b, a, b, a] = [a, b, b, a]. Now,

[a, b, a] ∈ L4 so [a, b, a, b] ∈ L5 = 0, hence [a, b, b, a] = 0. (3.4)

Now if [a, b, b] /∈ L4 then L3 = 〈[a, b, b], L4〉 and we have a ∈ CL(L3) which is a contra-

diction. Hence,

[a, b, b] ∈ L4 (3.5)

If [a, c, a] /∈ L4 then there exists some α 6= 0 such that [a, c, a] = α[a, c, b] mod L4

using (3.1) and (3.3). So let a′ = a− αb, then

[a′, c, a′] = [a− αb, c, a− αb] = [a, c, a− αb] + [αb, c, a− αb] ∈ L4 + [L3, L] ⊂ L4.

Also,

[a′, b, a′] = [a− αb, b, a− αb] = [a, b, a]− [a, b, αb] ∈ L4 by (3.4) and (3.5).

In this new generating set 〈a′, b, c〉, and dropping the prime, we have [b, c] ∈ L3 and

[a, b, a], [a, b, b], [a, c, a] ∈ L4.

Then

0 = [a, b, a, c] + [[a, c], [a, b]] + [c, [a, b], a]

= [a, b, a, c] + [[a, c], a, b] + [a, [[a, c], b]] + [c, [a, b], a]

= 0 + 0− [a, c, b, a]− [a, b, c, a]

= −2[a, b, c, a]

since [a, b, a] ∈ L4, [a, c, a] ∈ L4 and [a, c, b] = [a, b, c] mod L4. So [a, b, c, a] = 0 which

11



is a contradiction unless the characteristic of L is 2, and we have dim(L′/L3) = 1. 2

3.2 Proof of Theorem 2

The next theorem is the Lie algebra analog to results of P. Hall and N. Blackbrun.

In order to prove this theorem, we need some preliminary results that are analogous to

those in Schneider’s paper.

Lemma 2. Let L be a nilpotent Lie algebra with dim(L′/L′′) = 3 over a field of charac-

teristic not equal to 2. Then L1 has codimension 1 in L.

Proof. Since every commutator is a linear combination of left justified commutators,

[L2, L2] ⊆ L4, and L2 ⊆ L1 by definition of L1. We may take L4 = 0 and by Theorem 1,

dim(L2/L3) =dim(L3/L4) = 1. Now let L2 = 〈y〉+ L3 and L3 = 〈z〉+ L4. Then f(x) =

[x, y] = αxz has a one dimensional image. Therefore the kernel of f has codimension 1

in L and clearly kerf = L1. 2

We immediately obtain the following corollary.

Corollary 2. Let L be a nilpotent Lie algebra with dim(L′/L′′) = 3 over a field of

characteristic not equal to 2. Suppose that dim(L/L′) = 2. Then L has generators a

and b such that L = 〈a〉+ L1 and L1 = 〈b〉+ L2.

For the remainder of the paper, when working with a two generated algebra, we will

take generators a and b as stated in Corollary 2. The following lemma and proof are

also needed in the proof of our next theorem and they parallel the p-group case from

Schneider’s paper.

Lemma 3. Let L be a 2-generated finite dimensional nilpotent Lie algebra such that

dim(L′/L′′) = 3, dim(L′/L3) = 1, and L′′ 6= 0. Then generators a and b of L can be

chosen such that the following hold:

12



(i) L2 = 〈[a, b]〉+ L3;

(ii) L3 = 〈[a, b, a]〉+ L4 and [a, b, b] ∈ L4;

(iii) L4 = 〈[a, b, a, a]〉+ L5 and [a, b, a, b] ∈ L5;

(iv) L5 = 〈[a, b, a, a, b]〉+ L6 and [a, b, a, a, a] ∈ L6.

Proof. Assume L = 〈a, b〉 where a and b are chosen such that

L = 〈a〉+ L1, [L1, L2] ⊆ L4, L1 = 〈b〉+ L2

and we have

L ⊃ L′ = L2 ⊃ L3 ⊃ L4 ⊃ L5 = L′′ ⊃ L6

Now,

L2 = [L, L] = [L, L1] = [αa + βb + x, γb + y] = 〈[a, b]〉+ L3 where x, y ∈ L2

and L3 = [L, L2] = 〈[αa + βb + x, γ[a, b] + y]〉 where x ∈ L2 and y ∈ L3

= 〈αγ[a, [a, b]] + βγ[b, [a, b]] + α[a, y] + β[b, y] + γ[x, [a, b]] + [x, y]〉

∈ 〈[a, [a, b]]〉+ [L1, L2] + L4 + L4 + L4 + L5.

So L3 = 〈[a, b, a]〉+ L4 and [a, b, b] ∈ [L2, L1] ∈ L4. Also, Since [a, b, a, b] = [[a, b, b], a] +

[[a, b], [a, b]] ∈ L5 + 0, it follows that

L4 = [L, L3] = [αa + βb + x, γ[a, b, a] + z] where z ∈ L4, x ∈ L2

∈ 〈[a, b, a, a]〉+ L5 + L5 + ...

Therefore,

L4 = 〈[a, b, a, a]〉+ L5 and [a, b, a, b] ∈ L5.

13



So we have shown (i)-(iii).

For (iv) we can assume L6 = 0. Now

L5 = [L′, L′] = [[a, b] + x, [a, b, a] + y] where x ∈ γ3 and y ∈ L4

= [[a, b], [a, b, a]] + L6.

But [a, b, a, a, b] = [[a, b, a, b], a] + [[a, b, a], [a, b]] with [a, b, a, b, a] ∈ L6

yields L5 = 〈[a, b, a, a, b]〉, since L6 = 0.

In general, L5 = 〈[a, b, a, a, b]〉+ L6. We will make a change of basis such that all of the

above hold and [a, b, a, a, a] = 0.

Now

[a, b, a, a, a] = α[a, b, a, a, b] implies [a, b, a, a, a− αb] = 0 (3.6)

So let a′ = a− αb. Then

[a′, b, a′, a′, a′] = [a− αb, b, a− αb, a− αb, a− αb]

= [a, b, a− αb, a− αb, a− αb]

= [a, b, a, a, a− αb] + [a, b,−αb, a, a− αb] + [a, b, a,−αb, a− αb]

+ [a, b, αb, αb, a− αb]

Each of these is 0 because [a, b, b] ∈ L4, [a, b, a, b] ∈ L5 and (3.6). Hence

[a′, b, a′, a′, a′] = 0.
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Now we will show the first three properties hold when a is replaced by a′.

[a′, b] = [a, b]− α[b, b] = [a, b] which implies L2 = [a′, b] + L3

[a′, b, a′] = [a, b, a]− [a, b, αb] = [a, b, a] + x where x ∈ L4

so L3 = [a′, b, a′] + L4 and [b, a′, b] = [b, a, b] ∈ L4

Now [a′, b, a′, a′] = [a, b, a, a] − [a, b, αb, a] − [a, b, a, αb] + [a, b, αb, αb] where the last

three terms are in L5, so L4 = [a′, b, a′, a′] + L5. Also [a′, b, b] = [a, b, b] ∈ L4 and

[a′, b, a′, b] = [a, b, a, b]− [a, b, αb, b] ∈ L5. Finally,

[a′, b, a′, a′, b] = [a, b, a, a, b]− [a, b, αb, a, b]− [a, b, a, αb, b] + [a, b, αb, αb, b]

where the last three terms are in L6 which implies L5 = [a′, b, a′, a′, b] since L6 = 0.

So by letting a = a′ we obtain the lemma. 2

The following is analogous to a lemma by Blackburn [2].

Lemma 4. If L is a nilpotent Lie algebra over a field of characteristic not equal to 2,

with series L ⊃ L′ ⊃ L′′ ⊃ L′′′ = 0 where dim(L′/L′′) = 3 and dim(L′′) = 2. Then the

following hold:

(i) L′′ = Z(L′);

(ii) L′ has a unique abelian subalgebra A of codimension 1 in L′;

(iii) If B is an ideal of L where dim(B)=3 and L′ ⊃ B ⊃ L′′, then B ⊂ A.

Proof. By Theorem 1, dim(L2/L3) = 1. By Corollary 1, there is a two generated

ideal H such that Li = H i for all i ≥ 2. The assumptions and assertions change over to

H, so we can assume that L is also two generated. Then
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L = 〈a, b〉

L = 〈a〉+ L1

L1 = 〈b〉+ L2

L2 = 〈[a, b]〉+ L3

L3 = 〈[a, b, a]〉+ L4 and [a, b, b] ∈ L4

L4 = 〈[a, b, a, a]〉+ L5 and [a, b, a, b] ∈ L5

L5 = 〈[a, b, a, a, b]〉+ L6 and [a, b, a, a, a] ∈ L6

and L ⊃ L1 ⊃ L2 = L′ ⊃ L3 ⊃ L4 ⊃ L5 = L′′ ⊃ L6 ⊃ L7 = 0.

Also, pick k ∈ L6 such that {[a, b], [a, b, a], [a, b, a, a], [a, b, a, a, b], k} is a basis for L′.

(i). To show L′′ ⊆ Z(L′), first note that

[L′′, L′] = [L5, L2] ⊆ L7 = 0, so L′′ ⊆ Z(L′).

Now to show Z(L′) ⊆ L′′, suppose L′′ 6= Z(L′). Since L′ is not abelian, Z(L′) 6= L′

and Z(L′) can never have codimension 1 in L′ if dim(L′) > 1. We claim that the

dimension of Z(L′) = 2. If the dimension is 5, then L′ is abelian, which implies that

L′′ = 0, which is a contradiction. If the dimension of Z(L′) = 4, then Z(L′) has

codimension 1 in L′, which is a contradiction. If dim(Z(L′)) = 3, let {s, t, z} be a basis

for Z(L′) which can be extended to a basis {x, y, s, t, z} for L′ since L′ is 5-dimensional.
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Then

[x, s] = [x, t] = [x, z] = 0

[y, s] = [y, t] = [y, z] = 0

[s, t] = [s, z] = [t, z] = 0

since s, t, z ∈ Z(L′).

