
 ABSTRACT

ZHOU, HUIYANG

Using Performance Bounds to Guide Code Compilation and Processor Design

(Under the direction of Professor Thomas M. Conte)

Performance bounds represent the best achievable performance that can be

delivered by target microarchitectures on specified workloads. Accurate performance

bounds establish an efficient way to evaluate the performance potential of either code

optimizations or architectural innovations.

We advocate using performance bounds to guide code compilation. In this

dissertation, we introduce a novel bound-guided approach to systematically regulate

code-size related instruction level parallelism (ILP) optimizations, including tail

duplication, loop unrolling, and if-conversion. Our approach is based on the notion of

code size efficiency, which is defined as the ratio of ILP improvement over static code

size increase. With such a notion, we (1) develop a general approach to selectively

perform optimizations to maximize the ILP improvement while minimizing the cost in

code size, (2) define the optimal tradeoff between ILP improvement and code size

overhead, and (3) develop a heuristic to achieve this optimal tradeoff.

We extend our performance bounds as well as code size efficiency to perform

code-size-aware compilation for real-time applications. The profile independent

performance bounds are proposed to reveal the criticality for each path in a task. Code

optimizations can then focus on the critical paths (even at the cost of non-critical ones) to

reduce the worst-case execution time, thereby improving the overall schedulability of the

real-time system.

For memory intensive applications featuring heavy pointer chasing, we develop

an analytical model based on performance bounds to evaluate memory latency hiding

techniques. We model the performance potential of these techniques and use the

analytical results to motivate an architectural innovation, called recovery-free value

prediction, to enhance memory level parallelism (MLP). The experimental results show

that our proposed technique improves MLP significantly and achieves impressive

speedups.

USING PERFORMANCE BOUNDS TO GUIDE CODE COMPILATION AND
PROCESSOR DESIGN

by

HUIYANG ZHOU

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

COMPUTER ENGINEERING

Raleigh

2003

APPROVED BY:

Prof. Thomas M. Conte
Chair of Advisory Committee

 Prof. Gregory T. Byrd

Prof. S. Purushothaman Iyer Prof. Eric Rotenberg

ii

 BIOGRAPHY

Huiyang Zhou was born in Xi’an, P.R. China. He received his Bachelor of

Engineering degree and Master of Engineering degree from Xian Jiaotong University, P.

R. China in 1992 and 1995 respectively. He went on to join National University of

Singapore, Singapore in 1996. After finishing his second Master’s degree, he joined

North Carolina State University, USA in 1998 as a Ph.D. student in the Computer

Engineering program. In May 2000, he became a member of TINKER research group

under the supervision of Dr. Thomas M. Conte. He completed his Ph.D. degree in the

summer of 2003 and is now an assistant professor in the Computer Science department at

the University of Central Florida, USA.

iii

 ACKNOWLEDGEMENTS

First of all, I would like to express my deep appreciation to my Ph.D. advisor,

Professor Thomas M. Conte. Tom has been a great advisor and his vision has led me

through my graduate research career. Without his guidance and encouragement, this

dissertation would not even be possible. Also, I would like to thank Prof. Thomas M.

Conte, Prof. Eric Rotenberg, Prof. Gregory T. Byrd, and Prof. S. Purushothaman Iyer for

serving on my dissertation committee. Special thanks to Prof. Eric Rotenberg for many

inspiring discussions and his insightful advice.

I would like to thank all the previous and current members of the TINKER

research group, Chao-ying Fu, Emre Ozer, Sergei Larin, Matt Jennings, Mark Toburen,

Kim Hazelwood, Vikram Rao, Tripura Ramesh, Jill Bodine, Fei Gao, Ugur Gunal, and

Saurabh Sharma for their contributions to the LEGO compiler and the simulation

framework that I have used in my dissertation research. I have enjoyed the collaboration

in our group very much.

I would like to thank my wife, Rong Wang, my mother, Ruiying Zhang, my

father, Jianqun Zhou, and my older brother, Chunyang Zhou, for their love and support.

iv

 TABLE OF CONTENTS

LIST OF TABLES... vi

LIST OF FIGURES .. vii

Chapter 1 Introduction .. 1

1.1 Introduction .. 1
1.2 Contributions of the Dissertation ... 5
1.3 Outline of the Dissertation ... 6

Chapter 2 Performance Bounds .. 7

2.1 Previous Work.. 7
2.2 Treegions and Treegion-based Global Instruction Scheduling 9
2.3 Profile-Guided Performance Bounds ... 12
2.4 Profile Independent Performance Bounds.. 17

Chapter 3 Compiling for Code Size Efficiency .. 24

3.1 Background on Code Size Related ILP Optimizations 24
3.2 Performance Bound Driven Code Size Efficiency..................................... 27

3.2.1 Code size efficiency ... 27
3.2.2 Using performance bounds to calculate code size efficiency......... 29
3.2.3 Examples of code size efficiency computation 30

3.3 Regulating Code Size Related ILP Optimizations 34
3.4 Optimal Tradeoff between ILP Improvement and Code Size Increase...... 36
3.5 Experimental Results.. 39

3.5.1 Methodology .. 40
3.5.2 Regulating code size decreasing optimizations – if-conversion 41
3.5.3 Results of regulating code size increasing optimizations – tail
duplication and loop unrolling ... 46
3.5.4 Achieving the optimal tradeoff between ILP improvement and code
size increase.. 49

3.6 Summary .. 52

Chapter 4 Code Size Aware Compilation for Real Time Applications 53

4.1 Background .. 54
4.2 Explicitly Parallel Instruction Computing (EPIC) in Real-Time Systems. 56
4.3 Code Size Efficiency Based on Profile Independent Performance Bounds58
4.4 Regulating the Code Size Related ILP Optimizations for Real Time
Applications .. 59
4.5 Experimental Methodology and Results .. 63

v

4.6 Summary .. 70

Chapter 5 Performance Modeling of Memory Latency Hiding Techniques 71

5.1 Introduction .. 71
5.2 Performance Modeling of Memory Prefetching .. 74
5.3 Performance Modeling of Value Prediction... 76
5.4 Comparison between Prefetching and Value Prediction in Hiding Miss
Latencies ... 79
5.5 Summary .. 81

Chapter 6 Enhancing Memory Level Parallelism via Recovery-Free Value Prediction
 83

6.1 Introduction .. 83
6.2 Related Work.. 85
6.3 Breaking Memory Dependencies to Enhance MLP 87
6.4 Recovery-Free Value Prediction .. 92
6.5 Experimental Methodology.. 96
6.6 Experimental Results.. 99

6.6.1 Performance evaluation.. 99
6.6.2 Performance analysis.. 105
6.6.3 Sensitivity analysis ... 111

6.7 Limitations.. 113
6.8 Summary .. 114

Chapter 7 Conclusion and Future Directions .. 116

Chapter 8 Bibliography... 120

vi

LIST OF TABLES

Table 3.1. Baseline results including static code size, execution time, and static IPC..... 41

Table 3.2. If-conversion results. ... 42

Table 3.3. The resulting code size and ILP improvements when threshold K = 0.577. ... 50

Table 3.4. The resulting code size and ILP improvements when threshold K = 0.268. ... 50

Table 4.1. The if-conversion results ... 66

Table 6.1. Base processor configuration... 97

Table 6.2. Baseline results of the benchmarks.. 98

vii

LIST OF FIGURES

Figure 2.1 (a) The CFG and the natural treegion construction; (b) The treegion
constructed after tail duplication... 10

Figure 2.2. A CFG example containing three control paths. .. 12

Figure 2.3. (a) Code segment from the benchmark parser (function list_link). Numbers
along the edge labels are edge profiles; (b) The superblock formed without tail
duplication; (c) The natural treegion formed. ... 15

Figure 2.4. The corresponding C code of the assembly code segment in Figure 2.3. The
global variable maxlinklength is accessed through a linkage table........................... 16

Figure 2.5. Deriving LBWT in a complex CFG without loops. 19

Figure 2.6. A CFG containing a loop structure... 21

Figure 2.7. (a) The similar code example to Figure 2.3; (b) The superblocks formed
without tail duplciation; (c) The natural treegion formed... 22

Figure 3.1. A code segment from twolf (in function new_dbox_a). Numbers along control
edge labels are edge profiles. .. 30

Figure 3.2. Loop unrolling of the loop body shown in Figure 3.1 with unroll factor of 2.
(Numbers along control edge labels are edge profiles computed using probability
propagation.) ... 32

Figure 3.3. A code segment from twolf (function add_penal) to show efficiency of if-
conversion. Numbers along control edge labels are edge profiles............................ 33

Figure 3.4. The algorithm for regulating code size related optimizations. 35

Figure 3.5. An example curve showing the relationship of ILP improvement and code
size increase. ... 37

Figure 3.6. Achieving the optimal tradeoff between ILP improvement and code size
increase. .. 38

Figure 3.7. The removal rate of dynamic conditional branches and mispredictions by if-
conversion. .. 44

Figure 3.8. The static code size reduction by if-conversion. .. 45

Figure 3.9. The speedups for different code size increases. ... 46

viii

Figure 3.10. ILP improvement vs. code size increase for benchmarks (a) mcf and (b)
twolf... 48

Figure 3.11. Achieving the optimal tradeoff between ILP improvement and code size
increase. (a) benchmark mcf, (b) benchmark twolf. .. 51

Figure 4.1. The algorithm for regulating code size related optimizations for real-time
applications. .. 60

Figure 4.2. Predicting a conditional branch statically to minimize WCET. 61

Figure 4.3. A diamond structure. .. 62

Figure 4.4. The WCET reduction using if-conversion. .. 65

Figure 4.5. Resulting WCET for different code size increases... 67

Figure 4.6. The diminishing returns exhibited from the benchmark stringsearch. 69

Figure 5.1. A pointer-chasing code example. ... 72

Figure 5.2. (a) The code ‘a->b->c->d->e’ resulting in a memory dependence chain of 4
missing loads; (b) Prefetching 1 missing load along the chain reduces the chain
length by 1... 75

Figure 5.3. (a) A memory dependence chain of 4 miss loads; (b) Predicting the value of
the first missing load; (c) Predicting the value of the second missing load; (d)
Predicting the value of the third missing load. ... 77

Figure 5.4. A memory dependence chain of 4 miss loads; (b) prefetching the third load;
(c) value predicting the second load. .. 81

Figure 6.1. A code segment in the benchmark mcf (in function refresh_potential)
resulting in many cache-misses. ... 88

Figure 6.2. The memory dependence chain based on the code in Figure 6.1. (a) The
dependence chain for a single iteration. (b) The dependence chain for multiple
iterations (alias dependence among different iterations are not shown for
conciseness). ... 89

Figure 6.3. Predicting the value of Node 5' enables overlapping of cache misses in
different iterations. .. 90

Figure 6.4. The execution pipeline. .. 93

Figure 6.5. The stride value prediction table. ... 99

Figure 6.6. The L1 D-cache missrates. ... 101

ix

Figure 6.7. The L2 cache missrates. ... 101

Figure 6.8. The baseline MLP for the benchmark mcf (overall execution time = 390M
cycles). .. 103

Figure 6.9. The improved MLP for the benchmark mcf with recovery-free value
prediction (overall execution time = 327M cycles). ... 103

Figure 6.10. The speedups of using recovery-free value prediction............................... 104

Figure 6.11. The value predictability for all value producing instructions using a 4k-entry
stride predictor. ... 106

Figure 6.12 The value predictability for missing loads using a 4k-entry stride predictor.
... 107

Figure 6.13. The speedups resulting from breaking different dependencies and traditional
value speculation... 107

Figure 6.14. The value prediction results using recovery-free value prediction (labeled ‘rf
vp’) and traditional value prediction (labeled ‘trad. vp’).. 110

Figure 6.15. The speedups for different memory hierarchies. .. 111

Figure 6.16. The speedups for different instruction window sizes. 112

1

Chapter 1 Introduction

1.1 Introduction

Performance bounds represent the best achievable performance that can be

delivered by target architectures on specified workloads. Previous works [8],[52],[53]

proposed the use of performance bounds to evaluate different architectures by measuring

how closely the achieved performance compares to the performance bounds.

In this dissertation, we advocate using performance bounds to guide code

optimizations and processor design. The insight is that since performance bounds reflect

the best achievable performance, the difference between two sets of performance bounds,

one for the original and one for the optimized workload or architecture, simply reveals

the performance potential of such optimizations.

In code compilation, instruction optimizations can lead to different outcomes in

performance and compiler efficiency depending on where these optimizations are

applied. In order to use code optimizations efficiently and judiciously, two major issues

need to be addressed. First, an effective cost-benefit model is needed so that the

performance gains can be analyzed before actually performing time-consuming

2

instruction scheduling or the optimization itself. Secondly, a systematic method is needed

to selectively apply various types of optimizations based on the cost model. Performance

bounds serve this purpose appropriately, as they enable efficient measurement of the

performance limit of an optimization and also help us to understand the bottlenecks when

the performance potential is not fully achieved.

Two sets of tight performance bounds are proposed in this dissertation for

different applications. Profile-guided performance bounds are based on edge profile

information, and profile-independent performance bounds reveal the criticality of

different control paths in terms of worst-case execution time (WCET) in real-time

applications. The proposed performance bounds are used to guide code compilation,

code-size-aware compilation in particular.

Current microprocessors exploit instruction level parallelism (ILP) aggressively to

achieve high performance. Therefore, ILP optimizations such as tail duplication, loop

unrolling, and if-conversion, are commonly used in code compilation to boost the ILP of

the program. However, these optimizations usually involve significant static code size

increases, thus raising concerns about the effects on instruction cache (I-cache) and

instruction translation lookaside buffer (I-TLB) performance. For embedded systems, the

cost of memory for storing the static code is also an important factor. Another issue with

oversized programs is the compilation time, since compilation complexity is usually

O(N2), where N is the number of instructions in the function/program. In order to achieve

a good trade-off between performance improvement and code size increase, we introduce

a systematic approach to regulate code size related ILP optimizations so that the

performance gains are maximized at a very small cost in static code size increase. Our

3

approach is based on the notion of code size efficiency, defined as the ratio of ILP

improvement over the static code size increase. Based on such a notion, we (1) develop a

general approach to selectively perform optimizations to maximize the ILP improvement

at a minor cost in code size, (2) define the optimal tradeoff between the ILP improvement

and the code size overhead, and (3) develop a heuristic to achieve this optimal tradeoff.

Since profile-guided performance bounds are used to evaluate the ILP improvement, our

algorithms have the advantage of low computational complexity, which is important to

the compile time of the program. Experiments using the SPEC CINT 2000 benchmarks

[30] show that performance improves significantly with very little code size increase

using our systematic method for regulating code transformations. The results also show

that our simple heuristic is both effective and robust in achieving the optimal tradeoff.

In real-time applications, the major concern is to finish tasks within specified

deadlines. We advocate using code optimizations as well as instruction scheduling to

reduce the worst-case execution time (WCET) of each task, thereby increasing the overall

system-level schedulability. With such an objective, the measure of code size efficiency

is extended with profile-independent performance bounds so that it reflects how much the

WCET is potentially reduced when additional instructions are introduced from various

code optimizations. Then, a similar approach to regulate ILP optimizations is developed

to selectively perform these optimizations so that the WCET is significantly reduced with

small static code size increases.

With great effort from both the compiler and hardware, current microprocessors

have a tremendous capability to exploit ILP aggressively to achieve high performance

computation. However, due to the comparably slower speed of the memory, if the

4

computation involves a slow memory operation (e.g., a cache miss), the execution

pipeline of a microprocessor usually has to be stalled in order to wait for the required data

to be fetched from memory. For memory intensive workloads, the slow memory accesses

form the critical path of the program and dominate the overall execution time. For such

workloads, especially irregular programs with heavy pointer chasing, reducing or hiding

the memory access latencies is essential to achieve high performance and has been an

active research topic.

In this dissertation, we propose an analytical model to bound the performance

potential of two different, yet related memory access latency hiding techniques, namely

address prediction based memory prefetching [14],[33] and value prediction

[43],[44],[21]. Interesting insights are revealed from our analytical model for either

technique and the code characteristics are identified for which one technique outperforms

the other. It is found that value prediction is a very powerful technique to improve

memory-level-parallelism (MLP) for future high performance microprocessors. One key

reason is that while prefetching only brings the data close to the microprocessor, value

prediction takes one step further by using the fetched data to drive the dependent missing

loads to be executed. If the prediction is correct in the first place, such speculative

execution propagates the predictability even though the dependent loads could be

unpredictable. Such observations also motivate an innovation, called recovery-free value

prediction, to improve MLP more cost-effectively.

In recovery-free value prediction, value speculation is used only for prefetching

so that the complex prediction validation and misprediction recovery mechanisms used in

traditional value prediction schemes are avoided, as well as the associated recovery

5

penalties from value misprediction. Only minor changes in the microarchitecture are

needed to implement recovery-free value prediction, and the same hardware

modifications also enable speculative memory disambiguation for prefetching. Another

advantage is that recovery-free value prediction uses the actual execution results rather

than execution results based on previous predictions to update value predictors, thereby

achieving better prediction results. The experiments show that our proposed technique

enhances MLP effectively and achieves significant speedups even with a simple stride

value predictor.

1.2 Contributions of the Dissertation

This dissertation addresses several important issues in high performance computer

architecture. First, tight profile-guided performance bounds are proposed and a

quantitative measure of code size efficiency is proposed using such performance bounds.

Based on this measure, algorithms with low computational complexity are designed to

selectively perform different ILP code optimizations.

Secondly, we extend performance bounds to guide code compilation to reduce the

WCET for timing critical tasks in real-time applications. The revised code size efficiency

reflects the WCET reduction at the cost of code size increase resulting from a code

optimization. A similar algorithm to the one proposed for profile-guided compilation is

developed to selectively perform code optimization to reduce the WCET aggressively at a

minor cost in static code size increase.

6

Thirdly, an analytical model is proposed to evaluate the memory latency hiding

techniques including address prediction based prefetching and value prediction. Key

insights are revealed from the model to guide both the compiler and processor design.

Fourthly, we propose a novel approach, called recovery-free value prediction to

enhance MLP. Our approach has low hardware complexity and achieves significant

speedups for a range of memory intensive benchmarks with a simple value predictor.

1.3 Outline of the Dissertation

The dissertation is organized as follows. Chapter 2 presents the proposed

performance bounds, including both profile-guided and profile-independent bounds. The

code compilation for code size efficiency using profile-guided performance bounds is in

Chapter 3. Chapter 4 discusses code-size-aware compilation for real-time applications

using profile-independent performance bounds. The performance modeling of memory

hiding techniques is contained in Chapter 5. Chapter 6 presents our proposed recovery-

free value prediction mechanism to enhance memory level parallelism. Chapter 7

concludes the dissertation and addresses further research directions.

7

Chapter 2 Performance Bounds

In this chapter, we first discuss the previous work on performance bounds in

Section 2.1. Section 2.2 contains a brief background description of treegion-based

instruction scheduling, which is the instruction-scheduling framework used in this work.

Then, we introduce our proposed profile-guided performance bounds in Section 2.3 and

profile-independent performance bounds in Section 2.4.

2.1 Previous Work

As discussed in Chapter 1, performance bounds were previously proposed to

evaluate different computer architectures. In [53], a set of performance bounds are

presented based on scientific workloads to evaluate a range of computer architectures.

For vector processors including Cray-1, Cray-XMP, and Cray-2, Tang and Davison [67]

used vectorizable Livermore Fortran Kernels (LFK) as the target workloads and

developed a simple bound model assuming that the function unit bandwidth is the

bottleneck. Then, an accurate timing model was developed to determine the achieved

performance. When achieved performance lagged the performance bound, an ad-hoc

approach was used to identify the performance inhibitors. Mangione-Smith, Abraham and

8

Davison [52],[54] extended the workload to include Livermore Fortran kernels that are

not vectorizable and generalized their processor models to study processors such as the

Astronautics ZS-1, MIPS R3000 and IBM RS/6000. The performance bound was

modified to be the maximum of the resource bound and the dependence bound. The

resource bound is basically the bandwidth requirement of the workload. The dependence

bound accounts for the loop-carried dependence for non-vectorizable loops.

Boyd and Davison [8],[9] further extended the above simple bound models to a

hierarchical performance model (MACS) in order to study the performance bottlenecks in

a more formal way. Such a hierarchical model captures the performance impact of

following factors: machine architecture, application workload, high-level compiler

optimization, instruction selection, and instruction scheduling. The M (machine) bound is

the peak performance that the processor can provide. The MA (machine-application)

bound considers the workload requirement. The MAC (machine-application-compiler)

bound improves the MA bound by counting the actual operations in the compiled

workload. The MACS (machine-application-compiler-scheduler) further refines the

performance bound by including the instruction scheduler impact. By measuring the

performance gap between different bounds, this hierarchical bound model is shown to be

very helpful in identifying the performance losses in the spectrum from compilation to

the target architecture.

Performance bounds are also proposed to guide instruction scheduling and

hardware synthesis. Tight lower bounds of basic block (BB) scheduling proposed in

[37],[60] were used to prune the design space of hardware synthesis. Based upon the tight

bounds of BB, Eichenberger and Meleis [19] computed a tight lower bound of a

9

superblock using pairwise bounds to account for resource conflicts among branches. Such

bounds are then used as a heuristic to schedule operations at each cycle, and these bounds

are also updated to reflect the schedule decisions during the scheduling process. Although

our performance bound computation is based on a different type of scheduling region, the

treegion, the bound calculation is similar to these previously introduced bounds since all

these bounds are trying to capture the data dependence and resource constraint impact.

Compared to these previous works on performance bounds, our use of

performance bounds is different in that we propose to use the change/reduction in

performance bounds as a fast and accurate way to capture the performance potential of

either a code optimization or a hardware innovation on specified workloads based on

target microarchitectures. We describe our proposed performance bounds in Section 2.3

and Section 2.4. Before that, a brief overview of our compiler framework, the treegion-

based global acyclic instruction scheduler in particular, is presented in the next section.

