
ABSTRACT

KIM, TAEMIN. Exploration of High-level Synthesis Techniques to Improve
Computational Intensive VLSI Designs. (Under the direction of Professor Xun Liu).

Optimization techniques during high level synthesis procedure are often preferred

since design decisions at early stages of a design flow are believed to have a large impact

on design quality. In this dissertation, we present three high-level synthesis schemes to

improve the power, speed and reliability of deep submicron VLSI systems. Specifically,

we first describe a simultaneous register and functional unit (FU) binding algorithm. Our

algorithm targets the reduction of multiplexer inputs, shortening the total length of global

interconnects. In this algorithm, we introduce three graph parameters that guide our FU

and register binding. They are flow dependencies, common primary inputs and common

register inputs. We maximize the interconnect sharing among FUs and registers. We then

present an interconnect binding algorithm during high-level synthesis for global intercon-

nect reduction. Our scheme is based on the observation that not all FUs operate at all

time. When idle, FUs can be reconfigured as pass-through logic for data transfer, reducing

interconnect requirement. Our scheme not only reduces the overall length of global inter-

connects but also minimizes the power overhead without introducing any timing violations.

Lastly, we present a register binding algorithm with the objective of register minimization.

We have observed that not all pipelined FUs are operating at all time. Idle pipelined FUs

can be used to store data temporarily, reducing stand-alone registers.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Global Interconnect

With the development of semiconductor fabrication technologies, the feature size of

transistors has kept decreasing at exponential rates. Thus, delay and power characteristics

of a logic gate improve due to the fact that the junction and gate capacitances of a MOSFET

are scaled down. On the other hand, chip dimensions have increased continuously, since the

VLSI system complexity, measured by the total number of devices on a chip, has become

enormous [1, 2]. Thus, the lengths and the number of global interconnects increase. Global

interconnects severely limit the further improvement of three design metrics: performance,

power consumption and chip reliability.

While the delay of a logic gate improves as transistors are scaled down, that

of global interconnects does not improve. The delay of an inverter can be estimated by

T = 0.69 × RinvCj , where Rinv is average value of on-resistance and Cj represents the

intrinsic capacitances of an inverter. As feature size of a transistor is scaled down, Cj is

also scaled down whereas Rinv remains same. As a result, the delay of an inverter decreases.

When the inverter drives a long interconnect ended with another inverter as shown in Figure
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Cint Cg Cj 

Figure 1.1: Interconnect between two inverters

1.1, the propagation delay is calculated by T = 0.69 × Rinv(Cj + Cg + Cint), where Cint

is interconnect capacitance and Cg is input capacitance of the receiving inverter. Since

interconnect length increases due to increasing chip dimension, Cint is much larger than

Cj + Cg and hence, dominates the propagation delay. Therefore, optimization of global

interconnects is crucial to achieve delay improvement from the technology advancement.

The power consumption of a chip is composed of dynamic and static parts as in-

dicated in Ptotal = Pdyn + Pstat. The global interconnects contribute to the dynamic power

consumption which is substantial portion of total power consumption. As shown in Equa-

tion 1.1, dynamic power consumption is a function of load capacitances of driving gates (C),

supply voltage (V ), switching activity (α) and operating frequency (f). The capacitance of

global interconnects gets bigger as technology is scaled down and chip dimensions increase.

Therefore, capacitances of global interconnects contribute to the dynamic power consump-

tion substantially. As Magen and et al. indicated in [3], interconnect switching contributes

to 50% of total power consumption of Intel microprocessors. Interconnects contribute to

static power, too. In particular, since the delay of global interconnect is a function of the

square of its length, repeaters are usually inserted to reduce the interconnect delay. Due to

the increasing number of global interconnects, the number of repeaters inserted increases,

which results in increase of static power consumption. Therefore, the global interconnect

complexity should be optimized for reduction of power consumption.

Pdyn = 0.5αClV
2f (1.1)

Global interconnects also affect chip reliability. The number of interconnects in-
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creases due to increasing number of functionalities in a chip. In addition, in order to

minimize the cross-talk effect among interconnects, the minimum spacing among them can-

not be reduced substantially. One potential solution to route all interconnects without

increasing chip area is to increase the number of metal layers. However, the number of

metal layers affects the thermal characteristic of a chip [4]. Since insulator material with

poor thermal conductivity is filled between adjacent metal layers, the temperature of a chip

will increase due to a large number of metal layers for interconnections, which affects the

reliability and cooling cost of a chip [4]. Furthermore, the more metal layers are stacked

up, the more vias are required. The combination of increased number of vias and scaled via

dimension exacerbates the chip reliability.

1.1.2 Register

Registers are another factor we have to consider for the improvement of circuit

quality. Registers are essential building blocks of synchronous circuits. They are used

to improve throughput by pipelining computational paths. Moreover, because registers

can isolate combinational circuit paths, designs based on registers are easy to verify and

test. However, when a large number of registers are used, their cost can offset the benefit.

Specifically, synchronous designs are sensitive to clock skews caused by different locations of

registers placed across the entire chip. Clock skews affect the operating clock frequency and

correct functionality of VLSI systems. They should be minimized to achieve high perfor-

mance and race free circuits [5]. Furthermore, power consumption of registers is substantial

because of the high switching activity and high load capacitance of clock signals. Registers

and register related components such as clock buffers and clock network interconnects can

consume about 15%−45% of total chip power [6, 7, 3]. In addition, large amount of regis-

ters increase the chip area, lower fabrication yield, and raise chip cost. As a result, register

reduction is critical in improving chip performance and efficiency.
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1.1.3 Optimization in High Level Synthesis

Hardware architectures are determined during high level synthesis. In this disser-

tation, we consider high level synthesis the architectural definition stage of a design flow.

More specifically, the number of functional units and registers, interconnect topology and

system latency are determined at this stage. Hardware architectures affect the quality of

result (QoR) of the circuits implemented at the later stages of design such as logic synthesis,

placement and routing. Optimization of global interconnects and registers at architectural

definition stage is important and effective to achieve a good QoR of the final implemen-

tation. We can explore many different interconnect topologies during high level synthesis,

resulting in the optimized interconnect architecture. In addition, the number of registers

and how intermediate values are stored in the registers affect chip area, clock skew, power

consumption and length of global interconnects. Therefore, optimization of registers at

architectural definition stage has a big impact on the quality of final implementation of

circuits.

1.2 Contribution

This dissertation studies two global interconnect optimization algorithms and a

register reduction algorithm in high level synthesis.

• We have proposed a simultaneous register and functional unit (FU) binding algo-

rithm in high level synthesis [8]. Our algorithm targets the reduction of multiplexer

inputs, shortening the total length of global interconnects. Specifically, our algorithm

constructs a weighted and ordered compatibility graph. This graph captures inter-

connect reduction opportunities by considering flow dependencies, common primary

inputs and common register inputs. Our algorithm searches for operations that form

a long path in the compatibility graph and binds them to a single FU. In addition,

operation variables generated by the FU are assigned to the same register. Therefore,
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our algorithm performs FU and register binding concurrently. We have implemented

our algorithm within a MATLAB to Verilog conversion tool, and applied it to a suite

of benchmark programs. Our experimental results have shown that the proposed

scheme achieves 29.19%, 21.98% and 32.56% multiplexer input count reduction on

average over the weighted bipartite matching algorithm, k-cofamily algorithm and

left edge algorithm, respectively. To assess the impact on interconnect length reduc-

tion, we have generated circuit layouts from our Verilog description. It is shown that

our approach delivers a 17.29% reduction in total wirelength of global interconnects

with minor area overhead in comparison to the left edge algorithm.

• We have proposed an interconnect binding algorithm during high-level synthesis for

global interconnect reduction. Our scheme is based on the observation that not all

functional units (FUs) operate at all the time. When idle, FUs can be reconfigured

as pass-through logic for data transfer, reducing interconnect requirement. Our algo-

rithm formulates the interconnect reduction problem as a modified min-cost max-flow

problem. It not only reduces the overall length of global interconnects but also min-

imizes the power overhead without introducing any timing violations. Experimental

results show that, for a suite of digital processing benchmark circuits, our algorithm

reduces global interconnects by 8.5% on the average in comparison to previously pro-

posed schemes [9, 8]. It further lowers the overall design power by 4.8%.

• We have proposed a register binding algorithm in high level synthesis with the ob-

jective of register minimization [10]. Our main observation is that not all pipelined

functional units are operating at all time. Idle pipelined functional units can be

used to store data temporarily, reducing stand-alone registers. The proposed regis-

ter binding scheme is applied to a suite of benchmark circuits. Experimental results

demonstrate that register counts can be lowered by 44% on average in comparison to

the left-edge algorithm [11], which is often considered as the optimal approach. Our

optimized circuits are synthesized, placed, and routed using state-of-the-art industrial
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EDA tools. The reduction of register leads to reduction of rising and falling clock

skews by 33% and 30% on average, respectively. Our scheme achieves the reduction

of register counts and clock skews with little degradation to total wirelength and

power dissipation. The change of interconnect length ranges from 4% reduction to

10% increase. The variation of power ranges from 4% reduction to 20% increase.

The rest of the dissertation is organized as follows. Chapter 2 proposes the simul-

taneous functional unit and register binding algorithm for global interconnect optimization.

Chapter 3 proposes our interconnect assignment algorithm to minimize the total wirelength

using idle functional units as interconnect components. Chapter 4 presents our register

minimization algorithm during high level synthesis using the internal registers of pipelined

functional units for variable storage. Chapter 5 summarizes this dissertation.
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Chapter 2

A Functional Unit and Register

Binding Algorithm for

Interconnect Reduction

2.1 Introduction

Optimization techniques at early stages in a design flow are often believed to be

more effective than those at later stages [12, 13, 14, 15, 16, 17]. As a result, intercon-

nect reduction schemes during the high level synthesis step are preferred. Unfortunately,

efficient interconnect optimization techniques in high level synthesis are challenging to de-

velop due to the lack of circuit geometric information, e.g., placement and routing, in the

architecture description. Only operations and their dependencies are available. Conse-

quently, metrics that track interconnects such as numbers of connections among functional

units or multiplexer inputs are usually used as the objective function for minimization

[9, 8, 18, 19, 20, 21, 22, 23].

In this chapter, we present a simultaneous register and functional unit binding

algorithm that targets interconnect reduction. Similar to techniques in [19, 20, 9], we use
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the total input count of multiplexers to approximate the cost of interconnects. By mini-

mizing the multiplexer inputs, our scheme reduces global interconnect complexity and total

wirelength. We introduce three graph parameters that guide our functional unit and reg-

ister binding procedure. They are flow dependency, common primary inputs, and common

register inputs in the given data flow graph (DFG). In particular, flow dependency repre-

sents data transfer directions. The common primary inputs and common register inputs

denote the resource sharing potentials. All three parameters can capture characteristics of

the DFG and thus assist interconnect optimization.

Our scheme proceeds in five steps. Specifically, for a given DFG, compatibility

graphs are generated at first, with edge weights calculated based on the three graph pa-

rameters. Then, our scheme groups operations into the minimal number of long paths that

contain only single type of operations. The path weights are maximized. The function

unit and register binding results are derived concurrently from the creation of long paths.

Specifically, a single functional unit is assigned to the operations in each path, and output

variables in each path are bound to the same register. Thirdly, multiple paths are fur-

ther concatenated to form mega-paths of multi-type operations to increase register sharing.

Fourthly, lifetimes of all variables in mega-paths are analyzed to find special variables not

yet bound to registers. Primary input variables are also searched. The register binding is

completed in the fifth step.

Our algorithm minimizes the total number of multiplexer inputs. It also reduces

the numbers of registers and functional units. In particular, the minimization of path count

results in the reduction of functional units and registers. The maximization of path weights

leads to simplified interconnect configurations and therefore less multiplexer inputs. We

have implemented our scheme into a software tool and applied it to a suite of benchmark

designs. Experiments have shown that our scheme derives binding results with the fewest

multiplexer input counts in comparison to previously proposed schemes. In particular,

29.19%, 21.98% and 32.56% reductions are achieved over weighted bipartite matching al-
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gorithm [18], k-cofamily algorithm [19] and left edge algorithm [11], respectively, with a

small overhead of functional units and registers. Moreover, the multiplexer input count

reduction shortens global interconnect length. For the circuit layouts generated from our

binding results using commercial EDA tools, the total wirelength is reduced by 19.00%,

17.29% and 25.24% over weighted bipartite matching algorithm, k-cofamily algorithm and

left edge algorithm, respectively.

The remainder of this chapter is organized as follows. Section 2.2 reviews previous

research on interconnect reduction techniques in high level synthesis. Section 2.3 gives an

example that motivates our work. Section 2.4 formulates the problem of functional unit and

register binding for interconnect reduction. Our proposed algorithm is described in details

in Section 2.5. Section 2.6 provides the experimental results. Section 2.7 summarizes this

chapter.
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2.2 Interconnect Reduction in High Level Synthesis

For the past two decades, a plenty of techniques have been proposed for inter-

connect optimization in high level synthesis. Most of these techniques can be categorized

into three groups based on how global interconnects are estimated. Specifically, in the first

group, the interconnect complexity is represented by the data communication among var-

ious operation clusters, which will be bound to different computational units[24, 25, 26].

The interconnect reduction problem is recast as a min-cut graph partitioning problem. The

design objective is to reduce data transfers among these computational units.

The second group of schemes improve interconnect estimation accuracy by incorpo-

rating physical design techniques, e.g., floorplanning or placement, into high level synthesis

[27, 28, 29, 22, 21, 30, 31]. Since these schemes compute location information of circuit

blocks, they are able to derive interconnect parameters such as total length and congestion,

and conduct interconnect optimizations. To confine the runtimes in a reasonable range, only

quick and sub-optimal physical design methods are applied, however. As a result, there may

exist large discrepancy between the estimates and actual interconnect measurement that

degrades the effectiveness of these schemes.

The third group of interconnect reduction schemes in high level synthesis link

interconnects to circuit components such as FUs, registers and multiplexers. They bind

operations with common inputs to the same FU and/or variables with common drivers1

to the same register. Consequently, the connection among registers and functional units is

simplified, leading to interconnect reduction. For register binding, different register models

are considered such as centralized register files [32, 20] and distributed registers [9, 33,

34, 35, 18, 19, 36, 23]. Register binding techniques are also extended to perform variable-

memory binding in [37, 38, 39]. The majority of FU and register binding algorithms are

developed independently. Namely, FU binding is conducted followed by register binding[9,

33, 34, 18, 19, 36]. Such a strategy does not considers the interdependency between two
1A driver of a variable is the FU what derives the variable.
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binding results and thus may not capture all optimization potentials. Simultaneous FU

and register binding techniques have been proposed in [35, 23]. In particular, [23] iterates

the sequential register and functional unit binding. During each iteration, binding result

from the previous iteration is used to adjust the assignment of operations and variables

to FUs and registers, respectively, for interconnect optimization. In [35], FU and register

binding is performed one c-step at a time. The binding results of earlier c-steps are used to

guide the optimization at the current c-step. The interconnect cost is often approximated

using multiplexer input count, which is easy to derive during binding procedure. Since

multiplexer minimization is believed to be NP-complete [40], multiple heuristics are used,

including linear programming [37, 38, 33, 34], edge coloring algorithm [32], network flow

algorithm [35, 19, 23], matching algorithm [9, 18, 20] and simulated annealing [36].

Our proposed work belongs to the third category since it targets the minimization

of multiplexer input count. The uniqueness of our scheme is that it searches for long paths

in the compatibility graph of a given DFG and derives the FU and register binding results

concurrently. Moreover, it identifies novel graphic properties of the DFG that capture the

potential for interconnect reduction effectively.

2.3 Motivating Example

This section gives an example that motivates our work. Figure 3.1(a) shows a

scheduled DFG in which operations are represented as vertices. For simplicity, our example

contains only one type of operations, i.e. addition, although our algorithm can handle DFGs

with different operation types. Each operation has been scheduled in a time slot, called c-

step. Directed edges represent data flow dependencies. Namely, variables are generated by

starting vertices and are sent to the ending vertices. The names of variables are given next

to corresponding edges. Figure 2.1(b) shows a FU binding solution without interconnect

consideration. The operations in the two shaded regions are bound to two adders, either

of which can perform an addition in one c-step. Figure 2.1(c) presents the register binding
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result by left edge algorithm (LEA) and the corresponding interval graph which shows the

lifetime of each variable in figure 3.1(a). This register binding result is derived after the FU

binding in figure 2.1(b). In the interval graph, variables v1 and v1′ are bound to the same

register because they are the same output of the top-left addition operation and considered

as one variable in the LEA. So are v2 and v2′. Figure 2.1(d) is the netlist derived from

figure 2.1(b) and 2.1(c). The number of multiplexer inputs is 20. The numbers of adders

and registers are two and four, respectively.

