
Abstract

NEALIS, JAMES MATTHEW. Model-Based Robust Control Designs for High Per-

formance Magnetostrictive Transducers. (Under the direction of Ralph C. Smith.)

The increasing employment of smart structures in industrial, automotive, aerospace,

and aeronautic processes necessitates the study of materials exhibiting constitutive

nonlinearities and hysteresis. The high performance and high speed demands of such

processes can often be met by transducers utilizing piezoceramic, shape memory alloy,

or magnetostrictive elements.

Here, the focus is placed on magnetostrictive materials. These materials provide

several benefits such as the ability to generate large forces and strains and provide

precision placement. However, to achieve the full potential of magnetostrictive ma-

terials, models and control laws which accommodate the inherent nonlinearities and

hysteresis must be employed. Furthermore, it is advantageous to consider material

characterization, model development, and control design simultaneously to fully ex-

ploit unique sensor and actuator capabilities of these magnetostrictive materials in

coupled systems. An emphasis has been placed on the design of models for magne-

tostrictive transducers and control strategies that are implementable in real time and

incorporate realistic operating conditions.

To this end, models of the nonlinearities and hysteresis exhibited by magnetostric-

tive materials are developed considering not only accuracy, but the computational



efficiency and the existence of an inverse or partial inverse as well. To attenuate the

nonlinear and hysteretic behaviors, we employ the inverses of the material models as

filters of the input to the transducer. The models describing the nonlinearities and

hysteresis for the smart materials, contain several material dependent parameters

which must be identified in order to effectively utilize resulting inverse compensators.

A nonlinear adaptive parameter estimation algorithm is developed to identify non-

linearly occurring parameters which may not be identified by physical measurements

or may be slowly varying. This method can be utilized during the control process

and requires no additional data collection.

Once an inverse filter has been developed and the material parameters identified,

feedback control laws are designed to meet the performance specifications. A success-

ful controller must provide accurate tracking of a reference signal while accommo-

dating the hysteretic behavior and other external disturbances such as sensor noise.

Several initial feedback control methods are considered including a linear adaptive

control method, PID control, and optimal LQR control, to motivate the investigation

of robust control designs. Robust techniques including H2 and H∞ optimal control as

well as multiple objective control designs are employed to control a magnetostrictive

transducer and the performance is illustrated through simulations. We demonstrate

the techniques on a magnetostrictive transducers but they are sufficiently general to

be extended to several commonly used smart materials.
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Chapter 1

Introduction

Smart materials are increasingly utilized for a variety of applications, including tun-

able lenses, modular antennas, atomic force microscopes, and high speed milling.

Materials such as piezoceramics (PZT), magnetostrictives, and shape memory alloys

(SMA) are appropriate for such applications because of their set point accuracy and

high stress outputs. However, these materials exhibit hysteresis and constitutive non-

linearities which must be accommodated to achieve the performance specifications for

high performance applications. At low frequencies and moderate drive levels, these

effects can often be mitigated through feedback loops. At high drive levels or high

frequencies, however, the hysteresis and nonlinear dynamics must be incorporated

into models and subsequent control designs.

Figure 1.1a depicts the hysteretic relationship between applied magnetic fields

and resulting magnetization exhibited by the magnetostrictive material Terfenol-D.

To employ transducers exhibiting the nonlinear and hysteretic behavior illustrated in

Figure 1.1a, the inherent hysteresis must be accommodated in the control design. If

hysteresis in a smart material transducer is not accommodated, it can induce a phase

delay in the response of the actuator. This phenomena is illustrated in Figure 1.1b

for an open-loop simulation of a Terfenol-D transducer.

1
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Figure 1.1: (a) Inherent hysteretic behavior, and (b) phase delay caused by the
inherent hysteresis in a magnetostrictive material.

One method of attenuating the nonlinear and hysteretic behavior of these ma-

terials is to develop an inverse model. Once an inverse is derived from the hysteresis

model, it may be employed as a filter to the input of the actuator in the control

system, as depicted in Figure 1.2. This method requires a hysteresis model which

allows an inverse that can be calculated in real-time. In Figure 1.2, the hysteretic

actuator is represented by H(s) and a linear plant is denoted by P (s). The inverse

compensator is denoted by Ĥ−1(s) and r is the desired position of the tip of the rod.

In all of the control designs presented, some form of inverse compensation will be

utilized.

−

Compensator Plant and
Actuator

r

Inverse

yu
K H(s)(s)H

−1 (s)P

Figure 1.2: Control system incorporating inverse compensator method.
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The models, which describe the nonlinearities and hysteresis for the smart materi-

als, contain several material dependent parameters which must be identified in order

to effectively utilize resulting inverse compensators. Additionally, material parame-

ters in the models may slowly vary as a result of changes in the operating conditions

such as temperature or creep. It is desirable to identify the material parameters

during the operation of the transducer as opposed to applying off-line parameter esti-

mation algorithms such as least square fits to data. A method capable of continuous

or periodic estimation of nonlinearly occurring parameters in the hysteresis models

ensures that the inverse compensators based on the hysteresis models continue to

provide adequate attenuation of the hysteretic behavior in the smart system.

Once an inverse compensator has been designed and a method for identifying

the material parameters in the transducer model has been developed, a control law

must be designed to meet the given performance criteria. While forcing the smart

transducer to track a reference signal is often the primary objective, it is beneficial to

design the controller to be robust with respect to inherent disturbances in our system.

For example, the models developed to describe the nonlinear and hysteretic behavior

are not exact descriptions of the physical phenomena. Therefore, even with an inverse

filter, we will not accommodate the nonlinear and hysteretic behavior entirely. The

resulting error represents a disturbance to the input of the transducer. Furthermore,

sensor noise is always present in the measurement of the transducer outputs. This

must be attenuated so that the controller does not feedback on noise.

To focus the investigation, we consider a prototypical magnetostrictive actuator

as illustrated in Figure 1.3. Terfenol-D is a magnetostrictive material which contains

magnetic moment that rotate in response to an applied magnetic field. The rotation

of moments induces a strain in the Terfenol-D, thereby causing a displacement in the

tip of the rod. The magnetic field is applied by means of a current running through a
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Figure 1.3: Prototypical magnetostrictive transducer.

wire solenoid. The magnetic field can be biased by the inclusion of a permanent mag-

net surrounding the Terfenol-D rod. This permanent magnet may also be designed

to minimize the end effects of the magnetic field for reasons detailed in Chapter 3.

The rod is fixed on one end and a spring washer is attached to the free end to provide

a prestress. While the techniques in this dissertation are described in the context

of a magnetostrictive transducer, they are sufficiently general to be applied to fer-

roelectrics as well as ferroelastics under certain conditions. This provides a unified

approach to the control of many smart structures.

Three models quantifying the inherent hysteresis in magnetostrictive materi-

als and their corresponding inverse compensators are summarized in Chapter 2. In

Chapter 3, the hysteretic behavior of the magnetostrictive material is incorporated

in the full model for the Terfenol-D transducer depicted in Figure 1.3. Under certain

assumptions, it will be shown that the transducer can be modeled as a linear plant

with a nonlinear hysteretic input. Chapter 4 describes a nonlinear adaptive parameter

estimation algorithm capable of identifying nonlinearly occurring material parame-

ters in the hysteresis models. The advantages and disadvantages of some preliminary

control techniques utilizing inverse compensators are summarized in Chapter 5. The
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deficiencies of the methods discussed in Chapter 5 motivates the investigation of ro-

bust control methods employing inverse compensations summarized in Chapter 6. A

summary of the dissertation and directions for future work are stated in Chapter 7.



Chapter 2

Hysteresis Models

This chapter summarizes three constitutive models for hysteretic behavior in smart

materials, namely a domain wall model, a Preisach model and a free energy model.

Each model possesses benefits and drawbacks which will be noted during the discus-

sion. While analogous models exist for ferroelectric and ferroelastic materials, the

models here will be summarized in the context of magnetostrictive materials.

2.1 Domain Wall Model

In this section, we describe the domain wall model quantifying the hysteretic relation-

ship between an applied magnetic field H and the magnetization M in a Terfenol-D

rod. The premise of this model is that one source of hysteresis in ferromagnetic mate-

rials can be attributed to the impediment of motion of domain walls that are pinned at

defects or inclusions in the material. A domain denotes a region where the magnetic

moments have the same orientation and the domain walls are the transition areas

between domains. Domain wall theory was developed for ferromagnetic materials by

Jiles and Atherton [8] and extended to Terfenol-D transducers in [5]. Analogous the-

ory was developed for ferroelectric materials in [20, 22] and ferroelastic compounds

6



Chapter 2. Hysteresis Models 7

in [21]. As illustrated in [21], this then provides a unified framework for quantifying

constitutive nonlinearities and hysteresis in a broad class of ferroic compounds.

The development which follows is only an overview and much of the underlying

physics will be omitted. For more detailed description of the domain wall theory, we

refer the reader to [5].

The domain wall model for the magnetization produced by an imposed magnetic

field will be developed in three steps; (i) quantification of the anhysteretic magneti-

zation Man, (ii) quantification of the irreversible magnetization Mirr and (iii) quan-

tification of the total magnetization M .

Physically, Man can be interpreted as the magnetization obtained when no inclu-

sions or imperfections are present. As detailed in [8], the anhysteretic magnetization

in the absence of applied stress is dependent on the effective field given by

He = H + αM. (2.1)

Here α quantifies the effects of the interdomain coupling.

Thermal and magnetostrictive energy are subsequently balanced using Boltzmann

principles to specify the probability that a dipole will occupy a certain energy state.

Under two different assumptions on the orientation of the dipoles, two models for the

anhysteretic magnetization can be derived. Under the assumption that the dipole can

only orient in the direction of or opposite to an applied field, the Ising spin relation

Man = Ms tanh

(
He

a

)
(2.2)

is obtained. Here Ms is the saturation magnetostriction and a is a temperature de-

pendent coefficient. If the dipoles have equal probability of orienting in any direction,
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Figure 2.1: Ising spin model of anhysteretic magnetization.

we arrive at the Langevin model which is given as

Man = Ms

(
coth

(
He

a

)
− a

He

)
. (2.3)

Taylor expansion of these two expressions shows that they are equivalent through

third order terms. The Ising model of the anhysteretic magnetization (2.2) is illus-

trated in Figure 2.1.

The anhysteretic relations can be utilized to model magnetization at low drive lev-

els but do not include the energy loss due to the movement of domain walls and thus

can not model high drive levels. To quantify the total magnetization, it is necessary

to incorporate the reversible magnetization Mrev and the irreversible magnetization

Mirr. Reversible magnetization occurs when applied field levels are sufficiently small

that domain walls remain pinned while the irreversible component represents the

movement of pinning sites which occurs at higher drive levels. Now, Mirr can be

quantified as the anhysteretic component minus the loss required to break pinning

sites:

Mirr = Man − k
∂Mirr

∂He

(2.4)
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where k is a measure of the average energy required to translate a pinning site. This

relation can be reformulated in terms of the applied field as

∂Mirr

∂H
= δ̂

Man −Mirr

kδ − α(Man −Mirr)
(2.5)

where δ = sign(dH) ensures that pinning opposes change in magnetization. The

switch δ̂ is 0 if dH > 0 and M > Man or dH < 0 and M < Man and 1 otherwise.

This is necessary to model the physical observation that, after a field reversal, the

changes in magnetization are purely reversible until the anhysteretic value is reached.

The reversible magnetization is given by the algebraic relationship

Mrev = c(Man −Mirr) (2.6)

where c is a material parameter which quantifies the reversibility of the material. The

total magnetism is the sum of the reversible and irreversible magnetizations which

yields

M = (1− c)Mirr + cMan. (2.7)

The relation (2.7) can be reformulated as a differential equation

∂M

∂H
= F (H,M) (2.8)

M(H0) = M0

where

F (H,M) =
1

1 + cα ∂
∂H

Man

[
δ̂

Man −M

kδ − α̂(Man −M)
+ c

∂

∂H
Man

]
(2.9)

with α̂ =
α

1− c
. The anhysteretic magnetization Man can be taken as either the Ising

model (2.2) or the Langevin model (2.3). The material parameters in the domain wall
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Figure 2.2: Domain wall model of magnetization.

model, which we will employ for the Terfenol-D sample, were estimated by a least

squares fit to data as detailed in [5] and are given in Table 2.1. The domain wall

model is illustrated in Figure 2.2.

2.1.1 Domain Wall Model Inverse

Since the domain wall hysteresis model can be formulated as a differential equation,

the inverse can be formulated as a complementary differential equation as seen in

[4, 16, 19]. The inverse of the domain wall hysteresis model is given as

∂M−1

∂H
=

1

F (M−1, H)
(2.10)

M−1(H0) = M−1
0 .

Ms α c a k
7.65× 105A/m −0.01 0.18 7012A/m 4000A/m

Table 2.1: Parameters for the domain wall model.
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Figure 2.3: Inverse of the domain wall model given by (2.10).

The full inverse of the domain wall model is illustrated in Figure 2.3. Computing

the full inverse of the domain wall model requires highly accurate initial conditions

and is difficult to employ in a real-time control setting. These impediments motivate

the introduction of a partial inverse which can be employed as a filter to attenuate

the nonlinear effects of the Terfenol-D transducer in real-time. A partial inverse is

formulated by inverting the anhysteretic component (2.2) or (2.3) of the magnetiza-

tion. Because of the ease of inversion, we utilize the Ising model (2.2); which yields

the partial inverse

[H(M)](t) = a · tanh−1(M/Ms)− αM. (2.11)

The partial inverse is appropriate for control design because it can be implemented

algebraically and therefore requires very little computation effort. Figure 2.4a depicts

the partial inverse compensator. The partial inverse is able to attenuate much of the

nonlinear behavior of the material but does not compensate for the inherent hysteresis.

The effects of employing the partial inverse filter are illustrated in Figure 2.4b. If this

partial inverse is employed in a control strategy, the control law must attenuate the

phase delay due to uncompensated hysteresis to adequately track a reference signal.
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Figure 2.4: (a) Partial inverse compensator, and (b) the effects of partial inverse
compensation in reducing saturation nonlinearities.

2.2 Preisach Model

The second technique for qualifying hysteresis is based on a piecewise linear, general-

ized Preisach model. Preisach models suffer from the disadvantage that, because they

are not based on energy formulations, they can have a large number of nonphysical

parameters which are difficult to correlate with properties of the data. Furthermore,

extensions to the theory must be employed to accommodate reversible effects, fre-

quency dependencies and temperature dependencies. However, due to their rigorous

mathematical foundations [1, 25], Preisach models lend transducers to the develop-

ment of a linear adaptive control technique as will be discussed in Section 5.1. The

model and a corresponding inverse model described in this section were developed by

Tao and Kokotović (see [10, 11]).

The hysteresis model is parameterized by the constants mt, ct, mb, cb, mr, cr, ml,

cl and the major loop can be described as two half lines
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Figure 2.5: Preisach straight line hysteresis model.

M(t) = mtH(t) + ct for H(t) > H1 =
ct + mlcl

ml −mt

M(t) = mbH(t) + cb for H(t) > H2 =
cb + mrcr

mr −mb

(2.12)

and two line segments

M(t) = mr(H(t)− cr) for H2 ≤ H(t) < H3 =
ct + mrcr

mr −mt

M(t) = ml(H(t)− cl) for
cb + mlcl

ml −mb

= H4 < H(t) ≤ H1

(2.13)

where H(t) is the applied magnetic field and M(t) is the resulting magnetization.

While the model is sufficiently general to accommodate asymmetric hysteresis, the

hysteretic behavior of the Terfenol-D transducer is symmetric, therefore mt = mb, ct =

−cb, mr = ml and cr = −cl. Periodically throughout the model description, sim-

plifications in the model due to symmetry will be noted. The Preisach straight line

model is depicted in Figure 2.5.
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The value of the time derivatives of M(t) and H(t) are constant along the two line

segments. For example, Ḣ > 0 and Ṁ > 0 for the segment M(t) = mr(H(t) − cr)

and Ḣ < 0 and Ṁ < 0 for the segment M(t) = ml(H(t)− cl). Similarly, on the half

line M(t) = mtH(t)+ ct, Ḣ < 0 and Ṁ < 0 if H(t) < H3 but Ḣ and Ṁ need only be

the same sign if H(t) > H3. For the half line M(t) = mbH(t) + cb, Ḣ > 0 and Ṁ > 0

if H(t) > H1 but Ḣ and Ṁ need only be the same sign if H(t) < H1.

A situation which arises that has yet to be modeled is if Ḣ changes sign before a

‘corner’. This forces an inner loop in the hysteresis as depicted by the dashed lines

in Figure 2.5. The inner loop can be described as

M(t) = mtH(t) + cd(t) for Ḣ < 0

M(t) = mbH(t) + cu(t) for Ḣ > 0
(2.14)

where cd(t) and cu(t) are the turning points for the downward and upward inner loop

segments, respectively.

While the model can be stated as a continuous time model, to facilitate the de-

scription of the hysteresis output we shall consider the discretization of the continuous

system. This is reasonable as the model must be implemented discretely. The turning

points can be quantified as

cd(tk) = M(tk−1)−mtH(tk)

cu(tk) = M(tk−1)−mbH(tk).
(2.15)

For a symmetric hysteresis, cd = cu.

Next, we define the ‘H’ coordinates of the start of an inner loop as

Hd =
mlcl + cd

ml −mt

, Hu =
mrcr + cu

mr −mb
(2.16)



Chapter 2. Hysteresis Models 15

where H4 ≤ Hd ≤ Hu ≤ H3. The Presiach hysteresis model can now be defined as

M(tk) =



M(tk−1), if H(tk) = H(tk−1)

mtH(tk) + ct, if H(tk) ≥ H3, or if mt < mb,

M(tk−1) = mtH(tk−1) + ct

and H(tk−1) < H(tk) < H3

mbH(tk) + cb, if H(tk) ≤ H4 or if mt > mb,

M(tk−1) = mbH(tk−1) + cb

and H4 < H(tk) < H(tk−1)

mtH(tk) + cd, if Hd < H(tk) < H(tk−1)

mbH(tk) + cu, if H(tk−1) < H(tk) < Hu

ml(H(tk)− cl), if Hd ≥ H(tk) ≥ H4

mr(H(tk)− cr), if Hu ≤ H(tk) ≤ H3 .

(2.17)

One concern in the above model is the definition of the inner loops. The values

of cd, cu, Hd and Hu must be calculated if Ḣ changes sign before a ‘corner’ and

the input signal must be examined relative to Hd and Hu to determine the output

of the hysteresis model. The material parameters for the Terfenol-D sample in the

Preisach straight line hysteresis model are given in Table 2.2. The parameters em-

ployed in the Preisach model were identified by fitting the Preisach model to the

domain wall model (2.8) employing the parameters given in Table 2.1. A comparison

of the Preisach model and the domain wall model can be seen in Figure 2.6.

mt = mb ct = −cb mr = ml cr = −cl

1.48 7.1 ×105 41.82 3.14 ×103

Table 2.2: Parameters for the Preisach model.
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Figure 2.6: Comparison of Preisach model and domain wall model.

2.2.1 Preisach Inverse

An inverse of the Preisach straight line can be constructed in order to cancel the

effects of the hysteresis (see [10, 11]). To construct an exact inverse, the model would

again be parameterized by mt, ct,mb, cb,mr, cr,ml, and cl, but as we are developing

this inverse to be utilized as a compensator in a linear adaptive control algorithm,

it is advantageous to develop a tunable approximate inverse parameterized by m̂t(t),

ĉt(t), m̂b(t), ĉb(t), m̂r(t), ĉr(t), m̂l(t), and ĉl(t). This approximate inverse converges

to the exact inverse as the parameter estimates converge to the exact parameters of

the hysteresis model. For the remainder of the model development, we will denote

m̂∗(t) as m̂∗.

We denote the input to the approximate hysteresis inverse model as Md(t) and

the output as H(t). Proceeding in the manner used when constructing the hysteresis

model, the approximate inverse can be defined by two half lines

H(t) =
1

m̂t

(Md(t)− ĉt), for Md(t) > M1 =
m̂l(m̂tĉt + ĉt)

m̂l − m̂t

H(t) =
1

m̂b

(Md(t)− ĉb), for Md(t) < M2 =
m̂r(m̂bĉr + ĉb)

m̂r − m̂b

(2.18)
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and two line segments

H(t) =
1

m̂r

Md(t) + ĉr, for M2 ≤ Md(t) ≤ M3 =
m̂r(m̂tĉr + ĉt)

m̂r − m̂t

H(t) =
1

m̂l

Md(t) + ĉl, for
m̂l(m̂bĉl + ĉb)

m̂l − m̂b

= M4 < Md(t) ≤ M1.

