ABSTRACT

DEWITT, MARTIN A. The Spectrum and Decays of Scalar Mesons in the Light-Front
Quark Model. (Under the direction of Professor Chueng-Ryong Ji).

We use the light-front quark model (LFQM) to investigate the structure of the
scalar mesons, mainly focusing on the three heavy isoscalar states fo(1370), fo(1500), and
fo(1710). We compute the spectrum of scalar mesons by diagonalizing a relativized, QCD-
inspired model Hamiltonian written in a basis of 25 simple harmonic oscillator states. The
masses are then used to perform a mixing analysis which assumes that the heavy isoscalars
are mixtures of nn = (%), 55, and gg. The resulting quark-glue content is used along
with the meson wave—functions determined from the spectrum to compute the decay rates
for fo — mm, fo — KK, and fy — nn. We find that when the glueball contributions to the
decays are ignored, the results are in poor agreement with the available data. However, when
we estimate the effect of including the glueball contributions in the decays, a solution can
be found which matches the data quite well. In this solution, the fy(1710) is mostly glueball
(78%) while the fp(1500) and fp(1370) are dominantly mixtures of nn and ss. Additionally,
in this solution the glueball contributions to KK and nn decays are significant while the
contributions to w7 decay are negligible. This finding is in agreement with Chanowitz [1]
who uses chiral perturbation theory arguments to show that the amplitude for a glueball
to decay to a ¢q pair is proportional to the quark mass. This results in a suppression of the

7 decay channel compared to KK and .
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Chapter 1

Introduction

The assignment of the scalar(JP¢ = 07+) ¢g states has long been an enigma in
hadron spectroscopy. Unlike the elegant vector and tensor multiplets, it is still controversial
which are the members of the expected L = S = 1 ¢¢ multiplet since there are now too
many 07 mesons observed in the region below 2 GeV for them all to be explained naturally
within a ¢g picture [2]. For example, 2 isovector(IJFC = 107%)[ag(980), ao(1450)] and
5 isoscalar(0 071)[fo(600)(or o), f0(980), fo(1370), fo(1500), fo(1710)] states have been
reported by the Particle Data Group [2]. This has led to the suggestion that not all of
them are qq states. The main reason for this situation is that around the relevant mass
region there exist other structures such as K K molecules [3, 4, 5, 6, 7], glueballs [8, 9], and
four-quark(qqqq) systems [10, 11, 12, 13].

Interpreting the structure of each of the known scalars has proven to be a fairly
controversial endeavor. Take, for example, the light scalars (i.e. those below 1 GeV). Due
to some of the difficulties associated with fp(980) and ao(980)—e.g. the strong couplings
to KK in spite of their masses being at the KK threshold, and the large discrepancies
of mm [5, 6],yy [7] and ¢-radiative decay [14] widths between non-relativistic (NR) quark
model predictions and experimental data—Weinstein and Isgur [3, 4] proposed the isospin
I =0£(980) and the I = 1a(980) within the NR potential model as the “K K molecules”.
However, a more conventional interpretation for these states has been given by Toérnqvist
and Roos [15, 16] who analyzed the data on the f((980), fo(1370),a((980) and ap(1450)
as unitarized remnants of qg 13P, states with six parameters and theoretical constraints
including flavor symmetry, the OZI rule, the equal-spacing rule for the bare qg states,

unitarity, and analyticity. In this work, the authors concluded that the f,(980) and the



fo(1370) are two manifestations of the same s5, while the a(980) and the a(1450) are two
manifestaions of the same ud state.

The interpretation of the structures of some of the heavier scalars has been some-
what less controversial. For example, f,(1370) and ag(1450) are most commonly inter-
preted as qq states, even though the flavor assignments for each are still unclear. There
has been some agreement on identifying fy(1500) as a glueball, possibly mixed with nn =
(uti+dd)/+/2 and s5. This interpretation has followed both from lattice QCD which, in the
quenched approximation, predicts that the lightest glueball has J¥¢ = 07+ and a mass of
1.55-1.74 GeV [17, 18], as well as from the fact that fy(1500) decays strongly into 77 but
not into K K.

However, another possible interpretation for the glueball has been put forward by
Chanowitz [1] who finds that the coupling of a spin zero glueball (G) to light ¢g pairs is
chirally suppressed by a factor of m,/m¢g. This is because for my = 0, chiral symmetry
requires the quark and antiquark to have equal chirality, hence unequal helicity, implying
non—vanishing net angular momentum, so that the amplitude must vanish for J = 0 in the
chiral limit. Since it is proportional to the quark mass, this suppression will be stronger for
ui@ and dd than for s5. So the glueball could have a significant contribution to KK decays,
while its contribution to 77 would be small. The fq(1710) decays more strongly to KK
than to mm, and this has been taken as evidence that is is mainly an s5 state. However,
if Chanowitz is correct one could interpret the fy(1710) as being the scalar glueball with
its comparatively large K K width explained by chiral suppression. Chanowitz argues that
this interpretation is also more consistent with the fact that the fo(1710) is very prominent
in radiative ¥ decay. It is also interesting to note that Sexton, Vaccarino, and Weingarten
have published lattice results [19] which are consistent with the predictions of Chanowitz’s
chiral suppression. They computed the partial decay widths for the scalar glueball to pairs
of pseudoscalar mesons in the quenched approximation. They found that the coupling
increased with increasing pseudoscalar meson mass, so that the decay width to KK was
larger than the decay width to 7.

Close and Térnqvist [20] have proposed a scheme which sorts the light scalars
into two distinct nonets: one nonet above 1 GeV and another below 1 GeV, with different
physics operating in each. The nonet above the 1 GeV threshold is comprised of the ¢ states
mixed with the scalar glueball. The glueball’s presence is inferred from the overpopulation

of isoscalars in this mass region. The nonet below 1 GeV is made up of ¢¢¢G and meson-



meson molecules. As such, f,(980) and ag(980) can be thought of as superpositions of
four-quark states and KK molecules. The authors of Ref. [20] demonstrate that such a
scheme involving two scalar nonets can be described using two coupled linear sigma models.

In this thesis, we investigate Close and Tornqvist’s proposal that the isoscalars
fo(1370), fo(1500), and fo(1710) are mixtures of nfn = (u@ + dd)/v/2, s5, and gg using a
nonperturbative model based on light—front dynamics (LFD). A major advantage of LFD
is that the nontrivial (nonperturbative) QCD vacuum effects may be accumulated to the
zero-modes of the LF Fock-components leaving the rest of the vacuum trivial. Using this
advantage, one can give completely model-independent kinematic constraints to the LF
helicity amplitudes as evidenced in the recent literature [21]. These model-independent
constraints provide useful consequences in the phenomenology based on nonperturbative
models and PQCD. The particular nonperturbative model that we apply in this work is the
light—front quark model (LFQM).

This model has been used very successfully in both the pseudoscalar and vector
meson systems [22, 23, 24, 25, 26, 27]. With only a few parameters, it has been used to
predict pseudoscalar and vector meson spectra, starting with the up/down quarks and going
all the way to the bottom quark sector. Additionally, once the trial LF wave functions
were fixed from the spectroscopy, a variety of wave function-related observables such as
form factors, charge radii, decay constants, radiative meson decays, two—photon decays of
pseudoscalar mesons, etc. were computed. All of these were in very good agreement with
the data. Given such remarkable success, we now extend the LFQM to investigate the scalar
mesons.

The work is organized into 6 chapters. In Chapter 2 we begin with a basic intro-
duction to the light—front formalism and present the essential features of the quark model
used here.

In Chapter 3 we examine some fundamental issues in light-front dynamics that have
plagued calculations in the past. Spurious divergences appear in light—front calculations
that do not appear when the same calculations are done in the equal-time formulation.
These divergences appear as the result of a failing of the naive method of performing the
loop integrations in which one simply picks up the poles and assumes that the contribution
from the arc at infinity is zero. We show that in certain cases, the integrands do not fall
off sufficiently fast to guarantee that these arc contributions will vanish. As such, the arc

conributions must be included in order to obtain the correct result. We fully investigate



these treacherous points so that they are understood and can be handled properly should
they arise in the investigation of the scalar mesons.

In Chapter 4, we present a preliminary investigation of the scalar mesons. We
construct a light—front scalar meson wave function for which the radial part is taken to be a
single ground-state simple harmonic oscillator wave function. The wave function parameters
are taken from previous pseudoscalar and vector meson investigations. These simple wave
functions are used to compute absolute widths for the radiative decay processes fo — v,
fo — ¢v, and fo — py which incorporated the effects of glueball-¢g mixing. The mixed
physical states are assumed to be fo(1370), fp(1500), and fp(1710) for which the flavor—glue
content is taken from the mixing calculations of other works. Unfortunately, there is no
reliable data for these radiative processes, so little can be concluded about the structure
of these isoscalars. We also compute decay widths for the processes ¢ — (071)y and
(0T*) — ~v involving the light scalars fy(980) and a(980). We assume these to be ¢
states to see whether this structure alone can explain the data. The results we obtain
are not consistent with well-established data, further supporting the idea that f,(980) and
ap(980) are not conventional gg states.

In Chapter 5, we improve upon the preliminary work presented in Chapter 4 in a
number of ways. First, we compute the meson spectrum using the relativized, QCD-inspired
model Hamiltionan of Godfrey and Isgur [28]. Here, the Hamiltonian is written in a basis
of 25 simple harmonic oscillator states. Second, we perform our own mixing calculation
using the energies taken from the quark model spectrum. Unlike many other scalar meson
mixing analyses that have been done, we do not assume glueball dominance. That is, we
do not assume that the gg—qq mixing is negligible compared to qg—gg mixing, but leave the
mixing scheme as general as possible. Third, we apply the improved wave functions from
the spectrum calculation to the hadronic decays fy — =m, fo — KK, and fy — nn for
which there is more well-established data. Here, we find that the hadronic decay data can
be explained for a scenario in which the fy(1710) is composed mostly of the scalar glueball,
while the f,(1370) and fo(1500) are dominantly nn—ss mixtures.

In Chapter 6 the results of our investigation are summarized and discussed, and a

brief discussion of future work related to the structure of scalar mesons is presented.



Chapter 2

The Light-Front Quark Model

While in principle, one can parameterize space-time in a number of different ways,
Dirac [29] showed that there are only three fundamentally different space-time parameter-
izations: the instant form, the front form, and the point form. These parameterizations
are fundamental in the sense that one cannot be mapped to another by means of a Lorentz
transformation [30]. Each form is characterized by a unique type of quantization hypersur-
face. For example, in the instant form, a system is initially defined at all points in space,
(z,y,z), at some initial time, ¢t = tg. The system is then evolved forward in time by some
increment At, such that a new description of the system is obtained at all points in space
at the new time, t = tg + At. The quantization hypersurface is the surface along which
t = constant. In this way, the instant form quantization hypersurfaces are much like the
frames of a movie. In contrast, the front form uses light-cone time, 7 = ¢+ 2. The front form
quantization hypersurface is the surface along which 7 = constant. This happens to be a

plane tangent to the light-cone. A system is initially defined at 7 = 0 and is then evolved

t2 . x2+y2+z2

forward in in light-cone time. For the point form, the time is given by 6 = e

The quantization hypersurface for the point form is the surface along which 6 = constant,
and this has the shape of a hyperboloid.

Each of the above parameterizations should yield the same physics. Therefore, the
choice of which to use is somewhat arbitrary. While for most problems, the instant form
which uses ordinary time seems most appropriate, there may be other problems for which
this is not necessarily the case. As a simple example, consider an Earth observer who, at
time ¢t = 0, views light from a star that is a distance z away. The observer may ask, “Does

the star exist at t = 07” The answer to this question is not known since it took the light



some time to reach the Earth observer. It is clear, however, that the star must have existed
at time ¢ = —Z. Therefore, the star does exist at the light-cone time 7 = (=2) + 2 = 0.
In fact, one can consider a large group of stars, each different distances from the observer.
Some may exist at ¢ = 0 and some may not. However, all of these stars would exist at light-
cone time 7 = 0. For this situation, the light-cone time, 7 is more well-suited to describe
the system than the instant time ¢ [31].

It turns out that a quantum field theory defined at equal light-cone time, 7, has
some advantages over a quantum field theory defined at equal time, t. This is especially
true when one is attempting to solve bound-state problems. We will begin with a detailed

discussion of the differences between instant form and the front form. From this point

forward, the front form will be referred to as the light-front form.

2.1 Light-Front Coordinates

The transformation from instant coordinates to light-front coordinates,

(@,3",7°,2%) — (2", 27, 2", 2%, (2.1)
is given by
= 043
= 9_ 33
ot = 7
o = 77, (2.2)

where we have adopted the Lepage-Brodsky convention [32]. The transformation can be
written in a more compact form

ot = CrEY (2.3)



where the transformation matrix, C%, is given explicitly as

1 00 1
on 1 00 -1
010 O
001 O

(2.4)

This transformation is composed of a rotation followed by a scaling. We can use the fact

that the scalar product of two four-vectors should be invariant uder this transformation to

derive the light-front metric tensor. The scalar product of two four-vectors, a and b, is

ab = (aT)“g,“,b” = (aT)agagEﬁ .
The instant four-vectors can be written as

@ = (O — @) = @) (C

Therefore, the scalar product can be written as
ab = (") gub” = (") ([C7)5, Gas (O™ 0¥
from which we can see that
g = ([C71) 5, Gap (CTH)5,.

Using the following form for the instant metric tensor,

~ v

g;w:g =

o o o =
o
|
—_
o

(2.5)

(2.8)

(2.9)

(2.10)



we can easily show that the light-front metric tensor is given by

03 0 0 02 0 0
1
5 0.0 0 20 0 0
Juv = 2 gW = (211)
00 -1 0 00 -1 0
00 0 -1 00 0 -1

2.2 Light-Front Lorentz Transformations

Any transformation which leaves the metric tensor invariant is a Lorentz transfor-

mation. This follows from the invariance of the length of a four-vector, x*.

ahr, = 1%,
xlugw/xly — xagaﬁx,@
A“aaco‘gw,A”ﬁxﬁ = 2%up". (2.12)
This now gives that
9op = N g N 5. (2.13)

Any transformation satisfying this condition is a Lorentz transformation.
If we use the matrix notation G for the metric tensor and A for the Lorentz

transformation then this condition is written as
G = ATGA. (2.14)
The Lorentz transformation can be written in terms of a generator, A, as
A = e (2.15)

If we assume for the moment that w is infintesimally small, we can write the infinitesimal

Lorentz transformation. Keeping the first-order term only

A=1+wh (2.16)



This transformation should leave the metric invariant. . .

(1+wA\DG(1 +w))
MG+ G
A= -G \q.

(2.17)

From this, we can find the structure of the generators of the Lorentz transformation.

2.2.1 Light-Front Generators

In its most general form, the generator of light-front Lorentz transformations can

be written as

A11
A21
A31
A4l

A14
A24
A34
A4

(2.18)

From the condition in Eq. 2.17, and the light-front metric tensors in Eq. 2.11 we find

A1 A1z
A2l A2
A3l As2
A1 Ag2

A4
A2q
A34
A4

o O N O
o O O N

0 A1 A2 Azl Aan
0 A2 A2 A3z A2
0 A1z A2z A3z Ag3
—1 A4 Aog A3r Ay
1

0L 0 o0

1

= 0 0 0
< | 2

0O 0 -1 0

0O 0 0 -1
2X30 2049
2 2

31 a1 (2.19)

—A33 —A43
—A34 —Au

So then, the generator of the most general Lorentz transformation, A, is of the



10

form
A 0 2C 2D
0 —A 2F 2F
A= (2.20)
E C 0 B
F D —-B 0
This is what I want to put
0 00O 0 00O
1 1 0 0 2 0 9 ] 0 0 0 2
Brp=—i Bip=—1t
1 0 00 0 00O
0 00O 1 0 00
1 0 00
0 -1 00
B} =—i (2.21)
0 0 00
0 0 00
The six LF generators are then given as:
00 20 0 0 0 2
0 00O 0 00O
Stp=—i S =—i
01 00 0 00O
0 00O 01 00
00 0 O
00 0 O
S3 e =—i (2.22)
00 0 1
00 -1 0

These are the generators of the light-front boosts and rotations written in the LF basis.

They can be written in the instant form basis by using the basis transformation in equation
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(?7).

0 0 0
1 0 01

C'B},C = —i =K'-J?
0 0 00
0 -1 .00
00 1 0
00 0 0

CiB2,C = —i =K?*+J!
10 0 1
00 -1 0
0001
0000

CB}.C = —i = K3 (2.23)
0000
1000

And for the rotations...

010 0
100 —1

CI8[pC = —i =K'+ J?
000 0
010 0
001 0
000 0

Cc182,.C = —i =K*-J!
100 —1
001 0
0 0 00
0 0 10

c1si.c = —i =3 (2.24)
0 -1 00
0 0 00
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2.2.2 Light-Front Lorentz Transformations
The Lorentz transformations are derived from the generators as follows
WA 1 2 1 3
A=e :1—|—w)\—|—§(w)\) —i-?(w)\) + ... (2.25)

Using the notation that the w’s associated with boosts are denoted by 1’s (w(B*) = 7;) and
those associated with rotations are denoted by ’s (w(S%) = 6;), the Lorentz transformations

for pure boosts and rotations are determined to be:

1 0 0 0 1 00 0
1 m 1 2m 0 2 n 1 0 2
Al = Alp =
m 0 1 0 001 0
00 0 1 nm 00 1
e 0 00
0 e™ 0 0
ABS = ‘ (2.26)
0 0 10
0 0 01
1 62 20, 0 1 62 0 20,
01 0 0 01 0 0
Afp = Afp =
06 1 0 00 1 0
00 0 1 06, 0 1
10 0 0
0 1 0 0
ASy = (2.27)
0 0 cos(f3) sin(f3)
0 0 —sin(f3) cos(f3)

The Lorentz transformations can also be transformed into the instant basis as
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follows:
Ltgni m 0 g
CTABLC = mo L0 m
0 0 1 0
—gm om0 1— g
L+4m5 0 m 31
0 1 0 0
cI\BLC =
72 0 1 12
—3m5 0 = 1—gm
cosh(ns) 0 0 sinh(ns)
0 10 0
CTARC =
0 0 1 0
sinh(ns) 0 0 cosh(ns)
(2.28)
And for the rotations...
1+167 6, 0 —16%
_ 1 61 1 0 —01
CINYLC =
0 0 1 0
262 61 0 1-—36%
1+362 0 6, —363
1, Q2 0 1 0 0
C7INYLC =
0 0 1 —0s
1020 6, 1-163
1 0 0 0
0 0 in(f3) 0
oS0 = cos(fs)  sin(0s) (2.29)
0 —sin(f3) cos(f3) 0O
0 0 0 1




The action of the Lorentz transformations on a light-front four-vector are

Bl
ALF

B2
ALF

And for the rotations...

xt

mat + 27 + 2mat
mat + rl

512‘2

xt

szt + a7 + 2mpa?

.CCl

nox ™ + 22
eBgt

e By~

.’El

xQ

T+ 03x~ + 2012t

z
Oz~ + !

562

T + 032~ + 2092>

cos(03)x! + sin(fs)z?

— sin(@3)x! + cos(03)z?

14

(2.30)

(2.31)
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2.3 The Model

In the instant form of dynamics, the energy—momentum dispersion relation for a

massive particle takes the irrational form

P’ = /P2 +m2 (2.32)

Converting this into the light—front, one obtains a rational energy—-momentum dispersion

relation given by

pT= = (2.33)

In the LFQM, the Fock state expansion is truncated such that only the lowest Fock state is
retained. The spin-orbit part of this state is treated as a free state so that the angular mo-
mentum, parity, and charge conjugation can be assigned by the Melosh transformation [33].
The radial part is assumed to be a sum of simple harmonic oscillator basis states. The
radial wave functions are then fixed by diagonalizing the model Hamiltonian, the explicit
form of which is given in Chapter 5.
A meson will be composed of a quark and an antiquark with four-momenta p, =
(p(‘;, Py Pq l) and pg = (p;, Pg+Dg L) respectively. The total momentum of the meson is then
P = p, + pg. It is particularly convenient to describe the system in terms of the Lorentz
invariant variables:
_ P
T=pr
kL= (1= a)fyL — oL (2.34)

One can easily verify these are boost invariant by applying any of the boosts in Eq. 2.2.2
to the quark and antiquark four-momenta.

The model wave function is written as

- ok, - =
Wy 5 (kL) =/ R k)RS (@, k). (2.35)

where ¢(z, k 1) is the radial wave function and mquia(va k 1) is the spin—orbit wave function.
The term under the square-root is the Jacobian of the variable transformation from ordinary

equal-time coordinates to light—front coordinates. It is absorbed into the wave function
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purely as a matter of convention.
The spin—orbit wave function is uniquely determined by the Melosh transforma-
tion. This is the transformation from the ordinary equal-time static spin—orbit wave func-

tion to the light—front spin—orbit wave function, and is given by

m+aMy —id - (A x k)

Ras(z, ki, m) = . (2.36)
\/(’m +aMo)? + K
Applying the Melosh transformation to obtain the spin—orbit wave function yields
KK (@ k) = Y (R (@ kL, mg) A
Ny N
T 7 / 1 / 1 /
X (Ag|Ry, (1 —z, —kL,mq)\)\q>(§)\q§)\q\JJ3> . (2.37)

While there are a number of schemes used to treat the meson mass, My, we choose the

invariant meson mass scheme [34, 35, 36]. The invariant meson mass is defined as

72 2 2 2
kl—kmq kJ_—qu

2 = " — (2.38)
In terms of the invariant meson mass, the z-component of the momentum is
k, = <:1: — %) My + %]&:ﬁ), (2.39)
which yields the Jacobian of the variable transformation from (&, k 1) — (=, k 1),
Ok: _ Mo [1 _ (mg = my)” mé)Q] (2.40)
or  4z(1—x) Mg

when differentiated with respect to .
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Chapter 3

Treacherous Points in the LF

Formalism

It is well known that spurious divergences appear in light-front calculations that do
not appear when these same computations are done in the standard equal-time formulation.
These divergences have been regulated with various methods including the principal-value
prescription, the Mandelstam-Liebbrandt prescription, cutoffs, smearing, and BPHZ-like
differentiation and reintegration. In Ref. [37], an end-point singularity was seen in the
(141)-dimensional calculation of the pseudoscalar (and scalar) elastic form factor. The
form factor was computed by first writing down the one-loop, triangle Feynman diagram
and then integrating over the light-front energy by the method of residues. When the plus
component of the current was used, the form factor was finite and equal to the manifestly
covariant result. However, when the minus component of the current was used, an end-
point singularity appeared in the result. Once this singular piece was removed by hand,
the remaining amplitude was equal to the manifestly covariant result. In a subsequent
paper [38] it was shown that this end-point singularity could be removed by smearing the
photon vertex, which introduces a cutoff parameter, A. The singularity was removed for
finite values of lambda, as well as in the limit A — oo.

However, further investigation has shown that when such light-front calculations
are handled properly, spurious divergences do not appear in the final result and there is no
need for any regularization procedure. Thus far, such divergences have appeared because of

the application of the naive method of performing the loop integrations in which one simply
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picks up the residues, and ignores the contribution along the arc used to close the contour at
infinity. In the ordinary equal-time (or instant form) Hamiltonian formalism, this procedure
is safe unless one utilizes a common trick to reduce the number of denominators because
the structure of the propagators is such that the integrand will always vanish sufficiently
fast as the energy (k%) goes to infinity. Consequently, the contribution along the arc at
infinity vanishes and the full result is simply given by the sum of the residues. However,
in the light front there are cases in which the integrand does not vanish sufficiently fast as
the light-front energy (k™) goes to infinity. Then, the arc contributions are nonzero and
must be included in order to obtain the correct result. Moreover, we show in this work that
the point contributions occur when the integration contour in k£~ plane crosses a moving
singularity. In a paper devoted to the discussion of the equivalence of light-front (LF) and
covariant QED, Misra and Warawdekar [39] also spotted the pole at infinity where we use
arc and point contributions. Their treatment, based on the method of Ref. Ligterink1995,
completely restores equivalence at the one-loop level.We also notice similar considerations
of finding counterterms in LF Hamiltonians. In the classic paper [40] where the discretized
light cone quantization (DLCQ) was introduced, the self-induced inertias were found when
the normal ordered Hamiltonian was considered. Later, Burkardt [41] constrained the finite
part of noncovariant counterterms in effective LF Hamiltonians.

In this work, in order not to obscure the main issue, we will investigate the (141)
dimensional calculations of both a simple vector two-point function (Section 3.1) and the
pseudoscalar charge form factor (Section 3.2). Extensions to the (3+1) dimensional calcula-
tions are straightforward. In Section 3.1.1 we will show how neglecting the arc contributions
at infinity leads to the appearance of an end-point singularity in the minus component of
the vector two-point function. We will also show that computing these arc contributions
is not an easy task. In fact, it may not be possible in general to explicitly compute these
contributions. Therefore, in Section 3.1.2, we will introduce an alternative method of eval-
uating the integral which includes the arc contributions, but does not require that they be
computed explicitly. This alternative method removes the end-point singularity and restores
the equivalence between the manifestly covariant and light-front results. In Section 3.1.3 we
will show how there are similarities between this alternative method and the tensor method
which involves reducing an general integral to a sum of scalar n-point functions. In Sec-
tion 3.2, we will show how our alternative method can be applied to the calculation of the

pseudoscalar charge form factor, restoring the equivalence between the form factor obtained
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from the minus component of the current and that obtained in a manifestly covariant way.

Finally, we will finish with some concluding remarks in Section 3.3.

3.1 The Vector Two-Point Function

3.1.1 Origin of the End-Point Singularity

To show how the problem of the false end-point singularity arises and to discuss
how it should be resolved, we will use the simple example of the vector two-point function
in (1+1) dimensions,

v il

= [ &k : 1
k1 (k=p)a / [k2 —mi +ie][(k — p)* — m3 + i] .

This two-point function could arise, for example, in the calculation of the fermion self-energy
(See Fig. 3.1). The result for this integration takes the form Vk:/zk:—p) = Ip*. In terms of the

Feynman parameter, x, the manifestly covariant result for I is given by

1
x
I.op = —iw/ dx .
o x(1—z)p?+x(mi—m3)—mi

(3.2)

To evaluate this same integral in the light-front, it is necessary to rewrite it in terms of the
light-front energy (k= = k” — k') and momentum (k™ = k° + k'), and then perform the

integration in the complex k~ plane. Here, k2 = kTk~ and so

1 K+
%y = — / dktdk™ , 3.3
n =5 e [y v [ e &
where k; = mi;“ and k;, =p~ + lﬁ%ﬁ. Let us first examine the plus component (pu = +).

Since the positions of the two poles depend on the value of k™ we must first break the range

of the k™ integration into different regions. For kT < 0, both k] and k; are located in

k-p
- k

Figure 3.1: Fermion self-energy.
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the upper half-plane. For 0 < k* < p*, ki shifts to the lower half-plane. And finally for
kT > pT, both poles are located in the lower half-plane. For the first region (kT < 0) and
the third region (k™ > p™) we can close the contour in the lower and upper half-planes
respectively such that the result of these integrations is zero. This leaves only the second

region (0 < k™ < p*) where, if we pick up the pole k7, we find the light-front result to be,

1
xT

I = —i7 dx , 3.4

Rl N v e 34

where we have used the definition, k™ = xp™. This is obviously identical to the manifestly
covariant result of Eq.(3.2).

Now, for the minus component (u = —), the integration is a bit more tricky. If
we naively follow the same procedure as for the plus component, we would say that the
integration in the first and third regions is zero. In the second region, if we pick up the k;°

pole and take the result to be just the residue we would obtain (again with k* = xp™)

Isingular _ _i_7T ! d m%
b= p*Jo  wlr(l—a)p? + x(mi —m3) —mi]
am (! (1 —z)p? + m3 — m3 iﬂ/ld:): (3.5)
p*Jo z(l—z)p?+a(mi-mi)-mi p*Jo @’ .

which is clearly not the same as I.,, and I p,. In fact, this result involves an end-point
singularity at z = 0. In the second line above we have explicitly separated out this singular
part from the rest of the integral. Had we chosen to pick up the k5 pole instead of the ki
pole, there would be an overall factor of (1-x) in the denominator and the end-point singu-
larity would occur at x=1. However, as we mentioned before, we have not yet accounted
for the contributions along the arcs at infinity. To see that these contributions should exist,
examine Eq.(3.3) and note that for the minus component there are equal powers of k™ in
the numerator and denominator. This means that as k= — oo, the integrand does not fall
off to zero. Consequently, there will be nonzero arc contributions in all three regions of the
k™ integration. This situation did not occur for the plus component since, in that case,
there was only one factor of £~ in the numerator.

Unfortunately, it turns out that explicitly evaluating the arc contributions is, in

general, not straightforward. The way in which one would usually proceed would be to
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substitute ks~ = Re’ into the minus component of Eq.(3.3),

+ . ig
where ¢ runs from 0 — 7 if the contour is closed in the upper half-plane and from 0 — —7
if it is closed in the lower half-plane. The ¢ integration is not easy to evaluate. The only
straightforward way to compute this would be to neglect k; and k;, as R — oo. The ¢
integration then becomes trivial. However, there are specific points (k™ = 0 and kT = p™)
at which k" and k; themselves tend to infinity, and it is therefore not certain that neglecting
them is safe. To see that this is indeed the case, we proceed in this straightforward way.

The arc contributions for each of the three regions of k™ are then found to be:

. 0
dx
Et<o :oqerel =T _ @ 3.7
- 1
dx
0<kt <pt - I‘“"CQ_—M/i 3.8
=~ =P LF— 2p2 0 CC(]. N CC) ( )
—1 o0 dx
s pt o qeed = T / . 3.9
>p LF— 2p2 L CC(l — .CC) ( )

Since [+ [ = S(Residues), these arc contributions must be subtracted from the sum

of the residues to give the final result. Conveniently, if we let  — (1—2) in Eq.(3.9) and add

rc

it to Eq.(3.7), these two terms cancel each other exactly. So the only remaining contribution

is that of Eq.(3.8). This remaining contribution can be rewritten in the following way,

e — Kis ldix:i_ﬂ/ldx l+ 1
2p% Jo x(l—2) 2p* ) x l—x
~ 1 S
1 1 d
_ i dx(_+_>:ﬁ; da. (3.10)
2p% Jo G p¢Jo =

Note that this arc contribution is exactly equal to the singular part of Eq.(3.5). Subtracting
the arc contribution of Eq.(3.10) from the residue given by Eq(3.5) gives,

: 1 2 2 2
]. - -
17; . (1 —2)p”+m7 72712

Ia’rcmethod _
L= p?Jo  x(l—x)p? +a(mi—m3) —m

5. (3.11)

Evaluating this numerically we find that it is not equal to I..,. So this straightforward
method of computing the arc contributions does not restore the equivalence between the

light-front and manifestly covariant calculations. It evidently misses contributions from the
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two points kT = 0 and k™ = p™ which are needed to restore this equivalence. To include
the contributions from these points, we have devised an alternative method of evaluating
this integral which, by coincidence, turns out not to require explicit calculation of the arc

contributions.

3.1.2 An Alternative Method

The inablilty of the usual method of evaluating light-front integrals (i.e. first
integrating in the complex k~ plane and then integrating over k™) to account for the
contributions at single points is not necessarily restricted to cases in which arc contributions

exist. For example, consider the simple integral,

1
S = /ko(k2 i (3.12)

This integral is obviously finite and, when evaluated in a manifestly covariant way, imme-

diately yields ;n—’g However, when we write this integral in light-front coordinates,

1 1
S = - [ dktdk™
2 / (ktk= — m? + ie)?
1 1
= —/dk+d - el (3.13)
2 R — ()]
we see that there is a double pole at % Therefore, when integrating by the usual

method, we can close the contour in the opposite half-plane and we obtain zero. Moreover,
the integrand falls off to zero as k~ — oo, so there are no arc contributions. This method of
evaluating the light-front integral is clearly unable to reproduce the simple result obtained
in the manifestly covariant calculation. To see where the problem arises one must appeal

to a different method of evaluation. If, for example, we evaluate the £~ integral on a finite
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interval and then take the limit as the interval goes to infinity, we obtain

S = 1lim/oodlfr/de 1
. 2R—oo ) o _r (kTk= —m?2 +ie)?
1 > -1 1 1
= =1 dkT [ —
2R£noo/<><> < +>[Rk:+—m2+ie+Rk++m2—ie
1 [ 1
= — lim —/ dk™ - -
R—oo R J_ [k+ — (%)][k&- _ (%)]
. 1 —271 ]
= T pum oo m2—ie —m2+ie
R—oo R RJF
T
= R (3.14)

If one examines the integrand in the second line, it is clear that as R — oo the function is
essentially zero everywhere except near k™ = 0. Therefore the entire value of this integral
comes from the region where k=~ — oo as k™ — 0. The usual way of evaluating the light-
front integral fails to see the contribution at this point and therefore fails to reproduce the
manifestly covariant result.

This is the same problem we are faced with when trying to evaluate the vector
two-point function. As k= — oo, there are contributions that come from the points where
k™ — 0 and where kt — pT. The usual method of evaluating the integral fails to see
these points. In order that these contributions be included, we propose an alternative
solution method. The method involves first determining the form of the singular pieces of
the integral. Next, these pieces are subtracted from the original integral which renders it
regular. Finally, we compute these singular pieces explicitly using light-front cylindrical
coordinates and add the result back to the now regular integral.