The number of multiplexer inputs can be reduced. Figure 2.1(e) gives the inter-

connect oriented FU binding. Figure 2.1(f) shows the lifetimes of the variables in figure

2.1(e) and register binding. The operations in either shaded region are bound to the same

FU. The variables computed by either FU are stored in the same register. As can be seen,

the number of registers does not increase in comparison to that in figure 2.1(c). Figure

2.1(g) shows the synthesis result. The number of multiplexer inputs is nine. The numbers

of adders and registers are two and four, respectively. The number of multiplexer inputs

is reduced by 55% in comparison to that of figure 2.1(d) while the numbers of FUs and

registers do not increase. This example reveals that it is possible to reduce multiplexer

input count substantially without adding registers or FUs. In the rest of this paper, we will

present our scheme to achieve such a good result automatically. In addition, we will show

that the minimization of multiplexer input count can lead to global interconnect length

reduction.
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2.4 Preliminaries and Problem Formulation

In this section, we introduce some notations and use them to formulate the problem

of register and FU binding for multiplexer input minimization.

2.4.1 Preliminaries

Given a scheduled DFG, two operations are compatible if they are executed in

different c-steps. Compatible operations can be mapped to the same FU. The compatibility

graph [16, 41] is often used to represent the compatibility among operations. In a conven-

tional compatibility graph, operations are represented as vertices and compatible operations

are connected by edges. In our scheme, we generate a modified compatibility graph, called

weighted and ordered compatibility graph (WOCG), as follows.

Definition 1 A weighted and ordered compatibility graph G(V,E) is a directed acyclic graph

(DAG) with vertex set V and edge set E. Vertex set V is composed of vertices, each of

which represents an operation in the DFG. Operations in V have the same operation type.

A directed edge u→ v is created between u and v if they are compatible, and u is scheduled

earlier than v in the DFG. There is a weight wuv on the edge u → v. The value wuv

is calculated based on whether there is flow dependency between u and v and how many

common inputs the operation u and v have.

Definition 2 A path in WOCG is a set of compatible operations {op1, op2, ..., opi, ...opj , ...opn}

ordered based on their scheduled times. Namely, c-step(opi) < c-step(opj) if i < j, where

c-step(op) represents the time slot in which op is scheduled.

Definition 3 The lifetime of a path p, denoted as L(p), is from the start execution time of

the first operation in p to the end execution time of the last operation in p.

With the definition of path lifetime, we extend the compatibility concept to paths.

The path compatibility graph (PCG) are derived from the union of all WOCGs created

from a given DFG as follows.
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Figure 2.2: The procedure to construct a PCG (a) scheduled DFG (b) paths constructed
(c) PCG constructed

Definition 4 Path compatibility graph (PCG) Gp(Vp,Ep) is a weighted and ordered com-

patibility graph for paths. The vertices of the graph represent paths found in all WOCGs.

An edge is inserted to connect two vertices if their lifetimes do not overlap. Weights are as-

signed to edges to represent the data flow between the two corresponding paths and common

inputs shared by them.

Figure 2.2 shows the procedure to construct a PCG. Figure 2.2(a) is a scheduled

DFG. Figure 2.2(b) shows paths p1 and p2 in the addition type WOCG and the multipli-

cation type WOCG, respectively. The lifetime of p1 is from c-step 1 to c-step 3, and that

of p2 is from c-step 4 to c-step 5. Since the lifetimes of p1 and p2 do not overlap, p1 and p2

are compatible. Figure 2.2(c) represents the PCG. The vertices vp1 and vp2 represent the

paths p1 and p2, respectively. The edge from vp1 to vp2 shows the compatibility between

p1 and p2. The weight w12 is assigned to the edge. The weight computation is explained

in section 2.5.2.

Definition 5 Let P be a path whose elements are {op1, op2, ..., opn}. Suppose that operation

opi generates variable vi. If any use-time of vi is larger than c-step(opi+1), vi is a side

variable.
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Figure 2.2(a) shows a side variable example. In particular, vs is generated by op2,

whose successor in path p1 is op3. Since vs is used by op4 at c-step 4, which is larger than

the c-step of op3, vs is a side variable.

2.4.2 Formulation of Interconnect Oriented Binding Problem

The problem of register and FU binding for multiplexer input reduction can be

formulated as follows.

PROBLEM : Given a scheduled DFG, find register and FU binding so that the

total input count of multiplexers among registers and FUs is minimized. In addition, the

numbers of FUs and registers should be minimized.
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2.5 The Proposed Heuristic

2.5.1 An Overview

Our algorithm performs register and FU bindings in an integrated fashion. Given a

scheduled DFG, it constructs a WOCG for each FU type first. It then finds paths with large

total weights in all WOCGs. One distinct FU is assigned to the operations in each path. At

the same time, a register is assigned to the variables derived from flow dependency relation

between adjacent operations within the path. Compatible paths are merged to construct

mega-paths to further reduce the number of registers. The lifetime of each mega-path is

recorded. Our algorithm also finds side variables and primary input variables. Finally,

register binding for mega-paths, side variables and primary input variables is performed.

2.5.2 The Proposed Path Based Binding Scheme

In this subsection, we discuss the details of our algorithm. Figure 2.3 shows the

overall flow of our algorithm, which can be divided into five steps as follows.

Step 1 (generation of WOCG for each operation type in a given DFG): Step 1 is

from line one to line four in figure 2.3. In this step, WOCGs are created for all FU types.

Within a WOCG, each edge has a weight. The weight is calculated as in equation (2.1), by

incorporating three factors, i.e. flow dependency, the number of common primary inputs

and common input registers between operations.

Wi,j = α ∗ Fi,j +NINi,j +Ri,j + 1 (2.1)

The i and j in equation (2.1) are indices for vertices vi and vj in the WOCG. Fi,j is

a Boolean variable which indicates whether there is flow dependency between vi and vj .

NINi,j is the number of common primary inputs of vi and vj . Ri,j represents how many

input registers are shared by vi and vj and α is an integer constant. In our implementation,

we set α = 2. If there is no flow dependency, common primary inputs, or common input

registers, the weight is one.



18

Path_FU_REG_Bind : Path based binding algorithm
1      foreach futype in Functional unit type
2         Create WOCGfutype for futype
3 Put WOCGfutype into set WOCG
4      endforeach
5      foreach WOCGfutype in WOCG
6         until There is no vertex and edge in WOCGfutype
7             p = Find longest path in WOCGfutype
8            Put p into path set Pfutype
9            Update WOCGfutype
10       enduntil
11       Assign a functional unit to each path in P
12    endforeach
13    Create path compatibility graph(PCG)

for all paths in path sets Pfutype
14    until There is no vertex and edge in PCG
15       p = Find longest path in PCG
16       Record start and end time of p
17       Put p into global path set Pg
18       Update PCG
19 enduntil
20    foreach pi in Pg
21       Find side variables in pi
22       Record start and end times of the side variables
23    endforeach
24    Find input variables in a given data flow graph(DFG)
25    Register binding for input, side and path variables

st
ep

2
st

ep
3

st
ep

4
st

ep
5

st
ep

1

Figure 2.3: The proposed algorithm

The inclusion of Fi,j in the computation of Wi,j is due to our simultaneous FU

and register binding strategy. Specifically, our scheme binds operations along a path to the

same FU and the corresponding operation outputs to the same register. If there is flow

dependency between one pair of adjacent operations in the path, interconnects are needed

to link the register output to the FU input. Such interconnects are sufficient and no more

interconnects are needed if additional adjacent operations have flow dependency. Thus, the

more consecutive operations with flow dependency are in a path, the more interconnect

sharing is achieved, resulting in interconnect complexity reduction. Moreover, since the
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output registers are directly connected to the FU and highly probably placed near the FU,

the interconnect length between the FU and output registers is short.

Figure 2.4 shows how flow dependency in a path affects the minimization of multi-

plexer input count. For simplicity, the primary inputs of the DFG is not considered. Figure

2.4(a) demonstrates the FU and register binding without consideration of flow dependency.

Figure 2.4(b) is the synthesis result. Variables {v1, v2, v3, v7, v8} and {v6, v4, v5} are bound

to register r1 and r2, respectively. The number of multiplexer inputs is eight. Figure 2.4(c)

presents the FU binding with the incorporation of flow dependency. The operations with

adjacent dependency relations form two paths, p1 and p2, and are bound to a single adder.

Figure 2.4(d) shows the corresponding synthesis result. Variables in path p1 and p2 are

bound to register r1 and r2, respectively. No multiplexer is needed. Thus, binding with

consideration of flow dependency is effective in multiplexer input reduction.

The number of common primary input NINi,j of two operations provides useful

information in guiding FU binding procedure. Intuitively, when several operations have the

same primary input, if they are bound to the same FU, only the FU needs to be connected

to the input. On the other hand, when these operations are bound to different FUs, all FUs

must be connected to the input, resulting in the increase of interconnect complexity. Thus,

NINi,j is considered in the computation of Wi,j in our scheme.

Figure 2.5 shows two different binding results for one WOCG, i.e. {p1, p1′} in figure

2.5(a) and {p2, p2′} in figure 2.5(c). All operations in p1, p1′, p2 and p2′ have dependency

relation, respectively. For operations in path p1, primary input a and b are used by more

than one operation. On the other hand, no primary input is shared by operations in p2.

Consequently, the synthesis result for {p1,p1′}, shown in figure 2.5(b), has less number of

multiplexer inputs than that for {p2,p2′} as in figure 2.5(d).

When multiple operations get their inputs from the same register, binding these

operations to the same FU can reduce interconnect complexity. As a result, similar to

the common primary input Ni,j , our scheme also considers common register input Ri,j in
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Figure 2.4: Illustration of how flow dependency affect binding result

calculating Wi,j . Unfortunately, different from Ni,j , which can be derived from the given

DFG, Ri,j is determined by the register binding result and is therefore unavailable before

our optimization. In our scheme, Ri,j is created during the binding procedure. Namely, as

soon as a register is added to the register binding result, its impact on all Ri,j ’s is recorded

and the corresponding Wi,j ’s are updated. As shown in the experimental result, the Ri,j ’s

based on the partial register binding are effective in reducing multiplexer inputs.

Figure 2.6 shows the WOCG constructed from figure 3.1(a). The directed edges

represent the compatibility between operations and the scheduled order. The weight on
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each edge is calculated by equation (2.1) at the beginning of our binding procedure. For

example, the edge from op1 to op4 means that op1 and op4 are compatible, and op1 is

scheduled earlier than op4. Since there is flow dependency between op1 to op4, F1,4 = 1.

They have common primary input b, therefore NIN1,4 = 1. Since no register binding result

is available, R1,4 is zero. Thus, the weight W1,4 = 2 ∗ 1 + 1 + 0 + 1.
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Figure 2.6: WOCG constructed from figure 3.1(a) before FU and register binding

Step 2 (simultaneous FU and register binding step): After generating WOCGs for

all FU types, our algorithm partitions each WOCG into the minimum number of paths. The

operations and variables in each path are bound to the same FU and register, respectively.

To that end, our scheme utilizes a greedy heuristic. Specifically, for a given WOCG, the

longest path algorithm [42] is applied first. After the longest path is found, edges and

vertices in the path are removed from the WOCG. Edges that link vertices out of the path

to those in the path are also removed. Edge weights of the modified WOCG are recalculated.

In particular, since the register binding for the newly found path is derived, the common

register inputRi,j value in equation (2.1) might change for each edge in the modified WOCG.

The search and removal of the longest path and weight update are repeated on the modified

WOCG iteratively until all vertices and edges are removed. This pseudocode of this step is

from line 6 to line 10 in figure 2.3.
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Figure 2.7: WOCG update process (a) The first longest path (b) updated WOCG and the
second longest path

Figure 2.7 illustrates the FU and register binding procedure for the WOCG in

figure 2.6. Specifically, the initial WOCG is shown in figure 2.7(a) with the longest path

highlighted in bold. Figure 2.7(b) shows the updated WOCG after the longest path is

removed. The longest path in the new WOCG is highlighted. Note that the weight of edge

between the operation in c-step 3 and that in c-step 4 is changed from three to four. Such a

change is due to the fact that both operations receive one input from the operations in the

longest path in figure 2.7(a). Therefore, their common register input increases from 0 to 1

after the variables generated by the operations in that path are bound to a single register,

resulting in the increase of edge weight.
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Finding the longest path, i.e., path with the largest weight, helps in minimizing

the total number of paths. Since the number of paths is equal to the number of FUs, path

minimization reduces FUs. In addition, path weights are monotonic to flow dependency,

common primary input and common register input. Maximization of path weight results in

a FU and register binding solution with large values of the three metrics and thus substantial

interconnect sharing. As a result, the interconnect complexity and the multiplexer inputs

are reduced.

Step 3 (finding path variables step): Step 3 is from line 13 to line 19 of figure 2.3.

In this step, our scheme reduces the register count by merging paths from different WOCGs.

Specifically, we store the variables computed by the operations along a path in the same

register. If the lifetimes of two paths do not overlap, one single register can be used for

both paths, namely the paths are merged. Different from FU binding in which paths from

different WOCGs cannot be combined together due to operation type difference, paths of

all functional types can be bound to the same register.

Figure 2.8 illustrates the process of path merging. First, all WOCGs are combined

as in figure 2.8(a). Only two operation types, addition and multiplication, are assumed.

Either WOCG has been partitioned into several paths. The compatibility of all paths are

then considered. Figure 2.8(b) shows the compatibility graph for paths in figure 2.8(a).

Weights are assigned to edges of the path compatibility graph. The weights are calculated

as flows:

Wi,j = F p
i,j + 1 , (2.2)

where i and j represent two paths. The Boolean variable F p
i,j indicates whether there is

flow dependency between the paths. Equation (2.2) is similar to (2.1) except that the

common primary input and common register input are not considered because common

inputs between two different FUs do not contribute in the reduction of multiplexer inputs.

Our scheme applies the longest path algorithm to merge all paths. Figure 2.8(c)

illustrates the merging result. The outputs of operations in a path will be assigned to a
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single register. The maximum number of drivers of the register is the number of operation

types in the merged path. Figure 2.9 shows register binding result of a single merged path

in figure 2.8(c). The register is driven by two drivers, i.e. the adder and multiplier. It is

clear that although merging multiple paths reduces the register count, it can potentially

increase the number of multiplexer inputs. In our current version of binding algorithm,

high priority is given to register reduction. Therefore, the multiplexer input count derived

is an upper bound that can be delivered by our scheme. Further multiplexer reduction is

possible at the cost of increasing register count. After the path merging procedure, lifetimes

of merged paths are recorded for the final register binding in step 5.

Step 4 (finding side and input variables step): The path based register binding

in step 3 only introduces registers to store variables that are produced and consumed by

consecutive operation pairs along paths. Additional registers are required for other types

of variables. Figure 2.10 shows the example of register binding for a side variable. In figure

2.10(a), v′2 is a side variable because it has a consumer which is not an immediate successor

of its generator within the compatibility path. Since our scheme uses a single register for

v1, v2, v3 and v4, this register cannot hold v2′ until c-step 5. Thus, additional register is

needed as in figure 2.10(b). In step 4 of our scheme, which is from line 20 to line 24 in

figure 2.3, data dependency among paths and among nonadjacent operations within paths

are analyzed to find side variables. In addition, registers for primary input variables are also

searched to identify any need for registers. Constants are not stored in registers. The start

and end use-time are recorded for the primary input and side variables for final register

binding.
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Step 5 (final register binding step): Step 5 is at line 25 in figure 2.3. The lifetimes

of all variables from the previous steps are examined, including variables produced and

consumed by adjacent operations with paths, side variables, and primary input variables.

If the lifetimes of multiple variables do not overlap, registers assigned to these variables

during step 2, 3, and 4 are merged by the left edge algorithm [11].
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2.6 Experimental Results

We have developed a software program in C++ based on our algorithm. We inte-

grated the program into our high level synthesis tool which converts a MATLAB program to

a Verilog RTL description. We have applied our tool to a suite of benchmark programs from

[43, 44, 45], which are data-oriented programs common in digital signal processing (DSP)

applications. Since the benchmarks are coded in C and VHDL originally, we converted the

C and VHDL codes to MATLAB descriptions. The scheduling of DFGs was performed by

the Force Directed Scheduling algorithm [46].

