
Abstract

PETERSEN, RICHARD FRANCIS. Transformation Semigroups Over Groups.
(Under the direction of Mohan Putcha.)

The semigroup analogue of the symmetric group, Sn, is the full transfor-

mation semigroup, Tn. Tn is the set of all mappings from the set {1, 2, ..., n}

to itself. This semigroup has been studied in great detail, especially in con-

nection with automata theory.

The wreath product of a group G by Sn has been studied for almost one

hundred years. In this thesis, we study the wreath product of a group G by

Tn. These wreath products are expressed as GwrSn and GwrTn, respectively.

Many interesting theorems and properties for wreath products will be dis-

cussed. For example, the result of John Howie that every element in Tn−Sn

can be expressed as a product of idempotents, is generalized to show that any

element of GwrTn − GwrSn can be expressed as a product of idempotents.

It will also be shown that GwrTn is unit regular.

Chapter five begins with a review of Green’s relations for a moniod, M .

Green’s relations for Tn are also reviewed and R and L-classes for the wreath

product GwrTn are determined. Finally, in the last two chapters, the con-

jugacy class structures of GwrTn are determined. Just as the conjugacy

classes of GwrSn are indexed by colored partitions, we show that the conju-

gacy classes of GwrTn are indexed by certain colored directed graphs.
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1 Groups

It is necessary to review a bit of group theory before proceeding on to the

new material in this thesis. The following definitions will be useful to keep

in mind.

1.1 Basic Definitions

Definition 1.1.1 A group is a set G together with a law of composition,

* , which has the following properties: For a, b, c ∈ G,

(1) a ∗ (b ∗ c) = (a ∗ b) ∗ c (associativity)

(2) 1 ∈ G (identity)

(3) If a ∈ G, then a−1 ∈ G (inverses)

If the law of composition, * , is commutative (i.e., a ∗ b = b ∗ a, for

a, b ∈ G), then G is said to be an Abelian group. We may also wish to

consider special kinds of subsets of G called subgroups.

Definition 1.1.2 A subgroup is a subset H of a group G which has the

following properties, for a, b ∈ H,

(1) If a ∈ H and b ∈ H, then a ∗ b ∈ H (closure under the operation *)

(2) 1 ∈ H (identity element)

(3) If a ∈ H, then a−1 ∈ H (inverses)

1



1.2 Group Examples

The following are classic examples of groups:

Example 1.2.1 General Linear Group

GLn = { n×n matrices A with det A 6= 0}

Example 1.2.2 Special Linear Group

SLn = { n×n matrices B with det B = 1}

SLn is a subgroup of GLn.

Example 1.2.3 Dihedral Group

Dn = group generated by two elements, x and y, such that the relations

xn = 1, y2 = 1, and yx = x−1y hold.

Example 1.2.4 Symmetric Group

Sn = the set of all bijections from {1, 2, ..., n} → {1, 2, ..., n}.

More generally, SX is the group of all permutations of any set X.

Example 1.2.5 Signed Permutation Group

S̃n = the set of all bijections from {1, 2, ..., n} → {±1,±2, ...,±n}.

Example 1.2.6 Weyl Groups

The group of type An−1 corresponds to the symmetric group, Sn, and the

group of type Bn corresponds to the signed permutation group, S̃n.
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1.3 Focusing on Sn and S̃n

The symmetric group, Sn, and the signed permutation group, S̃n, are of the

most importance for future chapters, so we shall focus on them in greater

detail for the rest of this chapter. These results are well known and have

appeared in numerous papers and books.

Definition 1.3.1 The order of a group G is the number of elements in G.

We denote the order of G by the symbol, |G|.

Theorem 1.3.2 |Sn| = n!

Example 1.3.3 |S6| = 6! = 720

Corollary 1.3.4 |S̃n| = 2n · n!

Example 1.3.5 |S̃6| = 26(6!) = (64)(720) = 46, 080

1.4 Notation

We have a few useful ways to represent elements in Sn. The following nota-

tions will be used where appropriate.

1.4.1 Two Line Notation

Let π ∈ Sn; we can write π =

(
1 2 3 · · · n

π(1) π(2) π(3) · · · π(n)

)
.

Example 1.4.1 If π ∈ S4 and π(1) = 4, π(2) = 2, π(3) = 1, π(4) = 3, then

π =

(
1 2 3 4
4 2 1 3

)
.

3



1.4.2 One Line Notation

In two line notation, the top line is always the same, so we may omit it and

just write the bottom line. Let π ∈ Sn; we can write

π =
(
π(1) π(2) π(3) · · · π(n)

)
.

Example 1.4.2 If π ∈ S4 and π(1) = 4, π(2) = 2, π(3) = 1, π(4) = 3, then

π =
(

4 2 1 3
)
.

1.4.3 Cycle Notation

Sagan gives a nice description of this cycle notation in his book on the

symmetric group [10]. Given i ∈ {1, 2, ..., n}, the elements of the sequence

i, π(i), π2(i), π3(i), ... cannot all be distinct. Taking the first power p, such

that πp(i) = i, we have the cycle
(
i π(i) π2(i) · · · πp−1(i)

)
. Equiva-

lently, the cycle
(
i j k · · · l

)
means that π sends i to j, j to k, ..., and

l back to i.

Example 1.4.3 If π ∈ S4 and π(1) = 4, π(2) = 2, π(3) = 1, π(4) = 3, then

π = (143)(2) in cycle notation.

Definition 1.4.4 A k-cycle, or cycle of length k, is a cycle containing

k elements.

Example 1.4.5 π = (143)(2) consists of a cycle of length 3 and a cycle of

length 1.

4



Example 1.4.6 σ = (12)(34)(5678) consists of two cycles of length 2 and a

cycle of length 4.

Definition 1.4.7 The cycle type, or simply the type, of π is an expres-

sion of the form
(

1m1 2m2 3m3 · · · nmn

)
, where mk is the number of

cycles of length k in π.

Example 1.4.8 π = (143)(2) has cycle type
(

11 20 31 40
)
.

Example 1.4.9 σ = (12)(34)(5678) has cycle type
(

10 22 30 41 50 60 70 80
)
.

Another way to give the cycle type is as a partition:

Definition 1.4.10 A partition of n is a sequence λ = (λ1, λ2, ..., λl), where

λi are weakly decreasing and
l∑

i=1

λi = n. Thus, k is repeated mk times in the

partition version of the cycle type of π.

Example 1.4.11 For π = (143)(2), λ = (3, 1).

Example 1.4.12 For σ = (12)(34)(5678), λ = (4, 2, 2).

1.4.4 Matrix Notation

Let π ∈ Sn; we can indicate π(j) = i by placing a 1 in the (i, j)-entry of an

n×n matrix.

Example 1.4.13 π = (143)(2), which means π(1) = 4, π(2) = 2, π(3) = 1,

π(4) = 3, can be written in matrix notation as π =


0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

.

5



1.4.5 Directed Graph Notation

Consider an element π ∈ Sn, where π =
(
i j k · · · l

)
in cycle notation.

Draw n vertices and label them i, j, k, ..., l. Indicate π(i) = j by drawing a

directed line segment from i to j.

Example 1.4.14 For π = (143)(2) the directed graph is,

1

��======= 2 ee

3

OO

4oo

Each of these four notations will be used throughout this thesis. Later

on, some variations of these notations will be used.

Example 1.4.15 Similar notation works for elements in S̃n.

If π =

(
1 2 3 4
−2 4 −1 3

)
∈ S̃4, we can represent this element in matrix

form by placing ±1 in the (i, j)-entry to indicate j → ±i.

So, π =


0 0 −1 0
−1 0 0 0
0 0 0 1
0 1 0 0

.

We can also make a slight modification on our directed graph notation to

represent π as

1
−1 // 2

1
��

3

−1

OO

4
1

oo

The cycle notation we used for Sn is not very useful for elements in S̃n.

6



1.5 Conjugacy Classes In Sn

Definition 1.5.1 In any group G, elements g and h are conjugates if

g = khk−1, for some k ∈ G.

Definition 1.5.2 The set of all elements conjugate to a given g ∈ G is

called the conjugacy class of g.

In Sn, if π =
(
i1 i2 i3 · · · il

) (
im im+1 im+2 · · · in

)
in cycle

notation, then for any σ ∈ Sn,

σπσ−1 =
(
σ(i1) σ(i2) σ(i3) · · · σ(il)

) (
σ(im) σ(im+1) σ(im+2) · · · σ(in)

)
.

Conjugacy is an equivalence relation, so the distinct conjugacy classes

partition G. This means that if G has t conjugacy classes, C1, C2, ..., Ct,

then Ci ∩ Cj = ∅, for i 6= j, and
⋃
i

Ci = G.

In Sn, two permutations are in the same conjugacy class if and only if

they have the same cycle type. There is a natural correspondence between

partitions of n and the conjugacy classes of Sn.

7



Example 1.5.3 We can write the number 1 only as 1, so S1 has only 1

conjugacy class.

We can write the number 2 as 2 + 0 and 1 + 1, so S2 has 2 conjugacy classes.

We can write the number 3 as 3+0, 2+1 and 1+1+1, so S3 has 3 conjugacy

classes.

We can write the number 4 as 4 + 0, 3 + 1, 2 + 2, 1 + 1 + 2 and 1 + 1 + 1 + 1,

so S4 has 5 conjugacy classes.

We can write the number 5 as 5 + 0, 1 + 4, 2 + 3, 1 + 1 + 3, 1 + 2 + 2,

1 + 1 + 1 + 2, and 1 + 1 + 1 + 1 + 1, so S5 has 7 conjugacy classes.

We will consider the conjugacy classes of S̃n in a later chapter. See the

chapters on conjugacy classes in wreath products for those results.

1.6 Looking Ahead To Chapter 2

This chapter was written so that the reader may get a feel for the notation

and properties in later chapters. In the next chapter, we shall consider semi-

groups. It is of interest to note the differences between groups and semigroups

and develop numerous properties of semigroups.

8



2 Semigroups

In this chapter we will examine numerous properties and examples of semi-

groups. We begin with the following well known definitions.

2.1 Basic Definitions

Definition 2.1.1 A monoid is a set M together with a law of composition,

*, which has the following properties: For a, b, c ∈M ,

(1) a ∗ (b ∗ c) = (a ∗ b) ∗ c (associativity)

(2) 1 ∈M (identity)

Definition 2.1.2 A semigroup is a set S together with a law of composi-

tion, *, which is associative.

Definition 2.1.3 Let S be a semigroup and T ⊆ S. T is a subsemigroup,

if T is closed under the semigroup operation, *.

Definition 2.1.4 Let S be a semigroup. We say an element, σ ∈ S, is

idempotent if and only if σ2 = σ. We denote the set of all idempotents in

S by E(S).

Definition 2.1.5 Let M be a monoid. Let G be its unit group. If a, b ∈M ,

then a and b are conjugate, denoted a ∼ b, if and only if xax−1 = b, for

some x ∈ G.
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2.2 Semigroup Examples

Example 2.2.1 The set of all integers, Z, under multiplication, is a monoid.

Example 2.2.2

The set of all positive integers, under addition, is a semigroup.

Example 2.2.3

The set of all nonnegative matrices, under matrix multiplication, is

a semigroup.

Example 2.2.4 Full Transformation Semigroup

Tn = the set of all mappings from {1, 2, ..., n} → {1, 2, ..., n}.

Tn is the semigroup analogue of Sn. We notice that Sn is the unit group of

Tn.

Example 2.2.5 Signed Full Transformation Semigroup

T̃n = the set of all mappings from {1, 2, ..., n} → {±1,±2, ...,±n}.

T̃n is the semigroup analogue of S̃n. We see that S̃n is the unit group of T̃n.

The primary focus of this chapter will be the full transformation semi-

groups, Tn and T̃n.
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2.3 Notation

The following notations are of the most use for representing elements in full

transformation semigroups. These notations should look similar to those

used in the last chapter.

2.3.1 Two Line Notation

Let π ∈ Tn. We can write π =

(
1 2 3 · · · n

π(1) π(2) π(3) · · · π(n)

)
.

Example 2.3.1 If π ∈ T5 and π(1) = 1, π(2) = 1, π(3) = 4, π(4) = 4,

π(5) = 5, then π =

(
1 2 3 4 5
1 1 4 4 5

)
.

