
ABSTRACT 

KLOYPAYAN, JIRAWAN.  Solving Complex Modeling of System-on-a-Chip (SOC) Test 

Automation and Optimal Resource Allocation by Neural Networks. (Under the direction of 

Professor Yuan-Shin Lee.) 

The objective of this research is to optimize the testing time and test resource 

allocation for System-on-a-Chip (SOC).  The mathematical formulation and the neural 

networks with different techniques are proposed to solve these SOC test problems. First, a 

fixed-weight neural network combined with heuristic algorithms has been developed to solve 

the SOC test scheduling problems.  The objective of this SOC test automation is to minimize 

the SOC testing time subject to different constraints: (i) precedence constraint, (ii) resource 

constraint, (iii) core constraint, and (iv) power constraint.  Heuristic algorithms are often used 

to prevent the neural network from getting trapped in a local optima.  The developed neural 

network can effectively solve the SOC test scheduling models with disjunctive constraints.  

The results show that the proposed method can efficiently solve a large-size SOC test 

scheduling problem within reasonable computing time.  Second, to solve the resource 

allocation and the width selection problems for SOC test automation, a maximum neural 

network (MNN) has been proposed in this research for handling more complex SOC test 

problems.  The SOC test automation problem with resource allocation is a NP-hard problem. 

The proposed maximum neural network can be used to solve the NP-hard SOC test problems 

within polynomial time.  The results show that, by using the developed maximum neural 

network, the overall testing time for the SOC can be minimized with optimal resource 

allocation and test access mechanism (TAM) width selection. The computation time of the 



proposed method is significantly less than the time for traditional methods such as the integer 

linear programming (ILP) or heuristic algorithms.  Third, the SOC test automation problems 

with core test wrapper design have been studied in this research.  The core test wrapper 

design provides an interface between the core and the SOC in which the core is embedded.  

After the core test wrapper is designed, the total SOC testing time and the resource allocation 

for SOC test automation are optimized by using the developed maximum neural network.  

The proposed method is tested on five SOC benchmarks.  The results show that it is possible 

to find the optimal SOC testing time of the complex SOC systems with shorter computation 

time than with the existing traditional methods.  The techniques presented in this research 

can be used in test automation for System-on-a-Chip (SOC) design. 
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CHAPTER 1 

INTRODUCTION 

Currently, the advances in semiconductor technology have led to more complex 

System-on-a-Chip (SOC) designs.  The SOC sizes range from 20-50 million transistors, with 

integrated logic, dynamic random access memory (DRAM), and analog [Shaikh 00].  

Because of the high complexity and high density of the SOC system, testing SOC problems 

becomes crucial.  In this research, we investigate new soft computing tools to solve the 

complex SOC test automation problems.  In the following sections, System-on-a-Chip design 

and testing are introduced.  

1.1 System-on-a-Chip (SOC) Testing 

In the semiconductor industry, a new system design, called System-on-a-Chip (SOC) 

design, is currently being introduced to use multiple embedded modules built on a single 

chip.  With today’s technology, a single chip can consist of millions of transistors or 

components [Chauhan 00, Aikyo 00].  Figure 1.1 shows an example of SOC.  To design a 

SOC system on a single chip, a designer often uses pre-designed, reusable mega cells known 

as cores in the SOC design [Chandramouli 96].  Embedding the cores onto SOC increases the 

width of the system bus and thus increases overall system performance, i.e., it can offer 

higher speed and lower power consumption [Daeje 98, Shubat 01].  A core can be defined as 

a complex piece of reusable module design such as microprocessors, bus interface, and 

memories [Crouch 99].  Cores are usually provided by the core providers and are treated as 

intellectual property (IP) so the detailed designs inside the cores are unknown to the SOC 

system designers.  Due to the intellectual property (IP) issue, a core is provided to the SOC 

designer/integrator as a “black box” with predefined input/outputs and functional 

specifications.  For SOC testing, a core provider provides a modular core with pre-computed 

tests for possible manufacturing defects.  In the traditional system-on-board, a chip is 
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designed, manufactured, and tested by a component provider before sending it to a system 

integrator.  Unlike system-on-board, a core is only a description of a module and is not yet 

manufactured when it is sent to a system integrator.  A core integrator receives cores from 

each core provider and integrates cores at the chip-level and tests them using SOC testing 

mechanisms [Rajsuman 00].  Because of the design complexity and the huge number of 

components in the System-on-a-Chip design, testing of the SOC design becomes critical for 

the semiconductor industry.    

Zorian et al. introduced generic conceptual test access architecture for embedded core 

[Zorian 99].  There are three elements in the embedded core test infrastructure; (i) test pattern 

source and sink, (ii) test access mechanism (TAM), and (iii) core test wrapper.  A test pattern 

source generates test stimuli for an embedded core.  A test pattern sink compares the 

responses from an embedded core to the expected responses.  A test pattern source and sink 

can be designed either off-chip, using external automatic test equipment (ATE), or on-chip, 

using built-in-self test (BIST), or a combination of both [Zorian 99].  A BIST provides better 

accuracy and performance-related defect coverage, but it also increases the silicon area.    

The test patterns generated from a test pattern source are transported by test access 

mechanism (TAM) to a core under test.   A TAM also transports the test stimuli from a core 

under test to a test pattern sink.  A core test wrapper is an interface between a core and the 

system in which the core is embedded.  The wrapper provides the switching between normal 

functional access and test access via the TAM [Marinissen 00]. 

When an SOC system designer/integrator gets cores from a core provider, he/she 

encounters two major tasks in solving the SOC test problems.  The first task is how to design 

a test access mechanism (TAM) and the second task is how to find the test schedule for a 

SOC system to minimize the time-to-market.  TAMs must be designed to transport the pre-

computed tests from system I/Os to core I/Os [Iyengar 01b].  Test scheduling determines the 

order in which the various cores are tested and what testing resources are used for SOC 

testing subject to variety of hardware, capacity and sequence constraints.  In this dissertation, 

we focus our investigation on solving the test scheduling problems for SOC test automation. 
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1.2 Problems Description 

In this dissertation, three major research issues of the SOC test automation are 

investigated.  First, by considering a SOC system consisting of main test resources such as 

external test and built-in-self-test (BIST), the SOC test scheduling is studied to minimize the 

SOC testing time subject to different constraints: (i) precedence constraint, (ii) resource 

constraint, (iii) core constraint, and (iv) power constraint.  Second, a maximum neural 

network (MNN) is proposed to solve the test resource allocation problems for SOC.   Third, 

after core wrapper design, the SOC test automation problems with resource allocation are 

studied to minimize the total SOC testing time.  In this research, developing soft computing 

techniques of an unsupervised maximum neural network (MNN) are proposed to optimize 

the overall SOC testing time with core wrapper design and optimal resource allocation.   

1.3 Outline of Dissertation 

This research is organized as follows: In Chapter 2, the modeling and the soft 

computing techniques to solve the System-on-a-Chip (SOC) test automation problems are 

investigated.  After the formulation of the SOC test automation problems, a neural network 

(NN) combined with heuristic random search methods is proposed to minimize the testing 

cost that occurs during SOC testing.  In Chapter 3, an unsupervised maximum neural network 

is proposed to solve resource allocation problems for the SOC test automation.  In Chapter 4, 

a maximum neural network is also proposed to solve the complex SOC test automation with 

core wrapper design.  In Chapter 5, computer implementation of the proposed methods and 

the results of benchmarking SOC examples are presented.  Finally, concluding remarks and 

future research are discussed in Chapter 6. 
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Figure 1.1 An example of System-on-a-Chip (SOC) [Temple 02] 
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CHAPTER 2 

USING NEURAL NETWORK WITH FIXED-WEIGHT NET IN 

MODELING AND SOLVING THE SYSTEM-ON-A-CHIP (SOC) TEST 

SCHEDULING 

This chapter presents the modeling and the proposed solution approach for solving 

the new System-on-a-Chip (SOC) design test scheduling problems.  To solve the SOC test 

design problems, a neural network (NN) combined with heuristic algorithm has been 

developed.  The SOC design test scheduling and optimization are subject to four different 

constraints: (i) precedence constraint, (ii) resource constraint, (iii) core constraint, and (iv) 

power constraint.  The results demonstrate that the developed model with the soft computing 

techniques can successfully solve a large size SOC test scheduling problem within a 

reasonable time.  The techniques presented in this chapter can be used for the optimization of 

the SOC design testing that is important for current development in the semiconductor and 

electronics industry.   

2.1 Introduction 

In System-on-a-Chip (SOC) test design, several test methods can be used, which 

include external-test, scan-test and Built-in-Self-Test (BIST) [Aerts 98].  BIST is a new 

testing method, and it is defined as an embedded ability of a core (i.e., a circuit or system) to 

test itself [Fausett 94, Chakrabarty 00c].  BIST can detect many faults within a small number 

of testing cycles.  However, it is difficult to achieve high fault coverage by using BIST alone; 

thus an external-test is usually used together with BIST to cover a wide range of defects in 

testing [Nourani 00].  Figure 2.1 shows an example of an SOC used in industry [Pino 96 96].  

Figure 2.2 shows an example of a generic core-based testing system with the application of 

BIST in testing [Chakrabarty 00c].  In Figure 2.2, the example testing system consists of one 

external test bus and six cores.  In SOC testing, a System-on-a-Chip (SOC) is tested only 
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once as part of the overall system-chip design, which is quite different from a conventional 

system-on-board (SOB) test that traditionally takes multiple tests [Zorian 98].  In Figure 2.2, 

cores 1, 2, 3 and 4 are tested using either external-test or BIST logic.  Core 5 is tested using 

only BIST, and core 6 is tested using only external-test.  In Figure 2.2, cores 1, 2 and 5 have 

their own dedicated BIST logics.  On the other hand, cores 3 and 4 share a BIST logic.    

When a SOC system designer/integrator gets cores from a core provider, he/she 

encounters two major tasks in solving the SOC test problems.  The first task is how to design 

a test access mechanism (TAMs), and the second task is how to find the test scheduling for 

an SOC system to minimize the time-to-market.  TAMs must be designed to transport the 

pre-computed tests from system I/Os to core I/Os [Iyengar 01b].  Test scheduling determines 

the order in which the various cores are tested and what testing resources are used for SOC 

testing subject to a variety of hardware, capacity and sequence constraints.  There are some 

researchers studying the first issue of the TAM design, but very few are studying the SOC 

test scheduling problems [Chakrabarty 00c].   

In this chapter, we focus on the research of finding the optimal solution for solving 

the SOC test scheduling problems.  The objective of the SOC cores test scheduling is to 

minimize the total SOC testing time subject to the following constraints:   

(i) Resource conflicts between cores that share the same test component (i.e., TAMs 

or BIST logics),  

(ii) Core conflicts between test components that are used to test that core,  

(iii) Precedence constraints among different tests, and  

(iv) Power consumption constraints of the test system.   

The precedence constraint is considered to first test a SOC core that is prone to 

failure.  The resource and the core constraints are considered to avoid conflicts among test 

resources and cores, respectively.  The power constraint is considered when several SOC 

cores are tested at the same time, requiring that the consumed power may not exceed the 

maximum allowed power rating of the system.  There are researchers proposing some 

heuristic methods to minimize the SOC testing time.  Sugihara (1998) proposed a test method 
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for minimizing core-based system LSI testing time based on a combination of both external-

test and BIST for each core [Sugihara 98].  In the earlier work, Chakrabarty (2000) proposed 

a method using integer linear programming (ILP) to minimize the SOC testing time with 

various constraints without any redesign of the embedded cores [Chakrabarty 00a, 

Chakrabarty 00b, Chakrabarty 00c].  In Chakrabarty’s (2000) work presented in 

[Chakrabarty 00a], a method of TESTRAIL was proposed as a test access mechanism 

(TAM), which can provide access to one or more cores.  The results showed that these SOC 

test problems are NP-hard problems [Chakrabarty 00a, Chakrabarty 00c, Iyengar 01b].    

When solving the SOC testing problems by using linear programming, as the size of 

problem increases, there is a polynomial growth in the number of constraints and variables 

[Flores 99].  Using heuristic methods does not guarantee the optimal solution when the size 

of problems increases [Dagli 94].  Since the search of the entire space is often intractable due 

to the number of possible solutions, finding the optimal solution becomes difficult to achieve.   

In this chapter, we investigate the modeling and the soft computing techniques to 

solve the SOC test scheduling problems.  After the formulation of the SOC design testing 

problems, a neural network (NN) combined with heuristic random search method (tabu 

search) is proposed to minimize the testing cost that occurred during SOC testing.   

2.2 Neural Network (NN) for Adaptive Learning and Optimization    

Recently, neural networks (NNs) have been used in solving scheduling problems.  A 

neural network is a system constructed to mimic the functions of a brain.  A neural network 

consists of a system of individual neural units with weighted interconnections, as shown in 

Figure 2.3.  Each neural unit consists of nodes linked together with the associated weights 

between each node.  There are several types of neural networks [Dagli 94].  Figure 2.3 shows 

one type of neural networks called single-layer neural network, which consists of only input 

units and output units.  In Figure 2.3, an associated weight wij connects an input unit xi with 

an output unit yj.  Each output unit yj has a bias term a0j.  Figure 2.4 shows a neural unit in a 

neural network.  As shown in Figure 2.4, a neuron receives a set of weight inputs that are 
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added and then passed through an activation function [Dagli 94, Lee 00].  In general, each 

neural unit consists of two parts: a linear summation Sj and a nonlinear activation function 

f(Sj), and they can be formulated as follows (also shown in Figure 2.4) [Kartalopoulos 96]:   

( ) j

I

i
iijj axwS 0

1
+×=

=

      (2.1) 

)( jj Sfy =         (2.2) 

where   xi is the input i to a neural unit, i= 1, …, I;   

       yj is the output j from the neuron unit, j = 1,…,J; 

wij is the weight associated with each input unit i and output unit j; and 

             a0j is the bias value for an output j.   

A neural network can be classified into three categories by different training types: 

supervised training, unsupervised training and fixed-weight nets [Fausett 94].  In a 

supervised training NN, the training is done by adjusting the weights according to a learning 

algorithm.  The weights are adjusted until the difference of the actual outputs and the target 

outputs is less than or equal to the desired error.  In an unsupervised training NN, the weights 

are adjusted without the use of target outputs.  The outputs from an unsupervised NN are 

classified into sets without being compared to a desired output.  In a fixed-weight NN, the 

weights are fixed and set to represent the constraints and the quantity to be maximized or 

minimized.  Neural networks have been used in solving the job shop scheduling problems 

[Flores 99, Foo 88, Yu 97, Jain 98, Lee 00, Yang 00].  For example, Yang, et al. (2000) 

proposed a NN in solving job-shop scheduling problems that satisfy three constraints: a job 

constraint, a machine constraint and a precedence constraint [Yang 00].  In his paper, the 

precedence constraint is among the operations of the same job and a starting time unit 

considers release time and due date of each job.   