We compared our simultaneous register and FU binding algorithm to previously

proposed binding algorithms in the literature. Specifically, we used the weighted bipartite

matching algorithm [9] for interconnect oriented FU binding and then used three differ-

ent register binding algorithms i.e., weighted bipartite matching algorithm [18], LEA [11],

and k-cofamily algorithm [19], for multiplexer input reduction. Since LEA guarantees the

minimum number of registers if there is no control dependency in a given DFG, we com-

pared the register counts of the results derived by LEA and our algorithm. In addition to

the number of registers, we compared the number of FUs of the results generated by the

weighted bipartite matching algorithm and ours.
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Table 2.1: The number of multiplexer inputs

Benchmarks LEA[11] bipartite[18] k-cofamily[19] ours LEA bipartite k-cofamily
aircraft 4178 4298 3393 2391 42.77 44.37 29.53
chem 767 753 612 420 45.24 44.22 31.37
dir 406 340 288 172 57.64 49.41 40.28

feig dct 1272 1279 1243 1010 20.60 21.03 18.74
honda 223 212 192 120 46.19 43.40 37.50
mcm 272 278 257 230 15.44 17.27 10.51

pr 107 103 97 92 14.02 10.68 5.15
u5ml 1008 1009 849 590 41.47 41.53 30.51
wang 130 132 120 110 15.38 16.67 8.33
arai 94 90 83 77 18.09 14.44 7.23
lee 132 119 105 96 27.27 19.33 8.57

diffeq 28 23 26 20 28.57 13.04 23.08
fir11 60 52 27 23 61.67 55.77 14.81

cftmdl 191 198 183 138 27.75 30.30 24.59
cftb1st 514 482 497 377 26.65 21.78 24.14

fft 45 51 41 48 -6.67 5.88 -17.07
idct 285 276 234 169 40.70 38.77 27.78

matmul 278 276 264 207 25.54 25.00 21.59
wavelet 131 136 121 60 54.20 55.88 50.41
jacob 226 191 201 160 29.20 16.23 20.40

chendct 291 286 257 187 35.74 34.62 27.24
chenidct 307 303 283 237 22.80 21.78 16.25
kalman 39 36 36 23 41.03 36.11 36.11
lowpass 267 215 191 133 50.19 38.14 30.37
AVG 32.56 29.19 21.98
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Table 2.1 shows the multiplexer input counts of binding results derived by LEA,

weighted bipartite matching algorithm, k-cofamily algorithm and our algorithm. Column

1 lists the benchmark names. Columns 2 to 5 give the numbers of multiplexer inputs.

Columns 6 to 8 show the multiplexer input reduction in percentage. As the table shows,

our algorithm can reduce the multiplexer input by 32.56%, 29.19% and 21.98% on average

in comparison to LEA, weighted bipartite matching algorithm and k-cofamily algorithm,

respectively.

Table 2.2 shows the register count comparison between the optimal algorithm,

i.e. LEA, and our algorithm. The values in the second and third column are the register

counts. The fourth column shows the register count increase of our scheme in percentage.

For half of the benchmarks, our algorithm produce the same results as LEA. On average,

our algorithm increases the register count slightly by 6.97%. Such an increase does not

affect the total layout area substantially since registers are small in size.

Table 2.3 compares the numbers of FUs. Since our benchmarks only contain

additions and multiplications, N+ and N∗ are used to represent adder counts and multiplier

counts, respectively. Columns 2 to 5 list the absolute FU counts whereas columns 6 to 7 give

the increase percentages of our scheme over the weighted bipartite matching algorithm. As

table 2.3 shows, the average increases of the numbers of adders and multipliers are 6.38%

and 4.34%, respectively.

In order to verify that reducing the number of multiplexer inputs leads to global

interconnect minimization, we generated the layout of all benchmark designs using Ca-

dence SOC EncounterTM, a widely used commercial EDA tool, and measured the actual

total wirelength. Specifically, the binding results from both our scheme and previous ap-

proaches in comparison were first converted into Verilog RTL description. The same place

and routing flow was applied to all the RTL designs. The FUs were predesigned as hard

macro-cells. The timing target of each benchmark design was kept constant. After cir-

cuit layouts were created, we used SOC EncounterTM to report the total wirelength of all
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Table 2.2: The number of registers of left edge algorithm and our algorithm

Benchmarks LEA[11] ours Increase
aircraft 159 159 0.00
chem 48 48 0.00
dir 72 72 0.00

feig dct 114 132 16.79
honda 24 24 0.00
mcm 38 40 5.26

pr 18 20 11.11
u5ml 60 60 0.00
wang 20 21 5.00
arai 14 19 35.71
lee 17 20 17.65

diffeq 7 7 0.00
fir11 11 11 0.00

cftmdl 34 41 20.59
cftb1st 52 58 11.54

fft 16 16 0.00
idct 39 39 0.00

matmul 48 48 0.00
wavelet 25 25 0.00
jacob 30 30 0.00

chendct 33 39 18.18
chenidct 39 40 2.56
kalman 8 9 12.5
lowpass 44 49 11.36
AVG 6.97
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Table 2.3: The number of multipliers and adders of left edge algorithm and our algorithm

bipartite ours Increase
Benchmarks N+ N∗ N+ N∗ N+ N∗

aircraft 38 40 38 40 0.00 0.00
chem 15 16 15 16 0.00 0.00
dir 8 7 8 7 0.00 0.00

feig dct 37 12 40 12 8.11 0.00
honda 7 6 7 7 0.00 16.67
mcm 12 9 13 9 8.33 0.00

pr 5 8 6 9 20.00 12.50
u5ml 16 17 16 17 0.00 0.00
wang 5 8 5 8 0.00 0.00
arai 6 3 6 3 0.00 0.00
lee 8 4 8 4 0.00 0.00

diffeq 2 2 2 3 0.00 50.00
fir11 1 2 1 2 0.00 0.00

cftmdl 15 16 16 16 6.67 0.00
cftb1st 12 6 14 6 16.67 0.00

fft 4 4 5 5 25.00 25.00
idct 10 9 11 9 10.00 0.00

matmul 16 32 16 32 0.00 0.00
wavelet 8 16 8 16 0.00 0.00
jacob 10 8 10 8 0.00 0.00

chendct 12 8 13 8 8.33 0.00
chenidct 15 12 15 12 0.00 0.00
kalman 2 2 3 2 50.00 0.00
lowpass 6 8 6 8 0.00 0.00
AVG 6.38 4.34
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interconnects beyond the macro-cells. Table 3.4 shows the wirelength comparison results.

Our algorithm reduces total global interconnects by 25.24%, 19.00% and 17.29% over LEA,

weighted bipartite matching algorithm and k-cofamily algorithm, respectively.
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Table 2.4: The total wirelength for each algorithm

Benchmarks LEA bipartite k-cofamily ours LEA bipartite k-cofamily
aircraft 2.97×107 2.86times107 2.56×107 1.26×107 57.68 56.02 50.81
chem 2.65×106 2.51×106 2.14×106 1.32×106 50.00 47.35 38.18
dir 1.62×106 1.23×106 1.19×106 8.40×105 48.02 31.55 29.22

feig dct 9.42×106 8.40×106 8.61×106 8.00×106 15.06 4.78 7.09
honda 7.40×105 5.25×105 5.70×105 3.09×105 58.27 41.22 45.82
mcm 1.18×106 1.22×106 1.20×106 1.17×106 0.83 4.27 1.94

pr 4.34×105 4.19×105 3.98×105 3.83×105 11.81 8.65 3.83
u5ml 4.62×106 3.65×106 2.86×106 1.99×106 56.80 45.41 30.30
wang 5.29×105 5.02×105 5.17×105 4.72×105 10.67 5.85 8.66
arai 3.78×105 2.84×105 3.07×105 2.62×105 30.68 7.67 14.52
lee 3.33×105 3.51×105 3.83×105 3.24×105 2.85 7.71 15.31

diffeq 8.47×104 7.35×104 7.64×104 9.43×104 -11.43 -28.27 -23.47
fir11 1.05×105 8.02×104 6.92×104 6.46×104 38.38 19.43 6.61

cftmdl 8.74×105 1.15×106 8.79×105 7.52×105 13.97 34.55 14.49
cftb1st 1.50×106 1.64×106 1.70×106 1.46×106 3.05 11.28 14.23

fft 1.44×105 1.62×105 1.64×105 1.63×105 -13.15 -0.66 0.95
idct 1.01×106 1.04×106 8.36×105 6.40×105 36.88 38.57 23.50

matmul 2.07×106 1.62×106 1.96×106 1.66×106 19.68 -2.51 15.16
wavelet 8.41×105 6.42×105 7.39×105 5.12×105 39.09 20.20 30.67
jacob 1.02×106 7.58×105 1.04×106 6.19×105 39.05 18.28 40.56

chendct 1.16×106 1.08×106 9.00×105 8.53×105 26.67 21.38 5.28
chenidct 1.15×106 1.30×106 1.27×106 1.11×106 3.82 14.94 12.65
kalman 9.40×104 9.16×104 7.49×104 7.36×104 21.74 19.68 1.74
lowpass 8.99×105 6.89×105 6.73×105 4.91×105 45.31 28.73 27.00
AVG 25.24 19.00 17.29
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2.7 Conclusion

In this chapter, we present a simultaneous FU and register binding algorithm for

interconnect reduction. Our algorithm identifies long paths in the compatibility graph gen-

erated from a DFG, and conducts FU and register binding concurrently. Our scheme targets

the minimization of multiplexer inputs by analyzing the flow dependency and common in-

puts of operations. Experimental results show that our algorithm reduces the number of

multiplexer inputs by more than 20% on average in comparison to previously proposed

algorithms [11, 19, 18]. Our scheme achieves a total wirelength reduction by 17.29% on

average at the cost of slight FU and register increases.
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Chapter 3

A Global Interconnect Reduction

Technique during High Level

Synthesis

3.1 Introduction

Global interconnects are used to convey data among system modules. Thus, if

there exist other ways of data transfer, the global interconnects can be replaced and reduced.

We have observed that some combinational functional units (FUs) can be reconfigured as

pass-through logic. In addition, because the computational need of a system varies with

respect to time, not all FUs are active at all the time. When a FU is idle, it can be used for

data delivery. For instance, an adder with one input set to 0 can pass data from the other

input to the output port.

In this chapter, we propose a global interconnect reduction algorithm during the

interconnect binding step of high level synthesis (HLS). Our algorithm identifies idle FUs

and selects some of them for data communication. The assignment of FUs to data transfers

is conducted judiciously to minimize the total length of global interconnects. In addition,
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the power overhead is carefully managed. Our algorithm also guarantees not to introduce

any timing violations.

The proposed algorithm takes a scheduled data flow graph (DFG) and the FU

and register binding result as its inputs. It outputs the interconnect binding solution with

minimal total wirelength of global interconnects. Our scheme consists of two steps. First,

it examines all variable transfers and idle FUs. A many-to-one mapping from idle FUs to

variable transfers are derived. A set of FUs are selected as potential candidates to a variable

transfer only when the selection leads to small power degradation and possible interconnect

reduction. In the second step, our algorithm computes the interconnect binding results.

Specifically, it builds a graph to model all circuit paths available to every data transfer at

each time step in the DFG. Both interconnect length estimates and circuit delay estimates

are incorporated in the graph. A modified min-cost max-flow solver is applied to the

graph and calculates the best way to conduct each data transfer, either through global

interconnects or idle FUs. Our algorithm is finished when such a procedure is repeated for

all time steps.

We have applied our interconnect binding algorithm to a suite of benchmarks to

demonstrate its effectiveness. For each benchmark design, we have created the final circuit

layout using industrial EDA tools to accurately assess the impact of our method on total

wirelength and power dissipation. Experimental data have shown that our scheme has

delivered a 8.5% wirelength reduction on the average over previously proposed interconnect

reduction schemes in HLS [9, 8]. The power degradation due to the usage of idle FUs is

offset by the power savings due to interconnect reduction. The power consumption of all

benchmarks under random input patterns is reduced by 4.8% on the average

The remainder of this chapter is organized as follows. Section 3.2 briefly discusses

the related work in the literature. Section 3.3 introduces the problem of interconnect binding

in HLS and gives an example to motivate our study. Section 3.4 describes our proposed

heuristic in details. Section 3.5 provides the experimental results, followed by conclusion of
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this chapter in Section 3.6.
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3.2 Related Works

Many researchers have addressed the problem of interconnect reduction in HLS

since it is believed that optimization schemes applied in early design steps have large impacts

on the final design. In this section, we can only present a brief and non-exhaustive discussion

on the previous work as follows.

Interconnect reduction efforts have been made during both scheduling and resource

binding in HLS. Specifically, the work in [46] optimized the number of buses by incorporating

the transfer distribution graph into the force directed scheduling (FDS) procedure. Huang

et al. proposed a bipartite weighted matching algorithm for both register and FU bindings

that minimized the number of multiplexer (MUX) inputs, leading to low interconnect com-

plexity [9]. Deming et al. modified the cost function of the bipartite-matching algorithm

in [9] in register binding so that multiplexer inputs could be further reduced [18]. Deming

et al. also formulated the register binding problem for MUX optimization as a k-cofamily

based register binding problem [19]. Cong et al. proposed a simultaneous register and FU

binding algorithm for interconnect optimization [23]. The work in [8] also performed con-

current FU and register binding. It used data dependency and common operands among

operations in DFGs to minimize multiplexer inputs. The works in [26, 24, 25] formulated

the binding problem for interconnect minimization as a min-cut graph partitioning prob-

lem. They reduced interconnect length by assigning tightly coupled operations to the same

computational modules. All the aforementioned schemes only used interconnects for data

transfers, without considering non-operational FUs, however.

The utilization of redundant FUs for interconnect reduction has been investigated

[27, 47, 48, 49, 50]. Weng and Parker [27] proposed a scheduling and binding algorithm

which inserts redundant FUs to minimize interconnect length in the critical path. The

work in [47, 48, 49] proposed binding algorithms that use redundant FUs to maximize

interconnect sharing among data transfers in a CDFG. Jang and Pangrle [50] proposed a

grid-based interconnect binding algorithm. They used idle FUs to minimize routing length
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among FUs and registers. They targeted the 1-dimensional layout of datapath only and

their technique might increase the total wirelength.
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3.3 Motivating Example

(a) (b)

(c) (d)

Figure 3.1: (a) Scheduled DFG (b) FU binding result (c) Interconnects for ADD1→ADD4
(d) Interconnects by using MUL1 for ADD1→ADD4

In this section, we use a simple example to describe the interconnect binding

problem and motivate our work. Figure 3.1(a) shows a scheduled DFG in which operations

are represented as vertices. The type of operation is labeled within each vertex. The ’+’

and ’x’ signs represent addition and multiplication, respectively. The time slots when the

operations are performed are shown as different c-steps. Edges represent data dependency

among operations. Figure 3.1(b) shows the FU binding result. Operations in each closed

region are bound to the same FU. The FU names are shown next to the regions. There are

four adders and one multiplier in our example. When an edge crosses region boundary, a

global data transfer is needed. For instance, the right addition operation in c-step 3 needs

data from the middle operation in c-step 2. Since they are bound to different FUs, namely
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ADD1 and ADD4, data must be sent from ADD1 to ADD4. A circuit path must be used

at c-step 3 to complete the data transfer. Figure 3.1(c) shows the floorplan of our design

example, in which a global interconnect are used for the data transfer from ADD1 to ADD4.

Such an interconnect must span across the entire layout since ADD1 and ADD4 are placed

at different end of the chip. Alternatively, since the multiplier MUL1 does not operate at

c-step 3, it can be used to deliver the data as shown in Figure 3.1(d). Consequently, the

global interconnect length is reduced substantially.

Although the concept of using idle FUs for global data transfers is straightforward,

the implementation of such a strategy is difficult. Three challenges need to be resolved.