2.3.2 One Line Notation

Once again, we may remove the top line in the two line notation to get

π =
(
π(1) π(2) π(3) · · · π(n)

)
.

Example 2.3.2 If π ∈ T5 and π(1) = 1, π(2) = 1, π(3) = 4, π(4) = 4,

π(5) = 5, then π =
(

1 1 4 4 5
)
.

2.3.3 Matrix Notation

Let π ∈ Tn; we can indicate π(j) = i by placing a 1 in the (i, j)-entry of an

n×n matrix.
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Example 2.3.3 π = (11445) ∈ T5, which means π(1) = 1, π(2) = 1,

π(3) = 4, π(4) = 4, π(5) = 5, can be written in matrix notation as

π =


1 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 1 0
0 0 0 0 1

.

2.3.4 Directed Graph Notation

Consider an element π ∈ Tn, where π =
(
i j k · · · l

)
in one-line no-

tation. Draw n vertices and label them i, j, k, ..., l. Indicate π(i) = j by

drawing a directed line segment from i to j.

Example 2.3.4 For π = (1111) ∈ T4, the directed graph is,

1
%%

2oo

3

OO

4

^^=======

2.4 Orders of Full Transformation Semigroups

Definition 2.4.1 The order of a semigroup S is the number of elements

in S. We denote the order of S by the symbol, |S|.

Theorem 2.4.2 |Tn| = nn

Example 2.4.3 |T6| = 66 = 46, 656

Corollary 2.4.4 |T̃n| = 2n · nn = (2n)n

Example 2.4.5 |T̃6| = (2 · 6)6 = 126 = 2, 985, 984
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2.5 Regular Semigroups

Definition 2.5.1 An element y of a semigroup S is called regular if there

exists x ∈ S, such that yxy = y.

Definition 2.5.2 A semigroup S is called a regular semigroup if all of

its elements are regular.

Definition 2.5.3 A semigroup is said to be unit regular if for each y ∈ S

there is a unit u such that yuy = y.

Theorem 2.5.4 Tn is a regular semigroup.

Proof:

(This proof comes from [9].) For every α ∈ Tn, it is easily seen that the rela-

tionship yxy = y holds for every x ∈ Tn, such that x(α) (α ∈ {1, 2, ..., n}) is

equal to some one of the elements β, for which y(β) = α and arbitrarily, for

α 6∈ y({1, 2, ..., n}). 2

Theorem 2.5.5 T̃n is a regular semigroup.

The proof of this result will be given in Chapter 4. It is a special case of

a theorem for wreath products.
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2.6 Rank and Range of Elements in Tn

Definition 2.6.1 Let n̂ = {1, 2, ..., n} and σ ∈ Tn. The range of σ, denoted

Rng(σ), is σ(n̂).

Definition 2.6.2 Let n̂ = {1, 2, ..., n} and σ ∈ Tn. The rank of σ, denoted

Rnk(σ), is |σ(n̂)|.

Example 2.6.3 Consider the elements (111), (122), and (123) from T3.

Rng((111)) = {1}, Rng((122)) = {1, 2}, and Rng((123)) = {1, 2, 3}.

Example 2.6.4 Once again, consider the elements (111), (122), and (123)

from T3. Rnk((111)) = 1, Rnk((122)) = 2, and Rnk((123)) = 3. We see

that the ranks of the elements are just the orders of the sets from the above

example. Another way to find the rank is by writing the elements in matrix

form and using techniques from linear algebra.

2.7 Idempotents in Tn and T̃n

Definition 2.7.1 We say an element σ ∈ Tn is idempotent if and only

if σ2 = σ. We denote the set of all idempotents in Tn by E(Tn).

We will usually denote idempotent elements by the letter, e. Another

way to say that e ∈ E(Tn) is e(i) = i, for i ∈ Rng(e).
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Example 2.7.2 Consider the element (223) ∈ T3. We can write this ele-

ment in matrix form as,

 0 0 0
1 1 0
0 0 1

.

We can see this element is idempotent via matrix multiplication, 0 0 0
1 1 0
0 0 1


 0 0 0

1 1 0
0 0 1

 =

 0 0 0
1 1 0
0 0 1



We could also see that Rng((223)) = {2, 3}, and we do in fact have e(2) = 2

and e(3) = 3. So, our alternate definition for idempotent elements is also

satisfied in this case.

Example 2.7.3 Some other idempotents in T3 are:

(1) The element, (111), which we can write in matrix form as,

 1 1 1
0 0 0
0 0 0

.

(2) The element, (122), which we can write in matrix form as,

 1 0 0
0 1 1
0 0 0

.

(3) The element, (121), which we can write in matrix form as,

 1 0 1
0 1 0
0 0 0

.

Example 2.7.4 For T2, the set of all idempotent elements is E(T2) = {(11), (22), (12)},

where elements are written in one line notation.
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Example 2.7.5 For T̃2, the set of all idempotent elements is

E(T̃2) = {(11), (22), (12), (1−1), (−22)}, where elements are written in one

line notation.

Example 2.7.6 For T3, the set of all idempotent elements is

E(T3) = {(111), (222), (333), (123), (113), (121), (122), (133), (223), (323)}, where

elements are written in one line notation.

In 1966, John M. Howie proved that the subsemigroup Tn−Sn is generated

by the idempotents of Tn. The following is a rewording of the theorem in [6].

Theorem 2.7.7 Every element of Tn − Sn can be expressed as a product of

idempotent elements.

The proof of this theorem may be found in [6] on pages 708-709. He proves

the theorem using notation that is not found in this thesis. Therefore, it is

left to the interested reader to sort through Howie’s proof.

Example 2.7.8 In T3, we can write the non-idempotent,

 0 0 0
1 0 0
0 1 1

, as a

product of idempotents in the following way:

 0 0 0
1 0 0
0 1 1

 =

 0 0 0
1 1 0
0 0 1


 1 0 0

0 0 0
0 1 1


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It is also possible to express every element in T̃n − S̃n as a product of

idempotents. This result will be proved in Chapter 4. It is a special case of

a theorem about the idempotents of wreath products.

Example 2.7.9 In T̃3, we can write the non-idempotent,

 −1 1 1
0 0 0
0 0 0

, as

a product of idempotents in the following way:

 −1 1 1
0 0 0
0 0 0

 =

 1 −1 −1
0 0 0
0 0 0


 0 0 0

0 0 0
1 1 1


 1 −1 −1

0 0 0
0 0 0



2.8 Looking Ahead To Chapters 3 and 4

In the next two chapters, we will work with the wreath products of a group

G by the symmetric group Sn and a group G by the full transformation

semigroup Tn. We will see how to construct S̃n and T̃n via wreath products.

Many of the same theorems and properties from the first two chapters will

carry over to the wreath products.
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3 The Wreath Product GwrSn

We will show many interesting properties of GwrSn in this chapter. First, we

will construct GwrSn and show that it is a group. We follow the exposition

in [8].

3.1 Defining GwrSn

Consider a group G and let n̂ = {1, 2, ..., n}. The product of G with itself n

times, G × G × · · · × G, will be denoted Gn̂. Gn̂ is the set of all mappings

from n̂ into G. In other words, Gn̂ = {f |f : n̂→ G}.

We put GwrSn = Gn̂ × Sn = {(f, π)|f : n̂→ G, π ∈ Sn} and, for f ∈ Gn̂

and π ∈ Sn, we define fπ = f ◦ π. We define a multiplication on Gn̂ as

follows: For f, f ′ ∈ Gn̂, (ff ′)(i) = f(i)f ′(i), where i ∈ n̂. Using this, we

define a law of composition on GwrSn,

(f, π)(f ′, π′) = (fπ′f
′, ππ′) = ((f ◦ π′)f ′, ππ′)

3.2 GwrSn Is A Group

If we define e ∈ Gn̂ by e(i) = 1G, where i ∈ n̂, then the identity element

of GwrSn will be 1GwrSn = (e, 1Sn). For f ∈ Gn̂, the mapping f−1 ∈ Gn̂ is

defined by f−1(i) = (f(i))−1, for i ∈ n̂. Using this, we define the inverse of

(f, π) ∈ GwrSn to be (f, π)−1 = (fπ
−1, π−1) = (f−1 ◦ π−1, π−1).

So far, we have shown that GwrSn has an identity element and that every
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element, (f, π) ∈ GwrSn, has an inverse element, (f, π)−1 ∈ GwrSn.

For elements (f, π), (g, σ), (h, γ) ∈ GwrSn, it can be shown, with a little

work, that (f, π)[(g, σ)(h, γ)] = [(f, π)(g, σ)](h, γ). Therefore, the law of

composition for GwrSn is associative. This shows us that GwrSn forms a

group, called the wreath product of G by Sn, using the given law of

composition.

Since GwrSn is a group, it can also be shown that

[(f, π)(g, σ)]−1 = (g, σ)−1(f, π)−1, where (f, π), (g, σ) ∈ GwrSn. The order

of GwrSn is |GwrSn| = |G|n · |Sn| = |G|n · n!, if G is finite.

3.3 Notation and Examples

Example 3.3.1 Z2wrSn is the wreath product of the group of sign changes by

Sn. This is just the set of all bijections from {1, 2, ..., n} → {±1,±2, ...,±n}.

So, Z2wrSn = S̃n. In Chapter 1, we claimed that |S̃n| = 2n · n!. We see this

is the case in another way, |Z2wrSn| = |Z2|n · |Sn| = 2n · n!.

Example 3.3.2 We see that Z2wrS2 =
{( 1 0

0 1

)
,

(
1 0
0 −1

)
,(

−1 0
0 1

)
,

(
−1 0
0 −1

)
,

(
0 1
1 0

)
,

(
0 −1
1 0

)
,

(
0 1
−1 0

)
,

(
0 −1
−1 0

)}

So, |Z2wrS2| = 22 · 2! = 8.
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We can represent the elements in GwrSn in a few different ways. Vari-

ations on the previous graph notation and matrix notation will be of the

greatest use in this chapter.

Example 3.3.3 Consider GwrS3 and let g1, g2, g3 ∈ G. We can represent

the mapping, 1
g1−→ 3, 2

g3−→ 1, 3
g2−→ 2, by a graph,

1

g1
��

2
g3oo

3

g2

@@�������

or as a matrix,

 0 g3 0
0 0 g2

g1 0 0

,

where j
g−→ i is represented by placing g ∈ G in the (i, j)-entry of the n×n

matrix.

Example 3.3.4 Consider GwrS5 and let h ∈ G. We can represent the

mapping, 1
h−→ 2, 2

h−→ 1, 3
h−→ 3, 4

h−→ 5, 5
h−→ 4, by a graph,

1
h

((
2hhh

3h
%%

4 h
((
5

h

hh

or as a matrix,


0 h 0 0 0
h 0 0 0 0
0 0 h 0 0
0 0 0 0 h
0 0 0 h 0

.
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Example 3.3.5 Consider KwrS4 and let k1, k3, k4, k5 ∈ K. We can repre-

sent the mapping, 1
k1−→ 1, 2

k3−→ 3, 3
k4−→ 4, 4

k5−→ 2, by a graph,

1k1
%%

2
k3

���������

3
k4

// 4

k5

OO

or as a matrix,


k1 0 0 0
0 0 0 k5

0 k3 0 0
0 0 k4 0

.

We may also use wreath product notation to define the following:

Ŝ = {(1, π)|π ∈ Sn} ∼= Sn and

Ĝ = {(f, 1)|f ∈ Gn̂} ∼= Gn̂ ∼= G×G×G× · · · ×G.

3.4 Multiplication of Elements in GwrSn

We can think of multiplication of elements in GwrSn in a couple of different

ways:

(1) i
g←− j

g′←− k, where g, g′ ∈ G.

(2) We can take the product of a matrix with an element g ∈ G in the (i, j)-

entry and a matrix with an element g′ ∈ G in the (j, k)-entry. This produces

a matrix with an element gg′ ∈ G in the (i, k)-entry.
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Example 3.4.1 In GwrS3, let g1, g2, g3 ∈ G and consider two elements,

z, z′ ∈ GwrS3, where

z : 1
g1−→ 2, 2

g2−→ 3, 3
g3−→ 1, is represented by the matrix,

 0 0 g3

g1 0 0
0 g2 0

,

and

z′ : 1
g3−→ 1, 2

g2−→ 3, 3
g1−→ 2, is represented by the matrix,

 g3 0 0
0 0 g1

0 g2 0

.

