
ABSTRACT

KIM, SANGMIN. The Internet Topology: Illusion and Reality. (Under the direction of Dr.
Khaled Harfoush).

Research studies targeted at unveiling the Internet topology are essential for un-

derstanding the performance of the Internet and its resilience to failures or distributed

attacks, and for generating realistic topologies to simulate Internet protocols and applica-

tions. An accurate understanding of the complex Internet structure and behavior, while

very rewarding, is very challenging and in fact is a source of controversy in the networking

research community. Till now, there is a lack of understanding of the Internet complexity

In this thesis, we make the following contributions. First, we propose an efficient

tool, AROMA, to unveil Layer-3 maps of the Internet and use it to reveal ISP maps.

AROMA reveals the same number of routers and links as existing tools such as Rocketfuel

after sending less than 5.1% of the number of probes used by Rocketfuel, and reveals at least

100% more links and routers than Rocketuel while using the same number of probe packets.

Second, we study the limitations of existing layer-3 tools such as traceroute in unveiling

the details of the Internet structure and identify that the power law connectivity observed

in the Internet topology is not an illusion as suggested by some researchers. It is mainly

manifested due to the blindness of traceroute to layer-2 devices, and this manifestation will

persist independent of the nature of the underlying physical topology. Third, we provide a

realistic Internet topology model, HINT, which captures the Internet structure and features.

HINT is based on economical, performance and security constraints that are typically used

to construct networks. Matching HINT topologies to known ISP topologies confirms its

superiority to existing Internet topology models.
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Chapter 1

Introduction

F Starting from an experimental infrastructure with few hosts and routers, the

Internet has evolved to an enormous network with multi-million nodes, and is directly

affecting our lives in many ways. Understanding the Internet topology’s structural and

behavioral characteristics is essential to: (1) simulate new network protocols and evaluate

their performance before actual Internet deployment, (2) improve network management ca-

pabilities and help better plan for network infrastructures, (3) optimize routing protocols,

(4) promote the deployment of network-aware applications which help better utilize net-

work resources, (5) protect the Internet by isolating security bleaches and by identifying

vulnerable sections of the Internet that need to be reinforced. An accurate understanding

of the complex Internet structure and behavior, while very rewarding, is very challenging

and in fact is a source of controversy in the networking research community. Till now, there

is a lack of understanding of the Internet complexity [51].

Internet topology models evolved from random topologies in which nodes are con-
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nected randomly [33,70], to hierarchical topologies in which nodes are clustered and clusters

are connected in a hierarchical manner [33, 74], to scale-free topologies [20, 34, 35] in which

few nodes exhibit more connections than others and the degree of nodes exhibit a power law

distribution. The transition from one model to the other is justified by Internet measure-

ments that highlight the shortcomings of the previous models in capturing realistic Internet

characteristics. However, till now, there is no agreed upon Internet topology model. The

power law model, which is backed by the support of a large fraction of the networking

community, is questioned by many others [29,44,71]. Recent research suggests that (1) the

tools used to infer the characteristics of the Internet topology exhibit a sampling bias [44],

and that (2) the datasets justifying the claim that the Internet node degree exhibits power

law distribution is significantly incomplete [28, 29]. (3) As shown by Lun et al. in [45],

different networks may have the same degree distribution. This argues, and we agree with

this argument, that the degree distribution, the most popular metric used to characterize

the Internet, is inherently inadequate to model the Internet topology. As a result, there

is a need to rethink the metrics used to characterize and model the Internet topology. (4)

Furthermore, while researchers have focused on identifying the structure of the Internet

connectivity, there is hardly any work on characterizing the features of this structure like

the capacity bandwidth (transmission speed) of the Internet links, the locations of the most

congested links, etc.

Also, researchers have tried to identify the economical and technical drivers re-

sponsible for the observed large-scale network properties by focusing on the causal forces at

work rather than only measuring the result [17,25,34,45].1 The proposals in this direction
1Note that these efforts are in line with Barabasi’s proposal, which suggests that incremental growth and
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suggest that the causal effects of the Internet evolution are in general tradeoffs between

yield, cost of resources, and tolerance to risk. This line of research is very rewarding as

it does not only allow researchers to model current Internet characteristics but also allows

for the possibility to predict the changes in Internet behavior as technology advances and

new constraints are introduced, for example on the maximum router connectivity, and as

new paradigms, like peer-to-peer systems or end-system multicast, become more widely

deployed. The difficulty in this line of research is attributed to the fact that the complex

social and economic forces which shape the Internet are not well understood [55,71]. Also,

these models need to be validated through actual Internet measurements capable of captur-

ing the accurate Internet structure and feature, which so far do not exist. Till now, there

is no topology model that is capable of closing the loop by hypothesizing the phenomenas

driving the Internet topology’s evolution while confirming the hypothesis with accurate In-

ternet measurements. Current models tend to be generic in nature and can lead to wrong

conclusions about the causes of the emergent phenomena.

This thesis is dedicated to better understanding the Internet structure and features

and to provide more realistic Internet topology models. To this end, we make the following

contributions.

• We propose an efficient tool, AROMA, to unveil Layer-3 maps of the Internet and

use it to reveal the maps of four major ISPs. AROMA reveals the same number of

routers and links as existing tools such as Rocketfuel after sending less than 5.1% of

the number of probes used by Rocketfuel, and reveals at least 100% more links and

routers than Rocketuel while using the same number of probe packets.

preferential attachment are the causes of the power law degree distribution in the Internet topology.
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• We study the limitations of existing layer-3 tools such as traceroute in unveiling the

details of the Internet structure and identify that the power law connectivity observed

in the Internet topology is not an illusion as suggested by some researchers. It is mainly

manifested due to the blindness of traceroute to layer-2 devices, and this manifestation

will persist independent of the nature of the underlying physical topology.

• We provide a realistic Internet topology model, HINT, which captures the Internet

structure and features. HINT is based on economical, performance and security con-

straints that are typically used to construct networks. As opposed to existing Internet

topology models, HINT networks reveal features such as the traffic load on links and

nodes. Matching HINT topologies to known ISP topologies confirms its superiority

to existing Internet topology models.

The rest of this thesis is organized as follows. In Chapter 2 we survey research

related to Internet measurements. In Chapter 3 we provide the details of the AROMA

tool, use it conduct Internet measurements, analyze the results, and compare it existing

results. In Chapter 4 we explore the limitations of traceroute-like tools in unveiling the

Internet characteristics and resolve the long-standing power-law controversy. In Chapter 5

we provide the details of the HINT model and make a case for its superiority to existing

models in capturing the Internet structure. We finally conclude in Chapter 6.
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Chapter 2

Related Works

For more than 40 years, scientists have modeled complex networks as being com-

pletely random. The roots of this paradigm are in the work of Erdös and Rényi’s (ER) [33]

who suggested that communication networks and networks observed in life sciences can be

modeled by connecting its nodes with randomly placed links. Waxman et al. [70] developed

a variant of the classical Erdös-Rényi’s (ER) random graph in which the placement of a link

between a pair of nodes is based on probabilities that are biased by the Euclidean distance

between these nodes. Their model became widely used in protocol simulations for more

than a decade.

More recently, Zegura et al. emphasized the fundamental role of hierarchy in

real network topologies [73]. They observed that paths are primarily affected by the hi-

erarchy imposed by transit and stub domains. This reasoning became widely accepted

and motivated a new kind of topology generators, referred as structure-based generators.

The GT-ITM (Georgia Tech Internetnetwork Topology Models) introduced by Calvert et
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al. [24, 74] pioneered structure-based generators. Their model generates topologies using

three different levels of hierarchy: transit domains, stub domains and LAN’s attached to

stub nodes. The model constructs the topology in a piecewise fashion, where the pieces

correspond to domains at the different levels in the hierarchy. The connectivity between

domains is treated differently than the connectivity within a domains and a set of input

parameters determines the level of connectivity for each case.

A new line of research was initiated when new evidence on the structure of the

Internet topology was made available by the Faloutsos brothers [35, 60]. In their study,

they observed the presence of power laws in the degree distributions of the router-maps

and the AS-maps of the Internet. These findings became the foundation for a new line of

topology generators, namely degree-based topology generators. Several studies have found

that topologies generated by structure-based generators do not lead to power law degree

distributions [40, 48, 53]. Also, a comparative study conducted by Tangmunarunkit et al.

concluded that degree-based topology generators reproduce the structure presented in the

Internet more accurately than structure-based topology generators [65]. Their main finding

is that the Internet structure is smoother than the one obtained by rigorous structure-based

topology generators.

Meanwhile, in several other fields as diverse as Biology and Physics, some studies

have attempted to uncover the mechanisms that shape massive graphs such as metabolic

networks and protein interactions [11, 19, 20, 68] to understand the phenomena leading to

the power law vertex degree distribution observed in router and AS maps. Of these stud-

ies, Barabasi and Albert’s work [20] has attracted the most attention in the networking
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community as it proposes a very appealing construction of network topologies. Barabasi

and Albert suggested that the power law degree distribution arises in complex networks,

such the Internet, from a simple dynamic model that combines incremental growth with a

preference for new nodes to connect to existing ones that are already well connected. As

a consequence, high-degree nodes are likely to attract more connections, resulting in the

power law degree distribution.1 Influenced by Barabasi’s model, several degree-based gener-

ators have been proposed [10,23,36,40,48,49,53,72]. These generators can be distinguished

by the probabilistic method used in their generation process. Among these, BRITE (Boston

University Representative Internet topology gEnerator [48, 49] developed by Medina et al.

incorporates (1) preferential attachment and (2) incremental growth along with (3) distri-

bution of nodes in space and (4) locality of edge connections. Medina et al. also explored

the individual relevance of these forces in synthetically generated network topologies and

confirmed Barabasi’s hypotheses. The generator proposed by Palmer et al. [53] and the

GRG (General Model of Random Graphs) tool [30] by Chung et al. generate the topology

starting from an expected degree sequence obtained from a degree distribution that follows

a power law distribution. In GRG [30] the construction proceeds by first assigning each

node its expected degree and then inserting edges between the nodes according to a prob-

ability that is proportional to the product of the degrees of the two given endpoints. If the

assigned expected node degree sequence follows a power law, the generated graph’s node

degree distribution will exhibit the same power law. The construction proposed in [53] is

very similar to GRG’s construction with the exception that the degree sequence is obtained
1For a precisely defined model that incorporates the key features of preferential attachment refer to [22]

and references therein.
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from real AS-maps. In [10], Aiello proposed the PLRG (Power Law Random Generator)

topology generator, which also attempts to replicate a given degree sequence, however its

construction process is very different to the previous one. The construction in PLRG in-

volves forming a set L of nodes containing as many distinct copies of a given vertex as the

degree of that vertex, choosing a random matching of the elements of L, and applying a

mapping of a given matching into an appropriate multigraph. It is believed that PLRG [10]

and GRG [30] are “asymptotically equivalent, subject to bounding error estimates” [10].