First, additional global interconnects might be needed to utilize certain idle FUs. For

our example in Figure 3.1, interconnects between ADD1 and MUL1 and interconnects

between MUL1 and ADD2 must be added. These addition interconnects must not offset

the reduction gain. To that end, accurate wirelength information on interconnects among

all pairs of FUs is needed. Second, the signal propagation delays through idle FUs must be

checked to ensure that no timing violation is introduced. Third, the power degradation of

using idle FUs must be controlled. Particularly, if a FU is not used for several consecutive

cycles, its inputs are usually set to constants to eliminate its internal switching activity

[51]. However, if the FU is reconfigured and used for data transfer, its internal nodes will

switch, resulting in power consumption. The extra power must be limited and preferably

offset by the power savings due to global interconnect reduction. In the following section,

we present our interconnect binding algorithm that utilizes idle FUs for global interconnect

reduction. Our scheme considers all three above issues. It reduces interconnect length,

maintains timing closure, and causes negligible power increase.
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3.4 Proposed Heuristic

Figure 3.2: Flow chart of interconnect reduction algorithm

The figure 3.2 shows the overall flow of our interconnect reduction algorithm. Its

input includes a scheduled DFG, the register and FU binding result, timing constraint,

interconnect length estimates and circuit delay estimates. It computes the interconnect

binding result, namely all interconnects needed among FUs and registers as well as how

all data transfers are performed. Our algorithm consists of two parts. In the first part, it

identifies candidate idle FUs that can potentially be used for each data transfer in the DFG.

The second part is the core of our technique. It is made of a loop structure. Within each

iteration of the loop, one c-step is selected. Our algorithm derives a circuit path for each

data transfer of the c-step. Specifically, it constructs a graph in which registers and FUs

are vertices. The interconnects are edges. The wirelength estimates and delay estimates

are used to generate weights for the edges and vertices. Our algorithm solves a modified

min-cost max-flow problem on the graph. The edges with non-zero flows become physical

interconnects. Our algorithm is finished when all iterations are completed. In this following

sections, the detailed description of our algorithm is presented with the design example in

Section 2.3.
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3.4.1 Identifying Idle Functional Units For Data Transfers

Three types of data transfers exist in a given design: register-to-FU transfers,

FU-to-register transfers, and FU-to-FU transfers. For simplicity, we only consider register-

to-FU transfers in this paper. Our algorithm can be extended straightforwardly to handle

other types of data transfers as long as the locations of registers and FUs are given. We

have re-drawn the scheduled and FU-bound DFG in Figure 3.1(b) as Figure 3.3. The FU

binding result is represented by placing integers inside of vertices. For example, ’+2’ means

ADD2. The shaded boxes denote the registers. Register names are located above the boxes.

Registers labeled with the same name are the same physical register, in different time steps.

Based on Figure 3.3, there are 9 types of register-to-FU transfers. They are represented

as register-FU pairs and listed in Column 1 of Table 3.1 with the corresponding c-steps in

Column 2. Note that one type of data transfer can occur at multiple time steps.

After the identification of data transfers, idle FUs are identified. Since the counts

for various types of FUs are known for a given design, idle FUs can be found based on the

FU-bound DFG. In Figure 3.3, the idle FUs are shown as shaded circles in braces. Idle FUs

in the same c-step form a set.

Our algorithm then determines which idle FUs can be used for each type of data

transfer. Although different idle FUs can be used for a single type of data transfer at

different c-steps, in order to simplify the interconnect complexity, our scheme only allows

a data transfer to use the same interconnects including idle FUs for all c-steps where it

occurs. Consequently, a FU can be a candidate for a type of data transfer only if the FU

is idle for all the c-steps when the data transfer occurs. For example, the data transfer

r2→+1 exists at c-steps 2, 3 and 4 in Figure 3.3. Only FU ’+3’ can be a candidate for the

data transfer since it is idle for all three c-steps.

Algorithm 1 shows the pseudocode for our idle FU identification procedure. In

Lines 1 and 2, all types of data transfers and idle FU sets are identified respectively for each

c-step. The idle FU candidates for each data transfer type are then calculated in Lines 3–7
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Algorithm 1 Identification of idle FUs for data transfers
Input: Scheduled DFG (G), FU and REG binding results

Output: Idle FU set for each data transfer in DFG

1: DT = Identify all data transfer types in G

2: IDLEFU = Identify idle FU sets for all c-steps

3: foreach data transfer type i in DT do

4: foreach c-step k when i occurs do

5: idle FU[i]
⋂

= IDLEFU [k]

6: end foreach

7: end foreach

by intersecting all idle FU sets at the c-steps when the transfer occurs. Column 3 of Table

3.1 lists the idle FU candidates for all data transfer types.

Figure 3.3: Idle Functional Units
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Table 3.1: Idles FUs for data transfers

Data Transfer c-step Idle FU
r1 → +2 2 +3, +4
r1 → +1 3, 4 +2, +3, X1
r2 → +1 2, 3, 4 +3
r2 → +2 2 +3, +4
r2 → +4 3 +2, +3, X1
r3 → +1 2 +3, +4
r3 → X1 2 +3, +4
r4 → X1 2 +3, +4
r4 → +4 3 +2, +3, X1

3.4.2 Network Flow Formulation of Interconnect Binding Using Func-

tional Units

After identifying idle FUs for each data transfer, we construct a directed graph

NG(V,E) to find interconnects and idle FUs for data transfers at each c-step, with the objec-

tive of minimizing the total wirelength. The NG(V,E) contains every possible interconnects

for data transfers in a particular c-step. Among them, minimum length interconnects are

selected for each data transfer. The set V contains three types of vertices. For each transfer

type which occurs in the c-step, two round vertices are added, representing the register and

FU of the transfer, if they have not been added. In addition, one rectangular vertex is

added for each idle FU candidates of the transfer. Two diamond vertices are also added,

representing the primary source and target.

Figure 3.4(a) illustrates the graph construction using our example in Figure 3.3.

The graph is for c-step 3. According to Table 3.1, there are 4 types of transfers in c-step

3, namely r1 → +1, r2 → +1, r2 → +4 and r4 → +4. Thus, five round vertices are in the

graph, i.e., r1, r2, r4, +1 and +4. There are four sets of rectangular vertices. They are the

candidate idle FUs for the four transfers. Note that if an idle FU is a candidate for multiple

transfers, there are multiple copies of rectangular vertices. For example, 4 copies of ’+3’

are in Figure 3.4(a). Only rectangular vertices have vertex weights, which are equal to the
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propagation delay of the FUs when they are reconfigured as pass-through logic.

After the insertion of vertices, edges are added. There are six types of edges: edges

from diamond source to round registers, edges from round registers to round FUs, edges

from round FUs to the diamond target, edges from round registers to rectangular FUs,

edges from rectangular FUs to round FUs, and edges among rectangular FUs of the same

transfer. Each edge has four weights attached: interconnect length, interconnect delay,

flow, and capacity. The interconnect length and interconnect delay are derived based on

the inputs if both vertices of the edge are circuit components. If either vertex is a diamond,

the interconnect length and interconnect delay are set to zero. Initially, flow of all of the

edges is set to zero. The capacity of each edge from source diamond vertex is the number

of data transfers which the associated register initiates. The capacity of each edge to the

target diamond vertex is the number of data transfers which the associated FU receives.

The capacity of all other edges are 1. In Figure 3.4(a), only the flow and capacity are shown.

The interconnect length and interconnect delay are omitted due to the lack of space.

Algorithm 2 MODIFIED EDMONDS KARP algorithm
Input: Network (NG), Timing constraint (T )

Output: Minimum-cost Maximum-flow

1: RNG = Construct Residual Network (NG)

2: while flows are less than capacities for outgoing edges of source do

3: if MODIFIED BELLMAN FORD (RNG, T ) == true then

4: Update NG and RNG

5: else

6: return false

7: end if

8: end while

After constructing a network shown in figure 3.4(a), our algorithm assigns in-

terconnects and idle FUs for the data transfers in the network by running MODIFIED-
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EDMONDS-KARP algorithm, which finds flows with minimum cost under the given timing

constraint.

Algorithm 2 shows the pseudocode of our MODIFIED-EDMONDS-KARP algo-

rithm. Specifically, it first constructs the residual network in Line 1. It then applies a greedy

strategy to find the flow paths from the source to the target using the loop in Lines 2–8.

During each iteration of the loop, a flow path with the smallest total cost is derived in Line

3. The original EDMONDS KARP algorithm finds such a flow path using the Bellman Ford

Shortest Path Algorithm [42]. It therefore can only handle one edge cost, besides flow and

capacity. In our problem, each edge has two costs, i.e., interconnect delay and interconnect

length. The path to be computed should have the smallest total wirelength and satisfy

the delay constraint, namely the total path delay must not exceed total timing budget T .

To that end, we have modified the Bellman Ford Algorithm to calculate the constrained

shortest path.

The Algorithm 3 shows overall procedure of the modified Bellman-Ford shortest

path algorithm which takes timing constraint into consideration in addition to wirelength.

The inputs of the algorithm are weighted directed graph (WDG) and timing constraint (T).

In our problem, WDG is a residual network. The output is the shortest path in the residual

graph, which means that the path is a flow with the minimum wirelength and a path delay

less than or equal to T. The modified Bellman-Ford shortest path algorithm maintains the

orginal structure of Bellman-Ford algorithm. The difference is that, instead of keeping a

single cost at each vertex, a list of solution pairs is kept. Each solution pair has a delay and

a wirelength. During the edge evaluation step in Lines 4–11, the new delay is first calculated

by adding the corresponding wire delay and vertex v delay. If the new delay exceeds the

timing constraints, no update will be performed. Otherwise, the new wirelength is derived

in Line 7. The new solution pair is then inserted to the solution lists at vertex v in Line 8.

An efficient solution trimming strategy is adopted during the solution insertion

procedure. In particular, it can be proved that the solution pair can be organized in a
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linear order. Within the linear order, the wirelengths of solution pairs are monotonically

increasing and the delays of the solution pairs are monotonically decreasing. A new solution

pair k will not be inserted if there exists an old solution pair i that

i.wirelength < k.wirelength and i.delay < k.delay (3.1)

Similarly, the insertion of a new solution may result in the deletion of one or more old

solutions. Therefore the number of solutions in the list remains limited. After the evaluation

of edges is completed, the solution pair with the smallest wirelength is the constrained

shortest path solution. The entire path can be derived using the backtracking procedure

the same as that in the orginal Bellman-Ford algorithm. If there is a shortest path from

source vertex to target vertex, it returns true. Otherwise, it returns false.

The modified Bellman-Ford algorithm is able to find the flow with the shortest

wirelength under the given timing constraint. This flow is the solution for the data transfer

originated by the round register vertex in this c-step. For example, Figure 3.4(b) shows a

flow with bold solid lines from source to target. It indicates that the multiplier ’X1’ should

be used for the data transfer ’r2’→’+4’ at c-step 3.

After finding a minimum-cost flow for a data transfer, our algorithm updates the

graph so that any edges related to the data transfer and vertices of the selected idle FUs

cannot be chosen by other data transfers. Specifically, all edges related to the data transfer

have their capacity to zero. In addition, the idle FUs on the minimal flow are marked

and will not be used in deriving other flows. Figure 3.4(c) shows the example of updated

network. After the graph is updated (Line 4 of Algorithm 2), residual network is also

updated as original EDMONDS-KARP algorithm.

After performing the MODIFIED-EDMONDS-KARP algorithm at a c-step k, our

algorithm updates of idle FUs sets for data transfer types at other c-steps that have not

been processed, i.e., c-step k+ 1 and etc. If an idle FU is used for a particular data transfer

m at c-step k, it cannot be used for other data transfers in the c-steps where the data

transfer m exists. Thus, the idle FU should be removed from the idle FU sets associated
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Algorithm 3 MODIFIED BELLMAN FORD algorithm
Input: Weighted Directed Graph (WDG), Timing Constraint (T )

Output: Shortest path with satisfying given timing constraint

1: relaxed = false

2: for i = 0 to size(vertices(WDG))− 1 do

3: foreach edge uv in edges(WDG) do

4: foreach solution pair k at u do

5: Delay = k.delay + v.delay + uv.wire delay

6: if Delay ≤ T then

7: WL = k.WL + WL(uv)

8: UPDATE(v, WL, Delay)

9: end if

10: end for

11: end foreach

12: end for

13: if a shortest path exists in WDG then

14: return true

15: else

16: return false

17: end if
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with other data transfers in those c-steps.

3.4.3 Algorithm Analysis

The following theorems ensure the correctness of our Algorithm. Specifically, the

first theorem guarantees that all data transfers are assigned to a path for delivery. The

second theorem guarantees that there is no combinational feedback loops in the resulting

circuits. Note that false combinational feedback paths may still exists.

Theorem 1. Let nd denote the number of data transfers in a network NG(V,E). Let nf

denote the number of min-cost flows found in NG(V,E). Then, nd = nf .

Proof Sketch: Edmonds-Karp algorithm finds the maximum flow, nf . Based on

the max-flow min-cut theorem [42], nf is equal to min-cut. We next show that min-cut is

equal to the data transfer count, nd.

First, a cut separating the source from all other nodes has a cutsize nd. Therefore,

the min-cut is no more than nd, i.e. nf ≤ nd.

Second, given a graph, we can remove all idle FU nodes and edges connected to

them. Cutsizes of all cuts and, therefore, min-cut of the resulting subgraph are nd. The

min-cut of the original graph is no less than that of the new graph, nd, i.e. nf ≥ nd.

Therefore, nf is equal to nd.

Theorem 2. In a network NG(V,E), no flow has a cycle.

Proof Sketch: Since edge weights are always positive, if a flow has a cycle, we

can always find another flow by removing the cycles. The new flow would have less cost.

Therefore, since Edmonds-Karp algorithm always finds the minimum cost flow, no flow has

a cycle.
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(a)

(b)

(c)

Figure 3.4: Process of interconnect binding (a) Constructed Network Flow (b) One of min-
cost max-flow paths (c) Updated Network Flow
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3.5 Experimental Setup and Results

In this section, we present our experimental results. Our data based on layout

analysis and gate-level circuit simulations demonstrate the effectiveness of the proposed

scheme. In comparison to previous interconnect reduction schemes in HLS, our algorithm

reduces total interconnect length by 8.5% on the average. The worst power degradation is

5.1%. On the average, the design power is even reduced by 4.8%.

3.5.1 Experimental Setup

Figure 3.5: Experimental Flow

We have implemented our interconnect binding algorithm into a HLS software tool

and tested it with the data intensive benchmarks in [43], which are common in the digital

signal processing (DSP) field. All operations in these benchmarks are either addition or

multiplication. Our proposed algorithm is applied during HLS step. However, in order

to accurately estimate the real impact of our scheme on various circuit metrics, we have

applied state-of-the-art EDA tools to generate the final layout for each benchmark. Figure

4.7 shows our design flow. Given a benchmark DFG, we perform the operation scheduling
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using the force directed scheduling algorithm, which is effective for resource usage. We then

apply previous interconnect reduction schemes to complete the bind process. The goal is

to produce the best result when idle FUs are not considered. We generate verilog RTL

description from the scheduled and bound DFG. We use Synopsys Design CompilerTM to

perform circuit synthesis and generate the gate level netlists. We perform placement and

routing using Cadence SoC EncounterTM to get physical location information of registers

and FUs.

With the placement information and the scheduled and bound DFG, we perform

our interconnect binding denoted as the bold box in Figure 4.7 to generate the new RTL

description. The same synthesis and physical design flow are next applied to produce the

final layout.

To estimate power consumption of our circuits, we simulate their gate netlists with

randomly generated inputs. The switching activity information of all nodes in the netlists

are stored in the Switching Activity Interchange Format (SAIF). Design CompilerTM is then

used to derive power estimates using the SAIF files and the capacitance information from

the layouts. Total wirelength is derived based on reports from SOC EncounterTM.

3.5.2 Experimental Results

In order to assess whether there exist sufficient idle FUs, we examine the scheduled

and FU-bound DFGs of all benchmarks. Tables 3.2 and 3.3 show how many idle adders and

multipliers exist at each c-step on average. The first columns of the tables show benchmark

names. The second columns show the number of available FUs. The third columns are the

average numbers of idle FUs. The last columns present the percentages of idle FUs. As

shown in the tables, 39.14% and 47.10% of adders and multipliers are not in operation at

each c-step on average.

