
Abstract

ADAMS, BRIAN MICHAEL. Non-parametric Parameter Estimation and Clinical

Data Fitting with a Model of HIV Infection. (Under the direction of H. Thomas

Banks.)

The focus of this dissertation is to develop a combined mathematical and statistical

modeling approach for analyzing clinical data from an HIV acute infection study. We

amalgamate two existing models from the literature to create a nonlinear differential

equation model of in-host infection dynamics that is capable of predicting sustained

low-level viral loads and multiple stable equilibria. Using this example system of dif-

ferential equations we demonstrate two contrasting parameter identification problem

formulations for estimating the distribution of model parameters across a population:

the first at the individual patient level and the second directly at the population level

itself. In the latter case one leverages data from all patients to estimate a proba-

bility density function representing the distribution. We discuss well-posedness and

computational implementation for such inverse problems. Directly estimating the dis-

tribution in this way may offer computational advantages over estimating parameters

for individual patients.

In the context of the model, we implement the Expectation Maximization (EM)

Algorithm for maximum likelihood estimation to handle patient measurements cen-

sored by assay resolution limits. This censored data method is beneficial since with it



we do not arbitrarily assign values for measurements below the limit of detection, but

rather compute their expected value based on the dynamics model and conditioned

on the knowledge that they are censored. In addition, in both inverse problem con-

texts (estimating a vector of parameters for a single patient and the distribution of

a parameter across all patients) we develop and apply methods for estimating vari-

ability of the resulting parameter estimates by using sensitivity analysis to calculate

confidence intervals.

We validate each of the methods with simulated data and demonstrate typical

results. Finally we present results for the application of the methods to actual clinical

data and give examples of conclusions that one might draw from them. This model

fitting approach may help clinicians better understand patient behaviors and notably,

could alert them to the expected long-term trend for a particular patient.
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Notation

Model State Variables and Data
ODE model state vector (unscaled) x̄
ODE model state vector (log10 scaled) x
state observer matrix ∈ Rm×n O
observed unscaled state vector z̄
observed log10 scaled state vector z
data (unscaled clinical or simulated) ȳ
data (log10 scaled clinical or simulated) y, w
time (days) t (or tijs )
parameter vector q
fixed parameters q̀
differential equation dynamics g(t, x; q), h(t, x; q)
assay censor limits (unscaled) L̄1, L̄2
assay censor limits (log-scaled) L,L1, L2

Dimensions
size of full ODE model state vector n
size of observed ODE model state vector m
number of time points (possibly patient-dependent) N (or N j, N j

s )
number of patients NP

number of spline intervals NS

dimension of estimated parameter vector p

Indices
time point index i
patient index j
spline indices k, l
state vector index s

xv



Probability and Statistics
admissible parameter space Q
standard error ν
variance σ2

covariance matrix Σ
cumulative distribution function F (q)
probability density function f(q)
set of functions F
a probability distribution P
probability space (set of distributions) P
expected value E
matrix operator for expected value E
indicator function χ
likelihood function L

Other
spline “hat” basis function φk(q)
spline coefficients dk

spline knots qk

Jacobian matrix J
cost criterion J
regularization parameter βR

rational numbers Q

natural numbers {1, 2, 3, . . .} N

• Optimal estimates resulting from parameter estimation procedures will be de-
noted by (̂·) or (·)∗.

• u(t) denotes a control input (treatment function), which we assume has a piece-
wise linear form and so is specified by times when treatment changes.
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Chapter 1

Introduction

Human Immunodeficiency Virus (HIV) is a retrovirus that infects T-helper cells of the

immune system and is the causative agent for Acquired Immune Deficiency Syndrome

(AIDS). HIV and AIDS are among the world’s most serious public health concerns,

affecting people of all demographics worldwide, with some regions impacted dispro-

portionately. As of 2003, an estimated 38 million HIV-infected individuals are living

worldwide, with approximately two-thirds in Africa, where 2.2 million people died

from opportunistic infections related to AIDS in 2003 (UNAIDS 2004 Report on the

Global HIV/AIDS Epidemic [3]).

Despite many successful public health and clinical interventions since the first iden-

tification of HIV-positive patients in 1981, there remains no cure and the HIV/AIDS

epidemic continues to grow. In 2003, 4.8 million people became newly infected with

HIV, with over half of new cases occurring in youth ages 15–24. This is despite the fact

that effective transmission prevention strategies exist. A possible factor for continued

spread in industrialized countries is behavior resulting from the myth that antiretro-

viral drugs, which often successfully suppress virus and improve patient quality of life,

constitute a cure for HIV infection. Infection rates continue to rise around the world,

1



CHAPTER 1. INTRODUCTION 2

with the fastest expansions of the epidemic occurring in Asia and Eastern Europe.

Thus, developing effective methods for prevention of transmission and related public

health education campaigns remains crucial.

While antiretroviral drugs are widely available in the United States and Western

Europe, their cost and side effects may make their use challenging. In developing

nations, UNAIDS estimates that only 7% of the infected population has access to

antiretroviral drugs. Access to treatment for and education about this disease remain

serious human rights issues around the world. In all geographies, ever-improving

strategies are needed for efficient and appropriate use of drug therapy.

The epidemiology of HIV and public health issues like transmission (inter-host dy-

namics) are important to study. As important to investigate are the effective use and

improvement of antiretroviral drugs, which depend on understanding viral behavior

within each host, including pathways of infection and effects of drugs. Understanding

intra-host viral and immune system pathways depends on knowledge from various

biological areas including physiology and immunology. Mathematical models can aid

in quantifying dynamic physiologic and immunologic processes and correlating the

scientific knowledge of these processes with observed patient behavior.

It is believed that the acute and early phases of HIV infection provide crucial in-

formation about immune responses and viral dynamics. In particular, long-term viral

set points and speed of progression to AIDS may possibly be understood by studying

these key periods. Motivated by clinical study data from patients observed during

the crucial acute infection phase and beyond, we develop a combined mathematical

and statistical approach to modeling HIV infection in this dissertation. We use both

simulated (virtual) data and clinical data to demonstrate the methods and kinds of

conclusions one may draw from them.

Several patients for whom we have clinical data underwent therapy interruptions.



CHAPTER 1. INTRODUCTION 3

Some of these drug holidays were unprescribed or single interruptions, while others

were structured treatment interruptions (STIs) according to a study protocol. STIs

are being explored as an alternative to continuous therapy with antiretrovirals and

in addition to offering the benefit of reduced side effects may also serve to boost

HIV-specific immune responses. We therefore incorporate STI protocols in our math-

ematical models. A good overview of the concept of STI and its applicability in

various phases of HIV infection can be found in [35].

In Chapter 2 we overview the clinical acute HIV infection study and the methods

used to gather the data analyzed in this dissertation. We describe the characteristics

of the data set, including the treatment regimens undergone by various patients, and

set goals for understanding it.

Chapter 3 begins with a survey of mathematical models of in-host HIV infection

dynamics and illustrates the various disease features and pathways one might wish to

model. We then describe the particular system of differential equations used to model

HIV infection in our work and discuss its properties and solvability. We present a

statistical model to describe the relationship between the differential equation model

and the observed data and explain how it will be used to generate simulated data.

Finally, we use sensitivity equations to determine which dynamic parameters most

influence model solutions and to compute confidence intervals on parameter estimates.

In Chapter 4 we present two contrasting approaches to inverse problems with

multiple longitudinal data sets, including one in which the distribution of model pa-

rameters across the population is determined directly. Theory for well-posedness of

this method is then presented. We explain the statistical methods used to construct

confidence intervals from the sensitivity equations and the Expectation Maximization

Algorithm used to handle patient data below the limit of measurement detection. We

conclude with a discussion of the numerical algorithms and approaches used to solve
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the parameter identification problems. The inverse problem for a distribution pre-

sented in Chapter 4 can offer substantial computational advantage over estimating

parameters individually for each patient in a data set or over more complex hierar-

chical methods where parameters and distribution parameters are estimated for each

patient.

Before applying the mathematical methods to clinical data, we test them on sim-

ulated data designed to represent the clinical data sets. In Chapter 5 we present

results of these experiments and discuss some of the strengths and weaknesses of the

censored data and probability distribution estimation methods.

Following the exploration with simulated data, we examine results for applying

the methods to clinical data in Chapter 6. Model fitting results can offer surprising

insight into patient behavior – we discuss examples here. To conclude the dissertation,

in Chapter 7 we summarize key results and offer pointers to issues requiring further

investigation.



Chapter 2

Clinical Data and Desired

Outcomes

The data for our study come from over 100 adults with symptomatic acute or early

HIV-1 infection. These subjects were enrolled in a study based at Massachusetts

General Hospital and associated regional centers and followed for varying lengths

of time between 1996 and 2004. The study cohort is unique in that its members

were all identified soon after initial infection, making its data particularly useful for

understanding early viral dynamics and related immune responses. A principal goal

of the clinical study is to assess the potential immunologic consequences of early

treatment initiation, including preservation of HIV-specific CD4+ T-cells, extent of

latent reservoir development, and homogeneity of viral population. The researchers

strive to understand the role of early immune responses in long-term viral suppression.

Clinical and demographic data were collected at the time of study enrollment and

blood draw assays of CD4+ T-lymphocyte count and RNA viral load performed at

roughly monthly follow-up visits. Viral load was quantified with Reverse Transcriptase-

Polymerase Chain Reaction (RT-PCR) methods using the commercially available

5
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HIV-1 Roche Amplicor or Chiron Quantiplex assay, yielding measurements in viral

RNA copies per milliliter (ml). The standard assay has a linear range of 400 to

750,000 copies/ml, while the ultra-sensitive assay, 50 to 100,000 copies/ml. The lat-

ter is typically employed when a measurement is below the 400 copies/ml limit of

the standard assay, as is often the case for a patient successfully suppressing virus.

Standard flow cytometry methods were employed to obtain total plasma CD4+ T-

lymphocyte counts per microliter (µl) [32].

Nearly all subjects in the study underwent combination therapy with three or more

antiretroviral drugs, although the precise regimen varied from patient to patient as

dictated by the treating physician. Fourteen of the subjects underwent structured

treatment interruptions according to a study protocol, including patients with iden-

tification numbers 2, 4, 5, 6, 10, 13, 14, and 16 for whom immune responses were

assessed during interruption [48]. Several others simply discontinued drugs at various

points. Table 2.1 summarizes the data for all 118 patients in the data set, including

the clinical identification number assigned to the patient, number of longitudinal vi-

ral load and CD4+ measurements, the total length of time from presentation to last

observation, total number of days on and off treatment, and the number of periods

(of any length) the patient was off and on therapy. Blank entries indicate patients

for whom there were no observations. The number of treatment interruptions varies

drastically over the population and some patient records include an initial brief off-

treatment phase after presentation, but before therapy commenced. In some cases,

the sum of days on and days off exceeds the total days. This is because total days

indicates the time from the start of study to last measurement of viral load or CD4

count; for some patients, data indicating treatment status extends beyond this period.

The treatment protocols and overall length of observation for each of the 118

patients are depicted in Figures 2.1 (patients 1–59) and 2.2 (patients 60–118). In
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these schematics, thicker lines denote on-treatment periods and the thinner lines, off-

treatment. The seventeen patients with no markers had fewer than two measurements

and will not be considered in our work. Since we fit a complex dynamic model to

these data, we restrict attention to the 59 patients with at least ten viral load and ten

CD4 measurements (the patients marked with an asterisk in Table 2.1) and denote

this set of patients by PS59.

The distribution of percentage of time spent off treatment by patients in PS59

is shown by histograms in Figure 2.3. The left panel includes frequency for all 59

patients, while the right panel focuses on the 28 patients who spent 10–90% time off

treatment. The total number of patients in each range is summarized in Table 2.2.

A total of 39 patients spend less than 20% time on drug holiday, with 31 spending

less than 10% time on holiday.

Some aspects of the mathematical model later considered are more readily val-

idated in the context of treatment protocols with a balance between time on and

time off treatment. Therefore, to validate mathematical methods, we later consider

the treatment schedules and observation times of patients spending 30–70% time off

treatment. This set of eighteen patients consists of those numbered 2, 4, 5, 6, 9, 10,

13, 14, 15, 16, 23, 24, 26, 27, 33, 46, 47, and 76, and we denote it by PS18. The

members of PS18 each have at least fourteen measurements per state and they will

serve as model or virtual patients for algorithm testing when we generate simulated

data based on their schedules and observation times.

Due to the linear range limits described above, the clinical viral load assays ef-

fectively have lower and upper limits of quantification. The upper limit is typically

readily handled by repeatedly diluting the sample until the resulting viral load mea-

surement is in range and then scaling. The lower limit, or left censor point, however,

directly influences the observed data. When a data point is left-censored (below the
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lower limit of detection), the only available knowledge is that the true measurement

is between zero and the limit of detection L̄⋆ for the assay. Those at hand have two

limits of detection, L̄1 = 400 copies/ml for the standard and L̄2 = 50 copies/ml for

the ultra-sensitive assay. These are illustrated in sample data shown in Figure 2.4,

where censored data points are those appearing identically on the drawn censor lines

L̄1 = 400, L̄2 = 50. A statistical methodology for handling this type of censored data

is described later in Section 4.3.2.

The observation times and intervals vary substantially between patients. The

sample data in Figure 2.4 also reveal that observations of viral load and CD4 may

not have been made at the same time points, so in general for patient number j we

have CD4+ T-cell data pairs (tij1 , yij
1 ), i = 1, . . . , N j

1 and (potentially different) viral

RNA data pairs (tij2 , yij
2 ), i = 1, . . . , N j

2 .

We have several goals for working with this clinical data:

1. Describe the data with a mathematical model of time-varying infection dy-

namics. Leverage data to calibrate the model by estimating model dynamic

parameters. Determine if the model can predict long-term T-cell preservation

versus decline.

2. Use the data-calibrated model to extrapolate beyond the observation period to

determine consequences of various treatment schemes.

3. Use the calibrated model to correlate differences in model parameters with

clinically observed differences among patients. For example, one might ask, “Are

there model parameters that can predict rapid versus long-term non-progression

to AIDS over the course of HIV infection?”

4. Use the calibrated model to determine novel optimal treatment schemes. A
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group of collaborators is considering both open-loop [2] and feedback control

[11] in the context of the model proposed in the next section. Ultimately these

methodologies should suggest better treatment schemes for potential clinical

investigation.
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Table 2.1: Summary of patient data, ordered by clinical identification number. In-
cludes number of measurements, duration of observation and time on versus off treat-
ment. Asterisks (∗) indicate patients with ten or more viral load and ten or more
CD4 measurements. (Data are not available for patients with blank entries.)

pat num num total days periods pat num num total days periods
num VL CD4 days on/off on/off num VL CD4 days on/off on/off

1∗ 102 84 1527 1316/211 4/3 60∗ 19 18 746 720/26 1/1

2∗ 107 82 1966 902/1064 2/2 61∗ 14 14 749 748/1 1/1

3∗ 76 61 1943 1589/354 3/2 62 8 8 741 721/20 1/1

4∗ 154 107 1919 1248/671 4/4 63∗ 16 17 846 714/132 2/2

5∗ 158 115 2061 1067/994 4/4 64∗ 23 15 539 534/5 1/1

6∗ 143 111 1839 923/916 4/5 65∗ 18 17 755 728/27 1/1

7∗ 23 22 1932 1924/8 1/1 66∗ 14 13 552 497/55 3/3

8∗ 34 33 1672 1668/4 1/1 67 9 3 427 421/6 1/1

9∗ 32 32 1626 1112/514 2/3 68 6 5 185 174/11 1/1

10∗ 73 63 1711 582/1129 1/1 69∗ 14 13 394 398/31 1/1

11 9 8 384 379/5 1/1 70∗ 19 12 423 363/60 1/2

12∗ 24 19 1575 1540/35 2/1 71

13∗ 64 55 914 537/377 3/3 72 10 7 1213 1159/54 2/2

14∗ 136 91 1637 659/978 3/3 73 12 1 428 421/7 1/1

15∗ 46 46 1659 932/727 1/1 74 5 6 440 433/7 1/1

16∗ 77 57 2228 1337/891 2/2 75∗ 16 15 549 521/28 3/3

17 11 7 1658 1441/217 1/1 76∗ 14 14 532 220/315 2/2

18∗ 32 30 1545 1545/0 1/0 77 7 1 441 422/19 1/1

19∗ 21 19 1430 1416/14 1/1 78 18 2 418 413/5 1/1

20∗ 29 27 1581 1469/112 1/2 79

21∗ 38 36 1433 1412/21 1/1 80 4 3 78 51/28 1/2

22 8 7 194 179/15 1/1 81∗ 11 10 425 419/6 1/1

23∗ 37 36 1505 671/834 4/5 82∗ 11 11 448 416/32 1/1

24∗ 36 35 1436 841/595 4/3 83

25∗ 83 60 1412 1255/157 4/4 84∗ 16 15 461 461/0 1/0

26∗ 100 72 1434 754/680 3/4 85 9 8 363 336/27 1/1

27∗ 36 35 1379 591/788 2/2 86 4 7 203 0/203 0/1

28 9 8 363 359/4 1/1 87 9 8 1289 1289/0 1/0

29∗ 34 34 1024 1017/7 1/1 88 8 4 412 270/142 1/2

30∗ 16 13 841 837/4 1/1 89

31∗ 30 30 1256 1228/28 2/2 90 5 4 809 283/652 2/3

32∗ 33 33 1230 1209/21 1/1 91 5 5 245 0/245 0/1

33∗ 75 52 1302 658/644 4/4 92

34∗ 24 23 1174 1173/1 1/1 93

35 10 9 484 483/1 1/1 94∗ 12 11 352 322/30 1/1

36∗ 33 31 1167 1161/6 1/1 95 4 3 55 40/15 1/1

37∗ 25 25 1146 1139/7 1/1 96 6 3 332 10/322 1/2

38 97

39∗ 29 28 1023 910/113 3/3 98

40 9 1 328 328/0 1/0 99 3 0 147 0/147 0/1

41∗ 22 21 717 940/29 2/1 100 7 7 215 215/0 1/0

42∗ 30 30 1218 1170/48 2/1 101 10 9 273 270/3 1/1

43∗ 28 29 1134 1060/74 1/1 102 7 7 177 173/4 1/1

44 6 4 994 980/14 1/1 103 8 7 218 203/15 1/1

45∗ 46 28 499 418/81 2/2 104 6 6 121 121/0 1/0

46∗ 100 55 1004 496/508 3/3 105 5 4 160 146/14 1/1

47∗ 23 23 1002 496/506 1/2 106 4 3 157 146/11 1/1

48 5 1 161 154/7 1/1 107 7 7 189 189/0 1/0

49 108

50∗ 17 12 141 108/33 1/1 109

51∗ 10 10 2043 1519/524 1/2 110

52∗ 20 19 708 674/34 1/1 111 1 1 0 40/0 1/0

53 112

54∗ 25 25 878 868/10 1/1 113 5 4 94 83/11 1/1

55∗ 14 14 806 748/58 1/1 114 7 5 122 115/7 1/1

56 10 9 738 701/37 1/1 115

57 116 6 4 77 63/14 1/1

58∗ 11 10 671 594/77 1/1 117 3 2 36 21/15 1/1

59 6 6 106 27/79 1/1 118 2 2 151 37/117 2/1
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Figure 2.1: Treatment protocols and observation periods for patients 1–59. Thick
green lines denote on-treatment periods whereas thin red lines denote off-treatment.
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Figure 2.2: Treatment protocols and observation periods for patients 60–118. Thick
green lines denote on-treatment periods whereas thin red lines denote off-treatment.
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Table 2.2: Number of patients in various ranges of percentage time spent off treat-
ment.

percent time number of
off treatment patients

40–60 14
30–70 18
20–80 20
10–90 28
0–100 59
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Figure 2.3: Frequency plots of percentage of time off treatment. Left panel includes all
59 patients, whereas right panel only 28 patients spending 10–90% time off treatment.
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Figure 2.4: Sample patient CD4+ T-cell and viral load data, including censor points
(lines at L̄1 = 400, L̄2 = 50) for viral load, and periods of therapy interruption (bars
below data).



Chapter 3

Mathematical Models for HIV

Infection

3.1 Survey of Existing Models

In modeling HIV infection one must typically choose only a critical subset of the many

possible biological compartments and interactions. Moreover, scale is important in

that one must decide whether to model at the micro level, e.g., of viral RNA, or

more at the systemic level. Our focus is on compartmental models in which each

compartment corresponds to a type of cell population throughout the body. We do not

attempt to provide a comprehensive survey of the extensive collection of mathematical

models used for HIV infection. Rather, we refer the reader to one of the excellent

survey articles already published (see, for example, [17] and [45]). We provide a brief

overview of some important developments here.

Investigations of the kinetics of virus and CD4+ T-cell populations using math-

ematical models with data from patients undergoing Highly Active Anti-Retroviral

Therapy (HAART) support the theory of very rapid and constant turnover of the

15
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viral and infected cell populations in all individuals studied; see, for example, the

work of Ho, et al. [30], Wei, et al. [53], and Perelson, et al. [46]. This contrasts with

researchers’ previous assumptions that the stable viral and CD4+ T-cell concentra-

tions seen during the period of clinical latency of chronic HIV infection were due to

the absence of any significant viral replication. The studies by Ho, Wei and Perelson

indicate that both the viral and infected cell populations are turning over rapidly and

continuously. Further work by Perelson, et al. [44] revealed a second population of

longer-lived infected cells contributing to the population of viral RNA. Since these

reports, numerous groups have used mathematical models to estimate decay rates for

infected cell populations [36, 38, 41, 42, 56]. In Section 3.2 we present a model that

can predict the observed persistent low-level replication of virus and includes multiple

infected cell populations.

The early linear models developed in [53, 30, 46, 44] are approximations to more

realistic nonlinear models for viral and infected cell decay, and thus are applicable only

over short periods of time, most likely on the order of days. While these linear models

have been extremely useful in characterizing short-term dynamics of HIV infection

after therapy, several researchers have attempted to use these models to estimate

time to eradication of virus from individuals. Such predictions involve periods of time

which extend beyond that which is appropriate for approximation of the nonlinear

dynamics by a linear model.

To model data over longer periods of time and make predictions about long-term

outcomes, nonlinear mathematical models are necessary. In addition to the unreal-

istic simplifying assumptions that make it difficult for linear models to accurately

describe long-term HIV infection dynamics, factors that could play an important role

in dynamic disease outcomes may be omitted in linear models. For example, sev-

eral authors have raised the question as to whether or not these linear mathematical
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models have adequately described the decay of compartments relevant to HIV infec-

tion dynamics. The authors of [15] argue that more complex nonlinear models are

needed to accurately describe long-term viral decay. In [36] the authors point out

that the biphasic pattern, which has been attributed to two populations of infected

cells, could be the result of exponential decay of a single population of infected cells

with decreasing exponent over time. This phenomenon is well-known in population

biology, and is often referred to as density-dependent decay.

Viral production by cells infected with HIV depends on the “age” (e.g., time since

infection) of the infected cells, and there are several different biological aspects of this

age dependence. Intra-cellular delay due to viral reverse transcription, integration,

transcription, and virion formation is described by Mittler [39], extending the work of

Perelson, et al., [44]. Mittler allows intra-cellular delay to vary across cells, and esti-

mates these delays to be more significant than the pharmacological delays associated

with drug absorption. Recent efforts [7] with in vitro data suggest the importance of

modeling these distributed delays with some care. Incorporation of this variability of

delays into models may lead to improved estimates of the half-life of free virus from

short-term clinical data on patients undergoing HAART.

Since the qualitative behavior of a dynamical system is determined by its underly-

ing parameters, knowledge of the bifurcation properties of the system is important for

understanding the associated characteristics of the biological system described by the

model. If the range of model parameters for a population is such that dramatically

different outcomes are predicted for different individuals, bifurcation values for differ-

ent parameters could suggest target interventions for continued successful treatment.

For example, loss of stability of the zero steady state for viral load could be reversed

by treatments affecting the parameters which influence this stability. In addition,

variability in initial conditions, which one can consider as parameters in the model,
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can lead to trajectories of the system lying in different regions of attraction, i.e., differ-

ent initial population sizes can lead to dramatically different qualitative outcomes in

a nonlinear model. Such situations are described in [49, 54] where the authors model

structured treatment interruption (STI). The models in these reports and the model

discussed in Section 3.2 all have multiple equilibria. Different equilibria describe the

success or failure of the immune system to control infection, and the initial condi-

tions and parameters of the system determine which equilibrium is realized. Careful

qualitative analysis of mathematical models that describe HIV infection dynamics

can contribute to understanding of fundamental qualitative features of infection, and

possibly suggest targets for improved disease monitoring and/or treatment.

In using any of these complex models, one would like to understand the identifi-

ability of parameters, i.e., which parameters can be successfully estimated and what

type of data is necessary to do so. In Chapter 4 we examine estimating parameters in

our example nonlinear model of HIV infection dynamics. In doing so, we describe two

inverse problem formulations and corresponding computational approaches, together

with a sensitivity analysis method which leads to estimation of standard errors on

parameter estimates arising from the inverse problems process.