2.2 Treegions and Treegion-based Global Instruction

Scheduling

Treegion-based global scheduling [28],[78] is used as the acyclic scheduling

framework in this dissertation. However, it needs to be pointed out that although the

experimental results are obtained using treegion scheduling, the same methodology of the

performance bound as well as the code size efficiency study in next two chapters is

applicable to other global scheduling approaches, such as superblock scheduling [31] and

hyperblock scheduling [51].

10

Treegion-based global scheduling aims for high performance for wide issue

VLIW / EPIC processors although it can be applied to superscalar processors as well. It

has two steps: treegion formation and tree traversal scheduling (TTS). A treegion is a

single-entry / multiple-exit nonlinear code region that consists of basic blocks (BBs) with

the control-flow forming a tree, as illustrated in Figure 2.1.

Figure 2.1 (a) The CFG and the natural treegion construction; (b) The treegion
constructed after tail duplication.

BB1

BB2 BB3

BB4 BB5

BB7

BB9

Treegion 1

Treegion 2
BB6

BB8

BB1

BB2 BB3

BB4 BB5

BB7

BB7’

BB9

Treegion 1

BB8

BB6
BB9’ BB8’

(a)

(b)

11

Based on the control flow graph (CFG) in Figure 2.1a, two treegions are formed.

The treegions that are formed without any tail duplication are referred to as natural

treegions. When tail duplication is applied, a larger treegion can be formed. For the

example CFG in Figure 2.1a, after BB7, BB8, and BB9 are duplicated and the

corresponding unconditional branches are removed, one treegion is formed containing all

the BBs in the CFG, as shown in Figure 2.1b. Such duplication enables speculation from

BB7, BB8, BB9 and their duplicates, thereby increasing ILP. The trade-off for exposing

ILP through treegion formation is the code-expansion that results from duplicates of

BB7, BB8 and BB9. Note that in this dissertation, tail duplication is performed on the

unit of the natural treegion (i.e., merge points), e.g., in the example of Figure 2.1, the

entire treegion 2 is duplicated instead of BB7. In the previous treegion scheduling works,

tail duplication is performed based on a heuristic discussed in [28], which we refer to as

Havanki’s heuristic and briefly describe as follows. Havanki’s tail duplication heuristic is

based on several factors: code expansion limit, path count (the number of paths in a

treegion) and the number of incoming edges to a merge point. The code expansion limit

is a global control parameter, while the other two are based on the topology of the CFG.

When any of these limits is reached, tail duplication will stop and a new treegion will be

formed. The advantage of this heuristic is that it solely depends on the topology of the

CFG and it is not susceptible to profiling errors. But it does not take the performance

impact of such duplication into account. As will be seen in Chapter 3, we develop an

integrated approach to perform selective tail duplication, loop unrolling and if-

conversion, and achieve much higher ILP improvements [75].

12

During tree traversal scheduling (TTS), the BBs in a treegion are scheduled in a

predetermined traversal order based on treegion topology and profile information. When

a BB is currently being scheduled, those instructions that are dominated by the BB will

be considered as scheduling candidates until the block-ending branch is scheduled. In this

way, speculation is enabled from all the paths starting from the BB. Those candidate

operations are scheduled based on an order determined by a heuristic that includes their

execution frequency, exit count, and data dependence height. The details of tree traversal

scheduling can be found in [78].

2.3 Profile-Guided Performance Bounds

Due to complexity, many compiler frameworks partition a function body into

many multi-path regions and each region is used as a scheduling unit. We establish a

lower bound of execution time for such a single-entry multiple-exit region since

instructions are rarely moved across the scheduling region boundary. Performing bound

computation at the granularity of the scheduling region is important as it captures global

instruction scheduling impacts accurately. With region-level performance bounds, we can

derive easily the bounds at the procedure/function level and the program level.

Figure 2.2. A CFG example containing three control paths.

f1 f2 f3

Path_1 Path_2 Path_3

13

For a single-entry multiple-exit region, if execution frequency for each control

path is determined from profile information, we can compute the lower bound of

execution time (LBET) as a weighted sum of LBET of each path. For the example control

flow graph (CFG) shown in Figure 2.2, there are three control paths in the region and the

execution frequencies f1, f2, and f3 are associated with each path respectively. So, the

lower bound execution time of this region can be computed as the sum of the LBET of

each path weighted by its execution frequency. We can write this weighted sum as the

following equation.

()∑

∑
=

=

ipath
ipathipathipath

ipath
ipathipath

freqboundresourcebounddependencedataMax

freqLBETLBET

_

_
__

*_,__

*

Equation 2-1

In Equation 2-1, the lower bound of execution time (LBET) of a region is a

weighted sum of the LBET of each path, which is in turn computed as the maximum of

the data dependence bound and the resource bound of the path. True data dependence

height of Data Dependence Graph (DDG) is used as the data dependence bound assuming

software renaming is available at schedule time to remove false register dependencies. By

calculating the data dependence bound along each path, the potential control speculation

effect is considered implicitly as the control dependence is not enforced. Also, using only

the true data dependence simplifies the bound computation since it is an O(N)

computation.

14

Resource bound in Equation 2-1 is calculated similar to the ResMII (resource-

constrained minimum-initiation-interval) calculation in iterative modulo scheduling [59],

as follows.

 )__(_ _ kkkipath FUNumInsnNumMaxboundresource = Equation 2-2

In Equation 2-2, Num_Insnk represents the number of operations that use the

function unit type k. Num_FUk represents the number of function units of type k available

in the processor. The ratio (ceil) of these two numbers shows the resource constraints of

function units of type k. Then, resource bound is calculated as the maximum constraint of

all types of function units. From our experience, load/store units and branch units are

usually critical resources for most integer benchmarks in the SPEC 2000 Integer

benchmark suite.

Again, the execution frequency for each path, ipathFreq _ , used as the weight of

the corresponding path in Equation 2-1, is obtained from edge profiling.

Since the LBET of each scheduling region describes its execution time, the LBET

of the whole program is simply the sum of the LBETs of all the scheduling regions. So,

we can compute the program-level performance bound with the following steps:

1. Forming the scheduling regions, such as treegions or superblocks, based

on the control flow graph.

2. Compute LBET of each region and take the summation as the LBET of

the program.

Next, we use a simple code example to show the profile-guided bound calculation

and the relationship between the bound tightness and the region type. As each different

region type defines a different scheduling scope, the calculated bounds can be different

15

for the same code segment. A code example in IA-64 [32] style assembly is given in

Figure 2.3, and the corresponding C code is shown in Figure 2.4.

Figure 2.3. (a) Code segment from the benchmark parser (function list_link).
Numbers along the edge labels are edge profiles; (b) The superblock formed without

tail duplication; (c) The natural treegion formed.

As shown in Figure 2.3a, the code segment is a simple diamond structure

extracted from the benchmark parser. First, we show the bound computation for

superblock scheduling. If no code expansion optimization is performed, three superblocks

Cmp p6,p7 = (r37 == 0)
Br L1 (p6)

Adds r15 = r35, -1
Addl r14 = @ltoff(maxlinklength), gp
Ld8 r14 = [r14]
Ld4 r14 = [r14]
Add r63 = r14, r34
Cmp p6,p7 = (r15 <= r63)
Mov r63 = r15 (p6)

L1:
Adds r14 = r37, -2
Ld2 r14 = [r14]
Sxt2 r14 = r14
Mov r63 = r14
Br L2

L2:
Cmp r6,r7 = (r63 >= r67)
Br L3 (p6)

A: 4609 B: 3315
BB2

BB3

BB4

BB1

(a)

BB1

BB2 BB3

BB4

SB1

SB2

SB3

(b)

BB1

BB2 BB3

BB4

Tree1

Tree2

(c)

16

(SB) are formed for the code segment: SB1 contains BB1 and BB2, SB2 contains BB3,

and SB3 contains BB4, as shown in Figure 2.3b. Assuming our machine model has the

following configuration: 6-wide issue (2 ALU, 2 ALU/LD/ST, 2 ALU/BR, e.g., Itanium-I

and II); load operations have a 2-cycle latency and all other integer operations have a 1-

cycle latency (except CMP instructions which can be issued at the same cycle as the

consuming branch). We can compute the lower bound of execution time (LBET) of SB1

using Equation 2-1 as: 1*3315 + 8*4609 = 40,187 cycles; LBET of SB2 as 5 * 3315 =

16,575 cycles; and LBET of SB3 as 1 * (3315 + 4609) = 7,924 cycles. The performance

bound of the hammock is the sum of the bounds of these superblocks (64,686 cycles).

Figure 2.4. The corresponding C code of the assembly code segment in Figure 2.3.
The global variable maxlinklength is accessed through a linkage table.

Next, if we use treegions as basic scheduling regions, two natural treegions can be

formed for this code example without any code replication: Tree1 contains BB1, BB2,

and BB3; and Tree2 contains BB4, as shown in Figure 2.3c. For the same machine

model, the LBET of Tree1 is computed as: 4609*8 + 3315*5 = 53,447 cycles; the LBET

of Tree2 is 1 * (3315 + 4609) = 7,924 cycles. The LBET of the hammock is the sum of

the LBETs of Tree1 and Tree2 (61,371 cycles). Compared to the LBET computed using

superblocks, the treegion-based LBET is smaller as it considers the possibility of control

speculation not only from BB2 to BB1 but also from BB3 to BB1. The superblock-based

…
if(re == NULL) {
 end_word = MIN(rw-1, lw+maxlinklength);
} else {
 end_word = re->word;
}
…

17

approach, however, considers speculation only from BB2 to BB1. From this example, it

can be seen that the performance bounds also reveal the potential of a particular

instruction-scheduling algorithm and it illustrates that treegion scheduling provides better

scheduling capabilities by enabling speculation from multiple execution paths.

The region expansion optimization, duplication of BB4 in this example, could

potentially reduce the LBET of both superblock-based LBET and treegion-based LBET

and this will be discussed in detail in Chapter 3 as we evaluate the performance impact of

code size related optimizations.

2.4 Profile Independent Performance Bounds

For real-time applications, the most important objective is to guarantee that a task

finishes by a specified deadline instead of reducing the average execution time. As a

result, the worst-case execution time (WCET) is commonly used assuming a program

will experience its longest control flow path. As our objective is to evaluate WCET

reduction of ILP optimizations for real-time applications, we propose a profile-

independent bound for a single-entry multiple-exit region as follows:

())_,__(

__

ipathipathipath

ipathipath

boundresourcebounddependencedataMaxMax

LBETMaxLBWT

=

=

Equation 2-3

As shown in Equation 2-3, the lower bound of WCET (LBWT) for a multi-path

region is the maximum of the lower bound execution time (LBET) of each path, which is

computed as the maximum of the data dependence bound and the resource bound of the

path, as described before in Section 2.3. In other words, the worst case control flow (i.e.,

18

the path with longest execution time) is assumed while the lower bound of execution time

is used for each path. Since such a lower bound is used, the actual execution time along

the path could potentially exceed this lower bound. So, it apparently conflicts the purpose

of worst-case execution time. However, remember that we use LBWT to measure the

impact of WCET reduction due to code optimizations instead of using LBWT directly as

the final WCET measure. Measuring the actual execution time along each path requires

the scheduled code. It is unacceptable in practice since time-consuming instruction

scheduling needs to be performed in order to measure the impact for every single code

optimization instance. Using LBET for each path, on the other hand, provides an accurate

estimate of the actual execution time and associates low computational complexity.

Moreover, this LBWT can be used to check the soundness of the deadline setting: if the

predetermined deadline exceeds the LBWT, it is impossible that the task can be finished

in time when the longest control path is taken. In such a case, the system has to reassign

the deadlines, adopt a more powerful processor, or optimize the code more aggressively.

Computing LBWT at the function level is complicated due to complex CFGs and

multiple regions in a function body. Although we can use a simple approach, such as

taking the summation of the LBWTs of each region as the LBWT for the function, the

computed bounds are overly pessimistic as many impossible control paths are assumed.

Here, we use a similar approach to the static WCET analysis for scheduled code,

in which the analyzer derives WCET for each path, then for loop bodies, and finally for

functions in the program. The WCET of the main function is simply the WCET for the

entire program. Compared to this path-based static analysis approach for scheduled code,

treegion-based LBWT provides an efficient way to incorporate the instruction scheduling

19

effect accurately, especially the control speculation effect, and limits the enumeration of

the possible control paths. Next, we use an example to derive this treegion-based LBWT

analysis. We start with an innermost loop body, which may contain more than one

treegion. One such example is shown in Figure 2.5.

Figure 2.5. Deriving LBWT in a complex CFG without loops.

The CFG in Figure 2.5 contains three treegions. In order to compute the LBWT of

such a code segment, we extend Equation 2-3 to Equation 2-4 to compute the LBWT for

each treegion. The LBWT for treegion 0 in this example is the LBWT for the overall

code segment.

LBWT = Max(LBETpath_1+LBWTbase_path_1, …, LBETpath_k+LBWTbase_path_k)

Equation 2-4

Path A
Path B

Tree2

Tree1

Tree0

Path 1 Path 2

Path 3

20

In Equation 2-4, LBWT of a treegion is computed as the maximum LBWT of

every path in the treegion, which is in turn defined as the sum of the LBET of the path

(LBETpath_i) and the LBWT of the treegion that the path leads to (LBWTbase_path_i). The

term LBETpath_i is defined as before, i.e., the maximum of the data dependence bound and

the resource bound. The term LBWTbase_path_i is computed recursively using Equation 2-4

based on the control dependence relationship among treegions. For exit paths or return

paths, LBWTbase is zero. For the code example in Figure 2.5, the overall LBWT (i.e.,

LBWT of treegion 0) is computed as follows:

 LBWTtreegion0 = Max(LBETpath_1+LBWTbase_path_1, …, LBETpath_k+LBWTbase_path_k)

= Max(LBETpath_1+LBWTtreegion1, LBETpath_2+LBWTtreegion1, LBETpath_3+LBWTtreegion2).

LBWTs of treegion 1 and treegion 2 can be computed in turn as:

LBWTtreegion1 = Max(LBETpath_A, LBETpath_B+LBWTtreegion2);

LBWTtreegion2 = Max(LBETpaths_in_treegion2).

For an outer loop body or a CFG containing loop structures, such as the CFG

shown in Figure 2.6, the LBWT can be computed as follows,

LBWTtreegion0 = Max(LBETpath_1+LBWTloop_A, LBETpath_2+LBWTtreegion1).

where LBWT of loop A is computed as LBWTloop_body_A * loop_count_A + LBWTtreegion1.

LBWT for the loop body (LBWTloop_body_A) can be computed using Equation 2-4 if it

contains more than one treegion and the loop count is determined from the workload

specification or from profiling.

LBWT at the program level can be computed from the functional level LBWTs by

traversing the function call graph using the leaf node first order. The LBWT of the ‘main’

function represents the LBWT of the entire program.

21

Figure 2.6. A CFG containing a loop structure.

 As a final note, if we replace the LBET along each path with the actual schedule

length/execution time, the LBWT becomes the WCET.

Next, we use a code example to illustrate the LBWT computation. The code

example is a simple diamond structure as shown in Figure 2.7. Here, we use it to

illustrate the LBWT computation and also show that treegion-based scheduling will result

in a smaller LBWT compared to superblock scheduling or trace scheduling, making

treegion scheduling more suitable for real-time applications.

First, we compute the superblock-based LBWT using the same 6-issue machine

model as used in Section 2.3. The LBWT of the code segment is the same as LBWTSB1,

which is computed as follows using Equation 2-4:

LBWTSB1 = Max(LBETpath_1+LBWTSB3, LBETpath_2+LBWTSB2)

 = Max(LBETpath_1+LBWTSB3, LBETpath_2+ LBETSB2_path +LBWTSB3)

 = Max(8 + 1, 4 + 5 + 1) = 10 cycles.

Tree1

Tree0

Path 1 Path 2

Loop

A

22

From this computation, it seems that control path 2 forms the critical path.

Figure 2.7. (a) The similar code example to Figure 2.3; (b) The superblocks formed
without tail duplciation; (c) The natural treegion formed.

Using treegions as basic scheduling regions, the LBWT of the code segment is

LBWTtree1, which is computed as follows using Equation 2-4:

Adds r39 = r40, -2
Ld4 r37 = [r39]
Cmp p6,p7 = (r37 == 0)
Br L1 (p6)

Adds r15 = r35, -1
Addl r14 = @ltoff(maxlinklength), gp
Ld8 r14 = [r14]
Ld4 r14 = [r14]
Add r63 = r14, r34
Cmp p6,p7 = (r15 <= r63)
Mov r63 = r15 (p6)

L1:
Adds r14 = r37, -2
Ld2 r14 = [r14]
Sxt2 r14 = r14
Mov r63 = r14
Br L2

L2:
Cmp r6,r7 = (r63 >= r67)
Br L3 (p6)

Path_1
Path_2

BB2
BB3

BB4

BB1

(a)

BB1

BB2 BB3

BB4

SB1

SB2

SB3

(b)

BB1

BB2 BB3

BB4

Tree1

Tree2

(c)

23

LBWTtree1 = Max(LBETpath_1+LBWTtree2, LBETpath_2+LBWTtree2)

 = Max(8 + 1, 5 + 1) = 9 cycles.

The critical path is now due to control path 1. Compared to the superblock-based

LBWT, treegions enable control speculation from BB3 along path 2. So, the execution

time along path 2 is reduced to 6 cycles and the overall LBWT is reduced to 9 cycles.

This illustrates that treegion scheduling is an appropriate scheduling framework for real-

time applications due to its capability to perform speculation from multiple control paths

simultaneously. Note that in this example, we do not consider the effect of branch

prediction on WCET or LBWT for conciseness. We will include this in Chapter 4 when

if-conversion optimizations are selectively performed.

24

Chapter 3 Compiling for Code Size

Efficiency

In this chapter, we describe how we use our proposed profile-guided performance

bounds to guide code compilation for code size efficiency. The objective is to selectively

perform ILP optimizations so that significant ILP improvement is achieved at a very

small cost in static code size increase. A brief background on ILP optimizations is

contained in Section 3.1. Section 3.2 presents performance bound driven code size

efficiency. Section 3.3 contains our proposed algorithm to regulate code size related ILP

optimizations. The optimal tradeoff between performance improvement and code size is

defined in Section 3.4, and a simple heuristic is developed to achieve this optimum.

Section 3.5 contains the experimental methodology and results. A summary of this

chapter is provided in Section 3.6.

3.1 Background on Code Size Related ILP Optimizations

A great number of code transformation techniques have been proposed in the

literature to improve program performance. As our target in this chapter is code size

25

related optimizations for integer workloads, we focus on the three most commonly used

ILP optimizations: tail duplication, loop unrolling and if-conversion.

Tail duplication (or code replication) replicates a subgraph of the control flow to

remove side entries of a trace [6],[31] and to avoid conditional / unconditional branches

[56]. Many instruction-scheduling approaches [28],[31],[51] use tail duplication in

forming scheduling regions. Due to its evident impact on static code size increase,

different heuristics have been proposed to decide whether a particular instance of tail

duplication should be performed. One simple example is a threshold on the profiled

execution frequency [31]. However, there is no systematic way to analyze the tradeoff

between the cost in code size and the performance gain.

Loop unrolling is another technique used to enlarge a scheduling region. Modulo

scheduling [59] may also benefit from loop unrolling to reach a non-integer MII [38].

However, it has been recognized that loop unrolling can degrade performance if it is not

used judiciously due to increased code size and increased resource requirements. Sarkar

[63] proposed a mechanism to automatically select an unroll vector for nested loops. His

approach associates a cost model for feasible unroll vectors and the one with the best

objective function is selected. The cost model evaluates an unroll vector without

performing the unrolling. A similar approach to MII (RecMII and ResMII) computation

is used as in modulo scheduling to estimate the ILP for a candidate unroll vector. In [36],

an iterative compilation approach is proposed to search for the best unroll factor and tile

size. Instead of a cost model, the actual execution time on the target machine is measured.

While these approaches are mainly targeted at scientific codes, our focus is irregular

integer workloads.

26

If-conversion [2],[58] replaces conditional branches with appropriate predicate

computations, and the instructions that are control dependent on the branch are guarded

with these predicates. The removal of frequently mispredicted branches can yield large

performance gains [50]. Also, if-conversion increases the spatial locality of instructions

and may reduce code size if the targeted instruction set architecture (ISA) uses predicate

computation for a conditional branch, such as IA-64 [32],[65] or HPL-PD [35]. As

pointed out in [4], full if-conversion generally works for compiling numerical

applications. For integer applications, selective if-conversion [4] is essential to achieve

performance gains due to the potential hazards of if-conversion [15]. Hyperblock

formation involves a complex heuristic to choose which paths to be included and then

performs if-conversion on the selected basic blocks [51]. Profile based selective if-

conversion [55] uses profile information to compute the performance gain of if-

conversion based on weighted schedule estimates before and after predicating a

hammock. The schedule estimates are based on local scheduling results. Compared to this

estimate, our performance bound calculation is more accurate as it considers the potential

effects pf speculation on each scheduling region.

Note that all these optimizations have been proven to be very effective. The

purpose of this chapter is not to reiterate the importance of these optimizations. Instead,

our objective is to introduce a systematic way of regulating these optimizations so that

performance gains are maximized at minor cost in static code size increase.

27

3.2 Performance Bound Driven Code Size Efficiency

In this section, we first define the notion of code size efficiency (CSEF). Then, we

use tail duplication, loop unrolling, and if-conversion to explain how to use performance

bounds to calculate this efficiency.

3.2.1 Code size efficiency

The major objective of code size related optimizations is to improve instruction

level parallelism (ILP). One direct measure of the effectiveness of such a transformation

is the ratio of ILP improvement over the code size increase. Since code optimizations are

performed at compile time, we use static instructions-per-cycle (IPC) to measure ILP

improvement. The static IPC is computed as the ratio of the number of retired

instructions (IC) over execution time (ET). Both IC and ET are derived from profile

information. The speculated instructions resulting from instruction scheduling are not

included in IC. Using the ratio of ILP improvement over code size increase as a

quantitative measure (as stated, such a measure is intuitively appealing and we will show

later in Section 3.4 that it is indeed a good measure), two formal definitions of code size

efficiency for code transformations are proposed.