Then [L′, L′] = 〈[x, y]〉 would imply L′′ is 1-dimensional which is a contradiction. Hence,

dim(Z(L′)) = 2 and Z(L′) = L′′. Since L′ ⊃ L′′ = Z(L′) ⊃ [L′, L′′] = 0 it follows that

L′ has class 2.

(ii). Let A = 〈[a, b, a], [a, b, a, a], s, t〉 where s, t ∈ L′′, and the vectors in the gener-

ating set form a basis for A. Then dim(L′) = 4. Let j = s or t. Then

[[a, b, a], [a, b, a, a]] ∈ L7 = 0,

[[a, b, a], j] ∈ L8 = 0,

[[a, b, a, a], j] ∈ L9 = 0.

Hence, A is an abelian subalgebra of codimension 1 in L′.

Now suppose there exists another 4-dimensional abelian subalgebra B such that

B ⊂ L′. Then A + B = L′ and dim(A∩B) = 3. Hence let {s, t, z} be a basis for A∩B,

so A ∩B = 〈s, t, z〉 where s, t ∈ L5 = L′′ = Z(L′). Also, let {x, z, s, t} a basis for A and

{y, z, s, t} a basis for B. Then L′ = 〈x, y, z, s, t〉, L′′ = [L′, L′] = 〈[x, y]〉 since A and B

are abelian. Therefore L′′ is 1-dimensional which is a contradiction. So A is unique.

(iii). Let B be an ideal of L, dim(B) = 3 and L′ ⊃ B ⊃ L′′. We will show

that B ⊆ A. Let x = [a, b], y = [a, b, a], z = [a, b, a, a] and B = 〈w〉 + L′′ where

w = α[a, b] +β[a, b, a] + δ[a, b, a, a]. If B * A then B is a maximal abelian subalgebra of
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L′. Now, [w, a] = α[a, b, a] + β[a, b, a, a] + δ[a, b, a, a, a]. Since B is an ideal of L we have

[w, a] ∈ 〈w〉+ L5 so [w, a] = c(α[a, b] + β[a, b, a] + δ[a, b, a, a]) + k where k ∈ L5 = L′′.

From the last two expressions, we have

α[a, b, a] + β[a, b, a, a] + δ[a, b, a, a, a] = c(α[a, b] + β[a, b, a] + δ[a, b, a, a]) + k

Then cα = 0, cβ = α and cδ = β. Hence either c = 0 or α = 0. If c 6= 0, then

α = 0 implies β = 0 implies δ = 0, which implies w = 0 and dim(B) = 2, which

is a contradiction. So then c = 0, which implies that α = 0 and β = 0. Therefore

B = 〈[a, b, a, a]〉+ L5 ⊆ 〈[a, b, a], [a, b, a, a]〉+ L5 = A. Thus B ⊆ A. 2

Using the above lemmas and corollaries, we are able to prove our next theorem,

which is analogous to work done by Blackburn and Hall [2].

Theorem 2. Suppose L is a nilpotent Lie algebra of characteristic not 2 such that

dim(L′/L′′) = 3 and dim(L′′) ≥ 1. Then dim(L′′) = 1.

Proof.

First assume all of the conditions in Lemma 4 hold. Then continuing with the

notation as before, Let x = [a, b], y = [a, b, a], z = [a, b, a, a], s = [x, y] and r = [x, z].

Then [y, z] ∈ [L3, L4] = L7 = 0. Hence {r, s} is a basis for L5 = L′′.

We claim that [x, g, y] = 0 for all g ∈ L. Now if g = a then [x, g, y] = [[a, b, a], [a, b, a]]

= 0. If g = b, we get [x, g, y] = [[a, b, b], [a, b, a]] ⊆ [L4, L3] = L7 = 0. Thus

[x, g, y] = 0 (3.7)

For g ∈ L we have

[r, g] = [x, z, g] = [x, g, z] + [x, [z, g]] ∈ L7 = 0.
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Hence r ∈ Z(L).

Since [y, g] ∈ L4, it follows that [y, g] = αz +u where u ∈ L5. Then [s, g] = [x, y, g] =

[x, g, y] + [x, [y, g]] = 0 + [x, αz + u] = αr since u ∈ L5 = Z(L′). Hence

[s, g] = αr for any g ∈ L (3.8)

Now L5 = 〈s〉+ L6 and r, which is the product of 6 terms, is in L6, hence L6 = 〈r〉.

Letting [y, gi] = αiz mod L5. Then [s, gi] = [x, y, gi] = [x, gi, y] + [x, [y, gi]] =

0 + [x, αiz] = αir. Since {r, s} is a basis for L5 we have [z, gi] = βir + εis.

Now

[z, [g1, g2]] = [z, g1, g2] + [g1, [z, g2]]

= [β1s + ξ1r, g2] + [g1, β2s + ξ2r]

= β1α2r + 0− α1β2r + 0 because r ∈ Z(L)

= −(α1β2 − α2β1)r

and

[y, [g1, g2]] = [y, g1, g2] + [g1, [y, g2]]

= [α1z, g2] + [g2, α2z]

= α1β2s + α1ε2r − α2β1s− α2ε1r.

19



Now let g1 = a and g2 = b. Then

[y, [g1, g2]] = [y, [a, b]] = −s

(α1β2 − α2β1)s = −s

which implies α1β2 − α2β1 = −1

and [z, [g1, g2]] = [z, [a, b]] = [z, x] = −r

−(α1β2 − α2β1)r = −r

which implies α1β2 − α2β1 = 1.

So 1 = −1 which is a contradiction unless the characteristic is 2. Therefore, dim(L′′) = 1.

Now suppose dim(L′′) > 2. Then L′′ = L5 ⊃ L6 ⊃ L7 ⊃ L′′′ and there exists a

vector space V such that L6 ⊃ V ⊇ L7, and dim(L6/V ) = 1. Now [L, V ] ⊆ [L, L6] =

L7 ⊆ V . Thus V is an ideal of L, so L/V satisfies the assumptions of Lemma 4,

and dim((L/V )′′) = 2, which we have just shown is not possible. Hence L′′′ = 0 and

dim(L′′) = 1. 2
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Chapter 4

Central Decomposition Theorem

As we have already seen, L has a 2-generator ideal H, such that for all i ≥ 2, Li = H i.

We have also found in the previous chapter, a particular generating set which satisfies

some additional conditions. These results are used to obtain the desired factorization.

This work again parallels Schneider’s. Before the theorem, we need one additional

lemma.

Lemma 5. Let L be nilpotent Lie algebra over a field of characteristic not equal to

2, such that dim(L′/L′′) = 3 and L′′ 6= 0. Then L has a minimal generating set

{a, b, u1, u2, . . . , ur} which is a basis for L/L′ such that for all ui and uj:

(i) H = 〈a, b〉 is an ideal of L such that H i = Li for all i ≥ 2. Furthermore, a and b

are as in Lemma 4;

(ii) [a, ui] ∈ L5 for all ui;

(iii) [b, ui] ∈ L4 for all ui;

(iv) [ui, uj] ∈ L5 for all ui and uj.

Proof. From Theorem 1, under these conditions, we have dim(L′/L3) = 1, and from

Corollary 1, L has 2-generator ideal H such that Li = H i for i ≥ 2. Then from Theorem
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2, we know dim(L′′) = 1, L′′ = L5, and L6 = 0. So we will select a, b ∈ L such that

H = 〈a, b〉, where a and b are as in Lemma 3.

Now choose u1, u2, . . . , ur such that {a, b, u1, . . . , ur} is a basis for a subspace com-

plementary to L2.

Suppose [ui, a] = αi[b, a] mod L3 and [ui, b] = βi[b, a] mod L3. Then

[ui − αib + βia, b] = [ui, b]− αi[b, b] + βi[a, b]

= [ui, b] + βi[a, b]

= βi[b, a] + βi[a, b] mod L3

∈ L3.

Also, [ui − αib + βia, a] = [ui, a]− αi[b, a] + βi[a, a]

= [ui, a] + αi[b, a]

= αi[b, a]− αi[b, a] mod L3

∈ L3.

So, let u′i = ui − αib + βia. Then {a, b, u′1, u
′
2, . . . , u

′
r} is also a basis complementary to

L2 since 

a

b

u′1

u′2
...

u′r


=



1 0 0 0 · · · 0

0 1 0 0 · · · 0

β1 −α1 1 0 · · · 0

β2 −α2 0 1 · · · 0

...
...

...
. . .

...

βr −αr 0 0 · · · 1





a

b

u1

u2

...

ur


and the change of basis matrix is nonsingular. We also have [a, u′i], [b, u′i] ∈ L3 for i =

1, 2, . . . , r.
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Suppose [u′i, a] = αi[a, b, a] +βi[a, b, a, a] mod L5. So [u′i, a]−αi[a, b, a]− βi[a, b, a, a]

= 0 mod L5. Then let u′′i = u′i − αi[a, b] − βi[a, b, a]. This implies [u′′i , a] ∈ L5 and

similarly {a, b, u′′1, u
′′
2, . . . , u

′′
r} is still a basis for the complementary subspace because

the change of basis matrix is nonsingular. We claim [u′′i , b] ∈ L4.

Now, [a, b, u′′i ] ∈ L4 since [a, b, u′′i ] = [a, u′′i , b] + [a, [b, u′′i ]] by the Jacobi identity, and

[a, u′′i ] ∈ L5, therefore [a, u′′i , b] ∈ L6 = 0 and [b, u′′i ] ∈ L3 so [a, [b, u′′i ]] ∈ L4.