(2.19)

The approximate hysteresis inverse has conditions on the derivatives of Md and H sim-

ilar to the hysteresis model. For example, Ṁd > 0 and Ḣ > 0 for H(t) =
1

m̂r

Md(t) + ĉr

and Ṁd < 0 and Ḣ < 0 for H(t) =
1

m̂l

Md(t) + ĉl. For H(t) =
1

m̂t

(Md(t)− ĉt), Ṁd < 0

and Ḣ < 0 if Md(t) < M1. If Md(t) > M1 the derivatives need only have the same

sign. A similar result is true of the other half line as depicted in Figure 2.7.

Again we define the discrete form of the model for implementation purposes. To

keep track of an inner loop, we define

ĉd(tk) = Md(t)− m̂tH(tk−1)

ĉu(tk) = Md(tk−1)− m̂bH(tk−1)

(2.20)

which are the ‘Md’ intercepts for the inner loops. For the symmetric case, m̂t = m̂b

thus ĉu is redundant. Now define

Mdr(tk) =


m̂r(m̂tĉr + ĉd)

m̂r − m̂t

, if Md(tk−1) > Md(tk)

m̂r(m̂bĉr + ĉu)

m̂r − m̂b

, if Md(tk−1) < Md(tk)

(2.21)

Mdl(tk) =


m̂l(m̂tĉl + ĉd)

m̂l − m̂t

if Md(tk−1) > Md(tk)

m̂l(m̂bĉl + ĉM)

m̂l − m̂b

if Md(tk−1) < Md(tk)

(2.22)
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Figure 2.7: Approximate hysteresis inverse model.

which are the points where the inner loop begins. Again, we could simplify the ex-

pression by invoking symmetry properties.

The discrete inverse Preisach hysteresis model for a given input Md(tk) and re-

sulting output H(tk) is then given by

H(tk) =



H(tk−1), if Md(tk) = Md(tk−1)

1

m̂t

(Md(tk)− ĉt), if Md(tk) ≥ M3

1

m̂b

(Md(tk)− ĉb), if Md(tk) ≤ M4

1

m̂r

Md(tk) + ĉr, if M3 ≥ Md(tk) ≥ Mdr

1

m̂l

Md(tk) + ĉl, if M4 ≤ Md(tk) ≤ Mdl

1

m̂t

(Md(tk)− ĉd), if Mdl < Md(tk) < Mdr

and Md(tk−1) > Md(tk)

1

m̂t

(Md(tk)− ĉu), if Mdl < Md(tk) < Mdr

and Md(tk−1) < Md(tk).

(2.23)
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2.3 Free Energy Model

In this section a free energy model for the hysteretic relationship between an applied

magnetic field and the resulting magnetization inherent in the Terfenol-D transducer

is summarized. For a more detailed development of this model see [18, 21]. A ma-

jor benefit of this model over the domain wall and straight line Preisach models is

its ability to predict biased minor loops efficiently and accurately. Since we will be

applying feedback control methods to the Terfenol-D transducer, we often have no

a priori knowledge of the signal to be input into the transducer. Therefore, it is

advantageous to be able to model biased inner loops accurately. While the domain

wall model can predict symmetric inner loops it does not model biased inner loops

as accurately as the free energy model. The straight line Preisach model also does

a poor job of modeling biased inner loops. While classical Preisach models provide

the capability for accurately quantifying minor loop behavior, this accuracy typically

comes at the price of increased computational complexity.

The free energy model is based on the quantification of energy required to reorient

dipoles in combination with stochastic homogenization techniques to accommodate

variations in coercive and effective fields. The model summarized here assumes that

there is very little change in the operating temperature and, therefore, we treat the

temperature as fixed. The model also ignores losses due to eddy currents and, there-

fore, should be employed for low frequency drive levels.

A further assumption is that the spring washer in the transducer illustrated in

Figure 1.3 provides sufficient prestress to dominate the crystal anisotropies in the

Terfenol-D. Much like the domain wall model, the free energy formulation asserts

that the rotation of magnetic moments in the magnetostrictive material is impeded

by polycrystallinity and imperfections in the material. As a consequence, the mag-

netic moments do not rotate uniformly causing the nonlinear hysteretic behavior.
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(c) Moments rotate to easy axis (d) Moments rotate to align with field

Figure 2.8: For no applied field the magnetostrictive material is in a (a) demagne-
tized state, as the field increases (b) domains grow as moments being to rotate. For a
certain field level (c) all of the moments align with the easy axis and then, for further
increase in the applied field, (d) the moments rotate to align with the field.

Figure 2.8 illustrates the progression of magnetization due to an applied magnetic

field.

We first consider the Helmholtz energy which incorporates the internal energy

due to the interaction of moments. The model assumes that the moments have two

preferred orientation, namely in the direction of the stress-induced easy axis of the

Terfenol-D crystal and against it. Therefore, a double well potential can be employed

to approximate the Helmholtz free energy. Again, we are assuming isothermal con-

ditions, that crystalline anisotropies are negligible and that we are operating in the

ferromagnetic regime. Under these assumptions, statistical mechanics analysis [21]

indicates that a first order approximation to the potential behaves quadratically in

the neighborhood of the three equilibria. Therefore, we can formulate the Helmholtz
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Figure 2.9: (a) Gibbs energy G, and the corresponding (b) local magnetization M
for increasing field H.

free energy as

ψ(M) =



1

2
η(M + MR)2, M ≤ −MI

1

2
η(M −MR)2, M ≥ MI

1

2
η(MI −MR)

(
M2

MI

−MR

)
, |M | < MI .

(2.24)

As depicted in Figure 2.9, MR and MI respectively denote the point at which the

minimum of ψ occurs and the inflection point.

For an applied magnetic field H the Gibbs energy is given as

G = ψ −HM. (2.25)
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Note that the magnetostatic energy is given as ε = µ0HM where µ0 denotes the

magnetic permeability. The Gibbs free energy given in (2.25) can be interpreted as

incorporating µ0 into ψ for simplicity.

For a homogeneous material with the effective field taken as the applied field, the

local average magnetization is given by

M = x+〈M+〉+ x−〈M−〉 (2.26)

where x+ and x− denote the fraction of moments having positive and negative orienta-

tions, respectively. We denote the expected values of the magnetization for moments

having positive and negative orientations as 〈M+〉 and 〈M−〉, respectively. We can

quantify 〈M+〉 and 〈M−〉 by

〈M+〉 =

∫∞
M0

Me−G(H,M)V/kT dM∫∞
M0

e−G(H,M)V/kT dM
, 〈M−〉 =

∫ M0

−∞Me−G(H,M)V/kT dM∫ M0

−∞ e−G(H,M)V/kT dM
. (2.27)

Here e−G(H,M)V/kT represents the probability of obtaining an energy level G and the

denominator of (2.27) assures that the probability of integrating over all possible

magnetization values is 1. Here, M0 denotes the unstable equilibrium (see Figure 2.9),

V is the lattice volume, k is Boltzman’s constant and T is the temperature. For

implementation, MI can replace M0. This simplifies the approximation of the integrals

and is reasonable since the maximum restoring force occurs at MI and −MI . Also

if the thermal activation is reduced to zero the infection points and the unstable

equilibria coincide (see [18]).

The moment fractions satisfy the evolution equations

ẋ+ = −p+−x+ + p−+x−

ẋ− = −p−+x− + p+−x+

(2.28)
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where p+− and p−+ are the likelihoods of switching from positive to negative orienta-

tion and switching from negative to positive orientation, respectively. They are given

as

p+− =

√
kT

2πm

e−G(H,M0)V/kT∫∞
M0

e−G(H,M)V/kT dM
(2.29)

p−+ =

√
kT

2πm

e−G(H,−M0)V/kT∫ −M0

−∞ e−G(H,M)V/kT dM
(2.30)

where m is the mass of lattice volume V . The relation between the applied field H

and the magnetization M exhibits both hysteresis and nonlinear transition because

the local magnetization (2.26) is probabilistic. The steepness of the transition de-

pends on the ratio of GV to kT .

For operating regimes in which thermally activated relaxation processes are negli-

gible, we can employ the asymptotic analysis from [18] to obtain an algebraic formu-

lation for the local average magnetization. From the equilibrium condition
∂G

∂M
= 0,

we note immediately that H =
∂ψ

∂M
. Therefore, the local model predicts a linear

relationship between H and M with a slope of 1
η
. The local magnetization in this

limiting case is give as

[M(H; Hc, ξ)](t) =


[M(H; Hc, ξ)](0), τ(t) = Ø

H
η
−MR, τ(t) 6= Ø and H(max τ(t)) = −Hc

H
η

+ MR, τ(t) 6= Ø and H(max τ(t)) = Hc

(2.31)

where the transition points are specified as

τ(t) = {t ∈ (0, Tf ] | H(t) = −Hc or H(t) = Hc} (2.32)
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Figure 2.10: Varying field levels for the limiting case local average magnetization
M .

and the initial moment orientation is given as

[M(H; Hc, ξ)](0) =


H
η
−MR, H(0) ≤ −Hc

ξ, −Hc < H(0) < Hc

H
η

+ MR, H(0) ≥ Hc .

(2.33)

Here ξ denotes the initial magnetization of the points with field levels between −Hc

and Hc. The progression of several points in the limiting case definition is illustrated

in Figure 2.10.

In the previous discussion, we have assumed that the lattice structure is ho-

mogeneous and hence the domain structure is homogeneous. This implies that the

free energy profiles for the different regions of the Terfenol-D are identical. This

assumption is overly simple since it ignores material defects, polycrystallinity and

nonuniformities in the crystals. Also, the model assumed that the effective field at

the domain level is the same as the applied field. To remedy these over-simplifications,

the model incorporates stochastic distributions to develop a bulk magnetization model

for a nonhomogeneous Terfenol-D sample with nonconstant effective fields.
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Figure 2.11: Free energy variations for a nonhomogeneous domain structure and
the resulting variations in the local coercive field Hc.

We shall begin by summarizing the inclusion of a distribution of free energy pro-

files to accommodate material nonhomogeneities as developed in [18] and depicted

in Figure 2.11. The nonhomogeneities are included by assuming the parameters MR

and MI , or equivalently Hc = η(MR −MI), satisfy a normal distribution with mean

Hc. The total magnetization can then be given as

M(H) =

∫ ∞

0

M(H; Hc, ξ)f(Hc) dHc (2.34)

with density

f(Hc) = C1e
−(Hc−Hc)2/b. (2.35)

The parameters C1 and b are positive and M is given by (2.26) or (2.31).

The second extension entails the incorporation of variations in the effective field.

In the domain wall model, the effective field He given by (2.1) was assumed to have a

constant interaction coefficient. However, in the free energy model the effective field

is assumed to be normally distributed with mean H. Therefore, for a fixed coercive
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H 300A/m

Hc 7× 104A/m

b 1× 108A2/m2

b 8× 108A2/m2

η 14

MR 3.7× 104A/m

C1 6× 10−4

C2 4.2× 10−5

Table 2.3: Parameters for the free energy model.

field, the magnetization can be given as

M(H) =

∫ ∞

−∞
M(H; Hc, ξ)C2e

−(H−H)2/bdHdHc. (2.36)

Combining coercive field and effective field distributions for the full magnetization

of a nonhomogeneous polycrystalline sample of Terfenol-D with variable effective fields

yields the magnetization model

M(H) = C

∫ ∞

0

∫ ∞

−∞
[M(H + H; Hc, ξ)](t)e

H2

e−(Hc−Hc)2/bdHdHc. (2.37)

The model is sufficiently simple to allow the possibility of real time implementa-

tion and has a relatively low number of material dependent parameters. The material

parameters for the Terfenol-D sample are given in Table 2.3. These parameters were

estimated through a least squares fit to high drive level data in [18] and the free

energy model is shown against physical data collected from a Terfenol-D sample in

Figure 2.12. It is evident from this figure that the free energy hysteresis model pro-

vides an accurate description of the inherent hysteresis in a magnetostrictive material

including biased minor loop behavior and saturation nonlinearities.
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Figure 2.12: Validation of the free energy hysteresis model against Terfenol-D data.

2.3.1 Free Energy Model Implementation Algorithm

For numerical implementation of the free energy hysteresis model, the distributions for

the effective field and coercive field are evaluated using a composite quadrature rule.

Because of the exponential decay of the distributions, they can be truncated to speed

computation. Applying a quadrature method, equation (2.37) can be approximated

by

[M(H)](t) = C

Ni∑
i=1

Nj∑
j=1

[
M (Hj + H; Hci

, ξi)
]
(t)eH

2
j/be−(Hci−Hc)2/bviwj (2.38)

where the abscissas are denoted Hj and Hci
and vi and wj are the corresponding

quadrature weights. For H = 0 and M = 0, the initial moment distribution ξi

correspond to the quadrature points. An equivalent method to (2.31) to determine

whether the effective field value Hj has switched with respect to the coercive field

value Hci
is to specify the local magnetization as

M =
H

η
+ MR∆ (2.39)
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where ∆ = 1 if evaluating on the upper branch of the limiting case magnetiza-

tion (2.31) and ∆ = −1 if evaluating on the lower branch. For the approximation

(2.38), ∆ is a Ni×Nj matrix whose ijth component specifies whether Hj has reached

Hci
.

To state the numerical algorithm for determining the magnetization, we define

the following the weight vectors

W T =
[
w1e

−H2
1/b, · · · , wNj

e
−H2

Nj
/b

]
1×Nj

V T =
[
v1e

−(Hci−Hc)2/b, · · · , vNi
e
−(HcNi

−Hc)2/b
]

1×Ni

.

We also define the matrices

∆init =


−1 · · · 1 1 · · · 1

...
...

...
...

−1 · · · 1 1 · · · 1


Ni×Nj

Hc =


Hc1 · · · Hc1

...
...

HcNi
· · · HcNi


Ni×Nj

Hk =


Hk +H1 · · · Hk +HNj

...
...

Hk +H1 · · · Hk +HNj


Ni×Nj

O =


1 · · · 1

...
...

1 · · · 1


Ni×Nj

where Hk = H(tk) is the kth applied field value. Denoting the magnetization value

Mk ≈ M(Hk), we give the following algorithm for the implementation of the free

energy model.
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Algorithm 1.

∆ = ∆init

M̂ = MRO + 1
η
Hc

for k = 1 : Nk

M = 1
η
Hk + MR∆

dH = Hk −Hk−1

if dE > 0

∆ = sign(Hk −Hc). ∗ (M − M̂). ∗M

else

∆ = sign(Hk + Hc). ∗ (M + M̂). ∗M

end M = 1
η
Hk + MR∆

Mk = CW T MV

end

(2.40)

Here .∗ denotes componentwise matrix multiplication.

2.3.2 Inverse Energy Hysteresis Model

To construct an inverse compensator, the monotonicity of the hysteresis model is ex-

ploited. To determine the magnetic field required to create a desired magnetization,

the hysteresis model is advanced until the desired magnetization is surpassed. Then

the magnetic field is computed by a linear interpolation between the last two points.

The computational speed of the inverse compensator depends on the size of the step

taken in advancing the hysteresis model. Larger steps will increase the speed while

decreasing the accuracy of the inverse compensator. To facilitate real time control, a

larger step size is desired therefore the control method must be designed to reject a

significant amount of error in the linearization of the hysteresis.
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Figure 2.13: (a) Hysteresis linearization error and (b) relative error.

The linearization error for an input signal with a frequency of 1 Hz and a step

size of ∆H = 1 employed in the inverse model is plotted in Figure 2.13a. While the

error appears quite large, the relative error, illustrated in Figure 2.13b, is reasonable.

Any control design utilizing the free energy model inverse as a filter must be able to

reject this error to the input of the plant.

2.4 Concluding Remarks

This chapter summarized three models for the hysteretic behavior displayed by mag-

netostrictive materials and inverse compensators for each model. Although the mod-

els presented were developed to describe the inherent hysteresis in magnetostrictives,

all of the modeling techniques can be applied to several smart materials including

piezoceramics and, under certain conditions, shape memory alloys. The domain wall

model quantifies the energy required to rotate magnetic moments in the material and

assumes that one source of hysteresis is the impediment of motion of the moment

caused by domain walls. This model provides an accurate description of major loop
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behavior and of symmetric minor loop behavior but lack the ability to accurately

predict biased minor loop behavior in magnetostrictives. While the implementation

of the full inverse of the domain wall hysteresis model is difficult in real time, a partial

inverse can be constructed by inverting the anhysteretic component of the model.

The next model discussed is a straight line Preisach hysteresis model and the

corresponding inverse. The model is based on a linear kernel and therefore cannot

incorporate the nonlinearities displayed by magnetostrictive materials. One benefit

of this model is that its linear structure lends it to development of a linear adaptive

control technique described in Section 5.1.

The third, and most accurate model described, quantifies the energy required to

reorient the moments in the magnetostrictive material. This model utilizes stochastic

homogenization techniques to accommodate variation in coercive and effective fields.

Employing quadrature approximations, the model can be implemented algebraically

and from this implementation algorithm an inverse compensator can be developed.



Chapter 3

Full Transducer Model

The three models developed in the previous section quantify the hysteretic relation-

ship between an applied magnetic field and the resulting magnetization for a magne-

tostrictive material. In this section, the strains, forces and displacements generated

by the changes in magnetization for a prototypical magnetostrictive transducer, illus-

trated in Figure 1.3, are quantified.

3.1 Rod Dynamics

In the previous chapter, models for the relationship between the applied field H and

the magnetization M in a magnetostrictive material were described. However, the

magnetoelastic coupling which provides these materials with magnetostrictive proper-

ties was not addressed. In applications where stress anisotropies dominate crystalline

anisotropies, experimental evidence suggests there is a quadratic dependence of strain

on magnetization. This can be quantified, as detailed in [18], by the incorporation of

magnetoelastic coupling in the Helmholtz free energy relation

ψe(M, e) = ψ(M) +
1

2
Y e2 − Y γeM2 (3.1)

32
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and the corresponding Gibbs energy relation

G(H,M, e) = ψ(M) +
1

2
Y e2 − Y γeM2 −HM − σe (3.2)

where Y is the Young’s modulus, ψ(M) is given by (2.24) and γ is magnetoelastic

coupling coefficient. The equilibrium condition
∂G

∂e
= 0 is utilized to determine the

elastic constitutive relation

σ = Y e− Y γM2. (3.3)

This relationship quantifies the linear relationship between stresses σ and strains e in

the Terfenol-D rod as well as the nonlinear hysteretic dependence of the stress on ap-

plied fields H through the magnetization M . The magnetization may be modeled by

either the domain wall hysteresis model (2.8), the straight line Preisach model (2.17)

or the free energy hysteresis model (2.37).

The left end of the Terfenol-D rod (x = 0) is assumed to be fixed while the other

end (x = L) is constrained by a damped oscillator and has a point mass attached,

as depicted in Figure 3.1. The Kelvin-Voigt damping coefficient, density and point

mass are respectively denoted by cD, ρ, and ML. The damping spring has stiffness

kL and damping coefficient cL. The strains are given in terms of the longitudinal rod

displacement w by e =
∂w

∂x
.

The direct use of the constitutive relation (3.3) will yield an undamped model for

the Terfenol-D rod. We assume that stress is proportional to strain and strain rate

to incorporate Kelvin-Voigt damping . Thus, the stress at any point x, 0 ≤ x ≤ L, is

given by

σ(t, x) = Y
∂w

∂x
(t, x) + cD

∂2w

∂x∂t
(t, x)− Y γM2(t, x). (3.4)
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Figure 3.1: Rod model for Terfenol-D transducer.

The relation (3.4) is identical to the relation obtained in [7] if the coupling coeffi-

cient is defined as γ = λs/Ms with λs and Ms denoting the saturation magnetostric-

tion and saturation magnetization, respectively.

Balancing forces yields

ρA
∂2w

∂t2
=

∂Ntot

∂x
(3.5)

where A is the cross sectional area of the Terfenol-D rod and the resultant is specified

by

Ntot(t, x) = Y A
∂w

∂w
(t, x) + cDA

∂2w

∂x∂t
(t, x)− Y AγM(t, x)2. (3.6)

To obtain appropriate boundary conditions, we first note that w(t, 0) = 0. Balancing

forces at x = L gives

Ntot(t, L) = −kLw(t, L)− cL
∂w

∂t
(t, L)−ML

∂2w

∂x∂t
(t, L).