To illustrate in detail how to compute I p_ using this alternative method, we will
now return to the minus component of the vector two-point function,

=

1
Vo, == [ dktak- G
w0 =3/ b —ml T~ —p) —mi i O

Note that as k= — oo there are linear divergences as k™ — 0 and as k™ — p*. Let us
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isolate the singular pieces in each of these two cases. First, as k= — oo and k+ — 0,

1 k~
V. — [ dkTdk™
k=p2 / [ktk— —m2 + ie][-ptk~]
1 _ P~ —
—— [ dktdk =V 3.16
2p? [ktk= —mi+ie — ! (3.16)
Secondly, in the case where k= — oo and kT — p™T,
1 k~
|7 — [ dkTdk™
kil T3 / Tk )[(kF —pF) (k™ —p7) — m3 + ie]
1 _ p- _

= — [ dkTdk =V,. 3.17
7 o ) —mgrad 2 G4

Now, if we define D1 = [k*k~ — m? + i) and Dy = [(kT —p*) (k™ — p~) — m3 + i€, then
subtracting the two singular pieces from the vector two-point function and subsequently

adding them back gives,

Vi = % / dk+dk™ D’jD2 VT -V VT 4V
_ 5_192 /dk:+dl<:_ :g’lﬁb D% - D%] TR A
— §_p2 /dk+dk— :pﬂf ;IZ;Z - Dl} V4V
_ ;’_p; /dk*dk kT Eff;;m% — m%} YV V. (318)

Notice that the term in square brackets has now been turned into an expression that, when
integrated, no longer involves any arc contributions. The term with £~ has been cancelled
and replaced with a k™ term that falls off as k= — oco. Performing the pole integration for
this gives,

—iTp~

! (1 —2)p* +mi —mj3
V- =———— [ d L2 Vi + V. 3.19
k1(k—p)2 p2 /0 xx(l —2)p? + x(m? — m2) — m2 VotV (3.19)

Now, to evaluate the two singular pieces, V|~ and V, , the integrals are written

in light-front cylindrical coordinates: k™ = Rcos¢ and k= = Rsin¢. In this way V|, for
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example, becomes

- b +Jk— 1
Vo = ——— | dkTdkT ————
1 2p2 ktk— —m?
_ R 2T
1
- P lim rd’r/ do ; 2
2p2 R—oo Jy 0 r2cos ¢sin g — my
- 1
~ —5? [ — m(m + 4iIn(R)) + 27i In(m?) + O(E)} . (3.20)

A similar expression can be found for V,~ which differs by an overall minus sign, and in
which m; is replaced with my. Adding V™ and V;,, the constants and R-dependent terms

cancel giving
- 2
Vi 4V = —”Z; In <m—;> (3.21)

my

So substituting Eq.(3.21) into Eq.(3.19) and dividing by p~ we obtain

potgmethod _ AT (7, (Q-w)pthmiomi | im (m_%> (3.22)

n
P Jo (1 —o)p?+a(mi-m3)-mi] p> \mj

When this result is integrated numerically, it is shown to be identical to the manifestly
covariant result of Eq.(3.2). Note that the first term of this result is identical to Eq.(3.11)
which was found using the straightforward method of evaluating the arc contributions. The
second term in the above result gives the contributions coming from the points k™ = 0 and
kt = pT. Therefore, our alternative method determines all of the contributions that were
missed by the usual method of evaluating light-front integrals, and which are needed to
demonstrate the equivalence between the light-front and manifestly covariant results.
Although the straightforward method of explicitly evaluating the arc contributions
fails in general, there is a special case in which it can be shown to work. If we examine
the case where the propagator masses are equal (m; = mg = m), then the result for Iy p_

found by computing the arc contributions explicitly, Eq.(3.11), reduces to

Iarcmethod _ _i_7T /1 dx 1 (3 23)
Ze 2 Jo RO =2 —m |

Likewise, the result found by our alternative method, Eq.(3.22), reduces to

1—=x

1
Jalt Tethod _ —iﬂ/ dr . 3.24
i o VEa— o= 320
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Using the fact that if A is a function of x that is invariant under x — (1 — z), then
fol dzlst = %fol dzs, one can see that Eq.(3.23) is identical to Eq.(3.24). In this special
case, the contributions coming from the two points k¥ = 0 and k* = p™ cancel each other
out exactly, and it is therefore safe to ignore them when computing the arc contributions

explicitly.

3.1.3 Similarities with the Tensor Method

We now wish to show how the method introduced in Sec. 3.1.2 is very similar to
the tensor method which reduces a given loop integral to a sum of scalar n-point functions.

The tensor method is applied to the vector two-point function in the following way.

/ d’k s
(k2 — m? + i€][(k — p)? — m3 + i€]

= Ip~. (3.25)

Contracting both sides with p,, and solving for I yields,

1 k-p
I== [ d% :
p? / (k2 —m? + i€][(k — p)? — m3 + i€]

(3.26)

Defining the denominators D = [k? —m? + i€] and Dy = [(k — p)? — m3 + i€], we can note

that (k- p) = (D1 — Do + p? +m? — m3) /2. Substituting this into Eq.(3.26) yields,

;o] ko[i 1 p*+mi-—m3

=— -t . 3.27
2p2 D2 D1 + DlDQ ( )

The expression for I has now been reduced from a vector two-point function to a sum
of scalar one-point and two-point functions. It can be evaluated either in a manifestly

covariant way or in the light-front. The manifestly covariant result is given by,

. 1 2 2 2 2

T p° 4+ my —m;j my
ooy Fn ()], 3.28
cov 2p? [/0 xac(l —z)p? + 2(m? —m3) —m? H <m%>] ( )

which can numerically be shown to be equivalent to Eq.(3.2).

To evaluate I in the light-front, we begin by comparing Egs.(3.27) and (3.18).
In Eq.(3.18) we artificially separated out the singular parts of the integrand. But note
how in Eq.(3.27) the tensor method naturally separates out the singular terms. The two

singular pieces in Eq.(3.18), V;~ and V;, correspond to the two scalar one-point functions
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in Eq.(3.27) in the following way,

1 P
2 PR — -
/d Ko Vi
1 2
/koFQ = ]%xg—. (3.29)

Taking the difference between these two scalar one-point functions gives

1 1 p2 _ _
) m3
= —irln (—;> (3.30)

my

As for the scalar two-point function in Eq.(3.27), since there are no possible arc contributions

the pole integration is straightforward and gives

/ko 1 1/ dk*dk~
DDy 2 kR —p )k — ki b — k]

1
1
= —1 d . 3.31
m/o xac(l — 2)p? + z(m? — m3) —m? (3:31)

Substituting the light-front results (3.30) and (3.31) into Eq.(3.27) gives

< 1 2 2 2 2

im p°+mi —m; (m1>]
Inp= -2 | da pn (1)) 3.32
LE 2p? [/0 (1 —x)p? + z(m} — m3) —m? m3 ( )

which turns out to be identical to the manifestly covariant result in Eq.(3.28).

The tensor method provides a natural way in which to separate the singular pieces
from the integral being considered. Also, it seems to guarantee that, at least in (141)
dimensions, any integral that is finite when computed in a manifestly covariant way will be
free of spurious divergences when computed in the light-front. This can be seen from the
fact that the tensor method reduces an integral to a sum of scalar n-point functions. In
(141) dimensions, power counting tells us that scalar two-point functions and higher are all
free of potential spurious divergences. This leaves just the scalar one-point functions to be
concerned with. Even when evaluated in a manifestly covariant way, the scalar one-point
functions are divergent. However, if the full manifestly covariant result is finite, then this
means that the scalar one-point functions must come in pairs such that the divergent parts

cancel each other out. Since, as we have shown in Sec. 3.1.2, the scalar one-point functions
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have a similar structure in the light-front, it is reasonable to conclude that the divergent
parts of these will always cancel as well. Therefore, in general, no spurious divergences of

the type that we have seen so far should appear in a light-front calculation.

3.2 Pseudoscalar Charge Form Factor

We now intend to apply the lessons we have learned from investigating the vector
two-point function to the calculation of the pseudoscalar charge form factor. The current
corresponding to the diagram of Fig. 3.2 is given by

, 4N 2. kM (—k2+2mima—m3+p-p)+pH (k2 —k-p'—mima)+p'* (k?—k-p—mims)
@' J"|p) = 2?2 [ d*k [k27m%iie}[(kfp)Qfngrie][(kfp’)Qfngrie}

(3.33)

where N is a normalization constant. If we define the form factor by (p/|J*|p) = i(p" +
p'")F(g?), then in terms of the Feynman parameters x and y the manifestly covariant result

is given by

Fcov(q2) = % fol dx folim dy

o r2e(i=z—y)|(m3—m})+(1=2)(mi+mims)—a((w+y—1)? M?—wyq® +mims]
[(z+y) (2+y—1) M2 —zyq®+(1—z—y)mi+(z+y)m3]? ’

(3.34)

where we have used p? = p’?> = M?. We can now examine the plus and minus components
of the current separately. Just as in the case of the vector two-point function, the plus

component of the current contains no arc contributions and easily gives the same result as

Figure 3.2: Pseudoscalar charge form factor (p? = p? = M?).
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Eq.(3.34). However, the minus component involves an integrand that does not vanish as

k~ — oo. This minus component of the cuurent can be written as

W lp) = s [dkTdk™

—ktk= k™ —p p "kt +(@2mimo—m3)k~+(kTk™—mima)(p~+p'7)

KTk —mi [k —p )k —p )—mitid[(kT—p )k —p' ) —m3+id "

(3.35)

If we evaluate this naively by taking simply the sum of the residues and neglecting the arc

contributions, we obtain

2
(1_x)2A42+(1+a)(m1—mQ)Q(%)+(2+a)(1—x)(mlm2—mf)

residues(,2\_ N ( 1+a 1
Frite @)= (42) [fo O =M (=) (] =) =3+ ) MEF (=) (L) (] — )~ (Lr ) Zond]

m2
o @ (14a) (a—2) M2~ (140) (my —m2)* (£8) ~ (1+a) (a—a)[z(mF —m3)+a(m3 —mimy)|+(1+a)? (1 +a—z)m3
0 a[(14z)(a—z) M2+ (1+2) (1+a)(mF —m3) — (1+a)2m?][z(a—z) M2+ (1+a)m3]

aM?2

+-1 fo"dmalz} (3.36)

which contains an end-point singularity at © = a. We have explicitly separated the end-
point singularity from the rest of the integral. We now know that this end-point singularity
arises because we have neglected to include the contributions along the arcs at infinity.
Looking at Eq.(3.35), power counting in k£~ tells us that the first term in the numerator is

the only one that will have this arc contribution. Writing this “bad” term by itself,

(J Voad = o5z [dktdk™

% —ktE k™
Tk —mirid[(hT—p 1)k —p ) —mE+id[(kT—p ) (k- —p )—m+id”

(3.37)

To be safe, we cannot simply calculate the arc contributions in a straightforward way.
Instead, we will use our alternative method. Note that as k= — oo, there are potential
linear divergences as k™ — 0, kT — p™, and k™ — p/T. We will isolate these one at a time,
beginning with the case where k™ — 0 while k= — oo,
(T ha = g [ b b i e
= 0. (3.38)
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So it turns out that the potentially singular term vanishes in this case. Now, for the case
in which kT — p* as k= — oo,
- N +dk— —p Tk k”
T hbaa = g | TR G - R ]
= g JdkTdkT

1 _ —
GERGEREC TR

(3.39)
And finally, for the case in which k™ — p’* as k= — oo,
_ N 4o —p' Tk k™
= 5 J AR G e e
_ N +o7.— —1 g
= o J T e g = s
(3.40)

If we define Dy = [kTk™ — m? +ie], Dy = [(kT —p*)(k™ — p~) — m3 +ie], and D3 =
(kT —p' ") (k™ —p'~) — m3 +i€], then subtracting Egs.(3.39) and (3.40) from Eq.(3.37) and
subsequently adding them back gives

(JVad = (J Dpad —(J )2 —(J )3+ (S )2+ ()3
= 2 [dkTdk™ {gjg;g; — 7 p; + qJDS} + (J Yo 4+ (J7)3

_ | =g ktkTk 4+m2ktq —m2k—qT _ _
= %Idkﬁ_dk |: : qulszqs e :|+<J >2+<J >3'

(3.41)

Note that the first term of the last line is now free of any arc contributions. Also note that
(J7 )2 and (J7)3 both have the form of Eq.(3.20), and they differ only by an overall sign.
Since these two terms have the same mass term, In(m3), they end up completely cancelling
each other out when added together. Therefore, substituting Eq.(3.41) back into Eq.(3.35)
gives

W p) = 2L [dkTdk™

o2
[~k (0 )= (ma —ma) e (o 9 +m3 (40) —p 'kt —mama (o~ +p/)
Tk —m2tid (kT —p ) (k- —p ) —m3+id[(kT—p/ ) (k- —p)—m3+id

(3.42)
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The pole integration can now be carried out without any complications, giving for the form

factor
m2
(1-2)2 M2+ (1+a) (my —mg)? (17 )+(2+a) (1—2) (my mg —mT)

2y_ N (1ta 1
FLF—(q )— = (2+a) fo dx [x(l_x)]\/[2+(1—x)(m%—m%)—m%][(1—3”)(a+x)A42+(1—x)(1+a)(m%—m%)—(1+0<)2m%]

m2
M—22)7(1+o¢)(afm)[z(m%fm%)ﬁ»a(m%fmlmg)]+(1+o¢)2(1+o¢71)m%

a[(1+2) (a—z) M2+ (1+a2) (1+a) (mf —m3) - (1+a)2m?][z(a—z) M2+ (1+a)m3]

z(14z)(a—z) M2 —(14a)? (m1 —maq)?(

ffoa dx

(3.43)

When evaluated numerically, this light-front result for the form factor is identical to the
manifestly covariant result of Eq.(3.34).

In retrospect, we can now see that this form factor calculation could have been
done by explicitly computing the arc contributions in the straightforward way described
in Sec. 3.1.1. This is because the contributions coming from the two points k™ = p™ and
kT = p/T—Eqgs.(3.39) and (3.40) respectively—cancel each other out exactly. To see that
this is in fact the case, we have explicitly computed the arc contribution to the form factor

in the straightforward way and obtained,

N /14« 1 @ 1
Fie (¢%) = — d : A4
Lr-(a) 7r (2+a> |:04M2/0 xa—x} (344)

Note that this is equivalent to the singular part in the sum of the residues given by Eq.(3.36).

When this arc contribution is subtracted from the sum of the residues, the part that is left

over is identical to the form factor determined by our alternative method, Eq.(3.43).

3.3 Summary and Concluding Remarks

In summary, we have demonstrated that the spurious divergences that have so
far been seen in light-front calculations are a result of neglecting the arc contributions at
infinity. Once these contributions are accounted for, the spurious divergences disappear
and the equivalence between the light-front and manifestly covariant results is restored.
However, computing the arc contributions explicitly is not necessarily an easy task. We have
shown that, in general, a simple straightforward computation of these arc contributions can
miss other important contributions coming from specific points in the range of integration.
Therefore, we have developed an alternative method which ensures that all of these relevant

contributions will be accounted for. In certain specific cases where the contributions coming
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from single points happen to cancel each other out exactly, a straightforward calculation of
the arc contributions is all that is needed to remove the end-point singularities and restore
equivalence.

In summary, the final answer is obtained in two steps: First the result of the
naive application of the residues theorem is corrected by the arc contributions, and second
the naive arc contributions are corrected by the effects of the moving poles, i.e. the point
contributions. The need for the inclusion of of self-induced inertias discussed in normal
ordered LF Hamiltonians [40] corresponds to our first step of finding the need to include
the arc contribution. Burkardts finding Am?, [41] as a finite contribution consistent with
the parity requirement corresponds to our second step of finding a finite point contribution.
The finite point contribution we find has a logarithmic dependence on the mass, similar to
Burkardts Am%m.Thus, it is conceivable that our findings may point to some deficiency in
the light-front perturbation theory (LFPT) rules.

It is interesting to note that if we use LFPT rules to compute the pseudoscalar
charge form factor, the same end-point singularity that we have seen arise in other calcula-
tions is manifested. While it is possible to use some type of perscription to regularize this
divergence, we have shown in this paper that such a divergence does not really exist in the
first place. Therefore, the same deficiencies that plague other methods of calculation are
also present in LFPT. We believe that there must be some way to modify LFPT so as to
include the contributions from the arcs at infinity.

Due to the rational energy-momentum dispersion relation, light—front dynamics
has distinguished features compared to the other forms of Hamiltonian dynamics. In par-
ticular, vacuum fluctuations are suppressed and there is a greater number of kinematic gen-
erators. Overall, these distinguished features can be regarded as advantageous in hadron
phenomenology. However, in return, LFD harbors treacherous points as we presented just
one example of them in this work. Thus, careful investigations of these points and judi-
cious ways of handling them should be a priority in order for LFD to be distinctively useful

compared to other forms of Hamiltonian dynamics.



33

Chapter 4

Preliminary Investigation of Scalar

Mesons

4.1 Introduction

In this work, we attempt to shed light on the structures of the scalar mesons by
investigating their radiative decays with the LFQM. Extending the LFQM to include scalars
mainly involves the construction of a new 2Py light-front model wave function which we
discuss in detail in Section 4.2. Here, this scalar wave function is used to study the radiative
decays of the heavy scalars fp(1370), fo(1500), and fo(1710), as well as the light scalars
ap(980) and fp(980). In the case of the heavy scalars, we adopt the scheme of Close and
Toérngvist in which f(1370), fo(1500), and fo(1710) are considered to be mixtures of nn,
s§, and gg. The flavor—glue content of each state is taken from mixing analyses done by
Lee and Weingarten [42] and by Close and Kirk [43]. Taken together, these works provide
mixing amplitudes for three distinct cases of the scalar glueball mass: (1) a heavy glueball
(Mpn < Mgz < Myg), (2) a medium weight glueball (M, < Mgy < M,s), and (3) a light
glueball (Mg < Myn < Mgs). The details of these three mixing scenarios are outlined
in Section 4.3. In the case of the light scalars, a¢p(980) and fy(980) are assumed to be
conventional ¢ states. The flavor content of ag(980) is then (u@ — dd)/v/2, and that of
f0(980) is some superposition of n and ss. Rather than attempting to determine the degree
of mixing for fy(980), it suffices to examine the two ideally mixed cases: fy(980) = nn and
f0(980) = ss.
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In Section 4.4, the general forms of the Q%-dependent transition form factors for
the processes (177) — (0TT)*, (0TF) — (177 )v*, and (0TF) — 4+* are derived. In the
limit as Q2 — 0, these form factors yield the decay constants for the real photon processes
which can then be used to compute the corresponding decay widths. In Section 4.5, we
present our numerical results for the heavy scalars. This includes the form factors and
decay widths for the specific processes fo — ¢v, fo — pv, and fo — vy. Our results for
the light scalars involved in the processes ¢ — fo(ap)y and fo(ag) — 7y are also given.
A summary of the work’s salient points and a brief discussion is given in Section 4.6. In

Section 6, the explicit form of the trace used in section 4.4 is presented.

4.2 The Model Wave Functions

One of the popular quark models in the light-front formalism is the invariant meson

mass(IM) scheme[36, 35, 34] in which the invariant meson mass square Mg is given by

k2, + m?
ME = — i 4.1
;- y M (a)
In our analysis, we will only consider the light-meson sector(u, d, and s quarks) with equal
quark and anti-quark masses(m, = myg).
The light-front ¢gg bound-state wave function of the scalar(*Fy) and vector(3S7)

mesons can be written in the following covariant form

Ui kin, i) = Uy, (pq)FMU)\q (Pg)dnr (i, ki)
= R (@i ki )onr (i ki), (4.2)

where R% s is the spin-orbit wave function, which is obtained by the interaction inde-
pendent Melosh transformation [33] from the ordinary equal-time static spin-orbit wave

function, and ¢u(x;,k;1 ) is the radial wave function. The operators I'ys for the scalar(S)
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and vector(V) mesons are given by

mww@(ﬁg—K)
(M +my +mg)2A(Mg)2 = (m2 — m2)]

—(Pv + MY) ¢J5)
(MY + g+ mg)2A(MY )2 — (m2 — m2)

-

I'y : (4.3)

q

where Pg vy = (pg +pg), K = (pg—pg)/2 is the relative four-momentum between the quark
and antiquark, and € is the polarization four-vector of the vector meson(with momentum

Py ), which is given by

_ 2
(x) = [, e]= [0, ——ei (%) 'PViafL(i)}
Py
(1,+1)
+) = :
€1 (%) F 7
1 P2, — M2
p = pr =YL V. Py, . 4.4
€ (0) MV|: Vo P‘jj ) Vl:| ( )

The operator I'yy was derived in Ref. [44]. We followed the same procedure, detailed in
Ref. [44], in order to derive I's. Note that in the case of the vector meson, the operator I'y
has the expected form, (P + M) ¢. However, because the scalar (3Pp) state possesses non-
zero orbital angular momentum, the proper Melosh—transformed spin-orbit wave function
is not simply given by I's = (P + M), as one might expect. The form is more complicated
as shown in Eq.(4.3), and it depends explicitly upon the relative momentum between the
meson’s constituents. This same type of behavior was demonstrated for the axial-vector
meson in Ref. [44]. Since the axial-vector (3P;) state also possesses non-zero orbital angular
momentum, the spin-orbit wave function is not simply given by (P + M) ¢y°. The correct
form contains an additional factor which explicitly depends on the relative momentum
between the quark and anti-quark. It is interesting to note, however, that in the case where

mg = mg = m (which we use throughout this work), the expressions in Eq. (4.3) reduce to

I's = (Ps + Mp),

1
2v2 My
~1

I'y = VMY (MY < 2m) (Pv + My') /(Js). (4.5)
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So, in the equal mass case, I's does have the expected form. We confirmed the similar
reduction of the axial-vector meson wave function in the equal mass case. These expressions

can be further simplified to the form we will use in our analysis:

1
T
_ 1 € (pq — pg)
Iy = ﬁMg/[ﬁ/(st) Mg/q—|—2’n(’ll ’ (4.6)

The spin-orbit wave functions satisfy the following relations

1
> R,\q,\q S Z(Mg —4m?) = |k[?,
Aq)\q
v
Z RMTA@RKM@ = L (4.7)
Aohg

where k = (k| , k) is the three momentum of the constituent quark and k. = (z — £)Mo.
Note that the total wave function Wg(x,k; ) for the scalar meson vanishes at |k| = 0 in
accordance with the property of P-wave function.

For the radial wave functions ¢ (z;, k; 1 ), we shall use the following gaussian wave

functions for the scalar and vector mesons

2 |0k,
¢s(x, k) = N 3—52 %exp(—k2/2ﬁ2),

ov(r, ki) = N (—k?/26%), (4.8)

where N = 473/4373/2 and 9k, /dx is the Jacobian of the variable transformation {z,k, } —
k = (k,, k) defined by

ok, M,
or  4dx(l—z)’ (4.9)

and the normalization factors are obtained from the following normalization of the total

d*k
/ /16 =Wy (2, k)P = 1. (4.10)

wave function,

The wave functions depend on only two model parameters: the constituent quark mass, m,

and the binding strength, 5. For these parameters, we use the values determined in Ref. [22]
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which are (m, 4 = my, = 0.22 GeV, (3,4 = [, = 0.3659 GeV) and (ms; = 0.45 GeV,3; =
0.4128 GeV).
Since our analysis deals with ¢ decays, a value for the w—¢ mixing angle is neces-

sary. For the mixing formula [22] we use

|¢) = —sind,.¢|nn) — cosdy.4|s3)

lw) = €oS0y-p|nn) — sindy.e|ss), (4.11)

where 0,4 = (0517(3) —35.3°) is the mixing angle. For “ideal” mixing (i.e. ¢ = s5), Oy (3) =
35.3°. The mixing angle has been analyzed in various ways. For example, 4.4 ~ —3.3°
is favored in Refs. [45, 46, 47], while the conventional Gell-Mann-Okubo mass formula [2]
for the exact SU(3) limit predicts d,.¢ ~ 0.7° (or Ogy(3) ~ 36°) in the linear mass scheme
and 0,4 & 3.7°(or Ogy(3) ~ 39°) in the quadratic mass scheme. Taking into account SU(3)
symmetry breaking and using the parametrization for a quadratic mass matrix given by
Scadron [48], we obtained d,,.4 = +7.8° (see Ref. [22] for more detail). In the present work,
we use this larger variation (from —7.8° to +7.8°) to show the sensitivity of our results to
the value of the mixing angle. As we shall see later in Section 4.5, the decay widths for the

processes we are investigating are in fact not very sensitive to the value of 4.

4.3 Scalar Mixing Amplitudes

Glueball-qq mixing can be described using a mass mixing matrix. Written in the

lgg), |s5), |nn) basis, this takes the form [42, 43]

Mgg f \/ng
M=| f Ms 0 |, (4.12)
\/ifT 0 Mnﬁ

where f = (gg|M|s5) and r = (gg|M|nn)/v/2{gg|M|s5). As described in the introduc-
tion, the mixing is assumed to be among the three isoscalar states f,(1370), fo(1500) and
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fo(1710). These mixed physical states can be written as

| fo(1710)) ar b a l99)
| f0(1500)) = az by ¢ |s5) |, (4.13)
| f0(1370)) az by c3 Init)

The mixing amplitudes, a;, b;, and ¢; can be written in terms of the physical masses (M fj),
the bare masses (Mg, Mys, and M, ), and the glueball-bare quarkonia mixing strengths (f
and 7). For the present analysis we will adopt the values obtained by Lee and Weingarten,
and by Close and Kirk.

Beginning with the lattice QCD-motivated assumption that the bare scalar s§ is
lighter than the scalar glueball (i.e. My < Mgz < Mgy,), Lee and Weingarten obtained the

following mixing amplitudes [42]:

0.86 £0.06 0.30£0.06 0.41£0.09
—-0.13+£0.05 091£0.04 —-0.40=+0.11 . (4.14)
—0.50£0.12 0.29£0.09 0.82£0.09

Using a different approach, Close and Kirk [43] examined the constraints placed on the
flavor content of fy(1370), fo(1500), and fy(1710) by decay branching ratios to pairs of
pseudoscalar mesons. From a y? analysis of the available branching ratio data, they obtained
various solutions depending on which parameters were left free at the outset. One solution
was consistent with a glueball which lies just above the bare nn (i.e. Mpn S Mgg < Mss).

It’s associated mixing amplitudes are

0.39+0.03 091+£0.02 0.15£0.02
—0.65+0.04 0.33£0.04 —0.70=0.07 . (4.15)
—-0.69+0.07 0.15£0.01 0.70+£0.07

Another of their solutions was consistent with an even lighter glueball which lies below the

mass of the nn (i.e. Mgy < Mpn < Mss). The mixing amplitudes for this solution are

025 096  0.10
—037 013 -092 | . (4.16)
—0.89 014  0.44
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In the next section, we shall obtain expressions for the transition form factors for
various radiative decays. Then, we will use the mixing amplitudes given in Eqgs. (4.14)—
(4.16) above to numerically evaluate the form factors and corresponding decay widths for

the heavy, medium, and light weight glueball cases respectively.

4.4 Form Factors for Radiative Decays

4.4.1 The Process V(S) — S(V) +~

The coupling constant g4x~ for the radiative Pa(q1q) — Px (¢2q)y decays between
vector (V) and scalar (S) mesons, i.e. (4, X) = (351, Py) or (*Py,3 1), is obtained by the

matrix element of the electromagnetic current J# which is defined by

M1 = (X(P)ley - J|A(P))
= egaxqy[(ey - ev)(P1-q) — (&5 - Pr)(ev - q)],
(4.17)

where €, and ey are the polarization vectors of the photon and the vector meson, respec-
tively. Since the J, = 0 state of the vector meson cannot convert into a real photon, the ey
should be transversely polarized(J, = £1) to extract the coupling constant gax~. In other
words, the possible helicity combinations in the transition V(S) — S(V)y are either from
(J7 = +1,JY = —1) or from (JJ = —1,JY = +1). The decay width for A — X + v is
given by [49]

MNA—-X+~) =

2 3
JAxy {ME‘ — Mﬂ (4.18)

a1 2M,
where « is the fine structure constant and J4 is the total angular momentum of the initial
particle.

In LFQM calculations, we shall analyze the virtual photon(y*) decay process
so that we calculate the momentum dependent transition form factor, Fax-«(Q?). The
coupling constant, gax~, can then be determined in the limit as Q?* — 0 (i.e., JAX~ =

Fax,+(Q* = 0)). Figure 4.1 shows the primary Feynman diagram for this process. The
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D1 D2

P1 Pg P2

Figure 4.1: Primary diagram for A(P;) — X (P2) 4+ v(q). There is an additional diagram in
which the virtual photon interacts with the antiquark.

amplitude is

MY = (X(P)|JHA(P))
= eFax(¢*)[e(P1-q) — Pf'(ev - q)]. (4.19)
Our analysis is based on the standard light-front frame(qt = 0)[30].
+ p- . M3
Pl = (Pl 7P1 7P1J_) = (Pl 7?70J_)7
1
M2 o M2 o Q2
q = (07 A Pf aCIL)a
P2 - Pl_q: (PfruXiﬂa_ql% (420)
Py
where qi = Q% = —¢? is the space-like photon momentum transfer.
The quark momentum variables in the g™ = 0 frame are given by
pi = (L—2)Pf, pj =aP,
pi. = (I1—-2)Py +ki, pgr =2P1y —kj,
ps = (-2)P, pi =aPy,
p2r = (1-2)Py +K i, p'y =aPyy — K, (4.21)

which require that p;f = pgr and pg| = p/qi~

The hadronic matrix elements in the radiative decay between two particles A and
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X are of the form

(X (P)[J*|A(Pr))

_ZA/dx/163¢2$kJ_)¢l(ka_)

JsA's

RXT u)\g p2 )\1 pl RA

A2 \/> \/7 >\1>\

= e Aili(m, Q) (Pr - q) = Pf'(ev - q)], (4.22)

where k| = k| —zq, A; is the overlap of the 4t flavor portion of the flavor wave functions
and contains all of the relevant charge factors and mixing amplitudes. Comparing the last
line of Eq. (4.22) with Eq. (4.19) it can be seen that we have defined the form factor in
terms of the charge and mixing amplitude independent quantity Iy (m;, @?).

The sum of the light-front spinors over the helicities in Eq. (4.22) is obtained as

St = ZR,\QX n v ~ YA
s \/P3 \/ D]

(4.23)

The explicit form of the trace is summarized in Appendix 1. For V(P;) — S(P2)v*(q) decay,
the (transverse) polarization vector ey of the vector meson is given by ey (£) = [0,0, e ()]

and the trace term with the plus component of the current is given by

~1
s = G 10 -9
2k%

B x(]\40—+2m»)[(2“" —1)*mi + k] — ok, 'QJ_]}, (4.24)
J
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where we use ey (+). Therefore, we obtain the one-loop integral, I1(m;, @?), as follows

d*k
Li(mj, Q%) / / T6m ——os(x, K 1)dv(z,k1) !

(1—56)M0
quL} 2(k"q")/a%
xsaxm; |1 —4(1 —x
s 11 2| T Ot +2my)
x[(2x—1)2m?+ki—xkl.ql]
—|—($H1—$,kj_—>—kl)}, (425)

where kfigt =k, -q — ilk) X q |, and even though the cross term does not contribute
to the integral, the dot product term does contribute.

Then, the transition form factor Fy SV*(QQ) is given by

FVS’Y* (Q2) = -Anjl (mn7 QQ) + Asll (ms, Q2), (426)

where A,, and A, are the overlaps of the up—down and strange portions of the flavor wave
functions respectively. For example, in the case where V = ¢ and S = (uz — dd)/V/2,
A, = —(sind, ¢)(e, — €q)/2 and Ay = 0. Also, for V = ¢ and S = s5, A, = 0 and
As = —(cosd,-g)es.

The transition form factor Fgy.+(Q?) for S(P1) — V(P2)y*(q) can be obtained
from Eq. (4.25) by replacing q; — —q; and k; — k’; and the explicit form for the
one-loop integral corresponding to Eq. (4.25) is given by

1
x(1 — ) M}
kgl 2(kfigt —2q?)/a?

xdaxmj |—(2x —1)2 —4(1 — =z -
fam; [~2o - 12 a0 L L

Hm@) = [ @ [T ove s

x[(2z —1)°m} + k] —ak, -qi]+ (z > 1 -2k — —kL)}, (4.27)

where M? = (m? +k'?%)/z(1 — x) and again the cross term in k%g* does not contribute
to the integral. As one may expect, however, we found that I{(m;, Q%) = —I1(m;, Q*) and
thus FSV'y* (Q2) = _FVS'y* (Q2)
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4.4.2 The Process S — vy

We now apply this model calculation to the two photon decays of scalar mesons.

In this case, the coupling constant gg., for S — v is defined by

My = (y(P)]er - J|S(P1))

= gsyller-e)(Pr-q) = (e Pr)(e2- )], (4.28)

where €; = €,(q) and €2 = €,(F). In terms of gg,,, the decay width for this process is

given by

r= %an?gwMg . (4.29)

Here again, instead of calculating the two real photon decays, we first calculate the matrix

element for S — y+v*, which is given by

My = ((BR)J[S()),
= Foyy (Q)[e5(Pr - q) — P{'(e2 - q)], (4.30)
and take the limit Q% — 0 to compute the decay rate for the two real photon decays. Using

the same quark momentum variables in ¢* = 0 frame as Eq. (4.21) with the plus component

of the current, we then obtain

5 - R g Lo B ()

J A17A27

(%\/f %\/ﬁl>< pu+m]/p2 [l—i_mj]/p(j)

+(z—1—-2,k; — —kL)} Ri)\q

= ¢ ( > Asla(m;, QQ)) € (P1-q) = P{'(e2- )], (4.31)
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where A; now contains factors of e? due to the presence of two electromagnetic vertices.
As in the case of Eq. (4.23), the sum of the light-front spinors over the helicities in the first
term of Eq. (4.31) is obtained as

U5 (Pg Ux, (P2) Ux, (P2 Uy, (D1
T — Z A( j]r) ¢2 2(+) 2(+)7+ 1(+)R§1)\q
A, 2,0 A/ Pg \/ P2 \/ P2 \/ P1

p
~ dmylpf (pg - e2 —pa - €2) + 13 (pg- €2 — p1 - €2) + pF (P2 - €2 — p1 - €2))] (4.32)

21/2p} (p3)%pf

where we have used the fact that e] (+) = 0. Now, using ez(+) = (0,v2¢%/P;f,e1), we

finally obtain the one loop integral,

QY = — d’k . m;[(2z — 1)* + 4(1 — 2)(k"q" /q?)]
I (m;, Q%) = \[/ /16 5 s ( kJ_){ ’ SN

z(1—x)
mj—i-(kl—qu)

—|—(:1:—>1—:1:,kj_—>—kl)}, (4.33)
and the transition form form factor is given by

Fgyyr (Q%) = AnIz(mn, Q%) + Asla(ms, Q7). (4.34)

As an example of the coefficients A, 5, consider the case where S = f,(1370). Here,
An = c3[(e2 + efl) /V?2] and A, = bse?, where c3 and bs are the glueball-quarkonia mixing
amplitudes of Eq. (4.13).

4.5 Numerical Results

4.5.1 Decays Involving f,(1370), fo(1500), and f,(1710)

The expressions for the one-loop integrals, I1(mj, Q%) and Is(m;, Q?), are evalu-
ated numerically and used in Egs. (4.26) and (4.34) to compute the Q?-dependent transition
form factors for vv*, ¢v*, and py* decays of the scalar mesons. As an example, we give the
results for the case of the heavy glueball (i.e. My < Mg < Myg). The transition form

factors for the yv* process are shown in Fig. 4.2, and those for the ¢y* and py* processes are
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Figure 4.2: fy — yv* transition form factors for fy(1370) [dash-dotted], fo(1500) [dashed],
and fp(1710) [solid].
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Figure 4.3: fo — py* transition form factors for fy(1370) [long-dashed], fp(1500) [dash-dot-
dotted], and fp(1710) [short-dashed]; fo — ¢7* transition form factors for fp(1370) [solid],
fo(1500) [dash-dotted], and fy(1710) [dotted]. Here we have used 0,4 = +7.8°.
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Figure 4.4: Q? times the fo — y* transition form factors (Fig. 4.2) for fo(1370) [dash-
dotted], fp(1500) [dashed], and f,(1710) [solid].

collectively shown in Fig. 4.3. In the case of the two photon decay, the form factor should
fall off like 1/Q? due to an intermediate quark propagator which becomes highly off-shell
at large Q2. Figure 4.4 shows the behavior of Q? x Fronms (Q?) for each scalar state. Each
of the curves clearly shows a tendency to flatten out, demonstrating 1/Q? dependence in
the form factors.

