
ABSTRACT

SAHA, PARAMITA. Robust Inference with Quantile Regression in Stochastic Volatility
Models with application to Value at Risk calculation. (Under the direction of Professor
Peter Bloomfield).

Stochastic Volatility (SV) models play an integral role in modeling time varying

volatility, with widespread application in finance. Due to the absence of a closed form likeli-

hood function, estimation is a challenging problem. In the presence of outliers, and the high

kurtosis prevalent in financial data, robust estimation techniques are desirable. Also, in the

context of risk assessment when the underlying model is SV, computing the one step ahead

predictive return densities for Value at Risk (VaR) calculation entails a numerically indirect

procedure. The Quantile Regression (QR) estimation is an increasingly important tool for

analysis, which helps in fitting parsimonious models in lieu of full conditional distributions.

We propose two methods (i) Regression Quantile Method of Moments (RQMM) and (ii)

Regression Quantile - Kalman Filtering method (RQ-KF) based on the QR approach that

can be used to obtain robust SV model parameter estimates as well as VaR estimates. The

RQMM is a simulation based indirect inference procedure where auxiliary recursive quantile

models are used, with gradients of the RQ objective function providing the moment condi-

tions. This was motivated by the Efficient Method of Moments (EMM) approach used in

SV model estimation and the Conditional Autoregressive Value at Risk (CAViaR) method.

An optimal linear quantile model based on the underlying SV assumption is derived. This

is used along with other CAViaR specifications for the auxiliary models. The RQ-KF is a

computationally simplified procedure combining the QML and QR methodologies. Based

on a recursive model under the SV framework, quantile estimates are produced by the

Kalman filtering scheme and are further refined using the RQ objective function, yielding

robust estimates.

For illustration purposes, comparison of the RQMM method with EMM under

different data scenarios show that RQMM is stable under model misspecification, presence

of outliers and heavy-tailedness. Comparison of the RQ-KF method with the existing QML

method provide competitive results in terms of model estimation. Also, risk evaluation test

results show desirable statistical properties of the quantile estimates obtained from these

methods. Applications to real data and simulation studies on different parameter settings

of the SV model provide empirical support in favor of the quantile model specifications.



We also propose an algorithm, based on a Gram Charlier density approximation

for the conditional predictive volatility density given past returns, to compute the one

step ahead predictive return densities in the existing Nonlinear Filtering (NF) scheme.

This approach is used in likelihood and VaR computations. This algorithm provides an

alternative approximation in the reduction of the infinite-dimensional state vector and is

based on fewer computational steps compared to the existing methods. Results based on

the algorithm are comparable to existing methods.
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Chapter 1

Introduction

In mathematical finance and financial statistics, the Stochastic Volatility (SV)

model is used widely for modeling the time-varying volatility in financial markets. The

development of the model and methodology related to its usage and growth is driven by a

need for better pricing of options, efficient asset allocation and risk assessment. The scope

of study in this thesis is related to risk assessment by calculating Value at Risk (VaR) and

robust estimation using Quantile Regression (QR) techniques, when the underlying process

is SV.

1.1 Motivation

A crucial aspect of measuring VaR is the volatility of the data. Hence, selecting

a volatility model that fits the data appropriately, and its applicability, are important con-

siderations in achieving the goal of VaR computation. In existing VaR methodology, much

of the interest is concentrated towards the ARCH group of models introduced by Engle

(1982), due to its deterministic nature of volatility and easier applicability. Relatively, the

SV group of models are not as preferred, due to the volatility formulated as a stochastic

process. With the emergence of high frequency data, SV models have again taken cen-

terstage in econometric analysis, risk management and asset allocation. In pricing theory,

continuous SV models have always formed the core of research. Hence, SV models form an

attractive modeling tool with tremendous scope in multiple research arenas in finance.

An important feature of the SV models is that the volatility has its own stochastic

process. This results in difficulties in the direct calculation of the likelihood and VaR

estimation of SV models. In the 1990s, several computationally intensive methods were

developed to calculate the likelihood numerically and efficiently.



2

Computation based methods such as Bayesian Monte Carlo (Jacquier et al., 1994),

Simulated Maximum Likelihood (SML) (Danielsson, 1994) and Simulated Method of Mo-

ments (SMM) (Duffie and Singleton, 1993), (Gourieroux et al., 1993) methods produce

better results in terms of accuracy and efficiency than the less computationally inten-

sive tools such as Quasi Maximum Likelihood (QML) developed by Nelson (1988), Harvey

et al. (1993), Ruiz (1994), Method of Moments (MM) technique (Taylor, 1986), Generalized

Method of Moments (GMM) (Melino and Turnbull, 1990), (Andersen and Sørensen, 1996).

Monte Carlo evidence suggests that MM, GMM, QML techniques suffer from poor small

sample performance. Watanabe (1999)’s nonlinear filtering maximum likelihood (NFML)

method provides a balance in that it gives good results in small samples without being as

computationally demanding as a simulation based approach. Each of the aforementioned

methods have their own set of advantages and we were motivated to study some of these

methods (viz., QML, NFML, and EMM forming the basis for RQ-KF, NF scheme, RQMM

methods, respectively) in the context of VaR calculation.

Calculation of VaR entails the knowledge of one-step ahead predictive densities.

However, in the SV approach, the one step ahead densities cannot be obtained directly.

Watanabe (1999) uses the QML estimates as a starting point for his nonlinear filtering

(NF) method. The NF technique is an improvement over QML. Instead of using the first

two moments as in the standard Kalman approach in QML, it uses the conditional densities

directly in its filter to calculate the likelihood; hence, the conditional VaR’s can be obtained

subsequently. NF is based on a scheme that depends on a series of conditional integrals,

where the integrals are evaluated numerically using piecewise linear approximations to the

density function, motivated by Kitagawa (1987)’s work. One of the important considerations

here is the choice of the number and location of the nodes that would suffice for a good

approximation without compromising on computational demands. Appropriate nodes are

chosen according to an approach suggested by Tanizaki (1996). The method computes

the one-step ahead predictive densities as part of the algorithm. Hence, they can be used

for likelihood computation (denoted by nonlinear filtering maximum likelihood (NFML))

and also as a filtering process for VaRs. NF’s filtering method does not depend on the

state space representation of the model, hence various extensions of the SV models can

be easily tackled. Also, as long as known parametric forms of the volatility process and

their relationship with their returns can be modeled, NF scheme finds ready application.

Based on the aforementioned favorable attributes of the estimation method, it provides an
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excellent groundwork for VaR calculation.

The Conditional Autoregressive Value at Risk (CAViaR) model (Engle and Man-

ganelli, 2004) moves the focus of attention from the conditional distribution of returns

directly to the behavior of the quantiles. The evolution of quantile over time is specified

using an autoregressive quantile framework; hence the RQ objective criterion developed by

Koenker and Bassett (1978) can be adapted for estimation. The Quantile Regression (QR)

estimator is increasingly becoming an important tool for analysis, which helps in fitting

parsimonious models in lieu of full conditional distributions. Another important aspect is

that the method produces robust statistics and hence it finds its application in financial

data scenarios with fat tailed distributions, and data with outliers. In applications, a robust

inferential technique often proves to be beneficial in the case of misspecified models.

The motivation behind the methodologies proposed in this dissertation came from

the CAViaR approach proposed by Engle and Manganelli (2004), based on the regression

quantile framework introduced by Koenker and Bassett (1978). The CAViaR group of

models provide a general framework for estimation of conditional VaRs. Some of their

proposed models are derived from the popular autoregressive conditional heteroscedastic

models. In ARCH type models, conditional quantiles are directly linked to the standard

deviation of the distribution. Hence, an extension and application of their work in the SV

context provides a strong motivation. This technique is particularly interesting because the

likelihood computation in SV is circumvented which in itself involves an equally challenging

problem.

The primary focus of research earlier was to efficiently and accurately estimate

the SV parameters and volatility. However, consideration of heavy tailed distributions,

and misspecification in models form an important premise in present day research. High

kurtosis is endemic to financial data. We use this assumption heavily in our research.

Asai (2008) compares an Asymmetric Stochastic Volatility (ASV) model with t distribution

innovations with the multifactor SV (MFSV) model. Results using returns on the S&P

500 Composite and Tokyo stock price indexes and the Japan-US exchange rate indicate

that the ASV-t model provides a better fit than the MFSV model on the basis of Akaike

information criterion (AIC) and the Bayes information criterion (BIC). Several researchers,

including Liesenfeld and Jung (2000), Watanabe and Asai (2003), show using a heavy tailed

distribution for the error provide a better means in describing the high kurtosis in the data.

The primary focus of this dissertation is to provide robust statistics for the estimation of
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SV parameters and VaR calculation.

The efficient method of moments (EMM) technique (Bansal et al. (1993), Bansal

et al. (1995), Gallant and Tauchen (1996)) is a flexible tool used for estimation. EMM is a

culmination of the efficiency provided by the maximum likelihood (ML) approach coupled

with the flexibility and affordability of the GMM. EMM is used where the ML method

is infeasible or computationally intensive. Therefore, it finds its application directly in

the SV context. The method employs an auxiliary data model that approximates the

salient features of the true data generating process and has a readily computable likelihood

function, in a closed form. The score equations of the auxiliary model are used as the

moment equations to attain the efficiency of the ML asymptotically. The EMM as a method

has its origins linked to the Indirect Inference (II), and Simulated Method of Moments

(SMM) techniques.

The flexibility of the approach serves as the motivation behind our Regression

Quantile Method of Moments (RQMM) methodology. It provides a general framework so

that later developments can be incorporated easily. We use SV model as the benchmark

throughout. The results obtained from our methodologies can be extended to the other

situations like Asymmetric SV (ASV) models, Hermite Stochastic Volatility (HSV) models

accounting for leverage effects, heavy-tailedness etc.

This dissertation addresses both robust statistical estimation and VaR calculation

in a unified approach. Conditional quantiles or VaRs are related to the conditional dis-

tributions of the process. The Quantile Regression (QR) estimation is an important tool

for analysis in fitting parsimonious quantile models in lieu of full conditional distributions.

We propose two methods (i) Regression Quantile Method of Moments (RQMM) and (ii)

Regression Quantile - Kalman Filtering method (RQ-KF) based on the QR approach that

can be used for estimation of the SV model as well as for VaR calculation. The RQMM is a

simulation-based indirect inference procedure where recursive quantile models are used as

the auxiliary models, with the gradients of the RQ objective function (also known as the

check or tick function) serving as the basis for estimating equations. This was motivated

by the EMM approach used in SV model estimation and the CAViaR method proposed by

Engle and Manganelli (2004). The check criterion gradient serves as a replacement of the

score equations in EMM. The main concern is to develop robust statistics; therefore appli-

cation of the check function as a nonparametric, flexible criterion provides a solution. Since

GARCH is one of the preferred auxiliary models in EMM, the CAViaR models including
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the iGARCH are reasonable choices. Hence, when the optimum parameter estimates for

SV are attained, given that the auxiliary model approximates the true data model well,

the estimated conditional quantiles will closely approximate the conditional quantiles of the

SV, while also providing estimates for the SV model parameters. Details are provided in

Chapter 3.

As an extension of CAViaR models, optimal linear quantile models (SVLIN and

Asymmetric-SVLIN) based on the underlying SV assumption is derived. This is used along

with the other CAViaR specifications as auxiliary models. The RQ-KF is a computationally

simple procedure combining the good properties of QML and QR methodologies. The first

step requires obtaining initial estimates using QML. Using a recursive model motivated by

SV, quantile estimates are produced by the Kalman Filtering scheme based on the initial

parameter estimates. These quantiles are then plugged into the check function to yield

robust estimates. Details are provided in Chapter 4.

Financial data are known to exhibit heavy-tailedness characteristics. With sim-

ulation studies, these tools are shown to be stable in the presence of heavy-tailedness in

the data. Comparison of the RQMM method with the EMM under different data scenarios

show that RQMM is stable under local misspecification, and heavy-tailedness. Comparison

of the RQ-KF method with the existing QML method provide competitive results in terms

of model estimation. Also, risk evaluation test results show desirable statistical properties

of the quantile estimates obtained from these methods. Applications to real data and sim-

ulation studies on different parameter settings of the SV model provide empirical support

in favor of the quantile model specifications including the CAViaR, SVLIN and A-SVLIN.

Calculating the likelihood in SV model requires integration over an infinite dimen-

sional state vector. Using Hermite polynomial approximations, we find an alternative finite

dimensional approximation to the infinite dimensional state vector. We propose a Gram

Charlier density approximation for the conditional predictive volatility density given past

returns to compute the one step ahead predictive return densities in the existing Nonlinear

Filtering (NF) scheme proposed by Watanabe (1999), Fridman and Harris (1998). Our

method requires a reduced number of node points based on the coefficients of the Hermite

polynomial, when compared to the earlier propositions. With this approximation, the con-

ditional density calculated can be used in the likelihood function for SV parameters as part

of the estimation process, or to find the conditional quantile for estimated parameters as

part of the monitoring process. An algorithm based on a reduction to a finite-dimensional
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state vector for evaluating with this approach is provided. The proposed algorithm can

be used as a substitute for other numerical integration approximations based on choosing

appropriate node points (see Watanabe (1999), Fridman and Harris (1998)).

Most of the earlier work for SV model estimation was coupled with obtaining a

smoothed estimate of the volatility process by a nonlinear filter. In the Bayesian case of

Jacquier et al. (1994) the smoothed estimates are obtained as a by-product of the method.

In the non-Bayesian cases of MM and QML, standard approximate Kalman filtering schemes

are used. Also, a quantile forecast in practice, is a two-step approach: model used to forecast

volatility followed by a method of computing quantiles from volatility forecasts. Both our

methodologies are aimed at parameter estimation and computing quantiles directly.

1.2 Outline of thesis

In Chapter 2, we give a brief overview of VaR and the existing methods for VaR

calculation and evaluation. CAViaR model estimation by Regression quantiles is outlined

briefly. We propose two linear quantile specifications based on the underlying assumption

of SV. We compare the performance of these two models with the CAViaR models by using

a real data analysis based on six stocks, and simulation studies based on several parameter

settings of the SV model. The NF scheme is used as a benchmark to provide VaR estimates.

In Chapter 3, we provide a brief summary of EMM as our motivation. Next, we

propose the RQMM methodology, followed by a discussion on the asymptotic properties of

its estimates. We compare the performance of the RQMM with EMM under several heavy-

tailed distributional assumptions, and misspecification with a simulation study. Under

correct specification, the efficiency of RQMM estimates with EMM are also compared. It

is to be noted that the VaR estimates using this method are reflective of our findings in

Chapter 2. This is followed by a discussion.

In Chapter 4, we propose the RQ-KF method. We compare the performance of

the method with QML with the help of a simulation study followed by a discussion.

In Chapter 5, we develop an algorithm based on the GC representation of the

predicted conditional volatility density given the past returns. The incorporation of this

scheme to the existing NF scheme is discussed. The application of such a scheme with

respect to model estimation and VaR calculation is validated by a data exercise.

Chapter 6 summarizes the findings of the methods in Chapter 2–5 and discusses

interesting future topics.
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The remaining part of this chapter provides an overview of the volatility models.

1.3 Volatility models

1.3.1 SV models

The volatility of a financial asset is the standard deviation per unit time of the

returns of an asset. In financial markets, volatility is a predominant feature, hence it plays a

very important role in the determination of risk and valuation of options and derivatives. In

financial terminology, volatility is the standard deviation and is directly related to the risk

associated with holding financial securities, portfolio choice and investment decisions. The

link between finance and Brownian motion goes way back till Bachelier (1900) who proposed

a model for the French stock prices. A natural extension of a more reasonable model

was proposed by Osborne (1959) where the price followed an exponential (or geometric)

Brownian motion. The standard model that describes the behavior of the price process

P (t) is the solution of the stochastic differential equation (SDE) given by (1.1). Let us

denote by P (t) the continuous time process and let Pt denote its discrete analogue.

dP (t) = P (t)(µdt+ σdZ1(t)) (1.1)

where t is measured in units of one year, Z1(t) is a Brownian motion while the mean, µ

and volatility, σ, are constant parameters of the model. The time convention is chosen to

ensure that σ can be interpreted as an annualized volatility. This SDE has solution

P (t) = P (0) exp {σZ1(t) + (µ− 1

2
σ2)t}. (1.2)

The discrete time analogue of (1.1) based on a daily sequence of observations (Pt)t≥0 is

lnPt − lnPt−1 ≡ ∆(lnPt) = ν + σZt (1.3)

where (Zt) is a sequence of independent normal random variables with zero mean and

variance 1/250 (number of business days per year).

Stochastic volatility models are useful because they try to incorporate the empirical

observation that volatility appears to be stochastic. The SV candidate models have been

motivated by intuition, convenience and tractability and some of them have been listed

in equations (1.4), (1.5), (1.6), (1.7), and (1.8). Scott (1987), Wiggins (1987), Hull and

White (1987), Hull and White (1988), Stein and Stein (1991) and Heston (1993) have each
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proposed models of the form

dP (t)

P (t)
= σ(t)dZ1(t) + µdt (1.4)

where σ(t), the SV process is itself the solution of a stochastic differential equation. It is to

be noted that in each of the cases enumerated hereunder, Z2 is a Brownian motion perhaps

correlated with the Brownian motion Z1 which forms part of the specification of (1.4). Let

us denote the correlation by ρ such that E(dZ1(t)dZ2(t)) = ρdt. Further, we assume that ρ

is a constant with modulus less than one.

dσ(t) = σ(t)(α0dt+ γdZ2(t)) (1.5)

The first model given by (1.5) was introduced by Hull and White (1987) with ρ = 0 and

Wiggins (1987) considered the general case. Here the logarithm of the volatility is a drifting

Brownian motion. Scott (1987) considered the model (1.6) where the logarithm of the

volatility is an Ornstein-Uhlenbeck (OU) process, and the discrete time analogue of the OU

process is an AR(1) time series. The discrete version of this model is referred to as the SV

model in the thesis, and we focus our work on this model. These models (1.5) and (1.6)

have been formulated such that the volatility is positive.

d lnσ2(t) = α1(α0 − lnσ2(t))dt+ γdZ2(t) (1.6)

The model given below (1.7) was introduced by Scott (1987) and further investigated by

Stein and Stein (1991) keeping ρ = 0. In this case, the volatility process itself is the OU

process. However, the disadvantage of this model is that the volatility could easily become

negative but (1.4) remains well defined.

dσ(t) = α1(α0 − σ(t))dt+ γdZ2(t) (1.7)

In 1988, Hull and White (1988) proposed a model and Heston (1993) investigated further

with the general case of ρ 6= 0 of the form

dσ(t)2 = (α0 − α1σ(t)2)dt+ γσtdZ2(t) (1.8)

Two other models of note were proposed by Johnson and Shanno (1987) who modeled both

the price and the volatility processes as constant elasticity of variance (CEV) processes (1.9)

and another by Melino and Turnbull (1990) who assumed the price to follow a CEV process
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(1.9) and the logarithm of volatility to be an OU process. The CEV model proposed by

Cox and Ross (1976) is

dP (t)

P (t)
= σ(P )dZ1(t) + µdt (1.9)

where σ(P ) = σPα−1 and α ∈ (0, 1). In CEV models, the price and volatility are negatively

correlated.

Even though continuous time models provide the natural framework for analysis

of option pricing, discrete time models are required for the statistical analysis for the cal-

culation of VaR. The discrete time data models can be seen as a skeleton of the continuous

time process. In the literature, the discretized version of the SV models have been termed

as Stochastic variance models, autoregressive variance model etc., but in our discussion the

SV model would mean the discretized SV model (1.6) (henceforth). In SV models, the

logarithm of volatility is modeled as an AR(1) process with white noise. However, due to

its non-deterministic nature, evaluation of the exact likelihood is challenging, hence they do

not share the same popularity as the ARCH, GARCH models and have limited empirical

applications.

In this dissertation, we use the SV model as defined in (1.10) below. Let yt be the

stochastic process of returns

yt = σtǫt ǫt ∼ N(0, 1) (1.10)

where σ2
t is the conditional variance of the yt. In the simplest SV model framework, the log

of squared volatility is expressed as an AR model:

ln(σ2
t ) = α0 + α1 ln(σ2

t−1) + vt vt ∼ N(0, σ2
v)

where ǫt and vt are assumed to be independent of each other. The parameters of the model

are denoted by θ = {α0, α1, σ
2
v}.

Harvey and Shephard (1996) considered the leverage effect and introduced the

Asymmetric Stochastic Volatility (ASV) model where an addition Corr(ǫt, vt+1) = ρ was

made to the SV model.

The Hermite SV (HSV) models were proposed by Meddahi (2001). This is a

novel approach of modeling volatility in discrete and continuous time. The distinguishing

feature in this model is that the variance is a linear combination of the Hermite polynomial

functions of the state variable. Thus the dynamics of the volatility and the returns process
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are governed by the dynamics of the state variables. This state variable may be governed

by a Gaussian AR(1). It is important to note that the specification of the variance function

based on the linear combination of the Hermite polynomials of state variable is a flexible

model. Hence, the HSV model is formulated to keep the higher polynomial weights as free

parameters that need to be estimated.

yt = σtǫt ǫt ∼ N(0, 1)

σ2
t = a0 + a2(f

2
t − 1)

ft = βft−1 +
√

1 − β2vt vt ∼ N(0, 1)

where θ = (a0, a2, β) are the parameters. The HSV models successfully generate fat tails

for the variance and return processes.

For an overview of SV models, see Shephard (2005).

There are two main classes of discrete time models for stock prices with volatility.

The first class, stochastic volatility models, is a discrete time approximation to the contin-

uous time SV models that we outlined above. The second class constitutes the conditional

heteroscedastic models.

1.3.2 Conditional Heteroscedastic models

The autoregressive conditional heteroscedastic (ARCH) model introduced by Engle

(1982) is a pioneering work that led to the systematic development of a series of contributions

that falls into the category of conditional heteroscedastic models. The econometric literature

is replete with many models that are being used to quantify the uncertainty in future

instantaneous volatility models. An ARCH (m) model is

at = σtǫt

σ2
t = α0 + α1at−1

2 + . . .+ αmat−m
2

where at is the mean corrected, serially uncorrelated asset return and ǫt is a sequence of i.i.d.

random variables with mean 0 and variance 1. Another widely popular model that capture

the dynamics of the volatility process is the GARCH structure given in (1.11). Bollerslev

(1986)’s GARCH model is given by

σ2
t = α0 +

m
∑

i=1

αia
2
t−i +

s
∑

j=1

βjσ
2
t−j (1.11)
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where at = yt−µt is the mean corrected log return. Other extensions of the aforementioned

models were made viz. EGARCH (Nelson, 1991) to capture asymmetry, and CHARMA

(Tsay, 1987) which uses random coefficients to produce conditional heteroscedasticity. AR-

MACH(1,1) (Taylor, 1986) model is given by (1.12):

σt = α0 + α1|at−1| + β1σt−1 (1.12)

EGARCH(m,s) (Nelson, 1991) model, shown in (1.13) is as follows:

lnσ2
t = α0(1 − α1 − α2 − . . .− αm)+

+ α1 lnσ2
t−1 + α2 lnσ2

t−2 + . . .+ αm lnσ2
t−m+

+ g(ǫt−1) + β1g(ǫt−2) + . . .+ βs−1g(ǫt−s)

(1.13)

g(ǫt) = δǫt + γ[|ǫt| − E(|ǫt|)]

where δ and γ are real constants and the coefficients (δ+γ) and (δ−γ) show the asymmetry

in response to the positive and negative values.

The GARCH model is a widely used tool to model financial data. Its strength lies

in capturing volatility clustering of large price movements. The models described in this

section are popular approaches to describe the changing volatility. The variance, σ2
t , of the

current return is written in terms of a nonstochastic function of the past observations. One

of the many attractions of using such models is that the deterministic nature of the variance

process leads to an exact likelihood, making estimation and forecasting straightforward.

Kim et al. (1998) provide evidence of better in-sample-fit of the SV model relative

to GARCH-type models. Because of their well documented advantage in the literature,

there is a need to develop and study methods that produce conditional quantile estimates,

under the SV framework.

The next chapter gives a brief overview of the different methodologies used for

Value at Risk calculation. The CAViaR model is discussed next followed by a proposition for

SVLIN and ASVLIN models. These quantile specifications are derived from the relationship

to the linear predictor of the latent volatility process under SV. Analysis of these models

in the context of VaR performance are carried out with quantiles obtained from the NF

scheme as benchmark, when the underlying data generating process is SV.
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Chapter 2

VaR Estimation

With rising emphasis on risk management, portfolios are marked to market daily.

The fluctuations intrinsic in the data captured, for instance, by volatility, play a very

important role in VaR calculation. The two broad classes of modeling heteroscedasticity in

financial data viz. stochastic volatility models and the ARCH group of models, provide a

well established framework for VaR computation. Conditional heteroscedastic models such

as ARCH, GARCH, EGARCH and others are often used to model volatility clustering,

leverage effects etc. in the data. Stochastic volatility model is another widely used model

with a wide application in finance. We focus this study on SV models. Due to the latent

volatility modeled as a stochastic process, direct VaR computation is not straightforward.

The CAViaR group of models, proposed by Engle and Manganelli (2004), provides

an unique way to directly estimate the conditional quantiles of interest, ie. Value at risk.

This is achieved by minimizing the Regression Quantile (RQ) criterion, a robust loss function

for a group of models based on conditional quantiles regression motivated by characteristics

of financial data dynamics. Although the quantile specifications discussed under CAViaR,

are motivated by the ARCH group especially, however, they can be applied more generally.

Within this setup, we are interested in seeking a quantile model motivated by the SV model.

We call this the SVLIN model. We further seek a quantile specification under the ASV model

and name it the A-SVLIN model. With data generated from SV model, we evaluate the

performance of the CAViaR models with the SVLIN model. The RQ criterion, devoid of

any distributional assumptions, is used to gauge results in heavy-tailed error distribution

situations, suitable for financial data. As a benchmark, we obtain the VaRs’ directly from

the nonlinear filtering, Watanabe (1999)’s method. We compare their performance based on
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the Dynamic Quantile test (proposed by Engle and Manganelli (2004) and Chernozhukov

(1999) independently) and other tests from the extant literature.

Section 2.2 gives a brief account of the existing methods followed by a description

of the CAViaR method in the next section. Sections 2.4 and 2.5 discusses the RQ objective

criterion introduced by Koenker and Bassett (1978), and tests for VAR evaluation, respec-

tively. The SVLIN and A-SVLIN models are based on obtaining the best linear predictor

using the Kalman filter for SV models and ASV models respectively, discussed in Section

2.6. The VaR computed from Watanabe (1999)’s method as benchmark is described in the

Section 2.7. Results from the empirical study based on both application to stock data and a

simulation study are presented in Section 2.8. The interpretation and results are discussed

in Section 2.9.

2.1 Value at Risk

Value at Risk (VaR) is used as a standard measure for evaluating risk in finan-

cial institutions and organizations. It was introduced after the financial disasters of the

1990’s. Although it started out as a tool to measure and monitor market risk, its usage

has increased tremendously in the past few years to several other types of risk, eg, credit

risk, liquidity risk, operational risk and subsequently to an integrated enterprise-wide risk.

With globalization of financial markets leading to multiple sources of risk, pressure from

regulators, and technological advances, its generalizability and implicit summarization of

the risk scenario have led to its indispensable application to firm-wide risk management.

Also, the boundaries between the abovementioned risks are becoming blurred. Hence, it

provides an aggregate viewpoint for measuring a portfolio’s risk. Its use is not only confined

to derivatives but to all financial instruments. It provides an easy-to-use benchmark mea-

sure of risk, adopted by regulators (Basel committee on Banking supervision, U.S. Federal

reserve, etc.), institutions with an exposure to financial risk, risk managers alike.

In recent years there has been an ever increasing demand to measure risk, and

effective methods that can evaluate such critical situations are limited. The calculation of

VaR has to be intrinsically related to the real world data scenarios. Dynamic models that

closely replicate characteristics of financial data such as heavy tailedness, volatility cluster-

ing, and skewness have become relevant. In order to capture the time varying volatility, SV

models are often used, in which the conditional variance is specified to follow a latent sto-

chastic process. These models are mainly used in option pricing literature where stochastic
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processes define the volatility equation. Their discrete counterparts are used to develop

statistical methodologies for VaR calculation. Since VaR (or, quantiles) are directly related

to the volatility process, they are tightly linked, and share similar characteristics. Due to

the random component in the SV volatility equation, likelihood based model estimation,

in itself poses a challenging problem, and so does VaR computation. They nevertheless

provide a very attractive alternative to time varying conditional variance modeling, and it

is of interest to study methods that compute VaR under this modeling framework.

Engle and Manganelli (2004) proposed autoregressive models for the VaRs, es-

timating the parameters by minimizing the Regression Quantile criterion (Koenker and

Bassett, 1978). Four models were proposed which can be seen as extensions to the widely

used conditional heteroscedasticity (ARCH) models (Bollerslev, 1986).

A natural extension to their work is to implement a similar objective of finding

conditional VaR calculation methods in a regression setup, under the SV model framework.

