
ABSTRACT

KLOYPAYAN, JIRAWAN. Solving Complex Modeling of System-on-a-Chip (SOC) Test

Automation and Optimal Resource Allocation by Neural Networks. (Under the direction of

Professor Yuan-Shin Lee.)

The objective of this research is to optimize the testing time and test resource

allocation for System-on-a-Chip (SOC). The mathematical formulation and the neural

networks with different techniques are proposed to solve these SOC test problems. First, a

fixed-weight neural network combined with heuristic algorithms has been developed to solve

the SOC test scheduling problems. The objective of this SOC test automation is to minimize

the SOC testing time subject to different constraints: (i) precedence constraint, (ii) resource

constraint, (iii) core constraint, and (iv) power constraint. Heuristic algorithms are often used

to prevent the neural network from getting trapped in a local optima. The developed neural

network can effectively solve the SOC test scheduling models with disjunctive constraints.

The results show that the proposed method can efficiently solve a large-size SOC test

scheduling problem within reasonable computing time. Second, to solve the resource

allocation and the width selection problems for SOC test automation, a maximum neural

network (MNN) has been proposed in this research for handling more complex SOC test

problems. The SOC test automation problem with resource allocation is a NP-hard problem.

The proposed maximum neural network can be used to solve the NP-hard SOC test problems

within polynomial time. The results show that, by using the developed maximum neural

network, the overall testing time for the SOC can be minimized with optimal resource

allocation and test access mechanism (TAM) width selection. The computation time of the

proposed method is significantly less than the time for traditional methods such as the integer

linear programming (ILP) or heuristic algorithms. Third, the SOC test automation problems

with core test wrapper design have been studied in this research. The core test wrapper

design provides an interface between the core and the SOC in which the core is embedded.

After the core test wrapper is designed, the total SOC testing time and the resource allocation

for SOC test automation are optimized by using the developed maximum neural network.

The proposed method is tested on five SOC benchmarks. The results show that it is possible

to find the optimal SOC testing time of the complex SOC systems with shorter computation

time than with the existing traditional methods. The techniques presented in this research

can be used in test automation for System-on-a-Chip (SOC) design.

Solving Complex Modeling of System-on-a-Chip (SOC) Test

Automation and Optimal Resource Allocation by Neural

Networks

By

Jirawan Kloypayan

A dissertation submitted to the Graduate Faculty of

North Carolina State University

in partial fulfillment of the

requirements for the Degree of

Doctor of Philosophy

INDUSTRIAL ENGINEERING

Raleigh

2002

APPROVED BY

Dr. Yuan-Shin Lee

Chair of Advisory Committee

 __________________ __________________
 Dr. Ezat T. Sanii Dr. Robert E. Young
 Advisory Committee Advisory Committee

 __________________ __________________
 Dr. Elmor Peterson Dr. Krishnendu Chakrabarty
 Advisory Committee Advisory Committee

 ii

BIOGRAPHY

Jirawan Kloypayan received her B.S. degree in Material Science and M.S. degree in

Industrial Engineering from Chulalongkorn University, Thailand. She received her second

M.S. degree (1998) in Integrated Manufacturing System Engineering and Ph.D. degree in

Industrial Engineering (2002) both from North Carolina State University, USA. Her research

interests include soft computing techniques, computer-aided manufacturing, and

computational geometry for design and manufacturing. She has accepted a faculty position

at the Department of Industrial Engineering at Thammasart University, Bangkok, Thailand.

 iii

ACKNOWLEDGMENTS

I would like to express my sincere appreciation and gratitude to my advisor, Dr.

Yuan-Shin Lee, for his valuable guidance and assistance throughout this research. I would

like to extend my appreciation to Dr. Krisnendu Chakrabarty for his time, helpful

encouragement and advice. I appreciate the constructive suggestions and comments from my

graduate committee: Dr. R. Young, Dr. E. T. Sanii and Dr. Elmor Peterson.

I would also like to express my thanks to my research groupmates: John, Bahattin,

Susana, Yongfu, Abhinand, Weighang and Ron, for their valuable suggestions during group

meetings and personal discussions. I would like to extend my gratitude to Dr. Jun, Dr. Yau

and Dr. Ju for instructive discussions during their visit. I would also like to specially thank

Saowanee, Phoemphun, and Teerada for their friendship in going through this phase of time

with me.

 I would also like to express my gratitude to the Royal Thai Government. Without the

support from Royal Thai Government, it would not be able for me to do this research for

Ph.D. degree in the U.S.

 Finally, I would like to express my utmost appreciation to my family for their

encouragement and support.

 iv

TABLE OF CONTENTS

page

LIST OF TABLES vii

LIST OF FIGURES ix

1. INTRODUCTION. 1

1.1. System-on-a-Chip (SOC) Testing. 1

1.2. Problems Description. . 3

1.3. Outline of Dissertation. 3

2. USING NEURAL NETWORK WITH FIXED-WEIGHT NET IN

MODELING AND SOLVING THE SYSTEM-ON-A-CHIP (SOC)

TEST SCHEDULING. . . . 5

2.1. Introduction. 5

2.2. Neural Network (NN) for Adaptive Learning and Optimization. 7

2.3. Formulation of the SOC Core Test Scheduling Problems. 9

2.4. Constructing the Neural Network for Solving the SOC Testing Problems. . 11

2.4.1. Constructing the Precedence (PC), Resource (RC) and

 Core (CC) Constraints. 12

2.4.2. Constructing the Power Constraint (PoC) Unit for

 the Neural Network 15

2.4.3. Conducting the Searching and Optimizing for SOC Test Systems. . . 17

2.5. Computer Implementation and Examples. 19

2.6. Summary. 21

 v

3. DEVELOPING MAXIMUM NEURAL NETWORK TO SOLVE TEST

RESOURCE ALLOCATION AND TESTING TIME MINIMIZATION

FOR THE SYSTEM-ON-A-CHIP (SOC). 36

3.1. Introduction. 36

3.2. A Maximum Neural Network (NN) for Adaptive Learning and

 Optimization. 39

3.3. Formulation of SOC Testing with Resource Allocation Problems. 41

3.4. Constructing the Maximum Neural Network (MNN) for Solving the SOC

 Testing Problems. 43

3.5. An Example and Testing Result of the Proposed Maximum Neural Networks 45

3.6. Summary. 46

4. OPTIMIZING SYSTEM-ON-A-CHIP (SOC) TEST AUTOMATION

 WITH CORE WRAPPER DESIGN BY MAXIMUM NEURAL NETWORKS. 53

4.1 Introduction. 53

4.2 Core Wrapper Design by Partitioning of TAM Chain Items (PTI)

Method and Largest Processing Time (LPT) Method. 55

4.3 Modeling the SOC Test Optimization Problems with Core Wrapper

Design. 58

4.4 Constructing the Maximum Neural Network (MNN) to Solve

the SOC Testing Problems. 59

4.5 An Example and Testing Results of the Proposed Modeling and MNN. . . 63

4.6 Summary. . 63

5. COMPUTER IMPLEMENTATIONS AND RESULTS. 71

5.1. Results for the SOC Test Design with Resource Allocation

 Problem Using the Maximum NN. 71

5.2 Results for the SOC Test Automation with Core Wrapper Design. 80

5.3 Summary. 82

 vi

6. CONCLUSIONS AND FUTURE RESEARCH. 92

REFERENCES. 94

 vii

LIST OF TABLES

Page

Table 2.1 Test data of the cores for the SOC system S1. 28

Table 2.2 Test data of the cores for the SOC system S2 and S3. 31

Table 2.3 The SOC test scheduling solutions from the proposed NN after 20 runs. . 35

Table 3.1 Test data of the core for the SOC system S4. 50

Table 3.2 The results from using the proposed maximum neural network applied

 to the example SOC system S4 with three TAMs. 51

Table 4.1 Test data for each core in SOC chip d695. 69

Table 4.2 The best solution of SOC testing time, width allocation

 and core assignment for the SOC system d695 with three TAMs. 70

Table 5.1 The results from using the proposed maximum neural network applied

 to the example SOC system S4 with two TAMs 74

Table 5.2 Comparison of the SOC testing time for different methods. 76

Table 5.3 The results from using the proposed maximum neural network applied

 to the example SOC system S4 with four TAMs. 77

Table 5.4 The best solutions of testing time for the system S4 when the number of

 TAM lines are varying. 77

Table 5.5 The testing time for the system S2 with the power constraint when

 the total TAM widths are varying (the maximum power is 100 mW). . . . 79

Table 5.6 The testing time for the system S2 with the power constraint when the

 maximum power dissipation is varying (the total TAM width = 28). 79

Table 5.7 Test data for each core in SOC chip g1023. 83

Table 5.8 Test data for each core in SOC chip p34392. 83

Table 5.9 Test data for each core in SOC chip p22810. 84

Table 5.10 Test data for each core in SOC chip p93791. 85

Table 5.11 Comparison of computation time and the resulting SOC testing time

 for different methods. . 86

Table 5.12 The comparison of SOC testing time and computation time with and

 viii

 without power constraint for the example system d695 with two TAMs. . . 90

Table 5.13 The comparison of SOC testing time and computation time with and

 without power constraint for the example system d695 with three TAMs. . . 90

 ix

LIST OF FIGURES

Page

Figure 1.1 An example of System-on-a-Chip (SOC). 4

Figure 2.1 Picture of an example System-on-a-Chip (SOC) design and testing. . . 23

Figure 2.2 An example of a generic core-based system with one external test bus,

 and shared and dedicated BIST logic for the cores. 23

Figure 2.3 A single-layer neural network. 24

Figure 2.4 A neural unit in the neural network. 24

Figure 2.5 The proposed Neural Network. 25

Figure 2.6 The proposed structure of a general constraint (PC, RC, CC) unit. . . . 26

Figure 2.7 The proposed structure of a power constraint (PoC) unit. 26

Figure 2.8 The proposed searching and optimizing algorithm for

 SOC test scheduling. 27

Figure 2.9 The SOC System S1 with 8 cores. 28

Figure 2.10 The best result test schedule for the system S1, with only RC

 and CC constraints. 29

Figure 2.11 The best result test schedule for the system S1, with RC, CC and

 PC constraints. 29

Figure 2.12 A feasible test schedule for the system S1, with all the constraints RC,

 CC, PC, and PoC. 30

Figure 2.13 The best result test schedule for the system S1, with all the constraints

 RC, CC, PC, and PoC after eliminating the idle time by the

 proposed method. 30

Figure 2.14 The second example of the SOC system S2 with 13 cores. 31

Figure 2.15 The best result test schedule for the system S2 with all the constraints RC,

 CC, PC, PoC. 32

Figure 2.16 The third example of the SOC system S3 with 20 cores. 33

Figure 2.17 The best result test schedule for the system S3 with all the constraints RC,

 x

 CC, PC, and PoC. 34

Figure 3.1 An example of core-based SOC system with two TAM lines. 47

Figure 3.2 An example of general maximum neural network. 48

Figure 3.3 The relation of the computation time and the SOC model complexity

 (Using the traditional method to solve NP-complete problems). 48

Figure 3.4 The proposed neural network architecture. 49

Figure 3.5 The proposed searching and optimizing algorithm for SOC test design. . 49

Figure 3.6 TAM design and test scheduling for the system S4 with three TAMs

 and the total TAM width of 44. 52

Figure 4.1 Embedded core test infrastructure for SOC testing. 65

Figure 4.2 An example of a core with wrapper. . 65

Figure 4.3 An example of wrapper scan chain design by the PTI and LPT algorithm. . 66

Figure 4.4 The proposed maximum neural network (MNN) architecture. 67

Figure 4.5 The proposed MNN searching and optimizing algorithm for

 SOC test design. . 68

Figure 4.6 Test Access Mechanism (TAM) design for the SOC system d695

 with three TAMs and total TAM width W is equal to 28 bits. 70

Figure 5.1 TAM design and test scheduling for the system S4 with two TAMs

 and the total TAM width of 20. 75

Figure 5.2 The comparison of SOC testing time for SOC system S4 with two TAMs

 using different methods . 76

Figure 5.3 The relationship of the total SOC testing time and the number of

 TAM lines and the total TAM width. 78

Figure 5.4 The comparison of SOC testing time for SOC d695 with two TAMs using

 Integer Linear Programming (ILP), PPAW-enumerate, and the proposed MNN. . 86

Figure 5.5 The comparison of the computation time of different methods when the

 number of SOC cores is increased. . 87

Figure 5.6 The comparison of the computation time of different methods when

 the number of TAM width is increased. 87

 xi

Figure 5.7 The SOC testing time (objective) and the computation time of

the proposed MNN when the number of iterations varies. 88

Figure 5.8 The comparison of SOC testing time for the example system d695

 with three TAMs using Integer Linear Programming (ILP), PPAW-enumerate,

 ECTSPSol, and the proposed MNN. 89

Figure 5.9 The comparison of SOC testing time for the example system p93791

 with three TAMs using PPAW-enumerate, ECTSPSol, and the proposed MNN. 89

Figure 5.10 The comparison of SOC testing time and computation time for

 the example system d695 with and without power constraints. 91

 1

CHAPTER 1

INTRODUCTION

Currently, the advances in semiconductor technology have led to more complex

System-on-a-Chip (SOC) designs. The SOC sizes range from 20-50 million transistors, with

integrated logic, dynamic random access memory (DRAM), and analog [Shaikh 00].

Because of the high complexity and high density of the SOC system, testing SOC problems

becomes crucial. In this research, we investigate new soft computing tools to solve the

complex SOC test automation problems. In the following sections, System-on-a-Chip design

and testing are introduced.

1.1 System-on-a-Chip (SOC) Testing

In the semiconductor industry, a new system design, called System-on-a-Chip (SOC)

design, is currently being introduced to use multiple embedded modules built on a single

chip. With today’s technology, a single chip can consist of millions of transistors or

components [Chauhan 00, Aikyo 00]. Figure 1.1 shows an example of SOC. To design a

SOC system on a single chip, a designer often uses pre-designed, reusable mega cells known

as cores in the SOC design [Chandramouli 96]. Embedding the cores onto SOC increases the

width of the system bus and thus increases overall system performance, i.e., it can offer

higher speed and lower power consumption [Daeje 98, Shubat 01]. A core can be defined as

a complex piece of reusable module design such as microprocessors, bus interface, and

memories [Crouch 99]. Cores are usually provided by the core providers and are treated as

intellectual property (IP) so the detailed designs inside the cores are unknown to the SOC

system designers. Due to the intellectual property (IP) issue, a core is provided to the SOC

designer/integrator as a “black box” with predefined input/outputs and functional

specifications. For SOC testing, a core provider provides a modular core with pre-computed

tests for possible manufacturing defects. In the traditional system-on-board, a chip is

 2

designed, manufactured, and tested by a component provider before sending it to a system

integrator. Unlike system-on-board, a core is only a description of a module and is not yet

manufactured when it is sent to a system integrator. A core integrator receives cores from

each core provider and integrates cores at the chip-level and tests them using SOC testing

mechanisms [Rajsuman 00]. Because of the design complexity and the huge number of

components in the System-on-a-Chip design, testing of the SOC design becomes critical for

the semiconductor industry.

Zorian et al. introduced generic conceptual test access architecture for embedded core

[Zorian 99]. There are three elements in the embedded core test infrastructure; (i) test pattern

source and sink, (ii) test access mechanism (TAM), and (iii) core test wrapper. A test pattern

source generates test stimuli for an embedded core. A test pattern sink compares the

responses from an embedded core to the expected responses. A test pattern source and sink

can be designed either off-chip, using external automatic test equipment (ATE), or on-chip,

using built-in-self test (BIST), or a combination of both [Zorian 99]. A BIST provides better

accuracy and performance-related defect coverage, but it also increases the silicon area.

The test patterns generated from a test pattern source are transported by test access

mechanism (TAM) to a core under test. A TAM also transports the test stimuli from a core

under test to a test pattern sink. A core test wrapper is an interface between a core and the

system in which the core is embedded. The wrapper provides the switching between normal

functional access and test access via the TAM [Marinissen 00].

When an SOC system designer/integrator gets cores from a core provider, he/she

encounters two major tasks in solving the SOC test problems. The first task is how to design

a test access mechanism (TAM) and the second task is how to find the test schedule for a

SOC system to minimize the time-to-market. TAMs must be designed to transport the pre-

computed tests from system I/Os to core I/Os [Iyengar 01b]. Test scheduling determines the

order in which the various cores are tested and what testing resources are used for SOC

testing subject to variety of hardware, capacity and sequence constraints. In this dissertation,

we focus our investigation on solving the test scheduling problems for SOC test automation.

 3

1.2 Problems Description

In this dissertation, three major research issues of the SOC test automation are

investigated. First, by considering a SOC system consisting of main test resources such as

external test and built-in-self-test (BIST), the SOC test scheduling is studied to minimize the

SOC testing time subject to different constraints: (i) precedence constraint, (ii) resource

constraint, (iii) core constraint, and (iv) power constraint. Second, a maximum neural

network (MNN) is proposed to solve the test resource allocation problems for SOC. Third,

after core wrapper design, the SOC test automation problems with resource allocation are

studied to minimize the total SOC testing time. In this research, developing soft computing

techniques of an unsupervised maximum neural network (MNN) are proposed to optimize

the overall SOC testing time with core wrapper design and optimal resource allocation.

1.3 Outline of Dissertation

This research is organized as follows: In Chapter 2, the modeling and the soft

computing techniques to solve the System-on-a-Chip (SOC) test automation problems are

investigated. After the formulation of the SOC test automation problems, a neural network

(NN) combined with heuristic random search methods is proposed to minimize the testing

cost that occurs during SOC testing. In Chapter 3, an unsupervised maximum neural network

is proposed to solve resource allocation problems for the SOC test automation. In Chapter 4,

a maximum neural network is also proposed to solve the complex SOC test automation with

core wrapper design. In Chapter 5, computer implementation of the proposed methods and

the results of benchmarking SOC examples are presented. Finally, concluding remarks and

future research are discussed in Chapter 6.

 4

Figure 1.1 An example of System-on-a-Chip (SOC) [Temple 02]

 5

CHAPTER 2

USING NEURAL NETWORK WITH FIXED-WEIGHT NET IN

MODELING AND SOLVING THE SYSTEM-ON-A-CHIP (SOC) TEST

SCHEDULING

This chapter presents the modeling and the proposed solution approach for solving

the new System-on-a-Chip (SOC) design test scheduling problems. To solve the SOC test

design problems, a neural network (NN) combined with heuristic algorithm has been

developed. The SOC design test scheduling and optimization are subject to four different

constraints: (i) precedence constraint, (ii) resource constraint, (iii) core constraint, and (iv)

power constraint. The results demonstrate that the developed model with the soft computing

techniques can successfully solve a large size SOC test scheduling problem within a

reasonable time. The techniques presented in this chapter can be used for the optimization of

the SOC design testing that is important for current development in the semiconductor and

electronics industry.

2.1 Introduction

In System-on-a-Chip (SOC) test design, several test methods can be used, which

include external-test, scan-test and Built-in-Self-Test (BIST) [Aerts 98]. BIST is a new

testing method, and it is defined as an embedded ability of a core (i.e., a circuit or system) to

test itself [Fausett 94, Chakrabarty 00c]. BIST can detect many faults within a small number

of testing cycles. However, it is difficult to achieve high fault coverage by using BIST alone;

thus an external-test is usually used together with BIST to cover a wide range of defects in

testing [Nourani 00]. Figure 2.1 shows an example of an SOC used in industry [Pino 96 96].