The decay constants for the real photon processes can be obtained from the form
factors in the limit as Q2 — 0 (i.e. ¢ = F(Q? = 0)). In this limit, the values of the one-loop

integrals are

Ii(m,,Q*=0) = 2.05GeV !

L(ms,Q?=0) = 1.93GeV ™!

L(m,, @*=0) = —0.672GeV !

L(ms,Q? =0) = —0.375GeV 1. (4.35)

The decay constants are obtained by substituting these values into Eqgs. (4.26) and (4.34).
The decay widths are then calculated using Eqs. (4.18) and (4.29). The widths for the vy
decays are listed in Table 4.1. The widths for the ¢, and pvy decays are listed under the
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heading ‘LFQM’ in Tables 4.2 and 4.3 respectively. The subheadings Heavy, Medium and
Light refer to the different glueball mass scenarios. The uncertainties result solely from the
uncertainties in the mixing amplitudes in Eqgs. (4.14) and (4.15). We have not accounted
for the uncertainties in the meson masses. The uncertainties in the masses of f,(1500) and
fo(1710) (~0.4%) are very small compared to the uncertainties in the mixing amplitudes
(6%—-40%), and can be neglected. However, the uncertainty in the mass of f,(1370) is about

10%, and would, therefore, contribute significantly to the uncertainties in the decay widths.

Experimental data for radiative decays of the isoscalars fy(1370), fo(1500), and
fo(1710) are poor. As one example, in the recent past the PDG had reported partial widths
of 3.8+ 1.5 keV and 5.4 £+ 2.3 keV for the process fy(1370) — ~+ [50]. The PDG currently
attributes these two values to fp(600), but at the same time they state in a footnote that
this data could equally well be assigned to fy(1370) [2]. If these data which are on the order
of a few keV do belong to fp(1370), this would be encouraging given that our results are
consistent with this order of magnitude. However, the ambiguity noted above makes any
such comparison irrelevant, and a great deal more experimental investigation is necessary
before any definitive conclusions can be reached about the validity of any of the glueball
mixing schemes.

In the absence of good experimental data with which to compare our results, we
turn to other theoretical predictions concerning these decay processes. In Ref. [43], Close
and Kirk give predictions for ratios of fo — 7+ widths which depend only on charge factors

and mixing amplitudes, and ignore all mass-dependent effects. For the ratios I'( fo(1710) —

Table 4.1: Decay widths for the process fo — <7y. The unit of the decay width is [keV].
The uncertainties result from the uncertainties in the mixing amplitudes in Eqs. (4.14) and
(4.15).

Light | Medium Heavy

fo(1370) | 1.6 | 3.9%9% | 5613

fo(1500) | 8.0 | 41759 | 0.65707

fo(1710) | 0.92 | 1.3%92 | 30+l
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Table 4.2: Decay widths for the process fo — ¢7y. The unit of the decay width is [keV].
Our results are under the heading ‘LFQM’, while CDK’s results are under the heading ‘NR
Model’. The LFQM results are for d,.4 = +7.8° and CDK’s results are for é,.4 = 0°. The
uncertainties on our LFQM results are due to the uncertainties in the mixing amplitudes
in Eqgs. (4.14) and (4.15).

LFQM NR Model

Light Medium Heavy Light Medium Heavy
fo(1370) | 0.98 0.837037 45730 8 9 32
fo(1500) 7.5 28"7 170739 9 60 454
fo(1710) 450 40012 361717 800 718 78

Table 4.3: Decay widths for the process fo — py. The unit of the decay width is [keV].
Our results are under the heading ‘LFQM’, while CDK’s results are under the heading ‘NR
Model’. The uncertainties in our LFQM results are due to the uncertainties in the mixing
amplitudes in Egs. (4.14) and (4.15).

LFQM NR Model

Light Medium Heavy Light Medium Heavy
fo(1370) | 150 390730 530717 443 1121 1540
fo(1500) | 1100 6307130 2101130 2519 1458 476
fo(1710) 24 55118 4107780 42 94 705

Table 4.4: Decay widths in keV for the process fo — ¢y for 0.4 = +7.8°,0°,and — 7.8°.
The results shown are for the medium-weight glueball scenario.

+7.8 | 0°] —7.8°
fo(1370) | 0.83 1.9 3.4
fo(1500) 28 21 15
fo(1710) 400 | 410 | 420
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¥y):T'(fo(1500) — vv):I'(fo(1370) — ~7) they obtain

Light Glueball = 1:5.1:2.8
Medium Glueball = 1:2.4:3.6
Heavy Glueball = 1:0.1:3.7 . (4.36)

Our analysis which includes all of the relevant mass dependent effects yields

Light Glueball = 1:8.7:1.7
Medium Glueball = 1:3.2:3.0
Heavy Glueball = 1:0.2:1.9 . (4.37)

Our results differ slightly from those of Close and Kirk, however the same overall qualitative
pattern is preserved.

In Ref. [51], Close, Donnachie, and Kalashnikova (CDK) compute the ¢ and p ra-
diative decay widths for f(1370), fo(1500), and fy(1710) in the NR quark model. Assuming
that d,.4 = 0, they obtain the values listed under the heading ‘NR Model’ in Tables 4.2
and 4.3. Comparing these values with our LFQM results, it is clear that the relativistic
corrections introduced by our model reduce the overall magnitudes of the decay widths by
about 50-70%. We note somewhat greater reduction for the process of fy(1370) — ¢y due
to our non-zero d,.4. A reduction in the widths would be expected given that the relativistic
motion of the constituents tends to spread out the meson’s momentum-space wave function,
thereby decreasing its peak value. We have verified this qualitative behavior by examining
the decay width’s dependence on the model parameter 3. As 3 is increased, the wave func-
tion, ~ exp[—k?/(23%)], is more spread out (more relativistic) and the decay width does
in fact decrease. As (3 is decreased, the wave function becomes more sharply peaked and
the decay width increases accordingly. Despite the differences in the overall magnitudes of
the decay widths, however, the relative strengths between the different decay processes are
fairly well preserved. Just as in CDK’s analysis, we find that the largest branching ratio
is likely to be that of fp(1500) — p7v. In our model, this branching ratio is about 1% for
the light glueball case, 0.6% for the medium glueball case, and 0.2% for the heavy glueball
case.

Additionally, we find that our predictions for the decay widths involving ¢ are not



50

highly sensitive to the value of the w-¢ mixing angle. As an example, in Table 4.4 we have
listed the widths for the processes fy — ¢y (medium glueball mass case) for various mixing
angles. The decay involving fy(1370) is the most sensitive in terms of the percentage shift
in the width. This is, of course, due to the fact that its wave function contains a relatively
small amount of s§ (see Eq. (4.15)). However, as we vary the mixing angle from +7.8° to
—7.8°, we see that the change in our model prediction is not significant when compared to

the difference between our model prediction and CDK’s NR model prediction.

4.5.2 Decays Involving a¢(980) and f,(980)

If we assume a((980) to be a conventional ¢g, then the flavor structure should be
(uti — dd)/+/2. For the processes ag(980) — 7 and ¢ — ag(980)~, the decay constants and

associated widths are calculated to be

Gbaoy = —0.14GeV ™1 Tyun = 2.8V
Gagyy = —0.16GeV ™1 Ty =990V . (4.38)

None of these calculated values for the widths are consistent with experimental data. The
¢ radiative width of 2.8 eV gives a branching ratio of BR(¢ — agy) = 6.7 x 10~7 which is
significantly smaller than the PDG average of 0.88'_F8:g x 10™%; and, the two-photon width
of 990 eV is roughly 3 times larger than the value reported by Amsler of 0.30 + 0.10 keV
[52]. The flavor content of the isoscalar fy(980) is less clear. If we consider the two possible

extremes, fp(980) = nn and fp(980) = s5, we obtain

Jofoy = —0.06GeV L, Typ\ =037eV
Gfoyy = —0.26GeV ™1, Ty = 2.TkeV

Gofy = +0.64GeV L T =60eV

9oy = —0.04GeV L, Ty =63€V.

The PDG average for the two photon width is I',,, = 0.39f8&g keV. Since the s§ result
falls below this value and the nn result sits above it, it would be possible for some mixed
nn—ss state to reproduce the data. Working out the mixing required for this, we find that

f0(980) would be about 6% nn and 94% ss. This alone would allow for f,(980) to be
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interpreted as a conventional ¢g. However, the ¢ radiative widths we calculated lead to the
branching ratios BR(¢ — foy) = 8.7 x 1078 for the nn and BR(¢ — foy) = 1.4 x 1075
for the s5. Both of these values fall well below the PDG average of 3.3f8:§ x 1074, Also, if
we compute the ratio BR(¢ — foy)/BR(¢ — agy) for our model predictions, we get 0.13
for fo = nn and 21 for fy = ss, while the experimental ratio is around 4. This again hints
at the possibility of a mixed nn—s§ being able to reproduce the data. However, the mixing
needed to reproduce this ratio requires that f,(980) be 87% nn and 13% ss. This is the
exact opposite of the mixing needed to reproduce the two photon width above. Overall our

results are not consistent with well established data on a(980) and f(980).

4.6 Conclusions

We have performed the first LFQM calculations involving scalar mesons. First, the
3 Py light—front wave function was constructed. It was shown that, in general, the covariant
operator used to obtain the spin—orbit wave function depends explicitly on the relative
momentum between the meson’s constituents, and is, therefore, more complicated than
the naive form that is commonly used. This wave function was used to compute radiative
decays involving fy(1370), fo(1500), fo(1710), fo(980), and ap(980).

In the case of the three heavy isoscalars, the effects of glueball-q¢ mixing were
taken into account. Specifically, three different mixing schemes corresponding to a heavy,
medium, and light glueball were used. The lack of good experimental data made it difficult
to draw any conclusions about which of the three mixing scenarios, if any, could be the
correct one. We note, however, that we have improved upon the earlier NR model pre-
dictions of Close et al. [51]. Relativistic corrections introduced by the LFQM resulted in
decay widths that were about 50-70% smaller than those obtained in the NR calculations.
Yet, very little change was observed in the pattern of relative strengths which is apparently
quite robust. We also demonstrated that our model gives the correct qualitative behavior
for the decay width as a function of the parameter (3, in the sense that the decay width
increases(decreases) as (3 is decreased(increased). In a future work, we intend to perform
a more detailed comparison of CDK’s NR model calculation and our LFQM calculation to
isolate the relativistic correction terms that make these differences.

For the calculations involving ao(980) and f,(980), we assumed these states to be

qq. In contrast to the case of the heavy scalars, there does exist well-established data for
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these light scalars. While one or two of the properties we calculated, when taken in isolation,
could be considered consistent with the data, it is clear that our results as a whole do not
match the data. How are we to interpret the inconsistencies between our results and the
experimental data for ag(980) and fp(980)? Are they due to some deficiency in our LFQM
or are they due to the nature of a((980) and f,(980) not being simple constituent ¢g?
We are leaning toward the latter conclusion for two reasons. First, as we discussed in the
introduction, the LFQM has had many past successes in the phenomenology of pseudoscalar
and vector meson systems. These past successes have led us to appreciate that the agreement
with the data was not fortuitous, but natural in the sense that the advantage of LFD played
its role. We can see no obvious reason why the model would work so well for the pseudoscalar
and vector mesons but not for the low-lying scalar mesons. The second, and perhaps more
persuasive reason is that models other than the LFQM predict very similar discrepancies
between the gg picture and the available data. For example, in the previous section we
obtained a value of 6.7 x 10~7 for the the branching ratio BR(¢ — ao(980)7). Gokalp and
Yilmaz [53], using light—cone QCD sum rules, obtain a value of the coupling constant which
yields BR(¢ — ao(980)7) = 4.1x10~", while Titov et al. [54], using simple meson—exchange
model based on effective Lagrangians, obtain a value of the coupling constant which yields
BR(¢ — ap(980)y) = 8.8 x 10~7. All three of these values, based on the ¢g picture, are
roughly two orders of magnitude smaller than the current PDG average of 0.88 x 10™%. So,
it seems that the discrepancies between the gq picture and experimental data do not depend
too heavily on particular model details. In addition to comparing our results with those
of other models, we have also tried varying our own model parameters (e.g. the f,(980)
mixing angle between nn and ss as described in the previous section). However, when we
have an agreement with one observable we do not get the same level of agreement with other
observables using the same model parameters. Certainly, further investigation is necessary
in determining the model parameters, but it seems unlikely that simply fine tuning them
would alleviate the orders of magnitude problem. We are in the process of computing the
scalar meson spectroscopy using the variational principle and this procedure would give a
more definite conclusion regarding this issue. At the moment, because of the reasons listed
above, we believe that the inconsistencies between our predictions and the available data
for ap(980) and fp(980) are not due to any general deficiency in our LFQM, but rather to
the fact that these mesons are not simple constituent ¢q.

In addition to refining the model parameters, the spectrum analysis mentioned
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above will also give the masses of the bare nn and ss P-wave quarkonia. With these masses,
we will be able to perform our own glueball-g¢ mixing analysis involving the isoscalars
fo(1370), fo(1500), and fp(1710). These mixing amplitudes, obtained using the LFQM,
could then be compared with those of Lee-Weingarten and Close—Kirk.
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Chapter 5

Meson Spectroscopy and Decays

5.1 QCD-Inspired Model Hamiltonian

The model Hamiltonian consists of a confining potential, as well as appropriate
spin-orbit (including Thomas precession) and spin-spin interactions. The specific form of

the potential is as follows

HYE = Ho' ™ + HY T + HY G + H§ (5.1)

con f

The kinetic energy term has the familiar form

~92 92
HVE — pr- P 59
0 2my + 2mg (5.2)

The QCD-inspired confining potential consists of a Coulomb term and a linear term

HYR = G(r) + S(r) (5.3)
where
dog
G(r)=— 3 and S(r)=c+br (5.4)
T

The spin-orbit coupling

—

Hgg_la(@(r)( 1 +L) (iJri) f_ L OHeony <i+i> L (55)

- - 2 2
r Or mg Mg mg Mg 2r  Or mg - mg
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The hyperfine interaction

Hgfé _ 2(§q : gq) 62(@(7“) - (5¢-7)(5g-7) — %Sq ) SQI < 02 19 >G(T) (5.6)

3mgmg mgmg or?2 ror

Since the mesons under investigation consist of light quarks (u, d, and s), it would be de-
sirable to have a relativized form of the Hamiltonian. We use the relativized Hamiltonian
of Godfrey and Isgur [28]. Godfrey and Isgur have shown that the relativistic potentials
differ from their non-relativistic counterparts in two ways. Firstly, the coordinate, 7, be-
comes smeared out over distance of the order of the inverse quark masses. Secondly, the
coeflicients of the various potentials become dependent on the momentum of the interact-
ing quarks. To accomplish the first of these modifications, Godfrey and Isgur smeared a

potential, V(r), in the following way

Vyalr) = / &7 pgql(7 — F)V(r) (5.7)

The smearing function, p, is given by

(P ) = 99 —oag(FT)? 5.8
pqq("” r ) 7T3/2€ ( )
where A )
1 1 4dm,mgs 2momgz
2 2 q"Myg 2 q"Mg
- = -4 - ——= —_— 5.9
7ad UO<2+2((mq+mq)2> >+8 (mq""mq) (5:9)

and the parameters o and s are given in Ref. [28].
As far as the momentum dependences are concerned, the Coulomb potential is

modified as follows

»? 1/2 2 1/2
G(r) — <1 + EqEq) G(r) (1 + EqEq_> (5.10)

where E; = /p2 + m?. On the basis of solutions to the similar example of QED in one
dimension, which confines with a linear potential, Godfrey and Isgur concluded that the

QCD linear confining term would not be modified by momentum dependent terms. The
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spin-dependent potentials are modified as follows

V) (7nqmq>1/2Jre V(r) (an?nq)UQJre (5.11)

mMgMgq Eq.Eq mqmg \ EqEqg

The parameter € can be different for each type of spin-dependent potential: contact spin-
spin(e.), tensor spin-spin (e;), vector spin-orbit (e,), and scalar spin-orbit (e5). If e = 0,
then these modifications have the effect of replacing the quark masses, m, with the quark
energies, /. These parameters do turn out to be very small, and their values are given in
Ref. [28]. Note that in the non-relativistic limit, all of these momentum dependent terms
reduce to unity, giving back the non-relativistic potentials.

In addition to these modifications,wealso adopt Godfrey and Isgur’s parameteri-

zation of the running coupling constant as.

3
as(Q?) = Zake*y/(‘”g). (5.12)
k=1

The parameters are given by oy = {0.25,0.15,0.20} and ~7 = {0.25,2.5,250}. In the limit
as Q% — 0, the coupling constant saturates at a value of ai”“cal = 0.6. This can also be

transformed into a function of r,

3
as(r) = Z ay erf(ygr) (5.13)
k=1

where the error function, erf(t) = (2/y/7) fg e dx.
Applying these modifications to the non-relativistic Hamiltonian, gives the full

relativistic Hamiltonian [28]

HE =H{ +HE,; + HE g + HE 5 (5.14)
HE = \/52+mg+\/52+m3- (5.15)
HE . — <1 + P’ )1/2@(1“) <1 + P’ )1/2 +S(r) (5.16)
conf EqEq EqEq
~ 3 4oy,
G(r)=— Z 5 erf(Tpqq ) (5.17)

k=1
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O
Theq = 77;“ = (5.18)
\/ Ykt %4
~ efagéﬂ 1
S(T) =br |:\/7_T0qq?” + <1 + W) erf(aqq’r)} +c (519)
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5.2 Spectrum Calculation

The spectrum calculation is done explicitly in the ordinary equal-time formulation,
and the resulting wave functions are then transformed into light-front wave functions. This
works because the spectrum is, of course, calculated in the rest frame of the meson. The
Hamiltonian is the total energy of the meson, which in the equal-time formulation is simply

PO

. . . . — _ 0 3 . 3 _ .
meson, and in the light-front formalism is P, ..., = Preson — Prneson- Since Py ... = 0 in

the meson’s rest frame, the equal-time and light-front Hamiltonians are equivalent here.
To compute the meson spectrum, the Hamiltonian matrix is written in the simple-
harmonic oscillator(SHO) basis and then diagonalized. In Godfrey and Isgur’s original

analysis they used as many as 15 SHO basis states. In this work,we have employed 25 SHO
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basis states with very similar results. In position—space, the SHO wave functions are

ot (1,07, 07) = R o(r)Y7" (07, 7) (5.22)
(n,g) 0, — 022 045 0o 9
Rype(r) = N"""rte” 2" Ly *(6°r7) (5.23)
where
2043
N0 = 25 T (5.24)
F(€ + %) n!(f-i-g)!'

is a normalization constant, ij_%(ﬂ?r?) is the generalized Laguerre polynomial, and the
function Y;"(6;,¢;) is the standard spherical harmonic. Here, n € {0,1,2,---}, £ €
{0,1,2,---}, and m € {---,-2,-1,0,1,2,--- }. Note that the radial and angular parts
are normalized separately such that [;° %R, (r)|?dr = 1 and [ [Y;™(0;,¢7)|?dQ = 1.

This can be Fourier transformed into momentum space which yields

Do (P, 0ps #p) = Pre(p)Y" (05, 6p) (5.25)
g~ eyl (P
Pudlp) = N1 e B () (5.20
where the normalization constant NIS”’E) = [(27)3/2/ 52”3]]\77(,”’(), and the normalizations

o P°|Pa(p)[?dp =1 and [[Y/"(05,¢5)[?d2 =1 apply.
Since the mesons are assumed to be superpositions of 25 SHO basis states, the
position-space radial wave function for a meson with orbital angular momentum, L, total

spin, S, and total angular momentum, J, is

24
J J
¢L,S(7a) = Z(CL,S)an,L (5.27)
n=0
where the coefficients (Ci g)n are determined by diagonalizing the Hamiltonian. The spin-
orbit wave functions for each of the sectors are given below and are written using spectro-
scopic notation in the form \(QS“)L 7; M) where M is the z-component of the total angular

momentum, J. In this work,wefocus on the L = 0 and L = 1 mesons, so we have only
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presented the spin-orbit wave functions for these sectors. For pseudoscalar mesons,

1SO(JPC — Oer)
"So; 0) = Y'(6,¢)0,0). (5.28)

For the vector mesons,

351(JPC =177)
>S1;+1) = Y6, 9)[1,1)
>S1; 0) = Y5 (6, 9)|1,0)
2S1;-1) = Yg'(6, 9)|1, -1). (5.29)

For the scalar mesons,

3P0(JPC — 0++)

\mxm-ﬁgn%wmw—%@wmm+ﬁ&wm4» (5.30)

For the axial vector mesons with odd charge conjugation,

1P1(JPC — 1+—)

'Pr+1) = Y10, ¢
I'Py; 0) =Y (0,0
' Pi; —1) = Y7716, 9)[0,0). (5.31)

10,0)

)
)[0,0)

For the axial-vector mesons with even charge conjugation,

3P1(JPC — 1++)

Rmmzémmwmww@wwﬂ
mawzﬁm%wmwwmwmm]
PH%D:%DT@@WW—Wﬂwmﬁﬁ (5.32)
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And, for the tensor mesons,

SPQ(JPC — 2++)

’3P2; +2> - le1 (07 ¢)’17 1>

% [Y2(0,6)|1,1) + Yi(6, $)[1,0)]
1

PPy 0) = 7 (Y10, 0)[1,1) +2Y7(0,9)[1,0) + Y{' (8, )[1, —1)]
1

>Po; 1) = 7 [Y'(0,0)[1,0) + Y(0,0)[1,~1)]

PPo; —2) = Y716, 9|1, —1). (5.33)

PPy;+1) =

The spin states in the above spin-orbit wave functions are the standard ones,

|17 _1> =

e [ 58 ety a0 ]
1 1>
27 2

1 11 1 1 1 1 11
0,0) =—=1|lz2) |=v—=) —|l=—=) |=»= 5.34
0.0 ﬁ[12,2>q 5).|3) [53), (5.34)
Using the meson wave functions, the matrix elements of the Hamiltonian
(@SHOL 5 M|(n, LIHE |, L)|®STV L 55 M) (5.35)

are computed in each sector separately. Here, |n, L) denotes the SHO radial wave functions.
In other words, (r|n,L) = Ry or (p|n,L) = P, . The expectation values of the spin-
dependent operators can be found analytically, and the results of these calculations are
summarized in Table 5.1.

After the expectation values of the spin-dependent parts of the potentials have
been evaluated, it remains to evaluate the expectation values of the position-dependent and
momentum-dependent parts. What complicates this slightly is that many of the potentials
contain products of position and momentum operators. The form of these potentials is

V(r,p) = f(p)g(r)f(p), where the function f(p) contains only momentum operators and



61

Table 5.1: Expectation values of spin-dependent terms in the Hamiltonian.

LSo(0=H) [ 381(177) | LR (1F7) | 3Py (0FF) | 3P (1TF) | 3Ry (21T)

(S, L) 0 0 0 —1 -1 +3

(S;- L) 0 0 0 —1 -1 +3
((S; + S;) - L) 0 0 0 —2 -1 +1

CAE I N N N S N T N S N S
(S, f)(qg--f)

-18,-5;) 0 0 0 —1 +3 — 3

the function g(r) contains only position operators. To evaluate the expectation values of
such potentials, they are first rewritten by inserting two complete sets of basis states as

follows [28],

" "

(n, LIf()g(r) f(p)In', L) = > (0, LIf(p)[n", L) (0", LIg(r)|n"", L) (", L| f (p) 0, L).

o (5.36)
Written in this way, the expectation value of the momentum-dependent parts of the potential
can be evaluated separately from the position-dependent parts of the potential. While the
sums over n” and n” should go from 0 — oo, this is not practically possible. Therefore,
the sum runs as high as is needed for the full expectation value of the potential to converge
sufficiently. In this work where n and n’ run from 0 — 24, the maximum values of n” or n’”’
were typically around 30-35. These expectation values, and hence the matrix elements of
the full Hamiltonian, were evaluated numerically using a set of FORTRAN codes. Copies
of the codes can be found in Appendices 2-4.

The first of these codes, “vf.f”, computes the expectation values for the momenutm-
dependent parts of all the terms in the Hamiltonian. For each term, it outputs a ma-
trix whose elements are (n, L|f(p)|n”, L), which are, of course, equivalent to the matrix
elements (n”, L|f(p)|n',L). The code “vg.f” computes the expectation values for the
position-dependent parts, and for each potential outputs a matrix whose elements are

(n”, L|g(r)|n"",L). The third code, “diag.f”, reads in the matrices output by “vf.f” and
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Isovector Meson Spectrum
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Figure 5.1: The spectrum of isovector mesons compared with experimental data. The black
bars represent quark model predictions, while the grey shaded areas show the experimental
data including uncertainties.

“vg.f”, and multiplies them together so as to produce the full matrix elements for each term,
(n,L|f(p)g(r)f(p)|n’, L). Next, the code multiplies the matrix for each spin-dependent po-
tential by the appropriate spin-dependent term from Table 5.1, and then adds all of these
matrices to the matrices for the kinetic energy to produce the full Hamiltonian matrix. The
code then diagonalizes the Hamiltonian matrix and outputs the meson masses (eigenvalues)
and wave functions (eigenvectors).

The results of the spectrum calculation are presented in Figures 5.1- 5.3. Figure 5.1
gives the spectrum of isovector mesons ( ud, di, %(ua —dd)). With the exception of the
scalar mesons (071), the ground states are in very good agreement with the data. The
results for the radial excitations are somewhat mixed. For the 0=+ and 17~ mesons, the
first excited states are in fairly good agreement while the second excited states are about
80-90 MeV higher than the experimentally observed states. Note that the calculated state
381(1998) should be identified with the p(1900). The p(1700) can be identified with the
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Isodoublet Meson Spectrum
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Figure 5.2: The spectrum of isodoublet mesons compared with experimental data. The black
bars represent quark model predictions, while the grey shaded areas show the experimental
data including uncertainties.

ground state D-wave 17~ meson which has not been calculated in this work. Godfrey and
Isgur obtained a mass of 1660 MeV for this state in their work [28]. For the 17* and 2+
mesons the first excited states are anywhere from 120-170 MeV higher than the observed
states, while the second excited states are in fairly good agreement with the data. Here, the
3P»(1823) is identified with the a(1700). The ap(1990) can be identified with the ground
state F-wave 2t% meson which has not been calculated here, but for which Godfrey and
Isgur obtained a mass of 2050 MeV [28]. All of the 0T states are in poor agreement with
the data which lends further support to the idea that they must be described by some
structure other than simply ¢q.

The strange mesons (u3,d3,si,5d) are shown in Figure 5.2. With the exception of

the 17 'P; and 0" mesons, the ground states are all in excellent agreement with the data.

The 'P; ground state lies about 80 MeV above the experimental ground state, which is
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Unmixed Isoscalar Meson Spectrum
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Figure 5.3: The spectrum of isoscalar mesons compared with experimental data. The black
bars represent quark model predictions, while the grey shaded areas show the experimental
data including uncertainties.

relatively fair agreement when compared with the 560 MeV difference between the K(800)
and the calculated 0% ground state at 1234 MeV. There is mixed success for the radially
excited states. While the first excited states of the 0~ and 27 mesons are in excellent
agreement, the calculated 1— state lies about 170 MeV above the K*(1410). Note that
the K*(1680) can be identified with the D-wave ground state meson which has not been
found here, but for which Godfrey and Isgur obtained a mass of about 1780 MeV [28].
In the 17 sector, both the 'P;(1897) and 3P;(1928) states lie over 200 MeV above the
K1(1650). In the scalar sector, it is conceivable that one could identify the 3Py(1891) with
the K(1950). However this would require some other non-gg structure to mix with the
3Py(1234) to produce the K3 (800) and the K (1430).

The unmixed isoscalar mesons (nn = %(uﬂ—kdd) and s5) are shown in Figure 5.3.

It is clear that the vector mesons are in excellent agreement with the data. As such, there

is very little, if any, mixing among these isoscalar states. In contrast, the pseudoscalar



65

mesons require a significant amount of mixing to reproduce the 7(547) and 7/(958) as well
as the radially excited states. The 17—, 17T, and 2" mesons are in fair agreement, but
will clearly require a small degree of mixing to match the data. It is difficult to compare

the scalar mesons given that there are such large uncertainties in the data.

5.3 Mixing for Pseudoscalar Mesons

Since we will be calculating the decays of scalar mesons to pairs of pseudoscalar
mesons, we first examine the simpler case of pseudoscalar mixing. To investigate the mixing
of the ground state isoscalar ui, dd, and s3 pseudoscalar mesons we follow the method of
Scadron [48, 55]. Scadron parameterizes the annihilation graphs which contribute to the
mixing with two parameters, 8 and X. The parameter 3 describes the strength of the
u/d annihilation diagrams. Therefore, diagrams in which a uwa pair annihilates and then
produces another u@ pair are collectively taken to have the value 3. Likewise for dd — dd.
The parameter X is a multiplicative SU(3) symmetry breaking factor which is motivated
by the factorized structure of the annihilation diagrams. In diagrams where a u@ pair
annihilates and produces an s3, the strength is assigned a value of X(3. Annihilation
diagrams for s5 — s5 would be assigned a value of X?3. When these contributions are
taken to be small perturbations to the mass-squared matrix, they can be written in the

following way:

me; 00 g B XB
m = 0o m3 0 | +| B B XB
0 0 m2 Xp X3 X283
mag + 3 B XpB
= 3 mid‘ + Xz . (5.37)

Xp X3  mi+X?%3
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To separate out the isoscalar component from the isovector component one must transform

the w@ and dd components into —=(ui + dd) and %(uﬂ — dd). Doing this yields

NG}
%(mfm + mid—) 0 0
0 = 0 Bmiy +m2) +28  V2XB (5.38)
0 V2Xp3 m2 + X243

Here, the isovector (I=1) has been isolated, and the 2 x 2 matrix remaining in the lower
right corner of the matrix above describes the isoscalars (I=0). Since mys = myg,we will
define this as mpz. So, the 2 x 2 matrix that describes the mixing of the isoscalar mesons

in a given sector is

My, + 2 V2X3

M1—0) =
(=0 V2X3  mi 4+ X%

(5.39)
When this mass-squared matrix is diagonalized, the resulting eigenvalues are the physical
meson masses. Upon diagonalization, both the trace and the determinant of the matrix are
unchanged. From these two conditions, one can solve for the parameters X and [ in terms

of the unmixed masses and the physical meson masses (M and My). This gives [55]

(M3 — m2,) (M} — m2,)

= e, — w2y (5.40)
_(2(m2 — MR(ME — m2)\?
e (<M% —mZ) (M3 ~ mgn>> (5.41)

Using the isoscalar nn and s5§ masses from the spectrum calculation of the previous section

to solve for the mixing parameters in the case of the pseudoscalar mesons, n and 7/, gives

My = 0.149 GV mgs = 0.655 GeV M, = 0.548 GeV M, = 0.958 GeV
Bo-+ = 0.306 GeV?
X07+ - 0711
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Substituting these parameters back into Eq 5.39 and diagonalizing yields the following

eigenvectors

In) = 0.736|nn) — 0.677|s5)
') = 0.677|n7) + 0.736]s5) . (5.42)

Writing the basis transformation in terms of a mixing angle, ¢,

[n) = cos(¢)|nn) — sin(¢)|s5)
In') = sin(¢)|nn) + cos(¢)|s5) . (5.43)

it can be seen that ¢ = 42.6°. The physical states can also be written in the octet—singlet

basis as
[n) = cos(6)]8) — sin(6)]1)

In') = sin(0)|8) + cos(0)|1) , (5.44)
where |8) = |W>H0\l/75>72|8§> and [1) = W. The octet—singlet mixing angle, 6, is
related to ¢ by

0 =¢—tan'(V2) = ¢ —55°.
Therefore, § = —12.4°. These are in excellent agreement with Scadron’s values of ¢gcadron =
42° and 0gcqdron = —13° [28]. In Scadron’s analysis he had replaced m?2_ with m2, and m?2;

with (2m% — m2). The similarity in the mixing angles is due to the fact that the quark

model value of mgs = 655 MeV is so close to the value of (2m3. — m2) = 684 MeV.

5.4 Scalar Meson and Glueball Mixing

5.4.1 Assumptions

Before diving into the details of the mixing and decay calculations, we would first

like to lay out the basic assumptions that underlie our analysis.

1. We assume that the unmixed nn and ss masses are given by the quark model spectrum.

This gives the values of m,7 = 1090 MeV and mg; = 1354 MeV. The glueball is
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taken to have a mass of myy, = 1611 MeV, consistent with Lattice QCD predictions.
Many other scalar meson analyses [42, 56, 57, 58, 59, 60] have unmixed nn and s§

masses that are anywhere from 200-400 MeV higher than the quark model values.

2. Previous analyses have considered the mixing between the nn and ss quarkonia to be
negligible compared to glueball-quarkonia mixing (i.e. glueball dominance). It is cer-
tainly because of this assumption that the unmixed nn and ss masses are significantly
larger that the quark model values we use. We do not assume glueball dominance,

but leave the ¢¢-¢g¢ mixing in to make the scheme as general as possible.

3. We assume that hadronic decay processes will be dominated by the quarkonia, so
that glueball contributions can be neglected. Later, in Section 5.4.6, we relax this
assumption and estimate the effect of including the glueball contributions. This turns

out to be necessary in order to satisfactorily explain the hadronic decay data.

With these points understood, we proceed to describe the specific mixing scheme used.

5.4.2 The Mixing Scheme

The focus of this analysis is to test whether or not the isoscalar 07+ mesons
fo(1370), fo(1500), and fp(1710) are consistent with being mixtures of nn, ss, and the

scalar glueball, gg. This can be written as

| fo(1370)) Inn) ap b1 i)
’f0(1500)> =U ‘8§> = as by o ’8§> (5-45)
| fo(1710)) l99) az bz c3 199)

where the basis transformation has been denoted by U since it is in fact unitary.

To begin, the mass-squared matrix for these states must be written. The anihi-
lation diagrams which contribute to the mixing will be parameterized in a similar way as
for the pseudoscalar mesons. The parameter § will be used to represent nn — nn mixing,
where n = u or d. Also, X will represent the multiplicative SU(3) symmetry breaking fac-
tor, so that the contribution of nn — ss mixing will be given by X3 and the contribution of
55 — s5 mixing will be given as X?3. For the gg — nn mixing,weintroduce the parameter

v, and so gg — s§ mixing will be given by X~. Finally, there will be annihilation diagrams
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for gg — gg which we will call §. So, the mass-squared matrix becomes

m2, 0 0 0 g B XB v
ot — 0 mi2; 0 0 N BB XB
0 0 m% 0 X3 XB X8 Xy
0 0 0 mgg y v Xy 6
m; + B Xp Y
Xp X3  mi+ X3 Xy
gl gl Xy mg, 44

Rewriting this in the %(ua + dd) and %(uﬂ — dd) basis to separate out the isoscalar

component from the isovector component gives

My + 20 V2Xp V2y
Mi—oy= | V2XB mi+X%8 Xy | (547)
V2 X~ mgg +0

Upon diagonalization, this should give the physical isoscalar meson masses.