3.2 Proposed Model: Features and Analysis

The breadth of models discussed in Section 3.1 makes clear the assortment of HIV

infection mechanisms and features that may be important to model. In order to fit the

clinical data at hand and make realistic predictions, a few key features are essential

in a dynamic model of HIV progression in an individual. The model proposed here is

therefore a “typical” model of HIV infection that includes those certain features and

will serve to demonstrate the mathematical and statistical methodologies presented
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in the remainder of this dissertation. Given our goal of method validation and the

existence of survey papers noted earlier, we do not include here discussions of all

the important aspects of HIV modeling. Further, we do not purport to have a good

model of HIV progression and treatment; rather we propose a model that behaves

reasonably and contains some of the more desirable features one could expect.

We consider a compartmental ordinary differential equation (ODE) model for in-

host HIV infection dynamics. A wide variety of such ODE models have been proposed

to describe various aspects of the dynamics. The most basic of these models typically

include two or three of the key dynamic compartments: virus, uninfected target cells,

and infected cells. The proposed model includes all three of these physiologically-

relevant compartments since they are direct players in the infection process. However

infected and uninfected CD4+ T-cells in patients are not typically measured sep-

arately, so these compartments must be aggregated for purposes of model fitting.

In addition, the documented importance of the immune system in responding to

HIV infection (and especially its apparent crucial role during structured treatment

interruptions) strongly motivates the inclusion of at least one model compartment

representing immune response to the pathogen. We therefore propose a model that

includes some measure of cytotoxic T-lymphocyte (CTL) CD8+ response to HIV in-

fection. While the presently available data do not directly quantify the presence of

HIV-specific CTLs, these immune responders are important for control of infected

cells and may eventually be correlated to available epitope-challenge data.

Since the model will be considered in the context of time-variable treatment strate-

gies, it should be capable of incorporating the action of commonly-used reverse tran-

scriptase inhibitors (RTIs) and protease inhibitors (PIs). Inclusion of the latter usu-

ally implies inclusion of separate compartments for infectious free virus and virus

rendered non-infectious by the PI. Given the predominance of HAART in the form
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of drug cocktails combining two or more drugs, the model should behave reasonably

when simulating such multi-drug therapy.

As Callaway and Perelson [17] point out in their 2002 review paper, a reasonable

model of HIV infection predicts a non-zero steady-state viral load even in the pres-

ence of effective drug therapy. Patients subjected to drug therapy often successfully

suppress virus for a long time, potentially at undetectable levels. However, some

reservoir or mechanism exists which almost invariably causes the virus to grow out to

detectable levels upon removal of drug therapy. Hence one does not expect incorpo-

ration of drug therapy in the model, at a sensible efficacy, to drive the viral load to

zero, but rather reduce it considerably, perhaps below the assay limits of detection.

The authors of [17] analyze models typically employed to describe HIV infection and

show that many do not exhibit a reasonable relationship between drug efficacy and

predicted viral load. In such models, a very slight change in drug efficacy can yield a

drastic change in the predicted viral load set point. This has important consequences

for the control problem of determining treatment strategies: a successful model must

exhibit reasonable sensitivity of the viral load equilibrium to treatment efficacy.

Kepler and Perelson [34] offer one potential quantitative explanation for mainte-

nance of a low steady-state viral load. They propose a drug sanctuary compartmen-

tal model which includes physiologically distinct compartments for blood plasma and

other tissue (e.g., brain tissue or lymph nodes) where drug effectiveness is reduced.

This reflects the belief that HIV may replicate in body reservoirs such as the cen-

tral nervous system where replication rates and drug penetration are different from

plasma. Since clinical observations most commonly only include data from plasma,

this can explain the undetectable viral load in many patients. In the present work,

we consider a similar model, adapted from equation (5.3) in Callaway and Perel-

son. As shown in Figure 3.1, it includes two co-circulating populations of target
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cells, potentially representing CD4+ T-lymphocytes (T1) and macrophages or other

HIV-targeted cells (T2). The two cell populations may have different activation re-

quirements or susceptibility to drug therapy. A summary of model compartments

and notation is provided in Table 3.1.
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Figure 3.1: Schematic of compartmental HIV infection dynamics model. Only key
pathways are indicated in the schematic – for further details, see the system of dif-
ferential equations (3.1) below.

Table 3.1: State variables used in HIV model
variable description units

T1 uninfected type 1 target cells (e.g. CD4+ T-cells) cells / µl
T2 uninfected type 2 target cells (e.g. macrophages) cells / µl
T ∗

1 infected type 1 cells cells / µl
T ∗

2 infected type 2 cells cells / µl
VI infectious free virus RNA copies / ml
VNI non-infectious free virus RNA copies / ml
E cytotoxic T-lymphocytes cells / µl

The corresponding system of differential equations is principally based on the

Callaway–Perelson model, but includes an immune response compartment and dy-
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namics as suggested by Bonhoeffer, et. al. [49]. This compartment, denoted by E,

represents CTLs which lyse and thus kill infected cells. The adapted system of ODEs

is given by

Ṫ1 = λ1 − d1T1 − (1 − ǭ1(t)) k1VIT1 (3.1a)

Ṫ2 = λ2 − d2T2 − (1 − f ǭ1(t))k2VIT2 (3.1b)

Ṫ ∗

1 = (1 − ǭ1(t))k1VIT1 − δT ∗

1 − m1ET ∗

1 (3.1c)

Ṫ ∗

2 = (1 − f ǭ1(t))k2VIT2 − δT ∗

2 − m2ET ∗

2 (3.1d)

V̇I = (1 − ǭ2(t))103NT δ(T ∗

1 + T ∗

2 ) − cVI (3.1e)

− (1 − ǭ1(t))ρ1103k1T1VI − (1 − f ǭ1(t))ρ2103k2T2VI

V̇NI = ǭ2(t)103NT δ(T ∗

1 + T ∗

2 ) − cVNI (3.1f)

Ė = λE +
bE(T ∗

1 + T ∗
2 )

(T ∗
1 + T ∗

2 ) + Kb

E − dE(T ∗
1 + T ∗

2 )

(T ∗
1 + T ∗

2 ) + Kd

E − δEE, (3.1g)

together with an initial condition vector

[T1(0), T ∗

1 (0), T2(0), T ∗

2 (0), VI(0), VNI(0), E(0)]T .

Here the factors 103 are introduced to convert between microliter and milliliter scales,

preserving the units from some of the published papers. In this dynamical system, the

treatment factors ǭ1(t) = ǫ1u(t) and ǭ2(t) = ǫ2u(t) represent the effective treatment

impact, consisting of efficacy factors ǫ1, ǫ2 and a time-dependent treatment function

0 ≤ u(t) ≤ 1 representing HAART drug level, where u(t) = 0 is fully off and u(t) = 1,

fully on. See Figure 3.2 for a sample time-varying treatment protocol representing

structured therapy interruption. The relative effectiveness of RTIs is modeled by

ǫ1 and that of PIs by ǫ2. Since HIV treatment is nearly always administered as
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combination therapy, we do not consider the possibility of monotherapy, even for a

limited period of time, though this could be implemented by considering separate

treatment functions u1(t), u2(t).

on

off

0

1

time(t)

u(t)

Figure 3.2: Sample control input (treatment protocol) u(t) representing structured
treatment interruption. This is a schematic in that interruption periods need not be
periodic and one might assume more smooth ramp functions for the absorption and
dissipation of the drug.

As is common in models of HIV infection, infected cells T ∗
i result from encoun-

ters between uninfected target cells Ti and infectious free virus VI in a well-mixed

environment. As noted above, this model involves two co-circulating populations

of target cells, perhaps representing CD4+ T-lymphocytes (T1) and macrophages

(T2). The natural infection rate ki may differ between the two populations, which

could account for believed differences in activation rates between lymphocytes and

macrophages. The drug efficacy parameter ǫ1 represents an RTI that blocks new in-

fections and is potentially more effective in population 1 (T1, T
∗
1 ) than in population

2 (T2, T
∗
2 ), where the efficacy is fǫ1, with f ∈ [0, 1]. The differences in infection rates

and treatment efficacy help create a low, but non-zero, infected cell steady state for

T ∗
2 , which is commensurate with the idea that macrophages may be an important

source of virus after T-cell depletion. The populations of uninfected target cells T1

and T2 may have different source rates λi and natural death rates di.
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For our efforts here we assume that both target cell types have the same death

rate δ, though this could be readily generalized as well. Infected cells T ∗
1 , T ∗

2 may be

removed from the system via either natural death or by the action of immune effector

cells E described below.

To preserve simplicity in the model, we omit the chronically infected cell compart-

ments proposed in the original Callaway–Perelson model. The important qualitative

behaviors seem preserved in the model we propose and specifically modeling this

feature is not essential to our present work. In particular, the existence of a low

steady-state viral load equilibrium and sensitivity of the viral load equilibrium to the

drug efficacy is obtained with or without such compartments. We note that while

removing the chronically infected compartments does not affect the sensitivity to

treatment, the addition of immune response terms does, as discussed below.

Free virus particles are produced by both types of infected cells, which we assume

produce virus at the same rate (again this could be readily generalized to account

for different productivity). In the Callaway–Perelson model, virus only leaves the VI

compartment via natural death at rate c; there is no removal term in the V̇I equation

representing loss of virus due to infection of a cell. One potential justification for

this omission is offered by Nelson and Perelson [45] (page 10) who suggest that this

term can be omitted since the term kiTiVI is small in comparison to cV in the typical

HIV-infected patient. They further assert that if Ti is approximately constant, one

can absorb the loss of virus due to infection into the cVI term, thus making it account

for all clearance processes.

While the arguments offered by Nelson and Perelson could justify the exclusion

of the virus removal term, we investigate situations where treatment is interrupted

abruptly, potentially effecting drastic changes in all of the cell populations under

consideration. We therefore include the term [(1 − ǫ)ρ1k1T1 + (1 − fǫ)ρ2k2T2] VI in
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the V̇I equation to account for the removal of free virus that takes place when free

virions infect a T1 or T2 cell. We make the simplifying assumption ρi = 1, i.e., one free

virus particle is responsible for each new infection. This could easily be adapted for

multiple virus particles being responsible for each new infection by choosing ρi > 1.

The action of a PI, which causes infected cells to produce non-infectious virus

VNI is modeled by ǭ2. Tracking non-infectious virus is important since the clinically-

measured viral load data for patients includes total free virus (infectious VI and non-

infectious VNI). Model fits to data are therefore to the sum VI +VNI . However, see the

discussion below regarding the decoupling of this compartment from the remainder

of the ODE system.

Finally, the immune effectors E (CTLs), are produced in response to the pres-

ence of infected cells and existing immune effectors. The immune response assumed

here is similar to that suggested by Bonhoeffer, et al., in their 2000 paper [49], with

a Michaelis-Menten type saturation nonlinearity. The infected cell-dependent death

term in the immune response represents immune system impairment “at high virus

load”. In [49] the authors demonstrate that a model with this immune reponse struc-

ture and a latently infected cell compartment can exhibit transfer between “healthy”

and “unhealthy” stable steady states via STI, making it a good candidate for our in-

vestigation. (Indeed the same is true for the model (3.1) considered here.) We add a

source term λE to create a non-zero off-treatment steady state for E, rather than ex-

plicitly modeling immune memory. While immune effectors are not inherently present

in the absence of pathogen, they persist at low levels during infection. We note that

other immune responses models, such as those considered by Wodarz-Nowak [54] or

Nowak-Bangham [43] could be substituted if desired. However, the latter does not

appear to admit multiple stable off-treatment steady states.

The immune response we model is that of cytotoxic T-lymphocytes. CTL act by
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lysing infected cells, causing them to explode. Thus they remove infected cells from

the system in the equations for Ṫ ∗
1 and Ṫ ∗

2 , at rates m1 and m2, respectively. Unlike

interferons, they do not directly target free virus, so there is no interaction term

with the virus compartment. As with any immune system responders, we suspect

that CTL sometimes mistarget or misidentify receptors and thus kill healthy cells or

misidentify self versus antigen, but for simplicity, we do not model that here.

While the model (3.1) explicitly includes a VNI compartment

V̇NI = ǭ2(t)103NT δ(T ∗

1 + T ∗

2 ) − cVNI ,

it serves only as a collection compartment and does not couple with any of the other

model dynamics. Explicitly including this compartment and its dynamics compli-

cates the linear analysis of the ODE system’s stability since it introduces a zero

eigenvalue. It can be explicitly solved using variation of parameters to obtain the

necessary quantity VNI to use in model fitting as follows.

Defining G(t) = ǭ2103NT δ (T ∗
1 (t) + T ∗

2 (t)) (so G(t) depends on the solution to the

remainder of the ODE system (3.1)), the solution to (3.1f) is given by

VNI(t) = VNI(0)e−ct +

∫ t

0

e−c(t−s)G(s)ds. (3.2)

Given a solution to the remaining equations in the ODE system, one can compute

VNI(t) for purposes of model fitting to the clinically observed quantity V = VI +VNI .

For analysis, we therefore consider the VNI compartment as dependent on the other

dynamics.

Throughout the remainder of this dissertation, x̄ will denote the vector of solutions
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to the ODE system (3.1):

x̄(t) =

[

T1(t) T ∗
1 (t) T2(t) T ∗

2 (t) VI(t) VNI(t) E(t)

]T

, (3.3)

where components 1–4 of x̄ are on a cells/µl scale, 5 and 6 (corresponding to VI and

VNI) on a copies/ml scale, and 7 on a cells/µl scale. The differential equation model

(3.1) can therefore be summarized by

d x̄

d t
= ḡ(t, x̄; q),

with q denoting model dynamic parameters and ḡ the vector of derivatives. Model

fits will be to the base-10 logarithm of these quantities (x = log10 x̄) and in general, as

explained in the notation section, variables with an overbar will denote an unscaled

quantity and those without, log10-transformed variables.

3.2.1 Sample model parameters, steady states, and treat-

ment efficacy

The model (3.1) contains numerous parameters that must be assigned values before

simulations can be carried out. In specifying model parameters, to the greatest extent

possible we employ values similar to those reported or justified in the literature.

The parameters indicated in Table 3.2 are principally extracted from the Callaway–

Perelson [17] and Bonhoeffer, et al., [49] papers.

Callaway and Perelson point out that several model parameters are not available

from human or animal data. They choose the parameters λ1, k1, λ2, and k2 such that

several conditions on target cell and viral load equilibria are satisfied for their model.

These conditions are not precisely satisfied by our model which has no chronic cell
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Table 3.2: Parameters used in model (3.1). Those in the top section of the table are
taken directly from Callaway and Perelson [17]. Parameters in the bottom section
of the table are taken from Bonhoeffer, et. al. [49], with slight adjustments. The
superscripts ∗ denote parameters the authors indicated were estimated from human
data and ∗∗ denote those estimated from macaque data.
parameter value units description

λ1 10 cells
ul·day target cell type 1 production (source) rate

d1 0.01∗∗ 1
day target cell type 1 death rate

ǫ1 ∈ [0, 1] – RTI treatment efficacy

k1 8.0 × 10−7 ml
virions·day population 1 infection rate

λ2 0.03198 cells
ul·day target cell type 2 production (source) rate

d2 0.01∗∗ 1
day target cell type 2 death rate

f 0.34 (∈ [0, 1]) – treatment efficacy reduction in population 2

k2 1 × 10−4 ml
virions·day population 2 infection rate

δ 0.7∗ 1
day infected cell death rate

m1 0.01 ul
cells·day immune-induced clearance rate for pop. 1

m2 0.01 ul
cells·day immune-induced clearance rate for pop. 2

ǫ2 ∈ [0, 1] – PI treatment efficacy
NT 100∗ virions

cell virions produced per infected cell
c 13∗ 1

day virus natural death rate

ρ1 1 virions
cell average number virions infecting a type 1 cell

ρ2 1 virions
cell average number virions infecting a type 2 cell

λE 0.001 cells
ul·day immune effector production (source) rate

bE 0.3 1
day maximum birth rate for immune effectors

Kb 0.1 cells
ul saturation constant for immune effector birth

dE 0.25 1
day maximum death rate for immune effectors

Kd 0.5 cells
ul saturation constant for immune effector death

δE 0.1∗ 1
day natural death rate for immune effectors

compartment and an added immune response. However, the conditions are closely

approximated by the model’s behavior (partially due to multiple stable equilibria) and

we believe the parameters could be adjusted to obtain the same qualitative behavior.

In general, immune response parameters are not well-known and are thus fre-

quently chosen to demonstrate model behavior in simulations. The parameters m1

and m2 represent cytopathicity of the immune effectors. Their common value m =

m1 = m2 = 0.01 was taken from [17] where the authors note that the value was
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suggested originally by Nowak and Bangham [43]. The parameters in the Ė equation

(3.1g) are also slightly adjusted from published values to demonstrate the possibility

of multiple stable equilibria for the model.

In order to understand the possible behaviors of the model under treatment in-

terruptions, we examine the possible equilibria to which the model dynamics might

converge. These do not depend on the dynamics for the non-infectious virus, so we

define the reduced vector xR = [x̄1, . . . , x̄5, x̄7]
T and gR(t, xR; q), the corresponding

model dynamics (derivatives). Model steady states (equilibria) result from solving

the system of six algebraic equations gR(t, xR; q) = 0 for the steady state values x̃R,

i.e., x̃R are the state values where derivatives are all zero. By setting V̇NI = 0 in (3.1f)

and substituting values of T ∗
1 , T ∗

2 , and VI from x̃R, the corresponding VNI equilibrium

follows.

To assess the stability of the equilibria, calculated steady state values x̃R may

then be substituted for xR in the Jacobian matrix

J (xR; q) =
∂ gR(t, xR; q)

∂ xR

=
































−d1 − k̄1VI 0 0 0 −k̄1T1 0

0 −d2 − k̄2VI 0 0 −k̄2T2 0

k̄1VI 0 −δ − m1E 0 k̄1T1 −m1T
∗
1

0 k̄2VI 0 −δ − m2E k̄2T2 −m2T
∗
2

−k̄1103VI −k̄2103VI (1 − ǭ2)103NT δ (1 − ǭ2)103NT δ J5,5 0

0 0 J6,3 J6,4 0 J6,6

































,
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where

k̄1 = (1 − ǭ1)k1,

k̄2 = (1 − f ǭ1)k2,

J5,5 = −c − (1 − ǭ1)103k1T1 − (1 − f ǭ1)103k2T2,

J6,3 = J6,4 =
bEKbE

(T ∗
1 + T ∗

2 + Kb)
2 − dEKdE

(T ∗
1 + T ∗

2 + Kd)
2 , and

J6,6 =
bE (T ∗

1 + T ∗
2 )

(T ∗
1 + T ∗

2 + Kb)
− dE (T ∗

1 + T ∗
2 )

(T ∗
1 + T ∗

2 + Kd)
− δE.

As is well-known from linearization theory, the eigenvalues of J (x̃R; q) yield informa-

tion about the local stability of the substituted equilibrium x̃R. In the local stability

results below, stable means locally asymptotically stable, or all eigenvalues having

strictly negative real part. While it is possible to analytically determine the steady

states in closed form, the expressions are unwieldy and not terribly informative. We

therefore computationally explore the model steady states and stability for the set of

parameters q indicated in Table 3.2.

Given the specified parameters, in the absence of therapy the model exhibits

several steady states (calculated with Maplesoft’s Maple 8 and) shown in Table 3.3.

Equilibrium EQ1 represents the uninfected patient, with healthy T-cell counts and no

virus or infected cells present. (While a healthy person’s T-cell count varies naturally

over time, a typical measurement would be 1000 cells/µl.) When the system is in

this state, introduction of a small amount of virus causes the system to converge

to EQ2, where healthy target cells are substantially depleted and a dangerously

high viral load is present. The system also exhibits an additional stable equilibrium

EQ3, where a strong immune response has developed, successfully controlling the

virus and consequently restoring CD4+ target cell (T1) help. The immune response
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variable incorporated here does not directly correspond to quantities easily measured

in the lab, since HIV-specific immune responses are quantified for specific proteins or

epitopes and here we have a more general summative response. While calculations

Table 3.3: Off treatment (ǫ = 0) steady states (copies/ml) for model (3.1). Non-
physical steady states have been omitted.

Off Treatment (ǫ1 = ǫ2 = 0) ǫ1 = 1
EQ1 EQ2 EQ3 f=0 f=0.5

T1 1000 163.57 967.84 1000 1000
T2 3.198 0.005 0.6205 1.3135 2.6267
T ∗

1 0 11.945 0.0760 0 0
T ∗

2 0 0.0456 0.0061 0.0269 0.0082
VI 0 63919 415.38 143.45 43.497
VNI 0 0 0 0 0
E 0.01 0.0235 353.11 0.0203 0.0123

local stab. unstable stable stable stable stable

reveal the model may exhibit as many as nine steady states, several are non-physical

(negative or complex equilibrium values), and the remaining unreported physical

equilibrium is never locally stable. Other models with multiple stable steady states

have been proposed for the STI scenario including one by Wodarz–Nowak [54].

Considering the model under RTI monotherapy (ǫ2 = 0), we turn to the criteria

on the steady states suggested by Callaway and Perelson. When ǫ1 = 1 and f = 0,

they desire a viral load of 100. In this scenario, our model exhibits a viral load of

V = 143 copies/ml, which is on that order. The entire high virus equilibrium is

shown in Table 3.3. When ǫ1 = 1 and f = 0.5, they desire eradication of the virus.

Our model does not precisely attain that, though the viral steady state (V = 43

copies/ml) is below the limit of detection for most assays currently in use. (Again,

see the table for the entire equilibrium.) In both these cases, the reported equilibrium

is the only stable physical equilibrium. The persistence of low levels of virus, even

while under treatment, is a key feature of HIV models, since rapid viral rebound is
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typically observed upon the withdrawal of drugs. Also, by increasing the secondary

compartment treatment efficacy factor to f ≥ 0.59, the virus is eradicated because

the uninfected steady state becomes stable.

The topmost plot in Figure 3.3 (ǫ2 = 0) depicts the sensitivity of the viral load

equilibrium V = VI + VNI to drug efficacy ǫ1. The introduction of the immune

response terms causes a discontinuity in this curve as stability is exchanged between

viral dominant and immune-dominant equilibria. This is in contrast to the sensitivity

curve of the original Callaway–Perelson model which is continuous across the range

of drug efficacies. However, this may be reasonable: a certain amount of drug may be

necessary to augment the immune system to counteract effects of the virus. The low

(nonzero) steady-state viral load is maintained across the entire range of reasonable

drug efficacies. The model also exhibits approximately a 1–2 log drop in viral load

across the range of drug efficacies, which is typical for monotherapy with RTIs.

The remaining plots in Figure 3.3 demonstrate how the viral equilibria vary for

other fixed values of ǫ2 (corresponding to various levels of protease inhibition). If

ǫ2 = 1 the system has entirely different dynamics as the infectious virus is eradicated;

this case is not explored. In fact as shown in Figure 3.6, for a region of ǫ2, including

ǫ2 > 0.88, the uninfected EQ1 is solely stable, so this is not a reasonable range of ǫ2

to simulate persistent low-level infection.

Figure 3.4 includes plots of the sensitivity of the stable viral load equilibria to the

efficacy of protease inhibitors for various fixed RTI efficacies. In Figure 3.5 we consider

the sensitivity of the viral load equilibrium as the effectiveness of both drugs vary in

relationship. The plots contain the following, in order: ǫ2 = 1
2
ǫ1, ǫ2 = ǫ1, and ǫ2 =

2ǫ1. Considering the same parameters as above, in Figure 3.6 we summarize regions in

treatment parameter space where the various equilibria are stable. For large enough

values of a combination of ǫ1 and ǫ2 only the uninfected equilibrium is stable.
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Figure 3.3: Sensitivity of stable viral load equilibria (total virus V = VI + VNI) to
drug efficacy ǫ1 for various fixed values of ǫ2. The dashed vertical line separates the
region of bi-stability from that with a unique equilibrium and the solid line separates
the unique equilibrium region from the region where only the uninfected equilibrium
is stable.
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Figure 3.4: Sensitivity of stable viral load equilibria (total virus V = VI + VNI) to
drug efficacy ǫ2 for various fixed values of ǫ1.
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CHAPTER 3. MATHEMATICAL MODELS FOR HIV INFECTION 37

3.2.2 Existence and computation of model solution

Existence of solution to ODE system

Theory for existence and uniqueness of solutions to a differential equation system

˙̄x = ḡ(t, x̄; q) typically appeals to Lipschitz continuity in x̄ of the function ḡ(t, x̄; q).

However the model dynamics for ḡ given by the right side of (3.1) do not satisfy such

a Lipschitz condition in x̄, due to product nonlinearities such as k1T1VI . If these ap-

proximate terms are replaced by ones that saturate out as cell populations grow large

(as is more biologically reasonable since one does not expect rates to grow without

bound as the population increases), the function ḡ(x̄) is piecewise differentiable and

satisfies a global Lipschitz condition. The typical theory for solutions to ODEs then

applies to guarantee the existence of a unique solution.

