
ABSTRACT

Yu, Xinying. Space-Time Coding for Large Antenna Arrays. (Under the direction of

Professor Brian L. Hughes.)

Multiple-input multiple-output (MIMO) systems can greatly improve the capac-

ity and performance of wireless communications. In particular, space-time coding

techniques have received much attention in recent years as an efficient approach to

achieving the performance gains offered by MIMO channels. Thus far, most work on

space-time coding has focused on systems with small antenna arrays or high signal-

to-noise ratios (SNRs), for which it has been shown that codes should be designed

according to the rank and determinant criteria. For such scenarios, coherent space-

time coding and differential space-time modulation (DSTM) schemes have been de-

signed, for systems with or without channel knowledge at the receiver, respectively.

In recent years, there has been some work on coherent space-time coding for large

arrays, which indicates that the code design metric should be chosen diffently from

that for small arrays. In this dissertation, we study the design of space-time coding

for large arrays. We focus on three aspects: performance analysis, code construction

and decoding algorithms.

We first analyze the asymptotic performance of differential space-time modulation.

A new upper bound on the pairwise-error probability is derived for large arrays. This

bound suggests that Euclidean distance is an appropriate design criterion for DSTM

with large numbers of antennas, which is similar to the design of coherent space-time

coding for the large-array regime. For two transmit antennas and four or more receive

antennas, we use the new design criterion to obtain several new unitary codes with

large minimum Euclidean distance. The proposed codes outperform some existing

codes, for example, the well-known Alamouti code, for large receive arrays.

Although the codes designed according to the new design criterion achieve good



performance, most of them require maximum-likelihood (ML) decoding, which is

undesirable for high-rate codes. On the other hand, the Alamouti code, which is

designed for high-SNR regime, enables simple linear ML decoding. It is of interest to

design codes that perform well for large arrays, but which also allow simple decoding

at the receiver. We first consider the design of unitary codes, for use with and without

channel knowledge at the receiver. For two transmit antennas, we consider a structure

which is a modification of the Alamouti code. We optimize the new code with respect

to the Euclidean distance criterion. We then show that the new code allows us to use

two suboptimal decoders that have complexity comparable to the Alamouti decoder.

The analytical bit-error performance and the constellation-constrained capacity are

derived for the suboptimal decoders. For coherent detection, the coding structure is

extended to non-unitary constellations. We also extend the new code to more than

two transmit antennas.

Conventional DSTM assumes that the channel remains constant for two adjacent

transmission blocks, which is questionable for some time-varying channels. In this

dissertation, we investigate the performance of the new code when fast-fading is

encountered. We show that multiple-symbol decision-feedback differential detection

(DFDD) can be used to reduce the performance degradation of the new code in fast-

fading channels. We also consider the use of suboptimal decoders in DFDD to further

reduce the decoding complexity.
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Chapter 1

Introduction

1.1 Introduction

Wireless communications began in 1897, when Guglielmo Marconi first demon-

strated the ability of electromagnetic waves to provide continuous contact with ships

sailing the English Channel. Since then, wireless communications have experienced a

remarkable evolution. In the last decade, wireless communication has grown tremen-

dously, driven by high demand for cellular telephony and wireless access to the In-

ternet. Currently, the telecommunications industries are deploying third generation

(3G) cellular systems worldwide and new technologies are under development for

next-generation wireless systems (4G). To meet the growing demand for high data-

rate transmission, multimedia communications, seamless global roaming and quality

of service management, future wireless systems will require more bandwidth-efficient

communications techniques.



2

It is well known that wireless communication systems are constrained in both

power and bandwidth. In addition, the wireless channel can be a dynamic and chal-

lenging communications medium. Due to the propagation effects such as diffraction,

scattering and reflection, the transmitted signal will propagates to the receiver by a

number of paths referred as multipaths, each with a distinct, time-varying amplitude,

phase and angle of arrival. These multipath signals can add constructively or destruc-

tively at the receiver, which results in signal fading. Multipath fading deteriorates

the link quality and can significantly increase the power required to achieve reliable

communication.

Diversity has long been used as an efficient technique to combat multipath fading

and improve the performance of wireless communication systems [31]. Diversity tech-

niques provide the receiver with differently-attenuated copies of the same transmitted

signal, thereby reducing the fluctuations caused by fading. Diversity can be achieved

in time, frequency, space, polarization or angle. For example, channel coding with

interleaving can be used to exploit temporal diversity, RAKE receivers with code-

division multiple-access (CDMA) systems can be used to exploit frequency diversity

and multiple receive antennas can be used to access spatial diversity. Since time or

frequency diversity methods require additional transmission time or extra bandwidth,

in recent years there is more interest on spatial diversity using multiple antennas.

Traditionally, most spatial diversity schemes in wireless communication systems

have been based on receiver antenna arrays, which are referred to as single-input

multiple-output (SIMO) systems. The capacity of a SIMO system increases loga-
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rithmically with the number of antennas. Recently, it has been demonstrated that

deploying multiple antennas at the transmitter as well as the receiver can result in

far greater performance gains in wireless communications. In particular, Foschini and

Gans [14] and Telatar [58] have demonstrated that employing multiple transmit and

receive antennas can substantially improve the capacity of multipath fading channels.

This result opens up a new approach to meeting the growing demand for high-data-

rate cellular systems and has led to significant research efforts devoted to developing

techniques that can achieve in practical communication systems.

One promising technique for multiple-antenna systems is called space-time coding.

In space-time coding, the signal processing at the transmitter is done not only in

the time dimension, as is typical of many single-antenna communication systems, but

also in the spatial dimension. The idea of space-time coding was initially proposed by

Tarokh, Seshadri and Calderbank [55]. Most early work on space-time coding assumes

coherent detection, in which perfect channel-state information (CSI) is available at

the receiver. Under quasi-static fading conditions with high signal-to-noise ratios

(SNRs), [55] proposed the well-known rank and determinant criteria, which indicates

that codes should be designed to have full diversity and a large product distance. In

particular, Alamouti [2] proposed a simple space-time block code for two transmit

antennas which achieves full diversity with simple linear decoding at the receiver.

Coherent detection requires channel estimation using training symbols, which may

be costly or undesirable in some situations, such as fast-fading channels. For situ-

ations where the channel is unknown at the receiver, Hochwald and Marzetta [23]
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proposed the use of unitary space-time block codes, in which the signals transmitted

by different antennas are mutually orthogonal. Based on unitary space-time mod-

ulation, a transmission scheme that is better tailored for systems with no channel

information at both the transmitter and the receiver is proposed by Tarokh and Ja-

farkhani [57], Hughes [26] and Hochwald and Sweldens [24], which is called differential

unitary space-time modulation (DSTM). For high SNRs, code design for DSTM is

also governed by the rank and determinant criteria.

Most work on coherent or differential space-time modulation assumes high SNRs,

which is necessary in order to achieve acceptable performance for a system equipped

with small number of antennas. For systems with large numbers of antennas, however,

the SNR of interest often falls into low SNR regime. For such scenarios, it has been

reported by Biglieri et al. [4], Yuan et al. [69] and Aktas et al. [1] that Euclidean

distance between codewords is often a better indicator of code performance. In this

dissertation, we will study the design of space-time coding for large antenna arrays.

In the rest of this chapter we will give an overview of multiple-antenna systems

and an outline of the dissertation.

1.2 Multiple-Antenna Systems

In this section, we briefly describe the characteristics of wireless fading channels

with emphasis on Rayleigh fading. The diversity techniques commonly used in wire-

less systems are summarized. We then introduce multiple-antenna systems and give

a review of coherent and differential space-time modulation.
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1.2.1 Wireless Channel Characteristics

Wireless communication suffers from inherent channel impairments which arise

from the physical propagation environment and which can severely degrade system

performance. As shown in Fig. 1.1, in a wireless environment, the surrounding ob-

jects, such as mountains, buildings, trees and houses, cause reflection, diffraction and

scattering of the transmitted signal. Due to these effects, the transmitted electromag-

netic wave travels along different paths of varying lengths and therefore have different

amplitudes, phases, delays and angles of arrival. At the receiver, the destructive in-

Building 2

Receiver

Building 1

Transmitter

Figure 1.1: Multipath fading

teraction between these wave components causes multipath fading, and the power of
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the waves decrease as the distance between the transmitter and receiver increases.

Typically, propagation models are classified into two categories. Propagation models

that predict the mean signal strength at a given distance from the transmitter are

called large-scale propagation models, since they characterize signal strength over

large transmitter-receiver distances (usually a few kilometers). On the other hand,

small-scale or fading models are used to characterize the rapid fluctuations of the

received signal strength over very short distances or short time durations, where the

received power sometimes varies as much as 30 to 40 dB when the receiver moves

only a fraction of a wavelength [43].

The statistical characteristics of fading channels are determined by many factors,

such as multiple-path propagation, the relative speed of the transmitter and receiver,

the speeds of surrounding objects, and the transmission bandwidth of the signal [43].

The mobile radio channel may be modeled as a linear filter with a time-varying im-

pulse response, where the time variation is due to motion of the transmitter, receiver

or scatterers. The filtering nature of the channel is caused by the summation of am-

plitudes and delays of the multiple arriving waves at any instant of time. A discrete

model for a channel with L taps can be expressed as

y(n) =
L−1∑

l=0

h(n; l)x(n− l) + z(n)

where x(n) is the transmitted signal, y(n) is the received signal, h(n; l) is the response

at time n of the time-varying channel if an impulse is sent at time n−l and z(n) is the

noise [41]. Two common parameters associated with fading channels are the coherence

bandwidth which is the range of frequencies over which two frequency components
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have a strong potential of amplitude correlation and the coherence time which refers

to the time rate of change of the channel characteristics [43].

Multipath propagation delays in a fading channel can cause time dispersion.

Time domain parameters for multipath fading such as root-mean-square (RMS) delay

spread are derived from the power-delay profile. Coherence bandwidth is inversely

proportional to the RMS delay spread, which characterizes the channel in the fre-

quency domain. In narrowband systems, the bandwidth of the transmitted signal is

smaller than the channel’s coherence bandwidth and the multipath components often

arrive at the receiver within a small fraction of the symbol duration. This type of

fading is called frequency-nonselective or flat fading. In wideband systems, by con-

trast, the multipath delay spread is larger than the symbol duration, resulting in

frequency-selective fading. In such cases, the spectrum of the channel varies over the

signaling bandwidth, which leads to inter-symbol interference between transmitted

signals [32].

In many situations, there is relative motion among the transmitter, receiver and

scatterers. This leads to frequency spreading of the transmitted signal, called Doppler

spreading, which causes signal fading to vary with time. Here spread is used to denote

the fact that a pure tone of frequency fc in Hertz spreads across a finite bandwidth

fc±fd. The Maximum Doppler shift of the received signal is denoted by fd and given

by

fd =
νfc

c
(1.1)

where ν is the velocity of the moving object and c is the speed of light. The time
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autocorrelation of the flat fading channel h(t) is approximated by Jakes’ model [31]

r(τ) = E [h(t)h(t + τ)∗] = J0(2πfdτ) (1.2)

where J0(·) is the zeroth order modified Bessel function of the first kind. Its Fourier

transform is the Doppler power spectrum. The channel coherence time is related to

the RMS bandwidth fRMS of the Doppler power spectrum as

Tc ≈ 1

fRMS

If the coherence time is large compared to the symbol duration, the channel can be

assumed to be static over several symbols, which is referred as slow fading. Otherwise,

the channel is regarded as fast fading [32].

In a typical land-mobile-radio channel, it is often assumed that there is no direct

line-of-sight (LOS) wave and the receiver obtains only reflected waves. Since the

fading is a superposition of a large number of independent scattered components, by

the central limit theorem, the components of the received signal can be assumed to

be independent Gaussian processes with mean zero and variance σ2. As a result,

the envelope of the received signal at any time instant has a Rayleigh distribution

and its phase is uniform between −π and π. Therefore, in mobile radio channels,

the Rayleigh distribution is commonly used to describe the statistical time-varying

nature of the received envelope of a flat-fading signal, or the envelope of an individual

multipath component. The Rayleigh distribution has a probability density function
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(pdf) given by

p(r) =





r
σ2 exp

(
− r2

2σ2

)
, 0 ≤ r ≤ ∞

0, r < 0

where 2σ2 is the mean power of the multipath signal. If there is a direct (LOS) path

wave, the signal envelope is no longer Rayleigh and the distribution of the signal is

Ricean [43].

1.2.2 Diversity Techniques

Multipath fading impairs the wireless channel and gives rise to higher bit-error

rates. Channel impairments can be reduced by introducing redundancy into the

system. One widely-employed method to overcome this performance degradation in

a fading channel is the use of diversity. The basic idea of diversity is that, if several

independent fading copies of a signal are detected at the receiver, the probability that

all of the copies fade simultaneously is very small. Thus, properly combining these

independently fading copies can greatly reduce the severity of fading and improve

reliability of transmission. The most common forms of diversity employed in mobile

radio communications are time diversity, frequency diversity and space diversity [43]:

Time Diversity: In this case identical messages are transmitted in different time

slots, ideally with separation between replicas exceeding the coherence time of the

channel. Time diversity has been traditionally achieved through the use of error-

control coding and interleaving, e.g., convolutional codes with interleaving. Due to

the redundancy introduced in the time domain, time diversity results in a loss in
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bandwidth efficiency.

Frequency Diversity: This type of diversity provides replicas of the original signal

in the frequency domain. This is applicable in cases where the coherence bandwidth

of the channel is small compared to the bandwidth of the signal [32]. Frequency di-

versity has usually been provided by spread spectrum such as direct-sequence spread-

spectrum (DSSS)and frequency hopping (FH). More recently, frequency diversity can

also be provided by multicarrier modulation methods, such as orthogonal frequency

division multiplexing (OFDM). Similar to time diversity, frequency diversity induces

a loss in bandwidth efficiency due to the redundancy introduced in the frequency

domain.

Space Diversity: Space diversity is also called antenna diversity and it is an effec-

tive method for combating multipath fading. It is typically implemented using mul-

tiple antennas or antenna arrays arranged together in space for transmission and/or

reception [61]. The multiple-antennas are separated by a sufficient distance to allow

the signal replicas to undergo independent fading. Unlike time and frequency diver-

sity, space diversity does not result in a loss of bandwidth efficiency, which makes it

very attractive for high-data-rate wireless communications.

Depending on whether multiple antennas are used for transmission or reception,

space diversity can be classified into two categories: receive diversity and transmit

diversity. Receive diversity has been widely used in the uplink of cellular communi-

cation systems, with multiple antennas at the base station to pick up independent

copies of the transmitted signal. Receive diversity is characterized by the number of
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independent fading branches or paths. These paths are also known as the diversity

order and are equal to the number of receive antennas. The replicas of the transmit-

ted signals are properly combined to increase the overall receive SNR and mitigate

fading. There are many possible combining methods, including selection combining,

switching combining, maximum-ratio combining and equal-gain combining [43, 41].

Transmit diversity [47, 20], which uses multiple antennas at the transmitter, has

received less attention than receive diversity. Transmit diversity often requires more

signal processing at both the transmitter and the receiver. Because it is generally

harder for the transmitter to obtain information about the channel, transmit diver-

sity schemes are often more complex than receive diversity. But with the advent of

space-time coding schemes, discussed in the next section, it became possible to imple-

ment transmit diversity without knowledge of the channel. In recent years, one new

approach to space diversity has emerged which deploys multiple antennas at both the

transmitter and the receiver, leading to the so-called multiple-input multiple-output

(MIMO) systems.

It is well known that there is a trade-off between data rate and bit-error rate (BER)

performance. Channel capacity is defined as the maximum possible transmission rate

such that the probability of error can be made arbitrarily small by appropriate en-

coding and decoding. Shannon showed in his work on information theory [48] that

the capacity of a single-input single-output (SISO) channel perturbed by additive

white Gaussian noise (AWGN) is a function of the average received signal-to-noise

ratio and the bandwidth. In 1998 and 1999, Foschini and Gans [14] and Telatar [58]
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showed through information-theoretic results that MIMO systems can offer significant

capacity gains compared to the traditional SISO channel. For a Rayleigh flat-fading

channel with perfect channel information at the receiver, the capacity grows linearly

with the minimum of the number of transmit and receive antennas. When channel

state information is known at the transmitter, capacity can be increased by allocating

power according to the water filling principle, which assigns different power to the

eigenmodes of the channel. These results led to extensive research efforts to develop

coding and signal processing techniques that can approach the MIMO channel ca-

pacity. Examples of these efforts include spatial multiplexing to improve throughput

and space-time trellis and block codes to improve reliability.