Mjy sy O 0
tomIT — 91 —
UMmMU =M = 0 M]%O(mo) 0 (5.48)
0 0 M?o(mm

This mass-squared matrix consists of four parameters which describe the strength of the
mixing. There are the following relationships between the undiagonalized matrix, M and

the diagonal matrix 9:

~

Tr(9M) = Tr(M) , (5.49)
det(9) = det(M) , (5.50)
det(9M — TM?) = 0. (5.51)

Equation 5.51 constitues three equations, one for each eigenvalue(i = 1,2, 3). Unfortunately,

only three of the five equations above are independent. To uniquely determine the mixing
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Figure 5.4: Light-Front time ordered diagrams for the decay of a scalar meson to two
pseudoscalar mesons. The white circles represent light—front wave function vertices, and
the black circles represent light—front non—wave function vertices.

parameters, a fouth constraint is needed. This final constraint will be taken to be the 7m
decay width of the fy(1500). To see how this final constraint will be taken into account,we
now turn to a detailed discussion of how the hadronic decay widths are computed in the

light—front quark model.

5.4.3 Hadronic Decays

Calculating hadronic decays in the light—front quark model presents a challenge
because all of the relevant diagrams contain a non—wave function vertex which cannot simply
be assumed to be given by the light—front wave function. Figure 5.4 shows the two light—
front time ordered diagrams involved in the computation of the decay of a scalar meson to
a pair of pseudoscalar mesons. The white circle represents the ordinary light—front wave
function, while the black circle represents the non-wave function vertex. In Ref. [61], an
effective treatment of this non-wave function vertex is developed and applied to K3 and
D — K~(¢*y,. The authors follow a Schwinger-Dyson type of approach to relate the
non-wave function vertex to the ordinary light—front wave function. The essential idea is
illustrated in Fig. 5.5. Here, the meson non-wave function vertex, denoted by Geson, can

be written as

Gmeson(quL) :/d?//dQZﬂC(%Ei;y,ZL)‘I’(y,[L)' (552)

While the kernel, I, is in general dependent on all the internal momenta (x,E 1.y, and v 1),
an average over y and 7 | would depend only on z and k . If the value of this average
does not change significantly over the range of x and k 1, then Geson can be approximated
simply as a constant. We will illustrate how this can be applied to the simple case of

the elastic pseudoscalar meson form factor, and then discuss how this can be extended to



Figure 5.5: Non-wave function vertex (black circle) linked to an ordinary light—front wave
function.

hadronic decays. The current for the elastic scattering of a pseudoscalar meson is

. d4k Triy®(f + ma)y* (F= d + ma)y® (K= P+ mo) | il
(P = q)lJ"IP) = ZN/ T2 —m? T ie[(k — @2 — m3 + iel[(k — P)? —m3 + id
(5.53)

where H; and Hy are the initial and final state meson—quark vertex functions. The form
factor is related to the amplitude by (J*) = (2P — q)*F(Q?). Writing this in light—front
coordinates (K™, k~, and k 1), choosing the y = + component of the current, and integrating

over the light—front energy, k~, yields the following form factor,

d2k 1 o
F(Q%) = o P+{€q[/ dx/167$ 1_9”6 Oz, kL )® (2, k)

T Ay

+eq[{l?<—> (1—%),EJ_ <—>—EL,m1 ng]} s (5.54)

_ kTt _ qt | _ z—«
where x = £, a = 55, ' = 1=, and where

APt [ -
S = T [kl K+ (ema + (1 —2)my)(@'ma + (1 — x/)ml)]
+ + 4P+ ! 2 2
Sy =5y + {1 ) (I —2)(Mps — M)
D, = 12— g

«
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9

and where ¢(|k|, 3) is the momentum space representation of the meson’s radial wave func-
tion. In the form factor, the first term in square brackets multiplied by e, corresponds to
the contribution where the photon interacts with the quark. The second term in square
brackets multiplied by e; corresponds to the contribution where the photon interacts with
the antiquark. This has the same form as the first term in square brackets, but with the
quark and antiquark masses and momenta switched. The first term in square brackets con-
tains two separate integrals. The first integral corresponds to the light—front time—ordered
diagram in which the final-state meson is produced at a wave function vertex. The second
integral corresponds to the diagram in which the final-state meson is produced at a non—
wave function vertex, and therefore contains the constant GGpg which is the pseudoscalar

(PS) non-wave function vertex.
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To determine the value of Gpg for a particular meson,weemploy the following
method. First, note that in the frame where the longitudinal momentum of the photon
(¢T) vanishes, @ = 0 and the non-wave function integral vanishes. In this case, the wave
function integral completely describes the form factor. In a different frame where g™, and
hence «, are non—zero the form factor receives contributions from both the wave function
and non—wave function integrals. However, the form factor should not depend on our
choice of frame. Therefore, the sum of the contributions of the wave function and non—wave
function integrals in a frame where ¢+ # 0 will be equal to the form factor calculated in the
g" = 0 frame. For a number of frames in the range 0 < o < 1, the value of Gpg is chosen
such that the average root mean square error for the form factor in all of the frames is a
minimum.

For the pion, this yields a value of G, = 0.31. For the kaon, we treat the case
where the quark coming into the non-wave function vertex is non-strange (n), separately
form the case where the incoming quark is strange(s). This gives G% = 0.26 and G5, = 0.29.
The resulting pion and kaon form factors are plotted for a number of different frames and
are shown in Figures 5.6 and 5.7. Note that taking the non—wave function vertex to be a
constant has very little effect. Since the n meson is neutral, it would not have an elastic form
factor. In this case, the radiative decay process ¢ — 1y is used to compute the non—wave
function vertex, G,. When the incoming quark is non-strange, G = 0.29 and when the
incoming quark is strange, G} = 0.39.

Once the values of the non—wave function vertices have been determined,we take
them to be universal and apply them to the hadronic decay processes involving the heavy
isoscalar mesons. The decay width for a scalar meson decaying to a pair of pseudoscalar

mesons is given by

2 2
S M5 —AMpg
ro—-prPsS+pPS)y=——+———— 2 5.55
where Mg is the mass of the scalar meson, Mpg is the mass of the pseudoscalar meson,
M is the Feynman amplitude for the decay process, and S is a statistical factor which is
equal to 1 for distinguishable pseudoscalar mesons (i.e. 777~ ) and 1/2 for indistinguishable
pseudoscalar mesons (i.e. 7°77). Since the scalar mesons are mixtures of nf, s3, and gg as

shown in Eq. 5.45, the Feynman amplitude for the decay of a scalar meson (5) to a pair of
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FA(Q)

Q*(GeV?)

Figure 5.6: Pion form factor computed in the following frames: a = 0 (solid line), o = 0.2
(short dashed line), & = 0.4 (dash-dot line), & = 0.6 (long dashed line).

Fu(Q?)

Figure 5.7: Kaon form factor computed in the following frames: o = 0 (solid line), v = 0.2
(short dashed line), & = 0.4 (dash—dot line), & = 0.6 (long dashed line).
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pseudoscalar mesons (P.S)is
M(S; — PS + PS) = a;Con I pg + biCssI? pg (5.56)

where the C*® are flavor factors, the index ¢ = 1,2, 3 denotes each of the three scalar mesons

. aq  _ 14q! qaq /1
considered, I o = I o + I b |

i ZN/ d4k4Tr S+ my) (K= P+ m)y° (K= o +m2)] HSH;DSHgﬁs’ (5.57)

i=PS (k2 —m? +ie] [(k— P)? —m3 + ie] [(k — q)? — m3 + ie]

and where I, = 119, .(q <> ). The H* above denote the meson-—quark vertex functions.

Writing I7?',¢ in light—front coordinates (k*, k~, and k1) and integrating over the light—
front energy, k£, yields

d?k @ S
199 = 2 3/2\/2N/ = /d Gl ® gD
i~PS " o) 16w | Sy el —a)(i—ar) PSTETPS
! SQ " /
+ dmePS(I)S(I)PS (558)
(e}
where
1
S = 4{m1(1—x)M"Q—m?+m1x"M1%5—§m2M§i

+ (my — my) B(l — ) MG + mlmz} }

1
Sy = 4{m1x’M62 —mym3 +mya’ Mg — [(1 —a)r'my + ng] Mg,
’'miq? 1
+ L 4 (g — my) [Q:c(Mg - M3)— mf] }
d5 = Hs ¢S <|k| ﬂs)
M2 — MZ 4\/

fe = Hpg 1 1—2) <8k’> o s(!k'\ 5PS)
Mpg— Mg V2Ne [MP2 — (mq — my)?]2 \ 02

H" 1 :1:”(1 _ x//) <3k”> ~
" — = PS — k// ’ 59
Ps MI%S — M(/]2 \/QNC [M6/2 _ (ml _ m2)2]% ¢ S (| | ﬁPS) (5 )

and where the G* are the non-wave function vertices determined above. Therefore, I fi;/) g =

g (90 o (1—2) ki — —@)-



76

Using Egs. 5.55-5.59, the hadronic decay widths for the scalar mesons to pairs of
pseudoscalar mesons can be evaluated once the mixing amplitudes, a; and b;, are determined.
Recall that the final constraint which will give the solution for the mixing angles is the decay
width I'(fo(1500) — 7m) = 38 MeV. Only the nn component of the mesons contributes to
the w7 decay. Evaluating I%ﬁ(woo)ﬂw and writing the decay width in terms of the mixing
amplitude, ag, yields

I(f5(1500) — 7w) = T(fo(1500) — 777~) 4 T'(fo(1500) — 797°)

(55a3 + 27a3) MeV
= 8243 MeV. (5.60)

Given the experimental value of 38 MeV, solving for the mixing amplitude gives |az| = 0.68.

5.4.4 Mixing Amplitude Solutions

Having the magnitude of ay fixed at 0.68 provides the final constraint needed to
solve for the mixing parameters,X,3,v,0, and therefore the other mixing amplitudes. It
turns out that the solution is highly sensitive to the values of the meson masses. For
the analysis, the masses of the fp(1500) and fp(1710) are fixed at My = 1507 MeV and
M3 = 1724 MeV respectively. Because of it’s large uncertainty (1200-1500 MeV), the mass
of the fy(1370) is varied and separate solutions are found for each value of the mass, M.
Real solutions for the mixing amplitudes are found only when the mass of the f,(1370) is
in the range from about 1275 MeV to about 1350 MeV. Some sample solutions are shown
below and their predictions for the decay widths are shown in Table 5.2. For each of the
solutions, My = 1.507 GeV, M3 = 1.724 GeV, m,5 = 1.09 GeV, mg; = 1.354 GeV, and
mgy = 1.611 GeV.

SOLUTION #1
M; =1275GeV X =0.620 [ =0.393 GeV? ~=0.125 GeV? § =0.324 GeV?

0.715 —0.697 —0.056
U= 0662 0701 —0.264
0.223 0.152  0.963
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SOLUTION #2
M; =1.295GeV X =0515 [ =0471 GeV? ~=0.186 GeV? §=0.248 GeV?

0.630 —0.772 —0.079
U= 0683 0.601 —0.415
0.368 0.208  0.906

SOLUTION #3
M; =1.315GeV X =0.403 [ =0.563 GeV? ~=0.228 GeV? §=0.149 GeV?

0.515 —-0.852 —0.087
U= 0683 0470 —0.558
0.516 0.228  0.825

SOLUTION #4
M; =1.335GeV X =0.259 (=0.657 GeV? ~=0.245 GeV? §=0.062 GeV?

0.346 —0.935 —0.069
U= 0683 0302 —0.664
0.642 0.182  0.744

In previous analyses [42, 56, 57, 58, 59, 60] the mixing amplitudes (given by U) displayed a

fairly consistent phase structure. The nn and s5 components of the fy(1370) were in phase,

Table 5.2: Calculated decay rates in MeV compared with experimental values.

Process Soln.#1 | Soln#2 | Soln#3 | Soln#4 Expt.
T'(fo(1500) — ) 36.0 38.3 38.3 38.3 | 38.0£35
L(fo(1500) — KK) | 16.7 20.5 23.7 28.1 94+12
T(fo(1500) — n1) 18.2 15.1 11.2 7.0 5.6+ 1.0
L(fo(1710) — 7) 6.7 18.3 36.0 55.7 21713
I(fo(1710) — KK) 7.3 19.4 37.5 56.6 52707
T (fo(1710) — nn) 2.7 5.9 8.9 9.2 25710
T (fo(1370) — ) 15.2 11.8 7.9 3.6 <175
[(fo(1370) — KK) | 758 74.6 70.7 619 | 44 — 240
T(fo(1370) — 1) 0.02 0.08 0.2 0.4 > 0.54
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while those of the fy(1500) were out of phase. The solutions here show the exact opposite
behavior. This is due to the fact that the unmixed masses given by the quark model are
significantly lower than those used in these previous analyses. In many of these previous
analyses, the nn, ss, and gg masses were left as parameters that were fit to decay data. The
fits returned masses that were a few of hundred MeV higher than the quark model values.
This was mainly due to the assumption of glueball dominance which motivated the authors
to set the ¢g-gq mixing to zero. In our analysis, the smaller values of the input masses result
in a different phase structure for the mixing amplitudes. Additionally, a consistent feature
of our solutions is that the ¢g-¢g mixing is stronger than the gg-gg(i.e.3 > 7). Clearly, the
reason for this is that, again, the nn and s§ masses are so low compared to the masses of
the fo(1370) and fy(1500). Even with glueball mixing present, strong quarkonia mixing is
needed to raise these values to the physical meson masses.

Looking at the predictions of the solutions in Table 5.2, it is obvious that none of
the solutions matches the data very well. Overall, Solution #3 probably comes the closest,
but it is still not satisfactory. It is somewhat reassuring that the calculations are of the
correct order of magnitude. But, it would be nice to see closer agreement. There could be
a couple of reasons for the discrepancies. First, it could be that the parameterization of the
mixing in Eq. 5.47 is incorrect. While a similar analysis was successful in the case of the
pseudoscalar mesons, one could argue that the scheme is too restrictive in that it makes
too many assumptions about the relationships between the various annihilation diagrams.
Second, it is possible that the assumption that the glueball does not contribute significantly

to the hadronic decays is bad. We explore these possibilities in the next two sub—sections.

5.4.5 Alternative Mixing Amplitude Solutions

It is possible to relax the assumptions that go into the mixing scheme of Eq. 5.47
and calculate the mixing amplitudes directly in terms of mixing angles. The mixing angles

can be obtained from the SU(2) group transformation U(6, ¢, ) as follows

G R =Ut (a : E) U (5.61)
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where R’ = (|fo(1370)), | f0(1500)), | fo(1710))) and R = (|nn), |s5), |gg)). The SU(2) trans-
formation U is defined by

U6.00) = e (-57)

0 0
= 1cos (5) — 40 - nsin (§> (5.62)

where the unit vector 7 = (sin ¢ cos ¢, sin(¢) sin(¢), cos(¢)). Using this notation, the mixing

amplitudes from Eq. 5.45 are given by

ap = cos’(6/2) — cos*(¢) sin?(0/2) + sin®(¢)) sin®(6/2) cos(2¢)
by = sin?(¢)sin?(6/2)sin(2¢4) + cos(v)) sin(8)
c1 = cos(¢)sin(2¢)sin?(0/2) — sin(f) sin(¢) sin(1))

ag = sin2

(¥) sin?(8/2) sin(2¢) — sin(6) cos(¢))

by = cos?(6/2) — cos?(¢)sin?(6/2) — sin?(¢)) sin?(0/2) cos(2¢)

co = sin(f)cos(p)sin(yp) 4 sin?(0/2) sin(¢) sin(21))

az = sin®(6/2) cos(¢) sin(2¢) + sin(6) sin(¢) sin(¢))

by = sin®(0/2)sin()sin(2¢) — sin(6) cos(¢) sin(¢))

c3 = cos>(6/2) +sin?(0/2) cos(21)) . (5.63)

Using the above expresions, the decay widths for the fy(1370), fp(1500), and
fo(1710) to 7w, KK, and nn can be written in terms of the mixing amplitudes, a; and b;.
The expressions in Eq. 5.63 can then be substituted, so that the decay widths are given in
terms of the three mixing angles (6, ¢, ). Therefore, any three of these expressions for the
decay widths can be set equal to the experimental values, giving three independent equations
which can be solved for the three mixing angles. In this way, the mixing amplitudes can be
determined without reference to, and therefore without any additional assumptions about,
the form of the mass—squared matrix. In this case, the only thing that constrains the form
of the mass—squared matrix is the fact that the basis transformation between the unmixed
and mixed states is unitary. This does force certain relationships among the off-diagonal

elements of the mass—squared matrix, but it is not as restrictive as the assumptions that go
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into Eq. 5.47. The data for the decays of the fy(1500) and f,(1710) were used to find the
mixing angle solutions. For these mesons, there is a total of six decay widths. All possible
groups of three were chosen from these to fit the three mixing angles. Four of the solutions
are given below. The predictions of the decay rates are given in Table 5.3.

The results shown below are representative of all the solutions. As can be seen,
the decay width predictions do not match the data very well. Even though the mixing
angles in this case are fit to more data points than were the mixing parameters (X,53,7,0)
in the first method, the results are no better. Clearly this points to the fact that not all
of the necessary components have been included. In the next sub—section, we do a simple
preliminary analysis to determine the effect of including the glueball contributions in the

decay calculations.

SOLUTION #1
0=—85° ¢=165° o = —39°
0.433 —0.860 0.267

U= 0681 0.118 —0.723
0.590 0.495  0.637

SOLUTION #2
0 =—70° ¢=172° o) = —57°
0.800 —0.569 0.189

U=1 0444 0.349 —0.825
0.403 0.744  0.532

SOLUTION #3
0 =—68° ¢=154° o) = —49°
0.657 —0.753 —0.023

U= 0468 0432 —0.770
0.590 0.495  0.637
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SOLUTION #4
0= —T6° ¢=178° o = —45°
0.611 —0.705 0.359

U= 068 0236 —0.693
0.403 0.668  0.624

Table 5.3: Decay rates in MeV calculated using the mixing angle method. For each solution,
the underlined values are the ones used to fit the mixing angles. The other decay widths
are predictions using the mixing angles obtained from the fit.

Process Soln.#1 | Soln#2 | Soln#3 | Soln#4 Expt.
L'(fo(1500) — 7r) 38.0 16.2 18.0 38.0 | 38.0+3.5
['(f0(1500) — KK) 33.4 9.4 9.4 30.0 9.4+1.2
L(fo(1500) — nn) 3.4 5.5 7.5 5.5 5.6+1.0
L(fo(1710) — 7r) 47.0 21.0 47.0 21.0 21715
I'(fo(1710) —» KK) 52.0 28.2 52.0 27.4 52707
T(fo(1710) — nn) 25.0 37.0 25.0 31.2 25770
L(fo(1370) — 7mr) 5.6 19.0 12.8 11.1 <175
I'(fo(1370) — KK) 63.1 71.4 75.4 65.6 | 44 — 240
L (fo(1370) — nn) 0.3 0.002 0.06 0.05 > 0.54

5.4.6 Mixing with Glueball Contributions

It is conceivable that the failure of the above methods in predicting the hadronic
decay widths of the scalar mesons, is due to the assumption that the glueball contribution is
negligible in these processes. This assumption was motivated by large N, arguments, but it
is possible that it may be incorrect. Even though the glueball contribution to these decays
has not been directly calculated, it is possible to determine whether the inclusion of these
contributions would improve or worsen the predictions of the decay rates. To accomplish
this,wesimply parameterize the glueball contribution in the following way. Including the

glueball component, a given decay amplitude will have the form

M = aiConl]pg +biCssIi% pg + ciCog I pg
_ngjigiPS _
aiCnn " pg + biCss[i2, pg
= Mysll+cikps] , (5.64)

= (aicnﬁ anps + biCSEIfiPS) 1+Ci
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Table 5.4: Hadronic decay widths including the glueball contributions. The |¢;x| are the
glueball contributions to the amplitude as a fraction of the quarkonia contributions. The
final column gives the the glueball contribution as a percentage of the total amplitude.

Decay Process Calculated Expt. |leik| Percentage of
Width (MeV) (MeV) Total Amplitude
['(fo(1500) — 7r) 37.5 380+35] 0 0%
I'(fo(1500) — KK) 10.1 94+1.2 | 0.29 23%
T'(fo(1500) — nn) 5.5 56+1.0 | 0.38 28%
[(fo(1710) — 7o) 22.0 21715 0 0%
I(fo(1710) — KK) 57.8 5232 0.58 37%
L (fo(1710) — nn) 21.2 25118 0.75 43%
[(fo(1370) — 7o) 11.3 <175 0 0%
I'(fo(1370) — KK) 83.0 44 — 240 | 0.057 5%
T (fo(1370) — nm) 0.08 >0.54 | 0.074 7%

where we have defined Mgz = (a;Cpnl]" pg + biCss I35 pg) as well as the parameter kpg =
(CogI?? pg)/(aiCnaI™ pg + biCss I pg). The quantity Mgg is the quark contribution to the
decays which was found earlier. The product ¢;kpg is the ratio of the glueball contribution
to the quark contribution. The parameter kpg will be different for each of the final states
nm(kr), KK (kK), and nn(k,). However, these values are assumed to be the same for each
of the initial scalar mesons. The mixing amplitudes, ¢;, will scale the value of kKpg so that

the scalar mesons with a larger glueball content will receive larger corrections. The best fit

to the data is,

BEST SOLUTION
M; =1.297 GeV X =050 3=0.480 GeV? ~ =0.193 GeV?
§=0208GeV? k=0 Kkg=0.65 r,=0.84
0.617 —0.782 —0.088

U= 0676 0581 —0.453
0.403 0.224  0.887

The resulting decay widths are shown in Table 5.4. The inclusion of the glueball contribu-
tions has improved the situation considerably. The contributions to the K K and nn decays
of the fp(1500) and fy(1710) are significant. Recall that |c;x| is the glueball contribution as

a fraction of the quarkonia contribution, so that the percentage of the total amplitude will
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leik]

1+|c;k| "
is in the process fo(1710) — nn, where the glueball contribution is 43% of the total am-

be given by These values are listed in Table 5.4 as well. The largest contribution
plitude. One interesting feature of this solution is the order of the glueball contributions,
kr < kKix < Kyp. We point out that this finding is in agreement with the consequences of
chiral suppression found by Chanowitz [1]. Recall that Chanowitz determined that the am-
plitude for the scalar glueball to decay to pairs of mesons is proportional to the quark mass.
So, decays to KK or nm would be enhanced over decays to 77. Chanowitz also pointed
out that this suppression allows for a reinterpretation of the structure of the fo(1710). It
has been generally accepted that the fy(1710) is a dominantly sS state because it strongly
decays to KK but not to mw. With chiral suppression, one could just as easily explain
this behavior by taking the fy(1710) to be the scalar glueball. This is consistent with our
final mixing solution which assigns nearly 80% of the structure of the fy(1710) to the scalar
glueball.

If this prediction is not borne out in the direct glueball decay calculation, it would
mean that the fy(1370), fo(1500), and fp(1710) cannot be described as a mixtures of nn,
s§, and gg. To fully describe these mesons, one would most likely need to include the four—
quark states in the mixing. In the Conclusion that follows,we briefly outline how this could

be accomplished in a future work if it in fact becomes necessary.
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Chapter 6

Summary and Conclusion

In this work,we have attempted to explain the scalar meson decay data by assuming
that the heavy isoscalar mesons fy(1370), fo(1500), and fp(1710) are mixtures of nn, ss,
and gg. While our previous work focused on radiative decays of these mesons for which
there is no good data, this work focuses on hadronic decays. In particular,we focus on
the decays fy — nm, fo — KK, and fy — nn. Here, the experimental situation is much
cleaner, at least in the cases of the fy(1500) and fp(1710). The data for the fp(1370) is still
somewhat ambiguous.

Computing the hadronic decay amplitudes presented a challenge because of the
presence of non-wave function vertices in the diagrams. In Ref [61], it was shown that
while the non-wave function vertex is in general a function of all the internal momenta,
it could successfully be approximated as a constant. Using a similar idea,we have shown
that when computing pion and kaon elastic form factors the assumption that this non-wave
function vertex is a constant results in negligible errors. A similar result follows in the
calculation of ¢ — 1. Therefore, the constant non-wave function vertices determined from
these calculations were used in the computation of hadronic decays of scalar mesons.

Once a method was established for computing the hadronic decay amplitudes, the
mixing was analyzed. The mixing was handled using two different methods. In the first,
a mass-squared matrix was written which involved parameterizing the contributions of the
various annihilation diagrams that connect ¢q to ¢'¢g’ or gg to qq. This resulted in four
mixing parameters. The basis transformation that connects the unmixed states with the
physical states diagonalizes this mass-squared matrix and thus provides three constraints

on the mixing parameters. Using the decay width I'(fy(1500) — 77) as a fourth constraint,
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the four mixing parameters were calculated. These parameters determined the nn, ss, and
gg content for the fo(1370), fo(1500), and fy(1710). This information was then used to
predict the remaining hadronic decay widths.

The second method of computing the mixing was more general and did not assume
any particular form for the mass-squared matrix. Instead, it involved writing the basis
transformation between the unmixed and mixed states in terms of mixing angles. This
gives the nn, s5, and gg content of the mesons in terms of three mixing angles. Using three
decay widths, the three mixing angles were fitted and then used to predict the remaining
decay widths. While this method was more general and involved fewer assumptions, it
required three data points to fix the mixing parameters whereas the first method only
required one.

Unfortunately, neither method was successful in predicting the remaining decay
widths satisfactorily once the mixing parameters/angles had been fixed. This is likely due
to the fact that the glueball contributions to the hadronic decay widths were neglected.
To check whether the inclusion of the glueball would improve the predictions, we made a
simple parameterization of these contributions. The best results seem to occur when the
gg — m contribution is essentially zero, while the gg — KK is fairly large and the gg — nn
contribution is even larger. The decay data is very well described when these glueball
contributions are added. One might expect that the relative sizes of the contributions
would be in the reverse order where the pion contribution is largest and the eta meson
contribution is smallest due to phase space differences. However, it may be too difficult to
see how the reverse might be true, especially in light of Chanowitz’s chiral suppression [1].

To lowest order, the glueball decay to two pseudoscalar mesons can proceed through
two basic diagrams. In the first diagram, the glueball produces a single quark-antiquark
pair, g1q1. Then, either the quark or antiquark can emit a gluon which subsequently pro-
duces another quark-antiquark pair, g2gs. These then combine as ¢1¢2 and ¢oG; to form the
final state mesons. In the second diagram, each gluon directly produces a quark-antiquark
pair, q1¢1 and g2g2. The quark from the first gluon would then combine with the antiquark
from the second (g1G2) to produce one of the final state mesons, while the quark from the
second gluon and the antiquark from the first gluon g2g; would form the second final state
meson. In either diagram, the quark and antiquark forming a final state meson would need
to be collinear. This would be much less probable for the second diagram than for the first.

We would therefore expect the first diagram to be the dominant one. However, according to
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Chanowitz, it is exactly this diagram that would be chirally suppressed. By this reasoning,
we would expect to see scalar glueball decays to mm suppressed far greater than decays to
KK or nn. It is also worth remembering that this would be in line with the lattice results
of Sexton, Vaccarino, and Weingarten [19] who demonstrate that the coupling of a scalar
glueball to two pseudoscalar mesons increases as the pseudoscalar meson mass increases.

Finally, we note that the mixing amplitudes of our final solution give that the
fo(1710) is mostly glueball (nearly 80%) while the f,(1500) and fy(1370) are dominantly
mixtures of nn and s§. This is contrary to the popular opinion that the f3(1500) is the
best scalar glueball candidate. However, the interpretation given by our final solution
is contingent upon the results of the scalar glueball decay calculations. These must be
performed in order to verify that decay to wm is suppressed to a greater extent than are
decays to KK or nn. If this is not the case, then our mixing solution will not match the
data, and the possibility exists that one must include four—quark states in the mixing to
arrive at a successful interpretation.

Future work will include directly computing the decay of the scalar glueball to
pairs of pseudoscalar mesons. To this end,we have done a preliminary calculation of the
L = 0 sector of a two constituent gluon glueball spectrum. The Hamiltonian is a simple
non-relativistic one. It has the same form as the Hamiltonian for constituent quarks, except
the qq color factor fo = % is replaced with the gg color factor fo = 3. A single ground—
state simple harmonic oscillator wave function was used as a trial wave function for the
variational principle. The ground state glueball (07") was adjusted to be 1611 MeV, which
was the lattice value used in this thesis. With this, the spin—spin splitting was adjusted
to give the mass of the 27T glueball as 2287 MeV. The wave function obtained from this
analysis can be used to obtain a preliminary estimate of the glueball contribution to the
hadronic decays. To improve upon this estimate a more complete glueball spectrum can be
computed with the full relativized model Hamiltonian.

If this does not reconcile the discrepancy between the hadronic decay predictions
and the data, then the final possibility would be to include four—quark states in the mixing.
This could be accomplished by treating the four—quark states as bound states of diquarks.
As a first step, the diquark spectrum would need to be analyzed. For this, the color factor
in the Hamiltonian would simply have to be modified. The color factor for a qq or ¢q is %
After computing the diquark spectrum, the diquarks themselves would then be combined

to form (¢q)(gq) bound states. To bind the color anti-triplet (¢q) and color triplet (gG) into
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a color singlet, the same Hamiltonian can be used, but with the color factor set back to

%. The masses can then be used to extend the mixing calculation. It is thought that the

scalar states below 1 GeV, the fp(600) and the fy(980), are part of a four-quark nonet. The
mixing would be between the f(600),fo(980),/f0(1370),fo(1500),and fo(1710). The four—

quark wave functions can then be used to compute the contributions to hadronic decays.
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Appendix 1

Spinor Structure for V(S) — S(V)~*

In this appendix, we show the explict form of the trace given by Eq. (4.23). For

the V' — S~* transition, the following two trace calculations are necessary

Svs1 = Tr[(#g —m)(B2 + m)y" (b1 +m) 4]
= dm[pf (e pg—€-p2) +p3(e-pg—e-p1)
+pg (€-p1— € p2)
+et(pL-pa+p2-pg—p1-pg —m?)),
Sgva = Tr[(dg —m)(Bo +m)y* (B +m)]
= Alp{ (p2 - pg — m®) +p3 (p1 - pg — m?)

—l—p?{(mQ —P1- pg)], (61)

to get
-1 + € (pl _pQ) —+ (62)

o ——— - ,
V—S 4(1 _ x)MO VS1 My + 2m VS2

where € = ¢(P;) and we used the transverse polarizations in the calculation of the form

factor and decay width.
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On the other hand, for the S — V~* transitions, we have

Si1 = Te[(#g —m) ¢ (o +m)y" (#1 +m)]
= Am[pf (¢ -pg—€ -p2) +p3 (€ -pg—€ -p1)
—pg (€ -p1— € p2)

+éT(p1 - p2 + p1 - pg — P2 - pg — M),

S&ve = Tr[(Bg — m) (B2 +m)y" (B + m))]
= A]p{ (p2-pg —m?) +p3 (p1 - pg — m?)
+P(J{(’m2 —p1-p2)l, (6.3)
to get )
-1 € - (p2 — pg)
+ + oz e P g+ 4
SS—»V 4(1 _ CC)M(/) SSVl M(/) +2m Sv2|» (6 )

where ¢ = €/(P;) and again we used the transverse polarizations in the calculation of the
form factor and decay width.