To determine a global Lipschitz bound on the dynamics we proceed as in [16] and

first rewrite the system as

dx̄

dt
= S + L(t)x̄ + h(t, x̄),

where S = [λ1, λ2, 0, 0, 0, 0, λE ]T includes the source terms,

L(t)x̄ =







































−d1

−d2

−δ

−δ

(1 − ǭ2(t))103NT δ (1 − ǭ2(t))103NT δ −c

ǭ2(t)103NT δ ǭ2(t)103NT δ −c

−δE






































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is the component of the system that is linear in the state, and the nonlinearities are

incorporated in

h(t, x̄) =







































− (1 − ǭ1(t)) k1x̄1x̄5

−(1 − f ǭ1(t))k2x̄2x̄5

(1 − ǭ1(t))k1x̄1x̄5 − m1x̄3x̄7

(1 − f ǭ1(t))k2x̄2x̄5 − m2x̄4x̄7

−(1 − ǭ1(t))ρ1103k1x̄1x̄5 − (1 − f ǭ1(t))ρ2103k2x̄2x̄5

0

bE(x̄3+x̄4)
(x̄3+x̄4)+Kb

x̄7 − dE(x̄3+x̄4)
(x̄3+x̄4)+Kd

x̄7







































.

In the nonlinear term h(t, x̄) for s = 1, 2, the potentially unbounded terms ksx̄sx̄5

can be replaced by ksx̄sx̄5 = k̄s
s(x̄s)k̄

5
s(x̄5) and the terms msx̄s+2x̄7 replaced by

msx̄s+2x̄7 = m̄s+2
s (x̄s+2)m̄

7
s(x̄7), where the right sides of these functions saturate out.

For example for s = 1, 2 let

k̄s
s(x̄s) =































0 x̄s < 0

√
ksx̄s 0 ≤ x̄s ≤ x̄M

s

√
ksx̄

M
s x̄M

s < x̄s

; k̄5
s(x̄5) =































0 x̄5 < 0

√
ksx̄5 0 ≤ x̄5 ≤ x̄M

5

√
ksx̄

M
5 x̄M

5 < x̄5

;

m̄s+2
s (x̄s+2) =































0 x̄s+2 < 0

√
msx̄s+2 0 ≤ x̄s+2 ≤ x̄M

s+2

√
msx̄

M
s+2 x̄M

s+2 < x̄s+2

; and m̄7
s(x̄7) =































0 x̄7 < 0

√
msx̄7 0 ≤ x̄7 ≤ x̄M

7

√
msx̄

M
7 x̄M

7 < x̄7

.

Note that each of these new rate functions are globally bounded and piecewise differ-

entiable, e.g., k̄s
s ≤

√
ksx̄

M
s and (k̄s

s)
′(x̄s) ≤

√
ks. Similarly, let b̄E =

√
bE, d̄E =

√
dE
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and define the bounded and piecewise differentiable terms

b̄7
E(x̄7) =































0 x̄7 < 0

√
bEx̄7 0 ≤ x̄7 ≤ x̄M

7

√
bEx̄M

7 x̄M
7 < x̄7

, and d̄7
E(x̄7) =































0 x̄7 < 0

√
dEx̄7 0 ≤ x̄7 ≤ x̄M

7

√
dEx̄M

7 x̄M
7 < x̄7

to replace the unbounded terms in the dynamics for x̄7.

Now take h(t, x̄) together with these substitutions and define a new, saturated

nonlinear term:

hS(t, x̄) =







































− (1 − ǭ1(t)) k̄1
1(x̄1)k̄

5
1(x̄5)

−(1 − f ǭ1(t))k̄
2
2(x̄2)k̄

5
2(x̄5)

(1 − ǭ1(t))k̄
1
1(x̄1)k̄

5
1(x̄5) − m̄3

1(x̄3)m̄
7
1(x̄7)

(1 − f ǭ1(t))k̄
2
2(x̄2)k̄

5
2(x̄5) − m̄4

2(x̄4)m̄
7
2(x̄7)

−(1 − ǭ1(t))ρ1103k̄1
1(x̄1)k̄

5
1(x̄5) − (1 − f ǭ1(t))ρ2103k̄2

2(x̄2)k̄
5
2(x̄5)

0

b̄E(x̄3+x̄4)
(x̄3+x̄4)+Kb

b̄7
E(x̄7) − d̄E(x̄3+x̄4)

(x̄3+x̄4)+Kd
d̄7

E(x̄7)







































.

Therefore when the states x̄ are in the set Ω =
{

x̄ ∈ R7|x̄s ≤ x̄M
s , s = 1, . . . , 5, 7

}

,

hS(t, x̄) = h(t, x̄) (the original system), but on R7\Ω one or more rates saturate.

The rates b̄E(x̄3+x̄4)
(x̄3+x̄4)+Kb

and d̄E(x̄3+x̄4)
(x̄3+x̄4)+Kd

are also bounded and have bounded derivatives

with respect to x̄3 and x̄4. For example,

B(x̄3 + x̄4) =
b̄E(x̄3 + x̄4)

(x̄3 + x̄4) + Kb

≤ b̄E
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and, taking a derivative with respect to either variable,

B′(x̄3 + x̄4) =
b̄EKb

(x̄3 + x̄4 + Kb)2
≤ b̄E

Kb

.

The bounds on the states and derivatives directly imply that the 7 × 7 derivative

matrix Dx̄h(t, x̄) is bounded:

‖Dx̄h(t, x̄)‖
∞

< ∞.

We can therefore prove global existence and uniqueness of a solution to the modified

system

dx̄

dt
= ḡS(t, x̄) = S + L(t)x̄ + hS(t, x̄)

since the right side satisfies a global Lipschitz condition:

∣

∣ḡS(t, φ) − ḡS(t, ψ)
∣

∣ =
∣

∣L(t)(φ − ψ) + hS(t, φ) − hs(t, ψ)
∣

∣

≤ ‖L(t)‖|φ − ψ| + ‖Dx̄h(t, x̄)‖
∞
|φ − ψ|

= KL|φ − ψ|.

Standard theory for ordinary differential equation systems then guarantees the exis-

tence of a unique solution (see for example Theorem 3.1 in Robinson [47]).

Remark: While we showed existence and uniqueness of a solution to the more

biologically realistic problem involving saturation terms, we compute using the orig-

inal system (3.1). In simulations we never encountered a problem of the states (and

consequently derivatives) growing unbounded and therefore did not have to substitute

the saturated dynamics.
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Numerical simulation of ODE system

In solving the HIV dynamics system numerically we substitute a log-transformed

system. This resolved a problem of states becoming unrealistically negative during

solution due to round-off error: nonnegative solutions of this model should stay so

throughout integration. It also enables efficient handling of unrealistic cases where

states get infinitesimally small during integration due to parameters selected by opti-

mization algorithms. Using the transformation x = log10(x̄), with the original system

˙̄xi = ḡi(t, x̄; q) we obtain the system

dxi

dt
=

10−xi

ln(10)
ḡi(t, 10x; q), i = 1, . . . , 5, 7, (3.4)

which is the log-transformed analog of the reduced system ẋR = gR(t, xR; q) discussed

above, i.e., for all states except VNI .

Given a vector of model dynamics parameters q and specified initial conditions

x̄(0), we calculate numerical solutions for the model using variable-order adaptive

BDF-based integrators. The solvers used for results in this dissertation are Matlab’s

ode15s [50] and Lawrence Livermore’s LSODE [29] with relative error tolerance 10−9.

The latter is written in Fortran and thus enabled more rapid computation which

substantially helped in both optimization problems here and Monte Carlo simulations

reported in [9].

Having obtained the model solution x(t) to (3.4) and therefore x̄(t), we use its

information on T ∗
1 (t), T ∗

2 (t), and VI(t) to integrate (3.2) using composite sixteen-point

Gaussian quadrature. If TF denotes the final time (day) at which a solution is desired,

then for t = 1, . . . , TF we integrate on one day subintervals [t − 1, t]:

VNI(t) = VNI(t − 1)ec +

∫ t

t−1

e−c(t−s)G(s)ds,
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using sixteen Gauss points to evaluate the integral in the second term. We take this

approach rather than integrating the full seven-state ODE system because, in the

absence of PI treatment (ǭ2(t) ≡ 0), exponential decay makes it impractical to solve

for VNI on the logarithmic scale.

A simulation of early infection from the model is shown in Figure 3.7. Simulation

is started near steady state EQ1, with the addition of one viral copy per ml (V = 1

copy/ml) and a corresponding small amount of infected cells (x̄0 = [1000, 3.198, 1 ×

10−4, 1 × 10−6, 1, 1, 0.01]T ). Upon infection, the virus replicates to a peak before

converging in damped oscillations to equilibrium. There is a delayed initial immune

response to the presence of the infected cells, but a sustained and vigorous immune

response does not develop. The higher infection rate in the T2 population is evident

in its more dramatic decline than the T1 cell population. The plot for V includes

non-infectious virus V = VI + VNI ; however the simulation presumes no treatment,

so the VNI population is quickly extinguished.
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Figure 3.7: Simulation of early infection scenario using HIV model (3.1). Note varying
logarithmic scales in different subplots.
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3.3 Error Model and Simulated Data

In order to generate simulated data and perform inference on estimated parame-

ters, one must make assumptions about the structure of errors in the model and

process. These errors are not relative to the model states directly, but rather the

experimentally-observed components of them. Applying an observation operator O

to the vector of unscaled model solutions x̄(tij) yields the vector of observed model

states z̄(tij) = Ox̄(tij) to be fit to data. For example the clinical data includes at

most total CD4+ T-cell count (T1 + T ∗
1 ), free virus (V + VNI), and immune response

(E), although we do not fit E data. The corresponding observer matrix O ∈ Rm×n

that produces the m = 2 outputs for this system would be

O =







1 0 1 0 0 0 0

0 0 0 0 1 1 0






.

We assume observation errors for a particular patient, at times tij, are independent

for each time. As is typical for assay data, we further assume that the unscaled

observations ȳij
s for patient j and state s = 1, . . . ,m, are distributed lognormally

such that

E(ȳij
s ) = z̄s(t

ij
s ; qj), and (3.5a)

Var(ȳij
s ) = σ̄2

s

{

z̄s(t
ij
s ; qj)

}2
. (3.5b)

To be precise, one should distinguish between random variables Ȳ ij
s and their real-

izations ȳij
s , but in most cases the meaning is clear from context and we will not

make this distinction. Equations (3.5) comprise a constant coefficient of variation

model, where σ̄ =

√
Var(ȳ)

E(ȳ)
is the coefficient of variation (ratio of standard deviation
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to mean). In this case, the variance in the observations is proportional to the square

of the mean response and is equivalent to an adjusted lognormal distribution of the

data about the mean response. In particular, defining yij
s = log10 ȳij

s , the log-scaled

yij
s are distributed normally: N (ζ ij

s , σ2
s), where

ζ ij
s = log10 z̄ij

s − log10 (σ̄2
s + 1)

2
, and (3.6a)

σ2
s = log10

(

σ̄2
s + 1

)

log10(e). (3.6b)

We first verify a similar result involving natural logarithms using the moment gener-

ating function for the normal distribution.

Proposition 3.1. If a random variable W ∼ N (m, s2), where

m = ln µ − ln (σ2 + 1)

2
and s2 = ln

(

σ2 + 1
)

,

then W̄ = eW is such that

E(W̄ ) = µ and Var W̄ = σ2µ2.

Proof. From the moment generating function of the normal distribution M(t) =

E
(

etW
)

= emt+s2t2/2, it immediately follows that

E(W̄ ) = E(eW ) = M(1) = em+s2/2 and

E(W̄ 2) = E(e2W ) = M(2) = e2m+2s2

.
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Therefore,

E(W̄ ) = em+s2/2 = eln µ−
ln(σ2+1)

2
+

ln(σ2+1)
2 = µ , and

Var(W̄ ) = E(W̄ 2) − {E(W̄ )}2

= e2m+2s2 −
(

em+s2/2
)2

=
(

es2 − 1
)

e2m+s2

= σ2µ2.

We now verify the equivalence of (3.5) and (3.6), where the logarithms are base-10

rather than base e.

Proposition 3.2. Let Y ∼ N (ζ, σ2), where ζ and σ2 are as in (3.6) (indices sup-

pressed). Then Ȳ = 10Y is such that the variance model (3.5) holds.

Proof. Define W := ln(10)Y (and note that Ȳ := 10Y = eln(10)Y = eW ). Then,

defining m = ln(10)ζ and s2 = ln(10)2σ2, W is such that W ∼ N (m, s2). Directly

applying Proposition 3.1 to W yields

E(10Y ) = E(eW ) = z̄, and

Var(10Y ) = Var(eW ) = σ̄2 {z̄}2 .

We therefore use the equivalence of these two formulations and generate simu-

lated data by sampling yij
s from N (ζ ij

s , σ2
s) (where ζ ij

s depends on the solution to the
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differential equation model) and then exponentiating to obtain the data:

ȳij
s = 10yij

s .

We generate simulated data with coefficient of variation σ̄s = 0.2 or σ̄s = 0.3 for each

state, which are in the range observed in practice for viral load and CD4 count assays

[51, 55].

3.4 Sensitivity Computations

Computing sensitivity of observed model outputs to dynamic parameters both yields

information about identifiability and helps construct the relationship between esti-

mated parameters and error estimates (confidence intervals) in an inverse problem

process. In the case of our ordinary differential equation model, semi-relative sen-

sitivities can be computed explicitly by differentiating the dynamical system with

respect to one or more parameters of interest and then integrating the newly-formed

block system in time. For example, to determine the relative sensitivity of observed

model outputs zs(t
ij
s ; q) with respect to parameters qk, one must compute

∂zs(t
ij
s ; q)

∂qk

· qk (3.7)

which scales the sensitivity by the magnitude of the parameter considered [6]. Note

that a parameter qk in this case might be a model dynamic parameter or an initial

condition.

Since the solution of the ODE model is better posed on the logarithmic scale, we

determine the sensitivities using the log scale model dynamics, and then transform

to relate them to the sensitivities of the observed states on the log scale (which we
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fit to data). Denoting the system of log-scaled dynamics from (3.4) by

dx

dt
= h(t, x; q) (3.8)

x(0) = x0 (3.9)

we formally differentiate with respect to each qk and interchange the order of the time

and parameter derivatives [6, 23, 25]. In the case of r parameters and n model state

variables, we thus obtain an (n × r)-dimensional system of differential equations for

the sensitivities xq(t; q) = ∂x
∂q

(t; q), where q is the vector of parameters considered:

d

dt

(

∂x

∂q
(t)

)

=
∂h

∂x

∂x

∂q
(t) +

∂h

∂q
(3.10)

with initial condition

∂x

∂q
(0) =

∂x0

∂q
. (3.11)

The initial condition matrix (3.11) has zero entries (as the initial conditions are inde-

pendent of the model dynamic parameters) except when one or more initial conditions

are included in the vector of parameters of interest. In the latter case, the sensitivity

initial condition for a model state with respect to its own initial condition is 1. Note

that ∂h
∂x

is the Jacobian of the ODE system, and ∂h
∂q

is similarly a matrix containing

the derivatives of the right side with respect to the parameters considered.

We solve the system {(3.10),(3.11)} for xq(t; q) by coupling it with the original

differential equation system to obtain an (nr+n)-dimensional system which we again

solve numerically with the Matlab solver ode15s. More specifically, since the sensi-

tivity of VNI with respect to any parameter does not depend on VNI itself, we couple

states [1, 2, 3, 4, 5, 7] from (3.4) (omitting VNI) to the sensitivity equations (3.10) and

integrate, then perform Gaussian quadrature as before to obtain model solutions for
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VNI . (To visit this sensitivity computation method in another context, see [1].)

Since we obtain sensitivity solutions on a log scale, we have to be careful to

transform before applying the observation operator. As before let x = log10 x̄. Then

we can compute the sensitivity of the unscaled model solutions by

∂x̄s

∂q
= ln(10)10xs

∂xs

∂q
.

Since the observation process is linear in these unscaled states and the derivative is

a linear operator, we can now apply the observer to determine the sensitivity of the

log of the observed model states as follows:

∂zs

∂q
(t; q) =

∂

∂q
log10 (Osx̄(t; q)) (3.12)

= log10(e)
Os

(

∂x̄
∂q

(t; q)
)

Os (x̄i(t; q))
. (3.13)

These can then be scaled by the relative size of the various parameters qk considered.

This process yields sensitivity information as a function of time over the interval

of integration considered which will be used directly to compute confidence intervals.

To understand overall which model dynamic parameters and initial conditions most

influence the outputs of the system we take the L2 norm of these over time. In

particular, given treatment schedule, observation times, and parameters for virtual

patient j, we compute the influence of each parameter qk on CD4 (z1) and viral RNA

(z2) response over time:

√

√

√

√

1

N j
1

Nj
1

∑

i=1

∣

∣

∣

∣

∂z1

∂qk

(tij1 ; qj)qk

∣

∣

∣

∣

2

,

√

√

√

√

1

N j
2

Nj
2

∑

i=1

∣

∣

∣

∣

∂z2

∂qk

(tij2 ; qj)qk

∣

∣

∣

∣

2

.

For the cases considered here, using the sup norm yields similar results.
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We examine results for relative sensitivity for CD4 (T1 + T ∗
1 ) and viral RNA

(VI+VNI) to each of the 20 parameters and seven initial conditions. The conditions for

these computations are based on the sample set of eighteen patients PS18, described

in Chapter 2.

1. For Scenario 1, we set the treatment schedules uj(t) and observation times tijs for

each patient based on the actual record for patient j in the clinical data. How-

ever, we fix the model parameter values qj, j = 1, . . . , 18 for all patients at the

values in Table 3.2 and use initial condition x̄0 = [600, 50, 60, 50, 900000, 10, 20]

to simulate viral peak in early infection.

2. For Scenario 2, we again consider the treatment schemes and observation times

from the clinical data sets, however now the model parameter values qj, j =

1, . . . , 18 and initial condition x̄0j for each patient were set to those from pre-

liminary estimates based on clinical data.

Table 3.4 contains the semi-relative sensitivities for each scenario and parameter.

Results for each scenario in the tables are based on averaging across the eighteen

virtual patients considered. Perhaps more interesting is Table 3.5 where for each

scenario the parameters are ranked in increasing order of semi-relative sensitivity.

The model outputs are most sensitive to the parameters V 0
I , T 0

1 , ǫ2, and V 0
NI and

secondarily to the parameters λ1, ǫ1, k1, T
∗0
1 , and c. These results are dependent on

the relative magnitude of the parameters considered and therefore vary between the

two scenarios. This sensitivity analysis will inform the inverse problem process, as

one should not expect to estimate a parameter to which the model solutions are

insensitive.

Other approaches exist for estimating solutions to sensitivity equations and may

be necessary if the sensitivity system (3.10) proves difficult to integrate. Finite-
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difference approximations may provide a reasonable estimate to the sensitivities. An

example using forward-difference derivative approximations in the context of an elec-

tromagnetics model is presented in [26].
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Table 3.4: Semi-relative sensitivities of CD4 and viral RNA with respect to each of
27 parameters in two scenarios.

scenario 1 scenario 2
param CD4 viral RNA CD4 viral RNA

λ1 2.12e+00 3.82e+01 3.29e-01 1.09e+00
d1 1.75e+00 3.23e+01 3.05e-01 9.57e-01
ǫ1 4.17e+00 7.78e+01 1.06e-02 4.63e+00
k1 1.98e+00 3.43e+01 9.77e-02 1.07e+00
λ2 2.53e-01 6.24e+00 1.84e-02 5.03e+00
d2 7.32e-02 1.78e+00 1.09e-02 3.35e+00
f 1.25e-01 2.81e+00 4.58e-03 2.73e+00
k2 4.05e-01 8.99e+00 9.11e-03 4.54e+00
δ 2.09e-01 2.92e+00 3.46e-02 6.82e-01

m1 1.09e-02 2.44e-01 9.05e-04 2.89e-02
m2 5.10e-03 9.44e-02 2.35e-04 5.54e-02
ǫ2 1.06e+00 7.54e+02 5.13e-02 1.22e+03
NT 1.51e+00 3.08e+01 1.09e-02 5.94e+00
c 1.64e+00 3.76e+02 1.01e-01 1.90e+02

λE 3.22e-02 6.26e-01 1.11e-03 7.48e-02
bE 2.65e+00 5.13e+01 1.84e-02 1.17e+00
Kb 7.08e-01 1.39e+01 1.57e-03 2.36e-01
dE 1.39e+00 2.70e+01 6.40e-03 1.97e-01
Kd 1.53e+00 2.95e+01 1.45e-02 1.07e+00
δE 1.22e+00 2.38e+01 1.29e-02 1.01e+00
T 0

1 2.96e+02 5.09e+03 1.78e+02 4.25e+02
T 0

2 1.79e+00 3.27e+01 7.72e-02 5.98e+00
T ∗0

1 2.85e+00 4.84e+01 1.80e-01 1.47e+00
T ∗0

2 1.83e+00 3.36e+01 5.11e-04 1.45e-01
V 0

I 1.30e+04 3.56e+05 2.91e+03 2.29e+05
V 0

NI 0.00e+00 2.60e+00 0.00e+00 1.68e+03
E0 1.67e+00 3.19e+01 2.24e-05 1.74e-02
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Table 3.5: Parameters ranked by semi-relative sensitivity for CD4 and viral RNA in
two scenarios.

scenario 1 scenario 2
rank CD4 viral RNA CD4 viral RNA

1 25 (V 0
I ) 25 (V 0

I ) 25 (V 0
I ) 25 (V 0

I )
2 21 (T 0

1 ) 21 (T 0
1 ) 21 (T 0

1 ) 26 (V 0
NI)

3 3 (ǫ1) 12 (ǫ2) 1 (λ1) 12 (ǫ2)
4 23 (T ∗0

1 ) 14 (c) 2 (d1) 21 (T 0
1 )

5 16 (bE) 3 (ǫ1) 23 (T ∗0
1 ) 14 (c)

6 1 (λ1) 16 (bE) 14 (c) 22 (T 0
2 )(NT )

7 4 (k1) 23 (T ∗0
1 ) 4 (k1) 13 (NT )

8 24 (T ∗0
2 ) 1 (λ1) 22 (T 0

2 ) 5 (λ2)
9 22 (T 0

2 ) 4 (k1) 12 (ǫ2) 3 (ǫ1)
10 2 (d1) 24 (T ∗0

2 ) 9 (δ) 8 (k2)
11 27 (E0) 22 (T 0

2 ) 5 (λ2) 6 (d2)
12 14 (c) 2 (d1) 16 (bE) 7 (f)
13 19 (Kd) 27 (E0) 19 (Kd) 23 (T ∗0

1 )
14 13 (NT ) 13 (NT ) 20 (δE) 16 (bE)
15 18 (dE) 19 (Kd) 6 (d2) 1 (λ1)
16 20 (δE) 18 (dE) 13 (NT ) 4 (k1)
17 12 (ǫ2) 20 (δE) 3 (ǫ1) 19 (Kd)
18 17 (Kb) 17 (Kb) 8 (k2) 20 (δE)
19 8 (k2) 8 (k2) 18 (dE) 2 (d1)
20 5 (λ2) 5 (λ2) 7 (f) 9 (δ)
21 9 (δ) 9 (δ) 17 (Kb) 17 (Kb)
22 7 (f) 7 (f) 15 (λE) 18 (dE)
23 6 (d2) 26 (V 0

NI) 10 (m1) 24 (T ∗0
2 )

24 15 (λE) 6 (d2) 24 (T ∗0
2 ) 15 (λE)

25 10 (m1) 15 (λE) 11 (m2) 11 (m2)
26 11 (m2) 10 (m1) 27 (E0) 10 (m1)
27 26 (V 0

NI) 11 (m2) 26 (V 0
NI) 27 (E0)



Chapter 4

Parameter Identification (Inverse)

Problem

We wish to use the HIV model (3.1) to describe clinical data, make predictions, and

suggest better treatment schemes. To do this more realistically, the model should

be calibrated to patient data by estimating its parameters. We explore methods for

doing so in the context of data from one or more patients.

As noted in the data description, in performing an inverse problem we do not

have the luxury of observing the full vector of model states at each measurement

time. Given an observation operator appropriate for the data, let x̄ denote native

model solutions and z̄ = Ox̄, observed model solutions. Recall that the number of

observations might vary from patient to patient, so for each patient j = 1, . . . , NP ,

we have times {tij1 , i = 1, . . . N j
1} for CD4 measurements y1(t) and {tij2 , i = 1, . . . N j

2}

for viral RNA measurements y2(t). We fit the model using the base-10 logarithm of

these quantities: x = log10 x̄, z = log10 z̄, y = log10 ȳ.

54
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4.1 Inverse Problem Formulations

Consider the two inverse problem formulations given by (4.1) and (4.2) below. The

first employs data from a single patient in order to estimate one or more parameters

(q). In this case, for each fixed patient j, the goal is to fit the ODE model to his data

by minimizing the cost criterion

q∗j = arg min
q∈Q

J(q) =
m

∑

s=1

1

N j
s

Nj
s

∑

i=1

∣

∣zs(t
ij
s ; q) − yij

s

∣

∣

2
(4.1)

over an admissible parameter space Q ⊂ Rp to obtain optimal estimates. This is

the typical nonlinear least squares formulation, where J(q) depends through z on

the solution to the nonlinear system of differential equations. Many sampling- and

gradient-based methods are available to iteratively solve (4.1) for q∗j (see Kelley [33]

and references therein).