Then, zz′ =

 0 0 g3

g1 0 0
0 g2 0


 g3 0 0

0 0 g1

0 g2 0

 =

 0 g3g2 0
g1g3 0 0

0 0 g2g1

,

or zz′ : 1
g1g3−→ 2, 2

g3g2−→ 1, 3
g2g1−→ 3.

and z′z =

 g3 0 0
0 0 g1

0 g2 0


 0 0 g3

g1 0 0
0 g2 0

 =

 0 0 g2
3

0 g1g2 0
g2g1 0 0

,

or z′z : 1
g2g1−→ 3, 2

g1g2−→ 2, 3
g23−→ 1.
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4 The Wreath Product GwrTn

Now, we will consider the wreath product, GwrTn. First, we will construct

GwrTn. Then, we will show how GwrTn differs from GwrSn.

4.1 Defining GwrTn

Consider a group G and let n̂ = {1, 2, ..., n}. The product of G with itself n

times, G × G × · · · × G, will be denoted Gn̂. Gn̂ is the set of all mappings

from n̂ into G. In other words, Gn̂ = {f |f : n̂→ G}.

We put GwrTn = Gn̂ × Tn = {(f, π)|f : n̂ → G, π ∈ Tn}. We define a

multiplication on Gn̂ as follows: For f, f ′ ∈ Gn̂, (ff ′)(i) = f(i)f ′(i), where

i ∈ n̂. Using this, we define a law of composition on GwrTn,

(f, π)(f ′, π′) = ((f ◦ π′)f ′, ππ′)

4.2 GwrTn Is A Monoid

If we define e ∈ Gn̂ by e(i) = 1G, where i ∈ n̂, then the identity element of

GwrTn will be 1GwrTn = (e, 1Tn). For elements (f, π), (g, σ), (h, γ) ∈ GwrTn,

we see that (f, π)[(g, σ)(h, γ)] = [(f, π)(g, σ)](h, γ). Therefore, GwrTn has

an identity element and the law of composition is associative.

In GwrTn, we do not have inverses, (f, π)−1, defined for every element

(f, π) ∈ GwrTn. Thus, GwrTn is not a group. We can only say that GwrTn

is a monoid. We still call GwrTn the wreath product of G by Tn.
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4.3 Notation and Examples

The order of GwrTn is |GwrTn| = |G|n · |Tn| = |G|n · nn = (n · |G|)n, if G is

finite. We should also note that GwrSn is the unit group of GwrTn.

Example 4.3.1 If G = Z3, then |GwrT4| = (4 · 3)4 = 124 = 20, 786.

Notice how this compares to |GwrS4| = 34 · 4! = 1, 944. GwrT4 has many

more elements than GwrS4.

We will represent the elements of GwrTn in the same manner as the ele-

ments in GwrSn. The reader should refer back to Chapter 3 for a discussion

on such notation.

Example 4.3.2 Z2wrTn is the wreath product of the group of sign changes by

Tn. This is just the set of all mappings from {1, 2, ..., n} → {±1,±2, ...,±n}.

So, Z2wrTn = T̃n.

In Chapter 2, we claimed that |T̃n| = (2n)n. We see this is the case in another

way, |Z2wrTn| = |Z2|n · |Tn| = 2n · nn = (2n)n.
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Example 4.3.3 We see that Z2wrT2 =
{( 1 0

0 1

)
,

(
1 0
0 −1

)
,(

−1 0
0 1

)
,

(
−1 0
0 −1

)
,

(
0 1
1 0

)
,

(
0 −1
1 0

)
,

(
0 1
−1 0

)
,

(
0 −1
−1 0

)
,(

1 1
0 0

)
,

(
−1 −1
0 0

)
,

(
1 −1
0 0

)
,

(
−1 1
0 0

)
,

(
0 0
1 1

)
,

(
0 0
−1 −1

)
,(

0 0
1 −1

)
,

(
0 0
−1 1

)}

So, |Z2wrT2| = 22 · 22 = 16.

Example 4.3.4 Consider GwrT3 and let g1, g2, g3 ∈ G. We can represent

the mapping, 1
g1−→ 1, 2

g2−→ 1, 3
g3−→ 1, by a graph,

1g1
%%

2
g2oo

3

g3

OO

or as a matrix,

 g1 g2 g3

0 0 0
0 0 0

,

where j
g−→ i is represented by placing g ∈ G in the (i, j)-entry of the n×n

matrix.
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Example 4.3.5 Let g1, g2, g3, g4 ∈ G, and consider the following element in

GwrT10 where,

1g1
%%

2
g3

((
5g3hh

3g1
%%

4 g1
yy

6 g2
// 10 g1

vv

7g1
%%

9
g3oo

8

g4

??~~~~~~~~

We can represent this element in matrix form as,



g1 0 0 0 0 0 0 0 0 0
0 0 0 0 g3 0 0 0 0 0
0 0 g1 0 0 0 0 0 0 0
0 0 0 g1 0 0 0 0 0 0
0 g3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 g1 0 g3 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 g4 0 0
0 0 0 0 0 g2 0 0 0 g1



.

4.4 Multiplication Of Elements In GwrTn

We can show multiplication of two elements in GwrTn using matrix multi-

plication, as we did in Chapter 3 for GwrSn.
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Example 4.4.1 In GwrT3, where g1, g2, g3 ∈ G, consider two elements,

z, z′ ∈ GwrT3, where

z : 1
g1−→ 1, 2

g2−→ 3, 3
g3−→ 3, is represented by the matrix,

 g1 0 0
0 0 0
0 g2 g3

,

and

z′ : 1
g3−→ 3, 2

g1−→ 2, 3
g2−→ 2, is represented by the matrix,

 0 0 0
0 g1 g2

g3 0 0

.

Then, zz′ =

 g1 0 0
0 0 0
0 g2 g3


 0 0 0

0 g1 g2

g3 0 0

 =

 0 0 0
0 0 0
g2
3 g2g1 g2

2

,

or zz′ : 1
g23−→ 3, 2

g2g1−→ 3, 3
g22−→ 3.

and z′z =

 0 0 0
0 g1 g2

g3 0 0


 g1 0 0

0 0 0
0 g2 g3

 =

 0 0 0
0 g2

2 g2g3

g3g1 0 0

,

or z′z : 1
g3g1−→ 3, 2

g22−→ 2, 3
g2g3−→ 2.

4.5 GwrTn Is Unit Regular

Using wreath product notation, we can define the following:

T̂ = {(1, π)|π ∈ Tn} ∼= Tn and

Ĝ = {(f, 1)|f ∈ Gn̂} ∼= Gn̂ ∼= G×G×G× · · · ×G.
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Theorem 4.5.1 GwrTn is unit regular. (We can write GwrTn = T̂ Ĝ)

Proof:

We must prove that (f, π) = (1, π)(f, 1).

Using the definition of the composition of two elements we get,

(1, π)(f, 1) = ((1G ◦ 1Tn)f, π1Tn) = ((1G ◦ 1Tn)f, π) = (f, π),

since ((1G ◦ 1Tn)f)(k) = (1G ◦ 1Tn)(k)f(k) = 1 · f(k) = f(k), for all k ∈ n̂. 2

Corollary 4.5.2 GwrTn is regular.

Example 4.5.3 Consider

(
g1 g2

0 0

)
, which is an element of GwrT2, where

g1, g2 ∈ G. We can write,

(
g1 g2

0 0

)
=

(
1 1
0 0

)(
g1 0
0 g2

)
.

4.6 Idempotents In GwrTn

Idempotents in GwrTn are of the form, ê = (f, e), where ê ∈ E(GwrTn) if

and only if e2 = e and f(i) = 1, for all i ∈ Rng(e).

Example 4.6.1 Some idempotents in GwrT3 are:

 1 g 0
0 0 0
0 0 1

,

 0 0 0
0 0 0
g 1 1

,

and

 1 0 g
0 1 0
0 0 0

. You should notice that these look strikingly similar to the

idempotents:

 1 1 0
0 0 0
0 0 1

,

 0 0 0
0 0 0
1 1 1

, and

 1 0 1
0 1 0
0 0 0

 in T3.
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Now, we can show that Howie’s Theorem from [6] holds for GwrTn as

well. We see that the units of GwrTn make up GwrSn.

Theorem 4.6.2 Every non-unit of GwrTn can be written as a product of

idempotents.

Proof:

From the previous theorem, we know that σ̂ = (f, σ) = (1, σ)(f, 1), where

σ 6∈ Sn. Due to [6], we know that (1, σ) can be represented as a product

of idempotents. So, it suffices to prove that if ê = ê2 6= 1̂, g = (f, 1) ∈ Ĝ,

then êg is a product of idempotents. Starting with êg, we can conjugate by

g to get g(êg)g−1 = gê. This means that it is sufficient to prove that gê is a

product of idempotents.

Remember, Ĝ = {(f, 1)|f ∈ Gn̂} ∼= Gn̂ ∼= G×G× · · · ×G and

Ĝi = {(f, 1)|f ∈ Gi} ∼= G, so Ĝ ∼= Ĝ1 × Ĝ2 × · · · × Ĝn. This means that, for

g ∈ Ĝ, it suffices to prove that gê is a product of idempotents, for g ∈ Ĝi.

Let i 6∈ Rng(e) (e(i) 6= i, so f(i) 6= 1) . Then, for ê = (f, e), g = (h, 1) ∈ Ĝi,

where h ∈ Gi and h(s) = 1, when s 6= i. This means that gê = (h, 1)(f, e) =

((h◦ e)f, e) = (f, e) = ê, since (h◦ e)f(k) = h(e(k))f(k) = f(k) and e(k) 6= i

implies h(e(k)) = 1. So, gê = ê.

So, assume that i ∈ Rng(e). This means that e(i) = i, so f(i) = 1.
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Define ê0 = (1, e0), where e0 is defined as follows:

e0(k) =

{
k if k ∈ Rng(e)
i if k 6∈ Rng(e)

So, ê = ê0ê, which implies that gê = gê0ê. This means that it suffices to

show that gê0 is a product of idempotents. Once again, let g = (f, 1) ∈ Ĝj,

for j 6= i. We must prove that gê0 = (f, e0)ê0.

Now, gê0 = (f, 1)ê0 = (f, 1)(1, e0) = ((f ◦ e0)1G, e0) = (f ◦ e0, e0) and

(f, e0)(1, e0) = ((f ◦ e0)1G, e0e0) = (f ◦ e0, e20) = (f ◦ e0, e0), which tells us

gê0 = (f, e0)ê0.

Now to complete the proof of the theorem, let k 6∈ Rng(e). Let (ik) be the

permutation which switches the i-th and k-th rows. It must be shown that,

(f, e0) = (1, e0)[(ik)(f, e0)] = (1, e0)(f, (ik)e0) and then it must be shown

that, (f, (ik)e0) is an idempotent. First, we will compute (1, e0)(f, (ik)e0).

So, (1, e0)(f, (ik)e0) = (1, e0)(f, (ik)e0) = ((1G ◦ (ik)e0)f, e0(ik)e0)

= (1Gf, e0(ik)e0) = (f, e0)

Now, we can use this fact to show that (f, (ik)e0) is an idempotent. We must

prove that,

(f, (ik)e0)(f, (ik)e0) = (ik)(f, e0)(ik)(f, e0) = (ik)(f, e0), which just amounts

to showing that (f, e0)(ik)(f, e0) = (f, e0).
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So, (f, e0)(1, (ik))(f, e0) = (f, e0)(1, (ik))(1, e0)(1, (ik))(f, e0)

= ((f ◦ (ik))1G, e0(ik))(1, e0)(1, (ik))(f, e0)

= (1, e0(ik))(1, e0)(1, (ik))(f, e0) = ((1G ◦ e0)1G, e0(ik)e0)(1, (ik))(f, e0) =

((1, e0)(1, (ik))(f, e0)

= ((1G ◦ (ik))1G, e0(ik))(f, e0) = ((1, e0(ik))(f, e0) = ((1G ◦ e0)f, e0(ik)e0) =

(1Gf, e0) = (f, e0)

This means that, (f, e0)(ik)(f, e0) = (f, e0) and thus,

(ik)(f, e0)(ik)(f, e0) = (ik)(f, e0), which is the final thing we needed to show.