Degree-based Internet topology generators have recently faced criticism. In [28,29],

Chang et al. questioned the widespread belief that the Internet’s degree distribution follows

a power law and suggested that the vertex degree of the Internet, while highly variable which

is a common pattern in power law topologies, could be represented by distributions similar

to Weibull. The Weibull distribution exhibits a heavy-tail but the rest of the distribution

can have any shape. Chen et al. [29] also questioned Faloutsos’ results claiming that the

BGP routing tables used for the study are inconsistent/incomplete, and suggested that

the Internet’s AS level topology may have well developed following a different set of growth

processes than those proposed by Barabasi [20]. This claim has been supported by Willinger

et al. [71] and more recently by Park et al. [56]. Willinger et al. [71] compared the growth

rate of a real AS-map and the one produced by Barabasi’s model and found that while both

produce similar power law degree distributions, they differ significantly in their dynamic

behavior, which suggests that topology generators based on Barabasi’s model are in general

not able to provide accurate explanation of the overall network structure. More recently,

Park et al. [56] made a similar experiment to the aforementioned and concluded that no
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existing model –including Barabasi’s model– succeeds to follow the dynamic behavior of the

Internet. On top of all the previous arguments, Mandelbrot makes the argument that power

law type distributions should be expected to arise ubiquitously for purely mathematical and

statistical reasons and hence require no special explanation! [45]. Also, as shown by Lun et

al. in [45], different networks may have the same degree distribution. This argues, and we

agree with this argument, that the degree distribution is inherently inadequate to model the

Internet topology. As a result, there is a need to rethink the metrics used to characterize

and model the Internet topology.

In an attempt to solve the controversy, various research efforts targeted measuring

the router-level Internet topology directly using the traceroute tool [3,39,61,63]. Typically,

these efforts run traceroute from k sources towards m destinations and use all uncovered

routers as an approximation, Ĝ, of the Internet router-level topology, G. The degree dis-

tribution of the nodes in Ĝ is used to approximate the degree distribution G. However,

the large-scale nature of the Internet results in a pretty loose approximation. Furthermore,

Lakhina et al. have shown in [44] that this way of sampling the Internet is highly biased

towards power law topologies, that is, using traceroute measurements can lead to power

law degree distributions even if the underlying topology does not follow a power law degree

distribution.

Also, researchers have tried to identify the economical and technical drivers re-

sponsible for the observed large-scale network properties; that is, by focusing on the causal

forces at work rather than only measuring the result [17, 25, 34, 45]. In [25], Carlson and

Doyle suggest that power laws in systems optimized by engineering design are due to trade-
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offs between yield, cost of resources, and tolerance to risk. In [34], Fabrikant et al. propose

a model in which nodes join uniformly at random within some Euclidean space, and the

newly created edges attempt to balance the distance from its new neighbor with the desire

to minimize the average number of hops to other nodes. Based on their results, the authors

suggest that power laws tend to arise as a result of complex, multi-objective optimization.

In [17], Alderson et al. explore a similar heuristic at the ISP level. More recently, Li et

al. [45] observed that simple heuristically designed and optimized models that reconcile the

tradeoff between different technical constraints in routers such as link costs and user traffic,

result in configurations that also exhibit power law in their degree distribution. In [64,71],

the authors question the Barabasi model and suggest that there might be other causes for

the highly variable degree distribution of the Internet such as the AS size.
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Chapter 3

AROMA:

Accurate Router-Level Maps

The huge size and complexity of the Internet, its anarchistic evolution, together

with the fact that ISPs do not publish their router-level maps for security reasons contribute

to the lack of an accurate Internet Router-Level Maps IRLM. Despite the large body of

research targeted at unveiling the IRLM [39, 59, 61], the task remains challenging and the

conclusions drawn from these efforts are to-date a source of controversy and debate in the

research community.

In general, techniques to uncover IRLM can be classified into two categories. The

first relies on a set of k controlled hosts (sources) spread across the Internet sending tracer-

oute packets to m arbitrary Internet destinations [3, 9, 37, 39, 47, 63] – Figure 3 (A,B). The

topology incorporating all the identified routers, together with the links connecting them, is

used to represent the IRLM. Donnet et al. have proposed techniques to make this approach
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more efficient by avoiding probing redundancy over already visited hops [32]. However,

the k-m traceroute approach has been questioned in [44] and shown to be biased towards

routers that are close to the source hosts. That is, links to routers that are close to the

source hosts are revealed better than those close to the destinations. Therefore, the result-

ing graph is deemed unrepresentative of the IRLM. The second category does not traceroute

to arbitrary destinations; instead, it focuses on an internet area, typically corresponding to

an autonomous system (AS). Published BGP tables permit wise selection of the traceroute

destination hosts, such that traceroute packets cross the target AS, thus avoiding prob-

ing redundancy – Figure 3 (C,D). The fact that it is targeting the complete router-level

topologies of ASes permits the study of common factors driving the layout of AS infras-

tructures, the factors driving AS interconnectedness, and the structure of IRLM in general.

The Rocketfuel [61, 66] tool belongs to this category. As we make the case throughout

this chapter, Rocketfuel unveils mostly backbone routers and links of the targeted AS. This

is mainly due to the Border Gateway Protocol (BGP) [57], the mainstream inter-domain

routing protocol, which typically leads transit probes to the closest exit router through the

targeted AS’s backbone links.

Contributions: In this chapter, we propose AROMA, an IRLM mapping tool. AROMA

tries to identify all interfaces/links associated with each router in a targeted AS by directly

probing these interfaces from multiple vantage points – Figure 3 (E,F). As opposed to k-m

traceroute, only interfaces that have been probed from the vantage points are included in

the final map. As opposed to rocketfuel, AROMA does not target address prefixes that

transit the targeted AS and thus can deeply penetrate inside an AS; and while Rocketfuel
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and (b) the resulting k-m traceroute- map; (c) probing destinations that lead to probes
transiting a particular AS, and (d) the resulting Rocketfuel map; and, (e) targeted probing
to a particular AS, and (f) the resulting AROMA map.
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relies on insider probing servers, if available, to probe useful prefixes identified by BGP

tables, traced paths still mainly follow backbone paths in the targeted AS towards their

intended destinations, and mostly miss the AS details. Address space information of tar-

geted ASes is typically available from authorized registry services like ARIN [1], APNIC [2],

and RIPE [7]. The vantage points are filtered-out to avoid probing redundancy and the

probed address space is filtered-out to avoid probing IP addresses assigned to end-hosts and

IP addresses assigned to nodes in customer ASes, which partly contributes to AROMA’s

efficiency. Furthermore, AROMA trades off its revealed AS details (completeness) for effi-

ciency. These efficiency-aware enhancements result in significant efficiency. Specifically, our

results indicate that AROMA reveals the same number of routers and links as Rocketfuel

after sending less than 5.1% of the number of probes consumed by Rocketfuel in all inves-

tigated ASes, and reveals between 100% and 1700% more links and routers than Rocketuel

after consuming the same number of probes as Rocketfuel. We use AROMA to draw the

maps of four major ISP networks (SprintLink, Level3, Verio, and Abovenet) and report on

the structure of their networks. We also revisit the conclusions drawn by earlier research

on the Internet structure and the degree distribution of the Internet routers.1 Surprisingly,

AROMA maps consistently reveal that core routers have a higher degree than edge routers

in contrast to the conclusion drawn in [45]. The maps also reveal that routers’ degree distri-

bution consistently follows a power-law. This is in contrast to the widely accepted Weibull

distribution revealed in the Rocketfuel traces, and in agreement with the highly questioned

k-m traceroute tools. These results highlight the need for more thorough investigations of
1Our choice of the degree distribution simply reflects the Internet measurement community’s interest in

this metric. Finding more interesting metrics that care capable of capturing the Internet structural and
behavioral characteristics is an interesting research area on its own.
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the different factors driving the Internet structure and behavior.

The rest of the chapter is organized as follows. In Section 3.1 we elaborate on the

basic techniques used by AROMA to draw maps. We illustrate the techniques through our

four case studies for the Sprintlink, Level3, Verio, and Abovenet networks. In Section 3.2

we highlight tradeoff between completeness and efficiency in the AROMA maps and the

edge that it enjoys over current tools. In Section 3.3 we analyze the AROMA maps for

the four case studies and and question common perceptions about the Internet router-level

topology. Summary is in Section 5.3.

3.1 Detailed AROMA Maps

The Aroma mapping process is sketched in Figure 3.2. Initially, AROMA is fed the

IP address space corresponding to the targeted AS from an authorized registry service [1,2,7]

and a list of potential probing servers (controlled machines). These lists are refined in Steps

1 and 2 and only k servers and m IP addresses are selected. The process then proceeds

recursively in phases. In each phase, targeted interfaces are probed and a new list of target

interfaces is identified, which is then fed to the next phase for further processing – steps 3

and 4. The process converges when no new targets are identified. Following convergence,

a process for alias resolution is carried before the final map is generated – step 5. We next

describe the details of each step.
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Table 3.1: Number of IP addresses Targeted by AROMA.
AS AS # Addr. Space Size Addr. with Names Targeted Addr.
SprintLink 1239 11,615,500 397,920 397,890
Level3 3356 43,506,700 11,623,900 306,500
Verio 2914 6,895,000 788,800 788,800
AboveNet 6461 884,000 466,350 184,630

(1) Selecting 
Target IP 
Addresses - m IP 

addresses

- k 
probing 
servers

(3)
Probing

- Sequences 
of interfaces
- Links 
between 
interfaces

- Routers
- Links 
between 
routers

(4) 
Creating 
new list of 
targets

     

Map

(2) Selecting 
Probing 
Servers

- Address 
Space of 
Targeted 
AS

- List of 
Probing 
Servers

(5)
Alias resolution

Figure 3.2: AROMA Diagram
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3.1.1 Selecting Targeted IP Addresses

Not every IP address in the address space of the targeted AS needs to be probed.

Specifically, IP addresses that belong to endpoints and unused IP addresses do not need to

be probed since our objective is to draw a router level map. In order to distinguish routers’

IP addresses from the rest, we rely on querying the Domain Name Service (DNS) [5].

Typically, ISP administrators assign meaningful names to their routers for management

purposes. Naming convention is different from ISP to ISP, but a name typically includes

the location and role of the router such as “gw” for gateway routers and “bb” or “bbr” for

backbone routers. Reverse DNS is used to convert IP addresses to their names. By selecting

only the IP addresses that are assigned names referring to the target AS, then (1) the unused

IP addresses and (2) IP addresses belonging to customer ASes of the target AS are left out,

which serves our purpose. However, (1) end-hosts in the target AS that have registered

DNS names are included and (2) routers in the target AS that are not assigned names are

singled out. The former case is resolved by disregarding IP addresses with names including

the substrings ”dialup”, ”DSL”, etc. While the latter case is quite uncommon, unnamed IP

addresses of routers are revealed through AROMA’s recursive process, which we describe

in the following sections. Table 3.1 shows the size of the address space corresponding to the

four ISPs that we are mapping in this chapter: SprintLink, Level3, Verio, and AboveNet.

The table also shows the number of addresses that are assigned names, and the number of

selected addresses for probing (neglecting IP addresses with names belonging to customers

ASes and those including the ”dialup” or ”DSL” substrings).
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3.1.2 Selecting Probing Servers

We have access to almost 280 probing servers that are geographically dispersed

all over the globe on the Planetlab facility [6]. However, for each targeted AS, a small

fraction of these servers is enough to reveal the routers/links that would be revealed if all

servers were used for probing. The reason being that if traceroute probes from two servers

to the same destination(s) enter the targeted AS through the same ingress router then

these traceroutes will follow the same paths inside the AS and will reveal the exact same

information. In this case, only one of these servers should be used for probing. AROMA

applies this idea by randomly picking a small set of IP addresses in the targeted AS and

probes this set from all 280 probing servers. Then, the largest set of servers for which probe

packets enter the targeted AS through different ingress routers are selected for probing.