One of the first MIMO architectures for high-speed wireless communications is

the BLAST (Bell-Labs Layered Space Time) system [13, 18], which employs multiple

antennas at both the transmitter and the receiver. In vertical-BLAST (V-BLAST),

the transmitted data is split equally among the t transmit antennas and simultane-

ously sent over the channel overlapping in time and frequency, then recovered using

suboptimal decoding at the receiver. The receiver has knowledge of the channel and

provides receive diversity. BLAST can greatly increase the system throughput with

no additional spectrum or power expenditure; however, it has two drawbacks. First,

it requires the number of receive antennas be equal to or larger than the number of

transmit antennas, which is not always feasible in practice. Second, the performance

of the suboptimal BLAST decoding algorithms is limited by error propagation.

An effective and practical way to approach the capacity of MIMO wireless chan-
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nel is to employ space-time coding, which is a joint design of error-control coding,

modulation, and transmit diversity. In the following, we will briefly review the work

on space-time coding.

1.2.3 Space-Time Coding

Space-time coding combines modulation, channel coding and antenna diversity. In

space-time coding, the signal is coded across both spatial and time domains to intro-

duce correlation between signals transmitted from various antennas at various time

periods. By doing this, both the data rate and the performance can be significantly

improved without sacrificing bandwidth. As a consequence, space-time coding has

attracted much attention from academic researchers and industrial engineers alike.

The idea of space-time coding was first proposed in [55] by Tarokh, Seshadri and

Calderbank. They proved that both diversity gain and coding gain can be obtained

simultaneously by employing space-time coding. In order to achieve the maximum

diversity advantage on quasi-static flat-fading channel, the difference matrix between

any two distinct code matrices among the code constellations has to be full rank.

In addition, the minimum determinant of the code difference matrices should be

maximized to achieve the maximum coding advantage. The maximum diversity order

is the product of the number of transmit and receive antennas. These two conditions

are the well-known rank-and-determinant design criteria. Based on these criteria,

several space time trellis-codes (STTC) have been designed by Tarokh et al. [55],

Baro et al. [3], Chen et al. [6] and Jafarkhani et al. [30] to improve the performance
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of wireless communication systems. While STTC provides good performance, for a

fixed number of transmit antennas, the decoding of it requires a vector form of Viterbi

decoder.

One of the most practically important space-time codes was proposed by Alam-

outi in [2], which is a space-time block code (STBC) for systems with two transmit

antennas. The Alamouti code is one of the most successful space-time codes be-

cause of its good performance and simple decoding algorithm. It has been adopted in

third generation cellular standards (e.g., CDMA 2000 [59] and WCDMA [63]). The

Alamouti code is a special case of orthogonal space-time codes and was later gener-

alized to any number of transmit antennas by Tarokh and Jafarkhani [56]. Full-rate

complex orthogonal space-time codes only exist for two transmit antennas. Orthog-

onal space-time block codes with rate 3/4 for three and four transmit antennas have

been proposed by Tarokh and Jafarkhani [56] and Tirkkone and Hottinen [60]. In

recent years, there is some alternative approach on the design of full-rate space-time

codes for more than two transmit antennas. Jafarkhani [28] proposed full-rate Quasi-

orthogonal codes for four transmit antennas, for which the decoding is done for pairs

of symbols. Gamal and Damen [15] proposed full-rate space-time block codes based

on algebraic number theories, which can use sphere decoding algorithms.

Thus far, most work on coherent space-time coding has focused on systems with

small antenna arrays or high SNRs. Recently there is some work on systems with

large numbers of antennas by Biglieri et al. [4], Yuan et al. [69] and Aktas et al.

[1], which suggests that Euclidean distance, rather than the rank and determinants,
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dominates the code performance for such scenarios. Some space-time trellis codes

have been proposed based on this Euclidean distance criterion by Yuan et al. [70].

Most of the work on space-time coding has assumed that the receiver has full

knowledge of the channel, so that coherent detection can be used. Normally, chan-

nel state information (CSI) is obtained through channel estimation using training

symbols which are embedded in the transmitted signal. However, channel estimation

introduces additional complexity. In addition, if the channel experiences fast fading,

channel estimation becomes more complex and may require too many training sym-

bols. In such situations, channel estimation may not be desirable. For situations

where the channel is unknown at the receiver, Marzetta and Hochwald [38], [22] and

Zheng and Tse [71] investigated the capacity-achieving space-time coding structure.

In [23], Hochwald and Marzetta proposed a coding approach for the unknown channels

called unitary space-time block codes, in which the signals transmitted by different

antennas are mutually orthogonal.

Based on unitary space-time modulation, differential unitary space-time modula-

tion (DSTM) was proposed by Tarokh and Jafarkhani [57], Hughes [26] and Hochwald

and Sweldens [24] independently for system with no CSI at both the transmitter and

the receiver. DSTM can be regarded as an extension of differential phase-shift keying

(DPSK) [41] to multiple-antenna systems. It has been shown in [26] and [24] that for

high SNRs, the code design for DSTM also follows the rank-and-determinant design

criteria as in the coherent detection case. However, lack of CSI at the receiver results

in approximately 3 dB performance loss for differential detection.
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Unitary group codes were considered in [26] and [24], for which the constellation

of matrices used for transmission forms a group under matrix multiplication. The

group designs simplified the analysis and makes modulation and demodulation much

more transparent. There is a simple, fast decoding algorithm for diagonal group codes

proposed by Clarkson et. al [7]. Further results on group codes have been presented

by Shokrollahi et al. [50], Hughes [27] and Jing and Hassibi [33]. The disadvantages

of group codes are that the number of groups available is rather limited, and groups

do not lend themselves to very high rates with many antennas.

Tarokh and Jafarkhani proposed a differential modulation scheme for two transmit

antennas based on Alamouti’s code in [57] and then considered DSTM based on

generalized orthogonal designs for more transmit antennas in [29]. For more than two

transmit antennas, complex orthogonal codes only provide partial rate, which limits

their application for high data-rate transmissions. A coding scheme aimed to provide

high data-rate transmission with any number of transmit antennas has been proposed

in [21], which uses Cayley transform to map data symbols onto unitary matrices and

uses sphere decoding to approach ML performance.

In this section we have provided a brief overview of multiple-antenna space-time

coding systems with focus on coding structures. More detailed discussion and tech-

nical reviews of MIMO and space-time coding are available in [17, 61, 39, 16, 9].
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1.3 Dissertation Outline

In this dissertation, we consider the design of space-time coding for large antenna

arrays. We focus on three aspects: performance analysis, code construction and

decoding algorithm.

We first investigate the performance of differential space-time modulation for large

numbers of antennas. We derive an upper bound on pairwise-error probability and

show that the Euclidean distance between codewords is a better performance indi-

cator for DSTM with large numbers of antennas. Therefore, instead of the rank

and determinant criteria, the code design for DSTM with large numbers of antennas

should follow the Euclidean distance criterion, which is similar to the coherent case.

Based on the Euclidean distance criterion, we design some novel space-time codes for

two transmit antennas that outperform existing codes such as the Alamouti code [2]

for large numbers of antennas.

While the new codes provide superior performance, they generally use maximum-

likelihood decoding, which requires an exhaustive search over the entire code con-

stellation. For high-data-rate codes, maximum-likelihood decoding is undesirable. In

this dissertation, we further propose a new family of unitary codes for two transmit

antennas, based on a different parametrization of 2× 2 unitary matrices, and search

for good codes with respect to Euclidean distance. We show that not only do the

new codes have good performance for systems with large numbers of antennas, but

their structure also allows us to use low-complexity suboptimal receivers in which the

individual symbols in the code can be sequentially decoded. The code is extended
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to non-unitary constellations for coherent detection. We also evaluate the new codes

from an information theoretic perspective and consider extensions to more than two

transmit antennas.

For DSTM, the channel is usually assumed to remain constant for two adjacent

blocks. However, code performance is severe degraded when fast fading is encoun-

tered. We will apply multiple-symbol decision-feedback differential detection (DF-

DD) to improve the performance of DSTM on fast-fading channel. The suboptimal

sequential decoders are used in DF-DD to further reduce the decoding complexity.

The rest of the dissertation is organized as follows. In chap. 2, we derive an upper

bound on pairwise-error probability of DSTM with large numbers of antennas. The

upper bound indicates that the Euclidean distance between distinct codewords is a

good performance indicator for DSTM with large antenna arrays. Therefore codes

should be designed according to the Euclidean distance criterion for large antenna

arrays or low SNRs, rather than the rank and determinant criteria for high SNR

regime. We present some novel unitary codes for two transmit antennas and a large

number of receive antennas, which are designed with respect to the Euclidean distance

criterion. The new codes outperform existing codes for large antenna arrays.

In chap. 3, we propose a new family of unitary codes for two transmit antennas,

with information symbols taken from phase-shift-keying (PSK) constellations. We

also derive two low-complexity suboptimal receivers based on generalized likelihood

ratio test (GLRT) that allow the individual symbols in the code to be sequentially

decoded. We apply the new codes to both coherent and differential space-time mod-



19

ulation schemes. For coherent detection, quadrature-amplitude-modulation (QAM)

constellations are considered to further improve performance. We evaluate the new

code by calculating the constellation-constrained capacity. The new coding structure

is then extended to more than two transmit antennas.

In chap. 4, we evaluate the performance of the new code in DSTM and fast

fading channels. Multiple-symbol decision-feedback differential detection combined

with suboptimal GLRT decoders are derived to mitigate the error floor due to large

Doppler spread. The analysis is based on the assumption that the channel remains

same during a code block and varies according to Jake’s model between blocks. In

simulation, both block fading and symbol fading (channel varying from symbol to

symbol) are investigated. Performance of perfect feedback (genie-aided) differential

detection is also provided to show the effect of erroneous feedback.

Finally, in chap. 5, we summarize our conclusions and offer some possible research

directions for the future.
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Chapter 2

Differential Space-Time

Modulation with Large Antenna

Arrays

Most space-time coding schemes assume systems operating at high SNRs, which

is reasonable for systems with small numbers of antennas. For such case, it has been

shown that code design should follow the rank-and-determinant criteria. For systems

with large antenna arrays, however, Euclidean distance has been shown to be a better

performance indicator for space-time coding with perfect channel knowledge at the

receiver. It is of interest to see how DSTM performs with large antenna arrays.

In this chapter, we consider the design and analysis of DSTM for large numbers

of transmit and/or receive antennas. We first analyze the performance of DSTM for

large arrays. Based on a novel upper bound on the pairwise-error probability, we
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conclude that the Euclidean distance is a better performance indicator for DSTM

with large number of antennas or low SNRs, rather than the rank and determinant

for small antenna arrays or high SNRs. For two transmit antennas and many receive

antennas, we design some new codes according to the Euclidean distance criterion.

2.1 Introduction

In recent years, space-time coding has gained a lot of attention because it can effi-

ciently combat fading and significantly improve the capacity in wireless communica-

tion systems. Space-time coding is a joint design of error-control coding, modulation,

and transmit diversity, in which a number of coded symbols equal to the number of

transmit antennas are generated and transmitted simultaneously, one symbol from

each antenna.

Most space-time coding techniques assume perfect channel state information (CSI)

at the receiver, where coherent detection can be used. Only a small number of trans-

mit and receive antennas is used in those schemes, therefore high SNRs are required

to achieve good error performance. For coherent space-time coding in the high SNR

regime, codes should be designed according to the rank and determinant criteria [55],

that is, optimal codes should have full diversity and a large product distance (cod-

ing gain). Full diversity space-time trellis codes are designed in [55], which require

a multidimensional (vector) Viterbi algorithm at the receiver for decoding. In [2],

Alamouti proposed a simple space-time block code for two transmit antennas, which

achieves full diversity with simple linear decoding at the receiver.
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Coherent detection assumes perfect channel knowledge at the receiver. This as-

sumption is reasonable for rich scattering environments and stationary or slow moving

communicators, where relatively short and infrequent training transmissions are suf-

ficient to track the slow variations in the channel accurately. For some situations,

for example, highly mobile communications, however, the channel varies rapidly com-

pared to the symbol rate and perfect channel estimation is questionable. Moreover, if

for multiple antenna systems with larger numbers of transmit and receive antennas,

longer training sequence is required which reduces the system efficiency significantly.

Hence it is desirable to develop techniques that do not require accurate channel esti-

mation at the receiver.

For such situations, Hochwald and Marzetta [23] have proposed the use of uni-

tary space-time codes, in which the signals sent by different transmit antennas are

orthogonal and have equal energy. More recently, differential space-time modulation

(DSTM) schemes have been proposed that do not require channel estimates at the

transmitter or receiver [26, 24, 57]. In [26, 24], it has been proposed that the error

probability of differential space-time codes on quasi-static flat fading channels can be

made small at high SNRs by designing codes according to the rank and determinant

criteria – the same design criteria as those for coherent space-time codes.

More recently, Yuan et al [69], Biglieri et al [4] and Aktas et al [1] have looked at

the performance of coherent space-time coding for large antenna arrays and suggested

that Euclidean distance is actually a better predictor of performance when the number

of transmit and/or receive antennas is large and SNR is low. It is natural to ask
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Figure 2.1: MIMO channel model

whether this observation also applies to differential space-time modulation.

In this chapter, we consider the performance analysis and code design for DSTM

with large numbers of antennas. Some background on coherent and differential space-

time modulation is given in Sec. 2.2. An upper bound on pairwise error probability

for DSTM with large arrays is derived in Sec. 2.3. A novel code design criterion is

presented and some new codes for two transmit antennas are constructed in Sec. 2.4.

The performance of the new codes is examined in Sec. 2.5 and compared with that

of the Alamouti code [2]. Finally, conclusions are summarized in Sec. 2.6.

2.2 Preliminary

2.2.1 System Model

Consider a single point-to-point MIMO system with t transmit and r receive

antennas as shown in Fig. 2.1. We will focus on a complex baseband linear system
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model described in discrete time. Let xjl be the complex signal sent from transmit

antenna j = 1, · · · , t at time l = 1, · · · , T . Under flat-fading conditions, the received

signal yil at the ith receive antenna and time l is given by

yil =
t∑

j=1

√
ρhijxjl + nil, i = 1, · · · , r, l = 1, · · · , T

where hij is the complex fading path gain from transmit antenna j to receive antenna

i and nil is the additive noise. We assume the path gains hij and noise variables nil

are independent and identically distributed (i.i.d) complex Gaussian random variables

with probability density function (pdf)

p(h) =
1

π
exp(−|h|2)

We further assume E{∑t
j=1 |xjl|2} = 1, that the transmitted signals are normalized

to unit power, so that ρ represents the SNR per receive antenna.

Consider a block fading channel where the channel remains constant for a block of

T symbols, then jump to independent values for another T transmissions and so on.

This piecewise constant fading process mimics the approximate coherence interval

of a continuously fading process. It is an accurate representation of many TDMA,

frequency-hopping, and block-interleaved systems. If we collect all the transmitted

symbols during the kth transmission block into a t× T matrix

Xk =




x11 x12 · · · x1T

x21 x22 · · · x2T

...
...

. . .
...

xt1 xt2 · · · xtT



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where columns represent different times and rows represent different antennas, we

can rewrite the channel in an equivalent matrix form:

Yk =
√

ρHkXk + Nk, k = 1, · · · , K (2.1)

where Yk = {yil} is the r× T received symbols, Hk = {hij} is the r× t fading matrix

and Nk = {nil} is the r × T noise matrix for the kth block.