In the second inverse problem method one estimates a distribution of parameters

using data from multiple patients simultaneously. For this case, assume each patient

can be identified with a set of “true” parameters qj0 and that these are therefore

realizations of a random variable which comes from a distribution P on the admissible

parameter space Q. So P describes the distribution of the parameter values qj0 across

the population.

Given the probability space P(Q) of all probability distributions on the space Q

in which the parameters of interest q live, and some admissible subset P̃(Q) ⊂ P(Q)

solve for

P ∗ = arg min
P∈P̃

J(P ) =
1

NP

NP
∑

j=1

m
∑

s=1

1

N j
s

Nj
s

∑

i=1

∣

∣E
[

z(tijs ; q)|P (q)
]

− yij
s

∣

∣

2
. (4.2)
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This is a more abstract (in particular infinite-dimensional) problem, and the space P̃

over which the minimization takes place to determine P ∗ must be carefully specified

to determine well-posedness and stability of the inverse problem and certainly in order

to compute a solution numerically.

In general the solution to the differential equation model and consequently the

expected value in (4.2) may vary between patients based on factors other than obser-

vation times. In addition to patient-dependent observation times, the model solutions

zs(·; q) may depend on patient-specific treatment schemes uj(t). Further, some subset

of model parameters q̀j may be fixed, while others qj are estimated. For this most

general case, the model solutions look like

zs(t
ij
s ; q̀j; uj(t); q), s = 1, . . . ,m

and we estimate either a vector of model parameters q or their distribution P as

described. Some of this more general notation will be suppressed in sections of what

follows.

One could consider more involved inverse problem schemas where parameters are

estimated for each individual as well as distributions and errors across the population.

These hierarchical statistical methods are widely used and have the advantage of being

able to incorporate a high degree of structure, but are not considered here. The reader

is referred to the discussion in [20] for more information. The methods considered

here may offer some of the same information at reduced cost and complexity.

The single-patient inverse problem formulation (4.1) is well-suited to computation

(minimization over a subset Q ⊂ Rp). However, when considering (4.2) computation-

ally, one cannot minimize over the space P(Q) of all probability distributions on Q

so we consider sets P̃(Q) over which this is more feasible. Examples of P̃(Q) ⊂ P(Q)
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include:

1. Parameterized families of distributions. For example, the set of normal dis-

tributions P̃(Q) = {P ∈ P(Q)|P ∼ N (q0, Σ)} is parameterized by the compo-

nents of the mean vector q0 and covariance matrix Σ, thus inducing a finite-

dimensional inverse problem for these components. Similarly, other parametric

distributions may be employed, e.g., mixtures of normals, lognormals, gammas,

etc.

2. Nonparametric point masses. Banks and Bihari [4] demonstrate that a finite

linear combination of Dirac measures (“point masses”) approximate generic

elements of P(Q). For example in the case of a univariate distribution, choose

sets of nodes QNm =
{

qNm

k

}Nm

k=0
, Nm = 1, 2, . . . ,∞,, such that each QNm ⊂ Q

and their union ∪∞
Nm=1Q

Nm is dense in Q. Then the set of distributions

P̃(Q) = PNm(Q) =

{

P ∈ P(Q)|P =
Nm
∑

k=1

wkδqNm
k

, qNm

k ∈ QNm , wk ∈ Q,
∑

wk = 1

}

,

where δq is the Dirac measure with atom at q, can be used to approximate P(Q)

and is finite dimensional, yielding a tractable inverse problem in the rational

weights wk.

3. Distributions with densities. A third possibility involves approximation using

finite linear combinations of linear splines to represent the associated probability

density functions as developed in Banks–Pinter [13]. This entails restricting

P(Q) to a class of distributions that are absolutely continuous with L2(Q)

density. We use this approach here.

Direct estimation of the distribution of one or more model parameters across a

population using (4.2) offers benefits over the single patient inverse problem (4.1).
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In the multiple-patient context it is possible to leverage data from all patients simul-

taneously to obtain an estimate of the distributional form. This is possible, though

potentially more computationally intensive, with the single patient inverse problems

or through hierarchical methods. One could estimate parameters for each patient

(samples from the true parameter distribution) and then use them to construct his-

tograms or other representations of the joint distributions. In addition, as in the

case of the formulations considered shortly, if only a small subset of parameters vary

across the population with the rest of the model parameters fixed at known values,

the method may offer substantial computational advantage since a basis of model so-

lutions can be computed ahead of time, before the distribution is estimated. Further,

while parameterized distributions (1.) are often used to describe population char-

acteristics, the formulations (2.) and (3.) allow more flexible fitting to population

characteristics and may help avoid distribution mis-specification as discussed in [12].

We now overview the particular finite-dimensional concretization of (4.2) consid-

ered in this dissertation. Presently, we are interested in using data to estimate the

distribution of a single parameter. We consider the situation where the vector q̀j of

all but one of the model parameters is fixed for each patient and estimate a distribu-

tion for the remaining parameter q. We minimize over a subset of P(Q) consisting

of probability measures that have L2 probability density functions (pdfs) f(q). We

discretize the pdfs with piecewise linear spline approximations, reducing the inverse

problem to finding spline coefficients, similar to the problem of finding Dirac weights

in (2.) above. In this case, the inverse problem reduces to a quadratic programming

problem.

Given a set of functions F to be specified later, consider FNS ⊂ F ⊂ L2(Q),

where FNS consists of piecewise linear approximations to functions in F . We solve

the inverse problem (4.2) by minimizing over the set of probability measures with
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piecewise linear density functions

PNS(Q) =

{

F ∈ P(Q)|F =

∫

f, f ∈ FNS

}

.

In the next section we explore the well-posedness of inverse problems in this context.

For q in the interval [qL, qU ] consider a partition qL = q0 < q1 < q2 < . . . < qNS
=

qU as shown in Figure 4.1. Then

q0 q1 2q q3 q4
qN  −2S qN  −1S

qNS

dN  −1S

dNSd0

d2
3d

d4 dN  −2S

d1

f(q)

q
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

Figure 4.1: Example of piecewise linear spline approximation to density function f(q).

f(q) ≈ fNS(q) =

NS
∑

k=0

dkφk(q)

approximates a generic density f(q) ∈ F , where φk(q) denotes the piecewise linear

“hat” basis function centered at node qk. Now, since we represent probability distri-

butions P (q) by their densities f(q), the expected value in the cost criterion depends
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on the them. Letting Eij(f) = E [zij(q)|f(q)] = E [z(tij; q̀j; uj(t); q)|f(q)],

Eij(f) =

∫

Q

zij(q)f(q)dq ≈
∫

Q

zij(q)

NS
∑

k=0

dkφk(q)dq

=

NS
∑

k=0

dk

∫

Q

zij(q)φk(q)dq

=

NS
∑

k=0

dkS ij
k .

The vector of integrals [S ij
k =

∫

Q
zij(q)φk(q)dq], k = 0, . . . , NS can be computed

explicitly once the parameter space Q has been fixed. The cost function can now

be rewritten

NP J(f) =

NP
∑

j=1

1

N j

Nj
∑

i=1

∣

∣

∣

∣

∣

NS
∑

k=0

dkS ij
k − yij

∣

∣

∣

∣

∣

2

=

NP
∑

j=1

1

N j

Nj
∑

i=1

[

dTS ij
(

S ij
)T

d − 2dTS ijyij +
(

yij
)2

]

= dT





NP
∑

j=1

1

N j

Nj
∑

i=1

S ij
(

S ij
)T



 d − 2dT

NP
∑

j=1

1

N j

Nj
∑

i=1

S ijyij

+

NP
∑

j=1

1

N j

Nj
∑

i=1

(

yij
)2

. (4.3)

(For clarity we suppress the state index s, although its sum can be readily included.)

This can be summarized as

J(f(d)) = dT Ad − 2dT b + c,

which reveals that the minimization problem is a quadratic programming problem in

the spline coefficients dk, where the coefficients A, b, and c contain information from
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model basis functions and patient data as shown in (4.3). In order to ensure that

the estimated coefficients determine a probability density function, we require them

to be nonnegative and that the estimated pdf fNS(q) integrate to one, yielding a

constrained optimization problem:

min
d

J(d) = dT Ad − 2dT b + c, subject to (4.4a)

1 =

NS−1
∑

k=0

dk + dk+1

2
∆qk (4.4b)

dk ≥ 0, k = 0, 1, . . . , NS. (4.4c)

Note that even though the matrices Aij = S ij (S ij)
T

are rank one for each pair (i, j),

their sum is not necessarily so.

The inverse problem as stated in (4.4) is potentially very ill-conditioned. We

also explore a similar (improved) inverse problem that incorporates a penalty for

irregularity of the density function f(q). Specifically, we augment the cost function

with a Tikhonov regularization-like term that penalizes the L2 norm of the derivative

of f :

J(f) =
1

NP

NP
∑

j=1

1

N j

Nj
∑

i=1

∣

∣Eij(f) − yij
∣

∣

2
+ βR

∥

∥

∥

∥

df

dq

∥

∥

∥

∥

2

L2(Q)

,

where the regularization parameter βR is a design parameter that controls trade-

off between model misfit and smoothness of f . Though not smooth, a piecewise

approximation to the derivative of f(q) suffices for our purposes. The derivative on

subinterval k can be approximated by dk+1−dk

∆qk
, k = 0, . . . , NS − 1 and therefore

βR

∥

∥

∥

∥

df

dq

∥

∥

∥

∥

2

L2

= βR

∫

Q

∣

∣

∣

∣

df

dq
(q)

∣

∣

∣

∣

2

dq ≈ βR

NS
∑

k=0

(

dk+1 − dk

∆qk

)2

∆qk (4.5)

= βRdT ARd, (4.6)
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where

AR =

























−1

1 −1

. . . . . .

1 −1

1



















































1
∆q0

1
∆q1

. . .

1
∆qNS−2

1
∆qNS−1













































−1 1

−1 1

. . . . . .

−1 1



















.

The modified quadratic programming problem objective function is

J(f(d)) = dT (A + βRAR) d − 2dT b + c.

4.2 Analysis of Inverse Problems

The single-patient inverse problem is typical nonlinear least squares and as such, its

analysis has been thoroughly discussed in other contexts. We do not consider that

case here, except later when issues with censored data arise.

In the case of the second, probability-distribution-based inverse problem, the cost

functional (4.2) is minimized over a space of probability measures. To clarify the

well-posedness and stability [10] of this inverse problem in the finite-dimensional

computational framework, we follow a progression, drawing from the previous work

of Banks–Pinter [13] and Banks–Bihari [4]:

• Define the Prohorov ρ metric to measure convergence of probability measures

and demonstrate that given an appropriate set of functions F a set

PF =

{

F ∈ P(Q)|F =

∫

f, f ∈ F
}
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over which the minimization may take place is compact in this metric.

• Show that elements of this set PF , characterized by their probability density

functions f , can be approximated by piecewise linear splines from the set

PNS(Q) =

{

F ∈ P(Q)|F =

∫

f, f ∈ FNS

}

.

• Use results from Banks–Bihari to demonstrate that the inverse problem has a

minimizer and is stable.

4.2.1 Minimization over a ρ compact set

In order to address the well-posedness of the inverse problem posed over probability

distributions, one needs a measure of convergence of distributions. The Prohorov

metric induces a topology on the probability distribution functions and thus, a means

to measure distance between distributions.

Definition 4.1. Prohorov metric ρ: If (Q, d) is a complete metric space, and for

any closed subset S ⊂ Q and ǫ > 0 we define Sǫ = {q ∈ Q|d(q̃, q) < ǫ, q̃ ∈ S}, the

Prohorov metric ρ : P(Q) × P(Q) → R+ is defined by

ρ(P1, P2) ≡ inf {ǫ > 0 : P1[S] ≤ P2[S
ǫ] + ǫ, S closed, S ⊂ Q} (4.7)

It is well known that

1. (P(Q), ρ) is a complete metric space; and

2. if Q is compact then (P(Q), ρ) is a compact metric space.

The following equivalent characterizations of the Prohorov metric [14] may be more

intuitive and in particular, we will soon employ (ii.).
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Theorem 4.1. Given Pk, P ∈ P(Q), the following convergence statements are equiv-

alent:

(i.) ρ(Pk, P ) → 0;

(ii.)
∫

Q
gdPk(q) →

∫

Q
gdP (q) for all bounded, uniformly continuous functions g :

Q → R;

(iii.) Pk[A] → P [A] for all Borel sets A ⊂ Q with P [∂A] = 0.

We consider minimizing our most general inverse problem cost function over the

(infinite-dimensional) set PF(Q) of probability measures on the admissible parameter

space Q that have underlying densities f taken from a subset F of L2(Q):

PF(Q) =

{

F ∈ P(Q)|F =

∫

f, f ∈ F
}

. (4.8)

Here P(Q) denotes the set of all probability distributions on Q. The following theo-

rem gives a condition for PF(Q) to be compact in P(Q), and we offer a paraphrased

version of its proof.

Theorem 4.2. (Banks–Pinter [13] Theorem 5.1) If F is a weakly compact subset of

L2(Q), with Q compact, then PF(Q) as defined in (4.8) above is a ρ-compact subset

of (P(Q), ρ).

Proof. Take a sequence {Fn} ⊂ PF(Q), so each element of the sequence is identified

with a density fn ∈ F , i.e. Fn =
∫

fndq. Weak compactness of F implies that F is

norm bounded (V.6.1 in Dunford–Schwartz [22]) and therefore {fn} ⊂ F is weakly

sequentially compact (every sequence has a weakly convergent subsequence). In this

case, there exists an f ∈ F and a subsequence {fnk
} of {fn} such that fnk

⇀ f with
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‖fnk
‖L2 ≤ M . Since this limit holds for any test function in L2(Q), it does specifically

for a function g ∈ C(Q) (bounded continuous functions on Q):

∫

Q

gfnk
dx →

∫

Q

gfdx

and therefore Fnk
→ F =

∫

fds in the ρ metric by Theorem 4.1, so PF(Q) is sequen-

tially compact.

We now show that the set PF(Q) is closed in the ρ metric by examining a sequence

{Fn} ⊂ PF(Q) such that Fn → F ∈ P(Q) and must show that F ∈ PF(Q). Again,

each Fn =
∫

fnds and since convergence in Prohorov metric is equivalent to weak∗

convergence in P(Q),
∫

Q

gfndx →
∫

Q

gdF (4.9)

for every g ∈ C(Q). As above, since {fn} ⊂ F (which is weakly compact) there exists

{fnk
} and f ∈ F such that

∫

Q

gfnk
dx →

∫

Q

gfdx

for all g ∈ C(Q). Now, fnk
is bounded in L2(Q) and C(Q) is dense in L2(Q), so

∫

Q

hfnk
dx →

∫

Q

hfdx

for all h ∈ L2(Q). (To see this (N, ǫ)-style use hfnk
− glfnk

+ glfnk
− glf + glf − hf

for ‖gl − h‖L2 → 0.) Therefore by uniqueness of limits and (4.9),

∫

Q

g̃dF =

∫

Q

g̃fdx ∀ g̃ ∈ L2(Q);

that is, F is absolutely continuous with F ′ = f , so F ∈ PF(Q), so PF(Q) is compact
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in (P(Q), ρ).

Closed balls are an example of a weakly compact set in L2(Q). Indeed, closed,

bounded, convex sets completely characterize weakly compact sets in the reflexive

space L2(Q). This follows from two theorems in Dunford–Schwartz [22]: from II.3.28,

a set in a reflexive space is weakly sequentially compact if and only if it is bounded;

and from V.3.13, a convex subset of a locally convex linear topological space is weakly

closed if and only if it is closed.

4.2.2 Approximation by piecewise linear splines

In order to show method stability in the manner of Banks–Bihari [4], we first establish

that convergence of piecewise linear densities fNS to a continuous density f implies

convergence of the corresponding distributions in the Prohorov metric.

Theorem 4.3. Let F ∈ P(Q), where F =
∫

f , and define a series of piecewise linear

spline approximations to the density f ,

f(q) ≈ fNS(q) =

NS
∑

k=1

dNS

k φNS

k (q),

such that fNS → f in L2(Q) as NS → ∞. Then FNS =
∫

fNS are such that

ρ(FNS , F ) → 0.

Proof. Strong convergence of fNS to f implies weak convergence in L2(Q), so

∫

Q

gfNSdq →
∫

Q

gfdq
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for all g ∈ L2(Q) and consequently for all g ∈ C(Q), so for FNS =
∫

fNS ,

ρ(FNS , F ) → 0.

Therefore, letting

FNS =

{

h ∈ L2(Q)|h(q) =

NS
∑

k=1

dNS

k φNS

k (q)

}

,

(L2(Q) functions with piecewise linear NS representations), the set

PD(Q) =

{

F ∈ P(Q)|F =

∫

f, f ∈ ∪∞

1 FNS

}

= ∪∞

N=1PNS(Q)

is dense in PF(Q) in the ρ metric (i.e., fN → f). We can use elements of

PNS(Q) =

{

F ∈ P(Q)|F =

∫

f, f ∈ FNS

}

to approximate elements of PF(Q) for computational purposes. Note that since it is

finite dimensional, PNS(Q) is a closed subset of P(Q). One can see this by intersecting

the closed set of piecewise linear NS functions with the closed set of densities f that

integrate to one.

4.2.3 Existence of a minimizer and method stability

For a fixed set of data y, we wish to minimize our cost criterion

min
P∈PF (Q)

J(P ) =
Nj
∑

i=1

∣

∣

∣

∣

∫

Q

zij(q)dP (q) − yij

∣

∣

∣

∣

2
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over the set of distributions PF(Q) (we again omit the state index for clarity) and

denote the set of minimizers of this problem by P ∗(y). We also define a series of

approximate problems based on the piecewise linear splines described above. The

cost functions look like

min
PNS

∈PNS (Q)
J(PNS

) =
Nj
∑

i=1

∣

∣

∣

∣

∫

Q

zij(q)dPNS
(q) − yij

∣

∣

∣

∣

2

,

where P ∗
NS

(y) denotes the set of minimizers to this approximate problem. As above,

we assume Q is compact and F is weakly compact.

We wish to show existence of a minimizer and method stability for this ap-

proximation scheme. Method stability in this case means that dist(P ∗
NS

, P ∗) → 0,

where dist denotes the usual Hausdorff distance between the two sets: dist(A,B) =

inf {ρ(P1, P2) : P1 ∈ A,P2 ∈ B}.

Solutions zij(q) to the system of differential equations depend continuously on the

parameters q, i.e., q → zij(q) is a continuous map from Q into R for each i, j pair

(and therefore bounded since a continuous map on a compact set). This follows from

standard results for differential equations, appealing to continuity of the function

ḡ(t, x̄, q) with respect to q and continuity of the composite linear observer and log-

scaling map from x̄ to z. Now, when a generic sequence PNS
→ P in P(Q), by the
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equivalence of convergence in Prohorov metric with weak∗ convergence in P(Q),

lim
N→∞

J(PNS
) = lim

NS→∞

Nj
∑

i=1

∣

∣E
[

zij(q)|PNS
)
]

− yij
∣

∣

2
(4.10a)

= lim
NS→∞

Nj
∑

i=1

∣

∣

∣

∣

∫

Q

zij(q)dPNS
(q) − yij

∣

∣

∣

∣

2

(4.10b)

=
Nj
∑

i=1

∣

∣

∣

∣

∫

Q

zij(q)dP (q) − yij

∣

∣

∣

∣

2

(4.10c)

=
Nj
∑

i=1

∣

∣E
[

yij|P )
]

− yij
∣

∣

2
(4.10d)

= J(P ).

So when PN → P , the approximate problems “converge” to the exact problem, i.e.,

J(P ) : P(Q) → R is a continuous map. When there is an underlying representative

density fNS
→ f the same is true since dPNS

(q) = fNS
(q).

Since J is continuous on the compact set PF(Q), there exists at least one minimizer

P ∗ ∈ P ∗(y) to the infinite dimensional problem. Since the subset PNS(Q) is a closed

subset of the compact set P(Q) it is therefore compact under the ρ metric. The cost

J is continuous on this compact set, so there exists at least one minimizer P ∗
NS

to the

approximate problem. Let P ∗
NS

(y) denote the set of minimizers of J(P ) over PNS(Q).

Let
{

P ∗
NS

}

, NS ∈ N be a sequence of minimizers in PF(Q), where each P ∗
NS

∈

P ∗
NS

(y). Then by compactness of PF(Q), there exists a ρ-convergent subsequence

P ∗
NSl

such that

lim
NSl

→∞
P ∗

NSl
= P̃ ∈ PF(Q). (4.11)

Note that for any PNSl
∈ PNSl (Q), at the minimizer,

J(P ∗

NSl
) ≤ J(PNSl

).
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Also it follows from the definition of the cost criterion J(P ), (4.10a), and (4.11),

that

lim
NSl

→∞

J(P ∗

NSl
) = lim

NSl
→∞

Nj
∑

i=1

∣

∣

∣
E

[

zij(q)|P ∗

NSl
)
]

− yij
∣

∣

∣

2

=
Nj
∑

i=1

∣

∣

∣
E

[

zij(q)|P̃ )
]

− yij
∣

∣

∣

2

= J(P̃ ).

Now we involve the convergence of the approximations. Let P ∈ PF(Q). Since PD

as defined above is dense in PF(Q), there exists a sequence
{

PNSl

}

, PNSl
∈ PNSl (Q)

such that PNSl
→ P as NSl

→ ∞. Thus it follows that

lim
NSl

→∞
J(PNSl

) = lim
NSl

→∞

Nj
∑

i=1

∣

∣

∣E
[

zij(q)|PNSl
)
]

− yij
∣

∣

∣

2

=
Nj
∑

i=1

∣

∣E
[

zij(q)|P )
]

− yij
∣

∣

2

= J(P ),

and putting these results all together:

J(P ∗
NSl

) ≤ J(PNSl
)

↓ ↓

J(P̃ ) J(P ).

Thus P̃ is a minimizer of J(P ) over P ∈ PF(Q); that is, P̃ ∈ P ∗(y).

Summary: Any sequence P ∗
NS

in P ∗
NS

(y) has a subsequence P ∗
NSl

such that P ∗
NSl

→

P̃ ∈ P ∗(y). Therefore dist(P ∗
NSl

(y), P ∗(y)) → 0 as NSl
→ ∞. Each finite-dimensional

problem has a minimizer and these can be used to approximate the minimizers of the
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infinite-dimensional problem.

The argument presented here presumes a single fixed data set y; however, method

stability requires that if a sequence of data sets {yk} converge (yk → y as k → ∞),

the corresponding minimizers converge: P ∗
NS

(yk) → P ∗(y) as both k → ∞ and NS →

∞. This means the solutions depend continuously on the data as well and that the

problems are method stable. The arguments in that more detailed case similarly

appeal to the continuity of J with respect to the data and are summarized in [8],

with details in [4].

4.3 Statistical Theory and Methods

4.3.1 Confidence intervals

In performing an inverse problem via ordinary least squares to determine an estimate

of either a vector q ∈ Rp of parameters or the probability distribution f(q) for a

particular parameter (in our case parameterized by coefficients dk), it is vital to

understand the uncertainty of the process used to obtain that estimate. In particular,

in the case of estimating a finite set of parameters q, we wish to determine confidence

intervals ql ± ν̃l, where ν̃l is based on a calculated standard error for parameter

component l. The method presented here is based on that described in Davidian and

Giltinan [20] and Carroll and Ruppert [18]. Other examples in the context of inverse

problems with nonlinear models can be seen in [1] and [5]. A derivation of these

results using linearization can be found in the latter.

We first focus on estimating a Euclidean vector of parameters q in the context of a

single patient inverse problem and therefore temporarily suppress the patient index j.

Consider the two-output case where the observed time/data pairs correspond to total
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CD4 count (ti1, y
i
1), i = 1, . . . , N1, and total viral load count (ti2, y

i
2), i = 1, . . . , N2,

where the subscript indexes the state. As before, we correspondingly subscript the

log-scaled model solutions zs, s = 1, 2. Recall that in the single patient inverse

problem where we fit two states to data on a logarithmic scale, the problem is

q∗ = arg min
q∈Q

J(q) =

N1
∑

i=1

∣

∣z1(t
i
1; q) − yi

1

∣

∣

2
+

N2
∑

i=1

∣

∣z2(t
i
2; q) − yi

2

∣

∣

2
.

(We do not scale by the number of time points in this derivation or in computa-

tion as the numbers of measurements for each state are comparable.) The assumption

for the variance model (3.5) implies that the log-scaled observations yi
s are normally

distributed. Adding the assumption that longitudinal measurements are indepen-

dent and taking into account the inverse problem process used to obtain the optimal

estimate q∗, we have from asymptotic statistical theory that

q∗ ∼ N
(

q0, Σ
)

,

where q0 denotes the true underlying mean parameter vector (see, e.g., page 14 in

Carroll and Ruppert [18]). The covariance matrix Σ incorporates the following inter-

mediate results. We combine the model responses into a vector

Z(q) =
[

z1(t
1
1; q), z1(t

2
1; q), . . . , z1(t

N1
1 ; q), z2(t

1
2; q), z2(t

2
2; q), . . . , z2(t

N2
2 ; q)

]T

and let Zq denote the (N1 + N2) × p matrix of partial derivatives of Z with respect

to each estimated parameter:

[Zq]il =

[

∂Zi

∂ql

]

.