So we have the following:

[ui, a], [ui, b] ∈ L2,

[u′i, a], [u′i, b] ∈ L3,

[u′′i , a] ∈ L5, and [a, b, u′′i ] ∈ L4.

Hence,

[a, b, a, u′′i ] = [a, b, u′′i , a] + [[a, b], [a, u′′i ]] = 0 (4.1)

since [a, b, u′′i ] ∈ L4, so [a, b, a, u′′i , a] ∈ L6 = 0 and [a, u′′i ] ∈ L5 so [[a, b], [a, u′′i ]] ∈ L6 = 0.

Similarly,

[a, b, a, a, u′′i ] = [a, b, a, u′′i , a] + [[a, b, a], [a, u′′i ]] = [0, a] + [L3, L5] = 0. (4.2)

Therefore [u′′i , L
3] = 0.

Since [u′′i , b] ∈ L3, then

[u′′i , b] = εi[a, b, a] + δi[a, b, a, a] mod L5. (4.3)
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Since we want [u′′i , b] ∈ L4, we want εi = 0. Now,

[a, b, u′′i ] = [a, [b, u′′i ]]− [b, [a, u′′i ]] = [u′′i , b, a] since [b, [a, u′′i ]] ∈ L6 = 0

= εi[a, b, a, a],

so [a, b, u′′i , b] = εi[a, b, a, a, b].

Now [a, b, u′′i , b] = [a, b, b, u′′i ] + [[a, b], [u′′i , b]] by the Jacobi identity.

= [a, b, [u′′i , b]] since [a, b, b] ∈ L4 and [u′′i , L
4] = 0.

= [[a, b], εi[a, b, a]]

= [a, εi[a, b, a], b] + [a, [b, εi[a, b, a]]] by the Jacobi identity.

= −εi[a, b, a, a, b] + 0

since [b, εi[a, b, a]] ∈ L5 so [a, [b, εi[a, b, a]]] ∈ L6 = 0.

Therefore, εi[a, b, a, a, b] = −εi[a, b, a, a, b], and [a, b, a, a, b] 6= 0 since it is a basis element,

hence εi = 0 and [u′′i , b] ∈ L4 by (4.3).

Now we will drop the primes for simplicity and show that u1, u2, . . . , ur ∈ C(L′). We

know L′ = L2 = 〈[a, b], [a, b, a], [a, b, a, a], [a, b, a, a, b]〉. We already have that [ui, [a, b, a]]

= [a, b, a, ui] = 0, and [a, b, a, a, ui] = 0. Clearly, [a, b, a, a, b, ui] ∈ L6 = 0, so we just

need to show that [ui, [a, b]] = 0. Consider

[ui, [a, b]] = [ui, a, b] + [a, [ui, b]] = 0

Since [ui, b] ∈ L4, then [a, [ui, b]] ∈ L6 = 0. We also have [ui, a] ∈ L5 and [ui, a, b] = 0.

Therefore the ui’s centralize L′.

It remains to show [ui, uj] ∈ L5. We know that [ui, uj] ∈ L′ = L2 = H2 = H ′, and
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for all k = 1, 2, . . . , r we have

[[ui, uj], a] = [ui, [uj, a]] + [[ui, a], uj] = 0 since [uk, a] ∈ L5, [uk, [uk, a]] ∈ L6 = 0.

Also, [[ui, uj], b] = [ui, [uj, b]] + [[ui, b], uj] = 0 since [uk, b] ∈ L4 and uk takes L4 to 0.

Therefore [[ui, uj], [a, b]] = 0 and [ui, uj] ∈ Z(H) which implies [ui, uj] ∈ Z(H) ∩ H ′,

since H ′ = L′. Now, H5 ⊆ H ′ ∩ Z(H). If x ∈ H ′ then

x = c1[a, b] + c2[a, b, a] + c3[a, b, a, a] + c4[a, b, a, a, b].

If x ∈ Z(H) then [x, a] = 0. So we have

0 = [x, a] = c1[a, b, a] + c2[a, b, a, a] + c3[a, b, a, a, a] + c4[a, b, a, a, b, a]

= c1[a, b, a] + c2[a, b, a, a], since [a, b, a, a, a] ∈ L6 = 0.

So c1 = 0, and c2 = 0. Therefore x = c3[a, b, a, a] + c4[a, b, a, a, b]. Now [x, b] = 0 and

0 = [x, b] = c3[a, b, a, a, b] + c4[a, b, a, a, b, b]

= c3[a, b, a, a, b] + 0.

So c3 = 0 and x = c4[a, b, a, a, b] ∈ L5. Therefore H ′ ∩ Z(H) = H5 = L5, hence

[ui, uj] ∈ L5. 2

Now we are able to prove the central decomposition theorem similar to Schneider’s.

The proof uses Lemma 5 and the results from the previous chapters.

Theorem 3. Let L be a nilpotent Lie algebra such that dim(L′/L′′) = 3 and L′′ 6= 0.

Then L can be written as L = H + U where

(i) H is an ideal of L generated by at most five generators;
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(ii) H i = Li for all i ≥ 2;

(iii) U is an ideal of L such that U ′ ⊆ L5;

(iv) H and U centralize each other.

Proof. First, choose the generating set {a, b, ui, . . . , ur} for L as in Lemma 5. We

will modify the set so that in addition to the properties from Lemma 5, one of the

following hold:

(a) u1, u2, . . . , ur ∈ CL(a) or

(b) u2, u3, . . . , ur ∈ CL(〈a, u1〉).

If we have condition (a) then we have conditions from Lemma 5 and we are done. So

suppose there exists at least one ui /∈ CL(a), call it u1. So [u1, a] 6= 0 but [u1, a] ∈ L5 from

the Lemma 5, hence [u1, a] = α[a, b, a, a, b]. Scaling u1, we have [u1, a] = [a, b, a, a, b].

Now for j = 2, 3, . . . , r, [uj, a] = αj[a, b, a, a, b], then let u′j = uj − αju1. Then

[u′j, a] = [uj, a]− αj[u1, a] = αj[a, b, a, a, b]− αj[a, b, a, a, b] = 0.

So we have u′2, u
′
3, . . . u

′
r ∈ CL(a) and [u1, a] = [a, b, a, a, b]. If all the uj’s centralize u1 we

are done because we have satistifed the conditions for case (b), so suppose not and say

u′2 does not centralize u1. Now [u′2, u1] = [a, b, a, a, b] (scaling u2) and for j = 3, 4, . . . , r

we have [u′j, u1] = βj[a, b, a, a, b]. So let u′′j = u′j − βju
′
2. Then

[u′′j , u1] = [u′j, u1]− βj[u
′
2, u1] = βj[a, b, a, a, b]− βj[a, b, a, a, b] = 0.
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Now dropping all primes for simplicity we have

[u1, a] = [a, b, a, a, b],

u2, u3, . . . , u5 ∈ CL(a),

[u2, u1] = [a, b, a, a, b], and

u3, u4, . . . , ur ∈ CL(u1).

If u3, u4, . . . , u5 centralize u2 then we go to the next paragraph (at *). If not, use

u3 and similarly suppose [u3, u2] = [a, b, a, a, b] (scaling u3). Then for j = 4, 5, . . . , r,

[uj, u2] = βj[a, b, a, a, b]. So let u′′′j = uj − βju3. Then [u′′′j , u2] = 0 for j = 4, 5, . . . , r.

Dropping the primes we have

1. [u1, a] = [a, b, a, a, b]

2. u2, u3, . . . , ur ∈ CL(a)

3. [u2, u1] = [a, b, a, a, b] and [u3, u2] = [a, b, a, a, b]

4. u3, u4, . . . , ur ∈ CL(u1) and u4, u5, . . . , ur ∈ CL(u2)

Continuing in the same process, one more step would produce

1. [u1, a] = [a, b, a, a, b]

2. u2, u3, . . . , ur ∈ CL(a)

3. [u2, u1] = [a, b, a, a, b], [u3, u2] = [a, b, a, a, b] and [u4, u3] = [a, b, a, a, b]

4. u3, u4, . . . , ur ∈ CL(u1), u4, u5, . . . , ur ∈ CL(u2) and u5, u6, . . . ur ∈ CL(u3)

So we continue this process until we get to some k such that

1. [u1, a] = [a, b, a, a, b]
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2. u2, u3, . . . , ur ∈ CL(a)

3. [ui, ui−1] = [a, b, a, a, b] for i = 2, 3, . . . , k

4. [uk+1, uk] = 0

5. ui+2, ui+3, . . . , ur ∈ CL(ui) for all i = 1, 2, . . . , k

If k is even, then let a′ = a + u2 + u4 + . . . + uk. Then

[u1, a
′] = [u1, a] + [u1, u2] + [u1, u4] + . . . + [u1, uk]

= [a, b, a, a, b]− [a, b, a, a, b] + 0 + . . . + 0

= 0,

[u2, a
′] = [u2, a] + [u2, u2] + [u2, u4] + . . . + [u2, uk]

= 0 + 0 + +0 + . . . + 0

= 0, and

[u3, a
′] = [u3, a] + [u3, u2] + [u3, u4] + . . . + [u3, uk]

= 0 + [a, b, a, a, b]− [a, b, a, a, b] + 0 + . . . + 0

= 0.

Continuing on we see that u1, u2, . . . , ur ∈ CL(a′), hence property (a) holds. Now if k

is odd, let u′1 = u1 + u3 + . . . + uk. Then similarly, we can see that u2, u3, . . . , ur ∈

CL(〈a, u1〉), hence property (b) holds.