This proposition is especially attractive in the context of SV since this technique circumvents

the likelihood calculation and directly yields VaR estimates. Also, their performance in

the context of heavy tailed distributions should also be considered, since financial data

exhibits high kurtosis. The empirical study in Section 2.8 verifies that the proposed model

successfully describes the evolution of quantiles at the tails, especially, in cases of SV models

with heavy tailed error distributions.

Let us denote ∆Vt,l = Pt+l −Pt as the change in the value of the financial position

from time t to t+ l, where Pt is the price process and Fl(x) is the cumulative distribution

function (cdf) of ∆Vt,l. −VaRt(τ, l) can be defined as the loss faced by a financial position

during a given time period (t, t + l) for a given confidence level τ under normal market

conditions. We can formally define VaR of a long position over a time horizon l with

probability τ as

τ = Pr[∆Vt,l ≤ −VaRt(τ, l)] = Fl(−VaRt(τ, l))

where the VaR, −VaRt(τ, l) is a negative value (loss), by the above notation. Following

convention, VaRt is a positive value measured in the currency of interest and τ is the

confidence level. Hence we would look at the entire quantity −VaRt as Value at Risk (VaR)

henceforth. Usually for analysis purposes, instead of working with values of assets we use
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the log returns. Let us denote the log returns by

yt = ln
Pt

Pt−1

Hence a negative yt means loss. Modeling and estimation is usually carried out by using

log returns because they have been shown to exhibit the properties of volatility clustering,

stationarity, possessing almost zero autocorrelation, conditional heteroscedasticity. Hence,

a VaR definition needs to be formalized with respect to the returns. Following the notation

of Engle and Manganelli (2004), let {yt}T
t=1 be the time series of portfolio returns. VaR at

a time t is given by

Pr[yt < −VaRt|Ωt−1] = τ

where Ωt−1 denotes the information set at the end of time t − 1. Analyzing the left or

the right tail of the c.d.f. depends on whether you are a holder of the long position or a

short position respectively. The above definition is applied by the holder of a long position

because he faces a loss when the value of the portfolio decreases. However, a change in the

sign of the variable would make the holder of a short position study the left tail as well.

Hence, it suffices to use this definition for the following discussion.

Some of the prevalent statistical methodologies frequently used in evaluating VaR

can be broadly categorized into the following:-

Econometric approaches (EA), quantile regression (QR), extreme value distributions (EVD)

and historical simulation (HS). RiskMetricsTM , proposed by J.P. Morgan, is a particular

case of EA and is a widely used tool. For an overview of VaR, see Jorion (2007). The next

section sketches a brief review of these methods followed by an outline of the rest of the

paper.

2.2 Existing Methods of VaR Estimation

J. P. Morgan developed RiskMetricsTM methodology for VaR calculation. For

a better exposition, the reader is referred to Logerstaey and More (1995). This method

assumes that the continuously compounded daily return of a portfolio follows a conditional

normal distribution. RiskMetrics assume that yt|Ωt−1 ∼ N(µt, σ
2
t ), where µt is the condi-

tional mean and σ2
t is the conditional variance of yt. In addition, it also assumes that the

two quantities evolve over time following the simple model:

µt = 0, σ2
t = ασ2

t−1 + (1 − α)y2
t−1, 0 < α < 1.



16

Hence, it assumes that the daily log returns satisfying yt = σtεt is an IGARCH(1,1) process

without a drift. For such a random-walk IGARCH model, the conditional distribution of

a multiperiod return is easily available. Specifically, for a k-period horizon the conditional

distribution yt[k]|Ωt is N(0, σ2
t [k]), where

yt[k] =
t+k
∑

i=t+1

yi

and σ2
t [k] can be shown to be equal to kσ2

t+1. Therefore, for a k-period horizon, it follows

that V aR(k) =
√

(k) × V aR.

There are several econometric models for the mean and the volatility processes.

To show an example, for a general time series model for yt let us use the ARMA, GARCH

to model the mean and the volatility processes respectively.

yt = φ0 +
a
∑

i=1

φiyt−i + at −
b
∑

j=1

θjat−j

at = σtǫt

σ2
t = α0 +

u
∑

i=1

αia
2
t−i +

v
∑

j=1

βjσ
2
t−j

where at is the mean corrected, serially uncorrelated asset return and ǫt is a sequence of

i.i.d. random variates with mean 0 and variance 1. The residuals may be assumed to follow

a known parametric distribution (e.g., Normal, t etc.). Other conditional heteroscedastic

models viz. IGARCH, GARCH-M, EGARCH, CHARMA, etc. can also be used to model

the volatility process. Hence, quantiles from these conditional distributions can be evaluated

accordingly. This method is relatively simple to use.

Quantile regression is a nonparametric approach to VaR computation. It is more

appropriate to include the covariate information while estimating the quantiles for the

conditional distributions. Hence, in this case, Ωt−1 introduced earlier which represent the

information till the end of period t − 1 contains further information on the covariates.

Koenker and Bassett (1978) developed the quantile regression theory by formulating the

sample quantile problem to a linear regression one. One of the recent papers using the

regression quantile method is the CAViaR model proposed by Engle and Manganelli (2004).

They propose an autoregression of the conditional VaRs’ and their approach is discussed in

detail, in Sections 2.3 and 2.4.
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The generalized extreme value distribution (EVD) of Jenkinson (1955) encom-

passes the three types of limiting distribution of Gnedenko (1943). Since we are interested

in the extreme tail of the distribution for the computation of VaR and because the EVD

is appropriate for analyzing extreme events, EVD theory is often used in VaR calculations.

The idea is to partition the sample of the returns into nonoverlapping subintervals. Using

the minimum values from these subintervals, we estimate the EVD parameters. Estima-

tion of the three parameters in the EVD can be carried out parametrically by maximum

likelihood or by minimizing the sum of squared errors in a regression setup, or nonparamet-

rically. Once the distribution is known, VaRs can be calculated. This method depends on

the choice of the subintervals for a given data set. Hence, in order to make the minimum

among the subinterval points appreciably close to the real extreme data, sufficient data are

required.

A common method for VaR estimation is historical simulation (HS), in which the

simulated distribution of returns is simply the empirical distribution of the past observa-

tions. The advantage of this method is that it makes no distributional assumptions, that it

is nonparametric. If historical data has been collected in-house, the same data can be used

for VaR calculation. It is relatively easy to implement; however, it has major drawbacks.

The method applies equal weight to its past observations. Since it considers only one real-

ization of the data, in cases of large deviations of the data from the true distribution, the

quantiles obtained by HS can be greatly affected. Moreover, it is slow to capture structural

breaks that can be easily detected by, for instance, Riskmetrics. The choice of sample size

can also have a huge effect on the predicted values. Some variations have been proposed

in the literature to overcome some of these disadvantages. For example, Boudoukh et al.

(1998) proposed a method which applies exponentially declining weights to the past returns.

Although its conceptual simplicity has attracted a wide range of users, the com-

putation of VaR is a challenging statistical problem and most of the methods developed so

far are based on simplifying assumptions. Standard model free methods such as historical

simulations, rely on a single sample path and does not require any distributional assump-

tions. Reliable risk measurement requires to account for the characteristics of returns data

like negative skewness and leptokurtosis. Models with a time varying conditional volatility

structure are often used, but the usual choice of error distributions may not consider the

excess kurtosis present. We need to add more methods to the available toolkit for VaR

estimation in order to resolve these issues. Since quantile behavior can be matched with
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the standard deviation behavior, if the volatility modeling is based on a flexible structure,

consequently, the flexibility will lend itself to quantile model behavior as well. Hence, a

quantile regression based on the SV framework can lead us to a good model that captures

the risk behavior effectively and efficiently.

The difficulty in the estimation of the SV model arises due to the addition of an

innovation process. The exact likelihood cannot be solved analytically. The recursive model

for the conditional VaR is intrinsically related to this issue. The main goal in this chapter

is, therefore, to derive a quantile specification that approximates the evolution of the tail

quantiles to be used by the RQ objective criterion directly without the likelihood compu-

tation in SV framework. This nonparametric approach is desirable, since no distributional

assumptions need to be made. We propose linear optimal filters named SVLIN, A-SVLIN,

to be discussed in Section 2.6.

Also, a direct application to VaR computation would be to use the nonlinear

filtering methodology, introduced by Watanabe (1999), Fridman and Harris (1998) which

produces the one step ahead conditional return density as a part of their algorithm to

calculate the likelihood. One of the key aspects of this approach is that if we are able to

get the conditional distribution of the returns itself, we can directly get the conditional

quantiles. Calculating the quantiles from this distribution directly gives us a benchmark

method to obtain the VaRs which can be further compared with what we have obtained

using the linear filter.

2.3 Conditional Autoregressive Value at Risk class of models

(CAViaR)

Let {yt}T
t=1 be the observed vector of portfolio returns and ξt a vector of time t

observable variables. Let τ be the probability associated with VaR and βτ be a vector of

unknown parameters. Finally, let qt(β) ≡ q(ξt−1, βτ ) denote the time t, τ th quantile of the

distribution of portfolio returns formed at time t − 1, where the τ subscript is suppressed

for notational convenience. Then, a general CAViaR specification is given by the following:

qt(β) = γ0 +

q
∑

i=1

γiqt−i(β) +
m
∑

i=1

αil(ξt−i, ϕ),

where β = (α, γ, ϕ) and l is a function of a finite number of lagged values of observables.

The role of l(ξt−i, ϕ) is to link qt(β) to the observables that belong to the information set.
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A natural choice for ξt−1 is lagged returns.

Some examples of CAViaR processes described are as follows:

Adaptive:

qt(β1) = qt−1(β1) + β1{[1 + exp(G[yt−1 − qt−1(β1)])]
−1 − τ}

Symmetric Absolute Value:

qt(β) = β1 + β2qt−1(β) + β3|yt−1|

Asymmetric Slope:

qt(β) = β1 + β2qt−1(β) + β3(yt−1)
+ + β4(yt−1)

−

Indirect GARCH :

qt(β) = (β1 + β2q
2
t−1(β) + β3y

2
t−1)

1
2

In the adaptive method, G is some positive finite number and the model is a

smoothed version of a step function. As G → ∞ the last term converges almost surely to

β1[I(yt−1 ≤ qt−1(β1))− τ ], where I(.) represents the indicator function. This model applies

the following rule: whenever VaR is exceeded it should be immediately increased. When it

is not exceeded one should decrease it, but very slightly. It increases the VaR by the same

amount regardless of whether the returns exceed the VaR by a small or large margin.

The second and the fourth model respond symmetrically to past returns while the third

allows different responses to positive and negative returns. All of the last three are mean

reverting in the sense that the coefficient on the lagged VaR is not constrained to be one.

The indirect GARCH (iGARCH) model is the correctly specified model if the underlying

data were truly a GARCH(1,1) with an i.i.d. error distribution. The Symmetric Absolute

Value and Asymmetric Slope quantile models would be correctly specified by a GARCH

process in which the standard deviation is modeled either symmetrically or asymmetrically

with i.i.d. errors. For further details on the motivation behind these models, see Taylor

(1986), Schwert (1989) and Engle(2002). The CAViaR specification is however more general

than these GARCH models in the sense that non-i.i.d. error distributions can also be

modeled.
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2.4 Estimation of parameters by Regression Quantiles

The parameters of CAViaR models are estimated by Regression Quantiles objective

criterion, as introduced by Koenker and Bassett (1978). Consider a sample of observations

y1, y2, . . . , yT generated by the following model:

yt = x′tβ
0 + ετt

with Quantτ (ετt|xt) = 0, where xt is a m-vector of regressors and Quantτ (ετt|xt) is the

τ -quantile of ετt conditional on xt. Let qt(β) ≡ x′tβ. The τ th regression quantile estimate is

therefore x′tβ̂. The parameter estimates are obtained by minimizing the Regression Quantile

(RQ) objective function also known as the check function:

min
β

1

T

[

−
T
∑

t=1

{I(yt < qt(β)) − τ}(yt − qt(β))

]

As a special case, regression quantiles include the least absolute deviation (LAD)

model which is known to be more robust than OLS estimators whenever the errors have a

fat tailed distribution.

2.5 Quantile Model Evaluation

2.5.1 Dynamic Quantile Test

The Dynamic Quantile (DQ) test can be used for evaluating the overall goodness

of fit test for the estimated CAViaR process. An ideal condition of a VaR estimate is

to create a sequence of i.i.d. indicator functions I(yt < qt(β)) from a possibly serially

correlated heteroscedastic time series. This can lead to the testing based on whether the

unconditional probabilities are correct and serially uncorrelated. However to account for

the dependence, DQ tests consider the Hitt(β) = I(yt < qt(β)) − θ, where the conditional

expectation given any information till time, t− 1 is zero. Hitt(β) must be also uncorrelated

with its own lagged values and with qt(β). The test takes into consideration any of the

past information that affects the quantile estimates. Let T denote the in-sample data and

N denote the out of sample data. The DQ out-of-sample test statistic is shown below. As

T → ∞, N → ∞

DQO =
HitN

′(β̂T)XN(β̂T)[XN
′(β̂T)XN(β̂T)]−1XN

′(β̂T)HitN(β̂T)

θ(1 − θ)

d→ χp
2
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where Xn(β̂),n = T + 1, . . . ,T + N is a typical row of XN(β̂) with p columns, which is a

p-vector measurable-Ωn, and HitN(β̂) =
[

HitT+1(β̂), . . . ,HitT+N(β̂)
]′

. The choice for Xn

are the past lagged Hits, past VaRs.

The DQ in sample test statistic is given by:

DQI =
HitT

′(β̂)XT(β̂)[T−1M̂TM̂′
T]−1XT

′(β̂)HitT(β̂)

Tθ(1 − θ)

Let M̂T = XT
′(β̂)−

[

(2TĉT)−1
∑T

t=1 I
(∣

∣

∣yt − qt(β̂)
∣

∣

∣ < ĉT

)

Xt
′(β̂)∇qt(β̂)

]

D̂−1
T ∇′q(β̂) where

Xt(β̂), t = 1, 2, . . . , T is a typical row of XT(β̂) is an m-vector measurable Ωt and HitT(β̂) =
[

Hit1(β̂), . . . ,HitT(β̂)
]′

. The test statistic follows asymptotically a χ2
m where m is the rank

of the XT(β̂) where ĉT is the bandwidth of the k-nearest neighbour method.

2.5.2 Backtesting methods

Several backtesting methodologies are prevalent in the extant literature by match-

ing the VaR forecasts with the portfolio returns. Based on these exceedences, several VaR

validation tests can be made. Unconditional coverage test (UC) (Kupiec, 1995), Markov

test (Christoffersen, 1998), conditional coverage test (CC) (Christoffersen, 1998) are used

for evaluating the VaR models along with DQ tests in the data analysis, given later. The

total number of exceedences, defined by X =
∑T

t=1 I(yt < −VaRt) follows a Binomial(T,τ)

under the null hypothesis when the exceedences are believed to be i.i.d. This idea forms the

basis for the UC test. Markov test is an independence test to check for first order Markov

dependence eg. clustering effect in the series. We set the indicator to 0 if VaR is not ex-

ceeded and to 1 otherwise. Let πi be the probability of observing an exception conditional

on state i the previous day. Let Tij denote the number of days in which state j occured

in a day with i on the previous day. Hence, to test an independence of exception on a day

followed by another on the next day, the null hypothesis is π0 = π1 = π = (T01 + T11)/T .

The test statistic is :

LRind = −2 log[(1 − π)(T00+T10)πT01+T11 ] + 2 log[(1 − π0)
T00πT01

0 (1 − π1)
T10πT11

1 ]

Furthermore, the conditional coverage test is the combined test statistic of the unconditional

and Markov tests given by:

LRcc = LRuc + LRind

distributed as χ2
2. The LRuc = −2 log[pX(1− p)T−X] + 2 log[(X/T)X(1− (X/T))T−X] which

asymptotically follows a chi squared with one degrees of freedom under the null hypothesis.
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The Weibull test is based on durations of the violations (Christoffersen and Pel-

letier, 2004). The chief idea is that given that the VaR model is correctly specified with

coverage rate τ , the occurence of an excessive number of short durations (period of turbu-

lence) and an excessive number of very long durations (period of tranquility) should signal

a warning against the chosen VaR model. Under the null hypothesis that the model is cor-

rectly specified, the duration should have no memory with a mean duration of 1/τ days. It

is shown to have more power than the Markov test for testing independence in the Historical

simulation method. However, it has not been used in this chapter because the out-of-sample

chosen was 500 which had lower power than UC and Markov in the coverage area consid-

ered in their study. The Weibull test is used in Chapter 4 where the out-of-sample sizes are

larger.

2.6 Optimal linear filter

In this section, we use linear filter methods to derive recursive equations for the

conditional quantiles of SV processes.

2.6.1 Symmetric SV framework

Let yt be the stochastic process of returns

yt = σtǫt ǫt ∼ N(0, 1) (2.1)

where σ2
t is the volatility of yt. In the simplest SV model framework, the log of volatility is

expressed as an AR(1) model:

ln(σ2
t ) = α0 + α1 ln(σ2

t−1) + vt vt ∼ N(0, σ2
v) (2.2)

where ǫt and vt are assumed to be independent of each other. We can write the linear state

space form of the model given by (2.1) and (2.2) by taking logarithm of squared variables,

as shown below:

ln y2
t = lnσ2

t + ln ǫ2t t = 1, 2, . . . , T (2.3)

ln(σ2
t ) = α0 + α1 ln(σ2

t−1) + vt vt ∼ N(0, σ2
v) (2.4)

The ln(y2
t ) process is an AR(1) process with added white noise. Arranging the above

equations, the ln y2
t process can be represented as an ARMA(1,1). Under the current setup,

an immediate goal is to seek a CAViaR representation of conditional quantiles with a best
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fit, when the underlying data is generated from a SV model. This goal can be achieved

by finding the best linear predictor of the lnσ2
t process conditioned on the past returns by

minimizing the expected mean squared error, which would eventually suggest the quantile

regression form. For the state space representation considered above, the Kalman filter

yields the best linear predictor (ie., the best predictor with the lowest MSE among the class

of linear estimators (Anderson and Moore, 1979)). The Kalman filter steps are given in

Section 4.1 of Chapter 4. Based on (2.3) and (2.4), and following the same notation as in

Chapter 4, let xt = ln(σ2
t ) and ηt = ln(ǫ2t ). ηt has a finite mean and variance denoted by µη

and σ2
η respectively. When ǫt is Gaussian, µη = −1.27 and σ2

η = π2

2 . Let xt|t−1 and Pt|t−1

denote respectively the optimal linear estimator and the variance of xt given information

till time t−1, and xt|t and Pt|t denote respectively the updated optimal linear estimator and

the variance of xt given information till time t. Combining the one step ahead prediction

and updating equations into a single recursion step of the Kalman filter, produces,

xt+1|t = α0 + α1

[

xt|t−1 +
Pt|t−1

Pt|t−1 + σ2
η

(

ln y2
t − xt|t−1 − µη

)

]

and

Pt+1|t = α2
1Pt|t−1

(

1 −
Pt|t−1

Pt|t−1 + σ2
η

)

+ σ2
v .

For stationarity, Pt+1|t = Pt|t−1 = σ2, say, the second equation can be solved for σ2, and

with the result plugged into the first equation:

ln (̂σ2
t+1)lin = η1 + η2 ln(σ2

t ) + η3 ln y2
t

This suggests a linear quantile regression form as follows:

ln q2t (β) = β1 + β2 ln q2t−1(β) + β3 ln y2
t−1

We call this the SVLIN model.

2.6.2 Asymmetric SV framework

There are two different Asymmetric SV models in the literature, one arising as

the discretized version of the continuous time model (Harvey and Shephard, 1996), and

another slightly modified version introduced by Jacquier et al. (2004). We call the latter

ASV2 model. Yu (2005) argued that the ASV model (Harvey and Shephard, 1996) given by

(2.5, 2.6) produced better fits to data empirically using MCMC techniques. The competing
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model (ASV2) introduced by Jacquier et al. (2004), with ASV has intertemporal instead of

contemporaneous correlation. This makes the ASV model generate a Martingale Difference

sequence.

yt = σtǫt (2.5)

lnσ2
t = α0 + α1 lnσ2

t−1 + vt (2.6)

where ǫt and vt are i.i.d. N(0,1) and Corr(ǫt, vt+1) = ρ. For ASV2 model, the only change

in assumption is Corr(ǫt, vt) = ρ. Further, Yu (2005) shows with a nonlinear state space

transformation that the ASV gives a clear elicitation of the negative correlation of returns

with volatility, i.e, the fall in the stock price leads to an increase in the volatility. Hence,

ASV model is chosen over ASV2 as a basis for a quantile specification that takes into

account the asymmetric effect. If the joint distribution of the error terms are symmetric,

then the log transformation used to obtain the measurement equation results in the loss of

information. However, Harvey and Shephard (1996) show that by retaining the sign of the

returns along with the absolute values gives the same likelihood function,

f(yT|θ) =
T
∏

t=1

f(yt|st,yT−1, θ)f(st|yT−1, θ)

where yT = {y1, y2, . . . , yT }, st is the sign function assigned with each return being positive

or negative. Since the ǫt’s are symmetrically distributed, f(st|yT−1, θ) = 0.5, this leads to

maximizing the conditional density function given by

T
∏

t=1

f(|yt|
∣

∣

∣
st,yT−1, θ)

Hence, the Kalman filter applied to the ASV model is used to find the filtering equations.

Following Harvey and Shephard (1996), based on the following transformations: ht = lnσ2
t −

µh, µh = α0/(1 − α1), w = µh +E(ln ǫ2t ), ξt = ln ǫ2t −E(ln ǫ2t ), µ
∗ = E(vt+1|sgn(ǫt) = +) =

−E(vt+1|sgn(ǫt) = −), γ∗ = Cov(vt+1, ξt|sgn(ǫt) = +) = −Cov(vt+1, ξt|sgn(ǫt) = −),

Var(vt+1) = E(v2
t+1|sgn(ǫt) = +) − (E(vt+1|sgn(ǫt) = +)2) = σ2

v − µ∗2, the measurement

and state equations are:

log y2
t = w + ht + ξt, ht+1 =

(

α1 −
γ∗st

σ2
ξ

)

ht + st

{

µ∗ +
γ∗

σ2
ξ

(

log y2
t − w

)

}

+ v+
t+1
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Denoting the linear optimal predictor of ht as ht|t−1 and its variance as P h
t|t−1, and applying

the Kalman filter:





ξt

v+
t+1





∣

∣

∣

∣

∣

st ∼ N











0

0



 ,







σ2
ξ 0

0 σ2
v − µ∗2 − γ∗2

σ2
ξ

















ht

log y2
t





∣

∣

∣

∣

∣

∣

log y2
t−1, st ∼ N









ht|t−1

ht|t−1 + w



 ,





P h
t|t−1 P h

t|t−1

P h
t|t−1 P h

t|t−1 + σ2
ξ









ht|log y2
t , st ∼ N

(

ht|t−1 +
P h

t|t−1

P h
t|t−1 + σ2

ξ

(

log y2
t − ht|t−1 − w

)

, P h
t|t−1

(

1 −
P h

t|t−1

P h
t|t−1 + σ2

ξ

))

ht+1|log y2
t , st ∼ N

(

st

(

µ∗ +
γ∗

σ2
ξ

(log y2
t − w)

)

+

(

α1 −
γ∗st

σ2
ξ

)

×
[

ht|t−1 +
P h

t|t−1

P h
t|t−1 + σ2

ξ

(

log y2
t − ht|t−1 − w

)

]

,

(

α1 −
γ∗st

σ2
ξ

)2

P h
t|t−1

(

1 −
P h

t|t−1

P h
t|t−1 + σ2

ξ

)

+ σ2
v − µ∗2 − γ∗2

σ2
ξ

)

Hence, to obtain the optimal linear filter, the recursion step used is as follows:

ht+1|t = stµ
∗ + α1ht|t−1 +

stγ
∗ + α1P

h
t|t−1

P h
t|t−1 + σ2

ξ

(

log y2
t − ht|t−1 − w

)

(2.7)

With the stationarity assumption, (2.7) suggests a linear quantile regression form as follows:

ln q2t (β) = β1 + β2 ln q2t−1(β) + β3 ln y2
t−1 + β4st−1 ln y2

t−1 + β5st−1 ln q2t−1(β)

We call this the A-SVLIN model. The proposed models along with the CAViaR

is used to compute the VaRs under SV. The VaR performance from each of these models

are compared with the quantiles obtained from the non linear filtering (NF) scheme. The

NF scheme uses the conditional densities in its filter, hence, the conditional VaR’s can be

obtained directly.

2.7 NF as Benchmark Method

The non linear filtering (NF) method developed by Watanabe (1999), Fridman and

Harris (1998) is a filtering scheme to evaluate the exact likelihood. The filtering technique
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is based on the Bayes theorem. Let us define xt = ln(σ2
t ) and yt = (y1, y2, . . . yt). Then

from equations (2.1) and (2.2), we have

p(xt|xt−1,yt−1) =
1

√

2πσ2
v

exp

[

−(xt − α0 − α1xt−1)
2

2σ2
v

]

(2.8)

p(yt|xt,yt−1) =
1

√

2π exp(xt)
exp

[

− (y2
t )

2 exp(xt)

]

(2.9)

Although the log-SV-AR1 model used in this context allows the following simplifications:

p(xt|xt−1,yt−1) = p(xt|xt−1) and p(yt|xt,yt−1) = p(yt|xt), it might be noted that this

algorithm provides a setup for easily adding several extensions to SV models since no trans-

formation of the model is required. Once a judicious choice of the error distributions is

made, the following algorithm becomes ready for analysis. Applying Bayes theorem, the

filter is given by:

One-step ahead prediction

p(xt|yt−1) =

∫ ∞

−∞
p(xt, xt−1|yt−1)dxt−1 (2.10)

=

∫ ∞

−∞
p(xt|xt−1yt−1)p(xt−1|yt−1)dxt−1 (2.11)

Updating

p(xt|yt) = p(xt|yt,yt−1) =
p(xt, yt|yt−1)

p(yt|yt−1)
=
p(yt|xt,yt−1)p(xt|yt−1)

p(yt|yt−1)
(2.12)

where the denominator is given by

p(yt|yt−1) =

∫ ∞

−∞
p(yt, xt|yt−1)dxt (2.13)

=

∫ ∞

−∞
p(yt|xt,yt−1)p(xt|yt−1)dxt (2.14)

Although (2.8) and (2.9) are known, the above integrals cannot be solved analytically.

As suggested by Kitagawa, the densities p(xt|yt−1) and p(xt|yt) for t = 1, 2, . . . T are

approximated by piecewise linear functions by choosing the number of segments, location

and number of node points and the density values at these points. After the N + 1 nodes

were selected for each time point t, the node points, sorted in order of size are denoted by
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x
(0)
t , x

(1)
t , . . . , x

(N)
t for each of time point t = 1, 2, . . . , T . Using the trapezoidal rule, these

integrals are approximated in the following manner: One step ahead prediction:

p(x
(i)
t |yt−1) =

∫ ∞

−∞
p(x

(i)
t |xt−1,yt−1)p(xt−1|yt−1)dxt−1 (2.15)

≈
N
∑

n=1

∫ x
(n)
t−1

x
(n−1)
t−1

p(x
(i)
t |xt−1,yt−1)p(xt−1|yt−1)dxt−1

≈ 1

2

N
∑

n=1

(x
(n)
t−1 − x

(n−1)
t−1 )[p(x

(i)
t |x(n−1)

t−1 ,yt−1)p(x
(n−1)
t−1 |yt−1) +

p(x
(i)
t |x(n)

t−1,yt−1)p(x
(n)
t−1|yt−1)] i = 0, 1, . . . , N

Updating:

p(x
(i)
t |yt) =

p(yt|x(i)
t ,yt−1)p(x

(i)
t |yt−1)

p(yt|yt−1)
i = 0, 1, . . . , N (2.16)

where the denominator can be approximated similarly. Using the knowledge that the mar-

ginal distribution of p(xt) follows a N(α0/(1 − α1), σ
2
v/(1 − α2

1)), we can approximate the

initial starting point of the recursion by letting p(x1|0) ≡ p(x1). We obtain the p(yt|yt−1) as

a byproduct of this recursion, hence we can evaluate the corresponding conditional quantiles

for each period t. VaR at time t with probability level α (0 < α < 1) is defined as:

VaRt(α) = −inf{yt : Ft(yt|yt−1) ≥ α},

where F (.) denotes the c.d.f. of p(yt|yt−1). Also, they can be used to obtain the exact

likelihood:

lnL = ln[p(yT)] (2.17)

=
T
∑

t=1

ln(p(yt|yt−1)) (2.18)

Once the error due to the linear approximations are made negligible, the NFML (nonlinear

filtering maximum likelihood) method yields the exact likelihood. A crucial step is to obtain

the number and location of nodes in such a way so that it can perform well and be com-

putationally viable, without compromising the results. Watanabe (1999) shows that with

N = 50, it is possible to obtain good results when the node locations are chosen judiciously.