Initial conditions are taken to be w(0, x) = 0 and
∂w

∂x
(0, x) = 0.

To pose the PDE (3.5) in a form which facilitates approximation, we consider a

weak form of the model with a state space of X = L2(0, L) and the space of test
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Figure 3.2: Basis elements.

functions is taken to be V = H1
L(0, L) ≡ {φ ∈ H1(0, L) | φ(0) = 0}. Multiplication

of (3.5) by a test function followed by an integration by parts yields the weak form

∫ L

0

ρA
∂2w

∂t2
φdx = −

∫ L

0

[
Y A

∂u

∂x
+ cDA

∂2u

∂x
∂t− Y AγM2

]
∂φ

∂x
dx

−
[
kLw(t, L) + cL

∂w

∂t
(t, L) + ML

∂2w

∂t2
(t, L)

]
φ(L)

(3.7)

which must be satisfied for all φ ∈ H1
L(0, L).

3.1.1 Finite Element Method

For simulation and control implementation, it is necessary to discretize the infinite

dimensional model (3.7) in the manner described in [7]. A Galerkin discretization

in space is used to reduce equation (3.7) to a temporal system as detailed in [17].

Consider a uniform partition of [0, L] with interval length h = L/N . The spatial

basis {φi}N
i=1 is comprised of linear splines of the form

φi(x) =
1

h


(x− xi−1), xi−1 ≤ x ≤ xi

(xi+1 − x), xi ≤ x ≤ xi+1

0, otherwise

for i = 1, · · · , N − 1 (3.8)
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and

φN(x) =
1

h

 (x− xN−1), xN−1 ≤ x ≤ xN

0, otherwise.

Figure 3.2 depicts the basis elements (see [7] for details). The solution, w(t, x), of the

weak form (3.7) is approximated by

wN(t, x) =
N∑

j=1

wj(t)φj(x). (3.9)

Note that (3.9) satisfies wN(t, 0) = 0 and, since HN = span{φi}N
i=1 ⊂H1

L(0, L), can

attain arbitrary displacements at x = L.

The projection of problem (3.7) onto the finite dimensional subspace HN yields

the second-order semidiscrete system

Q~̈w(t) + C ~̇w(t) + K ~w(t) = ~f(t) (3.10)

where ~w(t) = [w1(t), · · · , wN(t)] and Q, C, and K, denoting the mass, stiffness, and

damping matrices, respectively, are defined as

[Q]ij =


∫ L

0

ρAφiφjdx i 6= N or j 6= N∫ L

0

ρAφiφjdx + ML i = N and j = N

[K]ij =


∫ L

0

Y Aφ′iφ
′
jdx i 6= N or j 6= N∫ L

0

Y Aφ′iφ
′
jdx + kL i = N and j = N
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[C]ij =


∫ L

0

cDAφ′iφ
′
jdx i 6= N or j 6= N∫ L

0

dDAφ′iφ
′
jdx + cL i = N and j = N .

The forcing vector ~f is defined as

[
~f(t)

]
i
=

∫ L

0

Y AγM2(t, x)φ′idx.

Letting ~y(t) =
[
~w(t), ~̇w(t)

]T

and

A =

 0 I

−Q−1K −Q−1C

 , ~F (t) =

 0

Q−1 ~f(t)

 (3.11)

the system in (3.10) can be written as

~̇y(t) = A~y(t) + ~F (t)

~y(0) = ~y0

(3.12)

where the 2N × 1 vector ~y0 denotes the projection of the initial conditions into the

approximation space. The response of the system (3.12) for several numbers of basis

elements is shown in Figure 3.3.

3.1.2 Linearized Model

A linear ordinary differential equation with a nonlinear hysteretic input has been

described in (3.12). To further simplify our system, we assert that the magnetization

of the Terfenol-D rod can be taken as uniform over the length of the rod. Hence,

H(t, x) = H(t) and subsequently M(t, x) = M(t). This is reasonable since in many

present actuator design, flux shaping via the surrounding magnet (see Figure 1.3) can
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Figure 3.3: Response of finite element method for (a) 4 basis elements, and (b) 256
basis elements plotted against the response for 2 basis elements.

be used to minimize end effects in the rod. This assumption allows us to formulate

the model for the dynamics of the rod as

~̇y(t) = A~y(t) + BM2(t)

~y(0) = y0 (3.13)

where A is given by (3.11) and B is given by

B =

 0

Q−1~v

 ~v =

 0

Y Aγ

 . (3.14)

To further simplify the dynamics of the Terfenol-D transducer we shall linearize

the magnetostrictive relationship about a biasing magnetization level M0. This is

motivated by the physical observation that transducers operating about a biased

field produced by the permanent magnet exhibit a nearly linear relation between

magnetization and strains for moderate drive level regimes. We can now approximate
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the forcing term ~f as ~βM(t) where

~βi =

 0, i 6= N

2Y AγM0, i = N.
(3.15)

Therefore, we can represent the dynamics of the Terfenol-D transducer by

~̇x(t) = A~x(t) + B̂M(t)

~x(0) = x0

(3.16)

where A =

 0 I

−Q−1K −Q−1C

, as previously defined, and B̂ =

 0

Q−1~β

. Since

only the displacement at the tip of the rod is observed, the observation vector is

taken to be C = [0, 0, . . . , 1, 0, . . . , 0] ∈ R2N . Note that the hysteretic behavior of the

transducer is still present in (3.16) by means of the hysteretic relationship between

the applied field H and the magnetization M .

3.2 ODE Model for Transducer Dynamics

Since a Galerkin approximation method was utilized, the matrix A and vector B̂ in

the linearized model (3.16) are dependent on the number of basis elements required

to achieve convergence. For transducer construction in which flux shaping via the

permanent magnet can be employed to reduce spatial variability in the rod, the PDE

rod model can be adequately approximated by an ODE elastic model. In this case,

the model for the Terfenol-D transducer is given by

ẍ + kẋ + cx = bM(t)

x(0) = 0 ẋ(0) = 0

(3.17)
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where the scalars k, c and b need to be determined by a fit to the Galerkin approxi-

mation (3.16) or experimental data. For the purposes of this dissertation, the ODE

model (3.17) is fit to the Galerkin approximation model (3.16).

The parameters in (3.17) are determined by means of the transfer function repre-

sentation. The transfer function for (3.17) is given as

Ĝ(s) =
b

s2 + ks + c
. (3.18)

Examination of the zeros and poles of the transfer function representation of the

finite element formulation (3.16) with various numbers of basis elements illustrated

that every pole is approximately a zero of the transfer function, with the exception

of two (see Table 3.1 and Table 3.2). Therefore, for any number of basis elements

the transfer function representation of (3.16) approximately represents a second order

ODE. Therefore, we need (3.18) to be equivalent to

G̃(s) =
q

(s− p1)(s− p2)
(3.19)

where p1 and p2 are the poles of the transfer function resulting from the finite element

formulation which are not effectively cancelled by a zero and q is the gain. In order

2 Basis Functions

Zeros Poles

−2.8392× 105 −2.9864× 105

−1.0365× 104 −1.0343× 104

−3.9450× 103 − 6.9777× 103i

−3.9450× 103 + 6.9777× 103i

Table 3.1: Zeros and poles of (3.16) utilizing 2 basis functions.
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Zeros Poles

−1.6826× 107 −1.6830× 107

−1.2424× 107 −1.2434× 107

−8.0409× 106 −8.0549× 106

−4.6985× 106 −4.7134× 106

−2.4298× 106 −2.4442× 106

−1.0088× 106 −1.0226× 106

−2.3472× 105 −2.4803× 105

−1.0445× 104 −1.0416× 104

−1.0100× 104 −1.0099× 104

−1.0041× 104 −1.0041× 104

−1.0021× 104 −1.0021× 104

−1.0012× 104 −1.0012× 104

−1.0006× 104 −1.0006× 104

−1.0008× 104 −1.0008× 104

−3.9430× 103 − 6.9770× 103i

−3.9430× 103 + 6.9770× 103i

Table 3.2: Zeros and poles of (3.16) utilizing 8 basis functions.

to achieve an accurate transfer function, the poles are obtained from the finite ele-

ment system with a sufficient number of basis elements to ensure convergence, namely

N = 32. The parameters k and c can be determined from p1 and p2. Determining

the gain b in (3.18) is not as simple as determining k and c due to the fact that the

similar poles and zeros do not exactly cancel. The gain b can be found utilizing an

optimization technique with the cost function being the maximum difference between

the response of (3.17) and (3.16) with the appropriate number of basis elements. A

Nelder-Mead simplex method was employed for this optimization and the parameters

employed in the ODE model of the transducer (3.17) are given in Table 3.3.
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Figure 3.4: Finite element verses spring model response.

Figure 3.4 illustrates the response of the damped spring mass model as compared

the finite element formulation for various basis sizes. The infimum of the absolute

value of the differences between the responses of (3.17) and (3.16) driven by a si-

nusoidal force are given in Table 3.4. The small errors validate the use of the ODE

model (3.17) to represent the dynamics of the Terfenol-D transducer if we can assume

the magnetostriction is uniform along the rod. This places the emphasis on the design

of the transducer to minimize end effects in the magnetic fields.

If the permanent magnet in the Terfenol-D transducer were not designed to mini-

mize the end effects of the magnetic field, the finite element model could be employed

in the subsequent control designs. The main difference being the number of states in

the transducer model would be greater which may increase the number of states in a

model-based controller.

b k c

1.3724× 10−2 7.8899× 103 6.4251× 107

Table 3.3: ODE model parameters for Terfenol-D transducer.
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N 2 4 8 16 32

Error 6.29× 10−8 1.62× 10−8 3.95× 10−9 8.48× 10−10 7.08× 10−11

N 64 128 256

Error 2.48× 10−10 2.96× 10−10 3.08× 10−10

Table 3.4: Maximum error between finite element model and ODE model.

3.3 Concluding Remarks

This chapter summarized techniques for modeling the forces, strains and displace-

ments in a prototypical magnetostrictive transducer. Under certain conditions on

the design of the transducer, the transducer can be accurately modeled as a second

order ODE. While the transducer model in this chapter is developed in the context

of a magnetostrictive material, namely Terfenol-D, the techniques can be applied to

model transducers incorporating many smart material including piezoceramics.



Chapter 4

Nonlinear Parameter Estimation

In Chapters 2 and 3, models describing a prototypical Terfenol-D transducer were

summarized. Both the domain wall and free energy models of the hysteretic be-

havior inherent in the magnetostrictive material have nonlinearly occurring material

dependent parameters. In this chapter, we develop an adaptive parameter estimation

method to determine these nonlinearly occurring parameters in an efficient manner.

The method proposed here requires only the measurement of the tip of the Terfenol-D

rod and can be employed in a control setting. This chapter utilizes the domain wall

model (2.8) but it is noted that this can also be employed to estimate parameters in

the free energy model (2.37).

Data fitting techniques to determine material parameters require a significant

amount of data and time and must be done prior to the activation of the transducer.

However, the parameter estimation techniques summarized here may be employed

while the transducer is operating and can provide either continuous or periodical

tuning of parameters which may vary during the operation. In particular, Ohmic

heating in the wire solenoid may affect the behavior of the inherent hysteresis in the

material and the parameter a in the domain wall model may need to be adjusted to

reflect this change. Figure 4.1 illustrates the affect of variations in the value of a.

44
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Figure 4.1: Domain wall hysteresis models for two values of a.

A significant difficulty in the development of nonlinear parameter adaptation tech-

niques is the fact that a gradient method is not always sufficient for a nonlinearly

occurring parameter. To illustrate, consider an error model of the form

ė = −ke + f(φ, θ)− f(φ, θ̂) (4.1)

where e is the tracking error, k > 0, φ is a measurable state, θ ∈ Rm is a vector

of nonlinearly occurring parameters , θ̂ ∈ Rm is the parameter estimates and f is a

nonlinear, scalar valued function. Consider the gradient update law

˙̂
θ = e∇fθ̂ (4.2)

where∇fθ̂ denotes the gradient of f with respect to θ̂. Choosing a standard Lyapunov

candidate

V =
1

2
(e2 + θ̃2) (4.3)
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where θ̃ = θ̂ − θ and substituting (4.2) into the derivative of (4.3) we obtain

V̇ = −ke2 + e
[
f(φ, θ)− f(φ, θ̂) + θ̂∇fθ̂

]
. (4.4)

Equation (4.4) indicates that if e < 0, we need ∇fθ̂(θ − θ̂) ≤ f(φ, θ) − f(φ, θ̂) to

ensure V̇ ≤ 0. This is true if f is convex with respect to θ. Likewise if e > 0, then

V̇ ≤ 0 if f is concave. As the nonlinear function f is possibly convex in some regions

and concave in others, the gradient method (4.2) does not ensure stability for all θ̂.

A gradient method applied to a nonlinear parameterized system may not only be

insufficient but may lead to instability. The method summarized in this chapter does

not strictly rely on a gradient rule but differs depending on the sign of the error. The

parameter update relies on the convexity or concavity of the nonlinear function as is

indicated by the Lyapunov candidate (4.3).

4.1 Scalar Equation Case

We summarize first the nonlinear parameterization techniques developed in [9, 14]

which are based on the assumption that all of the states are available. It will be

shown that this method provides a stable adaptive parameter estimation algorithm

and the convergence of the parameters is ensured given certain persistent excitation

conditions are satisfied. The proposed method can track a reference signal to a desired

accuracy, ε > 0, and identifies parameters for general systems of the form

ẏ = −ky + f(u(t), θ) (4.5)

where θ ∈ Θ is an unknown vector of nonlinearly occurring parameters, Θ is a bounded

subset of Rm, and k > 0 is a scalar. The function f is a scalar valued nonlinear
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Figure 4.2: Saturation function sat(x).

function of the input u(t). The nonlinear parameter estimation algorithm developed

in [9, 14] can be formulated as

˙̂y = −k
[
ŷ − ε sat( ỹ

ε
)
]
+ f(u, θ̂)− a∗sat

(
ỹ
ε

)
˙̂
θ = −ỹεφ

∗

ỹε = ỹ − ε sat
(

ỹ
ε

)
ỹ = ŷ − y

(4.6)

where ε > 0, sat(·) is the saturation function which is illustrated in Figure 4.2 and

defined as

sat(x) =


1, x ≥ 1

x, |x| < 1

−1, x ≤ −1

(4.7)

and a∗ and φ∗ are the solution of

a∗ = min
φ∈Rm

max
θ∈Θ

J(θ, φ)

φ∗ = arg min
φ∈Rm

max
θ∈Θ

J(θ, φ)

J(θ, φ) = sat( ỹ
ε
)(f(u, θ̂)− f(u, θ)− φT (θ̂ − θ)) .

(4.8)
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It is noted that when |ỹ| < ε, the adaptation of the parameters stops. This imposes

what is termed a dead-zone. The importance of this dead-zone will be investigated

when the persistent excitation conditions are discussed. The purpose of the min/max

algorithm is to handle the regions of nonconvexity of f where the gradient method is

insufficient. The use of a tuning error ỹε rather than a tracking error ỹ is to ensure

continuity of the adaptation. This is also the motivation for employing a saturation

function rather than a signum function [14]. The assumption that the parameters

and the parameter estimates are bounded is not needed for stability but is needed to

compute the closed form solution of (4.8) [14].

Defining θ̃ = θ̂−θ and x = [ỹ, θ̃T ]T , it can be shown that the system (4.6) is stable

about x = 0 by proving that V = ỹ2
ε + θ̃2 is a Lyapunov function. We provide below

details illustrating the original proof from [14]. We first note that

V̇ = 2ỹε
˙̃yε + 2θ̃ ˙̃θ. (4.9)

If |ỹ| ≤ ε then ỹε = 0 so V̇ = 0. We need to show that V̇ ≤ 0 if |ỹ| > ε. We first

represent V̇ as

V̇ = 2ỹε(−k
(
ŷ − ε sat

(
ỹ
ε

))
+ f(u, θ̂)− a∗sat

(
ỹ
ε

)
+ αy − f(u, θ))− 2θ̃ỹεφ

∗

= −2kỹε ỹε + 2ỹε(f(u, θ̂)− f(u, θ)− θ̃φ∗ − a∗sat
(

ỹ
ε

)
)

= −2kỹ2
ε + 2ỹε((f(u, θ̂)− f(u,w)− θ̃φ∗)− a∗sat

(
ỹ
ε

)
).

(4.10)

If ỹ > 0 then sat
(

ỹ
ε

)
= 1 so we must have

a∗ ≥ sat

(
ỹ

ε

)
(f(u, θ̂)− f(u, θ)− w̃φ∗) ∀θ ∈ Θ. (4.11)
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This implies that we can let

a∗ = max
θ∈Θ

sat

(
ỹ

ε

)
(f(u, θ̂)− f(u, θ)− w̃φ∗) for any φ∗. (4.12)

The inequality (4.11) is satisfied by the definition of φ∗ and a∗, hence V̇ ≤ 0.

If ỹ < 0 then sat
(

ỹ
ε

)
= −1 so we must have

a∗ ≥ −(f(u, θ̂)− f(u, θ)− θ̃φ∗) ∀θ ∈ Θ. (4.13)

or

a∗ ≥ sat

(
ỹ

ε

)
(f(u, θ̂)− f(u, θ)− w̃φ∗) ∀θ ∈ Θ. (4.14)

Again we can let

a∗ = max
θ∈Θ

sat

(
ỹ

ε

)
(f(u, θ̂)− f(u, θ)− w̃φ∗) for any φ∗. (4.15)

By the definition of φ∗ and a∗ the inequality (4.14) is satisfied, hence V̇ ≤ 0.

To implement the system (4.6) we must solve the min/max problem (4.8). To

do this, a concave cover F (θ) and a convex cover F (θ) are constructed such that

F (θ) ≥ f − f̂ and F (θ) ≤ f − f̂ where f̂ = f(u, θ̂). To determine these covers, we

employ the following definitions.

Definition 1: A point θ0 ∈ θc if θ0 ∈ Θ and

∇fθ0(θ − θ0) ≥ f − f 0

where ∇fθ0 ≡ ∂f

∂θ

∣∣∣∣
θ0

and f 0 = f(φ, θ0).
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Figure 4.3: Concave and convex covers.

Definition 2: θ̃c ≡ θc ∩Θ where θc is the complement of θc.

If f is not concave over Θ then θ̃c = {θ12, θ34, . . . , θmn} where θij = [θi θj] are the

regions where f is not concave, θj ≥ θj. Using Definitions 1 and 2 we can construct

the concave cover of f on Θ as

F (θ) =

 f − f̂ , ∀θ ∈ θc

φijθ + cij, ∀θ ∈ θij ∈ θ̃c

(4.16)

where

φij =
f j − f i

θj − θi
, cij = f i − f̂ − φijθi, and f i = f(φ, θi).

Similarly a convex cover of f is constructed by defining

θv ≡ {θ0 | ∇fθ0(θ − θ0) ≤ f − f 0}
θ̃v ≡ θv ∩Θ

and

F (θ) =

 f − f̂ , ∀θ ∈ θv

φijθ + cij, ∀θ ∈ θij ∈ θ̃v .
(4.17)

Examples of a convex and a concave cover of a function are illustrated in Figure 4.3.
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Once we have constructed F (θ) and F (θ), a close form solution to the min/max

problem (4.8) can be determined as illustrated in the following theorem.

Theorem 4.1: The solution of the min/max problem (4.8) is given by

a∗ = F (θ̂)

φ∗ =


∇fθ̂, if θ̂ ∈ θc

φij, if θ̂ ∈ θij ∈ θ̃c

if ỹε > 0

a∗ = −F (θ̂)

φ∗ =


∇fθ̂, if θ̂ ∈ θv

φij, if θ̂ ∈ θij ∈ θ̃v

if ỹε < 0

. (4.18)

The proof of Theorem 4.1 can be found in Appendix 1.

These results establish the stability of the method via the solution of the min/max

problem. We seek to determine sufficient conditions for uniform asymptotic stability

of the system (4.6). The following theorem from [9] states a condition guaranteeing

convergence of the parameters and tracking error.