Neural networks are used to solve the optimization problems primarily due to their 

simplicity and the ability to learn and adapt.  The speed and robustness of neural networks 

have made them very attractive in solving constraint satisfaction and optimization problems 
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[Flores 99].  However, using the neural network approach alone may not get the optimal 

solution [Jain 98].  This is due to its lack of generic pattern between inputs and outputs in 

solving the optimization problems.  When solving larger size optimization problems, using 

only neural networks has been identified to be insufficient [Jain 98, Lee 00].  Hybrid 

technologies that combine the neural network with other strategies such as tabu search or 

simulated annealing may lead to better solutions with a more reasonable computational time.  

Although neural networks may not be as effective as the conventional optimization methods, 

they offer advantages in dealing with large scales optimization problems [Lee 00, 

Sabuncuoglu 96].  They can quickly find near optimal solutions when solving large size 

optimization problems [Fausett 94, Lee 00].   

In this chapter, a neural network combined with heuristic random search is proposed 

to solve the SOC core test scheduling problems.  Details of how to model the SOC test 

scheduling problems by using the neural network approach are presented in the following 

sections.  

2.3  Formulation of the SOC Core Test Scheduling Problems   

In this chapter, we consider the problems in which the SOC core-based systems are 

tested by using either external-testing, BIST or combination of both test resources, as shown 

earlier in Figure 2.2.  To achieve the high fault coverage during SOC testing, a combination 

of BIST and external-testing must be used as much as possible [Iyengar 01b].  To improve 

the resource efficiency, BIST logic can be either shared by several cores or dedicated for a 

specific core, as shown in Figure 2.2.  The test sets for all the cores, which include both BIST 

and external core components, are given.  The precedence constraints among cores are also 

known.  To demonstrate the formulation, an example test resource consisting of one external 

test bus and several Built-in-Self-Tests (BISTs) is used for illustration, as shown in Figure 

2.2.  The SOC test scheduling problems can be formulated as follows:  

Let T = {t11, t12,..., tim, ..., tIM} denote the set of start times for the test patterns 

(external-test or BIST), which is applied to the core i of the SOC system, i = 1,…,I, and m is 
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the test resource (for example, either the external-test bus or BIST), m = 1…M.  Let L = {l11, 

l12, .., lim, ..., lIM} denote the set of corresponding test lengths for the test sets.  The objective 

is to find the shortest total testing time for the core-based SOC test design.    

To find a feasible SOC test, the conflicts of the resource and core constraints need to 

be solved.  Test sets can be conflicting, if: (i) they share an external test bus at the same time, 

(ii) they are BIST test sets for cores that share the same BIST resource, or (iii) they are the 

external and BIST components of the same core’s test set.  The conflict between cores i and j 

tested on the same test resource m will not occur if and only if either (i) 0≥−− jmjmim ltt , or 

(ii) 0≥−− imimjm ltt .  This means that the testing periods of both cores (i, j) on the same test 

resource (m) cannot be overlapped.   On the other hand, the conflict between the test 

resources m and k for the same core i will not occur if and only if the test periods of core i on 

the different test resources (m, k) are not overlapped, which is either (i) 0≥−− imimik ltt , or 

(ii) 0≥−− ikikim ltt .  The resource constraint and the core constraint are disjunctive 

constraints (i.e., multiple alternative constraints).  The precedence among cores q and i can 

occur if 0≥−− imimqr ltt , where core i is tested before core q.  To satisfy the power capacity 

constraint, the summation of all the power dissipation 
=

N

n
np

1

 (for cores that have the 

overlapped testing time) cannot exceed the maximum power rating (Pmax) of the test system.  

When the SOC test problems are solved, these constraints need to be satisfied [Kloypayan 

02a, Kloypayan 02b].  

The objective of the SOC test design modeling is to minimize the maximum of the 

test completion time, i.e., the summation of the starting time tim and the total processing time 

lim, subject to all the constraints.  The modeling of the SOC core testing can be formulated as 

follows:  
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Objective:     minimize   C = max{ tim + lim }    (2.3) 

Subject to:      tqr – tim – lim ≥ 0,     (precedence constraint) 

                         tim – tjm – ljm ≥ 0, or  tjm – tim – lim ≥ 0,   (resource constraint) 

              tim – tik– lik ≥ 0, or tik – tim – lim ≥ 0,   (core constraint)   

                                  max
1

)( Ppw
N

n
n ≤

=

,     (power constraint)  

{ } { }
�
�
� >−+

=
otherwise

tltif
w

nnnnn

0

0maxmin1
, Nn ,...,1= , 

tjm, tik , tim ≥  0,             

ljm, lik, lim ≥ 0. 

 

where tim is the starting time of core i on a test resource m; 

                      lim is the processing time of core i on test resource m;   

                      i, q and j represent a core , i = 1…I,  q= 1…I, and  j = 1…I; 

                      m, k, r represent a test component, Mm ,...,1= , Mk ,...,1=  and Mr ,...,1= ; 

                      pn is the power dissipation that core n consumes while being tested, Nn ,...,1= ;  

                      Pmax is the maximum allowed power dissipation of the testing system; and 

                      N is the number of cores that have the overlapped testing time, N ≥ 2. 

To solve the SOC core test scheduling problems, a neural network combined with a 

random search is proposed in this chapter.  Details of how to construct the proposed NN and 

examples of solving the SOC test problems are presented in the following sections.   

2.4  Constructing the Neural Network for Solving the SOC Testing Problems  

Figure 2.5 shows the structure of the proposed neural network (NN).  The proposed 

NN is a fixed-weight NN that consists of four blocks of neural units: (i) precedence 

constraint (PC) units, (ii) resource constraint (RC) units, (iii) core constraint (CC) units, and 

(iv) power constraint (PoC) units.  As Figure 2.5 shows the first three units (PC, RC and CC) 
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have similar structures, but the fourth unit (PoC unit) has a different structure due to the 

complex effects of satisfying the power capacity constraint.   

As shown in Figure 2.5, the NN receives the inputs of the starting time ST for each 

core.  First, the precedence constraint (PC) units are processed.  The PC unit considers the 

precedence among different cores, which are assumed to be known at the beginning.  Then, 

the starting times of the PC units are adaptively adjusted and sent to the next resource 

constraint (RC) units, as shown in Figure 2.5.  RC units consider that the same test resource 

cannot test two cores at a time.  After the resource constraint is considered, the adjusted 

starting times from RC units are sent to the core constraint (CC) units, as shown in Figure 

2.5.  CC units ensure that the same core is not tested on different test resources at a time.  

After the starting times of all the cores have been adaptively adjusted by the CC units, they 

are forwarded to the power (PoC) units, as shown in Figure 2.5.  Power constraint (PoC) 

units consider the power consumed by a set of cores having the testing time overlapped, 

which should not exceed the maximum allowed power rating of the SOC system.  The 

adaptive adjusting procedure repeats until all the constraints have been satisfied, as shown in 

Figure 2.5.  The output of the proposed NN is the set of the scheduled starting times for all 

the cores.  Details of how to construct the constraint units (PC, RC, CC, and PoC units) are 

discussed in the following two sections.   

2.4.1 Constructing the Precedence (PC), Resource (RC) and Core (CC) Constraints  

As mentioned earlier in Section 2.2, a neural unit consists of two parts: a linear 

summation and a nonlinear activation function.  In the proposed NN, the linear summation 

function (
lNNS ) and the nonlinear activator function (NNl) for the constraint units (PC, RC or 

CC unit) are defined as follows:    

 
ll NNfybexaNN BuSTwuSTwS +−⋅+−⋅= ))1(())1((  (2.4) 

�
�
�
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≥
==
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0,0
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NNl SifS

Sif
SfNN     (2.5) 
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)1()( −+⋅= uSTNNwuST exlcex      (2.6) 

)1()( −+⋅= uSTNNwuST fyldfy      (2.7) 

where  STex is the starting time of cores e on test resource x; 

STfy is the starting time of cores f on test resource y; 

u is number of iterations, u = 1, 2, …U; 

            wa, wb, wc, and wd   are the weights associated with each node;  and   

           
lNNB  is a bias term. 

Figure 2.6 shows a general neural unit of the PC unit, CC unit or RC unit for the proposed 

neural network.  As shown in Figure 2.6, each neural unit takes inputs, which are the starting 

times )1( −uSTex  and )1( −uSTfy  of a pair of the considering testing cores (e, f).  As shown in 

Equations (2.4)-(2.7), the searching process of this neural unit works as follows.  First, the 

summation function (
lNNS ) is calculated by using Equation (2.4) for the summation of the 

bias term (
lNNB ) with the multiple terms of starting times, STex(u-1) and STfy(u-1), and their 

associated weights wa and wb.  Then, the activator function NNl is calculated, as shown in 

Figure 2.6.  In Equation (2.5), the activator function NNl is set to zero when the constraint 

0≥
lNNS  is satisfied; otherwise NNl is set to 

lNNS .   

Equations (2.6) and (2.7) show that, when the given constraint is violated (i.e., 

0<
lNNS ), the starting time STex(u-1) of a core e on the test component x is pushed by 

( lc NNw − ) and the starting time STfy(u-1) of a core f on the test component y is pushed by 

( ld NNw − ).  Figure 2.6 shows that, when the constraint is violated (i.e., 0<
lNNS ), the neural 

unit sends the adjusted weight wc and wd back to adaptively adjust the starting time STex(u-1) 

and STfy(u-1) by using Equations (2.6) and (2.7).  If the starting time STfy(u) for core j is less 

than 0 (i.e., STfy(u) < 0), the starting time STfy(u) is set to 0.  The searching process continues 

until all the constraints are satisfied.  Figure 2.6 shows that, after satisfying all the 

constraints, the outputs of the constraint unit are the adaptively adjusted starting times 

STex(U) and STfy(U) for the pair of the considered testing cores (e, f).   
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In Equations (2.4)-(2.7), all the weights (wa, wb, wc, wd) and the bias term (BNNl) need 

to be determined according to the precedence constraint (PC), the resource constraint (RC) 

and the core constraint (CC), as defined earlier in Equation (2.3).  Based on Equation (2.3), 

the correspondent weights (wa, wb, wc, wd) and the bias term (BNNl) for the precedence 

constraint (PC) units can be determined as follows:   

For PC unit:  qrex tST ⇐ , imfy tST ⇐ , and  

imNN lB
l

−⇐ , 1⇐aw , 1−⇐bw , 1−⇐cw ,  and  wd ⇐ 1.  (2.8) 

For the resource constraint (RC) units, the correspondent weights (wa, wb, wc, wd) and the 

bias term (BNNl) are determined as follows: 

For RC unit:  imex tST ⇐ , jmfy tST ⇐ , and   

IF (STex ≥ STfy)  

THEN  jmNN lB
i

−⇐ , 1⇐aw , 1−⇐bw , 1−⇐cw , and 1⇐dw ; (2.9) 

IF ( fyex STST < )  

THEN  imNN lB
i

−⇐ , 1−⇐aw , wb ⇐ 1, wc ⇐  1, and 1−⇐dw .                 (2.10) 

For the core constraint (CC) units, the correspondent weights (wa, wb, wc, wd) and the bias 

term (BNNl) can be determined as follows: 

For CC unit:  imex tST ⇐ , ikfy tST ⇐ , and   

IF (STex ≥ STfy)  

THEN  ikNN lB
i

−⇐ , 1⇐aw , 1−⇐bw , 1−⇐cw ,  and  wd ⇐  1;              (2.11) 

IF ( fyex STST < )  

THEN  imNN lB
i

−⇐ , 1−⇐aw , wb ⇐ 1, wc ⇐  1,  and  1−⇐dw .             (2.12) 

In the next section, details are presented for the construction of the power constraint (PoC) 

unit.  
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2.4.2 Constructing the Power Constraint (PoC) Unit for the Neural Network   

The last constraint for the SOC test model is the power capacity constraint (PoC unit) 

of the proposed NN.  The power constraint (PoC) needs to be considered in the SOC model 

to limit test concurrency and to ensure that the power rating of the SOC is not exceeded.  The 

concept of the power constraint (PoC) logic is to find groups of cores that have the testing 

period overlapped.  In each group, the summation of the power dissipation of the same group 

is calculated.  If the summation of the power of any group is greater than the maximum 

power dissipation capacity during testing, the start times of the chosen cores in that group 

need to be changed to different testing periods.  The process continues until every group 

satisfies the power constraint, i.e., there is no group with the total power dissipation 

exceeding the maximum power capacity.   

Figure 2.7 shows the structure of a power constraint PoC unit in the proposed NN.  

The number of input nodes is equal to the number of available test resources for a SOC 

system.  As shown in Figure 2.7, the PoC unit takes the input [STi, ti, Pi] of the starting times 

STi, the processing times ti, and the power dissipation Pi for a group of the considered testing 

cores on different test resources.  In Figure 2.7, the number J of the output nodes is set as 

[ ]M
M

MMM CCCCJ ++++= ...432 , where M is the number of the available test resources in the 

SOC system.  For each PoC unit in the proposed NN, the linear summation function ( jSP ) 

and the nonlinear activator function (NPj) are defined as follows: 

  max
1

PPaSP
M

i
iijj −=

=

       (2.13) 
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 )1()( −+⋅= uSTNPwuST ijiji       (2.17) 

where   Pi is the power dissipation of the core tested on test resource i, 

      Mi ,...,1= ; 

aij is the weights associated with input i and output node j, j = 1,..., J; 

Pmax is the maximum power dissipation allowed during testing; 

ti is the processing time of core on test resource i; 

u is number of iterations, u = 1,…,U; 

wij are the weights associated with each node, wij = -1, 0, or 1;  and 

 STi is the starting time of a core on test component i. 

After getting the inputs from the groups of cores on different test resources, the summation 

function jSP  and the nonlinear activator function NPj are calculated by using Equations 

(2.13)-(2.17).  If the power constraint is violated (i.e., SPj > 0) and the group of inputs is 

overlapped (i.e., 0>jDiff ), the starting times STi of the first core and the last core of the 

input cores are adjusted by using Equation (2.17).  The weight wij for the first core and the 

last core are set to 1 and –1, respectively.  On the other hand, all the other weights wij of the 

input cores are set to zero, as defined in Equation (2.16).  The procedure continues until all 

the cores satisfy the power capacity constraint in the SOC model, as defined earlier in 

Equation (2.3).      

After all the constraints, i.e., the precedence constraint (PC), the resource constraint 

(RC), the core constraint (CC) and the power capacity constraint (PoC) have been 

constructed, they are integrated into the proposed NN for the SOC test system, as shown 

earlier in Figure 2.5.  The complexity of the proposed NN with the different constraints can 

be found as follows.  Assume there are a total of n cores and each core has at most 2 different 

test resources (i.e., external-test and BIST).  The precedence constraint (PC) ensures the 

cores to be first tested on BIST before using external-test.  In Equation (2.3), there are n 

sequence constraint inequalities for the precedence constraints, which requires n PC 

constraint units.  For the resource constraint (RC) neural unit, the worse case scenario is that 
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there are only one external-test and one BIST.  There are a total of 2*C2
n sequence constraint 

inequalities, which require 2n(n-1) RC neural units.  For the core constraint (CC) neural unit, 

there are n sequence constraint inequalities, which require n CC units.  The total number of 

interconnections in the proposed neural network is found to be 2n2.  The connection 

complexity of the proposed neural network without power constraint is found to be O(n2).  