2.2.2 Coherent Space-Time Coding

In this work, we consider space-time block codes, for which X1, · · · , XK in (2.1)

is taken from some t × T space-time block code constellation X . For slowly-varying

channels, CSI can be obtained by sending training symbols from the transmitter to

the receiver. If CSI is available at the receiver, coherent reception can be used. For

such case, the conditional pdf of the received signal is given by (the block subscript

k is dropped)

p(Y |X, H) =
1

πtr
exp(− ‖ Y −√ρHX ‖2) (2.2)

where ‖ A ‖=
√

Tr[AAH ] is the matrix Frobenius norm, AH denotes the conjugate

transpose of matrix A and Tr[·] is the trace operator.

The optimal decoder searches over X to maximize (2.2), which can be expressed

equivalently as

X̂ = arg min
X∈X

‖ Y −√ρHX ‖ (2.3)

For coded systems, the pairwise error probability (PEP) forms the basic structure for

the union bound calculation of the error probability and is used as the main criteria
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for code design. For the coherent space-time decoder (2.3), the PEP between the

transmitted signal X and the erroneously decoding result X̂ is upper bounded by [55]

Pr(X → X̂) ≤ 1

2

t∏

i=1

(
1 +

ρ

4
λi

)−r

(2.4)

where λi denotes the ith eigenvalue of the code distance matrix (X−X̂)(X−X̂)H . A

code is referred as a full diversity code if each code distance matrix has a rank equal

to the number of transmit antennas t, or equivalently each eigenvalue λ1, · · · , λt has

a positive value for all X 6= X̂ in X .

Most early work on coherent space-time coding assumes a system operating at

high SNRs (ρ >> 1), where the PEP upper bound can be simplified as [55]

Pr(X → X̂) ≤ 1

2

(
ρ

4
Λp(X, X̂)

)−rt

(2.5)

where Λp is the product distance defined as

Λp(X, X̂) = |(X − X̂)(X − X̂)H |1/t (2.6)

=

(
t∏

i=1

λi

)1/t

(2.7)

(2.5) indicates that for better error performance, the distance matrix between any two

distinct codewords among the code constellation should have full rank and a large

product distance. This results in the well-known rank and determinant criteria [55].

Codes constructed according to these criteria provides both full diversity and coding

gain.

For two transmit antennas, Alamouti [2] has proposed a simple space-time block
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code



x1 x2

−x∗2 x∗1


 (2.8)

where x1 and x2 are taken from a complex constellation C. Alamouti code achieves full

diversity and its orthogonal structure ensures simple linear processing at the receiver.

The results in [55] is suitable for high SNRs, which is a reasonable assumption for

systems with small numbers of antennas, for example, using only one or two receive

antennas. For systems with large numbers of antennas, the bit error performance

of interest normally falls in low SNR regime. In recent years, several researchers

investigate the performance of coherent space-time coding for such scenarios [69, 4, 1].

For large numbers of antenna or low SNRs, the PEP can be approximated by [1] (see

also [70])

Pr(X → X̂) ≤ 1

2

[
1 +

ρ

4

t∑

i=1

λi

]−r

=
1

2

[
1 +

ρ

4
‖ X − X̂ ‖2

]−r

(2.9)

Defining the minimum Euclidean distance between codewords as

Λe = min
X 6=X̂

‖ X − X̂ ‖ =

√
Tr

{
(X − X̂)(X − X̂)H

}
(2.10)

one can conclude that Λe is the dominant performance indicator for coherent detection

with large arrays or low SNRs.

2.2.3 Differential Space-Time Modulation (DSTM)

Coherent detection requires channel estimation to obtain accurate CSI at the

receiver. In some situations, for example, for fast fading channels or systems with
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large numbers of transmit or receive antennas , channel estimation may be difficult

or costly. Therefore, non-coherent detection becomes attractive for such scenarios.

For single antenna systems, differential phase-shift-keying (DPSK) is well known

as an efficient non-coherent detection method. Several researchers [57, 26, 24] ex-

tended DPSK to differential space-time modulation (DSTM) for multiple-antenna

systems. In DSTM, data are differential encoded using unitary codes. In the follow-

ing, we will introduce the general structure of DSTM in [26, 24].

In DSTM, the block length is assumed to be equal to the number of transmit

antennas, T = t. At the kth block, data is transmitted in the form of t×t information

matrix Uk, which is selected from a constellation of unitary matrices U , so that

UkU
H
k = It. The transmitted matrices are then formed by differential encoding:

Xk = Xk−1Uk, k = 1, . . . , K. (2.11)

where Xk−1 is the previous transmitted block. Here the initial matrix X0 is any fixed

given unitary matrix.

If the fading coefficients are assumed to be approximately constant for 2t channel

symbols, then Hk ≈ Hk−1 and the received blocks are related by [24]

Yk = Yk−1Uk + N ′
k (2.12)

where N ′
k = Nk − UkNk−1 is statistically independent of Uk. Notice (2.12) does

not depend on channel matrix Hk or the previous transmitted matrix Xk−1. Hence,

the information blocks can be detected without channel estimates using the simple
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differential receiver [26]

Ûk = arg max
U∈U

ReTr{Y H
k Yk−1U} , (2.13)

where “ReTr” denotes the real part of the matrix trace.

For this detector, the pairwise error probability (PEP) is upper bounded by [26, 24]

Pr(U → Û) ≤ 1

2

t∏

i=1

[
1 +

ρ2

4(1 + 2ρ)
λi

]−r

(2.14)

where λi denotes the ith eigenvalue of the code distance matrix (U − Û)(U − Û)H .

Similar to the coherent modulation case, the high SNR approximation for this upper

bound is

Pr(U → Û) ≤ 1

2

(
8

ρ

)tr (
t∏

i=1

λi

)−r

(2.15)

(2.15) is essentially same as the (2.5), only with 3 dB loss in the SNR term. Hence

the code design of DSTM at high SNRs should also follow the rank-and-determinant

criteria. The pairwise error probability of DSTM suffers a 3dB loss relative to that

of coherent detection due to the lack of channel knowledge at the receiver.

There has been much work on the code design for DSTM [26, 24, 57, 21, 15]. Most

work on differential space-time code design follows rank and determinant criteria,

which is valid for high SNR regime. For large r and t, however, error probabilities

of practical interest are often achieved by modest or low SNRs, where the rank and

determinant criteria do not apply. Consequently, our aim in this work is to develop

new design criteria applicable to large t and r, and low SNR. To this end, we will

consider the upper bound for pairwise error probability.
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2.3 Error Probability Upper Bound and Code De-

sign Criterion

Symbol error probability (SEP) is a commonly used performance measures for

diversity schemes. Unfortunately, the SEP is not always analytically tractable for

the purpose of design of diversity techniques. Instead, the pairwise error probability

(PEP), which is commonly used to upper bound the SEP [41], is more convenient

to analyze. An advantage of PEP based criteria is that they are independent of the

symbol constellation.

In this section, we will analyze the PEP for the differential decoder (2.13) with

large antenna arrays. To this end, we begin by deriving a bound on the pairwise error

probability, conditioned on the current channel fading matrix H.

For the differential decoder (2.13), the transmitted matrix U is erroneously de-

coded as Û only if

∆ = ReTr{(Û − U)Y H
k Yk−1} ≥ 0 .

Therefore the pairwise error probability, conditioned on H, can be written as

Pr(U → Û |H) = Pr(2∆ ≥ 0|U,H) . (2.16)

An upper bound on this conditional pairwise error probability can be obtained using

methods similar to [25]. We start by obtaining an approximation for the equivalent

received signal

Y H
k−1Yk = (

√
ρHXk−1 + Nk−1)

H(
√

ρHXk + Nk)
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= ρXH
k−1H

HHXk +
√

ρXH
k−1H

HNk +
√

ρNH
k−1HXk + NH

k−1Nk

≈ ρXH
k−1H

HHXk +
√

ρXH
k−1H

HNk +
√

ρNH
k−1HXk

where the second-order noise term is ignored. Therefore the difference metric is

approximated by

∆ = −ρReTr
{
XH

k−1H
HHXk(U − Û)H

}
−√ρReTr

{
XH

k−1H
HNk(U − Û)H

}

−√ρReTr
{
NH

k−1HXk(U − Û)H
}

Applying the Chernoff bound, we obtain for all s ≥ 0

Pr(U → Û |U,H) = Pr(2∆ ≥ 0|U,H)

≤ exp
[
−(2sρ)ReTr

{
XH

k−1H
HHXk(U − Û)H

}]

×ENk

(
exp

[
−2s

√
ρReTr

{
XH

k−1H
HNk(U − Û)H

}])

×ENk−1

(
exp

[
−2s

√
ρ/tReTr

{
NH

k−1HXk(U − Û)H
}])

= exp
[
−sρ(1− 2s)Tr

{
H(U − Û)(U − Û)HHH

}]
. (2.17)

For fixed H, this bound is minimized by s = 1/4, which yields

Pr(U → Û |U,H) ≤ exp
[
−ρ

8
Tr

{
H(U − Û)(U − Û)HHH

}]

= exp
[
−ρ

8
‖ H(U − Û) ‖2

]
(2.18)

For fixed t, it is shown in [4] that

1

r
Tr

{
H(U − Û)(U − Û)HHH

}

converges almost surely as r → ∞ to ‖ U − Û ‖2. The same is shown for r, t → ∞

with r/t → c > 0. In [70], the authors assert without proof that the exponent above

converges to a Gaussian random variable as r ·ν →∞, where ν is the rank of (U−Û).
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For fixed t and r → ∞, this is clearly true; however, for fixed r and ν → ∞,

it is not difficult to contrive counterexamples. It therefore appears that additional

conditions on U − Û are needed. We now show that if U and Û are unitary, and the

distance per dimension is bounded away from zero

1

ν
‖ U − Û ‖2≥ d > 0 , (2.19)

then convergence of the (suitably normalized) exponent to a Gaussian distribution is

assured as ν →∞.

To this end, define the t× t codeword distance matrix

A(U, Û) = (U − Û)(U − Û)H . (2.20)

Since A(U, Û) is a nonnegative-definite Hermitian matrix, there exists a unitary

matrix V and a real diagonal matrix Λ such that V A(U, Û)V H = Λ. Let v1,v2, · · · ,vt

and hi, . . . ,hr denote the rows of V and H, respectively, and define Uij = |hivj
H |2.

The bound (2.18) can then be rewritten as

Pr(U → Û |U,H) ≤ exp


−ρ

8

r∑

i=1

ν∑

j=1

λjUij


 . (2.21)

where λj > 0, j = 1, 2, . . . , ν are the non-zero eigenvalues of A(U, Û). Since the rows

of V are orthonormal, hivj
H are i.i.d CN(0, 1) random variables. It follows that the

Uij are i.i.d. exponential random variables with pdf p(t) = e−tu(t), and mean and

variance 1.

Now consider the normalized sum

Srν =
r∑

i=1

ν∑

j=1

Zij where Zij =
λj(Uij − 1)√

r
∑ν

j=1 λ2
j

. (2.22)
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Observe that Zij has mean zero and variance

σ2
ij =

λ2
j

r
∑ν

j=1 λ2
j

where
r∑

i=1

ν∑

j=1

σ2
ij = 1 .

Let
d→ denote convergence in distribution. By the Lindeberg-Feller version of the

Central Limit Theorem [49, pp. 326], a sufficient condition for Srν
d→ N (0, 1) as

rν →∞ is the Lindeberg condition: For all ε > 0, we have

lim
rv→∞

r∑

i=1

ν∑

j=1

E
[
Z2

ijI[ε,∞) (|Zij|)
]

= 0

where I[ε,∞)(x) is the indicator function. Substituting Zij into the sum above, we

obtain

r∑

i=1

ν∑

j=1

σ2
ij

∫

|σij(t−1)|>ε
(t− 1)2e−tu(t)dt

≤ e
r∑

i=1

ν∑

j=1

σ2
ij

∫

|σij(t−1)|>ε
(t− 1)2e−|t−1|u(t)dt

≤ 2e
r∑

i=1

ν∑

j=1

σ2
ij

∫ ∞

ε/σij

y2e−ydy , (2.23)

where the first step follows from t ≥ |t − 1| − 1 for t ≥ 0, and the second from

u(t) ≤ 1 and the change of variable y = t− 1. Observing that g(y) = y4e−y takes on

its maximum value for y ≥ 0 at y = 4 and 2eg(4) < 26, we can bound the right side

above by

2e
r∑

i=1

ν∑

j=1

σ2
ij

∫ ∞

ε/σij

g(y)

y2
dy ≤

r∑

i=1

ν∑

j=1

σ2
ij

∫ ∞

ε/σij

26

y2
dy =

26

ε

r∑

i=1

ν∑

j=1

σ3
ij

=
26

∑ν
j=1 λ3

j

ε
√

r(
∑t

j=1 λ2
j)

3
2

. (2.24)

From this it is clear (as noted in [69]) that Srν always satisfies the Lindeberg condition

for fixed t and r →∞. We now show that Srν also satisfies the Lindeberg condition
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for fixed r and ν →∞, provided that (2.19) is satisfied.To prove this, let λ̄(A) denote

the spectral norm of A. Since U and Û are unitary, we have λ̄(U) = λ̄(Û) = 1. We

therefore have

λ̄(A(U, Û)) = λ̄(U − Û)2 ≤
(
λ̄(U) + λ̄(Û)

)2
= 4

and thus each λj is bounded between 0 and 4. By convexity of f(x) = x2, we have

1

ν

ν∑

j=1

λ2
j ≥


1

ν

ν∑

j=1

λj




2

≥ d2 .

Combining these facts, we obtain

26
∑ν

j=1 λ3
j

ε
√

r(
∑ν

j=1 λ2
j)

3
2

≤ 26 · 4
ε
√

r(
∑ν

j=1 λ2
j)

1
2

≤ 104

ε
√

r(
∑ν

j=1 λ2
j)

1
2

≤ 104

εd
√

rν
,

from which we conclude that Srν satisfies the Lindeberg condition for ν →∞. There-

fore, Srν
d→ N (0, 1) as rν → ∞. It follows that the quantity (1/r)

∑r
i=1

∑ν
j=1 λjUij

approaches a Gaussian random variable D with N (µD, σ2
D) where

µD =
ν∑

j=1

λj and σ2
D =

ν∑

j=1

λ2
j/r

The differential pairwise error probability is then bounded by

Pr(U → Û) ≤
∫ +∞

−∞
exp(−ρr

8
D)p(D)dD

= exp(−ρr

8
µD +

ρ2r2

128
σ2

D)

≈ exp
(
−ρr

8
Λ2

e(U, Û)
)

(2.25)

where Λe = ||U − Û || as the Euclidean distance of U and Û and the last approx-

imation is valid for small ρ ¿ 1. Thus we conclude that, for large arrays and low



35

SNRs, Euclidean distance is an appropriate design criterion for differential space-time

modulation.

Recall that for small arrays or high SNR, the pairwise error probability of DSTM

is bounded by (2.15), which depends on the rank and product distance of the code

distance matrices. Therefore the code design is constrained to full diversity codes.

For large arrays or low SNR, however, (2.25) indicates that optimal codes may not

have full diversity.

Therefore, the differential pairwise error probability upper bounds (2.25) and

(2.15) suggest that the design criteria for DSTM over quasi-static Raleigh fading

channel depend on the array size, which leads to the following code design criteria:

For small arrays, (2.15) shows that the rank and product distance are the dominant

parameters in code performance. In order to minimize the error probability for small

arrays, codes should have full diversity. In addition, the minimum product distance

(2.7) over all pairs of distinct matrices in U should be maximized.

For large arrays, (2.25) suggests that the pairwise error probability is dominated

by Euclidean distance. In order to minimize the error probability for large arrays, we

need to maximize the minimum Euclidean distance over all pairs of distinct matrices

in U . As (2.25) doesn’t depend on the rank ν, codes that achieve good performance

for large arrays may not have full diversity.

Note that this design criterion is essentially the same as the one given in [69] for

perfect channel state information at the receiver. Therefore, if a unitary space-time

code is designed to be optimal when perfect channel estimates are available at the
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receiver, then the differentially-encoded version of this code will also be optimal in

absence of CSI.

2.4 Code Construction for Large Arrays

We have shown that for system with large numbers of antennas, Euclidean distance

is a better indicator of the performance. This result widens the scope for space-time

block code design. Previously, most of the space-time block codes are restricted to

have full diversity. Removing this constraint might result in codes that perform better

than existing codes for large arrays.