This completes the proof of the theorem. 2

Example 4.6.3 Consider GwrT3 and let g1, g2, g3 ∈ G, we can write the

non-idempotent,

 g1 g2 g3

0 0 0
0 0 0

, as a product of idempotents in the following

way:

 1 0 g2

0 1 0
0 0 0


 0 0 0

0 0 0
g−1
2 g1 1 1


 1 0 g−1

1 g3

0 1 0
0 0 0


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Example 4.6.4 Once again, consider GwrT3 and let g ∈ G, we can write

the non-idempotent,

 g 0 0
0 1 1
0 0 0

, as a product of idempotents in the follow-

ing way:

 1 0 g
0 1 0
0 0 0


 0 0 0

0 1 0
1 0 1


 1 0 0

0 1 1
0 0 0


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5 Green’s Relations

We will start by defining Green’s relations on a monoid, M , as in [4], [7].

Then, we will move on to determine Green’s relations on GwrTn.

5.1 Green’s Relations On A Monoid M

Definition 5.1.1 Two elements in M are R-related, denoted aRb,

if aM = bM .

Definition 5.1.2 Two elements in M are L-related, denoted aLb,

if Ma = Mb.

Definition 5.1.3 Two elements in M are J -related, denoted aJ b,

if MaM = MbM .

J is a two sided analogue of R and L. These relations allow us to write

M in terms of R-classes, L-classes, and J -classes.

Definition 5.1.4 The intersection of an R-class and an L-class is called an

H-class (i.e., H = R∩L). Two elements in M are H-related, denoted aHb,

if and only if aRb and aLb.

Definition 5.1.5 The join of an R-class and an L-class is called a D-class

(i.e., D = R ◦ L = L ◦ R = L ∨ R). Two elements in M are D-related,

denoted aDb, if and only if there exists z ∈M such that aLz and zRb.

For finite monoids, M , J = D.
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5.2 Green’s Relations for Idempotent Elements

Let e, f ∈ M be idempotents. Two idempotents are R-related, denoted

eRf , if ef = f and fe = e. They are L-related, denoted eLf , if fe = f

and ef = e. They are H-related, denoted eHf , if e = f . If e2 = e, then the

H-class of e is the unit group of eMe.

5.3 Green’s Relations For Tn

Let σ, θ ∈ Tn; σRθ if and only if Rng(σ) = Rng(θ), and σLθ if and only if σ

and θ have the same fibres.

Definition 5.3.1 Recall that a fibre of a map f : X → Y is

f−1(y) = {x ∈ X|f(x) = y}.

R-classes are in one-to-one correspondence with subsets of n̂ and L-classes

are in one-to-one correspondence with partitions of n̂.

Example 5.3.2 We can examine the Green’s relations on T3 by forming its

D-picture, as in [4], where:

(1) The headings for the rows are the subsets of {1, 2, 3}. The headings for

the columns are the partitions of {1, 2, 3}. Each element with a, *, is an

idempotent element.

(2) (abc) means 1 → a, 2 → b, 3 → c. (i.e., This is the one-line notation

discussed in Chapter 2 for elements of Tn.)
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(3) The Dr-class contains the rank r elements of T3.

The D1-class contains the rank 1 elements.

Table 5.3.1 - D1-class of T3

D1 {1, 2, 3}
{1} (111)∗

{2} (222)∗

{3} (333)∗

The D2-class contains the rank 2 elements.

Table 5.3.2 - D2-class of T3

D2 {1}{2, 3} {2}{1, 3} {3}{1, 2}
{1, 2} (122)∗ (121)∗ (112)

(211) (212) (221)
{1, 3} (133)∗ (131) (113)∗

(311) (313) (331)
{2, 3} (233) (232) (332)

(322) (323)∗ (223)∗

The D3-class contains the rank 3 elements.

Table 5.3.3 - D3-class of T3

D3 {1}{2}{3}
{1, 2, 3} (123)∗

(132)
(213)
(231)
(312)
(321)

The six elements which make up the D3-class are the elements of S3.
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Thus, T3 has the following eggbox structure:

Table 5.3.4 - Eggbox Diagram for T3

1
1
1

2 2 2
2 2 2
2 2 2

6

We see that we get, |T3| = 6 + 9(2) + 3(1) = 27 = 33, like we should.

Each box in the D-class diagram is an H-class of T3. Each row is an

R-class of T3 and each column is an L-class of T3. By a theorem in [4], T3 is

a regular semigroup since each R-class and each L-class contain at least one

idempotent. The H-classes of T3 which contain an idempotent are subgroups

of T3, by a result in [4].

Using D-class diagrams, we see that we could write out the elements of

T3 in terms of R-classes, L-classes, and J -classes. Since T3 is finite, the

J -classes are simply the D-classes described in the diagrams above.
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In the next example, we will look at the D-class diagrams for T̃3. We

will see that the eggbox structure of T̃3 is quite different from the eggbox

structure of T3.

Example 5.3.3 The D-classes of T̃3 will be described below.

The D1-class contains the rank 1 elements.

Table 5.3.5 - D1-class of T̃3

D1 {1, 2, 3}
{1} (1 1 1)∗ (1 -1 1)∗ (1 1 -1)∗ (1 -1 -1)∗

(-1 -1 -1) (-1 1 -1) (-1 -1 1) (-1 1 1)
{2} (2 2 2)∗ (2 -2 2) (2 2 -2)∗ (2 -2 -2)

(-2 -2 -2) (-2 2 -2)∗ (-2 -2 2) (-2 2 2)∗

{3} (3 3 3)∗ (3 -3 3)∗ (3 3 -3) (3 -3 -3)
(-3 -3 -3) (-3 3 -3) (-3 -3 3)∗ (-3 3 3)∗
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The D2-class contains the rank 2 elements.

Table 5.3.6 - D2-class of T̃3

D2 {1}{2, 3} ˜{1}{2, 3} {2}{1, 3} ˜{2}{1, 3} {3}{1, 2} ˜{3}{1, 2}
{1, 2} (1 2 2)∗ (1 2 -2)∗ (1 2 1)∗ (1 2 -1)∗ (1 1 2) (1 -1 2)

(-1 2 2) (-1 2 -2) (-1 2 -1) (-1 -2 1) (-1 -1 2) (-1 1 2)
(1 -2 -2) (1 -2 2) (1 -2 1) (1 -2 -1) (1 1 -2) (1 -1 -2)
(-1 -2 -2) (-1 -2 2) (-1 -2 -1) (-1 2 1) (-1 -1 -2) (-1 1 -2)

(2 1 1) (2 -1 1) (2 1 2) (2 1 -2) (2 2 1) (-2 2 1)
(-2 1 1) (2 1 -1) (-2 1 -2) (-2 1 2) (-2 -2 1) (2 -2 1)
(2 -1 -1) (-2 -1 1) (2 -1 2) (-2 -1 2) (2 2 -1) (2 -2 -1)
(-2 -1 -1) (-2 1 -1) (-2 -1 -2) (2 -1 -2) (-2 -2 -1) (-2 2 -1)

{1, 3} (1 3 3)∗ (1 -3 3)∗ (1 3 1) (1 3 -1) (1 1 3)∗ (1 -1 3)∗

(-1 3 3) (-1 3 -3) (-1 3 -1) (-1 -3 1) (-1 -1 3) (-1 1 -3)
(1 -3 -3) (1 3 -3) (1 -3 1) (1 -3 -1) (1 1 -3) (-1 1 3)
(-1 -3 -3) (-1 -3 3) (-1 -3 -1) (-1 3 1) (-1 -1 -3) (1 -1 -3)

(3 1 1) (3 1 -1) (3 1 3) (-3 1 3) (3 3 1) (-3 3 1)
(-3 1 1) (3 -1 1) (-3 1 -3) (3 1 -3) (-3 -3 1) (3 -3 1)
(3 -1 -1) (-3 -1 1) (3 -1 3) (-3 -1 3) (3 3 -1) (3 -3 -1)
(-3 -1 -1) (-3 1 -1) (-3 -1 -3) (3 -1 -3) (-3 -3 -1) (-3 3 -1)

{2, 3} (2 3 3) (2 3 -3) (2 3 2) (2 3 -2) (3 3 2) (3 -3 2)
(-2 3 3) (-2 3 -3) (-2 3 -2) (-2 -3 2) (-3 -3 2) (-3 3 -2)
(2 -3 -3) (-2 -3 3) (2 -3 2) (2 -3 -2) (3 3 -2) (-3 3 2)
(-2 -3 -3) (2 -3 3) (-2 -3 -2) (-2 3 2) (-3 -3 -2) (3 -3 -2)

(3 2 2) (3 2 -2) (3 2 3)∗ (-3 2 3)∗ (2 2 3)∗ (-2 2 3)∗

(-3 2 2) (-3 2 -2) (-3 2 -3) (3 2 -3) (-2 -2 3) (2 -2 3)
(3 -2 -2) (-3 -2 2) (3 -2 3) (-3 -2 3) (2 2 -3) (2 -2 -3)
(-3 -2 -2) (3 -2 2) (-3 -2 -3) (3 -2 -3) (-2 -2 -3) (-2 2 -3)

In the above table, ˜{1}{2, 3} is the dual of {1}{2, 3}.

The D3-class contains the elements of S̃3, which are all of rank 3.

We see that |T̃3| = 24 + 144 + 48 = 216 = 63
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Thus, T̃3 has the following eggbox structure:

Table 5.3.7 - Eggbox Diagram for T̃3

2 2 2 2
2 2 2 2
2 2 2 2

8 8 8 8 8 8
8 8 8 8 8 8
8 8 8 8 8 8

48

Each box in the D-class diagram is an H-class of T̃3. Each row is an

R-class of T̃3 and each column is an L-class of T̃3. By a theorem in [4], T̃3 is

a regular semigroup since each R-class and each L-class contain at least one

idempotent.

5.4 Green’s Relations For Idempotents In GwrTn

Let ê = (f, e) and ê′ = (f ′, e′) be idempotents in GwrTn. Remember, for

idempotents (f, e) ∈ GwrTn, e2 = e ∈ Tn and f(i) = 1, for all i ∈ Rng(e).

We determine the R-relatedness of elements in the same manner as in Tn.

Recall, that ê isR-related to ê′, denoted êRê′ if and only ifRng(ê) = Rng(ê′).

The number of R-classes of rank k in GwrTn is the same as the number of

R-classes of rank k in Tn. So, the number of R-classes of rank k in GwrTn

is

(
n
k

)
.
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This counting argument is proven in [3], on page 61. He uses the notation

of, [4], which is the reverse of the notation found in this paper. This difference

in notation is due to the fact that they write maps on the right and we write

maps on the left.

Looking back to our D-class diagram for T3, we see that there are(
3
1

)
= 3 R-classes of rank 1. These are the rows of the D1-class. There

are

(
3
2

)
= 3 R-classes of rank 2. These are the rows of the D2-class. There

is

(
3
3

)
= 1 R-class of rank 3. This is the row of the D3-class. The same

results will hold for GwrT3. This fact will allow us to write GwrTn in terms

of R-classes.

When describing the L-classes, the following theorem will be quite useful.

The theorem works because GwrTn is unit regular, so every element is

L-related to an idempotent.

Theorem 5.4.1 (Rank One Case) If ê = (f, e) is an idempotent and e′ ∈ Tn

is an idempotent such that eLe′, then êLê′ = (f ′, e′), for some f ′.

Proof:

Let e, e ∈ Tn, where eLe′. We partition n̂ as n̂ = A1 t A2 t · · · t At. Then,

for αi, α
′
i ∈ Ai, we have e : Ai → αi and e′ : Ai → α′i. Now, for ê = (f, e),

f(αi) = αi. For α ∈ n̂, if α ∈ Ai, we define f ′(α) = f(α′i)
−1f(α). We must

show that ê′ = (f ′, e′) is an idempotent.
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We already know that (e′)2 = e′, so all we need to show is f ′(α) = 1, for

α ∈ Rng(e′). We know that Rng(e′) = α′i, so f ′(α) = f(α′i)
−1f(α′i) = 1, for

i = 1, 2, ..., t. Therefore, ê′ = (f ′, e′) is an idempotent. Now, we must show

that êLê′.