This selection process brings the number of probing servers for the Sprintlink network to

93, and for Level3, Verio, and Abovenet to 92, 105, and 51, respectively.

3.1.3 Probing

In the probing step, each IP address in the target list becomes the destination of

traceroute packets (is probed) from multiple probing servers. In order to avoid overwhelming

any single router, probing traffic was rate-limited and the order in which IP addresses were

probed was randomized. Recall that the traceroute utility relies on a sequence of TTL-

limited ICMP packets and a random destination port number. These packets will reveal

interfaces of routers along the path to the destination through ICMP TIME EXCEEDED

messages, and will reveal an interface of the destination router through an ICMP PORT
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Table 3.2: Percentages of probes that successfully reached their intended destinations and
of probes that were blocked.

Spintlink Level3 Verio Abovenet
Successful 32.3% 59.8% 21.6% 35.8%
Blocked 67.7% 40.2% 78.4% 64.2%

Table 3.3: Number of target IPs in each phase.
AS Phase I Phase II Phase III
Sprintlink 397,890 477 5
Level3 306,500 868 8
Verio 788,800 1,171 16
Abovenet 184,630 224 3

UNREACHABLE message. The result of probing is thus sequences of interfaces and links

connecting these interfaces. Throughout our mappings, we did not receive complaints from

AS administrators. However, many of the probes were blocked at some point along the path

towards the destination. This is mostly due to firewalls or other security measures. Table

3.2 shows the percentage of probes that successfully made it to their intended destination

and the percentage of probes that were blocked.

3.1.4 Creating New List of targets

Any revealed interface from the probing step, that belongs to the targeted AS and

that was not included in the target list is included, and steps 3 and 4 are repeated. Iden-

tifying whether an interface belongs to the targeted AS is done by checking the interface’s

IP address against the pool of IP address of the targeted AS, obtained from the registry

service. If no new interfaces are revealed, the mapping proceeds to the alias resolution step

– step 5. Our results indicate that the number of newly revealed interfaces drops dramati-

cally with each phase, and no new interfaces are revealed after the third phase. Table 3.3

shows the number of IP addresses that are probed in each phase for our four case studies.
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3.1.5 Alias Resolution

Alias resolution refers to the process of clustering interfaces (IP addresses) belong-

ing to the same router together. Several approaches have been proposed for alias resolution.

They mostly rely on traceroute queries and can be distinguished based on how they process

the replies to the traceroute packets. Typically, if a probed router does respond to tracer-

oute queries, then the source IP address field in the header of the reply packets will either

correspond to the probed router’s (1) default interface, or (2) its outgoing interface towards

the probing host. In order to identify whether two IP addresses are aliases for the same

router, Mercator [39] compares the source address fields in the reply packets to traceroute

queries to the two IP addresses, and if they match, then Mercator concludes that the two

addresses are aliases; otherwise, they are not. This approach should work only if routers

respond with their default interfaces. A different approach is used by Ally [62], which

sends two back-to-back probe packets to the two investigated IP addresses, and inspects

the sequence numbers in the reply packets. If the sequence numbers are in order and close

enough, then Ally declares that two interfaces are aliases. Mercator and Ally have a couple

of weaknesses. First, they only work if routers are responsive to probe packets. Second,

their input is a couple of IP addresses. In a network of n interfaces, there are potentially

n! aliases to investigate, and exploring all the possibilities is prohibitive. A third popular

approach for alias resolution relies on the DNS service. DNS names provide a wealth of use-

ful information for alias resolution. By storing DNS names of routers in a database, aliases

of an interface with some domain name are obtained by searching the database for names

with common substrings, without the need to communicate with targeted interfaces. As a
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result, alias resolution can be done even if routers are configured not to respond to probing

messages or if they are temporarily unreachable. Our results indicate that almost 30% of

the routers are not responsive to probe packets, which highlights the importance of DNS

names in resolving aliases. Also, not all n! combinations of interfaces need to be tested,

which improves alias resolution efficiency. Since Pansiot [54] introduced the reversed DNS

method for alias resolution, virtually most of the Internet topology discovery techniques use

the reversed DNS in a certain degree. Research studies have found that about 0.5% of IPs

are misnamed [75].

AROMA mainly relies on reverse DNS for alias resolution [54] and complements

it using Ally mechanisms by further probing the questioned IP addresses from multiple

probing hosts. Interfaces that are suspected to be aliases from their DNS names are verified

using Ally and by probing them from multiple PlanetLab servers and the source IP address

fields in the reply packets are used to verify aliases. This improves the accuracy as aliases

which might not be revealed from one vantage point may be revealed from another. To

understand why this is the case, consider a router, which responds to probe packets with

the outgoing interfaces towards the probing hosts. Also, consider two interfaces I1 and I2

belonging to this router. If I1 and I2 are probed from a single probing host, then the replies

may be through two different interfaces, which does not indicate that I1 and I2 are aliases.

However, as we probe from more probing hosts, it becomes more likely that a reply for a

probe to I1 from one of the probing hosts will contain the same outgoing interface as the

reply for a probe to I2 from a different probing host, which signals that I1 and I2 are aliases.

The result of the alias resolution step is the set of routers in the target AS map
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Table 3.4: Number of Routers and Links Revealed by AROMA and Rocketfuel
Router Link

AROMA Rocketfuel AROMA Rocketfuel
Sprintlink 35,757 10,332 51,314 25,841
Level3 5,831 1,786 27,144 13,838
Verio 74,114 6,523 176,213 19,289
Abovenet 21,619 654 52,590 2,675

together with links connecting these routers. Table 3.4 shows the number of routers and

links revealed by AROMA maps as compared to those revealed by Rocketfuel for our four

case studies. The Rocketfuel data can be found in [8]. Clearly, the number of routers/links

revealed by AROMA is significantly larger than those revealed by Rocketfuel. However,

this comes at the expense of more probing overhead. Furthermore, one can argue that

the considered ASes have grown in size since the Rocketfuel experiments were conducted,

almost three years ago. We resolve the probing inefficiency problems in Section 3.2, and

pinpoint the sources of bias in Rocketfuel in Section 3.3.

Admittedly, the AROMA maps may be less than perfect. AROMA relies on ICMP

packets and its accuracy will be offset by routers not responding to traceroute packets, by

routers/links that are not revealed in the probing process. While these problems may, more

or less, impact the AROMA maps, they persist with much larger magnitude in current

state-of-the-art techniques to uncover Internet maps.

3.2 Efficient AROMA

Large ASes are assigned a large pool of IP addresses and the number of probing

servers is potentially large as well. Probing every IP addresses in the targeted AS from every

server is intolerable not only because it will put extensive stress on the AS infrastructure
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but also because it will take months if not years to get a router-level map. The same holds

even after the wise selection of servers and destination IP addresses described in Sections

3.1.1 and 3.1.2. In this section we make the case that AROMA (1) can achieve significant

efficiency improvement at the cost of a tiny reduction in the details of the resulting map,

and (2) can lead to much more detailed maps while being more efficient than existing tools.

We use the number of routers/links revealed in the targeted AS as a measure of

completeness and the number of traceroute probes as a measure of the efficiency (also a

measure of overhead).2 We intentionally ignore the overhead introduced by querying the

DNS infrastructure. That is not because the overhead is small but because (1) the DNS

infrastructure is basically doing what it is intended for, accommodating DNS queries. The

DNS system deals with billions of requests per day and accommodating a couple of more

million requests – refer to Table 3.1 – is not stressing especially if they are rate-limited

and spread over a reasonable period of time. Most importantly, (2) DNS information is

used for alias resolution, a major component of any router-level mapping tool. Without

using DNS information, the alias resolution part would not scale as explained in Section

3.1.5, and the load on the DNS system would have to shift to routers in targeted ASes in

order to accommodate an accurate alias resolution technique like Ally [62]. For this reason,

Rocketfuel also relies on the DNS system for alias resolution.

In Figure 3.3, we compare AROMA and Rocketfuel’s completeness and efficiency.

From one server, we probe every IP address selected as in Section 3.1.1. We then plot

the ratio of the number of routers/links revealed to the overall number of routers/links
2Note that measuring accuracy is difficult due to the lack of a known topology. Furthermore, the sources

of inaccuracy in AROMA, outlined at the end of Section 3.1, are similar to those in Rocketfuel. The
comparison in this sense, based on completeness, seems fair.
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Figure 3.3: Probing efficiency versus mapping completeness of AROMA using one probing
server compared to Rocketfuel.

Table 3.5: Number of Probes Required to Attain Rocketfuel Completeness
Router Link

AROMA Rocketfuel % AROMA Rocketfuel %
Sprintlink 13,300 307,605 4.3% 15,580 307,605 5.1%
Level3 2,235 268,237 0.1% 4,790 268,237 1.8%
Verio 7,090 814,061 0.1% 10,273 814,061 1.3%
Abovenet 680 103,122 0.1% 2,180 103,122 2.1%
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Figure 3.4: Mapping completeness as we vary the number of probing servers.
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(completeness) as we increase the number of probed IP addresses (efficiency). We also

plot the ratio of the number of routers/links revealed by Rocketfuel to map the same

ASes and the number of probes used to get these maps. The rocketfuel data is publicly

available in [8]. The figure clearly shows that even with one probing server and with much

less targeted IP addresses (efficiency) than those selected in Section 3.1.1, the number of

routers and links revealed by AROMA (completeness) is much larger than those revealed

by Rocketfuel. Based on Figure 3.3, and as shown in Table 3.5, AROMA requires at most

5.1% of the overhead incurred by Rocketfuel to attain similar completeness. Also, based

on Figure 3.3, it is clear that it is not necessary to probe all selected IP addresses. A more

efficiency-aware implementation would measure the utility of probing more IP addresses and

would halt probing at any probing server once this utility drops below some threshold. This

utility can be expressed as the ratio of the number of revealed routers/links to the number

of probed IP addresses during some probing time interval.

In Figure 3.4 we plot the number of revealed routers/links as we increase the

number of probing servers. The figure reveals an interesting trend: The rate at which

more routers are revealed decreases sharply as we increase the number of probing servers;

however, the rate at which more links are revealed does not. In other words, more servers

are useful in revealing more links between routers since they access the targeted AS from

different ingress points but are not that useful in revealing more routers since the AROMA’s

initial list includes most routers.

To sum up, AROM can be tuned to be very efficient reducing the number of

IP addresses probed from any vantage point with a small degradation in completeness.
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However, reducing the number of probing servers will typically come at the cost of hiding

the connectivity information between the routers.

3.3 Results and Analysis

In this Section we introduce a simple validation of AROMA by mapping our cam-

pus map, and analyze in more detail the maps generated for the SprintLink, Level3, Verio,

and AboveNet networks. We also use our results to revisit common perceptions about the

structure of the Internet router level topology.

3.3.1 Validation

We used AROMA to map our campus network at NCSU (AS 11442) to validate

its completeness and accuracy, and the map is plotted in Figure 3.5. While the network has

several different egress points, all traffic from the Planetlab probing servers reach the same

ingress router (following the Abilene network). Thus only one probing server was enough to

probe our campus network. By targeting 40,785 destination addresses in the campus AS,

we found 360 routers and 482 links between them. The map was verified with a campus

network administrator, who confirmed that the map is very accurate, missing only a few

peering connections.

3.3.2 Topology Structure

In order to get a better understanding of the structure of the revealed maps, we

characterize routers based on how close they are from the backbone routers in their AS.
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Figure 3.5: AROMA map for NCSU campus network.