We now use the Euclidean distance criterion to construct new differential unitary

space-time codes appropriate for two transmit antennas and many receive antennas.

For two transmit antennas, several codes with good performance for small arrays

have already been presented in the literature, such as the differential scheme based on

Alamouti’s code in [57] and the group codes in [26, 24]. In this section, we begin with

reconsidering the performance of these codes using the Euclidean distance criterion.

Then we will proposing some new codes that perform well for a large number of

receive antennas .

Group Codes

Group codes, in which the code constellation forms a group under multiplication,

have been investigated in [26] and [23]. It has been shown by Hughes [26] that for
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M = 2p > 1, all full diversity unitary group codes with constellation size |U| = M

and t = 2 are either cyclic or dicyclic codes. For small arrays, optimal group codes

that have full rank and maximum of the minimum product distance over the code

constellation have been designed for 2 ≤ M ≤ 32. The optimal group codes for

large arrays, however, may not have full diversity. In the following, we will give the

following generalized form for cyclic and dicyclic group codes:

The (M,k, n) cyclic group code is given by

U =

〈


ηn
M 0

0 ηk
M




〉
(2.26)

where ηM = exp(2πj/M), and 1 ≤ n ≤ k ≤ M
2
− 1. The cyclic code takes values in

the M -PSK constellation and has |U| = M code matrices. The minimum Euclidean

distance over U is

Λe = min
U 6=Û

Λe(U, Û) = min
1≤l≤M−1

2

√[
sin2(πln/M) + sin2(πlk/M)

]

For all M ≥ 8, the (M, k, n) dicyclic group code is given by

U =

〈


ηn
M/2 0

0 ηk
M/2


 ,




0 −1

1 0




〉
(2.27)

with 1 ≤ n ≤ k ≤ M/4 − 1. Its minimum Euclidean distance is given by Λe =

min 〈Λe(M/2), 2〉, where Λe(M/2) is the Euclidean distance of the (M/2, k, n) cyclic

code.

The optimal group codes for large arrays are given in Table 2.1 for 2 ≤ M ≤ 64.

For each code, we list the Euclidean distance and product distance. We also list the

optimal group codes in terms of rank and determinant criteria for small arrays as in
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Table 2.1: Optimal unitary group codes for large and small receive arrays

Large Arrays Small Arrays
R U Λe Λp U Λe Λp

0.5 (2,1,1) cyclic 2.8284 4 (2,1,1) cyclic 2.8284 4
1.0 (4,1,1) cyclic 2 2 (4,1,1) cyclic 2 2
1.5 (8,3,1) dicyclic 2 2 (8,3,1) dicyclic 2 2
2 (16,3,1) dicyclic 2 0 (16,7,1) dicyclic 1.0824 0.5858

2.5 (32,4,1) dicyclic 1.4142 0 (32,9,1) cyclic 1.0824 0.2487
3 (64,5,3) dicyclic 1.0824 0 (64,19,1) cyclic 0.7349 0.1576

Table I of [26]. It is clear that the optimal group codes for small arrays may not be

optimal for large arrays.

Alamouti Code

As already shown in (2.8), The Alamouti code [2] transmits two information sym-

bols per block. It is an special case of space-time orthogonal codes [56] applied to

two transmit antennas. The Alamouti code has full diversity and it achieves capacity

for one receive antenna. The application of this codes to differential transmission was

proposed in [57]

U =
1√
2




x1 x2

−x∗2 x∗1


 , (2.28)

where x1 and x2 are taken from M -ary phase shift key (PSK) constellation and 1√
2

is

the normalization factor.

The Euclidean distance of the Alamouti code can be expressed as

Λe = min
U 6=Û

||U − Û || = 2 sin(π/M) (2.29)
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For example, for rate R = 3 bps/Hz, the elements of the Alamouti code matrix lie in

the 8PSK constellation and hence we have Λe = 0.7654.

Steiner code

Next, we will consider the construction of unitary codes based on the Gram-

Schmidt procedure. For a matrix

U =
1√
2




x1 x2

x4 x3




to be unitary, we must have |x1|2 + |x2|2 = 2, |x3|2 + |x4|2 = 2 and x4x
∗
1 = −x3x

∗
2.

For simplicity, if we impose the constraint that x1, x2, x3 and x4 are taken from the

M-PSK constellation, we obtain

U =
1√
2




x1 x2

−x3x
∗
2x1 x3


 , (2.30)

Notice that an equivalent form of this code has been presented by Steiner et al in

[51], therefore we will denote this code as Steiner code. The authors in [51] indicate

this code can be used for large antenna array by observing that one extra information

symbol is used compared to the Alamouti code. We will now consider the performance

of this code by looking at its Euclidean distance

Λe = min
U 6=Û

||U − Û || = 2 sin(π/M) (2.31)

Notice that the Euclidean distance expression of the Steiner code takes the same

form as (2.29) for the Alamouti code. That’s, for a given M-PSK constellation, the

Alamouti code and the Steiner codes have the same minimum Euclidean distance.
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The Steiner code, however, achieves a rate that is 1.5 times larger. Alternatively, for

the same rate, the Steiner code can use a smaller scalar constellation and thereby

achieve a larger Euclidean distance. Take the rate 3 bps/Hz code for example. The

Alamouti code with 8 PSK has Λe = 0.7654. By contrast, the elements of the rate

3 Steiner code matrix lie in the QPSK (M = 4) constellation, which yields a larger

Euclidean distance Λe = 1.4142.

Note that the Steiner code do not have full rank, therefore it is not a full diversity

code. Hence, this code is of interest primarily for large receiver arrays.

Modified-Alamouti (MA) Code

We next consider a family of codes which are closely related to the Alamouti code,

given by

U =
1√
2




x1 x2

−x∗24x x∗14x


 (2.32)

where x1, x2 and 4x are unit-magnitude numbers, and 4x is a function of x1 and

x2. We call this code the Modified-Alamouti (MA) code. For simplicity, we let

4x = xm
1 xn

2 with m and n taken from [0 : 0.5 : M/2] and choose m and n to

maximize the resulting Euclidean distance Λe. Generally, we can get optimal MA

codes that have better Euclidean distance than Alamouti code. For example, for

R = 3 bps/Hz, the choice m = 4 and n = 2.5 yields a code with the largest Euclidean

distance, Λe = 1.2593. This code also achieves full diversity, although the product

distance is smaller than that of the corresponding Alamouti code.
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Modified Steiner (MS) code

We now consider a class of unitary codes given by

G =
1√
2




x xp

xq −xp+q−1


 (2.33)

where x is taken from M-PSK constellation. Notice that this coding structure has

some similarity to the Steiner code in the sense that the fourth symbol is the mul-

tiplication (conjugate) of three other symbols. Hence we refer this code as Modified

Steiner (MS) code. Here, instead of taking three symbols independently from PSK

constellation as in Steiner code, all the symbols are function of one parameter x.

Consequently, in order to achieve the same rate, x must be taken from a larger con-

stellation than those for x1, x2 and x3 in (2.30). For example, x need to be taken

from 64 PSK to construct a rate 3 bps/Hz code.

The minimum Euclidean distance of the MS code can be expressed as

Λe = min
n∈{1,···,M−1}

√
fe(n) (2.34)

where

fe(n) = 2 sin2 (πn/M) + 2 sin2 (πpn/M)

+2 sin2 (πqn/M) + 2 sin2 (π(p + q − 1)n/M)

For simplicity, here we let p and q take integer values and choose them to maximize

the resulting minimum Euclidean distance Λe. We can get codes that have better

Euclidean distance than the Alamouti code. For example, for rate R = 3 bps/Hz,

the full diversity MS code with p = 44, q = 34 has Λe = 1.3725, which is larger than
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that of the Alamouti code Λe = 0.7654. At this rate, the Steiner code without full

diversity has Λe = 1.4142, which has slight gain relative to the MS code.

Table 2.2 summarizes the Euclidean distance performance of the codes discussed

above. Also shown for comparison are the product distances of these codes. Cyclic

and dicyclic denote the cyclic and dicyclic group codes respectively. The parameters

for MS and MA codes are (p, q) and (m,n), respectively. From the table, we can

conclude that codes that have large Λe may not necessarily have large Λp, which

confirms the results in Sec. 2.3.

Table 2.2: Code comparison for large receive arrays

R U Λe Λp

1 Alamouti 2 2
MS(0,0) 2 2
MA(0,0) 2 2

cyclic(4,1,1) 2 2
2 Alamouti 1.4142 1

Steiner(9,3) 2 1.4142
MA(2,2) 2 1

dicyclic(16,3,1) 2 0
3 Alamouti 0.7654 0.2929

dicyclic(64,5,3) 1.0824 0
MA(4,2.5) 1.2593 0.0297
MS(44,34) 1.3725 0.0341

Steiner 1.4142 0
4 Alamouti 0.3902 0.0761

dicyclic(256, 53,4) 0.5683 0
MA(8,6.5) 0.7654 0.0297

Steiner 0.7654 0
MS(221,42) 0.9719 0.0315
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Figure 2.2: BER performance of cyclic vs dicyclic group codes for R = 3 bps/Hz and
r = 1, 2, 4, 8, 16

2.5 Numerical Results

In this section, we will investigate the performance of the codes discuss in Sec. 2.4

for differential space-time modulation. For each code, we consider the rate of R = 3

bps/Hz and the number of receive antennas varies from 1, 2, 4, 8 to 16. The codes

are taken from Table. 2.2. Here Rayleigh flat fading channel is assumed where the

channel coefficients remains constant for two adjunct blocks.

We will first compare the performance of the (64, 19, 1 ) cyclic group code and

(64, 5, 3) dicyclic group code, designed for small and large arrays respectively for

R = 3 bps/Hz. The simulated bit-error rate (BER) performance is shown in Fig. 2.2.
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Figure 2.3: BER performance of Alamouti vs Steiner codes for R = 3 bps/Hz and
r = 1, 2, 4, 8, 16

On the far right of the figure, the cyclic group code outperforms the dicyclic group

code by several dB for r = 1, which can be explained by the fact that the cyclic

group code has full diversity while the dicyclic group code is rank deficient. However,

beginning from r = 2, the dicyclic group outperforms the cyclic group. In particular,

at a BER of 10−4, the dicyclic code outperforms the cyclic code by approximately 2

dB for r = 4, and by 3 dB for r = 16. The simulated results confirm the analytical

results in Table.2.1 that the code design for small and large antenna arrays follows

different criteria.

We now show the performance of the Steiner code, the Modified Steiner code and
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Figure 2.4: BER performance of Alamouti vs Modified Alamouti codes for R = 3
bps/Hz and r = 1, 2, 4, 8, 16

the Modified Alamouti code. We will use the Alamouti code as a reference because

it is the optimal code for one receive antenna. Fig. 2.3 compares the performance

of the Steiner code and the Alamouti code for rate R = 3 bps/Hz. We can see

the Alamouti code significantly outperforms the Steiner code for r = 1, because the

Alamouti code has the largest product distance among the evaluated codes. For

r = 2, the performance gap between the Steiner code and the Alamouti code is much

smaller than for r = 1. For r > 2 the Steiner code outperforms the Alamouti code.

For example, at a BER of 10−4 and for r = 16, the Steiner code outperforms the

Alamouti code by more than 3.5 dB. Fig. 2.4 and Fig. 2.5 compare the performance
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Figure 2.5: BER performance of Alamouti vs Modified Steiner codes for R = 3 bps/Hz
and r = 1, 2, 4, 8, 16

of the Alamouti code with the Modified Alamouti code and the Modified Steiner

code respectively. Again we observe the performance advantage of these two codes

relative to the Alamouti code for large array size. Compare to Fig. 2.3, the Modified

Alamouti code and the Modified Steiner code perform slightly worse than the Steiner

code, which can be explained by the difference in their Euclidean distance. These two

codes, however, have full diversity, hence they perform closer to the Alamouti code

than the Steiner code for small arrays.

These simulated results provide additional evidence that Euclidean distance is an

appropriate design criterion for large arrays, and that the new codes can improve the
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performance of DSTM in this regime. We further observe from the figures that Λe

appears to be a good indicator of performance even for relatively small arrays, such

as t = 2, r = 4.

We should note that although these new codes improve the performance of DSTM

for large arrays, most of them require maximum likelihood decoding, which involves

an exhaustive search over the entire code constellation. The Alamouti code, by con-

trast, allows simple decoupled linear decoder for each information symbol to provide

maximum-likelihood performance. Therefore, we will investigate codes with simple

decoding structures for large arrays in the next chapter.

2.6 Conclusion

In this chapter, we considered the design and analysis of DSTM when the number

of transmit and/or receive antennas is large. We evaluated the error performance of

differential space-time modulation and derived a new upper bound on the pairwise-

error probability for large arrays. This bound suggests that Euclidean distance is a

good design criterion in the large-array regime, rather than the well-known rank and

determinant criteria for small array regime or high SNRs. For two transmit antennas

and many receive antennas, we investigated the performance of some existing code

structure in terms of the Euclidean distance. To improve the performance for large

arrays, we use the new design criterion to construct several new differential codes with

large minimum Euclidean distance. Simulations of bit-error-rate performance confirm

that the new codes outperform existing codes for DSTM with four or more receive
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antennas, hence they are better candidates for systems with a large number of receive

antennas. Generally, maximum-likelihood decoding are required in the decoding of

these new codes.
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Chapter 3

Improved Space-Time Coding with

Low Complexity Decoders

In this chapter, we will present a new family of space-time unitary block codes

for two transmit antennas and large numbers of receive antennas. The code is based

on a modification of the Alamouti code by adding a third symbol. We optimize

the new code in terms of Euclidean distance. We show that not only the new code

provides good performance for systems with a large number of antennas, but it can

utilize simple suboptimal sequential decoders with close-to-optimal performance. The

code and the suboptimal decoders can be used in coherent or differential space-time

coding/modulation, for systems with or without channel state information at the

receiver, respectively. We also consider the extension of the new code to non-unitary

constellations and more than two transmit antennas. Moreover, we evaluate this new

coding structure in the mutual information point of view.
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3.1 Introduction

Space-time coding can greatly improve the performance of wireless communication

by employing multiple antennas at both sides of the channel. Most space-time coding

schemes assume systems equipped with small antenna arrays. To further improve the

system performance, more antennas can be put at one or both end of the channel.

The availability of more diversity provided by more antennas enables the system to

operating at moderate or low SNRs. For such scenarios and when the channel state

information is known at the receiver, it has been reported [4, 69, 1] that Euclidean

distance between codewords is often a better indicator of code performance. Some

space-time trellis codes have been proposed based on this Euclidean distance criterion

[70].

For differential space-time modulation (DSTM), in [64, 65] we have derived an

upper bound on the pairwise error probability for large antenna arrays using Gaussian

approximation and illustrated that Euclidean distance is the dominant parameter

in the code performance for large arrays . Some existing structures such as group

codes have been reconsidered and some new unitary space-time block codes have been

designed according to the Euclidean distance criterion for two transmit antennas and

many receive antennas [64, 65], which achieve good performance. Wang et al. [62]

also suggested Euclidean distance criterion using a different approached and designed

some cyclic group codes for two to four transmit antennas and many receive antennas.

Liang and Xia [34] considered the code design for low SNR scenarios, which also

follows the Euclidean criterion. While group codes considered in [64, 65, 62] can
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utilize a fast decoding algorithm [7], the group structure limits their performance in

terms of Euclidean distance. On the other hand, most codes investigated in [64, 65]

require maximum likelihood decoding. Recently, Taherzadeh et al. [54] proposed some

high rate differential space-time codes by embedding more information symbols in the

unitary codes. For two transmit antennas, a simplified decoding method employing

several parallel Alamouti decoder has been proposed to perform maximum-likelihood

decoding. On the other hand, Steiner et al. [52] considered serial concatenation

which uses the code proposed in [51] (referred as Steiner code here) as inner code

and turbo code as outer code. A suboptimal decoding method for the inner code

has been proposed to reduce the number of candidates in calculating the extrinsic

information between the inner and outer decoders. This SVD decomposition based

suboptimal decoder assumes the code being a general unitary code by discarding any

constellation constraints associated with the information matrix, thus only provide

a gross estimation for the signals. Furthermore, SVD decomposition is not very

efficient in computation. In [53], Steiner et al. used decision-feedback demodulation

to improve the performance of [52], but with extra complexity.