Hence, this method serves the dual purpose of obtaining likelihood based estimates and also

quantile estimates. For VaR calculations, we implement this method as a benchmark to

obtain the conditional VaR’s. We gauge the performance of these methods by data analysis.
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2.8 Empirical Study

An empirical study based on daily prices demonstrate the performance of the

SVLIN model in comparison to the existing CAViaR models.

Six daily closing stock prices comprising Merck (MRK), Merrill Lynch & Co.

(MER), Medtronic (MDT), General Electric (GE), Ford (F), Genentech (DNA) are ob-

tained from Yahoo! Finance from 7/86 to 6/08, and are chosen to test the performance of

the quantile models. After discarding missing values and computing the log returns, the

total number of observations are 3968, which are further split into 2968 in-sample data

and 1000 out-of-sample data. Figure 2.1 shows the log returns of the six stocks. The

graphs show the phenomenon of volatility clustering. The quantile estimates from each
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Figure 2.1: Log returns of 6 stocks

of the quantile model specifications are obtained by minimizing the Regression Quantile

(RQ) objective criterion. The initialization of q1(β) is obtained by finding the empirical

τ th quantile of the in-sample data. The initial starting parameter values are obtained by

generating 10,000 Uniform(0,1) random vectors of the parameter length. We compute the

RQ objective function value for each of these vectors and choose 5 vectors with the lowest

RQ criterion as the starting values for the optimization. We use fminsearch function as the

optimization tool in Matlab. The covariates of the Dynamic Quantile (DQ, see section 2.5)

out-of-sample test are a constant, a VaR forecast and the first four lagged hits. Following
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Engle and Manganelli (2004), the covariance matrices D̂T and M̂T are computed using k-

nearest neighbor estimators, with k = 40 for 1% and k = 60 for 5% VaR cases. In Tables

2.1 – 2.12 the estimated parameters, the standard errors, their p-values, the minimum RQ

criterion, percentages of hits, both in-sample and out-of-sample, and the DQ test results

are reported.

Table 2.1: Comparison of CAViaR, SVLIN models for MRK at 1% VaR. Significant coefficients at

5% are formatted in bold.

MRK

1% VaR SAV ASYMM iGARCH SVLIN A-SVLIN

β1 0.2285 0.2096 0.8832 0.2281 0.2916
Std. Err. 0.2044 0.1617 0.5207 0.1246 0.1141
P-Values 0.1319 0.0974 0.0449 0.0336 0.0053
β2 0.9246 0.9397 0.9403 0.9267 0.9045
Std. Err. 0.0564 0.0481 0.0197 0.0399 0.0357
P-Values 0.0000 0.0000 0.0000 0.0000 0.0000
β3 0.0968 -0.0028 0.1318 0.0349 0.0448
Std. Err. 0.0909 0.0707 0.4020 0.0196 0.0166
P-Values 0.1433 0.4840 0.3715 0.0376 0.0035
β4 0.1140 -0.0427
Std. Err. 0.0906 0.0210
P-Values 0.1041 0.0209
β5 0.0092
Std. Err. 0.0143
P-Values 0.2589
RQ 193.1013 191.1910 193.3665 193.1425 189.9878
Hits in(%) 0.9771 0.9771 0.9771 0.9771 0.9771
Hits out(%) 0.8000 0.8 0.9 1.3 1.3
DQ in sample (pval) 0.6891 0.6834 0.3775 0.4648 0.7740
DQ out-of-sample (pval) 0.9611 0.9864 0.9820 0.2890 0.2180

For all the models, β2, the autoregressive parameter is always significant. This

confirms that the clustering phenomenon is relevant also at the tails. The percentage

of in-sample hits for all the models in all six data scenarios demonstrate the precision and

applicability of all these models in terms of fitting. The RQ objective values for the different

models are comparable indicating that the SVLIN model can be used along with CAViaR

models for analysis. An interesting feature is that the SVLIN and A-SVLIN models have

significant coefficients at the 5% level, in most of the cases. All the models seem to fit
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Table 2.2: Comparison of CAViaR, SVLIN models for MRK at 5% VaR. Significant coefficients at

5% are formatted in bold.

MRK

5% VaR SAV ASYMM iGARCH SVLIN A-SVLIN

β1 0.0463 0.0896 0.1740 0.1319 0.1298
Std. Err. 0.0410 0.0414 0.1460 0.0533 0.0640
P-Values 0.1293 0.0152 0.1168 0.0067 0.0212
β2 0.9485 0.9324 0.9466 0.9364 0.9372
Std. Err. 0.0235 0.0242 0.0181 0.0248 0.0297
P-Values 0.0000 0.0000 0.0000 0.0000 0.0000
β3 0.0674 0.0071 0.0740 0.0397 0.0368
Std. Err. 0.0266 0.0309 0.2513 0.0130 0.0191
P-Values 0.0056 0.4094 0.3842 0.0011 0.0269
β4 0.1364 -0.0230
Std. Err. 0.0394 0.0092
P-Values 0.0003 0.0062
β5 -0.0152
Std. Err. 0.0097
P-Values 0.0582
RQ 618.2274 610.8398 620.389 619.6961 614.9603
Hits in(%) 5.0202 5.0539 5.0202 5.0202 5.0202
Hits out(%) 4.6 3.5 3 5.4 4.8
DQ in sample (pval) 0.0015 0.0191 0.0073 0.0001 0.0046
DQ out-of-sample (pval) 0.0626 0.1329 0.0208 0.0086 0.0569
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Table 2.3: Comparison of CAViaR, SVLIN models for MER at 1% VaR. Significant coefficients at

5% are formatted in bold.

MER

1% VaR SAV ASYMM iGARCH SVLIN A-SVLIN

β1 0.5968 0.4126 0.9607 0.8127 0.4831
Std. Err. 0.5068 0.4136 0.1243 0.1958 0.1727
P-Values 0.1195 0.1593 0.0042 0.0000 0.0026
β2 0.7891 0.8653 0.8344 0.7584 0.8528
Std. Err. 0.1275 0.0929 0.0289 0.0534 0.0512
P-Values 0.0000 0.0000 0.0000 0.0000 0.0000
β3 0.3789 0.0267 0.5997 0.1244 0.0659
Std. Err. 0.1692 0.0664 0.9621 0.0203 0.0267
P-Values 0.0126 0.3436 0.2665 0.0000 0.0068
β4 0.3953 -0.0633
Std. Err. 0.1473 0.0220
P-Values 0.0036 0.0020
β5 -0.0157
Std. Err. 0.0215
P-Values 0.2324
RQ 269.9123 262.2050 272.3408 269.0879 260.4925
Hits in(%) 1.0108 1.0445 0.9771 0.9771 0.9434
Hits out(%) 0.4 0.4 0.4 0.6 0.6
DQ in sample (pval) 0.0545 0.6902 0.0001 0.0327 0.7363
DQ out-of-sample (pval) 0.4590 0.5285 0.5793 0.7803 0.7366
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Table 2.4: Comparison of CAViaR, SVLIN models for MER at 5% VaR. Significant coefficients at

5% are formatted in bold.

MER

5% VaR SAV ASYMM iGARCH SVLIN A-SVLIN

β1 0.1066 0.1588 0.4889 0.2802 0.2944
Std. Err. 0.0547 0.0711 0.2064 0.0574 0.0405
P-Values 0.0256 0.0128 0.0089 0.0000 0.0000
β2 0.8947 0.8858 0.9072 0.8749 0.8756
Std. Err. 0.0304 0.0278 0.0140 0.0229 0.0152
P-Values 0.0000 0.0000 0.0000 0.0000 0.0000
β3 0.1469 0.0769 0.1258 0.0836 0.0589
Std. Err. 0.0432 0.0380 0.1016 0.0189 0.0105
P-Values 0.0003 0.0215 0.1079 0.0000 0.0000
β4 0.2075 -0.0433
Std. Err. 0.0519 0.0116
P-Values 0.0000 0.0001
β5 -0.0196
Std. Err. 0.0073
P-Values 0.0034
RQ 839.4421 830.5276 841.9084 849.0707 831.1015
Hits in(%) 4.9528 5.0539 5.0202 5.0202 4.9865
Hits out(%) 4.7 3.6 3.9 5.3 4.3
DQ in sample (pval) 0.9011 0.9981 0.5082 0.0593 0.808
DQ out-of-sample (pval) 0.0085 0.0008 0.0007 0.0043 0.0035
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Table 2.5: Comparison of CAViaR, SVLIN models for MDT at 1% VaR. Significant coefficients at

5% are formatted in bold.

MDT

1% VaR SAV ASYMM iGARCH SVLIN A-SVLIN

β1 0.5881 0.2831 3.8619 0.6199 0.5304
Std. Err. 0.4090 0.2356 2.3091 0.3373 0.3912
P-Values 0.0752 0.1148 0.0472 0.0330 0.0876
β2 0.7374 0.8656 0.6804 0.8029 0.8304
Std. Err. 0.0960 0.0669 0.0849 0.1017 0.1209
P-Values 0.0000 0.0000 0.0000 0.0000 0.0000
β3 0.4974 0.1078 0.3203 0.1036 0.0887
Std. Err. 0.1146 0.1361 1.0705 0.0335 0.0417
P-Values 0.0000 0.2140 0.1087 0.0010 0.0166
β4 0.4017 -0.0167
Std. Err. 0.0917 0.0259
P-Values 0.0000 0.2601
β5 -0.0302
Std. Err. 0.0110
P-Values 0.0031
RQ 203.0630 200.1670 206.9602 202.5136 197.9110
Hits in(%) 0.9771 0.9771 0.9771 1.0108 1.0108
Hits out(%) 0.5 0.5 0.4 0.5 0.5
DQ in sample (pval) 0.4664 0.4232 0.0137 0.0251 0.4752
DQ out-of-sample (pval) 0.7819 0.7402 0.6996 0.8230 0.8130
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Table 2.6: Comparison of CAViaR, SVLIN models for MDT at 5% VaR. Significant coefficients at

5% are formatted in bold.

MDT

5% VaR SAV ASYMM iGARCH SVLIN A-SVLIN

β1 0.0763 0.0489 0.1551 0.2365 0.19
Std. Err. 0.0367 0.0290 0.0826 0.0746 0.0635
P-Values 0.0189 0.0456 0.0301 0.0008 0.0014
β2 0.9153 0.9339 0.9382 0.8883 0.9119
Std. Err. 0.0157 0.0144 0.0097 0.0333 0.0292
P-Values 0.0000 0.0000 0.0000 0.0000 0.0000
β3 0.1160 0.0599 0.1096 0.0669 0.0519
Std. Err. 0.0222 0.0250 0.0656 0.0124 0.0176
P-Values 0.0000 0.0083 0.0474 0.0000 0.0016
β4 0.1390 -0.0225
Std. Err. 0.0209 0.0122
P-Values 0.0000 0.0324
β5 -0.0157
Std. Err. 0.0139
P-Values 0.1280
RQ 674.8661 671.7328 678.5569 679.2736 676.2068
Hits in(%) 5.0202 5.0202 5.0202 4.9865 5.0539
Hits out(%) 2.5 2.6 2.1 3 3.1
DQ in sample (pval) 0.6614 0.7874 0.6482 0.4348 0.6487
DQ out-of-sample (pval) 0.0236 0.0312 0.0035 0.0766 0.0786
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Table 2.7: Comparison of CAViaR, SVLIN models for GE at 1% VaR. Significant coefficients at 5%

are formatted in bold.

GE

1% VaR SAV ASYMM iGARCH SVLIN A-SVLIN

β1 0.0981 0.1307 0.3857 0.2458 0.2280
Std. Err. 0.0663 0.0552 0.2904 0.0850 0.0548
P-Values 0.0696 0.0090 0.0921 0.0019 0.0000
β2 0.9170 0.9084 0.9015 0.9171 0.9232
Std. Err. 0.0221 0.0193 0.0195 0.0277 0.0187
P-Values 0.0000 0.0000 0.0000 0.0000 0.0000
β3 0.1828 -0.0218 0.4656 0.0638 0.0423
Std. Err. 0.0613 0.0404 0.9616 0.0115 0.0175
P-Values 0.0014 0.2950 0.3141 0.0000 0.0077
β4 0.4379 -0.0567
Std. Err. 0.1100 0.0193
P-Values 0.0000 0.0017
β5 -0.0368
Std. Err. 0.0137
P-Values 0.0036
RQ 190.8196 179.6669 193.0525 191.9671 182.5715
Hits in(%) 1.0108 0.9771 1.0108 0.9771 0.9434
Hits out(%) 0.7 0.4 0.6 0.8 0.8
DQ in sample (pval) 0.0002 0.6778 0.0495 0.0001 0.0606
DQ out-of-sample (pval) 0.9843 0.6773 0.9396 0.9675 0.9287



36

Table 2.8: Comparison of CAViaR, SVLIN models for GE at 5% VaR. Significant coefficients at 5%

are formatted in bold.

GE

5% VaR SAV ASYMM iGARCH SVLIN A-SVLIN

β1 0.0238 0.0516 0.0803 0.1383 0.2350
Std. Err. 0.0148 0.0287 0.0437 0.0296 0.0603
P-Values 0.0536 0.0360 0.0331 0.0000 0.0000
β2 0.9172 0.9085 0.9101 0.9287 0.8832
Std. Err. 0.0224 0.0174 0.0074 0.0155 0.0311
P-Values 0.0000 0.0000 0.0000 0.0000 0.0000
β3 0.14 0.0624 0.1798 0.0651 0.0782
Std. Err. 0.0424 0.0434 0.0744 0.0116 0.0262
P-Values 0.0005 0.0752 0.0079 0.0000 0.0014
β4 0.2214 -0.0486
Std. Err. 0.0201 0.0172
P-Values 0.0000 0.0024
β5 -0.0393
Std. Err. 0.0099
P-Values 0.0000
RQ 598.2705 591.4999 598.5543 606.0340 598.7831
Hits in(%) 4.9865 5.0202 5.0539 4.9865 4.9191
Hits out(%) 5.0000 3.5 4.0000 6.7 3.5
DQ in sample (pval) 0.0614 0.8737 0.0676 0.0012 0.8647
DQ out-of-sample (pval) 0.0037 0.0809 0.0500 0.0002 0.0027
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Table 2.9: Comparison of CAViaR, SVLIN models for F at 1% VaR. Significant coefficients at 5%

are formatted in bold.

F

1% VaR SAV ASYMM iGARCH SVLIN A-SVLIN

β1 0.0147 0.0605 0.1178 0.2271 0.1789
Std. Err. 0.0715 0.0550 0.3450 0.0805 0.0887
P-Values 0.4183 0.1356 0.3664 0.0024 0.0219
β2 0.9355 0.9501 0.9217 0.9262 0.9430
Std. Err. 0.0149 0.0115 0.0126 0.0248 0.0276
P-Values 0.0000 0.0000 0.0000 0.0000 0.0000
β3 0.1881 0.0228 0.4249 0.0552 0.0356
Std. Err. 0.0348 0.0398 0.3826 0.0175 0.0195
P-Values 0.0000 0.2832 0.1334 0.0008 0.0339
β4 0.2135 -0.0221
Std. Err. 0.0534 0.0207
P-Values 0.0000 0.1427
β5 -0.0138
Std. Err. 0.0115
P-Values 0.1146
RQ 214.5552 208.7544 215.7493 217.3162 213.0798
Hits in(%) 0.9771 0.9771 0.9434 1.0108 1.0108
Hits out(%) 1.4 1.2 1.4 1.0000 0.9
DQ in sample (pval) 0.6202 0.6655 0.9064 0.4587 0.5434
DQ out-of-sample (pval) 0.7276 0.6549 0.7434 0.9980 0.9589
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Table 2.10: Comparison of CAViaR, SVLIN models for F at 5% VaR. Significant coefficients at 5%

are formatted in bold.

F

5% VaR SAV ASYMM iGARCH SVLIN A-SVLIN

β1 0.0935 0.1231 0.4843 0.1172 0.1523
Std. Err. 0.0763 0.0454 0.2928 0.0442 0.07
P-Values 0.1101 0.0034 0.0490 0.0040 0.0148
β2 0.8880 0.8770 0.8709 0.9448 0.9305
Std. Err. 0.0452 0.0259 0.0248 0.0205 0.0313
P-Values 0.0000 0.0000 0.0000 0.0000 0.0000
β3 0.1703 0.1074 0.2276 0.0472 0.0478
Std. Err. 0.0533 0.0317 0.2342 0.0126 0.0156
P-Values 0.0007 0.0003 0.1656 0.0001 0.0011
β4 0.2452 -0.0259
Std. Err. 0.0481 0.0129
P-Values 0.0000 0.0222
β5 -0.0127
Std. Err. 0.0122
P-Values 0.1491
RQ 725.0152 718.0551 726.7447 732.3231 724.9911
Hits in(%) 5.0202 4.9865 4.9865 5.0202 4.9865
Hits out(%) 5.4 5.2 4.6 5.8 5
DQ in sample (pval) 0.3617 0.7415 0.2817 0.0306 0.9583
DQ out-of-sample (pval) 0.3959 0.4632 0.3093 0.0080 0.9783
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Table 2.11: Comparison of CAViaR, SVLIN models for DNA at 1% VaR. Significant coefficients at

5% are formatted in bold.

DNA

1% VaR SAV ASYMM iGARCH SVLIN A-SVLIN

β1 -0.0174 0.0198 -0.0150 0.1906 0.3685
Std. Err. 0.0137 0.0339 0.0141 0.1159 0.0965
P-Values 0.1019 0.2796 0.1445 0.0500 0.0001
β2 0.9326 0.9075 0.9694 0.9387 0.8878
Std. Err. 0.0103 0.0232 0.0045 0.0346 0.0311
P-Values 0.0000 0.0000 0.0000 0.0000 0.0000
β3 0.2554 0.1258 0.2075 0.0649 0.1079
Std. Err. 0.0354 0.0532 0.9811 0.0315 0.0237
P-Values 0.0000 0.0090 0.4162 0.0197 0.0000
β4 0.5358 0.0041
Std. Err. 0.1174 0.0676
P-Values 0.0000 0.4758
β5 -0.0419
Std. Err. 0.0358
P-Values 0.1208
RQ 301.0565 290.7673 310.1899 298.3042 283.6742
Hits in(%) 0.9771 0.9771 1.0445 0.9771 1.0108
Hits out(%) 1.3 1.3 1.3 1.7 1.5
DQ in sample (pval) 0.8793 0.9287 0.7774 0.5992 0.8749
DQ out-of-sample (pval) 0.0738 0.0729 0.2534 0.0000 0.0001
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Table 2.12: Comparison of CAViaR, SVLIN models for DNA at 5% VaR. Significant coefficients at

5% are formatted in bold.

DNA

5% VaR SAV ASYMM iGARCH SVLIN A-SVLIN

β1 -0.0002 0.0048 0.0012 0.1133 0.1488
Std. Err. 0.0031 0.0076 0.0025 0.0323 0.0421
P-Values 0.4761 0.2645 0.3104 0.0002 0.0002
β2 0.9789 0.9546 0.9875 0.9459 0.93
Std. Err. 0.0044 0.0124 0.0010 0.0152 0.0195
P-Values 0.0000 0.0000 0.0000 0.0000 0.0000
β3 0.0406 0.0610 0.0215 0.0525 0.0698
Std. Err. 0.0069 0.0280 0.0418 0.0152 0.0166
P-Values 0.0000 0.0146 0.3038 0.0003 0.0000
β4 0.1106 -0.0151
Std. Err. 0.0469 0.0309
P-Values 0.0092 0.3121
β5 -0.0154
Std. Err. 0.0167
P-Values 0.1786
RQ 885.3730 884.4096 905.8684 881.2903 880.0991
Hits in(%) 5.0539 4.9865 5.1213 4.8854 4.9191
Hits out(%) 5.6 5.4 5.6 6.7 6.2
DQ in sample (pval) 0.0035 0.2349 0.0001 0.0378 0.1402
DQ out-of-sample (pval) 0.3214 0.2070 0.3717 0.0015 0.0002
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the data well as measured by the Hit in sample performance and RQ objective value. It

is important to note that the RQ value is usually the minimum in the Asymmetric-SVLIN

cases, especially for the 1% VaR. That the ASYMM and A-SVLIN perform better than

the others in the 5% case indicate that the asymmetric pattern is a nonnegligible feature

in the evolution of quantiles at the tail region eg., F, MDT, DNA. The adaptive model

usually performs the worst, and has not been reported here. For the 1% case, all the stocks

are successfully fitted by at least one of the specifications. One exception is that the Ford

data is fitted very well by all. The reason could be that the out of sample data continues

to follow the same pattern as the in sample data. Another important point to note here

is that the process governing the behavior of the tail varies as we change the confidence

intervals of interest. The in-sample results show the precision of fit of the models. A strong

fit suggests that the models have succeeded in describing the evolution of the left tail of the

stocks. Again, a very high match of the percentage of hits does not necessarily translate to

a better DQ test result.

Simulation studies are carried out to compare the performance of the CAViaR

group of models with the SV linear predictor models (SVLIN, A-SVLIN) when the under-

lying data is from SV.

Jacquier et al. (1994) discuss parameter choices (for SV parameters, θ), driven

by empirical findings of the daily returns and further verified by findings of several other

researchers. Melino and Turnbull (1990) analyzed CD/$ exchange rate collected daily from

1975 to 1986 and obtained α̂1 = 0.91 and coefficient of variation, CV= 0.14, Danielsson

(1994) studied the daily S&P 500 (1980–1987) and recorded α̂1 = 0.96 and CV= 0.34,

Harvey et al. (1993) studied daily exchange rate data (1981–1985) and reported α̂1 to be

0.958 to 0.995 with the CV ranging from 0.47 to 0.74. E(σ2
t ) = 0.0009 was used throughout

the sampling experiment in Jacquier et al. (1994)’s study. If the simulated data are assumed

to be weekly returns, this implies an approximately 20% annual standard deviation, typical

of most stocks. The choice of α1 is unanimously decided to be in the range of 0.9 to 0.995.

The choice of the other parameters are driven by the fact that the coefficient of variation

of the volatility process has been found to lie in the 0.1 to 1 range.

We conducted an experiment with recent data by applying Quasi maximum likeli-

hood (details in Section 4.1 of Chapter 4) for parameter estimation and then obtained the

coefficient of variation of the smoothed volatility estimates and came to a similar conclu-

sion. 15 daily stock values are obtained from Yahoo! Finance from 7/86 to 6/08. The log
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Table 2.13: Summary Statistics of the log returns and coefficient of variation of the estimated volatil-

ities

Mean STD Skewness Kurtosis CV

XOM 0.0583 1.4966 -0.8430 26.1481 0.1909
WMT 0.0569 1.8768 -0.0418 6.2208 0.3398
TXN 0.0528 2.8806 -0.0966 8.6148 0.3624
T 0.0427 1.6845 -0.1599 6.9291 0.3175
PFE 0.0431 1.8257 -0.3513 8.2139 0.2493
MRK 0.0451 1.7703 -1.3124 25.1690 0.1727
MER 0.0552 2.3970 -0.3583 12.8511 0.3176
KO 0.0504 1.6347 -0.7429 25.2609 0.3842
IBM 0.0308 1.8660 -0.5199 17.2651 0.3996
HPQ 0.0489 2.5128 -0.1666 10.0642 0.3530
GM 0.0061 2.1034 -0.1267 9.2315 0.2211
GE 0.0501 1.6616 -0.3020 11.0985 0.3527
F 0.0204 2.1378 -0.0355 7.7551 0.1423
DNA 0.0482 2.6540 1.0430 38.9355 0.8742
C 0.0438 2.2025 -0.5430 13.6440 0.3325

returns are calculated and any missing values are discarded. Summary statistics of the log

returns and coefficient of variation of the smoothed volatility estimates are reported in Ta-

ble 2.13. This validates using the parameter ranges used by Jacquier et al. (1994). For the

simulation study, SV parameters θ = {α0, α1, σ
2
v} are chosen over a grid of values shown in

Table 2.14, where µh = α0/(1−α1) and σ2
h = σ2

v/(1−α2
1) are the mean and variance of the

Table 2.14: SV parameter values used in simulation

θ α0 α1 σv µh σ2
h

CV=1
θ1 -0.736 0.9 0.363 -7.36 0.6935
θ2 -0.368 0.95 0.26 -7.36 0.6933
θ3 -0.146 0.98 0.166 -7.3 0.6959

CV=0.1
θ4 -0.7061 0.9 0.135 -7.061 0.0959
θ5 -0.353 0.95 0.0964 -7.06 0.0953
θ6 -0.1412 0.98 0.0614 -7.06 0.0952

marginal distribution of the log volatility process. Because of the presence of high kurtosis

seen in financial data, error distributions with heavy tails viz., t with 1 and 2 d.f. along

with standard Normal are considered. Two percentages of VaR, 1% and 5% are considered
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for analysis. Three thousand five hundred data points are generated from the SV model for

each of the θ parameter cases. This is divided into two sets of data, 3000 data points used

for estimation of the model comprising the in-sample data, and the remaining 500 is used

for evaluation purposes, the out-of-sample data. The estimated parameters obtained based

on the in-sample data is used to calculate the VaRs’ and their Hit-in-sample and Hit-out-of-

sample are recorded for each run. This is further used to obtain the DQ test results (both

in-sample and out-of-sample). This is repeated for 1000 MC runs. The estimate statistics of

the parameters based on the grand mean and variance-covariance matrix from all the runs

are reported. The Hit-in-sample and the Hit-out-of-sample means along with their empiri-

cal C.I.s are measured. Finally, the proportion of the acceptance of the DQ tests based on

their p-values at 1% level of significance is shown. The four CAViaR models with SVLIN

are used for comparison. The models considered are all continuous and differentiable in β.

Since the RQobjective function is a nonparametric objective criterion, it is used to check

their performance for heavy tailed error distributions as well. Furthermore, VaR filtering

from Watanabe’s NFML algorithm provides a benchmark to compare the aforementioned

models.

Tables 2.15 – 2.20 show the results of the best CAViaR model with the SVLIN

model for the different error distributional assumptions and different parameter settings.

Tables 2.21 and 2.22 show the out of sample performance of the VaR forecasts

with respect to the different methods. The instruments for the out of sample DQ test are

a constant, the VaR forecast and the first four lagged hits. The formulae to compute D̂T

and M̂T were implemented using k-nearest neighbor estimators, with k=40 for 1% VaR and

k=60 for 5% VaR. The Nelder-Mead Simplex algorithm is used for the optimization.