Note that each component of Zq depends on the solution to the sensitivity equations
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discussed in Section 3.4. Finally since on the log scale the variance for each state is

assumed constant and observation independent, the diagonal weighting matrix is

W (σ) =







σ2
1IN1

σ2
2IN2






,

and finally,

Σ(q0, σ) =
{

Zq(q
0)T Zq(q

0)
}−1

Zq(q
0)T W (σ)Zq(q

0)
{

Zq(q
0)T W (q0, σ)Zq(q

0)
}−1

As in Banks–Bokil [5], this formulation of Σ essentially describes the effect of

the inverse problem process on the errors in the observed data by accounting for the

sensitivity of the model solution with respect to estimated parameters.

In practice, when working with clinical data, the true values of the mean q0 and

variances σ2
s are unknown and must be approximated as part of the inverse problem

process. Following standard statistical practice, we substitute the estimated parame-

ters q∗ for q0 and an unbiased estimator of the variance σ̂2
s = 1

Ns−p

∑Ns

i=1 |zs(t
i
s; q

∗) − yi
s|

2

for σs. Standard errors for parameter component l are then obtained by taking

νl =
√

(Σ(q∗, σ̂s)ll). These in turn can be used to compute confidence intervals at the

(1 − α) level (often (1 − α) = 0.95 for 95% confidence intervals) for each parameter

component,
[

q∗l − t1−α/2νl(q
∗), q∗l + t1−α/2νl(q

∗)
]

, l = 1, . . . , p,

indicating that (1 − α) × 100% of intervals constructed through this process would

cover the true value of the parameter q0. Here t(1−α/2) denotes the value such that

Student’s t-distribution with N1 + N2 − p degrees of freedom has a tail probability of

1 − α/2.
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Assuming that estimates of variance σ2
s in the data are available, this calculation

applies to the case of density estimation as well. Here, the unknown parameters are

the components of the vector dk and we use the above results to construct confidence

intervals at the spline knots qk. A schematic of such piecewise linear confidence bands

f− =

NS
∑

k=0

(d∗

k − ν̄k)φk(q) ≤ f ∗ ≤
NS
∑

k=0

(d∗

k + 2ν̄k)φk(q) = f+ (4.12)

is shown in Figure 4.2. These bands only provide an estimate of confidence at the

+f

−f
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q
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Figure 4.2: Example of spline approximation to density function f(q) including nodal
confidence intervals and an example of a true density not contained in them.

nodes and as illustrated, the true density function might never be contained in them.

Note that in the density-estimation case, model solutions from the differential

equation system are a fixed basis and the operator Eij(d) : Rp → R is linear, so esti-

mates of standard errors are exact, rather than linear approximations via sensitivity

equations as above. The matrix Zq in the results above is replaced by derivatives

of Eij(f) ≈ Eij(d) with respect to dk. The entries of the matrix no longer require

sensitivity computations, but rather are given explicitly by

[Zq]il =
∂Eij(d)

∂dl

=

∫

Q

zij(q)φl(q)dq.
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Since the inverse problem process for probability density estimation may include a

regularization term it must be accounted for when determining standard errors. The

cost function, dependent on a vector of spline coefficients d is

J(f(d)) =
1

NP

NP
∑

j=1

2
∑

s=1

1

N j
s

Nj
∑

i=1

∣

∣Eij
s (f(d)) − yij

s

∣

∣

2
+ βR

∥

∥

∥

∥

df

dq

∥

∥

∥

∥

2

L2

,

or equivalently,

J(f(d)) =
1

2
(Ed − ỹ)T (Ed − ỹ) + βRdT ARd.

Here ỹ denotes the scaled vector of data: ỹij
s = yij

s

√

2

NP Nj
s

and E the similarly scaled

linear operator that maps the spline coefficients to expected values by integrating

against model basis functions. Specifically, each row of E is comprised of entries

E ij
s = S ij

s

√

2

NP Nj
s

, where S ij
s is the row vector of model solutions integrated against

spline basis functions (as defined in Section 4.1) for a particular (patient j, state s,

time point tijs ) triple.

If d0 denotes the coefficients in the approximation of the true underlying density

f 0, let d = d0 + ∆d. As is done similarly in Banks–Bokil [5], we derive an ordinary

least squares estimating equation for ∆d and use it to determine variance of estimates

Var(d∗) = Var(d0 + ∆d) = Var(∆d).

Denoting the error in fit to data by De = ỹ − Ed0 and writing LT
RLR = 2βRAR,

we have

∆d∗

OLS = min
∆d

1

2

[

(

E(d0 + ∆d) − ỹ
)T (

E(d0 + ∆d) − ỹ
)

+ (d0 + ∆d)T LT
RLR(d0 + ∆d)

]

= min
∆d

1

2

[

(E∆d − De)
T (E∆d − De) + (d0 + ∆d)T LT

RLR(d0 + ∆d)
]

= min
∆d

1

2

[

∆dTETE∆d − 2DT
e E∆d + DT

e De+

∆dT LT
RLR∆d + 2d0T

LT
RLR∆d + d0T

LT
RLRd0

]

.
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Differentiating the right side of this with respect to ∆d and setting equal to zero

yields the optimality condition for ∆d∗
OLS:

ETE (∆d∗

OLS) − ET De + LT
RLR (∆d∗

OLS) + LT
RLRd0 = 0,

and therefore the estimator

∆d∗

OLS =
(

ETE + LT
RLR

)−1 (

ET De − LT
RLRd0

)

.

The terms involving d0 are exact and VarDe = Var(ỹ). Therefore

Cov(d∗

OLS) = Cov
{

(

ETE + LT
RLR

)−1 ET De

}

=
(

ETE + LT
RLR

)−1 ET Cov(ỹ)E
(

ETE + LT
RLR

)−1

=
(

ETE + LT
RLR

)−1 ET D(σ1, σ2)E
(

ETE + LT
RLR

)−1

= ΣR, (4.13)

and the standard errors, as before, are νl =
√

ΣRll
. The diagonal matrix D consists

of entries σ2
1 and σ2

2 arranged to respect the ordering of the vector ỹ and matrix E ,

where the σ2
s are estimates of the variance for fitting the expected value to the data.

Some care is necessary when computing estimates of variance in the density esti-

mation case as we do not fit the differential equation model directly to each patient’s

data, where a sum of squared residuals would yield information about the variance in

the particular patient’s data. In this context, even when assuming each patient’s lon-

gitudinal data are independent for each time, one should consider a more structured

variance model that accounts for inter-patient correlation. As a first step, however,

we consider the expected value (conditioned on the model and probability distribu-
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tion) the “model” and seek a common estimate of variance among all patients. In

this situation, the sum of squared residuals gives a preliminary estimate of variance

to be used in computing standard errors:

σ̂2
s =

1

NP

NP
∑

j=1

1

N j
s

Nj
s

∑

i=1

∣

∣Eij
s (f(d)) − yij

s

∣

∣

2
. (4.14)

4.3.2 Censored data methodology

In this section we focus on handling the censored data points for a particular patient.

Unscaled measurements of viral load (second observed component, ȳi
2) are censored

when below the limit of detection, at either L̄1 = 400 or L̄2 = 50. According to our

presumed error model (3.5), the log-scaled measurements

yi
2 ∼ N (ζ2(t

i; q), σ2
2)

where ζ and σ are given by (3.6). Denote the log-scaled censor points by L1 =

log10 L̄1, L2 = log10 L̄2. For censored data points, the available knowledge is that the

observed value yi
2 ≤ Li, where Li denotes the relevant censor point (Li = L1 or Li =

L2) at time ti.

In this context we observe pairs (wi, χi), i = 1, . . . , N , where

wi =















yi
2 if yi

2 > Li

Li if yi
2 ≤ Li

χi = I(yi
2>Li),
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and I(·) is the indicator function. Defining

φ(ξ) =
1√
2π

e−ξ2/2 (standard normal pdf), and

Φ(ξ) =

∫ ξ

−∞

φ(s)ds (standard normal cdf),

the viral load portion of the likelihood function for (q, σ2) given the observations wi

is

L̄(q, σ2) =
N
∏

i=1

[

1

σ2

φ

(

wi − ζ i
2

σ2

)]χi [

Φ

(

wi − ζ i
2

σ2

)]1−χi

,

where the first term accounts for the probability of observing wi given that it is

uncensored and the second term the probability that the observation is in the inter-

val (−∞, Li) when censored. This is using a truncated normal distribution for the

censored measurements. The log-likelihood is

L(q, σ2)

=
N

∑

i=1

(

χi

[

log φ

(

wi − ζ i
2

σ2

)

− log σ2

]

+ (1 − χi)

[

log Φ

(

wi − ζ i
2

σ2

)])

=
N

∑

i=1

(

χi

[

log φ

(

yi
2 − ζ i

2

σ2

)

− log σ2

]

+ (1 − χi)

[

log Φ

(

Li − ζ i
2

σ2

)])

,(4.15)

which we maximize to estimate q and σ2. This is analogous to the typical log likelihood

estimator in the absence of a limit of detection, where

L(q, σ2) = −N

2
log 2π − N log σ2 −

N
∑

i=1

(yi
2 − ζ i

2)
2

2σ2
2

. (4.16)

However, while maximizing (4.16) in the parameters q is equivalent to minimizing the

sum of squared residuals
∑N

i=1(y
i
2 − ζ i

2)
2 (typical least squares) and the estimation

of q and σ2 decouple, maximizing (4.15) is not as simple, since a joint estimation
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of q and σ2 must be performed. Maximizing (4.15) is possible with the Expectation

Maximization (EM) algorithm [21, 37], which iteratively improves the estimates of q

and σ2.

First, with the assumptions about distributions made above, let ξi =
Li−ζi

2

σ2
and

Λ(ξi) = φ(ξi)
Φ(ξi)

and use properties of a truncated normal distribution to obtain

E
[

yi
2|yi

2 ≤ L
]

= ζ i
2 − σ2Λ(ξi), and

E
[

(yi
2)

2|yi
2 ≤ L

]

= (ζ i
2)

2 − 2σ2ζ
i
2Λ(ξi) − σ2

2ξ
iΛ(ξi) + σ2

2.

These can be used to update the data points and estimate of squared residuals for

the second observed state by the following

ỹi = χiyi
2 + (1 − χi)E

[

yi
2|yi

2 ≤ Li
]

= χiyi
2 + (1 − χi)

[

ζ i
2 − σ2Λ(ξi)

]

(4.17)

and

r̃i = χiE
[

(yi
2 − ζ i

2)
2
]

+ (1 − χi)E
[

(yi
2 − ζ i

2)
2|yi

2 ≤ L
]

= χi(yi
2 − ζ i

2)
2 + (1 − χi)

{

E
[

(yi
2)

2|yi
2 ≤ Li

]

− 2ζ i
2E

[

(yi
2)|yi

2 ≤ Li
]

+ (ζ i
2)

2
}

= χi(yi
2 − ζ i

2)
2 + (1 − χi)σ2

2

[

1 − ξiΛ(ξi)
]

. (4.18)

We proceed with the EM Algorithm.

Algorithm 4.1. Expectation Maximization (EM) Algorithm

Step 1 (Initialize) Create adjusted data ỹi by replacing censored yi
2 values (those for

which χi = 0) by Li/2, and use ordinary least squares to estimate q̂(0) using

both CD4 data yi
1 and viral RNA data ỹi (which includes replaced censored
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values). Get an initial estimate for σ2
2 from

(σ̂
(0)
2 )2 =

1

N2

N2
∑

i=1

∣

∣ỹi − ζ2(t
i
2; q̂

(0))
∣

∣

2
.

Set k = 0.

Step 2 Define ζ̂
i(k)
2 = ζ2(t

i; q̂(k)) and ξ̂i(k) =
Li−ζ̂

i(k)
2

σ̂
(k)
2

and update the data and residuals

by

ỹi(k) = χiyi
2 + (1 − χi)

[

ζ̂
i(k)
2 − σ̂

(k)
2 Λ(ξ̂i(k))

]

(4.19)

r̃i(k) = χi(yi
2 − ζ̂

i(k)
2 )2 + (1 − χi)(σ̂

(k)
2 )2

[

1 − ξ̂i(k)Λ(ξ̂i(k))
]

. (4.20)

Step 3 Update the estimates to q̂(k+1), σ̂
(k+1)
2 by performing ordinary least squares min-

imization in q

q̂(k+1) = arg min
q

N1
∑

i=1

∣

∣yi
1 − ζ1(t

i
1; q)

∣

∣

2
+

N2
∑

i=1

∣

∣ỹi(k) − ζ2(t
i
2; q)

∣

∣

2

and computing

(σ̂
(k+1)
2 )2 =

1

N2

N2
∑

i=1

r̃i(k).

If relative changes in q̂ and σ̂ are small, terminate. Otherwise set k = k + 1

and go to Step 2.

This iterative process yields estimates of the parameters, variance, and expected

values of the data at times where censored observations were recorded. Note that the

model on the log scale is given by

ζ ij = log10 z̄ij − log10 (σ̄2 + 1)

2
,
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dependent on the variance σ̄2, which we iteratively estimate. However, the second

term
log10(σ̄2+1)

2
for reasonable values of σ̄ is small in comparison to log10 z̄ij, so as in

the inverse problems above we disregard it and substitute the log-scaled zij = log10 z̄ij

directly for ζ ij when performing these calculations.

4.4 Computational Methods

In the case of individual patient estimates, using the censored data methodology, a

combination of sampling and gradient-based methods is employed. Currently for each

of the single patients in PS59, we do the following:

1. Estimate all model parameters and initial conditions using 100,000 function

evaluations with the DIRECT sampling algorithm. We use the Matlab imple-

mentation by Finkel [24].

2. Use Matlab’s lsqnonlin to refine initial parameter estimates with relative func-

tion and iterate tolerance 10−8. This algorithm is a subspace trust region

method and is based on the interior-reflective Newton method described in

[19].

3. Employ the censored data algorithm to iteratively update the estimates of pa-

rameters, variance, and censored data values, using lsqnonlin at each step.

Solution of the quadratic programming problem is via the medium-scale algorithm

in the Matlab optimization toolbox function quadprog. The medium-scale algorithm

(employed due to the constraints on this problem) is an active set projection method

[27]. In all cases, we presume no knowledge of the true probability density function

being estimated, so we use a uniform distribution on [qL, qU ] as the initial iterate for

the optimizer. Moreover we tested the algorithm with various initial iterates for the
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spline coefficient vector, and the quadratic programming algorithm always converged

to the same optimal vector, suggesting that the approach is robust to choice of initial

iterate.



Chapter 5

Method Validation with Simulated

Data

Before applying inverse problem methods to clinical data we validate them on sim-

ulated data to better understand their behavior. Section 5.1 contains results for

estimating probability density functions from simulated data generated under three

different scenarios. We demonstrate the effect of varying the number of patients,

varying the number of splines used in approximation, and applying regularization.

We then compare results for simulated patients who have nearly identical underlying

dynamics parameters to a cohort in which each patient’s behavior is governed by one

of eighteen sets of dynamic parameters. In Section 5.2 we validate censored data

methods on simulated data.

5.1 Estimation of PDFs and Confidence Bands

To test the probability density function estimation methods, we choose a probability

distribution f 0 to represent the “truth” of how a particular parameter q will be

83



CHAPTER 5. METHOD VALIDATION WITH SIMULATED DATA 84

distributed across a virtual (simulated) patient population, while the remaining model

parameters q̀ remain fixed. We generate virtual patients by sampling parameters

q̂ from this true distribution using Matlab’s random number generators rand and

randn. We then create corresponding model solutions zs(t
ij
s ; q̀; q̂), and add noise with

coefficient of variation σ̄ = 0.2 to yield data with representative measurement error

as described previously. Then, presuming no prior knowledge of the form of the

underlying true density, we apply the inverse problem method (4.2) to the data in

hopes of recovering the true density. That is, we use a uniform initial iterate for the

quadratic programming problem. If some estimate or presumption of the distribution

were available, it could alternatively be used as an initial iterate.

We consider three types of virtual patient cohort:

1. Uniform simulated cohort: Members of the first simulated patient cohort

all have the same treatment protocol, observation times, initial conditions, and,

with the exception of the parameter distributed across the population, model

dynamic parameters. The treatment regimen and observation times are based

on Patient 4 who has a total of 154 viral load and 107 CD4 measurements,

four on and four off treatment periods, and a total observation period of 1919

days. Model parameters are set as in Table 3.2, except for efficacy values ǫ1 =

0.7, ǫ2 = 0.4, and the initial condition x̄0 = [600, 50, 60, 50, 900000, 10, 20]T to

simulate acute infection.

2. Treatment-varied simulated cohort: Members of the second simulated pa-

tient cohort will still have the same underlying dynamics parameters and initial

condition as described for the first. However in this set of simulated data each

patient will be assigned one of eighteen different time-varying treatment schemes

{uj(t)}18
j=1 and sampling schemes for CD4 (tij1 ) and viral load (tij2 ). In partic-
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ular, we consider regimens and sampling times from the set PS18 of patients

with on/off treatment ratios between 30–70%. (PS18 is described in the clin-

ical data description in Chapter 2.) From these we generate simulated data

corresponding to 128 sets for each of the 18 treatment/observation schemes for

a total of 2304 virtual patients, each dependent on a parameter q of interest

sampled from a true distribution f 0 as described above.

In this case the expected value in the cost criterion explicitly depends on the

patient:

E
[

x(tijs , uj(t); q̀, x̄0; q)|f(q)
]

,

where the parameters q̀ and initial condition x0 are the same for each patient,

the times tijs and treatment uj(t) depend on the data structure for a patient

from PS18, and as before q is assumed to vary across the population.

3. Dynamics-varied simulated cohort: As in (2.), each of the 2304 members of

the third cohort will again be assigned the characteristics of one of the eighteen

members of PS18. In this case, however, each of the eighteen base patients

will be taken with his own model parameters and initial conditions. Now the

expected value depends on several factors according to patient j:

E
[

x(tijs , uj(t), q̀j, x̄0j; q)|f(q)
]

.

This scenario is the most similar to the clinical data as each patient is likely to

have different behavior. Indeed, the parameters assigned to each of the eighteen

patients resulted from initial efforts fitting the model to their clinical data and

therefore approximately represent the variability in patient dynamics.

As examples, we consider in turn the parameters d1, k1, NT , and c, letting q denote
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one of these distributed across the population, while the rest q̀ of the 27 model

parameters and initial conditions remain fixed. We assume for each q, log10 q is

distributed either normally or according to a mixture of normals (bimodally) across

the population. Initial parameter estimates from clinical data motivate the choice of

a lognormal distribution as several estimated parameters exhibit that characteristic

distribution. The maximal ranges considered for log10 q are denoted [qL, qU ] and

prescribed in Table 5.1.

Table 5.1: Ranges prescribed for generating distributions of parameters.
parameter range (log10(q))

q [qL, qU ]
d1 [-3, -0.9]
k1 [-7, -5.5]
NT [1.8, 2.6]
c [0.7, 1.3]

Setting qspan = qU − qL, we consider the following distributions for log10(q):

• Normal: mean centered in the range interval and standard deviation 1
8

the

interval

N
(

qL + qU

2
,
(qspan

8

)2
)

;

• Bimodal: a one-third, two-thirds mixture of two normals with different means

and standard deviation:

1

3
N

(

2qL + qU

3
,
(qspan

12

)2
)

+
2

3
N

(

qL + 2qU

3
,
(qspan

20

)2
)

.

A diagram of the probability density functions for these distributions on the range

[−1, 1] is shown in Figure 5.1.
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Figure 5.1: Sample normal and bimodal densities f on log10(q) ∈ [−1, 1].

5.1.1 Uniform simulated cohort

We first use the data from the uniform simulated patient cohort to test the multi-

patient inverse problem for determining the density f in the simplest case where the

expected values of model solutions have no dependence on virtual patient. We wish

to understand the effect of various factors on the inverse problem process, including

number of patients sampled, number of splines used in the approximation of the

density f , and regularization.

We begin by examining results for estimating distributions of the viral infectivity

parameter k1. For NS = 8 splines, Figure 5.2 shows the estimated densities in the

normal scenario for various numbers of sampled patients. As the number of patients

increases, the L1 norm of the error is reduced and the qualitative fit improves. In

contrast, we observe from Figure 5.3 that in the case of the bimodal density the

approximation with eight splines is not as good, even with 1024 sampled patients.
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In this case, it seems more splines would be necessary to capture the detail of the

distribution. However, even using only NS = 8, the method returns an estimate that

clearly suggests that the underlying density is bimodal.
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Figure 5.2: Uniform simulated cohort: True (red dash-dot line) and estimated spline-
parametrized (blue solid line) probability density functions f for normal distribution
of k1 with NS = 8 splines for various numbers of patients NP . The L1 norm of the
error is indicated in the upper left corner of each plot.

In Figures 5.4 and 5.5, we fix the number of virtual patients at 1024 and increase

the number of approximating splines in hopes of improving the approximation. In

the normal case, increasing to NS = 16 offers slight improvement, but a subsequent

increase to NS = 32 results in a poorer fit to the data and erratic approximation. In

the bimodal case we see satisfactory improvement by increasing from eight to sixteen

splines, but again severe oscillations are observed in increasing to 32. The poor fit

with larger numbers of splines is related to ill-conditioning of the matrix A in the

quadratic programming problem and can be alleviated by applying regularization.

The incorporation of a small nonzero regularization term βR = 1e− 4 resolves the

observed oscillations. Even this minor adjustment stabilizes the condition number

of the quadratic programming problem as revealed in Table 5.2, allowing reliable

approximation with a greater number of splines. Results with the regularization term



CHAPTER 5. METHOD VALIDATION WITH SIMULATED DATA 89

−7 −6.5 −6 −5.5
0

1

2

3

4

N
P
 = 64

log
10

(k
1
)

f(
lo

g 10
(k

1))

0.422

−7 −6.5 −6 −5.5
0

1

2

3

4

N
P
 = 256

log
10

(k
1
)

0.396

−7 −6.5 −6 −5.5
0

1

2

3

4

N
P
 = 1024

log
10

(k
1
)

0.386

Figure 5.3: Uniform simulated cohort: True (red dash-dot line) and estimated spline-
parametrized (blue solid line) probability density functions f for bimodal distribution
of k1 with NS = 8 splines for various numbers of patients NP . The L1 norm of the
error is indicated in the upper left of each plot.

for the same normal and bimodal cases appear in Figures 5.6 and 5.7, respectively.

Application of regularization reduces the L1 norm of the error, especially for larger

numbers of splines.

Table 5.2: Influence of regularization with βR = 10−4 on two-norm condition number
κ2 of matrix A + βRAR in quadratic programming problem. As defined previously,
A is the matrix dependent on the model solutions and βRAR is the regularization
component.

NS κ2(A) κ2(A + βRAR)
8 2.6041e+04 2.5836e+04
16 5.5955e+05 3.1947e+05
32 3.0632e+08 2.7232e+05

In addition to depending on the number of splines used, the choice of regulariza-

tion parameter βR is highly problem-dependent and can be as much art as science.

While there exist methods for choosing βR, including traditional L-curve or zero-

crossing methods (discussed in [31]) and Generalized Cross-Validation or Generalized

Maximum Likelihood (see [40] for an overview), for the simulated data results here
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Figure 5.4: Uniform simulated cohort: True (red dash-dot line) and estimated spline-
parametrized (blue solid line) probability density functions f for normal distribution
of k1 with NP = 1024 patients for various numbers of splines NS.

we simply choose a value sufficiently large enough to remove severe oscillations. The

possible dangers in selecting extreme values of the parameter are demonstrated in

Figure 5.8: when too small, not enough emphasis is placed on smoothing and er-

ratic behavior remains, but when too large, fit to data is sacrificed in the interest of

smoothness.