In this chapter, we propose a new family of codes for two transmit antennas,

based on a different parametrization of two by two unitary matrices, and search for

good codes with respect to Euclidean distance. To reduce the decoding complexity

to a level comparable to the Alamouti decoder, we propose two low-complexity sub-

optimal receivers that allow the individual symbols in the code to be sequentially

decoded. The idea behind these suboptimal receivers is the Generalized Likelihood
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Ratio Test (GLRT). We apply the new coding structure to both coherent and dif-

ferential space-time modulation schemes. It is shown through simulation that the

new code outperforms some existing codes for large numbers of receive antennas.

Furthermore, the performance of the suboptimal receivers approach that of optimal

maximum-likelihood decoding as the number of receive antennas increases. We also

evaluate the mutual information aspect of the new code and consider the generaliza-

tion of the new code to the non-unitary constellations. The extension to more than

two transmit antennas is also investigated.

The rest of this chapter is organized as follows. In Sec. 3.2, a new unitary code

structure for two transmit antennas is introduced and its Euclidean distance is inves-

tigated. Extension to non-unitary constellations is addressed. In Sec. 3.3, we propose

two low-complexity receivers for the new code, followed by error performance analysis,

computational complexity and numerical results. We evaluate the new code structure

in the information theory point of view in Sec. 3.4 and investigate the extension to

four transmit antennas in Sec. 3.5. The concluding remarks are given in Sec. 3.6.

3.2 A New Family of Space-Time Block Code

From previous discussion, we can conclude that for both coherent and differential

space-time modulation systems with large antenna arrays, codes should be designed

to maximize the minimum Euclidean distance over the code constellation. Coding

and receiver design for system with large numbers of antennas has been considered,

in [64, 65, 62, 52, 54] and reference therein. Generally, these schemes require much
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higher decoding complexity than that of the Alamouti linear decoder. The propose

of this paper is to design codes that perform well with large receiver arrays, but

also allow us to use simply decoding methods that are comparable to the Alamouti

decoder. Our main focus is systems with two transmit antennas. We will start with

unitary codes, which can be utilized with or without CSI at the receiver.

3.2.1 Unitary Space-Time Block Code

Existing unitary code designs for two transmit antennas exploit different parame-

trization of 2 × 2 unitary codes. These codes have been designed either to achieve

full diversity and large product distance [2, 26, 24], or to achieve high rate or large

Euclidean distance [51, 65, 54]. Here we will consider another parametrization which

is a modified version of the Alamouti code and optimize it in terms of Euclidean

distance.

Recall the Alamouti code which transmits two symbols via the normalized matrix

Q(x) =
1√
2




x1 x2

−x∗2 x∗1


 (3.1)

where x = {x1, x2} and x1, x2 has unit average power. For |x1| = |x2| = 1, the

matrices generated by (3.1) are unitary. The application of this code to differential

transmission was proposed in [57]. The Alamouti code has full rank and large product

distance and it performs well at high SNRs. In addition, its orthogonal structure

allows the receiver to use a very simple linear decoder with low complexity. However,

as shown in [64, 65], the Alamouti code is not a good candidate for transmission
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systems with a large number of receive antennas.

In this work, we show that a third symbol φ can be added to the Alamouti code

U(x, φ) = ejφQ(x) =
1√
2
ejφ




x1 x2

−x∗2 x∗1


 (3.2)

thereby yielding a unitary code of larger rate. Furthermore, low-complexity decoders

exist that allow φ, x1 and x2 to be decoded sequentially. Note that the addition of φ

generally results in a code that is not of full rank; hence, these codes are of interest

primarily when large receiver arrays are available.

For simplicity, assume −π/2 < φ ≤ π/2 and that ej2φ, x1 and x2 are taken from

unit-magnitude PSK constellations with size M2φ, Mx1 and Mx2 respectively. Since

−π/2 < φ ≤ π/2, ejφ takes value on the right semi-circle of the 2M2φ PSK constel-

lations. For example, if ej2φ lies in the QPSK constellation, then φ ∈ {−π
4
, 0, π

4
, π

2
}.

This leads to a unitary code with rate R = log2(M2φMx1Mx2)/2.

The trace of the code distance matrix between codeword U and

Û = ejφ̂ 1√
2




x̂1 x̂2

−x̂∗2 x̂∗1




can be written as

Λ = Tr{(U − Û)(U − Û)†}

= (|ejφx1−ejφ̂x̂1|2+|ejφx2−ejφ̂x̂2|2+|ejφ̂x̂∗2 − ejφx∗2|2 + |ejφx∗1 − ejφ̂x̂∗1|2)/2

= (|x1|2 + |x̂1|2 + |x2|2 + |x̂2|2)− Re{ej(φ−φ̂)(x1x̂
∗
1 + x̂1x

∗
1 + x2x̂

∗
2 + x̂2x

∗
2)}

= (|x1|2 + |x̂1|2 + |x2|2 + |x̂2|2)− 2Re{ej(φ−φ̂)}Re{x1x̂
∗
1 + x2x̂

∗
2}

= 4− 2Re{ej(φ−φ̂)}Re{x1x̂
∗
1 + x2x̂

∗
2}
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where the last equation follows that all the symbols are taken from unitary constella-

tions. Notice that for unitary constellations, Λ only depends on the phase difference

of each information symbol. Letting Mx = max{Mx1 ,Mx2}, we can show that the

minimum Euclidean distance in (2.10) is given by

Λe =





2
√

2 sin
(

π
2M2φ

)
, 2M2φ > Mx

2 sin
(

π
Mx

)
, otherwise

(3.3)

We can therefore easily search for the best codes in terms of Euclidean distance.

Table 3.1 compares the Euclidean distance and the number of nearest neighbors

Nn of the new code with those of the Alamouti code and the Steiner code (2.30) for

R = 3 and 4 bps/Hz. Note the new code also has good Euclidean distance as well as

a small number of neighbors.

Table 3.1: Comparison of Euclidean distance of unitary codes

R U Λe (Mx1 ,Mx2 ,M2φ(Mx3)) Nn

3 Alamouti 0.7654 (8,8,–) 4
Steiner 1.414 (4,4,4) 12

New code 1.0824 (4,4,4) 2
4 Alamouti 0.3902 (16,16,–) 4

Steiner 0.7654 (8,8,4) 6
New code 0.7654 (8,8,4) 4

3.2.2 Non-Unitary Space-Time Block Codes

Up to now, we restrict our code constellations in (3.2) to be unitary, in which

ej2φ, x1 and x2 are taken from PSK constellations. Taking information symbols from

unit circle simplifies both the transmitter and receiver design. In addition, unitary
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codes can be used for both coherent and differential detection. For large constel-

lation sizes, however, PSK constellations suffer from performance loss compared to

quadrature-amplitude-modulation (QAM) constellations, which transmit information

in both phase and amplitude. Assuming the receiver has perfect channel knowledge,

now we will extend the new code structure by considering x1 and x2 taken from QAM

constellations with normalized power of one. The average power of the code remains

to be unit; however, the instantaneous power varies each block.

We can show that the minimum Euclidean distance for the generalized code struc-

ture is given by

Λe = min

{
2
√

Emin1 +Emin2 sin

(
π

2M2φ

)
,dmin1 ,dmin2

}
(3.4)

where Emin and dmin denote the minimum power and minimum distance of the QAM

constellation respectively. Note that if x1 and x2 are taken from PSK constellations,

the above expression becomes (3.3).

Table. 3.2 compares the Euclidean distance of the new code with the Alamouti

code, for different rates and constellations. We can see that the new code with

generalized constellations has larger Euclidean distance than the Alamouti code. For

a same rate, the new code lies on smaller constellations. For example, for rate 5

bps/Hz, the new code lies on 16-QAM constellations while the Alamouti code lies on

32-QAM.
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Table 3.2: Comparison of Euclidean distance for generalized constellations

R U Λe (x1, x2, e
2φ)

4 New code(PSK) 0.7654 (8PSK,8PSK,QPSK)
Alamouti (PSK) 0.3902 (16PSK,16PSK,–)
Alamouti (QAM) 0.6325 (16QAM,16QAM,–)

5 New code(PSK) 0.3902 (16PSK,8PSK,8PSK)
New Code(QAM) 0.4841 (16QAM,16QAM,QPSK)
Alamouti(PSK) 0.1960 (32PSK,32PSK,–)
Alamouti(QAM) 0.4472 (32QAM,32QAM,–)

6 New Code(QAM) 0.3423 (32QAM,32QAM,QPSK)
New code(PSK) 0.2772 (16PSK,16PSK,16PSK)
Alamouti(PSK) 0.098 (64PSK,64PSK,–)
Alamouti(QAM) 0.3086 (64QAM,64QAM,–)

3.3 Suboptimal Decoders with Low Complexity

Unlike the Alamouti code, maximum-likelihood (ML) decoding of the code in (3.2)

will generally require a search of all 22R possible code matrices. For high-rate codes,

this may be undesirable. We now show φ, x1 and x2 can be decoded sequentially by

two simple suboptimal algorithms. The suboptimal decoding algorithms are inspired

by the generalized likelihood ratio test (GLRT). In the following, we will first give

a brief introduction of GLRT, and then derive two suboptimal sequential receivers

for the new code. We will also evaluate the error performance and the decoding

complexity of the suboptimal receivers. Our arguments are first made by assuming

coherent space-time coding and then extended to DSTM.
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3.3.1 Generalized Likelihood Ratio Test (GLRT)

In detection and estimation problems, very often the parameters characterizing a

hypothesis may not be known. In such cases, the hypothesis is called a composite

hypothesis. The GLRT technique is a common method for detecting signals for such

scenarios. It replaces the unknown parameters by their maximum-likelihood estimates

(MLE) under each hypothesis.

Let H0 and H1 be the hypothesis and θ be the unknown parameter. We use the

required data y to estimate θ, as though hypothesis H0 is true. We also estimate θ as

though hypothesis H1 is true. Then, we use these estimates in the likelihood ratio test

as if they are the correct values. If the estimates used are the maximum-likelihood

estimates, the generalized likelihood ratio is given by

Λ(y) =
maxθ1 fY|Θ1(y|θ1)

maxθ0 fY|Θ0(y|θ0)

H1
>
<
H0

η

where fY|Θ(y|θ) is the conditional pdf of given θ, η is the detection threshold and

θ1 and θ0 are the unknown parameters to be estimated under hypothesis H1 and H0,

respectively.

3.3.2 Sequential GLRT decoders for Coherent Detection

For a unitary code matrix U as in (3.2), the maximum likelihood receiver in (2.3)

leads to a log-likelihood decision metric of the form

Λ(Y |H,x, φ) = ReTr
[
ejφY †HQ(x)

]

= ReTr [AQ(x)]
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=
1√
2
Re {[(a11x1 − a12x

∗
2 + a21x2 + a22x

∗
1)]}

=
1√
2
Re [(a11 + a∗22)x1 + (a21 − a∗12)x2] (3.5)

where A = ejφY HH. Optimal ML decoding is a joint decoding of φ, x1 and x2. To

decouple detection of φ from x1 and x2, we can apply GLRT and get a decision metric

on φ as

Λ(Y |H,φ) = max
x:|x|2/2=1

ReTr
[√

2ejφY HHQ(x)
]

= max
x:|x|2/2=1

Re {[(a11 + a∗22)x1 + (a21 − a∗12)x2]}
(a)
=

√
|a11 + a∗22|2 + |a21 − a∗12|2

=
√
‖ A ‖2 +2Re[det(A)]

where step (a) follows by observing that the maximum is attained by x =
√

2a∗/|a|

with a = (a11 + a∗22, a21 − a∗12). Defining B = Y HH and substituting A = ejφB into

the above equation,, we obtain

φ̂GLRT1 = arg max
φ

√
‖ Y HH ‖2 +2Re[det(ejφY HH)]

= arg max
φ

Re[det(Y HH)ej2φ]

= arg max
φ

Re[det(B)ej2φ] (3.6)

Thus φ can be estimated directly from the determinant of the 2× 2 matrix Y HH.

Note that we have restricted x1 and x2 to lie in a PSK constellation, so that

|x1| = |x2| = 1. Thus, a better detector might be obtained by considering that

constraint:

Λ = max
|x1|=|x2|=1

Re [(a11 + a∗22)x1 + (a21 − a∗12)x2]
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= |a11 + a∗22|+ |a21 − a∗12| .

Substituting A = ejφY HH = ejφB above, we get another detector

φ̂GLRT2 = arg max
φ
|ej2φb11 + b∗22|+ |ej2φb21 − b∗12|

= ‖ ej2φb1 − b2
∗ ‖1 (3.7)

where b1 = [b11, b21], b2 = [−b22, b12] and ‖ · ‖1 denote the vector 1-norm. This

receiver is also based on the 2 × 2 matrix Y HH, but followed by a vector norm

operation.

Once φ has been detected, the receiver can then substitute the detected value of

ejφ̂ into the decision metric (3.5) and use the conventional Alamouti linear decoder

[2] to conduct parallel decoding of x1 and x2. Thus, the two sequential receivers

proposed in this section provide a simple way to decouple the decoding of individual

information symbols in this nonlinear code. Here, we denote these two receivers as

GLRT receivers because the first step in decoding is based on GLRT.

Unlike (3.5), for coherent space-time codes with non-unitary constellations, the

log-likelihood decision metric depends also on the instantaneous power of the trans-

mitted matrix

Λ(Y |H,x, φ) = ReTr
[
2ejφY HHQ(x)

]
− ||H||2(|x1|2 + |x2|2)/2 (3.8)

Generally, instantaneous values of |x1|2, |x2|2 or (|x1|2+|x2|2)/2 are not unit, therefore

conditions for the two GLRT receivers for φ do not hold. For the first GLRT receiver,

however, the decoder for φ takes the same form as (3.6). The decoder for x1 and x2,

however, requires more computation to take different amplitude level into account.
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3.3.3 Error Performance Analysis

In this part we will derive bit error rate probabilities for the sequential GLRT

receivers based on equivalent channel models. We will consider unitary space-time

codes. However, the extension to non-unitary codes is trivial. For simplicity, the

analysis is based on the first GLRT receiver (GLRT1).

The first GLRT decoder for φ in eq. (3.6) can be rewritten as

φ̂ = arg max
φ

Re{det(HHY )e−j2φ}.

Consider a transformation of the received signal

HHY =
√

ρejφHHHQ + HHN

= S + Ñ

where S =
√

ρejφHHHQ and Ñ = HHN . Expand det(HHY ) to first order in the

noise as

det(HHY ) = det(S) + ñ11s22 − ñ12s21 − ñ21s12 + ñ22s11 + h.o.t

≈ det(S) + Tr







s22 −s12

−s21 s11


 HHN




= det(S) + Tr
(
det(S)S−1HHN

)

= ρ det(HHH)ej2φ + αñ

where ñ is a complex Gaussian random variable with CN(0, 1) and α is a scalar with

α2 = ‖ det(S)S−1HH ‖2

= ρ det(HHH)Tr(HHH)
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Denote det(HHY ) as ỹφ and then we come up with an equivalent channel for φ as

ỹφ ≈ ρ det(HHH)ej2φ +
√

ρ det(HHH)Tr(HHH)ñ (3.9)

If ej2φ takes values in an M2φ-ary PSK distribution, and if the symbol error rate

(SER) of M2φ PSK for the additive white Gaussian noise channel y =
√

γej2φ + n is

PM2φ
(γ), then the SER of decoding φ is

Psφ
= E

[
PM2φ

(
ρ
det(HHH)

Tr(HHH)

)]
(3.10)

It is well known [12, pg. 39] that if H is r × t with r ≥ t, then HH can is unitarily

similar to an t× r matrix



x2r 0 · · · 0

y2(t−1) x2(r−1) · ·
. . . . . .

...
...

y2 x2(r−(t−1)) 0 · · · 0




and hence det(HHH) has the same distribution as χ2
2rχ

2
2(r−1) · · ·χ2

2(r−t+1), where χ2
k

denotes a chi-square distribution with k degree of freedom and parameter 1/2. By

the same argument, it appears that

Tr[HHH] ∼ χ2
2r + χ2

2(r−1) + · · ·χ2
2(r−t+1) + χ̃2

2(t−1) + · · · χ̃2
2

where all of the variables are independent.