So, êê′ = (f, e)(f ′, e′) = ((f ◦ e′)f ′, ee′). Since eLe′ in Tn, ee′ = e and

((f ◦ e′)f ′)(α) = (f ◦ e′)(α)f ′(α) = (f ◦ e′)(α)(1) = f(e′(α)) = f(α), for

α ∈ Rng(e′). So, ((f ◦ e′)f ′, ee′) = (f, e), which implies êê′ = ê.

Also, ê′ê = (f ′, e′)(f, e) = ((f ′ ◦ e)f, e′e). Since eLe′ in Tn, e′e = e′ and

((f ′ ◦ e)f)(β) = (f ′ ◦ e)(β)f(β) = (f ′ ◦ e)(β)(1) = f ′(e(β)) = f ′(β), for

β ∈ Rng(e). So, ((f ′ ◦ e)f, e′e) = (f ′, e′), which implies ê′ê = ê′. So, êLê′.

Therefore, our choice of f ′ was correct. 2

The above proof only covers the case of rank 1 matrices. The following

example is one for which the theorem works.

Example 5.4.2 In GwrT4:


1 x2 x3 x4

0 0 0 0
0 0 0 0
0 0 0 0

 L


0 0 0 0
y1 1 y3 y4

0 0 0 0
0 0 0 0



means that


x2y1 = 1⇒ y1 = x−1

2

x2y3 = x3 ⇒ y3 = x−1
2 x3

x2y4 = x4 ⇒ y4 = x−1
2 x4

y2 = 1


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Both matrices used to represent the elements,

11
%%

2
x2oo

3

x3

OO

4

x4

^^=======

and 1 y1
// 2 1

yy

3

y3

@@�������
4

y4

OO

were rank one matrices. The previous theorem is also true for matrices of

rank greater than one.

Theorem 5.4.3 (General Case) If ê = (f, e) is an idempotent and e′ ∈ Tn

is an idempotent such that eLe′, then êLê′ = (f ′, e′), for some f ′.

Proof:

Once again, let e, e ∈ Tn, where eLe′. We partition n̂ as n̂ = A1tA2t· · ·tAt.

Then, for αi, α
′
i ∈ Ai, we have e : Ai → αi and e′ : Ai → α′i.

Now, for ê = (f, e), we can write ê = ê1 ⊕ ê2 ⊕ · · · ⊕ êt. This just says

that the matrix which represents ê has a block decomposition. Similarly, we

may write, ê′ = ê′1 ⊕ ê′2 ⊕ · · · ⊕ ê′t.

Each block matrix in the block decomposition of ê and ê′ is of rank one.

So, we are now able to relate each block of ê to the corresponding blocks of

ê′. So, for êi = (fi, ei), which is an idempotent with eiLe′i in Tn, the rank

one case of the theorem tells us that êiLê′i = (f ′i , e
′
i), for some f ′i .

This gives us, ê1Lê′1, ê2Lê′2, ... ,êtLê′t. Since ê = ê1 ⊕ ê2 ⊕ · · · ⊕ êt and

ê′ = ê′1⊕ ê′2⊕· · ·⊕ê′t, we have what we needed to prove, in the general case. 2
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Theorem 5.4.4 Two idempotents, ê = (f, e) and ê1 = (f1, e), are L-related

if and only if f = f1.

Proof:

Let ê = (f, e) and ê1 = (f1, e) be two idempotents which are L-related. Then,

êê1 = ê and ê1ê = ê1.

This means that, (f, e)(f1, e) = ((f ◦ e)f1, ee) = ((f ◦ e)f1, e) and

(f1, e)(f, e) = ((f1 ◦ e)f, ee) = ((f1 ◦ e)f, e).

So, ((f ◦ e)f1, e) = (f, e) and ((f1 ◦ e)f, e) = (f1, e). This tells us that,

(f ◦ e)f1 = f and (f1 ◦ e)f = f1, which implies f = f1. 2

Given e of rank k, the number of possibilities for f is |G|n−k. This is

because f(i) = 1, for i ∈ Rng(e) and |Rng(e)| = k and f is arbitrary on

n̂ − Rng(e). Hence we have the following theorem, which gives the number

of L-classes.

Theorem 5.4.5 The number of L-classes of GwrTn of rank k is equal to

|G|n−k times the number of partitions of n̂ with k parts.
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5.5 Looking Ahead To Chapter 6

One could continue on and describe the R-classes and L-classes for GwrTn in

greater detail, as well as, the notions of H-relatedness and J -relatedness in

GwrTn. At some point in the future, I may do this, but in the next chapters

we shall focus on the conjugacy classes in the wreath products instead.
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6 Conjugacy Classes In Sn and Tn

In this chapter, we will examine the conjugacy classes of Sn and Tn and see

many examples.

6.1 Conjugacy Classes Of Sn Revisited

Once again, let n̂ = {1, 2, ..., n}. Consider the symmetric group, Sn, which

consists of the permutations of n̂. Let α, β ∈ n̂ and σ ∈ Sn. We say α ∼ β if

σi(α) = β, for some i. This relation allows us to decompose into cycles.

Example 6.1.1 In S7, consider σ =

(
1 2 3 4 5 6 7
4 7 3 5 6 1 2

)
.

In cycle notation this element can be represented as, (1456)(27)(3).

Notice that: 1 ∼ 4 since σ(1) = 4, 1 ∼ 5 since σ2(1) = 5,

1 ∼ 6 since σ3(1) = 6, 2 ∼ 7 since σ(2) = 7, and 3 ∼ 3 since σ(3) = 3.

So, we have the decomposition of n̂ = {1, 2, 3, 4, 5, 6, 7} into {1, 4, 5, 6},

{2, 7}, and {3}. This can be shown in graph form as follows:

1 // 4

��
6

OO

5oo

2
((
7hh 3

yy

We see that we have a decomposition into cycles. We may move the labels

around to produce other elements with the same cycle structure. So, we could

produce other elements of the form,
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• // •

��
•

OO

•oo

• (( •hh • yy

All of these elements would have the same cycle type and would be contained

in the same conjugacy class of S7.

For example,

7 // 4

��
6

OO

5oo

3
((
2hh 1

yy

has the same cycle structure as our original example. Thus, (4567)(32)(1)

would be in the same conjugacy class as (1456)(27)(3), in S7.

6.2 Conjugacy Classes Of Tn

Next, we will consider what happens in the full transformation semigroup, Tn.

We will be able to produce a similar type of cycle decomposition. Consider

the full transformation semigroup, Tn, which consists of the mappings from

n̂ → n̂. Let α, β ∈ n̂ and σ ∈ Tn. We say α ∼ β if σi(α) = σj(β), for some

i, j.

Theorem 6.2.1 The relation, α ∼ β if σi(α) = σj(β), for some i, j, is an

equivalence relation.

Proof:

To show the relation is an equivalence relation, we must show it is reflexive,

symmetric, and transitive.
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Reflexive: Let α ∈ n̂. Then, α ∼ α since σi(α) = σj(α), for i, j. This

occurs when i = j. Thus, the relation is reflexive.

Symmetric: Let α, β ∈ n̂ and let α ∼ β. Then, σi(α) = σj(β), for some

i, j. Then σj(β) = σi(α), for some i, j, so β ∼ α. Thus, the relation is

symmetric.

Transitive: Let α, β, γ ∈ n̂. Let α ∼ β and β ∼ γ. Then, σi(α) = σj(β),

for some i, j and σk(β) = σl(γ), for some k, l.

Then, σi+k(α) = σj+k(β) = σj(σk(β)) = σj(σl(γ)) = σj+k(γ), for some

i, j, k, l. Thus, α ∼ γ and the relation is transitive.

So the relation is reflexive, symmetric, and transitive, which proves that

it is an equivalence relation. 2

This is the analogue of the cycle decomposition in Sn. We call this the

generalized cycle decomposition. In other words, the equivalence relation

yields a decomposition into connected pieces.

Example 6.2.2 In T7, consider σ =

(
1 2 3 4 5 6 7
2 2 1 3 7 5 7

)
.

Notice that: 1 ∼ 2 since σ(1) = 2 = σ(2), 1 ∼ 3 since σ(1) = 2 = σ2(3),

1 ∼ 4 since σ(1) = 2 = σ3(4), 5 ∼ 6 since σ(5) = 7 = σ2(6),

and 5 ∼ 7 since σ(5) = 7 = σ(7). So, we have the decomposition of

n̂ = {1, 2, 3, 4, 5, 6, 7} into {1, 2, 3, 4} and {5, 6, 7}.
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This can be shown in graph form as follows:

1

��

4

��
2

%%
3

^^=======

5

��

6oo

7
yy

Notice that we have a decomposition into generalized cycles. Relabeling

while keeping the same generalized cycle structure (or ”type”) will give us the

other elements in the same conjugacy class as our example.

So, another element in the same conjugacy class of T7 would be:

3

��

1

��
4

%%
2

^^=======

6

��

7oo

5
yy

which we could write as

(
1 2 3 4 5 6 7
2 3 4 4 5 5 6

)
.
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Example 6.2.3 The following are examples of generalized cycle decomposi-

tions in T10:

(1)

(
1 2 3 4 5 6 7 8 9 10
2 5 6 1 1 7 9 6 8 8

)
,

which we represent in graph form as,

1 // 2

��
4

OO

5

^^=======

3 // 6 // 7

��
10 // 8

OO

9oo

(2)

(
1 2 3 4 5 6 7 8 9 10
2 3 1 1 6 5 7 10 8 8

)
,

which we represent in graph form as,

1 // 2

��
4

OO

3

^^=======

5
((
6hh 7

%%
8

		

9oo

10

II

6.2.1 The Conjugacy Classes Of T1 and T2

The elements in each conjugacy class will be represented using one-line no-

tation. An unlabeled graph will also be shown to describe the generalized

cycle type of each element in the conjugacy class.

The only conjugacy class of T1 is C1 = {(1)}, which consists of elements

of the form,

•%%
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In T2,

The conjugacy class, C1 = {(12)}, consists of elements of the form,

•%% • yy

The conjugacy class, C2 = {(21)}, consists of elements of the form,

• (( •hh

The conjugacy class, C3 = {(11), (22)}, consists of elements of the form,

• // • yy

So, T2 has three conjugacy classes.
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6.2.2 The Conjugacy Classes Of T3

Again, the elements in each conjugacy class will be represented using one-line

notation. An unlabeled graph will also be shown to describe the generalized

cycle type of each element in the conjugacy class.

The conjugacy class, C1 = {(123)}, consists of elements of the form,

•%% • yy

•%%

The conjugacy class, C2 = {(231), (312)}, consists of elements of the form,

•

��

•oo

•

??~~~~~~~

The conjugacy class, C3 = {(132), (213), (321)}, consists of elements of the

form,

•

��

• yy

•

HH
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The conjugacy class, C4 = {(111), (222), (333)}, consists of elements of the

form,

•%% •oo

•

OO

The conjugacy class, C5 = {(223), (323), (121), (122), (133), (113)}, consists

of elements of the form,

•%% •oo

•%%

The conjugacy class, C6 = {(332), (331), (311), (232), (212), (211)}, consists

of elements of the form,

•

��

•

��~~~~~~~

•

HH
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The conjugacy class, C7 = {(112), (131), (221), (233), (313), (322)}, consists

of elements of the form,

•

��

•oo

•%%

We see that T3 has seven conjugacy classes.

6.2.3 The Conjugacy Classes Of T4

Once again, the elements in each conjugacy class will be represented using

one-line notation. An unlabeled graph will also be shown to describe the

generalized cycle type of each element in the conjugacy class.