Appendix 2

Code for Momentum-Dependent
Matrix Elements

program vf

include ’mpif.h’

double precision dummy

integer 11,12,j1,]j2

real*16 laguerre,PI,beta,ml,m2,mlsq,m2sq,esov,esos,et,ec,
&alpha(3),tau(3),sigmal,sigmal2,s,ss,bb,cc

integer MAX_ROWS, MAX_COLS, rows, cols, max_tag
parameter (MAX_ROWS=100,MAX_COLS=100,rows=25,cols=40)
double precision ff1(MAX_ROWS,MAX_COLS),ff2(MAX_ROWS,MAX_COLS),
&f£3(MAX_ROWS,MAX_COLS) ,ff4 (MAX_ROWS,MAX_COLS),
&f£f5(MAX_ROWS,MAX_COLS) ,ff7(MAX_ROWS,MAX_COLS),
&f£f8(MAX_ROWS,MAX_COLS) ,ff9(MAX_ROWS,MAX_COLS),
&ff10 (MAX_ROWS,MAX_COLS)

DOUBLE PRECISION c(cols)

integer myid, master, numprocs, ierr, status(MPI_STATUS_SIZE)
integer i, j, numsent, sender

integer anstype, tagnum, frmt

COMMON /coeff0/binom0(100)

COMMON /coeff1/binomil(100)

COMMON /coeff2/binom2(100)

COMMON /coeff3/binom3(100)

COMMON /nums/11,12,j1,j2,PI,beta,mlsq,m2sq,ml,m2

COMMON /fnums/esov,et,esos,ec

C 3K oKk K ok ok ok o ok ok K 3 ok ok K o ok ok K ok ok ok K o ok ok K K ok ok Kk sk ok ok K K ok ok oK K ok ok ok sk ok ok Kk s ok sk ok ok ok ok ok sk ok
¢ Parameters for the integration routine

external F1,F2,F3,F4,F5,F7,F8,F9,F10

real*x16 a,b

a = 0.0q0
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b = 30.0q0

G 3Kk sk ok sk ok ok ok ok ok ok ok ok sk ok sk ok o ok o ok sk sk ok sk ok stk sk kst ok st ok sk ok sk ok sk ok ook sk ok ok ok ok s ok ok ok ok ook sk ok ok
¢ Additional stuff

PI=3.14159265358979323846264338328q0
beta=0.75q0
11=0

12=0
ml1=0.22q0
m2=0.22q0
mlsg=ml*%*2.q0
m2sqg=m2**2.q0
esov=-0.035q0
esos=0.055q0
et=0.025q0
ec=-0.168q0

€ 3k 3k 3k %k 3k %k 5k >k 5k >k 3k >k 3k >k 3k 5k 3k 5k 3k 5k 3k 5k 5k 3k >k 3k >k 5k 5k >k 5k >k 3k >k 5k 5k >k 5k >k 5k 5k >k 5k >k 3k 5k >k 5k >k >k >k %k >k >k 5k >k %k %k %k *k %k

call MPI_INIT( ierr )

call MPI_COMM_RANK( MPI_COMM_WORLD, myid, ierr )
call MPI_COMM_SIZE( MPI_COMM_WORLD, numprocs, ierr )
master = 0

max_tag = 9*rows

€ 3 3k 3k 5k 5k >k 5k >k 5k >k 3k >k 3k 5k 3k 5k 3k 5k 3k 5k 5k 5k 5k 3k 5k 3k 5k 5k 5k >k 3k 5k 5k 5k >k 3k >k 3k 5k >k 5k >k 3k >k 3k 5k >k 5k >k 3k >k >k 5k %k 5k >k %k 5k %k 5k %k >k %k %k >k k >k k

31
30

if ( myid .eq. master ) then
print*,’Start!’
master initializes and then dispatches
initialize aa and bb (arbitrary)
do 30 i = 1,rows
do 31 j = 1,cols
f£f1(i,j) = 1.d0
££2(i,3) 1.40

££3(i,j) = 1.d0
££4(i,j) = 1.d0
££5(i,j) = 1.d0

££7(i,3) = 1.d0

££8(i,j) = 1.d0
££9(4,3)
££10(i,j)= 1.d0

1.d40

continue
continue
numsent = 0
send b to each slave process
send a row to each slave process; tag with tagnum number
do 40 i = 1,min(numprocs-1,max_tag)
call MPI_SEND(dummy,1, MPI_DOUBLE_PRECISION, i,



& i, MPI_COMM_WORLD, ierr)
numsent = numsent+1
40 continue
do 70 i = 1,max_tag
call MPI_RECV(c, cols , MPI_DOUBLE_PRECISION,

& MPI_ANY_SOURCE, MPI_ANY_TAG,
& MPI_COMM_WORLD, status, ierr)
sender = status (MPI_SOURCE)
anstype = status(MPI_TAG) | anstype is tag value

if (anstype.le.rows) then
do 55 k=1,cols
ff1(anstype,k) = c(k)
55 continue
elseif (anstype.le.rows+rows) then
do 56 k=1,cols
ff2(anstype-rows,k) = c(k)
56 continue
elseif (anstype.le.rows+2*rows) then
do 57 k=1,cols
ff3(anstype-2*rows,k) = c(k)
57 continue
elseif (anstype.le.rows+3*rows) then
do 58 k=1,cols
ff4(anstype-3*rows,k) = c(k)
58 continue
elseif (anstype.le.rows+4*rows) then
do 59 k=1,cols
ff5(anstype-4*rows,k) = c(k)
59 continue
elseif (anstype.le.rows+b*rows) then
do 60 k=1,cols
f£7 (anstype-5*rows,k) = c(k)
60 continue
elseif (anstype.le.rows+6*rows) then
do 61 k=1,cols
ff8(anstype-6*rows,k) = c(k)
61 continue
elseif (anstype.le.rows+7*rows) then
do 62 k=1,cols
ff9(anstype-7*rows,k) = c(k)
62 continue
elseif (anstype.le.rows+8*rows) then
do 63 k=1,cols
ff10(anstype-8*rows,k) = c(k)



63

70

continue
endif

if (numsent .1lt. max_tag) then ! send another row
call MPI_SEND(dummy,1, MPI_DOUBLE_PRECISION,

sender, numsent+1, MPI_COMM_WORLD, ierr)

numsent = numsent+1

else I Tell

sender that there is no more work

call MPI_SEND(MPI_BOTTOM, O, MPI_DOUBLE_PRECISION,

endif
continue
open(201,file="ff1.
open(202,file="ff2
open(203,file="f£f3
open(204,file="ff4
open(205,file="£ff5
open(207,file="££f7
open(208,file="ff8
open(209,file="£ff9

sender, 0, MPI_COMM_WORLD, ierr)

matrix’,status=’unknown’)

.matrix’,status=’unknown’)
.matrix’,status=’unknown’)
.matrix’,status=’unknown’)
.matrix’,status=’unknown’)
.matrix’,status=’unknown’)
.matrix’,status=’unknown’)
.matrix’,status=’unknown’)

open(210,file="ff10.matrix’,status=’unknown’)

open(221,file="ff1.
open(222,file="£ff2.
open(223,file="ff3.
open(224,file="ff4.
open(225,file="£ff5.
open(227,file="£f7.
open(228,file="f£8.
open(229,file="£f9.

col’,status=’unknown’)
col’,status=’unknown’)
col’,status=’unknown’)
col’,status=’unknown’)
col’,status=’unknown’)
col’,status=’unknown’)
col’,status=’unknown’)
col’,status=’unknown’)

open(230,file="ff10.col’,status=’unknown’)

do 71 i=1,rows
do 72 k=1,cols

if (k.eq.cols) then

ASSIGN 255 TO frmt

else

ASSIGN 250 to frmt

endif

WRITE(201,frmt)££1(i,k)
WRITE (202, frmt) ££2(i,k)
WRITE (203, frmt) ££3(i,k)
WRITE (204, frmt) ££4(i,k)
WRITE (205, frmt) ££5(i,k)
WRITE (207, frmt) ££7(i,k)
WRITE (208, frmt) ££8(i,k)
WRITE (209, frmt) ££9 (i k)
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72
71
250
255

WRITE(210,frmt)ff10(i,k)
WRITE(221,255)ff1(i,k)
WRITE(222,255)ff2(i,k)
WRITE(223,255)ff3(i,k)
WRITE(224,255)ff4(i,k)
WRITE(225,255)ff5(i,k)
WRITE(227,255)££7 (i, k)
WRITE(228,255)ff8(i,k)
WRITE(229,255)ff9(i,k)
WRITE(230,255)ff10(i,k)
continue
continue
FORMAT (G27.18E2,$)
FORMAT (G27.18E2)
close(201)
close (202)
close(203)
close (204)
close(205)
close(207)
close(208)
close(209)
close(210)
close(221)
close(222)
close(223)
close(224)
close(225)
close(227)
close(228)
close(229)
close(230)
print*,’End!’

€ 3k 3K 5k >k 3k 5k 5k >k %k 5k 3k >k 5k 3k 3k 5k >k 5k 5k 5k >k 5k 5k 5k 5k >k 5k 5k 5k 3k >k %k 5k 5k 5k 5k >k >k >k 5k 5k >k >k %k 5k >k >k >k >k %k 5k >k >k %k >k >k >k >k >k %k >k >k >k *k %k %k %k >k %k

90

else
slaves receive b, then compute dot products until
done message received
skip if more processes than work
if (rank .gt. max_tag)
& goto 200
call MPI_RECV(dummy, 1, MPI_DOUBLE_PRECISION, master,
& MPI_ANY_TAG, MPI_COMM_WORLD, status, ierr)
if (status(MPI_TAG) .eq. 0) then
go to 200
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else
tagnum=status (MPI_TAG)
if (tagnum.le.rows) then
do 100 i = 1,cols

jl=tagnum
j2=1i
call gsimp(F1,a,b,s)
c(i) = s
100 continue

elseif (tagnum.le.rows+rows) then
do 101 i = 1,cols
jl=tagnum-rows

j2=i
call gsimp(F2,a,b,s)
c(i) = s
101 continue
elseif (tagnum.le.rows+2*rows) then
do 102 i = 1,cols
jl=tagnum-2*rows
j2=i
call gsimp(F3,a,b,s)
c(i) = s
102 continue
elseif (tagnum.le.rows+3*rows) then
do 103 i = 1,cols
jl=tagnum-3*rows
j2=i
call gsimp(F4,a,b,s)
c(i) = s
103 continue
elseif (tagnum.le.rows+4*rows) then
do 104 i = 1,cols
jl=tagnum-4*rows
j2=i
call gsimp(F5,a,b,s)
c(i) = s
104 continue
elseif (tagnum.le.rows+b*rows) then
do 105 i = 1,cols
jl=tagnum-5*rows
j2=i
call gsimp(F7,a,b,s)
c(i) = s

105 continue



j2=i

c(i)
106

j2=i

c(i)
107

j2=i

c(i)
108

200

100

elseif (tagnum.le.rows+6*rows) then
do 106 i = 1,cols
jl=tagnum-6*rows

call gsimp(F8,a,b,s)

continue
elseif (tagnum.le.rows+7*rows) then
do 107 i = 1,cols
jl=tagnum-7*rows

call gsimp(F9,a,b,s)

continue
elseif (tagnum.le.rows+8*rows) then
do 108 i = 1,cols
jl=tagnum-8*rows

call gsimp(F10,a,b,s)

continue
endif
call MPI_SEND(c, cols, MPI_DOUBLE_PRECISION, master,
tagnum, MPI_COMM_WORLD, ierr)
go to 90
endif
continue
endif
call MPI_FINALIZE(ierr)
stop
end

SUBROUTINE gsimp(func,a,b,s)
INTEGER JMAX
REAL*16 a,b,s,EPS,func
PARAMETER (EPS=1.9-9, JMAX=15)
INTEGER j
REAL*16 os,ost,st
ost=-1.930
0s=-1.q30
do 16 j=1,JMAX

call trapzd(func,a,b,st,j)

s=(4.9q0*st-ost)/3.q0

if (

abs(s-o0s) .1t .EPS*abs(os)) return



16

11

08=S

ost=st

sum=

continue
return
END

SUBROUTINE trapzd(func,a,b,s,n)
INTEGER n
REAL*16 a,b,s,func
INTEGER it, j
REAL*16 del,sum,tnm,xx
if (n.eq.1) then
5=0.5q0* (b-a) * (func(a)+func(b))
else
it=2%*(n-2)

tnm=it
del=(b-a)/tnm
xx=a+0.5q0*del

0.90

do 11 j=1,it

sum=sum+func (xx)

XX

=xx+del
continue
$=0.5q0* (s+(b-a) *sum/tnm)
endif
RETURN
END

REAL*16 FUNCTION F1(x)

REAL*16 PI,NKN,NK1D,NK2D,NK1,NK2,E1,E2,x,x1,ec,
VF1,R1,R2,laguerre,beta,mlsq,m2sq,ml,m2,esov,et,
esos,GAMO,GAM1,GAM2,GAM3

EXTERNAL laguerre

COMMON /nums/11,12,j1,j2,PI,beta,mlsq,m2sq,ml,m2
COMMON /fnums/esov,et,esos,ec

COMMON /coeff0/binom0(100)

COMMON /coeff1/binom1(100)

COMMON /coeff2/binom2(100)

COMMON /coeff3/binom3(100)
GAM0=0.886226925452758013649083741671q0
GAM1=1.32934038817913702047362561251q0
GAM2=3.3233509704478425511840640312690
GAM3=11.6317283965674489291442241094q0

NKN=sqrt (2.90) *(2.q0*PI)**x1.5q0
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if (11.eq.0) then

NK1D=sqrt (GAMO*binomO (j1)* (beta**(2.90%11+3.90)))
elseif (11.eq.1) then

NK1D=sqrt (GAM1*binoml (j1)* (beta**(2.90%11+3.90)))
elseif (11.eq.2) then

NK1D=sqrt (GAM2*binom2 (j1)* (beta**(2.90%11+3.90)))
elseif (11.eq.3) then

NK1D=sqrt (GAM3*binom3(j1)* (beta**(2.90%x11+3.90)))
endif
if (12.eq.0) then

NK2D=sqrt (GAMO*binom0 (j2) *beta*x* (2.q0*12+3.90))
elseif (12.eq.1) then

NK2D=sqrt (GAM1*binoml (j2)*beta**(2.q0%*12+3.q0))
elseif (12.eq.2) then

NK2D=sqrt (GAM2*binom2 (j2)*beta** (2.q0%*12+3.q0))
elseif (12.eq.3) then

NK2D=sqrt (GAM3*binom3(j2)*beta**(2.q0%*12+3.q0))
endif
NK1=NKN/NK1D
NK2=NKN/NK2D
x1=(x/beta)**2.q0
El=sqrt (x**2.q0+mlsq)
E2=sqrt (x**2.90+m2sq)
VF1=sqrt (1.q0+(x**2.q0)/(E1*E2))
R1=NK1*NK2/(2.q0*PI)**3.q0
R2=((-1)** (j1+j2-2) ) * (x** (11+12+2) ) *xexp (-x1) *
laguerre(11, ji,x1)*laguerre(12,j2,x1)
F1=R1*R2*VF1
RETURN
END

REAL#*16 FUNCTION F2(x)

REAL*16 PI,NKN,NK1D,NK2D,NK1,NK2,E1,E2,x,x1,ec,
VF2,R1,R2,laguerre,beta,mlsq,m2sq,ml,m2,esov,et,
esos,GAMO,GAM1,GAM2,GAM3

EXTERNAL laguerre

COMMON /nums/11,12,j1,j2,PI,beta,mlsq,m2sq,ml,m2
COMMON /fnums/esov,et,esos,ec

COMMON /coeff0/binom0(100)

COMMON /coeff1/binoml (100)

COMMON /coeff2/binom2(100)

COMMON /coeff3/binom3(100)
GAMO0=0.886226925452758013649083741671q0
GAM1=1.3293403881791370204736256125190



GAM2=3.32335097044784255118406403126q0
GAM3=11.6317283965674489291442241094q0
NKN=sqrt (2.90) *(2.q0*PI)**x1.5q0

if (11.eq.0) then

NK1D=sqrt (GAMO*binom0(j1) * (beta**(2.q0*11+3.90)))

elseif (11.eq.1) then

NK1D=sqrt (GAM1*binom1 (j1)* (beta**(2.9q0*11+3.q90)))

elseif (11.eq.2) then

NK1D=sqrt (GAM2*binom2(j1) * (beta**(2.9q0*11+3.q90)))

elseif (11.eq.3) then

NK1D=sqrt (GAM3*binom3(j1) * (beta**(2.q0*11+3.q90)))

endif
if (12.eq.0) then

NK2D=sqrt (GAMO*binom0 (j2) *beta*x*(2.q0*12+3.90))
elseif (12.eq.1) then

NK2D=sqrt (GAM1*binoml (j2) *beta**(2.q0*12+3.90))
elseif (12.eq.2) then

NK2D=sqrt (GAM2*binom2 (j2) *beta**(2.q0*12+3.90))
elseif (12.eq.3) then

NK2D=sqrt (GAM3*binom3(j2) *beta**(2.q0*12+3.90))
endif
NK1=NKN/NK1D
NK2=NKN/NK2D
x1=(x/beta)**2.q0
El=sqrt (x*x*2.q0+mlsq)
E2=sqrt (x**2.90+m2sq)
VF2=(m1sq/E1x%*2.q0) ** (0.590+esov)
R1=NK1*NK2/(2.q0*PI)**3.q0
R2=((-1)**(j1+j2-2) ) * (x**(11+12+2) ) xexp (-x1) *
laguerre(11,j1,x1)*laguerre(12,j2,x1)
F2=R1xR2*VF2
RETURN
END

REAL*16 FUNCTION F3(x)

REAL*16 PI,NKN,NK1D,NK2D,NK1,NK2,E1,E2,x,x1,ec,
VF3,R1,R2,laguerre,beta,mlsq,m2sq,ml,m2,esov,et,
esos,GAMO,GAM1,GAM2,GAM3

EXTERNAL laguerre

COMMON /nums/11,12,j1,j2,PI,beta,mlsq,m2sq,ml,m2
COMMON /fnums/esov,et,esos,ec

COMMON /coeff0/binom0(100)

COMMON /coeff1/binom1(100)

COMMON /coeff2/binom2(100)
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COMMON /coeff3/binom3(100)
GAMO=0.886226925452758013649083741671q0
GAM1=1.3293403881791370204736256125190
GAM2=3.32335097044784255118406403126q0
GAM3=11.631728396567448929144224109490
NKN=sqrt (2.90)*(2.q0*PI)**1.5q0
if (11.eq.0) then

NK1D=sqrt (GAMO*binomO (j1)* (beta**(2.90%x11+3.90)))
elseif (11.eq.1) then

NK1D=sqrt (GAM1*binoml (j1)* (beta**(2.90%11+3.90)))
elseif (11.eq.2) then

NK1D=sqrt (GAM2*binom2 (j1)* (beta**(2.90%11+3.90)))
elseif (11.eq.3) then

NK1D=sqrt (GAM3*binom3(j1) * (beta**(2.q0*11+3.q90)))
endif
if (12.eq.0) then

NK2D=sqrt (GAMO*binom0 (j2) *beta** (2.q0%*12+3.q0))
elseif (12.eq.1) then

NK2D=sqrt (GAM1*binoml (j2)*beta**(2.q0%*12+3.q0))
elseif (12.eq.2) then

NK2D=sqrt (GAM2*binom2 (j2)*beta** (2.q0%*12+3.q0))
elseif (12.eq.3) then

NK2D=sqrt (GAM3*binom3(j2)*beta**(2.q0%*12+3.q0))
endif
NK1=NKN/NK1D
NK2=NKN/NK2D
x1=(x/beta)*x2.q0
El=sqrt (x**2.90+m1sq)
E2=sqrt (x**2.q0+m2sq)
VF3=(m2sq/E2**2.q0) ** (0.5q0+esov)
R1=NK1*NK2/(2.q0*PI)**3.q0
R2=((-1)** (j1+j2-2) ) * (x** (11+12+2) ) *xexp (-x1) *
laguerre (11, ji,x1)*laguerre(12,j2,x1)
F3=R1*R2*VF3
RETURN
END

REAL*16 FUNCTION F4(x)

REAL*16 PI,NKN,NK1D,NK2D,NK1,NK2,E1,E2,x,x1,ec,
VF4,R1,R2,laguerre,beta,mlsq,m2sq,ml,m2,esov,et,
esos,GAMO,GAM1,GAM2,GAM3

EXTERNAL laguerre

COMMON /nums/11,12,j1,j2,PI,beta,mlsq,m2sq,ml,m2
COMMON /fnums/esov,et,esos,ec
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COMMON /coeff0/binom0(100)
COMMON /coeff1/binomi(100)
COMMON /coeff2/binom2(100)
COMMON /coeff3/binom3(100)
GAM0=0.886226925452758013649083741671q0
GAM1=1.32934038817913702047362561251q0
GAM2=3.3233509704478425511840640312690
GAM3=11.6317283965674489291442241094q0
NKN=sqrt (2.90) *(2.q0*PI)**x1.5q0
if (11.eq.0) then

NK1D=sqrt (GAMO*binomO(j1) * (beta**(2.q0*11+3.q0)))
elseif (11.eq.1) then

NK1D=sqrt (GAM1*binoml (j1)* (beta**(2.90%11+3.90)))
elseif (11.eq.2) then

NK1D=sqrt (GAM2*binom2 (j1)* (beta**(2.90%x11+3.90)))
elseif (11.eq.3) then

NK1D=sqrt (GAM3*binom3(j1)* (beta**(2.90%11+3.90)))
endif
if (12.eq.0) then

NK2D=sqrt (GAMO*binom0 (j2) *beta**(2.q0*12+3.90))
elseif (12.eq.1) then

NK2D=sqrt (GAM1*binoml (j2) *beta**(2.q0*12+3.90))
elseif (12.eq.2) then

NK2D=sqrt (GAM2*binom2 (j2) *beta** (2.q0%*12+3.q0))
elseif (12.eq.3) then

NK2D=sqrt (GAM3*binom3(j2)*beta**(2.q0%*12+3.q0))
endif
NK1=NKN/NK1D
NK2=NKN/NK2D
x1=(x/beta)**2.q0
El=sqrt (x**2.q0+mlsq)
E2=sqrt (x**2.90+m2sq)
VF4=(m1*m2/ (E1*E2) ) ** (0.590+esov)
R1=NK1*NK2/ (2.q0*PI)**3.q0
R2=((-1)** (j1+j2-2) ) * (x** (11+12+2) ) *xexp (-x1) *

& laguerre(l1l,jl,x1)*laguerre(12,j2,x1)

F4=R1*R2*VF4
RETURN
END

REAL*16 FUNCTION F5(x)

REAL*16 PI,NKN,NK1D,NK2D,NK1,NK2,E1,E2,x,x1,ec,
& VF5,R1,R2,laguerre,beta,mlsq,m2sq,ml,m2,esov,et,
& esos,GAMO,GAM1,GAM2,GAM3
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EXTERNAL laguerre
COMMON /nums/11,12,j1,j2,PI,beta,mlsq,m2sq,ml,m2
COMMON /fnums/esov,et,esos,ec
COMMON /coeff0/binom0(100)
COMMON /coeff1/binoml (100)
COMMON /coeff2/binom2(100)
COMMON /coeff3/binom3(100)
GAMO=0.886226925452758013649083741671q0
GAM1=1.32934038817913702047362561251q0
GAM2=3.32335097044784255118406403126q0
GAM3=11.631728396567448929144224109490
NKN=sqrt (2.90)*(2.q0*PI)**1.5q0
if (11.eq.0) then

NK1D=sqrt (GAMO*binom0O (j1) * (beta**(2.q0*11+3.90)))
elseif (11.eq.1) then

NK1D=sqrt (GAM1*binom1 (j1)* (beta**(2.q0*11+3.q0)))
elseif (11.eq.2) then

NK1D=sqrt (GAM2*binom2(j1) * (beta**(2.q0*11+3.q0)))
elseif (11.eq.3) then

NK1D=sqrt (GAM3*binom3(j1) * (beta**(2.q0*11+3.q90)))
endif
if (12.eq.0) then

NK2D=sqrt (GAMO*binom0 (j2) *beta** (2.q0%*12+3.q0))
elseif (12.eq.1) then

NK2D=sqrt (GAM1*binom1 (j2) *beta**(2.q0*12+3.90))
elseif (12.eq.2) then

NK2D=sqrt (GAM2*xbinom?2 (j2) *beta**(2.q0*12+3.90))
elseif (12.eq.3) then

NK2D=sqrt (GAM3*binom3(j2) *beta**(2.q0*12+3.90))
endif
NK1=NKN/NK1D
NK2=NKN/NK2D
x1=(x/beta)**x2.q0
El=sqrt (x**2.90+m1sq)
E2=sqrt (x**2.90+m2sq)
VF5=(m1*m2/ (E1*E2) ) ** (0.5q0+et)
R1=NK1*NK2/ (2.q0*PI)**3.q0
R2=((-1)**(j1+j2-2) ) * (x**(11+12+2) ) xexp (-x1) *
laguerre(11,j1,x1)*laguerre(12,j2,x1)
F5=R1*R2*VF5
RETURN
END

REAL*16 FUNCTION F7(x)



&

REAL*16 PI,NKN,NK1D,NK2D,NK1,NK2,E1,E2,x,x1,ec,
VF7,R1,R2,laguerre,beta,mlsq,m2sq,ml,m2,esov,et,
esos,GAMO,GAM1,GAM2,GAM3

EXTERNAL laguerre

COMMON /nums/11,12,j1,j2,PI,beta,mlsq,m2sq,ml,m2
COMMON /fnums/esov,et,esos,ec

COMMON /coeff0/binom0(100)

COMMON /coeffl/binom1(100)

COMMON /coeff2/binom2(100)

COMMON /coeff3/binom3(100)
GAMO0=0.886226925452758013649083741671q0
GAM1=1.32934038817913702047362561251q0
GAM2=3.32335097044784255118406403126q0
GAM3=11.631728396567448929144224109490

NKN=sqrt (2.90)*(2.q0*PI)**1.5q0

if (11.eq.0) then

NK1D=sqrt (GAMO*binomO (j1)* (beta**(2.90%11+3.90)))

elseif (11.eq.1) then

NK1D=sqrt (GAM1*binoml (j1)* (beta**(2.90%11+3.90)))

elseif (11.eq.2) then

NK1D=sqrt (GAM2*binom2 (j1)* (beta**(2.90%11+3.90)))

elseif (11.eq.3) then

NK1D=sqrt (GAM3+*binom3(j1)* (beta**(2.90%x11+3.90)))

endif
if (12.eq.0) then

NK2D=sqrt (GAMO*binom0 (j2) *beta** (2.q0%*12+3.q0))

elseif (12.eq.1) then

NK2D=sqrt (GAM1*binoml (j2)*beta**(2.q0%*12+3.q0))

elseif (12.eq.2) then

NK2D=sqrt (GAM2*binom2 (j2)*beta** (2.q0%*12+3.q0))

elseif (12.eq.3) then

NK2D=sqrt (GAM3*binom3(j2)*beta**(2.q0%*12+3.q0))

endif

NK1=NKN/NK1D

NK2=NKN/NK2D

x1=(x/beta)**x2.q0

El=sqrt (x**2.90+m1sq)

E2=sqrt (x**2.q0+m2sq)
VF7=(m1sq/E1**2.q0) **(0.590+esos)
R1=NK1*NK2/(2.q0*PI)**3.q0

R2=((-1)** (j1+j2-2) ) * (xx* (11+12+2) ) *exp(-x1) *laguerre (11, j1,x1) *

laguerre(12,j2,x1)
F7=R1*R2*VF7
RETURN
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END

REAL*16 FUNCTION F8(x)
REAL*16 PI,NKN,NK1D,NK2D,NK1,NK2,E1,E2,x,x1,ec,
VF8,R1,R2,laguerre,beta,mlsq,m2sq,ml,m2,esov,et,
esos,GAMO,GAM1,GAM2,GAM3
EXTERNAL laguerre
COMMON /nums/11,12,j1,j2,PI,beta,mlsq,m2sq,ml,m2
COMMON /fnums/esov,et,esos,ec
COMMON /coeff0/binom0(100)
COMMON /coeff1/binoml (100)
COMMON /coeff2/binom2(100)
COMMON /coeff3/binom3(100)
GAM0=0.886226925452758013649083741671q0
GAM1=1.32934038817913702047362561251q0
GAM2=3.3233509704478425511840640312690
GAM3=11.6317283965674489291442241094q0
NKN=sqrt (2.90) *(2.q0*PI)**x1.5q0
if (11.eq.0) then

NK1D=sqrt (GAMO*binom0(j1) * (beta**(2.q0*11+3.90)))
elseif (1l1.eq.1) then

NK1D=sqrt (GAM1*binom1l (j1)* (beta**(2.q0*11+3.q90)))
elseif (11.eq.2) then

NK1D=sqrt (GAM2*binom2 (j1)* (beta**(2.90%11+3.90)))
elseif (11.eq.3) then

NK1D=sqrt (GAM3*binom3(j1)* (beta**(2.90%x11+3.90)))
endif
if (12.eq.0) then

NK2D=sqrt (GAMO*binom0 (j2) *beta** (2.q0*12+3.q0))
elseif (12.eq.1) then

NK2D=sqrt (GAM1*binoml (j2) *beta**(2.q0*12+3.90))
elseif (12.eq.2) then

NK2D=sqrt (GAM2*xbinom2 (j2) *beta**(2.q0*12+3.90))
elseif (12.eq.3) then

NK2D=sqrt (GAM3*binom3(j2)*beta**(2.q0%*12+3.q0))
endif
NK1=NKN/NK1D
NK2=NKN/NK2D
x1=(x/beta)**2.q0
El=sqrt (x**2.q0+mlsq)
E2=sqrt (x**2.90+m2sq)
VF8=(m2sq/E2**2.q0) ** (0.590+esos)
R1=NK1*NK2/ (2.q0*PI)**3.q0
R2=((-1)**(j1+j2-2) ) * (x**(11+12+2) ) xexp (-x1) *



& laguerre(l1,ji1,x1)*laguerre(12,j2,x1)
F8=R1*R2*VF8
RETURN
END

REAL#*16 FUNCTION F9(x)
REAL*16 PI,NKN,NK1D,NK2D,NK1,NK2,E1,E2,x,x1,ec,
VF9,R1,R2,laguerre,beta,mlsq,m2sq,ml,m2,esov,et,
& esos,GAMO,GAM1,GAM2,GAM3
EXTERNAL laguerre
COMMON /nums/11,12,j1,j2,PI,beta,mlsq,m2sq,ml,m2
COMMON /fnums/esov,et,esos,ec
COMMON /coeff0/binom0(100)
COMMON /coeff1/binoml (100)
COMMON /coeff2/binom2(100)
COMMON /coeff3/binom3(100)
GAMO0=0.886226925452758013649083741671q0
GAM1=1.32934038817913702047362561251q0
GAM2=3.32335097044784255118406403126q0
GAM3=11.631728396567448929144224109490
NKN=sqrt (2.90)*(2.q0*PI)**1.5q0
if (11.eq.0) then

&

NK1D=sqrt (GAMO*binomO (j1)* (beta**(2.90%11+3.90)))

elseif (11.eq.1) then

NK1D=sqrt (GAM1*binom1 (j1)* (beta**(2.9q0*11+3.90)))

elseif (11.eq.2) then

NK1D=sqrt (GAM2*binom2(j1) * (beta**(2.q0*11+3.q90)))

elseif (11.eq.3) then

NK1D=sqrt (GAM3*binom3(j1) * (beta**(2.q0*11+3.q90)))

endif
if (12.eq.0) then

NK2D=sqrt (GAMO*binom0 (j2) *beta** (2.q0%*12+3.q0))

elseif (12.eq.1) then

NK2D=sqrt (GAM1*binoml (j2)*beta**(2.q0%*12+3.q0))

elseif (12.eq.2) then

NK2D=sqrt (GAM2*xbinom2 (j2) *beta**(2.q0*12+3.90))

elseif (12.eq.3) then

NK2D=sqrt (GAM3*binom3(j2) *beta**(2.q0*12+3.q0))

endif

NK1=NKN/NK1D
NK2=NKN/NK2D
x1=(x/beta)*x2.q0
El=sqrt (x**2.90+m1sq)
E2=sqrt (x**2.q0+m2sq)
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VF9=E1+E2

R1=NK1*NK2/ (2.q0*PI)**3.q0
R2=((-1)**(j1+j2-2) ) * (x**(11+12+2) ) xexp (-x1) *
laguerre(11,j1,x1)*laguerre(12,j2,x1)
FO9=R1*R2*VF9

RETURN

END

REAL#*16 FUNCTION F10(x)

REAL*16 PI,NKN,NK1D,NK2D,NK1,NK2,E1,E2,x,x1,ec,
VF10,R1,R2,laguerre,beta,mlsq,m2sq,ml,m2,esov,et,
esos,GAMO,GAM1,GAM2,GAM3

EXTERNAL laguerre

COMMON /nums/11,12,j1,j2,PI,beta,mlsq,m2sq,ml,m2
COMMON /fnums/esov,et,esos,ec

COMMON /coeff0/binom0(100)

COMMON /coeff1/binom1(100)

COMMON /coeff2/binom2(100)

COMMON /coeff3/binom3(100)
GAM0=0.886226925452758013649083741671q0
GAM1=1.32934038817913702047362561251q0
GAM2=3.3233509704478425511840640312690
GAM3=11.6317283965674489291442241094q0

NKN=sqrt (2.90)*(2.q0*PI)**1.5q0

if (11.eq.0) then

NK1D=sqrt (GAMO*binomO (j1)* (beta**(2.90%11+3.90)))

elseif (11.eq.1) then

NK1D=sqrt (GAM1*binoml (j1)* (beta**(2.90%11+3.90)))

elseif (11.eq.2) then

NK1D=sqrt (GAM2*binom2 (j1)* (beta**(2.90%11+3.90)))

elseif (11.eq.3) then

NK1D=sqrt (GAM3*binom3(j1)* (beta**(2.90%x11+3.90)))

endif
if (12.eq.0) then

NK2D=sqrt (GAMO*binom0 (j2) *beta** (2.q0%*12+3.q0))

elseif (12.eq.1) then

NK2D=sqrt (GAM1*binoml (j2)*beta**(2.q0%*12+3.q0))

elseif (12.eq.2) then

NK2D=sqrt (GAM2*binom2 (j2)*beta** (2.q0%*12+3.q0))

elseif (12.eq.3) then

NK2D=sqrt (GAM3*binom3(j2)*beta**(2.q0%*12+3.q0))

endif
NK1=NKN/NK1D
NK2=NKN/NK2D
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x1=(x/beta)**2.q0

El=sqrt (x**2.90+m1sq)

E2=sqrt (x**2.q0+m2sq)
VF10=(m1*m2/ (E1xE2) ) ** (0.5q0+ec)
R1=NK1*NK2/(2.q0*PI)**3.q0

R2=((-1)** (j1+j2-2) ) * (x** (11+12+2) ) *xexp (-x1) *
laguerre (11, ji,x1)*laguerre(12,j2,x1)
F10=R1*R2*VF10

RETURN

END

REAL*16 FUNCTION laguerre(1l,jj,x)
COMMON /coeff0/binom0(100)
COMMON /coeff1/binomil(100)
COMMON /coeff2/binom2(100)
COMMON /coeff3/binom3(100)
REAL*16 x,am,bm,cm
integer jj,11,M
am = 1.90
do 16 M=(jj-1),1,-1
bm=1.q0%(jj-M)
m=1.qO*M* (M+11+0.5q0)
am=1.q0- (bm/cm) * (x*am)
continue
if (11.eq.0) then
laguerre=am*binom0(jj)
elseif (1l.eq.1) then
laguerre=am*binom1 (jj)
elseif (1l.eq.2) then
laguerre=am*binom2(jj)
elseif (11.eq.3) then
laguerre=am*binom3(jj)
endif
RETURN
END

BLOCK DATA binomialO

COMMON /coeff0/binom0 (100)

DATA binom0/1.90,1.59q0,1.87590,2.1875q0,2.4609375q0,
2.7070312590,2.9326171875q0,3.1420898437590,
3.33847045898437590,3.5239410400390625q0,
3.700138092041015625q0,3.8683261871337890625q0,
4.0295064449310302734375q0,4.18448746204376220703125q0,
4.333933442831039428710937590,4.47839789092540740966796875q0,
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.618347825016826391220092773437590,
.75418158457614481449127197265625q0,
.8862421841477043926715850830078125q0,
.0148275047831702977418899536132812q0,
.1401981924027495551854372024536132q90,
.2625838636504340684041380882263183q0,
.3821880423697621154133230447769165q0,
.4991921302473656396614387631416320q90,
.6137586329608524238210520707070827q0,
.7260338056200694722974731121212244q0,
.8361498403435323467647322104312479q0,
.9442266892387829457788939180318266q0,
.0503735944037612126678027379966806q0,
.1546903805141708887482820955483475q0,
.2572685535227404035607534638074866q90,
.35681922398698813778117333583850268q0,
.4575389936178482743400416921097928q0,
.55563804935211490057694362632023654q0,
.6517831478376364911483985611906355q0,
.7468086213781741556307661397779073290,
.8405142966750932407980455838593381q0,
.9329536790625945008088299836412210q0,
.0241767537871023231878935360575529q0,
.1142303019125779939979947352377779q0,
.2031581806864852189229696694282501q0,
.2910015731338813801293473483237166q0,
.3777992109092847298927919596132847q0,
.463587573826834552333405819608788q0,
.5484010689839576722462854311952515q0,
.6322721919726683130490219359863098q0,
.7156231672320197316451728696160074090,
.7973086050044547347118534695234791q0,
.8785305696399178048651019431643487q0,
.9589237387178761498127050242170461q0,
.0385129761050549113108320744592166q0,
.1173219268511829006374088595029344q0,
.19563730992247519669896916369981549q0,
.2726879397834760421499717467811564q90,
.3492869021888785980958048185106115q0,
.425189510390595676260312135042526290,
.5004144167333688519412077791054059q0,
.5749794554766440173091131105010674q90,
.6489016921617875002169502924881455q0,
.7221974692140060383543820746278756q90,
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.79488244812412275563406685919164412q0,
.8669716485185827779254281706387071q0,
.9384794843937326390377300106236967q0,
.0094197977619368663316802488032498q0,
.0798058899319519980998965007470252q0,
.1496505506237362442391264738296946q0,
.2189660850981584885136653107526469q0,
.2877643394645626563383941563552786q0,
.3560567243135667935173529369167144q0,
.4238542368085926398471888277639370q0,
.4911674813572254444175258908193937q0,
.55680066889724171728993394534307979q0,
.6243817354236145143778070885240673q0,
.6903021582689817370790249452947801q0,
.7557771728518802623295588976278529q0,
.8208156873375594640784226236120386q90,
.8854263168595170921315701408726441q0,
.9496173968391243459765803365925964q0,
.013396995636811040502071236186139q0,
.076772925888309844555881813630355q0,
.139752756675111781084356074965544q0,
.202343823074340866152778026045579q0,
.264553236629672212897612038399515q0,
.326387894681658190083742231401922q0,
.387854489292858536453288316112648q0,
.448959515700463586667719423854487q0,
.509709280326629072636717792597827q0,
.570109908374483262709342607497814q0,
.630167351035701917611100235949506q90,
.689887392333655299170713158623380q0,
.749275655624397828610550453949065q0,
.808337609776180234262256775124610q0,
.867078575046702952926725561945939q0,
.925503728675986302136009032709089q0,
.983618110211496867572902697776691q0,
.041426626581031061612760080396568q0,
.098934056927807265058659872481967q0,
.1566145057221249570548652964608163q0,
.213064164656051864275942010345959q0,
.269695801851284449449052828580030q0/
END
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BLOCK DATA binomiall
COMMON /coeff1/binomi(100)
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DATA binom1/1.q0,2.5q0,4.375q0,6.5625q0,9.0234375q0,
11.73046875q0,
14.6630859375q0,17.80517578125q0, 21 . 143646240234375q0,
24.6675872802734375q0,28.367725372314453125q0,
32.2360515594482421875q0, 36 . 2655580043792724609375q0,
40.45004546642303466796875q0,44 . 7839789092540740966796875q0,
49.26237680017948150634765625q0,
53.8807246251963078975677490234375q0,
58.6349062097724527120590209960937590,
63.521148393920157104730606079101562q0,
68.535975898703327402472496032714843q0,
73.676174091106076957657933235168457q0,
78.938757954756511026062071323394775q0,
84.320945997126273141475394368171691q0,
89.820138127373638781136833131313324q0,
95.433896760334491204957885202020406q0,
101.15993056595456067725535831414163q0,

106 . 9960804062980930240200905245728840,
112.94030709553687596979898444260470q0,
118.9906806899406371824667871806013890,
125.14537107045480807121506927614973q0,
131.40263962397754847477582273995722q0,
137.76083186384742985258755609834224q0,
144.21837085746527812692759779045204q0,
150.77375135098642713269703405365440q0,

157 . 42553449882406362384543261484504q0,
164.17234312020223777915309401262411q0,
171.01285741687733101995113959648345q0,
177.94581109593992552075996958012467q0,
184.96998784972702784394786311618222q0,
192.0842181516396058379458578514200090,
199.28737633232609105686882752084825q0,

206 .57837790545997243699817486917197q0,
213.95617711636925716689096682878525q0,
221.41976469019609171922437264839404q0,
228.96816575918004939147065807958929q0,
236.60043795115271770451968001557560q0,

244 .31566962347291502097140871173568q0,
252.11297822847736975568326218125915q0,
259.99150879811728756054836412442350q0,

267 .95043253683516371036106914864055q0,
275.98894551294021862167190122309977q0,
284.10626743979140152230931008260270q0,
292.30164053901615348929900171960086q0,
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300.
308.
317.
325.
334.
343.
351.
360.
369.
378.
387.
396.
405.
414.
424,
433.
442.
452,
461.
471.
481.
491.
500.
510.
520.
530.
540.
550.
561.
571.
581.
592.
602.
613.
623.
634.
.9565393374638697166330272369439390,
655.
666.
677.
688.
699.
710.
721.