With the consideration of power constraint (PoC), the complexity of the power constraint 

unit is O(n*2M), where M is the number of the test resources and M is usually a small 

number.  The complexity of the whole neural network is })2,(max{ 2 MnnO ⋅ .  If we assume 

that the relation of M and n is nM = , then the complexity of the proposed neural network 

is )2( nO . 

Using the proposed NN, feasible solutions can be found for the SOC test problems.  

However, the solution found by the NN may not be an optimal solution due to the limitation 

of neural network capabilities [Fausett 94].  To get an optimal solution, we use the 

constructed neural network combined with heuristic random search techniques.  Details of 

the approach and the optimization method are discussed in the next section.   

2.4.3 Conducting the Searching and Optimizing for SOC Test Systems    

Figure 2.8 shows the proposed searching and optimizing algorithm for solving the 

SOC test problems.  The proposed NN first processes the initial input to find a feasible 

solution.  The initial input to the NN is a set of the initial starting times of each core at time T 

= 0.  For the initial input, a random search technique (Tabu search) is used in this chapter to 

generate initial test cores for finding the feasible solutions.  The order of cores and test 

components is first chosen randomly as the initial input to the NN.  The searching is 

conducted by the developed NN until a feasible solution is reached by the network.  During 

the searching by the NN, the generated feasible solution from each run is compared with the 

existing most-fit solution, as shown in Figure 2.8.  Among all the feasible solutions, the one 

with the minimum completion time is selected.  As shown in Figure 2.8, a random search is 

used to improve the feasible solutions during the search iterations.  To prevent being trapped 
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at a local optimal, any input to the NN that has already been chosen will not be used again in 

the continuous search iterations.   

As shown in Figure 2.8, the search is stopped when either one of the following 

conditions is met: (i) an optimal time has been reached, (ii) the number of iterations 

performed has exceeded the maximum number of allowed iterations, or (iii) the searching 

space has been exhausted.  The condition (i) of the optimal time can be determined by using 

the lower bound of the SOC test model as shown in Equation (2.3).  There are three different 

cases of the lower bound in the SOC testing.  For the first case of SOC test without the 

precedence and the power constraints, the lower bound is equivalent to the summation of all 

the test time of the cores tested on the external-test resources.  This is because all the tests on 

the external-test bus cannot overlap with each other, and the lower bound is equal to the 

summation of all the external-test times [Chakrabarty 00c].  For the second case of SOC test 

with the precedence constraint and without the power constraint, the lower bound is 

equivalent to the minimum test time on the precedent BIST tests plus the summation of all 

the core test times on the external-test resources.  For the last case of SOC test with the 

power constraint, the lower bound is found to be the same as the second case, i.e., it is 

equivalent to the minimum test time on the precedent BIST tests plus the summation of all 

the core test times on the external-test resources.   

As shown in Figure 2.8, a procedure of eliminating the elapsed time is enforced in the 

algorithm to delete any elapsed time between two tests on the same test resource.  After the 

feasible solutions are generated by the NN, the idle time between any two adjacent tests is 

eliminated to shorten the completion time of the tests.  The adjusted starting time is fed back 

to the NN for the next searching iteration until all the constraints are satisfied.  As shown in 

Figure 2.8, the output from the NN is the set of resulting starting times and ending testing 

times of all the SOC cores after all the constraints are satisfied.    
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2.5  Computer Implementation and Examples 

The proposed modeling, neural network and the optimization algorithm have been 

implemented on 800 MHz personal computers using MATLAB® software.  Several industry 

SOC testing examples are used for demonstration of the developed techniques.   

Table 2.1 shows the first SOC test example S1 presented in [Iyengar 01b], which 

considers only the resource (RC) and core (CC) constraints.  As shown in Figure 2.9, the 

example SOC test system S1 consists of eight different SOC cores (namely c880, c2670, 

c7552, s953, s5378, s1196, s13207 and s1238 in Table 2.1).  All the cores, except core 

s13207, share the same external-test bus.  Cores c2670, c7552 and s13207 have their own 

dedicated BIST logic.  As shown in Figure 2.9, cores c880, s953, s5378, s1196 and s1238 

share the same built-in-self-test (BIST) logic.  In Figure 2.9, the testing cycle times for the 

external-test and BIST of each core are shown within parentheses, and the power dissipation 

(either on external-test or BIST) of each core is shown within brackets.  In this chapter, 

according to the industry practice, it is assumed that the power dissipation on BIST is 10 

times of that on the external-test.  In this example of SOC test system, the maximum allowed 

power dissipation (Pmax) is assumed to be 750 mW.  

Figure 2.10 shows the best solution of SOC test schedule for the example system S1 

considering only the resource (RC) and the core (CC) constraints.  The optimal schedule is 

found to be 6809 clock cycles, which is the same as reported in [Iyengar 01b].  On finding 

the optimal solution, the developed NN took only 1.07 CPU seconds, compared to 3 CPU 

seconds by the mixed integer linear programming method (MILP) in [Iyengar 01b].  Figure 

2.11 shows the optimal test schedule for the example system S1 by adding the precedence 

(PC) constraint of cores being tested on BIST before external-test.  As shown in Figure 2.11, 

the optimal test schedule in this case is 7065 clock cycles (the same as reported in [Iyengar 

01b]), which is larger than that of Figure 2.10 due to the added precedence (PC) constraint.  

The developed NN takes only 1.89 CPU seconds, which is much less than 90 CPU seconds 

by the MILP in [Iyengar 01b].   
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So far, we have not considered the power constraint PoC in the example system S1.  

Figure 2.12 shows a feasible test schedule first found by the developed NN for the example 

system S1, with the consideration of all the constraints (RC, CC, PC, and PoC constraints).  

Due to the added power constraint PoC, the completion time of the test schedule is 8192 

clock cycles, which is larger than the completion time of the example shown in Figure 2.11.  

Notice that, in Figure 2.12, idle time exists in the feasible test schedule, which can be further 

optimized.  The idle time gaps in the feasible test schedule may occur when the solution 

space is very big.  The developed NN eliminates the idle time gaps during its optimization 

process and searches for globally optimal test solution.  Figure 2.13 shows the optimal test 

schedule generated by the developed NN for the example test system S1.  As shown in Figure 

2.13, eliminating the idle time by the developed NN, the completion time of the optimal test 

schedule for system S1 is found to be 7065 clock cycles which is much better than the 

original result in Figure 2.12.    

Figure 2.14 shows the second example of the SOC test system S2 with thirteen cores, 

one external-test bus and four BIST logics.  Detailed data of the second example system S2 

are listed (as the first thirteen cores) in Table 2.2.  As shown in Figure 2.14, three groups of 

cores share three BIST logics, and core 7 has its own dedicated BIST.  Except for cores 7 and 

11, all the other cores are accessible to the external-test bus, as shown in Figure 2.14.  The 

maximum allowed power dissipation for the example system S2 is assumed to be 750 mW.  

Figure 2.15 shows the optimal test schedule generated by the developed method for the 

example of SOC system S2.  As shown in Figure 2.15, the optimal test schedule is 10713 

clock cycles.  The optimal SOC test solution for the developed NN takes 26.61 CPU seconds 

for the example system S2, compared to 142 CPU seconds of a similar system with 12 cores 

by the MILP method reported earlier in [Iyengar 01b].   

When the size of the SOC problems gets bigger, the computation time by the existing 

MILP method grows exponentially [Iyengar 01b].  By using the developed NN method, the 

optimal solution of a larger system (> 20 cores) can be generated within reasonable 

computing time.  Figure 2.16 shows the third example SOC system S3.  The example system 
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S3 is considered as a large size SOC system, and S3 consists of twenty cores, one external-test 

bus and six BIST logics, as shown in Figure 2.16.  Detailed data of all the twenty cores of the 

testing system S3 are shown in Table 2.2 (cores 1 to 20).  In the SOC system S3, five groups 

of cores share five BIST logics, and core 19 has its own dedicated BIST, as shown in Figure 

2.16.  In the test system S3, except for cores 7, 11, 14, 18 and 19, all the other cores are 

accessible to the external-test bus.  Figure 2.17 shows the optimal SOC test solution of 

14,990 clock cycles generated by the developed NN for the example system S3.  Notice that, 

in Figure 2.17, the optimal SOC test schedule found by the NN is the optimal result and the 

completion time is equivalent to the lower bound of the test system S3.  By using the 

developed method, the computation time for the large size system S3 is 750 CPU seconds 

(using MATLAB® program).    

Table 2.3 shows the summary and comparison of the computation results generated 

by the developed NN method (after twenty runs of searching iterations) for the example 

systems S1, S2 and S3 with different constraints.  As shown in Table 2.3, each example system 

is tested with four combinations of constraints: (i) resource constraint and core constraint, (ii) 

resource constraint, core constraint and precedence constraint, (iii) resource constraint, core 

constraint, precedence constraint, and power constraint that considers only BIST resource, 

and (iv) similar to (iii) but considering both the external-test and BISTs.  As shown in Table 

2.3, for twenty runs, the proposed NN finds nine out of twelve testing problems with the best 

solutions (the lower bound).  The examples and Table 2.3 show that the proposed NN 

method is not only capable of solving the large size SOC test problems but also able to find 

the optimal solutions within reasonable time.  Except for some very large size SOC problems 

(20 cores), the proposed method generates the optimal SOC test solutions within efficient 

computing time, as shown in Table 2.3.   

2.6 Summary 

In this chapter, the modeling of System-on-a-Chip (SOC) test optimization has been 

formulated with different resource, capacity and precedence constraints.  A neural network 

combined with heuristic algorithm has been developed to solve the large size SOC design 
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testing problems.  Computer implementation and examples are presented.  As demonstrated 

by the results from the testing examples, the developed method can not only solve the large 

size SOC test problems, but is also capable of finding the optimal solutions within reasonable 

computing time.   
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Figure 2.1 Picture of an example System-on-a-Chip (SOC) design and testing [Pino 96] 
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Figure 2.2 An example of a generic core-based system with one external test bus, and shared 
and dedicated BIST logic for the cores [Chakrabarty 00c] 
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Figure 2.3 A single-layer neural network 
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Figure 2.4 A neural unit in the neural network 
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Figure 2.5 The proposed neural netw
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Figure 2.6 The proposed structure of a general constraint (PC, RC, CC) unit 
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Figure 2.7  The proposed structure of a power constraint (PoC) unit 
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Figure 2.8 The proposed searching and optimizing algorithm for SOC test scheduling 
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Table 2.1 Test data of the cores for the SOC system S1 [Iyengar 01b]
 
Circuit 
(core) 

Core index 
i 

Number 
of scan 

element, s 

Number 
of scan  

patterns 

Number 
of scan 
cycles 

Power  (Pi, mW) 
(External Test) 

Number 
of BIST 
patterns 

Number 
of BIST 
cycles 

Power  
 (Pi, mW) 
(BIST) 

c880 1 60 26 134 5 4096 256 54 
c2670 2 233 158 2543 16 32758 2048 159 
c7552 3 207 96 1357 45 32768 2048 453 
s953 4 52 90 454 6 4096 256 57 

s5378 5 228 118 1903 32 4096 256 324 
s1196 6 32 80 242 7 4096 256 72 

s13207 7 790 - - - 32768 2048 592 
s1238 8 32 58 176 7 16384 1024 75 
 

 
 
 
 
 
 
 

External 
test bus
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c880

s953 s5378 s1196

s1238

BIST

BIST BIST BIST

(2543, 2048)
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(-, 2408)
 [-, 592]
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(134, 256)
   [5, 54]

(1903, 256)
  [32, 324]

(242, 256)
   [7, 72]

(176, 1024)
    [7, 75]

( ) : (Testing time cycle for external test, Testing cycle for BIST test )
[ ] : [Power consumed while tested on  external test, Power consumed while tested on  BIST]   

 
Figure 2.9 The SOC system S1 with 8 cores 
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Figure 2.10 The best result of test schedule for the system S1 with only RC and CC constraints 
(Computing time = 1.07 CPU sec< 3 CPU sec by using MILP [Iyengar 01b]) 
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Figure 2.11 The best result of test schedule for the system S1 with RC, CC and PC constraints 
             (Computing time 1.89 CPU sec < 90 CPU sec by using MILP [Iyengar 01b]) 
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Figure 2.12 A feasible test schedule for the system S1 with all the constraints RC, CC, PC, and PoC 
(The feasible test schedule has some idle time that should be eleminated) 

 (The completion time = 8192 clock cycles) 
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Figure 2.13 The best result of test schedule for the system S1 with all the constraints RC, CC, 
PC, and PoC after eliminating the idle time by the proposed method 

        (The optimal schedule is 7065 cycles) 
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Figure 2.14 The second example of the SOC system S2 with 13 cores 

 
 
 
 
 

Table 2.2 Test data of the cores for the SOC system S2 and S3 
 

External test BIST External test BIST Core 
index 

(i) 
Testing 

time (tim) 
Power Pim 

(mW) 
Testing 

time (tim) 
Power 

Pim (mW) 

Core 
index 

(i) 
Testing 

time (tim) 
Power 

Pim (mW) 
Testing 

time (tim) 
Power 

Pim 
(mW) 

1 134 5 256 54 11 - - 469 236 
2 2543 16 2048 159 12 2358 9 850 86 
3 1357 45 2048 453 13 560 31 1023 315 
4 454 6 256 57 14 - - 1240 412 
5 1903 32 256 324 15 512 41 342 415 
6 242 7 256 72 16 1204 8 342 78 
7 - - 2048 592 17 1357 16 342 162 
8 176 7 1024 75 18 - - 1240 95 
9 265 18 235 180 19 - - 2048 365 
10 486 15 512 153 20 1204 8 342 85 
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Figure 2.15 The best result of test schedule for the system S2 with all the constraints RC, CC, 
PC and PoC  
(The computation time is 26.6 CPU sec < 142 CPU sec by using MILP [Iyengar 01b]) 
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Figure 2.16  The third example of the SOC system S3 with 20 cores 
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Figure 2.17  The best result of test schedule for the system S3 with all the constraints RC, CC, 
PC, and PoC 

 (The optimal schedule is 14990 clock cycles) 
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     Table 2.3 The SOC test scheduling solutions from the proposed NN after 20 runs 
 