Among the four models proposed by Engle and Manganelli (2004), the symmetric

model as expected, perform better in modeling the dynamics when the underlying data

are generated from an SV model with the given specifications. It might be pointed out

that the Symmetric(SAV), Asymmetric and the iGARCH models can be looked upon as

the quantile counterparts of the ARMACH models (Taylor, 1986), GARCH followed by

standard deviation and with asymmetric errors (Nelson, 1991), and GARCH (Bollerslev,

1986) respectively with i.i.d. error distributions. The adaptive model has a unit coefficient

on the lagged VaR and whenever the VaR is exceeded its value is increased. But that will

not depend on the magnitude of exceedence. Hence, it is expected that it will slowly capture

the dynamics with respect to the others, especially when the persistence is high.
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Table 2.15: β estimate means, variances, Regression Quantile function value, for the best CAViaR

specifications including the Symmetric Absolute value, Asymmetric slope, Indirect Garch, Adaptive

with SVLIN, when ǫt ∼ Normal(0, 1), ǫt ∼ t2 and ǫt ∼ t1 for 5% Value at risk are shown. Data is

generated from SV model with parameters chosen from the set θ1 = {−.736, 0.9, .363} with coefficient

of variation 1. The sample size T=3000(in-sample), 500(out-of-sample) and MC loop of 1000 is

used. Hits in sample proportions with the empirical C.I. at 5% significance level are reported. For

evaluation, acceptance proportions of DQ in sample test results are shown with 1% level of confidence

θ = (−0.736, 0.9, 0.363)

N(0,1) t2 t1
5% VaR iGARCH SVLIN SAV SVLIN SAV SVLIN

β1 0.0002 -0.4674 0.0164 -0.4001 0.0914 -0.2557
Var 0.0000 0.0807 0.0004 0.3371 0.0129 0.5203
β2 0.7348 0.8021 0.7417 0.8091 0.4653 0.8223
Var 0.0051 0.0040 0.0662 0.0194 0.4198 0.0536
β3 0.4346 0.0871 0.1274 0.0698 0.0143 0.0510
Var 0.0139 0.0004 0.0068 0.0009 0.0051 0.0024
RQ 9.6232 9.7711 26.8854 26.7675 385.7361 385.5010
Hits in(%) 5.0179 5.0201 5.0010 5.0058 4.9993 5.0145
Emp. C.I. (4.97, 5.07) (4.97, 5.1) (4.97, 5.07) (4.97, 5.07) (4.9, 5.1) (4.9, 5.13)

DQ in acc% 99.7 89.2 99.2 99.2 98.6 99.8
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Table 2.16: β estimate means, variances, Regression Quantile function value, for the best CAViaR

specifications including the Symmetric Absolute value, Asymmetric slope, Indirect Garch, Adaptive

with SVLIN, when ǫt ∼ Normal(0, 1), ǫt ∼ t2 and ǫt ∼ t1 for 5% Value at risk are shown. Data

is generated from SV model with parameters chosen from the set θ2 = (−0.368, 0.95, 0.26) with

coefficient of variation 1. The sample size T=3000(in-sample), 500(out-of-sample) and MC loop

of 1000 is used. Hits in sample proportions with the empirical C.I. at 5% significance level are

reported. For evaluation, acceptance proportions of DQ in sample test results are shown with 1%

level of confidence

θ = (−0.368, 0.95, 0.26)

N(0,1) t2 t1

5% VaR iGARCH SVLIN SAV SVLIN SAV SVLIN

β1 0.0001 -0.1641 0.0083 -0.1242 0.0844 -0.0864
Var 0.0000 0.0215 0.0002 0.0711 0.0120 0.1934
β2 0.8152 0.8691 0.8459 0.8758 0.5040 0.8725
Var 0.0021 0.0014 0.0307 0.0051 0.3967 0.0246
β3 0.3700 0.0750 0.1135 0.0627 0.0146 0.0501
Var 0.0086 0.0003 0.0048 0.0005 0.0056 0.0020
RQ 9.3829 9.5555 26.7284 26.5709 373.7774 373.3412
Hits in(%) 5.0254 5.0170 4.9984 5.0071 4.9996 5.0167
Emp. C.I. (4.97, 5.1) (4.97, 5.1) (4.97, 5.07) (4.95, 5.1) (4.9, 5.1) (4.93, 5.1)

DQ in acc% 99.8 89 99.1 99.4 98.7 99.7
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Table 2.17: β estimate means, variances, Regression Quantile function value, for the best CAViaR

specifications including the Symmetric Absolute value, Asymmetric slope, Indirect Garch, Adaptive

with SVLIN, when ǫt ∼ Normal(0, 1), ǫt ∼ t2 and ǫt ∼ t1 for 5% Value at risk are shown. Data

is generated from SV model with parameters chosen from the set θ3 = (−0.146, 0.98, 0.166) with

coefficient of variation 1. The sample size T=3000(in-sample), 500(out-of-sample) and MC loop

of 1000 is used. Hits in sample proportions with the empirical C.I. at 5% significance level are

reported. For evaluation, acceptance proportions of DQ in sample test results are shown with 1%

level of confidence

θ = (−0.146, 0.98, 0.166)

N(0,1) t2 t1

5% VaR SAV SVLIN SAV SVLIN SAV SVLIN

β1 0.0011 -0.0123 0.0042 0.0093 0.0843 0.0093
Var 0.0000 0.0052 0.0001 0.0114 0.0128 0.1576
β2 0.8928 0.9202 0.9104 0.9243 0.5179 0.9159
Var 0.0006 0.0005 0.0201 0.0014 0.3949 0.0178
β3 0.1785 0.0562 0.0865 0.0490 0.0153 0.0422
Var 0.0014 0.0002 0.0027 0.0003 0.0060 0.0019
RQ 9.4030 9.5670 27.3246 27.1383 384.7304 384.0053
Hits in(%) 4.9991 5.011 4.9977 5.0056 5.0009 5.0175
Emp. C.I. (4.93, 5.07) (4.93, 5.1) (4.93, 5.07) (4.93, 5.1) (4.9, 5.1) (4.93, 5.13)

DQ in acc% 99.4 90 99.2 99.5 98.4 99.7
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Table 2.18: β estimate means, variances, Regression Quantile function value, for the best CAViaR

specifications including the Symmetric Absolute value, Asymmetric slope, Indirect Garch, Adaptive

with SVLIN, when ǫt ∼ Normal(0, 1), ǫt ∼ t2 and ǫt ∼ t1 for 1% Value at risk are shown. Data

is generated from SV model with parameters chosen from the set θ4 = (−0.7061, 0.9, 0.135) with

coefficient of variation 0.1. The sample size T=3000(in-sample), 500(out-of-sample) and MC loop

of 1000 is used. Hits in sample proportions with the empirical C.I. at 5% significance level are

reported. For evaluation, acceptance proportions of DQ in sample test results are shown with 1%

level of confidence

θ = (−0.7061, 0.9, 0.135)

N(0,1) t2 t1

1% VaR SAV SVLIN ASYMM SVLIN SAV SVLIN

β1 0.0258 -0.8895 0.1304 -0.5538 0.4894 0.2098
Var 0.0013 3.7504 0.0180 1.6472 0.5247 0.7990
β2 0.5987 0.8063 0.3440 0.7708 0.4854 0.4699
Var 0.2511 0.1383 0.4060 0.1712 0.51 0.4024
β3 0.1189 0.0159 0.2071 0.0214 0.1412 0.0377
Var 0.0103 0.0005 0.1959 0.0030 0.4901 0.0144
β4 0.1871
Var 0.1961
RQ 2.4791 2.4830 12.5288 12.5872 94.346 92.0057
Hits in(%) 0.9987 0.9967 0.9980 1.0010 0.9978 1.0286
Emp. C.I. (0.97, 1.03) (0.9, 1.07) (0.93, 1.07) ( 0.93, 1.07) (0.9, 1.07) (0.93, 1.23)

DQ in acc% 98.8 96.3 99.8 99.3 99.1 99
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Table 2.19: β estimate means, variances, Regression Quantile function value, for the best CAViaR

specifications including the Symmetric Absolute value, Asymmetric slope, Indirect Garch, Adaptive

with SVLIN, when ǫt ∼ Normal(0, 1), ǫt ∼ t2 and ǫt ∼ t1 for 1% Value at risk are shown. Data

is generated from SV model with parameters chosen from the set θ5 = (−0.353, 0.95, 0.0964) with

coefficient of variation 0.1. The sample size T=3000(in-sample), 500(out-of-sample) and MC loop

of 1000 is used. Hits in sample proportions with the empirical C.I. at 5% significance level are

reported. For evaluation, acceptance proportions of DQ in sample test results are shown with 1%

level of confidence

θ = (−0.353, 0.95, 0.0964)

N(0,1) t2 t1

1% VaR SAV SVLIN ASYMM SVLIN SAV SVLIN

β1 0.0159 -0.5920 0.1264 -0.4853 0.4713 0.2178
Var 0.0008 2.5657 0.0187 1.5476 0.5197 0.7267
β2 0.7383 0.8620 0.3676 0.7894 0.5084 0.4923
Var 0.1678 0.0930 0.4124 0.1607 0.4869 0.3878
β3 0.1129 0.0167 0.2083 0.0226 0.1446 0.0385
Var 0.0083 0.0003 0.1903 0.0027 0.5198 0.0132
β4 0.1911
Var 0.1931
RQ 2.4676 2.4762 12.5312 12.5874 92.2692 91.2795
Hits in(%) 0.9995 0.9989 0.9999 1.0002 0.9966 1.0347
Emp. C.I. (0.97, 1.03) (0.93, 1.07) (0.93, 1.07) (0.93, 1.07) (0.9, 1.07) (0.93, 1.18)

DQ in acc% 98.6 96.5 99.9 99.7 99.2 99
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Table 2.20: β estimate means, variances, Regression Quantile function value, for the best CAViaR

specifications including the Symmetric Absolute value, Asymmetric slope, Indirect Garch, Adaptive

with SVLIN, when ǫt ∼ Normal(0, 1), ǫt ∼ t2 and ǫt ∼ t1 for 1% Value at risk are shown. Data

is generated from SV model with parameters chosen from the set θ6 = (−0.1412, 0.98, 0.0614) with

coefficient of variation 0.1. The sample size T=3000(in-sample), 500(out-of-sample) and MC loop

of 1000 is used. Hits in sample proportions with the empirical C.I. at 5% significance level are

reported. For evaluation, acceptance proportions of DQ in sample test results are shown with 1%

level of confidence

θ = (−0.1412, 0.98, 0.0614)

N(0,1) t2 t1

1% VaR SAV SVLIN SAV SVLIN SAV SVLIN

β1 0.0101 -0.3138 0.1097 -0.4317 0.4714 0.2123
Var 0.0006 1.3250 0.0195 1.4561 0.51 0.7648
β2 0.8238 0.9155 0.4506 0.8084 0.5080 0.5389
Var 0.1280 0.0493 0.4328 0.1464 0.485 0.3647
β3 0.0967 0.0162 0.1699 0.0215 0.1455 0.0377
Var 0.0055 0.0002 0.1353 0.0027 0.5292 0.0138
RQ 2.4463 2.4579 12.5975 12.5789 90.0424 89.1305
Hits in(%) 0.9991 0.9982 0.9986 1.0003 0.9964 1.036
Emp. C.I. (0.97, 1.03) (0.93, 1.07) (0.93, 1.07) ( 0.93, 1.07) (0.9, 1.07) (0.93, 1.32)

DQ in acc% 99.1 96.4 99.8 99.5 99.4 99
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Table 2.21: Comparison of the out of sample test results of the 5% VaR estimates obtained for the

best CAViaR model, SVLIN, and benchmark. Error distributions of N(0,1) and t2 with different

parameter settings with coefficient of variation 1 are used.

5% VaR N(0,1) t2

θ1 iGARCH SVLIN NFML SAV SVLIN NFML

Hits out(%) 5.0004 5.05 5.2620 5.0760 5.0320 5.2500
Emp. C.I. (3.2, 7.2) (3, 7.6) (3.6, 7.2) (2.8, 8.2) (2.8, 7.3) (3.2, 7.2)
DQ out acc% 98 89 98 94.3 95.7 97
UC acc% 98 96.2 98 96.8 97.6 97.7
M acc% 99.7 98 100 99.3 99.3 100
CC acc% 98.9 96.3 100 97.4 98.4 98

θ2 iGARCH SVLIN NFML SAV SVLIN NFML

Hits out(%) 4.98 5.02 5.2660 5.004 5.01 5.2280
Emp. C.I. (2.8, 7.2) (2.6, 7.4) (3.4, 7.4) (2.8, 8) (2.8, 7.4) (3, 7.2)
DQ out acc% 98 88.2 98 95 95.1 98
UC acc% 98.3 96.3 97 97.4 97.5 99
M acc% 99.7 98.2 100 99.8 99.5 100
CC acc% 98.5 95.8 99 98.5 98.5 98

θ3 SAV SVLIN NFML SAV SVLIN NFML

Hits out(%) 5.0640 5.0236 5.3080 5.0260 5.0160 5.2520
Emp. C.I. (2.8, 7.4) (2.6, 8) (3.6, 7.6) (2.6, 7.6) (2.8, 7.4) (3, 7.4)
DQ out acc% 95 88 97.3 95.2 95.5 97
UC acc% 97.4 93.5 98.9 95.1 96.8 99.1
M acc% 99.7 98.4 99.9 99.6 99.9 100
CC acc% 98.1 94.2 99.3 96.5 97.7 99
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Table 2.22: Comparison of the out of sample test results of the 1% VaR estimates obtained for the

best CAViaR model, SVLIN, and benchmark. Error distributions of N(0,1) and t2 with different

parameter settings with coefficient of variation 0.1 are used.

1% VaR N(0,1) t2

θ4 SAV SVLIN NFML ASYMM SVLIN NFML

Hits out(%) 1.0660 1.48 0.9800 1.2220 1.7 0.9960
Emp. Quant (0.2, 2.2) (0.2, 6.7) (0.4, 1.8) (0.2, 3.7) (0.2, 5.4) (0.2, 2)
DQ out acc% 88.2 80 90 82.7 84.7 93
UC acc% 97.2 91 94.3 92.1 91.4 93.1
M acc% 99.899 99 100 95.7 98.8 100
CC acc% 98.78 93.4 100 93.69 94.6 100

θ5 SAV SVLIN NFML ASYMM SVLIN NFML

Hits out(%) 1.059 1.29 1.0080 2.1156 1.4704 0.9820
Emp. Quant ( 0.2, 2.2) (0.2, 3.7) (0.4, 1.8) (0.2, 3.5) (0.2, 5.2) (0.2, 2)
DQ out acc% 88.5 81.4 90 81.6 83.6 95
UC acc% 97.3 92 94.4 92.5 92.2 94
M acc% 99.6 99 100 96.23 99 100
CC acc% 98.9 94.6 100 94.4 95 100

θ6 SAV SVLIN NFML SAV SVLIN NFML

Hits out(%) 1.0460 1.0600 1 1.5660 1.3400 0.9940
Emp. Quant (0.2, 2.2) (0.2, 2.6) (0.4, 1.8) (0.2, 7.2) (0.2, 3.6) (0.2, 2)
DQ out acc% 88 82 90 85.8 84.7 93
UC acc% 96.1 93 94.5 93.5 92.2 94.5
M acc% 99.2 99.2 100 97.05 98.7 100
CC acc% 98.48 95.2 100 95.8 95 100
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The SVLIN model produces comparable results as the other CAViaR models with

respect to the DQ test performance in the normality case. However with heavier tailed

distributions, such as t, with degrees of freedom 1 and 2, the performance of the DQ test

significantly improves. The results provided above illustrate the various situations. When

data are generated with normal distribution errors, among the CAViaR group only, ranked

in order of preference are the symmetric absolute value, asymmetric, and igarch models.

Symmetric model proves to be better competent than iGarch, because using the absolute

returns is a stabler approach than using squares of returns. The asymmetric slope tends

to overfit the data with improved insample results. However, this results in a reduced

acceptance of the out of sample test results. The performance of the adaptive model is the

worst in all cases.

In all the heavy tailed distribution cases, SVLIN is the best model for VaR 5%

cases in terms of both insample fit and out of sample performance. When calculating the 5%

VaR, the SVLIN model’s performance has been found to be better than its 1% VaR cases.

Also, with a higher coefficient of variation, CV=1, SVLIN is better with respect to the

other competing models in heavy-tailed distribution situations. However, with lower CV, it

has been found to be comparable but never better especially in the standard Normal error

distribution case. One reason can be attributed to the form of the linear filter, where the

logarithmic series of VaRs’ and yt’s are considered. The yt’s are a zero mean process, hence

taking the logarithm would make the filter tilt towards the negative axis. However, with

heavier tailed distributions, the logarithmic scale makes it a stabler model with improved

performance. However, it must be pointed out that the acceptance rates of the test results

are very high for all the models.

The empirical C.I.s of the Hit out-of-sample means have the narrowest interval for

the NFML scheme for all the cases. The SVLIN model fits very well into all the 1% VaR

cases and for the 5% VaR, especially for the t distributions, as shown by the DQ in-sample

test acceptance rates. In the case of 1% VaR for the t1 distribution, the empirical C.I.s of

the out-of-sample hits are large even for the best CAViaR model. For example, (0.2, 53.4)

for θ4, (0.2, 43.8) for θ5, (0.2, 46.8) for θ6 whereas those for the SVLIN model are (0.2, 2.4),

(0.2, 2.6) and (0.2, 2.6) respectively. The nonlinear filtering scheme used as benchmark

produces close to 100% acceptance rates for all test results with tighter empirical C.I.s in

all cases considered. This is expected since that quantile estimates are obtained from the

full conditional densities.
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2.9 Summary

In this chapter, we propose two quantile specifications based on the symmetric

and asymmetric SV framework. Empirical results show that they can be added to the

CAViaR group of models. Their performance (based on fitting and test evaluation), when

studied under different parameter settings and when applied to stock data, validate their

use in VaR calculation. The model seems to be better adapted for heavy tailed distribution

situations. It is important to note that the evolution of the tails vary with respect to the

different levels of significance of the VaRs. Hence, some models might be better adapted

than the rest for a particular situation. It is important to use an array of different quantile

specifications and make an informed decision based on its evaluation by the different tests.

Based on the current analysis, the SVLIN model seems to be very useful in the presence of

leptokurtic data. These models provide simplified routes to obtain the quantile estimates

directly, without evaluating the one step conditional densities at each step, however, our

empirical study shows that they provide a good approximation. Quantiles obtained from

the NF scheme also provide another attractive alternative for the monitoring process.

The next chapter is inherently built as an extension of the quantile regression

(QR) modeling framework applied to SV models for estimation purposes. We showed in

this chapter how the QR technique yields quantile estimates for the SV process and in

the next chapter we focus on using this tool in the SV parameter estimation process. We

develop a methodology motivated by the Efficient Method of Moments (EMM). We are

interested in developing a robust strategy that can be used both for monitoring as well as

estimation purposes, especially when dealing with leptokurtic data. We call our method

Regression Quantile Method of Moments (RQMM).
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Chapter 3

Regression Quantile MM (RQMM)

3.1 Introduction

Stochastic Volatility (SV) models are often used to model the conditional het-

eroscedasticity of financial time series data. In this chapter we are concerned with the

estimation of SV model parameters. Our method is motivated by the Indirect Inference (II)

(Gourieroux et al., 1993), and Efficient Method of Moments (EMM) techniques (Bansal

et al. (1993), Bansal et al. (1995), Gallant and Tauchen (1996)). These procedures are

useful for models whose complexity make likelihood based inference difficult or impossible.

In such cases, these tools employ a criterion based on an auxiliary model that approxi-

mates the true model behavior. The gradients of the likelihood ie., score equations of the

auxiliary model form the criterion for the moment equations in EMM. The quantile regres-

sion framework is an increasingly important empirical tool allowing parsimonious model

fitting to entire conditional distributions. With a quantile estimate it is possible to acquire

knowledge about the changes in location, shape, spread of the distribution. Our proposed

method, Regression Quantile Method of Moments (RQMM) uses the gradients of the Re-

gression quantile objective function of the auxiliary model as the criterion. The use of the

check function as the criterion makes the tool less sensitive to distributional assumptions

and helps in developing a robust inference methodology. Since the method is based on

the regression quantile structure of the auxiliary model, it yields robust estimates in the

presence of outliers and in case of local misspecification of the true model. In financial time

series, where data is leptokurtic with a latent time-varying stochastic volatility process,

such robust methods are desirable and serves as a flexible tool for analysis.

The Generalized Method of Moments (GMM) was introduced in the econometrics
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literature by Hansen (1982). The wide application of Method of Moments (MM) estima-

tors in economics and finance is a consequence of the magnitude of research associated to

the area. As opposed to the Maximum Likelihood (ML) approach, MM estimators are not

sensitive to the statistical properties derived from the distributional assumptions. The max-

imum likelihood approach requires the correct specification of the underlying distribution

of the data. In real world situations, the distributional assumption may not coincide with

the truth, leading to biased inference.

In some cases, calculating the likelihood can in itself be computationally intensive.

In such cases, the MM framework may provide a computationally viable solution to the

problem. The GMM is a way of applying the minimum chi-squared criterion in the method

of moments framework when the number of moment conditions exceed the number of pa-

rameters to be estimated. In some situations where direct use of GMM is infeasible, there

exist some modifications of the GMM approach, exploiting the moment conditions. One of

these is the simulated method of moments (SMM), and a closely related approach is the

indirect inference (II).

Simulation method is a popular tool among researchers, which can be attributed

to the tremendous growth in computational speed and viability. In situations where direct

analytical moment calculations are infeasible, SMM or II methods are used. If the moments

of the model of interest are obtained by simulation then the approach is SMM; in cases

where moments are derived from an auxiliary model, the approach is known as indirect

inference, II.

The SMM is an extension of the GMM. McFadden (1989) and Pakes and Pollard

(1989) independently introduced the SMM in computing expected responses in the context

of discrete response models. Examples of using SMM in the estimation context is seen

in panel data methods of Pakes and Pollard (1989), McFadden (1989), and Duffie and

Singleton (1993)’s use in the asset pricing model context. Other applications can also be

found in the biostatistics literature. When the inference is indirectly based on the moment

conditions of the auxiliary model that encompasses or closely approximates the true model,

Gourieroux et al. (1993) coined the term indirect inference to describe the resulting method

of moments approach. The EMM is a special case of II when the scores of the pseudo-

loglikelihood function define the moment conditions.

Given the earlier groundwork on quantiles regression, we propose to apply the

RQ objective criterion instead of the pseudo-loglikelihood criterion to derive the moment
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conditions. Although this might cause loss of efficiency due to the loss of information in a

correctly specified model, the gain in robustness poses itself as an interesting exercise. In the

case of the normality assumption of the error distribution, the score equations can be seen

as the normal equations obtained in OLS estimation. Similarly, using RQMM with median

as the quantile of interest would give rise to the equations for the LAD estimation. It is

a well known fact that LAD is a more robust technique than OLS. Also, RQMM becomes

EMM when the auxiliary model distribution is an asymmetric Laplace density.

3.2 Indirect Inference

Efficient method of moments is a special case of indirect inference procedure,

when the moment conditions are derived from the score equations of the auxiliary model.

However, Gourieroux et al. (1993) describe indirect inference more generally, proposing that

the criterion could be any well meaning (satisfying some technical conditions) function. One

of the examples they propose is a M-estimator type criterion. The RQ objective criterion

is an M-type estimator that can be used under the II umbrella. The following section

elaborates the methodology of EMM and RQMM.

3.2.1 Efficient method of moments

Bansal et al. (1993), Bansal et al. (1995), Gallant and Tauchen (1996) introduced

the EMM method, which describes a systematic approach to generating moment conditions

for generalized method of moments (GMM) of the parameters of a structural model. This

method can be implemented in all cases where the loglikelihood calculation of the structural

model is tedious. The idea is to use scores of a density of an auxiliary model that closely

approximates the true data generating process and taking the expectation under the struc-

tural model to define the GMM criterion. The auxiliary model is chosen such that the score

equations have an analytical expression that can be computed easily. If the auxiliary model

nests the structural model, then the estimator is as efficient as maximum likelihood. This

estimator requires that expectations under a structural model can be computed by simula-

tion, quadrature or directly by analytical expressions, although the likelihood calculations

may not be straightforward.

This methodology is a special case of indirect inference proposed by Gourieroux

et al. (1993). The score is the derivative of the log density of the auxiliary model with respect

to the parameters of the auxiliary model. The moment conditions are dependent both on
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the parameters of the auxiliary and the structural model. The parameter estimates of the

auxiliary model are obtained from the quasi likelihood estimates. The parameter estimates

of interest of the structural model are obtained by minimizing the GMM criterion. The

moment calculation in the GMM criterion entails simulations performed under the true

model such that the asymptotic bias in the auxiliary parameter estimate is corrected. The

optimal weighting matrix depends only on the auxiliary model, that is easily computed.

Therefore, the choice of the auxiliary model is crucial to the specification of the weighting

matrix (especially, in the case of overidentifying conditions).

3.2.2 Application of II methods to SV model

The SV model is given by

yt = σtǫt

log σ2
t = α0 + α1 log σ2

t−1 + σvvt

(ǫt, vt) ∼ N(0, I2)

The model parameters are denoted by θ = {α0, α1, σ
2
v}. The following set of inequality

restrictions |α1| < 1 and σv > 0 are imposed to ensure that yt is stationary and ergodic

and that the parameters are uniquely identified. The volatility process induces higher order

moment dependence on yt. α1 measures the volatility persistence and is often found to be

close to 1 in empirical data. The model generates a leptokurtic unconditional distribution

especially if the choice of distribution for ǫt is heavy-tailed. Without loss of generality,

the model assumes the absence of any time varying mean. At the outset, the asymmetric

leverage effect has been sidestepped; these extensions can however be easily implemented.

The EMM approach is a culmination of the efficiency provided by the maximum

likelihood approach coupled with the flexibility of the GMM method. The score equations

of the likelihood function of the auxiliary model are used as the moment equations, to

attain the efficiency of the maximum likelihood. In SV model case, due to the latent

volatility process, the exact likelihood evaluation requires integration over the unobserved

realizations of the state vector. In order to calculate the likelihood, integration needs to be

carried out over T infinite dimensional state vectors, where T is the total size of the sample.

The idea is to replicate the true data generating process by a careful choice of moment

conditions, guided by data characteristics derived from the observations. Hence, EMM can

gain near efficiency if the auxiliary model (or, proxy model) closely approximates the true
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data generator. Working under the GMM setup, the efficiency argument is influenced by the

crucial choice of the proxy model. It employs an auxiliary model that closely approximates

the true model. Let y1, y2, y3, . . . , yT denote the observed time series data while true model

is characterized by a set of parameters θ0. EMM is summarized in the following steps:

• Choose an auxiliary model with density pa(yt|Yt−1, η0) such that it closely replicates

the true data generating process p(yt|Yt−1, θ0) where Yt−1 = {y1, y2, . . . , yt−1} and

likelihood computation is feasible (for the auxiliary model parameter estimation).

Dimension of η should at least be the same size as θ. In case of exact identification,

the minimization criterion is not affected by the choice of the weighting matrix. Even

if the auxiliary model is misspecified, White (1982) has deduced that under regularity

conditions, the QMLE in the limit attains the quasi-true value of η. Maximizing the

quasi-likelihood implies minimizing the Kullback-Leibler distance criterion. The score

functions are as follows:

1

T

T
∑

t=1

sf (Yt, η̂T )

where sf (Yt, η̂T ) = (∂/∂η) log p(yt|Yt−1, η̂T ) denotes score function of the auxiliary

model. One of the preliminary choices of the auxiliary model is the GARCH(1,1).

Other alternatives are discussed in the next Subsection 3.2.3.

• Compute a consistent estimator of the asymptotic variance covariance matrix as the

weighting matrix given by

V̂T =
1

T

T
∑

t=1

sf (Yt, η̂T )sf (Yt, η̂T )′

This data dependent weighting matrix must be such that it converges to a symmetric

nonnegative definite matrix in the limit. This is obtained directly in the QML step,

avoiding the need for further computation of the weighting matrix during the second

step estimation.

• Starting from a fixed parameter value θ and an arbitrarily large t, say N, the data

series yt is simulated from the true SV model, denoted by ỹn(θ), n = 1 . . . N and we

find θ̂ that minimizes the following quantity

mN (θ, η̂T )′V̂ −1
T mN (θ, η̂T )
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where mN (θ, η̂T ) = 1
N

∑N
n=1 sf (Ỹn(θ), η̂T ) is the sample moment at the fixed esti-

mated pseudo parameter η̂T . Under the simulated data, the sample average of the

score provides an estimate of the expectation of the moment conditions under the

true model for N large. The law of large numbers guarantees that the sample mo-

ment converges to its population counterpart. This consequently can be viewed as a

calibration tool to identify the true model parameters that match the observed and

simulated moment conditions. The EMM estimator is obtained by minimizing the

following GMM criterion:

θ̂T = argmin
θ

[mN (θ, η̂T )′V̂ −1
T mN (θ, η̂T )]

3.2.3 Choice of Auxiliary models in EMM

The near efficiency to efficiency argument is to a large extent dependent on the

choice of moments based on the auxiliary model. Gallant and Long (1997) have shown

that with a judicious selection of the proxy model, the quasi scores span the true score

vector, which results in asymptotic efficiency. As the proxy data generator comes close

to approximating the true data generator, EMM estimator will result in full asymptotic

efficiency as MLE.

In order to explore the finite sample properties, Andersen et al. (1999) considered

several fully parametric and semi-nonparametric score generators. Keeping all the genera-

tors as conditionally Gaussian, they use the various ARCH type specifications to model the

conditional heteroscedasticity e.g., GARCH, EGARCH and use squared Hermite polyno-

mial expansions (SNP densities, Gallant and Nychka (1987)) to account for nonnormality

and time series structure in the innovation process. The SNP model is given as follows:

f(yt|Ωt−1, η) =
1

σt

[P (zt)]
2φ(zt)

∫∞
−∞[P (u)]2φ(u)du

where zt = (yt − µ)/σt = ǫt/σt. P (.) denotes the Hermite polynomial expansion terms;

the square is taken to ensure the positivity of the expression. Otherwise, the normalization

ensures that the probability density form integrates to 1.

3.2.4 Properties of EMM

Gallant and Tauchen (1996) show that under regularity conditions, the EMM

estimator is consistent and asymptotically normal.

√
T (θ̂T − θ0)

as→ N(0, [D′
θV

−1Dθ]
−1)
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where Dθ = ∂/∂θ′m(θ, η). The asymptotic covariance matrix can be estimated consistently

by

Cov(θ̂T ) =
1

T

[

∂mN (θ̂T , η̂T )′

∂θ
V̂ −1

T

∂mN (θ̂T , η̂T )

∂θ

]

Model diagnostic tests such as specification tests and over-identifying tests can be imple-

mented as in any GMM procedure.

3.3 RQMM method

The RQ (Regression Quantile) criterion can be set up in the form of estimating

equations which can be incorporated into the EMM paradigm instead of the score functions.

The RQ criterion is a replacement of the loglikelihood criterion in EMM above. Hence, the

scores in the moment conditions are substituted with the gradients of the RQ criterion.

This would lend some more flexibility to the methodology and therefore, acts as a robust

procedure in the presence of outlier and misspecification. In this case, the choice of the

proxy quantile regression framework for the RQ is crucial, in the sense that it should act as

a good substitute for the true conditional quantile behavior. Therefore, analogous to EMM

where the score equations of the auxiliary model play an important role to replicate the true

conditional distribution dynamics, our method uses quantiles to nonparametrically replicate

the true conditional distribution dynamics for SV. Since it has been widely established that

the auxiliary model in EMM case is GARCH(1,1), or EGARCH(1,1), as a parsimonious

first choice proxy model, their corresponding conditional regression quantile model can

be derived, due to the deterministic nature of the volatility process in the ARCH group

of models. The GARCH(1,1) yields the iGARCH(1,1) (indirect GARCH, should not be

mistaken for integrated GARCH, IGARCH) as described in CAViaR models, Section 2.3.