Specifically, let L0 be the set of backbone routers (identified from their DNS names), L1

be the set of routers that are linked to routers in L0, Li be the set of routers that are

linked to routers in Li−1, etc. In Table 3.6 we compare the numbers of routers identified

in the sets L0 up-to L5+ using both AROMA and Rocketfuel.3 The numbers reveal the

deep hierarchy in these large ASes but also reveal that most of Rocketfuel’s revealed routers

are at the core of the network, in the sets L0 through L3. On the other hand, AROMA

finds a considerable number of routers in L4 and L5+. This confirms our intuition that

Rocketfuel is biased towards the backbone of the targeted AS due to the routing of transit

traffic through the backbone links. AROMA does not from this structural bias as it probes

directly the targeted IPs regardless of where their associated routers are located in the

network hierarchy.
3In this table, the column labeled L5+ refers to the number of routers in the set L5 ∪ L6 ∪ L7. Since the

number of routers in L6 and L7 is relatively insignificant, we sum the numbers together.
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Figure 3.6: Router degree distribution of ISP observed by AROMA.
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Figure 3.7: Degree distribution by distance from backbone network: Li represents the
distance from backbone, L0 are the routers at the backbone while L3 are routers 3 hops
away from the backbone.
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Table 3.6: Numbers (and percentages) of routers identified by AROMA compared to
Rocketfuel

ISP Method L0 L1 L2 L3 L4+ Total

Sprintlink
AROMA

1,225 1,752 7,132 10,310 15,338 35,757
(3.4%) (4.9%) (19.9%) (28.8%) (42.9%) (100.0%)

Rocketfuel
700 6,637 2,566 275 154 10,332

(6.8%) (64.2%) (24.8%) (2.7%) (1.5%) (100.0%)

Level3
AROMA

459 1,551 1,832 1,096 1,352 5,831
(7.9%) (26.6%) (31.4%) (18.8%) (23.1%) (100.0%)

Rocketfuel
625 995 152 13 1 1,786

(35.0%) (55.7%) (8.5%) (0.7%) (0.1%) (100.0%)

Verio
AROMA

3,217 5,047 32,231 15,750 17,869 74,114
(4.3%) (6.8%) (43.5%) (21.3%) (24.1%) (100.0%)

Rocketfuel
1,013 3,657 1,269 268 316 6,523

(15.5%) (56.0%) (19.5%) (4.1%) (4.8%) (100.0%)

Abovenet
AROMA

1,472 6,501 6,006 2,696 4,944 21,619
(6.8%) (30.1%) (27.8%) (12.5%) (22.8%) (100.0%)

Rocketfuel
358 281 36 14 10 654

(54.7%) (43.0%) (5.5%) (2.3%) (1.5%) (100.0%)

3.3.3 Degree Distribution

The degree distribution of the Internet topology has been a source of contro-

versy [26, 27, 29, 44, 45, 61] since Faloutsos et al. suggested that it follows a power-law

distribution [35]. Some researchers advocate the power-law distribution based on their

measurements [3, 39], and others question the power-law hypothesis and suggest biased

measurements [26,29,44,61].

In Figure 3.6, we use the AROMA maps of the four investigated ASes to plot the

probability density function, P (d), showing the fraction of routers with degree d . The

figure clearly shows that the distribution follows a power-law, P (d) ∼ d−γ . The power-

law exponent, γ, is 2.7, 1.7, 1.94, and 2.3 for Sprintlink, Level3, Verio, and Abovenet,

respectively. The estimation of γ is done through least squares regression using the first 5
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points of the log-log fitting [41]. This can be justified by that the first 5 points on a log-log

scale contain most of the data of a power-law graph, and fitting the graph with all the

points, instead of the first 5 points, will distort the results [38]. Previous studies have found

power-law exponents of 2.57 with 3,800 routers [35], and of 2.66 with 150,000 routers [39].

The routers’ degree distribution revealed by Rocketfuel is quite different from the

power-law distribution revealed by AROMA. It has been shown in [61] that the routers’

degrees follow a Weibull distribution, P [X ≥ d] ∼ e−dc
, where c is the shape parameter. As

opposed to AROMA’s power-law distribution, the Weibull distribution is not long-tailed.

Rocketfuel’s Weibull distribution can be explained by Rocketfuel’s bias towards backbone

routers. Notice that the edge part of a power-law graph hosts a large fraction of the low

degree nodes. By being mostly blind to edge routers, Rocketfuel deflates the head of the

power-law distribution, where low degree nodes are represented, which inflates the tail of the

power-law distribution, where high degree nodes are represented. The result is a Weibull-

like distribution even if the underlying topology has a strict power-law distribution. In order

to prove our hypothesis, in Figure 3.7 we plot the degree distribution for routers belonging

to the set L0 as revealed by AROMA, and the distribution for routers belonging to L1, etc.

Figure 3.7 reveals a consistent pattern in all investigated ASes: The number of low-degree

routers is small in the core, while it is relatively large at the edges, which supports our

argument that Rocketfuel’s Weibull distribution is due to its bias. This observed pattern

also contradicts conclusions drawn in [45], in which the authors argue that core routers have

a lower degree than edge routers. We intend to investigate this issue in our future work.
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3.4 Summary and Future Work

In this chapter, we introduced a probing tool to unveil detailed Internet IP topolo-

gies, and made a case for its efficiency compared to existing tools. We used this tool to map

four major ISP topologies and revisited earlier conclusions about the Internet IP topology.

Our results, contradicting earlier conclusions, raise more questions than answers. While we

believe that AROMA provides a positive step towards unveiling Internet IP maps, under-

standing these maps and the factors affecting their structural and behavioral characteristics

is a challenging task. Understanding the reasons behind the contradicting results and Iden-

tifying other Internet features, like the location of layer-3 tunnels and generating layer-2

maps will be part of our future research.
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Chapter 4

The Causal Factors Behind

Internet Power-Law Connectivity

4.1 Power-Law Controversy

The structure of Internet topology can be abstracted as a graph G = (V,E).

Vertices, v ∈ V , and edges, e ∈ E, in a graph take different meanings depending on the

level of abstraction. A vertex in an AS-level topology represents an Autonomous System

(AS) and an edge connects two vertices if their corresponding ASes can directly exchange

traffic without interim ASes. A vertex in an IP topology, also known as layer-3 or router-level

topology, represents a router and an edge connects two vertices if their corresponding routers

can exchange traffic without interim routers, as enforced by the underlying routing protocol.

A vertex in a physical topology represents a network device such as a switch or a router and

an edge connects two vertices if their corresponding devices are directly connected with a
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physical cable (network link).1 While each level of abstraction provides useful information

about the Internet, the physical topology is the most difficult to characterize since the

most common probing tool, namely traceroute, is blind to layer-2 devices. Traceroute relies

on the collaboration of networking devices, which have IP addresses and are willing to

reveal their IP addresses typically by generating ICMP TIME EXCEEDED messages in

response to probe packets with limited TTL values in their IP header. We are not aware of

any Internet-scale layer-2 measurement studies. Still, the Internet physical topology is the

most detailed and thus the most rewarding in understanding the Internet performance and

security features.

One of the most popular and most controversial results in Internet topology stud-

ies, is Faloutsos’s power law findings [35], which reveal that in AS-level and IP Internet

topologies, the distribution of node degrees follows a power law. That is a few nodes are

much more connected than the average node’s connectivity. The implications are that (1)

the Internet enjoys the small-world property delivering information very efficiently between

nodes, (2) the Internet is resilient to random failures, but is vulnerable to targeted attacks,

since some nodes act as heavily connected hubs and bringing these hubs down can be dis-

astrous to the Internet [14]. Since Faloutsos’s discovery, many research studies have been

conducted whether to support his findings using extensive measurements [60, 65], to ex-

plain the causal factors of these findings [17, 25, 34, 45], or to approach differently by using

economical and technological constraints to suggest an appropriate arrangement of power

law graph nodes in order to deliver Internet-like throughput [18, 45]. To date the most
1A Local Area Network (LAN) or any shared medium network may be represented in a physical topology

as a vertex, with switches/routers on this network connected with edges to this vertex.



36

widely accepted Internet topology generators emulate power law topologies similar to those

observed by traceroute Internet measurements [10,16, 23,40,49,53]. Still, some researchers

are questioning the power law results, suggesting that they are a side effect of the sampling

bias in the measurement methodology and that the observed power law distribution is quite

possibly an illusion [29, 44]. Furthermore, the results of these studies are mainly based on

measurements by the traceroute tool, and thus are oblivious to layer-2 devices. It is not

clear if the drawn conclusions about the Internet structure, performance and security would

persist if the Internet physical topology is revealed.

In this chapter, we make the case that our understanding of the Internet properties

is mislead by missing layer-2 devices. Specifically, we make the following conclusions: The

power law connectivity observed in the Internet IP topology (1) is not an illusion caused

by biased data as suggested in [29, 44], (2) It is mainly manifested due to the blindness

of traceroute to layer-2 devices, and (3) this manifestation will persist independent of the

nature of the underlying physical topology. We also make the case that the Internet phys-

ical topology does not have a power law connectivity. Non-power law physical topology

positively affects the Internet performance and security. These conclusions are not in line

with conclusions made by earlier research studies, challenge common wisdom, and highlight

the need for more thorough investigations.

The rest of this chapter is organized as follows. In Section 4.2 analyze the impact

of layer-2 devices on our perception of the Internet IP topology. In Section 4.3 we investigate

the structure of the Internet physical topology and make a case that it is not likely to be a

power law. In Section 4.4 we revise earlier conclusions about Internet topology generators,
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and summarize in Section 4.5.

4.2 Internet IP Topology

In this section we rely on theoretical proof and simulation results to make the case

that the perceived power law Internet IP topology is a side effect of layer-2 devices hidden

from probing tools like traceroute, but is not simply an illusion caused by sampling bias.

4.2.1 Impact of Layer-2 Devices

Layer-2 devices such as Ethernet or ATM switches or in general forwarding devices

which do not have IP addresses, are designed to perform transparent bridging between

multiple network segments. They are common in today’s Internet, whether at the edge or at

the core, given their relatively simple administration and low cost compared to routers, and

their resilience to targeted attacks as they do not have IP addresses. As a simple verification

of their popularity, packets sent from our networking lab traverse seven layer-2 switches and

only two routers to the university gateway router. Figure 4.1 (left) provides an example

of a switch connecting a set of routers, and Figure 4.1 (right) shows the corresponding

IP graph. The key observation is that in IP graphs, routers connected to switches are

perceived as having higher degree than their actual number of physical connections. This

simple observation lays the ground for a bolder statement as manifested in Theorem 1.

Theorem 1 Consider an arbitrary physical topology, G, in which layer-2 and layer-3 de-

vices are spread uniformly at random. The degree distribution of nodes in the corresponding

IP topology, G′, follows a power law.



38

S

Layer-3 GraphLayer-2 Graph

: Router

: Layer-2 SwitchS

Figure 4.1: A portion of a physical topology and the corresponding IP topology. Solid lines
are physical links and dotted lines are connections that would be perceived by a traceroute-
like tool.