Computational time (second) Problems Lower 
bound 

Solbest ∆Sol
% 

Solavg 
Taverage Tmax Tmi 

8 cores with 2 constraints 6809 6809 0 - 1.07 3.68 0.27 
8 cores with 3 constraints 7065 7065 0 - 1.89 5.93 0.38 
8 cores with 4 constraints (BIST) 7065 8192 15.95 8192 65.48 94.31 50.92 
8 cores with 4 constraints (ALL) 7065 8547 20.98 8619 357.64 440.94 294.45 
13 cores with 2 constraints 10478 10478 0 - 1.93 5.28 0.88 
13 cores with 3 constraints 10713 10713 0 - 10.23 34.43 1.04 
13 cores with 4 constraints (BIST) 10713 10713 0 10859 26.61 95.8 2.5 
13 cores with 4 constraints (ALL) 10713 10713 0 10889 326 1759.3 34.3 
20 cores with 2 constraints 14755 14755 0 - 5.03 10.11 2.58 
20 cores with 3 constraints 14990 14990 0 - 23.06 101.06 2.36 
20 cores with 4 constraints (BIST) 14990 14990 0 15178 750 2551 141 
20 cores with 4 constraints (ALL)** 14990 15369 2.53  20900 - - 

** run only one time. 
 
Lower bound: optimal value from ILP method [Iyengar 01b] 
Solbest: value of the best solution found by the proposed NN out of 20 runs. 
∆Sol%: = ((Solbest  - Opt)/Opt)*100 if the optimum is known, 
             = ((Solbest  - LB)/LB)*100 otherwise. 
Solavg : average solution value over 20 runs or nothing if all runs gave the optimum value. 
Taverage: average computing time, in seconds. 
Tmax:  maximum computing time for one run, in seconds 
Tmin:  minimum computing time for one run, in seconds  
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CHAPTER 3 

DEVELOPING MAXIMUM NEURAL NETWORK TO SOLVE TEST 

RESOURCE ALLOCATION AND TESTING TIME MINIMIZATION 

FOR THE SYSTEM-ON-A-CHIP (SOC) 

This chapter presents a maximum neural network to minimize the testing time and 

optimize resource allocation for a System-on-a-Chip (SOC) test system design.  By 

determining the allocation of cores to test access mechanism (TAM) and the TAMs width in 

a SOC system, the testing time can be reduced.    Constraints considered in the SOC test 

system design include the following: (i) SOC cores allocation (ii) TAMs width selection, and 

(iii) power consumption.  The objective of this investigation is to achieve the optimal testing 

time for a SOC test system design with the optimal core allocation and TAMs width selection 

within a reasonable computation time.   

3.1 Introduction 

System-on-a-Chip (SOC) integrated circuits are composed of a huge number of 

processors, memories, and peripheral interface devices in the form of embedded cores [Yu 

01].  In the SOC design and development, a System-on-a-Chip (SOC) is tested only once as 

part of the overall system-chip design, which is quite different from a conventional system-

on-board (SOB) test that traditionally takes multiple tests [Zorian 98].  For testing, a core 

provider provides a modular core with pre-computed tests for detecting possible 

manufacturing defects. Due to the design complexity and the huge number of components 

(may have more than a million components), dealing with the large amount of test data that 

can be transferred between the tester and the chips during testing becomes more challenging 

[Zorian 97].   
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When a SOC system designer/integrator gets cores from a core provider, he/she 

encounters two major tasks in solving the SOC test problems.  The first task is how to design 

a test access mechanism (TAMs) and the second task is how to determine the test schedules 

for a SOC system to minimize the time-to-market [Iyengar 01b].  TAMs must be designed to 

transport pre-computed tests from system I/Os to core I/Os.  In recent years, several new 

TAMs have been proposed such as Test Bus [Varma 98], and TESTRAIL [Marinissen 98].  

Test scheduling determines the order in which the various cores are tested and what testing 

resources are used for SOC testing subject to variety of hardware, sequence and capacity 

constraints.   

Figure 3.1 shows an example of a core-based SOC with two TAMs [Chakrabarty 

00a].  The system has 10 cores: 2 combinational cores and 8 cores with internal scan.  These 

cores must be allocated to each TAM and the TAM partition is considered such that the 

overall testing time is minimized.  The SOC testing design with resource allocation problems 

are NP-complete [Chakrabarty 00a]. When a SOC system is small (less than 10 cores), using 

traditional methods such as integer linear programming (ILP) or a heuristic approach can 

solve the problems easily.  However, when the system becomes more complex, using 

traditional methods may not be efficient or effective because the optimal solution is difficult 

to achieve and the computation time is long. 

Several research works have been done assuming the TAM is already determined.  

Sugihara (1998) proposed a test method for minimizing core-based system LSI testing time 

based on a combination of both external-test and built-in-self test (BIST) for each core 

[Sugihara 98].  Chakrabarty (2000) proposed a method using integer linear programming 

(ILP) to minimize the SOC testing time with various constraints without redesigning the 

embedded cores [Chakrabarty 00c].  The results showed that these SOC test problems are 

NP-hard problems [Chakrabarty 00c].   In our earlier work, a neural network combined with 

heuristic algorithms has been developed to solve the SOC test scheduling problems.  The 

proposed method can successfully solve large size SOC test scheduling problems within a 

reasonable amount of time [Kloypayan 02a, Kloypayan 02b]. 
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Recently, the test resource allocation problems have been considered when solving 

the SOC test scheduling problems.  Chakrabarty (2000) formulated the problem as an Integer 

Linear Programming (ILP) model assigning each core to a test bus in order to minimize the 

test time [Chakrabarty 00a, Chakrabarty 00b].  The study investigates how to allocate N test 

lines to a fixed number of test buses.  The place-and-route and power constraints of SOC 

testing design were also considered in [Chakrabarty 00b].  A drawback of using an ILP 

model is that the computation time becomes very lengthy when the system becomes 

complex.  Bagchi et al. (2000) studied the similar problems as in [Chakrabarty 00a, 

Chakrabarty 00b] by clustering the groups of cores into different modules for scheduling the 

testing time [Bagchi 01].  Yu et al. (2001) proposed a method of using 2-dimensional bin-

packing (or rectangle packing) model to minimize the test application time while offering full 

scan/partial scan functional tests for different TAMs under the constraint of peak power 

consumption [Yu 01].  This method is general because it is not restricted to one specific 

TAM, and the optimal number of test buses is determined rather than leaving it fixed for core 

integrators.  Ebadi et al. (2001) proposed a method of using a Genetic Algorithm to design 

the optimal test access architecture  [Ebadi 01].  Iyengar et al. (2002) proposed a rectangle 

packing optimization algorithm to minimize the testing time by matching the appropriate 

core’s test needs and the widths of the TAMs that it is assigned [Iyengar 02].  In this method, 

the number of wires to a TAM is not fixed. This method can reduce the computation time 

compared to the ILP-based technique and it can get a comparable testing time result.  

Without TAM partition, a core user has to pay more consideration to the wiring design. 

In this chapter, a SOC system with an optimal partition of the total TAM width and 

an optimal core assignment to the TAMs are considered to minimize the overall testing time. 

In this chapter, a maximum neural network (MNN) is proposed to solve the SOC testing 

design with resource allocation problem.  A maximum neural network (MNN) is an 

unsupervised competitive neural network and is used because a target output, which is the 

test bus assignment vector in this case, is difficult to be determined. In this chapter, the issues 

of an optimal partition of the total TAM width and the optimal core assignment to the TAMs 
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are considered to minimize the overall testing time.  Power consumption is also considered in 

this chapter.  Details of the network will be discussed in the next section. 

This chapter is organized as follows.  A general concept of the neural networks is 

introduced in Section 3.2.  Section 3.3 presents the modeling of the SOC testing with 

resource allocation problems.  Section 3.4 shows how to construct the maximum neural 

network for solving the SOC testing with resource allocation problems.  Section 3.5 provides 

the summary.   

3.2 A Maximum Neural Network (MNN) for Adaptive Learning and Optimization 

Neural networks (NNs) have been used in solving scheduling and optimization 

problems recently.  A neural network is a system constructed to mimic the functions of a 

brain, and   consists of individual neural units with weighted interconnections.  Each neural 

unit consists of nodes linked together with the associated weights between each node.   

A neural network is a parallel, distributed information processing structure consisting 

of many processing elements interconnected via weighted connections. Neural networks can 

provide optimal solutions to difficult optimization problems, which the traditional heuristic 

methods cannot generally accomplish.  Solving the optimization problems requires the 

minimization of some cost functions subject to a set of constraints.  These cost functions are 

known as energy functions, and the neural network can produce good solutions by 

minimizing the energy function [Smeda 99].  In addition, the computation time for achieving 

the optimal solution is less than that of traditional optimization techniques [Sellers 96]. 

A neural network can be classified into three categories based on different learning 

rules: supervised learning, unsupervised learning and reinforced learning [Kartalopoulos 96].  

In supervised learning, the training is done by adjusting the weights according to a learning 

algorithm.  The weights are adjusted until the difference of the actual outputs and the target 

outputs is less than or equal to the desired error.  In an unsupervised learning, the weights are 

adjusted without the use of target outputs.  The outputs from an unsupervised NN are 

classified into different sets without being compared to a desired output.  Reinforced 
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learning, unlike supervised learning, does not indicate how close the actual output is to the 

desired output, but it indicates whether the actual output is the same as the desired output.  

The error signal generated during the training session is binary: pass or fail.   

In this chapter, an unsupervised learning NN called maximum neural network is 

proposed to optimize the resource allocation problems for SOC testing design.  The 

maximum neural network can solve an NP-complete problem in a polynomial time [Takefuji 

92, Kloypayan 02c].  The maximum neural network (MNN) is one of the unsupervised neural 

networks that can minimize a cost function considering various constraints.  The operation of 

the maximum network is based on the group update.  Figure 3.2 shows an example of a 

maximum neural network.  In Figure 3.2, the network is composed of n groups where each 

group consists of m binary neurons.  One and only one among m neurons with the maximum 

input per group is encouraged to be selected.  The goal of the maximum neural network is to 

minimize the energy function E that represents the objective function and the constraints of 

the problem.  The function of each neuron and the input states are determined as follows 

[Galan-Marin 01]: 
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where  Yij and xij are the input and output of the neuron, respectively; 

u is the number of iterations, u = 1,…U; 

α is a learning rate; and 

E is the energy function of the problem. 
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For each iteration, the input Yij is updated by multiplying the learning rate α with the 

derivative of energy function E, as shown in Equations (3.2) and (3.3).  The output xij for 

each group of inputs is determined by using Equation (3.1).   

The objective function of a SOC testing system is to minimize the overall testing time 

subject to various constraints.  The objective function considers the optimal allocation of 

cores to each TAM and the selection of TAM width for minimizing the SOC testing time.  

When the SOC testing system becomes more complex (i.e., increased number of cores, TAM 

line or the total TAM width), the traditional methods such as linear programming cannot 

efficiently find the optimal solution within a reasonable computation time or sometimes 

cannot effectively find the solution.  In this chapter, a maximum neural network is proposed 

to find the optimal solution for the complex systems within reasonable computation time. 

In the next section, the model of SOC testing with resource allocation problem is 

formulated.  Then, a maximum neural network is applied to solve the problem, as discussed 

in Section 3.4. 

3.3  Formulation of SOC Testing with Resource Allocation Problems  

In this chapter, we assume that a core user has already determined the TAM design 

after careful consideration of system-level I/O, area and power issues.  When the TAM has 

already been designed, a problem arises regarding the assigning of the cores into each TAM 

to minimize the overall testing time and to find the optimal width for each TAM, when the 

total of the TAM width is given.   

Let Tij represent the testing time of each core i on TAMj.  The testing time Tij can be 

formulated as follows: 
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  where φi  is the test width of core i; 

ti  is the number of test cycles for core i;  

ni is the number of test inputs of core i; 

mi is the number of test outputs of core i; 

wj is the width of TAM j; 

pi  is the number of test patterns of core i; 

fi   is the number of flip-flops contained in core i; and 

Ni is the number of internal scan chains for core i. 

Let a SOC system have I cores and J TAM lines.  The width of each TAM line is 

represented by wj, which has to be less than or equal to wmax.  The summation of the width wj 

for all TAMs is equal to the total TAM width W.  A power consumption for core i on TAMj 

under serialized test is 
1+− ji

i

w
P

φ
.  In this chapter, a power dissipation Pi and the maximum 

power of the SOC system Ω are given.  We assume that the power allocated to each TAM is 

equal, which is 
J
Ω .  When a core i is tested on TAMj, the power consumption should not 

exceed the allocated power of TAMj 
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.  To minimize a SOC testing time 

with resource allocation, the model can be formulated as follows: 
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    xij = 0, or 1      (3.12) 

  where  Tij is the testing time for core i on TAMj , as shown in Equation (3.4),  

              1 ≤ i ≤ I , 1 ≤ j ≤ J; 

W is the total width of TAMs; 

wj  is the width of TAMj ; 

wmax  is the maximum width of TAMs; 

Ω is the maximum power rating in the SOC system; 

Pi is the power consumption of core i; and 

xij is the 0-1 variable defined as 

 �
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The SOC testing with resource allocation problem is a NP-complete.  Figure 3.3 

shows the relation of the computation time and the model complexity when using the 

traditional method such as integer linear programming (ILP) to solve an NP-complete 

problem. When a system becomes more complicated, the computation time gets longer, as 

shown in Figure 3.3.   

In this chapter, the maximum neural network is used.  By using the maximum neural 

network, the near-optimal or good solution can be found within an acceptable time when a 

system becomes more complex.    Next, the proposed method is applied to the SOC testing 

model, and the details of the results from the proposed method are provided. 

3.4 Constructing the Maximum Neural Network (MNN) for Solving the SOC Testing   

Problems 

Figure 3.4 shows the architecture of the proposed MNN.  There are J + 1 input units: 

[Yij, j=1,…,J ] and [wj, j = 1,..,J], and I output units: [xij] for i= 1,…,I.    Yij is an energy 

function, which is the testing cost of the SOC testing system design.  In Figure 3.4, an output 
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xij defines that core i is assigned to TAMj.  By using Equations (3.7)-(3.12), each core i can 

be assigned only to one TAM line, TAMj.  In the maximum neural network, only one output 

is selected (i.e., in Figure 3.4, there is only one output xij, j=1…J, has a non-zero value and 

all others are zero).  In the proposed SOC test model, an input Yij and an output xij can be 

calculated as follows: 

  �
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where  α(u), γ(u) and β(u) are learning rates; 

  u is number of iterations, u = 1,…,U; 

 wj(u) is the width of TAMj at iteration u, 1 ≤ j ≤ J; and 

Tij is the testing time for core i on TAMj determined by Equation (3.4), 

and 1 ≤ i ≤ I , 1 ≤ j ≤ J. 

The learning rates α, β and γ may be decreased at each iteration or they may be 

constant throughout the learning process.  The rate of decrease depends on the speed of 

convergence to the optimum solution or the predefined termination condition [Kartalopoulos 

96].   

The proposed MNN begins the first iteration by assigning the energy function Yij values 

and the width wj for each TAM by generating a random number.  The output xij can be 

calculated by using the function f(Yij), defined by Equation (3.13), as shown in Figure 3.5.    