First, we define the efficiency for an instance of a code transformation, called the

instantaneous code size efficiency, as shown in Equation 3-1:

28

napplicatioindividualbeforenapplicatioindividualafter

napplicatioindividualbeforenapplicatioindividualafter
inst sizecodesizecode

IPCIPC
Efficiency

. __ −

−
=

 Equation 3-1

In Equation 3-1, the term in the numerator represents the ILP improvement of a

particular instance of a code optimization, and the term in the denominator represents the

cost of such an optimization in terms of static code size. Using loop unrolling as an

example, if we unroll a particular loop once, the instantaneous efficiency of such an

unrolling is the performance gain divided by the size of the loop body. Since there could

be many loops in a program, there is one such instantaneous efficiency associated with

each of them.

The definition in Equation 3-1 measures the performance impact at the cost of

unit code size increase for a single instance of a code transformation. It is also useful to

have a quantitative measure when more than one optimization instance has been

performed. For example, assume a program has three loops. One unroll heuristic picks all

three of them to be unrolled once and another heuristic may unroll just one loop many

times. A quantitative measure would be able to tell which heuristic performs better in

balancing performance and code size. Such a measure is what we define as average code

size efficiency, shown in Equation 3-2.

originalcandidate

originalcandidate
average sizecodesizecode

IPCIPC
Efficiency

__ −

−
= Equation 3-2

Similar to Equation 3-1, average efficiency measures performance gains in terms

of ILP improvement at the cost of code size increase. The difference is that Equation 3-1

is used to evaluate an individual optimization instance while Equation 3-2 is used for the

combined impact of many instances of the same or different optimizations. In fact,

29

average efficiency can be viewed as averaging the instantaneous efficiencies of each

individual code optimization that has been performed.

Note that the IPC improvement in Equations 3-1 and 3-2 closely correlates to the

execution time reduction. In fact, we may use the ratio of execution time reduction over

code size change to approximate code size efficiency (the difference between this ratio

and the formal efficiency definition is a near constant factor for a given program). This

ratio is easy to understand and intuitively appealing as it basically tells how many cycles

can be saved at the cost of one additional instruction.

3.2.2 Using performance bounds to calculate code size efficiency

As shown in Equations 3-1 and 3-2, the ILP improvement of code optimizations is

measured using static IPC, which involves two terms, IC and ET. IC is computed using

block and edge profile information and remains constant as further increase/decrease of

instructions due to code transformations and instruction scheduling are not counted. ET,

however, varies (hopefully decreases) as a result of code transformations. To calculate

the actual ET reduction, scheduled code is needed, which implies we need to perform

instruction scheduling to evaluate the actual impact of a transformation. As instruction

scheduling is time consuming (O(N2)), such an approach is not practical. As discussed in

Section 3.1, in practice, various heuristics are used to estimate benefits instead of

performing instruction scheduling. Our approach is to use profile-guided performance

bounds to evaluate the effectiveness of an optimization by how much the bounds are

reduced. As a result, code size efficiency can be approximated as:

30

 Equation 3-3

3.2.3 Examples of code size efficiency computation

First, we focus on code transformations resulting in ILP improvement as well as

code size increase. Both tail duplication and loop unrolling are such optimizations. Using

a code segment from the benchmark twolf as an example, shown in Figure 3.1, we

explain how to compute the code size efficiency.

The code segment shown in Figure 3.1 has two basic blocks (BB1 and BB2), a

loop back edge (edge B), and a merge point (edges C and D), exhibiting the possibility of

applying both loop unrolling and tail duplication.

Figure 3.1. A code segment from twolf (in function new_dbox_a). Numbers along
control edge labels are edge profiles.

L1:
Add r15 = r15, 1
Sxt r14 = r15
Add r14 = r14, r17
Ld r14 = [r14]
Cmp p6,p7 = (r14==0)
Br L1 if p6

Mov r18 = r15
Ld r14 = [r45]
Add r15 = r14, 1
Br L2

A: 407413

C: 407413 D: 0
B: 2220900

BB1

BB2

napplicatioindividualbeforenapplicatioindividualafter

napplicatioindividualafternapplicatioindividualbefore
inst sizecodesizecode

LBETLBET
Efficiency

__ −

−
≈

31

Assuming load instructions have a 2-cycle latency and all other instructions in

BB1 and BB2 have a 1-cycle latency (except CMP instructions which can be scheduled at

the same cycle as the consuming branch), the lower bound execution time (LBET) before

any transformation is the sum of the LBET of BB1 and the LBET of BB2. Assuming a 6-

wide issue (2 ALU, 2 ALU/LD/ST, 2 ALU/BR) machine (which causes no resource

constraints in this example), the LBET can be computed using Equation 2-1: LBET of

BB1 is 6*2,628,313 = 15,769,878 cycles, LBET of BB2 is 3*407,413 = 1,222,239 cycles,

and the sum is 16,992,117 cycles. After duplicating BB2, the instructions in BB2 can be

scheduled in BB1 using control speculation, which results in an LBET of 15,769,878

cycles as the inclusion of BB2 instructions does not increase the true data dependence

height (i.e., an LBET reduction of 1,222,239 cycles due to complete hiding of BB2

execution time). Therefore, the instantaneous code size efficiency of tail duplication

occurring at the merge point of edges C and D is 1,222,239 / 4 = 305,560

cycle/instruction, i.e., one additional instruction leads to a 305,560 cycle execution time

reduction.

Similarly, we can compute the efficiency of unrolling the loop body in Figure 3.1,

i.e., BB1. As the loop-carried dependence height in this example is 1 cycle, the original

loop body can overlap much of the computation with the unrolled copy. Here, we need to

be careful in distributing profile data after loop unrolling. The probability propagation

approach proposed by Wu and Larus [72] is used in this work, and the result of unrolling

BB1 once is shown in Figure 3.2.

32

As shown in Figure 3.2, the probability propagation maintains the taken/not taken

probability of the conditional branches at the end of BB1 and BB1’ (the unrolled copy of

BB1). After the profile is redistributed, the LBET of the loop body in Figure 3.2

(containing BB1 and BB1’) can be computed using Equation 2-1 (9,751,148 cycles).

Compared to the LBET of the loop body with no unrolling, LBET reduction is

15,769,878 – 9,751,148 = 6,018,730 cycles. Therefore, the instantaneous code size

efficiency of loop unrolling (with factor 1) at back edge B is: 6,018,730 / 6 = 1,003,121

cycles/instruction.

Figure 3.2. Loop unrolling of the loop body shown in Figure 3.1 with unroll factor of
2. (Numbers along control edge labels are edge profiles computed using probability

propagation.)

If-conversion can reduce code size by removing branch instructions. Also, it may

result in positive speedups by removing branch misprediction penalties. Therefore, the

code size efficiency can be a negative number (i.e., positive speedup and negative code

size increase), which represents one highly desired extreme of code size efficiency. (The

other extreme of negative speedup and positive code size increase is what we always

BB1

BB1’

BB2

A: 407413

D: 0

C1: 220821

C2: 186592

B1: 1203746

B2: 1017154

33

want to avoid.) Using another simple code segment from the benchmark twolf, we show

how we compute the efficiency of if-conversion by integrating branch misprediction

penalties. The code segment is shown in Figure 3.3.

Using Equation 2-1, the LBET of the region containing BB1, BB2 and BB3 is

computed as 28,111*2+169,174*3 = 563,744 cycles. Then, we consider potential branch

misprediction penalties. Assuming static branch prediction and a 10-cycle misprediction

penalty for each misprediction, the overall misprediction penalty of the conditional

branch in BB1 is 28,111*10 = 281,110 cycles. If the profile of dynamic branch prediction

is available, more accurate penalty computation can be used.

Figure 3.3. A code segment from twolf (function add_penal) to show efficiency of if-
conversion. Numbers along control edge labels are edge profiles.

After if-conversion, the branches in BB1 and BB3 are removed (i.e., 2-instruction

reduction) and the resulting LBET is 3*(28,111+169,174) = 591,855 cycles, which means

a reduction of (563,744+281,110-591,855) = 252,999 cycles. Note that this computation

involves only the control dependent blocks of the conditional branch (BB1, BB2 and

Cmp p6,p7 = (r36 != r18)
Br L1 (p6)

Ld r14 = [r16]
Ld r15 = [r20]

L1:
Ld r14 = [r34]
Sub r14 = r33, r14
Ld r15 = [r16]
Br L2

L2:
Add r14 = r14, r15
…

A: 28111 B: 169174

BB2 BB3

BB4

BB1

34

BB3). It does not depend on the merge block (BB4), and the same result holds when BB4

has more than 2 entry edges.

As pointed out previously, optimizations with positive speedups and negative

code size increase are always performed. So, we do not need to calculate the actual

efficiency for such cases. For if-conversions that have both negative speedup and

negative code size increase, positive code size efficiency results. Such efficiency implies

that we may want to perform if-conversion with low positive efficiency to reduce code

size (although hurting performance slightly) and use the saved code size for optimizations

with higher efficiency.

3.3 Regulating Code Size Related ILP Optimizations

Based on the quantitative measure of code size efficiency defined in Section 3.2,

we develop an algorithm to regulate code size related optimizations, as shown in Figure

3.4.

The algorithm in Figure 3.4 has three steps in regulating different kinds of code

size related transformations. As a preparation step, we construct basic scheduling regions

without performing any region-enlarging optimizations. The examples are treegion

formation without tail duplication (i.e., the natural treegion) and superblock formation

without tail duplication. Such regions are single-entry multiple-exit regions for which

LBET can be computed using Equation 2-1.

35

Figure 3.4. The algorithm for regulating code size related optimizations.

Optimizations are treated differently based on their code size efficiency

characteristics. Optimizations with positive speedup and negative code size increase are

examined first in Step 1 of the algorithm. Then, an iterative approach is used to

selectively perform code-expanding optimizations, as shown in Step 2 of the algorithm.

First, step 2a computes the efficiency of all potential optimization instances. Then, the

best candidate is found from these instances based on their efficiency in step 2b. Next, if

the one with the best efficiency passes the feasibility check, it will be performed in step

Algorithm for regulating code size related optimizations
0. Form basic scheduling regions to facilitate LBET computation and

to identify program structures that are candidates for
optimizations.

1. Perform code size reducing optimizations: if-conversion
a. For a diamond/hammock structure, compute performance

gains of if-conversion.
b. If the if-conversion produces positive (or zero) LBET

reduction, perform it.
c. If the performed if-conversion results in a new

diamond/hammock for its parent branch, continue to
check this parent branch for if-conversion.

d. Repeat step 1a – 1c, until no more diamond/hammock
structures need to be checked.

2. Perform code size increasing optimizations: loop unrolling and
tail duplication

a. Compute instantaneous code size efficiency for each loop
unrolling / tail duplication candidate using Equation 3-1.

b. Search the candidate list to find the one with the best
efficiency.

c. If the selected candidate passes the feasibility check,
perform the optimization and update the efficiency of
candidates affected by the optimization. The feasibility
check may involve code size constraints, register pressure,
etc..

d. Repeat step 2a – 2c, until the overall code size reaches a
limit or there are no more candidates.

36

2c. The feasibility check basically makes sure that a particular optimization will not result

in excessive resource utilization, e.g., the size of a loop body is less than the level one I-

cache size. As one particular optimization may change the efficiency of another

optimization or enable another optimization (e.g., a tail duplication may enable a

diamond/hammock to be constructed for if-conversion), a local efficiency update is

performed in Step 2c if one optimization instance is performed. Note that this iterative

approach can automatically choose a good unroll factor for a loop by unrolling the

original loop body one iteration at a time.

3.4 Optimal Tradeoff between ILP Improvement and Code

Size Increase

For code size increasing optimizations, the algorithm in Section 3.3 iteratively

selects and performs those with the best code size efficiencies. If we use a curve to

represent the resulting ILP improvement and relative code size increase, which we call

the ILP vs. code size curve, a very interesting phenomenon is revealed: optimizations

among initial selections exhibit large performance improvement with small code size

increase (i.e., high efficiency) and those selected later on show quickly dropping

performance improvement with relatively larger code size increase (i.e., low efficiency).

Such a phenomenon exhibits the effect of ‘diminishing returns’, as we can see from

Figure 3.5.

37

Figure 3.5. An example curve showing the relationship of ILP improvement and
code size increase.

Figure 3.5 shows an example ILP vs. code size curve, which exhibits common

characteristics of individual benchmarks we studied (see Section 3.5.3). The diminishing

returns are due to the rapidly decreasing code size efficiencies, which in turn is due to the

following two fundamental reasons. First, based on the definition of code size efficiency,

an instance optimization with high efficiency should have high execution frequency. The

well-known ‘90/10 rule’ points out that a small part of the static code (hot portions)

consumes most of the execution time. After performing optimizations in these hot

portions of code, the remaining optimizations should have much lower efficiencies due to

the much lower execution frequency. Secondly, high efficiency also requires that the

resulting code must have better performance bounds, i.e., the instance optimization must

reduce the DDG height without causing any resource conflict problems. This requirement

filters the optimizations applied in hot portions of a program.

The diminishing returns phenomenon shown in Figure 3.5 enables us to define the

optimal tradeoff between ILP improvement and code size increase. One natural choice is

Relative code size

Static
IPC

100%

High
efficiency
range

Low
efficiency
range

38

the ‘knee’ of the curve in Figure 3.5, provided that the corresponding code size still

satisfies the overall feasibility check.

To automatically find this knee in the curve, a simple heuristic is developed by

taking advantage of the steep slope of the high efficiency part of the ILP vs. code size

curve, as shown in Figure 3.6. Figure 3.6 replicates the ILP vs. code size curve in Figure

3.5 and the knee of the curve is marked as point A.

Figure 3.6. Achieving the optimal tradeoff between ILP improvement and code size

increase.

To locate A, we can first use two straight lines to approximate the curve (as the

dashed lines L1 and L2 shown in Figure 3.6). Then, the knee of the curve becomes the

intersection, A’, of these two lines. A simple threshold scheme can be used to find A’: the

point along the curve whose slope is between the slope of L1 and the slope of L2. The

slope of the ILP vs. code size curve represents the ratio of static IPC changes over

relative code size changes, which is exactly the definition of the instantaneous code size

efficiency in Equation 1. So, the approach to achieve the optimum tradeoff is simply as

follows: perform the optimizations whose instantaneous code size efficiency is higher

than the threshold efficiency K. This threshold efficiency can be any value between the

slope of L1 and the slope of L2. In other words, the range between the slope of L1 and

Relative code size

Static
IPC

A

L1

A’ L2

39

slope of L2 determines the robustness of this threshold scheme. In our experiments (see

Section 3.5.4), we vary K from tan(π/12) (corresponding to a line with an angle of 15

degrees) to tan(π/6) (corresponding to a line with an angle of 30 degrees) to show the

robustness of this threshold scheme. This threshold K is both workload-independent and

input-independent.

As we use the ratio of LBET change over absolute code size increase (measured

in number of instructions) to compute code size efficiency, we can further derive the

threshold scheme as in Equation 3-4. The derivation details can be found in Appendix A.

staticstaticabsolute ICIPC
LBETK

dSize
LBETd

∗
∗

≥
−)(

 Equation 3-4

In Equation 3-4, ICstatic represents the static operation count of the program (i.e.,

the static program size; whereas the term ICdynamic is the number of retired instructions

during execution and is used for IPC calculation), K is the threshold on instantaneous

code size efficiency, LBET is the lower bound of execution time for the whole program,

d(-LBET) is the reduction in the lower bound (both are computed using Equation 2-1),

and IPCstatic (= LBET / ICdynamic) represents the ILP feature of the original program.

3.5 Experimental Results

In this section, we first describe our experimental methodology and present results

using the algorithm in Section 3.3. Then, we show the effectiveness and robustness of the

threshold approach in Section 3.4.

40

3.5.1 Methodology

In our experiments, we use the SPEC CINT 2000 benchmarks [30] to evaluate the

proposed algorithms. The benchmarks are first compiled into IA-64 assembly using the

gcc compiler (version 3.1). As our purpose is to regulate ILP optimizations, we use the

level one optimization provided by gcc to perform classical optimizations (as discussed in

Section 3.5.2, a by-product of the level one optimization is that gcc produces predicated

code). The resulting IA-64 assembly codes are then parsed into the LEGO compiler

framework [41], which we use to implement the algorithms in this chapter. The IA-64

assembly is instrumented and executed to gather profile information. In our experiments,

we use the reference input data set and skip the first 500 million instructions and profile

the next 500 million instructions for each benchmark.

Treegion-based instruction scheduling is used in the LEGO compiler. We first use

natural treegions (formed without any tail duplication) to get the baseline execution time

and static IPC. Performance bounds calculated using Equation 2-1 are used as the

baseline execution time, which represents the best schedule achievable without any

further optimization. The baseline results are show in Table 3.1, which includes static

code size, the number of dynamic retired instructions (around 500M as we profiled 500M

instructions) and the lower bound of execution time. Static IPC indicates the inherent ILP

present in the current code and the results show that many benchmarks have moderate

ILP (IPC around 2) while the benchmark gap has very limited ILP (IPC around 1). An

examination of the benchmark gap finds that the function ProdInt is heavily executed in

our profile phase. The complex computations (long dependence chain) in this function

result in low ILP.

41

In Table 3.1, we also include the ratio of estimated execution time of treegion-

scheduled code over the lower bound. The execution time of treegion-scheduled code is

computed using a scoreboard dependency-enforcing approach (i.e., it is the execution

time assuming ideal caches and ideal branch prediction). From these results, it can be

seen that the treegion scheduler produces quite a good schedule, exceeding 1% to 13% of

the lower bound. The mismatch is because the performance bound is calculated assuming

that all false register dependencies can be removed by software renaming, and that

control dependencies can be minimized by multiway branch transformations. Such

assumptions are too optimistic as liveness beyond the basic block scope may require a

copy instruction to be inserted. Resource conflicts due to speculation from multiple paths

in a treegion are another reason.

Table 3.1. Baseline results including static code size, execution time, and static IPC.
Baseline bzip crafty gap gzip mcf parser twolf vortex Vpr
Static size (num
of insn.) 7543 51085 131447 13316 2548 25545 65786 120735 35416
Number of
dynamic insn.
Retired 498M 490M 500M 495M 491M 496M 496M 499M 497M
Lower bound of
exe. time (cycles) 257M 217M 495M 275M 276M 263M 325M 219M 318M
Static IPC 1.93 2.26 1.01 1.80 1.78 1.87 1.53 2.27 1.56
Ratio of natural
tree schedule
results over the
lower bound 104% 108% 104% 112% 106% 113% 107% 107% 101%

3.5.2 Regulating code size decreasing optimizations – if-conversion

Step 1 of the algorithm shown in Figure 3.4 regulates how code size decreasing

optimizations, if-conversion in this chapter, are performed. Due to its code size reduction

effect, any if-conversion, which produces positive (or zero) LBET reduction (i.e., positive

speedups), will always be performed. As described in Section 3.3, we use static branch

42

prediction to estimate branch misprediction penalties assuming that each misprediction

incurs a 10-cycle penalty.

Table 3.2 shows the if-conversion results using our algorithm. As stated

previously, the input IA-64 assembly code is generated using the GNU gcc compiler with

level one optimizations, which perform not only classical optimizations but also if-

conversion. By applying our algorithm to this already if-converted code, we show that

our algorithm can improve upon gcc’s if-conversion algorithm.

Table 3.2. If-conversion results.
 bzip2 crafty gap gzip mcf parser twolf vortex vpr
If-conversions
(by gcc) 113 780 2852 139 61 502 1042 1692 325
Number of
conditional br. 487 2712 9747 819 167 2068 3625 7469 1805
If-conversion
with pos. gain 2 40 1 6 5 2 11 4 10
If-conversion
with zero gain 19 163 324 26 7 80 445 191 74
If-conversion
with neg. gain 4 58 2 3 4 1 24 37 8
No if-
conversion:
complex CFG 358 1608 5752 546 133 1483 2787 2161 1263
No if-
conversion:
ret_call 104 843 3668 238 18 502 358 5076 450
Number of
dynamic cond.
br. 36.4M 23.8M 23.6M 37.4M 71.0M 46.0M 33.8M 32.8M 30.5M
Reduction in
execution time
including br.
misprediction
penalty
(cycles) 91016 1057363 9700 799877 90688 80125 506372 122592 13148695
static br.
misprediction
rate 7.34% 12.78% 11.61% 10.42% 15.44% 12.03% 13.40% 0.92% 14.35%

43

Interesting observations can be made from Table 3.2. The first row in Table 3.2

reveals that gcc has removed a significant amount of conditional branches through

predication, although the second row, which shows the number of existing conditional

branches in each benchmark after gcc’s if-conversion, suggests that there still exist

potential if-conversion candidates. Our algorithm examines those conditional branches

and confirms that the majority of these conditional branches are hard to if-convert. We

report those hard-to-convert conditional branches in two categories: row 6 shows the

number of conditional branches followed by a complex CFG (e.g., merging points at both

if path and else path of a diamond/hammock) inhibiting diamond/hammock detection,

and row 7 presents the number of detected diamonds/hammocks containing function call,

return, or indirect branch instructions. (We excluded the case where both paths contain

the same function call or return instruction) In such cases, if-conversion may hurt branch

prediction performance as it may introduce more conditional function calls and returns,

which in turn incur branch misprediction penalties. For those if-convertible branches, our

algorithm computes the performance gain. Using the benchmark gzip as an example, gcc

converts 139 conditional branches and there remain 819 conditional branches in the

program. Our algorithm finds that 546 of them do not form a diamond/hammock

structure. For those that form a diamond/hammock, 238 of them have at least a function

call or a return along one or both paths. For the remaining ones, 6, 26, and 3 of them

produce positive, zero, and negative speedups, respectively.

Next, we analyze the performance impact of if-conversion. In this experiment, we

perform only the if-conversion instances that produce positive gains. Although the

44

number of these if-conversion instances seems limited (1 to 40), significant performance

gains can be achieved, as shown in Figure 3.7.