We conclude by examining some sample results for the other model parameters

considered. Data from only 64 virtual patients is employed, as this is realistic for the

kind of data we might hope to collect. Figures 5.9, 5.10, and 5.11 demonstrate that

reasonable fits to distributions for a variety of model parameters are possible even

with limited data. Regularization parameters were adjusted slightly as conditioning

varied between data sets.
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Figure 5.5: Uniform simulated cohort: True (red dash-dot line) and estimated spline-
parametrized (blue solid line) probability density functions f for bimodal distribution
of k1 with NP = 1024 patients for various numbers of splines NS.
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Figure 5.6: Uniform simulated cohort: True (red dash-dot line) and estimated spline-
parametrized (blue solid line) probability density functions f for normal distribution
of k1 with NP = 1024 patients for various numbers of splines NS with regularization
βR = 1e − 4.
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Figure 5.7: Uniform simulated cohort: True (red dash-dot line) and estimated spline-
parametrized (blue solid line) probability density functions f for bimodal distribution
of k1 with NP = 1024 patients for various numbers of splines with regularization
βR = 1e − 4.
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Figure 5.8: Influence of choice of regularization parameter βR on estimated spline-
parametrized (blue solid line) probability density functions f for normal distribution
with NP = 1024, NS = 32.
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Figure 5.9: Uniform simulated cohort: True (red dash-dot line) and estimated spline-
parametrized (blue solid line) probability density functions f for normal (left) and
bimodal (right) distribution of d1 with NP = 64, NS = 16, with regularization βR =
1e − 3.
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Figure 5.10: Uniform simulated cohort: True (red dash-dot line) and estimated spline-
parametrized (blue solid line) probability density functions f for normal (left) and
bimodal (right) distribution of NT with NP = 64, NS = 16, with regularization βR =
1e − 5.
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Figure 5.11: Uniform simulated cohort: True (red dash-dot line) and estimated spline-
parametrized (blue solid line) probability density functions f for normal (left) and
bimodal (right) distribution of c with NP = 64, NS = 16, with regularization βR =
1e − 5.
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5.1.2 Treatment-varied simulated cohort

In this section we consider the second patient cohort, where patients are each assigned

one of eighteen treatment/observation schemes, but each have the same underlying

dynamics parameters and initial conditions.

Results obtained are similar for each of the parameters considered, and sample

results for the parameter k1 distributed bimodally with eight and sixteen splines and

varying numbers of patients are shown in Figures 5.12 and 5.13, respectively.
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Figure 5.12: Treatment-varied simulated cohort: True (red dash-dot line) and esti-
mated spline-parametrized (blue solid line) probability density functions f for bimodal
distribution (right) of k1 with NS = 8, βR = 0. L1 norm of the error is again indicated
in the upper left of each plot.

Since this inverse problem method fits the expected value of the model conditioned

on the distribution of a model parameter to observed data, one must be cautious if

there is more than one density function f that gives rise to a similar expected value.

It is possible that two probability distributions, even with different means, will cause
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Figure 5.13: Treatment-varied simulated cohort: True (red dash-dot line) and esti-
mated spline-parametrized (blue solid line) probability density functions f for bimodal
distribution (right) of k1 with NS = 16, βR = 5e − 3.

the expected value Eij(f) to be the same. As an example, we consider adjusting the

bimodal distribution of the examples above so that the expected value of the model,

given the bimodal distribution, is similar to that when conditioned on the normal

distribution.

In particular, considering the parameter d1, the variance for the modes of the

bimodal distribution remain fixed, but the second mean µ2 = −1.6 is adjusted to µ2 =

−1.78 to yield an expected value of the model similar to that for the normal density.

The resulting bimodal density and previous normal are shown in Figure 5.14. Results

for estimating the bimodal pdf f , given data generated from a bimodal distribution

are shown in Figures 5.15 and 5.16 for eight and sixteen splines, respectively. These
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examples make clear the danger of limited data: with only eighteen patients, despite

rich time series data, we cannot reliably estimate the distribution and indeed might

conclude that it is normal. While this example was created in an ad hoc manner, it

is possible there exist situations where, regardless of the number of observations, one

cannot differentiate between two densities.
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Figure 5.14: Sample normal and adjusted bimodal distributions for d1.
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Figure 5.15: Treatment-varied simulated cohort: Fit to bimodal distribution when
expected value is close to that of normal, NS = 8. True (red dash-dot line) and
estimated spline-parametrized (blue solid line) probability density functions f for
bimodal distribution (right) of d1 with βR = 0.
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Figure 5.16: Treatment-varied simulated cohort: Fit to bimodal distribution when
expected value is close to that of normal, NS = 16. True (red dash-dot line) and
estimated spline-parametrized (blue solid line) probability density functions f for
bimodal distribution (right) of d1 with βR = 0.
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5.1.3 Dynamics-varied simulated cohort

Finally we consider an example of the most general case where patients are assigned

one of eighteen sets of parameters, initial conditions and treatment and observation

schemes. It is essential that the methods work in this scenario before applying them

to clinical data.

The method performs well in this most general scenario too. One sample set of

fits is presented in Figure 5.17 for estimating a bimodal distribution of the parameter

NT with sixteen splines. For comparison, the top row is from scenario 2 with patients

taken from the treatment-varied cohort. The bottom row contains results for fitting

to data where the dynamic parameters and initial conditions also vary across the

patients in PS18 from which the virtual patients were generated. Note that the

choice of regularization parameter may be a factor in the difference between these

examples.
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Figure 5.17: Top: estimate with only treatment and census times varying per patient.
Bottom: all parameters vary across the eighteen baseline patients. True (red dash-dot
line) and estimated spline-parametrized (blue solid line) probability density functions
f for bimodal distribution (right) of NT with NS = 16, βR = 5e − 5. L1 norm of the
error is indicated in the upper left of each plot.
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5.1.4 Confidence intervals

While the examples above demonstrate the ability of the inverse problem process to

reliably estimate densities using piecewise linear approximations, one would like some

idea of the certainty of the estimates. The formulation (4.12) above gives a framework

for constructing piecewise linear confidence bands on the estimated density functions

f(q). The examples in this section are all constructed from the scenario described in

section 5.1.1, and 95% confidence intervals at the nodes are shown.

We saw previously that regularization is an important aid in estimating density

functions. Figure 5.18 contains results for estimating a normal distribution with

various numbers of splines, demonstrating that the same is true for constructing con-

fidence intervals. The same ill-conditioning that makes it difficult to recover the true

density function is revealed in the progressively enormous confidence intervals. Figure
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Figure 5.18: Uniform simulated cohort: Confidence intervals (dotted lines) for esti-
mates (solid lines) of normal distribution of k1, with NS = 4, 8, 16; βR = 0.

5.19 on the other hand shows the same scenario, with the addition of a regularization

term βR = 0.01.

We consider a bimodal example in Figure 5.20. Despite incorporation of regu-

larization, the confidence intervals indicate no reasonable certainty as to what the
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Figure 5.19: Uniform simulated cohort: Confidence intervals (dotted lines) for esti-
mates (solid lines) of normal distribution of k1, with NS = 4, 8, 16; βR = 0.01.

underlying distribution is, as any number of uni- or multi-modal densities could re-

liably fit within them. The emphasizes the importance of constructing confidence

intervals to assess results. In contrast, consider Figure 5.21, where we show results

for the parameter d1 in two situations. In these cases, we have high confidence in the

form of the distributions.
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Figure 5.20: Uniform simulated cohort: Confidence intervals (dotted lines) for esti-
mates (solid lines) of bimodal distribution of k1, with NS = 4, 8, 16; βR = 0.0001.
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Figure 5.21: Uniform simulated cohort: Confidence intervals (dotted lines) for esti-
mates (solid lines) of normal and bimodal distribution of d1, with NS = 16; βR = 0.01.



CHAPTER 5. METHOD VALIDATION WITH SIMULATED DATA 105

5.2 Testing of Censored Data Methods

As with the methods for testing density estimation in the previous section, we test

the censored data methods using the treatment regimen and observation schedule of

Patient 4. We consider the baseline parameters established in Table 3.2 and generate

simulated data at the desired observation times for cases with coefficient of variation

σ̄ = 0.2 and 0.3, for two noise levels. To emulate the censor point of the assays we

set two-thirds of the observations less than 400 copies per ml to the 400 ml censor

point and one-third of the censored measurements to 50 copies per ml to emulate the

use of the ultra-sensitive assay with its lower limit of detection. The additional detail

provided by having measurements from the ultra-sensitive assay helps substantially

with model fitting.

We proceed to test the algorithm by estimating eight sets of four parameters

chosen from the six most sensitive (λ1, ǫ1, k1, ǫ2, c, bE), holding the remainder of the

parameters and initial conditions at their known true values. As described in section

4.3.2, measurements censored at limit L are first set to L/2 for an initial least squares

estimation, then the iterative censored data algorithm proceeds as described, with a

relative stop tolerance on changes in parameter components and variance estimate

of 10−6. This convergence goal demands varying numbers of iterations depending on

the data set considered.

For each data set we initiate the inverse problem algorithm with the true parame-

ters q0 from which the data were generated, as well as with positive and negative 1%,

5%, and 10% perturbations of the parameter vector q0. Since the coefficient of vari-

ation for simulated data is known and small (σ̄1 = σ̄2 = 0.2, 0.3), the term
log10(σ̄2+1)

2

is small and we therefore fit the base-10 logarithm of the model response (log10 z̄ij)

directly to the base-10 logarithm of the data. This is in contrast to fitting ζ ij (which
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includes the small correction term) to yij as derived when describing the error model

above.

Tables 5.3 and 5.4 contain results for the two coefficients of variation. They include

percent relative error between the estimated and known true value

|q∗l − q0
l |

|q0
l |

× 100%

for each parameter considered, number of iterations the censored data algorithm

took to converge, the cost J at the true and optimal parameters, and the estimates

of coefficient of variation returned by the algorithm. In this simulated data case, we

report cost values J corresponding to the model fit to the uncensored noisy data. In

a clinical data setting we would not directly observe data points below the censor

point to make this comparison, but they more closely represent the true underlying

dynamics and by using them the cost criterion J gives an estimate of how well the

censored data algorithm can predict those original dynamics.

We observe that the censored data algorithm converges in a reasonable number

of iterations for all the cases considered. When working with the clinical data, many

more iterations are often necessary. Note that since the simulated data used for these

experiments include random noise, we do not expect to exactly recover the true values

of the parameters. Even when starting the algorithm at the known true values q0 (no

perturbation), the best fit to data may be achieved for nearby parameters. Therefore

even in the zero perturbation case, we anticipate some small deviation from the true

parameters.

The inverse problem algorithm produces estimates of variance σ2 on the trans-

formed scale. From (3.6) we can transform these back to find the original coefficient
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of variation

σ̄2 = 10
σ2

log10(e) − 1

from which the data were generated. These are the values reported in the tables.

The values estimated for variance in the CD4 data, i.e., σ̂1, are reasonable, given

the true values from which the data came. However, the censored data algorithm

seems to consistently overestimate the coefficient of variation σ̂2 for the viral load.

To understand this, we refer back to (4.18) which characterizes the squared residuals

r̃i in the censored data context. Estimates of σ̂2 are based on sums of these squared

residuals. For censored data points these are calculated using E [(yi − ζ i(q))2|yi < Li],

i.e., conditioned on the knowledge of the censor point. We would not expect the

estimate of variance to be the same as in the perfect information case. Indeed,

when an exact model solution (one evaluated using the true parameters) is used to

calculate values of σ̂2 for these two scenarios, we find 0.3595 and 0.3921. Therefore,

the estimates in the tables seem reasonable.
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Table 5.3: Parameter relative error and statistics for testing censored data algorithm
with σ̄ = 0.2 for various perturbations of known true value q0 and various sets of four
parameters.

perturbation

set statistic 0.90 0.95 0.99 1.00 1.01 1.05 1.10

1 ǫ1 rel. err. 0.68 0.81 0.90 0.68 2.79 1.42 1.09

ǫ2 rel. err. 1.24 1.47 2.01 1.39 2.20 3.45 2.37

c rel. err. 1.40 1.45 1.23 1.34 4.07 1.12 1.28

bE rel. err. 0.17 0.09 0.02 0.19 0.74 0.29 0.11

numits 20 10 10 11 9 13 15

J(qtrue) 0.014 0.014 0.014 0.014 0.014 0.014 0.014

J(qest) 0.020 0.020 0.020 0.020 0.118 0.021 0.020

σ̂1 0.206 0.206 0.206 0.206 0.211 0.206 0.206

σ̂2 0.38 0.38 0.38 0.38 0.96 0.37 0.37

2 ǫ1 rel. err. 0.47 1.52 0.90 0.28 1.65 1.28 4.07

k1 rel. err. 2.97 0.77 0.36 1.55 1.40 4.76 5.66

ǫ2 rel. err. 2.59 4.55 2.41 0.89 2.20 4.35 2.63

c rel. err. 4.16 0.15 1.37 2.13 2.59 5.15 0.20

numits 19 14 10 10 15 16 11

J(qtrue) 0.014 0.014 0.014 0.014 0.014 0.014 0.014

J(qest) 0.021 0.022 0.022 0.022 0.082 0.022 0.128

σ̂1 0.206 0.206 0.206 0.206 0.209 0.205 0.211

σ̂2 0.37 0.38 0.37 0.37 0.80 0.37 0.98

3 ǫ1 rel. err. 2.28 1.28 0.75 0.51 1.02 0.87 1.16

k1 rel. err. 0.76 0.32 0.21 0.11 0.30 0.15 0.49

ǫ2 rel. err. 6.18 4.39 3.25 2.77 3.77 3.58 3.96

bE rel. err. 0.60 0.10 0.20 0.32 0.05 0.10 0.04

numits 21 10 11 10 10 9 16

J(qtrue) 0.014 0.014 0.014 0.014 0.014 0.014 0.014

J(qest) 0.021 0.021 0.020 0.020 0.020 0.020 0.020

σ̂1 0.206 0.205 0.205 0.205 0.205 0.205 0.205

σ̂2 0.37 0.38 0.38 0.38 0.38 0.38 0.38

4 λ1 rel. err. 4.09 4.60 4.90 5.37 5.64 5.65 5.28

ǫ1 rel. err. 0.40 0.25 0.07 0.22 0.23 0.17 0.13

c rel. err. 4.27 4.42 4.30 4.84 5.03 4.92 4.64

bE rel. err. 1.43 1.50 1.50 1.80 1.92 1.89 1.69

numits 20 15 10 10 13 8 10

J(qtrue) 0.014 0.014 0.014 0.014 0.014 0.014 0.014

J(qest) 0.025 0.026 0.027 0.029 0.029 0.029 0.028

σ̂1 0.211 0.212 0.212 0.213 0.214 0.214 0.213

σ̂2 0.35 0.35 0.35 0.35 0.35 0.35 0.35
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perturbation

set statistic 0.90 0.95 0.99 1.00 1.01 1.05 1.10

5 λ1 rel. err. 4.77 3.94 3.83 2.94 3.21 4.41 4.19

ǫ1 rel. err. 0.06 0.08 0.20 0.22 0.27 0.29 0.30

k1 rel. err. 3.84 2.51 2.01 0.89 1.10 2.46 2.23

c rel. err. 1.73 1.95 2.11 2.30 2.24 2.04 2.00

numits 19 10 11 10 18 16 10

J(qtrue) 0.014 0.014 0.014 0.014 0.014 0.014 0.014

J(qest) 0.023 0.023 0.024 0.024 0.024 0.025 0.024

σ̂1 0.214 0.212 0.211 0.209 0.210 0.212 0.212

σ̂2 0.36 0.36 0.36 0.36 0.36 0.36 0.36

6 λ1 rel. err. 23.30 5.61 4.86 4.39 4.24 5.67 5.11

ǫ2 rel. err. 38.57 2.09 0.97 0.57 0.22 1.32 1.01

c rel. err. 16.31 5.98 4.79 4.25 3.94 5.52 4.66

bE rel. err. 3.03 1.81 1.46 1.23 1.16 1.81 1.93

numits 17 21 10 12 13 9 10

J(qtrue) 0.014 0.014 0.014 0.014 0.014 0.014 0.014

J(qest) 1.047 0.027 0.026 0.025 0.025 0.028 0.032

σ̂1 0.328 0.215 0.212 0.211 0.211 0.214 0.215

σ̂2 1.80 0.34 0.35 0.35 0.35 0.34 0.39

7 λ1 rel. err. 6.47 3.20 2.72 2.90 3.10 2.06 3.34

k1 rel. err. 5.54 1.78 1.19 1.38 1.54 0.32 1.78

ǫ2 rel. err. 0.55 0.11 0.36 0.38 0.39 0.31 0.26

c rel. err. 1.17 2.20 2.49 2.51 2.58 2.66 2.49

numits 35 10 10 9 10 10 12

J(qtrue) 0.014 0.014 0.014 0.014 0.014 0.014 0.014

J(qest) 0.024 0.023 0.022 0.023 0.023 0.023 0.024

σ̂1 0.219 0.210 0.210 0.210 0.211 0.209 0.211

σ̂2 0.35 0.36 0.36 0.36 0.36 0.36 0.36

8 λ1 rel. err. 8.80 6.15 5.84 5.04 4.55 5.19 4.76

k1 rel. err. 4.96 1.37 0.51 0.25 0.74 0.69 0.25

c rel. err. 3.08 4.04 4.42 4.50 4.53 3.61 3.65

bE rel. err. 1.28 1.47 1.66 1.56 1.52 1.68 1.65

numits 21 11 10 14 10 12 9

J(qtrue) 0.014 0.014 0.014 0.014 0.014 0.014 0.014

J(qest) 0.028 0.028 0.029 0.029 0.028 0.032 0.032

σ̂1 0.225 0.215 0.214 0.212 0.211 0.214 0.213

σ̂2 0.34 0.34 0.35 0.35 0.35 0.39 0.39
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Table 5.4: Parameter relative error and statistics for testing censored data algorithm
with σ̄ = 0.3 for various perturbations of known true value q0 and various sets of four
parameters.

perturbation

set statistic 0.90 0.95 0.99 1.00 1.01 1.05 1.10

1 ǫ1 rel. err. 0.21 0.50 0.13 0.30 4.59 0.86 0.39

ǫ2 rel. err. 0.76 2.77 1.93 2.46 2.91 3.99 0.81

c rel. err. 0.00 0.18 0.19 0.26 7.32 0.39 0.25

bE rel. err. 0.60 0.15 0.41 0.30 1.69 0.05 0.76

numits 25 13 11 10 11 20 9

J(qtrue) 0.031 0.031 0.031 0.031 0.031 0.031 0.031

J(qest) 0.031 0.032 0.032 0.032 0.120 0.032 0.032

σ̂1 0.256 0.256 0.256 0.256 0.266 0.256 0.257

σ̂2 0.41 0.41 0.41 0.41 0.94 0.41 0.41

2 ǫ1 rel. err. 6.48 0.68 0.18 0.27 3.16 1.42 2.11

k1 rel. err. 16.25 0.40 1.33 2.15 3.10 4.58 5.98

ǫ2 rel. err. 23.37 3.80 2.19 0.75 3.49 2.89 5.56

c rel. err. 14.46 0.18 0.68 1.40 4.12 3.50 4.91

numits 31 12 9 10 9 18 10

J(qtrue) 0.031 0.031 0.031 0.031 0.031 0.031 0.031

J(qest) 0.033 0.033 0.033 0.032 0.129 0.033 0.032

σ̂1 0.258 0.257 0.257 0.257 0.264 0.257 0.257

σ̂2 0.41 0.41 0.41 0.41 0.97 0.40 0.40

3 ǫ1 rel. err. 0.94 0.89 0.21 0.20 0.47 0.76 1.02

k1 rel. err. 0.92 0.58 0.91 0.92 1.08 1.05 1.17

ǫ2 rel. err. 0.23 3.93 1.74 1.74 1.24 0.54 0.02

bE rel. err. 0.75 0.30 0.35 0.33 0.45 0.67 0.78

numits 21 9 12 9 10 10 9

J(qtrue) 0.031 0.031 0.031 0.031 0.031 0.031 0.031

J(qest) 0.031 0.032 0.032 0.032 0.032 0.032 0.032

σ̂1 0.257 0.256 0.257 0.257 0.257 0.257 0.257

σ̂2 0.41 0.41 0.41 0.41 0.41 0.41 0.41

4 λ1 rel. err. 1.37 1.84 1.98 2.01 2.29 2.67 2.59

ǫ1 rel. err. 0.38 0.51 0.60 0.57 0.60 0.51 0.49

c rel. err. 1.06 1.20 1.16 1.23 1.40 1.77 1.75

bE rel. err. 0.13 0.06 0.08 0.05 0.01 0.25 0.23

numits 23 10 10 10 10 14 10

J(qtrue) 0.031 0.031 0.031 0.031 0.031 0.031 0.031

J(qest) 0.032 0.032 0.032 0.032 0.033 0.033 0.033

σ̂1 0.259 0.260 0.260 0.260 0.261 0.262 0.262

σ̂2 0.41 0.40 0.40 0.40 0.40 0.40 0.40
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perturbation

set statistic 0.90 0.95 0.99 1.00 1.01 1.05 1.10

5 λ1 rel. err. 1.44 0.30 1.19 0.42 0.55 1.60 0.28

ǫ1 rel. err. 0.37 3.29 0.64 0.62 0.60 3.91 0.60

k1 rel. err. 4.12 2.19 4.63 2.45 2.24 2.93 3.33

c rel. err. 1.99 2.83 2.18 1.88 1.85 2.26 2.01

numits 24 9 14 19 18 12 24

J(qtrue) 0.031 0.031 0.031 0.031 0.031 0.031 0.031

J(qest) 0.032 0.124 0.034 0.033 0.033 0.129 0.033

σ̂1 0.255 0.263 0.256 0.257 0.258 0.265 0.256

σ̂2 0.41 0.99 0.41 0.40 0.40 0.97 0.41

6 λ1 rel. err. 20.99 1.71 1.64 1.41 1.71 1.50 1.35

ǫ2 rel. err. 33.43 1.11 1.50 1.62 1.24 1.50 1.85

c rel. err. 16.76 1.20 0.93 0.71 1.13 0.85 0.54

bE rel. err. 2.27 0.23 0.18 0.08 0.21 0.12 0.05

numits 11 30 10 10 10 10 9

J(qtrue) 0.031 0.031 0.031 0.031 0.031 0.031 0.031

J(qest) 1.052 0.032 0.033 0.032 0.032 0.032 0.033

σ̂1 0.321 0.260 0.259 0.259 0.260 0.259 0.259

σ̂2 1.64 0.41 0.41 0.41 0.41 0.41 0.41

7 λ1 rel. err. 1.24 0.34 0.14 0.54 0.45 0.07 0.65

k1 rel. err. 0.01 1.21 1.46 0.96 1.07 1.79 2.44

ǫ2 rel. err. 1.17 1.30 1.47 1.45 1.33 0.93 0.89

c rel. err. 0.94 1.11 1.03 0.98 1.06 1.51 1.52

numits 27 11 10 13 10 10 10

J(qtrue) 0.031 0.031 0.031 0.031 0.031 0.031 0.031

J(qest) 0.032 0.032 0.033 0.033 0.032 0.033 0.032

σ̂1 0.259 0.257 0.257 0.257 0.257 0.257 0.256

σ̂2 0.41 0.41 0.41 0.41 0.41 0.41 0.41

8 λ1 rel. err. 0.68 0.76 0.85 1.43 1.38 1.01 2.65

k1 rel. err. 2.05 2.58 2.46 1.95 1.64 2.09 2.50

c rel. err. 2.52 2.97 2.96 2.99 2.77 2.79 1.46

bE rel. err. 0.56 0.74 0.73 0.81 0.69 0.70 1.05

numits 25 10 10 10 10 10 9

J(qtrue) 0.031 0.031 0.031 0.031 0.031 0.031 0.031

J(qest) 0.032 0.032 0.032 0.033 0.032 0.032 0.152

σ̂1 0.258 0.258 0.258 0.259 0.259 0.258 0.270

σ̂2 0.41 0.41 0.41 0.41 0.41 0.41 1.11
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We examine some plots for the case σ̄ = 0.2. Figure 5.22 contains the model fit to

data for the fourth parameter set with a 1.05 perturbation as initial iterate. The fit to

data is not identical to the true model values, but is certainly reasonable. Even when

the relative errors in the parameters are moderately large (up to 10%) the model fits

remain plausible.

There are many examples in the table where a large perturbation of the initial

iterate yields poorer results than a smaller one. Plots that show the corresponding

fits to data for the seventh parameter set are in Figures 5.23 for 0.9 perturbation and

5.24 for 1.01 perturbation. These remind us that the parameters that yield a good

fit to data are not necessarily unique – adjusting one can compensate for another.

Finally an example of failure is shown in Figure 5.25 for a 0.90 perturbation of

the sixth parameter set. The fits to the two states are substantially worse and the

table indicates 3% – 40% relative error on the estimated parameters. The algorithm

cannot estimate the true values of parameters given this large of an initial deviation

from the true values.

One reassurance that the censored data method is working is that the log likeli-

hood discussed above should be increasing with each iteration of the method. A plot

of log likelihood vs. iteration number is shown for parameter set 2 in Figure 5.27 for

perturbations 0.9, 0.95, and 0.99. With a few exceptions, the likelihood is monoton-

ically increasing. While theory guarantees monotonicity under certain assumptions,

these are likely not met in this situation where the least squares minimization at each

step of the censored data algorithm involves a numerical optimization algorithm. In

turn the optimization algorithm at each step requires one or more numerical solutions

to the differential equation system and may converge to a local minimum. This is

particularly evident in the rightmost subplot (0.99 perturbation) where the likelihood

is changing very slightly due to good initial iterate.
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Figure 5.22: Sample fit to simulated censored data (σ̄ = 0.2) with censored data
algorithm for fourth parameter set with initial iterate 1.05q0. Red dotted line indicates
true model solution from which data were generated, solid green line is model at
estimated parameters, ‘x’ denotes observed data, and ‘o’ the predicted value of a
censored data point.