Theorem 4.2: If for every t1 > t0, there exists T0, ε0, δ0, and a subinterval

[t2, t2 + δ0] ∈ [t1, t1 + T0] such that

β

∫ t2+δ0

t2

(
(t2)f

(
u, θ̂(t2)

)
− f(u, θ)

)
dτ ≥ 2ε + ε0||θ̃(t2)||, (4.19)

then the origin x = 0 is uniform asymptotically stable.

A proof of Theorem 4.2 can be found in [9].
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In Theorem 4.2, β = 1 if f
(
u, θ̂

)
is convex and β = −1 if f

(
u, θ̂

)
is concave.

There are several differences to notice between this condition and the condition for a

linear parameterization. First, the sign of the integral is important. The sign is not

strictly determined by f
(
u, θ̂

)
− f(u, θ) but rather by the convexity or concavity of

f as displayed by β. This coupling arises from the min/max algorithm and is nec-

essary but not sufficient to ensure that the method will leave the dead-zone |ỹ| ≤ ε.

The integral must be large enough to leave the dead-zone thus necessitating the term

incorporating ε on the right of (4.19).

The excitation conditions have been placed on f in the Theorem 4.2. Theorem 4.2

does not explicitly give conditions on the input u to satisfy the inequality (4.19) nor

does it guarantee that such an input exists. By examining the inequality (4.19), condi-

tions on u can be derived to ensure uniform asymptotic stability. The inequality (4.19)

includes two components, the first being that the magnitude of the integrand must

be sufficiently large. This states that for a large parameter error, the input must be

such that the difference between the function evaluated at the actual parameter and

the parameter estimate must be adequately large. Secondly, the integral must be the

same sign as β. This states that if f is convex, the integrand should be positive and

likewise if f is concave the integrand should be negative. Since parameter conver-

gence is ensured by updating based on gradient information, the min/max feature of

the algorithm will give stability but an acceptable input must be used to guarantee

parameter convergence. To ensure parameter convergence, one of the following con-

ditions must hold.

1) For the given θ̃, u must reverse the sign of the integrand of (4.19) while

keeping the convexity/concavity of f fixed.

2) For the given θ̃, u must reverse the convexity/concavity of f , while preserving

the sign of the integrand of (4.19).
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4.2 Vector System

The nonlinear parameter identification algorithm (4.6) is formulated for scalar dif-

ferential equations. It is necessary to extend the method proposed in [9, 14] to a

system of equations since many physical systems with inherent hysteresis, including

the Terfenol-D transducer, are modeled by higher order equations. Recall that the

transducer has been represented by a second order ODE (3.17) with

A =

 0 1

−c −k

 B =

 0

ω

 (4.20)

where c, k and ω are given in Table 3.3. In this section we will extend the nonlinear

parameter identification algorithm to asymptotically stable second-order systems to

address such applications.

To adapt the method for vector systems, we must redefine several of the variables

from the scalar case. Since we want to use the solution to the min/max problem (4.8),

we must ensure that we do not affect that aspect of the formulation. Consider the

identification of the parameter θ for the matrix system

ẏ = Ay + Bf(u, θ) (4.21)

where A ∈ R2×2 and B ∈ R2×1. We then consider the adaptation algorithm

˙̂y = Aŷ + B
(
f(u, θ̂)− a∗sat

(
ỹε

ε

))
˙̂
θ = −γỹεφ

∗

ỹ = ŷ − y

ỹε = B2p2ỹ1 + B2p3ỹ2

(4.22)
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where p2 and p3 are scalars to be determined, γ > 0 is a scalar gain, B2 is the (2,1)

component of vector B, and a∗ and φ∗ are solutions of the min/max problem

a∗ = min
φ∈Rm

max
θ∈Θ

g(θ, φ)

φ∗ = arg min
φ∈Rm

max
θ∈Θ

g(θ, φ)

g(θ, φ) = sat
(

ỹε

ε

) (
f(u, θ̂)− f(u, θ)− φT (θ̂ − θ)

)
.

(4.23)

It is important to note that the solution to the min/max problem (4.23) is the so-

lution to (4.8) so this aspect of the adaptive estimation is the same as the scalar

case. A notable differences between the matrix system method (4.23) and the scalar

method (4.8) is the definition of ỹε. The alteration of ỹε is necessary for the Lyapunov

candidate utilized for the vector system. Note that the adaptation algorithm does

not have the dead-zone observed in the scalar method.

The following theorem ensures the globally asymptotic stability of the adaptive

parameters estimation method (4.22).

Theorem 4.3: If the vector system (4.21) is globally asymptotically stable, the adap-

tive parameter estimation algorithm (4.22) is globally asymptotically stable.

Proof: To prove Theorem 4.3, we consider the Lyapunov function

V = γỹT P ỹ + θ̃2 (4.24)

where P is a symmetric positive definite matrix. Taking the derivative of (4.24) yields

V̇ = γ ˙̃yT P ỹ + γỹT P ˙̃y + 2θ̃
˙̂
θ (4.25)



Chapter 4. Nonlinear Parameter Estimation 55

with

˙̃y = Aỹ + B
(
f̂ − f − a∗sat

(yε

ε

))
. (4.26)

Employing the definitions of ˙̃y and
˙̂
θ, we can now write

V̇ = γ
(
ỹT AT P ỹ + ỹT PAỹ

)
+2γ

((
f̂ − f − a∗sat

(
yε

ε

))
BT P ỹ − ỹεθ̃φ

∗
)

.
(4.27)

Since A is globally asymptotically stable, for any symmetric positive definite matrix

Q there exists a symmetric positive definite matrix P such that AT P + PA = −Q

[2]. Denoting

P =

 p1 p2

p2 p3

 , (4.28)

we have BT P ỹ = ωp2ỹ1 + ωp3ỹ2 = ỹε. Substituting this into (4.27) gives

V̇ = −γ
(
ỹT Qỹ

)
+ 2γỹε

(
f̂ − f − θ̃φ∗ − a∗sat

(yε

ε

))
. (4.29)

The proof that V̇ < 0 is completed by utilizing the definitions of a∗ and φ∗ as the

solutions of (4.23) in a manner similar to that employed in the proof in the scalar case.

Note that the parameters p2 and p3 can be determined for any symmetric positive

definite choice of Q. Notable alteration of the parameter estimation algorithm from

the scalar case includes the lack of a dead-zone as well as the omission of the ε sat( ỹ
ε
)

term in the definition of ˙̂y. These alterations are necessitated by the form of the

Lyapunov function.
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4.3 Numerical Examples

A scalar and matrix example will be provided to demonstrate the ability of the non-

linear adaptive parameter estimation method.

4.3.1 Scalar Case

First, we shall examine the scalar case. The dynamics of the system specified by the

differential equation

ẏ = −ky + M(H, a) (4.30)

where M(H, a) is the solution of the domain wall model for the hysteretic material

as given by (2.8) for a given applied field H. The parameter a in the domain wall

model was chosen as it may vary with temperature. As the transducer operates,

small changes in the temperature will occur due in part to Ohmic heating in the

solenoids (see Figure 1.3). As previously stated, it would be beneficial to periodically

tune the value of a to reflect the changes in the behavior of the Terfenol-D due

to the temperature changes without having to turn off the actuator. This can be

accomplished by the proposed adaptive parameter estimation algorithm.

The parameter estimate â was assumed to be bounded with â ∈ [6300, 7300] and

â(0) = 6990. The actual value of a is taken to be 7012 and the remaining constants

in the domain wall model are given in Table 2.1. The scalar k is taken as 100.

One difficulty in the adaptive parameter estimation utilized is constructing an

input H(t) which will provide persistent excitation. The conditions imposed for

excitation prompt the use of a signal that does not cause the function to change signs.

It is observed that a monotonically increasing input provides persistent excitation as

well as quick convergence. The input applied field H(t) chosen was a hyperbolic

tangent function which would drive the hysteresis to a level near the saturation level.
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Figure 4.4: (a) Value of integrand of eq. (4.19), and (b) value of M(u, â).

This signal was chosen to provide persistent excitation as well as evaluating the

hysteresis model at levels which most noticeably differ with respect to the parameter a.

Figure 4.4a depicts the integrand of (4.19) for a given value of θ̃ to show that persistent

excitation condition 2 is met. The integrand remains positive while switching the

convexity/concavity of the function M as seen in Figure 4.4b.

Figure 4.5 illustrates the capability of the scalar nonlinear parameter estimation

method to accurately estimate the unknown parameter a. Figure 4.5a depicts the

evolution of the parameter estimate â which quickly converges to the actual value

of a. The tracking error ỹ is illustrated in Figure 4.5b. The speed of convergence of

the parameter estimation is notable since this identification method could potentially

be combined with a control technique.

4.3.2 Vector System

We now illustrate the nonlinear adaptive parameter estimates for a vector system

as developed in Section 4.2. The system we shall consider is a damped spring mass
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Figure 4.5: (a) Parameter estimate value, and (b) tracking error for scalar case.

system which can be used to model the transducer dynamics of the smart material

transducer given by equation (3.17) with the values of the domain wall model param-

eters taken from Table 2.1. Again, the parameter a is to be determined because of its

temperature dependence. The gain γ is taken to be 5× 1010 and P is found utilizing

a matrix

Q =

 1× 1010 0

0 1× 10−8

 . (4.31)

We employ the same applied magnetic field as in the scalar example.

The method’s ability to estimate the parameter for the matrix example is illus-

trated in Figure 4.6. Figure 4.6 shows the convergence of the estimate to the actual

parameter value a = 7012. Figure 4.7 illustrates the tracking error of the adaptive

system for the vector system in which ỹ is also a vector. This example illustrates the

convergence of the adaptive parameter estimation algorithm for vector systems.

For the implementation of the scalar or matrix system there are a number of

numerical issues. The models must be solved numerically and since implicit methods
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Figure 4.6: Parameter estimate value for matrix case.

are not feasible because of the unknown forcing function at the next time step, the

time step must be sufficiently small to ensure accurate solutions of the model. Any

inaccuracy of the solution can cause the value of ỹ to have discontinuous jump from

positive to negative values. This phenomena causes the min/max solution to jump

between utilizing the convex cover and concave cover which, in turn, can cause highly

oscillatory behavior in the parameter updates.

4.4 Concluding Remarks

The nonlinear parameter identification technique developed in [9, 14] has shown to

be effective for identifying a parameter in the nonlinear domain wall model incorpo-

rated as the forcing function in a scalar ODE. We have also extended this parameter

identification method to apply to second order systems. In this latter framework,

this adaptive parameter estimation algorithm can be used to estimate and update

parameters in a wide range of hysteretic systems including SMAs, ferroelectrics and

ferromagnetics. Due to the persistent excitation conditions placed on the input to the
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Figure 4.7: (a) ỹ1, and (b) ỹ2 for matrix case

hysteresis model, there are potential difficulties in employing the scalar method as a

closed-loop nonlinear adaptive control method by considering the nonlinear function

in the dynamics to be the composition of an approximate inverse and the hystere-

sis function as was done linearly in [10, 11]. The vector method does not require

persistent excitation conditions, therefore, may be amenable to the extension to an

adaptive control method.

One possible control method utilizing this parameter identification method could

be to identify the temperature dependent parameter a in the domain wall hysteresis

model while the transducer is being initialized. Once the hysteresis model is com-

pletely determined, a partial inverse compensation method, e.g. [4] or [16], could be

applied. The method in this paper could be employed to periodically re-identify the

parameters in the hysteresis model to ensure accurate modeling as the parameters

slowly vary due to the internal heat generated by many industrial applications. This

may be more efficient and accurate than current methods of parameter identifica-

tion, such as least square fits to data, and can be performed on-line. The next step
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would be to apply this method to multiple unknown parameters, i.e., θ ∈ Rm. This

method potentially could provide a new method to identify the full set of parameters,

{a, k, c, α, Ps}, simultaneously. While theoretically the method can provide multi-

ple parameter identification, there are numerical difficulties in identifying the regions

of concavity and convexity. In the one parameter case we need only to identify linear

functions to cover the nonconvex or nonconcave sections of the nonlinear function

whereas in a multiple parameter identification bounding hyperplanes are required.



Chapter 5

Preliminary Control Methods

In the following sections, we develop several preliminary control laws for the placement

of the tip of the Terfenol-D transducer illustrated in Figure 1.3. All of the control

designs will employ inverse compensation based on one of the three hysteresis models

described in Chapter 2 to attenuate the nonlinearities and hysteretic behavior in the

Terfenol-D transducer. The limitations of each control scheme will be addressed.

First, a linear adaptive control method utilizing the Preisach hysteresis model (2.17)

and corresponding approximate inverse (2.23) will be summarized. This method adap-

tively tunes the parameters in the approximate inverse to the actual parameter values

while tracking a reference response. The second control method discussed is a PID

control law combined with inverse compensation based on both the domain wall hys-

teresis model (2.8) and the free energy hysteresis model (2.37). A PID control design

is presented since it is a simple, commonly employed, model independent method.

Finally, an optimal LQR control formulation is presented. This is a model-based

method which has an extensive mathematical foundation. The PID and LQR control

methods will illustrate the deficiencies of control designs which do not incorporate the

presence of the inherent disturbances to the Terfenol-D transducer such as hysteretic

behavior and sensor noise.

62
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Figure 5.1: Linear adaptive inverse control scheme.

5.1 Linear Adaptive Control

In Chapter 4, a nonlinear parameter estimation algorithm capable of identifying non-

linearly occurring parameters in hysteresis models was developed. The emphasis in

this section is the implementation of a linear adaptive control scheme for a system

with unknown hysteresis. Here, the Preisach model for a hysteretic material will be

utilized to develop the linear adaptive control method because its linear structure

allows the outputs of the hysteresis and hysteresis inverse to be represented as linear

combinations of the parameters. This ability is crucial to the design of the adap-

tive inverse approach discussed here. This method was developed by Kokotović and

Tao [10, 11] and employs an approximate inverse (2.23) of the Preisach hysteresis

model to compensate for the hysteretic effects of the smart material and a modified

gradient adaptation law to tune the parameter estimates in the inverse compensator.

As was done in Section 2.2.1, we assume that the inverse is parameterized by m̂t(t),

ĉt(t), m̂b(t), ĉb(t), m̂r(t), ĉr(t), m̂l(t), and ĉl(t) and the goal is to drive these estimates
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to the true values. During the discussion of the linear adaptive method we shall as-

sume that the parameter estimates are bounded.

As depicted in Figure 5.1, the tracking error is a measure of the difference be-

tween the response of our system P (s), given by the second order ODE (3.18), and

the response of a reference model Wm(s) = P−1
m (s) to a reference signal r(t). Here

Wm(s) is chosen to have dynamics we wish the output of the plant P (s) to emulate

and Pm(s) is a stable polynomial with the same relative degree as the linear plant

P (s). Since it is a rational transfer function, we can represent P (s) by

P (s) = kp
N(s)

D(s)
(5.1)

where N(s) and D(s) are monic polynomials and kp is a constant scalar.

Previous adaptive control techniques are inadequate for the smart material trans-

ducer application since they are not applicable to nondifferential nonlinearities. The

Preisach model (2.17) has sharp corners and therefore is not differentiable. The adap-

tive control method described in this section is unique in that it is able to express

the control error as a linear parameterization in spite of the nondifferentiability of

the hysteresis model due in part to the indicator functions defined in the next section

[11].

5.1.1 Update Law

To begin, we express the output of the tunable inverse and output of the Preisach

straight line hysteresis model as linear functions of the parameters and parameter

estimates. To this end, indicator functions are defined to determine the location of

the signals in both the hysteresis loop and the hysteresis inverse. Denoting Md as the

control input which is fed into the tunable inverse, H as the output of the inverse

and the input to the hysteresis model, and M as the output of the hysteresis model
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(see Figure 5.1), the indicator functions are defined as

χt(tk) =

{
1, if M(tk) = mtH(tk) + ct

0, else
(5.2)

χb(tk) =

{
1, if M(tk) = mbH(tk) + cb

0, else
(5.3)

χr(tk) =

{
1, if M(tk) = mr(H(tk)− cr)

0, else
(5.4)

χl(tk) =

{
1, if M(tk) = ml(H(tk)− cl)

0, else
(5.5)

χd(tk) =

{
1, if M(tk) = mtH(tk) + cd(tk)

0, else
(5.6)

χu(tk) =

{
1, if M(tk) = mbH(tk) + cu(tk)

0, else
(5.7)

χ̂t(tk) =

 1, if H(tk) =
1

m̂t

(Md(tk)− ĉt)

0, else
(5.8)

χ̂b(tk) =

 1, if H(tk) =
1

m̂b

(Md(tk)− ĉb)

0, else
(5.9)

χ̂r(tk) =

 1, if H(tk) =
1

m̂r

Md(tk) + ĉr

0, else
(5.10)

χ̂l(tk) =

 1, if H(tk) =
1

m̂l

Md(tk) + ĉl

0, else
(5.11)
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χ̂d(tk) =

 1, if H(tk) =
1

m̂t

(Md(tk)− ĉd(tk)) and ĉb(tk) < ĉd(tk) < ĉt(tk)

0, else
(5.12)

χ̂u(tk) =

 1, if H(tk) =
1

m̂b

(Md(tk)− ĉu(tk)) and ĉb(tk) < ĉu(tk) < ĉt(tk)

0, else.
(5.13)

For example, if the input to the hysteresis model is such that the resulting magne-

tization lies on the top half line (see Figure 2.5), then χt = 1. One important issue

is that at any time tk, χ̂t + χ̂b + χ̂r + χ̂l + χ̂u + χ̂d = 1, so we must not repeatedly

count any intersection of the line segments and half-line. For example, if χ̂t = 1, then

χ̂r = 0 , and if χ̂r = 1, then χ̂d = 0. A similar condition holds for the χ(tk) functions.

The indicator functions can be used to express the output of the hysteresis loop

M as

M(tk) = Md(tk) + χ̂t(tk) (mtH(tk) + ct − χ̂t(tk)Md(tk))

+χ̂b(tk) (mbH(tk) + cb − χ̂b(tk)Md(tk)) + χ̂r(tk) (mr(H(tk) + cr)

−χ̂r(tk)Md(tk)) + χ̂l(tk) (ml(H(tk) + cl)− χ̂l(tk)Md(tk))

+χ̂u(t) (mtH(tk) + cu − χ̂u(tk)Md(tk)) + χ̂d(tk) (mtH(tk)

+cd − χ̂d(tk)Md(tk)) + d1(tk)

(5.14)

where

d1(tk) = (χt(tk)− χ̂t(tk))(mtH(tk) + ct) + (χb(tk)− χ̂b(tk))(mbH(tk)

+cb) + (χr(tk)− χ̂r(tk))(mr(H(tk)− cr)) + (χl(tk)− χ̂l(tk))

(ml(H(tk)− cl)) + (χd(tk)− χ̂d(tk))(mtH(tk) + cd(tk))

+(χu(tk)− χ̂u(tk))(mbH(tk) + cu(tk)) .

(5.15)

Note that, with the assumption that the parameters are bounded, d1(tk) is bounded.

Also, if (Md(tk), H(tk)) lies outside the hysteresis inverse loop and (H(tk),M(tk))

lies outside the hysteresis loop, then d1(tk)=0. Utilizing the indicator functions, the
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output of the approximate inverse can be express as

H(tk) = χ̂t

(
1

m̂t(tk)
(Md(tk)− ĉt(tk))

)
+ χ̂b

(
1

m̂b(tk)
(Md(tk)− ĉb(tk))

)
+χ̂r

(
1

m̂r(tk)
(Md(tk)− m̂r(tk)ĉr(tk))

)
+ χ̂l

(
1

m̂l(tk)
(Md(tk)

−m̂l(tk)ĉl(tk))) + χ̂u

(
1

m̂b(tk)
(Md(tk)− ĉu(tk))

)
+χ̂d

(
1

m̂t(tk)
(Md(tk)− ĉd(tk))

)
.