The other alternatives are discussed in the next Subsection 3.3.2.

3.3.1 Methodology Development

The RQMM methodology can be described as follows: when the optimum para-

meter estimates for SV model are reached, given that the auxiliary model approximates the

true data model well, the estimated conditional quantiles for the proxy model will closely

approximate the conditional quantiles for the SV, and hence this methodology can be analo-

gously used to estimate the θ0 of the SV model. Our method is summarized in the following

steps:
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• Choose an auxiliary model with density pa(yt|Yt−1, η0) such that it closely replicates

the true data generating process p(yt|Yt−1, θ0) where Yt−1 = {y1, y2, . . . , yt−1}. As a

preliminary reference proxy model, let us consider GARCH(1,1). Since we intend to

minimize the RQ objective criterion, we can write the gradients of the check function

as a basis to write the moment equations. If we denote by qt the conditional τ th

quantiles of the auxiliary model, then

Prob(yt < qt|Ωt−1) = τ

⇒ E[I(yt < qt) − τ |Ωt−1] = 0

where I(.) is the indicator function. In a typical VaR problem, τ ranges mostly be-

tween .95 to .99. However, we can construct a multiquantile function (τ across the full

range[0,1]; taking the sum over the different quantile values), to get a better estimate

of the SV parameters. Consider a sample of observations y1, y2, . . . , yT generated from

the following model:

yt = qt(β) + uτt Quantτ (uτt|Ωt−1) = 0

Let the RQ criterion or “check function” ρ (preferred choice of notation is ρ, and RQ

in this paper) be denoted by

RQτ,T(u) = 1/T

T
∑

t=1

(τ − I(ut < 0))ut

where τ th quantile of u is 0. Henceforth, τ is supressed in the expression for RQτ,T .

In order to obtain an estimate of β, we solve:

argmin
β

1/T
T
∑

t=1

[τ − I(yt < qt(β))][yt − qt(β)] ≡ argmin
β

RQT

Defining the gradient of the RQ criterion as ψT = ∂
∂β RQT which is treated as the

moment equations in this case given by:

ψT =
1

T

∑

(I(yt < qt) − τ)
∂qt
∂β

where qt = qt(β) which is the quantile regression form. So in the RQMM case, score

equations are replaced by ψT . The asymptotic equivalent of the criterion function
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is known as the binding function (Gourieroux and Monfort, 1996). The quantile

regression for a GARCH(1,1) model is given by an iGARCH(1,1) model:

qt =
√

β0 + β1q2t−1 + β2y2
t−1

The quantile regression form has been derived for the auxiliary model from GARCH(1,1)

with iid errors.

• Let S be the symmetric nonnegative weighting matrix in the minimization of the

criterion. This needs to be a consistent estimator of the variance covariance matrix of

ψ(Yt, β̂T ). We define the weighting matrix by taking the outerproduct of the ψ(Yt, β̂T ).

Compute a consistent estimator of the asymptotic variance covariance matrix as the

weighting matrix given by

Ŝ =
1

T

T
∑

t=1

ψ(Yt, β̂T )ψ(Yt, β̂T )′

=
1

T

T
∑

t=1

(τ − I(yt < qt(β̂T )))(τ − I(yt < qt(β̂T )))∇qt(β̂T )∇qt(β̂T )′

A HAC estimate using Bartlett’s or Parzen’s kernel is often used in such cases.

• Starting from a fixed parameter value θ and an arbitrarily large t, say N, the data

series yt is generated from the true SV model, denoted by ỹn(θ), n = 1 . . . N , and we

find θ̂ that minimizes the following quantity:

θ̂(S) = argmin
θ

ψN (θ, β̂T )′Ŝ−1ψN (θ, β̂T )

where ψN (θ, β̂T ) = 1
N

∑N
s=1 ψT (Ỹs(θ), β̂T ) is the sample moment at the fixed estimated

pseudo parameter β̂T . The strong law of large numbers guarantees that the sample

moment converges to its population counterpart. The above objective function will

be minimized at the conditional quantiles closest to that of the SV model and yield

the SV parameter estimates θ̂.

3.3.2 Choice of Auxiliary models in RQMM

Because of the unknown latent process, the derivation of the loglikelihood as well

as that of any recursive conditional quantile calculation formula of the SV model is tedious.

Given that the auxiliary models used in the case of EMM are well known, eg. GARCH,
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EGARCH, a natural extension would be to derive their corresponding conditional quantile

functions. The extensive study conducted in Andersen et al. (1999) shows the importance

of choosing a parsimonious model, especially with experiments with small data sizes. In

their study, fully parametric forms of GARCH and EGARCH models are used along with

SNP models with the leading terms as GARCH or EGARCH to describe the conditional

heteroscedasticity present in the series. The semi-nonparametric structures are used to

account for the nonnormality and time series structure of the innovation process. In cases,

especially when the sample size is small, using a nonparametric form of SNP may not

even ‘converge’. Hence, let us focus on the parsimonious quantile specifications. Because

of the deterministic nature of the volatility process in the ARCH group of models, their

corresponding conditional quantiles are derived as follows.

The quantile function for GARCH(1,1) has already been given above. The deriva-

tion of the quantile specification for EGARCH is shown as an example. As long as the

volatility process is a recursive function based on the data and an estimate σ0, and the error

process is assumed iid, the extension is straightforward. Let us consider the EGARCH(1,1)

model:

at = σtǫt, (1 − αB)ln(σ2
t ) = (1 − α1)α0 + g(ǫt−1)

where

g(ǫt) = θǫt + γ[|ǫt| − E(|ǫt|)]

In case the error distribution is i.i.d. standard normal, the model for log σ2
t is as follows:

(1 − αB) log(σ2
t ) =











α∗ + (γ + θ)ǫt−1 if ǫt−1 >= 0

α∗ + (γ − θ)(−ǫt−1) if ǫt−1 < 0

where B is the back-shift operator, α∗ = (1−α)α0−
√

2/πγ. The conditional quantiles qt’s

can be computed as follows:

log q2t = α log q2t−1 + g1(yt−1, qt−1)

g1(yt−1, qt−1) =















β +
γ + θ

c

yt−1

qt−1
if yt−1 >= 0

β +
γ − θ

c

−yt−1

qt−1
if yt−1 < 0

Cornish-Fisher expansions are a natural extension to SNP Hermite polynomial densities.

Cornish-Fisher (CF) expansions up to an order of a few terms for a standardized variate
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can be easily derived. The final qt estimate is obtained from the product of σt which is

a GARCH or EGARCH and the standardized quantile obtained from the expansion. As

derived in Lee and Lee (1992), and the algorithm used in Jaschke and Jiang (2001), a

Cornish-Fisher expansion of a standardized variate also provides another option.

Again, a suitable choice for the truncation point in the CF expansion can be

determined by an empirical exercise similar to Andersen et al. (1999)’s study for applications

in the SV case and other situations. There is always a tradeof between a parsimonious and

an overparametrized model. Overparameterization may lead to higher precision in some

cases, but the pitfalls are lack of flexibility and in some cases, fitting to purely idiosyncratic

noise in the data. From the applications perspective, this study is left for future analysis.

The other CAViaR specifications are more general and can be applied to non-iid

data, and also in cases where the error densities and the volatilities are changing (Engle and

Manganelli, 2004). The CAViaR specifications of the symmetric absolute value, proportional

symmetric adaptive and the asymmetric slope model can be also be considered as the

candidate proxy models. The notation (x)+ = max(x, 0); (x)− = −min(x, 0)

Symmetric absolute value: qt = β0 + β1qt−1 + β2|yt−1|

Proportional symmetric adaptive: qt = qt−1 + β1(|yt−1| − qt−1)
+ − β2(|yt−1| − qt−1)

−

Asymmetric slope: qt = β0 + β1qt−1 + β2(yt−1)
+ − β3(yt−1)

−

Asymmetric absolute value: qt = β0 + β1qt−1 + β2|yt−1 − β3|

Third order symmetric: qt = {β0 + β1q
3
t−1 + β2|yt−1|3}1/3

SVLIN: log q2t = β0 + β1 log q2t−1 + β2 log y2
t−1

Indirect ARGARCH qt = β0yt−1+(1−2(I(τ−.5)))(β1+β2(qt−1−β0yt−1)
2+β3(yt−1−

β0yt−1)
2)

In order to get an unique solution, the dimension of the proxy model parameters should at

least be the same dimension as that of the true model. In case of a dimension match, the

estimate is independent of the choice of the weighting matrix.

A simulation study is conducted to gauge the relative performance of the afore-

mentioned auxiliary models.
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3.3.3 Misspecification Error due to Auxiliary Model

We denote the parameters defined in the auxiliary model as β and SV model para-

meters as θ. The true conditional τ th quantile function (CQF), denoted by Qt,τ (yt|Ωt−1) =

Qt,τ (yt|Xt) depends on θ, where X denotes the conditional variables. For ease of nota-

tion τ is supressed henceforth. In case of GARCH(1,1), iGARCH(1,1) forms the regression

quantile function; let the parameters in this form be denoted by β = {β1, β2, β3}. β is

a scalar multiple of η (auxiliary model parameters for EMM) in the GARCH, EGARCH

models; however, it might not have an easily interpretable form in other situations. In Cor-

nish Fisher expansions, they are related to the moments as derived from a Hermite density

setup.

RQMM aims at finding an approximate proxy quantile regression that generates

the proxy conditional quantiles as close as possible to the true conditional quantile function

(CQF). Hence, a desirable property of minimizing the expected RQ objective function of

the auxiliary model is to minimize the misspecification error caused by approximating the

true conditional quantile function with a proxy. The criterion asymptotically is as follows:

lim
T→inf

1

T

T
∑

t=1

(τ − I(yt < qt(β)))(yt − qt(β)) = Eθ(τ − I(yt < qt(β)))(yt − qt(β))

The solution of the asymptotic problem is:

b(θ) = argmin
β

Eθ(τ − I(yt < qt(β)))(yt − qt(β))

where b(θ) is the binding function. In EMM, the maximization of the Quasi likelihood

results in minimization of the Kullback Leibler information criterion that measures the

proximity of the two conditional densities.

Minimizing the RQ for the conditional quantile of the auxiliary model aymptoti-

cally amounts to minimization of a weighted mean squared error loss function of the mis-

specification error (Angrist et al., 2006). We state Angrist et al. (2006)’s theorem below and

the proof is provided in the Appendix. Let us denote by ∆τ (Xt, β) = qτ (β)−Qτ (yt|Xt), the

misspecification error. The conditioning variables Xt = {Yt−1, qt−1, . . .} where t = 1 . . . T ,

is supressed for ease of notation. The following theorem states that the proxy population

conditional quantile minimizes the expected weighted mean square misspecification error

given by ∆τ (Xt, β). Let ǫτ be the quantile specific residual, defined by the difference of the
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response variable from the conditional quantile of interest: ǫτ = Y −Qτ (Y |X) with density

fǫτ (e|X), at ǫτ = e.

Theorem 3.3.1. Approximation Property (Angrist et al., 2006): Suppose that

(i) the conditional density p(yt|Yt−1, θ) exists a.s.,

(ii) E[Y ], E[Qτ (yt|X)], and E(|X|) are finite, and

(iii) b(θ) uniquely solves the RQ objective function of the proxy model.

Then

b(θ) = argmin
β∈ℜd

Eθ[(τ − I(yt < qt(β)))(yt − qt(β))]

= argmin
β∈ℜd

Eθ[(τ − I(yt < qt(β)))(yt − qt(β))]

−Eθ[(τ − I(yt < Qt,τ (yt|Xt)))(yt −Qt,τ (yt|Xt))]

= argmin
β∈ℜd

E[wτ (X,β)∆2
τ (X,β)]

where

wτ (X,β) =

∫ 1

0
(1 − u)fǫτ (u∆τ (X,β)|X)du

=

∫ 1

0
(1 − u)fy(uqτ (β) + (1 − u)Qτ (yt|X)|X)du >= 0

The proof follows by showing that finding the argument minimum of the check

function with respect to the auxiliary parameter is equivalent to minimizing the distance

between the check functions of the true parameters from the proxy since the minimization

is with respect to β. Thus the theorem shows that the population QR quasi-coefficient

minimizes the weighted mean squared error, where the error is caused by approximating the

true quantile with its proxy. The weights are given by the average density of the response

variable over a line from the proxy conditional quantile qt,τ (β), to the true conditional

quantile, Qτ (yt|Ωt−1). Premultiplication by the term (1− u) in the integral results in more

weight being applied at points on the line closer to the true CQF. The above theorem gives

a justification for using the proposed RQ criterion.

The idea behind RQMM is to calibrate the estimate of β from the observed sample

to the β(θ) obtained from the simulated sample, yielding the estimate for θ.
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3.4 Asymptotic Properties of RQMM

The asymptotic properties of RQMM can be derived directly from the asymptotic

results of the indirect inference estimator given in Gourieroux et al. (1993), Gallant and

Tauchen (1996) and Gourieroux and Monfort (1996). The proofs and results follow in the

RQMM case, where the criterion function is an M-type estimator.

After Koenker and Bassett (1978) introduced the regression quantiles models, a

generalization of their linear model was proposed by Powell (1986) who considers the cen-

sored regression quantiles model. The large sample properties of the estimator are developed

for error terms restricted to have a zero quantile, conditional on the regressors, with het-

eroscedasticity of unknown form, and demonstrates how to construct consistent estimators

of the asymptotic covariance matrices. In the nonlinear case, Weiss (1991), White (1994)

proves the consistency of the nonlinear regression quantile, both in i.i.d. and ergodic cases.

Weiss (1991) shows consistency, asymptotic normality in a dynamic nonlinear model with

non i.i.d. errors. Kim and White (2002) give consistency and asymptotically normality

properties for β̂ in misspecified models. We give here Kim and White (2002)’s results.

Let the number of parameters of β be denoted by q and that of θ by p(≤ q).

Consider the auxiliary model as follows:

yt = q(xt, βτ ) + ǫt,τ Quantτ (ǫt|Ωt−1) = 0

Let νt denote the set of vectors determining the shape with associated shape parameter φ of

the conditional distribution of the ǫτ,t. The error conditional density is given by fǫτ (u|Xt) as

in the previous section. Let ut(φ, βτ , s) denote the unconditional density of st = (ǫt, Xt, νt).

Let ∇ ≡ ∂/∂β, ∇i ≡ ∂/∂βi, where βi is the ith element of β, qt(β) = qt(xt, β).

Theorem 3.4.1. (Consistency of the auxiliary parameter: Kim and White (2002)) Under

the regularity conditions CB1–CB6 (given in Appendix), β̂τ,T −βτ = op(1) where β̂τ,T is the

unique solution of:

argmin
β

τ
1

T

T
∑

t=1

[τ − I(yt < qt(xt, β))][yt − qt(xt, β)]

The asymptotic normality derivation in the quantile regression literature (Powell

(1984), Powell (1991), Weiss (1991)) builds on Huber (1967)’s theorem 3. Kim and White

(2002) result is reported here.
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Theorem 3.4.2. (Asymptotic Normality of Auxiliary parameters β̂: Kim and White (2002))

When the regularity conditions AN1–AN9 (given in Appendix) hold, and if the estimator is

consistent, then:

√
T (β̂τ − βτ )

d→N(0, D−1A0D
−1)

where A0 = E[(τ − I(yt < qt(xt, β)))∇qt(β)(τ − I(yt < qt(xt, β)))′∇′qt(β)], and D =

E[ft(0)∇qt(β)∇′qt(β)].

For the results that follow, let us introduce matrices J0 and S0 as follows:

J0 = plim
T

−∂2RQT

∂β∂β′
(yT , XT ; b(θ0)),

S0 = limV (
√
T
∂RQT

∂β
(yT , XT ; b(θ0)))

Under standard regularity conditions, when interchange of differentiation and integration

is allowed, J0 is the same as D, and A0 is S0. D plays the role of the matrix of second

derivatives and A0, the outer product of the gradients. As defined earlier, b(θ0) denotes the

binding function.

b(θ0) = argmin
β

Eθ{RQ(yt|Ωt−1;β)} = argmin
β

{RQ∞(yt|Ωt−1;β)}

The indirect inference estimator of θ is obtained by minimizing the following criterion:

θ̂ = argmin
θ

ψN (θ, β̂T )′ΣψN (θ, β̂T )

Following the results outlined in Gourieroux and Monfort (1996), we have the following

theorem on consistency and asymptotic normality of θ̂.

Theorem 3.4.3. Under the conditions T1–T5 given in Appendix, the RQMM estimator θ̂

is consistent and asymptotically normal.

lim
T→∞

θ̂ → θ0 a.s. in Prob

√
T (θ̂ − θ0)

D→N(0,W (Σ))

where W (Σ) = [MθΣMθ]
−1MθΣS0ΣMθ[MθΣM

′
θ]
−1, Mθ =

∂2RQ∞(θ, b(θ))

∂θ′∂β
|θ = θ0, β = β0.

Corollary 3.4.4. In the exactly identified case (p=q), Mθ is invertible, and W (Σ) =

[
∂2RQ∞

∂β∂θ′
]−1S0[

∂2RQ∞

∂β∂θ′
]−1
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The outline of the proof is given in the Appendix. The optimal choice for Σ is

Ŝ−1, calculated from the outer product of the scores.

We investigate the properties of the RQMM estimator by a simulation study,

discussed in the next section.

3.5 Simulation Study

Since RQMM is not sensitive to the choice of distributional assumptions and is

proposed as a robust procedure, its inferential abilities are tested in the presence of outliers

and local misspecification in the SV model with some heavy tailed nonnormal error distri-

butions. The following candidate cases are considered for generating the distribution of ǫt

with density fǫ(x):

• Contaminated Normal: fǫ(x) = I(x > ε)φ(x) + I(x < ε) 1
Kφ( x

K ), where ε = 0.05,

K = 10 and φ(.) is the standard normal.

• tν : Two cases are considered where ν is 2, and 3,(ν = 2 producing the heavier tail)

• Data generated with fixed outliers: The yt process is generated from SV, and is

further mixed with a constant outlier ζ = 0.5 as follows: y′t = (1 − ht)yt + htζ, where

P (ht = 1) = 0.02 = 1 − P (ht = 0).

• Cauchy with location parameter 0 and scale as 0.5, 1, 1.5, 2, 2.5.

We are interested in assessing the robustness properties of this method with EMM in all

these misspecification cases. The observed data size T is taken as 500. N=10000 is the

simulation data size within each method. We report the bias and MSE of the parameter

estimates obtained from 500 MC runs in Table 3.1, where CN stands for the Contaminated

Normal case, and CO stands for the data with fixed outliers.

In most of the simulation studies conducted by Andersen et al. (1999), for different

sample sizes, the GARCH model produced the lowest RMSEs. Hence, we use it as the

reference auxiliary model for EMM in our study and compare its performance to RQMM

method with indirect GARCH serving as the auxiliary model.

In case the structural model is correctly specified and known, the most efficient

way of estimating the model is by maximum likelihood. However, as pointed out in Gallant

and Long (1997), Gallant and Tauchen (1996), if the auxiliary model encompasses the true
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model, EMM is as efficient, while if it is a good approximation, it is nearly as efficient as-

ymptotically. Table 5 in Andersen et al. (1999) compares the bias, MSE of estimators using

QML, GMM, EMM, MCMC, direct maximum likelihood calculations proposed by Fridman

and Harris (1998), Watanabe (1999), Sandmann and Koopman (1998)’s MCL methods.

EMM’s performance lies close to the superior but highly cumbersome numerical methods

of direct maximum likelihood procedures. Since there is a tradeoff between robustness and

efficiency, a Monte Carlo study with 500 runs is conducted to compare RQMM and EMM

under correct model specification, for T=500 and N=10000 and reported in Table 3.2.

As studied by Andersen et al. (1999), inference is sensitive to the choice of the

auxiliary models in small sample sizes. Hence, a small sample study for sizes 50, 100 and

200 observations with 500 MC runs are carried out to evaluate the small sample biases

and MSEs of EMM and RQMM estimates, reported in Table 3.3. The main purpose of

the study is to however, gauge the performance of this method relative to EMM in terms

of robustness. As is evident from extant literature on SV models, prior contributions by

Andersen et al. (1999), Sandmann and Koopman (1998), Kim et al. (1998) and many other

researchers in this area focus on the parameter setting used by Jacquier et al. (1994).

Hence, we follow the gold standard setting for our evaluation. Parameter values of θ =

{α0, α1, σv} = {−0.7, 0.9, 0.363} are used for the study. As suggested by Andersen and

Sørensen (1996) and Andersen et al. (1999), in the second step, we use two series of length N

which are identical, except that the first uses the innovation sequence {vn, ǫn} and the other

relies on {−vn,−ǫn}. This helps in mitigating the MC error in integration. Parsimonious

models with GARCH leading term with the inclusion or exclusion of the Hermite polynomial

approximation in SNP, has proven to be a strong candidate, especially for moderate sample

sizes. Hence, they provide a good reference point for our simulation study. Finally, a

comparison study between some choices of the auxiliary models discussed in Subsection

3.3.2 as competing models for RQMM is conducted for sample size T=500, N=10,000,

and MC loops of 500, shown in Table 3.4. Andersen et al. (1999) has clearly pointed

that in cases where a researcher is only concerned with the inference of the SV model,

a direct likelihood based approach like Jacquier et al. (1994) MCMC, Kim et al. (1998)

unified MCMC approach, Danielsson (1994) and Danielsson and Richard (1993)s’ simulation

based maximum likelihood (SML), Maximum likelihood Monte Carlo (MCL) of Sandmann

and Koopman (1998), recursive numerical integration (ML) of Fridman and Harris (1998)

and Watanabe (1999) may be the preferred approach; however, GMM and its variants
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incorporate flexibility to the method. The intention of adding RQMM to this list is to add

much more flexibility. The auxiliary models in RQMM is based on a general setup without a

strong dependence on distributional assumptions, the data distribution calibration is based

on a nonparametric and a possibly more robust construction. Hence, an assessment of

RQMM performance in the aforementioned list of scenarios should serve to examine its

potential application as a robust inference tool.

From Table 3.1, where cases of local misspecification with the error distributions

following heavier tailed nonstandard specifications are considered, RQMM estimates show

better accuracy and efficiency than EMM when evaluated in terms of the bias and MSE in

almost all the cases. For illustration purposes, Figures 3.1 – 3.8 show the frequency density

plots of the α̂1 obtained from both methods. This further underlines the efficacy of RQMM

in yielding robust statistics.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

Distribution of α
1
 for EMM and RQMM

ε ∼  t
1
, θ=[−.7, .9,.363]

α
1

F
re

qu
en

cy
 D

en
si

ty

RQMM
EMM

Figure 3.1: Frequency Density plot of α1 estimated by RQMM and EMM (dash-dot red line) when

θ = [−0.7, 0.9, 0.363], ǫt ∼ t1, T=500, and 500 MC runs.

Table 3.2 shows the comparison of RQMM and EMM estimates, where the under-

lying error distribution is standardized normal and in the absence of misspecification with

moderate sample sizes of T = 500 and T = 1000. An interesting result is that the RQMM

estimates for σ̂v are found to be better than the EMM. RQMM produces better results than

EMM which is not expected since the model is correctly specified in this case.
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Table 3.1: Comparison of Bias and MSEs for EMM and RQMM estimates for nonnormal distrib-

utions under local misspecification (where *(x)=(1.0e-003*x)). The sample size T=500, simulation

size=10000(for integration of score) and MC run=500

RQMM EMM

α0 α1 σv α0 α1 σv

t(2)
Bias -0.0050 -0.0184 0.0119 -0.0178 -0.0434 0.0134
MSE *0.4283 *0.4567 *0.2059 *6.1929 *3.0684 *0.9892
s.t.d. 0.0201 0.0108 0.0081 0.0767 0.0344 0.0285

t(3)
Bias -0.0058 -0.0106 0.0086 -0.0080 -0.0188 0.0094
MSE *0.2788 *0.2088 *0.1460 *1.7311 *0.5159 *0.5416
s.t.d. 0.0157 0.0098 0.0085 0.0409 0.0128 0.0213

CN
Bias -0.0042 -0.0056 0.0083 -0.0090 -0.0344 0.0153
MSE *0.1409 *0.0642 *0.1342 *1.9976 *1.7927 *0.4787
s.t.d. 0.0111 0.0057 0.0081 0.0438 0.0247 0.0156

DE
Bias -0.0068 -0.0101 0.0076 -0.0085 -0.0130 0.0053
MSE *0.5823 *0.2343 *0.3058 *0.8856 *0.2232 *0.7533
s.t.d. 0.0232 0.0115 0.0158 0.0285 0.0074 0.0270

CO
Bias -0.0094 -0.0010 0.0053 -0.0130 -0.0291 0.0130
MSE *0.2357 *0.0209 *0.0865 *2.3592 *1.0438 *0.4880
s.t.d. 0.0122 0.0045 0.0076 0.0468 0.0141 0.0178

Cauchy[0,.5]
Bias -0.0000 -0.0203 0.0141 -0.0819 -0.5908 0.1313
MSE *0.1942 *0.6224 * 0.2364 *16.7155 *815.3688 *39.5613
s.t.d. 0.0140 0.0145 0.0062 0.1001 0.6836 0.1496

Cauchy[0,1]
Bias -0.0130 -0.0677 0.0224 -0.1179 -0.8898 0.1970
MSE 0.0005 0.0095 0.0006 0.0238 1.2958 0.0638
s.t.d. 0.0189 0.0702 0.0118 0.0994 0.7107 0.1583

Cauchy[0,1.5]
Bias -0.0249 -0.1073 0.0298 -0.1428 -1.1991 0.2657
MSE 0.0010 0.0308 0.0020 0.0492 1.9455 0.0989
s.t.d. 0.0195 0.1392 0.0332 0.1700 0.7132 0.1683

Cauchy[0,2]
Bias -0.0311 -0.1363 0.0374 -0.1604 -1.3864 0.2996
MSE 0.0013 0.0298 0.0021 0.0521 2.3090 0.1121
s.t.d. 0.0172 0.1059 0.0270 0.1626 0.6226 0.1497

Cauchy[0,2.5]
Bias -0.0448 -0.2025 0.0503 -0.1883 -1.4923 0.3311
MSE 0.0031 0.0827 0.0041 0.0570 2.5781 0.1308
s.t.d. 0.0331 0.2043 0.0401 0.1469 0.5931 0.1458
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Figure 3.2: Frequency Density plot of α1 estimated by RQMM and EMM (dash-dot red line) when

θ = [−0.7, 0.9, 0.363], ǫt ∼ CO, T=500, and 500 MC runs.
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Figure 3.3: Frequency Density plot of α1 estimated by RQMM and EMM (dash-dot red line) when

θ = [−0.7, 0.9, 0.363], ǫt ∼ t2, T=500, and 500 MC runs.
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Figure 3.4: Frequency Density plot of α1 estimated by RQMM and EMM (dash-dot red line) when

θ = [−0.7, 0.9, 0.363], ǫt ∼ t3,T=500, and 500 MC runs.
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Figure 3.5: Frequency Density plot of α1 estimated by RQMM and EMM (dash-dot red line) when

θ = [−0.7, 0.9, 0.363], ǫt ∼ CN , T=500, and 500 MC runs.
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Figure 3.6: Frequency Density plot of α1 estimated by RQMM and EMM (dash-dot red line) when

θ = [−0.7, 0.9, 0.363], ǫt ∼ Cauchy(0, 0.5), T=500, and 500 MC runs.
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Figure 3.7: Frequency Density plot of α1 estimated by RQMM and EMM (dash-dot red line) when

θ = [−0.7, 0.9, 0.363], ǫt ∼ Cauchy(0, 1.5), T=500, and 500 MC runs.
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Figure 3.8: Frequency Density plot of α1 estimated by RQMM and EMM (dash-dot red line) when

θ = [−0.7, 0.9, 0.363], ǫt ∼ Cauchy(0, 2), T=500, and 500 MC runs.