*Now suppose that {a, b, u1, . . . , ur} is the generating set with the conditions from

the previous lemma, and in addition, property (a) holds. First we will assume that all

the u′is centralize b mod L5. If [ui, b] = δi[a, b, a, a, b] for some i ∈ {1, 2, . . . , r}, then let

u′i = ui−δi[a, b, a, a]. Then H = 〈a, b〉, and U = 〈u1, u2, . . . , ur〉 (where we have dropped

28



the primes) satisfy the assertions of the theorem. That is, [H, U ] = 0, and L = H + U .

The other conditions follow immediately.

Now suppose that some of the u′is do not centralize b mod L5, and assume without

loss of generality that it is u1. Then [u1, b] = [a, b, a, a] + δ1[a, b, a, a, b] where we have

scaled u1 to obtain the a coefficient of 1 for [a, b, a, a]. Then let u′1 = u1 − δ1[a, b, a, a],

which implies that

[u′1, b] = [u1, b]− δ1[a, b, a, a, b]

= [a, b, a, a] + δ1[a, b, a, a, b]− δ1[a, b, a, a, b]

= [a, b, a, a].

Now for j = 2, 3, . . . , r, the same substitution yields [u′j, b] = αj[a, b, a, a]. So let u′′j =

u′j − αju
′
1 for j = 2, 3, . . . r. Then

[u′′j , b] = [u′j, b]− αj[u
′
1, b] = αj[a, b, a, a]− αj[a, b, a, a] = 0.

Dropping the primes for simplicity we have

[u1, b] = [a, b, a, a] and

u2, u3, . . . , ur ∈ CL(b).

If u2, u3, . . . , ur centralize u1, then choose H = 〈a, b, u1〉 and U = 〈u2, u3, . . . , ur〉 and

we are done. So, suppose this is not the case and [u2, u1] = [a, b, a, a, b]. Then we can

repeat the first part of the proof and select a generating set {a, b, u1, u2, . . . , ur} such

that the following properties hold:

1. [u1, b] = [a, b, a, a]
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2. u2, u3, . . . , ur ∈ CL(b)

3. [uk−1, uk−2] = [a, b, a, a, b]

4. [uk+1, uk] = 0

5. ui+2, ui+3, . . . , ur ∈ CL(ui) for all i = 1, 2, . . . , k

If k is even, then we can set H = 〈a, b, u1 + u3 + . . . + uk−1, u2 + u4 + . . . + uk〉 and

U = 〈u2, u3, . . . , uk−1, uk+1, . . . , ur〉. If k is odd, set H = 〈a, b, u1 + u3 + . . . + uk〉 and

U = 〈u2, u3, . . . , ur〉. In both cases, L = H + U and [H, U ] = 0, so H and U satisfy the

assertions of the theorem.

In the case of property (b), we consider the Lie algebra L1 = 〈a, b, u2, . . . , ur〉 and

choose subalgebras H1 and U1 according to the process described previously. Then again,

L1 = H1 + U1 and [H1, U1] = 0, and so H1 and U1 satisfy the assertions of the theorem.

Moreover, H1 can be generated by at most four elements. For L, we can choose the

subalgebras H = 〈H1, u1〉 and U = U1. 2

Lemma 5 and Theorem 3 give the Lie algebra analog to the Schneider’s central

decomposition. Here we have found that L = H + U , where we will see in the next

chapters the structure of U and that H is one of fourteen algebras after we classify H

over the complex numbers.
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Chapter 5

The Structure of U

The nilpotent Lie algebra U in Theorem 3 has the multiplication of a skew form from

U into 〈z〉, where z = [a, b, a, a, b]. U has a basis x1, y1, x2, y2, . . . , xr, yr, z, w1, . . . , ws

where [xi, yj] = δijz and Z(U) = 〈z, w1, . . . , ws〉 by Theorem 6.3 [3]. Hence U is the

direct sum of a generalized Heisenberg Lie algebra made up by the x, y, and z′s, and an

abelian Lie algebra made up by the w′s.
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Chapter 6

Classification of L=H+U when

H=〈a, b〉

We now turn to classifying the Lie algebra L = H + U given in Theorem 3. For the

remainder of this paper, we will examine the possible structures of the Lie algebra H

over the complex numbers. We consider the cases as the number of generators for H

increase. H is said to be degenerate if H = H1 +U1 where H1 and U1 are as in Theorem

3 and U1 6= 0, and do not consider them further. To begin, we will consider H = 〈a, b〉.

When H is generated by two elements, we know U is empty, H has dimension 6, and

L6 = 0 since dim(L′′) = 1. If we say H is generated by a and b as in the previous chap-

ters, then we have [[a, b], [a, b]] = [a, b, a, b]+ [a, [a, b, b]]. Since the left hand side is 0 and

[a, [b, [a, b]]] = 0 since [a, b, b] ∈ H4 from Lemma 3, it follows that [a, b, a, b] = 0. Also,

[[a, b, a], [a, b]] = [a, b, a, a, b] + [a, [a, b, a, b]] = [a, b, a, a, b]. Note that since [a, b, b] ∈ H4,

[a, b, b] = e[a, b, a, a] + f [a, b, a, a, b]. Thus we can construct the following multiplication

table:

32



Table 6.1: Two Generated Multiplication Table
a b [a,b] [a,b,a] [a,b,a,a] [a,b,a,a,b]

a 0 [a,b] -[a,b,a] -[a,b,a,a] 0 0
b -[a,b] 0 ** 0 -[a,b,a,a,b] 0

[a,b] [a,b,a] ** 0 -[a,b,a,a,b] 0 0
[a,b,a] [a,b,a,a] 0 [a,b,a,a,b] 0 0 0

[a,b,a,a] 0 [a,b,a,a,b] 0 0 0 0
[a,b,a,a,b] 0 0 0 0 0 0

Where ** is given by the fact that since [a, b, b] ∈ H4, [a, b, b] = e[a, b, a, a] +

f [a, b, a, a, b]. If a second algebra of this type with generators α, β has the identity

[α, β, β] = s[α, β, α, α] + t[α, β, α, α, β], we would like to know when these algebras are

isomorphic. We look for a change of basis by setting

α = c0a + c1b + c2[a, b] + c3[a, b, a] + c4[a, b, a, a] + c5[a, b, a, a, b] (6.1)

β = h1b + h2[a, b] + h3[a, b, a] + h4[a, b, a, a] + h5[a, b, a, a, b] (6.2)

where c0, h1 6= 0. Multiplying these together we obtain the following expressions:

• [α, β] = c0h1[a, b] − c0h2[a, b, a] − c0h3[a, b, a, a] − c1h2[a, b, b] − c1h4[a, b, a, a, b] +

c2h1[a, b, b]− c2h3[a, b, a, a, b] + c3h2[a, b, a, a, b] + c4h1[a, b, a, a, b]

• [α, β, α] = c2
0h1[a, b, a]− c2

0h2[a, b, a, a] + c0c1h1[a, b, b]− c0c1h3[a, b, a, a, b]

- c2
1h2[a, b, b, b]− c0c2h2[a, b, a, a, b]− c0c3h1[a, b, a, a, b] + c1c2h1[a, b, b, b]

• [α, β, α, α] = c3
0h1[a, b, a, a] - c2

0c1h2[a, b, a, a, b] + c0c
2
1h1[a, b, b, b]

+ c2
0c2h1[a, b, a, a, b]

• [α, β, α, α, α] = c3
0c1h1[a, b, a, a, b]

• [α, β, α, α, β] = c3
0h

2
1[a, b, a, a, b]

• [[α, β, α], β] = c0c1h
2
1[a, b, b, b]
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• [[α, β], [α, β, α]] = −c3
0h

2
1[a, b, a, a, b]

• [α, β, β] = c0h
2
1[a, b, b]− c0h1h3[a, b, a, a, b]− c1h1h2[a, b, b, b] + c2h

2
1[a, b, b, b]

- c0h
2
2[a, b, a, a, b]− c0h1h3[a, b, a, a, b]

• [α, β, β, β] = c0h
3
1[a, b, b, b]

Note that since we know c0, h1 6= 0, and we have 0 = [α, β, α, α, α] = c3
0c1h1[a, b, a, a, b],

therefore c1 = 0. Now since [α, β, β] = s[α, β, α, α] + t[α, β, α, α, β] it follows that

[α, β, β, β] = s[α, β, α, α, β], and so c0h
3
1[a, b, b, b] = sc3

0h
2
1[a, b, a, a, b] or

c0h
3
1e[a, b, a, a, b] = sc3

0h
2
1[a, b, a, a, b]. Hence

ec0h
3
1 = sc3

0h
2
1 oreh1 = sc2

0.