644

57432847879962953144897346638202q0,
92361538098850812954477828489263q0,
34880489137910380580509041993515q0,
84921930811247265774629819904056q0,
4241987635891166750554113095416390,
07310045575090417527236160202977q0,
79529792496491021362674367665765q0,
59018037308903296896741226857409q0,
4571520216076157468928404391128090,
39563150600134838593057044973649q0,
4050513037632852522622506985397490,
48485719369523725036214719928677q0,
63450774431897349460127367311646q0,
85347382941713198311493898386911q0,
14123816888169463945333314022439q0,
4972948931952614329706860771411090,
9211491300038540728178749049050490,
4123166113610795172354007957244390,
97032330033349669013474024915523q0,
59470503575711120451254733767930q0,
28500719402609294159157228297408q0,
04078436687797320392113118060193q0,
861600054215563266799955380421397q0,
7470263710750497601311239450866190,
69664376791417410610770428167921q0,
71004076345098514660977551786535q0,
78681368933929499116565733149570q0,
92656644601440677225001340646125q0,
1289102690887476384027914325068390,
3934635057184198513004034709063490,
71985140040007804138414570230826q0,
1077058896929365778374340184209190,
55666540539340016450515344227540q0,
06637468572002923714187123487322q0,
6364845940945124998512138423710490,
26665194513021441746231407832055q0,

70581499308826754524357769089299q0,
51415260286444777950583446601760q0,
38123117791115073243256002796354q0,
30673490658713703456856906067263q0,
290356301679863390214147175844932q0,
33177964337966496375423183884589q0,
4307137003074722288128917113278690,
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732.58685875752872179936154467593602q0,
743.79992292218477366363748668628198q0,
755.0696187240360581130865395148620190/
END

BLOCK DATA binomial2

COMMON /coeff2/binom2(100)

DATA binom2/1.90,3.590,7.87590,14.4375q0,
23.460937590,35.19140625q0,
49.8544921875q0,67.65966796875q0,88.803314208984375q0,
113.4709014892578125q0, 141.838626861572265625q0,
174.0746784210205078125q0,210.3402364253997802734375q0,
250.79028189182281494140625q0,295.5742608010768890380859375q0,
344.83663760125637054443359375q0,
398.7173622264526784420013427734375q0,
457.35226843622513115406036376953125q0,
520.87341683014528825879096984863281q0,
589.40939272884861566126346588134765q0,
663.08556681995469261892139911651611q0,
742.02432477471120364498347043991088q0,
826.34527077183747678645886480808258q0,
916.16540889921111556759569793939590q0,
1011.5993056595456067725535831414163q0,
1112.7592362255001674498089414555579q0,
1219.755316631798260473829031980130890,
1332.6956237273351364436280164227355q0,
1451.6863044172757736260948036033369q0,
1576.8316754877305816973098728794866q0,
1708.2343151117081301720856956194438q0,
1845.9951469755555600246732517177861q0,
1990.213517833020838151600849508238190,
2140.9872691840072652842978835618925q0,
2298.4128036828313289081433161767376q0,
2462.5851468030335666872964101893617q0,
2633.5980042199108977072475497858451q0,
2811.5438153158508232280075193659698q0,
2996.5138031655778510719553824821520q0,
3188.5980213172174569099012403335720q0,
3387.8853976495435479667700678544203q0,

3594 .4637755550035204037682427235923q0,
3808.4199526713727775706592095523775q0,
4029.839717361568869289883582200771690,
4258.8078831207489186813542402803608q0,
4495.4083210719016363858739202959365q0,
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4739.
4991.
5251.
5519
5795.
6079.
6372.
6672.
6981.
7299
7624 .
7959.
8302.
8654.
9014
9384.
9762.

10150.
10546.
10952.

11366

11791.
12224.
12667 .
13119.

135681

14053.
14534.
15025.
155626.
16037.

16558

17088.
17629.
18180.
18741.

19313

19894.
20486.
21089.
21702.
22326.

22960

23605.

7239906953745514068453290076721q0,
8369689238519211625285911889313q0,
8284777219692087230769553133548q0,

.778910258804372433438024461995390,

7678557717445910551099256850952q0,
8741232115359925774192357676979q0,
1757637505521460667182374872987q0,
7500922293517755981672109536807q0,
6737076103402837277119892385734q0,

.0225125017193875335170796585085q0,

8717318098318601912633778575491q0,
2959305734209768663187891670907q0,
3690310291718810415911507691205q0,
1643289541367912552178944457781q0,

.7545093272258242241853067143522q0,

2116613488334399710781471534650q0,
6072928548347883570087176032015q0,
012344158598073609270968301741q0,
497201352293310859633115501028q0,
131709096612284354234389174144q0,
.98518292602941633734932815801490,
126421094911110976802661298238q0,
623715988106372409773347375379q0,
544865118110226482591222280284q0,
957181729471305999826623076009q0,
.92750502980480268996136332516490,
522210065561913894473910662843q0,
807217259588006836065482945817q0,
848001626465980039986614126419q0,
70960168068151270798616793063390,
45662805175656246811729187572090,
.1563271819670736574224996157399q0,
86331258312172172083477167526490,
650126272461016712000429006760q0,
576692718475423484250442413221q0,
705602987564171122653233845728q0,
.09906649328259097395363731663490,
818917893682669015337783018943q0,
92662378337560559317521703736490,
483289188769005757680370479639q0,
549663874489034994822241714512q0,
186148468583547494673455556883q0,
.45280041371376191213576963520490,
409339751177631628768796872148q0,
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24261.
24927 .
25605.

26293

26992.
27702.
28424 .
29156.
29900.

30655
END

BLOCK
COMMO

DATA binom3/1.q0,4.5q0,12.3750q0,26.8125q0,

50.27

135.3193359375q0,202.97900390625q0, 291.782318115234375q0,
405.253219604492187590,547.091846466064453125q0,
721.16652488708496093759q0, 931.506761312484741210937590,

1182.
1477
1822.
2221.
2678.
3199.
3789
4452.
5194.
6020.
6936.
7948.
9061

16350

18196.
20186.
22327.
24625.
27088.

29722

325633.

115154744265899174012374563041q0,
629307347130346953518209029058q0,
010538525041497685950769057022q0,
.31727343162863472051933811769490,
607626448427268622660809876144q0,
939406091806933586415041714990q0,
370119792114405815227933426317q0,
95697854964312761458947810225490,
756901471827901278226964788535q0,
.826520195863959391313504303397q0/

DATA binomial3
N /coeff3/binom3(100)

34375q90,85.46484375q0,

2970432043075561523437590,

.8713040053844451904296875q0,

70794160664081573486328125q0,

425303833093494176864624023437590,
7775722693186253309249877929688q0,
6509890994639135897159576416016q0,

.0603818283125292509794235229492q0,

145948648267221869900822639465390,
1702734229784255148842930793762q0,
5155441948159023013431578874588q0,
6809530940270178689388558268547q0,
2802687535726246414924389682710q0,

.039494979072792091301380423829090,
10280.
11613.
13065.
14642.

794811610871052565130412403960q0,
490435338206189008758428826695q0,
176739755481962634853232430032q0,
00841524321254433216310530951990,
.24273035492067450424880092896390,
237877330476234528922052646749q0,
451395163497072680522902154987q0,
438664347504337964820785716880q0,
851468030335666872964101893617q0,
436614833369233560260512082979q0,
.03461905328013126750806186882490,
578434369130954495515581234794q0,
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35530.092237534708805567470963716946q0,
38718.690258851926262477372204050518q0,
42106.575656501469810444142271904938q0,
45701.03943205647333084791051462853190,
49509.459384727846108418569724180908q0,
53539.299102089414977708453306381680q0,
57798.106985210163896389807546662041q0,
62293.515306282065532775681466957977q0,
67033.239296977440084182526795965649q0,
72025.076265901292005345055387154581q0,
77276.904743623261214068132342467936q0,
82796 .683653882065586501570366929931q0,
88592.451509653810177556680292615026q0,
94672.325632865346170134099528382724q0,
101044 .50139661589831620081776587002q0,
107717.25148884525009179898497682370q0,
114698.92519645559037552669696606228q0,
121997.94770895730976306021404572079q0,
129622.81944076714162325147742357833q0,
137582.11537134056260011779621274543q0,
145884 .48440236973448115938736351455q0,
154538.64873132387127241460525796032q0,
163553.40324065109709663879056467468q0,
172937.61490199993053660986871182814q0,
182700.22219485476532496687742943134q0,
192850.23453901336339857614839773308q0,
203396.73174036565670943578151323411q0,
214348.86344946226899379001590240826q0,
225715.84863238829841012736523056627q0,
237506.97505348320952110416789186451q0,
249731.59876947131589351394123923989q0,
262399.14363458942611999653246152017q0,
275519.10081631889742599635908459618q0,
289101.02832134870222868632044792134q0,
303154.55053141426414258079435858419q0,
317689 .35774867385214941685984153000q90,
332715.20575030031812945684645565642q0,
348241.91535198099964216483262358706q0,
364279 .37198003275620463294991546278q0,
380837 .52525185242694120717491162017q0,
397926 .38856443554866292800968329544q0,
415556.0386907080096796400101123022090,
433736.61538342648510312426055471542q0,
452478.32098641404927424691378856115q0,
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471791.
491686.
512173.
533262.
554965.
577291.
600251.
623857 .
648118.
673045.
698651.
724944 .
751936.
779639.
808064 .
837221.
867121.
897T7TT.
END

42005290733186522086742587778q0,
23897080101453423620520889672q0,
16559458439013982938042593409q0,
64888377315914558706079641373q0,
19854764764818058188303812824q0,
38469611623172807655649368512q0,
83749652994548998869226332033q0,
24683628112312161746106019247q0,
36199102538902079147343475551q0,
99129837251936774499164378457q0,
00183689756086543094241284159q0,
31911032918950015146175095929q0,
92673677761676877412256083543q0,
86614286942370236053760255042q0,
23626266153810817576553597674q0,
19324121118123579035501407899q0,
95014268300913706858197886753q0,
77666287887309645989548317093/
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Appendix 3

Code for Position-Dependent
Matrix Elements

program vg
include ’mpif.h’
double precision dummy
integer 11,12,j1,]j2
real*16 laguerre,PI,beta,ml,m2,mlsq,m2sq,
&alpha(3),tau(3),sigmal,sigmal2,s,ss,bb,cc
integer MAX_ROWS, MAX_COLS, rows, cols, max_tag
parameter (MAX_ROWS=100,MAX_COLS=100,rows=40,cols=40)
double precision ggl(MAX_ROWS,MAX_COLS),gg2(MAX_ROWS,MAX_COLS),
&ggb (MAX_ROWS ,MAX_COLS) , gg6 (MAX_ROWS,MAX_COLS) ,
&gg7 (MAX_ROWS,MAX_COLS) ,gg10(MAX_ROWS,MAX_COLS)
double precision c(cols)
integer myid, master, numprocs, ierr, status(MPI_STATUS_SIZE)
integer i, j, numsent, sender
integer anstype, tagnum, frmt
COMMON /coeff0/binom0(100)
COMMON /coeff1/binomil(100)
COMMON /coeff2/binom2(100)
COMMON /coeff3/binom3(100)
COMMON /nums/11,12,j1,j2,PI,beta,mlsq,m2sq,ml,m2
COMMON /gnums/alpha,tau,bb,cc,sigmal?2
C 3K ok ok K ok ok ok o ok ok K 3 ok ok K 3 ok ok K ok ok oK K o ok ok Kk ok ok Kk sk ok ok K K ok ok oK K ok ok ok sk ok ok Kk sk ok sk ok ok ok ok ok ok ok
¢ Parameters for the integration routine
external G1,G2,G5,G6,G7,G10
real*x16 a,b
a = 0.0001q0
b = 50.0q0
Gk ok ok ok ok ok ok o ok ok sk ok ok ok o ok ok o ok ok ok ok o ok ok ok ok ok sk ok ok ok ok sk ok ok sk o ok ok ok ko ok ok sk ok sk ok ok ok ok ok ok ok ok K



c Additional stuff

C

31
30

PI=3.14159265358979323846264338328q0

beta=0.75q0
11=0

12=0
ml1=0.22q0
m2=0.22q0
mlsg=ml*%*2.q0
m2sqg=m2**2.q0
bb=0.18q0
cc=-0.253q0
ss=1.55q0
sigma0=1.8q0

sigmal2=sqrt (sigmaO**2.q0*(0.5q0+

&0.590%* (4.q0*m1*m2/ (m1+m2) **2.q0) **4.q0) +ss**2.q0%*
&(2.90*m1*m2/ (m1+m2)) **2.q0)

alpha(1)=0.25q0

alpha(2)=0.15q0

alpha(3)=0.2q0
tau(1)=1.q0/(sqrt(1.9q0/0.25q0+1/sigmal2**2.q0))
tau(2)=1.90/(sqrt(1.90/2.590+1/sigmal2**2.q0))
tau(3)=1.q0/(sqrt(1.q0/250.q0+1/sigmal2**2.q0))
CHRAA KA KA KA KA KA KA K KA KA KK KA KK KA KA KA KK KA KKK A KK KA KK KK KKK K
call MPI_INIT( ierr )
call MPI_COMM_RANK( MPI_COMM_WORLD, myid, ierr )
call MPI_COMM_SIZE( MPI_COMM_WORLD, numprocs, ierr )

master = 0

max_tag = 6*rows

Cokok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok sk ok sk ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok o o ok sk ke sk ok sk ok sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok
if ( myid .eq. master ) then

print*,’Start!’

master initializes and then dispatches

initialize aa and bb
do 30 i = 1,rows

do 31 j = 1,cols

ggl(i,j) = 1.d0

gg2(i,j) = 1.d0

ggb(i,j) = 1.d0
gg6(i,j) = 1.d0
gg7(i,j) = 1.d0
ggl0(i,j)= 1.d0
continue

continue
numsent = 0

(arbitrary)
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send b to each slave process

send a row to each slave process; tag with tagnum number

do 40 i = 1,min(numprocs-1,max_tag)

call MPI_SEND(dummy,1, MPI_DOUBLE_PRECISION, i,

& i, MPI_COMM_WORLD, ierr)
numsent = numsent+1
40 continue
do 70 i = 1,max_tag
call MPI_RECV(c, cols , MPI_DOUBLE_PRECISION,

& MPI_ANY_SOURCE, MPI_ANY_TAG,
& MPI_COMM_WORLD, status, ierr)
sender = status (MPI_SOURCE)
anstype = status(MPI_TAG) ! anstype is tag value

if (anstype.le.rows) then
do 55 k=1,cols
ggl(anstype,k) = c(k)
55 continue
elseif (anstype.le.rows+rows) then
do 56 k=1,cols
gg2(anstype-rows,k) = c(k)
56 continue
elseif (anstype.le.rows+2xrows) then
do 57 k=1,cols
gg5(anstype-2*rows,k) = c(k)
57 continue
elseif (anstype.le.rows+3*rows) then
do 58 k=1,cols
gg6 (anstype-3*rows,k) = c(k)
58 continue
elseif (anstype.le.rows+4*rows) then
do 59 k=1,cols
ggT (anstype-4*rows,k) = c(k)
59 continue
elseif (anstype.le.rows+b*rows) then
do 60 k=1,cols
gglO(anstype-5*rows,k) = c(k)

60 continue
endif
if (numsent .lt. max_tag) then ! send another row
call MPI_SEND(dummy,1, MPI_DOUBLE_PRECISION,
& sender, numsent+1, MPI_COMM_WORLD, ierr)

numsent = numsent+1

else I Tell sender that there is no more work
call MPI_SEND(MPI_BOTTOM, O, MPI_DOUBLE_PRECISION,

123
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& sender, 0, MPI_COMM_WORLD, ierr)
endif
70  continue
open(211,file=’ggl.matrix’,status=’unknown’)
open(212,file=’"gg2.matrix’,status=’unknown’)
open(215,file=’ggh5.matrix’,status=’unknown’)
open(216,file="gg6.matrix’,status=’unknown’)
open(217,file=’gg7 .matrix’,status=’unknown’)
open(218,file="ggl0.matrix’,status=’unknown’)
open(231,file=’ggl.col’,status=’unknown’)
open(232,file=’gg2.col’,status=’unknown’)
open(235,file=’gg5.col’,status=’unknown’)
open(236,file=’gg6.col’ ,status=’unknown’)
open(237,file="gg7.col’,status=’unknown’)
open(238,file=ggl0.col’,status=’unknown’)
do 71 i=1,rows
do 72 k=1,cols
if (k.eq.cols) then
ASSIGN 255 TO frmt
else
ASSIGN 250 to frmt
endif
WRITE(211,frmt)ggl (i,k)
WRITE(212,frmt)gg2(i,k)
WRITE(215, frmt)gg5 (i,k)
WRITE(216,frmt)gg6 (i,k)
WRITE(217,frmt)gg7 (i,k)
WRITE (218, frmt)ggl0(i,k)
WRITE(231,255)ggl (i,k)
WRITE(232,255)gg2 (i, k)
WRITE(235,255)gg5 (i, k)
WRITE(236,255)gg6 (i,k)
WRITE(237,255)gg7 (i,k)
WRITE(238,255)gg10 (i, k)
72 continue
71  continue
250 FORMAT(G27.18E2,$)
255 FORMAT(G27.18E2)
close(211)
close(212)
close(215)
close(216)
close(217)
close(218)
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close(231)
close(232)
close(235)
close(236)
close(237)
close(238)
print*,’End!’
Cokokokokokokokokokok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk sk skl sk sk skl sk sk ok sk sk sk o o o o ok ok ke of ook ok ok ok sk sk sksk sk sk sk sk sk sk sk ok ok ok ok
else
slaves receive b, then compute dot products until
done message received
skip if more processes than work
if (rank .gt. max_tag)

& goto 200
90 call MPI_RECV(dummy, 1, MPI_DOUBLE_PRECISION, master,
& MPI_ANY_TAG, MPI_COMM_WORLD, status, ierr)
if (status(MPI_TAG) .eq. 0) then
go to 200
else

tagnum=status (MPI_TAG)
if (tagnum.le.rows) then
do 100 i = 1,cols

jl=tagnum
j2=i
call gsimp(Gil,a,b,s)
c(i) = s
100 continue
elseif (tagnum.le.rows+rows) then
do 101 i = 1,cols
jl=tagnum-rows
j2=i
call gsimp(G2,a,b,s)
c(i) = s
101 continue
elseif (tagnum.le.rows+2*rows) then
do 102 i = 1,cols
jl=tagnum-2*rows
j2=i
call gsimp(G5,a,b,s)
c(i) = s
102 continue

elseif (tagnum.le.rows+3*rows) then
do 103 i = 1,cols
jl=tagnum-3*rows



j2=i

c(i)
103

j2=i

c(i)
104

j2=i

c(i)
105

200
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call gsimp(G6,a,b,s)

continue
elseif (tagnum.le.rows+4*rows) then
do 104 i = 1,cols
jl=tagnum-4*rows

call gsimp(G7,a,b,s)

continue
elseif (tagnum.le.rows+b*rows) then
do 105 i = 1,cols
jl=tagnum-5*rows

call gsimp(G10,a,b,s)

continue
endif
call MPI_SEND(c, cols, MPI_DOUBLE_PRECISION, master,
tagnum, MPI_COMM_WORLD, ierr)
go to 90
endif
continue
endif
call MPI_FINALIZE(ierr)
stop
end

SUBROUTINE gsimp(func,a,b,s)
INTEGER JMAX
REAL*16 a,b,s,EPS,func
PARAMETER (EPS=1.9-9, JMAX=17)
INTEGER j
REAL*16 os,ost,st
ost=-1.q30
os=-1.930
do 16 j=1,JMAX

call trapzd(func,a,b,st,j)

s=(4.q0*st-0st)/3.90

if (
0s=s

ost=

16

abs(s-o0s).1t.EPS*abs(os)) return

st
continue
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return
END

SUBROUTINE trapzd(func,a,b,s,n)
INTEGER n
REAL*16 a,b,s,func
INTEGER it, j
REAL*16 del,sum,tnm,xx
if (n.eq.1) then
s=0.5q0* (b-a) * (func (a) +func (b))
else
it=2%*(n-2)
tnm=it
del=(b-a)/tnm
xx=a+0.5q0*del
sum=0.q0
do 11 j=1,it
sum=sum+func (xx)
xx=xx+del
11 continue
$=0.5q0* (s+(b-a) *sum/tnm)
endif
RETURN
END

REAL#*16 FUNCTION G1(x)

REAL*16 PI,NR1N,NR2N,NR1D,NR2D,NR1,NR2,E1,E2,GX1,GX2,GX3,
& VG1,R1,R2,laguerre,beta,misq,m2sq,ml,m2,alpha(3),tau(3),
& bb,cc,sigmal2,x,x1,GAMO,GAM1,GAM2, GAM3

EXTERNAL laguerre

COMMON /nums/11,12,j1,j2,PI,beta,mlsq,m2sq,ml,m2

COMMON /gnums/alpha,tau,bb,cc,sigmal?

COMMON /coeff0/binom0(100)

COMMON /coeff1/binom1(100)

COMMON /coeff2/binom2(100)

COMMON /coeff3/binom3(100)

GAMO=0.886226925452758013649083741671q0

GAM1=1.3293403881791370204736256125190

GAM2=3.32335097044784255118406403126q0

GAM3=11.631728396567448929144224109490

NR1N=sqrt (2.q0* (beta**(2.q0*11+3.90)))

NR2N=sqrt (2.q0* (beta**(2.9q0*12+3.90)))

if (11.eq.0) then

NR1D=sqrt (GAMO*binom0(j1))



elseif (1l1.eq.1) then
NR1D=sqrt (GAM1i*binoml (j1))

elseif (11.eq.2) then
NR1D=sqrt (GAM2*binom2(j1))

elseif (11.eq.3) then
NR1D=sqrt (GAM3*binom3(j1))

endif

if (12.eq.0) then
NR2D=sqrt (GAMO*binom0(j2))

elseif (12.eq.1) then
NR2D=sqrt (GAM1*binoml (j2))

elseif (12.eq.2) then
NR2D=sqrt (GAM2*binom2(j2))

elseif (12.eq.3) then
NR2D=sqrt (GAM3*binom3(j2))

endif

NR1=NR1N/NR1D

NR2=NR2N/NR2D

GX1=-(4.q0*alpha(1)/(3.q0%*x))*ERF (tau(l) *x)
GX2=-(4.q0*alpha(2)/(3.90%*x))*ERF (tau(2)*x)
GX3=-(4.q0*alpha(3)/(3.q0%*x))*ERF (tau(3) *x)

VG1=GX1+GX2+GX3
x1=(xxbeta)**2.q0
R1=NR1x*NR2

R2=(x**(11+12+2) ) *exp(-x1) *laguerre(ll,jl,x1)*

laguerre(12,j2,x1)
G1=R1*R2*VG1
RETURN
END

REAL*16 FUNCTION G2(x)

REAL*16 PI,NR1N,NR2N,NR1D,NR2D,NR1,NR2,E1,E2,GX1,GX2,GX3,
VG2,R1,R2,laguerre,beta,mlsq,m2sq,ml,m2,alpha(3),tau(3),
bb,cc,sigmal2,x,x1,GAMO,GAM1,GAM2,GAM3

EXTERNAL laguerre

COMMON /nums/11,12,j1,j2,PI,beta,mlsq,m2sq,ml,m2
COMMON /gnums/alpha,tau,bb,cc,sigmal?

COMMON /coeff0/binom0(100)
COMMON /coeff1/binom1(100)
COMMON /coeff2/binom2(100)
COMMON /coeff3/binom3(100)

GAMO=0.886226925452758013649083741671q0
GAM1=1.32934038817913702047362561251q0
GAM2=3.32335097044784255118406403126q0
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GAM3=11.6317283965674489291442241094q0
NR1N=sqrt (2.q0* (beta**(2.q0*11+3.90)))
NR2N=sqrt (2.q0* (beta**(2.9q0*12+3.90)))

if (11.eq.0) then
NR1D=sqrt (GAMO*binomO(j1))
elseif (11.eq.1) then
NR1D=sqrt (GAM1*binoml (j1))
elseif (11.eq.2) then
NR1D=sqrt (GAM2*binom2(j1))
elseif (11.eq.3) then
NR1D=sqrt (GAM3#*binom3(j1))
endif
if (12.eq.0) then
NR2D=sqrt (GAMO*binom0 (j2))
elseif (12.eq.1) then
NR2D=sqrt (GAM1*binoml (j2))
elseif (12.eq.2) then
NR2D=sqrt (GAM2*binom2(j2))
elseif (12.eq.3) then
NR2D=sqrt (GAM3#*binom3(j2))
endif
NR1=NR1N/NR1D
NR2=NR2N/NR2D
GX1=(4.q0*alpha(1)/(3.q0*x**3.
(8.90*tau(1)*alpha(1)/(3.
exp (- (tau(1)*x)**2.q0)
GX2=(4.q0*alpha(2)/(3.q0*x**3.
(8.90*tau(2)*alpha(2)/(3.
exp (- (tau(2)*x)**2.q0)
GX3=(4.q0*alpha(3)/(3.q0*x**3.
(8.90*tau(3)*alpha(3)/(3.
exp (- (tau(3) *x) **2.q0)
VG2=(1/m1sq) * (GX1+GX2+GX3)
x1=(xxbeta)**2.q0
R1=NR1*NR2

q0) ) *ERF (tau (1) *x) -
qO*sqrt (PI)*x*%2.q0))*

q0) ) *ERF (tau(2) *x) -
qO*sqrt (PI)*x**2.q0) ) *

q0) ) *ERF (tau(3) *x) -
qO*sqrt (PI)*x*%2.q0))*

R2=(x**(11+12+2) ) *exp(-x1) *laguerre(ll,j1,x1)*

laguerre(12,j2,x1)
G2=R1*R2*VG2
RETURN
END

REAL*16 FUNCTION G5(x)

REAL*16 PI,NR1N,NR2N,NR1D,NR2D,NR1,NR2,E1,E2,GX1,GX2,GX3,
VG5,R1,R2,laguerre,beta,mlsq,m2sq,ml,m2,alpha(3),tau(3),
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& bb,cc,sigmal2,x,x1,GAMO,GAM1,GAM2,GAM3

EXTERNAL laguerre
COMMON /nums/11,12,j1,j2,PI,beta,mlsq,m2sq,ml,m2
COMMON /gnums/alpha,tau,bb,cc,sigmal?
COMMON /coeff0/binom0(100)
COMMON /coeff1/binomi1(100)
COMMON /coeff2/binom2(100)
COMMON /coeff3/binom3(100)
GAM0=0.886226925452758013649083741671q0
GAM1=1.32934038817913702047362561251q0
GAM2=3.3233509704478425511840640312690
GAM3=11.6317283965674489291442241094q0
NR1N=sqrt (2.q0* (beta**(2.q0*11+3.90)))
NR2N=sqrt (2.q0* (beta**(2.q0*12+3.q90)))
if (11.eq.0) then

NR1D=sqrt (GAMO*binomO(j1))
elseif (1l1.eq.1) then

NR1D=sqrt (GAM1*binoml (j1))
elseif (11.eq.2) then

NR1D=sqrt (GAM2*binom2(j1))
elseif (11.eq.3) then

NR1D=sqrt (GAM3#*binom3(j1))
endif
if (12.eq.0) then

NR2D=sqrt (GAMO*binom0 (j2))
elseif (12.eq.1) then

NR2D=sqrt (GAM1*binoml (j2))
elseif (12.eq.2) then

NR2D=sqrt (GAM2*binom2(j2))
elseif (12.eq.3) then

NR2D=sqrt (GAM3#*binom3(j2))
endif
NR1=NR1N/NR1D
NR2=NR2N/NR2D
GX1=-(4.q0*alpha(1)/(x**3.q0))*ERF (tau(1)*x)+

& (16.90*alpha(1)/(3.90*sqrt (PI)))*(tau(l)**3.q0+

& (3.q0*tau(1))/(2.q0*x**2.q0) ) *exp (- (tau (1) *x)**2.90)
GX2=-(4.q0*alpha(2)/(x**3.q0) ) *ERF (tau(2) *x)+

& (16.q0*alpha(2)/(3.q0*sqrt (PI)))*(tau(2)**3.q0+

& (3.90*tau(2))/(2.q0*x**2.q0) ) *exp (- (tau(2) *x) **2.q0)
GX3=-(4.q0*alpha(3)/(x**3.q0) ) *ERF (tau(3)*x)+

& (16.90*alpha(3)/(3.q0*sqrt (PI)))*(tau(3)**3.q0+

& (3.q0*tau(3))/(2.q0*x**2.q0) ) *exp (- (tau(3) *x) **2.90)

VG5=(1.90/ (m1*m2) ) * (GX1+GX2+GX3)
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x1=(xxbeta)**2.q0

R1=NR1*NR2

R2=(x**(11+12+2) ) *exp(-x1) *laguerre(ll,jl,x1)*
laguerre(12,j2,x1)

G5=R1*R2*VG5

RETURN

END

REAL*16 FUNCTION G6(x)
REAL*16 PI,NR1N,NR2N,NR1D,NR2D,NR1,NR2,E1,E2,GX1,GX2,GX3,
VG6,R1,R2,laguerre,beta,mlsq,m2sq,ml,m2,alpha(3),tau(3),
bb,cc,sigmal2,x,x1,GAMO,GAM1,GAM2,GAM3
EXTERNAL laguerre
COMMON /nums/11,12,j1,j2,PI,beta,mlsq,m2sq,ml,m2
COMMON /gnums/alpha,tau,bb,cc,sigmal?
COMMON /coeff0/binom0(100)
COMMON /coeff1/binomi(100)
COMMON /coeff2/binom2(100)
COMMON /coeff3/binom3(100)
GAM0=0.886226925452758013649083741671q0
GAM1=1.32934038817913702047362561251q0
GAM2=3.3233509704478425511840640312690
GAM3=11.6317283965674489291442241094q0
NR1N=sqrt (2.q0* (beta**(2.q0*11+3.q0)))
NR2N=sqrt (2.q0* (beta**(2.9q0*12+3.q90)))
if (11.eq.0) then

NR1D=sqrt (GAMO*binomO(j1))
elseif (11.eq.1) then

NR1D=sqrt (GAM1*binoml (j1))
elseif (11.eq.2) then

NR1D=sqrt (GAM2*binom2(j1))
elseif (11.eq.3) then

NR1D=sqrt (GAM3*binom3(j1))
endif
if (12.eq.0) then

NR2D=sqrt (GAMO*binom0 (j2))
elseif (12.eq.1) then

NR2D=sqrt (GAM1*binoml (j2))
elseif (12.eq.2) then

NR2D=sqrt (GAM2*binom2(j2))
elseif (12.eq.3) then

NR2D=sqrt (GAM3#*binom3(j2))
endif
NR1=NR1N/NR1D
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NR2=NR2N/NR2D
VG6=bb*x* (exp (- (sigmal2*x)**2.90) / (sqrt (PI)*sigmal2*x)+
(1.90+1.90/(2.q0*(sigmal2*x)**2.q0) ) *xerf (sigmal2+*x))+cc

x1=(xxbeta)**2.q0

R1=NR1x*NR2

R2=(x** (11+12+2) ) *exp(-x1)*laguerre(11,j1,x1)*
laguerre(12,j2,x1)