Table 3.2: Comparison of Bias, MSE and final estimates from RQMM and EMM, when the model

has no misspecification, under the normality assumption with moderate sample sizes T=500, 1000,

N=10000 and MC runs=500

RQMM EMM

α0 α1 σv α0 α1 σv

T=500

Mean -0.7158 0.8989 0.3659 -0.7138 0.8987 0.3640
Bias -0.0158 -0.0011 0.0029 -0.0138 -0.0013 0.0010
MSE *0.5934 *0.0561 *0.2038 *0.5847 *0.0174 *0.3878
s.t.d. 0.0186 0.0074 0.0140 0.0199 0.0040 0.0197

T=1000

Mean -0.7137 0.8984 0.3671 -0.7107 0.8987 0.3658
Bias -0.0137 -0.0016 0.0041 -0.0107 -0.0013 0.0028
MSE *0.4252 *0.0391 *0.1707 *0.3502 *0.0087 *0.2342
s.t.d. 0.0155 0.0061 0.0124 0.0154 0.0027 0.0150
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Figure 3.9: Frequency Density plot of α1 estimated by RQMM and EMM (dash-dot red line) when

θ = [−0.7, 0.9, 0.363], ǫt ∼ N(0, 1), T=1000, and 500 MC runs.
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Figure 3.10: Frequency Density plot of α1 estimated by RQMM and EMM (dash-dot red line) when

θ = [−0.7, 0.9, 0.363], ǫt ∼ N(0, 1), T=500, and 500 MC runs.
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Table 3.3 shows the comparison of RQMM and EMM estimates, where the under-

lying error distribution is standardized normal and in the absence of misspecification with

small sample sizes T = 50, T = 100, and T = 200. When there is no misspecification, for

Table 3.3: Comparison of Bias, MSE and final estimates from RQMM and EMM, when the model

has no misspecification, with T=50, 100, 200, N=10000 and MC runs=500

RQMM EMM

α0 α1 σv α0 α1 σv

T=50

Mean -0.7156 0.9107 0.3613 -0.7227 0.8993 0.3613
Bias -0.0156 0.0107 -0.0017 -0.0227 -0.0007 -0.0017
MSE *0.6657 *0.4609 *0.1472 *1.0164 *0.3581 *0.3216
s.t.d. 0.0206 0.0187 0.0120 0.0224 0.0189 0.0179

T=100

Mean -0.7200 0.9045 0.3625 -0.7234 0.8986 0.3584
Bias -0.0200 0.0045 -0.0005 -0.0234 -0.0014 -0.0046
MSE *0.8759 *0.2129 *0.1322 *1.9670 *0.1156 *1.1911
s.t.d. 0.0218 0.0139 0.0115 0.0377 0.0107 0.0342

T=200

Mean -0.7181 0.9018 0.3628 -0.7216 0.8980 0.3599
Bias -0.0181 0.0018 -0.0002 -0.0216 -0.0020 -0.0031
MSE 0.0014 0.0002 0.0004 0.0020 0.0001 0.0010
s.t.d. 0.0329 0.0155 0.0196 0.0387 0.0077 0.0322

the small sample study, RQMM gives better estimates for α0 and σv in terms of accuracy

and efficiency evaluated by bias and MSE as demonstrated by the Figures 3.11 – 3.13 and

Table 3.3. The better estimates are given in bold numbers.

3.6 Conclusion

In this chapter, we proposed a methodology based on II and QR tools to yield

robust estimates in the presence of outliers and local mispecification of models. We illus-

trated the application of RQMM in nonstandard scenarios and compared their performance

with respect to the established EMM procedure by conducting a simulation study. Based

on the empirical results, we can conclude that RQMM is successful in controlling the bias

and MSE in the presence of contamination.

Robustness often comes at the cost of efficiency. Therefore, in cases of correct spec-

ification of the model, RQMM is compared with EMM with respect to small and moderate

sample studies. Our empirical findings suggest that the RQMM successfully yields robust

statistics. The method gives an improved performance in small sample studies, especially
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Figure 3.11: Frequency Density plot of α1 estimated by RQMM and EMM (dash-dot red line) when

θ = [−0.7, 0.9, 0.363], ǫt ∼ N(0, 1), T=50, and 500 MC runs.
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Figure 3.12: Frequency Density plot of α1 estimated by RQMM and EMM (dash-dot red line) when

θ = [−0.7, 0.9, 0.363], ǫt ∼ N(0, 1), T=100, and 500 MC runs.
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Table 3.4: Comparison of Bias, MSE for competing Auxiliary models under RQMM with incorrect

specification. ∗x denotes 1e−3 × x. Errors are generated from t with 1 d.f.

RQMM

α0 α1 σv

SYMM

Mean -0.7327 0.8307 0.3804
Bias -0.0327 -0.0693 0.0174
MSE 0.0014 0.0234 0.0013
s.d. 0.0196 0.1372 0.0324

ASYMM SL.

Mean -0.7279 0.8303 0.3804
Bias -0.0279 -0.0697 0.0174
MSE 0.0012 0.0211 0.0013
s.d. 0.0198 0.1281 0.0311

SYMM-3

Mean -0.7074 0.8854 0.3729
Bias -0.0074 -0.0146 0.0099
MSE *0.4827 *0.4834 *0.2151
s.d. 0.0208 0.0165 0.0109

iGARCH

Mean -0.7143 0.8346 0.3826
Bias -0.0143 -0.0654 0.0196
MSE 0.0005 0.0067 0.0006
s.d. 0.0165 0.0495 0.0132

SVLIN

Mean -0.7465 0.6468 0.4084
Bias -0.0465 -0.2532 0.0454
MSE 0.0096 0.3254 0.0114
s.d. 0.0865 0.5137 0.0970

ASYMM ABS

Mean -0.7508 0.7215 0.3871
Bias -0.0508 -0.1785 0.0241
MSE 0.0144 0.1417 0.0019
s.d. 0.1095 0.3331 0.0368

IAR-GARCH

Mean -0.7120 0.8919 0.3694
Bias -0.0120 -0.0081 0.0064
MSE *0.3990 *0.9823 *0.1947
s.d. 0.0161 0.0304 0.0125
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Figure 3.13: Frequency Density plot of α1 estimated by RQMM and EMM (dash-dot red line) when

θ = [−0.7, 0.9, 0.363], ǫt ∼ N(0, 1), T=200, and 500 MC runs.

for α0, σv. For the memory parameter α1, RQMM overestimates while EMM underesti-

mates but is closer to the truth. MSE results are found to be comparable. In moderate

sample sizes, when T = 1000, the estimates are comparable. The boxplots of the estimates

show that the interquartile range contains the true parameter in most of the cases. Table

3.4 shows the performance of the competing auxiliary models under misspecification. All

models produce estimates better than EMM. The simulation study clearly demonstrates

the benefits of using this method for robust estimation purposes.

We considered data with high kurtosis in addition to the local misspecification

of the model. Empirical findings verify the strength of this method. The data analysis

in the previous chapter has already demonstrated the ability of the quantile specifications

in fitting the tail behavior well. Hence, RQMM possesses the dual advantage of yielding

robust parameter estimates of the SV model along with VaR calculation.
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Chapter 4

Regression Quantile with Kalman filtering

In this chapter, we extend the Kalman filtering approach to obtain quantiles from

a QR setup based on the SV model assumption. The state space model representation of the

SV can be exploited by the Kalman filter to produce quantile estimates. The usage of the

quantile regression (Koenker and Bassett, 1978) criterion can be looked upon as a further

refinement over QML estimates. Most of the earlier work was related to model estimation

with the primary focus on volatility forecasting. Our aim is to propose a method that serves

the dual purpose of model estimation and VaR calculation directly.

In the next section, a brief outline of the Quasi Maximum likelihood (QML) is pro-

vided. This is followed by a description of the proposed method. For illustration purposes,

simulation study results are presented in Section 4.3. Finally, the discussion is provided in

Section 4.4.

4.1 Quasi Maximum Likelihood

A brief summary of the Quasi Maximum likelihood procedure developed by Nelson

(1988), Harvey et al. (1993) and Ruiz (1994) is described. It uses the statespace form as

mentioned earlier where we take the log of the squared terms in (4.1). Let yt be the

stochastic process of returns

yt = σtǫt ǫt ∼ N(0, 1) (4.1)

where σ2
t is the conditional variance of yt. In the simplest SV model framework, the log of

volatility is expressed as an AR model:

ln(σ2
t ) = α0 + α1 ln(σ2

t−1) + vt vt ∼ N(0, σ2
v) (4.2)



83

where ǫt and vt are assumed to be independent of each other. The volatility is the latent

variable, the parameters of the model are denoted by θ = (α0, α1, σ
2
v).

ln(y2
t ) = ln(σ2

t ) + ln(ǫ2t ) (4.3)

Let us define Yt = ln(y2
t ), xt = ln(σ2

t ) and ηt = ln(ǫ2t ). Hence (4.3) and (4.2) can be

represented by

Yt = xt + ηt (4.4)

xt = α0 + α1xt−1 + vt (4.5)

The observation error ηt is a logarithmic chi squared random variable of degree 1 with mean

and variance known to be approximately -1.27 and π2/2 respectively. The standard Kalman

filter is applied to (4.4) and (4.5). For a detailed description the reader is referred to Harvey

(1989). The one step ahead prediction and updating formulae are as follows:

One step ahead prediction:

xt|t−1 = α0 + α1xt−1|t−1 (4.6)

Pt|t−1 = α2
1Pt−1|t−1 + σ2

v (4.7)

Updating:

xt|t = xt|t−1 +
Pt|t−1

δt
ηt (4.8)

Pt|t = Pt|t−1 −
P 2

t|t−1

δt
(4.9)

where xt|t−1 and Pt|t−1 are respectively the optimal linear estimator and the variance of xt

given information till time t−1, and xt|t and Pt|t are respectively the updated optimal linear

estimator and the variance of xt given information till time t. ηt and δt are respectively the

prediction error and its variance given by

ηt = Yt − xt|t−1 + 1.27 (4.10)

δt = Pt|t−1 + π2/2 (4.11)

The optimal linear estimator means the estimator which minimizes the mean squared error

(MSE) in the class of all linear estimators. Since the observational error ηt in our model is

not normally distributed, the Kalman filter does not provide the minimum mean squared
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error (MMSE) of the latent variable xt although it still produces an estimator that minimizes

the MSE among the class of linear estimators. We start the recursion by initializing the

values x1|0 and P1|0 by using the knowledge that the unconditional mean and variance of

xt is known to be α0/(1 − α1) and σ2
v/(1 − α2

1).

The QML is the likelihood obtained by assuming that the observational errors ηt

are normally distributed. In that case, the likelihood is

lnL = −T
2

ln(2π) − 1

2

T
∑

t=1

ln(δt) −
1

2

T
∑

t=1

η2
t

δt
(4.12)

and can be maximized to obtain estimates of the SV parameters, θ. The QML estimate is

often used as a preliminary estimate for other complex procedures for further refinement.

We also use the QML estimates in our method as the initial method. The attraction of this

method is its ease in implementation but as has been observed in Jacquier et al. (1994),

they may not perform well in small sample sizes. The inefficacy can be attributed to the

normality assumption.

The QR approach is a nonparametric approach that yields robust estimates. Since

we are interested in obtaining VaR quantiles directly from our method, this tool is used to

filter out quantiles and also yield SV model paramater estimates simultaneously.

4.2 Regression Quantile - Kalman Filter Method

The method of using the Regression Quantile (RQ) objective function (Koenker

and Bassett, 1978) with a quantile model specification provides a robust approach for model

estimation. To the best of our knowledge, there is no method that takes into account the

VaR calculation directly in SV models, and also provide estimates of the SV model para-

meters simultaneously. Also, it may be noted here that the RQMM approach described

in Chapter 3 is an intensive simulation-based procedure, whereas the method presented

here is computationally simple. This proves to be an advantage, especially when time is

a constraint. In this section, we propose a conjunction of the RQ objective function with

the QML. Since the RQ criterion does not depend on any distributional assumptions, it

is expected to provide robust estimates in the presence of outliers. The motivation of this

method stems from the CAViaR model of Engle and Manganelli (2004). In the CAViaR

group of models, the iGARCH quantile specification is derived under the GARCH assump-

tion. The GARCH parameters can be directly estimated nonparametrically by estimating

the quantile model using the RQ objective criterion. Although ML estimation produces
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efficient statistics, preliminary simulation results as given in Engle and Manganelli (2004)

show that those obtained using the RQ objective function (also referred to as the check

function or tick function) yield good estimates.

In the SV model scenario, we were motivated to derive a quantile specification

following a similar principle, since finding the exact likelihood itself is a challenging problem.

Let the conditional quantile given the volatility process is known, be denoted by q′t(τ), ie.,

τ =
∫ q′t(τ)
−∞ P (yt|σt)dyt. Given the true model is SV given by (4.1) and (4.2), the conditional

recursive quantile structure is given by:

ln q′t
2 = {α0 + log (k2)(1 − α1)} + vt + α1 log q′t−1

2 (4.13)

where k = F−1(τ), where F is the CDF of ǫt.

The algorithm starts with obtaining estimates for vt from the Kalman filter,

vt = xt|t − xt|t−1, computing the q′t series recursively using (4.13), and finally refining

the optimization with the help of the check function. But, in order to use the regression

quantile function and estimate the parameters of the underlying model, the variables should

undergo a scale transformation, such that it can be written in terms of all the parameters of

the SV model. This technique can be seen as a plug-in method, where the estimates of v̂t are

plugged into (4.13), to obtain the quantile estimates. With the SV parameters embedded

in (4.13), the regression quantile criterion can be used to estimate the parameters.

The equation (4.13) only contains the parameters {α0, α1}. Instead of using only

the yt returns process, we transform the variable to zt =
ln(y2

t )
σv

. The transformed measure-

ment equation become

zt = x′t + η′t

where x′t =
xt

σv
, η′t =

ηt

σv
, ηt = ln ǫ2t and ǫt ∼ N(0, 1) as defined earlier. Further, the

state space equation would be of the form:

x′t = α′
0 + α1

xt−1

σv
+ v′t

where α′
0 = α0/σv, v

′
t = vt/σv. Hence, the new variate v′t is standard normal. With the

given framework, let us denote the x′t|t−1 and P ′
t|t−1 are respectively the optimal linear

estimator and the variance of x′t given information till time t − 1, and x′t|t and P ′
t|t are

respectively the updated optimal linear estimator and the variance of x′t given information
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till time t. Therefore, v̂′t = x′t|t−x′t|t−1. With the q′t as defined above, the recursive quantile

model is therefore

log q′t
2

σv
= β1 + β2

log q′2t−1

σv
+ v′t (4.14)

where β1, β2 can be written in terms of the SV parameters as follows:

β1 = (1 − α1)
ln k2

σv
+
α0

σv

β2 = α1

where k is as defined above by k = F−1(τ). The q′t obtained above are then used to minimize

the RQ objective criterion given by:

argmin
θ

1

T

T
∑

t=1

[τ − I(yt < q′t(θ))][yt − q′t(θ)]

The above minimization can be formulated to consider the percentiles or the deciles by

summing over all the τis’ (where eg., τ = (0.1, 0.2, . . . , 1), in the case of deciles), in case

the estimation problem is of interest only. The algorithm is as follows: Randomly generate

10,000 vectors from a Uniform(a,b) distribution to obtain initial parameter values. (a,b)’c

range should contain the true parameter values. For the empirical study, Uniform random

numbers from (-10,10), (0,1), (0,1) for (α0, α1, σv) respectively, are used. We choose the first

10 (α0(0), α1(0), σv(0)) estimates with the largest log QML value. We use local optimization

fminsearch (a Matlab inbuilt routine) to obtain 5 QML estimates. Use the standard Kalman

filter to get the vt = x′t|t−x′t|t−1. Plugging them in equation (4.14), the q′t series is obtained.

Finally, the check function is used as a final refinement and this optimization is repeated

until convergence.

Once the parameter space is restricted to a local region using QML optimization

step, the QR step with its robust loss criterion produces desired results.

In the out of sample case, where the q′t are used for ex-ante VaR evaluation exer-

cises, the estimates are obtained from the best linear predictor of past information of x′ts’

as opposed to the current information. In order to estimate k in (4.14) before the quan-

tile recursion, smoothed volatility estimates can be obtained after the initial θ̂ values are

obtained. These are used to obtain the empirical τ th quantile based on the residuals, by

standardizing the returns.

The method is computationally simple, and is implemented in heavy tailed error

distribution cases eg., t2, t5 in the empirical study given below.
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4.3 Empirical Study

4.3.1 Application to Stocks

In this section we will illustrate the application of RQ-KF to the stock data set.

The RQ-KF method is tested with respect to the performance of the different out-of-sample

tests. 5% and 1% VaR estimates are calculated using the optimal linear predictor values,

based on the daily closing prices of DNA, GE, MER, F. The RQ objective criterion is

minimized with respect to the percentiles during the estimation step. The Hits out of

sample percentages were calculated by 1
T

∑T
t I(yt < −V aRt) × 100, where T denotes the

out-of-sample observations and V aRt = −q′t, following the convention used in reporting

VaR values as a positive number. The results are presented in Table 4.1.

Table 4.1: Comparison of the out of sample test results of the 5% and 1% VaR estimates obtained

from RQ-KF for GE, F, DNA and MER

5% VaR

GE F DNA MER

Hits out(%) 3.2025 5.1653 5.3719 5.7851
DQ out (p-val) 0.0204 0.4082 0.4224 0.0179
UC out (p-val) 0.0103 0.8135 0.5955 0.2624
M out (p-val) 0.0886 0.7890 0.5990 0.0155
CC out (p-val) 0.0055 0.9386 0.7588 0.0294

1% VaR

Hits out(%) 1.0331 1.2397 1.8595 2.1694
DQ out (p-val) 0.9285 0.7285 0.0508 0.0004
UC out (p-val) 0.9177 0.4536 0.0072 0.0003
M out (p-val) 0.6477 0.1350 0.4088 0.0798
CC out (p-val) 0.8961 0.2520 0.0398 0.0014

The results obtained from the out-of-sample statistics in Table 4.1 are similar to

those obtained in Tables 2.1–2.12 in Chapter 2, in terms of acceptance of the model given

by (4.14) with most of the competing CAViaR models at 1% significance level. The p-values

that are rejected at 1% level of significance are reported in bold, in the table. This holds

true especially in cases of F, DNA, GE. As pointed out in Chapter 2, the quantile evolution

can vary at 1% and 5% levels of significance, which is observed in the case of DNA and

GE. The number of exceptions (hits) is one of the deciding factors; however, as seen in the
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previous results, the out-of-sample tests provide information about the characteristics such

as independence and the past exceptions dependencies which should also be considered as

indicators of a good model. The instruments used in the DQ test are a constant, and VaR

forecast. An interesting aspect of the present results is that they show better conformity

of the model in the 5% VaR case than 1%. This is in complete contrast to the findings in

Chapter 2. One possible reason might be that we allot equal weights to all the percentiles in

the estimation in this study. Minimization of the RQ objective criterion with respect to the

τ th quantile of interest (when τ = .01) might result in better fitting. F at both the 1% and

5% cases, DNA at the 5% case, MER at the 5% case, GE at 1% case produce the best fits

in terms of strong acceptance of the out-of-sample tests and also by the Hits-out-of-sample

percentages. For example, in the GE 1% case, the Hits-out-of-sample percentage is 1.0331,

which is significantly better than the exceptions produced by the CAViaR and SVLIN

models. This is further supported by strong acceptance p-values of the tests. For visual

illustration, the VaR estimates at 1% and 5% levels are plotted against the corresponding

returns for four stocks considered in Figure 4.1.
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Figure 4.1: 5% and 1% VaR estimates for the short positions and their corresponding log returns.

The red reference line serves to divide the out-of-sample from the in-sample data. The blue and

magenta lines denote the VaR95 and VaR99 respectively.



89

4.3.2 Simulation Study

A simulation study was carried out to compare the performance of the RQ-KF

method and QML scheme in terms of estimation accuracy and efficiency. The RQ-KF

method is tested on the same series of parameters used in Jacquier et al. (1994). Data are

generated from the SV model with error distributions from standard Normal, t2, and t5

with total number of data points T = 4500. The first 3000 constitutes the in-sample data

and the remaining serves as the out-of-sample data.

Using 1500 data for estimation by QML is a moderate sample size; larger datasets

improves its performance. Since QML is known to show poor small sample performance,

we are interested in the performance of the check function criterion over the initial results

and its applicability as a tool for VaR assessment. Also, the time required for both the

procedures (QML and RQ-KF) is relatively a lot less compared to any of the simulation

based estimation procedures (RQMM, EMM, SMM, MCMC, etc.). A comparative study

based on 500 MC loops is carried out between the QML estimates and RQ-KF estimates

for illustration and the results are reported in Table 4.2.

The results obtained from Table 4.2 show that there is a slight improvement in

the estimation of α0 and α1 with respect to the QML estimates in terms of bias, MSE.

This is not true for the σv parameter though. With the use of box plots, as seen in Figure

4.3, the difference between the estimates obtained from both methods are not statistically

significant. The MC interquantile ranges contain the parameter of interest. For illustration

purposes, Figure 4.2, shows the plots of the α1 estimates for the different distributional

assumptions, and the three parameter settings considered in the simulation study.

In a notched box plot the notches represent a robust estimate of the uncertainty

about the medians for box-to-box comparison. Boxes whose notches do not overlap indicate

that the medians of the two groups differ at the 5% significance level.

The estimation procedure is driven by the updated optimal linear filters x′t|t. How-

ever, if we were to examine the quantile forecasts, the best linear predictor based on the

previous information, i.e., x′t|t−1 are used. The VaR estimates obtained are evaluated by

the out of sample test performance, as illustrated in Table 4.3.
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Table 4.2: Comparison of Bias and MSEs’ for RQ-KF and QML estimates for standard normal, t5

and t2 distributions. The sample size T=3000, and MC run=500

RQ-KF QML

θ1 α0 α1 σv α0 α1 σv

t(2)
Bias -0.0404 -0.0073 0.0133 -0.0443 -0.0060 0.0055
MSE 0.0673 0.0013 0.0114 0.0590 0.0011 0.0057
s.t.d. 0.2565 0.0354 0.1060 0.2391 0.0323 0.0754

t(5)
Bias -0.0288 -0.0053 0.0121 -0.0374 -0.0051 0.0062
MSE 0.0444 0.0008 0.0094 0.0515 0.0009 0.0050
s.t.d. 0.2091 0.0287 0.0965 0.2241 0.0303 0.0703

N(0,1)
Bias -0.0235 -0.0045 0.0121 -0.0344 -0.0047 0.0093
MSE 0.0359 0.0007 0.0085 0.0411 0.0007 0.0041
s.t.d. 0.1883 0.0256 0.0914 0.1999 0.0269 0.0637

θ2 α0 α1 σv α0 α1 σv

t(2)
Bias -0.0312 -0.0050 0.0106 -0.0292 -0.0039 0.0052
MSE 0.0210 0.0004 0.0066 0.0244 0.0004 0.0034
s.t.d. 0.1418 0.0194 0.0806 0.1537 0.0206 0.0578

t(5)
Bias -0.0183 -0.0031 0.0139 -0.0206 -0.0028 0.0051
MSE 0.0115 0.0002 0.0061 0.0145 0.0003 0.0023
s.t.d. 0.1057 0.0145 0.0768 0.1189 0.0160 0.0478

N(0,1)
Bias -0.0260 -0.0041 0.0152 -0.0263 -0.0036 0.0091
MSE 0.0112 0.0002 0.0051 0.0121 0.0002 0.0018
s.t.d. 0.1026 0.0140 0.0699 0.1068 0.0144 0.0420

θ3 α0 α1 σv α0 α1 σv

t(2)
Bias -0.0151 -0.0023 0.0091 -0.0075 -0.0010 0.0028
MSE 0.0036 0.0001 0.0032 0.0043 0.0001 0.0010
s.t.d. 0.0579 0.0079 0.0557 0.0655 0.0088 0.0323

t(5)
Bias -0.0096 -0.0015 0.0048 -0.0000 -0.0000 0.0021
MSE 0.0029 0.0001 0.0022 0.0047 0.0001 0.0010
s.t.d. 0.0533 0.0073 0.0465 0.0689 0.0093 0.0317

N(0,1)
Bias -0.0163 -0.0024 0.0075 -0.0087 -0.0012 0.0063
MSE 0.0029 0.0001 0.0020 0.0039 0.0001 0.0009
s.t.d. 0.0516 0.0071 0.0441 0.0616 0.0083 0.0286
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Table 4.3: Comparison of the out-of-sample test results of the 5% VaR estimates obtained for the

RQ-KF method. Error distributions of N(0,1), t5 and t2 and T = 3000 with different parameter

settings are used.

5% VaR

θ1 t2 t5 N(0,1)

Hits out(%) 5.4510 5.8421 6.0963
Emp. C.I. (4.3, 6.7) (4.5, 7.2) (4.7, 7.6)
DQ out acc% 93.9 79.2 64.5
UC acc% 93.4 78.3 68.5
M acc% 98.3 96.9 94.8
W acc% 97.2 96.9 97.1
CC acc% 95.7 84.2 73.1

θ2 t2 t5 N(0,1)

Hits out(%) 5.4506 5.7940 5.9991
Emp. C.I. (4.2, 6.9) (4.5, 7.2) (4.5, 7.5)
DQ out acc% 92.3 79 66.9
UC acc% 93.4 79.6 70.1
M acc% 98.5 98.3 94.6
W acc% 97.2 95.6 96
CC acc% 94.2 86.1 74.3

θ3 t2 t5 N(0,1)

Hits out(%) 5.4091 5.6615 5.8174
Emp. C.I. (4.1, 6.7) (4.2, 7.2) (4.2, 7.4)
DQ out acc% 91.6 84.7 73.9
UC acc% 93.1 83.4 77.8
M acc% 97.6 98.5 95.6
W acc% 96.8 96.2 94.1
CC acc% 95.2 87.6 81.4
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Frequency Density Plots of α̂1
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Figure 4.2: Frequency Density plot of α̂1 estimated by RQ-KF (black line) and QML (dash-dot

red line) where θ1 = [−0.736, 0.9, 0.363], θ2 = [−0.368, 0.95, 0.26], and θ3 = [−0.147, 0.98, 0.166],

T=3000 from 500 MC samples.

4.4 Conclusion

The main objective of the simulation study and data analysis presented in Section

4.3 was to evaluate the performance of RQ-KF method as a VaR computation tool as well as

its ability to estimate the SV model. This is relevant in the context of SV models especially

because its likelihood does not provide an analytical closed form solution and as a result,

computation is not straightforward. The VaR calculation in practice depends on a two step

method, where (a) volatility forecasts are obtained and (b) a tool is required to convert

the volatility forecasts for VaR prediction. Our tool uses a quantile specification to directly

estimate the model parameters as well as provide VaR estimates. Comparison with the
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Figure 4.3: Box plots of σ̂v estimated by RQ-KF and QML. From the left panel, θ1 =

[−0.736, 0.9, 0.363], θ2 = [−0.368, 0.95, 0.26], and θ3 = [−0.147, 0.98, 0.166] are shown respectively.

QML estimates show that the parameter estimates obtained are comparable based on the

simulation results. Also, when RQ-KF is used to compute quantiles, application to stock

data and simulation studies show that the tool performs well in the empirical evaluation

studies as well. Hence, this methodology provides a simple and quick technique for model

estimation and filtration of quantiles which can be further used for testing and evaluation.

As the α1 parameter → 1, and the σv → 0, the performance of the method is

expected to improve. This is confirmed by the results obtained in Table 4.3. With an

increase in the sample size, the accuracy of the results increases, proven by the rate of

acceptance of the out-of-sample tests. Our empirical findings suggest that summing the RQ

objective function over the percentiles provides a better criterion than using lesser quantiles,

such as deciles, in terms of fit. RQ-KF’s performance in heavy tailed distribution cases is

in particular, highly encouraging. Hence, this tool has its usefulness in the presence of high

kurtosis prevalent in financial data. With a large data set, QML provides better initial

estimates which help produce better quantile estimates.

In order to use the Kalman filter, a restriction of this method is that it can be

applied to models that can be transformed to a state space form. In this respect, RQMM

is a far more generalized tool and its advantage lies in its applicability in all situations.

The simplicity and ease of application makes the RQ-KF procedure attractive, especially

when time is a constraint. The check function adds a certain amount of flexibility especially

when working with nonstandard cases. This method can be extended to the asymmetric

SV models.
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Chapter 5

Non-linear Filtering based on a Hermite

polynomial approach

The difficulty in the estimation of the SV group of models arises from the addition

of an innovation process in the volatility equation. Calculation of the exact likelihood

requires integrating with respect to an infinite dimensional state vector and thus cannot be

solved analytically. The exact likelihood is given by

L = p(θ|{yt}T
t=1)

=

∫ ∫

. . .

∫

p({yt}T
t=1|{σ2

t }T
t=1)p({σ2

t }T
t=1|θ)dσ2

1dσ
2
2 . . . dσ

2
T

where p(.|.) is the conditional density and T is the total number of observations.

In order to solve the infinite dimensional problem, while carrying out the integra-

tion in the nonlinear filtering scheme, Watanabe (1999) uses a judicious choice of nodes

based on Tanizaki’s (1993) technique. This is used for calculating the different probability

estimates in the recursion steps of the NFML scheme. These can be used in computing the

likelihood during the estimation process, or to find the VaR estimates in the monitoring

process, as the case may be.

We interpret the NF scheme differently in terms of the moments as a basis of the

recursion steps instead of the node points. This becomes feasible since a Gram Charlier

(GC) representation of p(xt|yt−1) exists. Our study shows that it can be defined effectively

by its first few moments. Hence, the GC density based on Hermite polynomials is used as an

effective replacement to the unknown conditional probability densities in NFML. The choice

of density is facilitated by the assumption that the unconditional distribution of xt follows
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a Normal distribution. Therefore, the aim of our study was to seek a parsimonious fitting

based on the Hermite polynomial coefficients. This exercise ultimately results in seeking

an alternative finite-dimensional approach that uses a parametric form for the unknown

densities.