Hence e = 0 if and only if s = 0. Now suppose e = s = 0, and then let t = 0. Then in

the algebra generated by α and β we get [α, β, β] = 0, and in the algebra generated by

a and b we get [a, b, b] = f [a, b, a, a, b]. Now set c0 = h1 = 1 and h3 = f
2

and all other ci

and hj = 0. Then α = a, β = b + f
2
[a, b, a] and

[α, β] = [a, b]− f

2
[a, b, a, a]

[α, β, β] = [a, b, b]− f

2
[a, b, a, a, b] +

f

2
[[a, b], [a, b, a]]

= [a, b, b]− f [a, b, a, a, b] = 0

and any algebra with [a, b, b] ∈ H5 is isomorphic to one such that [α, β, β] = 0 and we

obtain the following multiplication table:
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Table 6.2: Two Generated Multiplication Table Case 1
a b [a,b] [a,b,a] [a,b,a,a] [a,b,a,a,b]

a 0 [a,b] -[a,b,a] -[a,b,a,a] 0 0
b -[a,b] 0 0 0 -[a,b,a,a,b] 0

[a,b] [a,b,a] 0 0 -[a,b,a,a,b] 0 0
[a,b,a] [a,b,a,a] 0 [a,b,a,a,b] 0 0 0

[a,b,a,a] 0 [a,b,a,a,b] 0 0 0 0
[a,b,a,a,b] 0 0 0 0 0 0

Now suppose that e, s 6= 0 and set s = 1, t = 0 so that [α, β, β] = [α, β, α, α]. We

can show any algebra with e 6= 0 is isomorphic to one with this product by setting c0 =

1, h1 = 1
e
, h3 = f

2e
, and all other ci, hj = 0. By doing this, then α = a, β = 1

e
b+ f

2e
[a, b, a],

and we get [α, β] = 1
e
[a, b] − f

2e
[a, b, a, a] so [α, β, β] = 1

e2 [a, b, b] − f
2e2 [a, b, a, a, b] −

f
2e2 [a, b, a, a, b] = [α, β, α, α]. Hence this change of basis gives the identity for any of

these algebras with s 6= 0, and we get the multiplication table:

Table 6.3: Two Generated Multiplication Table Case 2
a b [a,b] [a,b,a] [a,b,a,a] [a,b,a,a,b]

a 0 [a,b] -[a,b,a] -[a,b,a,a] 0 0
b -[a,b] 0 -[a,b,a,a] 0 -[a,b,a,a,b] 0

[a,b] [a,b,a] [a,b,a,a] 0 -[a,b,a,a,b] 0 0
[a,b,a] [a,b,a,a] 0 [a,b,a,a,b] 0 0 0

[a,b,a,a] 0 [a,b,a,a,b] 0 0 0 0
[a,b,a,a,b] 0 0 0 0 0 0

Summarizing, if H is a two-generated Lie algebra with dim(H ′/H ′′) = 3, H ′′ 6=

0 with the same notation as before, the basis for H is given by {a, b, [a, b], [a, b, a],

[a, b, a, a], [a, b, a, a, b]}, and dim(H)=6. Also, H2 = H ′ = 〈[a, b], [a, b, a], [a, b, a, a],

[a, b, a, a, b]〉, dim(H ′)=4, H3 = 〈[a, b, a], [a, b, a, a], [a, b, a, a, b]〉, H4 = 〈[a, b, a, a] ,

[a, b, a, a, b]〉, H5 = H ′′ = {[a, b, a, a, b]}, dim(H ′′)=1,Z(H)= {[a, b, a, a, b]}, and H6 = 0

so H is nilpotent of class 5. We summarize these results into the following theorem.

Theorem 4. Suppose H is a two generated nilpotent Lie algebra with dim(H ′/H ′′) = 3

and H ′′ 6= 0. Then there exists generators a and b such that the multiplication table
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between basis elements is given either in Table 6.2 or Table 6.3. These algebras are not

isomorphic since in one case H ′/H5 is abelian and in the other case it is not.
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Chapter 7

Isomorphism Classes when

H=〈a, b, u〉

Now consider H = 〈a, b, u〉 where M = 〈a, b〉 is the 2-generated algebra as in the

previous chapter, and let y = [a, b, a, a] and z = [a, b, a, a, b] for simplicity. From Lemma

5, [u, a] = αz, [u, b] = βy + γz and u /∈ CH(M), where α, β, γ ∈ C and C is the complex

numbers. We will try to divide these algebras into isomorphism classes, each with a

simple representation by changing u. Let u′ = ρy + τu, with τ 6= 0, otherwise u′ ∈ M .

Then

[u′, a] = τ [u, a] = ταz and

[u′, b] = ρz + τ(βy + γz)

Let ρ = −τγ. Then [u′, b] = τβy and [u′, a] = ταz. We now alter τ by looking at all the

possible cases for α and β, which are:

1. If α = 0 and β = 0, then u′ ∈ CH(M) and H = M + U , therefore H is degenerate.

2. If α = 0 and β 6= 0, then let τ = 1
β
. Then [u′, a] = 0 and [u′, b] = y.
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3. If α 6= 0 and β = 0, then let τ = 1
α
. Then [u′, a] = z and [u′, b] = 0.

4. If α 6= 0 and β 6= 0, then let τ = 1
α
. Then [u′, a] = z and [u′, b] = σy where σ = β

α
.

In the last case, we want σ = 1 so we rescale a, b and u′ to produce a further

simplification. By letting a′ = da, b′ = eb and u′′ = fu′ where d, e, and f are scalars

then [a′, b′] = de[a, b], [a′, b′, a′] = d2e[a, b, a], [a′, b′, a′, a′] = y′ = d3ey, [a′, b′, a′, a′, b′] =

z′ = d3e2z, and [a′, b′, b′] = de2[a, b, b]. Also, [u′′, a′] = df [u′, a] = dfz = df
d3e2 z

′ and

[u′′, b′] = feσ
d3e

y′.

Either [a, b, b] = 0 or [a, b, b] = y. In the first case [a′, b′, b′] = de2[a, b, b] = 0 and we

are done. In the second case [a′, b′, b′] = de2y = de2

d3e
y′ = e

d2 y
′. Now we choose e, d and f

such that f
d2e2 = 1, f

d3 σ = 1, and e
d2 = 1. We accomplish this by letting d = 1

σ1/3 , f = 1
σ2

and e = 1
σ2/3 .

Dropping all primes we have the following 6 possible isomorphism classes:

Table 7.1: Possible Isomorphisms
1 [u,a]=z, [u,b]=0, [a,b,b]=0
2 [u,a]=0, [u,b]=y, [a,b,b]=0
3 [u,a]=z, [u,b]=y, [a,b,b]=0
4 [u,a]=z, [u,b]=0, [a,b,b]=y
5 [u,a]=0, [u,b]=y, [a,b,b]=y
6 [u,a]=z, [u,b]=y, [a,b,b]=y

In this case, H is degenerate precisely when dim(Z(H)) > 1. Directly checking the

six cases we find that they are all non degenerate. We would now like to examine which

of these cases are isomorphic to each other. Notice that H = {a, b, [a, b], [a, b, a], y, z, u},

H2 = {[a, b], [a, b, a], y, z}, H1 = {[a, b], [a, b, a], y, z, b, u}, and Z(H) = H5 = {z}.

In cases 1, 2, and 3, CH(H2/H5) = {b, [a, b], [a, b, a], y, z, u} and in cases 4, 5 and 6

CH(H2/H5) = {[a, b], [a, b, a], y, z, u}. Since the dimensions are not equal, we can con-

clude that cases 1, 2, and 3 are not isomorphic to cases 4, 5, and 6. Now by examining

CH(H1/H5) we get that in case 1, CH(H1/H5) = {b, [a, b], [a, b, a], y, z, u}, in cases 2
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and 3 CH(H1/H5) = {[a, b], [a, b, a], y, z}, in case 4, CH(H1/H5) = {[a, b, a], y, z, u} and

in cases 5 and 6, CH(H1/H5) = {[a, b, a], y, z}. Again, by counting the dimensions we

can conclude that case 1 is not isomorphic to case 2 or 3, and case 4 is not isomorphic

to case 5 or 6. It remains to show the relationship between cases 2 and 3, and between

cases 5 and 6.

Suppose that case 2 is represented with primes and case 3 is not and that they

are isomorphic. Let a′ = c0a + c1b + c2[a, b] + c3[a, b, a] + c4y + c5z + c6u and b′ =

h1b + h2[a, b] + h3[a, b, a] + h4y + h5z + h6u similar to equations (6.1) and (6.2). Let

u′ = d0a + d1b + d2[a, b] + d3[a, b, a] + d4y + d5z + d6u, and note that [u′, H2] = 0 since

[u′, [a′, b′]] = [[u′, a′], b′] + [a′, [u′, b′]] = 0. Now 0 = [u′, [a, b]] = d0[a, [a, b]] + d1[b, [a, b]] +

d3[a, b, a, a, b] which implies that d0 = d3 = 0. Also, 0 = [u′, [a, b, a]] = −d2[a, b, a, a, b]

so d2 = 0 and 0 = [u′, [a, b, a, a]] = −d1z, hence d1 = 0. Therefore u′ = d4y + d5z + d6u.

Now

0 = [u′, a′] = d4c1z + d6c0[u, a] + d6c1[u, b]

Thus 0 = d4c1 + d6c0. But c1 = 0 from previous chapter 6 work and c0 6= 0 hence d6 = 0

and u′ ∈ 〈a, b〉 which is a contradiction. By similar reasoning we can conclude cases 5

and 6 are also not isomorphic. Therefore, we have six distinct isomorphism classes when

H = 〈a, b, u〉. Summarizing this case into the following theorem:

Theorem 5. When H is a nilpotent Lie algebra such that dim(H ′/H ′′) = 3, H ′′ 6= 0 and

H = 〈a, b, u〉 with a and b as in the previous theorem and u /∈ CH(〈a, b〉), then there are

6 isomorphism classes whose canonical algebras are given in Table 7.1.
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Chapter 8

Isomorphism Classes for

H = 〈a, b, u1, u2〉

Now consider the case H = 〈a, b, u1, u2〉, where H is as in Theorem 3 and M =

〈a, b〉 as in Table 6.2 or Table 6.3. Again let y = [a, b, a, a] and z = [a, b, a, a, b] for

simplification. From Lemma 5, [u1, a] = α1z, [u1, b] = β1y + γ1z, [u2, a] = α2z, [u2, b] =

β2y +γ2z. Next we will divide the algebras into isomorphism classes, each with a simple

multiplication between basis elements. Let

u′1 = c0y + c1u1 + c2u2

u′2 = d0y + d1u1 + d2u2

where

 c1 c2

d1 d2

 is non-singular. Then
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[u′1, a] = (c1α1 + c2α2)z = ρ1z

[u′2, a] = (d1α1 + d2α2)z = ρ2z

[u′1, b] = c0[y, b] + c1(β1y + γ1z) + c2(β2y + γ2z) = σ1y + τ1z

[u′2, b] = d0[y, b] + d1(β1y + γ1z) + d2(β2y + γ2z) = σ2y + τ2z

Setting τ1 = τ2 = 0 and then letting c0 = −c1γ1− c2γ2 and d0 = −d1γ1− d2γ2 we obtain

that both [u′1, b], [u
′
2, b] ∈ 〈y〉.