In Figure 5.27 we see similar plots for parameter set 3. The results for 0.9 and 0.99

perturbations are excellent, and while a bit more erratic, the 0.95 perturbation stabi-

lizes. Perhaps most informative are the plots for perturbation 0.90 which demonstrate

that the algorithm makes steady progress toward maximum likelihood when starting

far away. Plots for other parameters are very similar: large perturbations result in

essentially monotonic trajectories and some small perturbations yield slightly erratic

behavior that eventually stabilizes.

We list in Table 5.5 parameter estimates and standard errors calculated for the

case with initial iterate 0.9q0 for both σ̄ = 0.2 and 0.3 cases. These may be used to
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Figure 5.23: Sample fit to simulated censored data (σ̄ = 0.2) with censored data
algorithm for seventh parameter set with initial iterate 0.90q0. Red dotted line indi-
cates true model solution from which data were generated, solid green line is model
at estimated parameters, ‘x’ denotes observed data, and ‘o’ the predicted value of a
censored data point.

calculate confidence intervals at a desired confidence level for each parameter esti-

mated. As expected, the parameters estimated from the data generated with larger

coefficient of variation have less certainty. In the case of this simulated data even

99% confidence intervals would be fairly tight.
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Figure 5.24: Sample fit to simulated censored data (σ̄ = 0.2) with censored data
algorithm for seventh parameter set with initial iterate 1.01q0. Red dotted line indi-
cates true model solution from which data were generated, solid green line is model
at estimated parameters, ‘x’ denotes observed data, and ‘o’ the predicted value of a
censored data point.
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Figure 5.25: Sample fit to simulated censored data (σ̄ = 0.2) with censored data
algorithm for sixth parameter set with initial iterate 0.90q0. Red dotted line indicates
true model solution from which data were generated, solid green line is model at
estimated parameters, ‘x’ denotes observed data, and ‘o’ the predicted value of a
censored data point.
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Figure 5.26: Simulated data censored at 400 and 50. Plot of log likelihood vs. itera-
tion for various perturbations of true parameters considered, parameter set 2.
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Figure 5.27: Simulated data censored at 400 and 50. Plot of log likelihood vs. itera-
tion for various perturbations of true parameters considered, parameter set 3.
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Table 5.5: Simulated censored data: sample parameter estimates and standard errors
for perturbation 0.9q0 for σ̄ = 0.2 and 0.3 cases.

σ̄ = 0.2 σ̄ = 0.3

set parameter q∗ std. err. q∗ std. err.

1 ǫ1 6.9436e-01 1.3612e-03 6.9651e-01 1.4855e-03

ǫ2 4.0586e-01 2.8390e-05 4.1107e-01 3.0788e-05

c 1.3189e+01 1.9757e-03 1.2976e+01 2.1429e-03

bE 2.9974e-01 8.7447e-04 2.9954e-01 9.5432e-04

2 ǫ1. 6.8938e-01 2.2742e-03 6.9524e-01 2.5719e-03

k1 7.9385e-07 5.8771e-09 8.0319e-07 6.6437e-09

ǫ2 4.1819e-01 2.8514e-05 4.1521e-01 3.0843e-05

c 1.3020e+01 1.8526e-03 1.2976e+01 2.0036e-03

3 ǫ1. 6.9104e-01 2.2812e-03 6.9380e-01 2.4899e-03

k1 7.9747e-07 6.5685e-09 8.0464e-07 7.2000e-09

ǫ2 4.1755e-01 1.3725e-05 4.1572e-01 1.4867e-05

bE 3.0031e-01 9.1678e-04 3.0089e-01 9.9595e-04

4 λ1 1.0460e+01 7.4973e-02 1.0184e+01 8.6784e-02

ǫ1 6.9822e-01 2.0118e-03 7.0359e-01 2.3248e-03

c 1.3575e+01 9.0735e-04 1.3155e+01 1.0463e-03

bE 3.0449e-01 1.0498e-03 2.9982e-01 1.2124e-03

5 λ1 1.0394e+01 1.2599e-01 1.0030e+01 2.0745e-01

ǫ1 7.0058e-01 2.1993e-03 7.2303e-01 4.9130e-03

k1 7.7989e-07 1.1874e-08 8.1755e-07 1.9072e-08

c 1.3253e+01 5.8492e-04 1.2632e+01 1.3449e-03

6 λ1 1.0561e+01 4.6609e-02 1.0171e+01 5.5700e-02

ǫ2 3.9166e-01 2.6023e-05 4.0444e-01 3.0515e-05

c 1.3777e+01 1.8311e-03 1.3157e+01 2.1527e-03

bE 3.0544e-01 1.0349e-03 3.0069e-01 1.2370e-03

7 λ1 1.0320e+01 1.2491e-01 1.0034e+01 1.8584e-01

k1 7.8575e-07 1.1156e-08 8.0967e-07 1.6595e-08

ǫ2 3.9955e-01 2.7317e-05 4.0522e-01 3.0625e-05

c 1.3287e+01 1.7785e-03 1.3144e+01 1.9962e-03

8 λ1 1.0615e+01 1.4547e-01 1.0076e+01 1.7155e-01

k1 7.8901e-07 1.1291e-08 8.2063e-07 1.3317e-08

c 1.3526e+01 8.4411e-04 1.3386e+01 9.8614e-04

bE 3.0440e-01 1.0699e-03 3.0222e-01 1.2517e-03



Chapter 6

Model Fitting to Clinical Data

6.1 Fits to Individual Patients

In this section we review results for fitting the dynamic model to data from each

of the 59 patients in PS59 (patients with at least ten viral load and ten CD4 mea-

surements). As described in Section 4.4, we fit the model to each patient’s data on

the log scale using a least-squares cost criterion by (1) estimating all 20 model pa-

rameters and seven initial conditions with DIRECT, (2) refining those estimated with

lsqnonlin, and (3) applying the iterative censored data algorithm to estimate a sub-

set of eight model parameters (λ1, d1, ǫ1, k1, ǫ2, NT, c, bE) and three initial conditions

(T 0
1 , T ∗0

1 , V 0
I ). The estimates from step (2) serve as initial iterates for the censored

data estimation process.

During both the initial least squares fitting and the censored data algorithm we

employ bound constraints on all parameters as shown in Table 6.1. It is difficult to

get reliable model predictions of CD4 data as it is erratic on a much faster time scale

than the long-term model dynamics typically predict, but the estimation process is

helped by further restricting the initial condition. If for patient j, mCD4j denotes the

119
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Table 6.1: Bounds employed when estimating parameters from clinical data.
parameter lower bd. upper bd. parameter lower bd. upper bd.

λ1 0.1 100 m2 1.0 × 10−8 0.001
d1 0.001 0.1 ǫ2 0 0.99
ǫ1 0 0.99 NT 10 1000
k1 1.0 × 10−9 1.0 × 10−4 c 1 100
λ2 0.001 1 λE 1.0 × 10−5 0.1
d2 0.001 0.1 bE 0.01 0.9886
f 0 0.99 Kb 0.001 10
k2 1.0 × 10−7 0.01 dE 0.01 0.9886
δ 0.01 0 Kd 0.001 10

m1 1.0 × 10−8 0.001 δE 0.01 1

T 0
1 † 100 1.0 × 104 V 0

I 100 1.0 × 106

T 0
2 0.1 100 V 0

NI 1 1.0 × 104

T ∗0
1 † 0.01 100 E0 1.0 ×10−4 10
T ∗0

2 1.0 × 10−5 100

minimum observed CD4 value over the time span and MCD4j the maximum, then

we desire 0.9mCD4j ≤ T̄ 0j
1 ≤ 1.1MCD4j and T̄ ∗0j

1 ≤ MCD4j and when tighter,

enforce these constraints over those in the table.

Appendix A contains sample model fits to data for all 59 patients. The model

fit for Patient 5 is also shown in Figure 6.1. The top panel corresponds to CD4+ T-

cell data and includes crosses denoting clinical data and a solid line representing the

model solution evaluated with the estimated parameters. In the bottom panel, crosses

again denote data and solid line model solution. The added hollow circles represent

censored data points estimated by the censored data algorithm. The line under each

graph represents treatment, with a thicker solid line denoting on treatment and thin

dashed line indicating off treatment. The model reasonably predicts the viral load

behavior, including during therapy interruptions, and is capable of capturing the

long-term off-treatment steady state exhibited by this patient. The model fits the

overall trend in the CD4+ T-cell data, which fluctuate substantially even in healthy
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patients. Since long-term CD4 decline is an important clinical marker for transition

to AIDS, model fits such as this may provide important interpretation of overall data

dynamics. Figure 6.2 contains plots for all the model states.
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Figure 6.1: Model fit to CD4+ T-cell data (top) and viral load data (bottom) for
Patient 5. Crosses denote data and solid line, model evaluated with estimated pa-
rameters. Underlying thick solid line denotes on treatment period and thin dashed
line, off.

Notice from Figure 6.3, for a patient on treatment for nearly five years, that the

model is capable of predicting long-term suppression of virus at a non-zero level.

Simpler models of HIV infection often predict extinction of virus during extended

therapy periods. This patient also exhibits a slowly increasing CD4 count, possibly

due to the success of therapy. Figure 6.4 contains plots for all the model states.

Tables 6.2 and 6.3 show estimated parameters and standard errors for patients

with indices 1–30. Tables 6.4 and 6.5 show estimated parameters and standard errors
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for patients with indices 31–59. Dashes indicate a reasonable estimate of standard

error was not available due to the small number of data points. In these cases the

unbiased estimator

σ̂2
s =

1

N j
s − p

Nj
s

∑

i=1

|zij
s (q∗) − yij

s |2

is not well-defined, since p = 11 and for CD4 or RNA taken individually, N j
s may

be as small as 11 or 10, even though there are always at least 20 time series points

in total for the two states. For most patients, the standard errors computed would

lead to considerable confidence in the estimates of ǫ2, c, T
0
1 , V 0

I and less frequently,

NT . We have little confidence is most of the estimates of bE and T ∗0
1 . For the first

four parameters λ1, d1, ǫ1, and k1 we have substantial standard errors on the order

of the parameter estimated. This may be due to identifiability issues since they all

enter into the same dynamics equation for Ṫ1.

As a means for understanding the population variability, in Section 6.2 we present

histograms with the distribution of the estimated parameters across the population.

Table 6.6 contains statistics for the censored data algorithm for all 59 patients.

We present estimates of σ1 and σ2 on the log scale and number of iterations required

for the censored data algorithm to converge. In general, the estimates of standard

deviation in the viral RNA data tend to be considerably larger than the CD4 data.

In most cases the algorithm converges in fewer than the specified 251 maximum

iterations (including one preliminary least squares estimate).

Tables 6.7 and 6.8 show the predicted model equilibria, given the parameters

estimated for each patient. We report the uninfected equilibrium and one or two

equilibria with infection present. For many patients, estimated parameters dictate

only a single stable equilibrium. All are presented for the case with no treatment

applied to give an idea of what would happen to each patient if taken off therapy. In
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Table 6.2: Clinical data: estimated parameters q∗ and corresponding standard errors
(se) for Patients 1–30, first six parameters estimated.

pat # λ1 d1 ǫ1 k1 ǫ2 NT

1 q∗ 1.01e+00 1.00e-03 5.75e-01 1.44e-08 7.43e-01 1.31e+02
se 6.96e+00 7.40e-03 6.86e-02 6.09e-09 3.15e-04 1.35e+01

2 q∗ 1.23e+00 1.73e-03 6.14e-01 4.35e-09 6.51e-01 1.26e+02
se 6.23e+00 8.63e-03 1.33e-01 1.49e-08 2.35e-03 2.14e+01

3 q∗ 1.39e+00 1.00e-03 2.71e-01 1.46e-07 4.65e-01 8.17e+01
se 9.88e-01 1.17e-03 1.27e-01 1.61e-08 6.97e-04 9.72e+00

4 q∗ 3.71e+00 6.06e-03 5.10e-01 1.65e-07 4.41e-01 9.41e+01
se 2.81e+00 4.64e-03 6.73e-02 8.34e-09 3.97e-04 6.96e+00

5 q∗ 4.06e+00 7.29e-03 7.01e-01 1.43e-07 6.06e-01 1.06e+02
se 2.67e+00 4.87e-03 1.42e-01 5.93e-09 3.38e-04 6.48e+00

6 q∗ 3.70e+01 4.27e-02 2.14e-01 4.65e-08 5.71e-01 1.01e+02
se 1.16e+02 1.35e-01 9.05e-02 7.12e-09 4.57e-04 8.78e+00

7 q∗ 5.46e+00 9.20e-03 6.56e-01 8.63e-07 7.16e-01 1.03e+02
se 2.96e+00 5.18e-03 2.26e-01 7.62e-07 3.14e-03 4.09e+01

8 q∗ 8.85e-01 1.13e-03 4.44e-01 1.43e-09 4.46e-01 9.18e+01
se 7.54e-01 1.26e-03 3.89e+00 4.62e-07 1.14e-02 3.28e+02

9 q∗ 8.90e+00 2.02e-02 7.97e-01 3.30e-07 5.71e-01 1.18e+02
se 1.39e+01 3.29e-02 4.78e-01 2.10e-07 2.60e-03 7.22e+01

10 q∗ 1.84e+00 2.37e-03 9.12e-02 3.51e-09 5.23e-01 8.72e+01
se 4.75e+00 6.24e-03 2.87e-01 1.87e-07 1.84e-02 2.15e+01

11 q∗ 1.11e+00 1.76e-03 1.19e-01 1.67e-09 6.92e-01 9.69e+01
se 1.13e+00 2.28e-03 1.84e+00 1.47e-08 2.09e-03 1.46e+01

12 q∗ 4.45e-01 1.13e-03 6.16e-01 2.00e-08 4.55e-01 8.53e+01
se 1.32e+00 1.81e-03 8.76e-01 3.15e-08 1.55e-03 3.21e+01

13 q∗ 2.79e+01 2.89e-02 4.70e-01 8.18e-08 5.05e-01 9.11e+01
se 9.86e+01 1.03e-01 2.82e-01 6.72e-09 1.14e-03 2.19e+01

14 q∗ 1.44e+00 2.20e-03 5.43e-01 3.12e-07 6.09e-01 7.60e+01
se 6.42e+00 1.05e-02 1.24e-01 3.02e-07 5.25e-02 8.85e+01

15 q∗ 1.04e+01 1.18e-02 6.73e-01 1.18e-09 6.78e-01 1.37e+02
se 5.74e+02 6.52e-01 2.12e-01 1.47e-08 1.05e-03 3.16e+01

16 q∗ 8.36e-01 2.61e-03 7.99e-01 2.86e-07 8.42e-01 2.18e+02
se 5.87e-01 1.40e-03 5.77e-01 3.70e-07 9.31e-02 2.33e+02

17 q∗ 3.12e+00 9.49e-03 3.72e-01 3.96e-07 4.83e-01 9.26e+01
se 7.30e+00 1.80e-02 1.79e-01 2.41e-07 4.54e-02 2.63e+02

18 q∗ 1.54e+00 1.16e-03 5.76e-01 3.64e-09 4.55e-01 7.89e+01
se 4.78e+00 4.05e-03 3.39e-01 1.10e-07 3.92e-03 2.87e+01

19 q∗ 4.95e+00 6.07e-03 6.00e-01 1.61e-07 4.69e-01 9.87e+01
se 3.33e+00 4.51e-03 1.51e-01 1.07e-07 1.25e-03 1.74e+01

20 q∗ 4.58e+00 1.14e-02 8.22e-01 1.34e-07 7.54e-01 1.73e+02
se 4.93e+00 1.34e-02 8.90e-02 2.42e-08 9.72e-04 8.64e+01

21 q∗ 4.28e+00 1.24e-02 6.39e-01 1.93e-07 6.00e-01 1.21e+02
se 5.07e+00 1.60e-02 1.74e-01 3.14e-08 1.15e-03 3.83e+01

22 q∗ 1.74e+00 4.41e-03 5.55e-01 1.18e-07 6.15e-01 1.17e+02
se 2.27e+00 5.55e-03 5.27e-02 2.78e-08 1.78e-04 1.00e+01

23 q∗ 7.70e+00 1.24e-02 6.15e-01 1.91e-07 5.19e-01 1.06e+02
se 2.87e+00 4.92e-03 1.69e-01 2.13e-08 1.00e-03 3.17e+01

24 q∗ 2.96e+01 3.58e-02 9.90e-01 1.55e-07 5.71e-04 7.01e+01
se 3.12e+01 3.82e-02 1.15e-01 1.15e-07 2.76e-01 1.82e+01

25 q∗ 3.07e+00 2.32e-03 7.73e-01 4.83e-07 7.21e-01 8.11e+01
se 1.50e+00 1.27e-03 2.39e-02 1.11e-07 1.26e-03 1.37e+00

26 q∗ 5.42e+00 6.56e-03 6.49e-01 4.38e-09 4.50e-01 9.42e+01
se 7.38e+00 9.71e-03 6.81e+00 1.33e-06 2.10e-02 2.78e+02

27 q∗ 7.59e+00 1.20e-02 6.31e-01 2.16e-09 6.24e-01 1.03e+02
se 7.02e+00 1.13e-02 2.11e+00 2.20e-06 7.84e-03 1.15e+02

28 q∗ 7.51e-01 1.98e-03 6.70e-01 3.53e-07 6.96e-01 5.87e+01
se 1.28e+00 2.62e-03 5.06e-02 3.14e-07 1.20e-03 8.43e+00

29 q∗ 9.18e+00 1.29e-02 7.69e-01 1.71e-07 4.82e-01 8.49e+01
se 3.59e+01 5.18e-02 3.02e-01 1.99e-08 1.21e-03 2.55e+01

30 q∗ 1.90e+00 5.10e-03 2.41e-01 2.87e-09 1.24e-01 3.76e+01
se 7.11e+00 1.86e-02 6.55e+01 6.54e-07 1.96e+00 6.48e+02
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Table 6.3: Clinical data: estimated parameters q∗ and corresponding standard errors
(se) for Patients 1–30, last five parameters estimated.

pat # c bE T 0

1
T1∗

0 V 0

I

1 q∗ 6.10e+00 1.01e-02 2.94e+00 -2.00e+00 3.79e+00
se 1.27e-02 2.75e+06 6.96e-02 5.05e+00 1.12e-01

2 q∗ 7.68e+00 1.09e-01 2.87e+00 -1.64e+00 5.45e+00
se 1.49e-01 1.07e-03 3.69e-02 2.05e+03 3.56e-01

3 q∗ 9.78e+00 1.30e-01 2.52e+00 1.69e+00 5.84e+00
se 5.98e-03 2.84e-03 1.62e-01 3.01e-01 5.34e-01

4 q∗ 9.95e+00 1.01e-01 3.00e+00 -1.81e+00 6.00e+00
se 8.20e-03 1.64e-03 8.61e-02 2.98e+02 4.74e-01

5 q∗ 8.70e+00 1.03e-01 2.92e+00 9.61e-01 6.00e+00
se 8.38e-03 3.30e-04 8.08e-02 2.65e-01 1.78e-01

6 q∗ 8.76e+00 1.36e-01 2.70e+00 2.15e-01 5.47e+00
se 5.84e-03 9.43e-03 5.01e-01 4.99e+00 7.74e-01

7 q∗ 8.47e+00 1.32e-01 2.54e+00 -1.10e+00 5.85e+00
se 3.70e-01 4.56e-03 1.53e-01 8.03e+02 4.27e-01

8 q∗ 9.97e+00 4.90e-02 2.62e+00 -1.42e+00 5.86e+00
se 2.27e+00 4.42e+05 7.73e-02 1.20e+03 5.73e-01

9 q∗ 8.03e+00 6.73e-02 2.63e+00 -8.95e-01 5.93e+00
se 5.97e-02 2.63e+00 9.86e-02 1.66e+02 1.04e+00

10 q∗ 1.02e+01 1.11e-01 2.86e+00 -7.36e-01 4.39e+00
se 6.93e+00 2.39e-01 1.85e-02 6.62e+00 8.99e-01

11 q∗ 4.67e+00 1.60e-01 2.52e+00 9.90e-01 4.77e+00
se 1.30e-01 6.74e-03 5.95e-02 1.21e+00 2.16e-01

12 q∗ 1.07e+01 2.59e-01 2.98e+00 8.39e-01 5.67e+00
se 1.09e-02 3.80e-02 3.99e-02 3.38e-01 6.19e-01

13 q∗ 1.03e+01 1.73e-01 2.90e+00 -9.78e-01 5.04e+00
se 1.30e-02 8.88e-03 1.47e-01 7.85e+00 1.75e-01

14 q∗ 1.20e+01 5.83e-02 2.71e+00 -1.89e-01 4.46e+00
se 7.27e+00 8.93e+00 1.12e-01 2.34e+00 7.08e-01

15 q∗ 7.46e+00 1.15e-01 3.09e+00 -4.76e-01 5.93e+00
se 5.16e-03 2.00e-03 2.53e+00 4.40e+00 7.81e-01

16 q∗ 3.76e+00 1.55e-01 2.95e+00 9.71e-01 5.86e+00
se 3.12e+00 4.82e-03 6.83e-02 5.58e+00 2.92e-01

17 q∗ 1.06e+01 1.02e-01 2.93e+00 6.62e-01 4.48e+00
se 2.76e+01 1.03e-02 2.21e-01 2.58e+00 1.15e+00

18 q∗ 1.00e+01 1.96e-01 3.00e+00 -7.07e-01 4.30e+00
se 4.86e-01 2.71e-02 5.21e-02 1.49e+01 9.50e-01

19 q∗ 9.36e+00 9.20e-02 2.71e+00 1.96e+00 5.87e+00
se 1.05e-01 5.98e-03 1.66e-01 9.60e-01 4.47e-01

20 q∗ 7.34e+00 5.18e-02 2.40e+00 -4.35e-01 3.90e+00
se 8.14e-02 1.72e+02 1.09e-01 4.20e-01 7.83e-01

21 q∗ 6.14e+00 1.12e-01 2.44e+00 -6.07e-01 5.83e+00
se 8.00e-03 3.30e+03 1.84e-01 3.84e+01 2.97e-01

22 q∗ 7.98e+00 1.50e-01 2.85e+00 2.00e+00 5.75e+00
se 3.52e-02 5.96e-03 1.35e-01 2.95e-01 6.17e-01

23 q∗ 9.25e+00 8.60e-02 2.99e+00 4.78e-01 5.70e+00
se 4.15e-02 1.05e+01 1.45e-01 2.89e+00 5.27e-01

24 q∗ 7.81e+00 7.28e-02 3.01e+00 -1.54e+00 5.54e+00
se 1.82e+00 2.77e+03 9.42e-02 4.21e+01 3.33e-01

25 q∗ 1.43e+01 1.65e-01 2.83e+00 1.31e+00 5.87e+00
se 1.66e-01 1.84e-03 7.10e-02 7.04e-01 5.07e-01

26 q∗ 1.06e+01 1.16e-01 2.71e+00 1.55e+00 4.88e+00
se 1.72e+00 1.02e-01 1.28e-01 1.64e+00 9.51e-01

27 q∗ 9.05e+00 2.23e-02 2.56e+00 -1.46e+00 4.99e+00
se 1.94e-01 7.13e+02 3.26e-01 3.70e+03 5.65e-01

28 q∗ 1.34e+01 2.42e-01 3.01e+00 5.10e-01 5.09e+00
se 1.33e-01 5.44e-03 1.41e-01 2.96e+01 4.15e-01

29 q∗ 1.03e+01 1.01e-01 2.77e+00 -2.28e-01 5.72e+00
se 4.08e-03 1.04e-02 1.61e-01 6.17e+00 5.45e-01

30 q∗ 1.09e+01 5.90e-01 2.65e+00 -1.03e+00 5.69e+00
se 3.34e+01 8.95e-02 1.21e-01 2.25e+03 2.73e-01
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Table 6.4: Clinical data: estimated parameters q∗ and corresponding standard errors
(se) for Patients 31–59, first six parameters estimated.

pat # λ1 d1 ǫ1 k1 ǫ2 NT

31 q∗ 2.68e+00 3.11e-03 8.40e-01 3.17e-07 3.01e-01 8.68e+01
se 5.91e+00 7.74e-03 7.37e-01 1.33e-06 1.56e-02 3.89e+01

32 q∗ 3.55e+00 6.94e-03 9.63e-01 4.84e-07 3.77e-02 2.16e+01
se 7.07e+00 1.43e-02 2.35e+00 7.06e-06 1.36e-01 4.20e+01

33 q∗ 4.04e+00 7.13e-03 8.08e-01 3.78e-07 4.30e-01 8.79e+01
se 4.52e+00 9.31e-03 7.40e-01 1.53e-07 3.62e-03 6.12e+01

34 q∗ 2.10e+01 2.69e-02 8.17e-01 4.33e-07 4.60e-01 8.12e+01
se 8.07e+01 1.08e-01 7.05e-01 1.51e-07 6.55e-03 1.47e+02

35 q∗ 3.13e+00 4.39e-03 7.21e-01 3.51e-08 7.25e-01 1.53e+02
se 9.94e+00 1.32e-02 1.54e-01 1.50e-08 1.79e-03 7.49e+01