(5.16)

Employing (5.14) and (5.16), we can derive a linear parameterization of the control

error M(tk) − Md(tk). To simplify notation, define m̂rcr(tk) = m̂r(tk)ĉr(tk) and

likewise m̂lcl(tk) = m̂l(tk)ĉl(tk). Since the hysteresis loop is symmetric, the vector of

parameters can be defined by

θ∗h = (mt, ct,mr,mrcr)
T (5.17)

and the parameters estimates by

θh(tk) =
(
m̂t(tk), ĉt(tk), m̂r(tk), m̂rcr(tk)

)T
. (5.18)

To represent the control error, we must define the signal

ωh(tk) = (− (χ̂t(tk) + χ̂c(tk) + χ̂b(tk)) H(tk),

− (χ̂t(tk)− χ̂b(tk)) ,− (χ̂r(tk) + χ̂l(tk)) H(tk), χ̂t(tk)− χ̂l(tk))
T

(5.19)

and the parameter error

ψh(tk) = θh(tk)− θ∗h. (5.20)
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Combining (5.14) and (5.16) and employing (5.19) and (5.20), the control error can

be expressed as

M(tk)−Md(tk) = ψT
h (tk)ωh(tk) + dh(tk) (5.21)

where

dh(tk) = d1(tk) + χ̂d(tk)(cd(tk)− ĉd(tk)) + χ̂u(tk)(cu(tk)− ĉu(tk)) . (5.22)

The unknown disturbance dh(tk) is bounded since χ̂l = χ̂r = χ̂u = χ̂d = 0 for large

H(tk) and d1(tk) is bounded and clearly reduces to zero as the parameter error ψh(tk)

goes to zero.

Now, the adaptive control law is given by

Md(tk+1) = θ∗1ω1(t) + θ∗2ω2(t) + θ∗20y(t) + θ∗3r(t). (5.23)

Here ω1(t) =
a(s)

Λ(s)
[Md](t) and ω2(t) =

a(s)

Λ(s)
[y](t) where a(s) = (1, s, s2, ..., sn−2)T .

The relative degree of P (s) is denoted by n. The notation x(t) = T (s)[y](t) states

that x(t) is the response of the system T (s) to an input y(t). The monic Hurwitz

polynomial Λ(s) is of degree n− 1 and the control design gains θ∗1, θ
∗
2 ∈ Rn−1, θ∗20 ∈ R

and θ∗3 ∈ R are chosen to satisfy the Diophantine equation

θ∗1a(s)P (s) + (θ∗2a(s) + θ∗20Λ(s))(θ∗3)
−1N(s) =

Λ(s)(P (s)− (θ∗3)
−1θ∗3N(s)Pm(s)) .

(5.24)

To determine the tracking error e(t) = y(t) − ym(t), where ym(t) = Wm(s)[r](t)

and y(t) = G(s)[M ](t), we define

F (s) = θ∗3Wm(s)

(
1− θ∗1

a(s)

Λ(s)

)
. (5.25)
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The tracking error can then be written as

e(t) = F (s)[ψT
h ωh](t)− F (s)[dh](t) . (5.26)

Note that F (s) is a known, stable and strictly proper transfer function.

To formulate the differential equation utilized in the parameter estimates update

law, we first must define the following equations:

ζh(t) = F (s)[ωh](t) (5.27)

ξh(t) = θT
h (t)ζh(t)− F (s)[θT

h ωh](t) (5.28)

εh(t) = e(t) + ξh(t). (5.29)

Now, we update θh(t) with a modified gradient law given as

θ̇h(t) = − Γhζh(t)εh(t)

1 + ζT
h (t)ζh(t) + ξ2

h(t)
− Γhσ(θh,Mh, σ0)θh(t) (5.30)

where Γh is symmetric positive definite matrix. Here σ is a ‘switching sigma’ signal

that uses a priori knowledge on Mh, an upper bound of the Euclidean norm of θh,

and a constant parameter σ0 > 0, and is given by

σ =


0, if ||θh(tk)|| < Mh

σ0(
||θh(tk)||

Mh
− 1), if Mh ≤ ||θh(tk)|| and ||θh(tk)|| < 2Mh

σ0, if ||θh(tk)|| ≥ 2Mh .

(5.31)

A lemma guaranteeing the boundedness of the parameter estimates ¿from [10] can

now be stated.
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Lemma 5.1: The adaptive law (5.30) guarantees the following conditions:

1) θh(t), θ̇h(t), (ε2
h(t)ζ

T
h (t) + ξ2

h(t)) ∈ L∞.

2) For some constants k1 > 0 and k2 > 0 and all t2 > t1 ≥ 0,

∫ t2

t1

‖θ̇h(t)‖2dt ≤ k1 +

∫ t2

t1

k2

1 + ζT
h (t)ζh(t) + ξ2

h(t)
dt (5.32)

and

∫ t2

t1

ε2
h(t)

1 + ζT
h (t)ζh(t) + ξ2

h(t)
dt ≤ k1 +

∫ t2

t1

k2

1 + ζT
h (t)ζh(t) + ξ2

h(t)
dt . (5.33)

A proof of Lemma 5.1 can be found in [10]. Lemma 5.1 shows the boundedness of

θh(t) and the L2 properties of the adaptive law (5.30). Finally, it must be shown that

all closed loop signal in the adaptive inverse algorithm remain bounded.

Theorem 5.1: If the hysteresis loop is such that mt = mb, all closed loop signals are

bounded.

A proof ensuring the boundedness of all closed loop signals, assuming mt = mb, can

be found in [11].

5.1.2 Numerical Example

In this section, the adaptive control method is implemented to control the position of

the tip of a Terfenol-D rod. Recall that the Terfenol-D transducer shown in Figure 1.3

has been modeled as a transfer function P (s) = kp(N(s)/D(s)) with kp = ω, N(s) = 1

and D(s) = s2 + ks + c where ω, k, and c are given in Table 3.3. The relative degree
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Figure 5.2: Tracking error obtained with linear adaptive control method.

of P (s) is 2 so we take Λ(s) = (s + k) and a(s) = 1 making

ω1(t) =
1

s + k
[ud](t) and ω2(t) =

1

s + k
[y](t). (5.34)

The reference model is taken to be D−1(s), yielding

Wm(s) =
1

s2 + ks + c
. (5.35)

This implies that the reference signal should be scaled by a factor of ω. Employing

the given reference model (5.35), we take θ∗1 = θ∗2 = θ∗20 = 0 and θ∗3 = 1/ω which

satisfy the Diophantine equation (5.24). With this choice of parameters, the stable

function F (s) = P (s). The parameter values for the Preisach hysteresis model are

given in Table 2.2. The remaining adaptive control method parameters are given in

Table 5.1.

Figure 5.2 illustrates the effectiveness of the adaptive control method. Figure 5.2

shows the error between the output of the plant and reference signal. The decay in the

error corresponds to the convergence of the parameter estimates in the approximate

inverse to the true parameter values. The convergence of the parameter estimates θ̂ is
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m̂t(0) = m̂b(0) 1.9785

ĉt(0) = −ĉb(0) 7× 105

m̂r(0) = m̂l(0) 40.824

ĉr(0) = −ĉl(0) 3.2362× 103

Γh

 1× 1010 0 0 0
0 1× 1019 0 0
0 0 1× 1010 0
0 0 0 1× 1017


σ0 .15

Mh 7× 105

Table 5.1: Adaptive control method parameters.

illustrated in Figures 5.3a-5.3d. The figures indicate that the parameter estimates are

tuned to the actual values. Therefore the control schemes provides a viable method

for tracking a reference response while tuning the approximate inverse to the true

inverse thereby significantly attenuating the phase delay effects commonly produced

by hysteresis.

The linear adaptive control method with a tunable inverse compensator, as

proposed by Kokotović and Tao in [10, 11], has proven to be effective in tracking

a reference signal in the presence of hysteretic behavior for models having linear

parameterizations. A limitation of such a method is the fact that the outputs of

the hysteresis and hysteresis inverse must be written as linear combinations of the

parameter estimates. Therefore, of the hysteresis models described in Chapter 2, only

the Preisach model can be employed with this method. While this formulation of the

Preisach model can describe some of the characteristics of a hysteretic material, such

as energy loss, it does not accurately describe the nonlinearity of these materials nor

does it efficiently quantify minor loops. These problems motivate the investigation
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Figure 5.3: Evolutions of the parameters estimates: (a) m̂t, (b) ĉt, (c) m̂r and
(d) m̂rcr.

of other control strategies which may be able to incorporate more accurate models

of hysteretic behavior, such as the domain wall model (2.8) and the free energy

model (2.37).

5.2 PID Control

In the previous section, a Preisach hysteresis model was utilized in the development

of a linear adaptive control algorithm to control a magnetostrictive transducer. It

was noted that this formulation of the Preisach hysteresis model lacks the ability to



Chapter 5. Preliminary Control Methods 74

−

H

Inverse
Compensator Plant and

Actuator

yMdr M P(s)PID
−1
(s)H H(s)

Figure 5.4: PID control formulation.

model the nonlinear behavior of the Terfenol-D. Therefore, it is beneficial to consider

control laws which can incorporate other, more accurate, hysteresis models.

This section concentrates on the employment of inverse compensation combined

with a PID (Proportional-Integral-Derivative) control law to control the movement

of the tip of the Terfenol-D transducer. To begin, the inverse compensator will be

constructed using the partial inverse of the domain wall model (2.11). The domain

wall model will be employed to simulated the hysteresis inherent in the transducer

with the model parameters given in Table 2.1. As indicated in Section 2.1 and illus-

trated in Figure 2.4, a partial inverse compensator only considers the inverse of the

anhysteretic curve and therefore does not diminish the phase delay problem as a full

inverse would. Recall that the partial inverse is given as

M−1 = a

[
tanh−1(

H

Ms

)

]
− αH. (5.36)

While the partial inverse compensation alleviates the nonlinear behavior of the

Terfenol-D transducer, a PID controller will be utilized to enhance the tracking per-

formance of our system. The standard form of such a controller is given as

Md(t) = K

[
e(t) +

1

Ti

∫ t

0

e(s)ds + Td
∂e(t)

∂t

]
(5.37)
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where K, Ti and Td are gains to be tuned and e(t) is the error between the reference

signal r and the position of the tip of the rod y as depicted in Figure 5.4. The ODE

model for the Terfenol-D transducer, given in Section 3.2 by equation (3.18), is de-

noted by P (s).

The standard method for determining K, Ti and Td, as described in detail in [3],

is to introduce a step input into the system and find the point of maximal slope for

the system’s response. The parameters are then determined from this slope. How-

ever, the standard parameters values for the PID controller must be improved upon

for our transducer. A possible explanation for poor tracking performance with the

recommended parameters is, in addition to the phase delay caused by the hysteresis,

the magnitude of the output is small relative to the input. This means the error needs

to be magnified and the integral term should be weighted more to attack the phase

delay caused by the inherent hysteresis. Conversely, if the integral term is weighted

too highly the controller may overreact to the error. The integral of the error does

not change sign until the error has changed sign for an adequate length of time. This

integral lag up can cause the feedback control system to be driven to periods of over

and under estimation [3].

To fully analyze the PID control method, several control designs utilizing a PID

control law will be compared. To begin, we illustrate the effect of the partial inverse

compensation by examining the open loop response, i.e., no PID control is employed.

The results are plotted in Figure 5.5. Figure 5.5a depicts the commanded and mea-

sured position. With no control applied, the error, shown in Figure 5.5b, is significant.

For the open loop case, the phase delay between the reference signal and the measured

position is not attenuated.

Next, the PID control law is employed without a partial inverse compensator to

test the ability of the PID scheme. In particular, the PID controller’s ability to at-

tenuate the phase delay is of interest. The parameters utilized in the PID law for the
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Figure 5.5: (a) Position, and (b) tracking error for open loop system with partial
inverse compensation.

simulation are Ti = 5 × 10−7, Td = 2.5 × 10−5 and K = 4.802 × 104. These values

were found by hand tuning the gains until the best level of tracking was achieved.

This method of hand tuning is computationally inefficient yet necessary due to the

previously discussed problems in the standard gain formulations. Figure 5.6b illus-

trates an improvement in the tracking error due to the PID feedback control law.

Figure 5.6a illustrates the measured and commanded positions and shows that the

PID control is able to attenuate much of the phase delay caused by the hysteresis at

a low frequency drive with no inverse compensation.

To determine whether including an inverse filter is beneficial, we now combine

the partial inverse compensator and the PID control law. The parameters employed

for this simulation are Ti = 7.139 × 10−9, Td = 7.853 × 10−5 and K = 3.389 × 104.

Figure 5.7 depicts the accurate tracking achieved by the partial inverse combined

with a PID control law. Since the partial inverse is algebraic, the computational cost

is negligible. Therefore, any improvement in tracking is worth the inclusion of the

inverse compensator. After one period, the maximum error with inverse compensa-

tion and a PID control law 1.2× 10−6 m whereas the maximum error without inverse
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Figure 5.6: (a) Position, and (b) tracking error for PID control with no inverse
compensation.

compensation is 1.7×10−6 m. Figure 5.7b shows a great reduction in the phase delay

caused by the hysteresis with small errors at the turning point. The error at these

changes in the sign of the derivative of the reference signal can be justified by recalling

that the PID control law requires a small amount of time to decrease the error after

a change in the sign of the error.
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Figure 5.7: (a) Position, and (b) tracking error for PID control with partial inverse
compensation.
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Figure 5.8: (a) Position, and (b) tracking error for PID control with partial inverse
compensation for high frequency tracking.

These numerical results imply significant reduction in the tracking error can be

achieved by employing both a partial hysteresis inverse and a PID controller for low

drive frequencies. Of concern, however, is the ability of the control design to per-

form under various operating conditions, in particular high frequency tracking and

the presence of sensor noise.

To test the first concern, we increase the frequency of the reference signal to be

tracked. Figure 5.8 illustrates the inability of a PID controller combined with a partial

inverse compensator to track high frequency reference signals. The tracking error in

Figure 5.8b shows a significant increase in the error compared to Figure 5.7b. A large

portion of the error occurs at the change of the direction of the reference signal and

thus, as the frequency is increased, the PID does not have sufficient time to reduce

the error before the direction of the reference signal changes again. PID control is

ineffective for tracking reference signals with frequencies which are large compared to

the step size taken in the numerical solution or control implementation. As a goal of

the control strategy is real time implementation, this puts a significant limit on the

utility of PID control.
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Figure 5.9: (a) Position, and (b) tracking error a for PID control with partial inverse
compensation and sensor noise.

Sensor noise is included in the system to further test the robustness of the PID

control law with a partial inverse compensator. As previously stated, robustness with

respect to noise is crucial to control design as every sensing device contributes a de-

gree of noise. Figure 5.9 depicts the response of the PID control law with partial

inverse filter and the inclusion of noise in the measurement of position of the tip of

the Terfenol-D rod. The imposed noise signal has a frequency of 60 Hz and an am-

plitude of 1 × 10−5 m. It is clear from Figure 5.9 that the PID does not effectively

handle the presence of such sensor noise which is approximately 10% of the reference

signal. In Figure 5.9b, we note that the error in tracking is on the same order as

the noise signal. This occurs because the system is feeding back on the noise in the

measurements. While a magnitude of 10% of the measured position may be an over

estimate of the amount of sensor noise present in industrial applications, this example

illustrates the PID control law’s lack of noise rejection. In the next chapter, robust

control laws which can attenuate this level of noise will be developed.

It has been shown that the inclusion of the partial inverse compensator (2.11)

is beneficial for tracking a low frequency reference signal using a PID control law.
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Figure 5.10: (a) Position, and (b) tracking error and for PID control with full inverse
compensation.

For the sake of comparison, the PID control scheme is also applied utilizing the full

inverse of the free energy model for hysteretic material (2.37) with the parameters in

the model given in Table 2.3. The full inverse compensator provides better attenua-

tion of the phase delay than the partial inverse, yet we must be aware of the error in

the linearization of the input by the full inverse compensator as seen in Figure 2.13.

The hysteresis inverse utilizes 4 quadratures points, 20 divisions in the coercive field

integration, 40 divisions in the effective field integration and a step size of ∆H = 1.

These parameters were chosen to allow the possibility of real time implementation.

The performance of the PID control law with a full inverse compensator is depicted

in Figure 5.10. As was the case with sensor noise, the PID controller doesn’t provide

sufficient attenuation of the disturbance due to the error cause by the inexact hys-

teresis inverse. The error signal shown in Figure 5.10b clearly illustrates the effects

of the high frequency error caused by the implementation of the full inverse of the

free energy model.

In this section, we have shown that the inclusion of a partial inverse compen-

sator based on the anhysteretic component of the domain wall model can be easily
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implemented and provides increased tracking performance when combined with a

PID control law. While we can provide accurate tracking at low frequencies, certain

limitations of the PID control law were illustrated. The PID control formulation had

diminished accuracy in high frequency regimes and in the presence of sensor noise.

The implementation of a full inverse compensator based on the free energy model was

also examined. At low frequencies and ignoring sensor noise, the partial inverse filter

performed better than the full inverse filter due to the PID control law’s inability

to attenuate the high frequency error to the input of the plant. These limitations

motivate the study of other, more robust, control strategies.

5.3 LQR Control

The abilities and limitations of a PID control law combined with inverse compensation

were summarized in the previous section. In this section, we investigate a linear

quadratic tracking feedback control scheme as detailed in [12]. For this section of

the dissertation, we employ the full inverse compensator based on the free energy

model (2.37) of a hysteretic material. It has been noted that there is error in the

linearization provided by the inverse compensator and, in fact, there will always be

error in a realistic setting as the free energy model is not an exact representation of

the hysteresis measured in an actual transducer. The robustness of an LQR control

with respect to the error in the linearization of the hysteresis as well as the inclusion

of sensor noise is examined in this section through numerical simulations.

As in previous sections, we denote the reference signal to be tracked by r(t) and the

position of the tip of the Terfenol-D rod by y(t). The dynamics of the transducer are

represented by the second order ODE (3.17). As detailed in [12], the corresponding
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quadratic cost functional is given as

J(0) = 1
2
[y(T )− r(T )]T M [y(T )− r(T )]

+1
2

∫ T

0

{
[y(t)− r(t)]T Q [y(t)− r(t)] + uT Ru

}
dt.

(5.38)

Here u(t) is the control input, M and Q are symmetric positive definite matrices and

R is a symmetric positive semi-definite matrix.

Following a standard optimal control strategy of appending the system model to

the cost functional with Lagrange multipliers as described in [12], the state equation,

costate equation, stationary condition and boundary conditions can be formulated.

The state equation is given by

ẋ = Ax + Bu (5.39)

where A and B are given by the state space representation of the transducer as

detailed in Section 3.2. The costate equation is given by

−λ̇ = AT λ + CT QCx− CT Qr (5.40)

where C is the observation matrix of the transducer system and the stationary con-

dition is specified as

0 = BT λ + Ru. (5.41)

The boundary conditions can now be given by

x(0) is given

λ(T ) = CT M [y(T )− r(T )] .
(5.42)
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According to the stationary condition (5.41), the optimal feedback can be formulated

as

u(t) = −R−1BT λ(t). (5.43)

Substituting (5.43) into (5.39) yields the differential equation

ẋ = Ax−BR−1Btλ. (5.44)

Using the sweep method [12], the optimal linear quadratic tracking feedback laws can

be expressed as

u(t) = −K(t)x(t) + R−1BT v(t)

K(t) = R−1BT S(t)

−Ṡ(t) = AT S(t) + S(t)A− S(t)BR−1BT S(t) + CT QC

S(T ) = CT P (T )C

−v̇(t) = (A−BK)T v(t) + CT Qr(t)

v(T ) = CT Mr(T ) .

(5.45)

For our purposes, given a final time T , the control gains K and v can be com-

puted off-line. For the simulation results, the final time was take as two periods of

the reference signal. Suboptimal techniques to reduce the amount of storage can be

employed [12], but since we are concerned with illustrating the limitations of linear

quadratic tracking we shall omit these techniques.

First, we employ a linear quadratic tracking formulation for the transducer with

the hysteresis omitted to provide a basis for comparison. This corresponds to an

exact cancellation of the hysteretic effects by the inverse compensator. The gains in

the cost functional (5.38) were taken as P = 1×105, Q = 1×1017 and R = 1×10−14.

These gains were found by hand-tuning, in the same manner as the PID gains in the
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Figure 5.11: (a) Position, and (b) tracking error for a linear quadratic tracking
control law with no hysteresis present.

previous section. Figure 5.11 illustrates the abilities of a linear quadratic tracking

method. The control law designed provides extremely accurate tracking when no

disturbances to the system are included as can be seen by the error in Figure 5.11b.