Then, Yij and wj for the next iteration are updated using Equations (3.15), (3.16) and (3.17), 

as shown in Figure 3.4.  The searching procedure continues until either the optimal solution 
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has been reached or the termination conditions are met.  The complete searching algorithm of 

the proposed MNN is shown as follows: 

Step_1.   Set u = 0. 

Step_2.  Assign each wj by using uniform random number from 1 to W. 

Step_3.  Assign each Yij value by using uniform random number. 

Step_4.  Calculate xij by using Equation (3.12). 

Step_5.  Calculate the total testing time for system.  If the new testing time is smaller 

than the old testing time and the power constraint is not violated, keep the new 

testing time as the minimum testing time. 

Step_6.  Update Yij and wj for the next iteration (u+1). 

Increment u by 1.  If the state of the system reaches the equilibrium state or the 

terminate conditions are met, then stop this procedure.  Otherwise, repeat to 

Step_4. 

The termination condition used in this chapter includes the following two conditions: 

(i) the iteration number has reached a predefined number, or  (ii) when the MNN system 

reaches a stable point.  The procedure stops once either of these conditions is met.   

Figure 3.5 shows the proposed searching algorithm for solving the SOC test with 

resource allocation problem.  At the beginning, the initial input to the MNN is a set of the 

energy function and the width wj of each TAMj generated by using random numbers.  The 

output xij from the MNN is for the SOC test resource allocation.  If MNN reaches an optimal 

solution, the procedure stops; otherwise, the procedure continues until the predefined number 

of iterations is reached.   

3.5  An Example and Testing Result of the Proposed Maximum Neural Networks  

The proposed modeling, neural network and the optimization algorithm have been 

implemented on 800 MHz personal computers using MATLAB® software.  One of the results 

of computer implementation is shown in this section.  
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An example testing data, as shown in Table 3.1, consisting of 10 cores is used for 

demonstrating of the developed techniques.  These test data of Table 3.1 are used to calculate 

the testing time for each core as shown in Equations (3.4), (3.5) and (3.6).  Table 3.2 shows 

the optimal width allocation and the optimal core assignment to each TAM for the example 

SOC system S4 with three TAMs.  In Table 3.2, the test bus assignment vector shows the core 

assignment to each TAM.  For example, when the total width W is equal to 44 (the seventh 

row of Table 3.2), the optimal width distribution (w1, w2, w3) is equal to (6, 13, 25), and the 

test bus assignment vector of the cores is [1, 1, 3, 3, 2, 3, 1, 3, 1, 1].   

Figure 3.6 shows the Test Access Mechanism (TAM) design and test schedule for this 

SOC system when the total TAM width W is equal to 44 (the seventh row of Table 3.2).  

From the assignment test vector [1, 1, 3, 3, 2, 3, 1, 3, 1, 1] of Table 3.2 and TAM design of 

Figure 3.6, the cores at columns 1, 2, 7, 9 and 10 (i.e., C6288, C7552, S39532, S15850, and 

S38417, respectively) are assigned to TAM1 with width of 6.  The core at column 5 (i.e., 

S38584) is assigned to TAM2 with width of 13, and other cores are assigned to TAM3 with 

width of 25.  The total testing time of the system is 1656820 cycles.  TAM1 and TAM2 have 

idle times of 1345 and 2800, respectively, as shown in Figure 3.6(b).  All the computation 

time for this example case is less than 60 seconds, as shown in Table 3.2. 

More details of practical examples and analytical results of the proposed NN will be 

presented in Chapter 5. 

3.6 Summary 

In this chapter, we have proposed a maximum neural network to minimize the total 

SOC testing time by finding the optimal allocation of cores to each TAM line and the optimal 

selection of the TAM width.  The techniques presented in this chapter can be used for the 

optimization of the System-on-a-Chip test system design that is critical for the semiconductor 

and electronics industry.  Computer implementation and results of practical examples will be 

presented in Chapter 5.   
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Figure 3.1  An example of core-based SOC system with two TAM lines [Chakrabarty 00a] 
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Figure 3.2  An example of general maximum neural network 
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Figure 3.3  The relation of the computation time and the SOC model complexity 

(Using the traditional method to solve NP-complete problems) 
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Figure 3.4  The proposed neural network architecture 
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Figure 3.5  The proposed searching and optimizing algorithm for SOC test automation 
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Table 3.1  Test data of the core for the SOC system S4 

Core i Number of 

test inputs 

ni 

Number of 

test outputs 

m i 

φi =  

max{ ni , mi } 

Number of test patterns 

pi 

Number of test cycles 

ti 

C6288 1 32 32 32 12 12 

C7552 2 207 108 207 73 73 

S838 3 36 3 36 75 2507 

S9234 4 40 43 43 105 5723 

S38584 5 70 336 336 110 5105 

S13207 6 78 168 168 234 9634 

S15850 7 93 166 166 95 3359 

S5378 8 39 53 53 97 4507 

S35932 9 67 352 352 12 714 

S38417 10 60 138 138 68 3656 
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       Table 3.2 The results from using the proposed maximum neural network applied to the 
example SOC system S4 with three TAMs 

Total test 

width 

W  

Testing T ime 
(on w1, on w2, on w3) 

Testing 
time 

(cycles) 
(Best 

Solution) 

Bandwidth 
distribution 

(Best solution) 

(w1, w2, w3) 

Test bus assignment 
vector 

Execution 

time 

(min) 

16 (1812004, 1809212, 1805916) 1812004 (8, 7, 1) (3, 1, 3, 2, 3, 1, 2, 2, 1, 2) 1 

20 (1769686, 1730391,1765784) 1769686 (1, 1, 18) (1, 2, 1, 3, 2, 3, 1, 3, 1, 1) 0.58 

24 (1724065, 1715280, 1694161) 1724065    (22,1,1) (1, 1, 2, 3, 2, 3, 1, 1, 1, 1) 0.50 

32 (1715067, 1710175, 1632988) 1715067 (23, 2, 7) (3, 1, 1, 1, 2, 1, 3, 1, 3, 3) 0.45 

36 (1656211, 1684650, 1670179) 1684650 (4, 7, 25) (1, 3, 3, 3, 2, 3, 1, 3, 1,1) 0.43 

40 (1694281,1689755, 1580312) 1694281 (29, 6, 5) (3, 1, 1, 1, 2, 3, 1, 1, 1, 1) 0.40 

44 (1655475, 1654020, 1656820) 1656820 (6, 13, 25) (1, 1, 3, 3, 2, 3, 1, 3, 1, 1) 0.40 

48 (1632676, 1664230, 1579976) 1664230 (32, 11, 5) (1, 1, 1, 1, 2, 3, 1, 1, 1, 1) 0.40 

52 (1624947, 1609250, 1586130) 1624947 (8 ,2, 42) (2, 3, 3, 3, 3, 2, 1, 3,1, 1) 0.38 

56 (1633600, 1616141, 1589767) 1633600 (17, 11, 28) (3, 2, 3, 3, 1, 3, 2, 3, 2, 2) 0.40 
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(a) TAM design 

 

 
(b) Test schedule for the system S4 

 

Figure 3.6  TAM design and test schedule for the system S4 with three TAMs and total TAM 
width of 44 
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CHAPTER 4 

OPTIMIZING SYSTEM-ON-A-CHIP (SOC) TEST AUTOMATION 

WITH CORE WRAPPER DESIGN BY MAXIMUM NEURAL 

NETWORKS 

This chapter presents a revised maximum neural network (MNN) approach to 

minimize the testing time and optimize test resource allocation for System-on-a-Chip (SOC) 

with embedded core wrapper design.  In this chapter, the embedded core wrapper scan chain 

is considered in the SOC test optimization problem.  The objective is to solve the optimal 

testing time for SOC testing automation within a reasonable computation time. 

4.1 Introduction 

System-on-a-Chip (SOC) is designed by embedding large pre-designed and pre-

verified modules, called cores, onto one single circuit [Gupta 97].  A core is a description of 

a module and is not yet manufactured [Zorian 99].   Different core providers provide 

different cores along with their corresponding test sets. Cores, unlike components on a circuit 

board, need to be tested after being embedded.  Testing is a critical issue in the embedding 

process because the application in which the core is integrated may strongly influence the test 

strategy in terms of fault-coverage, power consumption and silicon area [Benso 00].  Since 

the cores are designed by separate design teams (core providers) with a high degree of 

specialization in their areas of functional expertise and are optimized for different criteria, 

design for test (DFT) integration can create a major challenge [Gallagher 01, Irion 01].     

 Figure 4.1 shows an example of embedded core test infrastructure that consists of 

three elements: test pattern source and sink, test access mechanism (TAM), and core test 

wrapper [Zorian 99].  In the test pattern source and sink, the source generates the test stimuli 

for the embedded core, and the sink compares the response(s) to the expected response, as 

shown in Figure 4.1. Source and sink can either be implemented off chip (Automatic Test 
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Equipment, ATE) or on chip (Built-in Self Test, BIST), or in a combination of both 

[Marinissen 00].  A TAM transports test stimuli from a test pattern source to cores under test, 

and it also transports test responses from the cores under test to a test pattern sink, as shown 

in Figure 4.1.  The core test wrapper is the interface between the core and the SOC system in 

which the core is embedded, as shown in Figure 4.1.  By finding the efficient test wrappers 

and the TAMs, the SOC testing time can be minimized [Iyengar 01a, Koranne 02].   

When considering core wrapper design along with SOC testing automation problem, 

the testing time of the system can be minimized [Iyengar 01a, Korranne 02, Marinissen 00].  

Iyengar et al. (2001) proposed a wrapper/TAM (test access mechanism) co-optimization 

method to find an optimal assignment of cores to each of the TAMs to minimize the overall 

testing time [Iyengar 01a].  In their method, ILP and the co-optimization algorithm were used 

to find the optimal results. However, when the size of the system gets larger (more than two 

TAMs are used, or the TAM width becomes wider), the computation time gets extremely 

long.  In the co-optimization method [Iyengar 01a], the power constraint is not considered.  

Korranne (2002) improved the SOC test schedule by using reconfigurable core wrappers 

[Korranne 02].  The set of reconfigurable scan chains were calculated using graph theory 

techniques to solve the embedded core-based System-on-a-Chip test scheduling problem 

(ECTSP).  The testing time of a SOC system obtained by their method (ECTSPSol) is 

improved compared to the ILP formulations.  Power consumption constraint was not 

considered in their study. 

The objective function of a SOC testing problem is to minimize the overall testing 

time subject to various constraints.  The objective function considers the optimal allocation 

of cores to each TAM, the power consumption, and the selection of TAM width for 

minimizing the SOC testing time.  The SOC testing design with resource allocation problems 

are NP-complete [Chakrabarty 00b].  When a SOC system is small, traditional methods such 

as integer linear programming (ILP) or a heuristic approach may be able to reach an optimal 

solution.  However, as a system becomes more complex, traditional methods may not be as 

efficient because the optimal solution is difficult to locate and the computation time gets 
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much longer [Kloypayan 02a, Kloypayan 02c].  When the SOC testing designers try to 

increase the number of cores, the TAM lines or the total TAM width, the traditional methods 

may not be effective in finding the optimal solution within a reasonable computation time 

and they sometimes cannot find the optimal solution at all.   

In this chapter, a core wrapper design and the SOC resource allocation problems are 

studied to find the optimal SOC testing time.  We adopt the concept of wrapper design from 

Marinissen et al. [Marinissen 00] for SOC design testing.  A maximum neural network 

(MNN) is proposed to allocate cores to the TAMs to minimize the overall testing time.  The 

proposed MNN is an unsupervised competitive neural network and is used to solve the NP-

complete problem in this chapter.  The remainder of this chapter is organized as follows.  

Section 4.2 presents a core wrapper design by the Partitioning of TAM Chain Items (PTI) 

method and Largest Processing Time (LPT) method.  Section 4.3 constructs the model of the 

SOC test optimization problems with core wrap design. Section 4.4 presents a concept of the 

proposed MNN, and the procedure of constructing the MNN to solve the SOC testing 

problems.  Concluding remarks are provided in Section 4.5.    

4.2  Core Wrapper Design by Partitioning of TAM Chain Items (PTI) Method and 

Largest Processing Time (LPT) Method 

 In this chapter, we assume that a core user has already determined the TAM design 

after careful consideration of system-level I/O, area and power issues.  Other than TAM 

design, core wrapper design should be considered to achieve more efficiency in testing the 

SOC.  As shown in Figure 4.1, a wrapper is a thin shell around a core that connects TAMs to 

a core.   Figure 4.2 shows an example of a core with wrapper design [Marinissen 00].  A 

wrapper scan chain design can provide for width adjustment of a mismatch between core 

input/output width and TAM width, as shown in Figure 4.2.  We adopt the concept of 

wrapper design from Marinissen et al. [Marinissen 00], which considers only core-internal 

test.  One of the problems in considering a core-internal test is partitioning the set of wrapper 

scan chain elements to several wrapper scan chains, which are equal to the number of TAM 
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lines.  Let T be a testing time for a core; then the SOC testing design with core wrapper 

design problem can be formulated as follows [Marinissen 00]: 

  ( ){ } ( )oioi sspssT ,min,max1 +⋅+=       (4.1) 

  where   si is the scan-in for a core; 

  so is the scan-out for a core; and 

  p is the number of test patterns. 

As shown in Equation (4.1), the testing time for each core depends on the length of a wrapper 

scan chain, i.e., max(si, so).  To reduce the SOC testing time, it is important to balance the 

length of wrapper scan chains as much as possible [Iyengar 01a].  To balance the wrapper 

scan chain, several methods can be used [Koranne 02, Marinissen 00].  In this chapter, the 

Partitioning of TAM Chain Items (PTI) method is used to balance the wrapper scan chain 

design [Marinissen 00].  The PTI method is shown as follows (also in Figure 4.3): 

PTI_Step_I. Assign the core-internal scan chains into TAM chains such that the 

maximum sum of scan lengths assigned to a TAM chain is minimized. 

PTI_Step_II. Assign the wrapper input cells into TAM chains on top of TAM 

partition, such that the maximum scan-in time of all TAM chains is 

minimized.  The wrapper input cells have length 1. 

PTI_Step_III. Assign the wrapper output cells into TAM chains on top of TAM 

partition, such that the maximum scan-out time of all TAM chains is 

minimized.  The wrapper output cells have length 1. 

To execute PTI_Step_I in the PTI method, the Largest Processing Time (LPT) algorithm is 

used to assign the scan lengths [Marinissen 00].  Details of the LPT algorithm are discussed 

as follows.  Let S = {S1, S2,  … Sy} be a set of the core-internal scan chains, where scan chain 

Si has a length l(Si).  The Largest Processing Time (LPT) algorithm is detailed as follows 

(also in Figure 4.3):   

LPT_Step_A. Sort S in descending order so that ySlSlSl ][...][][ 21 >>> . 