 Dyanmic conditional branch removal & misprediction removal rate

0%

5%

10%

15%

20%

25%

30%

35%

40%

bzip crafty gap gzip mcf parser twolf vortex vpr

%

% dyn. Cond br removal % br misprediction removal

Figure 3.7. The removal rate of dynamic conditional branches and mispredictions

by if-conversion.

Figure 3.7 shows the percentage of dynamic conditional branches and associated

mispredictions removed by if-conversion. It can be seen that 0.1% (parser) to 25.8%

(vpr) of dynamic conditional branches can be eliminated, and 0.1% to 36.6% of branch

mispredictions associated with these conditional branches can be removed, assuming

static branch prediction. Note that a higher rate of dynamic branch removal does not

necessarily mean a higher reduction in mispredictions. For example, if-converting 5

conditional branches in the benchmark mcf reduces the number of dynamic conditional

branches by 12%, which only results in 0.1% reduction in branch mispredictions. The

reason is that the removed conditional branches are highly biased, which in turn produces

a small reduction in LBET as shown in row 9 of Table 2. For completeness, the number

of dynamic conditional branches is shown in row 8 and static branch misprediction rates

for conditional branches are included in the last row of Table 3.2.

45

Finally, we analyze the code size reduction impact of if-conversion. We choose to

perform if-conversion instances with positive or zero gains in this experiment. Assuming

each conversion saves two instructions in IA-64 assembly, the overall code size reduction

is computed and is shown in Figure 3.8. Remember that this reduction is achieved on the

IA-64 code that has already been predicated by gcc. This demonstrates that our algorithm

reduces code size by performing if-conversion more aggressively. From Figure 3.8, it can

be seen that if-conversion reduces static code size consistently for every benchmark, up

to 1.4% (the benchmark twolf) and 0.68% on average. Although these numbers seem to

be trivial, in the next subsection, we will show that utilizing such a small amount of code

size can lead to very large ILP improvements.

Static code reduction by if-conversion

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

1.60%

bzip crafty gap gzip mcf parser twolf vortex vpr ave.

%

Figure 3.8. The static code size reduction by if-conversion.

46

3.5.3 Results of regulating code size increasing optimizations – tail

duplication and loop unrolling

Step 2 of the algorithm shown in Figure 3.4 regulates code size increasing

optimizations (tail duplications and loop unrolling). It iteratively selects and performs the

one instance of tail duplication or loop unrolling with the highest instantaneous

efficiency. In this experiment, we examine the effectiveness of such an iterative

approach. For each benchmark, we set the limit of overall code size increase at 1%, 2%,

and 5% of its original size (i.e., the optimization stops when the overall code size reaches

this limit). The corresponding ILP improvements are shown in Figure 3.9.

Speedups for different code size increases

0%

10%

20%

30%

40%

50%

60%

bz
ip

cra
fty ga

p
gz

ip mcf

pa
rse

r
tw

olf
vo

rte
x vp

r

H_m
ea

n

Sp
ee

du
p

(in
 s

ta
tic

 IP
C

)

1% code size increase
2% code size increase
5% code size increase

Figure 3.9. The speedups for different code size increases.

Two major observations are made from Figure 3.9. First, it is evident that a very

small amount of code-size increase can lead to significant improvement in ILP if this

code size is used judiciously. Our algorithm achieves up to a 40% increase and an

average 18% increase in static IPC when the code size is expanded by just 1%. This, on

the other hand, emphasizes the importance of code size reducing optimizations: the code

47

size saved by aggressively performing code-reducing transformations can be used for

code expanding optimizations with high efficiency. This is the reason that the algorithm

in Figure 3.4 performs code-reducing transformations before code enlarging ones.

Secondly, it can be seen from Figure 3.9 that further code-size increase has less impact

on ILP improvement. As shown in the figure, an additional speedup of 5% on average is

observed as the code size increases from 1% to 2% of its original size, still significant but

less impressive compared to 18% for the first 1% of code size increase. The reason is that

during the iterative selection process, the efficiency of the selected optimization

decreases rapidly. Using the benchmark vortex as an example, the first selected

optimization is one tail-duplication in procedure Chunk_ChkGetChunk with an efficiency

as high as 534,609 cycles/instruction. After another 7 optimizations were selected and

performed (resulting in replicating 66 instructions), the efficiency of the next chosen

optimization drops to 77,484 cycles/instruction. As discussed in Section 3.4, two main

reasons account for such ‘diminishing returns’: the ‘90/10’ rule and the reduction in data

dependence height without causing resource conflicts.

Next, two individual benchmarks, mcf and twolf, are chosen as representative

benchmarks to examine the impact of diminishing returns in detail. A curve of ILP vs.

code size is shown for each benchmark in Figure 3.10.

48

ILP improvement vs. code size increase (mcf)

1.5

1.7

1.9

2.1

2.3

2.5

2.7

0% 10% 20% 30% 40% 50% 60%

relative code size increase

st
at

ic
 IP

C

(a)

ILP improvement vs. code size increase (twolf)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0% 10% 20% 30% 40% 50% 60%

relative code size increase

st
at

ic
 IP

C

(b)

Figure 3.10. ILP improvement vs. code size increase for benchmarks (a) mcf and (b)
twolf.

In Figure 3.10, the code size increase of each benchmark is normalized to its

original code size. The curve of ILP improvement vs. code size increase is obtained as

follows. First, we set the limit of relative code size increase to 1%, 2%, 5%, 10%, 15%,

49

20%, 30%, and 50% and use the iterative approach to selectively perform code size

increasing optimizations. Then, we produce the curve by interpolating these results. From

these two benchmarks, we can see that diminishing returns usually happen quickly with

small code increase. For the benchmark twolf, it happens at approximately 5% code size

increase while the benchmark mcf shows that the performance can still be improved

significantly until the increase is approximately 20%.

3.5.4 Achieving the optimal tradeoff between ILP improvement and

code size increase

As discussed in Section 3.4, the diminishing returns that are observed in Figure

3.10 enable us to define the optimum tradeoff between ILP improvement and code size

increase. Also, a threshold scheme is developed to achieve this optimum. In this

experiment, we show the effectiveness as well as the robustness of this threshold scheme.

First, we examine the robustness of our scheme. We set K to tan(π/6) and

compute the threshold on instantaneous code size efficiency for each benchmark using

Equation 3-4, as shown in Table 3.3. Based on the threshold values, the optimizations

whose efficiency exceeds the threshold are performed. The resulting code size and ILP

improvement are also shown in Table 3.3. It can be seen that, for many benchmarks, the

resulting optimal tradeoff has a small code size increase (up to 18%) and a very large ILP

improvement (up to 59%).

50

Table 3.3. The resulting code size and ILP improvements when threshold K = 0.577.
 bzip crafty gap gzip mcf parser twolf vortex vpr
Efficiency
threshold
(cycles/instr
uction) 10211 1088 2153 6594 35022 3167 1867 461 3307
Resulting
relative code
size increase 18.2% 9.7% 1.5% 11.2% 17.1% 13.5% 4.8% 5.3% 5.5%
Resulting
static IPC
increase 59.4% 39.6% 15.0% 48.6% 38.0% 34.1% 55.9% 24.4% 33.1%

Then, we change K to tan(π/12) and re-calculate the threshold values, as shown

in Table 3.4. Compared to Table 3.3, it can be seen that the rather large change in

threshold value (over 100%) results in very small variations in ILP improvement (up to

2.4%) and code size (up to 4.2%). This demonstrates the robustness of our threshold

scheme.

Table 3.4. The resulting code size and ILP improvements when threshold K = 0.268.
 bzip crafty gap gzip mcf parser twolf vortex Vpr
Efficiency
threshold
(cycles/instr
uction) 4743 505 1000 3063 16267 1471 867 214 1536
Resulting
relative code
size increase 21.4% 13.8% 2.2% 13.4% 21.3% 18.6% 5.8% 7.5% 6.7%
Resulting
static IPC
increase 60.9% 40.9% 17.4% 49.7% 39.7% 35.7% 56.6% 24.9% 33.3%

Next, we use the representative benchmarks used in Section 3.5.3, i.e., the

benchmarks mcf and twolf to show that our scheme does achieve the optimal tradeoff

(i.e., the knee of the ILP vs. code size curve). Note that mcf shows the maximal variation

in resulting code size for different thresholds, representing the worst case among all these

benchmarks. The results are shown in Figure 3.11.

51

Achieving the optimal tradeoff (mcf)

1.5

1.7

1.9

2.1

2.3

2.5

2.7

0% 10% 20% 30% 40% 50% 60%
relative code size increase

st
at

ic
 IP

C

ILP vs. code size curve
threshold is 0.577
threshold is 0.268

(a)

Achieving the optimal tradeoff (twolf)

1.5

1.7

1.9

2.1

2.3

2.5

2.7

0% 10% 20% 30% 40% 50% 60%

relative code size increase

st
at

ic
 IP

C

ILP vs. code size curve
threshold is 0.577
threshold is 0.268

(b)

Figure 3.11. Achieving the optimal tradeoff between ILP improvement and code size
increase. (a) benchmark mcf, (b) benchmark twolf.

Figure 3.11 shows the tradeoff points obtained by our threshold scheme with

different threshold values as well as the ILP vs. code size curve. The curve for the

benchmark twolf shows a sharp turn around the knee, and our algorithm finds the optimal

tradeoff (or knee of the curve) precisely. For the benchmark mcf, the ILP vs. code size

52

curve exhibits a less sharp turn around the knee. As a result, our algorithm generates two

more distinct points along the curve. However, it can be seen that both points are still

close to the ‘knee’ and both of the points are efficient solutions.

3.6 Summary

Based on a bound-driven notion of code size efficiency, a novel approach is

developed in this chapter to regulate code size related ILP optimizations in a systematic

way. Three types of commonly used ILP transformations: if-conversion, loop unrolling,

and tail duplication are considered. Our algorithm examines code size reducing

optimizations first. Then, an iterative approach is used to selectively perform code-

enlarging optimizations with the best efficiency. In such a way, maximal ILP

improvement can be achieved with minimal static code size increase. Experimental

results using the SPEC CINT 2000 benchmarks show that a very high ILP improvement

(up to 40% and 18% on average) can be achieved with a very small code size increase

(1%). Considering the code size saved by if-conversion, the overall code size increase is

further reduced (–0.4% to 0.7% overall increase).

In this chapter, we also show the interesting diminishing returns phenomenon in

performing code-enlarging optimizations to improve ILP. The optimal tradeoff between

the ILP improvement and code size increase can be defined as the knee of the ILP vs.

code size curve. Then, a threshold scheme is developed to achieve this optimum.

Experimental results demonstrate that our threshold scheme is effective and robust in

achieving the optimal tradeoff.

53

Chapter 4 Code Size Aware

Compilation for Real Time

Applications

In this chapter, we use profile-independent performance bounds to selectively

perform code optimizations to reduce the worst-case execution-time (WCET) of real-time

applications at a minor cost in static code size increase. First, we present a brief

background summary in Section 4.1. In Section 4.2, we advocate using in-order

VLIW/EPIC type microarchitectures to exploit ILP in real time applications. On the one

hand, the compiler controlled plan of execution (POE) makes the worst-case execution-

time (WCET) analysis more accurate as run-time variations are minimized. On the other

hand, the compiler can leverage ILP optimizations and instruction scheduling to

explicitly reduce the WCET of real-time tasks, which in turn improves the system level

schedulability. We also show that treegion scheduling suits real-time systems well due to

its ability to optimize multiple control paths simultaneously. Section 4.3 describes an

extended measure of code size efficiency to account for the WCET reduction and code

size increase. A similar algorithm regulating ILP optimizations to the one in Section 3.3

54

is presented in Section 4.4. The experimental methodology and results are given in

Section 4.5. Section 4.6 summarizes this chapter.

4.1 Background

In real-time systems, a task needs to satisfy both functional and temporal

requirements to achieve overall correctness [22],[45]. The functional requirements are

defined based on program semantics to generate correct outputs from inputs and the

temporal requirements define the upper bounds (or deadlines) for such input-output

transformations. A real time system may have many such tasks (periodic or sporadic),

which are scheduled (called task scheduling) to meet the overall requirements of the

system.

In order to guarantee a task to be finished by a specified deadline, worst-case

execution-time (WCET) analysis is commonly used. Task scheduling then sets different

priorities for different tasks accordingly. Due to its evident impact, task scheduling for

real-time applications is an active research topic [23],[45]. In this dissertation, we look at

the problem from a different point of view. Instead of focusing on task scheduling

algorithms, we focus on intra-task, instruction-level scheduling. More specifically, we

use performance bounds to guide code optimizations and instruction scheduling so that

the WCET of each task is reduced, which in turn increases the schedulability of the whole

system.

Most of the previous work on real-time scheduling takes a compiled program as

input and performs either static or dynamic timing analysis to determine the WCET.

Little work is done at the instruction level (optimization or scheduling) to explicitly

55

reduce the WCET. Gerber and Hong [22] proposed a scheduling approach called

structural code motion based on trace scheduling. First, the task-level timing

requirements are broken down into the event level. A new language based on the C

language, called the Time-Constrained Event Language (TCEL), is developed to express

detailed event-based timing constraints. Then, the code is partitioned into sections based

on observable events. Trace-based scheduling is used to schedule each section. The

critical traces (the traces with execution times larger than the timing constraints) are

examined and code motion may be performed to move operations across sections so that

the WCET relationship between observable events satisfies the timing constraints. Such

code motion can be unconditional (or safe) or control speculative. Since trace scheduling

focuses on one trace at a time, such code motion results in considerable bookkeeping

code and could potentially increase the criticality of other traces. As a result, the critical

paths are repetitively checked and scheduled. Compared to this approach, treegion based

scheduling enables speculation from multiple control paths simultaneously and limits the

enumeration of critical paths. Another technique to increase task schedulability is based

on the concept of imprecise computation [26],[46]. If the purpose of some computation is

known statically as refining the results, such computation can be skipped without

affecting system sustainability, i.e., the quality of computation is traded for the timeliness

of the results.

In [42],[70], algorithms have been proposed to schedule instructions with timing

constraints (release times and deadlines) on ILP processors. These algorithms are targeted

toward single-issue pipelined processors and work on the basic-block level. The proposed

algorithms guarantee to find a feasible schedule for a range of special cases.

56

4.2 Explicitly Parallel Instruction Computing (EPIC) in

Real-Time Systems

In this section, we advocate using explicitly parallel instruction computing (EPIC)

architectures for real time systems. On one hand, EPIC architectures exploit instruction-

level-parallelism (ILP) aggressively to achieve high performance at a reduced level of

hardware complexity [65]. On the other hand, the design philosophy of EPIC puts the

software/compiler in total control of dynamic execution and how ILP is exploited. In

EPIC architectures, the latency of each operation is exposed to the compiler, and the plan

of execution (POE) [65], including when an instruction is to be executed and which

function unit is to be used, is specified by the compiler. Such features suit the purpose of

real-time systems well as they facilitate accurate static WCET analysis and easily

integrate the WCET analysis with code optimizations and instruction scheduling to focus

on reducing WCET.

Treegion-based global scheduling [28],[78] aims for high performance for wide

issue VLIW / EPIC processors although it can be applied to superscalar processors as

well. In addition to providing a large scheduling scope, i.e., a treegion, it has the ability to

speedup multiple control paths in a treegion, thus making it more suitable for real-time

applications than trace scheduling or superblock scheduling as the speculation impacts on

multiple paths are considered simultaneously. Also, treegions do not have side-entries,

thereby avoiding the overhead of bookkeeping code as required in trace scheduling.

Another advantage of treegion scheduling is that it limits the enumeration of different

control paths since treegion formation stops at merge points. In this chapter, we modify

57

the original TTS algorithm to be profile-independent since the objective here is to

optimize the worst-case scenarios instead of optimizing the most frequently executed

paths.

Designed as an EPIC approach, treegion scheduling exploits many architectural

features of EPIC to improve ILP so that the execution time for multiple control paths

(including those generating the WCET) is reduced simultaneously. The two most

commonly used EPIC features are control speculation and predication. Both features suit

the needs of real-time applications. Control speculation in general purpose computing

would require recovery code generation for those instructions that could potentially cause

an exception. Such a problem is simplified in real-time applications as we expect that

real-time programs are well behaved and would not throw an exception in normal

execution. As a result, there is no need to produce recovery code for control speculation

because the deferred reporting of an exception [49],[65] is enough to report such a case

when it really occurs. Predication, on the other hand, removes the execution time

variability due to dynamic branch prediction. Treegion scheduling uses both features

extensively and provides a unified framework for both of them in the scheduling process.

In addition to speculation and predication, there are other EPIC features that facilitate

real-time applications including static branch prediction hints, cache level specifications

in loads and prefetches (i.e., the compiler scheme to control when the data to be cached in

the memory hierarchy), and unbundling of branches as they reduce the variability of the

dynamic execution time.

In summary, the high performance, low complexity, and compiler-controlled POE

make EPIC architectures a good platform for real-time applications while the downside

58

of EPIC architectures, namely binary compatibility, is expected to be a less problem for

real-time systems. Next, we will discuss how to use treegion-based scheduling and ILP

optimizations efficiently to reduce the WCET of each task so as to improve the overall

task-level schedulability.

4.3 Code Size Efficiency Based on Profile Independent

Performance Bounds

As we discussed in Chapter 3, code size related ILP optimizations are shown to be

very effective in improving ILP at the cost of static code size increase. Such ILP

improvement can be used to reduce the WCET of a subtask/task/program. The reduction

in WCET is important since (1) it can reduce the WCET of a task to make it meet its

deadline specification; (2) it enables the processor to serve more tasks, thereby achieving

better utilization; (3) the system can run at a lower frequency to save energy when

enough slack can be produced. The static code size, as pointed out in Chapter 3, is also

important as oversized programs can increase the system cost and lead to potential

performance problems. Our goal is to achieve a good tradeoff between the WCET

reduction and the static code size increase.

First, we extend the notion of code size efficiency defined in Chapter 3 to show

the WCET reduction impact at the cost of code size increase. As discussed in Section 2.4,

the actual WCET calculation requires time-consuming instruction scheduling and the

LBWT reduction is used instead to evaluate the effectiveness of code optimizations. So,

we define the instantaneous code size efficiency for each individual optimization instance

as Equation 4-1.

59

Equation 4-1

The numerator in Equation 4-1 represents the LBWT reduction resulting from the

optimization and the denominator is the static code size increase. Note that the LBWT in

Equation 4-1 can be defined at different levels to show the varying impact of a code

optimization. For example, LBWT defined at a loop body level (i.e., a subtask) shows the

optimization impact on reducing the WCET of the loop/subtask, and the LBWT at the

task level reveals the task level impact of the same optimization.

4.4 Regulating the Code Size Related ILP Optimizations for

Real Time Applications

We develop an algorithm as shown in Figure 4.1 to systematically regulate code

size related ILP optimizations. Similar to the algorithm in Figure 3.4, the code size

related ILP optimizations are performed in three steps. In the preparation step, the basic

scheduling regions are formed (natural treegions in our case) and the optimization

candidates are identified.

The optimization candidates are then treated differently based on their code size

efficiency characteristics in Step 1 and Step 2. Optimizations with positive speedup and

negative code size increase are examined first in Step 1 of the algorithm. Then, an

iterative approach is used to selectively perform code-expanding optimizations, as shown

in Step 2 of the algorithm. First, step 2a computes the efficiency of all potential

optimization instances. Then, the best candidate is selected based on these efficiencies in

napplicatioindividualbeforenapplicatioindividualafter

napplicatioindividualafternapplicatioindividualbefore
inst sizecodesizecode

LBWTLBWT
Efficiency

__ −

−
=

60

step 2b. Next, if the one with the best efficiency passes the feasibility check, it will be

performed in step 2c. As one particular optimization may change the efficiency of

another optimization or enable another optimization (e.g., one instance of tail duplication

may enable a hammock to be constructed for if-conversion), a local efficiency update is

performed in Step 2c if one optimization instance is performed.

Figure 4.1. The algorithm for regulating code size related optimizations for real-
time applications.

Algorithm for regulating code size related optimizations in real-time
applications

0. Form basic scheduling regions to facilitate LBWT computation
and to identify program structures that are candidates for
optimizations.

1. Perform code size reducing optimizations: if-conversion (or
predication)

a. For a diamond/hammock structure, compute
performance gains of if-conversion.

b. If the if-conversion produces positive (or zero) LBWT
reduction, perform it

c. If the performed if-conversion results in a new
diamond/hammock for its parent branch, continue to
check this parent branch for if-conversion.

d. Repeat step 1a – 1c, until no more diamond/hammock
structures need to be checked.

2. Perform code size increasing optimizations: loop unrolling and
tail duplication

a. Compute instantaneous code size efficiency for each loop
unrolling / tail duplication candidate using Equation 4-1.

b. Search the candidate list to find the one with the highest
efficiency.

c. If the selected candidate passes the feasibility check,
perform the optimization and update the efficiency of
candidates affected by the optimization. (The feasibility
check may include code size constraints, register pressure,
etc.)

d. Repeat step 2a – 2c, until the overall code size reaches a
limit or there are no more candidates.

61

Next, we use if-conversion as an example to see how we handle the branch

misprediction penalty since it is not included in the original definition of LBWT in

Section 2.3. For a conditional branch as show in Figure 4.2, the static branch prediction is

determined as follows to minimize the WCET [3].

 Figure 4.2. Predicting a conditional branch statically to minimize WCET.

If (LBETpath1 + LBWTbase_path1 > LBETpath2 + LBWTbase_path2),

 then the branch is predicted ‘taken’.

Otherwise,

 the branch is predicted ‘not taken’.

Such static prediction favors the longer control path so that the misprediction

penalty is imposed on the shorter path. Considering the overall WCET, such penalties can

be hidden if the sum of the shorter path execution time and the misprediction penalty

does not exceed the longer path execution time. If the shorter path and the longer path are

more or less balanced (i.e., LBETpath1 + LBWTbase_path1 is close to LBETpath2 +

LBWTbase_path2), the branch misprediction penalty will be imposed on the overall WCET.