For t = 2, we have det(HHH) ∼ χ2
2rχ

2
2(r−1) and Tr[HHH] ∼ χ2

2r + χ2
2(r−1) + χ̃2

2.

Thus

det(HHH)

Tr(HHH)
∼ χ2

2rχ
2
2(r−1)

χ2
2r + χ2

2(r−1) + χ̃2
2

.
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If φ is correctly detected, the sequential decoder for Q(x) acts as the conventional

Alamouti decoder. The equivalent channel model for xi(i = 1, 2) can be expressed as

ỹi =
√

ρ/2 ‖ H ‖2 xi + ñi (3.11)

where ỹi is a linear combination of Y and ñi ∼ CN (0, ||H||2). Therefore the condi-

tional SER for xi given φ̂ = φ can be expressed as

{Psxi
|φ̂ = φ} = E

[
PMxi

(
ρ

2
‖ H ‖2

)]
(3.12)

If φ is erroneously decoded, we approximate the SER of xi by 1/2. So the SER for

xi can be expressed as

Psxi
= {Psxi

|φ̂ = φ}(1− Psφ
) +

1

2
Psφ

(3.13)

For a M -PSK symbol with gray mapping, the bit error rate (BER) can be ap-

proximated using SER by

Pb ≈ 1

log2 M
Ps

Therefore we can approximate the BER of the GLRT receiver by

Pb =

(
log2 Mx1Pbx1

+ log2 Mx2Pbx2
+ log2 M2φPbφ

)

2R

=

(
Psx1

+ Psx2
+ Psφ

)

2R
(3.14)

3.3.4 Computation Complexity

We now compare the complexity of the GLRT receivers with those of optimal ML

decoding and the Alamouti linear receiver at the same rate. The ML receiver in (3.5),
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the GLRT receivers in (3.6, 3.7) and the Alamouti decoder with equivalent metric

(3.5) all begin with calculating Y HH. For constellation size |U| = Mx1Mx2M2φ, ML

decoder then multiplies each matrix in U by Y HH. In contrast, GLRT decoders

and the Alamouti decoder optimize the decision metric for each information symbol

separately. In particular, the Alamouti decoder conducts parallel decoding of x1 and

x2. The GLRT decoders first detect φ, then detect x1 and x2 in parallel. It is obvious

that the complexity of the GLRT receivers and the Alamouti decoder increases as a

function of individual element constellation, while the joint ML decoding complexity

is a function of the whole constellation size.

Table. 3.3 gives an example of the number of operations used by different decoding

methods, for systems using eight receive antennas at different rates. We list the

number of floating point operations in terms of real multiplications (RM) and real

additions (RA) for each decoding methods. We can see that the GLRT receivers

proposed in this paper provide significant complexity advantages over the ML receiver,

especially for high rate codes. Furthermore, for the same rate, the suboptimal GLRT

decoders have computational operations similar to that of the Alamouti decoder for

PSK constellations. If QAM constellation are used, the suboptimal decoders compare

favorably to the Alamouti decoder. Therefore, the new code with GLRT receivers

provides efficient decoding and better performance compared to the Alamouti code.
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Table 3.3: Decoding complexity for r = 8 and different rates

R = 3 R = 4 R = 5
Decoder RM RA RM RA RM RA

ML(PSK) 2176 2240 8320 8576 32896 33920
ML(QAM) - - - - 34048 35072

Alamouti(PSK) 192 164 256 196 384 260
Alamouti(QAM) 336 308 416 356 576 452
GLRT1(PSK) 200 170 232 186 280 210
GLRT1(QAM) - - - - 456 378
GLRT2(PSK) 224 192 256 208 344 268
GLRT2(QAM) - - - - 480 404

3.3.5 Sequential Decoders for DSTM

For differential space-time modulation with the unitary code (3.2), the maximum-

likelihood receiver in (2.3) leads to a log-likelihood decision metric of the form

Λ(Yk, Yk−1|,x, φ) = ReTr
[
ejφY H

k Yk−1Q(x)
]

(3.15)

This metric has the same form as the decision metric for coherent detection (3.5), only

by replacing H by Yk−1. it is easy to show that we can use the same method to get

the GLRT receivers for φ in DSTM, by replacing H with Yk−1. The resulting receivers

for φ can also be expressed as (3.6) and (3.7), with B defined as B = Y H
k Yk−1, and

followed by the differential receiver for the Alamouti code. The suboptimal receivers

for DSTM have the same computation complexity as those for coherent detections

with PSK constellations. The error performance analysis in Sec. (3.3.3) can be easily

extended to DSTM. Therefore the new code and the low-complexity sequential GLRT

receivers can be used with or without channel knowledge at the receiver.

As we will see from the simulated performance results, these two receivers achieve
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good performance for large receive arrays.

3.3.6 Numerical Results

In this section, we will evaluate the bit-error-rate (BER) performance of the pro-

posed code with the optimal ML decoder and the two GLRT decoders, respectively.

Furthermore, we will compare the performance of the new code with that of the Alam-

outi code (3.1) and Steiner code (2.30), both with ML decoding. We also compare the

simulated BER performance of GLRT1 with its analytical approximation. In all the

simulations, we assume t = 2 transmit antennas and the number of receive antennas

varies from r = 4, 8 to 16. We will first consider coherent detection.

Fig. 3.1 compares the BER performance of the new code with R = 3 bps/Hz and

coherent detection for three different decoders: ML decoding, the first GLRT decoder

(GLRT1) in (3.6), and the second GLRT decoder (GLRT2) in (3.7). For r = 4, note

that there is a gap of more than 2.5 dB between the GLRT2 and optimal ML decoding,

and the GLRT1 decoder suffers an additional loss of nearly 2 dB compared to the

GLRT2. As the number of receive antennas increases, however, the performance loss

of the GLRT receivers compared to ML decoding decreases, as does the gap between

the two GLRT receivers. In particular, for r = 16, the performance of the two GLRT

receivers is nearly the same, and both are within about 0.7 dB of ML decoding.

Fig. 3.2 compares the performance of the new R = 3 bps/Hz code using the

GLRT2 receiver with the Alamouti and Steiner codes, both using ML decoding. For

r = 16, the proposed code with suboptimal receiver outperform the Alamouti code
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Figure 3.1: BER performance of the new code with ML, GLRT1 and GLRT2 decoding
at R = 3 bps/Hz for t = 2 and r = 4, 8, 16 with coherent detection.

by about 2.3 dB, but are about 1.3 dB inferior to the Steiner code. From Fig. 3.1, it

is clear that approximately 0.6 dB of this gap is due to the suboptimal decoder; the

remaining 0.7 dB can be explained by the larger Euclidean distance of the Steiner

code. As shown in the complexity analysis, however, the GLRT decoders are far less

complex than the ML decoding used with the Steiner code.

The performance of the new code with coherent detection for R = 4 bps/Hz

is shown in Fig. 3.3. Note that the performance gap between the ML and GLRT

receivers is smaller than in the R = 3 bps/Hz case. Specifically, from r = 8, the

performance of the GLRT receivers is nearly the same as ML decoding.
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Figure 3.2: BER comparison of the new code using GLRT2 decoding with the Alam-
outi and Steiner codes using ML decoding at R = 3 bps/Hz for t = 2 and r = 4, 8, 16
with coherent detection.

Fig. 3.4 compares the performance of the proposed code at 4 bps/Hz using the

GLRT2 receiver and the Alamouti with 16PSK and 16QAM constellations respec-

tively for coherent detection. Notice that the proposed code outperforms the Alam-

outi code with both QAM and PSK constellations from r = 4 and the performance

gain increases as the number of receive antennas increases. In particular, for r = 8,

the new code with the suboptimal decoder outperforms Alamouti code with QAM

and PSK constellations for nearly 2 dB and 5.7 dB respectively.

For R = 5 bps/Hz, Fig. 3.5 compares the performance of the proposed code with

16QAM, 16QAM and QPSK symbol constellations and GLRT1 decoder with the
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Figure 3.3: BER of new code with ML, GLRT1 and GLRT2 decoding at R = 4
bps/Hz for t = 2 and r = 4, 8, 16 with coherent detection.

Alamouti code with 32QAM symbol constellations. For r = 4, the new code with

suboptimal decoder outperforms the Alamouti code for BER larger than 10−4 level.

After that point, Alamouti code performs better. For r = 8, the new code has about

2 dB performance gain relative to the Alamouti code even with suboptimal GLRT1

decoder.

Fig. 3.6 compares the simulated BER performance for the GLRT1 receiver with

coherent detection and the theoretical approximation for rate 4. We can conclude

that the approximation gives a good indicator for the actual bit error performance.

For differential space-time modulation, Fig. 3.7 shows the proposed code with the
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Figure 3.4: BER comparison of the new code using GLRT2 decoding with the Alam-
outi code with QAM and PSK respectively at R = 4 bps/Hz for t = 2 and r = 4, 8, 16.

GLRT2 receiver outperforms the Alamouti and Steiner codes with ML decoding for

r = 4, 8 and 16. In particular, for r = 16, the performance gains relative to the Steiner

and Alamouti codes are 0.9 dB and 5.5 dB, respectively. The new codes provide good

performance with a simple decoding algorithm, even for a relatively modest number

of receive antennas. Here, all these codes take on PSK constellations.

From the above simulation, we conclude that the new code has good performance

compared to existing codes, for both coherent and differential space-time modulation,

and at various rates. The performance of suboptimal decoders approaches that of the

ML decoder for large receive arrays (r ≥ 4), with greatly reduced decoding complexity.
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Figure 3.5: BER comparison of new code with GLRT1 decoding and Alamouti code
at R = 5 bps/Hz for t = 2 , r = 4, 8, 16 with coherent detection.

3.4 Mutual Information

In this section, we will compute the constellation-constrained capacity when the

proposed code is used as input. We then compare the capacity of the new code with

existing codes. Here we assume coherent detection is used. We will start with a brief

introduction on channel capacity.

3.4.1 Channel Capacity

As mentioned in chapter one, channel capacity is the maximum possible trans-

mission rate such that the probability of error is arbitrarily small. For wireless fading
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Figure 3.6: Comparison of simulated BER performance and theoretical approximation
for GLRT1 decoder at R = 4 bps/Hz for t = 2 and 4, 8, 16

channels, since the fading gain is a random parameter, the maximum throughput will

also be a random variable. One commonly used statistic in analyzing capacity for

such channels is called ergodic capacity. Ergodic capacity is the ensemble average of

information rate over the distribution of the elements of the channel matrix H [39].

It is the appropriate measurement of capacity when the channel varies fast so that

for each channel use, the channel is drawn from an independent realization.

Using multiple antennas at both ends of a wireless channel can greatly increase

the channel capacity. If the channel between each transmitter and receiver fades

independently, i.e, elements of H are modeled as i.i.d complex Gaussian variables, the
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Figure 3.7: BER comparison of the new code using GLRT2 decoding with the Alam-
outi and Steiner codes at R = 4 bps/Hz for t = 2 and r = 4, 8, 16 in DSTM

capacity increases linearly with minimum number of transmit and receive antennas

[14, 58]. For the MIMO channel model (2.1) with CSI at the receiver but not at the

transmitter, the ergodic channel capacity can be expressed as

C = sup
px

EH{I(X; Y |H)} (3.16)

= EH

{
log2 |Ir +

ρ

t
HHH |

}
(3.17)

where EH is the expectation with respect to H, the supreme is over all input probabil-

ity distributions px subject to the power constraint E{Tr(XXH)} = t , and I(X; Y |H)

is the conditional mutual information between the variables X and Y conditioned on

the channel realizations H.
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To achieve any point on the capacity curve, generally a symbol constellation with

a Gaussian distribution is needed. In practice, however, the input is often restricted

to a fixed code constellation. The constellation-constrained capacity is obtained by

averaging the mutual information over a given distribution of transmitted signals.

3.4.2 Capacity of the New Code

For the unitary matrix U in (3.2), the average mutual information between the

transmitted code U and the received signal Y can be computed from

I(U, Y |H) = H(U)−H(U |Y,H) (3.18)

where H(·) = −E log p(·) is the entropy function.

For the proposed code, if e2φ, x1 and x2 are taken independently from PSK con-

stellations, the resulting code constellation has |U| equally likely distributed codes.

Therefore, the input entropy is given by

H(U) = −E{log2 p(U)} = log2 |U| (3.19)

Using Bayes’ rule, the conditional entropy can be computed according to

H(U |Y,H) = −E{log2 p(U|Y, H)}

= −E
{

log2

p(Y|U, H)p(U)

p(Y)

}

= −E


log2

p(Y|U, H) 1
|U|

1
|U|

∑
U p(Y|U, H)





= −E
{

log2

p(Y|U, H)∑
U p(Y|U, H)

}
(3.20)
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where p(Y|U, H) is given in (2.2). Substituting (3.19) and (3.20) into (3.18), the

mutual information can be expressed as

I(U, Y |H) = log2 |U| − E
{

log2

∑
U p(Y |U,H)

p(Y |U,H)

}
(3.21)

If suboptimal decoding methods are used, we can get an approximate expression

on the mutual information using the equivalent channel model for each symbol. For

φ, from the equivalent channel (3.9), we obtain

I(φ, Y |H) = log2(M2φ)− E
{

log2

∑
φ p(ỹφ|φ, H)

p(ỹφ|φ, H)

}

Assume for worst cases, if φ is erroneously decoded, the received signal attains no

information about x1 and x2. Then the mutual information between xi (i = 1, 2) and

Y is lower bounded by the value if φ is correctly decoded. From (3.11), we have

I(xi, Y |H) = log2(Mxi
)− E

{
log2

∑
xi

p(ỹi|xi, H)

p(ỹi|xi, H)

}

The total mutual information is expressed as

I(U, Y |H) ≈ I(φ, Y |H) + I(x1, Y |H) + I(x2, Y |H) (3.22)

Note that the mutual information expression for the suboptimal receivers assumes no

information of xi is used when decoding φ.

3.4.3 Capacity of Isotropically Random Unitary Codes

In above section, we calculate the constellation-constrained capacity of the pro-

posed unitary code. It is of interest to see how much of the capacity is constrained by
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the unitary structure and how much is limited by specific parametrization. To this

end, we will investigate the constellation-constrained capacity of the isotropically

random (IR) unitary codes.

A t × T isotropically distributed unitary code Φ satisfies ΦΦH = It and has a

density that is unchanged when it is right-multiplied by any T × T unitary matrix.

Here t and T denote the number of transmit antennas and code duration length

respectively. It has been shown by Marzetta and Hassibi [38] that if T >> t, the

capacity of multi-antenna Raleigh fading channel is approached by unitary codes

constructed by multiplying Φ with a real independent nonnegative diagonal matrix.

Hassibi and Marzetta [22] obtained a closed form of the probability density of the

received signal when transmitting IR unitary matrix when H is unknown at the

receiver.