The conjugacy class, C1 = {(1234)}, consists of elements of the form,

•%% • yy

•%% • yy
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The conjugacy class, C2 = {(4321), (2143), (3412)}, consists of elements of

the form,

•

��

•

vv•

66

•

WW

The conjugacy class, C3 = {(1324), (4231), (1243), (1432), (2134), (3214)},

consists of elements of the form,

•

��

• yy

•%% •

WW

The conjugacy class, C4 = {(2413), (3142), (2341), (3421), (4123), (4312)},

consists of elements of the form,

•

��

•oo

• // •

OO
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The conjugacy class, C5 = {(1221), (1331), (4224), (4334), (1133), (1212),

(2244), (3434), (1144), (1414), (2233), (3232)}, consists of elements of the form,

•

��@@@@@@@ •

��~~~~~~~

•%% • yy

The conjugacy class, C6 = {(1224), (1231), (1324), (1334), (1134), (1214),

(1232), (1233), (1244), (2234), (3234), (1434)}, consists of elements of the form,

•

��@@@@@@@ • yy

•%% • yy

The conjugacy class, C7 = {(1321), (4221), (4331), (4324), (1143), (1412),

(2133), (2144), (2243), (3212), (3414), (3432)}, consists of elements of the form,

•

��

•

��~~~~~~~

•%% •

WW
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The conjugacy class, C8 = {(2112), (2442), (3113), (3443), (2121), (3311),

(4343), (4422), (2323), (4141), (3322), (4411)}, consists of elements of the form,

•

��

•

��
• (( •hh

The conjugacy class, C9 = {(2322), (4111), (4441), (3323), (2111), (2122),

(2422), (3111), (3313), (3343), (4442), (4443)}, consists of elements of the form,

•

��

•

��
• // •

WW

The conjugacy class, C10 = {(1111), (2222), (3333), (4444)}, consists of ele-

ments of the form,

• // • yy

•

??~~~~~~~
•

OO
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The conjugacy class, C11 = {(1114), (1444), (2232), (3233), (1131), (1211),

(1222), (1333), (2224), (3334), (4244), (4434)}, consists of elements of the form,

•

��

• yy

•%% •oo

The conjugacy class, C12 = {(1441), (2332), (3223), (4114), (1122), (1313),

(2211), (2424), (3344), (4242), (4433), (3131)}, consists of elements of the form,

• // •

��~~~~~~~

•%% •

OO

The conjugacy class, C13 = {(1223), (1241), (1332), (1431), (2334), (4134),

(4214), (3224), (1132), (1213), (1242), (1433), (2214), (2434), (3134), (3244),

(1124), (1314), (1344), (1424), (2231), (3231), (4232), (4233)}, consists of ele-

ments of the form,

•

��@@@@@@@ •oo

•%% • yy
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The conjugacy class, C14 = {(1322), (1323), (2324), (3324), (4241), (4211),

(4431), (4131), (1442), (1443), (2132), (3114), (2114), (3243), (2432), (3213),

(1422), (2131), (4243), (3314), (2124), (4432), (3211), (4243)}, consists of ele-

ments of the form,

•

��

•

��
•%% •

WW

The conjugacy class, C15 = {(1341), (1421), (2331), (3221), (4223), (4332),

(4314), (4124), (1123), (1312), (2241), (2344), (3431), (3424), (4133), (4212),

(1142), (1413), (2213), (2414), (2433), (3132), (3144), (3242)}, consists of ele-

ments of the form,

• // •

��~~~~~~~

•%% •

__@@@@@@@
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The conjugacy class, C16 = {(1342), (3124), (3241), (4132), (1423), (2314), (2431), (4213)},

consists of elements of the form,

• // •

��
•%% •

__@@@@@@@

The conjugacy class, C17 = {(2123), (2141), (2343), (3312), (3411), (4143),

(3422), (4412), (2113), (2142), (2412), (2443), (3112), (3143), (3413), (3442),

(2321), (3321), (4121), (4341), (4323), (4322), (4421), (4311)}, consists of ele-

ments of the form,

•

��@@@@@@@ •oo

• (( •hh
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The conjugacy class, C18 = {(2311), (2421), (3121), (3341), (4122), (4313),

(4342), (4423), (2312), (2441), (3123), (3423), (3441), (4112), (4113), (2342),

(2313), (2423), (2411), (3122), (3141), (3342), (4142), (4413)}, consists of ele-

ments of the form,

•

��

•

��~~~~~~~

• // •

__@@@@@@@

The conjugacy class, C19 = {(1112), (1113), (2242), (2444), (3133), (3433),

(3444), (2212), (1121), (1311), (2221), (4222), (4333), (4344), (4424), (3331),

(1141), (1411), (2223), (2333), (3222), (3332), (4144), (4414)}, consists of ele-

ments of the form,

•

��

•

��
•%% •oo

We see that T4 has nineteen conjugacy classes.
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6.2.4 More About The Generalized Cycle Structure

Now, we will examine the generalized cycle structure in greater detail. Let

Y0 = n̂ and Yi = σi(Y0), where σ ∈ Tn. We have Y0 ⊃ Y1 ⊃ · · · ⊃ Yk = Yk+1.

We define, Y = Yk, to be the core of σ. We should note that σ|Y ∈ SY .

As we have seen in the above examples, σ produces a generalized cycle

decomposition, X = X1 tX2 t · · · tXr, into r connected components.

σi = σ|Xi
is connected with core Zi = Xi∩Y . Moreover, σ|Zi

is a cycle. This

means that r is the number of cycles of σ|Y .

We could represent the previous paragraphs of information pictorially.

If we make a ”bullseye” diagram for the Yi’s which shows, Y0 ⊃ Y1 ⊃ · · · ⊃

Yk = Yk+1, then, the center of the ”bullseye” diagram would be Y = Yk, the

core. We would use σ to divide up into connected pieces, X1,X2,X3,...,Xr,

where X = X1 tX2 t · · · tXr. This would illustrate the fact that σi = σ|Xi

is connected with core, Zi = Xi ∩ Y .
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Example 6.2.4 Consider the following element, σ ∈ T9,

1

		

3oo

2

II

4oo 5oo

8

��
6 // 7

^^=======

9oo

Using the notation described on the previous page, we see that,

Y0 = {1, 2, 3, 4, 5, 6, 7, 8, 9}, Y1 = σ(Y0) = {1, 2, 4, 6, 7, 8}, and the core of σ

is Y = Y2 = σ2(Y0) = {1, 2, 6, 7, 8}. Notice that we have, Y0 ⊃ Y1 ⊃ Y2 = Y .

σ produces a generalized cycle decomposition, X = X1 tX2, where

X1 = {1, 2, 3, 4, 5} and X2 = {6, 7, 8, 9}.

σ1 is connected with core Z1 = X1∩Y = {1, 2} and σ2 is connected with core

Z2 = X2 ∩ Y = {6, 7, 8}.

Now that we understand the cycle decompositions in Sn and Tn, we may

examine what happens in GwrSn and GwrTn.
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7 Conjugacy Classes in GwrSn

Consider the wreath product of any group G with Sn, denoted GwrSn. Let

G have t conjugacy classes, [g1], [g2], ..., [gt]. It is a well known result that we

can associate a color with each cycle.

7.1 N-Cycles in GwrSn

We can reduce any n-cycle in GwrSn to a cycle with only one label. So, for

an n-cycle,

1
g1 // 2

g2

��=======

.

gn
�

�
�

�
3

g3���������

5

g5

^^<<<<<<<<

4g4
oo

which is represented by the matrix,



0 0 0 0 · · · 0 gn
g1 0 0 0 · · · 0 0
0 g2 0 0 · · · 0 0
...

...
...

. . .
...

...
...

0 0 0 0 · · · gn−1 0

,

we can reduce to the standard (or canonical) form,
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1
1 // 2

gngn−1gn−2···g2g1

��=======

.

1
�

�
�

�
3

1���������

5

1

^^<<<<<<<<

4
1

oo

via multiple conjugations by different matrices.

Also, by conjugation, we are able to put the gngn−1gn−2 · · · g2g1 anywhere

we wish along the n-cycle, and have all 1’s elsewhere. The conjugacy class

of gngn−1gn−2 · · · g2g1 is referred to as the type of the cycle, or the color.

Example 7.1.1 In GwrS4, consider the element,

1
g1 // 2

g2
��

4

g4

OO

3
g3oo

which is represented by the matrix,


0 0 0 g4

g1 0 0 0
0 g2 0 0
0 0 g3 0


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(1) Conjugate by,


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 g4

:


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 g4




0 0 0 g4

g1 0 0 0
0 g2 0 0
0 0 g3 0




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 g−1

4



=


0 0 0 g4

g1 0 0 0
0 g2 0 0
0 0 g4g3 0




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 g−1

4

 =


0 0 0 1
g1 0 0 0
0 g2 0 0
0 0 g4g3 0



(2) Conjugate by,


1 0 0 0
0 1 0 0
0 0 g4g3 0
0 0 0 1

:


1 0 0 0
0 1 0 0
0 0 g4g3 0
0 0 0 1




0 0 0 1
g1 0 0 0
0 g2 0 0
0 0 g4g3 0




1 0 0 0
0 1 0 0
0 0 (g4g3)

−1 0
0 0 0 1



=


0 0 0 g4

g1 0 0 0
0 g4g3g2 0 0
0 0 g4g3 0




1 0 0 0
0 1 0 0
0 0 (g4g3)

−1 0
0 0 0 1

 =


0 0 0 1
g1 0 0 0
0 g4g3g2 0 0
0 0 1 0


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(3) Conjugate by,


1 0 0 0
0 g4g3g2 0 0
0 0 1 0
0 0 0 1

:


1 0 0 0
0 g4g3g2 0 0
0 0 1 0
0 0 0 1




0 0 0 1
g1 0 0 0
0 g4g3g2 0 0
0 0 1 0




1 0 0 0
0 (g4g3g2)

−1 0 0
0 0 1 0
0 0 0 1



=


0 0 0 g4

g4g3g2g1 0 0 0
0 g4g3g2 0 0
0 0 1 0




1 0 0 0
0 (g4g3g2)

−1 0 0
0 0 1 0
0 0 0 1

 =


0 0 0 1

g4g3g2g1 0 0 0
0 1 0 0
0 0 1 0

,

which gives us the element in canonical form,

4
1 // 1

g4g3g2g1
��

3

1

OO

2
1oo

We can move the g4g3g2g1 around by conjugation.

7.2 Example in GwrS12

Every element in GwrSn is conjugate to an element in standard form, a

permutation with each cycle having a color.
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Example 7.2.1 In GwrS12, the element,

1
g1

��=======

3

g3

OO

2
g2oo

4
g4

��=======

6

g6

OO

5
g5oo

7
g7

((
8

g8

hh

9g9
%%

10
g10

**
11

g11
jj 12 g12

vv

is conjugate to the following element in standard form,

1
g3g2g1

��=======

3

1

OO

2
1oo

4
g6g5g4

��=======

6

1

OO

5
1oo

7
g8g7

((
8

1

hh

9g9
%%

10
g11g10

**
11

1

jj 12 g12
vv

7.3 The Conjugacy Class Formula For GwrSn

The fact that we can make any element in GwrSn conjugate to an element in

standard form, characterizes the conjugacy classes of GwrSn by their cycle

structures (or ”types”). There are as many conjugacy classes as there are

”types”. The following theorem from [8], gives a formula for determining the

number of conjugacy classes in GwrSn.
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Theorem 7.3.1 If t ∈ N is equal to the number of conjugacy classes of G

and if p(m) denotes the number of partitions of m, then the number of con-

jugacy classes of GwrSn is
∑
(n)

p(n1)p(n2) · · · p(nt), where the sum is taken

over all t-tuples (n1, n2, ..., nt) over N0, such that
∑

ni = n.

Example 7.3.2 Consider Z2wrS2. The conjugacy classes are{( 1 0
0 1

)}
,
{( −1 0

0 −1

)}
,
{( 0 1

1 0

)
,

(
0 −1
−1 0

)}
,

{( 0 −1
1 0

)
,

(
0 1
−1 0

)}
,
{( 1 0

0 −1

)
,

(
−1 0
0 1

)}

So, we have five conjugacy classes in Z2wrS2.

We will arrive at the same conclusion using the previous theorem. Notice

that we can partition n = 2 in three ways, as 0 + 2, 1 + 1, and 2 + 0.

For 2 = 2 + 0, p(2)p(0) = 2.

For 2 = 1 + 1, p(1)p(1) = 1.

For 2 = 0 + 2, p(0)p(2) = 2.

This is because S2 has two conjugacy classes and S1 has one conjugacy class.

So,
∑

p(n1) · · · p(nt) = p(2)p(0) + p(1)p(1) + p(0)p(2) = 2 + 1 + 2 = 5.