As this situation is unreasonable, we include the full inverse compensator and

the free energy model for the hysteresis (2.37). The parameters utilized for the hys-

teresis model are given in Table 2.3. The hysteresis inverse is computed utilizing 4

quadratures points, 20 divisions in the coercive field integration, 40 divisions in the

effective field integration and a step size of ∆H = 1. These parameters are chosen to

allow the possibility of real time implementation of the inverse compensation LQR

control strategy, sacrificing accuracy for computational speed (see Figure 2.13). The

gain matrices are taken to be the same as in the previous simulation. Figure 5.12

displays the results of including the hysteresis and inverse filter. The effects of the

error in the linearization of the hysteresis are evident in Figure 5.12b and are similar

to the results obtained with a PID control method, depicted in Figure 5.10. Although

the inverse filter creates relatively small errors, the linear quadratic tracking method

does not accommodate these errors.
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Figure 5.12: (a) Position, and (b) tracking error for a linear quadratic tracking
control law with inverse compensation.

As was seen with the PID control law, the linear quadratic tracking method is

unable to attenuate any noise in the measurement of the position of the tip of the

Terfenol-D rod. The results of a simulation with sensor noise included are illustrated

in Figure 5.13. The noise signal has frequency of a 60 Hz and magnitude 1× 10−5 m,

and the same hysteresis and hysteresis inverse model parameters and gain matrices

are employed as in the previous example. The error shown in Figure 5.13b is on the

same order as the noise signal since the linear quadratic tracking method feeds back

on the noise, much the same as the PID control method.

5.4 Concluding Remarks

The first section in this chapter demonstrated a linear adaptive control technique uti-

lizing the straight line Preisach hysteresis model. The method was shown to provide

accurate tracking of a reference response and tune the parameters in the approxi-

mate inverse to the actual parameter values. This method is restricted to employing

the straight line Preisach hysteresis model and corresponding inverse and therefore
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Figure 5.13: (a) Position, and (b) tracking error for a linear quadratic tracking
control law with hysteresis compensation and sensor noise.

may lack the ability to achieve the required accuracy depending on the given criteria.

The linear adaptive control technique is best suited for magnetostrictive systems with

moderate performance requirements or other problems in which the hysteresis can be

more accurately described by the straight line Preisach model such as gear systems

[11].

PID and LQR control techniques were investigated for the control of the Terfenol-D

transducer. Inverse compensation methods incorporated into the control system

proved to improve the performance of PID control while an LQR optimal control

method was unable to provide accurate tracking for the system due to the inherent

hysteresis in the actuator. The limitations of the PID and linear quadratic track-

ing schemes to attenuate disturbances in the system motivate the investigation of

robust control laws which consider the existence of external disturbances and seek

to minimize their effects on tracking performance. Robust control designs capable of

compensating for external disturbances will be investigated in the next chapter.



Chapter 6

Robust Control Methods

We illustrated in the previous chapter the deficiencies in robustness of several control

methods. The inherent hysteresis in the magnetostrictive material leads to a dis-

turbance in the control system which can not be ignored in the control design even

if an inverse compensator is employed. This implies that the control design must

accommodate a certain level of error in the input to the plant. It is also necessary

to attenuate the effects of any sensor noise in the measurements of the position of

the tip of the Terfenol-D rod. These requirements can be met by employing robust

control designs utilizing an inverse compensator.

We will summarized three techniques for the synthesis of a robust controller. The

first two control design employ a single measure of robustness to the entire system. We

will describe the design of an H2 optimal controller and an H∞ sub-optimal controller.

A multiobjective control technique which is capable of combining several measure of

robustness with respect to the different performance criteria is also discussed in this

chapter.

87
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Figure 6.1: Two control design methods employing (a) a scaling factor, and (b) an
inverse compensator based on the free energy hysteresis model (2.37).

6.1 H2 and H∞ Designs

When constructing robust control designs, we consider two control design systems

employing different filters to the input of the plant. First, a constant scaling factor

will be employed to attenuate the scaling difference from the input of the hysteresis

to the output. This method is illustrated in Figure 6.1a. The signal which is fed

into the plant P consists of the prescribed input signal u and the error d created by

the hysteresis loop. The scaling factor will not accommodate the nonlinear hysteretic

behavior of the magnetostrictive material as is illustrated by the phase diagram of

the input signal u and the output of the hysteresis u + d depicted in Figure 6.2a.

Secondly, an inverse compensator based on the free energy hysteresis model (2.37)

will be employed to attenuate the hysteresis inherent in the Terfenol-D transducer.This

method is depicted in Figure 6.1b. The phase diagram of u and u + d in Figure 6.2b

depicts a nearly linear relationship. This reflects the benefit of employing an inverse

filter based on the hysteresis model. Recall from Section 2.3.2 that the relationship

between u and u + d is not actually linear and there is error in the linearization of

the hysteresis by the inverse compensator as shown in Figure 2.13. Both of these
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Figure 6.2: Phase diagram of u and u+d for (a) a scaling factor, and (b) an inverse
compensator based on the free energy hysteresis model (2.37).

design methods will be implemented to determine whether the inclusion of an inverse

compensator based on the free energy hysteresis model (2.37) provides a significant

increase in the control performance for a Terfenol-D transducer.

6.1.1 System Representation

Figure 6.3 depicts the block diagram for the control design system which we con-

sider. In the diagram, P represents the transducer model given by the transfer func-

tion (3.18) and y denotes the position of the tip of the Terfenol-D rod. The signal

to be tracked is denoted by r and the signal d represents the error to the input of

the plant as discussed above. Noise in the measurement of y is separated into two

signals, s and n. We assume a 60 Hz noise signal due to the sensing apparatus which

is represented by s. The signal n represents higher frequency noise which may be

attributed to the sensing device, other external disturbances or, in a numerical simu-

lation, numerical noise. These two signals are separated since we wish to weight them

independently. The output signals e and û denote the weighted tracking error and

weighted output of the controller K, respectively. Here Wu, Wd, We, Wr, Ws and Wn
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Figure 6.3: Robust control design system incorporating error created by the inherent
hysteresis and sensor noise in the transducer.

are weighting functions chosen to maximize the performance of the controller utilizing

a priori knowledge of the characteristics of the corresponding signals as detailed in

Section 6.1.3.

We now represent the transfer functions of the open loop system. The maps from

the inputs r, d, s and n to the outputs û, e and v are given by

v = Wr[r]− (P [Wd[d] + u] + Wn[n] + Ws[s])

= Wr[r]− P [Wd[d]]−Wn[n]−Ws[s]− P [u]

e = We[v]

û = Wu[u] .

(6.1)

Denoting the transfer function matrix from the inputs r, d, n, s and u to the outputs

e, û, and v as G, we have

G =

 WeWr −WePWd −WeWn −WeWs −WeP

0 0 0 0 Wu

Wr −PWd −Wn −Ws −P

 . (6.2)

The closed loop system can subsequently be represented as a linear fractional trans-

formation as shown in Figure 6.4.
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Figure 6.4: Linear fractional transformation (LFT) representation of the transducer
model.

To standardize the system formulation to fulfill the assumptions of the theorems

guaranteeing the existence of optimal or sub-optimal controllers, we chose a class of

weighting functions Wu which have a nonzero D matrix in the corresponding state

space representation. The state space representation of either Wn or Ws is required to

have a nonzero D matrix and We should satisfy D = 0. For this selection of weighting

functions, the open loop system can be partitioned as

G(s) =


A B1 B2

C1 0 D12

C2 D21 0

 =

 G11 G12

G21 G22

 (6.3)

where

G11 =

 A B1

C1 0

 , G12 =

 A B2

C1 D12



G21 =

 A B1

C2 D21

 , G22 =

 A B2

C2 0


(6.4)
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represent the transfer functions from w to z, u to z, w to v, and u to v, respectively,

as depicted in Figure 6.4.

We make the following assumptions on our system:

1. (A, B1) is controllable and (C1, A) is observable.

2. (A, B2) is stabilizable and (C2, A) is detectable.

3. D12 =

 0

I

 and D21 = [ 0 I ].

4.

 A− jωI B2

C1 D12

 has full column rank for all ω.

5.

 A− jωI B1

C2 D21

 has full row rank for all ω.

Assumption 2 is necessary to guarantee the existence of a stabilizing controller. As-

sumptions 4 and 5 together with 2 guarantee the existence of solutions to the cor-

responding Riccati equations. Assumption 3 ensures the H2 and H∞ problems are

nonsingular. If D12 has full column rank and D21 has full row rank but they do not

satisfy Assumption 3, a normalizing procedure can be performed as described in [26].

6.1.2 Minimal realization

There are only two internal states in the model for the magnetostrictive transducer

given in (3.18) yet the inclusion of several weighting functions can greatly increase the

number of states in the system. To simplify the numerics of the control formulation,
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it is beneficial to remove unobservable and uncontrollable states from the open-loop

system. To this end, we define the open loop system as

G =

 A B

C D

 (6.5)

where

B = [B1 B2] , C =

 C1

C2

 and D =

 0 D12

D21 0

 . (6.6)

Suppose there exists a matrix

P = P ∗ =

 P1 0

0 0

 (6.7)

such that AP + PA∗ + BB
∗

= 0. Partitioning G as

G =


A11 A12 B1

A21 A22 B2

C1 C2 D

 , (6.8)

we can define a controllable realization of G as

Gc =

 A11 B1

C1 D

 . (6.9)
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Similarly, we can remove the unobservable states from the open loop system. Suppose

there exists a matrix

Q = Q∗ =

 Q1 0

0 0

 (6.10)

such that A∗
11Q + QA11 + C

∗
1C1 = 0. Partitioning Gc as

Gc =


Â11 Â12 B̂1

Â21 Â22 B̂2

Ĉ1 Ĉ2 D

 , (6.11)

a controllable and observable realization of G can be given as

Gco =

 Â11 B̂1

Ĉ1 D

 . (6.12)

Here, Gco is called a minimal realization of the system G. This provides a method for

eliminating uncontrollable and unobservable states from the open loop system which

aides in the formulation of the controller by reducing the size of the Riccati equations

to be solved. For a more detailed description of minimal realizations see [26].

6.1.3 Weighting Functions

The majority of effort in designing a robust controller lies in the choice of the weighting

functions. Discussions on techniques for choosing these function can be found in

[13, 26]. The frequency of the noise s can be accurately determined for the sensor

measuring the position of the tip of the Terfenol-D rod. The weight Ws is chosen to

heavily weight frequencies in a bandwidth around the expected noise frequency and
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Figure 6.5: Frequency response of (a) Ws, and (b) Wn.

assign low weights to frequencies above and below the specified bandwidth. For the

simulations, a noise frequency of 60 Hz is added to the system and, therefore, Ws

is taken to be a sixth-order pass-band Chebyshev filter with a bandwidth of 10 Hz

centered at 60 Hz. An nth order Chebyshev filter is a system whose frequency response

function satisfies

|Hcb(ω)| = 1

1 + εpC2
n

(
ω
ωs

) (6.13)

where ωs is the sampling frequency, εp is a parameter which controls the speed of the

roll-off, and the polynomials Cn are the nth order Chebyshev polynomials defined by

the recursion

C0(ω) = 1, C1(ω) = ωC0(ω) Cn+1(ω) = 2ωCn(ω)− Cn−1(ω). (6.14)

Recall that Ws or Wn was required to have a nonzero D matrix in the state space

realization. The Chebyshev filter Ws is appended to force a nonzero D to satisfy this

requirement. The frequency response of Ws is illustrated in Figure 6.5a.
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Figure 6.6: Frequency response of Wr.

To weight high frequency noise, Wn is taken to be a high-pass filter. The fourth-

order Butterworth filter, plotted in Figure 6.5b, is employed in the numerical sim-

ulations. An nth order Butterworth filter is a system where the frequency response

function satisfies

|Hbw(ω)| = 1√
1 +

(
ω
ωs

)2n
. (6.15)

Again, ωs denotes the sampling frequency. A detailed discussion on Chebyshev and

Butterworth filters is provided in [13].

The weight Wr is taken as a sixth-order pass-band Chebyshev filter. Since the

frequency of the reference signal r is known to be 1 Hz, we can design Wr to have a

narrow bandwidth which is taken as 1 Hz centered at 1 Hz. The frequency response

of Wr is shown in Figure 6.6.

The weighting function Wd employed in the numerical simulations depends on

whether the scaling factor or the inverse compensator is utilized in the control system.

To determine Wd, a signal with the same frequency as the reference signal was applied

to the given filter and then fed into the free energy hysteresis model. The Fourier

transform of the output of the hysteresis model was then analyzed to determine Wd.

For simulations employing a scaling factor, the weight Wd is taken as a fourth-order
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Figure 6.7: (a) Power spectrum of d, and (b) frequency response of Wd for linear
scaling factor.

low-pass Butterworth filter with a cut-off frequency of 10 Hz. This choice of Wd

reflects the significant frequencies in the power spectrum of d for the employment of

a scaling factor. The power spectrum of d and the frequency response of Wd, in this

case, are depicted in Figure 6.7.

Figure 6.8a illustrates the power spectrum of the disturbance d if the inverse

compensator based on the free energy hysteresis model is employed. From this figure,

it is clear that Wd should weight frequencies below 350 Hz heavily. Therefore, Wd

is taken as a low-pass Butterworth filter with a cut-off frequency of 400 Hz. The

frequency response of Wd is shown in Figure 6.8b. Higher order filters could be used

if a steeper roll-off outside of the frequency band is desired although we have chosen to

limit the number of states in the state space representation of our open loop system.

The weighting function on the error signal is specified as We =
γe

s + εe

with

γe = 3.2 × 106 and εe = 1 × 10−8. An integrator is chosen to prevent the error from

achieving steady state at a nonzero value and the pole was shifted slightly off zero

to ensure that the controller is realizable. We take the weighting function on the

controller output to be Wu = 5 × 10−6. Since we do not experience any problems
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Figure 6.8: (a) Power spectrum of d, and (b) frequency response of Wd for inverse
compensation based on free energy hysteresis model.

with saturation, or other such effects, we minimally weight û to focus the controller

on tracking and disturbance rejection. Note that the functions We and Wu satisfy the

requirement placed on them in Section 6.1.1, i.e., D = 0 in the state space realization

of We and D = 5× 10−6 in the realization of Wu.

6.1.4 H2 Optimal Control Design

Now that the open loop system has been represented and the weighting functions have

been chosen, we proceed by designing a controller which minimizes a given norm of

the closed loop system. To begin, we consider the H2 norm of the closed loop system

T given by

‖T‖2
2 =

1

2π

∫ ∞

−∞
trace [T ∗(iω)T (iω)] dω. (6.16)

Employing the notation defined in (6.4), the design of the optimal H2 controller

incorporates two Hamiltonian matrices
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H2 =

 A−B2R
−1
1 D∗

12C1 −B2R
−1
1 B∗

2

−C∗
1(I −D12R

−1
1 D∗

12)C1 −(A−B2R
−1
1 D∗

12C1)
∗

 (6.17)

and

J2 =

 (A−B2R
−1
1 D∗

12C1)
∗ −C∗

2R
−1
2 C2

−B1(I −D∗
21R

−1
2 D21)B

∗
1 −(A−B2R

−1
1 D∗

12C1)

 (6.18)

where R1 = D∗
12D12 > 0 and R2 = D21D

∗
21 > 0.

These Hamiltonian matrices give rise to two Riccati equations

(A−B2R
−1
1 D∗

12C1)
∗X2 + X2(A−B2R

−1
1 D∗

12C1) + X2(−B2R
−1
1 B∗

2)X2

−C∗
1(I −D12R

−1
1 D∗

12)C1 = 0

(6.19)

and

(A−B2R
−1
1 D∗

12C1)Y2 + Y2(A−B2R
−1
1 D∗

12C1)
∗ + Y2(−C∗

2R
−1
2 C2)Y2

−B1(I −D∗
21R

−1
2 D21)B

∗
1 = 0.

(6.20)

Once the Riccati equations have been defined, the following theorem from [26] guar-

anteeing an H2 optimal controller can be employed.

Theorem 6.1: There exists a unique controller which minimizes the H2 norm of the

closed loop system if:

1. H2 ∈dom(Ric) and X2 :=Ric(H2) > 0

2. J2 ∈dom(Ric) and Y2 :=Ric(J2) > 0.
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The H2 optimal controller is given by

K ≡

 A2 −L2

F2 0

 (6.21)

where

A2 ≡ A + B2F2 + L2C2, F2 ≡ −R−1
1 (B∗

2X2 + D∗
12C1),

L2 ≡ −(Y2C
∗
2 + B1D

∗
21)R

−1
2 . (6.22)

Assumptions 2, 3 and 4 from Section 6.1.1 guarantee that H2 ∈dom(Ric) and As-

sumptions 1, 3 and 5 guarantee that J2 ∈dom(Ric). See [26] for a detailed proof.

The numerical results for the H2 robust control laws are now presented. All of the

following results include a noise signal s with a frequency of 60 Hz and magnitude of

1× 10−5 m which is approximately 10% of the signal. The free energy model (2.37)

is utilized to simulate the inherent hysteresis with the model parameters given in

Table 2.3.

To determine the most effective control strategy, three examples will be examined.

First, the H2 controller will be designed for a system with no hysteresis present. Then

a system with inherent hysteresis is considered. We will investigate the performance

of an inverse compensator combined with an H2 control designed without the con-

sideration of a disturbance to the input d. Next, an H2 controller designed with the

consideration of inherent hysteresis and the inclusion of a scaling factor is presented.

Finally, the controller is designed under the consideration of the inherent hysteresis

and the inverse compensator based on the free energy hysteresis model.

Example 1a. To begin, we examine the performance of the H2 formulation. For

the sake of comparison, the performance of an H2 robust control designed without
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Figure 6.9: H2 optimal control results for a system with no hysteresis present.
(a) Tracking response, and (b) error.

including a disturbance d at the input to the plant in the design system is examined.

If the hysteresis is omitted, or equivalently, the inverse filter is an exact inverse of

the hysteretic behavior, the sensor noise can be significantly reduced. Figure 6.9

illustrates the performance of an H2 control design with no hysteresis considered in

the design or simulation. The error, depicted in Figure 6.9b, shows that a significant

attenuation of the sensor noise is achieved and a tracking error within 2 microns is

reached. It is noted that the H2 optimal control design is equivalent to an LQR

optimal control design applied to the transducer system incorporating the reference

signal r and the sensor noise n as inputs and the weighted error e and control output

û as outputs of the system [26].

Example 1b. Next, we include the inverse compensator based on the free energy hys-

teresis model and the free energy hysteresis model in the simulation of the controller

design without consideration of a disturbance d. Figure 6.10 clearly shows the effects
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Figure 6.10: H2 optimal control results for a controller designed with no considera-
tion of error due to hysteresis. The controller was applied to a system with hysteresis
which employed an inverse compensator based on the free energy model (2.37). The
(a) tracking response, and (b) error.

of not considering robustness with respect to the disturbance d in the control formu-

lation if there is an error to the input of the plant caused by inherent hysteresis. The

error, shown in Figure 6.10b, illustrates the insufficient attenuation of the disturbance

to the input of the plant. This example demonstrates the necessity of considering an

error to the input of the plant in the control design system for a hysteretic transducer.

The following two examples illustrate the benefit of including the disturbance d

in the control design.

Example 1c. Initially, we consider the constant scaling factor and employ the cor-

responding weighting function Wd in the controller design. Figure 6.11a illustrates

the inability of this method to attenuate the hysteretic behavior. The controller is

not sufficiently robust to reject the hysteresis retained in this case. The phase delay
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Figure 6.11: H2 optimal control results for a system employing a scaling factor in
the design and simulation. The (a) tracking response, and (b) error.

induced by the hysteresis loop is evident in Figure 6.11a. The error, shown if Fig-

ure 6.11b, depicts a large error at the peaks of the reference signal invoked by the

phase delay follow by a period where the controller is able to decrease the error.

Example 1d. The tracking performance of the H2 optimal control design utilizing

an inverse compensator based on the free energy model (2.37) and the correspond-

ing weighting function Wd is illustrated in Figure 6.12. Figure 6.12a demonstrates

the capability of the controller to track the reference signal and reject the noise and

disturbance signals. A tracking error less than 2 microns is achieved after a short

period and the noise signal and effects of the inverse compensation for the hysteresis

are effectively attenuated, as illustrated in Figure 6.12b. The utilization of an inverse

compensator based on the free energy hysteresis model is able to attenuate a suffi-

cient amount of the hysteretic behavior as to allow the controller to attenuate the

remaining disturbance.
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Figure 6.12: H2 optimal control results for a system employing an inverse compen-
sator based on the free energy hysteresis model (2.37) in the design and simulation.
The (a) tracking response, and (b) error.