G6=R1*R2*VG6

RETURN

END

REAL*16 FUNCTION G7(x)
REAL*16 PI,NR1N,NR2N,NR1D,NR2D,NR1,NR2,E1,E2,GX1,GX2,GX3,
VG7,R1,R2,laguerre,beta,mlsq,m2sq,ml,m2,alpha(3),tau(3),
bb,cc,sigmal2,x,x1,GAMO,GAM1,GAM2,GAM3
EXTERNAL laguerre
COMMON /nums/11,12,j1,j2,PI,beta,mlsq,m2sq,ml,m2
COMMON /gnums/alpha,tau,bb,cc,sigmal?2
COMMON /coeff0/binom0(100)
COMMON /coeff1/binoml (100)
COMMON /coeff2/binom2(100)
COMMON /coeff3/binom3(100)
GAMO=0.886226925452758013649083741671q0
GAM1=1.32934038817913702047362561251q0
GAM2=3.3233509704478425511840640312690
GAM3=11.6317283965674489291442241094q0
NR1N=sqrt (2.q0* (beta**(2.q0*11+3.q90)))
NR2N=sqrt (2.q0* (betax**(2.q0*12+3.q0)))
if (11.eq.0) then

NR1D=sqrt (GAMO*binomO(j1))
elseif (11.eq.1) then

NR1D=sqrt (GAM1*binoml (j1))
elseif (11.eq.2) then

NR1D=sqrt (GAM2*binom2(j1))
elseif (11.eq.3) then

NR1D=sqrt (GAM3*binom3(j1))
endif
if (12.eq.0) then

NR2D=sqrt (GAMO*binom0 (j2))
elseif (12.eq.1) then

NR2D=sqrt (GAM1*binoml (j2))
elseif (12.eq.2) then

NR2D=sqrt (GAM2*binom2(j2))
elseif (12.eq.3) then
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NR2D=sqrt (GAM3*binom3(j2))
endif
NR1=NR1N/NR1D
NR2=NR2N/NR2D
GX1=(1.90/x-1.90/(2.q0*(sigmal2**2.q0) *x**3.q0) ) *
erf (sigmal2*x)
GX2=(exp(-(sigmal2*x)**x2.90)/sqrt (PI))*(1.q0/(sigmal2x*x))
VG7=(1/m1sq) *bb* (GX1+GX2)
x1=(x*beta)**x2.q0
R1=NR1x*NR2
R2=(x**(11+12+2) ) *exp(-x1) *laguerre(ll,jl,x1)*
laguerre(12,j2,x1)
G7=R1*R2*VG7
RETURN
END

REAL*16 FUNCTION G10(x)
REAL*16 PI,NR1N,NR2N,NR1D,NR2D,NR1,NR2,E1,E2,GX1,GX2,GX3,
VG10,R1,R2,laguerre,beta,mlsq,m2sq,ml,m2,alpha(3),tau(3),
bb,cc,sigmal2,x,x1,GAMO,GAML,GAM2,, GAM3
EXTERNAL laguerre
COMMON /nums/11,12,j1,j2,PI,beta,mlsq,m2sq,ml,m2
COMMON /gnums/alpha,tau,bb,cc,sigmal?
COMMON /coeff0/binom0(100)
COMMON /coeff1/binoml (100)
COMMON /coeff2/binom2(100)
COMMON /coeff3/binom3(100)
GAMO=0.886226925452758013649083741671q0
GAM1=1.3293403881791370204736256125190
GAM2=3.32335097044784255118406403126q0
GAM3=11.631728396567448929144224109490
NR1N=sqrt (2.q0* (beta**(2.q0*11+3.90)))
NR2N=sqrt (2.q0* (beta**(2.q0*12+3.q90)))
if (11.eq.0) then

NR1D=sqrt (GAMO*binomO(j1))
elseif (11.eq.1) then

NR1D=sqrt (GAM1*binoml (j1))
elseif (11.eq.2) then

NR1D=sqrt (GAM2*binom2(j1))
elseif (11.eq.3) then

NR1D=sqrt (GAM3*binom3(j1))
endif
if (12.eq.0) then

NR2D=sqrt (GAMO*binom0(j2))
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elseif (12.eq.1) then

NR2D=sqrt (GAM1*binoml (j2))
elseif (12.eq.2) then

NR2D=sqrt (GAM2*binom2(j2))
elseif (12.eq.3) then

NR2D=sqrt (GAM3*binom3(j2))
endif
NR1=NR1N/NR1D
NR2=NR2N/NR2D
GX1=alpha(1)*(tau(1)**3.q0)*EXP (- (tau(1)*x)**x2.90)
GX2=alpha(2)*(tau(2)**3.q0)*EXP (- (tau(2)*x) **2.q0)
GX3=alpha(3)*(tau(3)**3.q0)*EXP (- (tau(3) *x) **2.90)
VG10=32.q0* (GX1+GX2+GX3) /(9.q0*sqrt (PI)*ml*m2)
x1=(x*beta)**x2.q0
R1=NR1x*NR2
R2=(x**(11+12+2) ) *exp(-x1) *laguerre(ll,jl,x1)*

laguerre(12,j2,x1)

G10=R1*R2*VG10
RETURN
END

REAL*16 FUNCTION laguerre(1ll,jj,x)

COMMON /coeff0/binom0(100)

COMMON /coeffl/binom1(100)

COMMON /coeff2/binom2(100)

COMMON /coeff3/binom3(100)

REAL*16 x,am,bm,cm

integer jj,11,M

am = 1.90

do 16 M=(jj-1),1,-1
bm=1.q0*(jj-M)

cm=1.q0*M* (M+11+0.5q0)

am=1.q0- (bm/cm) * (x*am)
continue
if (11.eq.0) then
laguerre=am*binom0(jj)
elseif (1l.eq.1) then
laguerre=am*binoml (jj)
elseif (1l.eq.2) then
laguerre=am*binom2(jj)
elseif (11l.eq.3) then
laguerre=am*binom3(jj)
endif
RETURN
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END

BL
co
DA

OCK DATA binomialO
MMON /coeff0/binom0(100)
TA binom0/1.q90,1.590,1.875q0,2.187590,2.4609375q0,

.7070312590,2.9326171875q0,3.14208984375q0,
.338470458984375q0,3.523941040039062590,
.700138092041015625q0,3.8683261871337890625q0,
.0295064449310302734375q0,4.1844874620437622070312590,
.3339334428310394287109375q0,4.47839789092540740966796875q0,
.618347825016826391220092773437590,
.75418158457614481449127197265625q0,
.8862421841477043926715850830078125q0,
.0148275047831702977418899536132812q0,
.1401981924027495551854372024536132q0,
.2625838636504340684041380882263183q0,
.3821880423697621154133230447769165q0,
.499192130247365639661438763141632090,
.6137586329608524238210520707070827q0,
.7260338056200694722974731121212244q0,
.8361498403435323467647322104312479q0,
.9442266892387829457788939180318266q0,
.0503735944037612126678027379966806q0,
.1546903805141708887482820955483475q0,
.2572685535227404035607534638074866q90,
.35681922398698813778117333583850268q0,
.4575389936178482743400416921097928q0,
.55563804935211490057694362632023654q0,
.6517831478376364911483985611906355q0,
.74680862137817415563076613977790732q0,
.8405142966750932407980455838593381q0,
.9329536790625945008088299836412210q0,
.0241767537871023231878935360575529q0,
.114230301912577993997994735237777990,
.2031581806864852189229696694282501q0,
.2910015731338813801293473483237166q90,
.3777992109092847298927919596132847q0,
.463587573826834552333405819608788q0,
.5484010689839576722462854311952515q0,
.6322721919726683130490219359863098q0,
.71562316723201973164517286961600740q0,
.7973086050044547347118534695234791q0,
.8785305696399178048651019431643487q0,
.95689237387178761498127050242170461q0,
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.0385129761050549113108320744592166q0,
.1173219268511829006374088595029344q0,
.1963730992247519669896916369981549q0,
.2726879397834760421499717467811564q0,
.3492869021888785980958048185106115q0,
.4251895103905956762603121350425262q0,
.500414416733368851941207779105405990,
.5749794554766440173091131105010674q0,
.6489016921617875002169502924881455q0,
.7221974692140060383543820746278756q0,
.79488244812412275563406685919164412q0,
.8669716485185827779254281706387071q0,
.9384794843937326390377300106236967q0,
.0094197977619368663316802488032498q0,
.0798058899319519980998965007470252q0,
.1496505506237362442391264738296946q0,
.2189660850981584885136653107526469q0,
.2877643394645626563383941563552786q0,
.3560567243135667935173529369167144q0,
.4238542368085926398471888277639370q0,
.4911674813572254444175258908193937q0,
.55680066889724171728993394534307979q0,
.6243817354236145143778070885240673q0,
.6903021582689817370790249452947801q0,
.7557771728518802623295588976278529q0,
.8208156873375594640784226236120386q0,
.8854263168595170921315701408726441q0,
.9496173968391243459765803365925964q0,

.01339699563681104050207123618613990,
.076772925888309844555881813630355q0,
.139752756675111781084356074965544q0,
.202343823074340866152778026045579q0,
.264553236629672212897612038399515q0,
.326387894681658190083742231401922q0,
.387854489292858536453288316112648q0,
.448959515700463586667719423854487q0,
.509709280326629072636717792597827q0,
.570109908374483262709342607497814q0,
.630167351035701917611100235949506q0,
.689887392333655299170713158623380q0,
.749275655624397828610550453949065q0,
.808337609776180234262256775124610q0,
.867078575046702952926725561945939q0,
.925503728675986302136009032709089q0,
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10.983618110211496867572902697776691q0,
11.041426626581031061612760080396568q0,
11.098934056927807265058659872481967q0,
11.156145057221249570548652964608163q0,
11.213064164656051864275942010345959q0,
11.26969580185128444944905282858003090/
END

BLOCK DATA binomiall

COMMON /coeff1/binom1(100)

DATA binom1/1.90,2.5q0,4.375q0,6.5625q90,9.023437590,
11.7304687590,
14.663085937590,17.80517578125q0,21.14364624023437590,
24.6675872802734375q0,28.367725372314453125q0,
32.236051559448242187590,36.2655580043792724609375q0,
40.45004546642303466796875q0,44.783978909254074096679687590,
49.26237680017948150634765625q0,
53.880724625196307897567749023437590,
58.6349062097724527120590209960937590,
63.521148393920157104730606079101562q0,
68.535975898703327402472496032714843q0,
73.676174091106076957657933235168457q0,
78.938757954756511026062071323394775q0,
84.320945997126273141475394368171691q0,
89.82013812737363878113683313131332490,
95.433896760334491204957885202020406q0,
101.15993056595456067725535831414163q0,
106.99608040629809302402009052457288q0,
112.94030709553687596979898444260470q0,
118.99068068994063718246678718060138q0,
125.14537107045480807121506927614973q0,
131.40263962397754847477582273995722q0,
137.76083186384742985258755609834224q0,

144 .2183708574652781269275977904520490,
150.77375135098642713269703405365440q0,
157.42553449882406362384543261484504q0,
164.1723431202022377791530940126241190,
171.01285741687733101995113959648345q0,
177.94581109593992552075996958012467q0,
184.96998784972702784394786311618222q0,
192.0842181516396058379458578514200090,
199.28737633232609105686882752084825q0,
206.57837790545997243699817486917197q0,
213.95617711636925716689096682878525q0,
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221.
228.
236.
.31566696234729150209714087117356890,
252.
259.
267.
275.
284.
292.
300.
308.
317.
325.
.4241987635891166750554113095416390,
343.
351.
360.
369.
378.
387.
396.
405.
414.
424 .
433.
442.
452.
461.
471.
481.
491.
500.
510.
520.
530.
540.
550.
561.
571.
581.
592.
602.
613.

244

334

4197646901960917192243726483940490,
96816575918004939147065807958929q0,
60043795115271770451968001557560q0,

11297822847736975568326218125915q0,
99150879811728756054836412442350q0,
95043253683516371036106914864055q0,
98894551294021862167190122309977q0,
1062674397914015223093100826027090,
30164053901615348929900171960086q0,
57432847879962953144897346638202q0,
92361538098850812954477828489263q0,
34880489137910380580509041993515q0,
84921930811247265774629819904056q0,

07310045575090417527236160202977q0,
79529792496491021362674367665765q0,
59018037308903296896741226857409q0,
4571520216076157468928404391128090,
39563150600134838593057044973649q0,
4050513037632852522622506985397490,
48485719369523725036214719928677q0,
63450774431897349460127367311646q0,
85347382941713198311493898386911q0,
14123816888169463945333314022439q0,
4972948931952614329706860771411090,
92114913000385407281787490490504q0,
4123166113610795172354007957244390,
97032330033349669013474024915523q0,
59470503575711120451254733767930q0,
28500719402609294159157228297408q0,
04078436687797320392113118060193q0,
86160005421553266799955380421397q0,
7470263710750497601311239450866190,
69664376791417410610770428167921q0,
71004076345098514660977551786535q0,
78681368933929499116565733149570q0,
92656644601440677225001340646125q0,
1289102690887476384027914325068390,
39346350571841985130040347090634q0,
71985140040007804138414570230826q0,
1077058896929365778374340184209190,
55666540539340016450515344227540q0,
06637468572002923714187123487322q0,
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623.63648459409451249985121384237104q0,
634.26665194513021441746231407832055q0,
644 .95653933746386971663302723694393q0,
655.70581499308826754524357769089299q0,
666.51415260286444777950583446601760q0,
677.38123117791115073243256002796354q0,
688.30673490658713703456856906067263q0,
699.29035301679863390214147175844932q0,
710.33177964337966496375423183884589q0,
721.43071370030747222881289171132786q0,
732.58685875752872179936154467593602q0,
743.79992292218477366363748668628198q0,
755.0696187240360581130865395148620190/
END

BLOCK DATA binomial2

COMMON /coeff2/binom2(100)

DATA binom2/1.q0,3.5q0,7.875q0,14.4375q0,
23.4609375q0,35.19140625q0,
49.8544921875q90,67.6596679687590,88.803314208984375q0,
113.4709014892578125q0,141.838626861572265625q0,
174.0746784210205078125q0,210.340236425399780273437590,
250.79028189182281494140625q0,295.5742608010768890380859375q0,
344 .8366376012563705444335937590,
398.717362226452678442001342773437590,

457 .35226843622513115406036376953125q0,
520.87341683014528825879096984863281q0,
589.40939272884861566126346588134765q0,
663.0855668199546926189213991165161190,
742.02432477471120364498347043991088q0,
826.34527077183747678645886480808258q0,
916.16540889921111556759569793939590q0,
1011.5993056595456067725535831414163q0,
1112.7592362255001674498089414555579q0,
1219.7553166317982604738290319801308q0,
1332.6956237273351364436280164227355q0,
1451.6863044172757736260948036033369q0,
1576.8316754877305816973098728794866q0,
1708.2343151117081301720856956194438q0,
1845.9951469755555600246732517177861q0,
1990.2135178330208381516008495082381q0,
2140.9872691840072652842978835618925q0,
2298.4128036828313289081433161767376q0,
2462.5851468030335666872964101893617q0,
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2633.
2811.
2996.
3188
3387.
3594.
3808.
4029.
4258.
4495
4739.
4991.
5251.
5519.
5795
6079.
6372.
6672.
6981.
7299.
7624
7959.
8302.
8654.
9014.
9384
9762.

10150.
105646.
10952.
11366.

11791

12224.
12667 .
13119.
13681.

14053

14534.
15025.
155626.
16037.
16558.

17088

17629.

5980042199108977072475497858451q0,
5438153158508232280075193659698q0,
51380316557785107195563824821520q0,

.598021317217456909901240333572090,

8853976495435479667700678544203q0,
463775555003520403768242723592390,
4199526713727775706592095523775q0,
8397173615688692898835822007716q0,
8078831207489186813542402803608q0,

.4083210719016363858739202959365q0,

7239906953745514068453290076721q0,
8369689238519211625285911889313q0,
8284777219692087230769553133548q0,
7789102588043724334380244619953q0,

.7678557717445910551099256850952q0,

8741232115359925774192357676979q0,
1757637505521460667182374872987q0,
7500922293517755981672109536807q0,
6737076103402837277119892385734q0,
0225125017193875335170796585085q0,

.871731809831860191263377857549190,

2959305734209768663187891670907q0,
3690310291718810415911507691205q0,
1643289541367912552178944457781q0,
7545093272258242241853067143522q0,

.211661348833439971078147153465090,

6072928548347883570087176032015q0,
012344158598073609270968301741q0,
497201352293310859633115501028q0,
13170909661228435423438917414490,
985182926029416337349328158014q90,
.126421094911110976802661298238q0,
623715988106372409773347375379q0,
544865118110226482591222280284q0,
957181729471305999826623076009q0,
927505029804802689961363325164q0,
.52221006556191389447391066284390,
807217259588006836065482945817q0,
848001626465980039986614126419q0,
70960168068151270798616793063390,
456628051756562468117291875720q0,
153271819670736574224996157399q0,
.86331258312172172083477167526490,
650126272461016712000429006760q0,
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18180.576692718475423484250442413221q0,
18741.705602987564171122653233845728q0,
19313.099066493282590973953637316634q0,
19894 .818917893682669015337783018943q0,
20486.926623783375605593175217037364q0,
21089.483289188769005757680370479639q0,
21702.549663874489034994822241714512q0,
22326.186148468583547494673455556883q0,
22960.452800413713761912135769635204q0,
23605.409339751177631628768796872148q0,
24261.115154744265899174012374563041q0,
24927 .629307347130346953518209029058q0,
25605.010538525041497685950769057022q0,
26293.317273431628634720519338117694q0,
26992.607626448427268622660809876144q0,
27702.939406091806933586415041714990q0,
28424 .3701197921144056815227933426317q0,
29156.956978549643127614589478102254q0,
29900.756901471827901278226964788535q0,
30655.826520195863959391313504303397q0/
END

BLOCK DATA binomial3

COMMON /coeff3/binom3(100)

DATA binom3/1.90,4.5q0,12.375090,26.8125q0,
50.2734375q0,85.46484375q0,
135.3193359375q0,202.97900390625q0, 291.782318115234375q0,
405.253219604492187590,547.091846466064453125q0,
721.1665248870849609375q0, 931.506761312484741210937590,
1182.29704320430755615234375q0,
1477.871304005384445190429687590,
1822.70794160664081573486328125q0,
2221.425303833093494176864624023437590,
2678.7775722693186253309249877929688q0,
3199.6509890994639135897159576416016q0,
3789.0603818283125292509794235229492q0,
4452.1459486482672218699008226394653q0,
5194.1702734229784255148842930793762q0,
6020.5155441948159023013431578874588q0,
6936.6809530940270178689388558268547q0,

7948 .2802587535726246414924389682710q0,
9061.039494979072792091301380423829090,
10280.794811610871052565130412403960q0,
11613.490435338206189008758428826695q0,
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13065.176739755481962634853232430032q0,
14642.008415243212544332163105309519q0,
16350.242730354920674504248800928963q0,
18196.237877330476234528922052646749q0,
20186.451395163497072680522902154987q0,
22327 .438664347504337964820785716880q0,
24625.851468030335666872964101893617q0,
27088.436614833369233560260512082979q0,
29722.034619053280131267508061868824q0,
32533.578434369130954495515581234794q0,
35530.092237534708805567470963716946q0,
38718.690258851926262477372204050518q0,
42106.575656501469810444142271904938q0,
45701.03943205647333084791051462853190,
49509.459384727846108418569724180908q0,
53539.299102089414977708453306381680q0,
57798.106985210163896389807546662041q0,
62293.515306282065532775681466957977q0,
67033.239296977440084182526795965649q0,
72025.076265901292006345055387154581q0,
77276.904743623261214068132342467936q0,
82796 .683653882065586501570366929931q0,
88592.451509653810177556680292615026q0,
94672.325632865346170134099528382724q0,
101044 .50139661589831620081776587002q0,
107717.25148884525009179898497682370q0,
114698.92519645559037552669696606228q0,
121997.94770895730976306021404572079q0,
129622.81944076714162325147742357833q0,
137582.11537134056260011779621274543q0,
145884 .48440236973448115938736351455q0,
154538.64873132387127241460525796032q0,
163553.40324065109709663879056467468q0,
172937.61490199993053660986871182814q0,
182700.2221948547653249668774294313490,
192850.23453901336339857614839773308q0,
203396.73174036565670943578151323411q0,
214348.86344946226899379001590240826q0,
225715.84863238829841012736523056627q0,
237506.97505348320952110416789186451q0,
249731.59876947131589351394123923989q0,
262399.14363458942611999653246152017q0,
275519.10081631889742599635908459618q0,
289101.02832134870222868632044792134q0,
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303154.
317689.
332715.
348241.
364279.
380837.
397926.
415556.
433736.
452478.
471791.
491686.
512173.
533262.
554965.
577291.
600251.
623857.
648118.
673045.
698651.
724944 .
751936.
779639.
808064 .
837221.
867121.
897TTT.
END

55053141426414258079435858419q0,
35774867385214941685984153000q0,
20575030031812945684645565642q0,
91535198099964216483262358706q0,
37198003275620463294991546278q0,
52525185242694120717491162017q0,
38856443554866292800968329544q0,
03869070800967964001011230220q0,
61538342648510312426055471542q0,
32098641404927424691378856115q0,
42005290733186522086742587778q0,
23897080101453423620520889672q0,
16559458439013982938042593409q0,
64888377315914558706079641373q0,
1985476476481805818830381282490,
38469611623172807655649368512q0,
83749652994548998869226332033q0,
24683628112312161746106019247q0,
36199102538902079147343475551q0,
99129837251936774499164378457q0,
00183689756086543094241284159q0,
31911032918950015146175095929q0,
92673677761676877412256083543q0,
86614286942370236053760255042q0,
23626266153810817576553597674q0,
19324121118123579035501407899q0,
95014268300913706858197886753q0,
77666287887309645989548317093/
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Appendix 4

Code to Diagonalize Hamiltonian

PROGRAM diag

INTEGER 1i,j,rows,cols,grows,gcols,frmt,LWORK, IFAIL, smax

PARAMETER (rows=25,cols=40,grows=40,gcols=40,smax=5)

PARAMETER (LWORK=64*rows,IFAIL=0)

DOUBLE PRECISION WORK(LWORK)

DOUBLE PRECISION ff1(rows,cols),ff2(rows,cols),ff3(rows,cols),
&ff4(rows,cols),ff5(rows,cols) ,ff7(rows,cols),ff8(rows,cols),
&f£9(rows,cols) ,f£10(rows,cols),ggl(grows,gcols),gg2(grows,gcols)
&,gg3(grows,gcols) ,gg4 (grows,gcols) ,gghb(grows,gcols),

&ggb (grows,gcols) ,gg7 (grows,gcols),gg8(grows,gcols),
&ggl0(grows,gcols),

&fgl(rows,gcols) ,fg2(rows,gcols) ,fg3(rows,gcols),
&fgd(rows,gcols) ,fgb(rows,gcols) ,fg7 (rows,gcols) ,fg8(rows,gcols),
&fg10(rows,gcols) ,fgfl(rows,rows) ,fgf2(rows,rous),
&fgf3(rows,rows) ,fgf4(rows,rows) ,fgf5(rows,rows),

&fgf7 (rows,rows) ,fgf8(rows,rows) ,fgf10(rows,rows)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcccecce
cc L=0 Variable Declarations cc
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcCcccecce

DOUBLE PRECISION oneSO(rows,rows),threeS1(rows,rows)
DOUBLE PRECISION oneSOevalsR(rows),threeSlevalsR(rows),
&oneSOevectsR(rows,rows) ,threeSlevectsR(rows,rows)
DOUBLE PRECISION oneSOevalsI(rows),threeSlevalsI(rows),
&oneSOevectsI(rows,rows) ,threeSlevectsI(rows,rows)
INTEGER IRANK1SO(rows),IRANK3S1(rows)

DOUBLE PRECISION DUMMY1SO(rows) ,DUMMY3S1(rows)

ccccceceeceeceececcecececceccecceccececccececceccecceccececceccecceccecceccecceccecceccececcceccceccecceccecccceccecccceccecccccccccccccce



ccC

L=1 Variable Declarations cc

ccccceceececeeeccecceccececceccecceccececccececceccecceccececcecceccecceccececceccecceccececcceccceccecceccecccceccceccceccecccccccccccccce

O 0O 0 0 0 o0 0 00 00000000

DOUBLE PRECISION onePl1(rows,rows),threePl(rows,rows),
&threePO(rows,rows) ,threeP2(rows,rows)

DOUBLE PRECISION onePlevalsR(rows),threePOevalsR(rows),
&threePlevalsR(rows) ,threeP2evalsR(rows),
&onePlevectsR(rows,rows) ,threePOevectsR(rows,rows),
&threePlevectsR(rows,rows) ,threeP2evectsR(rows,rows)

DOUBLE PRECISION onePlevalsI(rows),threePOevalsI(rows),
&threePlevalsI(rows) ,threeP2evalsI(rows),
&onePlevectsI(rows,rows) ,threePOevectsI(rows,rows),
&threePlevectsI(rows,rows) ,threeP2evectsI(rows,rows)

INTEGER IRANK1P1(rows),IRANK3PO(rows),IRANK3P1(rows),
&IRANK3P2(rows) ,a,b

DOUBLE PRECISION DUMMY1P1(rows),

&DUMMY3PO (rows) ,DUMMY3P1 (rows) ,DUMMY3P2 (rows)

DOUBLE PRECISION AA,MIXevalsR(2*smax) ,MIXevalsI(2#*smax),
&MIXevectsR(2*smax,2*smax) ,MIXevectsI(2*smax,2*smax) ,
&MIX (2*smax,2*smax)

ccccceceececceeececcecceceeccecececececcecececcecceccecececcecececcecececcececececcecececceccecececcecceccecceccecceccecccecceccccccccccc

ccC

L=2 Variable Declarations cc

ccccceceececeeecceccecceccecceccecceccececccececceccecceccececceccecceccecceccecccecceccececcceccceccecceccecccceccecccceccecccecccccccccccc

O 0O 0 0 0 o0 0 00 00000000

DOUBLE PRECISION oneD2(rows,rows),threeDl1(rows,rows),
&threeD2(rows,rows) ,threeD3(rows,rows)

DOUBLE PRECISION oneD2evalsR(rows),threeDlevalsR(rows),
&threeD2evalsR(rows) ,threeD3evalsR(rows),
&oneD2evectsR(rows,rows) ,threeDlevectsR(rows,rows),
&threeD2evectsR(rows,rows) ,threeD3evectsR(rows,rows)

DOUBLE PRECISION oneD2evalsI(rows),threeDlevalsI(rows),
&threeD2evalsI(rows) ,threeD3evalsI(rows),
&oneD2evectsI(rows,rows) ,threeDlevectsI(rows,rows),
&threeD2evectsI(rows,rows) ,threeD3evectsI(rows,rows)

INTEGER IRANK1D2(rows),IRANK3D1(rows) ,IRANK3D2(rows),
&IRANK3D3(rows) ,a,b

DOUBLE PRECISION DUMMY1D2(rows) ,DUMMY3D1(rows),
&DUMMY3D2 (rows) ,DUMMY3D3 (rows)

DOUBLE PRECISION AA,MIXevalsR(2*smax) ,MIXevalsI(2+*smax),
&MIXevectsR(2*smax,2*smax) ,MIXevectsI(2*smax,2*smax) ,
&MIX (2*smax,2*smax)

ccccceeececceceececcececececcececcecececcecececcecceccecececceececcececceccececececcecceccecceccecececcceccecccecceccecccceccccccccccce

145



146

cc L=3 Variable Declarations cc
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

DOUBLE PRECISION oneF3(rows,rows),threeF2(rows,rows),
&threeF3(rows,rows) ,threeF4(rows,rows)

DOUBLE PRECISION oneF3evalsR(rows),threeF2evalsR(rows),
&threeF3evalsR(rows) ,threeF4evalsR(rows),
&oneF3evectsR(rows,rows) ,threeF2evectsR(rows,rows),
&threeF3evectsR(rows,rows) ,threeF4evectsR(rows,rows)

DOUBLE PRECISION oneF3evalsI(rows),threeF2evalsI(rows),
&threeF3evalsI(rows) ,threeFd4evalsI(rows),
&oneF3evectsI(rows,rows) ,threeF2evectsI(rows,rows),
&threeF3evectsI(rows,rows) ,threeF4evectsI(rows,rows)

INTEGER IRANK1F3(rows),IRANK3F2(rows) ,IRANK3F3(rows),
&IRANK3F4(rows) ,a,b

DOUBLE PRECISION DUMMY1F3(rows) ,DUMMY3F2(rows),
&DUMMY3F3(rows) ,DUMMY3F4 (rows)

DOUBLE PRECISION AA,MIXevalsR(2*smax) ,MIXevalsI(2#*smax),
&MIXevectsR(2*smax,2*smax) ,MIXevectsI(2*smax,2*smax) ,
&MIX (2*smax,2*smax)

O 0O 0 0 0 o0 0 00 00000000

cccccceceeecececececececececececcecececececceccecececcecceccecceccecceccecececceccecceccecceccecceccecceccecceccecececceccecceccecccecccccccccccce
cccececeeeececeecececececcececececececececccecceccecceccecceccecececcecceccecceccecccecceccecceccecceccecceccecceccecceccecceccecececcececececccccccc

DOUBLE PRECISION ml,m2,mlsq,m2sq
m1=0.22d0

m2=0.22d0

mlsg=ml*%*2.d0

m2sqg=m2**2.d0

OPEN(201, file=’ff1l.col’, STATUS=’o0ld’)
OPEN (202, file="ff2.col’, STATUS=’0ld’)
OPEN(203, file=’ff3.col’, STATUS=’o0ld’)
OPEN (204, file="ff4.col’, STATUS=’0ld’)
OPEN (205, file=’ff5.col’, STATUS=’o0ld’)
OPEN(206, file=’ff7.col’, STATUS=’o0ld’)
OPEN(207, file="ff8.col’, STATUS=’01ld’)
OPEN (208, file=’ff9.col’, STATUS=’o0ld’)
OPEN(214, file="ff10.col’,STATUS=’0ld’)
OPEN (209, file=’ggl.col’, STATUS=’0ld’)
OPEN(210, file=’gg2.col’, STATUS=’o0ld’)
OPEN(211, file=’ggb.col’, STATUS=’o0ld’)
OPEN(212, file=’gg6.col’, STATUS=’o0ld’)
OPEN (213, file=’gg7.col’, STATUS=’0ld’)
OPEN(215, file=’ggl0.col’,STATUS="0ld’)



11
10

13
12

do 10 i=1,rows
do 11 j=1,cols
READ(201,*)ff1(i,j)
READ(202,*)ff2(i,j)
READ(203,*)f£3(i,j)
READ(204,*)ff4(i,j)
READ(205,*)f£f5(1i, j)
READ(206,*)ff7(i,j)
READ(207,*)££8(1i,j)
READ(208,*)ff9(i,j)
READ(214,*)££10(1i,j)
continue
continue
do 12 i=1,grows
do 13 j=1,gcols
READ(209,*)ggl(i,j)
READ(210,*)gg2(i,j)
gg3(i, j)=(mlsq/m2sq) *gg2(i, j)
gg4 (i, j)=(mlsq/(m1*m2))*gg2(i, j)
READ(211,*)ggb(i,j)
READ(212,*)gg6(i,j)
READ(213,*)gg7(i,j)
geg8(i, j)=(mlsq/m2sq) *gg7 (i, j)
READ (215,%)gg10(i, j)
continue
continue
CLOSE(201)
CLOSE(202)
CLOSE(203)
CLOSE(204)
CLOSE(205)
CLOSE(206)
CLOSE(207)
CLOSE(208)
CLOSE(214)
CLOSE(209)
CLOSE(210)
CLOSE(211)
CLOSE(212)
CLOSE(213)
CLOSE(215)

CALL DGEMUL(ff1,rows,’N’,ggl,grows,’N’,fgl,rows,rows,cols,gcols)
CALL DGEMUL(ff2,rows,’N’,gg2,grows,’N’,fg2,rows,rows,cols,gcols)
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CALL DGEMUL(ff3,rows,’N’,gg3,grows,’N’,fg3,rows,rows,cols,gcols)
CALL DGEMUL(ff4,rows,’N’,ggd,grows,’N’,fgd,rows,rows,cols,gcols)
CALL DGEMUL(ff5,rows,’N’,ggh,grows,’N’,fgh,rows,rows,cols,gcols)
CALL DGEMUL(££f7,rows,’N’,gg7,grows,’N’,fg7,rows,rows,cols,gcols)
CALL DGEMUL(ff8,rows,’N’,gg8,grows,’N’,fg8,rows,rows,cols,gcols)
CALL DGEMUL(ff10,rows,’N’,ggl0,grows,’N’,fgl0,rows,rows,cols,
&gcols)

CALL DGEMUL(fgl,rows,’N’,ffl,rows,’T’,fgfl,rows,rows,cols,rows)
CALL DGEMUL(fg2,rows,’N’,ff2,rows,’T’,fgf2,rows,rows,cols,rows)
CALL DGEMUL(fg3,rows,’N’,ff3,rows,’T’,fgf3,rows,rows,cols,rows)
CALL DGEMUL(fg4,rows,’N’,ff4,rows,’T’,fgf4,rows,rows,cols,rows)
CALL DGEMUL(fgb,rows,’N’,ff5,rows,’T’,fgf5,rows,rows,cols,rows)
CALL DGEMUL(fg7,rows,’N’,ff7,rows,’T’,fgf7,rows,rows,cols,rows)
CALL DGEMUL(fg8,rows,’N’,ff8,rows,’T’,fgf8,rows,rows,cols,rows)
CALL DGEMUL(fgl10,rows,’N’,ff10,rows,’T’,fgf10,rows,rows,cols,
&rows)

ccccceceececeeececceccecececceccecececceccecececceccecceccecceccecceccecceccecceccecccececccecceccecceccecceccecccecccecccecceccccccccccccce

ccc ccc
ccc L=0 ccc
ccc ccc

ccccceceececeeececcecececcecceccecececceccecceccecceccecceccecceccecceccecceccecceccecccececcceccecceccecccecceccceccceccccecccccccccccccce

do 15 i=1,rows
do 16 j=1,rows
oneS0(i,j)=£f£f9(i,j)+fgf1(i,j)+ggb(i,j)-

& (3.40/4.d0)*£gf10(4i,3)
threeS1(i, j)=£f£f9(i,j)+fgf1(i,j)+gg6(i,jl+
& (1.d0/4.d0)*fgf10(4,j)
16 continue
15 continue

OPEN(301, file=’1S0.matrix’, STATUS=’unknown’)

OPEN(302, file=’3S1.matrix’, STATUS=’unknown’)

OPEN (305, file=’fgfl.matrix’, STATUS=’unknown’)
OPEN (306, file=’fgf2.matrix’, STATUS=’unknown’)
OPEN (307, file=’fgf3.matrix’, STATUS=’unknown’)
OPEN (308, file=’fgf4.matrix’, STATUS=’unknown’)
OPEN (309, file=’fgfb5.matrix’, STATUS=’unknown’)
OPEN(310, file="fgf7.matrix’, STATUS=’unknown’)
OPEN(311, file=’fgf8.matrix’, STATUS=’unknown’)
OPEN(312, file=’fgf10.matrix’,STATUS=’unknown’)
do 30 i=1,rows

do 40 j=1,rows
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40
30
250
255
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if (j.eq.rows) then