Figure 2.2 shows an example of a generic core-based testing system with the application of

BIST in testing [Chakrabarty 00c]. In Figure 2.2, the example testing system consists of one

external test bus and six cores. In SOC testing, a System-on-a-Chip (SOC) is tested only

 6

once as part of the overall system-chip design, which is quite different from a conventional

system-on-board (SOB) test that traditionally takes multiple tests [Zorian 98]. In Figure 2.2,

cores 1, 2, 3 and 4 are tested using either external-test or BIST logic. Core 5 is tested using

only BIST, and core 6 is tested using only external-test. In Figure 2.2, cores 1, 2 and 5 have

their own dedicated BIST logics. On the other hand, cores 3 and 4 share a BIST logic.

When a SOC system designer/integrator gets cores from a core provider, he/she

encounters two major tasks in solving the SOC test problems. The first task is how to design

a test access mechanism (TAMs), and the second task is how to find the test scheduling for

an SOC system to minimize the time-to-market. TAMs must be designed to transport the

pre-computed tests from system I/Os to core I/Os [Iyengar 01b]. Test scheduling determines

the order in which the various cores are tested and what testing resources are used for SOC

testing subject to a variety of hardware, capacity and sequence constraints. There are some

researchers studying the first issue of the TAM design, but very few are studying the SOC

test scheduling problems [Chakrabarty 00c].

In this chapter, we focus on the research of finding the optimal solution for solving

the SOC test scheduling problems. The objective of the SOC cores test scheduling is to

minimize the total SOC testing time subject to the following constraints:

(i) Resource conflicts between cores that share the same test component (i.e., TAMs

or BIST logics),

(ii) Core conflicts between test components that are used to test that core,

(iii) Precedence constraints among different tests, and

(iv) Power consumption constraints of the test system.

The precedence constraint is considered to first test a SOC core that is prone to

failure. The resource and the core constraints are considered to avoid conflicts among test

resources and cores, respectively. The power constraint is considered when several SOC

cores are tested at the same time, requiring that the consumed power may not exceed the

maximum allowed power rating of the system. There are researchers proposing some

heuristic methods to minimize the SOC testing time. Sugihara (1998) proposed a test method

 7

for minimizing core-based system LSI testing time based on a combination of both external-

test and BIST for each core [Sugihara 98]. In the earlier work, Chakrabarty (2000) proposed

a method using integer linear programming (ILP) to minimize the SOC testing time with

various constraints without any redesign of the embedded cores [Chakrabarty 00a,

Chakrabarty 00b, Chakrabarty 00c]. In Chakrabarty’s (2000) work presented in

[Chakrabarty 00a], a method of TESTRAIL was proposed as a test access mechanism

(TAM), which can provide access to one or more cores. The results showed that these SOC

test problems are NP-hard problems [Chakrabarty 00a, Chakrabarty 00c, Iyengar 01b].

When solving the SOC testing problems by using linear programming, as the size of

problem increases, there is a polynomial growth in the number of constraints and variables

[Flores 99]. Using heuristic methods does not guarantee the optimal solution when the size

of problems increases [Dagli 94]. Since the search of the entire space is often intractable due

to the number of possible solutions, finding the optimal solution becomes difficult to achieve.

In this chapter, we investigate the modeling and the soft computing techniques to

solve the SOC test scheduling problems. After the formulation of the SOC design testing

problems, a neural network (NN) combined with heuristic random search method (tabu

search) is proposed to minimize the testing cost that occurred during SOC testing.

2.2 Neural Network (NN) for Adaptive Learning and Optimization

Recently, neural networks (NNs) have been used in solving scheduling problems. A

neural network is a system constructed to mimic the functions of a brain. A neural network

consists of a system of individual neural units with weighted interconnections, as shown in

Figure 2.3. Each neural unit consists of nodes linked together with the associated weights

between each node. There are several types of neural networks [Dagli 94]. Figure 2.3 shows

one type of neural networks called single-layer neural network, which consists of only input

units and output units. In Figure 2.3, an associated weight wij connects an input unit xi with

an output unit yj. Each output unit yj has a bias term a0j. Figure 2.4 shows a neural unit in a

neural network. As shown in Figure 2.4, a neuron receives a set of weight inputs that are

 8

added and then passed through an activation function [Dagli 94, Lee 00]. In general, each

neural unit consists of two parts: a linear summation Sj and a nonlinear activation function

f(Sj), and they can be formulated as follows (also shown in Figure 2.4) [Kartalopoulos 96]:

() j

I

i
iijj axwS 0

1
+×=

=

 (2.1)

)(jj Sfy = (2.2)

where xi is the input i to a neural unit, i= 1, …, I;

 yj is the output j from the neuron unit, j = 1,…,J;

wij is the weight associated with each input unit i and output unit j; and

 a0j is the bias value for an output j.

A neural network can be classified into three categories by different training types:

supervised training, unsupervised training and fixed-weight nets [Fausett 94]. In a

supervised training NN, the training is done by adjusting the weights according to a learning

algorithm. The weights are adjusted until the difference of the actual outputs and the target

outputs is less than or equal to the desired error. In an unsupervised training NN, the weights

are adjusted without the use of target outputs. The outputs from an unsupervised NN are

classified into sets without being compared to a desired output. In a fixed-weight NN, the

weights are fixed and set to represent the constraints and the quantity to be maximized or

minimized. Neural networks have been used in solving the job shop scheduling problems

[Flores 99, Foo 88, Yu 97, Jain 98, Lee 00, Yang 00]. For example, Yang, et al. (2000)

proposed a NN in solving job-shop scheduling problems that satisfy three constraints: a job

constraint, a machine constraint and a precedence constraint [Yang 00]. In his paper, the

precedence constraint is among the operations of the same job and a starting time unit

considers release time and due date of each job.

Neural networks are used to solve the optimization problems primarily due to their

simplicity and the ability to learn and adapt. The speed and robustness of neural networks

have made them very attractive in solving constraint satisfaction and optimization problems

 9

[Flores 99]. However, using the neural network approach alone may not get the optimal

solution [Jain 98]. This is due to its lack of generic pattern between inputs and outputs in

solving the optimization problems. When solving larger size optimization problems, using

only neural networks has been identified to be insufficient [Jain 98, Lee 00]. Hybrid

technologies that combine the neural network with other strategies such as tabu search or

simulated annealing may lead to better solutions with a more reasonable computational time.

Although neural networks may not be as effective as the conventional optimization methods,

they offer advantages in dealing with large scales optimization problems [Lee 00,

Sabuncuoglu 96]. They can quickly find near optimal solutions when solving large size

optimization problems [Fausett 94, Lee 00].

In this chapter, a neural network combined with heuristic random search is proposed

to solve the SOC core test scheduling problems. Details of how to model the SOC test

scheduling problems by using the neural network approach are presented in the following

sections.

2.3 Formulation of the SOC Core Test Scheduling Problems

In this chapter, we consider the problems in which the SOC core-based systems are

tested by using either external-testing, BIST or combination of both test resources, as shown

earlier in Figure 2.2. To achieve the high fault coverage during SOC testing, a combination

of BIST and external-testing must be used as much as possible [Iyengar 01b]. To improve

the resource efficiency, BIST logic can be either shared by several cores or dedicated for a

specific core, as shown in Figure 2.2. The test sets for all the cores, which include both BIST

and external core components, are given. The precedence constraints among cores are also

known. To demonstrate the formulation, an example test resource consisting of one external

test bus and several Built-in-Self-Tests (BISTs) is used for illustration, as shown in Figure

2.2. The SOC test scheduling problems can be formulated as follows:

Let T = {t11, t12,..., tim, ..., tIM} denote the set of start times for the test patterns

(external-test or BIST), which is applied to the core i of the SOC system, i = 1,…,I, and m is

 10

the test resource (for example, either the external-test bus or BIST), m = 1…M. Let L = {l11,

l12, .., lim, ..., lIM} denote the set of corresponding test lengths for the test sets. The objective

is to find the shortest total testing time for the core-based SOC test design.

To find a feasible SOC test, the conflicts of the resource and core constraints need to

be solved. Test sets can be conflicting, if: (i) they share an external test bus at the same time,

(ii) they are BIST test sets for cores that share the same BIST resource, or (iii) they are the

external and BIST components of the same core’s test set. The conflict between cores i and j

tested on the same test resource m will not occur if and only if either (i) 0≥−− jmjmim ltt , or

(ii) 0≥−− imimjm ltt . This means that the testing periods of both cores (i, j) on the same test

resource (m) cannot be overlapped. On the other hand, the conflict between the test

resources m and k for the same core i will not occur if and only if the test periods of core i on

the different test resources (m, k) are not overlapped, which is either (i) 0≥−− imimik ltt , or

(ii) 0≥−− ikikim ltt . The resource constraint and the core constraint are disjunctive

constraints (i.e., multiple alternative constraints). The precedence among cores q and i can

occur if 0≥−− imimqr ltt , where core i is tested before core q. To satisfy the power capacity

constraint, the summation of all the power dissipation
=

N

n
np

1

 (for cores that have the

overlapped testing time) cannot exceed the maximum power rating (Pmax) of the test system.

When the SOC test problems are solved, these constraints need to be satisfied [Kloypayan

02a, Kloypayan 02b].

The objective of the SOC test design modeling is to minimize the maximum of the

test completion time, i.e., the summation of the starting time tim and the total processing time

lim, subject to all the constraints. The modeling of the SOC core testing can be formulated as

follows:

 11

Objective: minimize C = max{ tim + lim } (2.3)

Subject to: tqr – tim – lim ≥ 0, (precedence constraint)

 tim – tjm – ljm ≥ 0, or tjm – tim – lim ≥ 0, (resource constraint)

 tim – tik– lik ≥ 0, or tik – tim – lim ≥ 0, (core constraint)

 max
1

)(Ppw
N

n
n ≤

=

, (power constraint)

{ } { }
�
�
� >−+

=
otherwise

tltif
w

nnnnn

0

0maxmin1
, Nn ,...,1= ,

tjm, tik , tim ≥ 0,

ljm, lik, lim ≥ 0.

where tim is the starting time of core i on a test resource m;

 lim is the processing time of core i on test resource m;

 i, q and j represent a core , i = 1…I, q= 1…I, and j = 1…I;

 m, k, r represent a test component, Mm ,...,1= , Mk ,...,1= and Mr ,...,1= ;

 pn is the power dissipation that core n consumes while being tested, Nn ,...,1= ;

 Pmax is the maximum allowed power dissipation of the testing system; and

 N is the number of cores that have the overlapped testing time, N ≥ 2.

To solve the SOC core test scheduling problems, a neural network combined with a

random search is proposed in this chapter. Details of how to construct the proposed NN and

examples of solving the SOC test problems are presented in the following sections.

2.4 Constructing the Neural Network for Solving the SOC Testing Problems

Figure 2.5 shows the structure of the proposed neural network (NN). The proposed

NN is a fixed-weight NN that consists of four blocks of neural units: (i) precedence

constraint (PC) units, (ii) resource constraint (RC) units, (iii) core constraint (CC) units, and

(iv) power constraint (PoC) units. As Figure 2.5 shows the first three units (PC, RC and CC)

 12

have similar structures, but the fourth unit (PoC unit) has a different structure due to the

complex effects of satisfying the power capacity constraint.

As shown in Figure 2.5, the NN receives the inputs of the starting time ST for each

core. First, the precedence constraint (PC) units are processed. The PC unit considers the

precedence among different cores, which are assumed to be known at the beginning. Then,

the starting times of the PC units are adaptively adjusted and sent to the next resource

constraint (RC) units, as shown in Figure 2.5. RC units consider that the same test resource

cannot test two cores at a time. After the resource constraint is considered, the adjusted

starting times from RC units are sent to the core constraint (CC) units, as shown in Figure

2.5. CC units ensure that the same core is not tested on different test resources at a time.

After the starting times of all the cores have been adaptively adjusted by the CC units, they

are forwarded to the power (PoC) units, as shown in Figure 2.5. Power constraint (PoC)

units consider the power consumed by a set of cores having the testing time overlapped,

which should not exceed the maximum allowed power rating of the SOC system. The

adaptive adjusting procedure repeats until all the constraints have been satisfied, as shown in

Figure 2.5. The output of the proposed NN is the set of the scheduled starting times for all

the cores. Details of how to construct the constraint units (PC, RC, CC, and PoC units) are

discussed in the following two sections.

2.4.1 Constructing the Precedence (PC), Resource (RC) and Core (CC) Constraints

As mentioned earlier in Section 2.2, a neural unit consists of two parts: a linear

summation and a nonlinear activation function. In the proposed NN, the linear summation

function (
lNNS) and the nonlinear activator function (NNl) for the constraint units (PC, RC or

CC unit) are defined as follows:

ll NNfybexaNN BuSTwuSTwS +−⋅+−⋅=))1(())1(((2.4)

�
�
�

<

≥
==

0,

0,0
)(

ll

l

l
NNNN

NN
NNl SifS

Sif
SfNN (2.5)

 13

)1()(−+⋅= uSTNNwuST exlcex (2.6)

)1()(−+⋅= uSTNNwuST fyldfy (2.7)

where STex is the starting time of cores e on test resource x;

STfy is the starting time of cores f on test resource y;

u is number of iterations, u = 1, 2, …U;

 wa, wb, wc, and wd are the weights associated with each node; and

lNNB is a bias term.

Figure 2.6 shows a general neural unit of the PC unit, CC unit or RC unit for the proposed

neural network. As shown in Figure 2.6, each neural unit takes inputs, which are the starting

times)1(−uSTex and)1(−uSTfy of a pair of the considering testing cores (e, f). As shown in

Equations (2.4)-(2.7), the searching process of this neural unit works as follows. First, the

summation function (
lNNS) is calculated by using Equation (2.4) for the summation of the

bias term (
lNNB) with the multiple terms of starting times, STex(u-1) and STfy(u-1), and their

associated weights wa and wb. Then, the activator function NNl is calculated, as shown in

Figure 2.6. In Equation (2.5), the activator function NNl is set to zero when the constraint

0≥
lNNS is satisfied; otherwise NNl is set to

lNNS .

Equations (2.6) and (2.7) show that, when the given constraint is violated (i.e.,

0<
lNNS), the starting time STex(u-1) of a core e on the test component x is pushed by

(lc NNw −) and the starting time STfy(u-1) of a core f on the test component y is pushed by

(ld NNw −). Figure 2.6 shows that, when the constraint is violated (i.e., 0<
lNNS), the neural

unit sends the adjusted weight wc and wd back to adaptively adjust the starting time STex(u-1)

and STfy(u-1) by using Equations (2.6) and (2.7). If the starting time STfy(u) for core j is less

than 0 (i.e., STfy(u) < 0), the starting time STfy(u) is set to 0. The searching process continues

until all the constraints are satisfied. Figure 2.6 shows that, after satisfying all the

constraints, the outputs of the constraint unit are the adaptively adjusted starting times

STex(U) and STfy(U) for the pair of the considered testing cores (e, f).

 14

In Equations (2.4)-(2.7), all the weights (wa, wb, wc, wd) and the bias term (BNNl) need

to be determined according to the precedence constraint (PC), the resource constraint (RC)

and the core constraint (CC), as defined earlier in Equation (2.3). Based on Equation (2.3),

the correspondent weights (wa, wb, wc, wd) and the bias term (BNNl) for the precedence

constraint (PC) units can be determined as follows:

For PC unit: qrex tST ⇐ , imfy tST ⇐ , and

imNN lB
l

−⇐ , 1⇐aw , 1−⇐bw , 1−⇐cw , and wd ⇐ 1. (2.8)

For the resource constraint (RC) units, the correspondent weights (wa, wb, wc, wd) and the

bias term (BNNl) are determined as follows:

For RC unit: imex tST ⇐ , jmfy tST ⇐ , and

IF (STex ≥ STfy)

THEN jmNN lB
i

−⇐ , 1⇐aw , 1−⇐bw , 1−⇐cw , and 1⇐dw ; (2.9)

IF (fyex STST <)

THEN imNN lB
i

−⇐ , 1−⇐aw , wb ⇐ 1, wc ⇐ 1, and 1−⇐dw . (2.10)

For the core constraint (CC) units, the correspondent weights (wa, wb, wc, wd) and the bias

term (BNNl) can be determined as follows:

For CC unit: imex tST ⇐ , ikfy tST ⇐ , and

IF (STex ≥ STfy)

THEN ikNN lB
i

−⇐ , 1⇐aw , 1−⇐bw , 1−⇐cw , and wd ⇐ 1; (2.11)

IF (fyex STST <)

THEN imNN lB
i

−⇐ , 1−⇐aw , wb ⇐ 1, wc ⇐ 1, and 1−⇐dw . (2.12)

In the next section, details are presented for the construction of the power constraint (PoC)

unit.

 15

2.4.2 Constructing the Power Constraint (PoC) Unit for the Neural Network

The last constraint for the SOC test model is the power capacity constraint (PoC unit)

of the proposed NN. The power constraint (PoC) needs to be considered in the SOC model

to limit test concurrency and to ensure that the power rating of the SOC is not exceeded. The

concept of the power constraint (PoC) logic is to find groups of cores that have the testing

period overlapped. In each group, the summation of the power dissipation of the same group

is calculated. If the summation of the power of any group is greater than the maximum

power dissipation capacity during testing, the start times of the chosen cores in that group

need to be changed to different testing periods. The process continues until every group

satisfies the power constraint, i.e., there is no group with the total power dissipation

exceeding the maximum power capacity.

Figure 2.7 shows the structure of a power constraint PoC unit in the proposed NN.

The number of input nodes is equal to the number of available test resources for a SOC

system. As shown in Figure 2.7, the PoC unit takes the input [STi, ti, Pi] of the starting times

STi, the processing times ti, and the power dissipation Pi for a group of the considered testing

cores on different test resources. In Figure 2.7, the number J of the output nodes is set as

[]M
M

MMM CCCCJ ++++= ...432 , where M is the number of the available test resources in the

SOC system. For each PoC unit in the proposed NN, the linear summation function (jSP)

and the nonlinear activator function (NPj) are defined as follows:

 max
1

PPaSP
M

i
iijj −=

=

 (2.13)

))1((max))1((min
11

−−+−=
==

uSTtuSTDiff i

M

iii

M

ij , for ∀aij > 0 (2.14)

�
�
�

>

≤
=

0,
0,0

jj

j
j DiffifDiff

Diffif
PP (2.15)

�
�
�

>

≤
==

0,
0,0

)(
jj

j
jj SPifPP

SPif
SPfNP (2.16)

 16

)1()(−+⋅= uSTNPwuST ijiji (2.17)

where Pi is the power dissipation of the core tested on test resource i,

 Mi ,...,1= ;

aij is the weights associated with input i and output node j, j = 1,..., J;

Pmax is the maximum power dissipation allowed during testing;

ti is the processing time of core on test resource i;

u is number of iterations, u = 1,…,U;

wij are the weights associated with each node, wij = -1, 0, or 1; and

 STi is the starting time of a core on test component i.

After getting the inputs from the groups of cores on different test resources, the summation

function jSP and the nonlinear activator function NPj are calculated by using Equations

(2.13)-(2.17). If the power constraint is violated (i.e., SPj > 0) and the group of inputs is

overlapped (i.e., 0>jDiff), the starting times STi of the first core and the last core of the

input cores are adjusted by using Equation (2.17). The weight wij for the first core and the

last core are set to 1 and –1, respectively. On the other hand, all the other weights wij of the

input cores are set to zero, as defined in Equation (2.16). The procedure continues until all

the cores satisfy the power capacity constraint in the SOC model, as defined earlier in

Equation (2.3).

After all the constraints, i.e., the precedence constraint (PC), the resource constraint

(RC), the core constraint (CC) and the power capacity constraint (PoC) have been

constructed, they are integrated into the proposed NN for the SOC test system, as shown

earlier in Figure 2.5. The complexity of the proposed NN with the different constraints can

be found as follows. Assume there are a total of n cores and each core has at most 2 different

test resources (i.e., external-test and BIST). The precedence constraint (PC) ensures the

cores to be first tested on BIST before using external-test. In Equation (2.3), there are n

sequence constraint inequalities for the precedence constraints, which requires n PC

constraint units. For the resource constraint (RC) neural unit, the worse case scenario is that

 17

there are only one external-test and one BIST. There are a total of 2*C2
n sequence constraint

inequalities, which require 2n(n-1) RC neural units. For the core constraint (CC) neural unit,

there are n sequence constraint inequalities, which require n CC units. The total number of

interconnections in the proposed neural network is found to be 2n2. The connection

complexity of the proposed neural network without power constraint is found to be O(n2).