We compared our algorithm to compatibility path based register and FU binding

algorithm [8] and weighted bipartite matching register binding algorithm [9]. Both algo-
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Table 3.2: Average number of idle adders

Benchmarks Required ADD AVG IDLE ADD RATIO (%)
chem 15 3.93 26.20
honda 7 3.47 49.57

dir 8 3.80 47.50
feig dct 40 7.71 19.28

lee 8 4.78 59.75
mcm 13 5.00 38.46
u5ml 16 5.31 33.19
AVG 39.14

Table 3.3: Average number of idle mulipliers

Benchmarks Required MUL AVG IDLE MUL RATIO (%)
chem 17 5.13 30.18
honda 7 3.40 48.57

dir 9 4.60 51.11
feig dct 12 8.21 68.42

lee 4 1.56 39.00
mcm 9 5.00 55.56
u5ml 17 6.27 36.88
AVG 47.10

rithms optimize the total interconnect wirelength by minimizing the number of multiplexer

inputs. We apply our scheme on the results generated by [8] and [9].

Table 3.4 shows the comparison of total wirelength. The first column of the table

shows benchmark names. Columns 2 and 3 list the total wirelength in micrometer (um)

with and without our optimization. The base designs are produced by [8]. Columns 4 and 5

list the similar results. The base designs are produced by [9]. The last two columns list the

wirelength reduction. As can be seen, our scheme can further reduce interconnect length

over [8] and [9]. The average improvements are 7.5% and 9.4%.

We also compare total power consumption to assess the power degradation due to

the usage of idle FUs. In particular, when an idle FU is not used, we set its inputs to zeros

to reduce its internal signal activities. We again shown the power dissipation of circuits
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after and before the application of our scheme.

Table 3.5 shows power consumption of each benchmark design. The unit of power

consumption in the table is miliwatt (mW). As can be seen, on the average, the power

dissipation of circuit does not increase but decrease by 4.8%. It indicates that the extra

power due to the FU switching is offset by the power reduction because of interconnect

reduction, although there are several circuits whose power increases after the application of

our technique.
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Table 3.4: Total wirelength after and before interconnect optimization using idle FUs

Benchmarks ours [8] ours [9] Improvement over [8] Improvement over [9]
chem 1.35×106 1.55×106 1.67×106 1.83×106 13.06% 5.81%
honda 3.22×105 3.42×105 3.47×105 3.84×105 5.68% 12.99%

dir 8.03×105 8.64×105 1.14×106 1.23×106 6.99% 7.32%
feig dct 6.89×106 7.32×106 5.98×106 6.81×106 5.80% 12.08%

lee 3.26×105 3.37×105 2.87×105 3.15×105 3.36% 8.89%
mcm 8.81×105 9.82×105 1.09×106 1.17×106 10.28% 7.09%
u5ml 1.92×106 2.07×106 1.96×106 2.15×106 7.44% 8.84%
AVG 7.52% 9.42%

Taemin Kim
Text Box
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Table 3.5: Power consumption after and before interconnect optimization using idle FUs

Benchmarks ours [8] ours [9] Increase over [8] Increase over [9]
chem 13.17 14.76 13.27 13.09 -10.74% 1.33%
honda 3.34 3.84 2.87 2.81 -13.16% 2.25%

dir 5.83 6.19 6.03 6.62 -5.73% -8.9%
feig dct 36.84 37.51 26.72 28.48 -1.77% -6.17%

lee 2.90 3.22 2.19 2.36 -10.02% -7.20%
mcm 7.95 8.51 5.36 5.10 -6.61% 5.10%
u5ml 12.69 13.86 11.03 10.79 -8.44% 2.22%
AVG -8.07% -1.63%

Taemin Kim
Text Box
58
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3.6 Conclusion

In this chapter, we present a novel interconnect binding algorithm. It uses idle

functional units for data transfers, resulting in global interconnect reduction. Specifically,

our algorithm identifies idle functional units for each data transfer from scheduling and

functional unit binding result. It assigns each data transfer in a DFG to idle functional

units and/or dedicated wires to reduce wirelength of global interconnects. We transfer the

problem of interconnect minimization using idle functional units to the mini-cost max-flow

problem and solve it using modified EDMONDS KARP algorithm. Experimental results

show that our algorithm reduces the total wirelength of global interconnects by 8.5% and

the power consumption by 4.8% without introducing any timing violations.
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Chapter 4

Register Reduction Algorithm

Using Idle Pipelined Functional

Units

4.1 Introduction

In this chapter, we propose a register reduction algorithm. Our scheme is applied

during the register binding stage of high level synthesis (HLS). The center of our scheme

is to use the internal registers of idle pipelined functional units (FUs) to replace dedicated

registers. Traditional register binding algorithms implicitly assume that variables in a data

flow graph (DFG) are stored in only dedicated registers. We have observed that not all FUs

are in operation all the time. If the FUs are pipelined to be used in high performance digital

circuits, their internal registers can be used to store the variables during their idle time.

Consequently, less number of dedicated registers are needed. The challenge is to identify

the right FUs for the variables with minimal increase of power and interconnect complexity.

Our algorithm reduces the register count and minimizes the extra interconnects

used due to the usage of idle FUs. It proceeds in four steps. First, it identifies idle pipelined
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FUs throughout the entire execution time. Second, it matches variables with the internal

registers in idle pipelined FUs using the bipartite matching algorithm. The matching is

performed between all variables in the given DFG and internal registers of idle pipelined

FUs with the objective of maximizing the number of matchings and minimizing the inter-

connect cost. If not all variables are mapped into the internal registers of idle pipelined FUs,

dedicated registers are needed to store unmapped variables. Our algorithm calculates the

minimal dedicated register count required. It then adjusts the mapping results to further

reduce interconnect cost and limit power increase without increasing the number of dedi-

cated registers. Namely, some variables mapped to internal registers of idle pipelined FUs

are released and become unmapped. Finally, our algorithm assign all unmapped variables

to dedicated registers.

We have applied our register reduction algorithm to a suite of benchmark designs.

Experimental results have shown that our scheme reduces register counts by 26% in com-

parison to the Left Edge Algorithm in [11], which is considered as the optimal register

reduction algorithm without using idle functional units. In addition, to assess the impact of

our algorithm on global interconnect length and power consumption, we have generated the

layout of each benchmark circuit using industrial EDA tools. Based on data reported by

these tools, our approach achieves an average reduction of 4% and 4% of total wirelength

and power, respectively, in comparison to previous register binding algorithms that target

wirelength reduction [9]. Our contributions are as follows.

• A complete register binding framework that uses idle pipelined FUs and dedicated

registers to store variables

• Four methods to use pipelined FUs as variable storages and formulation of the register

binding problem as bipartite matching problem

• Full analysis of the effect of using pipelined FUs as variable storages with complete

experimental results
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The rest of this chapter is organized as follows. Section 4.2 briefly introduces

previous research on register binding in HLS. Section 4.3 explains preliminaries for register

binding and formulates our problem. Section 4.4 gives details about our register reduction

algorithm, followed by experimental results in Section 4.5. Finally, Section 4.6 concludes

this chapter.
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4.2 Related Works

During the past two decades, the register binding problem has been researched ex-

tensively with various design objectives including power reduction [18, 52, 53], interconnect

reduction [19, 9, 34, 54], and timing improvement [55]. Our research focuses on register

reduction since a small register count leads to small clock skews, low power dissipation, and

small circuit area. Several researchers have addressed this problem. Specifically, Tseng et

al. [56] proposed a clique partitioning algorithm to minimize the number of registers. Since

clique partitioning is NP-complete, they presented a heuristic which gave a near-optimal

solution in polynomial time. Kurdahi and Parker [11] presented the Left Edge Algorithm

(LEA) for register binding. They have proved that LEA can derive a solution with the min-

imal number of registers. As a result, register reduction during register binding was often

considered a solved problem. However, the proof in [11] was based on two assumptions.

First, all variables are assumed to have the same bit width. Second, only dedicated registers

are used to store variables. When either assumption does not hold, the LEA scheme is not

optimal. Recently, Chabini and Wolf have presented a binding algorithm that minimizes

the total number of registers without the first assumption, namely when variables have

different bit widths [57]. Our work targets the scenario without the second assumption. In

particular, we observe that there may exist several idle pipelined FUs in a circuit. These

idle FUs can be used to store variables temporarily and therefore reduce the demand for

dedicated registers.



64

4.3 Problem Formulation

In this section, we first describe register binding problem. We then show how idle

pipelined FUs can be used for temporary data storage. We formulate our problem at the

end.

4.3.1 Traditional Register Binding

The input of a register binding problem includes a scheduled DFG and the FU

binding result. Figure 4.1 shows a sample input. The operations are scheduled in five

time slots, called c-steps. The vertices are operations mapped to FUs. The strings within

the vertices represent the functionalities and indexes of the corresponding FUs. Symbols

‘+’, ‘X’ and ‘<<’ denote adder, multiplier and shifter, respectively. The integers after the

symbols are used to distinguish FUs of the same type. In Figure 4.1, there are two adders,

‘+1’ and ‘+2’, one multiplier ‘X1’, and one shifter ‘<<1’. Pipelines are represented by

straight lines within vertices. In Figure 4.1, only the multiplier is pipelined by two stages.

Figure 4.1: A scheduled DFG with FU binding result
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Directed edges in a DFG represent variables. The starting vertex of an edge is the

variable producer and the ending vertex is the consumer. The lifetime of a variable is the

time duration from the c-step when the variable is produced to the c-step when it is used.

Variables must be stored in registers during their lifetimes. Two variables cannot be stored

in the same register if their lifetimes overlap.

If only dedicated registers are used to store variables, it is required to assign as

many variables as possible to the same register so that the register count is minimized.

Moreover, interconnect minimization during HLS is critical in today’s VLSI design. Since

no placement information is available, the interconnect cost is computed based on the

connectivity among registers and FUs. Particularly, multiplexers are needed when multiple

FUs store their results in the same register and multiple registers provide data to the same

FU. Therefore, the interconnect cost is often represented by the multiplexer input count,

which needs to be reduced during register binding.

4.3.2 Variable Storage using Idle Pipelined FUs

There are four ways to store a variable in a pipelined-FU. In the first way, registers

within idle pipelined FUs are accessed only through the FU interfaces. As shown in Figure

4.2(a), the producer of the variable sends it to the input port of the idle FU. The variable

is stored in the first-stage pipeline registers. It propagates one stage down after every clock

cycle until the last pipeline stage. The variable will be sent to its consumer through the

output port of the idle FU. In order to store variables in such a way, the pipelined FU must

not initiate operation at the exact time when the variable is computed. In addition, the

span of the variable lifetime must be equal to the pipeline depth of the FU minus one since

the variable has to pass through the FUs to be used.

The second way to store variables in pipelined-FUs is to store the variables in

the internal registers directly as shown in Figure 4.2(b). This approach does not have the

restriction on the idle time of FU or the lifetime of variable as that in the first way. A
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(a) (b)

(c) (d)

Figure 4.2: (a) Store and use a variable via FU interface (Method 1) (b) via register
input/output pins (Method2) (c) via FU input port and register output pin (Method 3) (d)
via register input pin and FU output port (Method 4)

variable can be stored to any pipeline register as long as the register is not in use. The

variable stored can be accessed all the time. Unfortunately, the direct access of pipeline

registers may lead to severe circuit performance degradation. Specifically, multiplexers must

be added before the input pins of all pipeline registers, resulting in extra signal delays.

Furthermore, additional fanouts are required for all registers for variable access, increasing

delay and power.

The third and fourth ways are in between of the first and second. In the third

way, the variables are stored via only the input ports of pipelined-FUs. However, the

variables can be used via the output pins of internal registers at any pipeline stages. Since
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variables are stored via input ports, the variables should be birth from the c-step when

a pipelined-FU starts to be idle. However, the death time can be anytime until the last

pipeline stage of the FU. Thus, this method provides more flexibility in the sense of variable

accommodation. As shown in Figure 4.2(c), if the third way is used, one of variables as

many as the number of pipeline stages can be stored in the pipelined FU, which gives more

chances to reduce register count than Method 1. However, note that this method also causes

additional multiplexer and fanout overheads which is in between of that of the Method 1

and Method 2.

The fourth way in Figure 4.2(d) is opposite to the Method 3 in storing variables.

Namely, variables can be stored via input pins of internal registers at any pipeline stages,

but they are used via only output ports of the pipelined FU. The benefit of this way is

similar to that of the third way. However, the lifetime span of variables which the FU can

accommodate is different. The birth time of variables can be any c-steps within pipeline

stages. The death time is only the c-step of last pipeline stage, since variables can be used

via only the output ports of the FU. This method also causes additional input multiplexers

of pipeline registers and fanouts of output ports of the FU.

In this paper, we explain our algorithm based on Method 2. Since it provides the

full flexibility for variable storage, it is also superset of other methods. Thus, our algorithm

based on Method 2 is applied to all other methods with slight modification. We examine all

the four methods described above to see how much benefit they provide in terms of register

counts and clock skew reduction and how much they impact to the circuit quality in terms

of power and interconnect.

4.3.3 Problem Formulation

Since we access all the internal pipeline registers of a FU in general, the registers

within the FU can be utilized independently. The storage of variables in those registers can,

therefore, be modeled as mapping of variable lifetime to the timeframes in which the FU
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can retain a value. Consequently, our register binding problem can be formulated as follows:

PROBLEM: Given a scheduled DFG with a FU binding result, assign variables

in the DFG to the set of internal registers of pipelined FUs and dedicated registers with

the objective of minimizing dedicated registers and the global interconnect cost, which is

calculated as the total multiplexer inputs of the FUs and dedicated registers.
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4.4 The Proposed Approach

Figure 4.3 shows the overall flow of our register binding algorithm which consists

of four steps. We first identify all pipelined FUs that are idle for each c-step. We then

assign variables to these idle FUs with the objective of reducing dedicated registers and

interconnect cost. To the end, we construct a bipartite graph whose one partition consists

of variables and the other contains idle pipelined FUs. An edge is added between a variable

and a FU, if the variable can be assigned to the FU, with the edge cost equal to the

interconnect cost of the assignment. We assign as many variables as possible to FUs with

the minimal total edge cost. In the third step, we first compute the number of dedicated

registers needed based on the previous assignment result. we perform post processing to

remove some assignments as long as the removal will not lead to the increase of dedicated

registers. Finally, we perform bipartite-matching register binding algorithm [9] to assign

unassigned variables to dedicated registers and minimize the interconnect cost, i.e., the

total number of multiplexer inputs. In the following sections, we present the details of our

algorithm.

Figure 4.3: The proposed register binding algorithm
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4.4.1 Identification of Idle Pipelined FUs

Figure 4.4: Identification of idle pipelined FUs

If a pipelined FU does not initiate computation at a c-step i, it is considered to

be idle from c-step i to c-step i+p-1 where p is the number of pipeline stages of the FU.

With the given DFG and FU binding information, the identification of idle pipelined FUs

is straightforward. Figure 4.4 shows the example from Figure 4.1, where only the multiplier

is pipelined. Our algorithm examines each c-step of the DFG. Since multiplier X1 initiates

multiplication only at c-step one, it is idle at all other c-steps. When a pipelined FUs is idle

for consecutive c-steps, the idle time will not be combined but processed independently. As

shown in Figure 4.4, three dotted ovals in the bold box show the time slots when multiplier

‘X1’ is idle.

4.4.2 Variable Assignment to Idle Pipelined-FUs

In the second step of our algorithm, we assign variables to the internal registers of

pipelined FUs to reduce the need for dedicated registers. Before delving into the details of

this step, we define FU lifetime as follows.
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Figure 4.5: FU lifetimes of 3-stage pipelined multiplier for four storing methods

Definition 6 FU lifetime is the time duration during which a pipelined FU can retain a

value.

Figure 4.5 shows FU lifetimes of a 3-stage multiplier for all possible storing methods de-

scribed in Section 2.4. In case of Method 1 shown in box 1, it has only one FU lifetime,

since it stores a value via only FU input/output ports. In other words, it can retain only

one variable from the first pipeline register to the last one. On the other hand, the FU can

have multiple FU lifetimes for other storing methods. Box 2, 3 and 4 in Figure 4.5 shows

FU lifetimes for storing Method 2, 3 and 4, respectively. Note that variables cannot be

assigned to overlapping FU lifetimes at the same time. In general, for k-stage pipelined FU,

it can have as many FU lifetimes as follows.
1 for Method 1

k×(k−1)
2 for Method 2

k − 1 for Method 3 and 4

Therefore, in this step, we assign variables to the FU lifetimes. To that end, we recast the

variable-to-FU lifetime assignment problem into a bipartite matching problem. Specifically,

we construct a bipartite graph as follows. On one side of the graph, vertices are introduced

for variables in the given DFG. If a variable is consumed at a single c-step, the variable

is represented by one vertex, with the lifetime augmented. If a variable is consumed at

multiple c-steps, one vertex is added for each consuming c-step. The lifetime of the vertex



72

is between the producing c-step and the consuming c-step. Vertices on the other side of the

bipartite graph represent FU lifetimes of idle pipelined FUs. Multiple vertices may be added

for a FU. Particularly, for each c-step when a pipelined FU does not initiate computation,

vertices are inserted. The number of vertices for a FU at a c-step depends on which storing

method is used.