For such cases, if-conversion provides an effective way to remove branch prediction

…
…
p1,p2 = condition
br L1 if(p1)

… L1:
…

Path 1 Path 2

62

related penalties if a diamond/hammock structure can be formed with the conditional

branch. Figure 4.3 shows such an example, which is the same code example as in Figure

2.7.

Figure 4.3. A diamond structure.

For a target 6-issue machine as used in Chapter 2, the LBWT for such a diamond

structure is 9 cycles as computed in Section 2.4. The LBWT for path_1 is 8 cycles and

the LBWT for path_2 is 5 cycles. When considering the static branch prediction (set as

‘not taken’ as path_1 has longer execution time) and a 10-cycle misprediction penalty,

the LBWT of this hammock is 10 + 5 + 1 = 16 cycles (the misprediction penalty is

imposed on the originally shorter path).

With if-conversion, the instructions in BB2 and BB3 are predicated and the

conditional branch is removed. A new basic/hyper block is formed containing BB1, BB2,

BB3, and BB4. The LBWT now is 8 + 1 = 9 cycles using Equation 2-4 since this if-

conversion does not result in any resource conflicts. So, such an if-conversion achieves a

Adds r39 = r40, -2
Ld4 r37 = [r39]
Cmp p6,p7 = (r37 == 0)
Br L1 (p6)

Adds r15 = r35, -1
Addl r14 = @ltoff(maxlinklength), gp
Ld8 r14 = [r14]
Ld4 r14 = [r14]
Add r63 = r14, r34
Cmp p6,p7 = (r15 <= r63)
Mov r63 = r15 (p6)

L1:
Adds r14 = r37, -2
Ld2 r14 = [r14]
Sxt2 r14 = r14
Mov r63 = r14
Br L2

L2:
Cmp r6,r7 = (r63 >= r67)
Br L3 (p6)

Path_1
Path_2

BB2
BB3

BB4

BB1

63

7-cycle LBWT reduction and reduces the code size by 2 instructions (i.e., the conditional

branch in BB1 and the unconditional branch in BB3).

Note that not all conditional branches can be if-converted. To remove the

associated branch misprediction penalty, the conditional branch needs to form a

diamond/hammock while its control paths have no other branches. For loop back

branches, we can either choose ‘taken’ as the static prediction or we can assume ideal

prediction by utilizing the loop count feature in the branch handling mechanisms of EPIC

architectures [32].

4.5 Experimental Methodology and Results

As in Chapter 3, we implement our proposed algorithm in the LEGO compiler

and the selected benchmarks from both the SPEC 2000 INT benchmark suite and the

MiBench [27] suite are used as our workloads. As our objective is to reduce the WCET,

we excluded the benchmarks containing recursive function calls or un-structural loops

since they present obstacles for our current LBWT/WCET analysis. The selected

benchmarks are first compiled into IA-64 assembly using the gcc compiler (version 3.1).

As our focus is ILP optimizations, we use the level one optimizations provided by gcc to

perform classical optimizations. For the workloads from MiBench, ‘small’ data input sets

are used to determine the loop counts. For the benchmark bzip2, we use the reference

input data set and skip the first 500 million instructions and profile the next 500 million

instructions. In the experiments, after the ILP optimization phase, the code is scheduled

using treegion scheduling and the WCET is computed.

64

Step 1 of the algorithm shown in Figure 4.1 regulates how code size decreasing

optimizations, if-conversion in this chapter, are performed. Due to its code size reduction

effects, any if-conversion, which produces positive (or zero) LBET reduction (i.e.,

positive speedups), will always be performed. As described in Section 4.4, we use static

branch prediction to estimate the branch misprediction impact on LBWT/WCET

assuming that each misprediction incurs a 10-cycle penalty.

As stated previously, gcc optimization level one is used to generate the IA64

assembly. However, the level one optimization of gcc also produces predicated

instructions (i.e., the level one optimization performs if-conversion). So, in the first

experiment, we modified gcc 3.1’s source code to turn-off its if-conversion

transformation and use the algorithm in Figure 4.1 (step 1) to perform if-conversion. The

results in WCET reduction are shown in Figure 4.4. From Figure 4.4, it can be seen that

aggressive if-conversion can reduce WCET significantly, up to 80% for the benchmark

adpcm since its source code contains many ‘if-then’ and ‘if-then-else’ structures. In the

benchmarks rijndael and sha (both are security benchmarks), the encryption/decryption

kernel contains mostly straight-line instructions. Therefore, if-conversion yields

negligible impacts on WCET reduction.

In the next experiment, we turn on gcc’s if-conversion option to generate the

assembly and then use our algorithm to perform if-conversion. The results shown in

Table 4.1 indicate that our algorithm can improve upon gcc’s if-conversion algorithm.

65

WCET Reduction using If-Conversion

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

basicmath
susa

n
adpcm

strin
gse

arch
rijn

dael
sha

bzip2

average

Figure 4.4. The WCET reduction using if-conversion.

Interesting observations can be made from Table 4.1. The first row in Table 4.1

reveals that gcc has removed a significant amount of conditional branches through

predication, although the second row, which shows the number of existing conditional

branches in each benchmark after gcc’s if-conversion, suggests that there still exist

potential if-conversion candidates. Our algorithm examines those conditional branches

and confirms that the majority of these conditional branches are not appropriate for if-

conversion either due to complex CFGs, which inhibit diamond/hammock detection, or

the detected diamond/hammock contains function calls, returns, or indirect branches (we

excluded the case that both paths contain the same function calls or returns). In such

cases, if-conversion may hurt WCET since if-conversion introduces more conditional

function calls and returns, which in turn incur more branch misprediction penalties. For

those if-convertible branches, our algorithm computes the LBWT reduction. Using the

benchmark adpcm as an example, gcc converts 21 conditional branches and there remain

8 conditional branches in the program. Our algorithm finds that 4 of them do not form a

diamond/hammock structure. For those that do form a diamond/hammock, 2 of them

66

have either a function call or a return instruction along one or both paths. For the

remaining 2 conditional branches, both of them produce positive LBWT reductions.

Table 4.1. The if-conversion results

Next, we analyze the performance impact of if-conversion. In this experiment, we

perform only the if-conversions that produce positive LBWT reductions. Although the

number of these if-conversions seems limited (2 to 30, the third row in Table 4.1),

additional WCET reduction (up to 26%) can be achieved, as shown in the 9th row of

Table 4.1.

Finally, we analyze the code size reduction impact of if-conversion. We choose to

perform if-conversions with positive or zero LBWT reduction in this experiment.

Assuming each conversion saves two instructions in the IA-64 assembly, the overall code

size reduction is computed and is shown in the 10th row of Table 4.1. Remember that this

reduction is achieved on codes that have already been predicated by gcc. This shows that

 basicmath susan adpcm stringsearch rijndael sha bzip2
If-conversions (by
gcc) 3 72 21 11 13 3 113
Number of
conditional br 18 325 8 50 56 14 487
If-conversions
with pos. gain 0 30 2 0 0 0 23
If-conversions
with zero gain 0 18 0 0 1 0 2
If-conversions
with neg. gain 0 0 0 0 0 0 0
No if-conversion:
complex CFG 16 123 4 43 37 10 358
No if-conversion:
ret_call 2 154 2 7 18 4 104
Reduction in
WCET (%) 0 0.07 25.65 0 0 0 1.40
Reduction in static
code size (%) 0 1.6 1.85 0 0.06 0 0.66
Original static
code size 643 5967 216 658 3664 409 7543

67

our algorithm reduces code size by performing if-conversion more aggressively. From

Table 4.1, it can be seen that if-conversion reduces static code size up to 1.85% (the

benchmark adpcm) and 0.60% on average. Although these numbers seem to be trivial, in

the next subsection, we will show that utilizing such a small amount of code size can lead

to more WCET reduction.

Step 2 of the algorithm shown in Figure 4.1 regulates code size increasing

optimizations (tail duplication and loop unrolling). It iteratively selects and performs the

one instance of tail duplication or loop unrolling with the highest instantaneous code size

efficiency. In this experiment, we examine the effectiveness of such an iterative

approach. For each benchmark, we set the limit of code size increase as 5%, 10%, and

20% of the original size. (i.e., the optimization stops when the overall code size increase

reaches the limit). The corresponding WCET reductions are shown in Figure 4.5.

Resulting WCET for different code size increases

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

basicmath
susa

n
adpcm

strin
gse

arch
rijn

dael
sha

bz ip2

N
or

m
al

iz
ed

 W
C

ET

0%

5%

10%

20%

Figure 4.5. Resulting WCET for different code size increases.

68

From Figure 4.5, it can be seen that significant reductions in WCET are achieved

from code size enlarging optimizations. The benchmark stringsearch shows the largest

WCET reduction. Looking into its optimization process, we found that the gain is mainly

from unrolling two frequently executed loops. These loops have no loop-carried

dependence, thus producing large performance improvement from unrolling until the

resource bound becomes the bottleneck. The benchmark basicmath, on the other hand,

shows the smallest WCET reduction. This benchmark contains several basic math

functions, including SolveCubic, usqrt, and rad2deg. The most frequently called function

SolveCubic contains only one treegion; therefore it cannot be optimized further with

either tail duplication or loop unrolling. As a result, this benchmark does not show big

WCET reduction though other functions are highly optimized with unrolling and tail

duplication. Also, from Figure 4.5, it can be noticed that for benchmark adpcm, there is

no reduction when the code size increase limit is set to 5% or 10% while it shows 18%

reduction when the limit is 20%. The reason is that in this benchmark, the main loop

body of the encoding contains a hammock. Duplicating the merge block of this hammock

provides large performance gains but the size of this block is about 11% of its original

size.

The diminishing returns phenomenon can also be observed for most benchmarks

from Figure 4.5. Using the benchmark bzip2 as an example, the first 5% code size

increase leads to a 15% WCET reduction while the next 5% (total 10%) code size

increase leads to an additional 7% reduction and another 10% (total 20%) code size

increase results in another 2% WCET reduction. This shows that during the iteration

process of performing loop unrolling and tail duplication, the efficiencies of the initial

69

selections are much higher than the remaining ones. Other benchmarks show a similar

trend and most of the WCET reduction is achieved in the first 5%-10% of code size

increases. For the benchmark stringsearch, there exists significant WCET reduction until

the code size increase reaches 50%, as seen in Figure 4.6.

Resulting WCET for different code size increase (stringsearch)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
Relative code size increase

N
or

m
al

iz
ed

 W
C

ET

Figure 4.6. The diminishing returns exhibited from the benchmark stringsearch.

There are two fundamental reasons for the diminishing returns phenomenon as

observed for general purpose computing in Section 3.5.3. First, based on the definition of

code size efficiency, the effects of optimizations (LBWT/WCET reduction) occurring

inside loop bodies are amplified by the factor of the loop count. The well-known ‘90/10

rule’ points out that a small part of the static code (hot portions) consumes most of the

execution time in general purpose computing. A similar rule also holds for real-time

applications as most of the WCET is spent on a few heavily executed loops and functions

called from these loops. After performing optimizations in these ‘hot’ portions of code,

the remaining optimizations should have much lower efficiencies. Secondly, high

efficiency also requires that the resulting code must have significantly reduced LBWT,

70

i.e., the optimization instance must reduce the DDG height without causing any resource

conflict problems. This requirement filters the optimizations occurring in hot portions of

a program.

One practical implication of this diminishing return phenomenon is that we can

monitor the code size efficiency during the iteration process. If the highest candidate is

below a threshold, we can expect that further optimization will have a minor impact on

WCET reduction while involving large static code size increase.

4.6 Summary

In this chapter, we advocate using compile-time ILP optimizations and instruction

scheduling to reduce the WCET. We propose the use of profile-independent performance

bounds to evaluate the performance potential of ILP optimizations so as to avoid

computationally expensive instruction scheduling. Then, we develop a general

framework to selectively perform ILP optimizations based on their performance potential

and the cost in code size increase. The experimental results show that by combining

aggressive instruction scheduling and carefully performed ILP optimizations the WCET

can be significantly reduced at a cost of minor static code size increase.

Combined with the discussion in Chapter 3, it can be seen that performance bound

guided code size efficiency forms a systematic method for selectively performing code

optimizations, and the effectiveness of such a method is seen for both general purpose

computing and embedded computing, real-time computing in particular.

71

Chapter 5 Performance Modeling of

Memory Latency Hiding Techniques

In this chapter, we discuss using performance bounds to model two related

memory latency hiding techniques, address prediction based memory prefetching and

value prediction, in memory-intensive workloads featuring heavy pointer chasing.

5.1 Introduction

The trends in contemporary microprocessor design, including fast clock speeds,

deep pipelines [66], large window sizes [34],[39], aggressive out-of-order instruction

execution, and wide fetch bandwidths [61], result in a tremendous ability to perform

arithmetic computations (i.e., computation not involving slow memory operations such as

cache misses). Therefore, for memory intensive workloads, especially those with heavy

pointer chasing, it is more important to parallelize multiple cache misses than to overlap

cache misses with other computations. For example, assuming the pointer-chasing code

shown in Figure 5.1 results in many cache-misses due to traversing the linked list, these

72

cache-misses form a memory dependence chain due to the dependencies between the

missing loads.

Figure 5.1. A pointer-chasing code example.

As processing the linked-list takes little time compared to traversing the linked-

list, the overall execution time is mainly determined by resolving such a memory

dependence chain of missing loads. To reduce the time of serving these dependent cache

misses, different techniques have been proposed. Memory prefetching [5],[14],[33],

based on address prediction of the missing loads, tries to bring the data close to the

processor (e.g., L1 or L2 D-Cache) long before the missing load executes so that the miss

latency can be overlapped either with computation or with previous load misses. In the

code example in Figure 5.1, every successful address prediction has the potential to

eliminate one cache miss.

Value prediction [21],[43],[44], which relies on the predictability of the

destination value of an instruction (e.g., the load value) rather than the load address,

enables dependent computations to be executed speculatively while the missing load is

being served. However, for pointer-chasing codes, the predictability of load values can be

viewed as equivalent to the predictability of load addresses since one load address is

simply the previous load’s value plus a constant offset. While value prediction was

proposed originally to break true data dependencies as an instruction-level-parallelism

(ILP) optimization, we advocate that the true merit lies in its ability to enhance the

while (a != NULL) {
 //Processing the fields of a
 a = a->next;
}

73

memory-level-parallelism (MLP) by overlapping multiple outstanding load misses. In the

code example in Figure 5.1, assume that the instruction window contains five iterations

of the loop and all five pointer-chasing loads will miss in the data cache. Also, we assume

that one of these five missing loads’ values is predictable, say the second missing load

(i.e., the address of the third missing load is predictable). Predicting the value of the

second missing load enables two of its dependent loads (the third and fourth missing

loads in this example) to be overlapped with the first and second missing loads. As a

result, a single value prediction can reduce the number of cache misses by 2 -- much

better than what would be achieved using a prefetch with the same predictability.

The above simple pointer-chasing code illustrates that value prediction can be

more effective in overlapping cache misses and increasing memory level parallelism

(MLP). In this chapter, we introduce a formal analytical model using performance bounds

to evaluate and compare the performance potential of both prefetching and value

prediction. The target workload is memory intensive applications with heavy pointer

chasing. This analytical model reveals the capability of each technique in hiding cache

miss latencies through MLP utilization. Important observations are drawn from the

model: while prefetching is generally effective for short memory dependence chains,

value prediction has better potential for long dependence chains. For a long dependence

chain due to pointer chasing, the performance difference between value prediction and

prefetching scales proportionally with the prediction accuracy, the memory dependence

chain length, and load miss penalties. Since the chain length scales with the effective

instruction window size and miss penalties scale with fast processor clock speed, the

74

model shows that value prediction is a very powerful technique for improving MLP in

high performance microprocessors.

The rest of this chapter is organized as follows. Section 5.2 discusses the

performance modeling of memory prefetching. Section 5.3 contains the modeling of

value prediction. The performance comparison of the two is in Section 5.4. Finally,

Section 5.5 summarizes and motivates novel techniques to improve MLP more

effectively.

5.2 Performance Modeling of Memory Prefetching

For workloads with heavy pointer chasing, the memory dependence chain of

missing loads dominates the overall execution time since other computations are either

overlapped with the memory access latency or only accounts for a small portion of the

overall execution time. Instead of relying solely on simulation, we use performance

bounds to evaluate the performance potential of memory latency hiding techniques. For a

memory dependence chain containing N dependent, missing loads (which we call a

dependence chain of length N), a lower bound of execution time (LBET) is defined as the

time to resolve all these missing loads:

LBET original = N * Miss_latency. Equation 5-1

In this model, we use the same miss latency to model the penalty of all missing

loads. For a memory hierarchy with multiple cache levels, the miss latency varies at each

level. As the miss latency at a higher cache level (e.g., L0 or L1) can usually be hidden

successfully with out-of-order execution or aggressive instruction scheduling [69], we

75

choose to use this memory dependence chain to model a sequence of cache misses at a

lower level cache (e.g, a sequence of dependent L2 misses).

To model the performance potential of memory prefetching, we assume that if the

address of a missing load is predictable (i.e., the missing load is prefetchable), then a

prefetch can be triggered early enough so that the miss latency is hidden completely.

Such assumptions favor the results of prefetching, but do not affect our conclusions.

Based on this idealistic assumption, if K missing loads along the chain can be prefetched,

the performance bound is then the time to resolve the remaining (N-K) load misses:

LBET prefetch_K = (N – K) * Miss_latency. Equation 5-2

In other words, prefetching K loads collapses a chain of length N into a chain of

length (N-K). For example, consider the pointer chasing code “a->b->c->d->e”, where

a-e are loads, which results in four dependent missing loads. Prefetching any of them will

reduce the length of the chain to 3, as shown in Figure 5.2.

Figure 5.2. (a) The code ‘a->b->c->d->e’ resulting in a memory dependence chain of
4 missing loads; (b) Prefetching 1 missing load along the chain reduces the chain

length by 1.

4

3 prefetching 1
 missing loads

(a) (b)

76

The model can also be extended to include the impact of load address

mispredictions. If the prefetch address prediction accuracy is x% (assuming the same

accuracy for all predictions for simplicity), the performance bound is the weighted sum of

successful prefetching and prefetching with mispredicted addresses. Assuming

prefetching a mispredicted address has little impact on the overall performance, the

performance bound can be computed as:

LBET prefetch_K_accu = LBET prefetch_K * x% + LBET original * (1–x%) Equation 5-3

For a special case K = 1, i.e., prefetching one missing load, the performance

bound is N * Miss Penalty – Miss Penalty*x%.

5.3 Performance Modeling of Value Prediction

Predicting the value of a single missing load along a memory dependence chain,

say the ith load, breaks the dependence chain into two shorter ones. The performance

bound is then determined by the longer one of the resulting two shorter chains, one with

the length i and the other with the length (N-i). Thus, the performance bound can be

computed as:

LBETprediction_1(i) = max{i*Miss_Penalty, (N-i)*Miss_Penalty)} Equation 5-4

As can be seen from Equation 5-4, unlike prefetching, the performance bound

based on value prediction is dependent on where the prediction is made along the chain.

Using the example in Figure 5.2, we can enumerate the predictions made for all different

missing loads along the dependence chain, as shown in Figure 5.3. Figure 5.3a shows the

memory dependence chain. In Figure 5.3b, predicting the first missing load enables the

second load to be executed speculatively, therefore overlapping the memory access

77

latency of these two loads. Predicting the value of the second load breaks the chain more

evenly and results in more overlapping of missing loads (i.e., more memory level

parallelism), as shown in Figure 5.3c. Figure 5.3d shows that predicting the third load

only enables the fourth load to be overlapped. Predicting the value of the fourth load does

not reduce the chain length assuming that there are no missing loads dependent on it.

Figure 5.3. (a) A memory dependence chain of 4 miss loads; (b) Predicting the value
of the first missing load; (c) Predicting the value of the second missing load; (d)

Predicting the value of the third missing load.

As the performance bound of predicting one load along the memory dependence

chain depends on which load is predicted, we can use a probabilistic approach to model

4

1st load

2nd load

3rd load

4th load

(a)

1st load 2nd load

3rd load

4th load

(b)

(c) (d)

1st load

2nd load

3rd load 1st load

2nd load

4th load

4th load

3rd load

78

this effect. Assuming p(i) is the probability of a prediction happening at the ith missing

load along the chain, the performance bound can be derived as follows.

LBETprediction_1 = ∑
=

N

i
ip

1

*)(LBETprediction_1(i) Equation 5-5

For a uniform distribution of p(i), (i.e., p(i) = 1/N), Equation 5-5 can be simplified

into Equation 5-6 when N is odd:

LBETprediction_1 = 2 * ∑
−

=

2
1

1

N

i
[p(i) * (N-i) * Miss_Penalty] + p(i = N) * N * Miss_Penalty

 =)
4
1*

4
3(

N
N + * Miss_Penalty Equation 5-6

Similarly when N is even, LBETprediction_1 = (N*4
3) * Miss_Penalty.

Based on this derivation, one very interesting observation is that predicting a

single load has a similar effect to reducing the chain length from N to ¾*N. Thus,

predicting K loads along the chain would reduce the chain to (¾)K * N, i.e.,

LBETprediction_k ≈ (¾)K * N * Miss_latency as one prediction usually would not affect the

predictability of other instructions. When taking the prediction accuracy (which is the

same accuracy for all predictions for simplicity purposes), x%, into account, the

performance bound becomes Equation 5-7, assuming the misprediction penalty is small

compared to the load miss latencies.

LBETprediction_k_accu = LBET prediction_k * x% + LBEToriginal * (1–x%) Equation 5-7

79

5.4 Comparison between Prefetching and Value Prediction

in Hiding Miss Latencies

In this section, we compare the performance potential of prefetching and value

prediction. Since predicting multiple values or addresses along the chain are equivalent to

making single predictions multiple times sequentially (since making one prediction in the

memory dependence chain usually does not affect the next prediction), we focus on the

case of predicting a single value or address along the chain.