Here, we are interested in the constellation constrained capacity of the two by two

IR unitary matrix, given that the receive has channel knowledge H. It will serve as

an upper bound for the capacity of unitary codes. Generally for a channel with t

transmit antennas and r receive antennas, the r × t noise matrix N has a density

p(N) =
1

πtr
exp(−Tr[NNH ])

Thus if Y =
√

ρHΦ + N , the conditional mutual information between Φ and Y can

be expressed as

I(Φ; Y |H) = H(Y |H)−H(Y |Φ, H) = H(Y |H)− tr log(πe) (3.23)
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where h(Y |H) is the differential entropy with respect to

p(Y |H) =
∫

dΦ p(Y |H, Φ)p(Φ)

=
1

πtr

∫
dΦ exp(−Tr[(Y −√ρHΦ)(Y −√ρHΦ)H ])p(Φ)

=
1

πtr
exp(−Tr[Y Y H + ρHHH ])

∫
dΦ exp(

√
ρTr[HHY ΦH + ΦY HH])p(Φ)

In order to evaluate the last integral, define B =
√

ρHHY and let B = V H
l DVr be

the singular value decomposition ( SVD) of B, where D = diag(d1, . . . , dt) and Vl, Vr

be the left and right t × t unitary matrix respectively. Observing that multiplying

Φ by any random unitary matrix does not change the distribution of Φ, the integral

can be expressed as

∫
dΦ exp(Tr[BΦH + ΦBH ])p(Φ) =

∫
dΦ exp(Tr[DΦH + ΦDH ])p(Φ)

For t = 2 and D = diag{d1, d2} where di are the (real) singular values of B, the above

integral can be rewritten as

∫
dΦ exp(Tr[DΦH + ΦDH ])p(Φ)

= E
[
exp(Tr[DΦH + ΦDH ])

]

= E {exp (d1(φ11 + φ∗11) + d2(φ22 + φ∗22))}

= E {exp (2d1|φ11| cos(θ1) + 2d2|φ22| cos(θ2))}

= E {I0(2d1|φ11|)I0(2d2|φ22|)}

where I0 and I1 are modified Bessel function of first kind. The second step above fol-

lows by observing that multiplying Φ by any the random unitary matrix diag{ejθ1 , ejθ2}

where θi are independent and uniform does not change the distribution of Φ. Note



78

that for any 2× 2 unitary matrix Φ, it is easy to see that |φ11| = |φ22|. Further note

that |φ11|2 will have the same distribution as

ξ2
1 + ξ2

2

ξ2
1 + ξ2

2 + ξ2
3 + ξ2

4

where all the variables are N(0, 1
2
). It can also be expressed as Z = P/(P + Q)

where P and Q are independent exponentially distributed random variables. Thus

for 0 < z < 1

Pr {Z ≤ z} = Pr {(1− z)P ≤ zQ} =
∫ ∞

0
e−(1−z)x/ze−pdp = z

so Z is uniform. thus

∫
dΦ exp(Tr[DΦH + ΦDH ])p(Φ) =

∫ 1

0
I0(2d1

√
z)I0(2d2

√
z)dz

Using the Bessel integral equation [19]

∫
Iν(a

√
z)Iν(b

√
z)dz ==

2
√

z

a2 − b2
(aIν(b

√
z)Iν+1(a

√
z)− bIν+1(b

√
z)Iν(a

√
z))

and assuming d1 ≥ d2, the above integral becomes

∫
dΦ exp(Tr[DΦH + ΦDH ])p(Φ)

=

√
r

(d2
1 − d2

2)
(d1I0(2d2

√
r)I1(2d1

√
r)− d2I1(2d2

√
r)I0(2d1

√
r))|10

=
1

d2
1 − d2

2

(d1I0(2d2)I1(2d1)− d2I1(2d2)I0(2d1))

Therefore the conditional pdf of Y given H is

p(Y |H) =
1

πTN(d2
1 − d2

2)
exp(−Tr[Y Y H + ρHHH ])

·(d1I0(2d2)I1(2d1)− d2I1(2d2)I0(2d1))
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Since the calculation of its differential entropy requires integration over a log function

of the above equation, which is hard to get a simple close form. We will evaluate

the differential entropy through Monte-Carlo simulations. The calculation of p(X|H)

depends on the singular values of
√

ρHHY . We now show that averaging the singular

value only requires us to average over H and N , without requiring averaging over the

IR unitary matrix.

HHY =
√

ρHHHΦ + HHN

Multiplying unitary matrix ΦH on its right side doesn’t change the singular values di

of
√

ρHHY , i.e

d(HHY ) = d(HHY ΦH)

= d(
√

ρHHH + HHNΦH) = d(
√

ρHH + HHÑ)

Similarly averaging over Tr(YYH) is equivalent to averaging over Tr(Y ΦHΦHY H).

Therefore, we can use an equivalent receiver

Ỹ = Y ΦH =
√

ρH + Ñ

in the Monte-Carlo simulations of the differential entropy.

3.4.4 Numerical Results

We compute the constellation-constrained ergodic capacities achieved by the new

code with optimal and suboptimal decoding, and compare with those of the Alamouti

code and the Steiner code for different rates and receive array size.
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Figure 3.8: Ergodic capacity of the new code with ML and GLRT1 decoding, Alam-
outi code and Steiner code at R = 3 bps/Hz for t = 2, r = 8.

Fig. 3.8 shows the results for R = 3 bps/Hz and r = 8. We also include the channel

capacity as in (3.17) and the capacity achieved by the isotropically random unitary

code (3.23) as upper bounds for arbitrary inputs and unitary codes respectively. We

observe that the Steiner code has slightly larger capacity than the new code with ML

decoding. The capacity of the new code with the suboptimal GLRT1 decoder is within

0.4 dB of the ML capacity. On the other band, Alamouti code suffers much capacity

loss compares to the Steiner code and the new code. For capacity of 2 bps/Hz, the

new code with ML decoding is about 0.5dB from the capacity of IR unitary code and

0.7dB from the MIMO capacity.
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Figure 3.9: Ergodic capacity of the new code with ML and GLRT1 decoding, Alam-
outi code and Steiner code at R = 4 bps/Hz for t = 2, r = 8.

For rate 4 bps/Hz and r = 8, as shown in Fig. 3.9 the capacities of the new code

with both decoding structures and the Steiner code are very close, all within 1.4 dB

of the MIMO capacity at 3 bps/Hz. Nearly half of the gap is due to the unitary

constraint. The capacity loss of the Alamouti code compared to the new code is

larger than that for the rate 3 case.

In Fig. 3.10, we compare the capacity of the rate 4 new code with those of the

Alamouti code with 16QAM and 16PSK for one and eight receive antennas respec-

tively. It is clear that for one receive antenna, the Alamouti code with 16QAM has

the largest capacity, which is not surprising because the Alamouti code with Gaussian
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Figure 3.10: Comparison of ergodic capacity of the new code and Alamouti code at
R = 4 bps/Hz for t = 2, r = 1 and r = 8 respectively.

input is the capacity achieving code. However, for 8 receive antennas, the new code

has larger capacity than the Alamouti code with both 16QAM and 16PSK.

The capacity results shows that the new code is a good candidate for large antenna

arrays, which verifies the BER performance results from information theory point of

view.
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3.5 Extension to More Than Two Transmit An-

tennas

3.5.1 Introduction

Up to now, we have considered space-time coding for two transmit antennas. It

is of interest to consider the design of space-time codes for more than two transmit

antennas. This is especially important for downlink transmission for cellular networks.

Due to the size and cost limitation, it is usually difficult for the mobile handset

to employ large number of antennas. A more practical solution for high date rate

downlink transmission is to equip the base station with more transmit antennas.

Space-time block codes based on orthogonal design have gained much interest

because the orthogonal structure enables a simple maximum likelihood decoding. It

has been shown by Tarokh et al. [56], however, that full rate and full diversity complex

orthogonal design only exists for two transmit antennas, which is the Alamouti code.

Only some sparse codes of rate more than a half exist for more than two transmit

antennas. For example, for 4 transmit antennas, a rate 3/4 code with a simple form

is given by Tirkkone and Hottinen [60] as

U =
1√
3




x1 x2 x3 0

−x∗2 x∗1 0 −x3

−x3 0 x∗1 x∗2

0 x∗3 −x∗2 x1




. (3.24)

The orthogonal structure ensures that each information symbol has a separate de-
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coding metric, therefore the decoding is decoupled.

Since it is impossible to have full rate full diversity complex design for more

than two transmit antennas, non-orthogonal codes are designed to achieve full rate

transmission for t > 2. One approach is the quasi-orthogonal codes proposed by

Jafarkhani [28] which is closely related to the Alamouti code. Let U12 and U34 be

the alamouti code with information symbols x1, x2 and x3, x4 respectively, then a full

rate quasi-orthogonal code for four transmit antennas can be obtained by

Uq =
1√
2




U12 U34

−U∗
34 U∗

12


 =

1

2




x1 x2 x3 x4

−x∗2 x∗1 −x∗4 x∗3

−x∗3 −x∗4 x∗1 x∗2

x4 −x3 −x2 x1




(3.25)

Denote Vi, i = 1, 2, 3, 4 as the ith column of Uq, it is easy to see that the subspace

created by V1 and V4 is orthogonal to the subspace created by V2 and V3. Using

this orthogonality, the maximum-likelihood decision metric can be expressed as the

sum of two terms f14(x1, x4) + f23(x2, x3), where f14 is independent of x2 and x3 and

f23 is independent of x1 and x4. Therefore, the ML decoding works with pairs of

transmitted symbols instead of the individual symbols for the orthogonal designs.

However, it achieves a higher rate compared to the orthogonal structure.

The minimum Euclidean distances for the orthogonal code and the quasi-orthogonal

code are

Λe =
4√
3

sin(
π

Mx

) (3.26)
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and

Λe = 2 sin(
π

Mx

) (3.27)

respectively. For a same rate, the quasi-orthogonal code has larger Euclidean distance

compared to the orthogonal code.

Quasi-orthogonal codes are not unitary codes, i.e, not all the columns are orthog-

onal to each other. Therefore, it is primarily interested for coherent detection. On

the other hand, the orthogonal design can be used for differential detection as well.

We will show that both orthogonal codes and quasi-orthogonal codes can be im-

proved by adding one extra information symbol. In addition, the suboptimal decoders

can be utilized to reduce the decoding complexity.

3.5.2 Code Construction and Decoding Structure

We can get a new code with improved rate by adding a fourth parameter ejφ to

the 4× 4 orthogonal code (3.24), where −π
2

< φ ≤ π
2

U =
1√
3
ejφ




x1 x2 x3 0

−x∗2 x∗1 0 −x3

−x3 0 x∗1 x∗2

0 x∗3 −x∗2 x1




(3.28)

The Euclidean distance of the new code can be expressed as

Tr{(U − Û)(U − Û)H} =
4

3
(|x1|2 + |x̂1|2 + |x2|2 + |x̂2|2 + |x3|2 + |x̂3|2)

−4

3
Re{ej(φ−φ̂)(x1x̂

∗
1 + x̂1x

∗
1 + x2x̂

∗
2 + x̂2x

∗
2 + x3x̂

∗
3 + x̂3x

∗
3)}
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= 8− 8

3
Re{ej(φ−φ̂)}Re{x1x̂

∗
1 + x2x̂

∗
2 + x3x̂

∗
3}

From which we can observe that the minimum Euclidean distance of the new code

can be expressed as

Λe = min

{
4√
3

sin(
π

Mx

), 4 sin(
π

2M2φ

)

}
(3.29)

where Mx is the maximum constellation size for x1, x2, x3. Let B4×4 defined by B =

Y HH and B = Y H
k−1Yk−1 for coherent and differential detection, respectively. The

ML decoding metric for this code can be expressed as

Λ(Y |x1, x2, x3, φ) = [(b11 + b44)e
jφ + ((b22 + b33)e

jφ)∗]x1

+[(b21 + b43)e
jφ − ((b12 + b34)e

jφ)∗]x2

+[(b31 + b42)e
jφ + ((b24 + b13)e

jφ)∗]x3

Comparing this with (3.5), we can conclude that similar to the code for two transmit

antennas, here we can also use suboptimal GLRT receivers to decode φ first and then

use conventional parallel decoders for xi (i = 1, 2, 3).

For coherent detection, consider the quasi-orthogonal code (3.25). We can also

add a fifth parameter ejφ, where −π
2

< φ ≤ π
2

to this code

U =
1

2
ejφ




x1 x2 x3 x4

−x∗2 x∗1 −x∗4 x∗3

−x∗3 −x∗4 x∗1 x∗2

x4 −x3 −x2 x1




(3.30)
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The Euclidean distance for the new code can be expressed as

Tr{(U − Û)(U − Û)H} =
4∑

i=1

|xi|2 + |x̂i|2 − 2Re{ej(φ−φ̂)}Re{
4∑

i=1

xix̂
∗
i }

For symbols taken from PSK constellations, the minimum Euclidean distance can be

written as

Λe = min

{
2 sin(

π

Mx

), 4 sin(
π

2M2φ

)

}
(3.31)

Comparing this with (3.3), we can conclude that here φ is better protected.

The ML decoding metric is to maximize the two functions

f14(x1, x4, φ) = f1(x1, φ) + f4(x4, φ)− Re{x1x
∗
4}Re{hH

4 h1 − hH
3 h2} (3.32)

and

f23(x2, x3, φ) = f2(x2, φ) + f3(x3, φ) + Re{x2x
∗
3}Re{hH

4 h1 − hH
3 h2} (3.33)

where hi denote the i th column of H. We can apply the GLRT decoders for φ based

on the metric

Λφ = f1(x1, φ) + f4(x4, φ) + f2(x2, φ) + f3(x3, φ)

= Re{[(b11 + b44)e
jφ + (b∗22 + b33∗)e−jφ]x1

+[(b14 + b41)e
jφ − (b∗23 + b∗32)e

−jφ]x4}

+Re{[(b21 − b34)e
jφ + (b∗43 − b∗12)e

−jφ]x2

+[(b31 − b24)e
jφ + (b∗42 − b∗13)e

−jφ]x3}

using a similar approach for two transmit antennas. Then substitute the detected

value ejφ into (3.32) and (3.33) to do pair decoding of x1, x4 and x2, x3 respectively.
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Figure 3.11: BER of new code at R = 2 with GLRT2 receiver and Orthogonal code
at R = 2.25 for t = 4 , r = 8 receive antennas and DSTM structure.

3.5.3 Numerical Results

We now presents the simulated BER performance of the new codes constructed

from 4 × 4 orthogonal and Quasi-orthogonal codes respectively. We also plot the

performance of the orthogonal and Quasi-orthogonal codes for comparison. Eight

receive antennas are assumed.

Fig. 3.11 compares the new code at rate 2 bps/Hz with 4 parameters (x1, x2, x3, e
j2φ)

all taken from QPSK constellations and the orthogonal code at rate 2.25 bps/Hz with

3 parameters (x1, x2, x3) all taken from 8PSK constellations. We assume differential

space-time modulation is used. We can see that the new code has more than 2 dB
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Figure 3.12: BER of new code with GLRT2 receiver and Quasi-orthogonal code for
rate R = 3 bps/Hz, t = 4 , r = 8 receive antennas and coherent detection.

advantage although the rate for orthogonal code is a little bit higher.

Fig. 3.12 compares the new code with 5 parameters (x1, x2, x3, x4, e
j2φ) taken from

(8PSK, 8PSK, QPSK,QPSK, QPSK) and the quasi-orthogonal code with 4 parame-

ters (x1, x2, x3, x4) all taken from 8PSK constellations. Both codes result in rate

3 bps/Hz. Coherent detection is assumed. The new code outperforms the quasi-

orthogonal code by about 0.5 dB. The new code also has advantage in decoding

complexity by reducing the constellation size in pair decoding.
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3.6 Conclusion

In this chapter, we have proposed a new family of unitary space-time block codes,

that is useful for two transmit antennas and a large number of receive antennas. We

optimized the new code with respect to the Euclidean distance criterion. We then de-

rived two suboptimal low-complexity sequential receivers based on GLRT, which allow

the individual symbols in the code to be sequentially decoded. The decoding com-

plexity of these suboptimal decoders is comparable to the Alamouti linear decoder.

The proposed unitary codes can be used for both coherent and differential space-

time modulations. When coherent detection is used, we also extend the code from

PSK constellations to QAM constellations to further improve performance. Through

simulation results, we can conclude that the new code achieves better performance

than some existing codes for large numbers of receive antennas. Furthermore, the

suboptimal receivers perform close to optimal ML decoding as the number of receive

antennas increases. We analyzed the bit-error rate performance of the suboptimal de-

coders through the decoupled equivalent channels for each information symbol. The

analytical result provides a good approximation to the simulated BER performance.

We also evaluated the new code from an information theoretic perspective through

the calculation of constellation-constrained capacity. The capacity results also provide

evidence that the proposed code is a good candidate for systems with large receive

arrays. We then extended the proposed coding structure to four transmit antennas,

based on modification of orthogonal codes and quasi-orthogonal codes. The newly

designed codes improve performance with both coherent and differential detection.
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Chapter 4

Multiple-Symbol

Decision-Feedback DSTM in Fast

Fading Channels

In previous chapters, the discussion on differential space-time modulation is based

on the assumption that the channel remains approximately the same for two adjacent

blocks. In this chapter, we will evaluate the performance of DSTM with the proposed

code and suboptimal decoders, in the presents of fast fading channels. We show

that the code performance suffers from degradation when fast fading is encountered.