Again, we see that the number conjugacy classes in Z2wrS2 is five.
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Example 7.3.3 If G has 3 conjugacy classes, then GwrS2 has 9 conjugacy

classes since,

2 = 0 + 0 + 2, so p(0)p(0)p(2) = 1 · 1 · 2 = 2

2 = 0 + 2 + 0, so p(0)p(2)p(0) = 1 · 2 · 1 = 2

2 = 2 + 0 + 0, so p(2)p(0)p(0) = 2 · 1 · 1 = 2

2 = 1 + 1 + 0, so p(1)p(1)p(0) = 1 · 1 · 1 = 1

2 = 1 + 0 + 1, so p(1)p(0)p(1) = 1 · 1 · 1 = 1

2 = 0 + 1 + 1, so p(0)p(1)p(1) = 1 · 1 · 1 = 1

and 2+2+2+1+1+1=9.

Example 7.3.4 If G has 5 conjugacy classes, then GwrS3 has 65 conjugacy

classes since,

3 = 0 + 0 + 0 + 0 + 3, so p(0)p(0)p(0)p(0)p(3) = 1 · 1 · 1 · 1 · 3 = 3

3 = 0 + 0 + 0 + 3 + 0, so p(0)p(0)p(0)p(3)p(0) = 1 · 1 · 1 · 3 · 1 = 3

3 = 0 + 0 + 3 + 0 + 0, so p(0)p(0)p(3)p(0)p(0) = 1 · 1 · 3 · 1 · 1 = 3

3 = 0 + 3 + 0 + 0 + 0, so p(0)p(3)p(0)p(0)p(0) = 1 · 3 · 1 · 1 · 1 = 3

3 = 3 + 0 + 0 + 0 + 0, so p(3)p(0)p(0)p(0)p(0) = 3 · 1 · 1 · 1 · 1 = 3

3 = 2 + 1 + 0 + 0 + 0, so p(2)p(1)p(0)p(0)p(0) = 2 · 1 · 1 · 1 · 1 = 2

3 = 2 + 0 + 1 + 0 + 0, so p(2)p(0)p(1)p(0)p(0) = 2 · 1 · 1 · 1 · 1 = 2

3 = 2 + 0 + 0 + 1 + 0, so p(2)p(0)p(0)p(1)p(0) = 2 · 1 · 1 · 1 · 1 = 2
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3 = 2 + 0 + 0 + 0 + 1, so p(2)p(0)p(0)p(0)p(1) = 2 · 1 · 1 · 1 · 1 = 2

3 = 1 + 2 + 0 + 0 + 0, so p(1)p(2)p(0)p(0)p(0) = 1 · 2 · 1 · 1 · 1 = 2

3 = 0 + 2 + 1 + 0 + 0, so p(0)p(2)p(1)p(0)p(0) = 1 · 2 · 1 · 1 · 1 = 2

3 = 0 + 2 + 0 + 1 + 0, so p(0)p(2)p(0)p(1)p(0) = 1 · 2 · 1 · 1 · 1 = 2

3 = 0 + 2 + 0 + 0 + 1, so p(0)p(2)p(0)p(0)p(1) = 1 · 2 · 1 · 1 · 1 = 2

3 = 1 + 0 + 2 + 0 + 0, so p(1)p(0)p(2)p(0)p(0) = 1 · 1 · 2 · 1 · 1 = 2

3 = 0 + 1 + 2 + 0 + 0, so p(0)p(1)p(2)p(0)p(0) = 1 · 1 · 2 · 1 · 1 = 2

3 = 0 + 0 + 2 + 1 + 0, so p(0)p(0)p(2)p(1)p(0) = 1 · 1 · 2 · 1 · 1 = 2

3 = 0 + 0 + 2 + 0 + 1, so p(0)p(0)p(2)p(0)p(1) = 1 · 1 · 2 · 1 · 1 = 2

3 = 1 + 0 + 0 + 2 + 0, so p(1)p(0)p(0)p(2)p(0) = 1 · 1 · 1 · 2 · 1 = 2

3 = 0 + 1 + 0 + 2 + 0, so p(0)p(1)p(0)p(2)p(0) = 1 · 1 · 1 · 2 · 1 = 2

3 = 0 + 0 + 1 + 2 + 0, so p(0)p(0)p(1)p(2)p(0) = 1 · 1 · 1 · 2 · 1 = 2

3 = 0 + 0 + 0 + 2 + 1, so p(0)p(0)p(0)p(2)p(1) = 1 · 1 · 1 · 2 · 1 = 2

3 = 1 + 0 + 0 + 0 + 2, so p(1)p(0)p(0)p(0)p(2) = 1 · 1 · 1 · 1 · 2 = 2

3 = 0 + 1 + 0 + 0 + 2, so p(0)p(1)p(0)p(0)p(2) = 1 · 1 · 1 · 1 · 2 = 2

3 = 0 + 0 + 1 + 0 + 2, so p(0)p(0)p(1)p(0)p(2) = 1 · 1 · 1 · 1 · 2 = 2

3 = 0 + 0 + 0 + 1 + 2, so p(0)p(0)p(0)p(1)p(2) = 1 · 1 · 1 · 1 · 2 = 2

3 = 1 + 1 + 1 + 0 + 0, so p(1)p(1)p(1)p(0)p(0) = 1 · 1 · 1 · 1 · 1 = 1

3 = 1 + 1 + 0 + 1 + 0, so p(1)p(1)p(0)p(1)p(0) = 1 · 1 · 1 · 1 · 1 = 1

3 = 1 + 1 + 0 + 0 + 1, so p(1)p(1)p(0)p(0)p(1) = 1 · 1 · 1 · 1 · 1 = 1

3 = 1 + 0 + 1 + 1 + 0, so p(1)p(0)p(1)p(1)p(0) = 1 · 1 · 1 · 1 · 1 = 1
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3 = 1 + 0 + 1 + 0 + 1, so p(1)p(0)p(1)p(0)p(1) = 1 · 1 · 1 · 1 · 1 = 1

3 = 1 + 0 + 0 + 1 + 1, so p(1)p(0)p(0)p(1)p(1) = 1 · 1 · 1 · 1 · 1 = 1

3 = 0 + 1 + 1 + 1 + 0, so p(0)p(1)p(1)p(1)p(0) = 1 · 1 · 1 · 1 · 1 = 1

3 = 0 + 0 + 1 + 1 + 1, so p(0)p(0)p(1)p(1)p(1) = 1 · 1 · 1 · 1 · 1 = 1

3 = 0 + 1 + 0 + 1 + 1, so p(0)p(1)p(0)p(1)p(1) = 1 · 1 · 1 · 1 · 1 = 1

3 = 0 + 1 + 1 + 0 + 1, so p(0)p(1)p(1)p(0)p(1) = 1 · 1 · 1 · 1 · 1 = 1

and (5 · 3) + (20 · 2) + (10 · 1) = 65.

Next, we will consider GwrTn and see that an analogous theorem will

hold for determining the number of conjugacy classes.
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8 Conjugacy Classes In GwrTn

8.1 Conjugation Examples

Example 8.1.1 Consider the following element in GwrT4,

1
g4

��

2
g1oo

3

g2

OO

4

g3

VV

which is represented by the matrix,


0 g1 g2 g3

0 0 0 0
0 0 0 0
g4 0 0 0

.

The core of the element is {1, 4}. We will reduce the labels from the core

outward via conjugation.

(1) Conjugate by,


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 g3

:


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 g3




0 g1 g2 g3

0 0 0 0
0 0 0 0
g4 0 0 0




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 g−1

3



=


0 g1 g2 g3

0 0 0 0
0 0 0 0
g3g4 0 0 0




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 g−1

3

 =


0 g1 g2 1
0 0 0 0
0 0 0 0
g3g4 0 0 0


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(2) Conjugate by,


1 0 0 0
0 1 0 0
0 0 g2 0
0 0 0 1

:


1 0 0 0
0 1 0 0
0 0 g2 0
0 0 0 1




0 g1 g2 1
0 0 0 0
0 0 0 0
g3g4 0 0 0




1 0 0 0
0 1 0 0
0 0 g−1

2 0
0 0 0 1



=


0 g1 g2 1
0 0 0 0
0 0 0 0
g3g4 0 0 0




1 0 0 0
0 1 0 0
0 0 g−1

2 0
0 0 0 1

 =


0 g1 1 1
0 0 0 0
0 0 0 0
g3g4 0 0 0



(3) Conjugate by,


1 0 0 0
0 g1 0 0
0 0 1 0
0 0 0 1

:


1 0 0 0
0 g1 0 0
0 0 1 0
0 0 0 1




0 g1 1 1
0 0 0 0
0 0 0 0
g3g4 0 0 0




1 0 0 0
0 g−1

1 0 0
0 0 1 0
0 0 0 1



=


0 g1 1 1
0 0 0 0
0 0 0 0
g3g4 0 0 0




1 0 0 0
0 g−1

1 0 0
0 0 1 0
0 0 0 1

 =


0 1 1 1
0 0 0 0
0 0 0 0
g3g4 0 0 0


which gives us the element in canonical form,

1
1

��

2
1oo

3

1

OO

4

h

VV

where h = g3g4.

Notice that all labels have been reduced to 1’s, except for one label in the core.
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Example 8.1.2 In GwrT4, consider the element,

1
g4

��======= 2
g1oo

3

g3
@@�������
4

g2

OO

which is represented by the matrix,


0 g1 0 0
0 0 g4 g2

0 0 0 0
g3 0 0 0

.

The core of the element is {1, 2, 4}. We will reduce the labels from the

core outward via conjugation.

(1) Conjugate by,


1 0 0 0
0 g1 0 0
0 0 1 0
0 0 0 1

:


1 0 0 0
0 g1 0 0
0 0 1 0
0 0 0 1




0 g1 0 0
0 0 g4 g2

0 0 0 0
g3 0 0 0




1 0 0 0
0 g−1

1 0 0
0 0 1 0
0 0 0 1



=


0 g1 0 0
0 0 g1g4 g1g2

0 0 0 0
g3 0 0 0




1 0 0 0
0 g−1

1 0 0
0 0 1 0
0 0 0 1

 =


0 1 0 0
0 0 g1g4 g1g2

0 0 0 0
g3 0 0 0


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(2) Conjugate by,


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 g1g2

:


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 g1g2




0 1 0 0
0 0 g1g4 g1g2

0 0 0 0
g3 0 0 0




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 (g1g2)

−1



=


0 1 0 0
0 0 g1g4 g1g2

0 0 0 0
g1g2g3 0 0 0




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 (g1g2)

−1

 =


0 1 0 0
0 0 g1g4 1
0 0 0 0
g3 0 0 0



(3) Conjugate by,


1 0 0 0
0 1 0 0
0 0 g1g4 0
0 0 0 1

:


1 0 0 0
0 1 0 0
0 0 g1g4 0
0 0 0 1




0 1 0 0
0 0 g1g4 1
0 0 0 0

g1g2g3 0 0 0




1 0 0 0
0 1 0 0
0 0 (g1g4)

−1 0
0 0 0 1



=


0 1 0 0
0 0 g1g4 1
0 0 0 0

g1g2g3 0 0 0




1 0 0 0
0 1 0 0
0 0 (g1g4)

−1 0
0 0 0 1

 =


0 1 0 0
0 0 1 1
0 0 0 0

g1g2g3 0 0 0


which gives us the element in canonical form,

1
1

��======= 2
1oo

3

h
@@�������
4

1

OO

where h = g1g2g3.

Notice that all labels have been reduced to 1’s, except for one label in the core.
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Example 8.1.3 If we work from the core outward, we can reduce the element

(in GwrT4),

1
g1 // 2

g2 // 3
g4

((
4

g3

hh

to its canonical form,

1
1 // 2

1 // 3
1

((
4

g4g3

hh

Example 8.1.4 If we work from the core outward, we can reduce the element

(in GwrT4),

1

1
��

2

1
��

3
g1

((
4

g2

hh

to its canonical form,

1

1
��

2

1
��

3
1

((
4

g2g1

hh

8.2 The Two Lemmas

Let (f, σ) ∈ GwrTn, where σ ∈ Tn. Let X0 = n̂ and Xi = σi(X0). Then

X0 ⊃ X1 ⊃ · · · ⊃ Xk = Xk+1. We define, X = Xk, to be the core of σ. Let

σ̃ = σ|X ∈ SX and f̃ = f |X . Then (f̃ , σ̃) ∈ GwrSX .