Our empirical findings show that the first five hermite polynomials are enough to

obtain the desired results in the SVAR(1) model. The five coefficients acts as a replacement

for the 50 nodes used in Watanabe’s method, resulting in reduced computational burden.

A brief outline of the nonlinear filtering method is given. The application of

Hermite polynomials in this context is discussed next, followed by empirical results. A

scope for future study using the Cornish Fisher expansion is discussed.

5.1 The Nonlinear Filter

The non linear filtering method of Watanabe (1999), Fridman and Harris (1998)

uses the Bayesian rule in recursively calculating the conditional densities of the latent volatil-

ity given previous information on the return series and updating at every step, similar to

the Kalman filter. The conditional return probability is obtained as a consequence of this

filtering scheme. Each step requires calculation of an integral. Watanabe (1999) uses the

trapezoidal rule and Fridman and Harris (1998) uses the Gauss-Legendre numerical integra-

tion rule. The SV parameters estimates are obtained by maximum likelihood. For details on

the method, see Chapter 2, Section 2.7. An outline of the algorithm is as follows: Following

previous notations,

• Start the calculation with p(xt|yt−1), where p(x1|y0) = p(x1) is known.

• Calculate p(yt|yt−1), using p(yt|xt)(known), and p(xt|yt−1) from the previous step.

• Calculate p(xt+1|yt) based on p(xt+1|xt) (known), p(yt|xt) (known), and p(xt|yt−1).

These three steps outline the recursion steps.

Hermite polynomials

Hermite polynomials of degree n denoted by Hn(x) is given by

Hn(x)φ(x) = (−1)nφn(x)
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where φ(x) is the standard normal density. φn(x) = dn

dxnφ(x) is the nth derivative of φ(x).

The GC form of a density is given as follows:

p(y) =
∑

∞
k=0akHk(y)w(y)

where w(y) is the base density, and ak can be written in terms of the moments as follows:

ak =
1

k!
(µ′k − (k)2

1!2
µ′k−2 +

(k)4
2!22

µ′k−4 −
(k)6
3!23

µ′k−6 + . . .)

The orthogonality result of the Hermite polynomials, is,

∫ ∞

−∞
Hm(x)Hn(x)φ(x)dx = m! if m = n

= 0 if m 6= n

The implementation of the hermite polynomials in the recursion is discussed in

the next section.

5.2 Approximation scheme

We propose an approximation scheme to the nonlinear filtering (NF) approach.

Instead of finding an estimate of the pdf p(xt|yt−1) at every step, we update the coefficients

of the GC expansion of the pdf at each step. If a small number of terms is sufficient for the

GC representation, the computation time is reduced.

In the NF scheme, the only unknown probability density function that appears

in the integrand is p(xt|yt−1). We approximate this density in terms of the GC density

approximation. The hermite polynomials are an appropriate choice because of their domain

on the ℜ line. This technique should in principle be adapted to all SV model extensions. We

include some results on HSV models. If an appropriate approximation exists and the number

of polynomial terms needed is decided apriori, then the entire algorithm reduces to finding

the coefficients of the GC expansion. Hence, with every time step, instead of integrating

over all the latent state variables, only the coefficients (number decided apriori) needs to

be updated. This leads to dimension reduction, given that the number of coefficients are

appreciably less than the number of latent state variables used.

Since we are interested in the recursive calculation of the coefficients, it eventually

reduces to a linear regression fit problem. In case the base distribution is close enough to

the true density, a GC expansion with a few terms proves to be quite efficient.



97

5.3 Details of the Approximation scheme

The step by step algorithm is:

• With the representation

p(xt|yt−1) =

K
∑

k=1

c
(t)
k Hk

(

xt

σh

)

1

σh
φ

(

xt − µh

σh

)

,

K = 4 is decided apriori and is fixed. Start the calculation taking ~c = [1, 0, 0, 0, 0]

since p(x1|y0) = p(x1) is known. Given that we adopt a rule for choosing xts by

the Kalman filtering technique described earlier, xts are known at the start of the

recursion. Solving for the coefficients reduces to a linear regression problem. Create

the matrix ∆ with components ∆i,j =
1

σh
φ

(

x
(j)
t − µh

σh

)

Hi

(

x
(j)
t

σh

)

. Denoting Γ =

(∆′∆)−∆′. Therefore

c
(t)
k =

n
∑

j=1

Γ
(t)
i,jp(x

(j)
t |yt−1)

.

• Calculate p(yt|yt−1), using p(yt|xt)(known), and p(xt|yt−1) from the previous step.

• Calculate p(xt+1|yt) based on p(xt+1|xt) (known), p(yt|xt) (known), and p(xt|yt−1).

Therefore, updating the coefficients:

c
(t+1)
i =

n
∑

j=1

Γ
(t+1)
i,j p(x

(j)
t+1|yt)

=

n
∑

j=1

Γ
(t+1)
i,j

K
∑

k=0

c
(t)
k

∫

p(x
(j)
t+1|xt)p(yt|xt)

1
σh
φ
(

xt−µh
σh

)

Hk(
xt
σh

)dxt

p(yt|yt−1)

Due to the discrete nature of the calculations, standardize the density estimates at

every step.

Cornish Fisher (CF) expansions are often used to approximate the quantiles in

finance. This would require finding the coefficients of the GC form of p(yt|yt−1). Using a

similar technique as described above, finding coefficients d
(t)
l would entail forming a grid of

points covering the range of observations yt. This, however, does not result in a reduced
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computation. If a risk manager already uses a Cornish Fisher algorithm for VaR calcula-

tions, the coefficients obtained from our algorithm can be used. We show that the first four

coefficients are sufficient to produce desired results, given that the following GC form is

used.

p(yt|yt−1) =
L
∑

l=1

d
(t)
l Hl(

yt

s
)φ(

yt

s
)

where s = exp(µh/2).

Since the volatility process in the eigen function approach of Meddahi (2001) uses

a hermite approximation (HSV models), this framework also seems to be a plausible area

to explore with the GC expansion.

The HSV model is given by:

yt = σtǫt ǫt ∼ N(0, 1)

σ2
t = a0 + a2(f

2
t − 1)

ft = βft−1 +
√

1 − β2vt vt ∼ N(0, 1)

where θ = (a0, a2, β) are the parameters.

5.4 Using the orthogonality property

Several different approaches were followed to write the expansion in terms of her-

mite polynomials. However, we failed to devise an algorithm in this direction. An approach

was to write p(xt|yt−1) and p(yt|xt) required in the recursion algorithm in GC form, and

bypass the integration by using the orthogonality property of the hermite polynomials to

compute p(yt|yt−1). The main attraction is the use of the orthogonality property without

resorting to the different numerical integration schemes. However, in order to implement

this property, a part of the integrand (p(yt|xt)), with a hermite representation in terms of

xt takes the form of an extreme value distribution. Hence, the technique fails.

Another approach we tested was to write GC expansions for all pdfs. We carry

out the following numerical procedure:

pxt|yt−1
(x,yt−1) =

∫

pxt|xt−1
(x, x′) × pyt−1|xt−1

(y, x′) × pxt−1|yt−2
(x′,yt−2)dx

′

∫

pyt−1|xt−1
(y, x′) × pxt−1|yt−2

(x′,yt−2)dx
′

.
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Writing φt(x) for pxt|yt−1
(x,yt−1), suppressing the dependence on yt−1, gives

φt(x) =

∫

Ay(x, x
′)φt−1(x

′)dx′

∫

By(x
′)φt−1(x

′)dx′
, (5.1)

where

Ay(x, x
′) = pxt|xt−1

(x, x′) × pyt−1|xt−1
(y, x′)

and

By(x
′) = pyt−1|xt−1

(y, x′).

The initial condition is φ0(x) = φ(x).

Since the denominator in (5.1) is just a normalizing constant, it can also be written

as

ψt(x) =

∫

Ay(x, x
′)φt−1(x

′)dx′

φt(x) =
ψt(x)

∫

ψt(x)dx

.

With the GC representation

φt(x) = φ(x)

[

∑

k

αt,kHk(x)

]

,

an expansion

Ay(x, x
′) = φ(x)

∑

l

∑

l′

al,l′(y)Hl(x)Hl′(x
′)

would lead to

ψt(x) = φ(x)
∑

l

Hl(x)
∑

l′

al,l′(y)
∑

k

αt−1,k

∫

Hl′(x
′)Hk(x

′)φ(x′)dx′.

The integral is known, so the coefficient

∑

l′

al,l′(y)
∑

k

αt−1,k

∫

Hl′(x
′)Hk(x

′)φ(x′)dx′

of Hl(x) could in principle be calculated.

The coefficients al,l′(y) in the expansion,

al,l′(y) =
1

m!n!

∫ ∫

Ay(x, x
′)φ(x′)Hm(x)Hn(x′)dx′dx,
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could be calculated up front for a grid of ys by numerical integration, and interpolated in

the recursion to the observed values yt−1.

Further, in the HSV case, we can further simplify the problem analytically. Let

us restrict the number of coefficients till 4 and using only the even ordered terms, we can

write the above as follows:

φt(x) = φ(x) {αt,0H0(x) + αt,2H2(x) + αt,4H4(x)}

If we start with GC expansions where pxt|xt−1
(x, x′) = φ(x) {∑i ai(x

′)Hi(x)} and pyt−1|xt−1
(y, x′) =

φ(y)
{

∑

j bj(x
′)Hj(y)

}

which in the HSV case, can be written as:

pyt−1|xt−1
(y, x′) = φ(y)







∑

j

cj(y)Hj(x
′)







Multiplying these two forms to obtain Ay(x, x
′), we get

Ay(x, x
′) = φ(x)

∑

l

∑

l′

al(x
′)cl′(y)φ(y)Hl(x)Hl′(x

′)

An analytical expression for al,l′ = al(x
′)cl′(y)φ(y) can be obtained.

ψt(x) =

∫

Ay(x, x
′)φt−1(x

′)dx′

=

∫

Ay(x, x
′)φ(x′)

∑

k

αt−1,kHk(x
′)dx′

= φ(x)φ(y)
∑

l

Hl(x)
∑

k

αt−1,k

∑

l′

cl′(y)

∫

al(x
′)Hl′(x

′)Hk(x
′)φ(x′)dx′

Since pxt|xt−1
(x|x′) is known, we can find the coefficients of its GC expansion.

al(x
′) =

βl

l!
Hl(x

′)

where β is the persistence parameter. Using the above expression above, expanding and

using the orthogonality result, we get,

ψt(x) = φ(x)φ(y)
[

H0(x)
(

αt−1,0c0(y) + 2!αt−1,2c2(y) + 4!αt−1,4c4(y)
)

+

+H2(x)γ
2
(

αt−1,0c2(y) + αt−1,2c0(y) + 4αt−1,2c2(y) + 12αt−1,2c4(y)+

+ 12αt−1,4c2(y) + 96αt−1,4c4(y)
)

+H4(x)γ
4
(

αt−1,0c4(y) + αt−1,2c2(y)

+ 8αt−1,2c4(y) + αt−1,4c0(y) + 8αt−1,4c2(y) + 72αt−1,4c4(y)
)]
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The denominator in φt(x) is the leading coefficient corresponding to the H0(x) term. Let us

denote the coefficients of the above expression by coeffk, then the denominator is coeff0φ(y).

Since we have written the updated φt(x) coefficients with respect to coefficients in φt−1(x
′),

we can compute the pdfs’ recursively. Therefore,

φt(x) = φ(x)
[

H0(x)
coeff0

coeff0
+H2(x)

coeff2

coeff0
+H4(x)

coeff4

coeff0

]

(5.2)

= φ(x)
[

αt,0H0(x) + αt,2H2(x) + αt,4H4(x)
]

(5.3)

Both numerical and analytical results show that the algorithm fails to conform

appropriately to the GC form. Using GC approximations in all cases make the frame-

work too restrictive. A test to see whether the GC expansion fits the known probability

pxt|xt−1
(x|x′) shows that the fit gets better as the persistence parameter β goes from 1

towards 0. However, the parameter of interest β is usually close to 1.

The issue with this formulation is its reduced flexibility. αt,0 is 1 by formulation.

Hence the base density cannot adapt itself to the unimodal and bimodal distribution in the

HSV case. When the observed return series is close to zero, p(xt|yt−1) is unimodal and with

extreme returns, the form becomes bimodal. The fixed base distribution acts as a hindrance

in making the approximation adaptive to the changing shapes. In conclusion, two important

criteria while considering approximating a distribution with the GC density approximation

is that the pdf to be approximated has to be close enough to the base distribution or the

leading term. If the probability in its tails decay at an exponential rate, the convergence

rates with which the density approximation by hermite polynomials matches the true density

get higher. This would eventually lead to a parsimonious use of hermite polynomials which

would lead to a practical implementation. The fewer parameters or coefficients used, the

better is the estimation. This scheme fails to flexibly switch between unimodal to bimodal

in HSV case, and results in an extreme value density with unsuitable base density, for one

of the integrands, in the SV case. Hence the orthogonality property cannot be used in the

NF scheme.

5.5 Empirical Results

The parameter settings in the estimation of SV model parameters in earlier chap-

ters are used. The first technique given in the Section 5.3 is implemented on these parameter

settings to check the estimated densities in the NF algorithm. Since P (yt|yt−1) estimates

are used for SV model estimation and VaR calculation purposes, graphical comparisons of
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P (yt|yt−1) under the different parameter settings are provided. The Figure 5.1 shows the

P (yt|yt−1) values obtained by Watanabe’s method and by applying the GC technique. By

GC technique, updating is with respect to the coefficients of the Hermite polynomials. The

number of coefficients chosen to represent p(xt|yt−1) is 4 and 8 in the SV and HSV models

respectively. This technique is described in the Section 5.3.
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Figure 5.1: Comparison of estimated conditional return probabilities calculated by Watanabe’s

method and that computed using the Gram-Charlier representation for θ=(-0.736,0.9,0.363) and

θ=(-0.368,0.95,0.26)

For the Hermite Stochastic volatility (HSV) model, 2000 data returns are generated

with θ = (.7, .5, .98). The lower panel of Figure 5.2 shows a near perfect fit for the entire

dataset. A smaller window of 50 datapoints from the set gives a better idea given in the

upper panel of Figure 5.2.

As discussed earlier, in Finance, Cornish Fisher (CF) expansions are used to calcu-

late the VaR of the data. For that purpose, GC coefficients are required for the P (yt|yt−1)

written in GC form. Hence, in such a case, a grid of the return values are decided apriori.

For example, in the SV case, a range of [-0.3,0.3] is used with the number of coefficients

chosen to be 8. This however, is an additional step in the aforementioned technique where

we update coefficients of P (xt|yt−1) terms only. This exercise yielded favorable results, and

the plots are shown in Figure 5.3.

The 5% VaR plots are shown in Figure 5.4.

For estimation, 2000 data was simulated from a SV model and the results obtained

using both the techniques are shown in Table 5.1. A single run study was conducted to



103

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

t

P
(y

t|y
t−

1)

Watanabe
Gram−Charlier

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.2

0

0.2

0.4

0.6

0.8

t

P
(y

t|y
t−

1)

Comparison for HSV parameters,θ = (.7,.5,.98)

Watanabe
Gram−Charlier

Figure 5.2: Comparison of P (yt|yt−1) calculated by Watanabe’s method and that computed using

the Gram-Charlier representation for θ=(0.7,0.5,0.98).
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Figure 5.3: Comparison of estimated conditional return probabilities calculated by Watanabe’s

method and that computed using the Gram-Charlier representation for CF application, where

θ = (−0.736, 0.9, 0.363) and θ = (−0.368, 0.95, 0.26)
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Figure 5.4: Diagram showing the 5% VaR plots obtained from using the Watanabe’s and GC approx

in the NF scheme.

compare the estimates from the Watanabe method with that of the Hermite approximation

method. The set of parameter values considered are the same as above. The number of

node points was chosen to be 50.

Table 5.1: Estimates obtained by using Watanabe’s and GC techniques in NFML

True parameters Hermite Approx. Watanabe
Estimates Estimates

{-0.736, 0.9, 0.131769} {-0.8547, 0.88, 0.1114 } {-0.6878, 0.9072, 0.1537}
{-0.368, 0.95, 0.0676} {-0.3598, 0.9544, 0.0635} {-0.3722, 0.9497, 0.0682}
{-0.147, 0.98, 0.027556} {-0.1489, 0.9847, 0.0271} {-0.1529, 0.9795, 0.0284}

The above estimates were obtained by using constrained optimization techniques

in matlab. The constraints used in the optimization is the constraints on the parameter

space viz., |α1| < 1 and σ2
v > 0. In order to tackle the negative value calculation of the

conditional probability values used in the computation of the loglikelihood, the minimum of

the probability values are recorded and once a negative value is encountered, it is replaced

with a uniformly distributed random number from U(0,min) where min is the minimum

value that was obtained till the last calculation. The hessian at the maximum likelihood

estimate can be used to obtain the asymptotic standard errors of the estimates. Using the

large sample theory results, we get,

θ̂MLE ∼ N(θ0, [IT (θ)]−1)
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where IT (θ) is the information matrix. The standard error is provided by its estimate given

by the square root of [IT (θ̂)]−1 which is the obtained by computing the hessian matrix at

its MLE estimate ie,
[

− ∂2

∂θ∂θ′LogL

]

.

5.6 Conclusions

Hermite polynomials are used in our analysis because of their orthogonality prop-

erty and their support on the ℜ line. Further they can also be extended to Cornish Fisher

type approximations to estimate quantiles. The Cornish Fisher implementation is left for

future work.

The initial motivation of our endeavor relating to Hermite polynomials started

because of the orthogonality property. SV models have been in the literature for a long

time. However, computing the loglikelihood requires integration with respect to the latent

state variables which are to be computed at every timestep, making the computation tedious.

If a framework existed where the orthogonality property could be used, it would have eased

the computations. However, from our extensive study, we could not obtain desirable results.

The updating scheme based on the coefficients of the Hermite expansions have

shown promising results. Based on the first 4 coefficients in the SV case and 8 coefficients

in the HSV case, we obtained results similar to the previous algorithm. The solution in

each of the cases have been found to be comparable to the existing methods.

Following Watanabe using trapezoidal numerical integration and Fridman and

Harris (1998) using Gauss Legendre numerical integration in SV models, Kawakatsu (2007)

uses Gauss-Legendre approach on eigenfunction modeling of volatility process, the Hermite

SV (HSV) models proposed by Meddahi (2001). The NFML scheme can also be extended

to stochastic volatility models with leverage effects. Our scheme is applicable to all these

areas.

The Gram Charlier type series is one way of obtaining an approximation to ab-

solutely continuous distributions in terms of moments based on the Hermite polynomials.

Gallant and Nychka (1987)’s representation of the semi-nonparametric (SNP) density can

be modified to any other density having a moment generating function. The difference

between SNP and GC is that the latter can take negative values, whereas the former is

written as a square of the polynomial expansion. For ease of computation, GC is chosen

over SNP which would otherwise lead to solving a quadratic equation at every step. Hence,

the above can be extended to a SNP type density which might help in the optimization due
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to its nonnegativity property.

Cornish fisher type of approximations can work really well when the distribution

of the variable of interest has a closed form distribution. In the SV case, we are interested

in finding the τ th quantile of the current return given the past information, ie yt|yt−1. Since

the P (yt|yt−1) does not have a closed form density, the direct implementation of Cornish

Fisher is not possible. However, initial experiments with the SV case suggests that the

P (yt|yt−1) can be approximated very well in a Hermite expansion form. Hence, a Cornish

Fisher type expansions as used by Jaschke and Jiang (2001) can be extended.
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Chapter 6

Conclusion and Future Work

The objective of this dissertation was to propose a methodology that can be used

to obtain parameter estimates of the SV model as well as the VaR estimates directly. The

exact likelihood calculation of SV models in itself poses a challenging problem and many

numerical simulation based procedures are available. Calculating the VaR in these scenarios

pertains to a two step method. Robust methods are an growing research area. Most of the

methods are concerned with model estimation and computing volatility forecasts used to

filter the VaRs. Current research is focussed to develop tools that are better adapted to

handling misspecification in models, data containing outliers, etc. Tools that yield robust

statistics are especially important when dealing with real data applications eg. in finance,

biostatistics, etc. Using QR as a tool to yield robust statistics and VaR calculation provides

a solution to the problem. In this dissertation, we propose two methodologies Regression

Quantile method of moments (RQMM) and Regression Quantile - Kalman Filtering (RQ-

KF) scheme. In Chapters 3 and 4, we proposed the algorithms of the two models and

illustrated the use of the two approaches by means of simulation studies (Sections 3.5 and

4.3.2) and VaR computation with these tools through real data application and simulation

studies. We compared the two methods with established procedures: RQMM with EMM

(both simulation based approaches) and RQ-KF with QML (both simplified approaches) for

SV model parameter estimation. In the case of RQMM and EMM, comparison of the two

approaches in high kurtosis data and model misspecification shows that RQMM is highly

efficient in producing robust estimates in contrast to EMM. Also, in small sample studies

with standard normal assumptions RQMM shows better estimates in terms of accuracy and

efficiency based on MC bias and MSE calculations. In case of moderate samples RQMM
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provides competitive results with respect to EMM in terms of efficiency when the distribu-

tional assumptions are correctly specified. RQ-KF results are also found to be competitive

with respect to QML. Empirical findings show that these methods provide very good esti-

mates especially in leptokurtic data. VaR evaluation results obtained using both RQMM

and RQ-KF give substantial proof in their ability to produce reliable VaR estimates in terms

of real data application and simulation studies.

The simulation studies are conducted with an emphasis on high kurtosis data mo-

tivated by financial data where leptokurtosis is an important and well documented data

feature. Hence, preliminary results based on data analysis show the usefulness of the pro-

posed methodologies with respect to applications in financial data.

In EMM estimators, finding scores under a distributional assumption of the error

process with an appropriate auxiliary model is tantamount to considering an approach

that results in a consistent and efficient estimate, given that the assumptions are correct.

However, replacing the score function with the check function, the estimation procedure is

rendered robust under outliers and misspecification. In real data scenarios where a greater

possibility of nonstandard situations may arise, QR related tools are very useful. Hence the

proposed approaches are relevant.

Following are some of the potential areas for future research.

RQMM is a flexible distribution free method than can be extended in several

directions. RQMM belongs to the spectrum of Indirect Inference (II) methods. A simulation

based II methods are flexible indispensable methods when the objective criterion of the

structural model to be optimized has an intractible form. The objective criteria could be

the likelihood function, moment type estimating equations as seen in Gourieroux et al.

(1993) or could be the RQMM criteria as discussed in this study. Widely used examples of

these techniques include discrete time stochastic volatility models, continuous time diffusion

models, multinomial choice models, models with latent nonlinear effects, dynamic stochastic

general equilibrum models, with applications to biostatistics as well. The application of

RQMM in all these areas are an interesting future exercise.

RQ-KF is a simplified approach which finds its application in moderate to large

sample sized data. A restriction of RQ-KF is that it can be extended only to models that

can be written in a state space form where the Kalman filter is applicable. The advantage

of using this method is that it is a computationally simple method to implement, and since

relatively large datasets are available, this tool has its applications. Kalman filters can be
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written for state space models with correlated errors; Harvey and Shephard (1996) showed,

with some transformations, that the Asymmetric SV (ASV) models can be written in a

state space form with uncorrelated errors. Hence, the algorithm used here can be easily

extended.

The Robust Efficient Method of Moments (REMM) method introduced by Ortelli

and Trojani (2005) proposes two algorithms which are designed to produce robust statistics

by bounding the influence function corresponding to the EMM estimator. Comparing this

method with RQMM when the underlying data is generated from the basic SV model and

also other variations of SV is left for future work.

Since the auxiliary model selection in EMM with SNP is based on an adaptive

algorithm based on AIC (Gallant and Tauchen, 1996) A similar extension in terms of the

Cornish Fisher (CF) approximation to incorporate more general quantile specifications can

be made for the auxiliary models in RQMM setup. p(yt|yt−1) can be written in terms

of a Hermite expansion. Let zt denote the standardized version of the yt’s in this case.

When a CF expansion for a zt exists, the pdf of zt can be represented as a Gram Charlier

(GC) density, the conditional quantile can be deduced by multiplying with the scale. The

scaling factor is accounted by the GARCH(1,1) or EGARCH models. An important goal

in this direction would be to find an algorithm that uses the CF expansion and chooses the

truncation point appropriate to the data under study. This is left for future work. Also, in

Chapter 5, we have already shown that p(yt|yt−1) can be represented in GC form. Finding

a suitable CF expansion in terms of the truncation point for use in NF scheme is also left

for future work.

The orthogonality property is a very attractive property in Hermite polynomials.

The different algorithms considered in Chapter 5 were motivated to exploit this property.

Finding an algorithm which uses this principle would significantly reduce the computational

efforts required to calculate the exact likelihood in SV. This remains an interesting area for

future research.
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Appendix A

Technical Details

Proof of Theorem 3.3.1. The proof follows by showing that finding the argument mini-

mum of the check function with respect to the auxiliary parameter is equivalent to minimiz-

ing the distance between the check functions of the true parameters from the proxy since

the minimization is with respect to β. Rearranging in terms of ∆τ and ǫτ ,

Eθ[(τ − I(yt < qt(β)))(yt − qt(β))]

−Eθ[(τ − I(yt < Qt,τ (yt|Xt)))(yt −Qt,τ (yt|Xt))]

= Eθ

[

τ(Qτ (yt|Xt) − qτ (β)) − I(yt < qt(β))(yt − qt(β))

+I(yt < Qt,τ (yt|Xt))(yt −Qt,τ (yt|Xt))

]

= Eθ

[

τ(Qτ (yt|Xt) − qτ (β)) − I(ǫτ,t < ∆τ (X,β))(ǫτ,t − ∆τ (X,β))

+I(ǫτ,t < 0)(ǫτ,t)

]

= Eθ

[

(−τ(∆τ (X,β)) − I(ǫτ,t < ∆τ (X,β))(ǫτ,t − ∆τ (X,β))

+I(ǫτ,t < 0)(ǫτ,t)

]

= Eθ

[

(τ − I(ǫτ,t < ∆τ (X,β)))(ǫτ,t − ∆τ (X,β))

−(τ − I(ǫτ,t < 0))ǫτ,t

]
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= Eθ{E[(I(ǫτ,t < ∆τ (X,β)) − τ)∆τ (X,β)|X]}

−Eθ{E[ǫτ,t(I(ǫτ,t < ∆τ (X,β)) − I(ǫτ,t < 0))]}

= Eθ(Fǫτ,t(∆τ (X,β)|X) − Fǫτ,t(0|X)∆τ (X,β))

−Eθ(I(ǫτ,t ∈ [0,∆τ (X,β)])ǫτ,t|X)

= Eθ

∫ 1

0
(1 − u)fy(uqτ (β) + (1 − u)Qτ (yt|X)|X)du∆2

τ (X,β)

The final result is obtained by taking the transformation, u = ǫ/∆(X,β).

Consistency assumptions for Theorem 3.4.1 (White (1994), Kim and

White (2002)) The following assumptions are needed to guarantee the consistency of β̂.

CB1 (Ω, F, P ) is a complete probability space and {ǫt, xt}, t = 1, 2, . . . , are random vectors

on this space.

CB2 The function qt(β) : ℜk × B → ℜ is such that for each βτ in B, a compact subset of

ℜq, q(xt, βτ ) is measurable with respect to the Borel set Bk and qt(β) is continuous

in B, a.s. in Prob, t = 1, 2, . . . for a given choice of explanatory variables.

CB3 There exists a δ > 1, such that E|∇qt(β)|δ <∞.

CB4 • E([I(yt < qt(xt, βτ )) − τ ][yt − qt(xt, βτ )]) exists and is finite for each βτ in B.

• E([I(yt < qt(xt, βτ )) − τ ][yt − qt(xt, βτ )]) is continuous in βτ .

• ([I(yt < qt(xt, βτ )) − τ ][yt − qt(xt, βτ )]) obeys the strong (weak) law of large

numbers. We could assume that ǫt, xt are α−mixing, i.e. α(m) → 0 as m→ ∞.

See Andrews (1988) and White and Domowitz (1984), for details.

CB5 1/TE[I(yt < qt(xt, β)) − τ ][yt − qt(xt, β)] has identifiably unique maximisers.

CB6 For all x, fǫ|x(0|x) > 0

Asymptotically Normality assumptions for Theorem 3.4.2 (Kim and

White (2002)) The following conditions are necessary for the asymptotic normality result.

ANB1 ∇tqt(βτ ) is A-smooth with variables Ait and functions ρi, i = 1 . . . q. In addition,

maxiρi(d) ≤ d for d > 0 small enough. 1.

1qt(β) is A-smooth with variables A0,t and function ρ if, for each β ∈ B, there is a constant τ > 0 such
that ||β∗ − β|| ≤ τ implies that |q(xt, β

∗) − q(xt, β)| ≤ A0t(xt)ρ(||β∗ − β||) for all t, a.s. - Prob, where A0t

and ρ are nonrandom functions such that A0t(xt) is a random variable, lim supT→∞
T−1PE[A0t(xt)] < ∞,

ρ(ν) > 0 for ν > 0, ρ(ν) → 0 as ν → 0 and τ, A0t, ρ and the null set may depend on β
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ANB2 • ft(ǫ) is Lipschitz continuous in ǫ uniformly in t.