With the consideration of power constraint (PoC), the complexity of the power constraint

unit is O(n*2M), where M is the number of the test resources and M is usually a small

number. The complexity of the whole neural network is })2,(max{ 2 MnnO ⋅ . If we assume

that the relation of M and n is nM = , then the complexity of the proposed neural network

is)2(nO .

Using the proposed NN, feasible solutions can be found for the SOC test problems.

However, the solution found by the NN may not be an optimal solution due to the limitation

of neural network capabilities [Fausett 94]. To get an optimal solution, we use the

constructed neural network combined with heuristic random search techniques. Details of

the approach and the optimization method are discussed in the next section.

2.4.3 Conducting the Searching and Optimizing for SOC Test Systems

Figure 2.8 shows the proposed searching and optimizing algorithm for solving the

SOC test problems. The proposed NN first processes the initial input to find a feasible

solution. The initial input to the NN is a set of the initial starting times of each core at time T

= 0. For the initial input, a random search technique (Tabu search) is used in this chapter to

generate initial test cores for finding the feasible solutions. The order of cores and test

components is first chosen randomly as the initial input to the NN. The searching is

conducted by the developed NN until a feasible solution is reached by the network. During

the searching by the NN, the generated feasible solution from each run is compared with the

existing most-fit solution, as shown in Figure 2.8. Among all the feasible solutions, the one

with the minimum completion time is selected. As shown in Figure 2.8, a random search is

used to improve the feasible solutions during the search iterations. To prevent being trapped

 18

at a local optimal, any input to the NN that has already been chosen will not be used again in

the continuous search iterations.

As shown in Figure 2.8, the search is stopped when either one of the following

conditions is met: (i) an optimal time has been reached, (ii) the number of iterations

performed has exceeded the maximum number of allowed iterations, or (iii) the searching

space has been exhausted. The condition (i) of the optimal time can be determined by using

the lower bound of the SOC test model as shown in Equation (2.3). There are three different

cases of the lower bound in the SOC testing. For the first case of SOC test without the

precedence and the power constraints, the lower bound is equivalent to the summation of all

the test time of the cores tested on the external-test resources. This is because all the tests on

the external-test bus cannot overlap with each other, and the lower bound is equal to the

summation of all the external-test times [Chakrabarty 00c]. For the second case of SOC test

with the precedence constraint and without the power constraint, the lower bound is

equivalent to the minimum test time on the precedent BIST tests plus the summation of all

the core test times on the external-test resources. For the last case of SOC test with the

power constraint, the lower bound is found to be the same as the second case, i.e., it is

equivalent to the minimum test time on the precedent BIST tests plus the summation of all

the core test times on the external-test resources.

As shown in Figure 2.8, a procedure of eliminating the elapsed time is enforced in the

algorithm to delete any elapsed time between two tests on the same test resource. After the

feasible solutions are generated by the NN, the idle time between any two adjacent tests is

eliminated to shorten the completion time of the tests. The adjusted starting time is fed back

to the NN for the next searching iteration until all the constraints are satisfied. As shown in

Figure 2.8, the output from the NN is the set of resulting starting times and ending testing

times of all the SOC cores after all the constraints are satisfied.

 19

2.5 Computer Implementation and Examples

The proposed modeling, neural network and the optimization algorithm have been

implemented on 800 MHz personal computers using MATLAB® software. Several industry

SOC testing examples are used for demonstration of the developed techniques.

Table 2.1 shows the first SOC test example S1 presented in [Iyengar 01b], which

considers only the resource (RC) and core (CC) constraints. As shown in Figure 2.9, the

example SOC test system S1 consists of eight different SOC cores (namely c880, c2670,

c7552, s953, s5378, s1196, s13207 and s1238 in Table 2.1). All the cores, except core

s13207, share the same external-test bus. Cores c2670, c7552 and s13207 have their own

dedicated BIST logic. As shown in Figure 2.9, cores c880, s953, s5378, s1196 and s1238

share the same built-in-self-test (BIST) logic. In Figure 2.9, the testing cycle times for the

external-test and BIST of each core are shown within parentheses, and the power dissipation

(either on external-test or BIST) of each core is shown within brackets. In this chapter,

according to the industry practice, it is assumed that the power dissipation on BIST is 10

times of that on the external-test. In this example of SOC test system, the maximum allowed

power dissipation (Pmax) is assumed to be 750 mW.

Figure 2.10 shows the best solution of SOC test schedule for the example system S1

considering only the resource (RC) and the core (CC) constraints. The optimal schedule is

found to be 6809 clock cycles, which is the same as reported in [Iyengar 01b]. On finding

the optimal solution, the developed NN took only 1.07 CPU seconds, compared to 3 CPU

seconds by the mixed integer linear programming method (MILP) in [Iyengar 01b]. Figure

2.11 shows the optimal test schedule for the example system S1 by adding the precedence

(PC) constraint of cores being tested on BIST before external-test. As shown in Figure 2.11,

the optimal test schedule in this case is 7065 clock cycles (the same as reported in [Iyengar

01b]), which is larger than that of Figure 2.10 due to the added precedence (PC) constraint.

The developed NN takes only 1.89 CPU seconds, which is much less than 90 CPU seconds

by the MILP in [Iyengar 01b].

 20

So far, we have not considered the power constraint PoC in the example system S1.

Figure 2.12 shows a feasible test schedule first found by the developed NN for the example

system S1, with the consideration of all the constraints (RC, CC, PC, and PoC constraints).

Due to the added power constraint PoC, the completion time of the test schedule is 8192

clock cycles, which is larger than the completion time of the example shown in Figure 2.11.

Notice that, in Figure 2.12, idle time exists in the feasible test schedule, which can be further

optimized. The idle time gaps in the feasible test schedule may occur when the solution

space is very big. The developed NN eliminates the idle time gaps during its optimization

process and searches for globally optimal test solution. Figure 2.13 shows the optimal test

schedule generated by the developed NN for the example test system S1. As shown in Figure

2.13, eliminating the idle time by the developed NN, the completion time of the optimal test

schedule for system S1 is found to be 7065 clock cycles which is much better than the

original result in Figure 2.12.

Figure 2.14 shows the second example of the SOC test system S2 with thirteen cores,

one external-test bus and four BIST logics. Detailed data of the second example system S2

are listed (as the first thirteen cores) in Table 2.2. As shown in Figure 2.14, three groups of

cores share three BIST logics, and core 7 has its own dedicated BIST. Except for cores 7 and

11, all the other cores are accessible to the external-test bus, as shown in Figure 2.14. The

maximum allowed power dissipation for the example system S2 is assumed to be 750 mW.

Figure 2.15 shows the optimal test schedule generated by the developed method for the

example of SOC system S2. As shown in Figure 2.15, the optimal test schedule is 10713

clock cycles. The optimal SOC test solution for the developed NN takes 26.61 CPU seconds

for the example system S2, compared to 142 CPU seconds of a similar system with 12 cores

by the MILP method reported earlier in [Iyengar 01b].

When the size of the SOC problems gets bigger, the computation time by the existing

MILP method grows exponentially [Iyengar 01b]. By using the developed NN method, the

optimal solution of a larger system (> 20 cores) can be generated within reasonable

computing time. Figure 2.16 shows the third example SOC system S3. The example system

 21

S3 is considered as a large size SOC system, and S3 consists of twenty cores, one external-test

bus and six BIST logics, as shown in Figure 2.16. Detailed data of all the twenty cores of the

testing system S3 are shown in Table 2.2 (cores 1 to 20). In the SOC system S3, five groups

of cores share five BIST logics, and core 19 has its own dedicated BIST, as shown in Figure

2.16. In the test system S3, except for cores 7, 11, 14, 18 and 19, all the other cores are

accessible to the external-test bus. Figure 2.17 shows the optimal SOC test solution of

14,990 clock cycles generated by the developed NN for the example system S3. Notice that,

in Figure 2.17, the optimal SOC test schedule found by the NN is the optimal result and the

completion time is equivalent to the lower bound of the test system S3. By using the

developed method, the computation time for the large size system S3 is 750 CPU seconds

(using MATLAB® program).

Table 2.3 shows the summary and comparison of the computation results generated

by the developed NN method (after twenty runs of searching iterations) for the example

systems S1, S2 and S3 with different constraints. As shown in Table 2.3, each example system

is tested with four combinations of constraints: (i) resource constraint and core constraint, (ii)

resource constraint, core constraint and precedence constraint, (iii) resource constraint, core

constraint, precedence constraint, and power constraint that considers only BIST resource,

and (iv) similar to (iii) but considering both the external-test and BISTs. As shown in Table

2.3, for twenty runs, the proposed NN finds nine out of twelve testing problems with the best

solutions (the lower bound). The examples and Table 2.3 show that the proposed NN

method is not only capable of solving the large size SOC test problems but also able to find

the optimal solutions within reasonable time. Except for some very large size SOC problems

(20 cores), the proposed method generates the optimal SOC test solutions within efficient

computing time, as shown in Table 2.3.

2.6 Summary

In this chapter, the modeling of System-on-a-Chip (SOC) test optimization has been

formulated with different resource, capacity and precedence constraints. A neural network

combined with heuristic algorithm has been developed to solve the large size SOC design

 22

testing problems. Computer implementation and examples are presented. As demonstrated

by the results from the testing examples, the developed method can not only solve the large

size SOC test problems, but is also capable of finding the optimal solutions within reasonable

computing time.

 23

Figure 2.1 Picture of an example System-on-a-Chip (SOC) design and testing [Pino 96]

BIST BIST

BIST

BIST

Core 1 Core 2 Core 6

Core 3 Core 4
Core 5

External
test bus

Figure 2.2 An example of a generic core-based system with one external test bus, and shared
and dedicated BIST logic for the cores [Chakrabarty 00c]

 24

x
I

x
1

y
J

x
i

y
1

y
j

w
1 j

a
0 1

w
1 J

w
i 1

w
i j

w
i J

w
I 1 w

I j

w
I J

a
0 j

a
0 J

w
1 1

Input units Output units

Figure 2.3 A single-layer neural network

Σ

w
1 j

w
2 j

w
I j

S
j y

j
f S()

j

a
0 j

x
1

x
2

x
I

Figure 2.4 A neural unit in the neural network

25

Core constraint (CC
) block unit

R
esource constraint (R

C
) block unit

Precedence constraint (PC) block unit

Input

O
utput

w
a

w
c

w
b

w
d

ΣΣΣΣ Σ

ST
u

1
3 (

)

B
N

N
2

N
N

2

ST
1

1

ST
u

1
1 (

)

w
a

w
c

w
b

w
d

ST
u

1
2 (

)

B
N

N
1

N
N

1

ST
u

1
1 (

)

w
a

w
c

w
b

w
d

ST
u

M
I (

)

ST
M

I

B
N

N
l

N
N

l

ST
M

-1
,I

ST
u

M
-1

,I (
)

ST
1

1

ST
1

2

ST
1

3

w
a

w
c

w
b

w
d

Σ

ST
u

3
1 (

)

B
N

N
2

N
N

2

ST
1

1

ST
u

1
1 (

)

w
a

w
c

w
b

w
d

ST
u

2
1 (

)

B
N

N
1

NN
1

ST
u

1
1 (

)

w
a

w
c

w
b

w
d

ST
u

M
I (

)

ST
M

I

B
N

N
l

N
N

l

ST
M

,I-
1

ST
u

M
,I-

1 (
)

ST
1

1

ST
2

1

ST
3

1

w
a

w
c

w
b

w
d

ΣΣΣΣ Σ

B
N

N
2

N
N

2

ST
1

2

ST
u

1
2 (

)

w
a

w
c

w
b

w
d

B
N

N
1

N
N

1

w
a

w
c

w
b

w
d

ST
M

I

B
N

N
l

N
N

l

ST
M

-
1

,I

ST
1

1

ST
2

1

ST
2

1

ST
U

1
1 (

)

ST
U

2
1 (

)

ST
U

2
1 (

)

ST
U

M
-

1
,I (

)

ST
U

M
I (

)

ST
u

1
1 (

)

ST
u

2
1 (

)

ST
U

2
1 (

)

ST
u

2
1 (

)

ST
U

M
-

1
,

I (
)

ST
u

M
-

1
,I (

)

ST
U

M
I (

)

ST
u

M
I (

)

ST
U

1
1 (

)

ST
U

2
1 (

)

ST
u’

2
1 (

)

ST
u’

2
1 (

)

ST
u’

1
1 (

)

ST
u’

M
I (

)

ST
u’

M
-

1
,I (

)
[

,
,

]
ST

t
P

2
2

2

[
,

,
]

ST
t

P
M

M
M

a
2

1

a
M

1a
1

j

a
1

J

a
2

ja
M

j

a
2

J

a
M

J

a
1

1

N
P

j

N
P

J

N
P

1

w
1

j

w
1

J

w
2

1

w
2

j

w
2

Jw
M

1

w
M

j

w
M

J

w
1

1

P
m

a
x

P
m

a
x

P
m

a
x

[
,

,
]

ST
t

P
1

1
1

[
]

ST
i

[
,

,
]

ST
t

P
M

M
M

a
2

1

a
M

1a
1

j

a
1

J

a
2

ja
M

j

a
2

J

a
M

J

a
1

1

NP
j

N
P

J

N
P

1

w
1

j

w
1

J

w
2

1

w
2

j

w
2

Jw
M

1

w
M

j

w
M

J

w
1

1

P
m

a
x

P
m

a
x

P
m

a
x

[
,

,
]

ST
t

P
1

1
1

ΣΣΣΣ

Σ

ST
u’

2
1 (

)

ST
u’

2
1 (

)

ST
u’

1
1 (

)

ST
u’

M
I (

)

ST
u’

M
-

1
,I (

)

ΣΣΣΣ

Pow
er constraint (PoC

) block unit

[
,

,
]

ST
t

P
2

2
2

[
,

,
]

ST
tP

i
i

i

Figure 2.5 The proposed neural netw
ork

 26

ST
e x

ST
f y

NN
l

w
a

w
c

w
b

w
d

B
N N l

ST
f y

(0)

ST
e x

(0) ST U
e x

()

ST u
e x

()

ST U
f y

()ST u
f y

()

OutputInput

Figure 2.6 The proposed structure of a general constraint (PC, RC, CC) unit

Input node Output node

[,]ST t P
2 2 2
,

[, ,]ST t P
M MM

[, ,]ST t P
i i i

a
2 1 a

M 1

a
1 j

a
1 J

a
2 j

a
M j

a
2 J

a
M J

a
1 1

NP
j

NP
J

NP
1

w
1 j

w
1 J

w
2 1w

2 j

w
2 J

w
M 1w

M j
w

M J

w
1 1

P
m a x

P
m a x

P
m a x

Input

[, ,]ST t P
1 1 1

Output
ST u

i
()

Power constraint (PoC) block unit

Figure 2.7 The proposed structure of a power constraint (PoC) unit

 27

Feasible
solution

Best feasible
solution

Random search
(To improve a feasible solution)

“Idle time elimination” Algorithm

The proposed
neural network

Can the idle time
 be shorten?

No

Yes

Yes

NoYes

No

Initial input

Figure 2.8 The proposed searching and optimizing algorithm for SOC test scheduling

 28

Table 2.1 Test data of the cores for the SOC system S1 [Iyengar 01b]

Circuit
(core)

Core index
i

Number
of scan

element, s

Number
of scan

patterns

Number
of scan
cycles

Power (Pi, mW)
(External Test)

Number
of BIST
patterns

Number
of BIST
cycles

Power
 (Pi, mW)
(BIST)

c880 1 60 26 134 5 4096 256 54
c2670 2 233 158 2543 16 32758 2048 159
c7552 3 207 96 1357 45 32768 2048 453
s953 4 52 90 454 6 4096 256 57

s5378 5 228 118 1903 32 4096 256 324
s1196 6 32 80 242 7 4096 256 72

s13207 7 790 - - - 32768 2048 592
s1238 8 32 58 176 7 16384 1024 75

External
test bus

c2670 c7552 s13207

c880

s953 s5378 s1196

s1238

BIST

BIST BIST BIST

(2543, 2048)
 [16, 159]

(1357, 2048)
 [45, 453]

(-, 2408)
 [-, 592]

 (454, 256)
 [6,57]

(134, 256)
 [5, 54]

(1903, 256)
 [32, 324]

(242, 256)
 [7, 72]

(176, 1024)
 [7, 75]

() : (Testing time cycle for external test, Testing cycle for BIST test)
[] : [Power consumed while tested on external test, Power consumed while tested on BIST]

Figure 2.9 The SOC system S1 with 8 cores

 29

0

0

0

0

0

Core 5
(s5378)

Core 4
(s953)

Core 3
(c7552)

Core 2
(c2670)

Core 6
(s1196)

Core 1
(c880)

Core 1
(c880)

Core 2
(c2670)

Core 6
(s1196)

Core 3
(c7552)

Core 4
(s953)

Core 7
(s13207)

Core 5
(s5378)

2048

2048

2048

Core 8
(s1238)

Core 8
(s1238)

176 2079 2213 3570 3812 4266 6809

176 1200 1456 1712 1968 2213 2469

External test
schedule

BIST
schedules

Figure 2.10 The best result of test schedule for the system S1 with only RC and CC constraints
(Computing time = 1.07 CPU sec< 3 CPU sec by using MILP [Iyengar 01b])

External test
schedule

BIST
schedules

0 256

0

0

0

0

Core 5
(s5378)

Core 4
(s953)

Core 3
(c7552)

Core 2
(c2670)

Core 6
(s1196)

Core 1
(c880)

Core 1
(c880)

Core 2
(c2670)

Core 6
(s1196)

Core 3
(c7552)

Core 4
(s953)

Core 7
(s13207)

Core 5
(s5378)

2159 4702 5156 5332 5466 5708 7065

256 512 1536 1792 2048

2048

2048

2048

Core 8
(s1238)

Core 8
(s1238)

Figure 2.11 The best result of test schedule for the system S1 with RC, CC and PC constraints
 (Computing time 1.89 CPU sec < 90 CPU sec by using MILP [Iyengar 01b])

 30

External test
schedule

BIST
schedules

0

0

0

0

0

2048

256

1280

2159 4702 6059 6513 6689 6863 7065

256 1536 1792 2048

256 2304

6144 8192

Core 5
(s5378)

Core 4
(s953)

Core 3
(c7552)

Core 2
(c2670)

Core 6
(s1196)

Core 1
(c880)

Core 1
(c880)

Core 2
(c2670)

Core 6
(s1196)

Core 3
(c7552)

Core 4
(s953)

Core 7
(s13207)

Core 5
(s5378)

Core 8
(s1238)

Core 8
(s1238)

Figure 2.12 A feasible test schedule for the system S1 with all the constraints RC, CC, PC, and PoC
(The feasible test schedule has some idle time that should be eleminated)

 (The completion time = 8192 clock cycles)

External test
schedule

BIST
schedules

0

0

0

0

0

2048

256

1280

2159 4702 6059 6513 6689 6863 7065

256 1536 1792 2048

256 2304

2304 4352
Core 7
(s13207)

Core 3
(c7552)

Core 2
(c2670)

Core 5
(s5378)

Core 8
(s1238)

Core 4
(s953)

Core 1
(c880)

Core 6
(s1196)

Core 5
(s5378)

Core 2
(c2670)

Core 3
(c7552)

Core 4
(s953)

Core 8
(s1238)