36 q∗ 7.22e-01 1.00e-03 7.93e-01 1.02e-07 1.14e-01 8.51e+01
se 2.61e+00 4.94e-03 1.75e+00 2.73e-07 1.16e-01 3.54e+02

37 q∗ 4.06e+00 1.10e-02 6.91e-01 3.63e-07 6.00e-01 7.58e+01
se 5.43e+00 1.35e-02 2.32e-01 6.15e-08 1.20e-03 1.61e+01

38 q∗ 1.60e+00 1.09e-03 6.41e-01 8.27e-08 4.46e-01 8.98e+01
se 3.04e+00 3.36e-03 3.44e-01 8.33e-09 1.03e-03 3.03e+01

39 q∗ 6.19e+00 1.11e-02 3.71e-01 3.64e-07 5.14e-01 8.73e+01
se 2.51e+00 5.61e-03 1.07e+00 7.50e-08 1.09e-02 1.94e+02

40 q∗ 2.89e+01 3.11e-02 9.20e-01 2.21e-07 6.01e-01 9.19e+01
se 1.13e+02 1.32e-01 3.47e+01 2.55e-07 1.99e-01 5.49e+03

41 q∗ 5.88e+00 7.63e-03 7.34e-01 2.37e-07 6.18e-01 7.72e+01
se 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

42 q∗ 2.35e+00 7.45e-03 7.79e-01 1.12e-09 9.62e-02 9.98e+01
se 6.23e+00 2.04e-02 1.12e+02 1.56e-07 5.76e-01 2.35e+03

43 q∗ 3.14e+00 5.11e-03 8.78e-01 2.05e-07 2.79e-01 9.82e+01
se 1.52e+01 2.53e-02 1.45e-02 1.92e-07 2.97e-03 2.40e+00

44 q∗ 2.97e+00 7.21e-03 4.98e-01 3.34e-08 1.61e-01 9.93e+01
se 4.14e+00 1.09e-02 1.05e+01 2.33e-07 5.58e-02 7.23e+02

45 q∗ 4.99e+00 5.18e-03 7.90e-01 1.95e-07 6.43e-01 1.35e+02
se - - - - - -

46 q∗ 2.66e+01 3.44e-02 8.89e-01 1.43e-08 1.72e-01 8.71e+01
se 5.49e+03 7.12e+00 2.53e+01 3.60e-06 1.19e-01 5.78e+02

47 q∗ 3.01e+00 3.70e-03 4.54e-01 2.58e-07 5.08e-01 1.03e+02
se 4.38e+00 6.30e-03 2.66e-01 1.56e-07 2.37e-03 1.03e+02

48 q∗ 4.26e+00 9.94e-03 4.01e-01 3.47e-07 4.63e-01 8.85e+01
se 5.61e+00 1.40e-02 6.29e-01 1.08e-07 4.34e-03 6.07e+01

49 q∗ 5.15e+00 5.10e-03 4.32e-01 8.50e-08 4.15e-01 1.02e+02
se 8.45e+00 1.12e-02 3.96e-01 1.00e-07 8.80e-03 4.09e+01

50 q∗ 2.74e+00 3.27e-03 5.06e-01 1.29e-07 5.03e-01 1.18e+02
se 1.60e+00 3.12e-03 2.00e-01 1.54e-07 8.15e-04 2.33e+01

51 q∗ 4.96e+00 7.30e-03 9.86e-01 1.12e-06 3.86e-01 7.21e+01
se 5.03e+00 1.05e-02 8.00e-01 1.46e-06 3.14e-02 3.62e+02

52 q∗ 2.64e+00 4.92e-03 6.10e-01 1.38e-09 1.89e-01 9.33e+01
se 3.15e+02 5.82e-01 4.44e+01 2.14e-07 1.31e-01 1.05e+03

53 q∗ 3.22e-01 1.31e-03 2.58e-02 1.94e-09 1.25e-01 9.67e+01
se 2.43e+01 3.18e-02 2.91e+01 1.83e-07 4.40e-02 3.95e+00

54 q∗ 2.42e+00 2.36e-03 4.12e-01 1.25e-07 3.51e-01 7.79e+01
se 6.56e+00 1.13e-02 3.06e+00 1.10e-06 3.06e-02 1.92e+02

55 q∗ 2.83e+01 9.22e-02 5.73e-01 1.15e-06 5.11e-01 8.25e+01
se 2.91e+01 1.33e-01 9.59e-01 1.79e-06 7.99e-03 9.86e+01

56 q∗ 1.60e+00 2.26e-03 6.09e-01 6.76e-09 4.74e-01 9.75e+01
se - - - - - -

57 q∗ 3.63e+00 3.11e-03 8.37e-01 3.85e-07 3.80e-01 5.99e+01
se - - - - - -

58 q∗ 9.68e-01 1.00e-03 5.25e-01 1.06e-09 5.58e-01 8.87e+01
se 1.20e+01 2.01e-02 8.18e+01 5.01e-06 1.15e+01 1.44e+04

59 q∗ 2.79e+00 4.88e-03 7.26e-01 4.26e-08 6.47e-01 2.26e+02
se - - - - - -
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Table 6.5: Clinical data: estimated parameters q∗ and corresponding standard errors
(se) for Patients 31–59, last five parameters estimated.

pat # c bE T 0

1
T1∗

0 V 0

I

31 q∗ 8.45e+00 1.84e-01 2.83e+00 -3.12e-01 6.00e+00
se 4.34e-01 1.71e-02 1.63e-01 2.43e+02 5.28e-01

32 q∗ 8.35e+00 5.04e-01 2.82e+00 1.91e+00 5.91e+00
se 1.51e+00 1.12e-01 4.74e-01 3.38e+01 1.97e-01

33 q∗ 1.13e+01 6.99e-02 2.83e+00 -1.84e-01 5.22e+00
se 4.23e-02 4.04e+02 2.16e-01 9.53e+00 8.68e-01

34 q∗ 9.63e+00 2.33e-01 2.78e+00 6.53e-02 5.47e+00
se 2.01e-01 5.22e-02 1.46e-01 1.66e+00 5.48e-01

35 q∗ 4.68e+00 1.22e-02 3.01e+00 -1.96e+00 2.09e+00
se 8.47e-02 1.50e+05 2.12e-01 1.11e+01 4.42e+00

36 q∗ 8.32e+00 2.70e-02 2.66e+00 -1.77e+00 3.75e+00
se 6.89e-01 5.26e+05 1.03e-01 6.58e+03 6.11e-01

37 q∗ 1.13e+01 1.30e-01 2.89e+00 3.48e-01 6.00e+00
se 2.93e-02 1.21e+01 1.37e-01 8.59e+00 6.30e-01

38 q∗ 9.97e+00 1.90e-01 2.73e+00 8.84e-01 5.12e+00
se 1.31e-02 3.84e+02 2.20e-01 6.80e-01 5.27e-01

39 q∗ 1.27e+01 1.04e-01 2.59e+00 -1.20e+00 4.44e+00
se 1.92e+00 1.55e+00 8.77e-02 1.11e+02 4.79e-01

40 q∗ 1.10e+01 4.17e-01 2.83e+00 -2.00e+00 2.02e+00
se 5.12e+00 1.20e+00 2.23e-01 4.54e+02 1.78e+03

41 q∗ 9.90e+00 9.28e-02 2.81e+00 7.80e-01 4.12e+00
se 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

42 q∗ 8.83e+00 1.88e-01 2.38e+00 1.62e+00 4.95e+00
se 6.60e+00 1.72e-02 2.16e-01 2.96e+00 7.53e-01

43 q∗ 1.14e+01 4.92e-01 2.85e+00 6.54e-01 5.67e+00
se 6.92e-02 2.39e-02 1.45e-01 9.08e+00 8.24e-02

44 q∗ 1.04e+01 1.32e-01 2.39e+00 1.00e+00 5.16e+00
se 7.31e-01 5.29e-02 1.29e-01 4.02e+00 1.01e+00

45 q∗ 9.13e+00 1.41e-01 2.55e+00 1.85e+00 5.88e+00
se - - - - -

46 q∗ 1.20e+01 2.05e-01 2.89e+00 5.87e-01 5.88e+00
se 2.32e+00 1.97e-01 2.96e+00 6.01e+02 6.09e-01

47 q∗ 1.01e+01 1.19e-01 2.70e+00 6.82e-01 5.73e+00
se 5.12e+00 2.18e-02 8.25e-02 3.87e+00 2.46e-01

48 q∗ 9.62e+00 1.51e-01 2.70e+00 6.63e-01 4.36e+00
se 6.63e-02 9.66e-03 1.48e-01 1.35e+00 5.97e-01

49 q∗ 8.58e+00 1.20e-01 2.56e+00 1.90e+00 5.79e+00
se 6.19e-01 7.93e-03 2.71e-01 7.53e-01 5.69e-01

50 q∗ 8.46e+00 1.22e-01 2.31e+00 2.00e+00 5.34e+00
se 7.73e-02 2.26e-02 1.71e-01 5.08e-01 2.90e-01

51 q∗ 8.93e+00 1.73e-02 2.50e+00 5.53e-01 5.92e+00
se 9.11e-01 1.26e+10 4.36e-01 3.46e+01 1.87e+00

52 q∗ 8.95e+00 1.02e-01 2.74e+00 1.50e+00 4.36e+00
se 1.90e+00 6.84e-02 2.24e-01 2.52e+00 4.82e-01

53 q∗ 9.98e+00 5.04e-01 2.99e+00 5.77e-01 5.17e+00
se 3.20e-01 3.95e-02 3.44e-01 1.28e+03 1.00e+00

54 q∗ 9.85e+00 1.11e-01 2.57e+00 7.52e-01 5.02e+00
se 1.03e+00 1.84e-01 1.18e-01 2.31e+00 9.89e-01

55 q∗ 9.40e+00 2.51e-02 2.41e+00 7.46e-01 5.86e+00
se 2.05e-02 4.96e+02 1.10e+00 4.04e+01 7.46e-01

56 q∗ 1.01e+01 4.99e-01 2.96e+00 -1.81e+00 2.81e+00
se - - - - -

57 q∗ 1.39e+01 1.57e-01 2.97e+00 1.68e+00 5.89e+00
se - - - - -

58 q∗ 8.41e+00 1.14e-02 2.69e+00 -1.55e+00 6.00e+00
se 1.89e+03 1.58e+06 3.09e-01 1.31e+04 6.36e+01

59 q∗ 2.18e+00 4.18e-01 2.81e+00 1.10e+00 5.58e+00
se - - - - -
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Table 6.6: Summary statistics using clinical patient data to estimate eleven parame-
ters with censored data algorithm. Columns include patient index number, estimates
of σs (on the log scale), and number of iterations required for the censored data al-
gorithm to converge. Entries with dashes represent cases where data are insufficient
to provide a reasonable estimate.

pat # σ1 σ2 num its pat # σ1 σ2 num its
1 0.08 0.48 180 31 0.09 0.53 46
2 0.08 0.68 12 32 0.16 0.20 20
3 0.19 0.54 20 33 0.17 0.87 45
4 0.11 0.53 14 34 0.11 0.60 32
5 0.11 0.44 12 35 0.11 0.51 188
6 0.13 0.75 29 36 0.08 0.61 251
7 0.18 0.43 181 37 0.18 0.63 61
8 0.09 0.57 225 38 0.11 0.54 12
9 0.11 1.04 12 39 0.11 0.38 19
10 0.05 0.70 16 40 0.22 0.63 20
11 0.10 0.54 90 41 0.00 0.00 11
12 0.08 0.62 17 42 0.09 0.75 224
13 0.10 0.47 22 43 0.12 0.08 47
14 0.08 0.62 25 44 0.12 1.01 35
15 0.07 0.97 24 45 0.00 - 17
16 0.21 0.36 251 46 0.11 0.61 40
17 0.33 1.21 14 47 0.10 0.25 36
18 0.13 0.83 52 48 0.12 0.59 31
19 0.15 0.44 16 49 0.31 0.57 26
20 0.10 0.53 25 50 0.12 0.29 41
21 0.26 0.63 20 51 0.23 1.86 126
22 0.13 0.62 38 52 0.24 0.48 6
23 0.11 0.52 18 53 0.29 1.00 6
24 0.12 0.35 35 54 0.13 0.99 21
25 0.05 0.50 16 55 0.51 0.74 18
26 0.15 0.95 18 56 0.00 - 89
27 0.08 0.55 210 57 - - 23
28 0.17 0.41 178 58 0.10 0.48 251
29 0.09 0.53 2 59 - 0.67 31
30 0.15 0.27 2
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most cases the predicted T-cell count in equilibrium 1 is not substantially depleted,

even in the absence of therapy. The viral loads vary substantially though, and for

patients 20, 23, 24, 51, 55, and 59 a higher viral load is predicted. When the second

predicted stable infected equilibrium exists, it includes an unrealistically high CD4+

T-cell count and predicts a viral load controlled below the limit of detection. Due

to the large number of degrees of freedom in the parameter estimation, it may be

necessary to impose more stringent bounds on estimated parameters. Ideally one

would have data available on all of the model states and thus obtain more reliable

estimates of the parameters. While more work is necessary to tune parameters, these

examples demonstrate the kinds of results one could obtain by fitting this model to

patient data with the help of the censored data algorithm.
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Table 6.7: Calculated model equilibria given each patient’s estimated parameters,
patients 1–30.

uninfected infected 1 infected 2
pat # T1 T1 + T ∗

1 VI T1 + T ∗
1 VI

1 1009.66 979.90 2121.29
2 712.99 712.90 50.23
3 1388.41 1079.39 1994.72
4 611.91 611.58 20.49
5 556.88 497.03 556.67 6634.65 19.78
6 866.37 865.36 866.36 1708.62 10.33
7 593.81 170.22 593.16 56063.89 11.83
8 784.77 784.27 510.01
9 441.26 283.84 441.26 71135.60 0.20
10 777.32 776.93 380.75
11 626.89 626.89 7.90
12 394.04 392.56 215.52
13 964.60 959.93 964.58 2356.46 7.91
14 654.63 474.50 3710.08
15 880.47 880.47 10.82
16 320.87 316.73 119.15
17 329.10 260.82 328.70 7066.09 29.75
18 1324.79 1324.71 18.92
19 814.75 577.62 814.24 16447.69 23.55
20 400.65 362.31 29323.25
21 344.59 257.90 344.51 25336.22 16.58
22 394.36 393.73 59.54
23 619.80 461.42 26140.23
24 828.80 742.41 36452.56
25 1324.69 1318.73 21.75
26 827.14 827.12 37.21
27 631.35 631.30 722.09
28 379.52 378.01 22.60
29 710.53 686.53 3411.80
30 373.63 373.63 18.26
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Table 6.8: Calculated model equilibria given each patient’s estimated parameters,
patients 31–59.

uninfected infected 1 infected 2
pat # T1 T1 + T ∗

1 VI T1 + T ∗
1 VI

31 862.96 861.50 16.76
32 511.87 511.03 23.53
33 565.96 340.86 13694.61
34 780.23 777.43 237.54
35 712.74 653.18 11846.32
36 721.22 605.91 1890.96
37 369.66 369.49 13.88
38 1464.69 1115.43 1464.56 4194.38 1.23
39 556.11 407.74 13601.73
40 927.33 914.89 2102.68
41 771.19 636.57 16137.49
42 315.99 315.99 11.58
43 615.13 614.61 21.18
44 411.91 411.87 17.56
45 963.52 961.50 55.67
46 772.04 772.04 7.10
47 811.97 810.81 20.65
48 428.88 428.62 18.16
49 1008.60 1008.32 16.95
50 835.57 834.96 18.69
51 680.01 152.00 33938.12
52 537.47 537.46 21.90
53 245.97 245.97 7.80
54 1025.32 1024.41 16.79
55 307.18 235.43 165464.89
56 708.09 708.05 18.16
57 1166.22 1165.68 3.72
58 968.26 967.53 719.61
59 570.95 404.02 51449.86
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Figure 6.2: All model state dynamics corresponding to estimated parameters and
initial conditions for Patient 5.
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8: Patient Number 8

0 200 400 600 800 1000 1200 1400 1600 1800
10

−5

10
0

10
5

10
10

time (days)

V
ira

l R
N

A
 c

op
ie

s/
m

l

Figure 6.3: Model fit to CD4+ T-cell data (top) and viral load data (bottom) for
Patient 8. Crosses denote data and solid line, model evaluated with estimated pa-
rameters. Underlying thick solid line indicates constant treatment.
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Figure 6.4: All model state dynamics corresponding to estimated parameters and
initial conditions for Patient 8.
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6.2 Estimation of Distributions

In this section we present results on the distribution of parameters across the pop-

ulation, comparing distributions of parameter estimates from the individual-patient

method to direct estimates of distributions across the population with the density

estimation method. To employ the latter method, we fix for each patient all but one

parameter at estimated values, then assume the remaining parameter varies across

the population and attempt to estimate its distribution. Instead of each patient’s

observed viral RNA data we use the best estimate of censored data points from the

previous estimation process.

In Figures 6.5 and 6.6 we have results for each of the 11 estimated parameters.

Histograms comprise the individual parameter estimates while solid lines denote the

estimated probability densities. In some cases, e.g., parameters λ1, ǫ1, bE, V 0
I , there

seems to be similarity between the predictions of the single- and multiple-patient

methods. In most of the other cases, different distributions are suggested by the

two methods. Given the small amount of data (NP = 59) available here, it is not

reasonable to conclude which of these estimates provide a better estimate of the true

distribution across the population.

Intervals were initially chosen to roughly span the estimates from the individual

patient method. Prompted by the number of cases in Figures 6.5 and 6.6 in which

the ends of the splines are nonzero (and in some cases the nodal values at the interval

boundaries are quite large), we test the effect of several factors on the estimation pro-

cess. As indicated in the computational methods section, the optimization is robust

to choice of initial iterate for the spline coefficients dk. In addition to the uniform

distribution, initial iterates represented schematically in Figure 6.7 (and chosen to

integrate to one) all yield convergence to the same optimal parameter values. (This
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includes initial iterates like that in the rightmost subplot with the mode at various

locations in the interval.)

It is possible that the inverse problem is hindered by a lack of data and the

requirement that the estimated function integrate to one is causing the minimum

of the quadratic cost function to occur when mass is placed arbitrarily near the

boundaries (perhaps where sensitivity is less). However, removing the requirement

that the density integrate to one only slightly affects the estimates. In fact, they still

integrate nearly to one (0.96–0.99) in all cases considered. Requiring that the ends

of the splines be exactly zero also does not affect this arbitrary mass placement; it

simply results in a bump in the spline estimate at the second node in from the end

of the interval.

Finally, we experiment with moving the boundaries, since when working with

experimental data it is not known where the interval of consideration should lie.

Moving them by 10% yields similar results. The densities estimated in the interior of

the interval remain similar, with boundary effects as discussed previously.

In Figures 6.8 and 6.9 we present the same parameter distribution results, but

include nodal confidence intervals on the estimated probability density functions.

The confidence intervals were calculated using the ad hoc estimates of σ̂s from (4.14),

and show considerable variability across parameters considered. With parameters

NT and bE we have more confidence in the shape of the distribution, but in most

cases cannot reasonably conclude the exact form. We see the potential effects of over-

regularization in the plot for T 0
1 , where the regularization has smoothed the estimate,

but also likely biased it. However, since the inverse problem is better posed with

regularization, the confidence intervals are tighter for this distribution.
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Figure 6.5: Histograms showing distribution of estimated values of various parameters
across a population of patients from clinical data set PS59. Solid blue lines denote
piecewise linear density estimates obtained from the multiple-patient inverse problem
method.
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Figure 6.6: Histograms showing distribution of estimated values of various parameters
across a population of patients from clinical data set PS59. Solid blue lines denote
piecewise linear density estimates obtained from the multiple-patient inverse problem
method.
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Figure 6.8: Histograms showing distribution of estimated values of various parameters
across a population of patients from clinical data set PS59. Solid blue lines denote
piecewise linear density estimates obtained from the multiple-patient inverse problem
method.
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Figure 6.9: Histograms showing distribution of estimated values of various parameters
across a population of patients from clinical data set PS59. Solid blue lines denote
piecewise linear density estimates obtained from the multiple-patient inverse problem
method.



Chapter 7

Conclusions and Future Directions

We developed a combined mathematical and statistical modeling approach for ana-

lyzing clinical data from an HIV acute infection study. Using an example system of

differential equations to model in-host HIV infection dynamics we examined a method

to estimate distributions of model parameters across a patient population, without

prior presumption of the distributional form. After summarizing theory for the well-

posedness of such inverse problems, we verified the method on simulated data. In

the context of this model, we implemented the EM Algorithm for maximum likeli-

hood estimation to handle patient measurements censored by assay resolution limits

and again tested with simulated data. For each of these processes we developed and

applied methods for estimating variability of the resulting parameter estimates by us-

ing sensitivity analysis to calculate confidence intervals. Finally we presented sample

results for the application of these methods to actual clinical data.

Experiments with simulated data, generated to reflect clinical reality, reveal that

the density estimation methods considered are capable of identifying underlying dis-

tributions of parameters from noisy observations of the dynamic model’s behavior.

Even with a modest number of virtual patients the methods yield insight into the
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form of the distribution. In certain cases, these methods offer computational bene-

fits over traditional individual-based inverse problem approaches, since one directly

estimates a population level distribution without the need for fitting each individual

and then aggregating and analyzing the results.

In addition to enabling fitting observed patient data, the censored data method

produces important estimates of patient behavior when measurements are below the

limit of detection. Most HIV patients who successfully suppress virus while on drug

therapy immediately have a viral rebound when on drug holiday and the model can

predict this. The censored data method allows us to calibrate the dynamic model

to gain insight into the possible dynamics of the virus during periods of suppression.

This is one way to explain patient behavior in this extremely data-limited setting. It is

possible that due to the small quantities of virus believed present during suppression,

models including stochastic effects may be more representative. Regardless of the

modeling approach chosen, more data is needed to soundly validate any theory as to

the true dynamics in this regime.

As implemented, the censored data method produces high estimates of variability

in patient data, especially for viral load measurements. Since we observe this for

simulated data as well, further testing may be warranted to validate the method.

We demonstrated the construction of piecewise linear confidence bands (based on

nodal standard errors) on the probability density function estimates. While computa-

tionally one might be satisfied with the nodal confidence intervals presented, as they

closely relate to the estimated quantities (spline coefficients), a more sophisticated

theory would involve true L2(Q) functional confidence intervals. Such functional

confidence intervals would be constructed to contain the true density function with

confidence (almost) everywhere, rather than just at the nodes. (See [28] and [52]

for some examples of methods developed to construct functional confidence intervals
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of a similar sort in the context of smoothing splines.) A future goal is to develop

functional analytic theory for the abstract case where the inverse problem operator

is considered as a map from a smooth L2(Q) density function to the data and try

to develop confidence intervals formulations based on its pseudoinverse map. Then

one could verify if the sort of piecewise linear band approximations considered here

converge to the smooth confidence intervals.

While we estimated parameters from patient data, it is not clear that the viral and

T-cell dynamics suggested by the calibrated model are realistic in all cases. Further

work is necessary to refine the parameter estimates obtained. Ideally, this would be

done in the context of richer data. Some immune response data are available, but

they typically summarize responses to specific HIV epitopes, so work must be done

to correlate them to the E immune response compartment in the model. Even more

useful would be the development of more detailed models of the mechanisms of HIV-

specific immune responses, including modeling of activation and differentiation and

the role of helper cells in the establishment of memory pools of immune responders.

The model also includes a secondary cell population for which we have no observa-

tional data. Since in the model these secondary compartments are responsible for the

persistent low level virus property, acquiring additional data to validate them should

be a high priority.
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Appendix A

Model Fits to Clinical Data

The following plots contain the model fits to data obtained for each of the 59 patients

in PS59. For each patient, the top graph shows CD4+ T-cell data and the bottom,

viral load data. Model solutions evaluated at optimal parameters are plotted with

solid lines, blue crosses denote observed data, and magenta circles, the estimated

values for censored data points. On-treatment periods are indicated with a thick

solid green line and off periods by a thin red dashed line under the data. We achieve

reasonable fits to patient data in most cases.
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19: Patient Number 21
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20: Patient Number 23
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21: Patient Number 24
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22: Patient Number 25
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23: Patient Number 26
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24: Patient Number 27
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25: Patient Number 29
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26: Patient Number 30
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27: Patient Number 31
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28: Patient Number 32
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29: Patient Number 33
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30: Patient Number 34
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31: Patient Number 36
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32: Patient Number 37
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33: Patient Number 39
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34: Patient Number 41
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35: Patient Number 42
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36: Patient Number 43
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37: Patient Number 45
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38: Patient Number 46
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39: Patient Number 47
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40: Patient Number 50
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41: Patient Number 51
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42: Patient Number 52
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43: Patient Number 54
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44: Patient Number 55
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45: Patient Number 58
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46: Patient Number 60
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47: Patient Number 61
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48: Patient Number 63
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49: Patient Number 64
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50: Patient Number 65
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51: Patient Number 66
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52: Patient Number 69
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53: Patient Number 70
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54: Patient Number 75
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55: Patient Number 76
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56: Patient Number 81
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57: Patient Number 82
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58: Patient Number 84
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59: Patient Number 94
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