Proof 1 Let n be the number of layer-2 devices in G. We convert G into G′ in steps,

t = 1 . . . n. In step 1 we convert G into G(1); in step 2 we convert G(1) into G(2); . . . ; and

in step n we convert G(n−1) into G(n) ≡ G′. In each step the physical topology, G, is brought

closer to the IP topology, G′, by hiding one more layer-2 device from G as explained in Figure

4.1. Thus after n steps the resulting graph represents the final IP topology. Consider an

arbitrary step, t, and the layer-2 device, s, that is to be considered in this step. After hiding

s, the neighbors of s in G(t−1) will be perceived as having higher degree in G(t). We next

show that if layer-2 devices are placed uniformly at random in G then the resulting G′ will

be a power law graph. The proof is by mapping the above construction to Barabási and

Albert’s (1999) rich gets richer generative model [20], the most widely accepted model to

generate power law graphs. This model was originally developed to reflect the popularity of

web pages. New web pages create links to existent ones with a probability distribution which

is not uniform, but proportional to the current popularity of web pages, thus popular pages



39

become more popular. In our case, we simply need to show that nodes with larger degree are

more likely to have even larger degree during the construction of G′. The key idea is that

a vertex that is picked uniformly at random in a graph is more likely to be a neighbor of a

high degree vertex than a neighbor to a low degree vertex. Since layer-2 devices are placed

uniformly at random, then at each step, t, the newly considered layer-2 device is likely to

be a neighbor of a high degree node in G(t−1), further increasing its degree in the resulting

G(t). This concludes the proof.

The most common probing approach to reveal Internet IP topology is k-m tracer-

oute, in which traceroute probes are sent from k controlled probing sources towards m

arbitrary uncontrolled destinations. Alias resolution techniques are used to map revealed

IP addresses to routers and to reveal links between these routers, generating a topology that

is presumed as representative of the Internet. Corollary 1 highlights the impact of layer-2

devices on the perceived IP topology revealed by the k-m traceroute approach.

Corollary 1 Consider an arbitrary physical topology, G, in which layer-2 and layer-3 de-

vices are spread uniformly at random. The degree distribution of nodes in the corresponding

IP topology observed by the k-m traceroute approach follows a power law.

Proof 2 In the case of one probing source, k = 1, the graph observed by the source is a

tree independent of the underlying routing strategy, assuming there are no routing loops.

When k > 1, the overall observed graph from the k sources is the aggregation of k trees (a

forest). Theorem 1 applies to arbitrary graphs, and applies naturally to a forest graph. As

a result, the IP topology observed by the k-m traceroute approach follows a power law. This

concludes the proof.
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Theorem 1 and Corollary 1 make the case that the presence of layer-2 devices

leads to the power law node degree distribution observed in IP measurement studies. This

conclusion is independent of the nature of the underlying physical topology. Note that

the assumption that layer-2 devices are spread uniformly at random is reasonable as these

devices are quite popular both at the core and the edge of the Internet. It is also common

to find layer-2 devices that are physically connected.

4.2.2 Simulation Results

We next verify the results of Theorem 1 and Corollary 1 through simulations.

In the simulations, we adopt two well-known random graphs, that were quite popular in

representing Internet topologies before the power law models were introduced: (1) Erdös

and Rényi (ER) [33], and (2) Waxman [70]. The ER graph has 100, 000 nodes and a link

connects two nodes with probability p = 0.00015, resulting in an average node degree of 15.

The node degree distribution in ER graphs follows a Poisson distribution. The Waxman

graph also includes 100, 000 nodes that are added incrementally. Each new node is assigned

a coordinate in a plane and a link connects any two nodes, i and j, with a probability,

P (i, j), that is proportional to the Euclidean distance between the nodes.

P (i, j) = αe−d/(βL)

where 0 < α, β ≤ 1, d is the Euclidean distance between nodes i and j, L is the maximum

distance between any two nodes. We use α = 0.15, β = 0.2 and the resulting average

node degree is about 2. The node degree distribution in the Waxman graph follows an
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exponential distribution. We pick a fraction of the graph nodes uniformly at random and

assume they are layer-2 devices, and all other nodes are assumed to be routers. We also

assume shortest path routing between all nodes

For each of the ER and Waxman models, we study four scenarios: (1) Physical, (2)

IP, (3) km-physical, and (4) km-IP. In the first scenario we consider a graph including all

nodes, whether routers or layer-2 devices, and all links. In the second scenario we consider a

graph in which layer-2 devices are hidden as hinted on in Figure 4.1. To do that, we identify

the shortest path between each pair of nodes in the graph while hiding layer-2 devices, as if

they are not revealed by a tool such as traceroute. We then combine all revealed information

from the shortest paths to construct the IP graph. This is the graph that would be revealed

using traceroute from each node to all other nodes. In the third scenario we consider the

graph that would be revealed by running a hypothetical version of traceroute capable of

revealing layer-2 devices from k probing sources to m destinations. The sources and the

destinations are picked at random. In the fourth scenario we consider the graph that would

be revealed by running the traditional traceroute from k probing sources to m destinations,

thus missing the layer-2 devices.

In Figure 4.2 we plot the degree distribution of nodes in the four graphs corre-

sponding to the four scenarios in the ER and Waxman models, when the fraction of layer-2

devices is 20%, 40%, and 60%. We plot the curves of scenarios 3 and 4 only for k = 1

and m = 10, 000 since larger values of k lead to similar results. As shown in the figure the

presence of layer-2 devices result in power law IP topologies (Scenarios 2 and 4), whether

k-m traceroute is used or not, even though the underlying physical topologies are not a
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Table 4.1: Characteristic parameters of the ER and Waxman networks by hiding layer-2
vertices: Power law exponent γ, average path length l, and clustering coefficient, C. Switch
% is the percentage of layer-2 devices in the network.

Switch %
ER Waxman

γ l C γ l C

0% - 4.5 0.00004 - 21.8 0.00004
10% 2.42 4.1 0.00004 3.19 19.3 0.00004
20% 2.41 3.9 0.00005 3.16 17.2 0.00005
30% 2.40 3.8 0.00005 3.14 14.4 0.00005
40% 2.35 3.3 0.00006 3.10 10.1 0.00006
50% 2.40 3.2 0.00007 2.86 9.5 0.00007
60% 2.37 2.9 0.00007 2.85 7.1 0.00007
70% 2.37 2.9 0.00008 2.65 5.5 0.00013

power law. IP topology (scenario 2) shows exponential cut-off at the end of the curve, but

k-m traceroute IP topology (scenario 4) does not show the exponential cut-off, which is

consistent with the result in previous k-m traceroute data. The graphs for the scenario 2

and 4 confirm the conclusions from Theorem 1 and Corollary 1. We use least-square fitting

to find the power law exponent, γ, in each scenario and those are summarized in Table 4.1.

As the fraction of layer-2 devices increases, the exponent tends to be smaller, which means

that more nodes are perceived as more highly connected. Also, as expected, the physical

curves (Scenario 1) in Figure 4.2 reflect the actual node degree distributions of the ER and

the Waxman graphs. What is not expected though is that the km-physical curve (Scenario

3) is not a power law. As suggested in [44], k -m traceroute leads to a power law node degree

distribution due the sampling bias in this approach. We clarify this seemingly contradictory

result in the Section 4.2.3.

It is worth mentioning that missing layer-2 devices affect our perception of topolog-

ical metrics other than the node degree distribution, considering, for example, the clustering

coefficient, which measures the amount of cliqueness of a graph [68]. Specifically, the clus-
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tering coefficient, Ci, for a vertex, vi, is the ratio of the number of edges between the

neighboring vertices of vi to the number of edges that could possibly exist between them.

In Table 4.1 we show the average clustering coefficient, C, in the ER and Waxman graphs

as the fraction of layer-2 devices increases, and thus as the resulting IP topologies tend to

power law graphs. It is clear from the numbers that the perceived C is slowly inflated as

more layer-2 devices are included, and IP nodes are perceived as more connected.

4.2.3 Sampling bias

In [44], the authors propose that the power law node degree distribution observed in

Internet k-m traceroute measurements is possibly an illusion resulting from the sampling bias

in the measurements. They suggest that nodes that are close to the probing sources reveal

their connectivity better than nodes that are further away, and as a result the measurements

are distorted leading to power law node degree observations. To make the case for the power

law illusion, the authors use the same setup in our ER graph described in Section 4.2.2.

The authors do not investigate the impact of layer-2 devices and assume that all nodes are

visible to traceroute. Thus one can highlight their conclusions through our km-physical

curves in Figure 4.2 (a-c) (Scenario 3), which also assumes that no nodes are hidden to

the probing tool. Interestingly, the km-physical curves in Figure 4.2 do not reveal power

law trends. The reason for this seemingly contradicting results is that the authors of [44]

plot the degree distribution only up-to a degree of 25 (Figure 2 in [44], degree of 1.4 in

log scale), while we plot all revealed node degrees. Notice in Figure 4.2 that if we draw the

km-physical curves up-to a degree of 25 for the ER setup, we get a power law curve. This

does not mean that there is no sampling bias associated with the k-m traceroute approach;
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it simply means that with thorough probing, whether by increasing k and/or m, the nature

of the distribution is revealed.2 In addition, the k-m traceroute itself is not able to produce

a long heavy-tailed power law graph, because it can not inflate the degree that each node

actually has. The ER graph in Figure 2 in [44] has maximum degree less than 30. We can

hardly tell the k-m traceroute graph in [44] is a power law with that amount of information.

Measurement studies targeting Internet IP topologies relying on k-m traceroute

have been quite thorough, revealing node degrees of up-to 1071 in the Skitter data set [4]

and 1500 in the Mercator data set [43]. The revealed node degrees certainly exceed the

maximum possible physical connectivity of any router. For example, the popular high-end

Cisco 7600 series, Cisco’s CSR, and Juniper’s T640 brands offer routers with a maximum of

128 physical ports. Furthermore, measurement results that are not based on k-m traceroute

have revealed also power law traces. Specifically, Accurate Router Level Internet Maps

(AROMA) is a project intended at reducing the sampling bias in IP topology measurements

by targeting Internet ASes and not arbitrary destinations [42]. Only IP addresses and links

belonging to the targeted AS are included in the topology, which limits the bias to nodes

that are close to the probing host. Measurement using AROMA have revealed node degrees

up-to 1625 in Sprint AS, 492 in Level3, 4557 in Verio, and 4557 in Abovenet. As a result,

the sampling bias itself cannot explain the power law prevalent in Internet measurements

and the suggestion that the power law results are an illusion seems ill-founded. This is

especially true given that layer-2 devices lead to power law results as advocated in Section

4.2.1. We argue that the power law results in the Internet IP topology are not an illusion,
2Notice that we used the same k and m as in [44] but in Figure 4.2 we plot all revealed node degrees and

not only up-to a node degree of 25.
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and are caused by layer-2 devices. The nature of the Internet physical topology is a different

story, which we investigate next.

4.3 Internet Physical Topology

Understandably, there are no measurement studies about the Internet physical

topology. Layer-2 devices do not have IP addresses and thus cannot respond to IP probe

packets, and network administrators do not publish the structure of their networks. Until

tools that are capable of revealing layer-2 devices exist, the nature of the layer-2 Internet

topology will remain as a mystery. Still, there is standing evidence that the Internet physical

topology is not a power law.3 We next make the case for this statement. Some of our

arguments are subjective due to the lack of measurement studies, while other arguments

are objective and are based on the observed Internet performance and security.