Core 1
(c880)

Core 6
(s1196)

Figure 2.13 The best result of test schedule for the system S1 with all the constraints RC, CC,
PC, and PoC after eliminating the idle time by the proposed method

 (The optimal schedule is 7065 cycles)

 31

External
test bus

BIST

BIST

(2543, 2048)
 [16, 159] (1357, 2048)

 [45, 453]

(-, 2408)
 [-, 592]

 (454, 256)
 [6,57]

(134, 256)
 [5, 54]

(1903, 256)
 [32, 324]

(242, 256)
 [7, 72]

(176, 1024)
 [7, 75]

Core 1

Core 2
Core 3

Core 4 Core 5 Core 6
Core 7

Core 8

Core 9 Core 10

(265, 235)
 [18, 180]

(2358, 850)
 [9, 86]

Core 11

Core 12

Core 13(-, 469)
[-, 236]

(486, 512)
 [15, 153]

(560, 1023)
 [31, 315]

BIST
BIST

() : (Testing time cycle for external test, Testing cycle for BIST test)
[] : [Power consumed while tested on external test, Power consumed while tested on BIST]

Figure 2.14 The second example of the SOC system S2 with 13 cores

Table 2.2 Test data of the cores for the SOC system S2 and S3

External test BIST External test BIST Core
index

(i)
Testing

time (tim)
Power Pim

(mW)
Testing

time (tim)
Power

Pim (mW)

Core
index

(i)
Testing

time (tim)
Power

Pim (mW)
Testing

time (tim)
Power

Pim
(mW)

1 134 5 256 54 11 - - 469 236
2 2543 16 2048 159 12 2358 9 850 86
3 1357 45 2048 453 13 560 31 1023 315
4 454 6 256 57 14 - - 1240 412
5 1903 32 256 324 15 512 41 342 415
6 242 7 256 72 16 1204 8 342 78
7 - - 2048 592 17 1357 16 342 162
8 176 7 1024 75 18 - - 1240 95
9 265 18 235 180 19 - - 2048 365
10 486 15 512 153 20 1204 8 342 85

 32

External test
schedule

BIST
schedules

0

0

0

0

0

Core 5
Core
 4

Core
 3

Core 2 Core 6 Core 1

Core
 1

Core 2

Core
 6

Core 3

Core
 4

Core
 5

Core
 8

Core
 8

Core
 9

Core
 10

Core
 12

Core
 13

Core
 9

Core
 11

Core
 12

Core
 10

Core
 13

235 500 2403 4946 6303 6479 8837 9291 9777 10019 10153 10713

256 1280 1536 1792 2048

235 2283 3133 3602

277 2325 3860

7713 9761

2837

Figure 2.15 The best result of test schedule for the system S2 with all the constraints RC, CC,
PC and PoC
(The computation time is 26.6 CPU sec < 142 CPU sec by using MILP [Iyengar 01b])

 33

External
test bus

BIST

(2543, 2048)
 [16, 159]

(1357, 2048)
 [45, 453]

(1204, 342)
 [8, 78]

 (454, 256)
 [6,57]

(134, 256)
 [5, 54]

(1903, 256)
 [32, 324]

(242, 256)
 [7, 72]

(176, 1024)
 [7, 75]

Core 1

Core 2 Core 3

Core 4 Core 5 Core 6

Core 8

Core 9 Core 10
(265, 235)
 [18, 180]

(2358, 850)
 [9, 86]

Core 11

Core 12

Core 13
(-, 469)
[-, 236]

(486, 512)
 [15, 153]

(560, 1023)
 [31, 315]

BIST
BIST

Core 14

Core 15

Core 16 Core 17 Core 19

Core 20

(1357, 342)
 [16, 162]

(512, 342)
 [41, 415]

(-, 2408)
[-, 592]

Core 7

(-, 1240)
 [-, 412]

(1204, 342)
 [8, 85]

(-, 2408)
 [-, 365]

BIST

Core 18
(-, 1240)
 [-, 95]

BIST

BIST

() : (Testing time cycle for external test, Testing cycle for BIST test)
[] : [Power consumed while tested on external test, Power consumed while tested on BIST]

Figure 2.16 The third example of the SOC system S3 with 20 cores

 34

External test
schedule

BIST
schedules

0

0

0

0

0

Core
 5

Core
 4

Core 2

Core
 6

Core
 1

Core
 1

Core 2

Core
 6

Core 3

Core
 4

Core
 5

Core
 8

Core
 8

Core
 9

Core
 10Core 12

Core
 13

Core
 9

Core
 11

Core
 12

Core
 10

Core
 13

0

0
Core
 7

Core
 15

Core
 17

Core
 18

Core
 19

Core
 20

Core
 15

Core
 16

Core
 17

Core
 20

256

512

1280 1536 1792 2048

235 1085 3133 3602

2560 3583

2048 3288 3628 5676 5700 6940

7925 9973

core 2

2560 2902 3602 3944 5696 6038 7032 7374

235 500 2403 4761 7304 8661 10018
11222

12426
12912

13424
13878

14120
14296

14430

14990
core
 3

core
 16

Figure 2.17 The best result of test schedule for the system S3 with all the constraints RC, CC,
PC, and PoC

 (The optimal schedule is 14990 clock cycles)

 35

 Table 2.3 The SOC test scheduling solutions from the proposed NN after 20 runs

Computational time (second) Problems Lower
bound

Solbest ∆Sol
%

Solavg
Taverage Tmax Tmi

8 cores with 2 constraints 6809 6809 0 - 1.07 3.68 0.27
8 cores with 3 constraints 7065 7065 0 - 1.89 5.93 0.38
8 cores with 4 constraints (BIST) 7065 8192 15.95 8192 65.48 94.31 50.92
8 cores with 4 constraints (ALL) 7065 8547 20.98 8619 357.64 440.94 294.45
13 cores with 2 constraints 10478 10478 0 - 1.93 5.28 0.88
13 cores with 3 constraints 10713 10713 0 - 10.23 34.43 1.04
13 cores with 4 constraints (BIST) 10713 10713 0 10859 26.61 95.8 2.5
13 cores with 4 constraints (ALL) 10713 10713 0 10889 326 1759.3 34.3
20 cores with 2 constraints 14755 14755 0 - 5.03 10.11 2.58
20 cores with 3 constraints 14990 14990 0 - 23.06 101.06 2.36
20 cores with 4 constraints (BIST) 14990 14990 0 15178 750 2551 141
20 cores with 4 constraints (ALL)** 14990 15369 2.53 20900 - -

** run only one time.

Lower bound: optimal value from ILP method [Iyengar 01b]
Solbest: value of the best solution found by the proposed NN out of 20 runs.
∆Sol%: = ((Solbest - Opt)/Opt)*100 if the optimum is known,
 = ((Solbest - LB)/LB)*100 otherwise.
Solavg : average solution value over 20 runs or nothing if all runs gave the optimum value.
Taverage: average computing time, in seconds.
Tmax: maximum computing time for one run, in seconds
Tmin: minimum computing time for one run, in seconds

 36

CHAPTER 3

DEVELOPING MAXIMUM NEURAL NETWORK TO SOLVE TEST

RESOURCE ALLOCATION AND TESTING TIME MINIMIZATION

FOR THE SYSTEM-ON-A-CHIP (SOC)

This chapter presents a maximum neural network to minimize the testing time and

optimize resource allocation for a System-on-a-Chip (SOC) test system design. By

determining the allocation of cores to test access mechanism (TAM) and the TAMs width in

a SOC system, the testing time can be reduced. Constraints considered in the SOC test

system design include the following: (i) SOC cores allocation (ii) TAMs width selection, and

(iii) power consumption. The objective of this investigation is to achieve the optimal testing

time for a SOC test system design with the optimal core allocation and TAMs width selection

within a reasonable computation time.

3.1 Introduction

System-on-a-Chip (SOC) integrated circuits are composed of a huge number of

processors, memories, and peripheral interface devices in the form of embedded cores [Yu

01]. In the SOC design and development, a System-on-a-Chip (SOC) is tested only once as

part of the overall system-chip design, which is quite different from a conventional system-

on-board (SOB) test that traditionally takes multiple tests [Zorian 98]. For testing, a core

provider provides a modular core with pre-computed tests for detecting possible

manufacturing defects. Due to the design complexity and the huge number of components

(may have more than a million components), dealing with the large amount of test data that

can be transferred between the tester and the chips during testing becomes more challenging

[Zorian 97].

 37

When a SOC system designer/integrator gets cores from a core provider, he/she

encounters two major tasks in solving the SOC test problems. The first task is how to design

a test access mechanism (TAMs) and the second task is how to determine the test schedules

for a SOC system to minimize the time-to-market [Iyengar 01b]. TAMs must be designed to

transport pre-computed tests from system I/Os to core I/Os. In recent years, several new

TAMs have been proposed such as Test Bus [Varma 98], and TESTRAIL [Marinissen 98].

Test scheduling determines the order in which the various cores are tested and what testing

resources are used for SOC testing subject to variety of hardware, sequence and capacity

constraints.

Figure 3.1 shows an example of a core-based SOC with two TAMs [Chakrabarty

00a]. The system has 10 cores: 2 combinational cores and 8 cores with internal scan. These

cores must be allocated to each TAM and the TAM partition is considered such that the

overall testing time is minimized. The SOC testing design with resource allocation problems

are NP-complete [Chakrabarty 00a]. When a SOC system is small (less than 10 cores), using

traditional methods such as integer linear programming (ILP) or a heuristic approach can

solve the problems easily. However, when the system becomes more complex, using

traditional methods may not be efficient or effective because the optimal solution is difficult

to achieve and the computation time is long.

Several research works have been done assuming the TAM is already determined.

Sugihara (1998) proposed a test method for minimizing core-based system LSI testing time

based on a combination of both external-test and built-in-self test (BIST) for each core

[Sugihara 98]. Chakrabarty (2000) proposed a method using integer linear programming

(ILP) to minimize the SOC testing time with various constraints without redesigning the

embedded cores [Chakrabarty 00c]. The results showed that these SOC test problems are

NP-hard problems [Chakrabarty 00c]. In our earlier work, a neural network combined with

heuristic algorithms has been developed to solve the SOC test scheduling problems. The

proposed method can successfully solve large size SOC test scheduling problems within a

reasonable amount of time [Kloypayan 02a, Kloypayan 02b].

 38

Recently, the test resource allocation problems have been considered when solving

the SOC test scheduling problems. Chakrabarty (2000) formulated the problem as an Integer

Linear Programming (ILP) model assigning each core to a test bus in order to minimize the

test time [Chakrabarty 00a, Chakrabarty 00b]. The study investigates how to allocate N test

lines to a fixed number of test buses. The place-and-route and power constraints of SOC

testing design were also considered in [Chakrabarty 00b]. A drawback of using an ILP

model is that the computation time becomes very lengthy when the system becomes

complex. Bagchi et al. (2000) studied the similar problems as in [Chakrabarty 00a,

Chakrabarty 00b] by clustering the groups of cores into different modules for scheduling the

testing time [Bagchi 01]. Yu et al. (2001) proposed a method of using 2-dimensional bin-

packing (or rectangle packing) model to minimize the test application time while offering full

scan/partial scan functional tests for different TAMs under the constraint of peak power

consumption [Yu 01]. This method is general because it is not restricted to one specific

TAM, and the optimal number of test buses is determined rather than leaving it fixed for core

integrators. Ebadi et al. (2001) proposed a method of using a Genetic Algorithm to design

the optimal test access architecture [Ebadi 01]. Iyengar et al. (2002) proposed a rectangle

packing optimization algorithm to minimize the testing time by matching the appropriate

core’s test needs and the widths of the TAMs that it is assigned [Iyengar 02]. In this method,

the number of wires to a TAM is not fixed. This method can reduce the computation time

compared to the ILP-based technique and it can get a comparable testing time result.

Without TAM partition, a core user has to pay more consideration to the wiring design.

In this chapter, a SOC system with an optimal partition of the total TAM width and

an optimal core assignment to the TAMs are considered to minimize the overall testing time.

In this chapter, a maximum neural network (MNN) is proposed to solve the SOC testing

design with resource allocation problem. A maximum neural network (MNN) is an

unsupervised competitive neural network and is used because a target output, which is the

test bus assignment vector in this case, is difficult to be determined. In this chapter, the issues

of an optimal partition of the total TAM width and the optimal core assignment to the TAMs

 39

are considered to minimize the overall testing time. Power consumption is also considered in

this chapter. Details of the network will be discussed in the next section.

This chapter is organized as follows. A general concept of the neural networks is

introduced in Section 3.2. Section 3.3 presents the modeling of the SOC testing with

resource allocation problems. Section 3.4 shows how to construct the maximum neural

network for solving the SOC testing with resource allocation problems. Section 3.5 provides

the summary.

3.2 A Maximum Neural Network (MNN) for Adaptive Learning and Optimization

Neural networks (NNs) have been used in solving scheduling and optimization

problems recently. A neural network is a system constructed to mimic the functions of a

brain, and consists of individual neural units with weighted interconnections. Each neural

unit consists of nodes linked together with the associated weights between each node.

A neural network is a parallel, distributed information processing structure consisting

of many processing elements interconnected via weighted connections. Neural networks can

provide optimal solutions to difficult optimization problems, which the traditional heuristic

methods cannot generally accomplish. Solving the optimization problems requires the

minimization of some cost functions subject to a set of constraints. These cost functions are

known as energy functions, and the neural network can produce good solutions by

minimizing the energy function [Smeda 99]. In addition, the computation time for achieving

the optimal solution is less than that of traditional optimization techniques [Sellers 96].

A neural network can be classified into three categories based on different learning

rules: supervised learning, unsupervised learning and reinforced learning [Kartalopoulos 96].

In supervised learning, the training is done by adjusting the weights according to a learning

algorithm. The weights are adjusted until the difference of the actual outputs and the target

outputs is less than or equal to the desired error. In an unsupervised learning, the weights are

adjusted without the use of target outputs. The outputs from an unsupervised NN are

classified into different sets without being compared to a desired output. Reinforced

 40

learning, unlike supervised learning, does not indicate how close the actual output is to the

desired output, but it indicates whether the actual output is the same as the desired output.

The error signal generated during the training session is binary: pass or fail.

In this chapter, an unsupervised learning NN called maximum neural network is

proposed to optimize the resource allocation problems for SOC testing design. The

maximum neural network can solve an NP-complete problem in a polynomial time [Takefuji

92, Kloypayan 02c]. The maximum neural network (MNN) is one of the unsupervised neural

networks that can minimize a cost function considering various constraints. The operation of

the maximum network is based on the group update. Figure 3.2 shows an example of a

maximum neural network. In Figure 3.2, the network is composed of n groups where each

group consists of m binary neurons. One and only one among m neurons with the maximum

input per group is encouraged to be selected. The goal of the maximum neural network is to

minimize the energy function E that represents the objective function and the constraints of

the problem. The function of each neuron and the input states are determined as follows

[Galan-Marin 01]:

 �
� =

=
otherwise

YYYif
x imiij

ij 0
},....max{1 1 , (3.1)

du
dY

uYuY ij
ijij α−=+)()1(, (3.2)

ij

nmijij

x
xxxE

du
dY

∂
∂

−=
),..,,..,(11 , (3.3)

where Yij and xij are the input and output of the neuron, respectively;

u is the number of iterations, u = 1,…U;

α is a learning rate; and

E is the energy function of the problem.

 41

For each iteration, the input Yij is updated by multiplying the learning rate α with the

derivative of energy function E, as shown in Equations (3.2) and (3.3). The output xij for

each group of inputs is determined by using Equation (3.1).

The objective function of a SOC testing system is to minimize the overall testing time

subject to various constraints. The objective function considers the optimal allocation of

cores to each TAM and the selection of TAM width for minimizing the SOC testing time.

When the SOC testing system becomes more complex (i.e., increased number of cores, TAM

line or the total TAM width), the traditional methods such as linear programming cannot

efficiently find the optimal solution within a reasonable computation time or sometimes

cannot effectively find the solution. In this chapter, a maximum neural network is proposed

to find the optimal solution for the complex systems within reasonable computation time.

In the next section, the model of SOC testing with resource allocation problem is

formulated. Then, a maximum neural network is applied to solve the problem, as discussed

in Section 3.4.

3.3 Formulation of SOC Testing with Resource Allocation Problems

In this chapter, we assume that a core user has already determined the TAM design

after careful consideration of system-level I/O, area and power issues. When the TAM has

already been designed, a problem arises regarding the assigning of the cores into each TAM

to minimize the overall testing time and to find the optimal width for each TAM, when the

total of the TAM width is given.

Let Tij represent the testing time of each core i on TAMj. The testing time Tij can be

formulated as follows:

�
�
�

>⋅+−

≤
=

jiiji

jii
ij wiftw

wift
T

φφ
φ

,)1(
,

, (3.4)

 },{max iiii mn=φ , (3.5)

 42

 iiiii pNfpt ++= /)1(, (3.6)

 where φi is the test width of core i;

ti is the number of test cycles for core i;

ni is the number of test inputs of core i;

mi is the number of test outputs of core i;

wj is the width of TAM j;

pi is the number of test patterns of core i;

fi is the number of flip-flops contained in core i; and

Ni is the number of internal scan chains for core i.

Let a SOC system have I cores and J TAM lines. The width of each TAM line is

represented by wj, which has to be less than or equal to wmax. The summation of the width wj

for all TAMs is equal to the total TAM width W. A power consumption for core i on TAMj

under serialized test is
1+− ji

i

w
P

φ
. In this chapter, a power dissipation Pi and the maximum

power of the SOC system Ω are given. We assume that the power allocated to each TAM is

equal, which is
J
Ω . When a core i is tested on TAMj, the power consumption should not

exceed the allocated power of TAMj
�

�
�

�

� Ω≤
+− Jw

P
ei

ji

i

1
.,.

φ
. To minimize a SOC testing time

with resource allocation, the model can be formulated as follows:

Objective: Minimize {)max(
1=

⋅
I

i
ijij xT } , 1 ≤ j ≤ J (3.7)

Subject to
=

=
J

j
ijx

1
1, 1 ≤ i ≤ I (Resource Allocation) (3.8)

 Ww
J

j
j =

=1

, (TAM width distribution) (3.9)

 wj ≤ wmax , (3.10)

 43

Jw
Px

ji

iij Ω≤
+− 1φ

, (Power Constraint) (3.11)

 xij = 0, or 1 (3.12)

 where Tij is the testing time for core i on TAMj , as shown in Equation (3.4),

 1 ≤ i ≤ I , 1 ≤ j ≤ J;

W is the total width of TAMs;

wj is the width of TAMj ;

wmax is the maximum width of TAMs;

Ω is the maximum power rating in the SOC system;

Pi is the power consumption of core i; and

xij is the 0-1 variable defined as

 �
�

=
otherwise

jTAMtoassignedisiCoreif
xij ,0

,1
.

The SOC testing with resource allocation problem is a NP-complete. Figure 3.3

shows the relation of the computation time and the model complexity when using the

traditional method such as integer linear programming (ILP) to solve an NP-complete

problem. When a system becomes more complicated, the computation time gets longer, as

shown in Figure 3.3.

In this chapter, the maximum neural network is used. By using the maximum neural

network, the near-optimal or good solution can be found within an acceptable time when a

system becomes more complex. Next, the proposed method is applied to the SOC testing

model, and the details of the results from the proposed method are provided.