As discussed in the previous sections, prefetching a single missing load (i.e.,

predicting the address of one missing load) reduces the chain length by 1 (from N to N-1)

while predicting the value of a single load has the potential to reduce the chain length by

¼*N. As discussed in Section 5.1, if the memory dependence chain is due to pointer

chasing, then the predictability of the ith load value is equivalent to the predictability of

the address of the (i+1)th load. Thus, the performance difference between single

prefetching and single value prediction is (1 – ¼*N) * Miss_latency * x%. As a result, we

can see that if N < 4, then ¼*N < 1, which implies that prefetching outperforms value

prediction for short memory dependence chains. When N ≥ 4, then ¼*N ≥ 1, which

shows that value prediction has better performance potential for memory dependence

chains containing more than 4 dependent missing loads. Moreover, the performance

difference is proportional to chain length, cache miss latency, and prediction accuracy,

i.e., value prediction is more superior to prefetching for higher miss latencies and better

prediction accuracies. This conclusion is somewhat surprising as prefetching is a widely

accepted technique to overcome the memory gap while value prediction, proposed as an

80

instruction-level-parallelism (ILP) optimization, has not found its application in current

processor design since ILP is not yet limited by true dependencies. Here, we argue that

the most significant merit of the value prediction technique lies in its ability to enhance

the memory-level-parallelism (MLP) instead of improving the ILP for memory intensive

workloads.

Although we establish that value prediction has greater performance potential

based on the analytical model, we need to examine it more carefully to understand why it

produces such potential. In order to do that, we take another look at the example in Figure

5.2 and Figure 5.3 and replicate the dependence chain in Figure 5.4a. Assume the third

missing load along the dependence chain is prefetchable, which also means that either the

address of the third load is predictable or the value of the second load is predictable. The

prefetching scheme uses this predicted address to execute a data fetch from memory and

this fetch latency can be overlapped with outstanding misses of the first load, as shown in

Figure 5.4b. The value prediction scheme uses the prediction of the second load (or the

address of the third load) similarly to bring in the data. However, it takes this one step

further by utilizing the fetched data to execute another dependent load (the fourth load in

this example) so that the fourth load can be overlapped with the second load, as shown in

Figure 5.4c.

From this example, we can see that the key reason that value prediction provides

more MLP than prefetching is that it uses the fetched data to enable more dependent

missing loads to be executed. If the prediction is correct in the first place, such

speculative execution propagates the predictability even though the dependent loads are

not predictable (but it is computable based on the previous predictions). In this example,

81

even if the value of the third load is not predictable, the data of the fourth load can still be

fetched. This observation also explains why a recently proposed technique, called

stateless, content-directed data prefetching [17] works better than traditional prefetching

schemes. Content-directed data prefetching analyzes the content of the fetched data block

to check whether the data could potentially be a pointer de-reference address. If so, it will

attempt to fetch the data from this address as well. Value prediction, compared to this

content-directed approach, uses the fetched data more judiciously by following the code

semantics so that it uses the resources more efficiently and has fewer chances to pollute

the cache.

Figure 5.4. A memory dependence chain of 4 miss loads; (b) prefetching the third
load; (c) value predicting the second load.

5.5 Summary

An analytical model is developed in this chapter to model the performance

potential of prefetching and value prediction for memory intensive workloads. It is

established that for pointer-chasing codes with long dependence chains (e.g., chasing a

4

1st load

2nd load

3rd load

4th load

(a)

1st load

2nd load

3rd load

4th load

2nd load

(b) (c)

1st load 3rd load

4th load

82

link-list), value prediction introduces better MLP utilization and outperforms the

prefetching technique given the same predictability model. The key reason for such

success is that the fetched data is not only placed in the cache but also used to drive the

dependent loads. The performance model also shows that the performance difference

between value prediction and address prediction based prefetching scales with the chain

length, the memory access latency, and prediction accuracy, thus making it compatible

with trends in current microprocessor design.

Based on these important observations, the following interesting directions are

worth examining to hide memory access latencies more effectively.

• Designing more powerful value/address prediction techniques to break

memory dependence chains more aggressively.

• Combining both prefetching and value prediction can potentially provide

better results, since prefetching works well for short chains and value

prediction is better for longer chains.

• Using profile information: the analytical model in this chapter is based on

several assumptions: prediction happens along a chain in a uniform

distribution and all predictions have the same accuracy. Profile-based

analysis can refine the model so that the compiler can use the prediction

and/or prefetch techniques more effectively.

83

Chapter 6 Enhancing Memory

Level Parallelism via Recovery-Free

Value Prediction

Chapter 5 establishes that value prediction has good potential for hiding memory

access latencies for pointer chasing, memory intensive workloads. In this chapter, we

propose a cost-effective approach based on value prediction to speculatively parallelize

sequential cache misses, thereby increasing memory-level parallelism (MLP).

6.1 Introduction

As discussed in Chapter 5, the contemporary microprocessors have tremendous

capabilities in performing arithmetic computations (i.e., the computation not involving

slow memory operations such as cache misses). Therefore, for memory intensive

workloads, it becomes more important to parallelize multiple cache misses than to

overlap cache misses with arithmetic computations.

84

In this chapter, we propose a novel technique to parallelize sequential cache

misses speculatively. The target workloads are memory intensive benchmarks with heavy

pointer chasing. The idea is developed upon value prediction [21],[43],[44], which was

originally proposed as an instruction level parallelism (ILP) optimization to break true

data dependencies in computations. Since the data dependence between pointer chasing

loads enforces the sequential execution, value prediction has the ability to parallelize

these loads, thereby increasing the memory level parallelism (MLP), as highlighted in

Chapter 5.

Since we focus on using value prediction to increase MLP, the hardware overhead

to support value prediction and value speculative execution can be significantly reduced.

In this chapter, we propose to use value prediction only for prefetching so that the

complex value prediction validation and misprediction recovery mechanisms are avoided

and only minor changes in the hardware are necessary. Unlike the traditional value

prediction schemes, where speculative results are committed when the correct prediction

is made, the speculative results in our scheme are only used for prefetching and will not

be committed. In a different point of view, one can think of the speculative execution in

our approach as a speculative pre-execution scheme, which requires neither explicit pre-

execution thread generation nor multi-threading support. Another important aspect is that

the same hardware changes in our scheme also enable aggressive memory

disambiguation to break alias (i.e., the load-after-store) dependencies. Such

disambiguation is used for prefetching and is also recovery free.

The experimental results, based on a set of SPEC2000 benchmarks [30] and

Olden benchmarks [12] including both computation-intensive and memory-intensive

85

benchmarks, show significant speedups resulting from breaking both true dependencies

and alias dependencies between memory operations. Such speedups also scale well with

the current trend in microprocessor design.

The remainder of this chapter is organized as follows. Section 6.2 addresses

related work. Section 6.3 illustrates the performance potential of breaking memory

dependencies to enhance MLP. Section 6.4 presents the details of our proposed approach.

The experimental methodology is contained in Section 6.5, and the results are given in

Section 6.6. Section 6.7 discusses the limitations of our proposed scheme. Section 6.8

summarizes the chapter.

6.2 Related Work

Due to the speed gap between the processor core and the memory, hiding memory

access latency has been an active research topic. One well established solution is memory

prefetching, and the majority of work is based on address prediction [5],[33]. One

recently proposed scheme [17], named stateless, content-directed prefetch, improves

upon prior techniques by examining the prefetched data to check whether the data could

potentially be a pointer de-reference address. If so, the content will be used as the address

for the next prefetch. Compared to this scheme, our proposed technique uses the fetched

data to compute pointer chasing load addresses based on code semantics, thereby having

fewer chances to fetch the wrong data and pollute the cache.

Another way to hide memory latency is based on the concept of pre-

execution/pre-computation. Both hardware-based and software-based schemes [16],[47],

[62],[69],[79] have been proposed for this purpose. As will be discussed in Section 6.4,

86

our recovery-free value prediction scheme is similar to the pre-execution paradigm

although our approach requires neither explicit thread generation nor multi-threading

support. Also, as pointed out in [69], the pre-computation thread is more effective when

used to prefetch the critical pointer chasing loads in the loop control than to prefetch

loads in the loop body. A similar observation can be made for our proposed scheme since

predicting pointer-chasing loads in the loop control can overlap the execution of multiple

iterations and result in more latency hiding. Runahead execution [18],[57] is another form

of pre-execution without multithreading support. During execution, if the processor is

stalled due to a cache miss, the current execution state will be checkpointed and the

processor will enter the runahead mode to pre-execute the independent instructions

following the blocking instruction. The purpose of the pre-execution is to prefetch the

(future) data into cache. When the cache miss is repaired, the processor goes back to

normal mode and re-executes these pre-executed instructions. In an out-of-order

processor, runahead execution can achieve similar performance to one with a much larger

instruction window. Our proposed scheme and runahead execution can be mutually

beneficial as our scheme tries to pre-execute the dependent operations of a blocking

instruction. Also, as discussed in Section 6.3, the large instruction window achieved by

runahead execution provides better chances for our scheme to improve MLP.

Value prediction was proposed originally as an ILP optimization technique

[21],[43],[44],[64]. Using value prediction to hide load forward latencies is studied in

[11]. By correctly predicting the value of a load instruction, dependent instructions can

avoid stalling during the time that the load executes. Address prediction for prefetching is

proposed in [24]. Based on address prediction, data is prefetched and saved in a special

87

buffer (called the Memory Prefetch Table) and used as the value prediction of the load.

Our proposed approach is different from these previous works in that we use value

prediction only for prefetching, thereby avoiding complex validation and recovery

hardware and the associated recovery penalties. Also, our approach leverages aggressive

memory disambiguation for prefetching. As pointed out in Section 6.3, it is very

important to break both true and alias dependencies in order to increase MLP. Another

important aspect is that our scheme distinguishes the value speculative execution from

normal execution so that we only use the un-speculative results to update the value

predictor, thereby being able to achieve better prediction results.

6.3 Breaking Memory Dependencies to Enhance MLP

Values produced by individual instructions exhibit locality [64] and different

value prediction schemes are proposed to exploit such locality to break true data

dependencies [21],[43],[44]. In a typical value prediction/speculation scheme proposed

for a superscalar processor, the prediction of an instruction enables its dependent

instructions to be executed speculatively. If the prediction turns out to be correct, these

instructions will commit their speculative results so that the processor makes faster

forward progress by hiding the latency of value speculative computation in the un-

speculative computations. If the prediction is wrong, however, a recovery scheme is

necessary to squash the speculative results and to re-execute these affected instructions

with correct data. Such a recovery mechanism, especially selective reissuing, incurs

expensive hardware overhead and recovery latency penalties [77].

88

As discussed in Chapter 5, for memory intensive workloads with heavy pointer

chasing, sequential cache-misses resulting from pointer chasing code structures dominate

the overall execution time. These cache-misses form a memory dependence chain since

one missing load’s address is dependent on the previous missing load’s value. Taking a

frequently executed code segment from the benchmark mcf as an example, shown in

Figure 6.1, the profile information indicates that the pointer chasing codes ‘node->child’,

‘node->basic_arc->cost’, and ‘node->pred->potential’ result in many cache misses. The

memory dependence chains formed by these missing loads are shown in Figure 6.2.

Figure 6.1. A code segment in the benchmark mcf (in function refresh_potential)
resulting in many cache-misses.

In Figure 6.2a, the dependence chain is based on a single iteration of the while

loop in Figure 6.1, where nodes 1 and 2 correspond to two dependent missing loads from

‘node->basic_arc->cost’. Nodes 3 and 4 correspond to ‘node->pred->potential’. Node 5

corresponds to ‘node->child’ and node 0 is the same load ‘node->child’ from the

previous iteration. Figure 6.2b shows the dependence chain when the loop is unrolled

multiple times. The solid arrow in Figure 6.2 represents the true data dependence and the

 while(node)
 {
 if(node->orientation == UP)
 node->potential = node->basic_arc->cost + node->pred->potential; // (Nodes
1,2,3,4)
 else /* == DOWN */
 {
 node->potential = node->pred->potential - node->basic_arc->cost;
 checksum++;
 }
 tmp = node;
 node = node->child; // (Nodes 0, 5)
 }

89

dashed arrow represents the alias dependence between missing loads. Although the alias

dependence exists between a store and a following load instruction, we use the same term

to model the dependence between two missing loads when one or more store instructions

exist between them and one of these stores is dependent on the first missing load. Here, it

needs to be pointed out that alias dependencies span multiple iterations, e.g., there exists

an alias-dependence between node 2 in the first iteration and all the loads in later

iterations, though not shown in Figure 6.2b for conciseness. Also, note that in the

memory dependence chain, only missing loads are included as other instructions such as

stores, adds, branches, and loads that hit in the cache are not long latency operations.

Figure 6.2. The memory dependence chain based on the code in Figure 6.1. (a) The
dependence chain for a single iteration. (b) The dependence chain for multiple

iterations (alias dependence among different iterations are not shown for
conciseness).

1

2

0

3

4

5

(a) (b)

Memory dependence
chain for one iteration

…
…

1st Iteration

2nd
Iteration

nth Iteration

90

From this example, we can see that both true data dependency and alias

dependency enforce the sequential execution of the missing loads, resulting in long

execution time. In order to process these cache misses in parallel (i.e., to increase MLP),

both dependencies need to be broken. While aggressive memory disambiguation can

minimize alias dependency, value prediction can be used to break true data dependency.

In this example, memory disambiguation removes the dependence of node 5 on nodes 2

and 4 in Figure 6.2a, thus exposing the critical path of executing the loop as chasing the

pointer ‘node->child’ (i.e., node 5). If a correct prediction can be made for this load, the

execution of multiple iterations of the loop can be overlapped, as shown in Figure 6.3,

where predicting the value of the pointer chasing load (node 5’ in Figure 6.3) in the

second iteration enables the third and the fourth iterations to be executed speculatively so

that their miss latencies are overlapped with the first and the second iterations. As a

result, the long miss latencies in the third and the fourth iterations can be completely

hidden if a correct value prediction is made.

Figure 6.3. Predicting the value of Node 5' enables overlapping of cache misses in
different iterations.

1st iteration

2nd iteration

3rd iteration

4th iteration

Node 5’

Node 0

Node 5’’ Node 5

Prediction of Node 5’

91

The example in Figure 6.3 illustrates that the effectiveness of value prediction in

breaking the true memory dependence chain so that sequential cache misses can be

processed in parallel and MLP can be enhanced. Such effectiveness is affected by several

characteristics of the memory dependence chain. The first is the length of the memory

dependence chain. In the example in Figure 6.3, the instruction window size determines

how many iterations of the loop can be unrolled dynamically. If the instruction window

can only hold two iterations of the loop, the speculative execution of the third and the

fourth iterations is impossible when they are not fetched into the pipeline. The second is

which missing load along the dependence chain is predicted. In the example in Figure

6.3, it can be seen that predicting the value of Node 5’ can overlap more cache misses

than predicting Node 5 or Node 5’’. The third is the predictability of these missing loads’

values since more accurate prediction will result in more useful speculative executions.

These characteristics are examined in Chapter 5 using an analytical model of value

prediction in enhancing MLP. It is found that value prediction can be more effective than

traditional address prediction based prefetching techniques for the same predictability

model. The main reason is that while prefetching techniques only bring the data close to

the processor (e.g., the L1 D-cache), value prediction takes one step further by using the

fetched data to drive other dependent load instructions to be executed early. In the

example in Figure 6.3, it can be seen that predicting the value of Node 5’ is equivalent to

predicting the address of the dependent loads (e.g., Node 5’’) since the only difference is

a constant offset. So, using address prediction based prefetching, the miss latency of

Node5’’ can be hidden if the prefetch is triggered early enough. Value prediction, on the

92

other hand, not only fetches the data of Node 5’’ but also uses the fetched data to execute

other dependent instructions (i.e., the missing loads in the fourth iteration) even if their

addresses/values are not predictable. As a result, value prediction is capable of hiding

much more miss latencies. The analytical model also shows that the effectiveness of

value prediction is proportional to the memory dependence chain length, the value

prediction accuracy, and the cache miss latencies. Since the chain length scales with the

effective instruction window size and miss penalties scale with fast processor clock

speed, we argue that value prediction is a very powerful technique to improve MLP for

future high performance microprocessors.

6.4 Recovery-Free Value Prediction

As discussed in Section 6.3, value prediction has great potential to enhance MLP

by overlapping otherwise sequential cache misses. To implement such a technique,

however, complex hardware support is necessary to validate the prediction and to

perform recovery from value mispredictions. As discussed in Section 6.1, current

microprocessors can execute computations very fast as long as slow memory operations

(e.g., cache misses) are not involved. So, unlike previously proposed value prediction

schemes [21],[43],[44], we propose to use value prediction only for prefetching so that

there is no need to validate a prediction or to perform recovery from mispredictions.

Using the example in Figure 6.3, based on the prediction of node 5’, the third and the

fourth iterations of the loop are executed speculatively. Unlike the traditional value

prediction schemes, the speculative results will not be committed in our approach and the

only purpose of such speculative execution is to bring the data to the L1 data cache. As a

93

result, even if the prediction is correct, the third and the fourth iterations of the loop will

be executed again (un-speculatively) in our proposed scheme. We expect that such re-

execution will be very fast since the cache accesses in these iterations will hit in the L1

data cache (as the data have already been fetched during speculative execution if the

prediction is correct). So, compared to traditional value prediction schemes, our

technique trades a small penalty of re-execution in the case of correct value prediction for

much smaller hardware overhead. In the case of a value misprediction, both traditional

schemes and our proposed scheme will result in polluting the data cache while our

scheme incurs no recovery penalties. Another interesting point is that the same hardware

changes required in our scheme also enable aggressive, recovery-free memory

disambiguation for prefetching as a byproduct, therefore is capable of delivering higher

performance improvement.

To support recovery-free value prediction, only minor hardware changes are

necessary. We present our proposed design based on a MIPS R10000 style

microarchitecture [73], which has a 7-stage pipeline as shown in Figure 6.4. There are

four key changes to the hardware, presented as follows.

Figure 6.4. The execution pipeline.

Execution pipeline

Value
Prediction
Table

PC
prediction

update

Fetch Dispatch Issue Reg Read Execution Write Back Retire

To physical register file

94

First, a value predictor is included in the front-end of the processor and is indexed

with the pc, as shown in Figure 6.4. The design of a high accuracy value predictor is out

of the scope of this chapter and we use a simple stride value predictor [21],[43],[64] to

show the effectiveness of our technique though a more powerful predictor [68],[74] can

lead to a higher performance improvement.

Secondly, two flag bits are added to control value speculative execution. One flag

bit, called value prediction speculative (vp), is added to every entry of the issue window

or RUU. The other flag bit, called value prediction ready (vp_ready), is added for each

register in the physical register file. When a confident value prediction is made at the

dispatch stage, the vp_ready bit is set for the destination register and the predicted value

is written to the physical register file. At the issue stage, if the source registers of an

instruction are ready, it will be issued un-speculatively and the execution result will be

used to update the value predictor. If source registers are not ready but the vp_ready bits

for these source registers are set (i.e., the values of these physical registers are either

predicted or computed using previous predictions), the instruction is issued speculatively

provided that there are unused issue bandwidth and function units. When an instruction is

issued speculatively, the corresponding vp flag in the issue queue is set to prevent the

same instruction from being issued speculatively more than once since we do not need

the same data to be prefetched more than once. Speculatively issued instructions will

remain in the issue queue until they are issued un-speculatively later with (un-

speculative) ready source registers. When a speculatively issued instruction finishes, it

writes back the speculative results to the physical register file and sets the corresponding

vp_ready bit to enable dependent instructions to be executed speculatively. Writing the

95

speculative results to the physical register file won’t affect the correctness of program

execution since the physical register will be overwritten by the un-speculative execution

of the same instruction. In the case when the speculative result arrives later than the un-

speculative result, it is simply dropped.

Thirdly, the instruction selection logic is modified so that it prioritizes the issue of

un-speculative instructions and prohibits the speculative execution of store and branch

instructions. In such a way, speculative execution will not compete with normal

execution for resources and it only affects normal execution through the data cache.

Fourthly, to break the alias (i.e., load-after-store) dependencies, the vp flag is set

for the load instructions that are stalled due to prior unresolved store addresses. Then,

these load instructions can be issued speculatively as if they were based on predicted

values. Therefore, no alias dependencies are enforced. This aggressive memory

disambiguation requires no recovery since the same load instructions and their dependent

instructions will be executed again un-speculatively after the prior store addresses are

resolved and the speculative execution is used only for prefetching. We call this

recovery-free speculative memory disambiguation.

The proposed changes are relatively minor and are unlikely to affect the critical

path of the processor. Using the physical register file to keep the value predictions and

the speculative execution results enables our approach to utilize otherwise unused

machine resources and does not require additional ports to the register file.

One interesting aspect is that our scheme distinguishes value speculative

execution from normal execution (using the vp flag). So, it only uses the results from

normal execution to update the value predictor and eliminates the updates based on

96

previous predictions, thereby being able to achieve better prediction results (see Section

6.6.2).

Another interesting observation is that our proposed recovery-free speculative

execution scheme could be viewed as a simple, yet efficient form of pre-execution. As

each predicted value (or a presumably disambiguated load instruction) enables a set of

dependent instructions to be executed speculatively, these speculatively executed

instructions can be viewed as a pre-execution thread triggered by the prediction, though

there is no explicit multi-threading support. Such pre-execution threads are dynamically

constructed for each predicted value based on the data dependence relationship from the

fetched instruction stream, thus taking advantage of dynamic branch prediction. Pre-

execution is terminated when normal execution catches up with the pre-execution thread

at the same instruction. The reason is that when the source registers of an instruction are

ready, normal execution is performed and the vp_ready flag is not propagated anymore.

The purpose of such pre-execution is to prefetch data. The pre-execution thread executes

only if there are unused resources, thus avoiding resource competition with the main

thread.