Placing our equations into a matrix, we have

 c1 c2

d1 d2


 α1 β1

α2 β2

 =

 ρ1 σ1

ρ2 σ2


which we denote by AB = C.

If rank(B)=2, then we can solve AB = I to obtain

[u′1, a] = z, [u′1, b] = 0, [u′2, a] = 0, and [u′2, b] = y

It is impossible for rank(B)=0, otherwise u1, u2 ∈ U as in Theorem 3.

If rank(B)=1, we have 3 cases:

1. If the second column of B is 0, we solve AB =

 1 0

0 0

 to obtain

[u′1, a] = z, [u′1, b] = 0, [u′2, a] = 0, and [u′2, b] = 0

2. If the first column of B is 0, we solve AB =

 0 1

0 0

 to obtain

[u′1, a] = 0, [u′1, b] = y, [u′2, a] = 0, and [u′2, b] = 0
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3. If neither column of B is 0, then we can solve AB =

 1 δ

0 0

 for some δ 6= 0 to

obtain

[u′1, a] = z, [u′1, b] = δy, [u′2, a] = 0, and [u′2, b] = 0

Another change will allow us to take δ = 1 for further simplification. Dropping all primes

in the foregoing to simplify the notation, let a′ = da, b′ = eb, and u′1 = fu1 where no

scalar is 0. Then we compute

[a′, b′] = de[a, b]

[a′, b′, a′] = d2e[a, b, a]

y′ = [a′, b′, a′, a′] = d3ey

z′ = d3e2z

[a′, b′, b′] = de2[a, b, b]

[u′1, a
′] = df [u1, a] = dfz =

df

d3e2
z′ =

f

d2e2
z′

[u′1, b
′] = ef [u1, b] = efδy =

efδ

d3e
y′ =

fδ

d3
y′

Furthermore, [a, b, b] = 0 or y. Hence, [a′, b′, b′] = 0 or [a′, b′, b′] = de2y = e
d2 y

′. Therefore

we need to solve

f

d2e2
= 1,

fδ

d3
= 1 and

e

d2
= 1

Set d = 1
δ1/3 , e = 1

δ2/3 and f = 1
δ2 to satisfy the above equations. Then, by dropping all

primes the third rank(B)=1 case becomes

[u1, a] = z, [u1, b] = y, [u2, a] = 0, [u2, b] = 0 and [a, b, b] = 0 or y
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Since u1 and u2 have been altered, now [u1, u2] = πz. A final change will allow π = 0

or π = 1 to be used. In all rank(B)=1 cases π 6= 0 and we can let u′2 = 1
π
u2. Since

[u2, a] = [u2, b] = 0, we can add [u1, u2] = z to the multiplication list. In the rank(B)=2

case, let a′ = da, b′ = eb, u′1 = f1u1, u
′
2 = f2u2. As before, y′ = d3ey and z′ = d3e2z,

[u′1, a
′] = df1[u1, a] = df1z =

df1

d3e2
z′

[u′2, b
′] = ef2[u2, b] = ef2y =

ef2

d3e
y

[u′1, u
′
2] = f1f2[u1, u2] = f1f2πz =

f1f2

d3e2
πz′

[a′, b′, b′] =
de2

d3e
y′ =

e

d2
y′

We want

e

d2
= 1,

f1f2

d3e2
π = 1,

f1

d2e2
= 1 and

f2

d3
= 1

Let d = 1
π1/2 , e = 1

π
, f1 = 1

π3 and f2 = 1
π3/2 to solve these equations. Then

[u′1, a
′] = z′, [u′1, b

′] = y′, [u′2, a
′] = 0, [u′2, b

′] = 0

[u′1, u
′
2] = z′ or 0 and [a′, b′, b′] = y′ or 0

In summary we have the following 10 possible isomorphism classes (at the top of the

next page):
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Table 8.1: Five Generated Possible Isomorphisms
1 [u1, a] = z, [u1, b] = 0, [u2, a] = 0, [u2, b] = y, [u1, u2] = z, [a, b, b] = 0
2 [u1, a] = z, [u1, b] = 0, [u2, a] = 0, [u2, b] = y, [u1, u2] = 0, [a, b, b] = 0
3 [u1, a] = z, [u1, b] = 0, [u2, a] = 0, [u2, b] = 0, [u1, u2] = z, [a, b, b] = 0
4 [u1, a] = 0, [u1, b] = y, [u2, a] = 0, [u2, b] = 0, [u1, u2] = z, [a, b, b] = 0
5 [u1, a] = z, [u1, b] = y, [u2, a] = 0, [u2, b] = 0, [u1, u2] = z, [a, b, b] = 0
6 [u1, a] = z, [u1, b] = 0, [u2, a] = 0, [u2, b] = y, [u1, u2] = z, [a, b, b] = y
7 [u1, a] = z, [u1, b] = 0, [u2, a] = 0, [u2, b] = y, [u1, u2] = 0, [a, b, b] = y
8 [u1, a] = z, [u1, b] = 0, [u2, a] = 0, [u2, b] = 0, [u1, u2] = z, [a, b, b] = y
9 [u1, a] = 0, [u1, b] = y, [u2, a] = 0, [u2, b] = 0, [u1, u2] = z, [a, b, b] = y
10 [u1, a] = z, [u1, b] = y, [u2, a] = 0, [u2, b] = 0, [u1, u2] = z, [a, b, b] = y

We will now divide these 10 classes into isomorphism classes. Similar to when H =

〈a, b, u〉, we see that cases 1-5 are when [a, b, b] = 0 and cases 6-10 are when [a, b, b] = y

and bases for H, H1, H ′ = H2 and H5 are

H = {a, b, [a, b], [a, b, a], y, z, u1, u2}

H1 = {b, [a, b], [a, b, a], y, z, u1, u2}

H2 = {[a, b], [a, b, a], y, z}

H5 = {z}

Notice for cases 3 and 8, if we let â = a− u2, then [u1, â] = [u1, a]− [u1, u2] = z− z = 0,

so then u1, u2 ∈ U and these cases really belong in the two generator case, so they are

degenerate. We now check to see if any of the remaining 8 cases are degenerate in the

sense that H = H1 + U1, U1 6= 0 and H1, U1 are as in Theorem 3.

If dim(Z(H)) = 2 or 3, then H is clearly degenerate. We will find dim(Z(H)) by

letting x = c0a+ c1b+ c2[a, b]+ c3[a, b, a]+ c4y+ c5z + c6u1 + c7u2 ∈ Z(H). First consider

cases 1, 2, 6 and 7 where [u2, b] = y. Then [x, a] = c1[a, b] + c2[a, b, a] + c3y + c6z = 0

and [x, b] = c0[a, b] + c4z + c7y = 0. Hence c0 = c1 = c2 = c3 = c4 = c6 = c7 = 0 and

dim(Z(H)) = 1. Now consider Z(H/H5). Let x + H5 ∈ Z(H/H5) with x as above.
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Then [x, a] = c1[b, a] + c2[a, b, a] + c3y ∈ H5 and [x, b] = c0[a, b] + c7y ∈ H5. Then

c1 = c2 = c3 = c0 = c7 = 0 and x = c4y + c6u1 and dim(Z(H/H5)) = 2.

Suppose that H = H1 + U1. If dim(U1) = 1, then dim(Z(H)) = 2, which is a

contradiction. If dim(U1) = 2, then dim(Z(H/H5)) = 3, which is also a contradiction.

Hence all 4 cases are nondegenerate. Cases 4, 5, 9 and 10 are handled in a similar

manner and all 4 of these cases are also nondegenerate.

Now that we have determined which cases are degenerate, we now divide the remain-

ing 8 nondegenerate cases into isomorphism classes. In cases 1-5, we find CH(H2/H5)

= {b, [a, b], [a, b, a], y, z, u1, u2} so the dimension is 7. However, in cases 6-10 we find

CH(H2/H5) = {[a, b], [a, b, a], y, z, u1, u2} so the dimension is 6. Therefore cases 1-5 are

not isomorphic to cases 6-10. Also, CH(H1) = {z, u1} in cases 2 and 7 and CH(H1) = {z}

in cases 1, 4, 5, 6, 9 and 10. Thus the class defined by 2 and the one defined by 7 are

not isomorphic to any of the other classes. In summary we have cases 1, 2, 4, 5 are not

isomorphic to cases 6, 7, 9 and 10, and case 2 is not isomorphic to cases 1, 4, and 5, and

case 7 is not isomorphic to cases 6, 9 and 10. It remains to see if cases 1, 4, and 5 are

isomorphic as well as if cases 6, 9, and 10 are isomorphic.

We claim that case 5 is isomorphic to case 4 (5 ∼= 4). Let a, b, u1, u2 give the multi-

plication table for class 5. If we let ā = a− u2, then [ā, b] = [a− u2, b] = [a, b], [ā, b, ā] =

[a, b, a − u2] = [a, b, a], ȳ = [ā, b, ā, ā] = [a, b, a, a − u2] = y, [ā, b, ā, ā, ā] = [a, b, a, a, a] =

0, z̄ = [ā, b, ā, ā, b] = [a, b, a, a, b] = z, [u1ā] = [u1, a − u2] = [u1, a] − [u1, u2] = z − z =

0, [u1, b] = y, [u2, ā] = [u2, a − u2] = [u2, a] = 0, [u2, b] = 0, [u1, u2] = z and [ā, b, b] =

[a, b, b] = 0, so we have 5 ∼= 4. Similarly, with the same change we can also show that

10 ∼= 9, since all of the above equations are the same and [ā, b, b] = [a, b, b] = y.