The Internet is not the first large scale network to be built. Other networks with

possibly similar characteristics do exist such as the power grid networks and the U.S. high-

way system. Researchers have invested their effort in classifying large scale networks based

on their features. For example, Watt’s taxonomy classifies networks into relational and

spatial networks [69]. In relational networks, new connections (links) between vertices are

governed by a probability that is a function of existing network connections. Web sites and

links between them [13], science papers and citations linking them [67], airline systems con-

necting cities [19], sexual relationships [46] are all examples of relational networks. In spatial

networks, connections between vertices are governed by a probability that is a function of
3Recall that, according to Theorem 1, the power-law connectivity observed in the Internet IP topology

will persist independent of the structure of the physical topology.
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the Euclidean distance between the vertices. The power grid networks [69] and the U.S.

highway system [21] are examples of spatial networks. Research studies on spatial networks

confirm that they have exponential-like degree distribution [15, 19]. The Internet physical

topology can be classified as a spatial network and it is likely that it also has exponential

connectivity. While there is no evidence of this conjecture, it is worth highlighting that

none of the existing and well-documented spatial networks has a power law connectivity.

Furthermore, there is no doubt that intelligent design is behind the high perfor-

mance and resilience observed in today’s Internet. Network designers typically optimize

performance and security subject to cost and technology constraints. Interestingly, cost,

technology constraints, performance and security all favor non-power law Internet physical

topology. We next consider each of these factors separately and show that they all lead to

the same conclusion: It is unlikely to have nodes with a degree that is much larger than the

average node degree, the characteristic property of power law graphs.

4.3.1 Economical Drivers

Economically speaking, the cost of laying multiple cables from a router to each

demand is more expensive than extending a single line to demand side and using switch

devices to split lines. Especially the demands are spread over wide area or vertically located,

splitting zones with switches and multiplexing them are more economical solution. This

cost efficient recursive clustering helps to reduce the degree of the Internet physical graph

vertices, making it unlikely that some vertices would have a degree much larger than the

average vertex degree. Notice that while recent edge router technology can accommodate

thousands of DS0 channels or hundreds of DS1 channels, physical ports on the router are
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more or less than 100, and thus switch devices should be placed to multiplex a hundred

demands before sending them to the router using multiplexing technology.

4.3.2 Internet Performance

We consider two performance metrics: (1) The maximum throughput, and (2) the

average path length. We use the former to make the case that the the maximum throughput

that can be achieved by the Internet, subject to technological constraints on router connec-

tivity, is improved with non-power law physical topology. We use the latter to show that the

small-world phenomenon observed in the Internet can be explained even if the underlying

Internet physical topology has exponential node degree distribution.

Maximum Throughput. Routers and switches have a limited number of physical ports.

Utilizing a large number of these ports simultaneously degrades the device’s overall through-

put, and the throughput of each port [18]. Since network administrators strive for better

performance, heavily connected networking devices are unlikely. Furthermore, the typical

number of physical ports is not large making it again unlikely that some nodes would have

much larger degree than the average node degree.

We define the maximum throughput as the throughput under heavy traffic con-

ditions based on a gravity model [58]. Specifically, we estimate the sum of the maximum

throughput of flows on all source-destination pairs of edge routers, assuming shortest path

routing. The maximum throughput between a source destination pair is computed under

the router degree-bandwidth constraint described in [18,45]. The constraint is based on the

Cisco 12416 Gigabit Switch Router (GSR) technology constraint, which can be described as

follows: If a router is configured to have a degree of 12, then each physical connection can
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enjoy a maximum throughput of 10 Gbps; while if the router is configured to have larger

degree, the throughput per physical connection degrades (Figure 1 in [45]).

In [18, 45], the authors use the above definition of the maximum throughput to

argue that the power law observed in the Internet node degree distribution is not enough

to describe the Internet topology since networks having the same power law node degree

distribution can have different features. They advocate that a power law network should

be disassortative4 to obtain the maximum possible throughput while satisfying the router

degree-bandwidth constraint [52]. That is high physical connectivity at the router level is

expected to be firmly confined at to the network edge, while physical connectivity at the

network core is expected to be quite sparse. To make this case, the authors study different

topologies with the same power law degree distribution based on the maximum throughput

metric and show that their disassortative Heuristically Optimal Topology (HOT) model

leads to better throughput than other topologies with the same power law node degree

distribution. The HOT model is obtained by rewiring the power law graph obtained by

using the Barabási and Albert’s rich gets richer model to make it disassortative. Still,

the HOT model does not lead to the maximum possible throughput as the router degree-

bandwidth constraint limits the capacity of highly connected routers at the edge of the HOT

model. This itself is unlikely in practice as it is hard to conceive that an administrator would

intentionally use a heavily connected router and degrade the potential capacity that would

be otherwise available by the use of two less connected routers. A network which does not

suffer from the router constraint should thus not have overly connected routers.
4In assortative network, a high degree node connects to a high degree node, while in disassortative

network, a high degree node is connected to a low degree node. Assortative network usually has high degree
nodes at the core, but disassortative network has them at the edge side.
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Average Path Length. Researchers have suggested that the Internet has the small world

property [50], that is a small average path length between nodes. This result can be verified

by inspecting traceroute probes showing a relatively small average number of IP hops be-

tween Internet hosts. In 1999-2000, the average path length of IP graph was 11 ∼ 13 [12].

The small world property is inherent in power law graphs and Poisson graphs like ER, but

not in exponential graphs like Waxman. In general, the small world property exists is in

relational networks, not in spatial networks. In Table 4.1 we show the average path length,

l, of the ER and Waxman graphs using the setup described in Section 4.2.2, and as we vary

the fraction of layer-2 switches in these graphs. It is clear from the numbers that when no

layer-2 devices are included, the ER graph has the small world property but Waxman does

not. However, as layer-2 devices are introduced, the observed average path length in the

resulting IP topologies decreases dramatically both in the ER and the Waxman networks,

since they both converge to power law networks, satisfying the small world property. As

a result, the small world phenomenon observed through traceroute measurements is not

necessarily persistent in the Internet physical topology. Still, measurement results also re-

veal a relatively small delay between Internet nodes, typically in the order of milliseconds.

This observed efficiency can be attributed by the forwarding efficiency of layer-2 devices

compared to routers. In layer-2 devices, packets are forwarded based on MAC addresses at

almost full wire hardware speed, which makes it faster than a router. Thus communication

between Internet nodes covers a small number of IP hops, each consisting of some number

of layer-2 hops, which are quite efficient.
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4.3.3 Internet Security

Heavily connected routers represent a security risk. A targeted attack on such

routers can affect a significant portion of the Internet. In [14, 16], the authors warn the

Internet community about the existence of Internet “Achilles heel”, weak points that are

vulnerable to directed attacks. The weak points are the heavily connected routers acting

as giant hubs, and handling a large fraction of the Internet traffic. These are based on

the perceived power law Internet topology highlighted in [35]. The authors, however, point

out that these giant hubs are quite rare making the Internet resilient to random failures.

We next revisit these conclusions based on our findings that layer-2 devices are causing the

perceived layer-3 Internet power law topology, and that the Internet physical topology does

not suffer from high vulnerability.

As opposed to a router, a layer-2 switch does not have an IP address, which makes

it more resilient to targeted attacks. Furthermore, an Internet physical topology without

giant hubs, is also more resilient to failures, targeted and random attacks. Furthermore,

switches introduce hidden redundant connectivity that helps for better security to the In-

ternet. For example, in Figure 4.3(b) nodes a and b appear as heavily connected hubs in

the perceived IP topology and it seems that attacking and removing these nodes isolates

a large portion of the network. However, by observing the underlying physical topology

in Figure 4.3(a), removing nodes a and b affects only a smaller fraction of the network.

Overall, security favors an Internet physical topology without heavily connected nodes.
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4.4 Revisiting Internet Topology Generators

Our conclusions in this chapter about the Internet IP topology and physical topol-

ogy provide a different perspective on the Internet structure, explain measurement results,

and contradicts some earlier conclusions. In this section we revise some conclusions on

widely accepted Internet topology generators. Recall from the survey in Chapter 2 that In-

ternet topology generators fall into two main categories: (1) structure-based [24,31] and (2)

degree-based [10,30,40,48,49]. Structure-based topology generators model the Internet hi-

erarchical structure known to exist in the Internet, distinguishing transit domains from stub

domains. Degree-based topology generators model power law node degree distributions that

exists, or at least perceived to exist, in Internet IP topology measurements. Degree-based

topology generators gained more popularity since structure-based generators were shown

not to exhibit power law node degree distributions. Furthermore, researchers have made

the point that degree-based topology generators are superior to structure-based generators

in emulating the Internet structure [65]. The conclusions that we draw in this chapter sheds

some doubt into these conclusions. Structure-based topology generators may indeed reflect

a power law node degree distribution if layer-2 switches are modeled. Also, the Internet’s

physical topology is not likely to exhibit a power law node degree distribution because of

the reasons we have seen so far. Furthermore, the degree distribution itself may not be

enough to represent large-scale properties of the Internet [65]. The hierarchical structure of

the Internet is one such large-scale property, but this does not mean that structure-based

generators produce more realistic Internet topologies. It is rather that earlier conclusions

comparing structure-based and degree-based topology generators are ill-founded, which sug-
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gests rethinking Internet topology models.

4.5 Summary

In this chapter, we made the case that (1) layer-2 devices are the reason for the

perception of a power law node degree distribution in the Internet’s IP topology, not sam-

pling bias or node’s tendency of preferential attachment. (2) The Internet physical topology

should not be a power law to enjoy better performance and security. Our conclusions help

to explain many of the Internet measurement results, to question some of the earlier con-

clusions, and to call for more thorough investigation of the Internet properties.
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(f) Waxman: 60% layer-2 devices

Figure 4.2: Node degree distribution of ER and Waxman graphs with 100, 000 nodes, when
the fraction of layer-2 devices is 20% (a,d), 40% (b,e), 60% (c,f). Each figure include four
curves representing the (1) Physical, (2) IP, (3) km-physical, and (4) km-IP scenarios. For
scenarios 3 and 4, we use k = 1, and m = 10, 000.
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(a)
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(b)

Figure 4.3: (A) Degree distribution for physical connectivity. There is no node highly con-
nected in this level. (B) Degree distribution for IP-level topology based on k-m traceroute.
Traceroute begins from node ‘k’. The result topology of the IP-level is exaggerated by
layer-2 devices, and has few highly connected hub nodes. l: router, m: Ethernet switch,
o: ATM switch, k: traceroute source node
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Chapter 5

The Hoops in the Net:

Topology based on Cost,

Performance, and Security

Existing Internet topology models have progressed from random graphs, to struc-

tural based, to degree-based. All of which, however, do not capture realistic Internet struc-

ture and features. Popular existing topology generators are degree-based, generating power

law networks. Our results in Chapter 4 clarifies the limitations of this approach and brings

efforts to model the Internet topology to a fresh start.

In this chapter, we provide a more realistic Internet topology model, HINT, which

takes economical, performance and security perspectives into consideration. Furthermore

HINT differs from existing models in that it considers traffic loads on each links. The model

reveals interesting results that conforms to the published information about some networks.
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Figure 5.1: (a) Traffic flow between nodes v1, v2, and v3 when δ1 = 1, δ2 = 2, and δ3 = 4.
(b) A more compact representation of the traffic flow between nodes. (c) A symbolic
representation of flows.

Mainly, that the core of the Internet consists of cycles and the edge consists mostly of trees.

The rest of the paper is organized as follows. In Section 5.1, we provide the setup,

terminology, and explain our model. In Section 5.2 we provide the details of our proposed

HINT model and compare the resulting HINT topologies to existing topology models. In

Section 5.2.2, we evaluates proposed model with previous ones. We finally conclude in

Section 5.3.