3.4 Constructing the Maximum Neural Network (MNN) for Solving the SOC Testing

Problems

Figure 3.4 shows the architecture of the proposed MNN. There are J + 1 input units:

[Yij, j=1,…,J] and [wj, j = 1,..,J], and I output units: [xij] for i= 1,…,I. Yij is an energy

function, which is the testing cost of the SOC testing system design. In Figure 3.4, an output

 44

xij defines that core i is assigned to TAMj. By using Equations (3.7)-(3.12), each core i can

be assigned only to one TAM line, TAMj. In the maximum neural network, only one output

is selected (i.e., in Figure 3.4, there is only one output xij, j=1…J, has a non-zero value and

all others are zero). In the proposed SOC test model, an input Yij and an output xij can be

calculated as follows:

 �
� ==

==
otherwise

JaYYif
Yfx iaij

ijij 0
),...,1(}max{1

)(, (3.13)

ijijij YuYuY ∆−=+)()1(, (3.14)

�

�
�

�

� Ω−
+−

⋅+⋅=∆
Jw

Px
uTuY

ji

iij
ijij 1

)()(
φ

γα , (3.15)

))(()()()1(maxwuwuuwuw jjj −⋅−=+ β , j = 1,.., J-1, (3.16)

−

=

+−=+
1

1

)1()1(
J

j
jJ uwWuw , (3.17)

where α(u), γ(u) and β(u) are learning rates;

 u is number of iterations, u = 1,…,U;

 wj(u) is the width of TAMj at iteration u, 1 ≤ j ≤ J; and

Tij is the testing time for core i on TAMj determined by Equation (3.4),

and 1 ≤ i ≤ I , 1 ≤ j ≤ J.

The learning rates α, β and γ may be decreased at each iteration or they may be

constant throughout the learning process. The rate of decrease depends on the speed of

convergence to the optimum solution or the predefined termination condition [Kartalopoulos

96].

The proposed MNN begins the first iteration by assigning the energy function Yij values

and the width wj for each TAM by generating a random number. The output xij can be

calculated by using the function f(Yij), defined by Equation (3.13), as shown in Figure 3.5.

Then, Yij and wj for the next iteration are updated using Equations (3.15), (3.16) and (3.17),

as shown in Figure 3.4. The searching procedure continues until either the optimal solution

 45

has been reached or the termination conditions are met. The complete searching algorithm of

the proposed MNN is shown as follows:

Step_1. Set u = 0.

Step_2. Assign each wj by using uniform random number from 1 to W.

Step_3. Assign each Yij value by using uniform random number.

Step_4. Calculate xij by using Equation (3.12).

Step_5. Calculate the total testing time for system. If the new testing time is smaller

than the old testing time and the power constraint is not violated, keep the new

testing time as the minimum testing time.

Step_6. Update Yij and wj for the next iteration (u+1).

Increment u by 1. If the state of the system reaches the equilibrium state or the

terminate conditions are met, then stop this procedure. Otherwise, repeat to

Step_4.

The termination condition used in this chapter includes the following two conditions:

(i) the iteration number has reached a predefined number, or (ii) when the MNN system

reaches a stable point. The procedure stops once either of these conditions is met.

Figure 3.5 shows the proposed searching algorithm for solving the SOC test with

resource allocation problem. At the beginning, the initial input to the MNN is a set of the

energy function and the width wj of each TAMj generated by using random numbers. The

output xij from the MNN is for the SOC test resource allocation. If MNN reaches an optimal

solution, the procedure stops; otherwise, the procedure continues until the predefined number

of iterations is reached.

3.5 An Example and Testing Result of the Proposed Maximum Neural Networks

The proposed modeling, neural network and the optimization algorithm have been

implemented on 800 MHz personal computers using MATLAB® software. One of the results

of computer implementation is shown in this section.

 46

An example testing data, as shown in Table 3.1, consisting of 10 cores is used for

demonstrating of the developed techniques. These test data of Table 3.1 are used to calculate

the testing time for each core as shown in Equations (3.4), (3.5) and (3.6). Table 3.2 shows

the optimal width allocation and the optimal core assignment to each TAM for the example

SOC system S4 with three TAMs. In Table 3.2, the test bus assignment vector shows the core

assignment to each TAM. For example, when the total width W is equal to 44 (the seventh

row of Table 3.2), the optimal width distribution (w1, w2, w3) is equal to (6, 13, 25), and the

test bus assignment vector of the cores is [1, 1, 3, 3, 2, 3, 1, 3, 1, 1].

Figure 3.6 shows the Test Access Mechanism (TAM) design and test schedule for this

SOC system when the total TAM width W is equal to 44 (the seventh row of Table 3.2).

From the assignment test vector [1, 1, 3, 3, 2, 3, 1, 3, 1, 1] of Table 3.2 and TAM design of

Figure 3.6, the cores at columns 1, 2, 7, 9 and 10 (i.e., C6288, C7552, S39532, S15850, and

S38417, respectively) are assigned to TAM1 with width of 6. The core at column 5 (i.e.,

S38584) is assigned to TAM2 with width of 13, and other cores are assigned to TAM3 with

width of 25. The total testing time of the system is 1656820 cycles. TAM1 and TAM2 have

idle times of 1345 and 2800, respectively, as shown in Figure 3.6(b). All the computation

time for this example case is less than 60 seconds, as shown in Table 3.2.

More details of practical examples and analytical results of the proposed NN will be

presented in Chapter 5.

3.6 Summary

In this chapter, we have proposed a maximum neural network to minimize the total

SOC testing time by finding the optimal allocation of cores to each TAM line and the optimal

selection of the TAM width. The techniques presented in this chapter can be used for the

optimization of the System-on-a-Chip test system design that is critical for the semiconductor

and electronics industry. Computer implementation and results of practical examples will be

presented in Chapter 5.

 47

Combinational core Sequential core

Internal
Scan chain (s)

TAM lines

C6288 C7552 S838 S9234

S38584 S13207 S15850 S5378

S35932 S38417

Figure 3.1 An example of core-based SOC system with two TAM lines [Chakrabarty 00a]

 48

x = x x x
n j n 1 n 2 n m
 [, , …,]

Input Output

= possible summing junction

f Y()

1

2

n

x = x x x
2 j 2 1 2 2 2 m
 [, , …,] Y = Y Y Y

2 j 2 1 2 2 2 m
[, , …,]

x = x x x
1 j 1 1 1 2 1 m

[, , …,]

Y = Y Y Y
n j n 1 n 2 n m
 [, , …,]

Y = Y Y Y
1 j 1 1 1 2 1 m

 [, , …,]

f Y()

f() is a function to determine the value of output Y x

f Y()

Figure 3.2 An example of general maximum neural network

C
om

pu
ta

tio
n

tim
e

Model complexity
More complex

Low

High

Less complex

Figure 3.3 The relation of the computation time and the SOC model complexity

(Using the traditional method to solve NP-complete problems)

 49

Input

Output

x = x x
i j i i J

[, ...,]
1

x = x x
I j I I J

[, ...,]
1

x = x x
1 1 1 1j J

[, ...,]

f Y()
1 j

f Y()
1 j

f Y()
1 j

w = w w
j J
 [,...,]

1

1-γ
γw

m a x (,)φ
i i i

t P,

1

1

1

-α

w
j

-1

1

1

1-α

-αY = Y Y
1 1 1 1j J

[, ...,]

Y = Y Y
i j i i J

[, ...,]
1

Y = Y Y
I j I I J

[, ...,]
1

Y
1 j

Y
1 j

∆Y
i j

Y
1 j

Figure 3.4 The proposed neural network architecture

Initial input The proposed
neural network

YesNo Best feasible
solution

Is any of the termination
conditions met ?

Input

Output
[Lower bound,
maximum iteration]

Figure 3.5 The proposed searching and optimizing algorithm for SOC test automation

 50

Table 3.1 Test data of the core for the SOC system S4

Core i Number of

test inputs

ni

Number of

test outputs

m i

φi =

max{ ni , mi }

Number of test patterns

pi

Number of test cycles

ti

C6288 1 32 32 32 12 12

C7552 2 207 108 207 73 73

S838 3 36 3 36 75 2507

S9234 4 40 43 43 105 5723

S38584 5 70 336 336 110 5105

S13207 6 78 168 168 234 9634

S15850 7 93 166 166 95 3359

S5378 8 39 53 53 97 4507

S35932 9 67 352 352 12 714

S38417 10 60 138 138 68 3656

 51

 Table 3.2 The results from using the proposed maximum neural network applied to the
example SOC system S4 with three TAMs

Total test

width

W

Testing T ime
(on w1, on w2, on w3)

Testing
time

(cycles)
(Best

Solution)

Bandwidth
distribution

(Best solution)

(w1, w2, w3)

Test bus assignment
vector

Execution

time

(min)

16 (1812004, 1809212, 1805916) 1812004 (8, 7, 1) (3, 1, 3, 2, 3, 1, 2, 2, 1, 2) 1

20 (1769686, 1730391,1765784) 1769686 (1, 1, 18) (1, 2, 1, 3, 2, 3, 1, 3, 1, 1) 0.58

24 (1724065, 1715280, 1694161) 1724065 (22,1,1) (1, 1, 2, 3, 2, 3, 1, 1, 1, 1) 0.50

32 (1715067, 1710175, 1632988) 1715067 (23, 2, 7) (3, 1, 1, 1, 2, 1, 3, 1, 3, 3) 0.45

36 (1656211, 1684650, 1670179) 1684650 (4, 7, 25) (1, 3, 3, 3, 2, 3, 1, 3, 1,1) 0.43

40 (1694281,1689755, 1580312) 1694281 (29, 6, 5) (3, 1, 1, 1, 2, 3, 1, 1, 1, 1) 0.40

44 (1655475, 1654020, 1656820) 1656820 (6, 13, 25) (1, 1, 3, 3, 2, 3, 1, 3, 1, 1) 0.40

48 (1632676, 1664230, 1579976) 1664230 (32, 11, 5) (1, 1, 1, 1, 2, 3, 1, 1, 1, 1) 0.40

52 (1624947, 1609250, 1586130) 1624947 (8 ,2, 42) (2, 3, 3, 3, 3, 2, 1, 3,1, 1) 0.38

56 (1633600, 1616141, 1589767) 1633600 (17, 11, 28) (3, 2, 3, 3, 1, 3, 2, 3, 2, 2) 0.40

 52

(a) TAM design

(b) Test schedule for the system S4

Figure 3.6 TAM design and test schedule for the system S4 with three TAMs and total TAM
width of 44

 53

CHAPTER 4

OPTIMIZING SYSTEM-ON-A-CHIP (SOC) TEST AUTOMATION

WITH CORE WRAPPER DESIGN BY MAXIMUM NEURAL

NETWORKS

This chapter presents a revised maximum neural network (MNN) approach to

minimize the testing time and optimize test resource allocation for System-on-a-Chip (SOC)

with embedded core wrapper design. In this chapter, the embedded core wrapper scan chain

is considered in the SOC test optimization problem. The objective is to solve the optimal

testing time for SOC testing automation within a reasonable computation time.

4.1 Introduction

System-on-a-Chip (SOC) is designed by embedding large pre-designed and pre-

verified modules, called cores, onto one single circuit [Gupta 97]. A core is a description of

a module and is not yet manufactured [Zorian 99]. Different core providers provide

different cores along with their corresponding test sets. Cores, unlike components on a circuit

board, need to be tested after being embedded. Testing is a critical issue in the embedding

process because the application in which the core is integrated may strongly influence the test

strategy in terms of fault-coverage, power consumption and silicon area [Benso 00]. Since

the cores are designed by separate design teams (core providers) with a high degree of

specialization in their areas of functional expertise and are optimized for different criteria,

design for test (DFT) integration can create a major challenge [Gallagher 01, Irion 01].

 Figure 4.1 shows an example of embedded core test infrastructure that consists of

three elements: test pattern source and sink, test access mechanism (TAM), and core test

wrapper [Zorian 99]. In the test pattern source and sink, the source generates the test stimuli

for the embedded core, and the sink compares the response(s) to the expected response, as

shown in Figure 4.1. Source and sink can either be implemented off chip (Automatic Test

 54

Equipment, ATE) or on chip (Built-in Self Test, BIST), or in a combination of both

[Marinissen 00]. A TAM transports test stimuli from a test pattern source to cores under test,

and it also transports test responses from the cores under test to a test pattern sink, as shown

in Figure 4.1. The core test wrapper is the interface between the core and the SOC system in

which the core is embedded, as shown in Figure 4.1. By finding the efficient test wrappers

and the TAMs, the SOC testing time can be minimized [Iyengar 01a, Koranne 02].

When considering core wrapper design along with SOC testing automation problem,

the testing time of the system can be minimized [Iyengar 01a, Korranne 02, Marinissen 00].

Iyengar et al. (2001) proposed a wrapper/TAM (test access mechanism) co-optimization

method to find an optimal assignment of cores to each of the TAMs to minimize the overall

testing time [Iyengar 01a]. In their method, ILP and the co-optimization algorithm were used

to find the optimal results. However, when the size of the system gets larger (more than two

TAMs are used, or the TAM width becomes wider), the computation time gets extremely

long. In the co-optimization method [Iyengar 01a], the power constraint is not considered.

Korranne (2002) improved the SOC test schedule by using reconfigurable core wrappers

[Korranne 02]. The set of reconfigurable scan chains were calculated using graph theory

techniques to solve the embedded core-based System-on-a-Chip test scheduling problem

(ECTSP). The testing time of a SOC system obtained by their method (ECTSPSol) is

improved compared to the ILP formulations. Power consumption constraint was not

considered in their study.

The objective function of a SOC testing problem is to minimize the overall testing

time subject to various constraints. The objective function considers the optimal allocation

of cores to each TAM, the power consumption, and the selection of TAM width for

minimizing the SOC testing time. The SOC testing design with resource allocation problems

are NP-complete [Chakrabarty 00b]. When a SOC system is small, traditional methods such

as integer linear programming (ILP) or a heuristic approach may be able to reach an optimal

solution. However, as a system becomes more complex, traditional methods may not be as

efficient because the optimal solution is difficult to locate and the computation time gets

 55

much longer [Kloypayan 02a, Kloypayan 02c]. When the SOC testing designers try to

increase the number of cores, the TAM lines or the total TAM width, the traditional methods

may not be effective in finding the optimal solution within a reasonable computation time

and they sometimes cannot find the optimal solution at all.

In this chapter, a core wrapper design and the SOC resource allocation problems are

studied to find the optimal SOC testing time. We adopt the concept of wrapper design from

Marinissen et al. [Marinissen 00] for SOC design testing. A maximum neural network

(MNN) is proposed to allocate cores to the TAMs to minimize the overall testing time. The

proposed MNN is an unsupervised competitive neural network and is used to solve the NP-

complete problem in this chapter. The remainder of this chapter is organized as follows.

Section 4.2 presents a core wrapper design by the Partitioning of TAM Chain Items (PTI)

method and Largest Processing Time (LPT) method. Section 4.3 constructs the model of the

SOC test optimization problems with core wrap design. Section 4.4 presents a concept of the

proposed MNN, and the procedure of constructing the MNN to solve the SOC testing

problems. Concluding remarks are provided in Section 4.5.

4.2 Core Wrapper Design by Partitioning of TAM Chain Items (PTI) Method and

Largest Processing Time (LPT) Method

 In this chapter, we assume that a core user has already determined the TAM design

after careful consideration of system-level I/O, area and power issues. Other than TAM

design, core wrapper design should be considered to achieve more efficiency in testing the

SOC. As shown in Figure 4.1, a wrapper is a thin shell around a core that connects TAMs to

a core. Figure 4.2 shows an example of a core with wrapper design [Marinissen 00]. A

wrapper scan chain design can provide for width adjustment of a mismatch between core

input/output width and TAM width, as shown in Figure 4.2. We adopt the concept of

wrapper design from Marinissen et al. [Marinissen 00], which considers only core-internal

test. One of the problems in considering a core-internal test is partitioning the set of wrapper

scan chain elements to several wrapper scan chains, which are equal to the number of TAM

 56

lines. Let T be a testing time for a core; then the SOC testing design with core wrapper

design problem can be formulated as follows [Marinissen 00]:

 (){ } ()oioi sspssT ,min,max1 +⋅+= (4.1)

 where si is the scan-in for a core;

 so is the scan-out for a core; and

 p is the number of test patterns.

As shown in Equation (4.1), the testing time for each core depends on the length of a wrapper

scan chain, i.e., max(si, so). To reduce the SOC testing time, it is important to balance the

length of wrapper scan chains as much as possible [Iyengar 01a]. To balance the wrapper

scan chain, several methods can be used [Koranne 02, Marinissen 00]. In this chapter, the

Partitioning of TAM Chain Items (PTI) method is used to balance the wrapper scan chain

design [Marinissen 00]. The PTI method is shown as follows (also in Figure 4.3):

PTI_Step_I. Assign the core-internal scan chains into TAM chains such that the

maximum sum of scan lengths assigned to a TAM chain is minimized.

PTI_Step_II. Assign the wrapper input cells into TAM chains on top of TAM

partition, such that the maximum scan-in time of all TAM chains is

minimized. The wrapper input cells have length 1.

PTI_Step_III. Assign the wrapper output cells into TAM chains on top of TAM

partition, such that the maximum scan-out time of all TAM chains is

minimized. The wrapper output cells have length 1.

To execute PTI_Step_I in the PTI method, the Largest Processing Time (LPT) algorithm is

used to assign the scan lengths [Marinissen 00]. Details of the LPT algorithm are discussed

as follows. Let S = {S1, S2, … Sy} be a set of the core-internal scan chains, where scan chain

Si has a length l(Si). The Largest Processing Time (LPT) algorithm is detailed as follows

(also in Figure 4.3):

LPT_Step_A. Sort S in descending order so that ySlSlSl][...][][21 >>> .

LPT_Step_B. For i = 1 to number of TAM partition:

 57

Put the maximum length of scan-in(scan-out) to the TAM partition i,

Delete the maximum length of scan-in(scan-out) from the scan set S.

LPT_Step_C. For i = number of TAM partition +1 to number of scan chain:

Put the maximum length of scan-in(scan-out) from the set S to the

TAM partition that has minimum length,

Delete the maximum length of scan-in (scan-out) from scan set S.

After designing the wrapper scan-in and scan-out, the wrapper input cells and wrapper output

cells are assigned to partition TAM such that the maximum length of all TAM chains is

minimized [Marinissen 00].

Figure 4.3(a) shows a wrapper design example for an embedded core that has two

functional inputs, one functional output and four core-internal scan chains with the length of

9, 6, 3, and 3 flip-flops (FF), respectively. In the example shown in Figure 4.3(a), we would

like to design a wrapper scan chain of this core for a two-bit width TAM. Figure 4.3(b)

shows the procedure of PTI and LPT methods. Using the LPT algorithm to solve

PTI_Step_I, first, all the lengths of scan chains are ordered in descending order, which is 9,

6, 3, and 3, shown as LPT_Step_A in Figure 4.3(b). In LPT_Step_B, the longest scan chain

SC1 of length 9 is assigned to the first partition, PT1, of TAM and the next longest scan chain

SC2 of length 6 is assigned to another TAM partition PT2. In the first iteration of

LPT_Step_C, the next scan chain SC3 of length 3 is assigned to the minimum length of TAM

partition (i.e., PT2) with a length of 6 bits. In the second iteration of LPT_Step_C, the last

scan chain SC4 of 3 is assigned to PT1 of length 9. After using the LPT algorithm, the length

of wrapper scan chains PT1 and PT2 are 12 and 9 bits, respectively, as shown in Figure

4.3(b). In PTI_Step_II, the functional inputs (I) are assigned to each TAM partition by

assigning first to the partition that has the minimum length of wrapper scan chain (i.e., PT2).

In the PTI_Step_III, the function output (O) is assigned to the minimum length (i.e., PT2).

After finishing all three steps of the PTI method, the maximum length of the wrapper scan

chains design for this example core is 12 bits, as shown in Figure 4.3(c).