To further verify the robustness of the H2 optimal controller design for the last

example, the closed loop transfer functions from the inputs to the tracking error

e = r − y are examined. These functions are defined by

e = r − (n + s + P [d + K [e]])

e = r − n− s− P [d]− PK[e] . (6.23)

From (6.23), we define the sensitivity function

S = (I + PK)−1 (6.24)

and the disturbance sensitivity function

Sd = (I + PK)−1 P . (6.25)
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We can now represent the tracking error as

e = S[r]− S[n]− S[s]− Sd[d] . (6.26)

Since the sensitivity function is the map from the inputs r, n and s to the tracking

error e, we can analyze the robustness to certain frequency inputs by examining

the frequency response of S. Figure 6.13a illustrates the frequency response of S.

The magnitude of the response at a frequency of 1 Hz is -57 dB. This indicates

good tracking performance for the reference signal which has a frequency of 1 Hz.

Recall that the noise signal s has a frequency of 60 Hz. The sensitivity function

in Figure 6.13a also exhibits a dip in the magnitude of the frequency response of S

around 60 Hz with the magnitude being -0.8 dB at 60 Hz. Moreover, the magnitude

of the response remains under 0 dB for larger frequencies because of the rejection of

higher frequency noise imposed by the signal n. Figure 6.13b illustrates the magnitude

of the frequency response of the disturbance sensitivity function Sd. Since Sd is the

transfer function from d to e, it should have small magnitude for frequencies less than

400 Hz which is evident in Figure 6.13b.

6.1.5 H∞ Sub-optimal Control Design

In addition to the H2-norm, another norm which can be utilized in the design of

robust controllers is the H∞-norm

‖T‖∞ = sup
ω∈R

σ[T (jω)] (6.27)

where σ[T (jω)] denotes the maximal singular values of the closed loop map T . Em-

ploying the notation defined in (6.4), the design of a sub-optimal H∞ controller which

gives ‖T‖∞ < γ yields two Hamiltonian matrices
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Figure 6.13: (a) H2 sensitivity function, and (b) H2 disturbance sensitivity function.

H∞ =

 A γ−2B1B
∗
1 −B2B

∗
2

−C∗
1C1 −A∗

 (6.28)

and

J∞ =

 A∗ γ−2C∗
1C1 − C∗

2C2

−B1B
∗
1 −A

 . (6.29)

These Hamiltonian matrices give rise to two Riccati equations

A∗X∞ + X∞A + X∞
(
γ−2B1B

∗
1 −B2B

∗
2

)
X∞ + C∗

1C1 = 0 (6.30)

and

AY∞ + Y∞A∗ + Y∞
(
γ−2C∗

1C1 − C∗
2C2

)
Y∞ + B1B

∗
1 = 0 . (6.31)

The main difference between the Hamiltonian matrices given here and the Hamilto-

nian matrices corresponding to the H2 formulation is that the (1,2) blocks of H∞ and

J∞ are not sign definite. Therefore, a solution to the Ricatti equations can not be
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guaranteed for all γ. Note that as γ approaches infinity the H∞ Hamiltonians (6.28)

and (6.29) become equivalent to the H2 Hamiltonians (6.17) and (6.18).

The following theorem from [26] guarantees the existence of an H∞ sub-optimal

controller.

Theorem 6.2: There exists an admissible controller such that ‖T‖∞ < γ iff:

1. H∞ ∈dom(Ric) and X∞ :=Ric(H∞) > 0

2. J∞ ∈dom(Ric) and Y∞ :=Ric(J∞) > 0

3. ρ(X∞Y∞) < γ2.

The H∞ sub-optimal controller is given by

K ≡

 A∞ −Z∞L∞

F∞ 0

 (6.32)

where

A∞ ≡ A + γ−2B1B
∗
1X∞ + B2F∞ + Z∞L∞C2

F∞ ≡ −B∗
2X∞ L∞ ≡ −Y∞C∗

2 .

(6.33)

While the controller given in (6.32) is sub-optimal in that it gives a closed loop

system with an H∞-norm less than γ, the Matlab routine hinfsyn can be utilized to

decrease γ until an assumption of Theorem 6.2 is violated. This gives a control design

method which is close to optimal.

Now, the performance of the H∞ control design is illustrated. We consider H∞

sub-optimal control designs for a system without sensor noise and with sensor noise.

Both cases are designed with consideration of an inverse compensator based on the
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Figure 6.14: H∞ sub-optimal control results for a system employing an inverse
compensator based on the free energy hysteresis model (2.37) with no sensor noise.
The (a) tracking performance, and (b) tracking error.

free energy hysteresis model and the corresponding weight Wd as the previous ex-

amples demonstrated the superiority of this method. The parameters in the inverse

compensator and free energy hysteresis model are the same as in the H2 control ex-

amples.

Example 2a. The tracking performance in the absence of sensor noise is illustrated

in Figure 6.14a. The ability of the H∞ controller to effectively reject the disturbance d

due to the hysteresis is evident from Figure 6.14b. The incorporation of an inverse

compensator to an H∞ sub-optimal control design has proved to effective in tracking

a reference signal while rejecting the disturbance to the input of the plant caused by

the hysteresis and inverse compensator.

Example 2b. The tracking performance in the presence of sensor noise is illustrated

in Figure 6.15. Figure 6.15a illustrates the capability of the controller to track the
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Figure 6.15: H∞ sub-optimal control results for a system employing an inverse
compensator based on the free energy hysteresis model (2.37) with sensor noise. The
(a) tracking performance, and (b) tracking error.

reference signal and reject the noise and disturbance signals. Again, a tracking error

of approximately 2 microns is achieved after a short period, as illustrated in Fig-

ure 6.15b.

As was done with the H2 optimal control formulation, the sensitivity and dis-

turbance sensitivity functions with the H∞ sub-optimal controller are examined to

ensure robustness. Figure 6.16 depicts the magnitude of the frequency responses of

the sensitivity and disturbance sensitivity functions for the H∞ control design. As

was seen with the H2 controllers, the magnitude of S is small at the expected fre-

quencies of the inputs r, n and s. The sensitivity function has magnitudes of -49 dB

at 1 Hz and -0.7 dB at 60 Hz. Also note that the magnitude of Sd, illustrated in

Figure 6.16b, is small for frequencies less than 400 Hz as imposed by Wd.

This section has outlined the formulation and numerical results of an H2 optimal

and H∞ sub-optimal robust control design for a Terfenol-D transducer. It was shown

that the inclusion of an inverse compensator based on the free energy hysteresis model
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Figure 6.16: (a) H∞ sensitivity function, and (b) H∞ disturbance sensitivity func-
tion.

in an H2 or H∞ control design provides accurate tracking while successfully atten-

uating sensor noise and a disturbance due to the inexact inverse filter. The same

methodology can be used to include other disturbances to the system if necessary.

Details were provided regarding the choice of weighting functions, or filters, since this

step in the robust control formulation is crucial for achieving the balance between

tracking requirements and disturbance rejection needed for a particular application.

6.2 Multiobjective Control

The last section demonstrated the design of controllers utilizing performance mea-

sures given by either H2 or H∞ norms. Performance with respect to one norm does

not imply performance with respect to another, and applications often contain diverse

uncertainties imposed on the system which necessitate multiple distinct quantification

of the controller’s performance. For example, the Terfenol-D transducer requires ac-

curate tracking while rejecting sensor noise and the disturbance due to the inherent
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hysteresis. Multiobjective controllers are capable of incorporating several measure

of robustness into a single system. In the discussion that follows, we summarize a

multiobjective formulation developed by Qi, Khammash, and Salapaka in [23, 24]

and apply this control design to the Terfenol-D transducer. The previous section

also demonstrated that the incorporation of an inverse compensator based on the

free energy model (2.37) in the control design provides significant attenuation of the

inherent hysteresis and allows the control to reject the error caused by the hysteresis.

Therefore, the controllers designed in this section will employ this inverse compensa-

tion technique.

The multiobjective control design summarized here is implemented in discrete

time. First, we define the λ transform which corresponds to the discrete version of

the Laplace transform. The λ transform of a signal x = (x(0), x(1), . . .) is given as

x(λ) =
∞∑

k=0

x(k)λk (6.34)

and the λ transform of a linear time-invariant system

G =

 A B

C D

 (6.35)

is defined by

G(λ) = λC (I − λA)−1 B + D. (6.36)

For simplicity, we denote the convolution of two system T and S as T ∗ S = TS.

To define the multiobjective control problem, consider a general closed loop system

which is represented by the linear fraction transformation depicted in Figure 6.17.

Here G is a general discrete, linear, time-invariant plant and K is the controller to

be synthesized. The map G from inputs to outputs may be partitioned as
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Figure 6.17: LFT for a general closed loop system.

G =

 G11 G12

G21 G22

 (6.37)

where G11 denotes the map from w to z, G12 denotes the map from w to v, G21

denotes the map from u to z and G22 denotes the map from u to v. We assume the

system G is stabilizable from u and detectable from v therefore a controller stabilizes

G if and only if it stabilizes G22 [6]. Hence, to parameterize all possible stabilizing

controllers for G, we need only parameterize all possible stabilizing controllers for

G22. This can be accomplished utilizing a Youla parameterization.

The parameterization of all stabilizing controllers is only summarized here and a

detailed discussion of this topic can be found in [6, 26]. A double-coprime factorization

of G22 is defined as the set of maps M , N , M̃ and Ñ with G22 = NM−1 = M̃−1Ñ

satisfying  X̃ −Ỹ

−Ñ M̃


 M Y

N X

 (6.38)
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for some stable maps X, Y , X̃, and Ỹ . Now, [6] states that all the stabilizing

controllers of G are represented by

K = (Y −MQ)(X −NQ)−1 (6.39)

for some stable free parameter Q ∈ l1. From (6.39) and the LFT representation

depicted in Figure 6.17, it follows that all the achievable closed loop maps R from

the inputs w to outputs z are represented by

R = H − UQ V (6.40)

where

H = G11 + G12Y M̃G21, U = G12M, V = M̃G21. (6.41)

To simplify notation, we denoting the map from input wi to zi, parameterized

by Q, as Ri(Q) for i = 1, . . . , 6 and the map from r to y as R7(Q). Employing this

notation, without loss of generality, we consider the case when r is a step input [24].

In order to include time domain constraints in the multiobjective control formula-

tion, the time response of the closed loop system due to the input r is specified as

y = R7(Q) ∗ r = AtR
7(Q) where

At =


1 0 0 · · ·

1 1 0 · · ·
...

...
. . . . . .

 . (6.42)
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The general multiobjective control problem for the system depicted in the linear

fractional transformation in Figure 6.17 is now defined as

µ = inf
Q∈l1

c1‖R1(Q)‖1 + c2‖R2(Q)‖2
2 + c3‖R3

(Q)‖H∞

subject to

‖R4(Q)‖1 ≤ c4

‖R5(Q)‖2
2 ≤ c5

‖R6
(Q)‖H∞ ≤ c6

at(k) ≤ [AtR
7(Q)] (k) ≤ bt(k), for all k

(6.43)

where ci > 0, i = 1, . . . , 6 and at and bt are specified infinite sequences [24].

In the general case, (6.43) is difficult to solve so, to facilitate the solution, an

auxiliary problem is defined in [24] given by

ν = inf
Q∈l1

c1‖R1(Q)‖1 + c2‖R2(Q)‖2
2 + c3‖R3

(Q)‖H∞

subject to

‖Q‖1 ≤ γ

‖R4(Q)‖1 ≤ c4

‖R5(Q)‖2
2 ≤ c5

‖R6
(Q)‖H∞ ≤ c6

at(k) ≤ [AtR
7(Q)] (k) ≤ bt(k), for all k.

(6.44)

This auxiliary problem improves the numerical solution of the multiobjective prob-

lem by allowing a regularization as detailed in [15]. Also, it is possible that the

problem (6.43) does not admit a solution with a bounded one norm on Q. In such

a case it would be reasonable to impose a bound on ‖Q‖1 although, typically, this

bound is redundant.
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To numerically implement a multiobjective control design, a sequence of finite

dimensional convex optimization problems are derived. The objective values of this

sequence converge to the objective value of the infinite dimensional problem (6.44)

monotonically from below given that for all k, at(k) < bt(k) and that there exists N1

and N2 so that at(k) = at(N1), for all k ≥ N1 and bt(k) = bt(N2), for all k ≥ N2. The

finite dimensional system is specified in [24] by

νn = inf
Q∈l1

c1‖Pn(R1(Q))‖1 + c2‖Pn(R2(Q))‖2
2 + c3‖T3,n(Q)‖

subject to

‖Q‖1 ≤ γ

‖Pn(R4(Q))‖1 ≤ c4

‖Pn(R5(Q))‖2
2 ≤ c5

‖T6,n(Q)‖ ≤ c6

at(k) ≤ [AtR
7(Q)] (k) ≤ bt(k), k = 0, . . . , n.

(6.45)

Here, Pn denotes the truncation operator defined as

Pn(x) = (x(0), x(1), . . . , x(n), 0, 0, . . .), (6.46)

and

Ti,n(Q) =


Ri(0) 0 · · · 0

...
. . . . . . 0

Ri(n) · · · · · · Ri(0)

 , i = 3, 6. (6.47)

A theorem providing the existence of a solution to (6.45) and the monotonic conver-

gence of νn to ν from below as n →∞ is proved in [15].

An upper bound sequence of finite dimensional systems is also defined in [24] and

is given by
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νn = inf
Q∈l1

c1‖R1(Q)‖1 + c2‖R2(Q)‖2
2 + c3‖R3

(Q)‖H∞

subject to

‖Q‖1 ≤ γ

‖R4(Q)‖1 ≤ c4

‖R5(Q)‖2
2 ≤ c5

‖R6
(Q)‖H∞ ≤ c6at(k) ≤ [AtR

7(Q)] (k) ≤ bt(k), for all k

Q(k) = 0 if k > n.

(6.48)

A second theorem provided in [15] ensures the existence of a solution to (6.48) and the

monotonic convergence of νn to ν from above as n →∞. Note that in the lower (6.45)

and upper (6.48) bound problems, only the parameters Q(0), . . . , Q(n) occur in the

optimization. This yields solvable finite dimension optimization problems.

6.2.1 System Representation

Now that the general multiobjective problem and the finite dimension upper and lower

bound problems have been formulated, we apply these formulations to the control of

the Terfenol-D actuator. Since we are working in discrete space, a zero-order hold

discretization of the model (3.18) is employed for the plant which is denoted P .

Figure 6.18 illustrates the system to be controlled which is similar to the system in

the previous section seen in Figure (6.3).

The discrete signal to be tracked is denoted r and y is the position of the tip of the

Terfenol-D rod. Again, n is the sensor noise signal, d is the disturbance created by

the inverse compensator and the error is denoted e. The weighting functions Wn and

Wd are chosen based on a priori knowledge of the signals n and d. We are concerned
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Figure 6.18: System diagram for multiple objective system.

with the effect of the input signals on the error e. Therefore, e is the only exogenous

output in our system.

Several differences to note between the system given in Figure 6.18 and the system

in Figure 6.3 include the omission of the signals s and û and the weighting functions

Wr and We. The signal s is left out or combined with n for simplicity. The weighted

output û of the controller K is not necessary for the multiobjective control synthesis

as it was for the H2 and H∞ control designs. In the previous section, the weighting

function on the error We was taken as an adjusted integrator to improve the tracking

performance. With a multiobjective control design, high performance controls can be

achieved without such a weight.

To formulate the Terfenol-D problem in the framework of the general problem,

we denote the λ transform of r as W r and define the signal r1 = (1, 0, . . .). From

these definitions, note that r = W rr1, or equivalently, r = Wr ∗ r1. The reference

signal r can be replaced with Wr ∗ r1, as seen in Figure 6.19, to ensure accurate

tracking. In the numerical simulations, the reference signal to be tracked is taken

as a sinusoidal signal r(k) = a · sin(2πωTsk) where ω is the frequency and Ts is the

sampling frequency. This implies that

W r(λ) =
sin(ωTs)λ

λ2 − 2 cos(ωTs)λ + 1
. (6.49)
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Figure 6.19: Equivalent system diagram for multiple objective system.

In the simulations we apply a 60 Hz sensor noise signal n. Therefore, Wn is spec-

ified as a sixth-order discrete Butterworth filter with a pass-band of 10 Hz centered

at 60 Hz. For the system design, we consider the employment of the inverse of the

free energy hysteresis model as the inverse compensator and chose Wd accordingly.

Since the disturbance d has large spectrum values for frequencies less than 350 Hz, as

seen in Figure 6.8, Wd is taken as a fourth-order low-pass discrete Butterworth filter

with a cut-off frequency of 400 Hz.

The maps from the inputs d, n, and r̃ to the outputs e, and v for the Terfenol-D

transducer system are specified by

v = Wr ∗ r1 − (Wn ∗ n + P [Wd ∗ d + u])

= Wr ∗ r1 −Wn ∗ n− PWd ∗ d− P ∗ u

e = v.

(6.50)

Next, the closed loop system is represented by the LFT shown in Figure 6.20 with

the matrix G given as



Chapter 6. Robust Control Methods 119

u

G

K

:=wz:=

v

e

e
e n

d

r1

Figure 6.20: LFT for Terfenol-D system.

G =


Wr −Wn −PWd −P

Wr −Wn −PWd −P

Wr −Wn −PWd −P

Wr −Wn −PWd −P

 =

 G11 G12

G21 G22

 , (6.51)

so that

G11 =


Wr −Wn −PWd

Wr −Wn −PWd

Wr −Wn −PWd

 , G12 =

 −P

−P

 ,

G21 =
[

Wr −Wn −PWd

]
, G22 = [−P ] .

(6.52)

Recalling that all achievable closed loop maps are represented as R = H−UQV with

H, U and V given in (6.41), we specify

R1(Q) = Wr + MPQM̃Wr

R2(Q) = −Wn −MPQM̃Wn

R3(Q) = −PWd −MPQM̃PWd

(6.53)

where M̃ , Ñ , N , and M are double-coprime factors of G22 = −P . Since P is stable,

we can take Y = Ỹ = 0 in the coprime factorization of −P . The λ transform of P is
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a rational function; therefore, we take

−P (λ) =
N(λ)

M(λ)
. (6.54)

Furthermore, we define Ñ = N , M̃ = M , X̃ = M−1 and X = M̃−1 to satisfy the

double coprime factorization.

The following examples will demonstrate several formulations of multiobjective

control problems associated with the Terfenol-D transducer.

6.2.2 Mixed l1 and H2 Control

Initially, we consider a multiobjective control design for the Terfenol-D transducer

depicted in Figure 1.3 employing an l1 constraint on the tracking performance and an

objective function based on the H2 measure of the sensor noise rejection. The l1 norm

is chosen to quantify the tracking performance since it is a measure of the ratio of the

worst case maximum amplitude of the output to the worst case maximum amplitude

of the input. The H2 norm is chosen to measure the map from the noise to the error

because it quantifies the worst case maximum amplitude of the output in the presence

of bounded energy. For this example the hysteresis is ignored in both the controller

synthesis and the numerical simulation in order to demonstrate the capabilities of a

mixed l1/H2 control formulation.

This problem is formulated as the auxiliary multiobjective problem

ν = inf
Q∈l1

‖R2(Q)‖2
2

subject to

‖Q‖1 ≤ γ

‖R1(Q)‖1 ≤ c1

(6.55)
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Figure 6.21: Optimal Q impulse response for multiobjective control design with an
H2 measure of sensor noise rejection as the objective function and an l1 constraint on
the tracking error.

where R2 and R1 are given in (6.53). To numerically implement this control design,

the lower bound of the problem (6.55) is employed. This lower bound problem is

given as

ν = inf
Q∈l1

‖Pn(R2(Q))‖2
2

subject to

‖Q‖1 ≤ γ

‖Pn(R1(Q))‖1 ≤ c1.
(6.56)

It should be noted that in the computation of the solution to (6.56), a gain was

applied to the plant P . This was done to aid the optimization process by causing a

change in the free parameter Q to invoke a more noticeable change in the closed loop

system. In the closed loop simulations, the gain was removed.