5.1 System Model

5.1.1 Basic Model

Consider a graph G = (V, E) of |V | nodes (vertices) and |E| edges. An edge

ei,j ∈ E connects vertices vi,vj ∈ V . Let di,j be the length of edge ei,j . Each node in

G represents a geographic concentration of population reflecting some demand for Internet

service. One can also think of nodes also as Points of Presence (PoPs). Let δi (in units

of traffic rate) be the demand at node vi. δi values are normalized such that δi ≥ 1 and

δi∗ = 1 unit, where vi∗ is the node with the least demand for Internet service.
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We assume that nodes contribute to the Internet as much as they demand from

other Internet nodes. This assumption is not necessarily true in practice for all nodes but is

reasonable given the lack of other evidence and to simplify our discussions. Cases in which

some nodes contribute more that they demand, or demand more than they contribute,

is left for future research. Thus node vi exports δi traffic units to all nodes in G and

imports/download δi units from all nodes in G. The imported δi units are downloaded from

nodes in G in proportion to their δi values. The exported δi units are uploaded to nodes in

G also in proportion to their δ values. Let σ =
∑|V |

i=1 δi. Then a node vi uploads a fraction

δj

σ of its δi units of traffic to node vj and downloads the same amount of traffic from node

vj .

Refer to Figure 5.1 for an example on the exchanged traffic units between nodes.

In this example we plot three nodes, v1, v2, and v3 for which δ1 = 1, δ2 = 2, and δ3 = 4.

In Figure 5.1(left) we plot a directed graph. A directed link from a node vi to node vj is

annotated with the traffic units that are originating at vi and destined to vj . Note the self

cycle at each node representing traffic originating and destined to same node. The figure

establishes that indeed the sum of the traffic units originating at a node vi is δi and the traffic

units intended for vi is also δi. Figure 5.1(middle) provides a more compact representation

of the traffic flows between nodes, in which the sum of the traffic units between nodes are

summed up instead of distinguishing the traffic units in each direction. Note that the sum

of the traffic units over all links in this representation is σ as expected. Figure 5.1(right)

provides a symbolic representation of Figure 5.1(right) to help reveal a simple derivation of

the traffic units that need to be carried on a direct link between any two nodes and the traffic
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units that not using links connecting nodes (self cycles). One can generalize the following

derivations: If physical links ei,j are extended between nodes vi and vj , then the capacity

of these link needs to accommodate a traffic load of Ti,j = 2δiδj/σ traffic units, when i 6= j.

Furthermore, a node vi needs to accommodate a traffic load of Ti,i = δ2
i /σ +

∑
∀j 6=i Ti,j

traffic units. That is traffic generated through self cycles and traffic communicated with all

other nodes. Notice that in the case when a direct link exists between every pair of nodes,

nodes do not carry transit traffic originating at other nodes and destined to other nodes.

Instead, all traffic crossing a nodes is either originating at that node or destined to it. Thus

Ti,j values reflect traffic loads on links and Ti,i values reflect traffic loads on nodes when

the structure of the graph is a full mesh. This case is obviously unrealistic and does not

represent the Internet graph. As nodes carry transit traffic for other nodes, other than the

full mesh graphs, the traffic load on links and nodes carrying transit traffic will increase.

Let Li,j and Li,i be the generalization of the Ti,j and Ti,i traffic load measures to account

for the overall load on links and nodes whether due to transit traffic or not. Thus Li,j = Ti,j

and Li,i = Ti,i in the full mesh graph case (no transit traffic) and Li,j ≥ Ti,j and Li,i ≥ Ti,i

otherwise to account for transit traffic load on graph links and nodes, respectively. We next

explain how to account for the transit traffic.

5.1.2 Accounting for Transit Traffic

A simple example will make accounting for transit traffic load on edges and nodes

clear. Consider four nodes v1, v2, v3 and v4. We next construct four different basic graphs

to connect these nodes as illustrated in Figure 5.2: (1) A full mesh, (2) a tree, (3) a path,

(4) a cycle.



59

1 2

3

δ1 δ2

δ3

4

δ4

L1,2=T1,2
L1,1=T1,1   L2,2=T2,2   

L3,3=T3,3   L4,4=T4,4   

L
1
,4
=
T
1
,4
  
 

L
2
,3=

T
2
,3   

L3,4=T3,4   

L2
,4
=T

2,
4 
  L

1,3=T
1,3   

(a) Full Mesh

1 2

3

δ1 δ2

δ3

4

δ4

L1,2=

T1,2+T2,3+T2,4   
L1,1=

T1,1+T2,3+T2,4+T3,4    L2,2=T2,2   

L3,3=T3,3   L4,4=T4,4   

L
1
,4
=

T
1
,4
+
T
3
,4
+
T
2
,4
  
  L

1,3=T
1,3+T

2,3+T
3,4   

(b) Tree

1 2

3

δ1 δ2

δ3

4

δ4

L1,2=

T1,2+T2,4+T1,3+T3,4

L1,1=

T1,1+T2,4+T3,4   

L2,2=

T2,2 +T1,3+T3,4   

L3,3=T3,3   L4,4=T4,4   

L
1
,4
=

T
1
,4
+
T
2
,4
+
T
3
,4
  
 

L
2
,3=

T
2
,3+

T
1
,3+

T
3
,4   

(c) Path

1 2

3

δ1 δ2

δ3

4

δ4

L1,2=

T1,2+T2,4+T1,3
L1,1=T1,1+T2,4   L2,2=T2,2+T1,3  

L3,3=T3,3   L4,4=T4,4   

L
1
,4
=
T
1
,4
+
T
2
,4
  
 L

2
,3=

T
2
,3+

T
1
,3

L3,4=T3,4   

(d) Cycle

Figure 5.2: Basic Network structures: (a) Full mesh. (b) Tree. (c) Path. (d) Cycle

In the full mesh case – Figure 5.2(a) –, there is no transit traffic and all traffic

going through a node is either originating from it or destined to it. In this case, Li,j = Ti,j

and Li,i = Ti,i as explained in Section 5.1.1.

In tree case – Figure 5.2(b) –, basically a star-like topology in this simple setup.

In general a tree is a collection of paths without cycles. In this case, three edges have been

dropped from the full mesh graph, e2,3, e2,4, and e3,4. The traffic that used to be carried

on these links has now to be routed through other nodes and edges. The traffic load T2,3

that used to be over e2,3 will be routed through node v1 thus increasing the load on e2,1, v1,

and e1,3 by T2,3; The traffic load T2,4 that used to be over e2,4 will be routed through node

v1 thus increasing the load on e2,1, v1, and e1,4 by T2,4; and The traffic load T3,4 that used
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to be over e3,4 will be routed through node v1 thus increasing the load on e3,1, v1, and e1,4

by T2,4. The end results is that the load on links and the load on the node v1 will increase

compared to the full mesh case.

In the path case – Figure 5.2(c) –, three links have been dropped e1,3, e2,4, and

e3,4. Again the traffic that used to be carried on these links, T1,3, T2,4, and T3,4 has to

be routed through other nodes and edges, adding to the load on these nodes and edges as

shown in Figure 5.2(c).

The cycle case in Figure 5.2(d) adds only one link, e3,4 to the path in Figure 5.2(c)

and drops links e1,3 and e2,4 from to the full mesh case. As a result, traffic load T1,3 can

be routed between v1 and v3 either through node v2 or through node v4; similarly, T2,4 can

be routed between v2 and v4 either through node v1 or through node v3. This provides

some flexibility in balancing the load on the system. Figure 5.2(d) shows the resulting load

on nodes and edges as T1,3 is routed through v2, T2,4 is routed through v1. An implicit

assumption in our load distribution is that routing follows shortest path to the destination

and that routing is symmetric. For example, traffic from v1 to v3 follows the same path as

traffic from v3 to v1.

5.1.3 Network Metrics

We rely on the following metrics to compare different network structures and later

on to build and evaluate the proposed HINT topology model.

• Cost. The cost of building the network is a major factor in its structure. This should

be obvious as ISPs are mainly investors aiming at maximizing their profit. To do that
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they are mainly aiming at minimizing the cost and maximizing their profit. The profit

is maximized as more customers join their network and as they carry more transit

traffic. The cost of building a network has many facets some of which are fixed costs

(paid once) such as (1) the cost of digging out to lay out the links (fiber) (2) the cost

of the fiber and its installation, and (3) the cost of buying equipment such as routers

and switches; and recurring costs such as (1) the labor cost running the equipment,

(2) the overhead, and (3) the cost of using neighboring ISP’s infrastructure to route

traffic in transit.

Notice that the digging cost is proportional to the distance between nodes (the length

of the link di,j). The fiber cost is proportional to both the length of the link and to

the load expected on the link Li,j . The cost of equipment (routers, switches, etc), the

labor cost, and the overhead are proportional to the traffic load on nodes Li,i. While

the digging cost is a major component in a network cost, this cost differs depending

on whether the links are laid in urban or rural areas. Also, recurring costs such as

labor cost constitute a large portion of the overall cost. Typically, investors in network

infrastructure do not expect their investment to pay off immediately and they plan for

a break-even point, typically within a few years, after which their revenue is expected

to exceed the costs.

• Performance. We target an over-provisioned network capable of accommodating the

demand of customers. This is typical of the Internet backbone structure. Thus net-

work throughput is not an issue. Instead we use the average delay between nodes

as the performance metric. The delay between nodes has two components: (1) the
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Table 5.1: Comparison between basic network structures.
Full Mesh Cycle Path Tree

Cost (Line Digging) Worst Bad Good Good
Cost (Lines Cost and Installation) Worst Good Bad Bad
Cost (Equipment, Labor) Best Good Bad Bad
Performance (Propagation Delay) Best Good Bad Bad
Node Resilience Best Good Bad Bad
Link Resilience Best Good Bad Bad

propagation delay, which is proportional to the length of the links connecting nodes,

and (2) the queuing delay, which reflects the delay incurred by nodes at intermediate

nodes. Again since we are building an over-provisioned network we ignore the queuing

delay component and only investigate the average propagation delay between nodes.

• Resilience. Security is an important factor in network design, If the network operation

is disrupted by the disruption of a router or a link then investors are likely to lose

business. It is desirable to have network sustain at least the disruption of a node or

router by rerouting traffic without major disruption of operation.

5.1.4 Comparing Basic Graph Structures

Equipped with metrics discussed in Section 5.1.3 we compare the basic topology

structures that we introduced in Section 5.1.2. Our comparison is qualitative and admittedly

is ad-hoc but is enough for our purposes.

Table 5.1 compares the cost, performance, and security features of the full mesh,

cycle, path, and tree structures. All structure should have the same number of nodes. Note

that a tree is basically a collection of paths and their behavior is quite similar.

The full mesh represents an extreme end of the spectrum of network structures,
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which incurs the highest cost for digging lines and installing links as there is a link between

every pair of nodes. However, since nodes are not congested, then cost of buying and

managing equipment at nodes is relatively cheaper than other structures. Furthermore, the

delay between nodes is the best possible and the resilience to network disconnection due to

node or link failures is clearly as best as it can be. The full mesh structure is not practical

given the excessive high cost for setting up links between every pair of nodes.

The other three structures are much cheaper than the full mesh and their costs

are deemed practical. The cycle structure incurs a cost for establishing an extra link than

the path structure and thus incurs an additional digging cost. However, since nodes and

links are less congested, then the link capacities in the cycle structure are relatively smaller

and thus their cost is relatively less than in the path and tree structures. Furthermore,

since nodes are less congested then the equipment at nodes and the labor cost is less. The

cycle structure is more resilient than the path and the tree structures to both node and link

failures. The average propagation delay between nodes in a cycle is definitely much better

than in the path structure. It is also better than the average delay between nodes in a tree.