 58

4.3 Modeling the SOC Test Optimization Problems with Core Wrapper Design

 After the core wrapper scan chains have been designed, the testing time for each core

and its TAM width is calculated using Equation (4.1). We then proceed to optimize the total

testing time and the resource allocation. In the previous chapter and in our previous work

presented in [Kloypayan 02c, Kloypayan 02d], a formulation modeling has been proposed for

optimizing the SOC testing with SOC cores allocation and TAMs width selection. Let a

SOC system consist of I cores and J TAM lines, i.e., (1 ≤ i ≤ I) and (1 ≤ j ≤ J). The width of

each TAM line TAMj is represented by wj, which has to be less than or equal to the

maximum width wmax. The summation of the width wj for all TAMs should be equal to the

total TAM width W. The power dissipation for each core i is represented by Pi. We assume

that the power dissipation per cycle for core i is equal to power dissipation Pi divided by

testing time of that core on TAMj, i.e.,
)(ji

i

wT
P

. In this chapter, a power dissipation Pi and

the maximum power Ω of the SOC system are given and considered in the optimization. For

simplicity, we assume that the power allocated to each TAM is equal, which is
J
Ω . When a

core i is tested on TAMj, the power consumption should not exceed the allocated power of

TAMj , i.e.,
�

�
�

�

� Ω≤
JwT

P
ji

i

)(
. To minimize the SOC testing time with resource allocation, the

SOC testing model can be formulated as follows:

 Objective: Minimize {))(max(
1=

⋅
I

i
ijji xwT }, Jj ≤≤1 (4.2)

 Subject to
=

=
J

j
ijx

1
1, 1 ≤ i ≤ I (Resource allocation) (4.3)

 Ww
J

j
j =

=1

, (TAM width distribution) (4.4)

 wj ≤ wmax , (4.5)

 59

JwT

Px

ji

ii Ω≤
)(

, (Power constraint) (4.6)

 xij = 0, or 1 (4.7)

 where Ti(wj) is the testing time for core i on TAMj , as shown earlier in

 Equation (4.1), 1 ≤ i ≤ I , 1 ≤ j ≤ J;

 wj is the width of TAMj ;

 W is the total width of TAMs;

wmax is the maximum width of TAMs;

Ω is the maximum power rating in the SOC system;

Pi is the power consumption of core i;and

xij is the 0-1 variable defined as �
�

=
otherwise

jTAMtoassignedisiCoreif
xij ,0

,1
.

The SOC testing with resource allocation problem is a NP-complete problem [Kloypayan

02c]. Solving a NP-complete problem with traditional methods such as the Integer Linear

Programming (ILP) becomes inefficient when the SOC system becomes more complex. In

this chapter, a maximum neural network (MNN) is proposed to solve the NP-complete SOC

testing problems. Details are presented in the next section.

4.4 Constructing the Maximum Neural Network (MNN) to Solve the SOC Testing

Problems

A neural network (NN) is a system constructed to imitate the function of a brain

[Kartalopoulos 96]. As shown in Figure 4.4, a NN consists of individual neural units (nodes)

that link together with the associated weight between each node. Neural networks can

provide optimal solutions to difficult optimization problems, which the traditional heuristic

methods cannot generally accomplish. Solving the optimization problems require the

minimization of the cost functions subject to a set of constraints. The neural network can

produce good solutions by minimizing the cost function, also known as energy functions

[Smeda 99]. In addition, by designing the right neural networks, the computation time for

 60

achieving the optimal solution is usually less than that of traditional optimization techniques

[Sellers 96].

In this chapter, after solving the PTI problem (i.e., cores wrapper design for each TAM

partition has been balanced and kept in database), an unsupervised maximum neural network

(MNN) is also proposed to optimize the resource allocation problems for SOC testing design,

as shown in Figure 4.4. Neural networks are able to solve NP-complete problems in

polynomial time [Kartalopoulos 96, Takefuji 92]. The operation of the proposed MNN is

based on the group update. Details of a general model of the maximum neural network have

been presented in Chapter 2.

Based on a general model of a maximum neural network in Chapter 3, Figure 4.4

shows the architecture of the proposed MNN. There are J + 1 input units: [Yij, j=1,…,J] and

[wj, j = 1,..,J], and I output units: [xij] for i= 1,…,I. From the previous chapter in Equations

(3.1) to (3.3), Yij is an energy function, which is the testing cost of the SOC testing system

design. In Figure 4.4, an output xij defines that core i is assigned to TAMj. By using

Equations (4.2)-(4.7), the proposed MNN can be constructed so that each core i can be

assigned only to one TAM line, TAMj. In the MNN, only one output is selected (i.e., in

Figure 4.4, there is only one output xij, j=1…J, has a non-zero value and all others are zero).

In the proposed SOC test model, an input Yij and an output xij are calculated as follows (also

see Figure 4.4):

�
� ==

==
otherwise

JaYYif
Yfx iaij

ijij 0
),...,1(}max{1

)(, (4.8)

ijijij YuYuY ∆−=+)()1(, (4.9)

�

�
�

�

� Ω−⋅+⋅=∆
JwT

Px
uwTuY

ji

iij
jiij)(

)()()(γα , (4.10)

))(()()()1(maxwuwuuwuw jjj −⋅−=+ β , j = 1,.., J-1, (4.11)

−

=

+−=+
1

1

)1()1(
J

j
jJ uwWuw , (4.12)

 61

where α(u), γ(u) and β(u) are learning rates;

u is number of iterations, u = 1,…,U;

wj(u) is the width of TAMj at iteration u, 1 ≤ j ≤ J;

wmax is the maximum width of TAMs;

W is the total width of TAMs;

Ω is the maximum power rating in the SOC system;

Pi is the power consumption of core i; and

 Ti(wj) is the testing time for core i on TAMj determined by Equation

 (4.1) after considering wrapper design, and 1 ≤ i ≤ I , 1 ≤ j ≤ J.

In searching for the optimal solution, the learning rates α, β and γ may be decreased at each

iteration or they may be constant throughout the learning process.

As shown in Figure 4.4, the proposed MNN begins the first iteration by generating a

set of random numbers assigned to the energy function Yij and the width wj for each TAMj.

The output xij can be calculated by using the function f(Yij) defined in Equation (4.8). As

shown in Figure 4.4, in searching for the optimal solution, Yij and wj for the next iteration are

updated using Equations (4.9) to (4.12). The searching procedure continues until either the

optimal solution has been reached or the termination conditions are met.

Figure 4.5 shows the proposed MNN searching algorithm for solving the SOC test

problem with resource allocation. The complete MNN searching algorithm of the proposed

maximum neural network is shown as follows (also in Figure 4.5):

MNN_Step_1. For each core in a SOC system, minimize the maximum length of

wrapper scan chain for the PTI problem by using the LPT algorithm,

as discussed in the previous section.

MNN_Step_2. Calculate the SOC testing time cycle Ti(wj) of each core i for each TAM j

with w bits wide, using Equation (4.1), and save the result in a

database.

MNN_Step_3. Initialize the proposed neural network MNN, set u = 0.

 62

MNN_Step_4. Assign each wj value by using a uniform random number from 1 to W.

MNN_Step_5. Assign each Yij value by using a uniform random number.

MNN_Step_6. Calculate xij by Equation (4.8).

MNN_Step_7. Obtain the testing time Ti(wj) from the database.

Calculate the testing time for the system.

IF the new testing time for the system is shorter than the old testing

time and the power constraint is not violated,

THEN keep the new testing time as the minimum testing time for the

SOC system.

MNN_Step_8. Update Yij and wj for the next iteration (u+1).

Increment u by 1.

IF the state of the system reaches the equilibrium state or the

termination conditions are met,

THEN stop this procedure.

ELSE, repeat to MNN_Step_6.

The termination condition used in this chapter includes the following two situations: (i) the

iteration number has reached a predefined number, or (ii) the MNN system has reached a

stable point. The procedure stops once either of these conditions is met, as shown in Figure

4.5.

The proposed MNN searching and optimization algorithm is used to find the optimal

SOC testing solution. As shown in Figure 4.5, in the beginning the set of scan chains for

each core in a SOC system is balanced (PTI problem). Then, the testing time of each core for

each TAM width partition is calculated. Next, random numbers for the initial input to the

MNN are generated, including a set of the energy functions Yij and the width wj of each

TAMj. The MNN finds the testing time for each core i for each TAM width wj from the

database. The output xij from the MNN is for the SOC test resource allocation. If the MNN

reaches an optimal solution, the procedure stops; otherwise, the procedure continues until the

predefined number of iterations is reached, as shown in Figure 4.5.

 63

4.5 An Example and Testing Results of the Proposed Modeling and MNN

The proposed modeling, neural network and the optimization algorithm have been

implemented on 800 MHz personal computers using MATLAB® software. In this section,

one of the results from computer implementation is demonstrated.

In this example, the proposed modeling and MNN is implemented using the test data

of SOC chip d695 from the literature in [ITC 02]. Table 4.1 shows the detail of test data for

each core of SOC chip d695, which consists of ten cores (including two combinational cores

and eight sequential benchmark circuits). Figure 4.6 shows the Test Access Mechanism

(TAM) design found by the MNN for this example d695. As shown in Figure 4.6, the cores

1, 2, 7, 8 and 9 are assigned to TAM2 with width of 5. Cores 3, 4 and 10 are assigned to

TAM3 with width of 7, as shown in Figure 4.6. Table 4.2 shows the resultant best solutions

of width allocation and core assignment to each TAM for the first example SOC d695 system

with three TAMs (j = 3), where the power constraint is not considered. In Table 4.2, the test

bus assignment vector shows the core assignment to each TAM. For example, when the total

width W is equal to 28 (the fourth row of Table 4.2), the SOC testing time is 25,936 cycles,

the optimal width distribution (w1, w2, w3) for the TAM1, TAM2 and TAM3 is (16,5,7) and

the test bus assignment vector of the cores is [2,2,3,3,1,1,2,2,2,3], as shown in Table 4.2. In

Table 4.2, the test bus assignment vector [2,2,3,3,1,1,2,2,2,3] shows that core 5 and core 6

(the underlined items in the vector) are assigned to TAM1, also shown in Figure 4.6. All the

MNN computation time of the MNN for this example case d695 is within 30 seconds, as

shown in Table 4.2.

More details of the computer implementations and practical examples will be

presented in Chapter 5.

4.6 Summary

In this chapter, a maximum neural network (MNN) has been proposed to minimize

the total testing time for SOC test automation with core wrapper design. The MNN and the

mathematical modeling have been presented to solve the resource allocation and test

 64

scheduling problems for SOC test automation. After the embedded core wrapper scan chains

are designed, the best solution of SOC testing time can be solved by the developed MNN

algorithms in a polynomial time. Computer implementation and more results of practical

examples will be presented in Chapter 5.

 65

Test
Pattern
Source

Test
Pattern
Sink

Core 1 Core 3

Core 4

Core 2

Core
Under
Test
(CUT)

Wrapper

(TAM)
Test Access Mechanism

Core 5

Figure 4.1 Embedded core test infrastructure for SOC testing

Multi-bit TAM plug
Output [0:2]

Multi-bit TAM plug
Input [0:2]

Functional Input
 [0:4]

Functional Output
 [0:2]

Bypass

Wrapper Instruction Register

Wrapper control [0:5]

Scan Chain0 (8 FFs)

Core

Single-bit TAM plug
Input

Single-bit TAM plug
Output

Scan Chain1 (4 FFs)

SC Clock

Clock
SC

Wrapper

Figure 4.2 An example of a core with wrapper [Marinissen 00]

 66

Wrapper

Core Under Test

SC3-3FF

SC4-3FF

I O

SC1_9FF

SC2_6FF

SC : scan chain
 I : functional input
 O : functional output
 : TAM partitionPT k

k

t h

(a)

SC1_9FF
SC2_6FF

SC3
3FF

I

SC4
3FF

SC1_9FF
SC2_6FF SC3

3FF

SC4
3FF

SC1_9FF
SC3
3FF

SC4
3FF

O

SC4
3FF

SC3
3FF
SC4
3FF

SC3
3FF

SC3
3FF

PTI method: PTI_Step_I
LPT algorithm

LPT_Step_A LPT_Step_B LPT_Step_C
(1st Iteration)

LPT_Step_C
(2nd Iteration)

PTI_ Step_II

PTI_Step_III

(1st Iteration) (2nd Iteration)

SC1_9FF
SC1_9FF

SC1_9FF

SC1_9FF

SC2_6FF
SC2_6FF

SC2_6FF SC2_6FF

PT
1

PT
2

PT
1

PT
1

PT
1

PT
1

PT
1

PT
2

PT
2

PT
2 PT

2

PT
2

(b) The PTI and LPT procedures

2-bit width TAM
Longest wrapper scan chain = 12 bits

SC1_9FF

SC2_6FF

(c) The final result of core wrapper design

Figure 4.3 An example of wrapper scan chain design by the PTI and LPT algorithms

 67

OUTPUT
1-β

[,]W w
m a x

[()]T w
i j i . I

 j J
= 1 . .

 = 1 . . .

−γ
i j

[]x
I j j = . J1 .

[∆Y
1 j j J

]
= 1 . .

[]Y
i j j = J1 . . .

−α
i j

[]w
j j = . J1 .

[]x
1 1j j = . . J

[]x
i j j = . . J1

[()]f Y
i j j J= 1 . . .

[∆Y
i j j J

]
= 1 . . .

[∆Y
I j j J

]
= 1 . . .

[]Y
1 1 .j j = . J

[]Y
I j j = J1 . . .

[]Y
i j j = . . J1

[]Y
I j j = J1 . . .

[]Y
1 1 . . .j j = J

[()]f Y
1 = 1 . . .j j J

[()]f Y
I j j J= 1 . . .

[]w
j j = . J1 .

()P ,
1

Ω

()P ,
I

Ω

()P ,
i

Ω

−α
1 j

−α
I j

−γ
1 j

−γ
I j

1

1

1

1

1

1

βINPUT

[]w
j j = . J1 .

1

1

1

Figure 4.4 The proposed maximum neural network (MNN) architecture

 68

Initial Input

 The Proposed
 Maximum Neural Network
 (MNN)

Database of
The Longest Length
of Wrapper Scan Chain
of each core for each
TAM width in the SOC
 system

Input
 Set of scan chain
 for each core,
 Set of TAMs width

The Partitioning of
TAM Chain Items
(PTI)

Set of the energy
 function
TAMs width

Is any of the termination
conditions met?

Best feasible solution

Yes

No

Core Wrapper Design

Output

InputInput

[Lower bound,
maximum iteration]

Figure 4.5 The proposed MNN searching and optimizing algorithm for SOC test design

 69

Table 4.1 Test data for each core in SOC chip d695 [ITC 02]

Core No. No. of No. of No. of No. of
Scan Chain

Length
 Test Patterns Input Output Scan Chains Min Max
1 12 32 32 - - -
2 73 207 108 - - -
3 75 34 1 1 32 32
4 105 36 39 4 52 54
5 110 38 304 32 44 45
6 234 62 152 16 39 41
7 95 77 150 16 33 34
8 97 35 49 4 44 46
9 12 35 320 32 54 54

10 68 28 106 32 51 51

 70

SOC testing time (cycles) 25936
TAM width 28
TAM partition (16, 5, 7)
TAM allocation [2, 2, 3, 3, 1, 1, 2, 2, 2, 3]
Computation time (min) 0.48

Figure 4.6 Test Access Mechanism (TAM) design for the SOC system d695 with
three TAMs and total TAM width W is equal to 28 bits

Table 4.2 The best solution of SOC testing time, width allocation and core assignment for

the SOC system d695 with three TAMs.

TAM width
SOC Testing

time Width Allocation TAM Allocation Computation time
(bits) (cycles) (bits) (min)

16 44029 (6,7,3) [1,2,3,1,2,1,2,1,2,3] 0.52
20 35606 (16,1,3) [3,2,2,3,1,1,3,2,1,1] 0.49
24 29699 (18,3,3) [3,2,2,3,1,1,2,3,3,1] 0.48
28 25936 (16,5,7) [2,2,3,3,1,1,2,2,2,3] 0.48
32 23578 (21,2,9) [1,1,2,3,1,1,1,2,3,3] 0.48
36 20325 (20,4,12) [3,3,2,2,1,1,3,2,3,3] 0.47
40 18674 (18,4,18) [2,3,2,2,1,3,1,2,1,3] 0.49
44 17780 (20,20,4) [1,2,2,3,2,1,2,3,2,1] 0.48
48 17143 (20,19,9) [1,1,3,3,1,2,3,2,2,1] 0.51
52 16364 (17,16,19) [3,3,2,2,1,3,3,1,3,2] 0.48
56 15747 (33,18,5) [2,3,3,3,1,2,2,1,1,1] 0.48
60 13341 (36,7,17) [1,2,2,2,1,3,1,2,1,1] 0.47

64 12867 (37,20,7) [1,2,3,3,1,2,2, 3,1,1] 0.49

Core 1 Core 8

Core 2

Core 5

Core 9

Core 10

Core 6

Core 3

Core 7

Core 4

TAM2

TAM3

5

7

16

5
7

TAM1
16

 71

CHAPTER 5

COMPUTER IMPLEMENTATIONS AND RESULTS

This chapter presents the computer implementations and results of the proposed

methods. The proposed methods have been implemented on 800 MHz personal computers

using Matlab software.

5.1 Results for the SOC Test Automation with Resource Allocation Problem Using the

Maximum NN

This section shows the implementation results of proposed SOC optimization

modeling and the maximum neural network (MNN) presented earlier in Chapter 3. The

examples demonstrated in this section use the same testing data of the SOC system S4 from

Table 3.1, mentioned earlier in Chapter 3.

Table 5.1 shows the optimal width allocation and the optimal core assignment to each

TAM for the example SOC system S4 with two TAMs. In Table 5.1, the test bus assignment

vector shows the core assignment to each TAM. For example, when the total width W is

equal to 20 (the second row of Table 5.1), the optimal width distribution (w1, w2) is equal to

(2, 18) and the test bus assignment vector of the cores is [1, 1, 2, 2, 2, 1, 1, 2, 1, 2]. The

assignment test vector [2, 1, 1, 1, 2, 1, 1, 1, 1, 2] from Table 5.1 means that the cores at

columns 1, 2, 6, 7 and 9 are assigned to TAM1 with width of 2, and other cores are assigned

to TAM1 with width of 18. All the computation time for this example case is less than 60

seconds, as shown in Table 5.1.

Figure 5.1 shows the Test Access Mechanism (TAM) design and test schedule for the

system S4 with two TAMs, and the total TAM width W is equal to 20. For the TAM design

for this example SOC system, cores S838, S9234, s38584, S5378 and S38417 are assigned to

a TAM1 with width of 2, and the other cores are assigned to a TAM2 with width of 18, as

 72

shown in Figure 5.1(a) and Table 5.1 (the second row). Figure 5.1(b) shows the test schedule

for the design of the example SOC test. The total testing time is 2429137 cycles on TAM1

with width of 2. On TAM2 with width of 18, the total testing time is 2429554 cycles, and it

has idle time of 417 cycles. Compared to the traditional ILP methods, the computation times

are much shorter (< 1 min for the example case).

Table 5.2 and Figure 5.2 show the comparison of SOC testing time for the SOC

system S4 with two TAMs using the three different methods: Integer Linear Programming

[Chakrabarty 00a], Genetic Algorithm [Ebadi 01] and the proposed MNN. The SOC testing

time found by the proposed method is close to the reported SOC testing time from ILP

[Chakrabarty 00a] and GA [Ebadi 01].

Table 5.3 shows the results when the example SOC system S4 has four TAM lines,

respectively. In this example, when the TAM lines are increased from two lines to four lines,

the testing time of the SOC system is decreased, as shown in Tables 5.1 and 5.3. Table 5.4

shows the optimal testing time for the example system S4 when the number of TAM lines

varies. In Table 5.4, a total width of 56 is used for the example SOC system. As shown in

Table 5.4, when the number of TAM lines is increased, the total testing time of this system is

decreased because an increase in the number of TAM lines means more than one core could

be tested at the same time. The decreasing of total testing time is significant when one TAM

line changes to three TAM lines. When the number of TAM lines changes from three to

seven, the total testing times do not change much The increasing of the number of TAM lines

does not always decrease the total testing time. With the same total TAM width, the width of

each TAM line becomes smaller when increasing number of TAM lines. When the width of

each TAM line is smaller than the core test width, the total testing time of the SOC system is

increased.