An edge is inserted between a variable vertex and a FU vertex if the variable can

be assigned to the FU. We compare variable lifetimes to each FU lifetime to construct edges

between two partitions. If variable lifetime in one partition is same with FU lifetime in the

other, an edge between two vertices is created. Since there are multiple FU lifetimes for a

pipelined FU, multiple variables can be potentially assigned to the idle pipelined FU during

certain idle time. However, all those variables cannot be assigned to the FU, since there

are overlapping FU lifetimes. For example, in Box 2 of Figure 4.5, there are three FU

lifetimes such as a, b and c between c-step i and c-step i+ 2. Although three variables can

be matched with the three FU lifetimes, all variables cannot be stored in the FU, since FU

lifetime c overlaps those of a and b. Thus, after finding all matches between variables and

FU lifetimes, those overlaps should be removed.

A weight is assigned to each edge, indicating the interconnect cost of assigning

the corresponding variable, i.e., the starting vertex, to the ending FU of the edge. Since

the potential increase of multiplexer inputs and fanouts is used to represent the extra

interconnect, the weight of an edge between variable i and FU j is calculated by the equation:

Ci,j = NINj +Ni,j +NOUTi , (4.1)

where NINj is the number of different input variables that FU j receives according to

the given DFG. The item Ni,j shows how many new interconnects are connected to the

FU j by assigning variable i. If variable i is to be connected to the input ports of FU j

and is among the input variables of input ports of FU j, Ni,j is 0. If it is newly added

variable to be stored via input ports, Ni,j is constant α which is greater than one. We

set α two. If it is added to the inputs of internal registers, Ni,j is one. The reason α is
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greater than one is that input ports of a FU are already crowded due to existing input

variables in a DFG. If we add more variables to the ports, it makes the congestion around

the ports worse than putting a variable into internal register directly. Thus, we model

the negative effect on congestion around input ports of a FU as α. The sum NINj +

Ni,j represents the multiplexer inputs at the input interface of FU j and internal pipeline

registers. Intuitively, if a FU consumes many variables, it is likely that the FU needs a

multiplexer with many inputs, which increases the global interconnect complexity. The

parameter NOUTi is the number of fanouts of variable i. It represents the increase of

fanouts of FU j when it is used to store variable i. Large increase of the fanout count

increases the overall interconnect complexity. After construction of the weighted bipartite

graph, the assignment of variables to idle pipelined FUs with minimal interconnect cost can

be solved by computing the minimum cost bipartite matching. In our scheme, we apply the

Hungarian algorithm [58] to derive the optimal matching solution.

Figure 4.6 illustrates the procedure of bipartite graph construction using the ex-

ample in Figure 4.4. Figure 4.6(a) presents the lifetimes of all variables. It also indicates

that the multiplier does not initiate any computation, i.e., is idle, at c-step 2, c-step 3 and

c-step 4. Consequently, six variable vertices and nine FU lifetime vertices are placed in the

bipartite graph in Figure 4.6(b). We assume that Method 2 is used for this example. Edges

are inserted based on the variable lifetimes and FU idle situations with edge weights calcu-

lated according to Equation (4.1). For example, an edge is added between v1 and m2, since

v1 can be assigned to the multiplier at the end of c-step 3. The multiplier has two different

input variables in c-step 1. Therefore, NINm2 is two. The parameter Nv1,m2 is 1, since v1 is

not connected to the input ports of the multiplier in the DFG and it may be stored in the

internal register at second stage pipeline. The parameter NOUTv1 is one because v1 is used

by one adder at c-step 4 which is not originally connected to the output of the multiplier.

The edge weight is therefore equal to 2 + 1 + 1 = 4. Once the bipartite graph is constructed

as shown in Figure 4.6(b), we perform the min-cost bipartite matching algorithm. For this



74

example, v1, v3, v4 and v5 are matched to m2, m6, m5 and m8, respectively, with the total

cost of 12. However, since m5 and m6 overlap each other as shown in Figure 4.6(a), v3 and

v4 cannot be assigned to the multiplier as the same time. Thus, a match with minimum

cost among conflicted matches is selected. In this example, a match between v4 and m5 is

selected. Finally, v1, v4 and v5 are assigned to the internal registers of the multiplier.

(a) (b)

Figure 4.6: (a) Lifetimes of variables and idle pipelined multiplier (b) Bipartite graph
constructed

4.4.3 Post Processing

After the variable assignment described in Section 4.4.2, there may still exist vari-

ables that are unassigned to pipelined FUs. Dedicated registers must be introduced for

these variables. The minimal number of registers needed is equal to the maximal unas-

signed variables in any c-step.

Our algorithm scans through all c-steps to count the numbers of unassigned vari-

ables and derive the minimal number of dedicated registers Nreg. It then unassigns variables

from FUs as long as the unassignment does not increase Nreg. The rationale behind our

post processing step is that storing a variable using a pipeline FU is often more costly in

terms of power than using a dedicated register. As a result, the existing dedicated registers

should be used before any pipelined FU is used.
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Algorithm 4 Post processing for reduction of multiplexer inputs
Input: Minimum number of registers (Nreg), scheduled and FU-bound DFG (G)

Output: Refinement of variable-to-FU assignment

1: foreach V ariable in G do

2: if V ariable is assigned to a pipelined FU then

3: foreach c-step in the lifetime of V ariable do

4: if unassigned variable count is Nreg then

5: set flag

6: end if

7: end foreach

8: if flag not set then

9: unassign V ariable

10: end if

11: end if

12: end foreach
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Algorithm 4 shows the detailed steps for variable unassignment. The input con-

tains a scheduled and FU-bound DFG and the number of dedicated registers Nreg. The out-

put is the refined variable-to-FU assignment. Specifically, all variables assigned to pipelined

FUs are selected first (lines 1 and 2). The unassigned variable count of each c-step during

the lifetime of every selected variable is compared with Nreg (lines 3 to 7). If all the

counts are less than Nreg, there are unused dedicated registers during the variable lifetime.

Therefore, the variable is unassigned (lines 8 to 10). The post processing ends when all

variables are examined.

The benefit of the variable unassignment can be illustrated using the example in

Figure 4.6. According to our variable assignment solution in Section 4.4.2, v1, v4 and v5

are assigned to m2, m5 and m8, respectively. Thus, there are two unassigned variables, v2

and v3, from c-step 4 to c-step 5. There is one unassigned variable v6 at c-step 6. The

minimal number of dedicated registers Nreg is two. Our algorithm checks v1 and v4. In

case of v1, its lifetime includes c-step 4, which has two unassigned variables. Therefore, v1

cannot be unassigned, since unassignment of v1 increases the number of dedicated registers

to three. On the other hand, the lifetime of v5 only spans over c-step 6. Since there is

only one unassigned variable v6 at c-step 6, v5 can be unassigned from m8. Storing v5

into a dedicated register helps reducing power consumption. In addition, it also reduces the

number of variables fed into the multiplier, leading to less multiplexer inputs and therefore

lower interconnect complexity.

After the refinement of variable-to-FU assignment, we assign all unassigned vari-

ables to dedicated registers. The bipartite-matching register binding algorithm [9] is used

that guarantees the minimal number of dedicated registers and reduces total multiplexer

inputs.
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4.5 Experimental Setup and Results

In this section, we present experimental results that illustrate the effectiveness of

our approach in register reduction. We also describe the benefit of our scheme in clock skew

minimization. In addition, we show overhead of interconnect and power consumption.

4.5.1 Experimental Setup

Figure 4.7: Design and Evaluation Flow

We have implemented our register binding algorithm into a HLS software tool and

applied it to the data intensive benchmarks in [43]. All operations in these benchmarks

are either addition or multiplication. Figure 4.7 shows the overall flow of our experiments.

We first convert the benchmarks into DFGs. We then apply the Force-directed scheduling

scheme [46] and Left Edge FU binding algorithm [11] to perform the operation scheduling

and FU binding, respectively. We assume that only multipliers are pipelined, since delay of

a non-pipelined multiplier is much longer than that of an adder. In addition, we experiment

with 2-, 3- and 4-stage pipelined multipliers to examine how the benefit and overhead vary
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with respect to the number of pipeline stages. Our proposed algorithm is then used to

complete the register binding with the utilization of idle FUs.

To assess the exact impact of our scheme on interconnect and power, we con-

struct all benchmarks into layouts using industrial EDA tools. Specifically, an in-house

tool converts the HLS results into Verilog RTL descriptions. Synopsys Design CompilerTM

is then applied to synthesize the RTL descriptions into gate level netlists. Cadence SOC

EncounterTM is next used to perform placement and routing to generate the layouts. The

clock tree of each circuit is designed with skew minimization as the objective.

To estimate power consumption of our circuits, we simulate their gate netlists with

randomly generated inputs. The switching activity information of all nodes in the netlists

is stored in the Switching Activity Interchange Format (SAIF). Design CompilerTM is then

used to derive power estimates using the SAIF files and the capacitance information from

the layouts. Circuit statistics such as total wirelength and clock skews are reported by SOC

EncounterTM.

4.5.2 Experimental Results

Register Reduction

Table 4.1, 4.2 and 4.3 compare the register counts of circuits designed using LEA

and our approach. We also test four storing methods described in Section 4.3.2. In case of

2-stage pipelined multiplier, we only test Method 1 which stores variables via FU interface,

since it has only one stage pipeline register.

Table 4.1 shows register reduction for a DFG where multiplier is pipelined by

2-stage. Specifically, the first column lists the benchmark names. The second and third

columns show the register counts for LEA and our algorithm, respectively. The fourth

lists the register reduction of our scheme over LEA, which produces the optimal result

without considering idle FUs. As Table ?? shows, our algorithm reduces registers for all

benchmark circuits. The average reduction is 26%. The highest reduction is 100%. The
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Table 4.1: Comparison of total number of registers (2-stage)

2-stage
Benchmarks LEA Ours red

chem 576 512 11%
honda 240 224 7%

feig dct 1408 1264 10%
lee 160 128 20%

mcm 400 272 32%
u5ml 624 576 8%
wang 176 112 36%

pr 160 96 40%
arai 160 128 20%

chendct 336 256 24%
chenidct 384 288 25%

fft 256 0 100%
fir11 48 32 33%

cftmdl 352 256 27%
KALMAN 64 48 25%
LowPass 176 112 36%
matmul 512 256 50%

idct 272 224 18%
jacob 384 320 17%

Wavelet 256 128 50%
AVG 26%

reason fft can get 100% reduction is that the absolute lifetimes of all variables are two

c-steps. Thus, if there are sufficient number of idle multipliers, 2-stage pipelined multipliers

can accommodate those short-lifetime variables.

The Table 4.2 and 4.3 show register reduction when 3- and 4-stage pipelined mul-

tipliers are used. The first column shows the benchmarks. The second column shows the

number of registers when LEA performs register binding. The third, fourth, fifth and sixth

columns show the register count when four different storing methods are used. The last

four columns present the relative reduction over LEA. The average reduction for the four

methods using 3-stage pipelined multiplier is 8%, 41%, 22% and 27%, respectively. In ad-

dition, When 4-stage pipelined multipliers are used, 2%, 44%, 28% and 27% reduction is
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Table 4.2: Comparison of total number of registers (3-stage)

3-stage
Benchmarks LEA M1 M2 M3 M4 M1-red M2-red M3-red M4-red

chem 576 544 464 576 512 6% 19% 0% 11%
honda 240 192 144 208 192 20% 40% 13% 20%

dir 272 256 240 272 256 6% 12% 0% 6%
feig dct 1344 1248 1200 1328 1248 7% 11% 1% 7%

lee 176 176 160 176 144 0% 9% 0% 18%
mcm 400 400 224 304 272 0% 44% 24% 32%
u5ml 640 576 528 640 592 10% 18% 0% 8%
wang 160 144 128 128 112 10% 20% 20% 30%

pr 160 144 80 112 96 10% 50% 30% 40%
arai 128 112 112 112 112 13% 13% 13% 13%

chendct 288 256 240 256 240 11% 17% 11% 17%
chenidct 368 368 272 304 272 0% 26% 17% 26%

fft 256 256 0 0 128 0% 100% 100% 50%
fir11 64 48 32 48 32 25% 50% 25% 50%

cftmdl 288 288 144 176 192 0% 50% 39% 33%
KALMAN 64 64 32 48 48 0% 50% 25% 25%
LowPass 160 144 48 128 96 10% 70% 20% 40%
matmul 512 512 0 256 256 0% 100% 50% 50%

idct 272 224 192 224 208 18% 29% 18% 24%
jacob 352 304 208 320 288 14% 41% 9% 18%

Wavelet 256 256 0 128 128 0% 100% 50% 50%
AVG 8% 41% 22% 27%
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Table 4.3: Comparison of total number of registers (4-stage)

4-stage
Benchmarks LEA M1 M2 M3 M4 M1-red M2-red M3-red M4-red

chem 560 496 304 528 480 11% 46% 6% 14%
honda 224 224 112 208 192 0% 50% 7% 14%

dir 272 240 224 240 256 12% 18% 12% 6%
feig dct 1296 1296 1184 1280 1200 0% 9% 1% 7%

lee 160 160 144 160 144 0% 10% 0% 10%
mcm 400 400 224 288 272 0% 44% 28% 32%
u5ml 608 608 480 608 544 0% 21% 0% 11%
wang 160 160 144 128 112 0% 10% 20% 30%

pr 160 144 96 112 96 10% 40% 30% 40%
arai 128 128 96 112 96 0% 25% 13% 25%

chendct 256 256 192 224 192 0% 25% 13% 25%
chenidct 368 368 288 304 304 0% 22% 17% 17%

fft 256 256 0 0 128 0% 100% 100% 50%
fir11 64 64 32 64 32 0% 50% 0% 50%

cftmdl 256 256 176 128 176 0% 31% 50% 31%
KALMAN 48 48 16 32 32 0% 67% 33% 33%
LowPass 144 144 32 80 80 0% 78% 44% 44%
matmul 512 512 0 0 256 0% 100% 100% 50%

idct 272 240 192 256 240 12% 29% 6% 12%
jacob 336 320 192 304 272 5% 43% 10% 19%

Wavelet 256 256 0 0 128 0% 100% 100% 50%
AVG 2% 44% 28% 27%
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achieved. In case of Method 1, the effect of register reduction is relatively smaller than

other methods. The reason is that the pipelined FUs can store variables which have exactly

the same length of lifetime with FU-lifetime. For 3-stage pipelined multiplier, it can store

only variables which have the lifetime length of three c-steps. Thus, the reduction depends

on how many variables have the lifetime length of three c-steps. On the other hand, Method

2 achieves the most reduction, since it can accommodate any length of lifetime between the

minimum and maximum FU-lifetimes of the FU.

Clock Skew Minimization

We investigate the impact of our scheme on clock skews by building min-skew clock

trees using SOC EncounterTM. We compare our approach with the bipartite matching

register binding algorithm [9], which not only derives the same register counts as LEA

but also optimizes multiplexer inputs and interconnect complexity. Table 4.4, 4.5 and

4.6 report the results. The unit of skews is pico-second. We measure rising and falling

clock skews when 2-, 3- and 4-stage pipelined multipliers are used for each benchmark

program. In addition, we apply four storing methods for each kind of multiplier except

2-stage pipelined multiplier.The Table 4.4 shows the comparison of clock skew when 2-stage

pipelined multipliers are used. Method 1 is used to store variables in the internal registers

of the multipliers. The second and third columns show the rising and falling skews for

circuits designed using bipartite matching register binding algorithm. The fourth and fifth

columns are the rising and falling skews for circuits designed by our algorithm. Last two

columns show the percentage reduction. Our scheme delivers better results in most of the

cases. The average skew reduction is 25% and 26% for rising and falling edge, respectively.