The points to be made here are: (1) The tree, path and cycle structures are

more practical to implement than the full mesh structure. (2) While the cycle structure is

relatively more costly in its initial investment (line digging), it requires less costly equipment

at nodes, less labor cost, and less costly fiber. (3) The cycle structure offers better delay

between nodes than the path and tree structures. (4) Most importantly, the cycle structure

is more secure than the path and tree structures as it is more resilient to node and link

failures. Bringing one link down from a tree or a path structure will split the network. That
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is a major concern for path and tree structures.

5.2 HINT Internet Topology Model

The Internet is an associative network and associative networks typically form

grids. So should the Internet. We have limited evidence from Level-3 published infrastruc-

ture and Abilene infrastructures in Figure 5.3. Whatever the shape of the Internet backbone

structure, it is likely that nodes would like to have direct connections to most popular nodes

in order to limit the recurring cost they pay to other nodes to redirect their traffic. The

Internet construction is driven by supply and demand. An ISP would like the best return

on his investment. That goes where the demand is promising the most revenue on his

investment with the least possible cost. But performance and security are also important

considerations as a degradation in performance or security risks can degrade the demand.

Cycles formation provides better performance and security as we have seen in Section 5.1.

The more money spent on the network infrastructure the better the resulting

network in terms of performance and security. The premise of the HINT model is to explore

this tradeoff and show how the topology should be built as the overall budget shrinks or

expands.

5.2.1 HINT Model

Our discussion in Section 5.1.1 motivates the presence of cycles in the Internet but

does not explain how cycles are constructed, which nodes are connected, how large/small

each cycle is, and does not distinguish between the capacities of the links in the resulting
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structure. In order to address these issues, we rely on a simple model, which takes into

consideration the demand for Internet service and the supply in the form of network in-

frastructure. More populated nodes (cities) offer/demand more Internet content and ISPs

are likely to extend network links between more populated cities than to less populated

cities in order to make more profit. Direct links between popular nodes limit the recurring

cost that would otherwise need to be paid to other nodes to communicate traffic between

these popular nodes. HINT uses the population of cities as a measure of the demand for

Internet service at these cities. In Figure 5.5 250 cities in the United States, which have

more than 100,000 people within urban boundaries, are selected and the size of dot rep-

resents the amount of demand at these cities. On the other hand, the longer the distance

between nodes the more the cost of laying out network links between these nodes. This

tradeoff can be expressed by adopting Newtonian’s Gravitational model, which expresses

the connectivity force, fi,j , between two nodes i and j as:

fi,j =
Li,j

di,j
2 ,

where Li,j is the traffic load between nodes i and j, di,j is the distance between these

nodes. In other words, the possibility of having a direct connection between cities i and

j is proportional to the traffic that is expected to traverse this connection and inversely

proportional to the square of the distance between the two cities. Recall from our discussion

in Section 5.1 that Li,j = 2 δiδj

σ when the graph is a full mesh, but Li,j increases when the

structure is not a full mesh as links may have to carry transit traffic for other nodes.

The HINT model starts with a full mesh graph between nodes thus initially as-
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suming that cost is not an issue. In this case, Li,j = 2 δiδj

σ . Then least important links,

i.e. links with lower fi,j are dropped one at a time until no more links can be dropped

without disconnecting the network. As a link ei,j is dropped, its traffic Li,j is redirected

through other paths in the structure in order to still connect the Li,j load between nodes i

and j – as explained in Section 5.1. HINT thus exploits the set of network structures that

are expected to be adopted as cost becomes more and more relevant and converges in the

likely condition, when cost cannot be further reduced without disconnecting the network.

However, since network resilience to node/link failures is an important issue especially in

the Internet backbone, HINT relies on an additional criterion. Specifically, HINT does not

drop a link if its removal will lead to a node with a degree of one. A structure with a node

degree of at least two ensure the resilience of the network to the disruption of at least one

node/link. Note that this condition leads to the presence of cycles in the Internet backbone.

The edge of the Internet is bit different as there is typically little traffic demand between

nodes in the in close physical proximity and a tree structure is expected to be the common

case. Evidence of the tree structure at the edge can be seen in our own NCSU network.

In this case, this degree condition can be removed and the resulting topology will simply

be a tree. Figure 5.6 illustrates the HINT process and Algorithm 1 provides the complete

HINT network generation algorithm. The efficiency of the algorithm is O(E(V 2 +E)) since

HINT uses Dijkstra’s algorithm with priority queue for the shortest path search, which is

O(V lgV + E) and removing and updating each edges requires an O(E) computation.
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Input: A complete graph, G

Output: The Internet backbone network, G′

foreach edge ei,j do
assign traffic load Li,j ;

assign connection force, fi,j ;

end

while |E| in G′ is greater than target number of edges do
select ei,j with least fi,j ;

if degree(vi) > 2 and degree(vj) > 2 then
remove ei,j ;

find shortest path between vi and vj ;

add Li,j to each edge on the shortest path

else
fi,j ←∞

end

end

Algorithm 1: The HINT algorithm

5.2.2 HINT Evaluation

Our evaluation of HINT is based on the two networks, which have published struc-

tures, Abliene and Level-3. In each case, we use the traffic demands for the cities connected

by each network and distances between these cities as the input to the HINT algorithm.

Figure 5.7 illustrates the resulting HINT topology connecting the Level-3 cities and Figure

5.8 illustrates the HINT topology connecting the Abilene cities. Even though the Powerlaw

and the ER random models do not consider Euclidian distance for model generation, we plot
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them on the same U.S. map for comparison purposes. Waxman produces a network topol-

ogy based on proximity of Euclidian distance and thus it produces more realistic network

topology for the Internet, but since it does not account for traffic demands, the resulting

topology does not match the HINT topology. The figures clearly show that, as opposed

to Powerlaw, ER, and Waxman models, the HINT topologies closely match the published

Level-3 and Abilene networks. For example, most links in the HINT topology match the

Abilene networks except for two links, which connect Houston, TX & New York, NY and

Atlanta, GA & New York, NY. The direct connections are included in the HINT topology

because the demand factors dominate the distance factor between these cities. The popu-

lation of New York is about 8 millions and one of Houston is 2 million while Atlanta has

only about 400,000 people in the city boundary. This leads to the direct connection from

Houston to New York even though Atlanta is much closer to Houston. This limitation in

HINT can be remedied by revisiting the removed links after HINT has converged to check

whether re-including them in the HINT topology will lead to a reduction in cost. We leave

this part for future research.

The total length of links in a network provides a first-order approximation of the

network cost. Table 5.2 lists the cost resulting from the HINT, Powerlaw, Waxman, and ER

topologies using 250 US cities, which have a population of more than 100,000. HINT leads

to one graph but other topologies may differ for different runs due to random parameters

used in their topology construction. The numbers in the table are the results of 100 runs.

As can be see from the table results, the HINT model is more economical than the others.

To test the resiliency of the network, we remove a node or an edge one at a time
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Table 5.2: Total Length To Build Network
HINT 9,025,507km
Powerlaw 11,480,740km ± 824,000km
Waxman 9,775,800km ± 302,000km
ER Random 10,970,680km ± 957,000km

by random and by degree order. Random removing of a node or an edge tests the network

in case of device failure, while removing them by order tests the network against targeted

attack scenario [16]. To remove a node or an edge by order, we select highest degree node

or edge in the graph first. For an edge, we consider the degree of an edge as how many

neighboring edges are instant to the given edge. We remove a node or an edge until the

largest cluster includes below 30% of the nodes in the network, and measure the percentage

of nodes or edges has been removed. We assume a network is broken when it reaches the

point that the largest cluster covers only 30% of nodes in the network. The results are

summarized in Table 5.3 and Table 5.4. From the result, we see HINT is the most reliable

against targeted attack and very resilient to random failure. Against attack, with only 15%

of node removing, Powerlaw network is broken down, which is very vulnerable, while HINT

requires 31% of node removing to have same effect. Removing an edge does not make big

difference. Against random failure, Powerlaw produces the most reliable network, followed

by HINT. To break the HINT network, 28% of nodes should be failed, but Powerlaw network

is still connected after removing 39% of node failure.

Table 5.3: Resiliency Against Attack
Node Edge

HINT 31% 30%
Powerlaw 15% 18%
Waxman 20% 20%

ER Random 19% 18%
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Table 5.4: Resiliency Against Failure
Node Edge

HINT 28% 27%
Powerlaw 39% 41%
Waxman 20% 21%

ER Random 19% 19%

5.3 Summary

In this chapter, we introduced a new network topology generation model (HINT)

which produces cost efficient, better performance and more secure network topology for

the backbone of the Internet. Published Internet backbone structures confirm the edge

that HINT model enjoys over other existing topology models. Furthermore, HINT labels

topology edges with expected traffic load and distance, thus providing more detailed Internet

maps than existing topology models.
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(a) Level3 network

(b) Abilene network

Figure 5.3: (a) Level3 network. Backbone nodes build a cycle with neighboring nodes and
the backbone itself is a collection of cycles. (b) Abilene, Internet2 network. Clear example
of cycle backbone.
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Figure 5.4: Level3 backbone network drawn by Rocketfuel project. Star-like topology
directly connecting many remotely apart cities show significant visual difference between
projected and actual Level3 backbone network.

Figure 5.5: Demand model for HINT topology generation
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Figure 5.6: HINT process: (a) Select an edge with least connection force. (b) Find shortest
path and update traffic load.
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(a) HINT

(b) Powerlaw

(c) Waxman

(d) ER Random

Figure 5.7: (a) The Internet model produced by HINT. (b) Network by powerlaw model.
(c) Internet model produced by Waxman. (d) ER Random model for the Internet.
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(a) HINT

(b) Abilene

Figure 5.8: (a) A simulated Abilene network produced by HINT. (b) Abilene network.



76

Chapter 6

Conclusion

This thesis is dedicated to investigating the network property, especially the struc-

ture of the Internet. Throughout the thesis, we heavily measure the Internet using servers

in Planetlab to produce the map of the Internet. Our level of measurement is router-level

topology and our methodology finds more routers and connections than other studies. The

mapping result from the measurement is a power-law tendency when it comes to the degree

distribution of each router. From the measurement, chapter 2 is discussing why the router

level topology shows a power law distribution based on theory and simulation approach.

Our claim is that a power law tendency of the router connectivity is because of the hidden

layer 2 devices and those devices with limitation of trace routing tools misguides us to

wrong direction. Our finding from the study is logical and plausible and thus free us from

the power law binding for the Internet structure. Last chapter is introducing a new Internet

topology generation model, HINT, which considers demand, supply, cost, performance, and

security. Finally product from the model looks very close to the real Internet and thus we
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claim that HINT is more useful topology generation tool for the Internet.

We investigate the Internet based on the assumption that the network is routing

the traffic following shortest path, but it might not necessarily be the case in the real world.

The routing is more dynamic to adjust the network environment and finding alternative

path for the routing when the shortest path is disconnected. The peak time for the network

usage should be different in different time zone and that might be another factor to design

the Internet. While people in West coast are sleeping, people in other side of the coast

are working. The routing path might be impacted to utilize the paths which is not full

functioning in a certain time period. If it is not the case, we can think about how to increase

the utilization rate overall areas and make amount of traffic balance. These all factors might

be considered when we design the network. As technology grows and changes, so as our

researchers.
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