LPT_Step_B. For i = 1 to number of TAM partition: 
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Put the maximum length of scan-in(scan-out) to the TAM partition i, 

Delete the maximum length of scan-in(scan-out) from the scan set S. 

LPT_Step_C. For i = number of TAM partition +1 to number of scan chain: 

Put the maximum length of scan-in(scan-out) from the set S to the 

TAM partition that has minimum length, 

Delete the maximum length of scan-in (scan-out) from scan set S. 

After designing the wrapper scan-in and scan-out, the wrapper input cells and wrapper output 

cells are assigned to partition TAM such that the maximum length of all TAM chains is 

minimized [Marinissen 00].   

Figure 4.3(a) shows a wrapper design example for an embedded core that has two 

functional inputs, one functional output and four core-internal scan chains with the length of 

9, 6, 3, and 3 flip-flops (FF), respectively.  In the example shown in Figure 4.3(a), we would 

like to design a wrapper scan chain of this core for a two-bit width TAM.  Figure 4.3(b) 

shows the procedure of PTI and LPT methods.  Using the LPT algorithm to solve 

PTI_Step_I, first, all the lengths of scan chains are ordered in descending order, which is 9, 

6, 3, and 3, shown as LPT_Step_A in Figure 4.3(b).  In LPT_Step_B, the longest scan chain 

SC1 of length 9 is assigned to the first partition, PT1, of TAM and the next longest scan chain 

SC2 of length 6 is assigned to another TAM partition PT2.  In the first iteration of 

LPT_Step_C, the next scan chain SC3 of length 3 is assigned to the minimum length of TAM 

partition (i.e., PT2) with a length of 6 bits.  In the second iteration of LPT_Step_C, the last 

scan chain SC4 of 3 is assigned to PT1 of length 9.  After using the LPT algorithm, the length 

of wrapper scan chains PT1 and PT2 are 12 and 9 bits, respectively, as shown in Figure 

4.3(b).  In PTI_Step_II, the functional inputs (I) are assigned to each TAM partition by 

assigning first to the partition that has the minimum length of wrapper scan chain (i.e., PT2).  

In the PTI_Step_III, the function output (O) is assigned to the minimum length (i.e., PT2).  

After finishing all three steps of the PTI method, the maximum length of the wrapper scan 

chains design for this example core is 12 bits, as shown in Figure 4.3(c).   
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4.3   Modeling the SOC Test Optimization Problems with Core Wrapper Design 

 After the core wrapper scan chains have been designed, the testing time for each core 

and its TAM width is calculated using Equation (4.1).  We then proceed to optimize the total 

testing time and the resource allocation.  In the previous chapter and in our previous work 

presented in [Kloypayan 02c, Kloypayan 02d], a formulation modeling has been proposed for 

optimizing the SOC testing with SOC cores allocation and TAMs width selection.  Let a 

SOC system consist of I cores and J TAM lines, i.e., (1 ≤ i ≤ I) and (1 ≤ j ≤ J).  The width of 

each TAM line TAMj is represented by wj, which has to be less than or equal to the 

maximum width wmax.  The summation of the width wj for all TAMs should be equal to the 

total TAM width W.  The power dissipation for each core i is represented by Pi.  We assume 

that the power dissipation per cycle for core i is equal to power dissipation Pi divided by 

testing time of that core on TAMj, i.e., 
)( ji

i

wT
P

.  In this chapter, a power dissipation Pi and 

the maximum power Ω of the SOC system are given and considered in the optimization.  For 

simplicity, we assume that the power allocated to each TAM is equal, which is 
J
Ω .  When a 

core i is tested on TAMj, the power consumption should not exceed the allocated power of 

TAMj , i.e., 
�

�
�

�

� Ω≤
JwT

P
ji

i

)(
.  To minimize the SOC testing time with resource allocation, the 

SOC testing model can be formulated as follows: 

 Objective:    Minimize { ))(max(
1=

⋅
I

i
ijji xwT }, Jj ≤≤1                      (4.2) 

   Subject to    
=

=
J

j
ijx

1
1, 1 ≤ i ≤ I       (Resource allocation) (4.3) 

 Ww
J

j
j =

=1

,                 (TAM width distribution) (4.4) 

  wj  ≤ wmax , (4.5) 
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JwT

Px

ji

ii Ω≤
)(

,                         (Power constraint) (4.6) 

 xij = 0, or 1 (4.7) 

      where   Ti(wj) is the testing time for core i on TAMj , as shown earlier in  

          Equation (4.1), 1 ≤ i ≤ I , 1 ≤ j ≤ J; 

        wj  is the width of TAMj ; 

      W is the total width of TAMs; 

wmax  is the maximum width of TAMs; 

Ω is the maximum power rating in the SOC system; 

Pi is the power consumption of core i;and 

xij is the 0-1 variable defined as �
�

=
otherwise

jTAMtoassignedisiCoreif
xij ,0

,1
. 

The SOC testing with resource allocation problem is a NP-complete problem [Kloypayan 

02c].  Solving a NP-complete problem with traditional methods such as the Integer Linear 

Programming (ILP) becomes inefficient when the SOC system becomes more complex.  In 

this chapter, a maximum neural network (MNN) is proposed to solve the NP-complete SOC 

testing problems.  Details are presented in the next section.   

4.4  Constructing the Maximum Neural Network (MNN) to Solve the SOC Testing 

Problems 

A neural network (NN) is a system constructed to imitate the function of a brain 

[Kartalopoulos 96].  As shown in Figure 4.4, a NN consists of individual neural units (nodes) 

that link together with the associated weight between each node. Neural networks can 

provide optimal solutions to difficult optimization problems, which the traditional heuristic 

methods cannot generally accomplish.   Solving the optimization problems require the 

minimization of the cost functions subject to a set of constraints.  The neural network can 

produce good solutions by minimizing the cost function, also known as energy functions 

[Smeda 99].  In addition, by designing the right neural networks, the computation time for 
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achieving the optimal solution is usually less than that of traditional optimization techniques 

[Sellers 96]. 

In this chapter, after solving the PTI problem (i.e., cores wrapper design for each TAM 

partition has been balanced and kept in database), an unsupervised maximum neural network 

(MNN) is also proposed to optimize the resource allocation problems for SOC testing design, 

as shown in Figure 4.4.  Neural networks are able to solve NP-complete problems in 

polynomial time [Kartalopoulos 96, Takefuji 92].  The operation of the proposed MNN is 

based on the group update.  Details of a general model of the maximum neural network have 

been presented in Chapter 2.    

Based on a general model of a maximum neural network in Chapter 3, Figure 4.4 

shows the architecture of the proposed MNN.  There are J + 1 input units: [Yij, j=1,…,J ] and 

[wj, j = 1,..,J], and I output units: [xij] for i= 1,…,I.  From the previous chapter in Equations 

(3.1) to (3.3), Yij is an energy function, which is the testing cost of the SOC testing system 

design.  In Figure 4.4, an output xij defines that core i is assigned to TAMj.  By using 

Equations (4.2)-(4.7), the proposed MNN can be constructed so that each core i can be 

assigned only to one TAM line, TAMj.  In the MNN, only one output is selected (i.e., in 

Figure 4.4, there is only one output xij, j=1…J, has a non-zero value and all others are zero).  

In the proposed SOC test model, an input Yij and an output xij are calculated as follows (also 

see Figure 4.4): 

�
� ==

==
otherwise
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where  α(u), γ(u) and β(u) are learning rates; 

u is number of iterations, u = 1,…,U; 

wj(u) is the width of TAMj at iteration u, 1 ≤ j ≤ J; 

wmax  is the maximum width of TAMs; 

W is the total width of TAMs; 

Ω is the maximum power rating in the SOC system; 

Pi is the power consumption of core i; and 

 Ti(wj) is the testing time for core i on TAMj determined by Equation 

   (4.1)  after considering wrapper design, and 1 ≤ i ≤ I , 1 ≤ j ≤ J.   

In searching for the optimal solution, the learning rates α, β and γ may be decreased at each 

iteration or they may be constant throughout the learning process.   

As shown in Figure 4.4, the proposed MNN begins the first iteration by generating a 

set of random numbers assigned to the energy function Yij and the width wj for each TAMj.  

The output xij can be calculated by using the function f(Yij) defined in Equation (4.8).  As 

shown in Figure 4.4, in searching for the optimal solution, Yij and wj for the next iteration are 

updated using Equations (4.9) to (4.12).  The searching procedure continues until either the 

optimal solution has been reached or the termination conditions are met.   

Figure 4.5 shows the proposed MNN searching algorithm for solving the SOC test 

problem with resource allocation.  The complete MNN searching algorithm of the proposed 

maximum neural network is shown as follows (also in Figure 4.5):   

MNN_Step_1.  For each core in a SOC system, minimize the maximum length of 

wrapper scan chain for the PTI problem by using the LPT algorithm, 

as discussed in the previous section. 

MNN_Step_2.  Calculate the SOC testing time cycle Ti(wj) of each core i for each TAM j 

with w bits wide, using Equation (4.1), and save the result in a 

database. 

MNN_Step_3.   Initialize the proposed neural network MNN, set u = 0. 



 62

MNN_Step_4.  Assign each wj value by using a uniform random number from 1 to W. 

MNN_Step_5.  Assign each Yij value by using a uniform random number. 

MNN_Step_6.  Calculate xij by Equation (4.8). 

MNN_Step_7.  Obtain the testing time Ti(wj) from the database.   

Calculate the testing time for the system.   

IF the new testing time for the system is shorter than the old testing 

time and the power constraint is not violated,  

THEN keep the new testing time as the minimum testing time for the 

SOC system. 

MNN_Step_8.  Update Yij and wj for the next iteration (u+1). 

Increment u by 1.   

IF the state of the system reaches the equilibrium state or the 

termination conditions are met,  

THEN stop this procedure.   

ELSE, repeat to MNN_Step_6. 

The termination condition used in this chapter includes the following two situations: (i) the 

iteration number has reached a predefined number, or  (ii) the MNN system has reached a 

stable point.  The procedure stops once either of these conditions is met, as shown in Figure 

4.5.   

The proposed MNN searching and optimization algorithm is used to find the optimal 

SOC testing solution.  As shown in Figure 4.5, in the beginning the set of scan chains for 

each core in a SOC system is balanced (PTI problem).  Then, the testing time of each core for 

each TAM width partition is calculated.  Next, random numbers for the initial input to the 

MNN are generated, including a set of the energy functions Yij and the width wj of each 

TAMj. The MNN finds the testing time for each core i for each TAM width wj from the 

database.   The output xij from the MNN is for the SOC test resource allocation.  If the MNN 

reaches an optimal solution, the procedure stops; otherwise, the procedure continues until the 

predefined number of iterations is reached, as shown in Figure 4.5.   
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4.5  An Example and Testing Results of the Proposed Modeling and MNN 

The proposed modeling, neural network and the optimization algorithm have been 

implemented on 800 MHz personal computers using MATLAB® software.  In this section, 

one of the results from computer implementation is demonstrated. 

In this example, the proposed modeling and MNN is implemented using the test data 

of SOC chip d695 from the literature in [ITC 02].  Table 4.1 shows the detail of test data for 

each core of SOC chip d695, which consists of ten cores (including two combinational cores 

and eight sequential benchmark circuits).  Figure 4.6 shows the Test Access Mechanism 

(TAM) design found by the MNN for this example d695.  As shown in Figure 4.6, the cores 

1, 2, 7, 8 and 9 are assigned to TAM2 with width of 5.  Cores 3, 4 and 10 are assigned to 

TAM3 with width of 7, as shown in Figure 4.6.  Table 4.2 shows the resultant best solutions 

of width allocation and core assignment to each TAM for the first example SOC d695 system 

with three TAMs (j = 3), where the power constraint is not considered.  In Table 4.2, the test 

bus assignment vector shows the core assignment to each TAM.  For example, when the total 

width W is equal to 28 (the fourth row of Table 4.2), the SOC testing time is 25,936 cycles, 

the optimal width distribution (w1, w2, w3) for the TAM1, TAM2 and TAM3 is (16,5,7) and 

the test bus assignment vector of the cores is [2,2,3,3,1,1,2,2,2,3], as shown in Table 4.2.  In 

Table 4.2, the test bus assignment vector [2,2,3,3,1,1,2,2,2,3] shows that core 5 and core 6 

(the underlined items in the vector) are assigned to TAM1, also shown in Figure 4.6.  All the 

MNN computation time of the MNN for this example case d695 is within 30 seconds, as 

shown in Table 4.2. 

More details of the computer implementations and practical examples will be 

presented in Chapter 5. 

4.6 Summary 

In this chapter, a maximum neural network (MNN) has been proposed to minimize 

the total testing time for SOC test automation with core wrapper design.  The MNN and the 

mathematical modeling have been presented to solve the resource allocation and test 
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scheduling problems for SOC test automation.  After the embedded core wrapper scan chains 

are designed, the best solution of SOC testing time can be solved by the developed MNN 

algorithms in a polynomial time.  Computer implementation and more results of practical 

examples will be presented in Chapter 5.   
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Figure 4.1  Embedded core test infrastructure for SOC testing 
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Figure 4.2  An example of a core with wrapper [Marinissen 00] 
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Figure 4.3  An example of wrapper scan chain design by the PTI and LPT algorithms 
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Figure 4.4  The proposed maximum neural network (MNN) architecture 
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Figure 4.5  The proposed MNN searching and optimizing algorithm for SOC test design 
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Table 4.1  Test data for each core in SOC chip d695 [ITC 02] 

Core No. No. of No. of No. of No. of  
Scan Chain 

Length 
  Test Patterns Input Output Scan Chains Min Max 
1 12 32 32 - - - 
2 73 207 108 - - - 
3 75 34 1 1 32 32 
4 105 36 39 4 52 54 
5 110 38 304 32 44 45 
6 234 62 152 16 39 41 
7 95 77 150 16 33 34 
8 97 35 49 4 44 46 
9 12 35 320 32 54 54 

10 68 28 106 32 51 51 
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SOC testing time (cycles)   25936 
TAM width  28 
TAM partition  (16, 5, 7) 
TAM allocation  [2, 2, 3, 3, 1, 1, 2, 2, 2, 3] 
Computation time (min) 0.48 

Figure 4.6  Test Access Mechanism (TAM) design for the SOC system d695 with 
three TAMs and total TAM width W is equal to 28 bits 

 

 
Table 4.2  The best solution of SOC testing time, width allocation and core assignment for 

the SOC system d695 with three TAMs. 