We also claim that 1 ∼= 4. Let a, b, u1, u2 give the multiplication for case 4, and now

we will show we can change to get the multiplication in 1. If we let ā = a + u1 − u2, b̄ =
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b− [a, b] + u2, ū1 = −u2, and ū2 = −y + u1 − u2 then

[ū1, u2] = −[u2, u1] = z

[ā, b̄, b̄] = [a, b, b] + [u1, b, b] + [a,−[a, b],−[a, b]] = 0 + [y, b] + [a, [a, b], [a, b]] = z − z = 0

[ū1, ā] = [−u2, a + u1 − u2] = z = z̄

[ū1, b̄] = [−u2, b− [a, b] + u2] = 0

[ū2, ā] = [−y + u1 − u2, a + u1 − u2] = −[u1, u2]− [u2, u1] = 0

[ū2, b̄] = [−y + u1 − u2, b− [a, b] + u2] = −z + y + z = ȳ

Thus this change takes type 4 into an algebra with multiplication

[u1, a] = z, [u1, b] = 0, [u2, a] = 0, [u2, b] = y, [u1, u2] = z, [a, b, b] = 0

Hence 4 ∼= 1. The same transformation shows 9 ∼= 6. Hence 1 ∼= 4 ∼= 5 and 6 ∼= 9 ∼= 10.

Therefore we have 4 isomorphism classes when H = 〈a, b, u1, u2〉. They have repre-

sentations as shown in type 1, 2, 6 and 7.

Theorem 6. Let H = 〈a, b, u1, u2〉 as in Theorem 3. Then there are four isomorphism

classes represented by the multiplication formulas of types 1, 2, 6 and 7 in Table 8.1.
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Chapter 9

Isomorphism Classes for

H = 〈a, b, u1, u2, u3〉

Finally we consider H = 〈a, b, u1, u2, u3〉, where H is as in Theorem 3 and M = 〈a, b〉

as in Table 6.2 or Table 6.3. Continue to let y = [a, b, a, a] and z = [a, b, a, a, b], we

have [u1, a] = α1z, [u1, b] = β1y + γ1z, [u2, a] = α2z, [u2, b] = β2y + γ2z, [u3, a] = α3z,

[u3, b] = β3y + γ3z. Let

u′1 = c0y + c1u1 + c2u2 + c3u3

u′2 = d0y + d1u1 + d2u2 + d3u3

u′3 = e0y + e1u1 + e2u2 + e3u3

where placing the coefficients in the following non-singular matrix


c1 c2 c3

d1 d2 d3

e1 e2 e3

.
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Then

[u′1, a] = c1α1z + c2α2z + c3α3z = ρ1z

[u′2, a] = d1α1z + d2α2z + d3α3z = ρ2z

[u′3, a] = e1α1z + e2α2z + e3α3z = ρ3z

[u′1, b] = c0z + c1(β1y + γ1z) + c2(β2y + γ2z) + c3(β3y + γ3z) = σ1y + τ1z

[u′2, b] = d0z + d1(β1y + γ1z) + d2(β2y + γ2z) + d3(β3y + γ3z) = σ2y + τ2z

[u′3, b] = e0z + e1(β1y + γ1z) + e2(β2y + γ2z) + e3(β3y + γ3z) = σ3y + τ3z

Set τ1 = τ2 = τ3 = 0. Then letting c0 = −c1γ1 − c2γ2 − c3γ3, d0 = −d1γ1 − d2γ2 − d3γ3,

and e0 = −e1γ1 − e2γ2 − e3γ3 we obtain that [u′1, b], [u
′
2, b], [u

′
3, b] ∈ 〈y〉. Simplifying the

equations into a matrix equation to solve, we have


c1 c2 c3

d1 d2 d3

e1 e2 e3




α1 β1

α2 β2

α3 β3

 =


ρ1 σ1

ρ2 σ2

ρ3 σ3


which we denote by AB = C where A is non-singular. The analysis follows the same

pattern as in the last chapter.

If rank(B)=2, then we can find A such that AB =


1 0

0 1

0 0

 to obtain

[u′1, a] = z, [u′1, b] = 0, [u′2, a] = 0, [u′2, b] = y, [u′3, a] = 0 and [u′3, b] = 0

It is impossible for rank(B)=0 for then u1, u2, u3 ∈ U as in Theorem 3.

If rank(B)=1, similar to the last chapter, we obtain 3 cases:
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1. [u1, a] = z, [u1, b] = 0, [u2, a] = 0, [u2, b] = 0, [u3, a] = 0, and [u3, b] = 0

2. [u1, a] = 0, [u1, b] = y, [u2, a] = 0, [u2, b] = 0, [u3, a] = 0, and [u3, b] = 0

3. [u1, a] = z, [u1, b] = δy, [u2, a] = 0, [u2, b] = 0, [u3, a] = 0 and [u3, b] = 0 where

δ 6= 0

In case 3, just like before, we change generators to make δ = 1. Let a′ = da, b′ = eb,

and u′1 = fu1. The same computations as in the last chapter show that letting d = δ1/3,

e = 1
δ2/3 , and f = 1

δ2 changes case 3 to [u′1, a
′] = z and [u′1, b

′] = y and the other brackets

are 0. To proceed, we drop the primes for simplicity and now case 3 becomes

[u1, a] = z, [u1, b] = y, [u2, a] = 0, [u2, b] = 0, [u3, a] = 0, and [u3, b] = 0

Now for each of the above cases we have [u1, u2] = π1z, [u1, u3] = π2z and [u2, u3] =

π3z. For the rank 1 case, if π1 = 0 we can interchange u2 and u3, then π1 6= 0. Now let

û2 = 1
π1

u2, then [u1, û2] = 1
π1

[u1, u2] = z. Dropping the hat we have [u1, u2] = z, [u1, u3] =

π2z, [u2, u3] = π3z. Now we can let û3 = u3 − π2u2 and then [u1, û3] = π2z − π2z = 0

and [u2, û3] = [u2, u3] − π2[u2, u2] = [u2, u3]. So dropping the hat again, we now have

[u1, u2] = z, [u1, u3] = 0, [u2, u3] = π3z. Now π3 6= 0, otherwise we drop down into a lower

dimensional case, and hence this case is degenerate. But if we let û3 = 1
π3

u3 and change

back to the u′s we have [u1, u2] = z, [u1, u3] = 0, [u2, u3] = z. Then we can let û1 = u3+u1

and then [û1, u3] = [u3, u3] + [u1, u3] = 0 and [û1, u2] = [u3, u2] + [u1, u2] = −z + z = 0

so then both u2 and u3 drop out and we are again in a lower dimensional case. Hence

all rank 1 cases are degenerate.

For the rank(B)=2 case, we have

[u1, a] = z, [u1, b] = 0, [u2, a] = 0, [u2, b] = y, [u3, a] = 0, [u3, b] = 0
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[u1, u2] = π1z, [u1, u3] = π2z, and [u2, u3] = π3z

Note that π2 and π3 cannot both be 0, otherwise u3 ∈ U and we would be back in the 8

dimensional case.

Suppose that π3 = 0. Then π2 6= 0. Let a′ = da, b′ = eb, u′1 = f1u1, u
′
2 = f2u2 and

u′3 = f3u3. Then [a′, b′] = de[a, b], [a′, b′, a′] = d2e[a, b, a], y′ = [a′, b′, a′, a′] = d3ey, z′ =

[a′, b′, a′, a′, b′] = d3e2z

[a′, b′, b′] = de2[a, b, b] = de2y =
e

d2
y′ or 0

[u′1, a
′] = f1dz =

f1d

d3e2
z′

[u′2, b
′] = f2ey =

f2e

d3e
y′

[u′1, u
′
2] = f1f2[u1, u2] =

f1f2

d3e2
π1z

′

[u′1, u
′
3] =

f1f3

d3e2
π2z

′ π2 6= 0

If π1 6= 0 we want e
d2 = f1

d2e2 = f2

d3 = f1f2π1

d3e2 = f1f3π2

d3e2 = 1. Let d = 1√
π1

, e = 1
π1

, f1 = 1
π3
1
,

f2 = 1

π
3/2
1

, and f3 = 1
(π1)1/2π2

and these equations are satisfied. Thus, dropping the

primes, [u1, u2] = z, [u1, u3] = z and [u2, u3] = 0. Now let u′2 = u2 − u3. We get that

[u1, u
′
2] = 0, [u2, u

′
2] = 0, [u3, u

′
2] = 0 and [u2, b] = y. Then if we let a′ = a − u3, we also

get [u1, a
′] = 0, [u′2, a

′] = 0 and [u3, a
′] = 0. Hence, dropping the primes u1, u3 ∈ U and

this case is degenerate.

If π1 = 0, (and therefore π3 = 0), then we want e
d2 = f1

d2e2 = f2

d3 = f1f3π2

d3e2 = 1. So

let f3 = 1
π2

, f1 = f2 = d = e = 1 to satisfy these equations, and when we drop the

primes we obtain [u1, u2] = 0, [u1, u3] = z and [u2, u3] = 0. Set a′ = a− u3 and we have

[u1, a
′] = 0 which implies u1, u3 ∈ U . Hence this case is also degenerate.