The Table 4.5 and 4.6 present the clock skew comparison when 3- and 4-stage multipliers

are used, respectively. Each table has the clock skew measure for each storing method. The

second and third columns show clock skew measure for bipartite matching register binding

algorithm. Columns from fourth to eleventh show clock skew for each storing methods.
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The rest of columns shows the percentage reduction over bipartite matching algorithm.

As Table 4.5 and 4.6 show, our algorithm reduces the rising (falling) clock skew by 28%

(25%), 29% (27%), 28% (27%) and 33% (30%) on the average for M1, M2, M3 and M4,

respectively. When 4-stage pipelined multipliers are used, the average reduction of rising

(falling) clock skew is 7% (8%), 27% (19%), 22% (19%) and 24% (22%) for M1, M2, M3 and

M4, respectively. By minimization of register counts, we achive the clock skew minimization,

too. The reason is that the loading effect for clock signal line is reduced by reducing the

number of registers.

Table 4.4: Comparison of clock skew (2-stage)

2-stage
Benchmarks BIP-r BIP-f Ours-r Ours-f r-red f-red

chem 53.70 57.10 48.90 50.8 9% 11%
honda 14.80 13.50 8.70 8.7 41% 36%

dir 77.70 78.00 21.20 23 73% 71%
feig dct 66.30 62.20 52.30 47.1 21% 24%

lee 10.60 18.50 9.30 12.1 12% 35%
mcm 195.00 198.00 85.00 86 56% 57%
u5ml 90.80 93.20 79.00 85.3 13% 8%
wang 31.30 21.50 22.60 20.4 28% 5%

pr 49.10 36.00 46.40 46.4 5% -29%
arai 81.50 82.40 20.80 20.8 74% 75%

chendct 28.30 29.10 17.90 18.3 37% 37%
chenidct 38.00 38.40 23.30 24.4 39% 36%

fft 21.70 23.40 18.20 18.9 16% 19%
fir11 12.90 13.10 7.50 5 42% 62%

cftmdl 67.30 66.10 75.60 44.9 -12% 32%
KALMAN 22.90 22.90 35.40 35.6 -55% -55%
LowPass 35.60 35.50 30.60 30.7 14% 14%
matmul 72.20 61.50 45.00 45.7 38% 26%

idct 28.00 28.50 20.50 21 27% 26%
jacob 14.60 15.00 14.10 14.8 3% 1%

Wavelet 43.70 46.40 23.00 21.7 47% 53%
AVG 25% 26%
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Table 4.5: Comparison of clock skew (3-stage)

3-stage
Bench BIPr BIPf M1r M1f M2r M2f M3r M3f M4r M4f M1r-

red
M1f-
red

M2r-
red

M2f-
red

M3r-
red

M3f-
red

M4r-
red

M4f-
red

chem 41.90 37.70 32.20 33.00 13.90 15.70 27.60 28.00 40.7 56.1 23% 12% 67% 58% 34% 26% 3% -49%
honda 33.20 119.80 15.00 15.80 17.60 19.50 20.90 19.40 18.2 19.3 55% 87% 47% 84% 37% 84% 45% 84%
dir 28.80 22.10 19.70 19.90 21.90 22.10 16.40 17.30 35.9 22.9 32% 10% 24% 0% 43% 22% -25% -4%
feig dct 42.60 40.20 55.00 52.70 72.60 89.60 40.80 34.00 52.4 51 -29% -31% -70% -123% 4% 15% -23% -27%
lee 14.40 14.30 14.40 14.30 9.70 10.40 12.50 12.40 9.6 10.7 0% 0% 33% 27% 13% 13% 33% 25%
mcm 36.00 36.20 13.90 14.10 15.80 16.10 25.90 27.50 15.2 15.6 61% 61% 56% 56% 28% 24% 58% 57%
u5ml 33.70 30.60 41.40 41.30 44.50 40.40 31.20 32.50 38.8 33.1 -23% -35% -32% -32% 7% -6% -15% -8%
wang 41.60 42.70 14.20 14.50 15.10 15.90 32.50 33.00 21 21 66% 66% 64% 63% 22% 23% 50% 51%
pr 65.90 65.90 17.10 17.00 13.40 14.10 13.80 14.80 17.6 18.4 74% 74% 80% 79% 79% 78% 73% 72%
arai 41.00 41.00 13.20 12.70 23.40 19.30 19.20 19.10 13.7 11.3 68% 69% 43% 53% 53% 53% 67% 72%
chendct 39.20 33.40 40.00 41.10 27.30 28.00 34.70 30.80 38.5 40.9 -2% -23% 30% 16% 11% 8% 2% -22%
chenidct 89.20 91.60 31.60 30.80 46.90 46.70 66.70 67.40 14.5 17.1 65% 66% 47% 49% 25% 26% 84% 81%
fft 56.60 60.10 56.60 60.10 44.10 44.20 73.40 77.20 30.9 31.4 0% 0% 22% 26% -30% -28% 45% 48%
fir11 51.80 52.40 17.00 16.60 15.60 15.20 7.40 9.20 44.6 44.7 67% 68% 70% 71% 86% 82% 14% 15%
cftmdl 29.70 30.50 29.70 30.50 35.90 35.70 22.80 23.60 40.1 42.3 0% 0% -21% -17% 23% 23% -35% -39%
KALMAN 28.10 28.20 28.10 28.20 15.10 10.90 13.30 13.30 10.7 9.6 0% 0% 46% 61% 53% 53% 62% 66%
LowPass 13.00 13.70 10.50 12.00 10.30 10.50 13.20 14.30 10.7 10.9 19% 12% 21% 23% -2% -4% 18% 20%
matmul 51.30 36.20 51.30 36.20 33.20 32.10 35.60 32.90 37 43 25% -8% 35% 11% 31% 9% 28% -19%
idct 57.60 60.40 38.40 39.00 46.80 46.80 45.90 49.10 18 18.1 33% 35% 19% 23% 20% 19% 69% 70%
jacob 54.90 56.00 26.50 27.10 39.30 40.20 40.70 43.70 12.6 14.1 52% 52% 28% 28% 26% 22% 77% 75%
Wavelet 58.50 62.50 58.50 62.50 38.20 41.40 46.80 47.20 19.2 20.4 0% 0% 35% 34% 20% 24% 67% 67%
AVG 28% 25% 29% 27% 28% 27% 33% 30%
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Table 4.6: Comparison of clock skew (4-stage)

4-stage
Bench BIPr BIPf M1r M1f M2r M2f M3r M3f M4r M4f M1r-

red
M1f-
red

M2r-
red

M2f-
red

M3r-
red

M3f-
red

M4r-
red

M4f-
red

chem 73.30 66.90 28.30 28.20 26.70 26.00 46.40 40.20 37.1 34 61% 58% 64% 61% 37% 40% 49% 49%
honda 33.60 34.60 33.60 34.60 44.30 44.80 15.90 18.10 30.1 30.6 0% 0% -32% -29% 53% 48% 10% 12%
dir 33.80 36.00 23.30 25.40 30.30 30.50 24.70 25.10 21.7 22.4 31% 29% 10% 15% 27% 30% 36% 38%
feig dct 36.40 33.80 36.40 33.80 31.80 42.20 35.20 33.00 46.9 38.2 0% 0% 13% -25% 3% 2% -29% -13%
lee 16.20 15.60 16.20 15.60 12.10 11.70 16.20 15.60 9.6 10.3 0% 0% 25% 25% 0% 0% 41% 34%
mcm 29.20 30.40 29.20 30.40 14.10 15.50 15.10 14.50 24.7 26.1 0% 0% 52% 49% 48% 52% 15% 14%
u5ml 31.10 29.90 31.10 29.90 45.50 40.30 31.10 29.90 42.1 42.2 0% 0% -46% -35% 0% 0% -35% -41%
wang 44.10 44.60 44.10 44.60 35.90 37.80 48.60 48.70 15.9 17.1 0% 0% 19% 15% -10% -9% 64% 62%
pr 36.00 45.80 40.30 40.70 22.80 24.50 27.40 24.40 25.6 27.8 -12% 11% 37% 47% 24% 47% 29% 39%
arai 12.70 12.70 12.70 12.70 16.50 17.90 12.70 12.70 15.5 13.4 0% 0% -30% -41% 0% 0% -22% -6%
chendct 77.90 79.80 77.90 79.80 29.10 30.00 52.70 53.60 21.8 23.4 0% 0% 63% 62% 32% 33% 72% 71%
chenidct 52.60 56.60 52.60 56.60 18.40 20.00 32.70 33.60 34.1 36.2 0% 0% 65% 65% 38% 41% 35% 36%
fft 36.80 28.50 36.80 28.50 20.60 21.80 31.80 34.80 35.6 35.7 0% 0% 44% 24% 14% -22% 3% -25%
fir11 15.00 13.10 15.00 13.10 14.60 14.60 15.00 13.10 7.3 6.9 0% 0% 3% -11% 0% 0% 51% 47%
cftmdl 34.50 28.80 34.50 28.80 31.90 30.50 25.70 28.80 50 49.9 0% 0% 8% -6% 26% 0% -45% -73%
KALMAN 30.40 30.50 30.40 30.50 25.80 25.80 34.60 34.70 12.9 12.2 0% 0% 15% 15% -14% -14% 58% 60%
LowPass 28.10 28.80 28.10 28.80 11.60 12.60 17.10 18.10 22.9 23.3 0% 0% 59% 56% 39% 37% 19% 19%
matmul 95.80 84.80 95.80 84.80 32.70 29.70 42.90 40.10 55.6 45.5 0% 0% 66% 65% 55% 53% 42% 46%
idct 64.50 65.70 45.50 45.50 40.70 41.10 19.70 20.90 46.6 49.4 29% 31% 37% 37% 69% 68% 28% 25%
jacob 58.60 58.90 30.90 31.30 27.10 28.70 58.80 58.50 46.1 46.2 47% 47% 54% 51% 0% 1% 21% 22%
Wavelet 74.00 63.60 74.00 63.60 59.60 64.20 64.70 65.70 34.5 30 0% 0% 19% -1% 13% -3% 53% 53%
AVG 7% 8% 27% 19% 22% 19% 24% 22%
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Overhead of Interconnect and Power Consumption

Since we use FUs to store variables, there are possibility to increase interconnect

by redirecting variables to the pipelined FUs. In addition, variables stored in the internal

registers of pipelined FUs propagate down to the next stage of pipeline registers in the FUS.

Thus, it increases the power consumption to store the variables. However, we also limit the

increase of interconnect by incorporating multiplexer inputs into cost function. Thus, we

expect that the overhead of interconnect and power consumption is handled within small

increase. The experimental results confirm the argument.

First of all, we examine how much interconnect overhead is incurred by using

pipelined FUs as variable storages. We compare our algorithm with the bipartite matching

register binding algorithm in terms of total wirelength, estimated based on the layouts

from SOC EncounterTM. Table 4.7, 4.8 and 4.9 shows the results. We measure the total

wirelength for 2-, 3- and 4-stage pipelined multipliers. Moreover, for the case using 3-

and 4-stage pipelined multipliers, we also examine four different storing methods. The

unit of wirelength is micro-meter. The Table 4.7 shows the total wirelength when 2-stage

pipelined multiplier is used in a given DFG. The second and third columns list the total

wirelength of circuits obtained using bipartite matching register binding algorithm and our

algorithm, respectively. Our scheme is comparable in comparison to the bipartite matching

algorithm. It reduces total wirelength slightly, by 4% on average. The Table 4.8 presents

total wirelength comparison among bipartite matching algorithm and our algorithm with

four storing methods when 3-stage pipelined multipliers are used. The columns from second

to fifth are total wirelength for each method. As indicated in the Table 4.8, our algorithm

increases the total wirelength by 0%, 10%, 1% and 2% on average for four storing methods.

The increase is negligible except for the M2. Since M2 stores the most variables, it also

increases the interconnect complexity the most. However, when 4-stage pipelined multiplier

is used, the increase of total wirelength is more than 3-stage one. The increase is 0%,

9%, 3% and 10% for each storing method. The reason that 4-stage multiplier worsen
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the interconnect is that it has more FU lifetimes than 3-stage one. In other words, since

it can accommodate more variables in it, more FU outputs generating the variables are

connected to the 4-stage pipelined multipliers. However, note that the increase of Method

1 is smaller than 3-stage case, sinc it reduce less less number of registers, which results in

less interconnect complexity.

Our algorithm increases the number of multiplexer inputs slightly. As shown in

Table ??, the average increase of multiplexer input count is 3% for 2-stage multiplier in

comparison to the bipartite matching register binding algorithm. When 3-stage multiplier

is used, the multiplexer inputs increase by 1%, 6%, 1% and 6% on average for Method 1, 2,

3 and 4, respectively. In case of 4-stage multiplier, the average increase of multiplexer is 1%,

8%, -1% and 7%, respectively. In case of Method 2 and 4, the increase is more than Method

1 and 3. The reason is that Method 2 and 4 store variables via register input. If a FU or a

register is connected to multiple internal registers of a pipelined FU, the multiplexer input

count is the number of the internal registers. However, if it is connected to only input ports

of the pipelined FU, the multiplexer input count is just one.
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Table 4.7: Comparison of total wirelength (2-stage)

2-stage
Benchmarks BIP Ours inc

chem 6.93×105 7.18×105 4%
honda 2.98×105 2.28×105 -23%

dir 3.53×105 3.37×105 -4%
feig dct 1.92×106 1.87×106 -3%

lee 1.59×105 1.44×105 -10%
mcm 3.20×105 3.42×105 7%
u5ml 1.08×106 1.09×106 1%
wang 2.76×105 2.48×105 -10%

pr 2.28×105 2.28×105 0%
arai 1.32×105 9.41×104 -29%

chendct 3.27×105 3.16×105 -4%
chenidct 3.37×105 3.24×105 -4%

fft 4.59×105 3.24×105 -29%
fir11 5.88×104 4.40×104 -25%

cftmdl 4.48×105 4.24×105 -5%
KALMAN 5.46×104 6.12×104 12%
LowPass 1.29×105 1.53×105 18%
matmul 7.55×105 7.44×105 -1%

idct 3.14×105 3.62×105 15%
jacob 3.57×105 3.67×105 3%

Wavelet 4.45×105 4.27×105 -4%
AVG -4%
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Table 4.8: Comparison of total wirelength (3-stage)

3-stage
Benchmarks BIP M1 M2 M3 M4 M1-inc M2-inc M3-inc M4-inc

chem 5.99×105 6.55×105 8.69×105 5.99×105 7.04×105 9% 45% 0% 17%
honda 2.49×105 2.29×105 2.93×105 2.50×105 2.40×105 -8% 18% 0% -3%

dir 3.87×105 3.60×105 4.00×105 3.74×105 3.77×105 -7% 3% -3% -3%
feig dct 2.00×106 1.86×106 2.16×106 1.77×106 1.76×106 -7% 8% -12% -12%

lee 1.96×105 1.96×105 1.99×105 2.01×105 1.99×105 0% 2% 3% 2%
mcm 3.53×105 3.53×105 4.30×105 3.71×105 4.04×105 0% 22% 5% 14%
u5ml 1.12×106 1.12×106 1.35×106 1.16×106 1.16×106 1% 21% 4% 4%
wang 3.01×105 2.83×105 3.09×105 3.07×105 2.96×105 -6% 3% 2% -2%

pr 2.63×105 2.42×105 2.85×105 2.75×105 2.59×105 -8% 8% 4% -2%
arai 9.12×104 8.95×104 1.05×105 9.06×104 9.46×104 -2% 15% -1% 4%

chendct 3.08×105 3.53×105 3.19×105 2.88×105 3.18×105 15% 4% -6% 4%
chenidct 3.65×105 3.65×105 3.88×105 3.94×105 3.61×105 0% 6% 8% -1%

fft 4.48×105 4.48×105 4.38×105 4.47×105 4.61×105 0% -2% 0% 3%
fir11 6.31×104 6.08×104 6.76×104 6.82×104 6.42×104 -4% 7% 8% 2%

cftmdl 4.99×105 4.99×105 5.18×105 4.75×105 4.79×105 0% 4% -5% -4%
KALMAN 6.78×104 6.78×104 6.17×104 5.36×104 6.08×104 0% -9% -21% -10%
LowPass 1.63×105 1.56×105 1.95×105 1.83×105 1.85×105 -4% 20% 12% 14%
matmul 7.36×105 7.36×105 7.80×105 8.45×105 7.96×105 0% 6% 15% 8%

idct 3.03×105 3.30×105 3.74×105 3.07×105 3.22×105 9% 24% 1% 6%
jacob 3.83×105 3.95×105 4.56×105 3.96×105 4.14×105 3% 19% 3% 8%