We will apply multiple-symbol decision-feedback differential detection (DFDD) to

improve the performance of DSTM in fast-fading channel. The suboptimal decoders

[67] are utilized in DFDD to further reduce the decoding complexity.
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4.1 Introduction

For differential space-time modulation, usually a slow fading channel is assumed,

where the channel coefficients remain approximately constant for two adjacent trans-

mission blocks. Under such assumption, conventional differential detection detects

the information signal matrix using only the received signals for current and previous

blocks. The lack of channel state information results in about 3 dB performance loss

compared to the corresponding coherent receiver.

For DSTM with two transmit antennas and large numbers of receive antennas, we

proposed a new family of space-time codes [66, 67, 68]. The new code can achieve

good performance and can use low-complexity suboptimal sequential receivers based

on GLRT with near-optimal performance for large antenna arrays.

If this slow-fading condition is not fulfilled, the conventional differential detection

(DD) will suffer from severe performance degradations. The autocorrelation func-

tion for time-varying channel is usually predicted by the Jake’s model [31]. Peel and

Swindlehurst [40] analyzed the performance of DSTM under continuous changing

channel through the derivation of effective SNR. They adopted a first-order auto-

regressive (AR) model for the time-variations of the channel coefficients by matching

the autocorrelation of the AR process to Jakes’ model. It is shown that for a contin-

uous fading channels with a large Doppler shift, there will be a error floor.

For systems with single transmit antenna, it is well known that multiple-symbol

differential detection (MSDD) can mitigate the flooring effect [10, 11]. The com-

putational complexity of MSDD is exponential in the observation length. A simple
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and efficient decoding method is to use multiple symbol decision-feedback differential

detection (DFDD) [45]. This techniques is extended to systems employing multiple

antenna systems and space-time differential coding in [46] by Schober and Lampe

and in [36] by Liu and Wang. [46] focuses on diagonal group codes. The DFDD

receiver is utilized for decoding diagonal group codes in continuous fading channels

where the channel coefficients vary symbol by symbol. The fast decoding algorithm

[7] is used for the diagonal group codes. [36] focuses on the Alamouti code struc-

ture. To simplify the analysis, the channel is assumed to have block fading, for which

the channel remains constant inside a block, but varies between blocks according to

Jakes’ model. The performance of DFDD in both block fading and symbol fading

channels was evaluated through simulation. DFDD for channels with symbol fading

was considered later in [35] by Ling et al., but with more decoding complexity.

In this work, we will evaluate the performance of our proposed unitary space-time

codes in continuously fading channels. To reduce the performance degradation caused

by the time-selective fading, we employ a multiple symbol DFDD receiver for the new

codes. The suboptimal decoders based on GLRT will be applied in the DFDD scheme

to further reduce the receiver complexity. For simplicity, we assume a block fading

channel.

4.2 Channel Model

Consider a flat fading, spatially uncorrelated and time varying channel. For a

system with t transmit antennas and r receive antennas, the received signal for the
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ith receive antenna at time l can be expressed as

yil =
t∑

j=1

√
ρhij(l)xjl + nil, i = 1, · · · , r, l = 1, · · · , T

where hij(l) is the channel coefficient from the jth transmit antenna to the ith receive

antenna at time l. As mentioned in chapter two, the time-correlated fading channel is

usually modeled using Jakes’ model. If the channel varies from symbol to symbol, each

spatially independent fading path will have a normalized autocorrelation function of

rhh(n) = E [h(τ)h∗(τ + nTs)] = J0(2πfdnTs) (4.1)

where J0(·) is the zero-th order modified Bessel function of the first kind, fd is the

maximum Doppler shift, which is proportional to the vehicle speed and carrier fre-

quency as in (1.1), τ is the time index and Ts is the symbol duration. fdTs is the

normalized Doppler shift. For non-diagonal DSTM, the symbol fading assumption re-

sults in a rather complex receiver structure. To simplify the analysis, here we assume

that the channel remains constant over one transmission block, under which the for

the kth block the channel can be written as

Yk =
√

ρHkXk + Nk

(2.1). Here, instead of Hk = Hk−1 assumed in conventional DSTM, the correlation

between block i and j can be expressed as

rhh(2) = J0(4πfdTs) (4.2)



95

4.3 Decision Feedback Differential Detection

In this section, we will derive the DFDD for the new code with suboptimal re-

ceivers. The analysis is similar to the approach in [36] for the Alamouti code.

Consider multiple symbol differential detection (MSDD) with observation length

K. Stacking the variables involved in MSDD and denote

Ūk = [Uk, Uk−1, · · · , Uk−K+2]

X̄k = diag[Xk, Xk−1, · · · , Xk−K+1]

H̄k = [Hk, Hk−1, · · · , Hk−K+1]

Ȳk = [Yk, Yk−1, · · · , Yk−K+1]

N̄k = [Nk, Nk−1, · · · , Nk−K+1]

We thus have an equivalent channel model

Ȳk = H̄kX̄k + N̄k (4.3)

The conditional probability density functions of Ȳk given Ūk or equivalently X̄k is

expressed as

p(Ȳk|Ūk) =
exp(−Tr(ȲkR

−1
Ūk

Ȳ H
k ))

(πtK det(RŪk
))r

(4.4)

where RŪk
is the auto correlation matrix of Ȳk for single receive antenna system when

Ūk is transmitted. Let ȳk and h̄k denote the first row of Ȳk and H̄k respectively, then

RŪk
is given by

RŪk
= E [ȳH

k ȳk]
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= X̄H
k E [h̄H

k h̄k]X̄k +
1

ρ
I2K

= X̄H
k

[(
RH̄ +

1

ρ
IK

)
⊗ I2

]
X̄k

where RH̄ denotes the normalized K ×K autocorrelation matrix with elements

RH̄(m,n) = J0(4πfdTs(m− n)), m = 0, · · · , K − 1, n = 0, · · · , K − 1.

according to (4.2). Here ⊗ denotes the Kronecker matrix product.

Note that the matrix identity det(I+AB) = det(I+BA) and the unitary property

X̄kX̄
H
k = X̄H

k X̄k = I2K imply that det(RŪk
) does not depend on Ūk. Denote T =

(RH̄ + 1
ρ
IK)−1, further note that

[(
RH̄ +

1

ρ
IK

)
⊗ I2

]−1

= T ⊗ I2. (4.5)

Given these results, the multiple symbol differential detection rule can be expressed

as

Ūk = arg max
Ūk

Λ(Ūk) = Tr
[
−ȲkX̄

H
k (T ⊗ I2)X̄kȲ

H
k

]
(4.6)

Notice that T is symmetric and use the unitary property, the above decision metric

can be expressed as

Λ = Tr



−

K−1∑

i=0

K−1∑

j=0

tijYk−jX
H
k−jXk−iY

H
k−i





= −
K−1∑

i=0

tiiYk−iX
H
k−iXk−iY

H
k−i −

K−1∑

i=0

K−1∑

j=0,j 6=i

tijYk−jX
H
k−jXk−iY

H
k−i

= −
K−1∑

i=0

tii||Yk−i||2 − 2ReTr





K−1∑

i=0

K−1∑

j=i+1

tijY
H
k−iYk−j




j−1∏

ν=i

Uk−ν







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where

j−1∏

ν=i

Uk−ν = Uk−(j−1) · · ·Uk−i.

Omit the terms that don’t depend on Ūk, the above decision metric can be simplified

as

Ūk = arg max
Ūk

ReTr



−

K−1∑

i=0

K−1∑

j=i+1

ti,jY
H
k−iYk−j




j−1∏

ν=i

Uk−ν






 (4.7)

The multiple symbol differential detection of Ūk in eq. (4.7) involves a computational

complexity growing exponentially with observation length K. The requiring com-

plexity makes MSDD not very practical even for relatively small observation length

and data rates. For example, a rate 4 bps/Hz code with K = 4 will require 224

exhaustive searches on unitary matrices. To simplify the receiver design, in decid-

ing Uk, the previous transmitted information matrix Uk−1, · · · , Uk−K+2 is replaced by

the decision-feedback matrices Ûk−1, · · · , Ûk−K+2 to achieve a simple block by block

decision. By taking only the terms depending on Uk, the decision matric becomes

Ûk = arg max
Uk

ReTr



−UkY

H
k

K−1∑

j=1

t0,jYk−j




j−1∏

ν=1

Ûk−ν






 (4.8)

Notice in the above the decision-feedback differential detection rule, if K = 2, it

results in the conventional differential detection of structure

Ûk = arg max
Uk

ReTr{UkY
H
k Yk−1}

Therefore for continuous fading channels, we can still use the same decoding structure

as in slow fading channels, only by replacing the reference signal Yref from Yk−1 to

Yref =
K−1∑

v=1

t0,jYk−v

(
v−1∏

ν=i

Ûk−ν

)
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It follows that for DFDD, we can also use the two suboptimal sequential GLRT

receivers to further reduce decoding complexity. The GLRT DFDD receivers have

the same form as (3.6), (3.7), where B is defined as B = Y H
k Yref here.

4.4 Numerical Results

We now consider the performance of the DFDD for time-varying channel with

different Doppler shift values. Here we consider the rate 4 bps/Hz unitary code with

8 receive antennas. Let fdt denote the normalized Doppler shift, so that fdt = fdTs.

We will compare the performance of conventional DD with observation size K = 2

and the DFDD with observation length K = 4 for fdt = 0.01, 0.03 and 0.05 in Fig. 4.1

- 4.3 respectively. In the simulation, we assume two channel conditions: the channel

varies from block to block or from symbol to symbol. The second GLRT suboptimal

receiver is used in all the cases. For fdt = 0.01, the DFDD with K = 4 outperforms

the conventional DD by about 0.7dB at BER of 10−4. This performance difference

increases as the Doppler shift increases. For fdt = 0.05, the conventional DD suffers

from error floor while the DFDD mitigates the floor effect. Moreover, although our

analysis is based on the assumption that the channel varies per block of two symbols,

the DFDD performs well when the channels actually vary from symbol to symbol.

For small Doppler shift, DFDD with symbol fading performs close to the block fading

case. For fdt = 0.05, the violation of the assumption results in 3 dB performance

loss when channel varies per symbol, but DFDD still suppresses much of the error

floor for such case.
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Figure 4.1: Comparison of performance of GLRT2 receiver for conventional DD (K=2)
and DFDD (K=4), with R = 4 bps/Hz, t = 2 transmit antennas, r = 8 receive
antennas and fdt=0.01.

It is not easy to compare DFDD with MS-DD because MS-DD simulation is not

very practical even for a small observation length. Here in order to see the effect

of erroneous feedback, we consider the performance of genie-aided DFDD in which

all feedback signals are assumed to be perfect. In Fig. 4.4 and Fig. 4.5, we compare

the performance of genie-aided DFDD with practical DFDD for channels varying

per block or per symbol, respectively. It is shown that in both cases, DFDD with

imperfect feedback performs close to the genie-aid DFDD as SNR increases, especially

for large Doppler shift.
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Figure 4.2: Comparison of performance of GLRT2 receiver for conventional DD (K=2)
and DFDD (K=4), with R = 4 bps/Hz, t = 2 transmit antennas, r = 8 receive
antennas and fdt=0.03.

4.5 Conclusion

In this chapter, we consider the performance of DSTM with the new unitary

code and suboptimal decoders in time-selective fading channels. It is shown that the

conventional differential detection method for slow fading channels will suffer from

significant performance degradation. To improve the performance of DSTM in fast

fading, multiple symbol differential detection is considered and decision-feedback is

applied to reduce the computing complexity. For the new code, we showed that the

suboptimal GLRT receivers designed for slow-fading channels can be extended to
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Figure 4.3: Comparison of performance of GLRT2 receiver for conventional DD (K=2)
and DFDD (K=4), with R = 4 bps/Hz, t = 2 transmit antennas, r = 8 receive
antennas and fdt=0.05.

fast fading channels to further reduce the decoding complexity. The GLRT decision-

feedback differential detector only uses the second order statistic of the fading channel

and has low-complexity. Through simulation results, we can see that it can reduce the

performance degradation suffered by the conventional differential detection for large

Doppler spread. The analysis of the decoding algorithm is based on the assumption

that the channel changes from block to block according to the Jakes’ model, however,

it also provide good performance for channels that actually vary symbol by symbol.
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Figure 4.4: Comparison of performance of GLRT2 receiver with DFDD or Genie-
Aided DFDD (R = 4 bps/Hz, t = 2 transmit antennas and r = 8 receive antennas
and fdt = 0.01, 0.03, 0.05 respectively. Channel varies block by block.
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Figure 4.5: Comparison of performance of GLRT2 receiver with DFDD or Genie-
Aided DFDD (R = 4 bps/Hz, t = 2 transmit antennas and r = 8 receive antennas
and fdt = 0.01, 0.03, 0.05 respectively. Channel varies symbol by symbol.
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Chapter 5

Conclusions

In this dissertation, we considered the design of space-time coding for large num-

bers of antennas. For systems with large numbers of transmit and/or receive antennas,

error probabilities of practical interest are often achieved by modest or low SNRs, so

the conventional design criterion for high SNRs does not apply. We focused on the

error probability performance, code construction and decoding structure for large

antenna arrays.

We first considered the design and analysis of DSTM when the number of antennas

is large. We evaluated the error performance of DSTM and derived a new upper

bound on the pairwise-error probability for large arrays. This bound suggests that

Euclidean distance criterion is the appropriate design criterion for the large-array

regime, rather than the well-known rank and determinant criteria for small arrays

or high SNRs. For two transmit antennas and many receive antennas, we used the

new design criterion to construct several new differential codes with large Euclidean
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distance. Simulations of BER performance confirmed that the new codes outperform

existing differential codes, e.g., the Alamouti code, for four or more receive antennas.

We can conclude that the new codes are better candidates for systems with a large

number of receive antennas. Generally maximum-likelihood decoding is required in

the decoding of these new codes, the complexity of which is much higher than the

Alamouti linear decoder for high-rate codes.

To reduce the decoding complexity, we then proposed a new family of space-time

unitary block codes, that is useful for two transmit antennas and a large number of

receive antennas. The new code is optimized with respect to the Euclidean distance

criterion. We showed that the new code can utilize two suboptimal low-complexity

sequential receivers based on GLRT, which allow the individual symbols in the code

to be sequentially decoded. The decoding complexity of these suboptimal decoders

is comparable to the Alamouti decoder. We apply the proposed unitary code in

both coherent and differential space-time modulations. When coherent detection

is used, the new code is extended to non-unitary constellations to further improve

performance. We analyzed the bit-error rate performance and mutual information

of the new code with the suboptimal decoders, based on the decoupled equivalent

channels for each information symbol. Both analytical and simulation results indicate

that the new code achieves better performance than some existing codes for large

antenna arrays. Furthermore, the suboptimal receivers perform close to optimal ML

decoding as the number of receive antennas increases. We also extended the proposed

coding structure to four transmit antennas, based on modifications of orthogonal
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codes and quasi-orthogonal codes. The new codes improve performance for both

coherent and differential space-time modulation systems.

Finally, we investigate the performance of DSTM with the new unitary code in

time-selective fading channels. It is shown that the conventional differential detec-

tion method designed for slow fading channels will suffer from significant performance

degradation. To improve the performance of DSTM in fast fading, DFDD is applied

to reduce the computing complexity. We showed that the suboptimal GLRT receivers

designed for slow-fading channels can be extended to fast fading channels to further

simplify the decoding process. We showed that DFDD can mitigate the error floor suf-

fered by the conventional differential detection for large Doppler spread, for channels

varying block by block or symbol by symbol.

Several related issues could be further exploited. In this dissertation, we focused

on space-time block codes. In the future, we might consider the concatenation of the

proposed space-time block codes with Turbo coding to further improve the system

performance. In addition, in this dissertation, we have extended the proposed coding

structure to more than two transmit antennas by considering orthogonal and quasi-

orthogonal structures. We are interested in exploiting other coding structures for two

or more transmit antennas.
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