ASSIGN 255 TO frmt
else

ASSIGN 250 TO frmt
endif
WRITE(301,frmt)oneS0(i,j)
WRITE(302,frmt)threeS1(i, j)
WRITE(305,frmt)fgf1(i,j)
WRITE (306, frmt) g2 (i, )
WRITE(307,frmt)fgf3(i,j)
WRITE (308, frmt) g4 (i,])
WRITE(309,frmt)fgf5(i,j)
WRITE(310,frmt)fgf7(i,j)
WRITE(311,frmt)£gf8(i,])
WRITE(312,frmt)fgf10(i, j)

continue

continue

FORMAT (G27.18E2,$)

FORMAT (G27.18E2)

CLOSE(301)

CLOSE(302)

CLOSE(305)

CLOSE(306)

CLOSE(307)

CLOSE(308)

CLOSE(309)

CLOSE(310)

CLOSE(311)

CLOSE(312)

CALL FO2EBF(’V’,rows,oneS0,rows,oneSOevalsRk,oneSOevalsI,
&oneSOevectsR,rows,oneSOevectsI,rows,WORK,LWORK,IFAIL)
CALL FO2EBF(’V’,rows,threeS1,rows,threeSievalsR,
&threeSlevalsI,threeSlevectsR,rows,threeSlevectsI,rows,
&WORK ,LWORK,IFAIL)

CALL MO1DAF (oneSOevalsR,1,rows,’A’ ,IRANK1SO,IFAIL)
CALL MO1DAF(threeSievalsR,1,rows,’A’,IRANK3S1,IFAIL)

CALL MO1EAF (oneSOevalsR,1,rows,IRANK1SO,IFAIL)
CALL MO1EAF (threeSlevalsR,1,rows,IRANK3S1,IFAIL)

do 35 i=1,rows
do 36 j=1,rows



DUMMY1S0 (j)=oneSOevectsR(i,j)
DUMMY3S1(j)=threeSlevectsR(i,j)
36 continue
CALL MO1EAF (DUMMY1S0,1,rows,IRANK1SO,IFAIL)
CALL MO1EAF (DUMMY3S1,1,rows,IRANK3S1,IFAIL)
do 37 j=1,rows
oneSOevectsR(i, j)=DUMMY1S0(j)
threeSlevectsR(i, j)=DUMMY3S1(j)
37 continue
35 continue

OPEN(401, file=’1S0.evals’, STATUS=’unknown’)
OPEN (402, file=’1S0.evects’, STATUS=’unknown’)
OPEN(403, file=’3S1.evals’, STATUS=’unknown’)
OPEN (404, file=’3S1.evects’, STATUS=’unknown’)
do 50 i=1,rows
WRITE(401,*)oneSOevalsR(i)
WRITE(403,*)threeSievalsR(i)
do 55 j=1,rows
if (j.eq.rows) then
ASSIGN 255 TO frmt
else
ASSIGN 250 TO frmt
endif
WRITE(402,frmt)oneSOevectsR(i,j)
WRITE (404,frmt)threeSlevectsR(i,j)
55 continue
50 continue
CLOSE(401)
CLOSE(402)
CLOSE(403)
CLOSE(404)

ccccceceececeeececceccececcecceccececececcececcecceccecceccecceccecceccecceccecceccecccececccecceccecceccecceccecccecccccccecccccccccccccce

ccc ccc
ccc L=1 ccc
ccc ccc

ccccceceeececececececceccecececcecececececcecceececceccecececceccececcecececcececcecceccecceccececceccececcececccecceccecccccccccccccc

do 15 i=1,rows
do 16 j=1,rows
oneP1(i,j)=£f£f9(i,j)+fgf1(i,j)+gg6(i,j)-
& (3.90/4.q0)*fgf10(4,3j)
threeP0(i, j)=£ff9(i,j)+fgf1(i,j)-(1.d0/2.d0)*fgf2(i,j)-

O o o0 o o0
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O 0O o0 o0 o0 o0 o0 o0 o0 o0 o0 o000

cl6
cl5

O 0O 0 0O 0 0 0 0 0 0 0 0 0 00 0000000000000

IS5 S = = R

5 S = =

e

e
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(1.d0/2.d0) *x£fgf3(i,j)-(2.d0)*fgf4(i,j)+
(1.d0/3.d0)*fgf5(i,j)+ggb(i,j)+

(1.d0/2.d0) *£gf7(i,j)+(1.d0/2.d0) x£gf8(i, j)
+(1.d0/4.d0)*fgf10(i, j)

threeP1(i,j)=ff9(i,j)+fgf1(i,j)-(1.d0/4.d0)*fgf2(i,j)-

(1.d0/4.d0) *fgf3(i,j)-fgfa(i,])-
(1.d0/6.d0) *£gf5(i, ) +ggb (i, i)+

(1.d0/4.d0) *£gf7(i,)+(1.d0/4.d0) *fgf8 (i, )
+(1.d0/4.d0)*fgf10(i, j)

threeP2(i, j)=ff9(i,j)+fgf1(i,j)+(1.d0/4.d0)*fgf2(i,j)+

continue

continue
OPEN (301,
OPEN (302,
OPEN (303,
OPEN (304,
OPEN (305,
OPEN (306,
OPEN (307,
OPEN (308,
OPEN (309,
OPEN (310,
OPEN (311,
OPEN(312,

do 30 i=1,

(1.d0/4.d0) *fgf3(i,j)+fgfa(i, )+
(1.d0/30.d0)*fgf5(i, i) +ggb (i, ])-
(1.d0/4.d0) *£gf7(i,j)-(1.d0/4.d0) *x£g£8(i,])
+(1.d0/4.d0)*fgf10(i, j)

file=’1P1.mat’, STATUS=’unknown’)
file=’3P0.mat’, STATUS=’unknown’)
file=’3P1.mat’, STATUS=’unknown’)
file=’3P2.mat’, STATUS=’unknown’)
file="fgfl.mat’, STATUS=’unknown’)
file="fgf2.mat’, STATUS=’unknown’)
file="fgf3.mat’, STATUS=’unknown’)
file="fgf4.mat’, STATUS=’unknown’)
file="fgf5.mat’, STATUS=’unknown’)
file="fgf7.mat’, STATUS=’unknown’)
file="fgf8.mat’, STATUS=’unknown’)
file="fgf10.mat’,STATUS="unknown’)

do 31 j=1,rows
if (j.eq.rows) then
ASSIGN 255 TO frmt

1se

ASSIGN 250 TO frmt

ndif

WRITE(301,frmt)oneP1(i,j)
WRITE(302,frmt)threeP0(i,j)
WRITE(303,frmt)threeP1(i,j)
WRITE(304,frmt)threeP2(i,j)
WRITE(305, frmt) fgf1 (i, j)
WRITE(306,frmt)fgf2(i,j)
WRITE(307, frmt) fg£3(i, j)
WRITE(308,frmt)fgf4(i,j)
WRITE(309, frmt) fgf5(i, j)



C
C

c
c31
c30
c250
c255

O 0O 0O 0O 0 0O 0 0 0 0 0 0 0 0 0 0 0 000 00000000 000000000

WRITE(310,frmt)fgf7(i,j)

WRITE(311,frmt)fgf8(i,j)

WRITE(312,frmt)fgf10(1, j)
continue

continue
FORMAT (G27.18E2,$)
FORMAT (G27.18E2)

CLOSE(301)
CLOSE(302)
CLOSE(303)
CLOSE(304)
CLOSE(305)
CLOSE(306)
CLOSE(307)
CLOSE(308)
CLOSE(309)
CLOSE(310)
CLOSE(311)
CLOSE(312)

CALL FO2EBF(’V’,rows,onePl1,rows,onePlevalsR,onePlevalsI,
&onePlevectsR,rows,onePlevectsI,rows,WORK,LWORK,IFAIL)

CALL FO2EBF(’V’,rows,threeP0O,rows,threePOevalsR,threePOevalsI,
&threePOevectsR,rows,threePOevectsI,rows,WORK,LWORK, IFAIL)

CALL FO2EBF(’V’,rows,threePl,rows,threePlevalsR,threePlevalsI,
&threePlevectsR,rows,threePlevectsI,rows,WORK,LWORK,IFAIL)

CALL FO2EBF(’V’,rows,threeP2,rows,threeP2evalsR,threeP2evalsI,
&threeP2evectsR,rows,threeP2evectsI,rows,WORK,LWORK, IFAIL)

CALL
CALL
CALL
CALL

CALL
CALL
CALL
CALL

MO1DAF (onePlevalsR,1,rows,’A’ ,IRANK1P1,IFAIL)

MO1DAF (threePOevalsR,1,rows, A’ ,IRANK3PO,IFAIL)
MO1DAF (threePlevalsR,1,rows, A’ ,IRANK3P1,IFAIL)
MO1DAF (threeP2evalsR,1,rows, A’ ,IRANK3P2,IFAIL)

MO1EAF (onePlevalsR,1,rows, IRANK1P1,IFAIL)

MO1EAF (threePOevalsR,1,rows, IRANK3PO,IFAIL)
MO1EAF (threePlevalsR,1,rows, IRANK3P1,IFAIL)
MO1EAF (threeP2evalsR,1,rows, IRANK3P2,IFAIL)

do 35 i=1,rows

do 36 j=1,rows
DUMMY1P1(j)=onePlevectsR(i,j)
DUMMY3PO (j)=threePOevectsR(i,j)
DUMMY3P1(j)=threePlevectsR(i,j)
DUMMY3P2(j)=threeP2evectsR(i,j)
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c36

O o o o0 o0 o0 o0 o o0

c37
c35

O 0O 0O 0 0 0 0 0 0 0 0 00 000000000000

ch5
c50

O o o0 o o0

continue

CALL MO1EAF(DUMMY1P1,1,rows,IRANK1P1,IFAIL)
CALL MO1EAF(DUMMY3PO,1,rows,IRANK3PO,IFAIL)
CALL MO1EAF(DUMMY3P1,1,rows,IRANK3P1,IFAIL)
CALL MO1EAF(DUMMY3P2,1,rows,IRANK3P2,IFAIL)
do 37 j=1,rows
onePlevectsR(i, j)=DUMMY1P1(j)
threePOevectsR (i, j)=DUMMY3PO(j)
threePlevectsR(i, j)=DUMMY3P1(j)
threeP2evectsR (i, j)=DUMMY3P2(j)

continue

continue

OPEN(401, file=’1P1.evals’, STATUS=’unknown’)
OPEN (402, file=’1P1.evects’, STATUS=’unknown’)
OPEN (403, file=’3P0.evals’, STATUS=’unknown’)
OPEN (404, file=’3P0.evects’, STATUS=’unknown’)
OPEN (405, file=’3P1.evals’, STATUS=’unknown’)
OPEN (406, file=’3P1.evects’, STATUS=’unknown’)
OPEN (407, file=’3P2.evals’, STATUS=’unknown’)
OPEN (408, file=’3P2.evects’, STATUS=’unknown’)
do 50 i=1,rows
WRITE(401,*)onePlevalsR(i)
WRITE (403, *)threePOevalsR(i)
WRITE (405, *)threePlevalsR(i)
WRITE(407,*)threeP2evalsR(i)
do 55 j=1,rows
if (j.eq.rows) then
ASSIGN 255 TO frmt
else
ASSIGN 250 TO frmt
endif
WRITE (402, frmt)onePlevectsR(i,j)
WRITE (404, frmt)threePOevectsR(i,j)
WRITE(406,frmt)threePlevectsR(i, j)
WRITE (408, frmt)threeP2evectsR(i, j)
continue
continue
CLOSE(401)
CLOSE(402)
CLOSE(403)
CLOSE(404)
CLOSE(405)
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CLOSE (406)
CLOSE (407)
CLOSE(408)

do 60 a=1,smax
do 61 b=1,smax

if (a.eq.b) then
MIX(a,b)=onePlevalsR(a)
MIX (a+smax,b+smax)=threePlevalsR(a)
else

MIX(a,b)=0.d0

MIX (a+smax,b+smax)=0.d0
endif
c61 continue
continue

O 0O o0 0 o0 0 o0 0 o0 0 o000

Q
D
o

do 63 a=1,smax
do 64 b=1,smax
AA=0.d0
do 65 i=1,rows
do 66 j=1,rows
AA=AA+onePlevectsR(i,a)*threePlevectsR(j,b)*

& (fgf2(i,j)-fgf3(i,j)-fgf7(i,j)+fgf8(1i,3))
c66 continue
c65 continue
c MIX(a,b+smax)=AA/(2.d0*sqrt(2.40))
c MIX(at+smax,b)=AA/(2.d0*sqrt(2.40))
c64 continue
c63 continue

O o o o0 o0 o0 o0 o0

OPEN (450, file=’MIX.mat’,status=’unknown’)
do 80 i=1,2%*smax
do 81 j=1,2*smax
if (j.eq.2*smax) then
ASSIGN 255 to frmt
else
ASSIGN 250 to frmt
endif
WRITE(450,frmt)MIX (1, j)
c81 continue
c80 continue
CLOSE (450)

O o o o0 o o0 o0 o0 o0 o0

c CALL FO2EBF(’V’,2*smax,MIX,2*smax,MIXevalsR,MIXevalsI,



&MIXevectsR,2*smax,MIXevectsI,2*smax,WORK,LWORK,IFAIL)

OPEN(460,file="MIX.evals’,status=’unknown’)
OPEN(470,file="MIX.evects’,status=’unknown’)
do 90 i=1,2*smax
WRITE (460, *)MIXevalsR(i)
do 91 j=1,2*smax
if (j.eq.2*smax) then
ASSIGN 255 to frmt
else
ASSIGN 250 to frmt
endif
WRITE(470,frmt)MIXevectsR(i,j)
c91 continue
c90 continue
c CLOSE (460)
C CLOSE(470)

O 0O o0 0 o0 0 o0 0 o0 0 o000

cccccceceeceeeecceccecececceccecceccececccececceccecceccecceccecceccecceccececceccecccececcceccceccecceccecccceccceccceccecccccccccccccce

ccc ccc
ccc L=2 ccc
ccc ccc

ccccceceeceeeeccecceccececceccecceccececccececceccecceccececcecceccecceccececceccecceccececcceccceccecceccecccceccccceccecccccccccccccce

do 15 i=1,rows
do 16 j=1,rows
oneD2(i,j)=£f£f9(i,j)+fgf1(i,j)+gg6(i,j)-(3.90/4.q0)*fgf10(1, j)
threeD1(i, j)=£f£f9(i,j)+fgf1(i,j)-(3.d0/4.d0)*fgf2(i,j)-

& (8.d0/4.d0)*fgf3(i,j)-(3.d0)*fgfd (i, j)+
(1.d40/6.d0)*xfgf5(i,j)+ggb(i,j)+
(3.d0/4.d0)*£fgf7(i,j)+(3.d40/4.d0)*£fgf8(4,])
+(1.d0/4.d0)*xfgf10(1,j)

threeD2(i, j)=ff9(i,j)+fgf1(i,j)-(1.40/4.d0)*fgf2(i,j)-
(1.d0/4.d0)*fgf3(i,j)-(1.d0)*fgf4 (i, j)-
(1.d40/6.d0)*xfgf5(i,j)+ggb(i,j)+
(1.d0/4.d0)*£fgf7(i,j)+(1.d40/4.d0)*£fgf8(4,])
+(1.d0/4.d0)*xfgf10(4,j)

threeD3(i, j)=ff9(i,j)+fgf1(i,j)+(1.d40/2.d0)*fgf2(i,j)+
(1.d0/2.d0)*fgf3(i,j)+(2.d0)*xfgf4(i,j)+
(1.d0/21.d0)*xfgf5(i,j)+ggb (i, j)-
(1.d0/2.d0)*£fgf7(i,j)-(1.d0/2.d0) *fgf8(i, j)
+(1.d0/4.d0)*fgf10(1,j)

R SR S =

O 0O 0 0 0 o0 0 00 00 0000000

IS5 S = =

cl6 continue
cl5 continue
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O 0O 0 0O 0 0 0 0 0 0 0 00 00 000 0000000000000

c40
c30
c250
c255

O o0 o0 o0 o0 o o0 o o0

OPEN (301,
OPEN (302,
OPEN (303,
OPEN (304,
OPEN (305,
OPEN (306,
OPEN (307,
OPEN (308,
OPEN (309,
OPEN (310,
OPEN (311,
OPEN (312,
do 30 i=1,
do 40 j

file=’1D2.mat’, STATUS=’unknown’)
file=’3D1.mat’, STATUS=’unknown’)
file=’3D2.mat’, STATUS=’unknown’)
file=’3D3.mat’, STATUS=’unknown’)
file="fgfl.mat’, STATUS=’unknown’)
file="fgf2.mat’, STATUS=’unknown’)
file="fgf3.mat’, STATUS=’unknown’)
file="fgf4.mat’, STATUS=’unknown’)
file="fgf5.mat’, STATUS=’unknown’)
file="fgf7.mat’, STATUS=’unknown’)
file="fgf8.mat’, STATUS=’unknown’)
file="fgf10.mat’,STATUS="unknown’)
rows

=1,rows

if (j.eq.rows) then
ASSIGN 255 TO frmt

else

ASSIGN 250 TO frmt

endif

WRITE(301,frmt)oneD2(1, j)
WRITE(302,frmt)threeD1(i,j)
WRITE(303,frmt)threeD2(i,j)
WRITE(304,frmt)threeD3(i,j)
WRITE(305,frmt)fgf1(i,j)
WRITE(306, frmt) fg£2(i, j)
WRITE(307,frmt)fgf3(i,j)
WRITE(308, frmt) fgfd (i, )
WRITE(309,frmt)fgf5(i,j)
WRITE(310,frmt)fgf7(i,j)
WRITE(311,frmt)fgf8(i,j)
WRITE(312, frmt)£gf10(i, )
continue

continue

FORMAT (G27.18E2,$)
FORMAT (G27.18E2)

CLOSE(301)
CLOSE(302)
CLOSE(303)
CLOSE(304)
CLOSE(305)
CLOSE(306)
CLOSE(307)
CLOSE(308)
CLOSE(309)
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O 0O 0O 0 0 0 0 0 0 0 0 0 0 00 0000000000000

c36

O 0O o0 o0 o0 o0 o0 o o0

c37
c35

C
C
C
C

CLOSE(310)
CLOSE(311)
CLOSE(312)

CALL FO2EBF(’V’,rows,oneD2,rows,oneD2evalsR,oneD2evalsI,
&oneD2evectsR,rows,oneD2evectsI,rows,WORK,LWORK,IFAIL)

CALL FO2EBF(’V’,rows,threeDl,rows,threeDlevalsR,threeDlevalsI,
&threeDlevectsR,rows,threeDlevectsI,rows,WORK,LWORK,IFAIL)

CALL FO2EBF(’V’,rows,threeD2,rows,threeD2evalsR,threeD2evalsI,
&threeD2evectsR,rows,threeD2evectsI,rows,WORK,LWORK, IFAIL)

CALL FO2EBF(’V’,rows,threeD3,rows,threeD3evalsR,threeD3evalsI,
&threeD3evectsR,rows,threeD3evectsI,rows,WORK,LWORK, IFAIL)

CALL
CALL
CALL
CALL

CALL
CALL
CALL
CALL

MO1DAF (oneD2evalsR,1,rows, A’ ,IRANK1D2,IFAIL)

MO1DAF (threeDievalsR,1,rows, A’ ,IRANK3D1,IFAIL)
MO1DAF (threeD2evalsR,1,rows, A’ ,IRANK3D2,IFAIL)
MO1DAF (threeD3evalsR,1,rows, A’ ,IRANK3D3,IFAIL)

MO1EAF (oneD2evalsR,1,rows,IRANK1D2,IFAIL)

MO1EAF (threeDlevalsR,1,rows, IRANK3D1,IFAIL)
MO1EAF (threeD2evalsR,1,rows, IRANK3D2,IFAIL)
MO1EAF (threeD3evalsR,1,rows, IRANK3D3,IFAIL)

do 35 i=1,rows
do 36 j=1,rows
DUMMY1D2 (j)=oneD2evectsR (i, j)
DUMMY3D1(j)=threeDlevectsR(i,j)
DUMMY3D2(j)=threeD2evectsR(i,j)
DUMMY3D3(j)=threeD3evectsR(i,j)
continue
CALL MO1EAF(DUMMY1D2,1,rows,IRANK1D2,IFAIL)
CALL MO1EAF(DUMMY3D1,1,rows,IRANK3D1,IFAIL)
CALL MO1EAF(DUMMY3D2,1,rows,IRANK3D2,IFAIL)
CALL MO1EAF (DUMMY3D3,1,rows,IRANK3D3,IFAIL)
do 37 j=1,rows
oneD2evectsR(i, j)=DUMMY1D2(j)
threeDlevectsR(i, j)=DUMMY3D1(j)
threeD2evectsR (i, j)=DUMMY3D2(j)
threeD3evectsR (i, j)=DUMMY3D3(j)
continue

continue

OPEN(401, file=’1D2.evals’, STATUS=’unknown’)
OPEN (402, file=’1D2.evects’, STATUS=’unknown’)
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O 0O 0O 0 0 0 0 0 0000000000000

chb
c50

O 0O 0O 0 0 0 0 0 0 000000000

c61
c60
c

OPEN (403, file=’3D1.evals’, STATUS=’unknown’)
OPEN(404, file=’3D1.evects’, STATUS=’unknown’)
OPEN (405, file=’3D2.evals’, STATUS=’unknown’)
OPEN (406, file=’3D2.evects’, STATUS=’unknown’)
OPEN (407, file=’3D3.evals’, STATUS=’unknown’)
OPEN (408, file=’3D3.evects’, STATUS=’unknown’)

do 50 i=1,rows
WRITE(401,*)oneD2evalsR(i)
WRITE(403,*)threeDlevalsR(i)
WRITE (405, *)threeD2evalsR(i)
WRITE(407,*)threeD3evalsR(i)
do 55 j=1,rows
if (j.eq.rows) then
ASSIGN 255 TO frmt
else
ASSIGN 250 TO frmt
endif
WRITE(402,frmt)oneD2evectsR(i,j)
WRITE (404, frmt)threeDlevectsR(i,j)
WRITE(406,frmt)threeD2evectsR(i, j)
WRITE (408, frmt)threeD3evectsR(i, j)
continue
continue
CLOSE(401)
CLOSE(402)
CLOSE(403)
CLOSE(404)
CLOSE(405)
CLOSE(406)
CLOSE(407)
CLOSE(408)

do 60 a=1,smax
do 61 b=1,smax
if (a.eq.b) then
MIX(a,b)=oneD2evalsR(a)
MIX (a+smax,b+smax)=threeD2evalsR(a)
else
MIX(a,b)=0.d0
MIX (at+smax,b+smax)=0.d0
endif
continue
continue
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do 63 a=1,smax
do 64 b=1,smax
AA=0.40
do 65 i=1,rows
do 66 j=1,rows
AA=AA+oneD2evectsR(i,a)*threeD2evectsR(j,b)*

& (fgf2(i,j)-fgf3(i,j)-fgf7(i,j)+fgf8(i,j))
c66 continue
c65 continue
c MIX(a,b+smax)=sqrt(3.d0/2.d0)*AA/2.d0
¢ MIX(at+smax,b)=sqrt(3.d0/2.d0)*AA/2.d0
c64 continue

O o0 o0 o0 o0 o0 o0

c63 continue

OPEN (450, file=’MIX.mat’,status=’unknown’)
do 80 i=1,2*smax
do 81 j=1,2%smax
if (j.eq.2+*smax) then
ASSIGN 255 to frmt
else
ASSIGN 250 to frmt
endif
WRITE(450,frmt)MIX (1, j)
c81 continue
c80 continue
CLOSE (450)

O o0 o o0 o0 o0 o0 o0 o0 o0

CALL FO2EBF(’V’,2*smax,MIX,2*smax,MIXevalsR,MIXevalsI,
&MIXevectsR,2*smax,MIXevectsI,2*smax,WORK,LWORK,IFAIL)

OPEN(460,file=’MIX.evals’,status=’unknown’)
OPEN(470,file=’MIX.evects’,status=’unknown’)
do 90 i=1,2*smax
WRITE (460, *)MIXevalsR(i)
do 91 j=1,2%smax
if (j.eq.2+*smax) then
ASSIGN 255 to frmt
else
ASSIGN 250 to frmt
endif
WRITE(470,frmt)MIXevectsR(i, j)
c91 continue
c90 continue
c CLOSE (460)

O 0O o0 0 o0 0 00 00000000
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c CLOSE(470)

ccccceeececcececececcececececceccececeeccececcecceccecececcecececceccececcecececcececcecceccecececccecceccceccecceccccecccccccccc

ccc ccc
ccc L=3 ccc
ccc ccc

ccccceeeecceeececcecceececceccececececcececcecceccecececcecececcecececcecececcecceccecceccecececccecceccceccecceccccecccccecccccc

do 15 i=1,rows
do 16 j=1,gcols
oneF3(i,j)=£f£f9(i,j)+fgf1(i,j)+gg6(i,j)-(3.90/4.q0)*fgf10(1, j)
threeF2(i,j)=£f£f9(i,j)+fgf1(i,j)-fgf2(i,j)-
& fgf3(i,j)-4.d0*xfgf4(i,j)-
& (2.d0/15.d0) *xfgf5(1, j)+ggb(i,j)+
& fegf7(i,j)+fgf8(i,j)
& +(1.d0/4.d0)*fgf10(1,j)

threeF3(i, j)=£ff9(i,j)+fgf1(i,j)-(1.d0/4.d0)*fgf2(i,j)-
(1.d0/4.d0)*£gf3(i,3)-fgfa (i, )-
(1.d0/6.d0)*£g£5 (i, 3) +ggb (i, i)+
(1.d0/4.d0)*£gf7 (i,3)+(1.d0/4.d0)*fgf8(i,])
+(1.d0/4.d0)*£gf10(1, )

threeFA (i, )=f£9(i,j)+fgf1(i,j)+(3.d0/4.d0)*£gf2(i, )+
(3.d0/4.d0)*£gf3(i,j)+(3.0d0) *fgf4 (i, {)+
(1.d0/18.d0)*£gf5 (i, i) +ggb (i, j)-
(3.d0/4.d0)*fgf7(i,j)-(3.d0/4.d0)*£gf8(i, j)
+(1.d0/4.d0)*£gf10(1, )

O 0O 0O 0 00 o0 0 0000000000
15 S = S

R

cl6 continue
cl1b continue
OPEN(301, file=’1F3.mat’, STATUS=’unknown’)
OPEN(302, file=’3F2.mat’, STATUS=’unknown’)
OPEN(303, file=’3F3.mat’, STATUS=’unknown’)
OPEN(304, file=’3F4.mat’, STATUS=’unknown’)
OPEN (305, file="fgfl.mat’, STATUS=’unknown’)
OPEN (306, file=’fgf2.mat’, STATUS=’unknown’)
OPEN (307, file=’fgf3.mat’, STATUS=’unknown’)
OPEN (308, file="fgf4.mat’, STATUS=’unknown’)
OPEN(309, file=’fgf5.mat’, STATUS=’unknown’)
OPEN(310, file="fgf7.mat’, STATUS=’unknown’)
OPEN(311, file="fgf8.mat’, STATUS=’unknown’)
OPEN(312, file="fgf10.mat’,STATUS=’unknown’)
do 30 i=1,rows

do 31 j=1,rows
if (j.eq.rows) then

ASSIGN 255 TO frmt

O 0O 0 o0 0 o0 0 o0 0 00 00000
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else
ASSIGN 250 TO frmt

endif
WRITE(301,frmt)oneF3(i,j)
WRITE(302,frmt)threeF2(i, j)
WRITE(303,frmt)threeF3(i,j)
WRITE(304,frmt)threeF4(i, j)
WRITE(305,frmt)fgf1(i,j)

WRITE(306,frmt)fgf2(i,j)

WRITE(307,frmt)fgf3(i,j)

WRITE(308,frmt)fgf4(i,j)

WRITE(309,frmt)fgf5(i,j)

WRITE(310,frmt)fgf7(i,j)

WRITE(311,frmt)fgf8(i,j)

WRITE(312,frmt)fgf10(i,j)
c31 continue
c30 continue
c250 FORMAT(G27.18E2,$)
c255  FORMAT(G27.18E2)

CLOSE(301)

CLOSE(302)

CLOSE(303)

CLOSE(304)

CLOSE(305)

CLOSE(306)

CLOSE(307)

CLOSE(308)

CLOSE(309)

CLOSE(310)

CLOSE(311)

CLOSE(312)

CALL FO2EBF(’V’,rows,oneF3,rows,oneF3evalsR,oneF3evalsI,
&oneF3evectsR,rows,oneF3evectsI,rows,WORK,LWORK,IFAIL)
CALL FO2EBF(’V’,rows,threeF2,rows,threeF2evalsR,threeF2evalsI,
&threeF2evectsR,rows,threeF2evectsI,rows,WORK,LWORK, IFAIL)
CALL FO2EBF(’V’,rows,threeF3,rows,threeF3evalsR,threeF3evalslI,
&threeF3evectsR,rows,threeF3evectsI,rows,WORK,LWORK, IFAIL)
CALL FO2EBF(’V’,rows,threeF4,rows,threeF4evalsR,threeFdevalsI,
&threeF4evectsR,rows,threeF4evectsI,rows,WORK,LWORK, IFAIL)

O 0O o0 o0 o0 0 o0 0 0000000

CALL MO1DAF (oneF3evalsR,1,rows,’A’ ,IRANK1F3,IFAIL)

CALL MO1DAF (threeF2evalsR,1,rows,’A’,IRANK3F2,IFAIL)
CALL MO1DAF(threeF3evalsR,1,rows,’A’,IRANK3F3,IFAIL)
CALL MO1DAF (threeF4evalsR,1,rows,’A’,IRANK3F4,IFAIL)

O 0O 0 0O 0 0 0 0 0 0 0 00 000000000000



O 0O 0O 0 o0 0 o0 0 o0 0 000
w
0]

O o0 o0 o0 o0 o o0 o o0

c37
c35

O 0O 0 0 0 0 0 0 0 00 000000000

CALL MO1EAF (oneF3evalsR,1,rows,IRANK1F3,IFAIL)

CALL MO1EAF (threeF2evalsR,1,rows,IRANK3F2,IFAIL)
CALL MO1EAF (threeF3evalsR,1,rows,IRANK3F3,IFAIL)
CALL MO1EAF (threeF4evalsR,1,rows,IRANK3F4,IFAIL)

do 35 i=1,rows
do 36 j=1,rows

DUMMY1F3(j)=oneF3evectsR(i,j)

DUMMY3F2(j)=threeF2evectsR(i,j)
DUMMY3F3(j)=threeF3evectsR(i,j)
DUMMY3F4 (j)=threeF4evectsR(i,j)

continue

CALL MO1EAF (DUMMY1F3,1,rows,IRANK1F3,IFAIL)
CALL MO1EAF(DUMMY3F2,1,rows,IRANK3F2,IFAIL)
CALL MO1EAF(DUMMY3F3,1,rows,IRANK3F3,IFAIL)
CALL MO1EAF (DUMMY3F4,1,rows,IRANK3F4,IFAIL)

do 37 j=1,rows

oneF3evectsR(i, j)=DUMMY1F3(j)

threeF2evectsR(i, j)=DUMMY3F2(j)
threeF3evectsR(i, j)=DUMMY3F3(j)
threeF4evectsR(i, j)=DUMMY3F4(j)

continue
continue

OPEN (401, file=’1F3.
OPEN (402, file=’1F3.
OPEN (403, file=’3F2.
OPEN (404, file=’3F2.
OPEN (405, file=’3F3.
OPEN (406, file=’3F3.
OPEN (407, file=’3F4.
OPEN (408, file=’3F4.

do 50 i=1,rows

evals’, STATUS=’unknown’)
evects’, STATUS=’unknown’)
evals’, STATUS=’unknown’)
evects’, STATUS=’unknown’)
evals’, STATUS=’unknown’)
evects’, STATUS=’unknown’)
evals’, STATUS=’unknown’)
evects’, STATUS=’unknown’)

WRITE(401,*)oneF3evalsR(i)
WRITE(403,*)threeF2evalsR(i)
WRITE (405, *)threeF3evalsR(i)
WRITE(407,*)threeF4evalsR(i)

do 55 j=1,rows
if (j.eq.rows) then

ASSIGN 255 TO frmt

else

ASSIGN 250 TO frmt
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endif
WRITE (402, frmt)oneF3evectsR(i,j)
WRITE(404,frmt)threeF2evectsR(i, j)
WRITE (406, frmt)threeF3evectsR(i, j)
WRITE(408,frmt)threeF4evectsR(i, j)

cbb continue

c50 continue

CLOSE (401)

CLOSE(402)

CLOSE (403)

CLOSE(404)

CLOSE (405)

CLOSE (406)

CLOSE (407)

CLOSE (408)

O o0 o0 o o0

do 60 a=1,smax

do 61 b=1,smax
if (a.eq.b) then
MIX(a,b)=oneF3evalsR(a)
MIX (a+smax,b+smax)=threeF3evalsR(a)
else
MIX(a,b)=0.d0
MIX (a+smax,b+smax)=0.d0
endif

continue
c60 continue

O 0O o0 0 0 0 0 0 0 00 0000000

Q
()}
—

do 63 a=1,smax
do 64 b=1,smax
AA=0.40
do 65 i=1,rows
do 66 j=1,rows
AA=AA+oneF3evectsR(i,a)*threeF3evectsR(j,b)*

& (fgf2(i,j)-fgf3(i,j)-fgf7(i,j)+fgf8(1i,3))
c66 continue
c65 continue
c MIX(a,b+smax)=sqrt(3.d0)*AA/2.d40
¢ MIX(at+smax,b)=sqrt(3.d0)*AA/2.d0
c64 continue
c63 continue

O o0 o0 o0 o0 o0 o0

c OPEN (450, file=’MIX.mat’,status=’unknown’)
do 80 i=1,2*smax



O o0 o0 o0 o0 o0 o0

c81
c80

O 0O o0 0 o0 0 0 00 o0 0 00000

c91
c90
C
c

do 81 j=1,2%smax
if (j.eq.2*smax) then
ASSIGN 255 to frmt
else
ASSIGN 250 to frmt
endif
WRITE(450,frmt)MIX (i, j)
continue
continue
CLOSE(450)

CALL FO2EBF(’V’,2*smax,MIX,2*smax,MIXevalsR,MIXevalsI,
&MIXevectsR,2*smax,MIXevectsI,2*smax,WORK,LWORK,IFAIL)

OPEN(460,file="MIX.evals’,status=’unknown’)
OPEN(470,file="MIX.evects’,status=’unknown’)
do 90 i=1,2%*smax
WRITE(460,*)MIXevalsR(i)
do 91 j=1,2%smax
if (j.eq.2+*smax) then
ASSIGN 255 to frmt
else
ASSIGN 250 to frmt
endif
WRITE(470,frmt)MIXevectsR(i, j)
continue
continue
CLOSE (460)
CLOSE(470)

END
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