A sensor noise signal with a frequency of 60 Hz and an amplitude of 1× 10−5 m,

which is approximately 10% of the signal, was applied to the system and the scalar

gains are taken to be γ = 1× 105 and c1 = 1. The l1 norm on Q is redundant for this

example but aids the optimization as previously stated.
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Figure 6.22: (a) Tracking, and (b) error for multiobjective control design with an
H2 measure of sensor noise rejection as the objective function and an l1 constraint on
the tracking error.

Figure 6.21 illustrates the free parameter Q which solved the problem (6.56).

The parameter Q was optimized over the first 200 steps, i.e., n = 200, and a state

space representation of Q was constructed from the impulse response of Q assuming

Q(k) = 0 for k > 200. This system was employed over the entire time span. The H2

norm of Pn(R2(Q)) for the optimal Q was found to be 2.3× 10−1.

In Figure 6.22, the tracking and error of the system are depicted. Figure 6.22b

shows the capability of the multiobjective controller to reject the sensor noise while

maintaining accurate tracking. Comparing the error shown in Figure 6.22b with the

error for the H2 formulation for a system with sensor noise and no hysteresis shown

in Figure 6.9b, it is clear that the multiobjective control provides better sensor noise

attenuation than the H2 formulation. This example is evidence of the benefits of

employing a multiobjective control approach to measure the performance of different

aspects of the system utilizing different norms.
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6.2.3 Mixed l1 and H∞ Control

Here, we consider a multiobjective control design for the Terfenol-D transducer em-

ploying an l1 constraint on the tracking performance and an objective function con-

sisting of an H∞ measure of the rejection of the error caused by the inherent hysteresis.

In order to demonstrate the capabilities of a mixed l1/H∞ control formulation, no

sensor noise is considered. The formulation of the auxiliary multiobjective problem,

in this case, is given as

ν = inf
Q∈l1

‖R3
(Q)‖H∞

subject to

‖Q‖1 ≤ γ

‖R1(Q)‖1 ≤ c1

(6.57)

where, again, R3 and R1 are given in (6.53). The lower bound of the problem (6.57)

which is numerically implemented is given by

ν = inf
Q∈l1

‖T3,n(Q))‖

subject to

‖Q‖1 ≤ γ

‖Pn(R1(Q))‖1 ≤ c1.
(6.58)

The scalar gains were taken to be γ = 1 × 105 and c1 = 0.6. Again, the l1 norm on

Q becomes redundant.

The inverse compensator was computed using 4 quadrature points, 20 divisions for

the coercive field, 40 divisions for the effective field and a step size of ∆H = 1. These

parameters allow the possibility of real time implementation of the multiple objective

control system. The parameters utilized for the free energy hysteresis model (2.37)

are given in Table 2.3.
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Figure 6.23: Optimal Q impulse response for multiobjective control design with an
H∞ measure of the hysteretic disturbance rejection as the objective function and an
l1 constraint on the tracking error.

The free parameter Q which solved the problem (6.58) is illustrated in Fig-

ure 6.23. The parameter Q was optimized over the first 200 steps, i.e. n = 200, and

this system was employed over the entire time span. The H∞ norm of T3,n(Q)) for

the optimal Q was found to be 2.2× 10−2.

The tracking and error are shown in Figure 6.24a and Figure 6.24b, respectively.

These figures demonstrate the capability of the multiobjective controller to reject

the disturbance due to the inverse filter and hysteresis while maintaining accurate

tracking. The level of error shown in Figure 6.24b is significantly less than the error

resulting from the H∞ sub-optimal control design with no sensor noise depicted in

Figure 6.14b. These results again illustrate the benefit of utilizing different norms to

measure performance in the multiobjective control design.
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Figure 6.24: (a) Tracking, and (b) error for multiobjective control design with an
H∞ measure of hysteretic disturbance rejection as the objective function and an l1
constraint on the tracking error.

6.2.4 Mixed l1, H2 and H∞ Control

Finally, we consider a multiobjective control design with an l1 constraint on the

tracking performance, an H∞ constraint on the rejection of the error caused by the

hysteresis and an objective function of the H2 measure of sensor noise rejection. This

problem is formulated as the following auxiliary multiobjective problem.

ν = inf
Q∈l1

‖R2(Q)‖2
2

subject to

‖Q‖1 ≤ γ

‖R1(Q)‖1 ≤ c1

‖R3
(Q)‖H∞ ≤ c2

(6.59)

where, again, R3 and R1 are given in (6.53). The lower bound of the problem (6.59)
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Figure 6.25: Optimal Q impulse response for multiobjective control design with an
H2 measure of the noise rejection as the objective function, an H∞ constraint on the
hysteretic disturbance rejection and an l1 constraint on the tracking error.

that is numerically implemented is given by

ν = inf
Q∈l1

‖Pn(R2(Q))‖2
2

subject to

‖Q‖1 ≤ γ

‖Pn(R1(Q))‖1 ≤ c1

‖T3,n(Q)‖ ≤ c2.

(6.60)

The scalar gains were taken to be γ = 1 × 105, c1 = 1 and c2 = 0.04. Again, the

l1 norm on Q becomes redundant. The inverse compensator was computed using 4

quadrature points and 20 divisions for the coercive field, 40 divisions for the effective

field and a step size of ∆H = 1.

The free parameter Q which solved the problem (6.60) is illustrated in Figure 6.25.

Again, the parameter Q was optimized over the first 300 steps, i.e. n = 300, and this

system was employed over the entire time span. Note that more steps are included in

the optimization for this example than in the previous examples. The solution of the
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Figure 6.26: (a) Tracking, and (b) error for multiobjective control design with an
H2 measure of sensor noise rejection as the objective function, an H∞ constraint on
the hysteretic disturbance rejection and an l1 constraint on the tracking error.

lower bound problem (6.60) converges to the solution of the auxiliary problem (6.59)

as n →∞ and more step were needed in this example to provide good results.

The tracking and error are shown in Figure 6.26a and Figure 6.26b, respectively.

These figures demonstrate the ability of the multiobjective controller to design a

controller which incorporates different performance measures for the different control

objectives. The level of performance is comparable to the H2 optimal and H∞ sub-

optimal control designs implemented in the previous section.

6.3 Concluding Remarks

This chapter presented robust control designs which incorporated external distur-

bances to the system due to unattenuated hysteretic behavior and sensor noise in the

control design. In the first section, H2 and H∞ norms were employed to measure the

robustness of the system to disturbances due to unattenuated hysteresis and sensor
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noise. It was shown that the controllers designed under the consideration of the uti-

lization of an inverse compensator based on the free energy model of hysteresis (2.37)

were able to achieve accurate tracking while rejecting the disturbances due to sensor

noise and the inherent hysteresis.

The last section demonstrated that a multiobjective control design incorporating

the inverse compensator can provide high levels of performance for the magnetostric-

tive transducer. The multiobjective control synthesis is able to utilize different norm

measures of robustness with respect to the different disturbances. This allows the

most relevant measure to be applied to each control criteria. A disadvantage of the

multiobjective control design is the computational effort required to obtain the op-

timal controller. For the last example, an optimization problem with 300 degrees of

freedom was solved. To improve the controller’s performance, the number of degrees

of freedom must be increased.



Chapter 7

Conclusion

This dissertation has focused on the modeling and control of a magnetostrictive ac-

tuator. The techniques for the control of the transducer include the employment

of an inverse compensator to attenuate the effects of the inherent hysteresis in the

material. An emphasis was placed on the development of models and inverse com-

pensators which are sufficiently simple to facilitate their incorporation into control

methods which allow the possibility of real-time implementation.

Three hysteresis models are summarized in Chapter 2 and inverse compensators

based on these hysteresis models are developed. The domain wall and free energy

hysteresis models utilize energy principles to quantify the relationship between the

applied magnetic field and the magnetization in a magnetostrictive material while the

straight line Preisach hysteresis model is not derived from physical properties. The

free energy hysteresis model provides the most accurate description of the hysteresis

inherent in magnetostrictive materials including biased minor loop behavior. This

model can be implemented algebraically; thus is ideal for control design.

Once the hysteretic behavior in the magnetostrictive material has been quanti-

fied, the strains, forces and displacements in the actuator are specified in Chapter 3.

The magnetostrictive effects are included in the quantification of the strains in the

129
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Terfenol-D rod as is a term incorporating Kelvin-Voight damping. The PDE giving

the displacement of the rod at any time can be numerically implemented by applying

a Galerkin finite element approximation method. If certain flux shaping methods are

utilized, the magnetostrictive transducer can be modeled as an ODE elastic equation

with a nonlinear hysteretic input. For transducer where an ODE model is insuffi-

cient, the techniques in Chapters 4-6 could be applied to the Galerkin finite element

approximation.

Chapter 4 provides adaptive nonlinear parameter estimation algorithms. These

methods are able to determine nonlinearly occurring parameters in the transducer

models during the actuation process. This may be preferable to off-line parameter

estimation methods such as a least squares fit to data since the parameters can be up-

dated on-line. To effectively employ inverse compensation techniques, the parameters

in the model must be accurately estimated. The hysteretic behavior of the Terfenol-D

is effected by changes in operating conditions such as temperature. Thus, it is ad-

vantageous to develop a method of re-identifying slowly varying nonlinear material

parameters without interrupting the actuation.

The difficulties in controlling a magnetostrictive actuator under realistic operat-

ing conditions are illustrated by applying several preliminary control designs to the

Terfenol-D transducer in Chapter 5. First, a linear adaptive control techniques is

applied to the transducer. This method utilizes the Preisach model and correspond-

ing approximate inverse and provides the capability of tracking a reference response

while tuning the parameters in the approximate inverse to the actual parameters. The

Preisach hysteresis model is required since the control error must be quantified by a

linear combination of the parameter estimates. The inability of the linear adaptive

control technique to incorporate more accurate hysteresis models limits its utility for

controlling general nonlinear smart structures.
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The attributes and limitations of inverse compensation techniques combined with

PID and LQR control designs are also summarized in Chapter 5. While the employ-

ment of inverse compensation is able to reduce the effects of the inherent hysteresis,

these control methods are not designed to accommodate the remaining error in the

system nor can they attenuate the presence of sensor noise.

Chapter 6 describes control designs which include the presence of external distur-

bances to the system such as the error caused by the hysteretic material and sensor

noise. Controllers designed to minimize the H2 and H∞ norms of the closed-loop

system are designed and the performance is illustrated. A multiobjective control

technique is also discussed in this chapter. This technique has the capability of mea-

suring the robustness with respect to different disturbance with different norm to

reflect the performance criteria.

The simulation results presented in this dissertation illustrate that the incorpo-

ration of an inverse filter based on the free energy hysteresis model (2.37) provides

significant attenuation of the inherent hysteresis in the Terfenol-D actuator. It is also

noted that control designs which consider the error due to hysteresis and the presence

of sensor noise in the design system provide the highest level of performance.

The techniques for transducer modeling, nonlinear parameter estimation and ro-

bust control were developed in the context of a magnetostrictive transducer but they

are sufficiently general to be extended to many smart systems. In [21], it is shown

that analogous free energy hysteresis formulations can be developed for ferroelectric

and, in certain operating regimes, ferroelastic materials. These hysteresis models can

be incorporated into a model of the full transducer and the robust control designs

in Chapter 6 can be employed. If the transducer can not be accurately model by

an ODE, the finite element approximation of the PDE model can be utilized in the

control design. This will increase the number of states in the system and, for H2

and H∞ control formulations, the controller but these methods can still be applied.
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As multiobjective control design employs the impulse response of the free parameter

Q, the number of states in the transducer will not affect the number of states in the

resulting controller.

The investigation of robust control techniques presented in this dissertation is by

no means exhaustive. In addition to external disturbances, model uncertainty can

be incorporated into the control design system. Techniques employing the structural

singular value can be employed to quantifying the robustness of a system to unknown

dynamics. Controllers can then be designed to accommodate a level of uncertainty in

the plant model. This may be an alternative method for accommodating the distur-

bance caused by the inverse compensator and inherent hysteresis in smart materials.

A detailed description of model uncertainty methods are provided in [26].

Another area of interest is the experimental implementation of the control designs

discussed in Chapter 6. The performance of the inverse compensator and the robust-

ness of the control designs can be validated through simulation but the ultimate goal

is the implementation of these method in physical experiments.



Appendix A

Proof of Theorem 4.1

The proof of Theorem 4.1 is outlined in [14]. Here we present a detailed proof of the

theorem. To prove that (4.18) is the solution of (4.8) we must first introduce a lemma.

Lemma 1: For any bounded function g(y), if ŷ ∈ Y , where Y is a bounded convex

set, then

1) 0 ≤ min
x∈R

max
y∈Y

(g(y)− g(ŷ) + x(ŷ − y)) < ∞

2) min
x∈R

max
y∈Y

(g(y)− g(ŷ) + x(ŷ − y)) = min
x,c∈R

(xŷ + c) subject to (s.t.)

xy + c ≥ g − ĝ for all y ∈ Y .

Proof of Lemma 1:

The proof presented here is a detailed version of the proof given in [14].

1) For any x and bounded g(y), if ŷ ∈ Y then

0 ≤ g − ĝ + x(ŷ − y) < ∞ for some y ∈ Y. (A.1)

For example, y = ŷ will satisfy (A.1). Therefore,
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0 ≤ max
y∈Y

(g(y)− g(ŷ) + x(ŷ − y)) < ∞

0 ≤ min
x∈R

max
y∈Y

(g(y)− g(ŷ) + x(ŷ − y)) < ∞.

2) For any x satisfying xy + c ≥ g − ĝ,

g(y)− g(ŷ) + x(ŷ − y) ≤ xŷ + c.

Hence, for any x

max
y∈Y

(g(y)− g(ŷ) + x(ŷ − y)) ≤ xŷ + c

and

min
x∈R

max
y∈Y

(g(y)− g(ŷ) + x(ŷ − y)) ≤ min
x∈R

(xŷ + c) . ¤

Employing this lemma, Theorem 4.1 can be proved. We will prove the case where

ỹε > 0. The proof for ỹε < 0 is analogous.

Proof of Theorem 4.1:

Consider θ ∈ θc; since f is concave on θc, F (θ) = f − f̂ is concave on θc. If θ ∈ θ̃c,

F (θ) is linear and hence concave. F (θ) is continuous on Θ since f i − f̂ = φijθi + cij

for any θi which is an endpoint of an interval of θc. In addition to F (θ) being a

continuous concave function on Θ, if θ ∈ θij

F (θ) = λf j + (1− λ)f i − f̂ where λ =
θ − θi

θj − θi
.

As θ ∈ θij, 0 ≤ λ < 1. Since f is not concave on every θij, we have

f(θ) ≤ λf j + (1− λ)f i for all θ ∈ θij (A.2)
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and therefore F (θ) ≥ f − f̂ for all θ ∈ θ̃c.

Consider θ̂ ∈ θc. By definition we have

∇fθ̂(θ − θ̂) ≥ f − f̂ for all θ ∈ Θ. (A.3)

Defining the following

θ = y, θ̂ = ŷ, ∇fθ̂ = x, −∇fθ̂ θ̂ = c, f = g, f̂ = ĝ, Θ = Y, (A.4)

and employing Lemma 1, we can rewrite (A.3) as

xy + c ≥ g − ĝ for all y ∈ Y.

Since, by the definitions in (A.4), xŷ + c = 0 we have

min
x,c∈R

(xŷ + c) = 0.

By the equivalence of the min/max problem given by Lemma 1 and the fact that,

since θ̂ ∈ θc, F (θ̂) = 0, problem (4.8) has a solution

a∗ = F (θ̂) = 0 φ∗ =
∂f

∂θ

∣∣∣∣
θ̂

.

Now we must consider θ̂ ∈ θ̃c. Let θ̂ ∈ θij for some i, j. From part 2 of Lemma 1 we

have that

min
φ∈R

max
θ∈Θ

J(φ, θ) = min
φ,c∈R

φθ̂ + c s.t. f − f̂ ≤ φθ + c for all θ ∈ Θ

≤ min
φ,c∈R

φθ̂ + c s.t. F (θ) ≤ φθ + c for all θ ∈ Θ
(A.5)
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since F (θ) ≥ f − f̂ . Since F (θ) is concave on Θ, we can write

F (θ) ≤ ∇F θ′(θ − θ′) + F (θ′) for all θ, θ′ ∈ Θ. (A.6)

By (4.16), F (θ) = φklθ + ckl for all θ ∈ θkl, therefore, for any θ′ ∈ θkl we have

∇F θ′ = φkl. Thus, we can rewrite (A.6) as

F (θ) ≤ φklθ + ckl for all θ ∈ Θ. (A.7)

Utilizing the fact that the intervals θkl for all k, l are unique, we note that equality

in (A.7) only holds for the interval θkl. Hence,

F (θ) < φklθ + ckl for all θ /∈ θkl. (A.8)

With this information, we reformulate (A.5) as

min
φ∈R

max
θ∈Θ

J(φ, θ) ≤ min
φ,c∈R

φθ̂ + c s.t. F (θ) ≤ φθ + c for all θ ∈ Θ

≤ min
φ,c∈R

φθ̂ + c s.t. F (θ) = φklθ + ckl for all θ ∈ θkl

F (θ) < φklθ + ckl for all θ /∈ θkl.

(A.9)

The active constraints in (A.9) occur only in θkl so the solution of (A.9) is simply

φklθ̂ + ckl. The expansion of the constraint in (A.5) to the two constraints in (A.9) is

not unique since the choice of k and l is arbitrary. Therefore, the optimum solution

of (A.5) has to be minimum of all possible solutions derived from all possible sets of
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constraints. This implies that

min
φ∈R

max
θ∈Θ

J(φ, θ) ≤ min
φ,c∈R

φθ̂ + c s.t. F (θ) ≤ φθ + c for all θ ∈ Θ

= min
{

φklθ̂ + ckl for k, l = 1, . . . , n
}

.

(A.10)

Recall that we have chosen θ̂ ∈ θij and that when i 6= k, j 6= l, θ̂ /∈ θkl. Hence, from

(A.10) it follows that

F (θ) < φklθ̂ + ckl for all k 6= i, l 6= j.

We can now deduce that the minimal solution occurs if k = i and l = j, thus yielding

min
φ,c∈R

φθ̂ + c = F (θ̂) = φij θ̂ + cij.

s.t. F (θ) ≤ φθ + c
(A.11)

The optimal φ is given by φ∗ = φij. We must now show that the equality in (A.5) is

attained. We will show that if F (θ) was constructed to be strictly larger than f − f̂ ,

the optimal solution would be larger and if F (θ) was less than f − f̂ for some θ, the

optimal solution would be smaller.

From (A.5) and (A.11), we have

min
φ,c∈R

φθ̂ + c ≤ min
φ,c∈R

φθ̂ + c = φij θ̂ + cij.

s.t. f − f̂ ≤ φθ + c s.t. F (θ) ≤ φθ + c

Let F ′(θ) = F (θ) + ε ≥ f − f̂ + ε, where ε > 0. This implies that

min
φ,c∈R

φθ̂ + c ≤ min
φ,c∈R

φθ̂ + c = min
φ,c∈R

φθ̂ + c

s.t. f − f̂ ≤ φθ + c s.t F ′(θ) ≤ φθ + c s.t F (θ) ≤ φθ + c− ε
. (A.12)
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Defining c′ = c− ε, we can rewrite (A.12) as

min
φ,c′∈R

φθ̂ + c′ + ε = φij θ̂ + cij + ε.

s.t F (θ) ≤ φθ + c′
(A.13)

Now suppose F ′(θ) = F (θ) − ε. This implies that F ′ ≤ f − f̂ for some θ, for

example θ̂. Following the same argument as above, we notice that

min
φ,c∈R

φθ̂ + c ≥ min
φ,c∈R

φθ̂ + c = φij θ̂ + cij − ε.

s.t. f − f̂ ≤ φθ + c s.t F ′(θ) ≤ φθ + c
(A.14)

The inequalities (A.12) and (A.14) imply that

φij θ̂ + cij − ε ≤
min
φ,c∈R

φθ̂ + c

s.t. f − f̂ ≤ φθ + c
≤ φij θ̂ + cij + ε. (A.15)

Since F was constructed as a tight upper bound on f − f̂ , i.e. F ≥ f − f̂ , we have

ε = 0 in (A.15) and

min
φ,c∈R

φθ̂ + c = φij θ̂ + cij = F (θ)

s.t. f − f̂ ≤ φθ + c
(A.16)

with the optimal φ given as φ∗ = φij. ¤
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