6.5 Experimental Methodology

We implemented the proposed technique in a detailed timing simulator using the

Simplescalar [10] toolset. The underlying processor organization is based on the MIPS

R10000 processor, configured as indicated in Table 6.1. In our experiments, we vary the

D-cache configurations and the reorder buffer (ROB) size (or the instruction window

size) of the base configuration to evaluate our proposed technique in a range of processor

97

models. Both computation-intensive and memory-intensive benchmarks are selected from

the SPEC2000 integer benchmark suite and the Olden benchmark suite. Benchmarks

bzip2, gap, gcc, gzip, and perl are computation-intensive and benchmarks mcf, parser,

twolf, health, and mst are memory-intensive as they exhibit much higher data cache miss

rates. The reference input data are used for the SPEC2000 benchmarks. We fast-forward

800M instructions and simulate the next 200M instructions. For the benchmark health,

the input is ‘max_level = 5 and max_time = 500’ and it runs to completion. For the

benchmark mst, 3407 nodes are used as input and the first 2B instructions are skipped and

the next 200M instructions are simulated. The baseline performance results of these

benchmarks using the base processor model are shown in Table 6.2.

Table 6.1. Base processor configuration.
Instruction

Cache

Size = 64 kB; Associativity = 4-way; Replacement = LRU; Line size =

16 instructions (64 bytes); Miss penalty = 10 cycles.

Data Cache Size = 32 kB; Associativity = 2-way; Replacement = LRU; Line size =

64 bytes; Miss penalty = 10 cycles; 32 MHSRs.

Unified L2 Cache Size = 512 kB; Associativity = 8-way; Replacement = LRU; Line size

= 128 bytes; Miss penalty = 80 cycles; 64 MHSRs.

Branch Predictor 64K entry G-share; 32K entry BTB

Superscalar Core Reorder buffer: 64 entries; Dispatch/issue/retire bandwidth: 4-way

superscalar; 4 fully-symmetric function units; Data cache ports: 4

Execution Latencies Address generation: 1 cycle; Memory access: 2 cycles (hit in data

cache); Integer ALU ops = 1 cycle; Complex ops = MIPS R10000

latencies

Memory

Disambiguation

Load stalls when there is a pending store with unresolved address.

98

Table 6.2. Baseline results of the benchmarks.
Computation-Intensive Memory-Intensive Benchmarks

bzip2 gap gcc gzip perl mcf parser twolf health mst

IPC 1.68 1.31 2.11 1.46 1.46 0.51 0.85 0.83 0.32 0.21

L1 D-cache

miss rate

(misses per

1K insn.)

2.14%

(4.88)

0.45%

(0.95)

5.29%

(14.08)

6.88%

(16.24)

1.98%

(8.61)

46.6%

(166.3)

9.12%

(33.04)

14.1%

(45.23)

16.3%

(66.08)

55.3%

(175.1)

L2 Cache

miss rate

(misses per

1K insn.)

28.5%

(1.39)

68.3%

(0.65)

46.0%

(6.48)

46.6%

(7.57)

40.2%

(3.46)

67.5%

(112.3)

48.0%

(15.84)

62.2%

(28.12)

85.0%

(56.20)

96.4%

(168.8)

As described in Section 6.4, a simple stride value predictor (tag-less 4K-entry) is

used in our experiments to generate value predictions. The prediction table is indexed

with the pc and each entry in the table has three fields, as shown in Figure 6.5. The field

‘last value’ holds the most recent execution result and the field ‘stride’ keeps the

difference between the last two execution results. The 3-bit confidence counter is used to

filter out potentially incorrect predictions. For each successful prediction, the confidence

counter is increased by 2 and is decreased by 1 for each misprediction [68]. A prediction

with a confidence value larger than 4 is viewed as a confident prediction. A speculative

update scheme based on that proposed in [40] is also used to improve the prediction

accuracy. Since there may be more than one outstanding prediction being made before

any update, we use two age counters (one for prediction, one for update) per entry instead

of one age counter as in [40] to keep the track of the right prediction-update pair (i.e.,

when an execution result is available, which prediction it corresponds to). Note that we

need to perform prediction validation to update the confidence counter. This validation is

99

performed as part of the prediction update in the value predictor and is not part of the

execution.

Figure 6.5. The stride value prediction table.

6.6 Experimental Results

In this section, we first evaluate the effectiveness of our proposed technique in

reducing data cache miss rates, increasing MLP, and achieving performance gains. We

then analyze where the performance gains come from in Section 6.6.2. In Section 6.6.3,

we perform a sensitivity analysis by applying the proposed technique to a range of

processor models.

6.6.1 Performance evaluation

As discussed in Section 6.4, our proposed technique breaks both true data

dependencies and alias dependencies between missing loads so that the otherwise stalled

loads can be executed speculatively in parallel with the un-speculative missing loads.

These speculatively executed loads perform the functionality of prefetching the data into

the cache so that the un-speculative execution will experience fewer cache misses. We

first examine the effect of this technique in reducing data cache miss rates, as shown in

 Last value Stride Confidence Counter

Prediction Table

PC

100

Figure 6.6 and Figure 6.7. Here, the cache misses during speculative execution are not

counted since they are used to prefetch. For each benchmark in Figure 6.6, the L1 D-

cache miss-rate results are reported for both the base processor (labeled ‘base’) and the

processor with recovery-free value prediction (labeled ‘vp_exe’). Also, the cache misses

are further divided into partially covered misses (i.e., a miss request for a cache line that

is already being repaired from the L2 cache or memory) and non-covered misses.

Partially covered cache misses have less impact on overall performance compared to non-

covered cache misses. Figure 6.6 shows that for memory intensive benchmarks, the

proposed technique reduces the L1 D-cache miss rate significantly, ranging from 14%

(from 47% to 33% in the benchmark mcf) to 0.5% (from 16.5% to 16% for the

benchmark health) and increases the ratio of partially covered misses for most

benchmarks. For computation intensive benchmarks, a visible reduction in the L1 D-

cache miss rate is shown for the benchmarks bzip2, gap and gzip although the baseline

miss-rates are relatively small for these benchmarks.

101

L1 D-Cache Miss Rates

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

ba
se

vp
_e

xe
ba

se
vp

_e
xe

ba
se

vp
_e

xe
ba

se
vp

_e
xe

ba
se

vp
_e

xe
ba

se
vp

_e
xe

ba
se

vp
_e

xe
ba

se
vp

_e
xe

ba
se

vp
_e

xe
ba

se
vp

_e
xe

bzip2 gap gcc gzip perl mcf parser twolf health mst

computation-intensive memory-intensive

non covered

partially covered

46.55% 32.84% 55.34%

45.22%

Figure 6.6. The L1 D-cache missrates.

L2 Cache Miss Rates

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

ba
se

vp
_e

xe

ba
se

vp
_e

xe

ba
se

vp
_e

xe

ba
se

vp
_e

xe

ba
se

vp
_e

xe

ba
se

vp
_e

xe

ba
se

vp
_e

xe

ba
se

vp
_e

xe

ba
se

vp
_e

xe

ba
se

vp
_e

xe

bzip2 gap gcc gzip perl mcf parser twolf health mst

computation-intensive memory-intensive

non covered
partially covered

Figure 6.7. The L2 cache missrates.

102

Figure 6.7 shows the cache miss rate effect on the L2 caches. It can be seen that in

addition to the large L1 D-cache miss rate reduction most benchmarks exhibit reduced L2

miss rates, which shows that speculative execution does not only bring the data that are

already in the L2 cache into the L1 D-cache but also eliminates many L2 cache misses.

For those benchmarks that exhibit increased miss rates in the L2 cache, for example the

benchmark parser, when considering the L1 miss rate reduction, we can see that the

overall L2 misses are also reduced, 14.5 L2 misses per 1k instruction compared to 15.8

L2 misses in the baseline processor.

Next, we use the benchmark mcf as an example to show the MLP improvement

(i.e., overlapping multiple cache misses) achieved by the proposed technique for a typical

heavy pointer chasing workload. Figure 6.8 shows the distribution of how many L1 data

cache misses are overlapped in the base processor. The x-axis of Figure 6.8 is the number

of overlapping misses and the y-axis is the time during execution that the overlapping

happens. From Figure 6.8, we can see that the processor spends 12% of overall execution

time on computations that do not involve a cache miss. During 33% of execution time, a

single missing load is accessing the L1 D-cache (i.e., low MLP since no overlapping

happens), and in 35% of the time two missing loads are accessing the L1 D-cache. The

maximum number of overlapping cache misses are determined by the MSHRs used in the

cache, and our experiment uses 32 MSHRs for the L1 D-cache. It can be inferred from

this distribution that the benchmark mcf has many sequential cache misses, resulting in

low MLP and MSHR utilization, and therefore long execution time.

103

The distribution of overlapping cache misses (base processor)

0%

5%

10%

15%

20%

25%

30%

35%

40%

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

number of concurrent misses

Figure 6.8. The baseline MLP for the benchmark mcf (overall execution time =

390M cycles).

The distribution of overlapping cache misses (with the proposed
technique)

0%

5%

10%

15%

20%

25%

30%

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

number of concurrent cache misses

Figure 6.9. The improved MLP for the benchmark mcf with recovery-free value
prediction (overall execution time = 327M cycles).

With recovery-free value prediction, the overall execution time is significantly

reduced and MLP is much improved as shown in Figure 6.9. Compared to Figure 6.8, a

significant amount of sequential cache misses are now processed in parallel. Another

104

interesting observation is that speculative execution does not increase the pressure on the

MSHRs since it rarely converts sequential cache misses into more than six concurrent

cache-misses.

Figure 6.10 shows the speedups achieved by the proposed recovery-free value

prediction, and it shows that the proposed technique achieves significant speedups for

memory intensive benchmarks, from 3.2% for the benchmark health to 24% for the

benchmark mst. For the well-known pointer-chasing benchmark mcf, the speedup is

19.6%. Considering the low hardware overhead required by this technique, the

performance gains are impressive. For computation intensive benchmarks, smaller

speedups (average of 0.5%) result, which is expected since the reduction in the D-cache

miss rate for these benchmarks is small. The only benchmark that shows a negative

speedup (-0.7%) is gcc, which will be discussed further in Section 6.6.3.

Speedups

-1%

4%

9%

14%

19%

24%

bz
ip

2

ga
p

gc
c

gz
ip

pe
rl

H
_m

ea
n

m
cf

pa
rs

er

tw
ol

f

he
al

th

m
st

H
_m

ea
n

computation-intensive memory-intensive

Figure 6.10. The speedups of using recovery-free value prediction.

105

6.6.2 Performance analysis

To analyze why the proposed technique achieves such impressive speedups, we

first examine the stride value predictor to see how well it predicts a value and how often a

missing load is correctly predicted.

It is observed in previous studies [21],[43],[64] that many instructions exhibit

stride locality, and a more recent work [71] showed that stride locality exists in the

address stream for many load instructions in irregular programs. As pointed out in

Chapter 5, the predictability of load addresses is equivalent to load value predictability

for pointer chasing codes. Our results, shown in Figure 6.11, confirm these observations.

For each benchmark, both the value prediction coverage (i.e., the ratio of confident

predictions over all predictions) and the value prediction accuracy (i.e., the ratio of the

correct predictions over confident predictions) are shown in Figure 6.11 for all value

producing instructions using a 4k-entry stride value predictor. It can be seen that most

benchmarks, especially the benchmarks mcf, parser, and mst, exhibit a significant stride-

type of value locality and this small value predictor provides decent prediction coverage

and accuracy.

Since value predictions are used to break memory dependence chains, the

predictability of the missing loads is of special interest and is examined in Figure 6.12.

From Figure 6.12, it can be seen that the values of missing loads exhibit different degrees

of stride locality for different benchmarks. For the heavy pointer chasing benchmarks mcf

and mst, the value predictor achieves good prediction coverage and high accuracy. Given

106

their high cache miss rate and pointer chasing characteristics, this explains why these

benchmarks enjoy significant speedups. For another pointer-chasing benchmark health,

the missing loads show very limited stride-type locality. As we will see next, the speedup

for this benchmark is mainly due to speculative memory disambiguation instead of

breaking true memory dependencies. Again, if a more powerful predictor (e.g., a context-

based predictor) is used to explore the locality in its address stream, higher speedup can

be expected for this particular benchmark as well.

Value predictability of all value producing instructions
using a 4k entry stride predictor

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

bzip2 gap gcc gzip perl mcf parser twolf health mst

coverage

accuracy

Figure 6.11. The value predictability for all value producing instructions using a 4k-

entry stride predictor.

107

Value predictability of missing loads using a 4k entry stride
predictor

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

bzip2 gap gcc gzip perl mcf parser twolf health mst

coverage
accuracy

Figure 6.12 The value predictability for missing loads using a 4k-entry stride

predictor.

Speedups

-1%

4%

9%

14%

19%

24%

bz
ip

2

ga
p

gc
c

gz
ip

pe
rl

H
_m

ea
n

m
cf

pa
rs

er

tw
ol

f

he
al

th

m
st

H
_m

ea
n

computation-intensive memory-intensive

prediction_only disambiguation_only
both trad_value_pred

Figure 6.13. The speedups resulting from breaking different dependencies and

traditional value speculation.

108

As discussed in Section 6.3, both true data dependence and the alias dependence

between missing loads prevent them from being executed in parallel. The recovery-free

value prediction scheme breaks both dependencies during speculative execution. Next,

we examine the impact of breaking either of these two dependencies on enhancing MLP.

In the next experiment, we isolate the performance impact by breaking only one type of

dependency at a time. Figure 6.13 shows the speedup results for breaking true data

dependencies only (labeled ‘prediction_only’), breaking alias dependencies only (labeled

‘disambiguation_only’), and breaking both dependencies (i.e., the same results as in

Figure 6.10, labeled ‘both’). We also include the speedup results using traditional value

prediction (labeled ‘trad_value_pred’) in Figure 6.13. In the traditional value prediction

scheme, the same stride value predictor is used and an idealistic validation and selective

recovery (1 cycle penalty) mechanism is incorporated into the execution pipeline. From

Figure 6.13, it can be seen that for computation-intensive benchmarks, breaking alias

dependencies (‘disambiguation_only’) has slightly better speedups than breaking true

dependencies only (‘prediction_only’). For memory-intensive benchmarks, breaking true

dependencies (‘prediction_only’) results in much higher speedups for mcf and mst but

less speedups for other benchmarks compared to breaking alias dependencies

(‘disambiguation_only’). The reason is that for these benchmarks many memory

dependence chains are formed by alias dependencies. For these benchmarks, increasing

the instruction window size and performing speculative memory disambiguation can

improve MLP effectively. Also, our value predictor only exploits stride locality, limiting

the opportunity to break true memory dependencies more aggressively. The benchmarks

mcf and mst, on the other hand, feature heavy pointer chasing and exhibit strong stride

109

locality in their value streams. So, breaking true dependencies becomes more profitable.

Fortunately, when both true dependencies and alias dependencies are broken at the same

time using our proposed approach, higher speedups are achieved. This mutually

beneficial effect confirms our observation in Section 6.3 that both memory dependencies

need be broken to improve MLP. Similar results are also reported in a study [11] of the

interaction between value prediction and memory dependence speculation.

Comparing our proposed recovery-free scheme to traditional value prediction, we

can see that traditional value prediction achieves higher speedups for computation

intensive benchmarks. For memory-intensive benchmarks, our recovery-free prediction

scheme has much higher speedups since it avoids the misprediction penalties and benefits

from speculative memory disambiguation. For example, the recovery penalties (even with

only 1 cycle penalty per misprediction) account for 2.6% of the overall execution time for

the benchmark mcf while our recovery-free scheme completely removes such penalties.

Moreover, in recovery-free value prediction, we can distinguish the speculative execution

from the normal execution using the ‘vp’ flag. The value predictor in recovery-free value

prediction is updated only with un-speculative execution results (i.e., the computation

results not involving direct/indirect predicted values), thereby being able to achieve

higher prediction accuracies than the traditional value speculation scheme, as seen in

Figure 6.14. In Figure 6.14, the prediction coverage and accuracy for both recovery-free

value prediction and traditional value prediction are shown. It can be observed that

recovery-free value prediction and traditional value prediction achieve similar prediction

accuracies while recovery-free value prediction exhibits better prediction coverage. To

highlight these differences, we include another metric, labeled ‘product’, which is the

110

product of coverage and accuracy, representing the ratio of the number of the correct and

confident predictions over the number of all the predictions produced by the value

predictor. Using this metric, it can be seen that recovery-free value prediction achieves

better prediction power for most benchmarks than traditional value prediction, especially

for the benchmarks mcf and mst.

The results in Figure 6.13 also suggest another interesting optimization: we can

apply recovery-free value prediction selectively by monitoring the dynamic behavior of a

workload. Only if the workload is memory intensive (e.g., the L1 D-cache miss rate is

larger than 10%), is recovery-free value prediction turned on. Otherwise, recovery-free

value prediction is turned off or only the aggressive memory disambiguation feature is

used for prefetching. Further exploration of this optimization is out of the scope of this

chapter and left as future work.

Prediction Results Using Recovery-Free Value Prediction and
Traditional Value Prediction

20%

30%

40%

50%

60%

70%

80%

90%

100%

bzip2 gap gcc gzip perl mcf parser tw olf health mst

rf vp coverage rf vp accuarcy rf vp product

trad. vp coverage trad. vp accuarcy trad. vp product

Figure 6.14. The value prediction results using recovery-free value prediction

(labeled ‘rf vp’) and traditional value prediction (labeled ‘trad. vp’).

111

6.6.3 Sensitivity analysis

In this experiment, we evaluate our proposed technique in different memory

hierarchy models, 16kB direct-mapped L1 D-cache and 256kB 4-way L2 unified cache

(labeled as ‘configuration 1’), 32kB 2-way L1 D-cache and 512kB 8-way L2 cache (same

as base processor, labeled as ‘configuration 2’), and 64kB 4-way L1 D-cache and

2048kB 8-way L2 cache (labeled as ‘configuration 3’). The speedups of the proposed

technique in these configurations are show in Figure 6.15.

The speedups for different memory hierarchies

-5%

0%

5%

10%

15%

20%

25%

30%

bz
ip

2

ga
p

gc
c

gz
ip

pe
rl

H
_m

ea
n

m
cf

pa
rs

er

tw
ol

f

he
al

th

m
st

H
_m

ea
n

computation-intensive memory-intensive

configuration_1
configuration_2
configuration_3

Figure 6.15. The speedups for different memory hierarchies.

Interesting observations can be made from Figure 6.15. First, for the small D-

cache of 16kB, the memory problem becomes more evident. As a result, more speedups

are achieved by hiding the miss latency using recovery-free value prediction, as we can

see from the benchmarks, mst and parser. On the other hand, however, a small cache can

tolerate less cache pollution resulting from value mispredictions. So, the miss rate can

112

actually increase if the value misprediction rate is high and the speedups are reduced, as

in the benchmarks gcc and twolf. Large caches such as 64kB are more tolerant of cache

pollution problems while the criticality of memory operations is reduced if they hit in the

cache, as we can see from the benchmark mcf and parser. On average, the proposed

scheme performs quite well for all the different memory hierarchy configurations.

The speedups for 64- and 128-entry instruction
windows

-5%
0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

bz
ip

2

ga
p

gc
c

gz
ip

pe
rl

H
_m

ea
n

m
cf

pa
rs

er

tw
ol

f

he
al

th

m
st

H
_m

ea
n

computation-intensive memory-intensive

4/64 issue
4/128 issue

Figure 6.16. The speedups for different instruction window sizes.

In the next experiment, we increase the instruction window size to 128 to allow it

to be more tolerant to L1 D-cache misses. The same 32kB 2-way L1 D-cache and 512kB

8-way L2 cache are used as in the 4/64 issue model. The results are shown in Figure 6.16.

From this experiment, we can see that much higher speedups are reported for the 128-

entry instruction window in all memory-intensive benchmarks using recovery-free value

prediction. There are two main reasons for this trend. First, a large instruction window

size of 128 holds a longer memory dependence chain. As discussed in Chapter 5,

breaking a longer chain can overlap more cache misses, resulting in higher performance

113

improvement. Secondly, a larger instruction window enables more instructions to be

fetched into the window under a long-latency cache miss, thereby enabling those

instructions to be predicted earlier than in a small instruction window. As a result,

speculative loads (or prefetches) can be issued earlier to hide more memory access

latencies.

6.7 Limitations

Two limitations exist with our proposed scheme. First, as we pointed out in

Chapter 5 and Section 6.3, value prediction can hide memory access latencies by

breaking the memory dependencies, especially for long memory dependence chains. As a

result, it is effective for memory-intensive workloads with heavy pointer-chasing. If a

workload does not exhibit such memory dependencies, for example, the cache misses due

to accessing a large array, our proposed scheme will have very limited ability to hide

these cache miss penalties since the prediction of a missing load will not lead to the

address of other missing loads. For those cache misses that form multiple short memory

dependence chains, either large instruction windows [34],[39] or the address prediction

based memory prefetching would be more effective, as we discussed in Chapter 5.

Secondly, in our proposed recovery-free value prediction scheme, a prediction is

made only after the instruction is fetched, and the prediction is consumed only when the

dependent instructions are in the instruction window. This implies that the earliest time

for a speculative load to be executed is after the load instruction is dispatched into the

instruction window. It limits the capability to explore the far-flung MLP even when the

correct prediction can be made. Experiments in Section 6.3 show the performance impact

114

of using a large instruction window to bring in instructions early into the instruction

window. Another interesting way to explore the distant MLP is to combine our approach

with run-ahead execution [18],[57] to pre-execute/prefetch both independent and

dependent memory accesses.

6.8 Summary

In this chapter, we advocate using value prediction to enhance MLP for memory

intensive benchmarks with heavy pointer chasing. As current microprocessors can

execute instructions very fast as long as long memory latency operations, such as cache

misses, are not involved, we propose to use value prediction only for data prefetching so

that complex prediction validation and misprediction recovery mechanisms are avoided

and only minor hardware changes are necessary. Also, the same hardware changes enable

aggressive memory disambiguation for prefetching.

We present our design of recovery-free value prediction based on a MIPS R10000

processor model, and the simulation results show that our technique enhances MLP

effectively for a range of memory-intensive benchmarks and achieves significant

speedups.