Figure 5.3 shows the relationship among the total SOC testing time, the number of

TAM lines and the total TAM width. When the total width is increased, the overall testing

time becomes lower, which is consistent with Equation (3.4). When the width of the TAM

line is increased, the testing time for each core becomes lower. As discussed earlier (in Table

 73

5.4), when the number of the TAM lines is increased, the overall testing time is decreased

until it nearly reaches an optimal result. These results will help a SOC core user in TAM

design.

In the previous results, the power constraint has not yet been considered. In Table

5.5, the power constraint is considered along with other constraints to minimize the testing

times for the SOC system S2 with two TAM lines. The maximum power of the system equals

100 mW. Similar to the results from Table 5.1, when the total TAM width is increased, the

total testing time is decreased. Compared to the best testing time in Table 5.1, the best

testing times in Table 6 are longer due to the power constraint. When the power constraint is

considered, the computation times are also longer.

Table 5.6 shows the best testing times for the SOC system S2 when the maximum

power dissipations vary from 100 to 500. The SOC system has two TAM lines with a total

TAM width of 28 bits. When the maximum power dissipation Ω is increased from 100 mW

to 200 mW, the testing time of the SOC system is decreased. When Ω is increased to 500

mW, the testing time of the SOC system does not change significantly because the power

constraints are more relaxed, as shown in Table 5.6.

 74

Table 5.1 The results from the proposed maximum neural network applied to the
example SOC system S4 with two TAMs

Total test

width

W

Testing time

(Best Solution from our

method)

Optimal width

distribution

 (w1, w2)

Test bus assignment vector Execution

time

(min)

16 2456793 (3,13) [1, 2, 2, 2, 1, 2, 2, 2, 1, 1] 0.70
20 2429554 (2,18) [1, 1, 2, 2, 2,1, 1, 2, 1, 2] 0.65
24 2361278 (1,23) [1, 1, 2, 2, 1, 2, 1, 2, 2, 2] 0.58
32 2222247 (1,31) [1, 2, 2, 2, 1, 2, 2, 2, 2, 1] 0.60
36 2195730 (32,4) [2, 1, 1, 1, 2, 1, 1, 1, 1, 2] 0.59
40 2169213 (7,33) [1, 2, 2, 2, 1, 2, 2, 2, 2, 1] 0.57
44 2039183 (1,43) [1, 1, 2, 2, 1, 2, 2, 2, 1, 2] 0.56
48 1975827 (46,2) [1, 2, 1, 1, 2, 1, 1, 1, 2, 1] 0.56
52 1949151 (4,48) [2, 2, 2, 2, 1, 2, 2, 2, 1, 2] 0.56
56 1931694 (7,49) [2, 2, 2, 2, 1, 2, 2, 2, 1, 2] 0.55

 75

(a) TAM design

(b) Test schedule for system S4

Figure 5.1 TAM design and test schedule for the system S4 with two TAMs and total

TAM width of 20

 76

Table 5.2 Comparison of the SOC testing time for different methods
Total test

width

W

Testing time

(ILP method)

[Chakrabarty 00a]

Testing time

(Genetic

Algorithm)

[Ebadi 01]

Testing time

(Best Solution

from our

method)

Testing time

difference (compare

with ILP)

(%)

Execution

time

(min)

16 2423712 2478822 2456793 1% 0.70
20 2363126 2423284 2429554 3% 0.65
24 2278443 2361278 2361278 4% 0.58
32 2202286 2222247 2222247 1% 0.60
36 2174501 2195730 2195730 1% 0.59
40 2149720 2144192 2169213 1% 0.57
44 2123437 2039183 2039183 -4% 0.56
48 2099390 1966608 1975827 -6% 0.56
52 2086542 1949151 1949151 -7% 0.56
56 2069738 1931694 1931694 -7% 0.55

1500000

2000000

2500000

3000000

16 20 24 32 36 40 44 48 52 56

TAM width (bits)

SO
C

 te
st

in
g

tim
e

(c
yc

le
s)

Integer Linear Programming[Chakrabarty 00a]

proposed MNN

Genetic Algorithm[Ebadi 01]

Figure 5.2 The comparison of SOC testing time for SOC system S4 with two TAMs
using different methods

 77

Table 5.3 The results from using the proposed maximum neural network applied to the
example SOC system S4 with four TAMs

Total test

width

W

Testing Time

(on w1, on w2, on w3, on w4)

Testing time

(cycles)

(Best Solution)

Width distribution

(Best Solution)

 (w1, w2, w3, w4)

Test bus assignment

vector

Execution

time

(min)

16 (1687233, 491352, 1684650, 1643549) 1687233 (4, 2, 7, 3) (2, 1, 1, 2, 3, 1, 4, 4, 2, 4) 1.21

20 (1638705, 1608878, 1472908, 796849) 1638705 (16, 2, 1, 1) (4, 3, 3, 3, 1, 2, 4, 4, 3,3) 0.87

24 (1618441, 1608878, 841651, 1427722) 1649143 (20, 2, 1, 1) (1, 3, 3, 3, 1, 2, 4, 3, 3, 4) 0.87

32 (1592760, 1604850, 1100836,1145263) 1604850 (25, 4, 2, 1) (2, 2, 4, 4, 1, 2, 4, 3, 4, 3) 0.62

36 (1541440, 1131196, 1116217,1602970) 1602970 (9, 3, 1, 23) (2, 2, 2, 3, 4, 1, 2, 2, 2, 3) 0.63

40 (1585088, 1577505, 1045215,1167241) 1585088 (6, 28, 2, 4) (2, 1, 4, 3, 2, 1, 3, 4, 3, 4) 0.60

44 (988198, 1575381, 1198314, 1572340) 1575381 (5, 7, 3, 29) (3, 2, 3, 1, 4, 2, 1, 1, 3, 3) 0.58

48 (1539112, 1531806, 803683, 1375822) 1614209 (36, 10, 1, 1) (4, 4, 1, 3, 1, 2, 3, 4, 4, 4) 0.65

52 (1194583, 1030993, 1526846, 1541710) 1570342 (2, 3, 12, 35) (2, 3, 1, 1, 4, 3, 2, 2, 2, 1) 0.60

56 (1533627, 1550931, 1279951, 870128) 1550931 (39, 14, 2, 1) (3, 1, 2 , 3, 1, 2, 3, 3, 3, 4) 0.53

Table 5.4 The best solution of testing time for the system S4 when the number of
 TAM lines are varying

No. of

TAM line

Testing time

(cycles)

(Best Solution)

Width distribution

 (wj)

(Best Solution)

Test bus assignment vector

1 3800947 (56) (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

2 2157430 (1, 55) (2, 1, 1, 2, 1, 2, 2, 2, 1, 2)

3 1633623 (32, 17, 7) (3, 1, 3, 2, 3, 1, 2, 2, 2, 2)

4 1606119 (13, 3, 15, 25) (1, 4, 1, 2, 4, 1, 2, 2, 3, 3)

5 1579976 (46, 5, 3, 1, 1) (5, 4, 5, 4, 1, 2, 4, 3, 3, 5)

6 1589610 (20, 28, 4, 2, 1, 1) (4, 4, 6, 5, 2, 3, 6, 1, 1, 5)

7 1608878 (12, 28, 9, 2, 2, 2, 1) (1, 4, 5, 1, 2, 6, 7, 7, 4, 3)

 78

Total TAM width (bits) Number of TAM lines

To
ta

l S
O

C
 te

st
in

g
tim

e
(c

yc
le

s)

Figure 5.3 The relationship of the total SOC testing time and the number of TAM lines and

the total TAM width

 79

Table 5.5 The testing time for the system S4 with the power constraint when the total TAM
widths are varying (the maximum power is 100 mW)

Total test

width

W

Width distribution

 (w1, w2)

(The best solution from

our method)

Testing Time

(cycles)

(on w1, on w2)

testing time

(The best

solution from our

method)

Test bus assignment vector Execution

time

(min)

16 (1, 15) (2600903, 2632430) 2632430 (1, 1, 2, 2, 1, 2, 2, 2, 2, 1) 2.0
20 (3, 17) (2568246, 2593485) 2593485 (1, 2, 2, 2, 1, 2, 2, 2, 2, 1) 3.45
24 (19, 5) (2564037, 2568050) 2568050 (2, 1, 2, 1, 2, 1, 2, 1, 2, 1) 4.20
28 (7, 21) (2544656, 2516851) 2544656 (1, 2, 1, 2, 1, 2, 1, 2, 1, 2) 6.67
32 (22,10) (2493258, 2509565) 2509565 (2, 1, 2, 1, 2, 1, 2, 1, 2, 1) 8.0
36 (13, 23) (2474474, 2469665) 2474474 (1, 2, 1, 2, 1, 2, 1, 2, 1, 2) 8.45

Table 5.6 The testing time for the system S4 with the power constraint when the maximum
power dissipation is varying (the total TAM width = 28 bits)

Maximum

power

dissipation

Ω

Width distribution

 (w1, w2)

(The best solution from

our method)

Testing Time

(cycles)

(on w1, on w2)

testing time

(The best solution

from our method)

Test bus assignment vector Execution

time

(min)

100 (7, 21) (2544656, 2516851) 2544656 (1, 2, 1, 2, 1, 2, 1, 2, 1, 2) 6.67
200 (24, 4) (2478663, 2497016) 2497016 (2, 1, 1, 1, 2, 1, 2, 1, 2, 1) 1.5
300 (4, 24) (2496668, 2478771) 2496668 (2, 2, 2, 2, 1, 2, 1, 2, 1, 2) 1.5
400 (23, 5) (2491378, 2502309) 2502309 (1, 2, 1, 1, 2, 1, 2, 1, 2, 1) 0.26
500 (4, 24) (2497016, 2478663) 2497016 (1, 2, 2, 2, 1, 2, 1, 2, 1, 2) 0.26

 80

5.2 Results for the SOC Test Automation with Core Wrapper Design

The proposed SOC optimization modeling and the maximum neural network (MNN)

presented in Chapter 4 have been implemented on 800 MHz personal computers using

MATLAB® software. The proposed MNN and the SOC optimization modeling are tested

with five SOC benchmarks: d695, g1023, p34392, p22810, and p93791 from the literature in

[ITC 02]. Table 4.1 and Tables 5.7 to 5.10 show the detailed testing data for all the cores

used in the five practical SOC test examples. The SOC example systems d695, g1023,

p34392, p22810 and p93791, consist of 10, 14, 19, 28 and 32 cores, respectively. All these

five SOC benchmark are used in the implemented MNN system. For the simplicity of

presentation, the first example SOC system d695 (Table 4.1) is used for illustration.

The developed MNN network is used to find the optimal testing time for the example

SOC systems. Figure 5.4 compares SOC testing time for the example system d695 with two

TAMs using the three different methods: the benchmarking Integer Linear Programming

(ILP) [Iyengar 01a], PPAW_enumerate [Iyengar 01a], and the proposed MNN. As shown in

Figure 5.4, the total width W ranges from 16 bits to 64 bits. Table 5.11 compares the SOC

testing time and the MNN computation time by different methods. The SOC testing time

found by the MNN is close to the reported SOC testing time from ILP and PPAW_enumerate in

[Iyengar 01a]. In Figure 5.4, when the TAM widths are increased, the resulting SOC testing

times of the example system are decreased. The computation time of the proposed MNN is

less than the computation time of ILP, but slightly higher than the computation time of

PPAW_enumerate. Notice that in Table 5.11, unlike for the computation time of ILP and

PPAW_enumerate, the computation time of the proposed MNN is not increased with the increment

of TAM width.

Figures 5.5 to 5.7 show the comparison of computation time of all the different

methods using the five different benchmarking SOC examples. As shown in Figures 5.5 and

5.6, the computation time of the proposed MNN remains stable when the SOC system design

becomes more complex (i.e., number of cores and TAM width are increased). When the

 81

SOC system becomes more complex, the best solution (testing time, width allocation, and

TAMs allocation) can be found by the proposed MNN within a reasonable time, as shown in

Figures 5.5 and 5.6.

Figure 5.7 shows the SOC testing time (objective function) and the computation time

of the proposed MNN when the number of searching iterations varies. As shown in Figure

5.7, when the number of iterations increases (that causes higher computation time), the

resulting SOC testing time pretty much remains stable. From Figure 5.7, it can be seen that

the proposed MNN can converge to good results of SOC testing time very rapidly without

the need for a larger number of searching iterations.

Figures 5.8 and 5.9 compare the SOC testing time for the example chip d695 with

three TAMs using the different existing methods: ILP [Iyengar 01a], PPAW_enumerate[Iyengar

01a], ECTSPSol [Koranne 02], and the proposed MNN. In Figure 5.8, when TAM width is

higher than 48 bits, the ILP has the highest SOC testing time because the optimal solution

cannot be found due to the high complexity of the SOC system [Iyengar 01a]. Figure 5.9

shows the comparison of the SOC testing time for the example SOC chip p93791 with 32

cores by using three different methods. For the SOC chip p93791, the SOC testing time

(objective function) found by the proposed MNN is better than the results obtained by the

other two methods, as shown in Figure 5.9.

The proposed MNN also has the capacity of optimizing the SOC testing system

considering the power constraints. Tables 5.10 and 5.13 show the comparison of the SOC

testing time (objective function) for the SOC example system d695 with and without power

constraints. We assume that each TAM has maximum power consumption of 50 mW and

each core consumes power 1500 mW per each pattern. The SOC testing time with power

constraint (i.e., subject to more constraints in the optimization) is higher than that without

power constraints, as shown in Tables 5.12 and 5.13. The computation time in solving the

SOC problems also gets much larger when the power constraint is considered, as shown in

Tables 5.12 and 5.13. Figure 5.10 shows the difference of SOC testing time and computation

time for the example SOC system d695 with and without power constraints. Figure 5.10 and

 82

Tables 5.12 and 5.13 show that, with the consideration of power and other constraints, the

computation time needed to find the optimal solution grows significantly (thirteen times

increment). While most of the existing methods (for example ILP or PPAW_enumurate method)

can only solve the SOC testing problems without the power constraints, the developed MNN

method is able to find the optimal SOC testing solution with these additional constraints

within reasonable computation time.

5.3 Summary

This chapter presented the experiment results of the proposed techniques. The results

show that the proposed techniques can be applied to minimize the overall SOC testing time

in three SOC test automation problems: test scheduling problem (Chapter 2), test automation

with resource allocation and power constraint problem (Chapter 3), and test automation with

core wrapper design (Chapter 4). The developed techniques require much less computation

time to solve complex SOC testing optimization problems.

 83

Table 5.7 Test data for each core in SOC chip g1023 [ITC 02]

Core No. No. of No. of No. of No. of Scan Chain Length
 Test Patterns Input Output Scan Chains Min Max
1 134 139 273 14 42 43
2 74 221 215 2 83 84
3 57 192 171 1 53 53
4 268 145 155 4 54 54
5 51 32 27 4 31 32
6 36 20 18 2 47 47
7 34 20 18 2 47 47
8 31 63 80 2 52 52
9 68 56 34 1 64 64

10 29 301 377 1 13 13
11 15 145 191 1 9 9
12 16 157 161 1 13 13
13 512 58 64 - - -
14 1024 140 114 - - -

Table 5.8 Test data for each core in SOC chip p34392 [ITC 02]
Core No. No. of No. of No. of No. of Scan Chain Length

 Test Patterns Input Output Scan Chains Min Max
1 210 15 94 1 806 806
2 514 165 263 29 8 570
3 3108 37 25 - - -
4 6180 38 25 - - -
5 12336 62 25 - - -
6 1965 11 8 - - -
7 512 9 8 - - -
8 9930 46 17 - - -
9 228 41 33 - - -

10 454 129 207 19 16 519
11 9285 23 8 - - -
12 173 7 4 - - -
13 2560 12 16 - - -
14 432 11 8 - - -
15 4440 22 8 - - -
16 128 7 7 - - -
17 786 15 4 - - -
18 745 175 212 14 198 729
19 12336 62 25 - - -

 84

Table 5.9 Test data for each core in SOC chip p22810 [ITC 02]
Core No. No. of No. of No. of No. of Scan Chain Length

 Test Patterns Input Output Scan Chains Min Max
1 785 28 56 10 110 130
2 12324 47 33 - - -
3 3108 38 26 - - -
4 222 48 64 - - -
5 202 90 112 29 27 214
6 712 80 64 - - -
7 2632 84 64 - - -
8 2608 36 16 - - -
9 175 116 123 24 24 122

10 38 50 30 4 2 99
11 94 56 23 8 38 88
12 93 40 23 11 42 82
13 1 68 149 4 32 104
14 108 22 15 3 1 73
15 37 84 42 6 36 80
16 8 13 43 1 109 109
17 25 223 69 4 4 89
18 644 53 11 5 56 68
19 58 38 29 3 17 43
20 124 45 40 4 1 77
21 465 115 76 10 93 186
22 59 54 40 3 13 77
23 40 31 8 7 16 115
24 27 73 23 5 2 101
25 215 58 46 18 108 181
26 181 66 33 31 198 400
27 2 285 94 1 34 34
28 26 48 43 5 40 100

 85

Table 5.10 Test data for each core in SOC chip p93791 [ITC 02]

Core No. No. of No. of No. of No. of Scan Chain Length
 Test Patterns Input Output Scan Chains Min Max
1 409 109 32 46 1 168
2 192 40 34 - - -
3 648 40 29 - - -
4 11 15 30 23 4 5
5 6127 102 80 - - -
6 218 417 324 46 500 521
7 177 9 32 - - -
8 177 9 32 - - -
9 192 43 34 - - -

10 1164 267 128 - - -
11 187 146 68 11 17 82
12 391 289 8 46 92 93
13 194 111 31 46 173 219
14 194 111 31 46 173 219
15 288 44 34 - - -
16 396 137 64 - - -
17 216 144 67 43 145 150
18 42 79 34 - - -
19 210 466 365 44 97 100
20 416 136 12 44 132 181
21 42 79 34 - - -
22 42 42 34 - - -
23 234 105 28 46 1 175
24 3072 17 4 - - -
25 2688 29 16 - - -
26 96 42 34 - - -
27 916 30 7 46 50 68
28 396 109 50 - - -
29 172 117 42 35 185 189
30 192 43 34 - - -
31 204 148 70 - - -
32 3084 268 128 - - -

 86

0

10000

20000

30000

40000

50000

16 20 24 28 32 36 40 44 48 52 56 60 64

TAM width (bits)

SO
C

 te
st

in
g

tim
e

(c
yc

le
s)

ILP PAW_enumerate proposed MNN

Figure 5.4 The comparison of SOC testing time for SOC d695 with two TAMs using
Integer Linear Programming (ILP), PPAW-enumerate [Iyengar 01a], and the
proposed MNN

Table 5.11 Comparison of computation time and the resulting SOC testing time for different
methods

TAM width ILP [Iyengar 01a] PPAW_enumerate [Iyengar 01a] The proposed MNN

(bits)
SOC testing

time Computation time SOC testing time Computation time
SOC testing

time %difference Computation time

 (cycles) (min) (cycles) (min) (cycles) (w enumerative) (min)