• For each t and (ǫ, ν), ft(ǫ, φ, ν) is continuous in φ and bounded.

ANB3 For each t and s, ut(φ, βτ , s) is continuous in (φ, βτ ).

ANB4 {ǫt, Xt} are α-mixing, with parameter α(m), and there exist ∆ < ∞ and r > 2 such

that α(m) < ∆mλ for some λ < −2r/(r − 2).

ANB5 For some r > 2, ∇iqt(β) is uniformly r-dominated by functions a1t.

ANB6 For all t and i, E|supβAit|r < ∆1 < ∞. There exist measurable functions a2t such

that |ut| < a2t and for all t,
∫

a2tdν <∞ and
∫

(a1t)
3a2tdν <∞.

ANB7 There exists a matrix A such that T−1
∑a+T

t=a+1E[∇qt(β)∇′qt(β)] → A as T → ∞,

uniformly in a.

ANB8 There exists a matrix D = E[fǫ|X(0|X)∇q(β)∇q(β)′] positive definite.

ANB9 There exists a positive definite matrix A0 = E[(τ − I(yt < qt(β)))(τ − I(yt <

qt(β)))′∇q(β)∇q(β)′]

Consistency assumptions for Theorem 3.4.3 (following Gourieroux and

Monfort (1996)) To prove consistency, the following conditions are necessary ((Gourieroux

and Monfort, 1996)).

T1 The RQT (ỹT ;β) tends almost surely to a deterministic limit function RQ∞(θ, β) uni-

formly in (θ, β) when T → ∞. Ỹ denotes the simulated y series in the second step.

T2 The limit function has a unique maximum with respect to β: b(θ) = argminβ RQ∞(θ, β).

T3 RQT andRQ∞ are differentiable with respect to β, and
∂RQ∞(θ, β)

∂β
= limT

∂RQT (ỹT (θ);β)
∂β

T4 The only solution of the asymptotic first order conditions is b(θ) :
∂RQ∞(θ, β)

∂β
= 0 ⇒

β = b(θ).

T5 The equation β = b(θ) admits an unique solution.

The proof of the consistency is that since both estimators converge to the binding function

in the limit and one converges to b(θ0), the estimator can only converge to θ (using (T4)

and (T5)), since the solution to the binding function is unique.
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Asymptotic Normality proof for Theorem 3.4.3 The RQ criterion being an

M-type estimator, the proof follows directly from Gourieroux and Monfort (1996). Addi-

tional regularity conditions concerning the second order differentiability of the RQ criterion

function with respect to both parameters and continuity of the derivatives are required. We

assume that:

J0 = plim
T

−∂2RQT

∂β∂β′
(yT , XT ; b(θ0)),

√
T
∂RQT (yT , b(θ0))

∂β

D→N(0, S0)

We consider the asymptotic expansion of β̂ estimators. We start with:

√
T
∂RQT (Ỹ (θ0)), β̂N (θ0))

∂β
= 0

Expanding around the limiting value θ0, b(θ0),

√
T
∂RQT (Ỹ (θ0), b(θ0))

∂β
+
∂2RQT (Ỹ (θ0), b(θ0))

∂β∂β′

√
T [β̂N (θ0) − b(θ0)] = op(1),

√
T [β̂N (θ0) − b(θ0)] =

[

−∂
2RQT (Ỹ (θ0), b(θ0))

∂β∂β′

]−1

×
√
T
∂RQT (Ỹ (θ0), b(θ0))

∂β
+ op(1)

=

[

−∂
2RQ∞(θ0, b(θ0))

∂β∂β′

]−1

×
√
T
∂RQT (Ỹ (θ0), b(θ0))

∂β
+ op(1)

√
T [β̂N (θ0) − b(θ0)] = J−1

0

√
T
∂RQT (Ỹ (θ0), b(θ0))

∂β
+ op(1)

Again starting from the minimization problem, the first order condition is:
[

∂2RQT (Ỹ (θ̂), β̂T )

∂θ∂β′

]

Σ

[

∂RQT (Ỹ (θ̂), β̂T )

∂β

]

= 0

An expansion around θ0, b(θ0) gives:
[

∂2RQT (Ỹ (θ0), b(θ0))

∂θ∂β′

]

Σ

[

√
T
∂RQT (Ỹ (θ0), b(θ0))

∂β
+

∂2RQ∞(θ0, b(θ0))

∂β∂β′

√
T [β̂T − b(θ0)]+

∂2RQ∞(θ0, b(θ0))

∂β∂θ′

√
T [θ̂(Σ) − θ0]

]

= op(1)

Using the previous relation,

∂2RQ∞(θ0, b(θ0))

∂θ∂β′
Σ

[

J0

√
T [β̂N (θ0) − β̂T ] +

∂2RQ∞(θ0, b(θ0))

∂β∂θ′

√
T (θ̂(Σ) − θ0)

]

= op(1)
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Hence, we get:

√
T (θ̂(Σ) − θ0) =

[

∂2RQ∞(θ0, b(θ0))

∂θ∂β′
Σ
∂2RQ∞(θ0, b(θ0))

∂β∂θ′

]−1

× ∂2RQ∞(θ0, b(θ0))

∂θ∂β′
ΣJ0

√
T [β̂T − β̂N (θ0)] + op(1)

Combining the asymptotic normality result above, we get the asymptotically normality

result for θ̂(Σ).

Analytical derivation of gradient of the log likelihood

L =
T
∏

t=1

pθ(yt|yt−1)

logL =
T
∑

t=1

log pθ(yt|yt−1)

The gradient calculation is to be computed term by term with a recursive scheme and

θ = {α0, α1, σ
2
v}. The gradient for t = 1 is derived, followed by the other terms of the

recursion which is based on the first gradient. The log p(yt|yt−1) when t = 1 involves

p(xt|yt−1) which has been taken to be the unconditional distribution of p(x1) ≡ Nx1(µh, σ
2
h),

where µh = α0
(1−α1) and σ2

h = σ2
v

(1−α2
1)

. The gradient takes this into account:

∂logL(θ)

∂θ
=
∂log pθ(y1|y0)

∂θ
+
∂log pθ(y2|y1)

∂θ
+ . . .+

∂log pθ(yT |yT−1)

∂θ

where

∂log pθ(yt|yt−1)

∂θ
=

1

pθ(yt|yt−1)

∂pθ(yt|yt−1)

∂θ

The pθ(.) term denotes that the pdf is θ-dependent. Since, the initial integration term

assumes pθ(xt|yt−1) to be the unconditional distribution, the derivation of the gradient for

the first term would be different from the rest. However, after the first term, the remaining

terms would have the same form, hence only the derivation for the second time series point

will suffice.

∂pθ(y1|y0)

∂θ
=

1

∂θ

∫

p(y1|x1)pθ(x1|y0)dx1

=
1

∂θ

∫

p(y1|x1)pθ(x1)dx1
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Given that p(yt|xt) ∼ N(0, ext), p(xt) ∼ N(µh, σ
2
h) and p(xt|xt−1) ∼ N(α0 + α1xt−1, σ

2
v).

∂pθ(y1|y0)

∂α0
=

∫

Ny1(0, e
xt)

1
√

2πσ2
h

∂

∂α0
e
− 1

2

x1−
α0

1−α1

2

σ2
h dx1

∂

∂α0
e
− 1

2

x1−
α0

1−α1

2

σ2
h = e

− 1
2

x1−
α0

1−α1

2

σ2
h





(

x1 − α0
1−α1

)

σh





1/(1 − α1)

σh

⇒ ∂pθ(y1|y0)

∂α0
=

∫

Ny1(0, e
xt)Nx1(µh, σh)

(

x1 − µh

σh

)

1

σh(1 − α1)
dx1

∂

∂α1

1√
2π
√

σ2
v/(1 − α2

1)
× e

− 1
2

x1−
α0

1−α1

2

σ2
h = e

− 1
2

x1−
α0

1−α1

2

σ2
h

1

σv

√
2π

∂

∂α1
(
√

1 − α2
1) +

+
1

σh

√
2π

∂

∂α1






e
− 1

2

x1−
α0

1−α1

2

σ2
v/(1−α2

1)







= (I) + (II)

where

(I) =
1

σv

√
2π

−α1
√

1 − α2
1

e
− 1

2

(x1−µh)2

σ2
h ,

(II) =
1

σh

√
2π

∂

∂α1

[

e
− 1

2

(x1−µh)2

σ2
h

]

Now,

1

σh

√
2π

∂

∂α1

[

e
− 1

2

(x1−µh)2

σ2
h

]

=
1

σh

√
2π

[

e
− 1

2

(x1−µh)2

σ2
h × (−1/2)

]

×

×
{

(

1 − α2
1

σ2
v

)

∂

∂α1

(

x1 −
α0

1 − α1

)2

+

+

(

x1 −
α0

1 − α1

)2 ∂

∂α1

(

1 − α2
1

σ2
v

)

}

=
1

σh

√
2π

[

e
− 1

2

(x1−µh)2

σ2
h × (−1/2)

]

×

×
{

(

1 − α2
1

σ2
v

)

∂

∂α1

( −α0

1 − α1

)

2

(

x1 −
α0

1 − α1

)

+



123

+

(

x1 −
α0

1 − α1

)2(−2α1

σ2
v

)

}

= Nx1(µh, σ
2
h)

{

(

1 − α2
1

σ2
v

(

x1 −
α0

1 − α1

))(

α0

(1 − α1)2

)

+

(

x1 −
α0

1 − α1

)2(α1

σ2
v

)

}]

Hence,

∂p(y1|y0)

∂α1
=

∫

Ny1(0, e
x1) ×

×
[{

e
− 1

2

(x1−µh)2

σ2
h

( −α1

(1 − α2
1)

)(

1

σh

√
2π

)

}

+

+

{

Nx1(µh, σ
2
h)

{(

1 − α2
1

σ2
v

)

(x1 − µh)
α0

(1 − α1)2
+ (x1 − µh)2

α1

σ2
v

}}

]

dx1

=

∫

Ny1(0, e
x1)

[

(

1

σh

√
2π

)

e
− 1

2

(x1−µh)2

σ2
h ×

×
{( −α1

(1 − α2
1)

)

+

[(

1 − α2
1

σ2
v

)

(x1 − µh)
α0

(1 − α1)2
+ (x1 − µh)2

α1

σ2
v

]}

]

dx1

This can be further simplified as follows:

[(

1 − α2
1

σ2
v

)

(x1 − µh)
α0

(1 − α1)2
+ (x1 − µh)2

α1

σ2
v

]

=

[

(x1 − µh)

[(

(1 − α2
1)α0

σ2
v(1 − α1)2

)

+ (x1 − µh)
α1

σ2
v

]]

=

[

(x1 − µh)

[

(1 − α2
1)α0 +

(

x1(1 − α1)
2 − α0(1 − α1)

)

α1

σ2
v(1 − α1)2

]]

=

[

(x1 − µh)

[

α0 − α0α
2
1 + α1x1(1 − α1)

2 − α1α0 + α0α
2
1

σ2
v(1 − α1)2

]]

=

[

(x1 − µh)

[

α0 + α1x1(1 − α1)
2 − α1α0

σ2
v(1 − α1)2

]]

=

[

(x1 − µh)

[

α0(1 − α1) + α1x1(1 − α1)
2

σ2
v(1 − α1)2

]]

=

[

(x1 − µh)

[

α0 + α1x1(1 − α1)

σ2
v(1 − α1)

]]

∂p(y1|y0)

∂α1
=

∫

Ny1(0, e
x1)
[

Nx1(µh, σ
2
h)
{( −α1

(1 − α2
1)

)

+
(

x1 − µh

)[α0 + α1x1(1 − α1)

σ2
v(1 − α1)

]}]

dx1
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For notational convenience, let σ2
v = γ. Then

∂p(y1|y0)

∂γ
=

∫

Ny1(0, e
x1) ×

×
[

(

1

σh

√
2π

) −1

2γ
e
− 1

2

(x1−µh)2

σ2
h +

+

(

1

σh

√
2π

)

e
− 1

2

(x1−µh)2

σ2
h

1

2γ2
(x1 − µh)2(1 − α1)

2

]

dx1

=

∫

Ny1(0, e
x1)Nx1(µh, σ

2
h)

{−1

2γ
+

1

2γ2
(x1 − µh)2(1 − α1)

2

}

dx1,

∂ log p(y2|y1)

∂θ
=

1

p(y2|y1)

∂p(y2|y1)

∂θ

where

∂p(y2|y1)

∂θ
=

∂

∂θ

∫

p(y2|x2)pθ(x2|y1)dx2,

pθ(x2|y1) =

∫

pθ(x2|x1)pθ(x1|y1)dx1

=

∫

pθ(x2|x1)p(y1|x1)pθ(x1)dx1

pθ(y1|y0)

Hence,

∂

∂θ

[∫

pθ(x2|x1)p(y1|x1)pθ(x1)dx1

pθ(y1|y0)

]

=
∂

∂θ

[

A(θ)

B(θ)

]

=
B(θ) ∂

∂θA(θ) −A(θ) ∂
∂θB(θ)

B(θ)2

∂

∂θ
A(θ) =

∂

∂θ

∫

pθ(x2|x1)p(y1|x1)pθ(x1)dx1

=

∫

p(y1|x1)

[

pθ(x1)
∂

∂θ
pθ(x2|x1) + pθ(x2|x1)

∂

∂θ
pθ(x1)dx1

]

The gradient of pθ(x2|x1) is to be computed for all the parameters, and the gradients of

pθ(x1) has already been derived above. Hence, the gradient of pθ(x2|x1) with respect to α0

is derived below.

∂

∂α0
pθ(x2|x1) =

∂

∂α0

(

1
√
γ
√

2π

)

e
− 1

2
(x2−α0−α1x1)2

γ

=

(

1
√
γ
√

2π

)

e
− 1

2
(x2−α0−α1x1)2

γ × (−1/2)2

(

x2 − α0 − α1x1√
γ

)(−1√
γ

)

=

(

1
√
γ
√

2π

)

e
− 1

2
(x2−α0−α1x1)2

γ ×
(

x2 − α0 − α1x1

γ

)
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The gradient of pθ(x2|x1) with respect to α1 is as follows.

∂

∂α1
pθ(x2|x1) =

∂

∂α1

(

1
√
γ
√

2π

)

e
− 1

2
(x2−α0−α1x1)2

γ

=

(

1
√
γ
√

2π

)

e
− 1

2
(x2−α0−α1x1)2

γ ×
(

x2 − α0 − α1x1√
γ

)(

x1√
γ

)

The gradient of pθ(x2|x1) with respect to σ2
v = γ is as follows.

∂

∂γ
pθ(x2|x1) =

∂

∂γ

(

1
√
γ
√

2π

)

e
− 1

2
(x2−α0−α1x1)2

γ

=

(

1
√
γ
√

2π

)

e
− 1

2
(x2−α0−α1x1)2

γ ×
(−1

γ
+

(x2 − α0 − α1x1)
2

2γ2

)

,

∂

∂α0
pθ(x1) = Nx1(µh, σh)

(

x1 − µh

σh

)

1

(1 − α1)σh
,

∂

∂α1
pθ(x1) = Nx1(µh, σh)

{( −α1

(1 − α2
1)

)

+ (x1 − µh)
α0

σ2
v(1 − α1)

+ (x1 − µh)
α1x1

σ2
v

}

,

∂

∂γ
pθ(x1) = Nx1(µh, σh)

{

(−1/(2γ)) + (1/2) (x1 − µh)2 (1 − α1)
2(1/γ2)

}

Hence, the gradient of p(y2|y1) can be computed. Since the gradients of p(yt|yt−1) can

be computed without changing the form of any of the requisite pdf’s, the other gradient

calculations follow recursively. Similarly, the Hessian of the log likelihood can also be

computed. Since the optimization of the negative loglikelihood is carried out, the negative

of the gradient calculation previously derived is taken. Also, the hessian calculation given

below has been derived keeping the negative loglikelihood in mind. Let θ1, θ2 denote any

of the parameters from θ = {α0, α1, σ
2
v}.

∂2

∂θ1∂θ2
(− logL) = − ∂2

∂θ1∂θ2

T
∑

t=1

log pθ(yt|yt−1)

= −
T
∑

t=1

∂2

∂θ1∂θ2
log pθ(yt|yt−1)

= −
T
∑

t=1

{ −1

(pθ(yt|yt−1))2

(

∂pθ(yt|yt−1)

∂θ1

)(

∂pθ(yt|yt−1)

∂θ2

)

+

+
1

pθ(yt|yt−1)

∂2

∂θ1∂θ2
pθ(yt|yt−1)

}

=
T
∑

t=1

{ 1

(pθ(yt|yt−1))2

(

∂pθ(yt|yt−1)

∂θ1

)(

∂pθ(yt|yt−1)

∂θ2

)

−
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− 1

pθ(yt|yt−1)

∂2

∂θ1∂θ2
pθ(yt|yt−1)

}

Again the derivation of the hessian matrix for the first time point will follow differently

from the rest. The diagonal elements are given by:

∂2

∂α2
0

pθ(y1|y0) =

∫

Ny1(0, e
x1)

∂2

∂α2
0

Nx1(µh, σ
2
h)dx1

=

∫

Ny1(0, e
x1)

[

Nx1(µh, σ
2
h)

σ2
h(1 − α1)2

{

(

x1 − µh

σh

)2

− 1

}]

dx1

∂2

∂α2
1

pθ(y1|y0)

=

∫

Ny1(0, e
x1)

∂2

∂α2
1

Nx1(µh, σ
2
h)

=

∫

Ny1(0, e
x1)

∂

∂α1
Nx1(µh, σ

2
h)

{

(x1 − µh)(α0 + α1x1(1 − α1))

σ2
v(1 − α1)

− α1

1 − α2
1

}

dx1

=

∫

Ny1(0, e
x1)Nx1(µh, σ

2
h) ×

[

1

γ

{

(x1 − µh)x1(1 − 2α1)

1 − α1
+ (α0 + α1x1(1 − α1))

(

x1 − 2µh

(1 − α1)2

)}

− 1 + α2
1

(1 − α2
1)

2

]

+

[

1

γ

{

(x1 − µh)µh(1 − α2
1)

1 − α1
+ α1(x1 − µh)2

}

− α1

(1 − α2
1)

]

{

(α0 + α1x1(1 − α1))
x1 − µh

σ2
v(1 − α1)

− α1

1 − α2
1

}

dx1

∂2

∂γ2
pθ(y1|y0) =

∫

Ny1(0, e
x1)

∂2

∂γ2
Nx1(µh, σ

2
h)dx1

=

∫

Ny1(0, e
x1)

∂

∂γ
Nx1(µh, σ

2
h)

{

(x1 − µh)2(1 − α2
1)

2γ2
− 1

2γ

}

dx1

=

∫

Ny1(0, e
x1)Nx1(µh, σ

2
h)

[

3

4γ2
− 3(x1 − µh)2(1 − α2

1)

2γ3
+

+

(

(x1 − µh)2(1 − α2
1)

2γ2

)2
]

dx1

The off-diagonal elements of the hessian matrix are as follows:

∂2

∂α0∂α1
pθ(y1|y0)

=
∂

∂α1

[∫

Ny1(0, e
x1)Nx1(µh, σ

2
h)

1

σh(1 − α1)
dx1

]
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=

∫

Ny1(0, e
x1)Nx1(µh, σ

2
h) ×

[

(x1 − µh)2

(σ2
h)2(1 − α1)

{

(x1 − µh)α1

(1 − α2
1)

+
µh

1 − α1

}

− µh

σ2
h(1 − α1)2

+
(x1 − µh)(1 − 2α1)

σ2
h(1 − α2

1)(1 − α1)

]

dx1

∂2

∂α0∂γ
pθ(y1|y0)

=
∂

∂α0

[∫

Ny1(0, e
x1)Nx1(µh, σ

2
h)

{

(x1 − µh)2(1 − α2
1)

2γ2
− 1

2γ

}

dx1

]

=

∫

Ny1(0, e
x1)Nx1(µh, σ

2
h)

(x1 − µh)(1 − α2
1)

(1 − α1)

[

(x1 − µh)2(1 − α2
1)

2γ3
− 3

2γ2

]

dx1

∂2

∂α1∂γ
pθ(y1|y0)

=
∂

∂γ

[∫

Ny1(0, e
x1)Nx1(µh, σ

2
h)

{

(x1 − µh)(α0 + α1x1(1 − α1))

γ(1 − α1)
− α1

1 − α2
1

}

dx1

]

=

∫

Ny1(0, e
x1)Nx1(µh, σ

2
h) ×

[{

(x1 − µh)(α0 + α1x1(1 − α1))

γ(1 − α1)
− α1

1 − α2
1

}(

(x1 − µh)2(1 − α2
1)

2γ2

)]

−
[

1

2γ

{

(x1 − µh)(α0 + α1x1(1 − α1))

γ(1 − α1)
− α1

1 − α2
1

}]

−
[

(x1 − µh)(α0 + α1x1(1 − α1))

γ2(1 − α1)

]

dx1

In order to calculate the hessian matrix for the conditional probability of the second time

series point, we proceed as follows:

∂2

∂θ1∂θ2
pθ(y2|y1) =

∂2

∂θ1∂θ2

∫

p(y2|x2)pθ(x2|y1)dx2

=

∫

p(y2|x2)
∂2

∂θ1∂θ2
pθ(x2|y1)dx2

The double derivative of pθ(x2|y1) is as follows:

∂2

∂θ1∂θ2
pθ(x2|y1) =

∂2

∂θ1∂θ2

∫

pθ(x2|x1)pθ(x1|y1)dx1

=
∂2

∂θ1∂θ2

∫

pθ(x2|x1)p(y1|x1)pθ(x1|y0)dx1

pθ(y1|y0)

=
∂2

∂θ1∂θ2

(

a(θ)

b(θ)

)

=
∂

∂θ2

{

b(θ) ∂
∂θ1

a(θ) − a(θ) ∂
∂θ1

b(θ)

(b(θ))2

}
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=
∂

∂θ2

{

c(θ)

(b(θ))2

}

where

a(θ) =

∫

p(y1|x1)pθ(x2|x1)pθ(x1|y0)dx1,

b(θ) = pθ(y1|y0),

c(θ) = b(θ)
∂

∂θ1
a(θ) − a(θ)

∂

∂θ1
b(θ)

= pθ(y1|y0)
∂

∂θ1
[

∫

p(y1|x1)pθ(x2|x1)pθ(x1|y0)dx1]

−
∫

p(y1|x1)pθ(x2|x1)pθ(x1|y0)dx1
∂

∂θ1
pθ(y1|y0),

c(θ)

(b(θ))2
=

1

pθ(y1|y0)
[

∫

p(y1|x1)
∂

∂θ1
{pθ(x2|x1)pθ(x1|y0)}dx1 − {pθ(x2|y1)

∂

∂θ1
pθ(y1|y0)}]

=
1

pθ(y1|y0)
[

∫

p(y1|x1)[pθ(x1|y0)
∂

∂θ1
pθ(x2|x1)dx1]

+

∫

p(y1|x1)[pθ(x2|x1)
∂

∂θ1
pθ(x1|y0)dx1]

−{pθ(x2|y1)
∂

∂θ1
pθ(y1|y0)}]

=
d(θ)

pθ(y1|y0)

Taking the second derivative of the numerator d(θ) with respect to θ2 ie., ∂
∂θ2

d(θ):

∂

∂θ2
d(θ) = [

∫

p(y1|x1)
∂

∂θ2
[pθ(x1|y0)

∂

∂θ1
pθ(x2|x1)dx1]

+

∫

p(y1|x1)
∂

∂θ2
[pθ(x2|x1)

∂

∂θ1
pθ(x1|y0)dx1]

− ∂

∂θ2
{pθ(x2|y1)

∂

∂θ1
pθ(y1|y0)}]

=

∫

p(y1|x1){
∂

∂θ2
pθ(x1|y0)

∂

∂θ1
pθ(x2|x1) + pθ(x1|y0)

∂2

∂θ1∂θ2
pθ(x2|x1)}dx1

+

∫

p(y1|x1){
∂

∂θ2
pθ(x2|x1)

∂

∂θ1
pθ(x1|y0) + pθ(x2|x1)

∂2

∂θ1∂θ2
pθ(x1|y0)}dx1

−{ ∂

∂θ2
pθ(x2|y1)

∂

∂θ1
pθ(y1|y0) + pθ(x2|y1)

∂2

∂θ1∂θ2
pθ(y1|y0)}

Hence, after taking the second derivative:

∂2

∂θ1∂θ2
pθ(x2|y1) =

∂

∂θ2

{

d(θ)

pθ(y1|y0)

}

=
∂

∂θ2
d(θ)

pθ(y1|y0)
−
d(θ) ∂

∂θ2
pθ(y1|y0)

(pθ(y1|y0))2
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However, the second term in the above expression can be simplified further:

d(θ) ∂
∂θ2

pθ(y1|y0)

(pθ(y1|y0))2
=

∂
∂θ2

pθ(y1|y0)

(pθ(y1|y0))2

∫

p(y1|x1)
∂

∂θ1
[pθ(x1|y0)pθ(x2|x1)]dx1

−
pθ(x2|y1)

∂
∂θ1

pθ(y1|y0)
∂

∂θ2
pθ(y1|y0)

(pθ(y1|y0))2

=
∂

∂θ2
pθ(y1|y0)

(pθ(y1|y0))2
∂

∂θ1
[pθ(x2|y1)pθ(y1|y0)]

−
pθ(x2|y1)

∂
∂θ1

pθ(y1|y0)
∂

∂θ2
pθ(y1|y0)

(pθ(y1|y0))2

=
∂

∂θ2
pθ(y1|y0)

∂
∂θ1

pθ(x2|y1)

pθ(y1|y0)

Hence, substituting this in the above equation:

∂2

∂θ1∂θ2
pθ(x2|y1) =

1

pθ(y1|y0)
[
∂

∂θ2
d(θ) − ∂

∂θ2
pθ(y1|y0)

∂

∂θ1
pθ(x2|y1)]

=
1

pθ(y1|y0)

[

∫

p(y1|x1){
∂

∂θ2
pθ(x1|y0)

∂

∂θ1
pθ(x2|x1)

+pθ(x1|y0)
∂2

∂θ1∂θ2
pθ(x2|x1)}dx1

+

∫

p(y1|x1)
[ ∂

∂θ2
pθ(x2|x1)

∂

∂θ1
pθ(x1|y0) +

pθ(x2|x1)
∂2

∂θ1∂θ2
pθ(x1|y0)

]

dx1

−{ ∂

∂θ2
pθ(x2|y1)

∂

∂θ1
pθ(y1|y0) + pθ(x2|y1)

∂2

∂θ1∂θ2
pθ(y1|y0)}

− ∂

∂θ2
pθ(y1|y0)

∂

∂θ1
pθ(x2|y1)

]

In order to compute the above, the calculation of the double derivative of p(x2|x1) remains:

∂2

∂α2
0

pθ(x2|x1) = Nx2(α0 + α1x1, σ
2
v)

{

(x2 − α0 − α1x1)
2

(σ2
v)

2
− 1

σ2
v

}

∂2

∂α0∂α1
pθ(x2|x1) = Nx2(α0 + α1x1, σ

2
v)

{

x1(x2 − α0 − α1x1)
2

(σ2
v)

2
− x1

σ2
v

}

∂2

∂α0∂γ
pθ(x2|x1) = Nx2(α0 + α1x1, σ

2
v)

{

(x2 − α0 − α1x1)
3

2(σ2
v)

3
− 3(x2 − α0 − α1x1)

2(σ2
v)

2

}

∂2

∂α2
1

pθ(x2|x1) = Nx2(α0 + α1x1, σ
2
v)

{

x2
1(x2 − α0 − α1x1)

2

(σ2
v)

2
− x2

1

σ2
v

}

∂2

∂α1∂γ
pθ(x2|x1) = Nx2(α0 + α1x1, σ

2
v)

{

x1(x2 − α0 − α1x1)
3

2(σ2
v)

3
− 3x1(x2 − α0 − α1x1)

2(σ2
v)

2

}
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∂2

∂γ2
pθ(x2|x1) = Nx2(α0 + α1x1, σ

2
v) ×

×
[

(

(x2 − α0 − α1x1)
2

2(σ2
v)

2
− 1

2σ2
v

)

(x2 − α0 − α1x1)
2

2(σ2
v)

2
−

−5(x2 − α0 − α1x1)
2

4(σ2
v)

3
+

3

4(σ2
v)

2

]

Hence, the final step in the calculation of the hessian of p(y2|y1) is:

∂2

∂θ1∂θ2
pθ(y2|y1) =

∫

p(y2|x2)
∂2

∂θ1∂θ2
pθ(x2|y1)dx2

The previous recursive calculation stays unaltered for calculating the gradient and the

hessian of p(yt|yt−1) for t = 2, 3, . . . T .