 As pointed out in [1], only a few static load instructions are responsible for the

majority of dynamic cache misses. So, it would be very interesting to tune the value

predictor to predict only the values leading to the address computation of these load

instructions. This would further reduce the hardware overhead and the power

consumption overhead due to useless speculation (i.e., the speculation not leading to

useful prefetch). Also, in our implementation of recovery-free value prediction,

115

speculative loads are treated the same way as normal loads though their purpose is to

prefetch. So, one way to reduce the cache pollution effect is to store the prefetched data

block in the LRU entry and inherit the LRU instead of treating the data as MRU.

 In the current implementation of recovery-free value prediction, we prohibit the

speculative execution of store and branch instructions. Previous studies [25],[29] show

that value prediction can also be used to improve branch prediction results. So, one

interesting way to extend recovery-free value prediction is to selectively perform

branches during the speculative execution to explore the control speculation effect.

116

Chapter 7 Conclusion and Future

Directions

In this dissertation, we investigate both compiler and microarchitecture design

techniques to achieve performance improvement. In order to evaluate the performance

impact efficiently, a set of performance bounds are proposed based on different workload

characteristics and different target microarchitectures.

For ILP dominated workloads, we propose a low complexity, bound-guided

approach to systematically regulate code size related ILP optimizations during code

compilation. Such a bound-guided approach captures the performance impact as well as

the overhead in static code size increase of an optimization using a concept called code

size efficiency. Based on their efficiencies, the ILP optimizations are performed

selectively so that performance is highly improved at a minor cost in static code size

increase. The ‘90/10’ rule and the dependence height reduction impact, embodied in the

definition of code size efficiency, result in a very interesting diminishing return

phenomenon. Based on this phenomenon, we define an optimal trade-off between the ILP

improvement and the static code size increase and develop a very simple threshold

scheme to achieve this optimum. The experimental results using the SPEC 2000 INT

117

benchmark suite validate our proposed techniques and show significant speedups with

little code size increase from the selectively performed ILP optimizations. A similar

approach is also developed for real-time systems to reduce the WCET effectively.

For memory-intensive workloads, our focus is to improve MLP as memory

accesses consume the majority of the overall execution time. We first perform

performance modeling using performance bounds to evaluate two well-known latency

hiding techniques. With the key insight revealed from the modeling, we propose a cost-

effective approach, namely recovery-free value prediction, to enhance MLP for memory

intensive workloads with heavy pointer chasing. In this scheme, both true memory

dependency and alias dependency are broken speculatively and the speculation is only

used for prefetching. As a result, such speculation achieves an effect similar to pre-

execution to warm up the data cache, and therefore is recovery-free. The experiments

show that the proposed technique improves MLP effectively and achieves impressive

speedups for the target memory–intensive workloads.

The work in this dissertation can be extended in following directions.

• The profile guided performance bounds rely on accurate edge profiling

information to reveal which part of the program is most frequently

executed (or hot spots). It would be very interesting to investigate how

much the performance gains achieved using our proposed scheme are

affected by profile variation. Also, it is interesting to see whether and how

our proposed scheme benefits from techniques such as dynamic

118

compilation and hot spot identification to exploit the more accurate timing

profile information.

• Performance bounds are a very useful concept. We use them in computing

the code size efficiency to achieve a good tradeoff between performance

improvement and static code size increase. A similar idea can be used for

other design trade-off evaluations. One good direction is power/energy

consumption and the performance improvement due to different kinds of

speculation.

• In our study of compilation for real-time applications, we use selected

benchmarks from the SPEC 2000 INT suite and the MiBench suite.

However, these benchmarks are not designed for real-time application

purposes, e.g., there is no information on execution deadlines. There are

benchmarks developed for static WCET analysis, such as C-Lab [80]. But,

these benchmarks are very simple in terms of code structures and

workload characteristics. Considering the current trend in real-time

processing, such as video and audio processing, a more complete

benchmark suite based on practical workloads would benefit future work

in this area.

• Our analytical model in Chapter 5 showed that prefetching is more

effective in short memory dependence chains while value prediction has

better potential in long memory dependence chains. It would be very

interesting to integrate these two schemes, using either the compiler or

some adaptive hardware to further improve memory latency hiding.

119

• Recovery-free value prediction has an effect similar to pre-executing

dependent instructions of the cache-missing loads while runahead

execution pre-executes independent instructions to warm the caches.

Promising results can be expected from combining these two techniques.

• Currently proposed recovery-free value prediction has low hardware

overhead but has relatively large overhead in terms of speculatively

executed instructions. As pointed out before, a few static load instructions

are responsible for a majority of dynamic cache misses. We can tune the

value predictor to predict only those values that lead to the address

computation of these static loads. Such selective recovery-free value

prediction also reduces the hardware overhead due to the value prediction

table.

• In addition to the memory wall problem, control dependence presents

another great challenge for current microprocessor design. As value

prediction is shown to be effective in improving branch prediction results,

a very interesting extension to recovery-free value prediction is to explore

its effect on control speculation.

120

Chapter 8 Bibliography

[1] S. G. Abraham, R. A. Sugumar, D. Windheiser, B. R. Rau, and R. Gupta,

“Predictability of load/store latencies”, Proceeding of the 26th International

Symposium on Microarchitecture (MICRO-26), 1993.

[2] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren, “Conversion of control

dependence to data dependence”, Proceeding of 10th ACM Symposium on

Principles of Programming Languages, 1983.

[3] A. Anantaraman, K. Seth, K. Patil, E. Rotenberg, and F. Mueller. "Virtual Simple

Architecture (VISA): Exceeding the Complexity Limit in Safe Real-Time Systems".

Proceeding of the 30th International Symposium on Computer Architecture (ISCA-

30), June 2003.

[4] D. I. August, W. W. Hwu, and S. A. Mahlke, “A framework for balancing control

flow and predication”, Proc. 30th Ann. Int’l Symp. Microarchitecture (MICRO30),

1997.

[5] M. Bekerman, S. Jourdan, R. Ronen, G Kirshenboim, L. Pappoport, A. Yoaz, and

U. Weiser, “Correlated Load-Address Predictors”, Proceeding of the 26th

International Symposium on Computer Architecture (ISCA-26), 1999.

[6] D. Bernstein, D. Cohen, and H. Krawczyk, "Code Duplication: An Assist for Global

Instruction Scheduling", Proc. 24th Ann. Int’l Symp. Microarchitecture

(MICRO24), 1991.

121

[7] J. Bharadwaj, K. Menezes, and C. McKinsey, “Wavefront scheduling: path based

data representation and scheduling of subgraphs”, Proc. 32nd Ann. Int’l Symp.

Microarchitecture (MICRO32), 1999.

[8] E. L. Boyd, “Performance evaluation and improvement of parallel applications on

high performance architectures”, Ph.D. thesis, University of Michigan, 1995.

[9] E. Boyd, W. Azeem, H. Lee, T. Shih, S. Hung, and E. Davison, “A hierarchical

pproach to modeling and improving the performance of scientific applications on

the KSR1”, Proc. Of the 1994 Int’l. Conf. On Parallel Processing, 1994.

[10] D. Burger and T. Austin, “The SimpleScalar tool set, v2.0”, Computer Architecture

News (ACM SIGARCH newsletter), vol. 25, June 1997.

[11] B. Calder and G. Reinman, “A comparative survey of load speculation

architecures”, Journal of Instruction-Level Parallelism, 2000.

[12] M. Carlisle, “Olden: parallelizing programs with dynamic data structures on

distributed-memory machines”, Ph.D. thesis, Princeton University Computer

Science Department, 1996.

[13] K. Chen, S. Malik, and D. August, “Retargetable static timing analysis for

embedded software”, Int’l Symp. on System Synthesis (ISSS’01), 2001.

[14] T. F. Chen and J. L. Baer, “Reducing memory latency via non-blocking and

prefetching caches”, In Proc. of the 5th Int’l Conf. on Architectural Support for

Programming Languages and Operating Systems, 1992.

[15] Y. Choi, A. Knies, L. Gerke, and T. Ngai, “The impact of If-conversion and branch

prediction on program execution on the Intel Itanium processor”, Proc. 34th Ann.

Int’l Symp. Microarchitecture (MICRO34), 2001.

[16] J. D. Collins, H. Wang, D. Tullsen, C. Hughes, Y.-F. Lee, D. Lavery, and J. P.

Shen, “Speculative precomputation: long-range prefetching of delinquent loads”,

Proceeding of the 28th International Symposium on Computer Architecture (ISCA-

28), 2001

[17] R. Cooksey, S. Jourdan, and D. Grunwald, “A stateless, content-directed data

prefetching mechanism”, Proceeding of the 10th International Conference on

Architectural Support for Programming Languages and Operating Systems

(ASPLOS-X), 2002.

122

[18] J. Dundas, and T. Mudge, “Improving data cache performance by pre-executing

instructions under a cache miss”, Proceeding of the 1997 International Conference

on Supercomputing, 1997.

[19] A. E. Eichenberger and W. M. Meleis, “Balance Scheduling: Weighting Branch

Tradeoffs in Superblocks”, Proc. 32nd Ann. Int’l Symp. Microarchitecture

(MICRO32), 1999.

[20] C. Fu, “Compiler driven value speculation scheduling”, Ph.D. thesis. ECE

Department, N. C. State University, 2001.

[21] F. Gabbay and A. Mendelson, “Speculative execution based on value prediction,”

EE Department Tech Report 1080, Tachnion - Israel Institute of Technology, Nov.

1996.

[22] R. Gerber and S. Hong, “Compiling real-time programs with timing constraint

refinement and structural code motion”, IEEE Trans. on Software Engineering, Vol.

21, No. 5, May 1995.

[23] R. Gerber and S. Hong, “Slicing real-time programs for enhanced schedulability”,

ACM Trans. on Programming Language and Systems, Vol. 19, No. 3, 1997.

[24] J. Gonzalez and A. Gonzalez, “Speculative execution via address prediction and

data prefetching”, Proceeding of the 1997 International Conference on

Supercomputing, 1997.

[25] J. Gonzalez and A. Gonzalez, “Control-Flow Speculation through Value Prediction

for Superscalar Processors”, Proc. of the 1999 Conf. On Parallel Architectures and

Compilation Techniques (PACT’99), 1999.

[26] P. Gopinath and R. Gupta, “Applying compiler techniques to scheduling in real-

time systems”, Proc. of the 11th IEEE Real-Time Systems Symposium (RTSS), 1990.

[27] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, R. Brown, “MiBench: a

free, commercially representative embedded benchmark suite”, 2001 IEEE Int’l

Workshop on Workload Characterization (WWC-4), 2001.

[28] W.A. Havanki, S. Banerjia, and T. M. Conte. “Treegion scheduling for wide-issue

processors.” Proceedings of the 4th International Symposium on High-Performance

Computer Architecture (HPCA-4), February 1998.

123

[29] T. Heil, Z. Smith, and J. E. Smith, “Improving branch predictors by correlating on

data values”, in 32nd International Symposium on Microarchitecture (MICRO-32),

1999.

[30] J. Henning, “SPEC2000: measuring CPU performance in the new millennium”,

IEEE Computer, July 2000.

[31] W.W. Hwu, S.A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bringmann,

R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M.

Lavery. “The Superblock: An effective way for VLIW and superblock

compilation.” The Journal of Supercomputing, vol. 7, pp. 229-248, January 1993.

[32] Intel Corp, IA-64 Application Developer’s Architecture Guide, 2000.

[33] D. Joseph and D. Grunwald, “Prefetching using Markov Predictors”, IEEE

Transactions on Computers. Vol. 48, Feb 1999.

[34] T. Karkhanis and J. Smith, “A Day in the Life of a Cache Miss”, Proceeding of the

2nd Annual Workshop on Memory Performance Issues (WMPI 2002), 2002.

[35] V. Kathail, M. S. Schlansker, and B. R. Rau, “HPL-PD architecture specification:

version 1.1.” Tech. Rep. HPL-93-80 (R.1), Hewlett--Packard Laboratories,

February 2000.

[36] T. Kisuki, P.M.W. Knijnenburg, and M.F.P. O’Boyle, “Combined Selection of Tile

Sizes and Unroll Factors Using Iterative Compilation”, Proc. of the 2000 Conf. On

Parallel Architectures and Compilation Techniques (PACT’00), October 2000.

[37] M. Langevin and E. Cerny, “A recursive technique for computing lower bound

performance of schedules”, IEEE International Conference on Computer Design

(ICCD), 1993.

[38] D. M. Lavery and W W. Hwu, “Unrolling-based optimizations for modulo

scheduling”, Proc. 28th Ann. Int’l Symp. Microarchitecture (MICRO28), 1995.

[39] A. R. Lebeck, J. Koppanalil, T. Li, J. Patwardhan, and E. Rotenberg, “A large, fast

instruction window for tolerating cache misses”, Proceeding of the 29th

International Symposium on Computer Architecture (ISCA-29), 2002.

[40] S. Lee and P. Yew, “On some implementation issues for value prediction on wide

ILP processors”, Proceeding of the International Conference on Parallel

Architectures and Compilation Techniques (PACT'00), 2000.

124

[41] The LEGO Compiler. Available for download at

http://www.tinker.ncsu.edu/LEGO.

[42] A. Leung, K. Palem, and A. Pnueli, “A fast algorithm for scheduling time-

contrained instructions on processors with ILP”, Proc. Of the 1998 Conf. On

Parallel Architectures and Compilation Techniques (PACT’98), 1998.

[43] M. H. Lipasti and J. P. Shen, “Exceeding the dataflow limit via value prediction,”

Proceeding of the 29th International Symposium on Microarchitecture (MICRO-29),

1996.

[44] M.H. Lipasti, C. B. Wikerson and J. P. Shen, “Value locality and load value

prediction,” Proceeding of the 7th International Conference on Architectural Support

for Programming Language and Operation Systems (ASPLOS-7), Oct, 1996.

[45] J. W. S. Liu, Real-Time Systems, Prentice Hall, Upper Saddle River, New Jersey,

2000.

[46] J. W. S. Liu, K. J. Lin, C. L. Liu, and C.W. Gear, “Research on Imprecise

Computations in Project Quartz”, Proceedings of the 1989 Workshop on Operating

Systems for Mission Critical Computing, 1989.

[47] C. K. Luk, “Tolerating memory latency through soft-ware-controlled pre-execution

in simultaneous multithreading processors”, Proceeding of the 28th International

Symposium on Computer Architecture (ISCA-28), 2001.

[48] T. Lundqvist and P. Stenstrom, “An integrated path and timing analysis method

based on cycle-level symbolic execution”, Real-Time Systems, 17(2/3): 183-207,

1999.

[49] S. A. Mahlke, “Exploiting instruction level parallelism in the presence of branches”,

PhD thesis, ECE Department, Univ. of Illinois at Urbana-Champaign, 1996.

[50] S. A. Mahlke, R. E. Hank, R. A. Bringmann, J. C. Gyllenhaal, D. M. Gallagher, and

W. W. Hwu, “Characterizing the impact of predicated execution on branch

prediction”, Proc. 27th Ann. Int’l Symp. Microarchitecture (MICRO27), 1994.

[51] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann “Effective

compiler support for predicated execution using the Hyperblock” Proc. 25th Ann.

Int’l Symp. Microarchitecture (MICRO25), December 1992.

http://www.tinker.ncsu.edu/LEGO

125

[52] W. Mangione-Smith, “Performance.bounds and buffer space requirements for

concurrent processors”, Ph.D. thesis, University of Michigan, 1992.

[53] Bill Mangione-Smith, “Performance Bounds for Rapid Computer System

Evaluation”, Fast Simulation of Computer Architectures, edited by Thomas M.

Conte and Charles E. Gimarc, Kluwer Academic Publishers, 1995.

[54] W. Mangione-Smith, S. Abraham, and E. Davison, “The effects of memory latency

and fine-grain parallelism on Astronautics ZS-1 performance”, Proc. of the 23rd

Annual Hawaii Int’l Conf on System Science, 1990.

[55] S. Mantripragada and A. Nicolau, “Using profiling to reduce branch misprediction

costs on a dynamically scheduled processor”, Proceedings of International

Conference on Supercomputing (ICS), 2000.

[56] F. Mueller and D. B. Whalley, "Avoiding Conditional Branches via Code

Replication", ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI-1995), June 1995.

[57] O. Mutlu, J. Stark, C. Wilkerson, and Y. Patt, “Runahead execution: an alternative

to very large instruction windows for out-of-order processors”, Proceeding of the

9th International Symposium on High Performance Computer Architecture (HPCA-

9), 2003.

[58] J. C. Park and M. S. Schlansker, “On predicated execution”, Tech. Rep. HPL-91-58,

Hewlett--Packard Laboratories, 1991.

[59] B. R. Rau, “Iterative Module Scheduling”, Tech. Rep. HPL-94-115, Hewlett-

Packard Laboratories, 1995.

[60] M. Rim and R. Jain, “Lower-bound performance estimation for high-level synthesis

scheduling problem”, IEEE Trans. on CAD of Integrated Circuits and Systems,

13(4), 1994.

[61] E. Rotenberg, S. Bennett, and J. E. Smith. "Trace Cache: A Low Latency Approach

to High Bandwidth Instruction Fetching", Proceeding of the 29th International

Symposium on Microarchitecture (MICRO-29), 1996.

[62] A. Roth and G. Sohi, “Speculative data driven multithreading”, Proceeding of the

7th International Symposium on High Performance Computer Architecture (HPCA-

7), 2001.

126

[63] V. Sarkar, “Optimized Unrolling of Nested Loops”, Proceedings of International

Conference on Supercomputing (ICS), 2000.

[64] Y. Sazeides and J. E. Smith, “The predictability of data values,” Proceeding of the

30th International Symposium on Microarchitecture (MICRO-30), Nov. 1997.

[65] M. S. Schlansker and B. R. Rau. “EPIC: An architecture for instruction-level

parallel processors” Tech. Rep. HPL-99-111, Hewlett--Packard Laboratories,

February 2000.

[66] E. Sprangle and D. Carmean, “Increasing processor performance by implementing

deeper pipelines”, Proceedings of the 29th International Symposium on Computer

Architecture (ISCA-29), 2002.

[67] J. Tang and E. Davison, “An evaluation of Cray-1 and Cray-X-MP performance on

vectorizable Livermore Fortran kernels”, Proc. of Int’l Conf. On Supercomputing,

July 1988.

[68] K. Wang and M. Franklin, “Highly accurate data value prediction using hybrid

predictors,” Proceeding of the 30th International Symposium on Microarchitecture

(MICRO-30), Nov. 1997.

[69] P. H. Wang, H. Wang, J. D. Collins, E. Grochowski, R. M. Kling, and J. P. Shen,

“Memory latency-tolerance approaches for Itanium processors: out-of-order

execution vs. speculative precomputation”, Proceeding of the 8th International

Symposium on High Performance Computer Architecture (HPCA-8), 2002.

[70] H. Wu and J. Joxan, “An efficient algorithm for scheduling instructions with

deadline constraints on ILP processors”, Proc. of the 22nd IEEE Real-Time Systems

Symposium (RTSS), 2001.

[71] Y. Wu, “Efficient discovery of regular stride patterns in irregular programs and its

use in compiler prefetching”, Proceeding of the ACM 2002 Conference on

Programming Language Design and Implementation (PLDI-2002), 2002.

[72] Y. Wu and J. Larus, “Static branch frequency and program profile analysis”, Proc.

27th Ann. Int’l Symp. Microarchitecture (MICRO27), 1994.

[73] K. C. Yeager, “The MIPS R10000 superscalar microprocessor”, IEEE Micro, 1996.

127

[74] H. Zhou, J. Bodine, and T. Conte, “Detecting global stride localities in value

streams”, Proceeding of the 30th International Symposium on Computer

Architecture (ISCA-30), 2003.

[75] H. Zhou and T. M. Conte, “Code size efficiency in global scheduling for ILP

processors”, 6th workshop on Interaction between Compilers and Computer

Architecture (INTERACT-6), Feb. 2002.

[76] H. Zhou and T. M. Conte, “Enhancing memory level parallelism via recovery-free

value prediction”, Proceedings of 2003 International Conference on

Supercomputing (ICS), 2003.

[77] H. Zhou, C. Fu, E. Rotenberg, and T. Conte, “A study of value speculative

execution and misspeculation recovery in superscalar microprocessors”, Technical

Report, ECE Department, N. C. State University, Jan., 2001.

[78] H. Zhou, M. Jennings, and T. M. Conte. “Tree Traversal Scheduling: A Global

Scheduling Technique for VLIW/EPIC Processors”. Proceedings of the 14th Annual

Workshop on Languages and Compilers for Parallel Computing (LCPC'01), LNCS,

Springer Verlag, 2001.

[79] C. Zilles and G. Sohi, “Execution-based prediction using speculative slices”,

Proceeding of the 28th International Symposium on Computer Architecture (ISCA-

28), 2001.

[80] “C-lab: WCET benchmarks”, http://www.c-lab.de.

http://www.c-lab.de

128

 Appendix A

The first derivative of the IPC over relative code size increase ratio can be derived

as following:

() ()
()

() absolutestatic

static

staticabsolute

dynamic

relative

dynamic

relative

static

dSize
LBETd

ICLBET
IPC

ICSized
dLBETLBETIC

dSize
LBETICd

dSize
dIPC

)(

2

−
∗=

−
==

 Equation a-1

where the term ICdynamic is the effective dynamic (retiring) operation count of the

program and it remains unchanged in spite of further code optimizations. The term LBET

is the lower bound of execution time of the program level. The ratio of these two terms is

IPCstatic representing the ILP features of the original program. The term ICstatic represents

original program size in terms of the operation count and sizeabsolute is the program size in

terms of the operation count after performing code size increase optimizations. So, the

term dSizeabsolute represents the static code size increase due to those optimizations.

If we want to set the threshold as KdSizedIPC relative ≥ , we then have:

staticstaticabsolute ICIPC
LBETK

dSize
LBETd

∗
∗

≥
−)(Equation a-2

which is the same as Equation 3-4. Here, we use the ratio of absolute IPC changes

over relative code size changes as the code size efficiency. If we want to use the ratio of

the relative IPC change (i.e., the speedup) over relative code size increase as the

efficiency, the IPCstatic factor will disappear in Equations a-1 and a-2.