TAM width 
SOC Testing 

time Width Allocation TAM Allocation Computation time
(bits) (cycles) (bits)   (min) 

16 44029 (6,7,3 ) [1,2,3,1,2,1,2,1,2,3] 0.52 
20 35606 (16,1,3)  [3,2,2,3,1,1,3,2,1,1] 0.49 
24 29699 (18,3,3) [3,2,2,3,1,1,2,3,3,1] 0.48 
28 25936 (16,5,7) [ 2,2,3,3,1,1,2,2,2,3] 0.48 
32 23578 (21,2,9) [1,1,2,3,1,1,1,2,3,3] 0.48 
36 20325 (20,4,12)  [ 3,3,2,2,1,1,3,2,3,3] 0.47 
40 18674 (18,4,18) [2,3,2,2,1,3,1,2,1,3] 0.49 
44 17780 (20,20,4) [1,2,2,3,2,1,2,3,2,1] 0.48 
48 17143 (20,19,9) [1,1,3,3,1,2,3,2,2,1] 0.51 
52 16364 (17,16,19) [3,3,2,2,1,3,3,1,3,2] 0.48 
56 15747 (33,18,5) [2,3,3,3,1,2,2,1,1,1] 0.48 
60 13341 (36,7,17) [1,2,2,2,1,3,1,2,1,1] 0.47 

64 12867 (37,20,7) [1,2,3,3,1,2,2, 3,1,1] 0.49 
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CHAPTER 5 

COMPUTER IMPLEMENTATIONS AND RESULTS 

This chapter presents the computer implementations and results of the proposed 

methods.  The proposed methods have been implemented on 800 MHz personal computers 

using Matlab  software. 

5.1 Results for the SOC Test Automation with Resource Allocation Problem Using the 

Maximum NN  

This section shows the implementation results of proposed SOC optimization 

modeling and the maximum neural network (MNN) presented earlier in Chapter 3.  The 

examples demonstrated in this section use the same testing data of the SOC system S4 from 

Table 3.1, mentioned earlier in Chapter 3. 

Table 5.1 shows the optimal width allocation and the optimal core assignment to each 

TAM for the example SOC system S4 with two TAMs.  In Table 5.1, the test bus assignment 

vector shows the core assignment to each TAM.  For example, when the total width W is 

equal to 20 (the second row of Table 5.1), the optimal width distribution (w1, w2) is equal to 

(2, 18) and the test bus assignment vector of the cores is [1, 1, 2, 2, 2, 1, 1, 2, 1, 2]. The 

assignment test vector [2, 1, 1, 1, 2, 1, 1, 1, 1, 2] from Table 5.1 means that the cores at 

columns 1, 2, 6, 7 and 9 are assigned to TAM1 with width of 2, and other cores are assigned 

to TAM1 with width of 18.  All the computation time for this example case is less than 60 

seconds, as shown in Table 5.1. 

Figure 5.1 shows the Test Access Mechanism (TAM) design and test schedule for the 

system S4 with two TAMs, and the total TAM width W is equal to 20.  For the TAM design 

for this example SOC system, cores S838, S9234, s38584, S5378 and S38417 are assigned to 

a TAM1 with width of 2, and the other cores are assigned to a TAM2 with width of 18, as 
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shown in Figure 5.1(a) and Table 5.1 (the second row).  Figure 5.1(b) shows the test schedule 

for the design of the example SOC test.  The total testing time is 2429137 cycles on TAM1 

with width of 2.  On TAM2 with width of 18, the total testing time is 2429554 cycles, and it 

has idle time of 417 cycles.  Compared to the traditional ILP methods, the computation times 

are much shorter (< 1 min for the example case).   

Table 5.2 and Figure 5.2 show the comparison of SOC testing time for the SOC 

system S4 with two TAMs using the three different methods: Integer Linear Programming 

[Chakrabarty 00a], Genetic Algorithm [Ebadi 01] and the proposed MNN.  The SOC testing 

time found by the proposed method is close to the reported SOC testing time from ILP 

[Chakrabarty 00a] and GA [Ebadi 01].   

Table 5.3 shows the results when the example SOC system S4 has four TAM lines, 

respectively.  In this example, when the TAM lines are increased from two lines to four lines, 

the testing time of the SOC system is decreased, as shown in Tables 5.1 and 5.3.  Table 5.4 

shows the optimal testing time for the example system S4 when the number of TAM lines 

varies.  In Table 5.4, a total width of 56 is used for the example SOC system.  As shown in 

Table 5.4, when the number of TAM lines is increased, the total testing time of this system is 

decreased because an increase in the number of TAM lines means more than one core could 

be tested at the same time.  The decreasing of total testing time is significant when one TAM 

line changes to three TAM lines.  When the number of TAM lines changes from three to 

seven, the total testing times do not change much The increasing of the number of TAM lines 

does not always decrease the total testing time.  With the same total TAM width, the width of 

each TAM line becomes smaller when increasing number of TAM lines.  When the width of 

each TAM line is smaller than the core test width, the total testing time of the SOC system is 

increased.       

Figure 5.3 shows the relationship among the total SOC testing time, the number of 

TAM lines and the total TAM width.  When the total width is increased, the overall testing 

time becomes lower, which is consistent with Equation (3.4).   When the width of the TAM 

line is increased, the testing time for each core becomes lower.  As discussed earlier (in Table 
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5.4), when the number of the TAM lines is increased, the overall testing time is decreased 

until it nearly reaches an optimal result.  These results will help a SOC core user in TAM 

design. 

In the previous results, the power constraint has not yet been considered.  In Table 

5.5, the power constraint is considered along with other constraints to minimize the testing 

times for the SOC system S2 with two TAM lines.  The maximum power of the system equals 

100 mW.  Similar to the results from Table 5.1, when the total TAM width is increased, the 

total testing time is decreased.  Compared to the best testing time in Table 5.1, the best 

testing times in Table 6 are longer due to the power constraint.  When the power constraint is 

considered, the computation times are also longer.   

Table 5.6 shows the best testing times for the SOC system S2 when the maximum 

power dissipations vary from 100 to 500.  The SOC system has two TAM lines with a total 

TAM width of 28 bits.  When the maximum power dissipation Ω is increased from 100 mW 

to 200 mW, the testing time of the SOC system is decreased.  When Ω is increased to 500 

mW, the testing time of the SOC system does not change significantly because the power 

constraints are more relaxed, as shown in Table 5.6.    

  

 

 



 74

 

 

 

 

 

Table 5.1  The results from the proposed maximum neural network applied to the 
example SOC system S4 with two TAMs 

Total test 

width 

W  

Testing time 

(Best Solution from our 

method) 

Optimal width 

distribution 

 (w1, w2) 

Test bus assignment vector Execution 

time 

(min) 

16 2456793 (3,13 ) [1, 2, 2, 2, 1, 2, 2, 2, 1, 1] 0.70 
20 2429554 (2,18) [1, 1, 2, 2, 2,1, 1, 2, 1, 2] 0.65 
24 2361278  (1,23 ) [1, 1, 2, 2, 1, 2, 1, 2, 2, 2] 0.58 
32 2222247 (1,31) [1, 2, 2, 2, 1, 2, 2, 2, 2, 1] 0.60 
36 2195730 (32,4) [2, 1, 1, 1, 2, 1, 1, 1, 1, 2] 0.59 
40 2169213 (7,33 ) [1, 2, 2, 2, 1, 2, 2, 2, 2, 1] 0.57 
44 2039183 (1,43) [1, 1, 2, 2, 1, 2, 2, 2, 1, 2] 0.56 
48 1975827 (46,2) [1, 2, 1, 1, 2, 1, 1, 1, 2, 1] 0.56 
52 1949151 (4,48) [2, 2, 2, 2, 1, 2, 2, 2, 1, 2] 0.56 
56 1931694 (7,49) [2, 2, 2, 2, 1, 2, 2, 2, 1, 2] 0.55 
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(a) TAM design 

 

 

(b) Test schedule for system S4 

Figure 5.1  TAM design and test schedule for the system S4 with two TAMs and total 

TAM width of 20 
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Table 5.2 Comparison of the SOC testing time for different methods 
Total test 

width 

W 

Testing time 

(ILP method) 

[Chakrabarty 00a] 

Testing time 

(Genetic 

Algorithm) 

[Ebadi 01] 

Testing time 

(Best Solution 

from our 

method) 

Testing time 

difference (compare 

with ILP) 

(%) 

Execution 

time 

(min) 

16 2423712 2478822 2456793 1% 0.70 
20 2363126 2423284 2429554 3% 0.65 
24 2278443 2361278 2361278 4% 0.58 
32 2202286 2222247 2222247 1% 0.60 
36 2174501 2195730 2195730 1% 0.59 
40 2149720 2144192 2169213 1% 0.57 
44 2123437 2039183 2039183 -4% 0.56 
48 2099390 1966608 1975827 -6% 0.56 
52 2086542 1949151 1949151 -7% 0.56 
56 2069738 1931694 1931694 -7% 0.55 
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Figure 5.2  The comparison of SOC testing time for SOC system S4 with two TAMs 
using different methods 
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Table 5.3 The results from using the proposed maximum neural network applied to the  
example SOC system S4 with four TAMs 

Total test 

width 

W  

Testing Time 

(on w1, on w2, on w3, on w4) 

Testing time 

(cycles) 

(Best Solution) 

Width distribution 

(Best Solution) 

 (w1, w2, w3, w4) 

Test bus assignment 

vector 

Execution 

time 

(min) 

16 (1687233, 491352, 1684650, 1643549) 1687233 (4, 2, 7, 3) (2, 1, 1, 2, 3, 1, 4, 4, 2, 4) 1.21 

20 (1638705, 1608878, 1472908, 796849) 1638705 (16, 2, 1, 1) (4, 3, 3, 3, 1, 2, 4, 4, 3,3) 0.87 

24 (1618441, 1608878, 841651, 1427722) 1649143 (20, 2, 1, 1) (1, 3, 3, 3, 1, 2, 4, 3, 3, 4) 0.87 

32 (1592760, 1604850, 1100836,1145263) 1604850 (25, 4, 2, 1) (2, 2, 4, 4, 1, 2, 4, 3, 4, 3) 0.62 

36 (1541440, 1131196, 1116217,1602970) 1602970 (9, 3, 1, 23) (2, 2, 2, 3, 4, 1, 2, 2, 2, 3) 0.63 

40 (1585088, 1577505, 1045215,1167241) 1585088 (6, 28, 2, 4) (2, 1, 4, 3, 2, 1, 3, 4, 3, 4) 0.60 

44 (988198, 1575381, 1198314, 1572340) 1575381 (5, 7, 3, 29) (3, 2, 3, 1, 4, 2, 1, 1, 3, 3) 0.58 

48 (1539112, 1531806,  803683, 1375822) 1614209 (36, 10, 1, 1) (4, 4, 1, 3, 1, 2, 3, 4, 4, 4) 0.65 

52 (1194583, 1030993, 1526846, 1541710) 1570342 (2, 3, 12, 35) (2, 3, 1, 1, 4, 3, 2, 2, 2, 1) 0.60 

56 (1533627, 1550931, 1279951, 870128) 1550931 (39, 14, 2, 1) (3, 1, 2 , 3, 1, 2, 3, 3, 3, 4) 0.53 

 
 

 

Table 5.4 The best solution of testing time for the system S4 when the number of 
          TAM lines are varying  

No. of 

TAM line 

Testing time 

(cycles) 

(Best Solution) 

Width distribution 

 (wj) 

(Best Solution) 

Test bus assignment vector 

1 3800947 (56 ) (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 

2 2157430 (1, 55) (2, 1, 1, 2, 1, 2, 2, 2, 1, 2) 

3 1633623 (32, 17, 7) (3, 1, 3, 2, 3, 1, 2, 2, 2, 2) 

4 1606119 (13, 3, 15, 25) (1, 4, 1, 2, 4, 1, 2, 2, 3, 3) 

5 1579976 (46, 5, 3, 1, 1) (5, 4, 5, 4, 1, 2, 4, 3, 3, 5) 

6 1589610 (20, 28, 4, 2, 1, 1) (4, 4, 6, 5, 2, 3, 6, 1, 1, 5) 

7 1608878 (12, 28, 9, 2, 2, 2, 1)    (1, 4, 5, 1, 2, 6, 7, 7, 4, 3) 
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Figure 5.3  The relationship of the total SOC testing time and the number of TAM lines and 

the total TAM width 
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Table 5.5  The testing time for the system S4 with the power constraint when the total TAM 
widths are varying (the maximum power is 100 mW) 

Total test 

width 

W  

Width distribution 

 (w1, w2) 

(The best solution from 

our method) 

Testing Time 

(cycles) 

(on w1, on w2) 

testing time 

( The best 

solution from our 

method) 

Test bus assignment vector Execution 

time 

(min) 

16 (1, 15) (2600903, 2632430) 2632430 (1, 1, 2, 2, 1, 2, 2, 2, 2, 1) 2.0 
20 (3, 17) (2568246, 2593485) 2593485 (1, 2, 2, 2, 1, 2, 2, 2, 2, 1) 3.45 
24 (19, 5) (2564037, 2568050) 2568050 (2, 1, 2, 1, 2, 1, 2, 1, 2, 1) 4.20 
28 (7, 21) (2544656, 2516851) 2544656 (1, 2, 1, 2, 1, 2, 1, 2, 1, 2) 6.67 
32 (22,10) (2493258, 2509565) 2509565 (2, 1, 2, 1, 2, 1, 2, 1, 2, 1) 8.0 
36 (13, 23) (2474474, 2469665) 2474474 (1, 2, 1, 2, 1, 2, 1, 2, 1, 2) 8.45 

  

 

Table 5.6  The testing time for the system S4 with the power constraint when the maximum 
power dissipation is varying (the total TAM width = 28 bits) 

Maximum 

power 

dissipation 

Ω 

Width distribution 

 (w1, w2) 

(The best solution from 

our method) 

Testing Time 

(cycles) 

(on w1, on w2) 

testing time 

( The best solution 

from our method) 

Test bus assignment vector Execution 

time 

(min) 

100 (7, 21) (2544656, 2516851) 2544656 (1, 2, 1, 2, 1, 2, 1, 2, 1, 2) 6.67 
200 (24, 4) (2478663, 2497016) 2497016 (2, 1, 1, 1, 2, 1, 2, 1, 2, 1) 1.5 
300 (4, 24) (2496668, 2478771) 2496668 (2, 2, 2, 2, 1, 2, 1, 2, 1, 2) 1.5 
400 (23, 5) (2491378, 2502309) 2502309 (1, 2, 1, 1, 2, 1, 2, 1, 2, 1) 0.26 
500 (4, 24) (2497016, 2478663) 2497016 (1, 2, 2, 2, 1, 2, 1, 2, 1, 2) 0.26 
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5.2  Results for the SOC Test Automation with Core Wrapper Design 

The proposed SOC optimization modeling and the maximum neural network (MNN) 

presented in Chapter 4 have been implemented on 800 MHz personal computers using 

MATLAB® software.  The proposed MNN and the SOC optimization modeling are tested 

with five SOC benchmarks: d695, g1023, p34392, p22810, and p93791 from the literature in 

[ITC 02].  Table 4.1 and Tables 5.7 to 5.10 show the detailed testing data for all the cores 

used in the five practical SOC test examples.  The SOC example systems d695, g1023, 

p34392, p22810 and p93791, consist of 10, 14, 19, 28 and 32 cores, respectively.  All these 

five SOC benchmark are used in the implemented MNN system.  For the simplicity of 

presentation, the first example SOC system d695 (Table 4.1) is used for illustration. 