16 43238 0.7 43238 0.02 44163 2% 0.45
20 33458 0.8 33458 0.02 35289 5% 0.40
24 28626 2.1 28626 0.02 29772 4% 0.36
28 25640 3.9 25640 0.02 27043 5% 0.37
32 24030 5.23 24030 0.02 24890 4% 0.34
36 22246 11 22246 0.02 23570 6% 0.35
40 20815 12.5 20815 0.03 22248 7% 0.34
44 20094 13 20094 0.03 20324 1% 0.33
48 18911 32.1 18911 0.03 19674 4% 0.34
52 17929 50.1 17929 0.03 19026 6% 0.34
56 17671 52.8 17671 0.03 18123 3% 0.35
60 17449 76.7 17449 0.05 17935 3% 0.34

64 17375 158.7 17375 0.05 17778 2% 0.33

 87

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84

TAM width (bits)

C
om

pu
ta

tio
n

tim
e

(m
in

)

10 cores (SOC system d695) 14 cores (SOC system g1023)
19 cores (SOC system p34392) 28 cores (SOC system p22810)
32 cores (SOC system p93791) 10 cores [PAW_enumerate]
32 cores [PAW_enumerate]

Figure 5.5 The comparison of the computation time of different methods when the number

of SOC cores is increased

0.00
0.20

0.40
0.60
0.80

1.00
1.20

1.40
1.60

16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84

TAM w idths

C
om

pu
ta

tio
n

tim
e

(m
in

)

2 TAMS 3 TAMs

4 TAMs 5 TAMs

3 TAMs [PAW_enumerate]

Figure 5.6 The comparison of the computation time of different methods when the number
of TAM width is increased

PPAW_enumerate
[Iyengar 01a]

proposed MNN

proposed MNN

PPAW_enumerate
[Iyengar 01a]

 88

30000
31000
32000
33000
34000
35000
36000
37000
38000

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

No. of iterations

SO
C

 te
st

in
g

tim
e

(c
yc

le
s)

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

C
om

pu
ta

tio
n

tim
e

(m
in

)

SOC Testing time (cycles) Computation time (min)

Figure 5.7 The SOC testing time (objective) and the computation time of the proposed MNN
when the number of iterations varies

 89

0

10000

20000

30000

40000

50000

16 20 24 28 32 36 40 44 48 52 56 60 64

TAM w idth (bits)

SO
C

 te
st

in
g

Ti
m

e
(c

yc
le

s)

ILP PAW_enumerate

ECTSPSol The proposed MNN

Figure 5.8 The comparison of SOC testing time for the example system d695 with three
TAMs using Integer Linear Programming (ILP), PPAW-enumerate [Iyengar 01a],
ECTSPSol [Koranne 02], and the proposed MNN

0
200000
400000
600000
800000

1000000
1200000
1400000
1600000
1800000
2000000

16 20 24 28 32 36 40 44 48 52 56 60 64

TAM width (bits)

SO
C

 te
st

in
g

tim
e

(c
yc

le
s)

PAW_enumerate ECTSPSol The proposed MNN

Figure 5.9 The comparison of SOC testing time for the example system p93791 with three
TAMs using PPAW-enumerate [Iyengar 01a], ECTSPSol [Koranne 02], and the
proposed MNN

 90

Table 5.12 The comparison of SOC testing time and computation time with and without
power constraint for the example system d695 with two TAMs

No power constraint With power constraint TAM
Width
(bits)

SOC testing
time (cycles)

Computation
time (min)

SOC testing
time (cycles)

Computation
time (min)

16
20
24
28
32
36

44163
35289
29772
27043
24890
23570

0.45
0.40
0.36
0.37
0.34
0.35

45251
36394
30518
27761
25468
24188

5.91
5.28
4.75
4.74
4.44
4.69

Table 5.13 The comparison of SOC testing time and computation time with and without
power constraint for the example system d695 with three TAMs

No power constraint With power constraint TAM
width
(bits)

SOC testing
time (cycles)

Computation
time (min)

SOC testing
time (cycles)

Computation
time (min)

16
20
24
28
32
36

44029
35606
29699
25936
23578
20325

0.52
0.49
0.48
0.48
0.48
0.47

45028
36579
30502
26267
23426
21202

7.23
6.19
6.11
5.86
5.92
6.15

 91

10000

15000

20000

25000

30000

35000

40000

45000

50000

16 20 24 28 32 36

TAM width (bits)

SO
C

 te
st

in
g

tim
e

(c
yc

le
s)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

C
om

pu
ta

tio
n

tim
e

(m
in

s)

SOC testing time(no power constraint) SOC testing time (with power constraint)
Computation time(no power constraint) Computation time(with power constraint)

Figure 5.10 The comparison of SOC testing time and computation time for the example

system d695 with and without power constraints

 92

CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

In this dissertation, different neural networks have been developed to solve the

System-on-a-Chip (SOC) test automation problems with the wrapper design and optimal

resource allocation. The major contributions of this research are summarized as follows:

1. To solve the NP-hard System-on-a-Chip (SOC) test design problems, a fixed-

weight neural network (NN) combined with heuristic algorithms has been

proposed. The developed neural network can effectively solve the SOC test

scheduling problems with disjunctive constraints. The SOC design test

scheduling problems are subject to four different constraints: (i) precedence

constraint, (ii) resource constraint, (iii) core constraint, and (iv) power constraint.

To prevent the proposed neural network from getting trapped in local optimal,

some heuristic algorithms have been developed. The results show that the

proposed method can effectively solve a large size SOC test automation problem

within a reasonable computational time.

2. The proposed maximum neural network has been developed to solve the resource

allocation problem for SOC test automation. The proposed maximum neural

network can solve the NP-hard SOC test automation problems in a polynomial

time. The results show that the overall testing time of the SOC testing system can

be minimized with the optimal resource allocation and the optimal partitioned

TAMs width. This method also requires significantly less computation time in

solving larger size SOC testing problems compared to the traditional methods.

3. The resource allocation problem for SOC test automation is extended by adding

an embedded core wrapper design issue. After embedded core wrapper scan

chains are designed, the best solution of SOC testing time can be solved by the

 93

developed maximum neural network algorithms in a polynomial time. Computer

implementation and practical benchmark SOC examples were also presented.

The results show that the overall testing time of the SOC testing system can be

minimized with consideration of the following constraints: (i) the resource

allocation, (ii) the power consumption constraint, and (iii) the optimal partitioned

TAMs width. Compared with the traditional methods, the presented maximum

neural network technique requires significantly less computation time to solve

complex SOC testing optimization problems with a large number of cores and

TAMs width.

Computer implementation and results show that the developed neural network can

minimize the SOC testing time subject to various constraints. The computation time from

the developed method is considerably less than the traditional methods (i.e., ILP and heuristic

algorithm). The techniques presented in this dissertation can be used in the computer-aided

test automation for System-on-a-Chip (SOC) design.

For future research, the following are several suggested directions:

1. Optimize the SOC test scheduling problems by considering more constraints such

as overhead area, pre-emption constraint, etc.

2. Optimize the SOC test automation with resource allocation problems by

considering more complex systems such as cores embedded in another core, split

and merge TAM, etc.

 94

REFERENCES

[Aerts 98] Aerts, J., and Marinissen, E.J., “Scan Chain Design for Test Time

Reduction in Core-Based Ics,” Proceedings IEEE International Test

Conference, Washington DC, USA, 18-23 October 1998, pp 448-457

[Aikyo 00] Aikyo, T., “Embedded Tutorial: Issues on SOC Testing in DSM Era,”

Proceedings of the Design Automation Conference, Asia and South

Pacific, Yokohama, Japan, 2000, pp. 515.

 [Bagchi 01] Bagchi, D., RoyChowdhury, D., Mukherjee, J., and Chattopadhyay, S.,

“ A Novel Strategy to Test Core Based Designs,” Fourteenth

International Conference on VLSI Design, Bangalore, India, 3-7

January 2001, pp 122-127.

[Benso 00] Benso, A., Chiusano, S., Di Carlo, S., Prinetto, P., Ricciato, F., Spadari,

M. and Zorian, Y., “HD2BIST: a Hierarchical Framework for BIST

Scheduling, Data patterns delivering and diagnosis in SoCs,” ITC

International Test Conference, Atlantic City, NJ, USA, 3-5 October,

2000, pp. 892-901.

[Chandramouli 96] Chandramouli, R., Pateras, S., “Testing Systems on a Chip,” IEEE

Spectrum, November 1996, pp. 42-47.

[Chakrabarty 00a] Chakrabarty, K., “Design of System-on-a-Chip Test Access

Architectures using Integer Linear Programming,” Proceedings of VLSI

Test Symposium, 30 April- 4 May, Montreal, Quebec, Canada, 2000, pp

127-134.

[Chakrabarty 00b] Chakrabarty, K., “Design of System-on-a-Chip Test Access

Architectures under Place-and-Route and Power Constraints,”

Proceedings of Design Automation Conference, 2000, pp 432-437.

 95

[Chakrabarty 00c] Chakrabarty, K., “Test Scheduling for Core-Based Systems Using

Mixed-Integer Linear Programming,” IEEE Transactions on Computer-

aided Design of Integrated Circuits and Systems, vol. 19, no. 10,

October 2000, pp. 1163-1174.

[Chauhan 99] Chauhan, P., Clarke, E.M., Lu, Y., and Wang, D., “Verifying IP-Core

based System-On-Chip Designs,” Proceedings of ASIC/SOC

conference, Washington DC, USA, 15-18 September 1999, pp. 27-31.

[Crouch 99] Crouch, A., Design-for-Test for Digital IC’s and Embedded Core

Systems, Prentice Hall, 1999.

[Daeje 98] Daeje C., “Executing System On A Chip: Requirements for A

Successful SOC Implementation,” Electron Devices Meeting, San

Francisco, USA, 6-9 December 1998, pp. 3-8.

 [Dagli 94] Dagli, C.H., Artificial Neural Networks for Intelligent Manufacturing,

Chapman&Hall, 1994.

[Ebadi 01] Ebadi, Z.S., and Ivanov, A., “Design of an Optimal Test Access

Architecture Using a Genetic Algorithm,” Proceedings of 10th Asian

Test Symposium, Kyoto, Japan, 19-21 November, 2001, pp. 205-210.

[Fausett 94] Fausett, L., Fundamentals of Neural Networks: Architectures,

algorithms, and applications, Prentice Hall, 1994.

[Flores 99] Flores, P., Neto, H., Chakrabarty, K., Marques-Silva, J., “Test Pattern

Generation for Width Compression in BIST,” Proceedings of the 1999

IEEE International Symposium on Circuits and Systems, Orlando, FL,

USA, 30 May-2 June, 1999, vol. 1, 1999, pp. 114-118.

[Foo 88] Foo, Y.-P. S., and Takefuji, Y., “Stochastic Neural Networks for

Solving Job-shop Scheduling. I. Problem Representation,” Proceedings

 96

of the 1988 IEEE International Conference on Neural Networks, San

Diago, California, 24-27th July 1988, vol. 2, pp. 275-282.

[Galan-Marin 01] Galan-Marin, G. and Munoz-Perez, J., “Design and Analysis of

Maximum Hopfield Networks,” IEEE Transactions on Neural

Networks, vol. 12, no. 2, 2001, pp. 329-339.

[Gallaher 01] Gallagher, P., Chickermane, V., Gregor, S., and Pierre, T.S., “A

Building Block BIST Methodology for SOC Designs: A Case Study,”

ITC International Test Conference, Baltimore, MD, USA, 30 October –

1 November 2001, pp. 111- 120.

[Gupta 97] Gupta, R.K. and Zorian, Y., “Introducing Core-Based System Design,”

IEEE Design & Test of Computers, vol. 14, no. 4, 1997, pp. 15-25.

[Irion 01] Irion, A., Kiefer, G., Vranken, H., and Wunderlich, H.-J., “ Circuit

Partitioning for Efficient Logic BIST Synthesis,” IEEE Proceedings of

Design, Automation and Test in Europe, Munich, Germany, 13-16

March, 2001, pp. 86-91.

[Iyengar 01a] Iyengar, V., Chakrabarty, K., and Marinissen, E.J., “Test Wrapper and

Test Access Mechanism Co-Optimization for System-On-Chip,” ITC

International Test Conference, IEEE, Baltimore, MD, USA, 2001, pp.

1023-1032.

 [Iyengar 01b] Iyengar, V., and Chakrabarty, K., “Precedence-Based, Preemptive, and

Power-Constrained Test Scheduling for System-on-a-Chip,” IEEE VLSI

Test Symposium, 19th IEEE Proceedings on VTS, 29 April-3 May,

Marina Del Rey, CA, USA, 2001 pp. 368-374.

[Iyengar 02] Iyengar, V., Chakrabarty, K., and Marinissen, E.J., “ On Using

Rectangle Packing for SOC Wrapper/TAM Co-Optimization,”

 97

Proceedings 20th IEEE VLSI Test Symposium, Monterey, CA, USA, 28

April- 2 May, 2002, pp. 253-258.

 [ITC 02] ITC’02 SOC Test Benchmarks examples,

http://www.extra.research.philips.com/itc02socbenchm

[Jain 98] Jain, A.S., and Meerran, S., “Job-shop scheduling using neural

networks,” International Journal of Production Research, vol. 36, no.

5, 1998, pp. 1249-1272.

[Kartalopoulos 96] Kartalopoulos, S.V., Understanding Neural Networks and Fuzzy Logic:

Basic Concepts and Applications, The Institute of Electrical and

Electronics Engineers, Inc., New York, 1996

[Kloypayan 02a] Kloypayan, J., and Lee, Y.S., “Optimizing Test Scheduling for The

System-on-a-Chip (SOC) Design by Neural Network Approach,”

Proceedings of The 2002 Industrial Engineering Research Conference,

Orlando, FL, May 19-21, 2002, Paper Number (CD): CD#2282.

 [Kloypayan 02b] Kloypayan, J., and Lee, Y.-S., “Modeling and Solving The System-on-

a-Chip (SOC) Design Test Using Neural Network Approach,” (under

review), Submitted to Journal of Manufacturing Engineering, January

2002, (26 pages).

[Kloypayan 02c] Kloypayan, J., and Lee, Y.-S., “System-On-a-Chip (SOC) Test

Automation and Resource Allocation by Maximum Neural Network

Approach,” (in review) Submitted to Computers & Industrial

Engineering, May 2002, (24 pages).

[Kloypayan 02d] Kloypayan, J., and Lee, Y.-S., “ Optimizing System-on-a-chip (SOC)

Test Automation with Core Wrapper Design by Maximum Neural

Networks,” (working paper), 2002, (31 pages).

 98

[Koranne 02] Koranne, S., “Design of Reconfigurable Access Wrappers for

Embedded Core Based SOC Test,” Proceedings of the International

Symposium on Quality Electronic Design, San Jose, CA, USA, 18-21

March 2002, pp. 106-111.

[Lee 00] Lee, Y.S., Fang, S.C., and Chiu, N.C., "Soft Computing for Optimal

Planning and Sequencing of Mill-Turn Machining Operations," The

Handbook of Computational Intelligence in Manufacturing, Edited by

A. Kusiak and J. Wang, (ISBN #0-8493-0592-6), CRC Press LLC,

Boca Raton, FL, 2000, pp. 8-1 to 8-33.

[Marinissen 98] Marinissen, E. J., Arendson, R., Bos, G., Dingemanse, H., Lousberg,

M. and Wouters, C., “A Structured and Scalable Mechanism for Test

Access to Embedded Reusable Cores,” Proceedings of International

Test Conference, Washington DC, USA, 18-23 October 1998, pp. 284-

293.

[Marinissen 00] Marinissen, E.J., Goel S.K., and Lousberg, M., “Wrapper Design for

Embedded Core Test,” ITC International Test Conference, Atlantic

City, NJ, USA, 3-5 October, 2000, pp. 911-920.

[Nourani 00] Nourani, M., and Papachristou, C., “An ILP Formulation to Optimize

Test Access Mechanism in System-on-Chip Testing,” ITC International

Test Conference, Atlantic City, NJ, USA, 3-5 October, 2000, pp. 902-

910.

[Pino 96] Pino, J.L., Williamson, M.C., and Lee, E. A., “Interface Synthesis in

Heterogeneous System-Level DSP Design Tools,” IEEE International

Conference on Acoustics, Speech, and Signal Processing, Atlanta, GA,

May 1996, (4 pages).

 99

[Rajsuman 00] Rajsuman, R., System-on-Chip: Design and Test, Artech House

Publishers, 2000.

[Sabuncuoglu 96] Sabuncuoglu, I., and Gurgun, B., “A neural network model for

scheduling problems,” European Journal of Operation Research, vol.

93, 1996, pp. 288-299.

[Sellers 96] Sellers, D.W., “A Survey of Approaches to the Job Shop Scheduling

Problem,” 28th Southeastern Symposium on Proceedings of System

Theory, 31 March- 2 April, Baton Rouge, LA, USA, 1996, pp. 396-399.

[Shaikh 00] Shaikh, S.A., Khare, J., and Heineken, H.T., “Manufacturing and

Testability Oriented Synthesis,” 13th International conference on VLSI

Design, 2000, pp. 185-191.

[Shubat 01] Shubat, A. “Moving the Market to Embedded Memory,” IEEE Design

& Test of Computers, vol. 18, no. 3, 2001, pp.5-6

[Smeda 99] Smeda, A.A., and El-Hawary, M.E., “ Application of Hopfield Neural

Network in Routing for Computer Networks,” Proceedings of the 1999

IEEE Canadian Conference on Electrical and Computer Engineering,

Shaw Conference Center, Edmonton, Alberta, Canada, May 9-12, 1999,

pp. 145- 149.

[Sugihara 98] Sugihara, M., Date, H., and Yasuura, H., “A Novel Test Methodology

for Core-Based System LSIs and a Testing Time Minimization

Problem,” Proceedings IEEE International Test Conference,

Washington DC, USA, 18-23 October 1998, pp. 465-472.

[Takefuji 92] Takefuji, Y., Lee, K-C., and Aiso, H., “An artificial maximum neural

network: a winner-take-all neuron model forcing the state of the system

 100

in a solution domain,” Biological Cybernetics, vol. 67, 1992, pp. 243-

351.

[Temple 02] Temple University, System Chip Design Center,

http://www.temple.edu/scdc/

[Wang 00] Wang, J., and Kusiak, A., Computational Intelligence in Manufacturing

Handbook, CRC Press LLC, 2000.

[Yang 00] Yang, S., and Wang, D., “Constraint Satisfaction Adaptive Neural

Network and Heuristics Combined Approaches for Generalized Job-

Shop Scheduling,” IEEE Transactions on Neural Networks, vol. 11, no.

2, 2000, pp. 474-486.

 [Varma 98] Varma, P. and Bhatia, S., “A Structured Test Re-Use Methodology for

Core-Based System Chips,” Proceedings of International Test

Conference, Washington DC, USA, 18-23 October 1998, pp. 294-302.

[Yu 97] Yu H., Wang, H., Xu, X., and Xue, J., “A Neural-based Approach to

Production Scheduling,” Proceedings of the 1997 American Control

Conference, Albuquerque, New Mexico, USA, June 1997, vol 2, pp.

1027-1031.

[Yu 01] Yu, H., Wu-Tung, C., Chien-Chung, T., Mukherjee, N., Samman, O.,

Zaidan, Y., and Reddy, S.M., “Resource Allocation and Test

Scheduling for Concurrent Test of Core-Based SOC Design,” The

Tenth Asian Test Symposium, Kyoto, Japan, 2001, pp. 265-270.

[Zorian 97] Zorian, Y., “Test Requirements for Embedded Core-Based Systems and

IEEE P1500,” Proceedings of International Test Conference,

Washington DC, USA, 1-6 November, 1997, pp. 191-199.

 101

 [Zorian 98] Zorian, Y., “System-Chip Test Strategies,” Proceedings of Design

Automation Conference, San Francisco, CA, USA, 15-19 June, 1998,

pp. 752-757.

[Zorian 99] Zorian, Y., Marinissen, E.J., and Dey, S., “Testing Embedded-Core-

Based System Chips,” Computer, vol. 32, no. 6, 1999, pp. 52-60.