Thus far, all cases have been degenerate. There remains the rank(B)=2 case with
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π3 6= 0. Notice that if π1 6= 0, we can let u1 = π3u1 + π1u3. Then [u′1, u2] = [π3u1 +

π1u3, u2] = (π3π1 − π1π3)z = 0. Therefore we can assume that π1 = 0. Notice that this

change forces [u1, a] = ρz, ρ 6= 0. Therefore we have

[u1, a] = ρz, [u1, b] = 0, [u2, a] = 0, [u2, b] = y, [u3, a] = 0, [u3, b] = 0

[u1, u2] = 0, [u1, u3] = π2z, and [u2, u3] = π3z

Once again let a′ = da, b′ = eb, u′1 = f1u1, u
′
2 = f2u2, and u′3 = f3u3. As before we

have y′ = d3ey, z′ = d3e2z, [a′, b′, b′] = de2

d3e
y′ or = 0, [u′1, a

′] = ρf1d
d3e2 z

′, [u′2, b
′] = f2e

d3e
y′,

[u′1, u
′
3] = f1f3

d3e2 π2z
′, and [u′2, u

′
3] = f2f3

d3e2 π3z
′. Again we want to solve for the coefficients.

First, let π2 6= 0. Then we want

ρf1

d2e2
=

f2

d3
=

f1f3π2

d3e2
=

f2f3π3

d3e2
=

e

d2
= 1

Letting d = (ρπ3

π2
)1/3, e = (ρπ3

π2
)2/3, f2 = ρπ3

π2
, f1 =

ρπ2
3

π2
2

, and f3 = 1
π3

(ρπ3

π2
)4/3 solves the

above equations. Hence we get [u1, a] = z, [u1, b] = 0, [u2, a] = 0, [u2, b] = y, [u3, a] =

0, [u3, b] = 0 [u1, u2] = 0, [u1, u3] = z, [u2, u3] = z, and [a, b, b] = 0 or y. Let a′ = a− u3

and u′2 = u2 − u1. Then u1, u3 ∈ U and this case becomes degenerate.

Finally, let π2 = 0. Then we seek a solution to

ρf1

d2e2
=

f2

d3
=

f2f3π3

d3e2
=

e

d2
= 1

A solution is d = e = f2 = 1, f1 = 1
ρ

and f3 = 1
π3

. Note that ρ and π3 are not 0. We need

to show that this case is nondegenerate. We begin by stating that we know dim(Z(H)) =

1 and suppose that H is degenerate. Let v1 = c1a+ c2b+ c3[a, b]+ c4[a, b, a]+ c5y + c6z +

c7u1 +c8u2 +c9u3 and v2 = d1a+d2b+d3[a, b]+d4[a, b, a]+d5y+d6z+d7u1 +d8u2 +d9u3.
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If v1 and v2 ∈ U , then [v1, M
2] = 0 and [v2, M

2] = 0. Now [v1, [a, b]] = c1[a, [a, b]] +

c2[a, b, b]+c4z which implies that c1 = c4 = 0, [v1, [a, b, a]] = c3z. This implies c3 = 0 and

[v1, y] = c2[b, y] = 0, so c2 = 0. Similarly, d1 = d2 = d3 = d4 = 0. Now by scaling back

the coefficients, we let a′ = a + e2b + e3[a, b] + e4[a, b, a] + e5y + e6z + e7u1 + e8u2 + e9u3

and b′ = b + f3[a, b] + f4[a, b, a] + f5y + f6z + f7u1 + f8u2 + f9u3 then

0 = [v1, b
′] = −c8[u2, b] + c5z + (c9f8 − c8f9)z, so c8 = 0 and similarly

d8 = 0 and therefore

[v1, v2] = (c8d9 − d8c9)[u2, u3] = 0 since c8 = d8 = 0

This implies that v1, v2 ∈ Z(H) which is a contradiction. So this case is nondegenerate.

Hence the multiplication is

Table 9.1: Isomorphism Classes
[u1, a] = z [u1, b] = 0
[u2, a] = 0 [u2, b] = y
[u3, a] = 0 [u3, b] = 0
[u1, u2] = 0 [u1, u3] = 0
[u2, u3] = z [a, b, b] = 0 or y

Therefore we are left with only two isomorphism classes in the case when dim(H) = 9.

We summarize this case into the following theorem:

Theorem 7. Let H = 〈a, b, u1, u2, u3〉 as in Theorem 3. Then there are two isomorphism

classes represented by the multiplication formulas in Table 9.1.

If we combine all of our results, we can formalize one more theorem.
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Theorem 8. Let L be a nilpotent Lie algebra such that dim(L′/L′′) = 3 and L′′ 6= 0.

Then L can be written as L = H + U as in Theorem 3, where U is the direct sum of a

generalized Heisenberg Lie algebra and an abelian Lie algebra, and H can be classified

over the complex numbers into one of fourteen isomorphism classes. A further breakdown

reveals that there are 2 isomorphism classes when dim(H) = 6, 6 isomorphism classes

when dim(H) = 7, 4 isomorphism classes when dim(H) = 8, and 2 isomorphism classes

when dim(H) = 9.
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Chapter 10

Examples

Here will will provide some examples of the 6 dimensional and 7 dimensional cases

of L.

Example 1. Let L be the subalgebra in T (6, F ) generated by A = E12 + E34 + E45 and

B = E23 + E56. Then to generate the algebra, need to bracket all elements together until

we have everything. So

• [A, B] = (E12+E34+E45)(E23+E56)−(E23+E56)(E12+E34+E45) = E13+E46−E24

• [A, B, A] = 2E14 − E25 − E36

• [A, B, A,A] = 3E15

• [A, B, A,A, A] = 0

• [A, B, B] = 0

• [A, B, A,B] = 0

• [A, B, A,A, B] = 3E16

• [[A, B, A], [A, B]] = 3E16
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Here the dimension of L is 6, the basis for L = {A, B, [A, B], [A, B, A], [A, B, A,A],

[A, B, A,A, B]}, L′ = [A, B], [A, B, A], [A, B, A,A], [A, B, A,A, B] so the dimension of

L′ is 4. Also, L′′ = [L′, L′] = [A, B, A,A, B] so the dimension of L′′ is 1. Therefore,

dim(L′/L′′) = 3, L′′ 6= 0, L has two generators A and B, and the structure is

Table 10.1: Basis Table for Example 1
A B [A,B] [A,B,A] [A,B,A,A] [A,B,A,A,B]

A 0 [A,B] -[A,B,A] -[A,B,A,A] 0 0
B -[A,B] 0 0 0 -[A,B,A,A,B] 0

[A,B] [A,B,A] 0 0 -[A,B,A,A,B] 0 0
[A,B,A] [A,B,A,A] 0 [A,B,A,A,B] 0 0 0

[A,B,A,A] 0 [A,B,A,A,B] 0 0 0 0
[A,B,A,A,B] 0 0 0 0 0 0

Example 2. Let A = E12 + E34 + E45 and B = E23 + E56 + 3E35. Then we get

• [A, B] = E13 + E46 − E36

• [A, B, A] = 2E14 − E25 − E36

• [A, B, A,A] = 3E15

• [A, B, A,A, A] = 0

• [A, B, B] = 3E15

• [A, B, B, A] = 0

• [A, B, B, B] = 3E16

• [A, B, A,B] = 0

• [A, B, A,A, B] = 3E16

• [[A, B, A], [A, B]] = 3E16

Here we can see the structure is identical to that of the second class for L〈a, b〉, when

[a, b, b] = [a, b, a, a].
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These last two examples are when L = 〈a, b〉. The follow examples are for the 6

isomorphism classes, when L = 〈a, b, u〉.

Example 3. Let A = E12 + E34 + E45, B = E23 + E56 and U = −3E26. Then

• [A, B] = E13 + E46 − E24

• [A, B, A] = 2E14 − E25 − E36

• [A, B, A,A] = 3E15

• [A, B, A,A, A] = 0

• [A, B, B] = 0

• [A, B, A,B] = 0

• [A, B, A,A, B] = 3E16

• [[A, B, A], [A, B]] = 3E16

• [U,A] = 3E16

• [U,B] = 0

We can see this is an example of case 1 of the 6 isomorphism classes, when [u, a] =

z, [u, b] = 0 and [a, b, b] = 0.

Example 4. Let A = E12 + E34 + E45, B = E23 + E56 + 3E35 and U = −3E26. Then

• [A, B] = E13 + E46 − E36

• [A, B, A] = 2E14 − E25 − E36

• [A, B, A,A] = 3E15
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• [A, B, A,A, A] = 0

• [A, B, B] = 3E15

• [A, B, B, A] = 0

• [A, B, B, B] = 3E16

• [A, B, A,B] = 0

• [A, B, A,A, B] = 3E16

• [[A, B, A], [A, B]] = 3E16

• [U,A] = 3E16

• [U,B] = 0

Which is the example of case 4, when [u, a] = z, [u, b] = 0 and [a, b, b] = y.

Example 5. Let A = E23 + E34 + E45, E12 + E56 and U = E25. Then

• [A, B] = E46 − E13

• [A, B, A] = −E14 − E36

• [A, B, A,A] = −E15 + E26

• [A, B, A,A, A] = 0

• [A, B, B] = 0

• [A, B, A,B] = 0

• [A, B, A,A, B] = −2E16

• [[A, B, A], [A, B]] = −2E16
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• [U,A] = 0

• [U,B] = E26 − E15

Which we can see is an example of case 2, when [u, a] = 0, [u, b] = y and [a, b, b] = 0

Example 6. If we let A = E23 + E34 + E45, E12 + E56 − 1
3
E24 + 1

3
E35 and U = E25 we

get an example of case 5, when [u, a] = 0, [u, b] = y and [a, b, b] = y.

58



Bibliography

[1] Norman Blackburn, On a special class of p-groups, Acta Math. 100 (1958), 45–92.

[2] , The derived group of a 2-group, Math. Proc. Cambridge Phil. Soc. 101

(1987), no. 2, 193–196.

[3] Nathan Jacobson, Basic algebra 1, 2nd ed., W. H. Freeman and Company, New York,

1985.

[4] Kailash Misra, Ma 720 lecture notes in lie algebra, 2003.

[5] Csaba Schneider, Groups of prime-power order with a small second derived quotient,

Journal of Algebra 266 (2003), 539 – 551.

59