The developed MNN network is used to find the optimal testing time for the example 

SOC systems.  Figure 5.4 compares SOC testing time for the example system d695 with two 

TAMs using the three different methods: the benchmarking Integer Linear Programming 

(ILP) [Iyengar 01a], PPAW_enumerate [Iyengar 01a], and the proposed MNN.  As shown in 

Figure 5.4, the total width W ranges from 16 bits to 64 bits.  Table 5.11 compares the SOC 

testing time and the MNN computation time by different methods.  The SOC testing time 

found by the MNN is close to the reported SOC testing time from ILP and PPAW_enumerate in 

[Iyengar 01a].  In Figure 5.4, when the TAM widths are increased, the resulting SOC testing 

times of the example system are decreased.  The computation time of the proposed MNN is 

less than the computation time of ILP, but slightly higher than the computation time of 

PPAW_enumerate.  Notice that in Table 5.11, unlike for the computation time of ILP and 

PPAW_enumerate, the computation time of the proposed MNN is not increased with the increment 

of TAM width. 

Figures 5.5 to 5.7 show the comparison of computation time of all the different 

methods using the five different benchmarking SOC examples.  As shown in Figures 5.5 and 

5.6, the computation time of the proposed MNN remains stable when the SOC system design 

becomes more complex (i.e., number of cores and TAM width are increased).  When the 
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SOC system becomes more complex, the best solution (testing time, width allocation, and 

TAMs allocation) can be found by the proposed MNN within a reasonable time, as shown in 

Figures 5.5 and 5.6.   

Figure 5.7 shows the SOC testing time (objective function) and the computation time 

of the proposed MNN when the number of searching iterations varies.  As shown in Figure 

5.7, when the number of iterations increases (that causes higher computation time), the 

resulting SOC testing time pretty much remains stable.  From Figure 5.7, it can be seen that 

the proposed MNN can converge to good results of SOC testing time very rapidly without 

the need for a larger number of searching iterations.   

Figures 5.8 and 5.9 compare the SOC testing time for the example chip d695 with 

three TAMs using the different existing methods: ILP [Iyengar 01a], PPAW_enumerate[Iyengar 

01a], ECTSPSol [Koranne 02], and the proposed MNN.  In Figure 5.8, when TAM width is 

higher than 48 bits, the ILP has the highest SOC testing time because the optimal solution 

cannot be found due to the high complexity of the SOC system [Iyengar 01a].  Figure 5.9 

shows the comparison of the SOC testing time for the example SOC chip p93791 with 32 

cores by using three different methods.  For the SOC chip p93791, the SOC testing time 

(objective function) found by the proposed MNN is better than the results obtained by the 

other two methods, as shown in Figure 5.9.   

The proposed MNN also has the capacity of optimizing the SOC testing system 

considering the power constraints.  Tables 5.10 and 5.13 show the comparison of the SOC 

testing time (objective function) for the SOC example system d695 with and without power 

constraints.  We assume that each TAM has maximum power consumption of 50 mW and 

each core consumes power 1500 mW per each pattern.   The SOC testing time with power 

constraint (i.e., subject to more constraints in the optimization) is higher than that without 

power constraints, as shown in Tables 5.12 and 5.13.  The computation time in solving the 

SOC problems also gets much larger when the power constraint is considered, as shown in 

Tables 5.12 and 5.13.  Figure 5.10 shows the difference of SOC testing time and computation 

time for the example SOC system d695 with and without power constraints.  Figure 5.10 and 
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Tables 5.12 and 5.13 show that, with the consideration of power and other constraints, the 

computation time needed to find the optimal solution grows significantly (thirteen times 

increment).  While most of the existing methods (for example ILP or PPAW_enumurate method) 

can only solve the SOC testing problems without the power constraints, the developed MNN 

method is able to find the optimal SOC testing solution with these additional constraints 

within reasonable computation time. 

5.3  Summary 

This chapter presented the experiment results of the proposed techniques.  The results 

show that the proposed techniques can be applied to minimize the overall SOC testing time 

in three SOC test automation problems: test scheduling problem (Chapter 2), test automation 

with resource allocation and power constraint problem (Chapter 3), and test automation with 

core wrapper design (Chapter 4).  The developed techniques require much less computation 

time to solve complex SOC testing optimization problems.  
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Table 5.7  Test data for each core in SOC chip g1023 [ITC 02] 

Core No. No. of No. of No. of No. of  Scan Chain Length 
  Test Patterns Input Output Scan Chains Min Max 
1 134 139 273 14 42 43 
2 74 221 215 2 83 84 
3 57 192 171 1 53 53 
4 268 145 155 4 54 54 
5 51 32 27 4 31 32 
6 36 20 18 2 47 47 
7 34 20 18 2 47 47 
8 31 63 80 2 52 52 
9 68 56 34 1 64 64 

10 29 301 377 1 13 13 
11 15 145 191 1 9 9 
12 16 157 161 1 13 13 
13 512 58 64 - - - 
14 1024 140 114 - - - 

 

 

 

 

 

Table 5.8  Test data for each core in SOC chip p34392 [ITC 02] 
Core No. No. of No. of No. of No. of  Scan Chain Length 

  Test Patterns Input Output Scan Chains Min Max 
1 210 15 94 1 806 806 
2 514 165 263 29 8 570 
3 3108 37 25 - - - 
4 6180 38 25 - - - 
5 12336 62 25 - - - 
6 1965 11 8 - - - 
7 512 9 8 - - - 
8 9930 46 17 - - - 
9 228 41 33 - - - 

10 454 129 207 19 16 519 
11 9285 23 8 - - - 
12 173 7 4 - - - 
13 2560 12 16 - - - 
14 432 11 8 - - - 
15 4440 22 8 - - - 
16 128 7 7 - - - 
17 786 15 4 - - - 
18 745 175 212 14 198 729 
19 12336 62 25 - - - 
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Table 5.9  Test data for each core in SOC chip p22810 [ITC 02] 
Core No. No. of No. of No. of No. of  Scan Chain Length 

  Test Patterns Input Output Scan Chains Min Max 
1 785 28 56 10 110 130 
2 12324 47 33 - - - 
3 3108 38 26 - - - 
4 222 48 64 - - - 
5 202 90 112 29 27 214 
6 712 80 64 - - - 
7 2632 84 64 - - - 
8 2608 36 16 - - - 
9 175 116 123 24 24 122 

10 38 50 30 4 2 99 
11 94 56 23 8 38 88 
12 93 40 23 11 42 82 
13 1 68 149 4 32 104 
14 108 22 15 3 1 73 
15 37 84 42 6 36 80 
16 8 13 43 1 109 109 
17 25 223 69 4 4 89 
18 644 53 11 5 56 68 
19 58 38 29 3 17 43 
20 124 45 40 4 1 77 
21 465 115 76 10 93 186 
22 59 54 40 3 13 77 
23 40 31 8 7 16 115 
24 27 73 23 5 2 101 
25 215 58 46 18 108 181 
26 181 66 33 31 198 400 
27 2 285 94 1 34 34 
28 26 48 43 5 40 100 
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Table 5.10  Test data for each core in SOC chip p93791 [ITC 02] 

Core No. No. of No. of No. of No. of  Scan Chain Length 
  Test Patterns Input Output Scan Chains Min Max 
1 409 109 32 46 1 168 
2 192 40 34 - - - 
3 648 40 29 - - - 
4 11 15 30 23 4 5 
5 6127 102 80 - - - 
6 218 417 324 46 500 521 
7 177 9 32 - - - 
8 177 9 32 - - - 
9 192 43 34 - - - 

10 1164 267 128 - - - 
11 187 146 68 11 17 82 
12 391 289 8 46 92 93 
13 194 111 31 46 173 219 
14 194 111 31 46 173 219 
15 288 44 34 - - - 
16 396 137 64 - - - 
17 216 144 67 43 145 150 
18 42 79 34 - - - 
19 210 466 365 44 97 100 
20 416 136 12 44 132 181 
21 42 79 34 - - - 
22 42 42 34 - - - 
23 234 105 28 46 1 175 
24 3072 17 4 - - - 
25 2688 29 16 - - - 
26 96 42 34 - - - 
27 916 30 7 46 50 68 
28 396 109 50 - - - 
29 172 117 42 35 185 189 
30 192 43 34 - - - 
31 204 148 70 - - - 
32 3084 268 128 - - - 
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Figure 5.4  The comparison of SOC testing time for SOC d695 with two TAMs using 
Integer Linear Programming (ILP), PPAW-enumerate [Iyengar 01a], and the 
proposed MNN 

 

 

Table 5.11 Comparison of computation time and the resulting SOC testing time for different 
methods 

TAM width ILP [Iyengar 01a] PPAW_enumerate [Iyengar 01a] The proposed MNN 

(bits) 
SOC testing 

time Computation time SOC testing time Computation time 
SOC testing 

time %difference Computation time

  (cycles) (min) (cycles) (min) (cycles) (w enumerative) (min) 

16 43238 0.7 43238 0.02 44163 2% 0.45 
20 33458 0.8 33458 0.02 35289 5% 0.40 
24 28626 2.1 28626 0.02 29772 4% 0.36 
28 25640 3.9 25640 0.02 27043 5% 0.37 
32 24030 5.23 24030 0.02 24890 4% 0.34 
36 22246 11 22246 0.02 23570 6% 0.35 
40 20815 12.5 20815 0.03 22248 7% 0.34 
44 20094 13 20094 0.03 20324 1% 0.33 
48 18911 32.1 18911 0.03 19674 4% 0.34 
52 17929 50.1 17929 0.03 19026 6% 0.34 
56 17671 52.8 17671 0.03 18123 3% 0.35 
60 17449 76.7 17449 0.05 17935 3% 0.34 

64 17375 158.7 17375 0.05 17778 2% 0.33 
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Figure 5.5  The comparison of the computation time of different methods when the number 

of SOC cores is increased 
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Figure 5.6  The comparison of the computation time of different methods when the number 
of TAM width is increased 
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Figure 5.7  The SOC testing time (objective) and the computation time of the proposed MNN 
when the number of iterations varies 
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Figure 5.8  The comparison of SOC testing time for the example system d695 with three 
TAMs using Integer Linear Programming (ILP), PPAW-enumerate [Iyengar 01a], 
ECTSPSol [Koranne 02], and the proposed MNN 

 

 

0
200000
400000
600000
800000

1000000
1200000
1400000
1600000
1800000
2000000

16 20 24 28 32 36 40 44 48 52 56 60 64

TAM width (bits)

SO
C

 te
st

in
g 

tim
e 

(c
yc

le
s)

PAW_enumerate ECTSPSol The proposed MNN
 

Figure 5.9  The comparison of SOC testing time for the example system p93791 with three 
TAMs using PPAW-enumerate [Iyengar 01a], ECTSPSol [Koranne 02], and the 
proposed MNN 
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Table 5.12 The comparison of SOC testing time and computation time with and without 
power constraint for the example system d695 with two TAMs    

No power constraint With power constraint TAM 
Width 
(bits) 

SOC testing 
time (cycles) 

Computation 
time (min) 

SOC testing 
time (cycles) 

Computation 
time (min) 

16 
20 
24 
28 
32 
36 

44163 
35289 
29772 
27043 
24890 
23570 

0.45 
0.40 
0.36 
0.37 
0.34 
0.35 

45251 
36394 
30518 
27761 
25468 
24188 

5.91 
5.28 
4.75 
4.74 
4.44 
4.69 

 
 
 
 
 
 
 
 

Table 5.13  The comparison of SOC testing time and computation time with and without 
power constraint for the example system d695 with three TAMs  

No power constraint With power constraint TAM  
width  
(bits) 

SOC testing 
time (cycles) 

Computation 
time (min) 

SOC testing 
time (cycles) 

Computation 
time (min) 

16 
20 
24 
28 
32 
36 

44029 
35606 
29699 
25936 
23578 
20325 

0.52 
0.49 
0.48 
0.48 
0.48 
0.47 

45028 
36579 
30502 
26267 
23426 
21202 

7.23 
6.19 
6.11 
5.86 
5.92 
6.15 
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Figure 5.10  The comparison of SOC testing time and computation time for the example  

system d695 with and without power constraints 
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CHAPTER 6 

CONCLUSIONS AND FUTURE RESEARCH 

In this dissertation, different neural networks have been developed to solve the 

System-on-a-Chip (SOC) test automation problems with the wrapper design and optimal 

resource allocation. The major contributions of this research are summarized as follows: 

1. To solve the NP-hard System-on-a-Chip (SOC) test design problems, a fixed-

weight neural network (NN) combined with heuristic algorithms has been 

proposed.  The developed neural network can effectively solve the SOC test 

scheduling problems with disjunctive constraints.  The SOC design test 

scheduling problems are subject to four different constraints: (i) precedence 

constraint, (ii) resource constraint, (iii) core constraint, and (iv) power constraint.  

To prevent the proposed neural network from getting trapped in local optimal, 

some heuristic algorithms have been developed.  The results show that the 

proposed method can effectively solve a large size SOC test automation problem 

within a reasonable computational time. 

2. The proposed maximum neural network has been developed to solve the resource 

allocation problem for SOC test automation.  The proposed maximum neural 

network can solve the NP-hard SOC test automation problems in a polynomial 

time.  The results show that the overall testing time of the SOC testing system can 

be minimized with the optimal resource allocation and the optimal partitioned 

TAMs width.  This method also requires significantly less computation time in 

solving larger size SOC testing problems compared to the traditional methods. 

3. The resource allocation problem for SOC test automation is extended by adding 

an embedded core wrapper design issue.  After embedded core wrapper scan 

chains are designed, the best solution of SOC testing time can be solved by the 
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developed maximum neural network algorithms in a polynomial time.  Computer 

implementation and practical benchmark SOC examples were also presented.  

The results show that the overall testing time of the SOC testing system can be 

minimized with consideration of the following constraints: (i) the resource 

allocation, (ii) the power consumption constraint, and (iii) the optimal partitioned 

TAMs width.  Compared with the traditional methods, the presented maximum 

neural network technique requires significantly less computation time to solve 

complex SOC testing optimization problems with a large number of cores and 

TAMs width.   

Computer implementation and results show that the developed neural network can 

minimize the SOC testing time subject to various constraints.  The computation time from 

the developed method is considerably less than the traditional methods (i.e., ILP and heuristic 

algorithm).  The techniques presented in this dissertation can be used in the computer-aided 

test automation for System-on-a-Chip (SOC) design. 

For future research, the following are several suggested directions: 

1. Optimize the SOC test scheduling problems by considering more constraints such 

as overhead area, pre-emption constraint, etc. 

2. Optimize the SOC test automation with resource allocation problems by 

considering more complex systems such as cores embedded in another core, split 

and merge TAM, etc. 
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