Wavelet 4.22×105 4.22×105 3.97×105 4.47×105 4.56×105 0% -6% 6% 8%
AVG 0% 10% 1% 3%

Taemin Kim
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Table 4.9: Comparison of total wirelength (4-stage)

4-stage
Benchmarks BIP M1 M2 M3 M4 M1-inc M2-inc M3-inc M4-inc

chem 6.22×105 6.73×105 9.45×105 6.53×105 6.96×105 8% 52% 5% 12%
honda 2.85×105 2.85×105 3.08×105 2.58×105 2.65×105 0% 8% -9% -7%

dir 3.57×105 3.29×105 3.91×105 3.51×105 3.42×105 -8% 10% -2% -4%
feig dct 2.02×106 2.02×106 2.02×106 2.04×106 2.04×106 0% 0% 1% 1%

lee 1.70×105 1.70×105 1.64×105 1.70×105 1.72×105 0% -4% 0% 1%
mcm 3.67×105 3.67×105 4.21×105 3.87×105 3.93×105 0% 15% 5% 7%
u5ml 9.93×105 9.93×105 1.32×106 9.93×105 1.05×106 0% 33% 0% 6%
wang 3.05×105 3.05×105 3.21×105 2.95×105 2.89×105 0% 5% -3% -5%

pr 2.35×105 2.44×105 2.65×105 2.66×105 2.57×105 4% 13% 13% 9%
arai 1.32×105 1.32×105 1.19×105 1.32×105 1.29×105 0% -10% 0% -2%

chendct 2.87×105 2.87×105 3.21×105 2.90×105 2.95×105 0% 12% 1% 3%
chenidct 3.47×105 3.47×105 4.23×105 3.60×105 3.63×105 0% 22% 4% 5%

fft 4.87×105 4.87×105 4.36×105 4.60×105 4.81×105 0% -11% -6% -1%
fir11 5.87×104 5.87×104 6.28×104 5.87×104 5.36×104 0% 7% 0% -9%

cftmdl 4.82×105 4.82×105 5.09×105 5.14×105 5.42×105 0% 5% 6% 12%
KALMAN 5.20×104 5.20×104 5.95×104 5.76×104 5.43×104 0% 14% 11% 4%
LowPass 1.41×105 1.41×105 1.82×105 1.61×105 1.58×105 0% 29% 14% 12%
matmul 7.27×105 7.27×105 7.30×105 8.63×105 7.75×105 0% 0% 19% 7%

idct 3.24×105 3.21×105 3.69×105 3.43×105 3.57×105 -1% 14% 6% 10%
jacob 3.97×105 3.89×105 4.67×105 4.16×105 3.68×105 -2% 17% 5% -7%

Wavelet 4.49×105 4.49×105 4.03×105 4.24×105 4.62×105 0% -10% -6% 3%
AVG 0% 11% 3% 3%

Taemin Kim
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Table 4.10: Comparison of total multiplexer inputs (2-stage)

2-stage
Benchmarks BIP Ours inc

chem 574 621 8%
dir 228 234 3%

feig dct 1097 1107 1%
lee 101 100 -1%

mcm 241 263 9%
u5ml 817 842 3%
wang 127 131 3%

pr 117 124 6%
arai 91 91 0%

chendct 228 243 7%
chenidct 275 278 1%

KALMAN 34 33 -3%
fft 169 153 -9%

jacob 229 234 2%
LowPass 170 195 15%
cftmdl 239 229 -4%
fir11 37 37 0%

matmul 361 390 8%
Wavelet 175 187 7%

idct 247 247 0%
AVG 3%

The usage of idle FUs is likely to increase the circuit power dissipation. Particu-

larly, in case of FUs pipelined more than two stages, the power consumption problem is more

severe than a two-stage pipelined FU, since the value stored in it switches every part of the

FU by propagating down to the stage where it is used. On the other hand, the reduction of

registers lowers the circuit power. To assess the overall power impact, we compare the total

power of circuits generated by the bipartite matching register binding algorithm and our

algorithm. Table 3.5 shows the results, derived using Design CompilerTM in conjunction

with signal activities based on gate level simulations. Like other experimental results, the

table is divided into three sub-tables to show the power consumption for 2-, 3- and 4-stage

pipelined multipliers. In case of 2-stage multiplier, it is shown that the power degradation

due to the usage of FUs is mostly offset by the power reduction due to a small register
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Table 4.11: Comparison of total multiplexer inputs (3-stage)

3-stage
Benchmarks BIP M1 M2 M3 M4 M1-inc M2-inc M3-inc M4-inc

chem 556 573 611 560 587 3% 10% 1% 6%
dir 234 239 256 237 242 2% 9% 1% 3%

feig dct 1050 1091 1060 1049 1061 4% 1% 0% 1%
lee 107 107 110 110 113 0% 3% 3% 6%

mcm 241 241 288 246 272 0% 20% 2% 13%
u5ml 825 835 923 828 851 1% 12% 0% 3%
wang 133 133 132 134 145 0% -1% 1% 9%

pr 120 118 129 118 125 -2% 8% -2% 4%
arai 83 83 83 80 85 0% 0% -4% 2%

chendct 195 207 208 204 205 6% 7% 5% 5%
chenidct 260 264 271 267 280 2% 4% 3% 8%

KALMAN 33 33 37 34 33 0% 12% 3% 0%
fft 169 169 170 153 169 0% 1% -9% 0%

jacob 225 225 261 226 233 0% 16% 0% 4%
LowPass 159 162 176 171 186 2% 11% 8% 17%
cftmdl 231 233 240 227 234 1% 4% -2% 1%
fir11 44 45 46 45 46 2% 5% 2% 5%

matmul 361 361 348 356 433 0% -4% -1% 20%
Wavelet 175 175 169 172 207 0% -3% -2% 18%

idct 244 245 268 248 253 0% 10% 2% 4%
AVG 1% 6% 1% 6%
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Table 4.12: Comparison of total multiplexer inputs (4-stage)

4-stage
Benchmarks BIP M1 M2 M3 M4 M1-red M2-red M3-red M4-red

chem 545 552 741 546 594 1% 36% 0% 9%
dir 228 230 247 230 229 1% 8% 1% 0%

feig dct 1009 1049 1063 1009 1047 4% 5% 0% 4%
lee 101 101 103 101 108 0% 2% 0% 7%

mcm 241 241 288 246 272 0% 20% 2% 13%
u5ml 794 794 910 794 820 0% 15% 0% 3%
wang 131 131 128 134 144 0% -2% 2% 10%

pr 114 115 117 114 122 1% 3% 0% 7%
arai 84 84 86 84 86 0% 2% 0% 2%

chendct 172 176 190 175 187 2% 10% 2% 9%
chenidct 247 256 261 245 249 4% 6% -1% 1%

KALMAN 31 32 35 32 34 3% 13% 3% 10%
fft 169 169 173 153 169 0% 2% -9% 0%

jacob 226 226 270 227 229 0% 19% 0% 1%
LowPass 150 150 167 165 174 0% 11% 10% 16%
cftmdl 214 212 218 204 226 -1% 2% -5% 6%
fir11 43 43 46 43 45 0% 7% 0% 5%

matmul 361 361 345 338 425 0% -4% -6% 18%
Wavelet 175 175 167 151 207 0% -5% -14% 18%

idct 239 235 261 236 247 -2% 9% -1% 3%
AVG 1% 8% -1% 7%
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Table 4.13: Comparison of total power consumption (2-stage)

2-stage
Benchmarks BIP Ours inc

chem 6.00 6.13 2%
honda 2.51 1.79 -29%

dir 2.16 2.25 4%
feig dct 10.87 10.62 -2%

lee 1.33 1.11 -17%
mcm 2.51 2.84 13%
u5ml 6.29 6.34 1%
wang 1.25 1.34 7%

pr 1.80 1.80 0%
arai 0.84 0.71 -16%

chendct 1.80 1.84 2%
chenidct 1.57 1.70 8%

fft 2.91 2.33 -20%
fir11 0.51 0.42 -18%

cftmdl 2.68 3.10 15%
KALMAN 0.55 0.46 -16%
LowPass 1.28 1.18 -8%
matmul 9.29 6.35 -32%

idct 2.28 2.56 12%
jacob 1.73 1.83 6%

Wavelet 3.10 3.20 3%
AVG -4%

count. On the average, the overall circuit power is even decreased by 4%. However, in

case of 3- and 4-stage multiplier, the effect is a little bit different. When Method 1 is used,

there is no overhead of power consumption shown in the seventh column of the second and

third sub-tables. However, when Method 2, 3 and 4 are used, power consumption cannot

be negligible. Thus, when deeply pipelined FUs are used in conjunction with aggressive

register saving techniques such as Method 2, 3 and 4, the saving is achieved at the expense

of power consumption overhead.
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Table 4.14: Comparison of total power consumption (3-stage)

3-stage
Benchmarks BIP M1 M2 M3 M4 M1-inc M2-inc M3-inc M4-inc

chem 5.90 5.82 7.31 5.68 5.96 1% -24% 4% -1%
honda 1.65 1.51 1.82 1.64 1.82 8% -10% 1% -10%

dir 2.58 2.37 2.43 2.37 2.56 8% 6% 8% 1%
feig dct 11.01 12.40 11.04 10.18 9.98 -13% 0% 8% 9%

lee 1.16 1.16 0.95 1.21 0.97 0% 18% -4% 17%
mcm 2.48 2.48 3.65 2.69 2.63 0% -47% -8% -6%
u5ml 6.32 6.41 7.42 6.20 6.44 -1% -17% 2% -2%
wang 1.20 1.11 1.41 1.22 1.33 8% -17% -2% -11%

pr 1.38 1.29 1.64 1.54 1.30 6% -19% -12% 6%
arai 0.64 0.64 0.73 0.77 0.65 0% -14% -19% -1%

chendct 1.63 1.72 1.52 1.39 1.53 -6% 7% 14% 6%
chenidct 1.75 1.75 1.95 2.21 1.50 0% -11% -26% 14%

fft 1.91 1.91 2.60 3.73 1.96 0% -36% -95% -2%
fir11 0.56 0.62 0.61 0.56 0.57 -10% -9% 1% -1%

cftmdl 2.28 2.28 3.98 2.62 3.07 0% -75% -15% -34%
KALMAN 0.43 0.43 0.55 0.43 0.42 0% -28% 1% 4%
LowPass 1.35 1.39 2.01 1.38 1.59 -2% -48% -2% -17%
matmul 6.88 6.88 8.52 8.57 8.59 0% -24% -25% -25%

idct 2.14 2.12 2.59 2.09 2.09 1% -21% 2% 2%
jacob 1.67 1.70 1.99 2.04 1.91 -2% -19% -22% -14%

Wavelet 3.36 3.36 4.50 3.81 3.81 0% -34% -13% -13%
AVG 0% 20% 10% 4%
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Table 4.15: Comparison of total power consumption (4-stage)

4-stage
Benchmarks BIP M1 M2 M3 M4 M1-inc M2-inc M3-inc M4-inc

chem 5.55 5.73 7.75 6.03 6.24 -3% 40% -9% -13%
honda 1.82 1.82 2.07 1.68 1.72 0% -14% 8% 6%

dir 2.21 2.23 2.46 2.21 2.18 -1% -11% 0% 1%
feig dct 9.15 9.15 10.07 9.21 9.05 0% -10% -1% 1%

lee 0.90 0.90 0.94 0.90 0.93 0% -5% 0% -4%
mcm 2.31 2.31 2.77 2.57 2.41 0% -20% -11% -4%
u5ml 5.98 5.98 7.29 5.98 6.26 0% -22% 0% -5%
wang 1.14 1.14 1.22 1.08 1.19 0% -8% 5% -5%

pr 1.16 1.18 1.30 1.30 1.29 -2% -12% -12% -11%
arai 0.80 0.80 0.68 0.80 0.77 0% 15% 0% 5%

chendct 1.48 1.48 1.47 1.42 1.31 0% 1% 4% 12%
chenidct 1.52 1.52 1.76 1.63 1.53 0% -15% -7% -1%

fft 1.89 1.89 2.69 3.47 2.31 0% -42% -83% -22%
fir11 0.52 0.52 0.57 0.52 0.52 0% -9% 0% 0%

cftmdl 2.84 2.84 2.78 4.23 3.56 0% 2% -49% -25%
KALMAN 0.41 0.41 0.56 0.52 0.47 0% -34% -26% -13%
LowPass 1.22 1.22 1.65 1.65 1.58 0% -35% -35% -29%
matmul 5.51 5.51 5.75 7.91 7.17 0% -4% -44% -30%

idct 2.15 2.14 2.43 2.26 2.31 0% -13% -5% -8%
jacob 1.67 1.69 2.16 1.71 1.70 -1% -29% -2% -2%

Wavelet 2.67 2.67 2.74 3.93 2.90 0% -2% -47% -8%
AVG 0% 15% 15% 7%
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4.6 Conclusion

In this chapter, we present a new register binding algorithm for register reduction.

Our scheme uses the internal registers of pipelined FUs when the FUs are idle, reducing the

number of dedicated registers. In addition, our scheme takes into account the interconnect

topology among FUs and dedicated registers and limit the increase of the global interconnect

length. We proposed four storing methods based on whether variables are stored and used

via FU input/output ports or input/output of internal registers. Our experimental results

have shown that our algorithm reduces the number of registers by the amount ranging

from 2% to 44% on average, depending on which storing methods are used. In addition,

the experimental results show that our scheme is also effective to reduce clock skew. The

average reduction of rising (falling) clock skew is ranging from 7% (8%) to 33% (30%),

respectively. We also have shown the overhead our scheme causes. The average increase

of wirelength and power consumption is ranging from -4% to 10% and from -4% to 20%,

respectively, depending on the storing methods.
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Chapter 5

Conclusion

Optimization techniques during high level synthesis procedure are often preferred

since design decisions at early stages of a design flow are believed to have a large impact on

design quality. In this dissertation, we present three high-level synthesis schemes to improve

the power, speed and reliability of deep submicron VLSI systems.

In this dissertation, we present two global interconnect optimization algorithms

and a register reduction algorithm during high level synthesis. Specifically, we first pro-

pose simultaneous functional unit and register binding algorithm for global interconnect

optimization. Our main goal is to maximize physical interconnect sharing among data

transfers. We observed that flow dependencies and common inputs can be used to measure

the interconnect sharing. Based on the observation, we formulate the functional unit and

register binding problem as the longest path problem in the compatibility graph. Our ex-

perimental results have shown that our algorithm reduces the number of multiplexer inputs

by more than 20% on average in comparison to the previously proposed binding algorithms

for interconnect optimization. Moreover, our scheme achieves a total wirelength reduction

by 17.29% on average at the cost of slight FU and register increases.

We then propose interconnect assignment algorithm to minimize total wirelength

of global interconnects. In general, data transfer is realized by using interconnects, i.e.,
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metal wires. Other forms of signal propagation paths can also be used, which results in the

reduction of total interconnect wirelength. We observed that not all functional units are in

operation for every clock cycle and they have circuit path from their input ports to output

ports. Thus, if a functional unit is idle in a certain clock cycle, it can be used for data transfer

during the cycle. The challenges are how to find idle functional units that reduce global

interconnects without inducing power and timing overhead. We formulate the interconnect

assignment problem as maximum-flow-minimum-cost network flow problem. In addition,

we propose a modified shortest path algorithm to solve the problem. Experimental results

show that our algorithm reduces the total wirelength of global interconnects by 8.5% and

the power consumption by 4.8% without introducing any timing violations.

Finally, we present a register binding algorithm for register reduction. Our scheme

uses internal registers in pipelined functional units. Since not all functional units operate

in every clock cycle, the internal registers of functional units can be used for storage of

variables, when the functional units are idle. We discuss four storing methods using idle

pipelined functional units and analyze the impact on register cost and overhead of each

method. The register binding problem is formulated as the minimum-cost bipartite match-

ing problem. We match the lifetimes of variables to time durations during which idle func-

tional units can maintain values of variables. We limit the increase of multiplexer inputs

for global interconnect optimization. Our experimental results have shown that our algo-

rithm reduces the number of registers by the amount ranging from 2% to 44% on average,

depending on which storing methods are used.
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