We will prove that each element of GwrTn is conjugate to an essentially

unique standard element. This is an element with all labels being ones,

except for at most one label per cycle in the core. This is suggested by the
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examples in the previous section. We begin with the following lemmas:

Lemma 8.2.1 Let (f, σ) ∈ GwrTn. Then, (f, σ) ∼ (g, σ), for some g, with

f = g on Xi+1 and g = 1 on Xi −Xi+1.

Proof:

Let

h(α) =

{
f(α) if α ∈ Xi −Xi+1

1 if α 6∈ Xi −Xi+1

Let (h, 1)(f, σ)(h, 1)−1 = (g, σ). Then, ((h ◦ σ)f, σ)(h−1 ◦ 1, 1) = (g, σ).

Then, ([((h ◦ σ)f) ◦ 1](h−1 ◦ 1), σ) = (g, σ).

Now, g(i) = [((h ◦ σ)f) ◦ 1](h−1 ◦ 1)(i) = [((h ◦ σ)f) ◦ 1](i)(h−1 ◦ 1)(i)

= [(h ◦ σ)f ](i)h−1(i) = (h ◦ σ)(i)f(i)h−1(i) = h(j)f(i)h−1(i), because

1Tn(i) = i and σ(i) = j.

For i 6∈ Xi − Xi+1, we have h(i) = 1, so g(i) = 1(j)f(i)1(i) = f(i).

Therefore, f(i) = g(i) for i 6∈ Xi −Xi+1, or f |Xi+1
= g|Xi+1

.

For i ∈ Xi −Xi+1, we have h(i) = f(i), so g(i) = f(j)f(i)f−1(i) = f(j),

where i 6= j.

Recall, that GwrTn = Gn̂ × Tn, where Gn̂ ∼= G1 × G2 × · · · × Gn and

Gi = {f ∈ Gn̂|f(j) = 1, i 6= j}. Since f ∈ Gn̂ and i 6= j, we must have

f(j) = 1 and thus, g(i) = 1. So, g = 1, for i ∈ Xi −Xi+1. 2
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Lemma 8.2.2 Let (f, σ) ∈ GwrTn. Then, (f, σ) ∼ (g, σ), for some g with

g = f on X, g = 1 on n̂−X.

Proof:

Suppose that (f, σ) ∼ (g, σ), with g = f on X and g = 1 on Xj − X, for

some j. This is trivially true for j = k, with g = f . By the previous lemma,

there exists h with g = h on Xj and h = 1 on Xj−1 −Xj.

So, we have (f, σ) ∼ (g, σ) ∼ (h, σ), where h = 1 on Xj−1 − X and

h = f on X. By reverse induction, the above property holds for all values

j ≤ k. Thus, (f, σ) ∼ (g, σ), for some g with g = f on X and g = 1 on

X0 −X = n̂−X. 2

By using the two lemmas and section 7.1, we can give a generalized cycle

decomposition for elements in GwrTn. For each piece, we are able to reduce

to at most one label in the core. We can have a color assigned to each such

generalized cycle. This is what is referred to as the standard (or canonical)

form of an element in GwrTn. Every element in GwrTn is conjugate to an

element in standard form.
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Example 8.2.3 In GwrT10, the element,

1
g1 // 2

g2
��

4

g4

OO

3

g3

^^=======

5
g5

((
6

g6

hh 7g7
%%

8

g8
		

9g9
oo

10

g10

II

is conjugate to the following element in standard form,

1
1 // 2

g3g2g1
��

4

1

OO

3
1

^^=======

5
g6g5

((
6

1

hh 7g7
%%

8

g10g8
		

9
1

oo

10

1

II

Example 8.2.4 In GwrTn, the element,

1
g1 // 2

g2 // ___ ___ // n− 1
gn−1

)) n
gn

mm

is conjugate to the following element in standard form,

1
1 // 2

1 // ___ ___ // n− 1
1

)) n
gngn−1

mm

8.3 The Conjugacy Class Formula For GwrTn

The fact that we can make any element in GwrTn conjugate to an element

in standard form, characterizes the conjugacy classes of GwrTn by their gen-

eralized cycle structures (or ”types”). There are as many conjugacy classes

as there are ”types”. The following theorem, which gives a formula for de-

termining the number of conjugacy classes in GwrTn, is analogous to the

formula for the number of conjugacy classes in GwrSn. (Theorem 7.3.1)
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Theorem 8.3.1 If t ∈ N is equal to the number of conjugacy classes of G

and if q(m) denotes the number of conjugacy classes of Tm, then the number

of conjugacy classes of GwrTn is
∑
(n)

q(n1)q(n2) · · · q(nt), where the sum is

taken over all t-tuples (n1, n2, ..., nt) over N0, such that
∑

ni = n.

Example 8.3.2 Consider Z2wrT2. The conjugacy classes are{( 1 0
0 1

)}
,
{( −1 0

0 −1

)}
,
{( 0 1

1 0

)
,

(
0 −1
−1 0

)}
,

{( 0 −1
1 0

)
,

(
0 1
−1 0

)}
,
{( 1 0

0 −1

)
,

(
−1 0
0 1

)}
,

{( 1 1
0 0

)
,

(
1 −1
0 0

)
,

(
0 0
1 1

)
,

(
0 0
−1 1

)}
,

{( −1 1
0 0

)
,

(
−1 −1
0 0

)
,

(
0 0
−1 −1

)
,

(
0 0
1 −1

)}

So, we have seven conjugacy classes in Z2wrT2.

We will arrive at the same conclusion using the previous theorem. Notice

that we can partition n = 2 in three ways, as 0 + 2, 1 + 1, and 2 + 0.

For 2 = 2 + 0, q(2)q(0) = 3.

For 2 = 1 + 1, q(1)q(1) = 1.

For 2 = 0 + 2, q(0)q(2) = 3.

This is because T2 has three conjugacy classes and T1 has one conjugacy

class.
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So,
∑

q(n1) · · · q(nt) = 3 + 1 + 3 = 7. Again, we see that the number

conjugacy classes in Z2wrT2 is seven.

Example 8.3.3 Consider Z2wrT3. Notice that we can partition n = 3 in

four ways, as 0 + 3, 2 + 1, 1 + 2 and 3 + 0.

For 3 = 3 + 0, q(3)q(0) = 7.

For 3 = 2 + 1, q(2)q(1) = 3.

For 3 = 1 + 2, q(1)q(2) = 3.

For 3 = 0 + 3, q(0)q(3) = 7.

This is because T3 has seven conjugacy classes, T2 has three conjugacy classes,

and T1 has one conjugacy class.

So,
∑

q(n1) · · · q(nt) = 7 + 3 + 3 + 7 = 20. So, we see that the number

conjugacy classes in Z2wrT3 is twenty.
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Example 8.3.4 Consider Z2wrT4. Notice that we can partition n = 4 in

five ways, as 0 + 4, 3 + 1, 1 + 3, 2 + 2 and 4 + 0.

For 4 = 4 + 0, q(4)q(0) = 19.

For 4 = 3 + 1, q(3)q(1) = 7.

For 4 = 1 + 3, q(1)q(3) = 7.

For 4 = 2 + 2, q(2)q(2) = 9.

For 4 = 0 + 4, q(0)q(4) = 19.

This is because T4 has nineteen conjugacy classes, T3 has seven conjugacy

classes, T2 has three conjugacy classes, and T1 has one conjugacy class.

So,
∑

q(n1) · · · q(nt) = 19 + 7 + 7 + 9 + 19 = 61. So, we see that the number

conjugacy classes in Z2wrT4 is sixty one.
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Example 8.3.5 If G has 3 conjugacy classes, then GwrT2 has 12 conjugacy

classes since,

2 = 0 + 0 + 2, so q(0)q(0)q(2) = 1 · 1 · 3 = 3

2 = 0 + 2 + 0, so q(0)q(2)q(0) = 1 · 3 · 1 = 3

2 = 2 + 0 + 0, so q(2)q(0)q(0) = 3 · 1 · 1 = 3

2 = 1 + 1 + 0, so q(1)q(1)q(0) = 1 · 1 · 1 = 1

2 = 1 + 0 + 1, so q(1)q(0)q(1) = 1 · 1 · 1 = 1

2 = 0 + 1 + 1, so q(0)q(1)q(1) = 1 · 1 · 1 = 1

and 3+3+3+1+1+1=12.

Example 8.3.6 In general,

If G has t conjugacy classes, where t ≥ 2, then GwrT2 has

3t+

(
t
2

)
conjugacy classes.

If G has t conjugacy classes, where t ≥ 3, then GwrT3 has

7t+ 3t(t− 1) +

(
t
3

)
conjugacy classes.

If G has t conjugacy classes, where t ≥ 4, then GwrT4 has

19

(
t
1

)
+ 7t(t− 1) + 7

(
t
2

)
+ 9

(
t
3

)
+

(
t
4

)
conjugacy classes.
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It becomes difficult to compute the number of conjugacy classes forGwrTn,

when n > 4. This is mainly because we would need to know the number of

conjugacy classes for Tn, with n > 4, in order to perform such computations.

At the present time, I am not aware of a nice way to find the number of

conjugacy classes for T5, let alone for T100.

We could draw the graphs for all 3125 elements in T5 and put all of the

graphs that ”look the same” together. This would give us the number of

conjugacy classes in T5. Unfortunately, it would be quite demanding to do

so and would help to deplete our forests of even more trees. Hopefully, I can

find a formula which will determine the number of conjugacy classes in Tn

for all n, at some point in the future.

8.4 Colored Directed Graphs

In general, G has t conjugacy classes which we can represent as, [g1], [g2], ..., [gt].

We can associate a unique color with each conjugacy class, say C1, C2, ..., Ct.

We can partition n as n = n1 +n2 + · · ·+nt and associate the color Ci with a

graph from Tni
. This will produce a standard element in GwrTn represented

by a collection of colored directed graphs.
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So, the conjugacy classes of G give the coloring of the directed graphs and

the conjugacy classes of Tn are used to determine the number of conjugacy

classes in GwrTn.

Example 8.4.1 Consider S3wrT10. In S3, the conjugacy class representa-

tives for the three conjugacy classes can be chosen as, (1), (12) and (123).

We can associate a color with each conjugacy class in S3, say green, blue and

red.

So, [(1)] -green, [(12)] -blue, and [(123)] - red

If we partition 10 = 3+3+4, then a typical standard element would look like,

•GREEN// •

vv•

66 • BLUE// •

��~~~~~~~

•

OO •

��

•REDoo

•

??~~~~~~~
•

__@@@@@@@

We get colored directed graphs.

Example 8.4.2 Consider Z2wrT24. In Z2, the conjugacy class representa-

tives for the two conjugacy classes can are, {1} and {−1}. We can associate

a color with each conjugacy class in Z2, say pink and orange.

So, [{1}] -pink, [{−1}] -orange
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If we partition 24 = 4 + 4 + 4 + 3 + 3 + 2 + 2 + 1 + 1, then a typical standard

element would look like,

•ORANGE// •

��
•

OO

•oo

• PINK// •

��
•

OO

•oo

•ORANGE// •

��
•

OO

•oo

• PINK// •

vv•

66 •ORANGE// •

��~~~~~~~

•

OO

•
ORANGE

(( •hh •
PINK

(( •hh

•PINK
%% • ORANGE

yy

Finally, we note that any idempotent in GwrTn is conjugate to an element

with all labels being ones. Since Carscadden [3] has shown that the number

of conjugacy classes of idempotents in Tn is equal to the number of partitions

of n, we have the following corollary:

Corollary 8.4.3 The number of conjugacy classes of idempotents in GwrTn

is equal to the number of partitions of n.
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9 Future Endeavors

In the future, I would like to examine the wreath product, SwrTn, where S

is a semigroup. It would be very interesting to study the properties of this

wreath product. I would like to see what similarities and differences exist

between GwrTn and SwrTn.

It may be possible to place conditions on S in order to make SwrTn (unit)

regular. I also wonder whether my theorem about writing non-idempotents

as a product of idempotents will hold for SwrTn. It may only work for special

cases. Then, I would like to study conjugacy classes in SwrTn.

There are quite a few things left to research about GwrTn as well. I

would like to study the representations and write out the character tables for

GwrTn. I look forward to making many more discoveries in mathematics.

This thesis is just the beginning of my study of wreath products.
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